WorldWideScience

Sample records for acid gas hazards

  1. Gas Chromatographic Determination of Fatty Acids in Oils with Regard to the Assessment of Fire Hazard

    Science.gov (United States)

    Bartošová, Alica; Štefko, Tomáš

    2017-06-01

    The aim of the paper was to study and research the application of processing gas chromatographic method for the rapid and accurate determination of the composition of different types of oils, such as substances with the possibility of an adverse event spontaneous combustion or self-heating. Tendency to spontaneous combustion is chemically characterized mainly by the amount of unsaturated fatty acids, which have one or more double bonds in their molecule. Vegetable oils essentially consist of the following fatty acids: palmitic, stearic, oleic, linoleic, and linoleic. For the needs of assessment, the fire hazard must be known, in which the double bond is present, as well as their number in a molecule. As an analytical method, GCMS was used for determination of oils content. Three types of oil were used - rapeseed, sunflower, and coconut oil. Owing to the occurrence of linoleic acid C18:2 (49.8 wt.%) and oleic acid C18:1 (43.3 wt.%) with double bonds, sunflower oil is the most prone to self-heating. The coconut and rapeseed oils contain double bond FAME in lesser amount, and their propensity to self-heating is relatively low.

  2. Shale gas, a hazardous exploitation

    International Nuclear Information System (INIS)

    Maincent, G.

    2011-01-01

    In march 2010 three authorizations to search for shale gases were delivered in France in the regions of Montelimar, Nant and Villeneuve-de-Berg. A general public outcry has led the government to freeze the projects till a complete assessment of the impact on the environment is made. The fears of the public are based on the feedback experience in the Usa where some underground waters were polluted. The source of pollution is twofold: first the additives used in the injected fluids (methanol as an anti-microbic agent, hydrochloric acid to dissolve natural cements or glycol ethylene as a deposit inhibitor) and secondly metal particles of copper, zinc or lead trapped in the clay layers and released by the injection of the fluids. It appears also that the injection of high pressure fluids near a crack can induce earth tremors by reactivating the crack. (A.C.)

  3. The real hazards of shale gas

    International Nuclear Information System (INIS)

    Favari, Daniele; Picot, Andre; Durand, Marc

    2013-01-01

    This bibliographical sheet presents a book which addresses the issue of shale gas. A first part describes the origin of this gaseous hydrocarbon, the composition of shale gas and its extraction, the technique of hydraulic fracturing, and the environmental risks. A second part addresses the economic, ecologic and political issues. The authors outline that all signs are there to prove the alarming hazards of shale gas. One of the authors outlines the necessity of an energy transition, far from fossil and nuclear energy, in order to guarantee a high level of protection of human health and of the environment

  4. Hazardous gas treatment by atmospheric discharges

    International Nuclear Information System (INIS)

    Mizeraczyk, J.

    2005-01-01

    hazardous gas emissions will be discussed. (Author)

  5. [Chemical hazards arising from shale gas extraction].

    Science.gov (United States)

    Pakulska, Daria

    2015-01-01

    The development of the shale industry is gaining momentum and hence the analysis of chemical hazards to the environment and health of the local population is extreiely timely and important. Chemical hazards are created during the exploitation of all minerals, but in the case of shale gas production, there is much more uncertainty as regards to the effects of new technologies application. American experience suggests the increasing risk of environmental contamination, mainly groundwater. The greatest, concern is the incomplete knowledge of the composition of fluids used for fracturing shale rock and unpredictability of long-term effects of hydraulic fracturing for the environment and health of residents. High population density in the old continent causes the problem of chemical hazards which is much larger than in the USA. Despite the growing public discontent data on this subject are limited. First of all, there is no epidemiological studies to assess the relationship between risk factors, such as air and water pollution, and health effects in populations living in close proximity to gas wells. The aim of this article is to identify and discuss existing concepts on the sources of environmental contamination, an indication of the environment elements under pressure and potential health risks arising from shale gas extraction.

  6. Chemical hazards arising from shale gas extraction

    Directory of Open Access Journals (Sweden)

    Daria Pakulska

    2015-02-01

    Full Text Available The development of the shale industry is gaining momentum and hence the analysis of chemical hazards to the environment and health of the local population is extremely timely and important. Chemical hazards are created during the exploitation of all minerals, but in the case of shale gas production, there is much more uncertainty as regards to the effects of new technologies application. American experience suggests the increasing risk of environmental contamination, mainly groundwater. The greatest concern is the incomplete knowledge of the composition of fluids used for fracturing shale rock and unpredictability of long-term effects of hydraulic fracturing for the environment and health of residents. High population density in the old continent causes the problem of chemical hazards which is much larger than in the USA. Despite the growing public discontent data on this subject are limited. First of all, there is no epidemiological studies to assess the relationship between risk factors, such as air and water pollution, and health effects in populations living in close proximity to gas wells. The aim of this article is to identify and discuss existing concepts on the sources of environmental contamination, an indication of the environment elements under pressure and potential health risks arising from shale gas extraction. Med Pr 2015;66(1:99–117

  7. Structural comparison of hazardous and non-hazardous coals based on gas sorption experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J.; Toth, J. [Research Lab. for Mining Chemistry, Hungarian Academy of Sciences, Miskolc-Egyetemvaros (Hungary); Radnai-Gyoengyoes, Z. [Geopard Ltd., Pecs (Hungary); Bokanyi, L. [Miskolc Univ., Miskolc-Egyetemvaros (Hungary). Dept. of Process Engineering

    1997-12-31

    Comparison of carbon-dioxide and propane sorption at ambient temperature was used for characterising the difference of the structure of hazardous and non hazardous coals. However, hazardous coals were found more microporous or contain more closed pores than non hazardous ones, this difference couldn`t have been enlarged and attributed to one petrographic component by producing the density fractions. Gas sorption isobars (nitrogen, methane, ethane) are proposed to make a distinction between fine pore structure of coals. (orig.)

  8. Gas migration from oil and gas fields and associated hazards

    International Nuclear Information System (INIS)

    Gurevich, A.E.; Endres, B.L.; Robertson Jr, J.O.; Chilingar, G.V.

    1993-01-01

    The migration of gas from oil and gas formations to the surface is a problem that greatly affects those surface areas where human activity exists. Underground gas storage facilities and oil fields have demonstrated a long history of gas migration problems. Experience has shown that the migration of gas to the surface creates a serious potential risk of explosion, fires, noxious odors and potential emissions of carcinogenic chemicals. These risks must be seriously examined for all oil and gas operations located in urban areas. This paper presents the mechanics of gas migration, paths of migration and a review of a few of the risks that should be considered when operating a gas facility in an urban area. The gas can migrate in a continuous or discontinuous stream through porous, water-filled media to the surface. The primary force in this migration of gas is the difference between specific weights of gas and water

  9. Hazardous Gas Production by Alpha Particles

    International Nuclear Information System (INIS)

    LaVerne, Jay A.

    2001-01-01

    This project focused on the production of hazardous gases in the radiolysis of solid organic matrices, such as polymers and resins, that may be associated with transuranic waste material. Self-radiolysis of radioactive waste is a serious environmental problem because it can lead to a change in the composition of the materials in storage containers and possibly jeopardize their integrity. Experimental determination of gaseous yields is of immediate practical importance in the engineering and maintenance of containers for waste materials. Fundamental knowledge on the radiation chemical processes occurring in these systems allows one to predict outcomes in materials or mixtures not specifically examined, which is a great aid in the management of the variety of waste materials currently overseen by Environmental Management

  10. Hazard assessments of double-shell flammable gas tanks

    International Nuclear Information System (INIS)

    Fox, G.L.; Stepnewski, D.D.

    1994-01-01

    This report is the fourth in a series of hazard assessments performed on the double-shell flammable gas watch list tanks. This report focuses on hazards associated with the double-shell watch list tanks (101-AW, 103-AN, 104-AN, and 105-AN). While a similar assessment has already been performed for tank 103-SY, it is also included here to incorporate a more representative slurry gas mixture and provide a consistent basis for comparing results for all the flammable gas tanks. This report is intended to provide an in-depth assessment by considering the details of the gas release event and slurry gas mixing as the gas is released from the waste. The consequences of postulated gas ignition are evaluated using a plume burn model and updated ignition frequency predictions. Tank pressurization which results from a gas burn, along with the structural response, is also considered. The report is intended to support the safety basis for work activities in flammable gas tanks by showing margins to safety limits that are available in the design and procedures

  11. Acid Gas Removal from Natural Gas with Alkanolamines

    DEFF Research Database (Denmark)

    Sadegh, Negar

    commercially for the removal of acid gas impurities from natural gas. Alkanolamines, simple combinations of alcohols and ammonia, are the most commonly used category of chemical solvents for acid gas capture. This Ph.D. project is aboutthermodynamics of natural gas cleaning process with alkanolamines......Some 40 % of the world’s remaining gas reserves are sour or acid, containing large quantities of CO2 and H2S and other sulfur compounds. Many large oil and gas fields have more than 10 mole % CO2 and H2S content. In the gas processing industry absorption with chemical solvents has been used...... pressure on acid gas solubility was also quantitatively investigated through both experimental and modeling approaches....

  12. Hazards analysis of TNX Large Melter-Off-Gas System

    International Nuclear Information System (INIS)

    Randall, C.T.

    1982-03-01

    Analysis of the potential safety hazards and an evaluation of the engineered safety features and administrative controls indicate that the LMOG System can be operated without undue hazard to employees or the public, or damage to equipment. The safety features provided in the facility design coupled with the planned procedural and administrative controls make the occurrence of serious accidents very improbable. A set of recommendations evolved during this analysis that was judged potentially capable of further reducing the probability of personnel injury or further mitigating the consequences of potential accidents. These recommendations concerned areas such as formic acid vapor hazards, hazard of feeding water to the melter at an uncontrolled rate, prevention of uncontrolled glass pours due to melter pressure excursions and additional interlocks. These specific suggestions were reviewed with operational and technical personnel and are being incorporated into the process. The safeguards provided by these recommendations are discussed in this report

  13. Control Decisions for Flammable Gas Hazards in Waste Transfer Systems

    International Nuclear Information System (INIS)

    KRIPPS, L.J.

    2000-01-01

    This report describes the control decisions for flammable gas hazards in waste transfer systems (i.e., waste transfer piping and waste transfer-associated structures) made at control decision meetings on November 30, 1999a and April 19, 2000, and their basis. These control decisions, and the analyses that support them, will be documented in an amendment to the Final Safety Analysis Report (FSAR) (CHG 2000a) and Technical Safety Requirements (TSR) (CHG 2000b) to close the Flammable Gas Unreviewed Safety Question (USQ) (Bacon 1996 and Wagoner 1996). Following the Contractor Tier I review of the FSAR and TSR amendment, it will be submitted to the US. Department of Energy (DOE), Office of River Protection (ORP) for review and approval. The control decision meeting on November 30, 1999 to address flammable gas hazards in waste transfer systems followed the control decision process and the criteria for control decisions described in Section 3.3.1.5 of the FSAR. The control decision meeting agenda, attendance list, and introductory and background presentations are included in Attachments 1 through 4. The control decision discussions on existing and other possible controls for flammable gas hazards in waste transfer systems and the basis for selecting or not selecting specific controls are summarized in this report

  14. 33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.

    Science.gov (United States)

    2010-07-01

    ... a tank vessel as liquefied petroleum gas, liquefied natural gas, or similar liquefied gas products... Eleventh Coast Guard District § 165.1151 Security Zones; liquefied hazardous gas tank vessels, San Pedro... the sea floor, within a 500 yard radius around any liquefied hazardous gas (LHG) tank vessel that is...

  15. Chemical hazards from acid crater lakes

    Science.gov (United States)

    van Bergen, M. J.; Sumarti, S.; Heikens, A.; Bogaard, T. A.; Hartiyatun, S.

    2003-04-01

    Acid crater lakes, which are hosted by a considerable number of active volcanoes, form a potential threat for local ecosystems and human health, as they commonly contain large amounts of dissolved chemicals. Subsurface seepage or overflow can lead to severe deterioration of the water quality of rivers and wells, as observations around several of these volcanoes have shown. The Ijen crater lake in East Java (Indonesia) is a striking example, as this reservoir of hyperacid (pHfluoride-rich water is the source of a ca. 50 km long acid river that transports substantial quantities of potentially toxic elements. A downstream trend of increasing pH from fluoride levels pose some of the most severe environmental threats. Its concentration decreases from ca. 1300 mg/kg in the lake to ca. 10 mg/kg in a coastal area downstream, where virtually all of the river water is used for irrigating rice fields and other cropland. Apart from serious problems for agriculture, our survey of 55 drinking water wells in the irrigation area shows that 50% contain fluoride above the 1.5 ppm WHO limit, in line with the observation that dental fluorosis is widespread among the ca. 100,000 residents of the area. A conspicuous spatial correlation between fluoride concentrations and the irrigation system suggest that long-term (century) infiltration of irrigation water may have affected the quality of groundwater. Fluorosis is also a problem in some villages within the caldera, where well water sources may have a more direct subsurface connection with the lake system. From our observations we conclude that water-quality monitoring is especially needed for health reasons in volcanic areas where volatile elements, derived from passively degassing magma, are intercepted by (sub) surface water bodies.

  16. A proposal for a test method for assessment of hazard property HP 12 ("Release of an acute toxic gas") in hazardous waste classification - Experience from 49 waste.

    Science.gov (United States)

    Hennebert, Pierre; Samaali, Ismahen; Molina, Pauline

    2016-12-01

    A stepwise method for assessment of the HP 12 is proposed and tested with 49 waste samples. The hazard property HP 12 is defined as "Release of an acute toxic gas": waste which releases acute toxic gases (Acute Tox. 1, 2 or 3) in contact with water or an acid. When a waste contains a substance assigned to one of the following supplemental hazards EUH029, EUH031 and EUH032, it shall be classified as hazardous by HP 12 according to test methods or guidelines (EC, 2014a, 2014b). When the substances with the cited hazard statement codes react with water or an acid, they can release HCl, Cl 2 , HF, HCN, PH 3 , H 2 S, SO 2 (and two other gases very unlikely to be emitted, hydrazoic acid HN 3 and selenium oxide SeO 2 - a solid with low vapor pressure). Hence, a method is proposed:For a set of 49 waste, water addition did not produce gas. Nearly all the solid waste produced a gas in contact with hydrochloric acid in 5 min in an automated calcimeter with a volume >0.1L of gas per kg of waste. Since a plateau of pressure is reached only for half of the samples in 5 min, 6 h trial with calorimetric bombs or glass flasks were done and confirmed the results. Identification of the gases by portable probes showed that most of the tested samples emit mainly CO 2 . Toxic gases are emitted by four waste: metallic dust from the aluminum industry (CO), two air pollution control residue of industrial waste incinerator (H 2 S) and a halogenated solvent (organic volatile(s) compound(s)). HF has not been measured in these trials started before the present definition of HP 12. According to the definition of HP 12, only the H 2 S emission of substances with hazard statement EUH031 is accounted for. In view of the calcium content of the two air pollution control residue, the presence of calcium sulphide (EUH031) can be assumed. These two waste are therefore classified potentially hazardous for HP 12, from a total of 49 waste. They are also classified as hazardous for other properties (HP 7

  17. Thermal hazard assessment of TMCH mixed with inorganic acids

    Directory of Open Access Journals (Sweden)

    Yeh Chi-Tang

    2018-01-01

    Full Text Available 1,1-Bis(tert-butylperoxy-3,3,5-trimethylcyclohexane (TMCH is a typical peroxide with two peroxy groups that may runaway and/or explode due to mixing with inorganic acids, such as HCl, HNO3, H2SO4, or H3PO4. In this study, reactivities of TMCH mixed with the above inorganic acids were assessed by differential scanning calorimetry (DSC. Furthermore, data obtained by DSC, such as exothermic onset temperature (T0, maximum temperature (Tmax, and heat of decomposition (ΔHd could be employed to acquire thermal safety parameters. Moreover, thermal activity monitor III (TAM III was employed to investigate the thermal hazards while storing or transporting TMCH and TMCH mixed with four types of commonly used inorganic acids, here as HCl, HNO3, H2SO4, or H3PO4 under isothermal conditions. Mixing TMCH with those inorganic acids resulted in higherΔHd except H3PO4, and mixing TMCH with HCl clearly decreased T0. Therefore, the phenomena of mixing those incompatible materials with TMCH can be concluded as the worst cases in terms of contamination hazards during storage and transportation of TMCH.

  18. Nanostructure Engineered Chemical Sensors for Hazardous Gas and Vapor Detection

    Science.gov (United States)

    Li, Jing; Lu, Yijiang

    2005-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs) and metal oxides nanowires or nanobelts, on a pair of interdigitated electrodes (IDE) processed with a silicon based microfabrication and micromachining technique. The IDE fingers were fabricated using thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to hazardous gases and vapors, such as acetone, benzene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing in our sensor platform can be understood by electron modulation between the nanostructure engineered device and gas molecules. As a result of the electron modulation, the conductance of nanodevice will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost.

  19. Gas chromatography of alkylphosphonic and dialkylphosphinic acids

    International Nuclear Information System (INIS)

    Gasco, L.; Barrera, R.; Ramirez, A.; Martin Munoz, N.

    1978-01-01

    After carrying out an optimization study on the separation conditions for the TMS-derivatives, of the hexyl-, cyclohexyl-, heptyl-, and octyl-phosphonic acids; dihexyl-, dicyclohexyl-, heptyl-, and octyl-phosphinic acids, and dioctylphosphine oxide, their retention indices (I) at two temperatures and on the 0V-1 and 0V-17 stationary phase were determined. Correlations between I and molecular structure were established. Calibration factors of these compounds in the flame ionization detector were studied, and the results analized taking into account the variables afecting the quantitative results. These results were unbiased but they had a lower precission than usually achieveble in gas chromatography. (author)

  20. Hazard categorization of 100 K West fuel canister gas and liquid sampling

    International Nuclear Information System (INIS)

    Alwardt, L.D.

    1994-01-01

    This report documents the determination that the activities associated with the 100 K West fuel canister gas and liquid sampling are classified as Hazard Category Other (consequences are below criteria for Category 3)

  1. Investigating animal health effects of sour gas acid forming emissions

    International Nuclear Information System (INIS)

    Edwards, W.C.

    1992-01-01

    The effects of sour gas well blowout emissions on livestock are reviewed. Guidelines for safe drilling operations in hydrogen sulfide environments, general hazards and characteristics of hydrogen sulfide, and guidelines for field investigation into the effects of sour gas and acid emissions on livestock are discussed. A case history involving the Ross No. 2 gas well blowout of July 1985 in Rankin County, Mississippi is presented. The blowout lasted for 72 days, and at peak discharge the 500 ppM radius was ca 3.5 miles. A cattle embryo transplant operation located one half mile from the well was affected by the blowout. Examination by a local veterinarian of the cattle demonstrated eye irritation, epiphora, nasal discharge and coughing. After one and a half months of exposure, most animals showed clinical signs of a severe dry hacking cough, epiphora, dry rales over the thoracic inlet, and a bronchial popping sound over the lateral thorax. All animals had eye irritation. Of 55 animals showing signs of respiratory distress and eye irritations, 15 were still clinically ill in May of 1986. 7 refs., 1 tab

  2. Using Willie's Acid-Base Box for Blood Gas Analysis

    Science.gov (United States)

    Dietz, John R.

    2011-01-01

    In this article, the author describes a method developed by Dr. William T. Lipscomb for teaching blood gas analysis of acid-base status and provides three examples using Willie's acid-base box. Willie's acid-base box is constructed using three of the parameters of standard arterial blood gas analysis: (1) pH; (2) bicarbonate; and (3) CO[subscript…

  3. The gas fireplace: a new burn hazard in the home.

    Science.gov (United States)

    Becker, L; Cartotto, R

    1999-01-01

    Gas fireplaces have become popular in recent years. This article presents the first reported case of a burn injury from contact with the glass front of a gas fireplace. An investigation of the surface temperature of the glass fronts of gas fireplaces was undertaken to clarify the risks posed by these units. Surface temperature measurements of the glass fronts of 3 common gas fireplace models were obtained using a thermocouple probe. Glass temperatures reached 200 degrees C within 6.5 minutes of ignition, climbing to 245 degrees C at 14 minutes after ignition. Glass temperature continued to rise beyond this point, but it could not be monitored because the adhesives securing the thermocouple probe melted. Glass temperatures of 50 degrees C were recorded at 30 minutes after the unit was shut off. The temperatures of the glass fronts of glass fireplaces are sufficient to cause cutaneous burns within seconds of contact both while the fireplace is in use and up to one half hour after it has been turned off. Current industry safety standards are not directed at the prevention of contact burns. We recommend that (1) mechanical guards be installed to create a barrier in front of the glass; (2) strict warning labels be applied to the units and ignition switches; and (3) burn prevention information be distributed with the owner's manual for these products.

  4. Molten salt hazardous waste disposal process utilizing gas/liquid contact for salt recovery

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.

    1984-01-01

    The products of a molten salt combustion of hazardous wastes are converted into a cooled gas, which can be filtered to remove hazardous particulate material, and a dry flowable mixture of salts, which can be recycled for use in the molten salt combustion, by means of gas/liquid contact between the gaseous products of combustion of the hazardous waste and a solution produced by quenching the spent melt from such molten salt combustion. The process results in maximizing the proportion of useful materials recovered from the molten salt combustion and minimizing the volume of material which must be discarded. In a preferred embodiment a spray dryer treatment is used to achieve the desired gas/liquid contact

  5. New lidar challenges for gas hazard management in industrial environments

    Science.gov (United States)

    Cézard, Nicolas; Liméry, Anasthase; Bertrand, Johan; Le Méhauté, Simon; Benoit, Philippe; Fleury, Didier; Goular, Didier; Planchat, Christophe; Valla, Matthieu; Augère, Béatrice; Dolfi-Bouteyre, Agnès.

    2017-10-01

    The capability of Lidars to perform range-resolved gas profiles makes them an appealing choice for many applications. In order to address new remote sensing challenges, arising from industrial contexts, Onera currently develops two lidar systems, one Raman and one DIAL. On the Raman side, a high spatial-resolution multi-channel Raman Lidar is developed in partnership with the French National Radioactive Waste Management Agency (Andra). This development aims at enabling future monitoring of hydrogen gas and water vapor profiles inside disposal cells containing radioactive wastes. We report on the development and first tests of a three-channel Raman Lidar (H2, H2O, N2) designed to address this issue. Simultaneous hydrogen and water vapor profiles have been successfully performed along a 5m-long gas cell with 1m resolution at a distance of 85 m. On the DIAL side, a new instrumental concept is being explored and developed in partnership with Total E and P. The objective is to perform methane plume monitoring and flux assessment in the vicinity of industrials plants or platforms. For flux assessment, both gas concentration and air speed must be profiled by lidar. Therefore, we started developing a bi-function, all-fiber, coherent DIAL/Doppler Lidar. The first challenge was to design and build an appropriate fiber laser source. The achieved demonstrator delivers 200 W peak power, polarized, spectrally narrow (<15 MHz), 110 ns pulses of light out of a monomode fiber at 1645 nm. It fulfills the requirements for a future implementation in a bi-function Dial/Doppler lidar with km-range expectation. We report on the laser and lidar architecture, and on first lidar tests at 1645 nm.

  6. Hazardous gas treatment using atmospheric pressure microwave discharges

    International Nuclear Information System (INIS)

    Mizeraczyk, Jerzy; Jasinski, Mariusz; Zakrzewski, Zenon

    2005-01-01

    Atmospheric pressure microwave discharge methods and devices used for producing non-thermal plasmas for control of gaseous pollutants are described in this paper. The main part of the paper is concerned with microwave torch discharges (MTDs). Results of laboratory experiments on plasma abatement of several volatile organic compounds (VOCs) in their mixtures with either synthetic air or nitrogen in low (∼100 W) and moderate (200-400 W) microwave torch plasmas at atmospheric pressure are presented. Three types of MTD generators, i.e. low-power coaxial-line-based MTDs, moderate-power waveguide-based coaxial-line MTDs and moderate-power waveguide-based MTDs were used. The gas flow rate and microwave (2.45 GHz) power delivered to the discharge were in the range of 1-3 litre min -1 and 100-400 W, respectively. The concentrations of the processed gaseous pollutants were from several to several tens of per cent. The results showed that the MTD plasmas fully decomposed the VOCs at a relatively low energy cost. The energy efficiency of decomposition of several gaseous pollutants reached 1000 g (kW-h) -1 . This suggests that MTD plasmas can be useful tools for decomposition of highly concentrated VOCs

  7. 78 FR 53190 - Pipeline Safety: Notice to Operators of Hazardous Liquid and Natural Gas Pipelines of a Recall on...

    Science.gov (United States)

    2013-08-28

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2013-0185] Pipeline Safety: Notice to Operators of Hazardous Liquid and Natural Gas Pipelines of a Recall on Leak Repair Clamps Due to Defective Seal AGENCY: Pipeline and Hazardous Materials Safety...

  8. Analysis of Sustainable Technologies for Acid Gas Removal

    OpenAIRE

    Dal Pozzo, Alessandro

    2017-01-01

    Acid gases, such as sulphur dioxide and hydrogen halides and – in a broad sense – carbon dioxide, are typical pollutants generated by combustion processes. Their removal by means of solid sorbents represent an efficient and cost-effective approach in dry acid gas treatment systems for waste incineration flue gas, while for CO2 capture the process is exploratively studied as a promising alternative to amine scrubbing. The present study addressed both aspects. In waste incineration flue gas ...

  9. Thermodynamic modelling of acid gas removal from natural gas using the Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Sadegh, Negar; Stenby, Erling Halfdan; Thomsen, Kaj

    2017-01-01

    Thermodynamics of natural gas sweetening process needs to be known for proper design of natural gas treating plants. Absorption with aqueous N-Methyldiethanolamine is currently the most commonly used process for removal of acid gas (CO2 and H2S) impurities from natural gas. Model parameters...... for the Extended UNIQUAC model have already been determined by the same authors to calculate single acid gas solubility in aqueous MDEA. In this study, the model is further extended to estimate solubility of CO2 and H2S and their mixture in aqueous MDEA at high pressures with methane as a makeup gas....

  10. Locating hazardous gas leaks in the atmosphere via modified genetic, MCMC and particle swarm optimization algorithms

    Science.gov (United States)

    Wang, Ji; Zhang, Ru; Yan, Yuting; Dong, Xiaoqiang; Li, Jun Ming

    2017-05-01

    Hazardous gas leaks in the atmosphere can cause significant economic losses in addition to environmental hazards, such as fires and explosions. A three-stage hazardous gas leak source localization method was developed that uses movable and stationary gas concentration sensors. The method calculates a preliminary source inversion with a modified genetic algorithm (MGA) and has the potential to crossover with eliminated individuals from the population, following the selection of the best candidate. The method then determines a search zone using Markov Chain Monte Carlo (MCMC) sampling, utilizing a partial evaluation strategy. The leak source is then accurately localized using a modified guaranteed convergence particle swarm optimization algorithm with several bad-performing individuals, following selection of the most successful individual with dynamic updates. The first two stages are based on data collected by motionless sensors, and the last stage is based on data from movable robots with sensors. The measurement error adaptability and the effect of the leak source location were analyzed. The test results showed that this three-stage localization process can localize a leak source within 1.0 m of the source for different leak source locations, with measurement error standard deviation smaller than 2.0.

  11. Amine-oxide hybrid materials for acid gas separations

    KAUST Repository

    Bollini, Praveen; Didas, Stephanie A.; Jones, Christopher W.

    2011-01-01

    Organic-inorganic hybrid materials based on porous silica materials functionalized with amine-containing organic species are emerging as an important class of materials for the adsorptive separation of acid gases from dilute gas streams

  12. Non-Volcanic release of CO2 in Italy: quantification, conceptual models and gas hazard

    Science.gov (United States)

    Chiodini, G.; Cardellini, C.; Caliro, S.; Avino, R.

    2011-12-01

    Central and South Italy are characterized by the presence of many reservoirs naturally recharged by CO2 of deep provenance. In the western sector, the reservoirs feed hundreds of gas emissions at the surface. Many studies in the last years were devoted to (i) elaborating a map of CO2 Earth degassing of the region; (ii) to asses the gas hazard; (iii) to develop methods suitable for the measurement of the gas fluxes from different types of emissions; (iv) to elaborate the conceptual model of Earth degassing and its relation with the seismic activity of the region and (v) to develop physical numerical models of CO2 air dispersion. The main results obtained are: 1) A general, regional map of CO2 Earth degassing in Central Italy has been elaborated. The total flux of CO2 in the area has been estimated in ~ 10 Mt/a which are released to the atmosphere trough numerous dangerous gas emissions or by degassing spring waters (~ 10 % of the CO2 globally estimated to be released by the Earth trough volcanic activity). 2) An on line, open access, georeferenced database of the main CO2 emissions (~ 250) was settled up (http://googas.ov.ingv.it). CO2 flux > 100 t/d characterise 14% of the degassing sites while CO2 fluxes from 100 t/d to 10 t/d have been estimated for about 35% of the gas emissions. 3) The sites of the gas emissions are not suitable for life: the gas causes many accidents to animals and people. In order to mitigate the gas hazard a specific model of CO2 air dispersion has been developed and applied to the main degassing sites. A relevant application regarded Mefite d'Ansanto, southern Apennines, which is the largest natural emission of low temperature CO2 rich gases, from non-volcanic environment, ever measured in the Earth (˜2000 t/d). Under low wind conditions, the gas flows along a narrow natural channel producing a persistent gas river which has killed over a period of time many people and animals. The application of the physical numerical model allowed us to

  13. Improvement of gas chromatographic analysis for organic acids and ...

    African Journals Online (AJOL)

    Yomi

    2010-08-27

    Aug 27, 2010 ... short retention time and fair recognition peak of the compounds were obtained under the ... GC for acid and solvent analysis from ABE fermentation ... FID was kept at 230°C. Nitrogen gas was used as a carrier gas at a.

  14. Determination of Fatty Acid in Asparagus by Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Zehra HAJRULAI-MUSLIU

    2016-05-01

    Full Text Available Asparagus contain a lot of macronutrients and micronutrients including folate, dietary fibre (soluble and insoluble and phenolic compounds. Also asparagus is a good source of unsaturated linoleic and linolenic fatty acids which are precursors for Eicosapentanoic acid (EPA and Docosahexanoic acid (DHA. Unsaturated fatty acids have important biological effects and they have important role in human health. The objective of this study was to analyze fatty acid composition of asparagus as a potential source of linoleic and linolenic acid - a precursor for EPA and DHA. For this reason we analyzed fifty seven samples of asparagus collected from the local market. We used AOAC 996.06 method and analyses were performed with gas chromatograph with flame-ionization detector (GC-FID. The highest concentration of fatty acid in the asparagus was linoleic acid (C18:2n6 which content in asparagus is 25.620±1.0%. Also, asparagus is good source of -linolenic fatty acid (C18:3n3 and content of this fatty acid in asparagus is 8.840±0.3%. The omega-6 to omega-3 (n6/n3 ratio in asparagus was 3.19. Polyunsaturated fatty acids (PUFAs were higher than monounsaturated fatty acids (MUFAs, and from saturated fatty acids, palmitic acid was most frequent with 24.324±1.0%. From our study we can conclude that asparagus is very good source of unsaturated fatty acids, especially linoleic and linolenic fatty acids.

  15. Estimation of combustion flue gas acid dew point during heat recovery and efficiency gain

    Energy Technology Data Exchange (ETDEWEB)

    Bahadori, A. [Curtin University of Technology, Perth, WA (Australia)

    2011-06-15

    When cooling combustion flue gas for heat recovery and efficiency gain, the temperature must not be allowed to drop below the sulfur trioxide dew point. Below the SO{sub 3} dew point, very corrosive sulfuric acid forms and leads to operational hazards on metal surfaces. In the present work, simple-to-use predictive tool, which is easier than existing approaches, less complicated with fewer computations is formulated to arrive at an appropriate estimation of acid dew point during combustion flue gas cooling which depends on fuel type, sulfur content in fuel, and excess air levels. The resulting information can then be applied to estimate the acid dew point, for sulfur in various fuels up to 0.10 volume fraction in gas (0.10 mass fraction in liquid), excess air fractions up to 0.25, and elemental concentrations of carbon up to 3. The proposed predictive tool shows a very good agreement with the reported data wherein the average absolute deviation percent was found to be around 3.18%. This approach can be of immense practical value for engineers and scientists for a quick estimation of acid dew point during combustion flue gas cooling for heat recovery and efficiency gain for wide range of operating conditions without the necessity of any pilot plant setup and tedious experimental trials. In particular, process and combustion engineers would find the tool to be user friendly involving transparent calculations with no complex expressions for their applications.

  16. Appraisal of possible combustion hazards associated with a high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Palmer, H.B.; Sibulkin, M.; Strehlow, R.A.; Yang, C.H.

    1978-03-01

    The report presents a study of combustion hazards that may be associated with the High Temperature Gas Cooled Reactor (HTGR) in the event of a primary coolant circuit depressurization followed by water or air ingress into the prestressed concrete reactor vessel (PCRV). Reactions between graphite and steam or air produce the combustible gases H 2 and/or CO. When these gases are mixed with air in the containment vessel (CV), flammable mixtures may be formed. Various modes of combustion including diffusion or premixed flames and possibly detonation may be exhibited by these mixtures. These combustion processes may create high over-pressure, pressure waves, and very hot gases within the CV and hence may threaten the structural integrity of the CV or damage the instrumentation and control system installations within it. Possible circumstances leading to these hazards and the physical characteristics related to them are delineated and studied in the report

  17. 40 CFR 63.1218 - What are the standards for hydrochloric acid production furnaces that burn hazardous waste?

    Science.gov (United States)

    2010-07-01

    ... acid production furnaces that burn hazardous waste? 63.1218 Section 63.1218 Protection of Environment... production furnaces that burn hazardous waste? (a) Emission limits for existing sources. You must not...% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or F027 (see § 261...

  18. Control Decisions for Flammable Gas Hazards in Double Contained Receiver Tanks (DCRTs)

    Energy Technology Data Exchange (ETDEWEB)

    KRIPPS, L.J.

    2000-06-28

    This report describes the control decisions for flammable gas hazards in double-contained receiver tanks (DCRTs) made at control decision meetings on November 16, 17, and 18, 1999, on April 19,2000, and on May 10,2000, and their basis. These control decisions, and the analyses that support them, will be documented in an amendment to the Final Safety Analysis Report (FSAR) (CHG 2000a) and Technical Safety Requirements (TSR) (CHG 2000b) to close the Flammable Gas Unreviewed Safety Question (USQ) (Bacon 1996 and Wagoner 1996) for DCRTs. Following the contractor Tier I review of the FSAR and TSR amendment, it will be submitted to the U.S. Department of Energy (DOE), Office of River Protection (ORP) for review and approval.

  19. Informing hazardous zones for on-board maritime hydrogen liquid and gas systems

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, Myra L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Pratt, Joseph William [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bran Anleu, Gabriela A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Proctor, Camron [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2018-01-01

    The significantly higher buoyancy of hydrogen compared to natural gas means that hazardous zones defined in the IGF code may be inaccurate if applied to hydrogen. This could place undue burden on ship design or could lead to situations that are unknowingly unsafe. We present dispersion analyses to examine three vessel case studies: (1) abnormal external vents of full blowdown of a liquid hydrogen tank due to a failed relief device in still air and with crosswind; (2) vents due to naturally-occurring boil-off of liquid within the tank; and (3) a leak from the pipes leading into the fuel cell room. The size of the hydrogen plumes resulting from a blowdown of the tank depend greatly on the wind conditions. It was also found that for normal operations releasing a small amount of "boil- off" gas to regulate the pressure in the tank does not create flammable concentrations.

  20. The Role of Deposition in Limiting the Hazard Extent of Dense-Gas Plumes

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, M B

    2008-05-11

    Accidents that involve large (multi-ton) releases of toxic industrial chemicals and form dense-gas clouds often yield far fewer fatalities, casualties and environmental effects than standard assessment and emergency response models predict. This modeling study, which considers both dense-gas turbulence suppression and deposition to environmental objects (e.g. buildings), demonstrates that dry deposition to environmental objects may play a significant role in reducing the distance at which adverse impacts occur - particularly under low-wind, stable atmospheric conditions which are often considered to be the worst-case scenario for these types of releases. The degree to which the released chemical sticks to (or reacts with) environmental surfaces is likely a key parameter controlling hazard extents. In all modeled cases, the deposition to vertical surfaces of environmental objects (e.g. building walls) was more efficient in reducing atmospheric chemical concentrations than deposition to the earth's surface. This study suggests that (1) hazard extents may vary widely by release environment (e.g. grasslands vs. suburbia) and release conditions (e.g. sunlight or humidity may change the rate at which chemicals react with a surface) and (2) greenbelts (or similar structures) may dramatically reduce the impacts of large-scale releases. While these results are demonstrated to be qualitatively consistent with the downwind extent of vegetation damage in two chlorine releases, critical knowledge gaps exist and this study provides recommendations for additional experimental studies.

  1. Hazardous waste disposal in relationship to radon gas emanation in atmosphere

    International Nuclear Information System (INIS)

    Fang, H.Y.

    1990-01-01

    Radioactive/toxic radon gas (Rn) produced naturally in the ground by the normal decay of uranium (U) and radium (Ra) is widely distributed in trace amounts in the earth's crust. It is a colorless, odorless and tasteless element and is one of the six generally known noble gases which are inert gases lacking the usual or anticipated chemical or biological action. Most radon gas is concentrated in the oxidation belt which is at a relatively shallow depth from the ground surface. Under normal conditions, the amount of radon gas seeping into the atmosphere or entering into residential buildings is very little and will not be harmful to human health. In recent years, due to population growth, a progressive living standard and industrial progress, many natural farm lands, forests and wetlands have been destroyed by conversion into residential and industrial compounds; consequently, such construction activities and industrial waste disposal changes the dynamic equilibrium of the ecosystem which can trigger and accelerate radon gas emanation and mobilization. This change is the major reason for the problem of indoor radon concentration which has significantly increased in recent years. Recent findings indicate that radon is not a totally inert element as previously thought. It can be influenced by local environments such as temperature, pH value, ion exchange, redox reaction, etc. to some degree. Also radon gas interacts with soil, water, air and others; unfortunately, the interface mechanisms between radon and the environment are not yet clearly understood and little information on these aspects is available. In this paper only the hazardous waste disposal causes for radon emanation are discussed. To deal with such complex phenomena, a new approach is presented that assumes radon gas interaction with the environment through dust in the air and suspensions in the water and soil-water system

  2. Feedlot lamb meat fatty acids profile characterization employing gas chromatography

    Directory of Open Access Journals (Sweden)

    M.I. Cruz-Gonzalez

    2014-06-01

    Full Text Available Fat is an important constituent in diet, not only as an energy source, but for its essential fatty acids associated to fats in foods, considering that some polyunsaturated fatty acids like linoleic, linolenic and arachidonic cannot be synthesized by superior animals like humans. Scientific evidence show that the fatty acids ingest can affect the thrombotic tendency, cardiac rhythm, endothelial function systematic inflammation, insulin sensibility and oxidative stress. Samples from 21 ovine crossbreds from Pelibuey, Blackbelly, Dorper and Katahadin (40 kg average weight feed with corn based balanced diets were taken from loin area 18 h after refrigeration. Saturated and polyunsaturated fatty acids levels were analyzed by gas chromatography. Results in this work showed that the healthy fatty acids levels are higher as compared to saturated fatty acids levels, indicating that this meat can influence consumer’s buying choice decision regarded to their health.

  3. Experimental study on thermal hazard of tributyl phosphate-nitric acid mixtures using micro calorimeter technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qi; Jiang, Lin; Gong, Liang; Sun, Jin-Hua, E-mail: sunjh@ustc.edu.cn

    2016-08-15

    Highlights: • Heat flows after mixing TBP with nitric acid are of different orders of magnitude. • Thermodynamics and kinetics of tributyl phosphate-nitric acid mixtures are derived. • Tributyl phosphate directly reacts with nitric acid and form organic red oil. • Thermal runaway could occur at 79 °C with a high nitric acid concentration. - Abstract: During PUREX spent nuclear fuel reprocessing, mixture of tributyl phosphate (TBP) and hydrocarbon solvent are employed as organic solvent to extract uranium in consideration of radiation contaminated safety and resource recycling, meanwhile nitric acid is utilized to dissolve the spent fuel into small pieces. However, once TBP contacts with nitric acid or nitrates above 130 °C, a heavy “red oil” layer would occur accompanied by thermal runaway reactions, even caused several nuclear safety accident. Considering nitric acid volatility and weak exothermic detection, C80 micro calorimeter technique was used in this study to investigate thermal decomposition of TBP mixed with nitric acid. Results show that the concentration of nitric acid greatly influences thermal hazard of the system by direct reactions. Even with a low heating rate, if the concentration of nitric acid increases due to evaporation of water or improper operations, thermal runaway in the closed system could start at a low temperature.

  4. Gas-Phase IR Spectroscopy of Deprotonated Amino Acids

    NARCIS (Netherlands)

    Oomens, J.; Steill, J. D.; Redlich, B.

    2009-01-01

    Gas-phase infrared multiple photon dissociation (IRMPD) spectra have been recorded for the conjugate bases of a series of amino acids (Asp, Cys, Glu, Phe, Set, Trp, Tyr). The spectra are dominated by strong symmetric and antisymmetric carboxylate stretching modes around 1300 and 1600 cm(-1),

  5. Mechanisms of acid, weakly acidic and gas reflux after anti-reflux surgery

    NARCIS (Netherlands)

    Bredenoord, A. J.; Draaisma, W. A.; Weusten, B. L. A. M.; Gooszen, H. G.; Smout, A. J. P. M.

    2008-01-01

    BACKGROUND: Whereas it is well documented that fundoplication reduces acid reflux, the effects of the procedure on non-acid and gas reflux and the mechanisms through which this is achieved have not been fully elucidated. METHODS: In 14 patients, reflux was measured with impedance-pH monitoring

  6. Coal seam gas water: potential hazards and exposure pathways in Queensland.

    Science.gov (United States)

    Navi, Maryam; Skelly, Chris; Taulis, Mauricio; Nasiri, Shahram

    2015-01-01

    The extraction of coal seam gas (CSG) produces large volumes of potentially contaminated water. It has raised concerns about the environmental health impacts of the co-produced CSG water. In this paper, we review CSG water contaminants and their potential health effects in the context of exposure pathways in Queensland's CSG basins. The hazardous substances associated with CSG water in Queensland include fluoride, boron, lead and benzene. The exposure pathways for CSG water are (1) water used for municipal purposes; (2) recreational water activities in rivers; (3) occupational exposures; (4) water extracted from contaminated aquifers; and (5) indirect exposure through the food chain. We recommend mapping of exposure pathways into communities in CSG regions to determine the potentially exposed populations in Queensland. Future efforts to monitor chemicals of concern and consolidate them into a central database will build the necessary capability to undertake a much needed environmental health impact assessment.

  7. An emerging methodology of slope hazard assessment for natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.J.; O' Neil, G.; Rizkalla, M. [TransCanada PipeLines Ltd., Calgary, AB (Canada)

    2000-07-01

    A new slope assessment methodology has been developed by TransCanada PipeLines Ltd. in an effort to switch from a reactive to a proactive hazard management approach and to optimize maintenance expenditure. The company operates 37,000 km of natural gas gathering and transmission pipelines, portions of which traverse slopes and stream crossings. The newly developed rainfall-ground movement model provides site-specific ground movement predictions for approximately 1100 slopes and establishes a risk-ranked list of slopes upon which maintenance decisions can be based. The input to the predictive model is derived from internal and public information regarding site conditions. This information serves as input to a pipe-soil interaction model to determine the probability of pipeline failure for each slope. The ground movement for this model is limited to creep-type which is typically less than 100 mm per year. Landslides are not addressed in this paper. A system-wide database has been constructed for slopes to prioritize the slope movement hazards. The slope information includes geotechnical data such as bedrock geology, surficial geology, slope details, precipitation and erosion potential. Information related to the pipeline includes the location, age, size, as well as design pressure and temperature. 13 refs., 2 figs.

  8. Estimation of brassylic acid by gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed J. Nasrullah, Erica N. Pfarr, Pooja Thapliyal, Nicholas S. Dusek, Kristofer L. Schiele, Christy Gallagher-Lein, and James A. Bahr

    2010-10-29

    The main focus of this work is to estimate Brassylic Acid (BA) using gas chromatography-mass spectrometry (GC-MS). BA is a product obtained from the oxidative cleavage of Erucic Acid (EA). BA has various applications for making nylons and high performance polymers. BA is a 13 carbon compound with two carboxylic acid functional groups at the terminal end. BA has a long hydrocarbon chain that makes the molecule less sensitive to some of the characterization techniques. Although BA can be characterized by NMR, both the starting material (EA) and products BA and nonanoic acid (NA) have peaks at similar {delta}, ppm values. Hence it becomes difficult for the quick estimation of BA during its synthesis.

  9. The Genealogical Tree of Ethanol: Gas-phase Formation of Glycolaldehyde, Acetic Acid, and Formic Acid

    Science.gov (United States)

    Skouteris, Dimitrios; Balucani, Nadia; Ceccarelli, Cecilia; Vazart, Fanny; Puzzarini, Cristina; Barone, Vincenzo; Codella, Claudio; Lefloch, Bertrand

    2018-02-01

    Despite the harsh conditions of the interstellar medium, chemistry thrives in it, especially in star-forming regions where several interstellar complex organic molecules (iCOMs) have been detected. Yet, how these species are synthesized is a mystery. The majority of current models claim that this happens on interstellar grain surfaces. Nevertheless, evidence is mounting that neutral gas-phase chemistry plays an important role. In this paper, we propose a new scheme for the gas-phase synthesis of glycolaldehyde, a species with a prebiotic potential and for which no gas-phase formation route was previously known. In the proposed scheme, the ancestor is ethanol and the glycolaldehyde sister species are acetic acid (another iCOM with unknown gas-phase formation routes) and formic acid. For the reactions of the new scheme with no available data, we have performed electronic structure and kinetics calculations deriving rate coefficients and branching ratios. Furthermore, after a careful review of the chemistry literature, we revised the available chemical networks, adding and correcting several reactions related to glycolaldehyde, acetic acid, and formic acid. The new chemical network has been used in an astrochemical model to predict the abundance of glycolaldehyde, acetic acid, and formic acid. The predicted abundance of glycolaldehyde depends on the ethanol abundance in the gas phase and is in excellent agreement with the measured one in hot corinos and shock sites. Our new model overpredicts the abundance of acetic acid and formic acid by about a factor of 10, which might imply a yet incomplete reaction network.

  10. State of the art review of pressure liquefied gas container failure modes and associated projectile hazards

    Energy Technology Data Exchange (ETDEWEB)

    Leslie, I.R.M.; Birk, A.M.

    1989-08-01

    A study was carried out to investigate the state of knowledge about the failure of pressure liquified gas transport and storage tanks. A comprehensive literature search and review was carried out to assess the level of knowledge relating to the causes and characteristics of vessel ruptures. Specific parameters of interest were: the effect of vessel initial conditions (fill level, initial temperature, etc.) on rupture severity; the ability to predict the occurrence of boiling liquid expanding vapor explosions (BLEVE); and the effects of explosions such as blast waves and missile generation. The review revealed that there are several areas where knowledge is weak. These areas include: the effects of blast on structures, the prediction of hazards from, and size of, fireballs, and the understanding of failure modes of pressure liquified gas containers. It was concluded that an experimental program should be initiated to investigate the effects of container size, shape and loading conditions on the consequences of vessel rupture. 68 refs., 16 figs., 10 tabs.

  11. Gas chromatography of alkylphosphonic and dialkyl phosphinic acids

    International Nuclear Information System (INIS)

    Gasco Sanchez, L.; Barrera Pinero, R.; Ramirez Caceres, A.; Martin Munoz, M.

    1978-01-01

    After carrying out an optimization study on the separation conditions for the TMSr- derivatives, of the hexyl-, cyclohexyl-, heptyl-, and octyl-phosphonic acids; dihexyl dicyclohexyl-, heptyl-, and octyl-phosphinic acids, and dioctyl phosphine oxide, their retention indices (I) at two temperatures and on the OV-1 and OV-17 stationary phase were determined. Correlations between I and molecular structure were established. Calibration factors of these compounds in the flame ionization detector were studied, and the results analyzed taking into account the variables affecting the quantitative results, These results were unbiased but they had a lower precision than that usually achievable in gas chromatography. (Author) 24 refs

  12. Acid gas control process and apparatus for waste fired incinerators

    International Nuclear Information System (INIS)

    Kubin, P.Z.; Stepan, J.E.

    1992-01-01

    This patent describes a process for reducing noxious emission produced in a waste material incinerator. It comprises incinerating solid waste material in a furnace section of the waste material incinerator; providing an additive to an additive supply storage unit; conveying the additive to an additive injection means that communicates with the furnace section of the waste material incinerator; injecting the additive into a turbulent reaction zone of the furnace section such that acid gas content, acid dewpoint temperature and the level of corrosion in the incinerator are reduced

  13. Fundamental thermochemical properties of amino acids: gas-phase and aqueous acidities and gas-phase heats of formation.

    Science.gov (United States)

    Stover, Michele L; Jackson, Virgil E; Matus, Myrna H; Adams, Margaret A; Cassady, Carolyn J; Dixon, David A

    2012-03-08

    The gas-phase acidities of the 20 L-amino acids have been predicted at the composite G3(MP2) level. A broad range of structures of the neutral and anion were studied to determine the lowest energy conformer. Excellent agreement is found with the available experimental gas-phase deprotonation enthalpies, and the calculated values are within experimental error. We predict that tyrosine is deprotonated at the CO(2)H site. Cysteine is predicted to be deprotonated at the SH but the proton on the CO(2)H is shared with the S(-) site. Self-consistent reaction field (SCRF) calculations with the COSMO parametrization were used to predict the pK(a)'s of the non-zwitterion form in aqueous solution. The differences in the non-zwitterion pK(a) values were used to estimate the free energy difference between the zwitterion and nonzwitterion forms in solution. The heats of formation of the neutral compounds were calculated from atomization energies and isodesmic reactions to provide the first reliable set of these values in the gas phase. Further calculations were performed on five rare amino acids to predict their heats of formation, acidities, and pK(a) values.

  14. Gas Phase Hydrogenation of Levulinic Acid to gamma-Valerolactone

    NARCIS (Netherlands)

    Bonrath, Werner; Castelijns, Anna Maria Cornelia Francisca; de Vries, Johannes Gerardus; Guit, Rudolf Philippus Maria; Schuetz, Jan; Sereinig, Natascha; Vaessen, Henricus Wilhelmus Leonardus Marie

    The gas phase hydrogenation of levulinic acid to gamma-valerolactone over copper and ruthenium based catalysts in a continuous fixed-bed reactor system was investigated. Among the catalysts a copper oxide based one [50-75 % CuO, 20-25 % SiO2, 1-5 % graphite, 0.1-1 % CuCO3/Cu(OH)(2)] gave

  15. Capillary gas chromatographic analysis of mycolic acid cleavage products, cellular fatty acids, and alcohols of Mycobacterium xenopi.

    OpenAIRE

    Luquin, M; Lopez, F; Ausina, V

    1989-01-01

    The fatty acids, alcohols, and mycolic acids of 26 strains of Mycobacterium xenopi were studied by capillary gas chromatography and thin-layer chromatography. All strains contained alpha-, keto-, and omega-carboxymycolates. The primary mycolic acid cleavage product was hexacosanoic acid. The fatty acid patterns and, especially, the presence of 2-docosanol are characteristic markers of M. xenopi.

  16. Polymeric supported sorbents for decreasing hazardous metal ions content in wet process phosphoric acid

    International Nuclear Information System (INIS)

    El-Zahhar, A.A.; El-Naggar, H.A.; Ahmed, M.

    2005-01-01

    Procedure for preparation of polymeric supported silica, and their usage for decreasing hazardous metal ion content in wet process phosphoric acid was developed. The procedure is based firstly on extraction silica from rice straw by alkaline treatment , secondly supporting the produced silica on binding polyacrylonitrile (PAN). The produced polymer based sorbent was used for decreasing hazardous metal ions (especially iron) present as inorganic impurities in crud Egyptian phosphoric acid (green acid). Different factors affecting the sorption equilibrium ( contact time, temperature , sorbent mass and batch factor ) were studied. Studying the sorption isotherm revealed that the adsorption data could favorably fit the Langmuir adsorption isotherm. In the dynamic study , the sorption capacity at (Cξ/Cο = 50%) was found to be 28.5 mg/g and the loaded column could be regenerated using 50ml of 0.15 M HNO 3 . The regenerated column could undergo sorption regeneration cycles up to four cycles without significant decrease in the sorption capacity , weight loss or change in the physical properties of the sorbent

  17. Hazardous gas production by alpha particles in solid organic transuranic waste matrices. 1998 annual progress report

    International Nuclear Information System (INIS)

    LaVerne, J.A.

    1998-01-01

    'This project uses fundamental radiation chemical techniques to elucidate the basic processes occurring in the heavy-ion radiolysis of solid hydrocarbon matrices such as polymers and organic resins that are associated with many of the transuranic waste deposits or the transportation of these radionuclides. The environmental management of mixed waste containing transuranic radionuclides is difficult because these nuclides are alpha particle emitters and the energy deposited by the alpha particles causes chemical transformations in the matrices accompanying the waste. Most radiolysis programs focus on conventional radiation such as gamma rays, but the chemical changes induced by alpha particles and other heavy ions are typically very different and product yields can vary by more than an order of magnitude. The objective of this research is to measure the production of gases, especially molecular hydrogen, produced in the proton, helium ion, and carbon ion radiolysis of selected solid organic matrices in order to obtain fundamental mechanistic information on the radiolytic decomposition of these materials. This knowledge can also be used to directly give reasonable estimates of explosive or flammability hazards in the storage or transport of transuranic wastes in order to enhance the safety of DOE sites. This report summarizes the work after eight months of a three-year project on determining the production of hazardous gases in transuranic waste. The first stage of the project was to design and build an assembly to irradiate solid organic matrices using accelerated ion beams. It is necessary to measure absolute radiolytic yields, and simulate some of the conditions found in the field. A window assembly was constructed allowing the beam to pass consecutively through a collimator, a vacuum exit window and into the solid sample. The beam is stopped in the sample and the entire end of the assembly is a Faraday cup. Integration of the collected current, in conjunction

  18. Hazard Ranking Methodology for Assessing Health Impacts of Unconventional Natural Gas Development and Production: The Maryland Case Study.

    Directory of Open Access Journals (Sweden)

    Meleah D Boyle

    Full Text Available The recent growth of unconventional natural gas development and production (UNGDP has outpaced research on the potential health impacts associated with the process. The Maryland Marcellus Shale Public Health Study was conducted to inform the Maryland Marcellus Shale Safe Drilling Initiative Advisory Commission, State legislators and the Governor about potential public health impacts associated with UNGDP so they could make an informed decision that considers the health and well-being of Marylanders. In this paper, we describe an impact assessment and hazard ranking methodology we used to assess the potential public health impacts for eight hazards associated with the UNGDP process. The hazard ranking included seven metrics: 1 presence of vulnerable populations (e.g. children under the age of 5, individuals over the age of 65, surface owners, 2 duration of exposure, 3 frequency of exposure, 4 likelihood of health effects, 5 magnitude/severity of health effects, 6 geographic extent, and 7 effectiveness of setbacks. Overall public health concern was determined by a color-coded ranking system (low, moderately high, and high that was generated based on the overall sum of the scores for each hazard. We provide three illustrative examples of applying our methodology for air quality and health care infrastructure which were ranked as high concern and for water quality which was ranked moderately high concern. The hazard ranking was a valuable tool that allowed us to systematically evaluate each of the hazards and provide recommendations to minimize the hazards.

  19. Application of the FTA and ETA Method for Gas Hazard Identification for the Performance of Safety Systems in the Industrial Department

    Science.gov (United States)

    Ignac-Nowicka, Jolanta

    2018-03-01

    The paper analyzes the conditions of safe use of industrial gas systems and factors influencing gas hazards. Typical gas installation and its basic features have been characterized. The results of gas threat analysis in an industrial enterprise using FTA error tree method and ETA event tree method are presented. Compares selected methods of identifying hazards gas industry with respect to the scope of their use. The paper presents an analysis of two exemplary hazards: an industrial gas catastrophe (FTA) and an explosive gas explosion (ETA). In both cases, technical risks and human errors (human factor) were taken into account. The cause-effect relationships of hazards and their causes are presented in the form of diagrams in the drawings.

  20. Realtime Gas Emission Monitoring at Hazardous Sites Using a Distributed Point-Source Sensing Infrastructure

    Science.gov (United States)

    Manes, Gianfranco; Collodi, Giovanni; Gelpi, Leonardo; Fusco, Rosanna; Ricci, Giuseppe; Manes, Antonio; Passafiume, Marco

    2016-01-01

    This paper describes a distributed point-source monitoring platform for gas level and leakage detection in hazardous environments. The platform, based on a wireless sensor network (WSN) architecture, is organised into sub-networks to be positioned in the plant’s critical areas; each sub-net includes a gateway unit wirelessly connected to the WSN nodes, hence providing an easily deployable, stand-alone infrastructure featuring a high degree of scalability and reconfigurability. Furthermore, the system provides automated calibration routines which can be accomplished by non-specialized maintenance operators without system reliability reduction issues. Internet connectivity is provided via TCP/IP over GPRS (Internet standard protocols over mobile networks) gateways at a one-minute sampling rate. Environmental and process data are forwarded to a remote server and made available to authenticated users through a user interface that provides data rendering in various formats and multi-sensor data fusion. The platform is able to provide real-time plant management with an effective; accurate tool for immediate warning in case of critical events. PMID:26805832

  1. Realtime Gas Emission Monitoring at Hazardous Sites Using a Distributed Point-Source Sensing Infrastructure

    Directory of Open Access Journals (Sweden)

    Gianfranco Manes

    2016-01-01

    Full Text Available This paper describes a distributed point-source monitoring platform for gas level and leakage detection in hazardous environments. The platform, based on a wireless sensor network (WSN architecture, is organised into sub-networks to be positioned in the plant’s critical areas; each sub-net includes a gateway unit wirelessly connected to the WSN nodes, hence providing an easily deployable, stand-alone infrastructure featuring a high degree of scalability and reconfigurability. Furthermore, the system provides automated calibration routines which can be accomplished by non-specialized maintenance operators without system reliability reduction issues. Internet connectivity is provided via TCP/IP over GPRS (Internet standard protocols over mobile networks gateways at a one-minute sampling rate. Environmental and process data are forwarded to a remote server and made available to authenticated users through a user interface that provides data rendering in various formats and multi-sensor data fusion. The platform is able to provide real-time plant management with an effective; accurate tool for immediate warning in case of critical events.

  2. Realtime Gas Emission Monitoring at Hazardous Sites Using a Distributed Point-Source Sensing Infrastructure.

    Science.gov (United States)

    Manes, Gianfranco; Collodi, Giovanni; Gelpi, Leonardo; Fusco, Rosanna; Ricci, Giuseppe; Manes, Antonio; Passafiume, Marco

    2016-01-20

    This paper describes a distributed point-source monitoring platform for gas level and leakage detection in hazardous environments. The platform, based on a wireless sensor network (WSN) architecture, is organised into sub-networks to be positioned in the plant's critical areas; each sub-net includes a gateway unit wirelessly connected to the WSN nodes, hence providing an easily deployable, stand-alone infrastructure featuring a high degree of scalability and reconfigurability. Furthermore, the system provides automated calibration routines which can be accomplished by non-specialized maintenance operators without system reliability reduction issues. Internet connectivity is provided via TCP/IP over GPRS (Internet standard protocols over mobile networks) gateways at a one-minute sampling rate. Environmental and process data are forwarded to a remote server and made available to authenticated users through a user interface that provides data rendering in various formats and multi-sensor data fusion. The platform is able to provide real-time plant management with an effective; accurate tool for immediate warning in case of critical events.

  3. Hazard Response Modeling Uncertainty (A Quantitative Method). Volume 2. Evaluation of Commonly Used Hazardous Gas Dispersion Models

    Science.gov (United States)

    1993-03-01

    the HDA . The model will 89 explicitly account for initial dilution, aerosol evaporation, and entrainment for turbulent jets, which simplifies...D.N., Yohn, J.F., Koopman R.P. and Brown T.C., "Conduct of Anhydrous Hydrofluoric Acid Spill Experiments," Proc. Int. Cqnf. On Vapor Cloud Modeling

  4. A new chemical system solution for acid gas removal

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, M.; Rolker, J.; Witthaut, D.; Schulze, S. [Evonik Industries AG, Hanau (Germany); Buchholz, S. [Evonik Industries AG, Marl (Germany)

    2012-07-01

    An energy-efficient absorbent formulation fors eparating acid gases (e.g. CO{sub 2}, H2S) from gas streams such as natural gas, syngas or flue gas is important for a number of industrial applications. In many cases, a substantial share of their costs is driven by the operational expenditure (OPEX) of the CO{sub 2} separation unit. One possible strategy for reducing OPEX is the improvement of the absorbent performance. Although a number of absorbents for the separation of CO{sub 2} from gas streams exist, there is still a need to develop CO{sub 2} absorbents with an improved absorption performance, less corrosion and foaming, no nitrosamine formation, lower energy requirement and therefore less OPEX. This contribution aims at giving a brief state-of-the-art overview followed by an introduction and performance characterization of a new family of amine-based CO{sub 2} absorbents. High cyclic capacities in the range of 2.9 to 3.2 mol CO{sub 2} kg{sup -1} absorbent and low absorption enthalpies of about -30 kJ mol{sup -1} allow for significant savings in the regeneration energy of the new absorbent system. Calculations with the modified Kremser model indicate a reduction in the specific reboiler heat duty of 45 %. Moreover, the high-performance absorbents developed show much lower corrosion rates than state-of-the-art solutions that are currently employed. (orig.)

  5. White Paper on Potential Hazards Associated with Contaminated Cheesecloth Exposed to Nitric Acid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hypes, Philip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-20

    This white paper addresses the potential hazards associated with waste cheesecloth that has been exposed to nitric acid solutions. This issue was highlighted by the cleanup of a 100 ml leak of aqueous nitric acid solution containing Heat Source (HS) plutonium on 21 June 2016. Nitration of cellulosic material is a well-understood process due to industrial/military applications of the resulting material. Within the Department of Energy complex, nitric acids have been used extensively, as have cellulosic wipes. If cellulosic materials are nitrated, the cellulosic material can become ignitable and in extreme cases, reactive. We have chemistry knowledge and operating experience to support the conclusion that all current wastes are safe and compliant. There are technical questions worthy of further experimental evaluation. An extent of condition evaluation has been conducted back to 2004. During this time period there have been interruptions in the authorization to use cellulosic wipes in PF-4. Limited use has been authorized since 2007 (for purposes other than spill cleanup), so our extent of condition includes the entire current span of use. Our evaluation shows that there is no indication that process spills involving high molarity nitric acid were cleaned up with cheesecloth since 2007. The materials generated in the 21 June leak will be managed in a safe manner compliant with all applicable requirements.

  6. The Use of natural fatty acids in processing tritium gas

    International Nuclear Information System (INIS)

    El-Sharnouby, A.K.; Abdelgeleel, M.; Eskander, S.B.

    1997-01-01

    Natural unsaturated fatty acid (e.g cotton, corn, litmus, castor and palm oils) were used to fix tritium gas. The data obtained show that the affinity of the different used natural oils fixation of hydrogen (tritium) was in the following order: cotton oils> corn oil> litmus oil> castor oil> palm oil. The quantity of hydrogen (tritium) which can be fixed by one gram cotton oil is about 5.824 ml H 2 (5.56 x 10 1 1 Bq tritium) while one gram corn oil can fix only 5.04 ml H 2 (4.811 x 10 1 1 Bq tritium). Tritiated cotton oil and corn oil can be solidified using an epoxy resin (Araldite-B-W-1193), the polymer sample can contain up to 5% by weight from hydrogenated (tritiated) oils. The results obtained show that the compressive strength measurements of the final solid waste forms (fatty acid/epoxy) increased with increasing curing time and decreased with increasing fatty acid content. The leachability of tritium from the final solid waste forms increased with increasing fatty acid content in the polymer matrix. The cumulative leach fraction of tritium varied between 4.00 x 10 -3 cm and 6.60 x 10 -3 cm according to the experimental conditions. 15 figs., 1 tab

  7. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type

    Energy Technology Data Exchange (ETDEWEB)

    England, G.C.; McGrath, T.P. [GE-Energy and Environmental Research Corp., Irvine, CA (United States); Gilmer, L. [Equilon Enterprises, Bellaire, TX (United States); Seebold, J.G. [Chevron Research and Technology Co., Richmond, CA (United States); Lev-On, M. [ARCO, Los Angeles, CA (United States); Hunt, T. [American Petroleum Institute, Washington, DC (United States)

    2001-07-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NO{sub x} emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion. (author)

  8. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type

    International Nuclear Information System (INIS)

    England, G.C.; McGrath, T.P.; Gilmer, L.; Seebold, J.G.; Lev-On, M.; Hunt, T.

    2001-01-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NO x emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion. (author)

  9. Amine-oxide hybrid materials for acid gas separations

    KAUST Repository

    Bollini, Praveen

    2011-01-01

    Organic-inorganic hybrid materials based on porous silica materials functionalized with amine-containing organic species are emerging as an important class of materials for the adsorptive separation of acid gases from dilute gas streams. In particular, these materials are being extensively studied for the adsorption of CO 2 from simulated flue gas streams, with an eye towards utilizing these materials as part of a post-combustion carbon capture process at large flue gas producing installations, such as coal-fired electricity-generating power plants. In this Application Article, the utilization of amine-modified organic-inorganic hybrid materials is discussed, focusing on important attributes of the materials, such as (i) CO 2 adsorption capacities, (ii) adsorption and desorption kinetics, and (iii) material stability, that will determine if these materials may one day be useful adsorbents in practical CO 2 capture applications. Specific research needs and limitations associated with the current body of work are identified. © 2011 The Royal Society of Chemistry.

  10. Unknown plant de-construction hazard -- Toxic COS and CS2 gas from torch cutting of pipe

    International Nuclear Information System (INIS)

    Martin, H.L.; Nutt, A.W.; Myers, B.L.; Hightower, J.O.

    1994-01-01

    An employee exhibited signs of illness after apparently inhaling fumes generated from a pipe that had been cut with a cutting torch. Identification and quantification of the hazardous air emission for reduction of risk via the Department of Energy Class B Investigation are described in this case study. The old hydrogen sulfide gas flare pipe in the heavy water plant of the Savannah River Site has been abandoned with one end open to atmosphere for almost twenty years. The pipe was being removed and cut into sections for disposal during an asbestos abatement project. It contained ash like corrosion deposits that smolder after torch cutting. Investigation revealed that burning of carbon and sulfur in the oxygen deficient atmosphere in the ash generated carbonyl sulfide (COS) and carbon disulfide (CS 2 ) gas, which vented when the pipe was moved by the injured construction rigger. This is believed to be the first well documented exposure and response of a human to high concentration COS gas. Sulfur dioxide (SO 2 ) gas is also generated during the cutting. SO 2 is almost impossible to inhale and has apparently prevented a similar injury during the cutting. SO 2 is almost impossible to inhale and has apparently prevented a similar injury during the many years of US and Canadian heavy water plant de-construction experience. Immediate water quench of the smoldering ash after each cut has eliminated the hazard of residual COS and CS 2 gas. This previously unrecognized industrial hazard may be encountered by other chemical and petroleum industries during torch cutting of pipes that contain similar deposits of iron oxide, iron sulfate, sulfur and carbon

  11. role of conjugated linoleic acid in the prevention of radiation hazard in male rats

    International Nuclear Information System (INIS)

    Hussien, E.M.; Osman, N.N.; Haggag, A.M.

    2009-01-01

    the objective of the present study was to examine the effect of conjugated linoleic acid (CLA) as a natural product in minimizing the radiation hazards. male rats were assigned to six groups each of 7 animals throughout six weeks, fed 1% CLA (wt/wt)added to commercial diet in the form of milk powder 182 g/kg diet. rats exposed to 6 Gy whole body gamma irradiation showed significant increase in total cholesterol (TC), low density lipoprotein cholesterol (LDL-C).triglycerides (TG), atherosclerosis index, total lipid (TL), phospholipids (ph-lipids), malondialdehyde (MDA), urea,creatinine, uric acid, calcium (Ca) and phosphorous levels associated with decrease in high density lipoprotein-cholesterol (HDL-C), activity of reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), total antioxidant status, body weight, testes weight and testosterone both irradiated and non-irradiated milk powder administrated to irradiated rat groups minimized the radiation damage in the assayed parameters indicating its beneficial role as a promising antioxidant in scavenging free radicals and reactive oxygen species

  12. Analysis of radioactive mixed hazardous waste using derivatization gas chromatography/mass spectrometry, liquid chromatography, and liquid chromatography/mass spectrometry

    International Nuclear Information System (INIS)

    Campbell, J.A.; Lerner, B.D.; Bean, R.M.; Grant, K.E.; Lucke, R.B.; Mong, G.M.; Clauss, S.A.

    1994-08-01

    Six samples of core segments from Tank 101-SY were analyzed for chelators, chelator fragments, and several carboxylic acids by derivatization gas chromatography/mass spectrometry. The major components detected were ethylenediaminetetraacetic acid, nitroso-iminodiacetic acid, nitrilotriacetic acid, citric acid, succinic acid, and ethylenediaminetriacetic acid. The chelator of highest concentration was ethylenediaminetetraacetic acid in all six samples analyzed. Liquid chromatography was used to quantitate low molecular weight acids including oxalic, formic, glycolic, and acetic acids, which are present in the waste as acid salts. From 23 to 61% of the total organic carbon in the samples analyzed was accounted for by these acids

  13. Selected problems of mine ventilation under conditions of gas and fire hazards. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Rosiek, F; Sikora, M; Urbanski, J

    1984-01-01

    Activities of the the Department for Ventilation, Fires and Occupational Safety in Wroclaw are evaluated. Until 1981 the Department concentrated its research programs on ventilation in copper mines; since 1982 its programs have also covered ventilation and hazards of endogenous fire in black coal mines. The Department investigated hazards of coal spontaneous combustion in Lower Silesian coal mines and proved that the hazards are associated with occurrence of specific layers in coal seams. When coal left in the goaf area came from a layer prone to spontaneous combustion hazards of endogenous fires were high. The Department developed a method for fire prevention using periodic reversal of goaf ventilation. Schemes for reverse ventilation are discussed.

  14. Historical and future emission of hazardous air pollutants (HAPs) from gas-fired combustion in Beijing, China.

    Science.gov (United States)

    Xue, Yifeng; Nie, Lei; Zhou, Zhen; Tian, Hezhong; Yan, Jing; Wu, Xiaoqing; Cheng, Linglong

    2017-07-01

    The consumption of natural gas in Beijing has increased in the past decade due to energy structure adjustments and air pollution abatement. In this study, an integrated emission inventory of hazardous air pollutants (HAPs) emitted from gas-fired combustion in Beijing was developed for the period from 2000 to 2014 using a technology-based approach. Future emission trends were projected through 2030 based on current energy-related and emission control policies. We found that emissions of primary HAPs exhibited an increasing trend with the rapid increase in natural gas consumption. Our estimates indicated that the total emissions of NO X , particulate matter (PM) 10 , PM 2.5 , CO, VOCs, SO 2 , black carbon, Pb, Cd, Hg, As, Cr, Cu, Ni, Zn, polychlorinated dibenzo-p-dioxins and dibenzofurans, and benzo[a]pyrene from gas-fired combustion in Beijing were approximately 22,422 t, 1042 t, 781 t, 19,097 t, 653 t, 82 t, 19 t, 0.6 kg, 0.1 kg, 43 kg, 52 kg, 0.3 kg, 0.03 kg, 4.3 kg, 0.6 kg, 216 μg, and 242 g, respectively, in 2014. To mitigate the associated air pollution and health risks caused by gas-fired combustion, stricter emission standards must be established. Additionally, combustion optimization and flue gas purification system could be used for lowering NO X emissions from gas-fired combustion, and gas-fired facilities should be continuously monitored based on emission limits. Graphical abstract Spatial distribution and typical live photos of gas-fired boiler in Beijing.

  15. Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application.

    Science.gov (United States)

    Jia, Qianqian; Ji, Huiming; Zhang, Ying; Chen, Yalu; Sun, Xiaohong; Jin, Zhengguo

    2014-07-15

    Hierarchical nanostructured ZnO dandelion-like spheres were synthesized via solvothermal reaction at 200°C for 4h. The products were pure hexagonal ZnO with large exposure of (002) polar facet. Side-heating gas sensor based on hierarchical ZnO spheres was prepared to evaluate the acetone gas sensing properties. The detection limit to acetone for the ZnO sensor is 0.25ppm. The response (Ra/Rg) toward 100ppm acetone was 33 operated at 230°C and the response time was as short as 3s. The sensor exhibited remarkable acetone selectivity with negligible response toward other hazardous gases and water vapor. The high proportion of electron depletion region and oxygen vacancies contributed to high gas response sensitivity. The hollow and porous structure of dandelion-like ZnO spheres facilitated the diffusion of gas molecules, leading to a rapid response speed. The largely exposed (002) polar facets could adsorb acetone gas molecules easily and efficiently, resulting in a rapid response speed and good selectivity of hierarchical ZnO spheres gas sensor at low operating temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Gas chromatography/mass spectrometry analysis of very long chain fatty acids, docosahexaenoic acid, phytanic acid and plasmalogen for the screening of peroxisomal disorders

    NARCIS (Netherlands)

    Takemoto, Yasuhiko; Suzuki, Yasuyuki; Horibe, Ryoko; Shimozawa, Nobuyuki; Wanders, Ronald J. A.; Kondo, Naomi

    2003-01-01

    Very long chain fatty acids (VLCFAs) and docosahexaenoic acid (DHA), phytanic acid, and plasmalogens are usually measured individually. A novel method for the screening of peroxisomal disorders, using gas chromatography/mass spectrometry (GC/MS), was developed. Saturated and unsaturated fatty acids,

  17. A Real-Time Construction Safety Monitoring System for Hazardous Gas Integrating Wireless Sensor Network and Building Information Modeling Technologies.

    Science.gov (United States)

    Cheung, Weng-Fong; Lin, Tzu-Hsuan; Lin, Yu-Cheng

    2018-02-02

    In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN), one of the key technologies in Internet of Things (IoT) development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM), a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity) data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications.

  18. Thermal runaway reaction hazards and mechanisms of hydroxylamine with acid/base contaminants

    International Nuclear Information System (INIS)

    Wei Chunyang; Saraf, Sanjeev R.; Rogers, William J.; Sam Mannan, M.

    2004-01-01

    Hydroxylamine (HA) has been involved in two incidents since 1999 because of its thermal instability and incompatibility. In this study, thermal runaway reactions of hydroxylamine with various concentrations of KOH and HCl were studied using the reactive system screening tool (RSST) and automatic pressure tracking adiabatic calorimeter (APTAC). The thermokinetic data, such as onset temperature, heat of reaction, maximum self-heat rate, maximum pressure rate, and non-condensable gas pressure, were compared with those of hydroxylamine solution without added impurity. Our study shows that the thermal decomposition behavior of hydroxylamine is affected by the presence of acid/base, and mixing of hydroxylamine with acid/base may cause thermal decomposition at lower temperatures. Different decomposition pathways can be initiated by hydrogen ion and hydroxide ion. The decomposition mechanisms of hydroxylamine in alkaline and acidic solutions are proposed based on the products, information from the literature, and quantum mechanical calculations. The experimental results are discussed in terms of the proposed reaction mechanisms

  19. The selective generation of acetic acid directly from synthesis gas

    International Nuclear Information System (INIS)

    Knifton, J.F.

    1986-01-01

    The authors conclude that each of the ruthenium, cobalt and iodide-containing catalyst components have very specific roles to play in the ''melt'' catalyzed conversion of synthesis gas to acetic acid. C 1 -Oxygenate formation is only observed in the presence of ruthenium carbonyls - [Ru(CO) 3 I 3 ] - is here the dominant species - and there is a direct relationship between liquid yield, ΣOAc - productivity and [Ru(CO) 3 I 3 ] - content. Controlled quantities of iodide ensure that initially formed MeOH is rapidly converted to the more reactive methyl iodide. Subsequent cobalt-catalyzed carbonylation to acetic acid may be preparatively attractive (>80% selectivity, good yields) relative to competing syntheses, where the [Co(CO) 4 ] - concentration is maximized that is, where the Co/Ru ratio is >1, the syngas feedstock is rich in CO, and the initial iodide/cobalt ratios are ca. unity. Formation of cobalt-iodide species appears to be a competing, inhibitory step in this catalysis

  20. A Three-Step Resolution-Reconfigurable Hazardous Multi-Gas Sensor Interface for Wireless Air-Quality Monitoring Applications.

    Science.gov (United States)

    Choi, Subin; Park, Kyeonghwan; Lee, Seungwook; Lim, Yeongjin; Oh, Byungjoo; Chae, Hee Young; Park, Chan Sam; Shin, Heugjoo; Kim, Jae Joon

    2018-03-02

    This paper presents a resolution-reconfigurable wide-range resistive sensor readout interface for wireless multi-gas monitoring applications that displays results on a smartphone. Three types of sensing resolutions were selected to minimize processing power consumption, and a dual-mode front-end structure was proposed to support the detection of a variety of hazardous gases with wide range of characteristic resistance. The readout integrated circuit (ROIC) was fabricated in a 0.18 μm CMOS process to provide three reconfigurable data conversions that correspond to a low-power resistance-to-digital converter (RDC), a 12-bit successive approximation register (SAR) analog-to-digital converter (ADC), and a 16-bit delta-sigma modulator. For functional feasibility, a wireless sensor system prototype that included in-house microelectromechanical (MEMS) sensing devices and commercial device products was manufactured and experimentally verified to detect a variety of hazardous gases.

  1. Determining the explosion risk level and the explosion hazard area for a group of natural gas wells

    Science.gov (United States)

    Gligor, A.; Petrescu, V.; Deac, C.; Bibu, M.

    2016-11-01

    Starting from the fact that the natural gas engineering profession is generally associated with a high occupational risk, the current paper aims to help increase the safety of natural gas wells and reduce the risk of work-related accidents, as well as the occurrence of professional illnesses, by applying an assessment method that has proven its efficiency in other industrial areas in combination with a computer-aided design software. More specifically, the paper focuses on two main research directions: assessing the explosion risk for employees working at natural gas wells and indicating areas with a higher explosion hazard by using a modern software that allows their presentation in 3D. The appropriate zoning of industrial areas allows to group the various functional areas function of the probability of the occurrence of a dangerous element, such as an explosive atmosphere and subsequently it allows also to correctly select the electrical and mechanical equipment that will be used in that area, since electrical apparatuses that are otherwise found in normal work environments cannot generally be used in areas with explosion hazard, because of the risk that an electric spark, an electrostatic discharge etc. ignites the explosive atmosphere.

  2. An analysis of land use planning and equity issues surrounding hazardous liquid and natural gas transmission pipelines in North Carolina

    Science.gov (United States)

    Osland, Anna Christine

    Hazardous liquid and natural gas transmission pipelines have received limited attention by planning scholars even though local development decisions can have broad consequences if a rupture occurs. In this dissertation, I evaluated the implications of land-use planning for reducing risk to transmission pipeline hazards in North Carolina via three investigations. First, using a survey of planning directors in jurisdictions with transmission pipeline hazards, I investigated the land use planning tools used to mitigate pipeline hazards and the factors associated with tool adoption. Planning scholars have documented the difficulty of inducing planning in hazardous areas, yet there remain gaps in knowledge about the factors associated with tool adoption. Despite the risks associated with pipeline ruptures, I found most localities use few mitigation tools, and the adoption of regulatory and informational tools appear to be influenced by divergent factors. Whereas risk perception, commitment, capacity, and community context were associated with total tool and information tool use, only risk perception and capacity factors were associated with regulatory tool use. Second, using interviews of emergency managers and planning directors, I examined the role of agency collaboration for building mitigation capacity. Scholars have highlighted the potential of technical collaboration, yet less research has investigated how inter-agency collaboration shapes mitigation capacity. I identify three categories of technical collaboration, discuss how collaborative spillovers can occur from one planning area to another, and challenge the notion that all technical collaborations result in equal mitigation outcomes. Third, I evaluated characteristics of the population near pipelines to address equity concerns. Surprisingly, I did not find broad support for differences in exposure of vulnerable populations. Nonetheless, my analyses uncovered statistically significant clusters of vulnerable

  3. Health hazards and disaster potential of ground gas emissions at Furnas volcano, São Miguel, Azores

    Science.gov (United States)

    Baxter, Peter J.; Baubron, Jean-Claude; Coutinho, Rui

    1999-09-01

    A health hazard assessment of exposure to soil gases (carbon dioxide and radon) was undertaken in the village of Furnas, located in the caldera of an active volcano. A soil survey to map the area of soil gas flow was undertaken, gas emissions were monitored at fumaroles and in eight houses, and a preliminary radon survey of 23 houses in the main anomaly area was performed. Potential volcanic sources of toxic contamination of air, food, and water were also investigated, and ambient air quality was evaluated. About one-third (41 ha) of the houses were located in areas of elevated carbon dioxide soil degassing. Unventilated, confined spaces in some houses contained levels of carbon dioxide which could cause asphyxiation. Mean indoor radon levels exceeded UK and US action levels in the winter months. A tenfold increase in radon levels in one house over 2 h indicated that large and potentially lethal surges of carbon dioxide could occur without warning. Toxic exposures from the gaseous emissions and from contamination of soil and water were minimal, but sulphur dioxide levels were mildly elevated close to fumaroles. In contrast, evidence of dental fluorosis was manifested in the population of the nearby fishing village of Ribeira Quente where drinking water in the past had contained elevated levels of fluoride. The disaster potential of volcanic carbon dioxide in the area could also be associated with the hydrothermal system storing dissolved carbon dioxide beneath the village. Felt, or unfelt, seismic activity, or magma unrest, especially with a reawakening of explosive volcanic activity (30% probability in the next 100 years) could result in an increase in gas flow or even a gas burst from the hydrothermal system. A survey of all houses in Furnas is advised as structural measures to prevent the ingress of soil gases, including radon, were needed in some of the study houses. Evaluations of the human hazards of volcanic gases should be undertaken in all settlements in

  4. Identification of Cyclopentenyl Fatty Acids by Gas Liquid Chromatography and Mass Spectrometry

    DEFF Research Database (Denmark)

    Shukla, V. K. S.; Abdel-Moety, E. M.; Larsen, Elfinn

    1979-01-01

    The straight chain fatty acids and the cyclopentenyl fatty acids present in the lipids of Hydnocarpus wightiana seeds were separated as their pyrrolidides by means of gas chromatography. A gas chromatography-mass spectrometry system confirmed the complete separation and permitted the identification...

  5. Capping hazardous red mud using acidic soil with an embedded layer of zeolite for plant growth.

    Science.gov (United States)

    Ma, Yingqun; Si, Chunhua; Lin, Chuxia

    2014-01-01

    A nearly three-year microcosm experiment was conducted to test the effectiveness of capping red mud using acidic soil with an embedded layer of zeolite in sustaining the growth of a grass species. This 'sandwich-structured' design allowed self-sustaining growth of the plants under rain-fed conditions no matter whether the underlying red mud was neutralized or not. During the initial stage, the plants grew better when the red mud was not neutralized with MgCl2 probably due to pH rise in the root zone. Neutralization of red mud led to salinization and pH decrease in the root zone. However, the difference in plant growth performance between these scenarios became less remarkable over time due to gradual improvement of soil conditions in the neutralized scenarios. Continuous leaching of soluble salts and alkali by rainwater extended the root zone to the red mud layer. As a result of vegetative production, soil organic matter rapidly accumulated. This, combined with increase in pH and decrease in salinity, markedly facilitated microbial activities and consequently improved the supply of nutrients. This study provides abasis for field-scale experimental design that will have implications for effectively establishing vegetative cover in red mud disposal sites to control dust hazards.

  6. Thermodynamic properties of acid gases in mixture with natural gas and water

    NARCIS (Netherlands)

    Tang, X.

    2011-01-01

    The reliable removal of acid gas components, such as carbon dioxide (CO2) and hydrogen sulfide (H2S) from natural gas is an important technical challenge. Crude oil and hydrocarbon gas streams may contain high levels of CO2 and/or H2S as contaminants. It is desirable to prevent any contaminant to

  7. Comments on Potential Geologic and Seismic Hazards Affecting Proposed Liquefied Natural Gas Site in Santa Monica Bay, California

    Science.gov (United States)

    Ross, Stephanie L.; Lee, Homa J.; Parsons, Tom E.; Beyer, Larry A.; Boore, David M.; Conrad, James E.; Edwards, Brian D.; Fisher, Michael A.; Frankel, Arthur D.; Geist, Eric L.; Hudnut, Kenneth W.; Hough, Susan E.; Kayen, Robert E.; Lorenson, T.D.; Luco, Nicolas; McCrory, Patricia A.; McGann, Mary; Nathenson, Manuel; Nolan, Michael; Petersen, Mark D.; Ponti, Daniel J.; Powell, Charles L.; Ryan, Holly F.; Tinsley, John C.; Wills, Chris J.; Wong, Florence L.; Xu, Jingping

    2008-01-01

    In a letter to the U.S. Geological Survey (USGS) dated March 25, 2008, Representative Jane Harman (California 36th district) requested advice on geologic hazards that should be considered in the review of a proposed liquefied natural gas (LNG) facility off the California coast in Santa Monica Bay. In 2004, the USGS responded to a similar request from Representative Lois Capps, regarding two proposed LNG facilities offshore Ventura County, Calif., with a report summarizing potential geologic and seismic hazards (Ross and others, 2004). The proposed LNG Deepwater Port (DWP) facility includes single point moorings (SPMs) and 35 miles of underwater pipelines. The DWP submersible buoys, manifolds, and risers would be situated on the floor of the southern Santa Monica Basin, in 3,000 feet of water, about 23 miles offshore of the Palos Verdes Peninsula. Twin 24-inch diameter pipelines would extend northeastward from the buoys across the basin floor, up the basin slope and across the continental shelf, skirting north around the Santa Monica submarine canyon. Figure 1 provides locations of the project and geologic features. Acronyms are defined in table 1. This facility is being proposed in a region of known geologic hazards that arise from both the potential for strong earthquakes and geologic processes related to sediment transport and accumulation in the offshore environment. The probability of a damaging earthquake (considered here as magnitude 6.5 or greater) in the next 30 years within about 30 miles (50 km) of the proposed pipeline ranges from 16% at the pipeline's offshore end to 48% where it nears land (Petersen, 2008). Earthquakes of this magnitude are capable of producing strong shaking, surface fault offsets, liquefaction phenomena, landslides, underwater turbidity currents and debris flow avalanches, and tsunamis. As part of the DWP license application for the Woodside Natural Gas proposal in Santa Monica Bay (known as the OceanWay Secure Energy Project), Fugro

  8. Correlation between arterial blood gas analysis and peripheral blood gas analysis in acid-base unbalance state

    Directory of Open Access Journals (Sweden)

    Hyun Lee Kim

    2012-06-01

    Full Text Available Acid-base unbalance is most common problem in severe ill patient, especially in condition of abnormal renal function state. Acid-base unbalances are respiratory acidosis, respiratory alkalosis, metabolic acidosis, and metabolic alkalosis. Metabolic acidosis is frequently appeared in clinical state. Arterial blood gas analysis is considered as a basic test to the intensive care unit patient and emergency state. Recently some researches were done, comparing with arterial blood gas analysis and venous blood gas analysis. Because of venous blood sampling is safer than arterial blood gas analysis, and beside not so different among them for detecting pH, pCO2, HCO3, except pO2 measuring. This research was done in emergency room, and for explaining no different between arterial blood gas analysis and peripheral blood gas analysis result in acid-base unbalance state patient. Especially in kidney functions decreased state. : The study was done from March, 2010 to January, 2011. The object was 89 peoples who came to emergency room for treating internal medicine problem. (Women 53, average age: 66.7±12.1 Then compare between arterial blood gas analysis and peripheral blood gas analysis. Result: The mean arterial minus venous difference for pH, pCO2, and bicarbonate was −0.0170, 2.6528, and 0.6124. Bland-Altman plot was done for predicting agreement of two groups, and the scale was pH −2.95 to 4.17, pCO2 −4.45 to 9.76, bicarbonate −2.95 to 4.16, in 95% relative. Conclusion: The peripheral blood gas pH, pCO2, bicarbonate level is almost same as arterial blood gas analysis results. And enough to measuring acid-base unbalance state, in absent of arterial blood testing.

  9. Monitoring of Level of Radiation Hazards to the Community in the Settlement Around the Incandescent Gas Mantle Factory

    International Nuclear Information System (INIS)

    Suryawati

    2000-01-01

    The analyze of radiation internal hazards level of thoron (Rn-220) and its daughter to the community settlement around the incandescent gas mantle factory. The radiation hazard level can be indicated in the form of working level (WL) and sffsctive dose lungs received by the community. The working level and effective dose lungs is got from the measurement of radioactivity level of thoron (Rn-220) and its daugther and by using the mathematical formula calculation. The measurement of thoron radioactive concentration and its daughter. The value of woking level obtained, performance level for community range from 0,001-0,013 WL, equivalent with dose range from 0,014- 0,467 mSv. From the research result, it can be identified that the radiation hazard, because exceed the mean value of threshold thorium radioactive nuclide and its daughter product of natural radiation in back ground per year for word mean i.e. 0,336 mSv, but the value of this research result is far below the allowed value limit for the community is 0,12 WL and 1 mSv/year

  10. Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application

    International Nuclear Information System (INIS)

    Jia, Qianqian; Ji, Huiming; Zhang, Ying; Chen, Yalu; Sun, Xiaohong; Jin, Zhengguo

    2014-01-01

    Highlights: • ZnO spheres fabricated via solvothermal method are with (0 0 2) polar facet exposed. • Response time of ZnO sensor for detecting 100 ppm acetone is as short as 3 s. • R a /R g toward 100 ppm acetone is 33 when operated at 230 °C. • ZnO sensor exhibits good selectivity against other toxic gases and water vapor. • Porous structure and exposure of polar facet contribute to good sensing properties. - Abstract: Hierarchical nanostructured ZnO dandelion-like spheres were synthesized via solvothermal reaction at 200 °C for 4 h. The products were pure hexagonal ZnO with large exposure of (0 0 2) polar facet. Side-heating gas sensor based on hierarchical ZnO spheres was prepared to evaluate the acetone gas sensing properties. The detection limit to acetone for the ZnO sensor is 0.25 ppm. The response (R a /R g ) toward 100 ppm acetone was 33 operated at 230 °C and the response time was as short as 3 s. The sensor exhibited remarkable acetone selectivity with negligible response toward other hazardous gases and water vapor. The high proportion of electron depletion region and oxygen vacancies contributed to high gas response sensitivity. The hollow and porous structure of dandelion-like ZnO spheres facilitated the diffusion of gas molecules, leading to a rapid response speed. The largely exposed (0 0 2) polar facets could adsorb acetone gas molecules easily and efficiently, resulting in a rapid response speed and good selectivity of hierarchical ZnO spheres gas sensor at low operating temperature

  11. An Experimental and Computational Study of the Gas-Phase Acidities of the Common Amino Acid Amides.

    Science.gov (United States)

    Plummer, Chelsea E; Stover, Michele L; Bokatzian, Samantha S; Davis, John T M; Dixon, David A; Cassady, Carolyn J

    2015-07-30

    Using proton-transfer reactions in a Fourier transform ion cyclotron resonance mass spectrometer and correlated molecular orbital theory at the G3(MP2) level, gas-phase acidities (GAs) and the associated structures for amides corresponding to the common amino acids have been determined for the first time. These values are important because amino acid amides are models for residues in peptides and proteins. For compounds whose most acidic site is the C-terminal amide nitrogen, two ions populations were observed experimentally with GAs that differ by 4-7 kcal/mol. The lower energy, more acidic structure accounts for the majority of the ions formed by electrospray ionization. G3(MP2) calculations predict that the lowest energy anionic conformer has a cis-like orientation of the [-C(═O)NH](-) group whereas the higher energy, less acidic conformer has a trans-like orientation of this group. These two distinct conformers were predicted for compounds with aliphatic, amide, basic, hydroxyl, and thioether side chains. For the most acidic amino acid amides (tyrosine, cysteine, tryptophan, histidine, aspartic acid, and glutamic acid amides) only one conformer was observed experimentally, and its experimental GA correlates with the theoretical GA related to side chain deprotonation.

  12. Report: Proceedings of the Hedberg Research Conference 'Gas Hydrates : Energy resource potential and associated geologic hazards'

    Digital Repository Service at National Institute of Oceanography (India)

    Veerayya, M.

    . Extra preparation should not be deemed a waste. In moments of truth the economics of the efforts makes sense. We had opted out of tsunami warning system against the scientific advice looking at huge costs. Now we know what was cheaper. Prevention... economic sense. People must be educated and involved in this management with maturity and sensitivity. Alert populations in villages and cities are certainly better than governmental machinery on tenterhooks. Hazard museums across the country are the need...

  13. The Role of Deposition in Limiting the Hazard Extent of Dense-Gas Plumes

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, M B

    2008-01-29

    Accidents involving release of large (multi-ton) quantities of toxic industrial chemicals often yield far fewer fatalities and causalities than standard, widely-used assessment and emergency response models predict. While recent work has suggested that models should incorporate the protection provided by buildings, more refined health effect methodologies, and more detailed consideration of the release process; investigations into the role of deposition onto outdoor surfaces has been lacking. In this paper, we examine the conditions under which dry deposition may significantly reduce the extent of the downwind hazard zone. We provide theoretical arguments that in congested environments (e.g. suburbs, forests), deposition to vertical surfaces (such as building walls) may play a significant role in reducing the hazard zone extent--particularly under low-wind, stable atmospheric conditions which are often considered to be the worst-case scenario for these types of releases. Our analysis suggests that in these urban or suburban environments, the amount of toxic chemicals lost to earth's surface is typically a small fraction of overall depositional losses. For isothermal gases such as chlorine, the degree to which the chemicals stick to (or react with) surfaces (i.e. surface resistance) is demonstrated to be a key parameter controlling hazard extent (the maximum distance from the release at which hazards to human health are expected). This analysis does not consider the depositional effects associated with particulate matter or gases that undergo significant thermal change in the atmosphere. While no controlled experiments were available to validate our hypothesis, our analysis results are qualitatively consistent with the observed downwind extent of vegetation damage in two chlorine accidents.

  14. Feasibility study on application of volume acid fracturing technology to tight gas carbonate reservoir development

    Directory of Open Access Journals (Sweden)

    Nianyin Li

    2015-09-01

    Full Text Available How to effectively develop tight-gas carbonate reservoir and achieve high recovery is always a problem for the oil and gas industry. To solve this problem, domestic petroleum engineers use the combination of the successful experiences of North American shale gas pools development by stimulated reservoir volume (SRV fracturing with the research achievements of Chinese tight gas development by acid fracturing to propose volume acid fracturing technology for fractured tight-gas carbonate reservoir, which has achieved a good stimulation effect in the pilot tests. To determine what reservoir conditions are suitable to carry out volume acid fracturing, this paper firstly introduces volume acid fracturing technology by giving the stimulation mechanism and technical ideas, and initially analyzes the feasibility by the comparison of reservoir characteristics of shale gas with tight-gas carbonate. Then, this paper analyzes the validity and limitation of the volume acid fracturing technology via the analyses of control conditions for volume acid fracturing in reservoir fracturing performance, natural fracture, horizontal principal stress difference, orientation of in-situ stress and natural fracture, and gives the solution for the limitation. The study results show that the volume acid fracturing process can be used to greatly improve the flow environment of tight-gas carbonate reservoir and increase production; the incremental or stimulation response is closely related with reservoir fracturing performance, the degree of development of natural fracture, the small intersection angle between hydraulic fracture and natural fracture, the large horizontal principal stress difference is easy to form a narrow fracture zone, and it is disadvantageous to create fracture network, but the degradable fiber diversion technology may largely weaken the disadvantage. The practices indicate that the application of volume acid fracturing process to the tight-gas carbonate

  15. Principles of safe mechanization of operations in seams with hazards of rock and gas outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, B; Siarkiewicz, R

    1976-10-01

    Rock burst hazards in Lower Silesia, Poland, and methods for rock burst forecasting are discussed. From 1894 to 1974, 1403 rock bursts occurred in the basin; five were accompanied by emission of methane, the rest with emission of carbon dioxide. Use of the GMA-030 sensor system (type GfG) for detecting increasing emission of carbon dioxide at longwall faces mined by coal plows is analyzed. Site selection for sensors at longwall faces (retreat or advance) in mines with ascending or descending ventilation, with blowing or exhaust ventilation systems and in mine drivage is analyzed. Examples of sensor installation at face ends are evaluated. Recommendations for sensor installation are made. 2 references.

  16. Experimental and Numerical Modelling of CO2 Atmospheric Dispersion in Hazardous Gas Emission Sites.

    Science.gov (United States)

    Gasparini, A.; sainz Gracia, A. S.; Grandia, F.; Bruno, J.

    2015-12-01

    Under stable atmospheric conditions and/or in presence of topographic depressions, CO2 concentrations can reach high values resulting in lethal effect to living organisms. The distribution of denser than air gases released from the underground is governed by gravity, turbulence and dispersion. Once emitted, the gas distribution is initially driven by buoyancy and a gas cloud accumulates on the ground (gravitational phase); with time the density gradient becomes less important due to dispersion or mixing and gas distribution is mainly governed by wind and atmospheric turbulence (passive dispersion phase). Natural analogues provide evidences of the impact of CO2 leakage. Dangerous CO2 concentration in atmosphere related to underground emission have been occasionally reported although the conditions favouring the persistence of such a concentration are barely studied.In this work, the dynamics of CO2 in the atmosphere after ground emission is assessed to quantify their potential risk. Two approaches have been followed: (1) direct measurement of air concentration in a natural emission site, where formation of a "CO2 lake" is common and (2) numerical atmospheric modelling. Two sites with different morphology were studied: (a) the Cañada Real site, a flat terrain in the Volcanic Field of Campo de Calatrava (Spain); (b) the Solforata di Pomezia site, a rough terrain in the Alban Hills Volcanic Region (Italy). The comparison between field data and model calculations reveal that numerical dispersion models are capable of predicting the formation of CO2 accumulation over the ground as a consequence of underground gas emission. Therefore, atmospheric modelling could be included as a valuable methodology in the risk assessment of leakage in natural degassing systems and in CCS projects. Conclusions from this work provide clues on whether leakage may be a real risk for humans and under which conditions this risk needs to be included in the risk assessment.

  17. A system for destroying mixed and hazardous wastes with no gas or liquid effluents

    International Nuclear Information System (INIS)

    Camp, D.W.; Upadhye, R.S.

    1992-04-01

    We developed a conceptual design for a processing system in which the organic components of hazardous or mixed waste would be destroyed, while discharging virtually no gaseous or liquid effluents. Only solid products would be produced. For mixed waste feeds these could then be transported and disposed as low level waste. This system would oxidize the organics using any one of several destruction processes adapted to replace air with a mixture of O 2 and recycled CO 2 . Net production Of CO 2 , HC1, and H 2 O in the dosed recycle system would be scrubbed or reacted to solid products such as CaCO 3 , NaCl, and concrete. This no-effluent design may improve community acceptance of a waste destruction system

  18. Atmospheric dispersion prediction and source estimation of hazardous gas using artificial neural network, particle swarm optimization and expectation maximization

    Science.gov (United States)

    Qiu, Sihang; Chen, Bin; Wang, Rongxiao; Zhu, Zhengqiu; Wang, Yuan; Qiu, Xiaogang

    2018-04-01

    Hazardous gas leak accident has posed a potential threat to human beings. Predicting atmospheric dispersion and estimating its source become increasingly important in emergency management. Current dispersion prediction and source estimation models cannot satisfy the requirement of emergency management because they are not equipped with high efficiency and accuracy at the same time. In this paper, we develop a fast and accurate dispersion prediction and source estimation method based on artificial neural network (ANN), particle swarm optimization (PSO) and expectation maximization (EM). The novel method uses a large amount of pre-determined scenarios to train the ANN for dispersion prediction, so that the ANN can predict concentration distribution accurately and efficiently. PSO and EM are applied for estimating the source parameters, which can effectively accelerate the process of convergence. The method is verified by the Indianapolis field study with a SF6 release source. The results demonstrate the effectiveness of the method.

  19. Conditions for a partial summation of SO2 and NO2 hazardous effect in gas emission regulations

    Science.gov (United States)

    Sokolov, A. K.

    2017-12-01

    In order to provide environmental safety, the concentrations of SO2 and SO2 in the surface layer of atmospheric air should not exceed corresponding one-time values accepted for maximum permissible concentrations (MPCs). The only document that provides a normative calculation of hazardous substance dispersion in the atmospheric air up to the present time is presented by regulations OND-86. It has established that, in taking into account the summation (unidirectionality) of hazardous action of substances (including SO2 and NO2 gases), the sum of their relative concentrations should not exceed unity. A novel standard GN 2.1.6.2326-08 stipulates that "nitrogen dioxide and sulfur dioxide have a partial summation of action; therefore the sum of their relative concentrations should not exceed 1.6." This paper is devoted to analyzing the calculation of the summation of action for SO2 and NO2 gases and proving that the condition established in GN 2.1.6.2326-08 is not quite correct. According to the condition required by standard GN 2.1.6.2326-08, it turns out that, for some combinations of concentrations, the hazardous effect of gases is not added together, but one gas compensates an effect of the other, which contradicts the points of OND-86. For example, at SO2 and NO2 concentrations amounting to 0.6 and 0.04, respectively, the condition required by standard GN 2.1.6.2326-08 is satisfied, although the concentration of SO2 exceeds a normatively fixed value of MPC = 0.5. The graphical analysis of a concentration region for SO2 and NO2 gases clearly shows the areas where the condition required by standard GN 2.1.6.2326-08 is satisfied, but the environmental safety according to OND-86 is not provided. Recommendations are proposed for the correction of requirements established by standard GN 2.1.6.2326-08.

  20. Smart multi-channel two-dimensional micro-gas chromatography for rapid workplace hazardous volatile organic compounds measurement.

    Science.gov (United States)

    Liu, Jing; Seo, Jung Hwan; Li, Yubo; Chen, Di; Kurabayashi, Katsuo; Fan, Xudong

    2013-03-07

    We developed a novel smart multi-channel two-dimensional (2-D) micro-gas chromatography (μGC) architecture that shows promise to significantly improve 2-D μGC performance. In the smart μGC design, a non-destructive on-column gas detector and a flow routing system are installed between the first dimensional separation column and multiple second dimensional separation columns. The effluent from the first dimensional column is monitored in real-time and decision is then made to route the effluent to one of the second dimensional columns for further separation. As compared to the conventional 2-D μGC, the greatest benefit of the smart multi-channel 2-D μGC architecture is the enhanced separation capability of the second dimensional column and hence the overall 2-D GC performance. All the second dimensional columns are independent of each other, and their coating, length, flow rate and temperature can be customized for best separation results. In particular, there is no more constraint on the upper limit of the second dimensional column length and separation time in our architecture. Such flexibility is critical when long second dimensional separation is needed for optimal gas analysis. In addition, the smart μGC is advantageous in terms of elimination of the power intensive thermal modulator, higher peak amplitude enhancement, simplified 2-D chromatogram re-construction and potential scalability to higher dimensional separation. In this paper, we first constructed a complete smart 1 × 2 channel 2-D μGC system, along with an algorithm for automated control/operation of the system. We then characterized and optimized this μGC system, and finally employed it in two important applications that highlight its uniqueness and advantages, i.e., analysis of 31 workplace hazardous volatile organic compounds, and rapid detection and identification of target gas analytes from interference background.

  1. Characterization of free and bound fatty acids in human gallstones by capillary gas liquid chromatography

    International Nuclear Information System (INIS)

    Channa, N.A.; Khand, F.D.; Noorani, M.A.; Bhanger, M.I.

    2002-01-01

    Forty-four human gallstone samples either of pure cholesterol or cholesterol and bilirubin were randomly selected and analyzed by capillary gas liquid chromatography for the relative percentage composition of free and total fatty acids. The results showed that bound fatty acids were present in higher amounts than the free fatty acids. Amongst the bound fatty acids the percentage occurrence for palmitic acid was highest followed by stearic, oleic, linoleic and myristic acids. Fatty acids myristic, palmitic and linoleic were present in higher amounts in cholesterol gallstones, whereas stearic acid in cholesterol and bilirubin gallstones. When compared, no significant difference (p < 0.05) in the levels of free and bound fatty acids were seen in gallstones of males and females. The results suggest that bound fatty acids have a role to play in the structure of gallstones. (author)

  2. Experimental study of influence characteristics of flue gas fly ash on acid dew point

    Science.gov (United States)

    Song, Jinhui; Li, Jiahu; Wang, Shuai; Yuan, Hui; Ren, Zhongqiang

    2017-12-01

    The long-term operation experience of a large number of utility boilers shows that the measured value of acid dew point is generally lower than estimated value. This is because the influence of CaO and MgO on acid dew point in flue gas fly ash is not considered in the estimation formula of acid dew point. On the basis of previous studies, the experimental device for acid dew point measurement was designed and constructed, and the acid dew point under different smoke conditions was measured. The results show that the CaO and MgO in the flue gas fly ash have an obvious influence on the acid dew point, and the content of the fly ash is negatively correlated with the temperature of acid dew point At the same time, the concentration of H2SO4 in flue gas is different, and the acid dew point of flue gas is different, and positively correlated with the acid dew point.

  3. Increase of weakly acidic gas esophagopharyngeal reflux (EPR) and swallowing-induced acidic/weakly acidic EPR in patients with chronic cough responding to proton pump inhibitors.

    Science.gov (United States)

    Kawamura, O; Shimoyama, Y; Hosaka, H; Kuribayashi, S; Maeda, M; Nagoshi, A; Zai, H; Kusano, M

    2011-05-01

    Gastro-esophageal reflux disease (GERD)-related chronic cough (CC) may have multifactorial causes. To clarify the characteristics of esophagopharyngeal reflux (EPR) events in CC patients whose cough was apparently influenced by gastro-esophageal reflux (GER), we studied patients with CC clearly responding to full-dose proton pump inhibitor (PPI) therapy (CC patients). Ten CC patients, 10 GERD patients, and 10 healthy controls underwent 24-h ambulatory pharyngo-esophageal impedance and pH monitoring. Weakly acidic reflux was defined as a decrease of pH by >1 unit with a nadir pH >4. In six CC patients, monitoring was repeated after 8 weeks of PPI therapy. The number of each EPR event and the symptom association probability (SAP) were calculated. Symptoms were evaluated by a validated GERD symptom questionnaire. Weakly acidic gas EPR and swallowing-induced acidic/weakly acidic EPR only occurred in CC patients, and the numbers of such events was significantly higher in the CC group than in the other two groups (P pump inhibitor therapy abolished swallowing-induced acidic/weakly acidic EPR, reduced weakly acidic gas EPR, and improved symptoms (all P gas EPR and swallowing-induced acidic/weakly acidic EPR. A direct effect of acidic mist or liquid refluxing into the pharynx may contribute to chronic cough, while cough may also arise indirectly from reflux via a vago-vagal reflex in some patients. © 2011 Blackwell Publishing Ltd.

  4. Models for recurrent gas release event behavior in hazardous waste tanks

    International Nuclear Information System (INIS)

    Anderson, D.N.; Arnold, B.C.

    1994-08-01

    Certain radioactive waste storage tanks at the United States Department of Energy Hanford facilities continuously generate gases as a result of radiolysis and chemical reactions. The congealed sludge in these tanks traps the gases and causes the level of the waste within the tanks to rise. The waste level continues to rise until the sludge becomes buoyant and ''rolls over'', changing places with heavier fluid on top. During a rollover, the trapped gases are released, resulting, in a sudden drop in the waste level. This is known as a gas release event (GRE). After a GRE, the wastes leading to another GRE. We present nonlinear time waste re-congeals and gas again accumulates leading to another GRE. We present nonlinear time series models that produce simulated sample paths that closely resemble the temporal history of waste levels in these tanks. The models also imitate the random GRE, behavior observed in the temporal waste level history of a storage tank. We are interested in using the structure of these models to understand the probabilistic behavior of the random variable ''time between consecutive GRE's''. Understanding the stochastic nature of this random variable is important because the hydrogen and nitrous oxide gases released from a GRE, are flammable and the ammonia that is released is a health risk. From a safety perspective, activity around such waste tanks should be halted when a GRE is imminent. With credible GRE models, we can establish time windows in which waste tank research and maintenance activities can be safely performed

  5. Environmental assessment of indoor radon gas exposure health hazards and some of its public risks

    International Nuclear Information System (INIS)

    Hussein, Abd El-Razik. Z.; Ibrahim, M.Se.; Ragab, M.H.; El-Bukhari, M.S.

    2005-01-01

    This study examine the relationship between indoor radon gas exposure and the cancer risk and housing characteristics in lung cancer risk houses (CRH) compared to non lung cancer risk houses (NCRH). Mean radon concentrations measured by active method were significantly higher among CRH compared to NCRH, 9:93 pCi/L versus 4.56 pCi/L, respectively. There was no statistically significant diurnal variation as regards radon levels in all examined houses. Indoor radon concentrations show statistically significance in houses with bad ventilation (low air change rate) compared to houses with good ventilation (high air change rate). Houses with floor material of tiles, had statistically significant higher radon concentrations. Neither finishing wall material nor indoor gas source shows statistically significance as regard radon levels. Radon levels > 4 pCi/L (US EPA action level) were statistically significance higher in bed rooms compared levels in living rooms. High radon concentrations were reported in lung cane risk houses and in houses with bad ventilation

  6. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  7. A dynamic approach for the impact of a toxic gas dispersion hazard considering human behaviour and dispersion modelling.

    Science.gov (United States)

    Lovreglio, Ruggiero; Ronchi, Enrico; Maragkos, Georgios; Beji, Tarek; Merci, Bart

    2016-11-15

    The release of toxic gases due to natural/industrial accidents or terrorist attacks in populated areas can have tragic consequences. To prevent and evaluate the effects of these disasters different approaches and modelling tools have been introduced in the literature. These instruments are valuable tools for risk managers doing risk assessment of threatened areas. Despite the significant improvements in hazard assessment in case of toxic gas dispersion, these analyses do not generally include the impact of human behaviour and people movement during emergencies. This work aims at providing an approach which considers both modelling of gas dispersion and evacuation movement in order to improve the accuracy of risk assessment for disasters involving toxic gases. The approach is applied to a hypothetical scenario including a ship releasing Nitrogen dioxide (NO2) on a crowd attending a music festival. The difference between the results obtained with existing static methods (people do not move) and a dynamic approach (people move away from the danger) which considers people movement with different degrees of sophistication (either a simple linear path or more complex behavioural modelling) is discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. CO2 Capture from Flue Gas using Amino Acid Salt Solutions

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai; Stenby, Erling Halfdan; Thomsen, Kaj

    2009-01-01

    difficult. Amino acid salt solutions have emerged as an alternative to the alkanolamine solutions. A number of advantages make amino acid salt solutions attractive solvents for CO2 capture from flue gas. In the present study CO2 absorption in aqueous solutions of 0.5 M potassium glycinate and 0.5 M...

  9. Techno-economic Analysis of Acid Gas Removal and Liquefaction for Pressurized LNG

    Science.gov (United States)

    Lee, S. H.; Seo, Y. K.; Chang, D. J.

    2018-05-01

    This study estimated the life cycle cost (LCC) of an acid gas removal and a liquefaction processes for Pressurized LNG (PLNG) production and compared the results with the cost of normal LNG production. PLNG is pressurized LNG that is liquefied at a higher pressure and temperature than normal LNG. Due to the high temperature, the energy for liquefaction is reduced. The allowable CO2 concentration in PLNG is increased up to 3 mol% when the product pressure 25 bar. An amine process with 35 wt% of diethanolamine (DEA) aqueous solution and a nitrogen expansion cycle were selected for the acid gas removal and the liquefaction processes, respectively. Two types of CO2 concentration in the feed gas were investigated to analyze their impacts on the acid gas removal unit. When the CO2 concentration was 5 mol%, the acid gas removal unit was required for both LNG and PLNG production. However, the acid gas removal unit was not necessary in PLNG when the concentration was 0.5 mol% and the pressure was higher than 15 bar. The results showed that the LCC of PLNG was reduced by almost 35% relative to that of LNG when the PLNG pressure was higher than 15 bar.

  10. Improvement of gas chromatographic analysis for organic acids and ...

    African Journals Online (AJOL)

    Yomi

    2010-08-27

    Aug 27, 2010 ... and ethanol fermentation by using the anaerobic bacterium. Clostridium ... GC analysis. Standard solution for GC analysis consisted of acetic acid (Sigma-. Aldrich ... Microorganism and inoculum preparation. C. beijerinckii ...

  11. Amino acid salt solutions as solvents in CO2 capture from flue gas

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai; Thomsen, Kaj; Stenby, Erling Halfdan

    New solvents based on the salts of amino acids have emerged as an alternative to the alkanolamine solutions, for the chemical absorption of CO2 from flue gas. But only few studies on amino acids as CO2 capturing agents have been performed so far. One of the interesting features of amino acid salt...... solutions is their ability to form solid precipitates upon the absorption of CO2. The occurrence of crystallization offers the possibility of increasing the CO2 loading capacity of the solvent. However, precipitation can also have negative effect on the CO2 capture process. The chemical nature of the solid...... of glycine, taurine, and lysine, while in the case of proline, and glutamic acid, the precipitate was found to be bicarbonate. These results give an important contribution to further understanding the potential of amino acid salt solutions in CO2 capture from flue gas....

  12. Composite harm to plants by sulfurous acid gas and oxidant

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, J

    1971-01-01

    The composite effects on plants of sulfur dioxide and ozone, SO/sub 2/ and PAN, SO/sub 2/ and nitrogen dioxide, and NO/sub 2/ and ozone were studied. Pinto bean plants were exposed to SO/sub 2/ or O/sub 3/ only, to each gas alternately, and to a mixture of the two. The degree of injury by the gas or gases was indicated in percentage by area of the leaves damaged. In cases where no geometric effect occurred the damage to the plant by the individual gas had been great; damage from the individual gas had been slight in these cases where such an effect was observed. The geometric effect is produced when the density of SO/sub 2/ is rather low, generally 0.05-0.25 ppm. A mixture of SO/sub 2/ and O/sub 3/ was applied to a tabacco plant; it affected fully grown leaves. In experiments on the composite effects of SO/sub 2/ and PAN on bean, tomato and pepper plants, PAN affected mainly young leaves while SO/sub 2/ affected mature ones. These effects were arithmetric rather then geometric. The SO/sub 2/ and NO/sub 2/ were also studied in the same manner. When SO/sub 2/ and NO/sub 2/ were mixed, a geometric effect was conspicuous in damage to vegetables, the symptoms of damage by either of the two appeared about the same, younger leaves being affected less. When treated with the two gases alternately, the damage was greater if the plants were first treated with NO/sub 2/; possible causes for this effect are discussed. No significant composite effect of NO/sub 2/ and O/sub 3/ was observed.

  13. GAS PERMEATION PROPERTIES OF POLY(LACTIC ACID). (R826733)

    Science.gov (United States)

    AbstractThe need for the development of polymeric materials based on renewable resources has led to the development of poly(lactic acid) (PLA) which is being produced from a feedstock of corn rather than petroleum. The present study examines the permeation of nitrogen...

  14. Gas Phase Structure of Amino Acids: La-Mb Studies

    Science.gov (United States)

    Mata, I. Pena S.; Sanz, M. E.; Vaquero, V.; Cabezas, C.; Perez, C.; Blanco, S.; López, J. C.; Alonso, J. L.

    2009-06-01

    Recent improvements in our laser ablation molecular beam Fourier transform microwave (LA-MB-FTMW) spectrometer such as using Laval-type nozzles and picoseconds Nd:YAG lasers (30 to 150 ps) have allowed a major step forward in the capabilities of this experimental technique as demonstrated by the last results in serine cysteine and threonine^a for which seven, six and seven conformers have been respectively identified. Taking advantage of these improvements we have investigated the natural amino acids metionine, aspartic and glutamic acids and the γ-aminobutyric acid (GABA) with the aim of identify and characterize their lower energy conformers. Searches in the rotational spectra have lead to the identification of seven conformers of metionine, six and five of aspartic and glutamic acids, respectively, and seven for the γ-aminobutyric. These conformers have been unambiguously identified by their spectroscopic constants. In particular the ^{14}N nuclear quadrupole coupling constants, that depend heavily on the orientation of the amino group with respect to the principal inertial axes of the molecule, prove to be a unique tool to distinguish unambigously between conformations with similar rotational constants. For the γ-aminobutyric acid two of the seven observed structures are stablized by an intramolecular interaction n-π*. Two new conformers of proline have been identified together with the two previously observed. J. L. Alonso, C. Pérez, M. E. Sanz, J. C. López, S. Blanco, Phys.Chem.Chem.Phys., 2009, 11, 617. D. B. Atkinson, M. A. Smith, Rev. Sci. Instrum. 1995, 66, 4434 S. Blanco, M. E. Sanz, J. C. López, J. L. Alonso, Proc. Natl. Acad. Sci. USA2007, 104, 20183. M. E. Sanz, S. Blanco, J. C. López, J. L. Alonso, Angew. Chem. Int. Ed.,2008, 120, 6312. A. Lesarri, S. Mata, E. J. Cocinero, S. Blanco, J.C. López, J. L. Alonso, Angew. Chem. Int. Ed. , 2002, 41, 4673

  15. Stimulation of deep gas wells using HCl/formic acid system : lab studies and field application

    Energy Technology Data Exchange (ETDEWEB)

    Nasr-El-Din, H.A.; Al-Mutairi, S.; Al-Malki, B. [Saudi Aramco (Saudi Arabia); Metcalf, S.; Walters, W. [BJ Services Co USA, Houston, TX (United States)

    2002-06-01

    Well stimulation in the deep carbonate Khuff reservoirs in eastern Saudi Arabia is needed to remove drilling mud filter cakes and to enhance reservoir permeability. A non associated gas is being produced from the reservoirs. This gas is associated with the hydrogen sulfide content that varies from 0 to 10-mol per cent. The average reservoir temperature is 275 degrees F and initial reservoir pressure is 7,000 psi. A special system is needed to stimulate the carbonate reservoir because of this high bottomhole temperature and the corrosive nature of hydrochloric acid (HCl) at high temperature. A rotating disk method was used to determine the reaction rate of an HCl/formic acid system with reservoir rocks. Results from coreflood tests showed that the acid system creates deep wormholes in tight reservoir cores. Corrosion tests showed that the well tubulars could tolerate the acid system. A gelled 15-wt per cent HCl/9-wt per cent formic acid system successfully fractured 3 vertical wells in deep sour gas reservoirs without any operational problems. The treatment resulted in significant increases in gas production and flowing wellhead pressures. In addition, overflush of the treatment successfully eliminated the return of live acid after the treatment. 37 refs., 10 tabs., 17 figs.

  16. Experimental evidence of nitrous acid formation in the electron beam treatment of flue gas

    International Nuclear Information System (INIS)

    Maetzing, H.; Namba, H.; Tokunaga, O.

    1994-01-01

    In the Electron Beam Dry Scrubbing (EBDS) process, flue gas from fossil fuel burning power plants is irradiated with accelerated (300-800 keV) electrons. Thereby, nitrogen oxide (NO x ) and sulfur dioxide (SO 2 ) traces are transformed into nitric and sulfuric acids, respectively, which are converted into particulate ammonium nitrate and sulfate upon the addition of ammonia. The powdery product can be filtered from the main gas stream and can be sold as agricultural fertilizer. A lot of experimental investigations have been performed on the EBDS process and computer models have been developed to interpret the experimental results and to predict economic improvements. According to the model calculations, substantial amounts of intermediate nitrous acid (HNO 2 ) are formed in the electron beam treatment of flue gas. The first experimental investigation about the formation of nitrous acid in an irradiated mixture of NO in synthetic air has been undertaken. Under these conditions, aerosol formation is avoided. UV spectra of the irradiated gas were recorded in the wavelength range λ = 345-375 nm. Both NO 2 and HNO 2 have characteristic absorption bands in this wavelength range. Calibration spectra of NO 2 were subtracted from the sample spectra. The remaining absorption bands can clearly be assigned to nitrous acid. The concentration of nitrous acid was determined by differential optical absorption. It was found lower than the model prediction. The importance of nitrous acid formation in the EBDS process needs to be clarified. (author)

  17. The Chemistry Scoring Index (CSI: A Hazard-Based Scoring and Ranking Tool for Chemicals and Products Used in the Oil and Gas Industry

    Directory of Open Access Journals (Sweden)

    Tim Verslycke

    2014-06-01

    Full Text Available A large portfolio of chemicals and products is needed to meet the wide range of performance requirements of the oil and gas industry. The oil and gas industry is under increased scrutiny from regulators, environmental groups, the public, and other stakeholders for use of their chemicals. In response, industry is increasingly incorporating “greener” products and practices but is struggling to define and quantify what exactly constitutes “green” in the absence of a universally accepted definition. We recently developed the Chemistry Scoring Index (CSI which is ultimately intended to be a globally implementable tool that comprehensively scores and ranks hazards to human health, safety, and the environment for products used in oil and gas operations. CSI scores are assigned to products designed for the same use (e.g., surfactants, catalysts on the basis of product composition as well as intrinsic hazard properties and data availability for each product component. As such, products with a lower CSI score within a product use group are considered to have a lower intrinsic hazard compared to other products within the same use group. The CSI provides a powerful tool to evaluate relative product hazards; to review and assess product portfolios; and to aid in the formulation of products.

  18. Are carboxyl groups the most acidic sites in amino acids? Gas-phase acidities, photoelectron spectra, and computations on tyrosine, p-hydroxybenzoic acid, and their conjugate bases.

    Science.gov (United States)

    Tian, Zhixin; Wang, Xue-Bin; Wang, Lai-Sheng; Kass, Steven R

    2009-01-28

    Deprotonation of tyrosine in the gas phase was found to occur preferentially at the phenolic site, and the conjugate base consists of a 70:30 mixture of phenoxide and carboxylate anions at equilibrium. This result was established by developing a chemical probe for differentiating these two isomers, and the presence of both ions was confirmed by photoelectron spectroscopy. Equilibrium acidity measurements on tyrosine indicated that deltaG(acid)(o) = 332.5 +/- 1.5 kcal mol(-1) and deltaH(acid)(o) = 340.7 +/- 1.5 kcal mol(-1). Photoelectron spectra yielded adiabatic electron detachment energies of 2.70 +/- 0.05 and 3.55 +/- 0.10 eV for the phenoxide and carboxylate anions, respectively. The H/D exchange behavior of deprotonated tyrosine was examined using three different alcohols (CF3CH2OD, C6H5CH2OD, and CH3CH2OD), and incorporation of up to three deuterium atoms was observed. Two pathways are proposed to account for these results, and all of the experimental findings are supplemented with B3LYP/aug-cc-pVDZ and G3B3 calculations. In addition, it was found that electrospray ionization of tyrosine from a 3:1 (v/v) CH3OH/H2O solution using a commercial source produces a deprotonated [M-H]- anion with the gas-phase equilibrium composition rather than the structure of the ion that exists in aqueous media. Electrospray ionization from acetonitrile, however, leads largely to the liquid-phase (carboxylate) structure. A control molecule, p-hydroxybenzoic acid, was found to behave in a similar manner. Thus, the electrospray conditions that are employed for the analysis of a compound can alter the isomeric composition of the resulting anion.

  19. Fluoroalkyl chloroformates in treating amino acids for gas chromatographic analysis

    Czech Academy of Sciences Publication Activity Database

    Hušek, Petr; Šimek, Petr; Hartvich, Petr; Zahradníčková, Helena

    2008-01-01

    Roč. 1186, 1/2 (2008), s. 391-400 ISSN 0021-9673 R&D Projects: GA ČR GA203/04/0192; GA ČR GA303/06/1674 Institutional research plan: CEZ:AV0Z50070508 Keywords : amino acids * derivatization * pentafluoropropyl- and heptafluorobutyl chloroformates Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.756, year: 2008

  20. Acid monomer analysis in waterborne polymer systems by targeted labeling of carboxylic acid functionality, followed by pyrolysis - gas chromatography.

    Science.gov (United States)

    Brooijmans, T; Okhuijsen, R; Oerlemans, I; Schoenmakers, P J; Peters, R

    2018-05-14

    Pyrolysis - gas chromatography - (PyGC) is a common method to analyse the composition of natural and synthetic resins. The analysis of acid functionality in, for example, waterborne polyacrylates and polyurethanes polymers has proven to be difficult due to solubility issues, inter- and intramolecular interaction effects, lack of detectability in chromatographic analysis, and lack of thermal stability. Conventional analytical techniques, such as PyGC, cannot be used for the direct detection and identification of acidic monomers, due to thermal rearrangements that take place during pyrolysis. To circumvent this, the carboxylic acid groups are protected prior to thermal treatment by reaction with 2-bromoacetophenone. Reaction conditions are investigated and optimised wrt. conversion measurements. The aproach is applied to waterborne polyacryalates and the results are discussed. This approach enables identification and (semi)quantitative analysis of different acid functionalities in waterborne polymers by PyGC. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Effect of oxygen enrichment in air on acid gas combustion under Claus conditions

    KAUST Repository

    Ibrahim, Salisu

    2013-09-01

    Results are presented to examine the combustion of acid gas (H2S and CO2) in hydrogen-fueled flames using a mixture of oxygen and nitrogen under Claus conditions (Φ = 3). Specifically the effect of oxygen enrichment in the above flames is examined. The compositions of acid gas examined are100% H2S and 50% H2S/50% CO2 with different percentages of oxygen enrichment (0%, 19.3% and 69.3%) in the oxygen/nitrogen mixtures. The results revealed that combustion of acid gas formed SO2 wherein the mole fraction of SO2 increased to an asymptotic value at all the oxygen concentrations examined. In addition, increase in oxygen enrichment of the air resulted in increased amounts of SO2 rather than the formation of more desirable elemental sulfur. In case of 50% H2S/50% CO2 acid gas, carbon monoxide mole fraction increased with oxygen enrichment which is an indicator to the availability of additional amounts of oxygen into the reaction pool. This gas mixture resulted in the formation of other sulfurous–carbonaceous compounds (COS and CS2) due to the presence of carbon monoxide. The results showed that the rate of COS formation increased with oxygen enrichment due to the availability of higher amounts of CO while that of CS2 reduced. The global reactions responsible for this observed phenomenon are presented.

  2. Hybrid ATDL-gamma distribution model for predicting area source acid gas concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Jakeman, A J; Taylor, J A

    1985-01-01

    An air quality model is developed to predict the distribution of concentrations of acid gas in an urban airshed. The model is hybrid in character, combining reliable features of a deterministic ATDL-based model with statistical distributional approaches. The gamma distribution was identified from a range of distributional models as the best model. The paper shows that the assumptions of a previous hybrid model may be relaxed and presents a methodology for characterizing the uncertainty associated with model predictions. Results are demonstrated for the 98-percentile predictions of 24-h average data over annual periods at six monitoring sites. This percentile relates to the World Health Organization goal for acid gas concentrations.

  3. Estimation of Fatty Acids in Corn Oil by Gas Capillary Chromatography

    International Nuclear Information System (INIS)

    Kamal, Mohammad A; Klein Peter

    2007-01-01

    Fatty acids provide energy as well as play important role in some cellular structures like cell membrane and certain hormones. Saturated fatty acids are usually found in animal products and in some vegetable oils as well. These saturated fatty acids may be a factor in weight gain and obesity but eating them in moderate amounts may not be damaging to health of every person. Monounsaturated fatty acids can lower blood levels of low density lipoprotein cholesterol and have potential to increase blood levels of high density lipoprotein cholesterol and by this way plays protective role against heart disease. The omega 3 and 6 fatty acids have vital roles in many biological systems such as nervous, immune, cardiovascular, dermal and vision systems. Therefore, it is essential to optimize the instrumental conditions and column specification for the estimation of various fatty acids in the oil, which was considered in the current study using Gas Capillary Chromatography. (author)

  4. UPS and DFT investigation of the electronic structure of gas-phase trimesic acid

    Energy Technology Data Exchange (ETDEWEB)

    Reisberg, L., E-mail: rebban@ut.ee [Institute of Physics, University of Tartu, W. Oswaldi 1, EE-50411 Tartu (Estonia); Pärna, R. [Institute of Physics, University of Tartu, W. Oswaldi 1, EE-50411 Tartu (Estonia); MAX IV Laboratory, Lund University, Fotongatan 2, 225 94 Lund (Sweden); Kikas, A.; Kuusik, I.; Kisand, V. [Institute of Physics, University of Tartu, W. Oswaldi 1, EE-50411 Tartu (Estonia); Hirsimäki, M.; Valden, M. [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, FIN-33101 Tampere (Finland); Nõmmiste, E. [Institute of Physics, University of Tartu, W. Oswaldi 1, EE-50411 Tartu (Estonia)

    2016-11-15

    Highlights: • In the current study outer valence band electronic structure of benzene-1,3,5-tricarboxylic acid was interpreted. • Experimental and calculated trimesic acid (TMA) spectrum were compared to ones of benzene and benzoic acid. • It is shown that similarities between MO energies and shapes for benzene and TMA exists. • Addition of carboxyl groups to the benzene ring clearly correlates with increasing binding energy of HOMO. - Abstract: Benzene-1,3,5-tricarboxylic acid (trimesic acid, TMA) molecules in gas-phase have been investigated by using valence band photoemission. The photoelectron spectrum in the binding energy region from 9 to 22 eV is interpreted by using density functional theory calculations. The electronic structure of TMA is compared with benzene and benzoic acid in order to demonstrate changes in molecular orbital energies induced by addition of carboxyl groups to benzene ring.

  5. Identification of bound alcohols in soil humic acids by gas chromatography-mass spectrometry

    OpenAIRE

    Berthier , Gersende; Dou , Sen; Peakman , Torren; Lichtfouse , Eric

    2000-01-01

    International audience; Humic acids are complex, partly macromolecular, yellow-brownish substances occurring in soils, waters and sediments. In order to shed some light on their molecular structure, crop humic acids were cleaved by alkaline hydrolysis (KOH). The products were fractionated by thin layer chromatography to give mono-alcohols which were analysed as acetate derivatives by gas chromatography coupled to mass spectrometry. Linear alcohols, sterols, stanols and plant-derived triterpen...

  6. Determination of Free Fatty Acids and Triglycerides by Gas Chromatography Using Selective Esterification Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kail, Brian W; Link, Dirk D; Morreale, Bryan D

    2012-11-01

    A method for selectively determining both free fatty acids (FFA) and triacylglycerides (TAGs) in biological oils was investigated and optimized using gas chromatography after esterification of the target species to their corresponding fatty acid methyl esters (FAMEs). The method used acid catalyzed esterification in methanolic solutions under conditions of varying severity to achieve complete conversion of more reactive FFAs while preserving the concentration of TAGs. Complete conversion of both free acids and glycerides to corresponding FAMEs was found to require more rigorous reaction conditions involving heating to 120°C for up to 2 h. Method validation was provided using gas chromatography–flame ionization detection, gas chromatography–mass spectrometry, and liquid chromatography–mass spectrometry. The method improves on existing methods because it allows the total esterified lipid to be broken down by FAMEs contributed by FFA compared to FAMEs from both FFA and TAGs. Single and mixed-component solutions of pure fatty acids and triglycerides, as well as a sesame oil sample to simulate a complex biological oil, were used to optimize the methodologies. Key parameters that were investigated included: HCl-to-oil ratio, temperature and reaction time. Pure free fatty acids were found to esterify under reasonably mild conditions (10 min at 50°C with a 2.1:1 HCl to fatty acid ratio) with 97.6 ± 2.3% recovery as FAMEs, while triglycerides were largely unaffected under these reaction conditions. The optimized protocol demonstrated that it is possible to use esterification reactions to selectively determine the free acid content, total lipid content, and hence, glyceride content in biological oils. This protocol also allows gas chromatography analysis of FAMEs as a more ideal analyte than glyceride species in their native state.

  7. The application of thermospray LC/MS to the analysis of small organic acids in mixed hazardous wastes

    International Nuclear Information System (INIS)

    Campbell, J.A.; Grant, K.E.; Lucke, R.B.; Clauss, S.A.

    1993-01-01

    The Hanford site was built by the Army Corps of Engineers and the Du Pont Corporation in 1943 to produce plutonium for nuclear weapons in support of World War II. The facility was very successful; within two years after its conception, Hanford had supplied the plutonium used for the bomb dropped on Nagasaki in World War II. Plutonium production continued after the war until January 1987 when the last product reactor ceased operation at the Hanford site. Nine production reactors and five reprocessing facilities operated at the Hanford site to support that mission. These operations created a large quantity of radioactive wastes, much of which was and continues to be stored in underground storage tanks. There are 177 high-level waste storage tanks at Hanford. Of these, 23 tanks are being watched closely because of the possibility that flammable gas mixtures are being produced from the mixed waste contained in the storage tanks. One tank in particular, Tank 241-SY-101, has exhibited episodic release of flammable gas mixtures since its initial filing in the late 1970s. Studies of simulated waste mixtures (SWM) have indicated that the gas generation and retention are influenced by chelator concentration. It was postulated that the chelators form hydrophobic surfaces on solids in the SWM. These hydrophobic surfaces are more conducive to bubble attachment, which leads to flotation of the solids and eventually crust formation. The presence of chelators becomes very important for the understanding of crust formation and gas release. Among the degradation products of the chelators are a number of small organic acids, some of which may be linked to the production of flammable gases such as hydrogen and which also possess chelating properties. As a result, the authors have analyzed actual waste samples from Tank 101-SY for small organic acids

  8. Formation of itraconazole-succinic acid cocrystals by gas antisolvent cocrystallization.

    Science.gov (United States)

    Ober, Courtney A; Gupta, Ram B

    2012-12-01

    Cocrystals of itraconazole, an antifungal drug with poor bioavailability, and succinic acid, a water-soluble dicarboxylic acid, were formed by gas antisolvent (GAS) cocrystallization using pressurized CO(2) to improve itraconazole dissolution. In this study, itraconazole and succinic acid were simultaneously dissolved in a liquid solvent, tetrahydrofuran, at ambient conditions. The solution was then pressurized with CO(2), which decreased the solvating power of tetrahydrofuran and caused crystallization of itraconazole-succinic acid cocrystals. The cocrystals prepared by GAS cocrystallization were compared to those produced using a traditional liquid antisolvent, n-heptane, for crystallinity, chemical structure, thermal behavior, size and surface morphology, potential clinical relevance, and stability. Powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy analyses showed that itraconazole-succinic acid cocrystals with physical and chemical properties similar to cocrystals produced using a traditional liquid antisolvent technique can be prepared by CO(2) antisolvent cocrystallization. The dissolution profile of itraconazole was significantly enhanced through GAS cocrystallization with succinic acid, achieving over 90% dissolution in less than 2 h. The cocrystals appeared stable against thermal stress for up to 4 weeks under accelerated stability conditions, showing only moderate decreases in their degree of crystallinity but no change in their crystalline structure. This study shows the utility of an itraconazole-succinic acid cocrystal for improving itraconazole bioavailability while also demonstrating the potential for CO(2) to replace traditional liquid antisolvents in cocrystal preparation, thus making cocrystal production more environmentally benign and scale-up more feasible.

  9. Gas-phase salt bridge interactions between glutamic acid and arginine

    NARCIS (Netherlands)

    Jaeqx, S.; Oomens, J.; Rijs, A.M.

    2013-01-01

    The gas-phase side chain-side chain (SC-SC) interaction and possible proton transfer between glutamic acid (Glu) and arginine (Arg) residues are studied under low-temperature conditions in an overall neutral peptide. Conformation-specific IR spectra, obtained with the free electron laser FELIX, in

  10. Hydrocarbon fuels from gas phase decarboxylation of hydrolyzed free fatty acid

    KAUST Repository

    Wang, Weicheng; Roberts, William L.; Stikeleather, Larry F.

    2012-01-01

    Gas phase decarboxylation of hydrolyzed free fatty acid (FFA) from canola oil has beeninvestigated in two fix-bed reactors by changing reaction parameters such as temperatures,FFA feed rates, and H 2-to-FFA molar ratios. FFA, which contains mostly C

  11. Gas chromatography-vacuum ultraviolet spectroscopy for analysis of fatty acid methyl esters.

    Science.gov (United States)

    Fan, Hui; Smuts, Jonathan; Bai, Ling; Walsh, Phillip; Armstrong, Daniel W; Schug, Kevin A

    2016-03-01

    A new vacuum ultraviolet (VUV) detector for gas chromatography was recently developed and applied to fatty acid methyl ester (FAME) analysis. VUV detection features full spectral acquisition in a wavelength range of 115-240nm, where virtually all chemical species absorb. VUV absorption spectra of 37 FAMEs, including saturated, monounsaturated, and polyunsaturated types were recorded. Unsaturated FAMEs show significantly different gas phase absorption profiles than saturated ones, and these classes can be easily distinguished with the VUV detector. Another advantage includes differentiating cis/trans-isomeric FAMEs (e.g. oleic acid methyl ester and linoleic acid methyl ester isomers) and the ability to use VUV data analysis software for deconvolution of co-eluting signals. As a universal detector, VUV also provides high specificity, sensitivity, and a fast data acquisition rate, making it a powerful tool for fatty acid screening when combined with gas chromatography. The fatty acid profile of several food oil samples (olive, canola, vegetable, corn, sunflower and peanut oils) were analyzed in this study to demonstrate applicability to real world samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Limiting Current of Oxygen Reduction on Gas-Diffusion Electrodes for Phosphoric Acid Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Gang, Xiao; Hjuler, Hans Aage

    1994-01-01

    on polytetrafluorine-ethyl bonded gas-diffusion electordes in phosphoric acid with and without fluorinated additives. This provides an alternative to estimate the film thickness by combining it with the acid-adsorption measurements and the porosity analysis of the catalyst layer. It was noticed that the limiting......Various models have been devoted to the operation mechanism of porous diffusion electrodes. They are, however, suffering from the lack of accuracy concerning the acid-film thickness on which they are based. In the present paper the limiting current density has been measured for oxygen reduction...... current density can be accomplished either by gas-phase diffusion or liquid-phase diffusion, and it is the latter that can be used in the film-thickness estimation. It is also important to mention that at such a limiting condition, both the thin-film model and the filmed agglomerate model reach the same...

  13. Regeneration of an aqueous solution from an acid gas absorption process by matrix stripping

    Science.gov (United States)

    Rochelle, Gary T [Austin, TX; Oyenekan, Babatunde A [Katy, TX

    2011-03-08

    Carbon dioxide and other acid gases are removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a matrix stripping configuration, less energy is consumed. The matrix stripping configuration uses two or more reboiled strippers at different pressures. The rich feed from the absorption equipment is split among the strippers, and partially regenerated solvent from the highest pressure stripper flows to the middle of sequentially lower pressure strippers in a "matrix" pattern. By selecting certain parameters of the matrix stripping configuration such that the total energy required by the strippers to achieve a desired percentage of acid gas removal from the gaseous stream is minimized, further energy savings can be realized.

  14. [Determination a variety of acidic gas in air of workplace by Ion Chromatography].

    Science.gov (United States)

    Li, Shiyong

    2014-10-01

    To establish a method for determination of a variety of acid gas in the workplace air by Ion Chromatography. (hydrofluoric acid, hydrogen chloride or hydrochloric acid, sulfur anhydride or sulfuric acid, phosphoric acid, oxalic acid). The sample in workplace air was collected by the porous glass plate absorption tube containing 5 ml leacheate. (Sulfuric acid fog, phosphoric acid aerosol microporous membrane after collection, eluted with 5 ml of eluent.) To separated by AS14+AG14 chromatography column, by carbonate (2.0+1.0) mmol/L (Na(2)CO(3)-NaHCO(3)) as eluent, flow rate of 1 ml/min, then analyzed by electrical conductivity detector. The retain time was used for qualitative and the peak area was used for quantitation. The each ion of a variety of acid gas in the air of workplace were excellent in carbonate eluent separation. The linear range of working curve of 0∼20 mg/L. The correlation coefficient r>0.999; lower detection limit of 3.6∼115 µg/L; quantitative limit of 0.012∼0.53 mg/L; acquisition of 15L air were measured, the minimum detection concentration is 0.004 0∼0.13 mg/m(3). The recovery rate is 99.7%∼101.1%. In the sample without mutual interference ions. Samples stored at room temperature for 7 days. The same analysis method, the detection of various acidic gases in the air of workplace, simple operation, good separation effect, high sensitivity, high detection efficiency, easy popularization and application.

  15. Predicted Gas-Phase and Liquid-Phase Acidities of Carborane Carboxylic and Dicarboxylic Acids

    Czech Academy of Sciences Publication Activity Database

    Oliva-Enrich, J. M.; Humbel, S.; Santaballa, J.A.; Alkorta, I.; Notario, R.; Dávalos, J. Z.; Canle-L., M.; Bernhardt, E.; Holub, Josef; Hnyk, Drahomír

    2018-01-01

    Roč. 3, č. 16 (2018), s. 4344-4353 ISSN 2365-6549 Institutional support: RVO:61388980 Keywords : Acidity * Carboranes * Computational Chemistry * Delocalization Energy * Electronic Structure Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry

  16. Hazard assessment of three haloacetic acids, as byproducts of water disinfection, in human urothelial cells.

    Science.gov (United States)

    Marsà, Alicia; Cortés, Constanza; Hernández, Alba; Marcos, Ricard

    2018-04-07

    Disinfection by-products (DBPs) are compounds produced in the raw water disinfection processes. Although increased cancer incidence has been associated with exposure to this complex mixture, the carcinogenic potential of individual DBPs remains not well known; thus, further studies are required. Haloacetic acids (HAAs) constitute an important group among DBPs. In this study, we have assessed the in vitro carcinogenic potential of three HAAs namely chloro-, bromo-, and iodoacetic acids. Using a long-term (8 weeks) and sub-toxic doses exposure scenario, different in vitro transformation markers were evaluated using a human urothelial cell line (T24). Our results indicate that long-term exposure to low doses of HAAs did not reproduce the genotoxic effects observed in acute treatments, where oxidative DNA damage was induced. No changes in the transformation endpoints analyzed were observed, as implied by the absence of significant morphological, cell growth rate and anchorage-independent cell growth pattern modifications. Interestingly, HAA-long-term exposed cells developed resistance to oxidative stress damage, what would explain the observed differences between acute and long-term exposure conditions. Accordingly, data obtained under long-term exposure to sub-toxic doses of HAAs could be more accurate, in terms of risk assessment, than under acute exposure scenarios. Copyright © 2018. Published by Elsevier Inc.

  17. Evaluation of Aroma in Oriental Tobaccos as Based On Valeric Acid Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Dagnon S

    2014-12-01

    Full Text Available Levels of valeric acids (isovaleric and 3-methylvaleric in leaves and smoke of different tobacco types were quantified by capillary gas chromatography (GC using flame ionization detector (FID. The aroma characteristics of the smoke were scored by sensory evaluation. It was found that leaves of Oriental and burley tobaccos contain higher amounts of both valeric acid derivatives than Virginia tobaccos containing isovaleric acid but no 3-methylvaleric acid. Strong correlation between the aroma and pleasantness scores of smoke and the content of valeric acids in the leaves of Oriental tobaccos was observed, while it was not the case for leaves of Virginia and burley tobaccos. In all tobacco types no correlation between smoking characteristics and the content of valeric acids in the smoke was established. Regression models involving leaf isovaleric acid were developed that can be used to evaluate aroma and pleasantness of smoke in Oriental tobaccos. The data obtained allow the following conclusions to be drawn: a 3-methylvaleric acid may be a chemical marker to distinguish Virginia tobaccos from Oriental and burley tobaccos; b isovaleric acid content in leaves of Oriental tobaccos may be used for objective aroma evaluation that can be exploited for breeding and market purposes.

  18. Determination of 4-Chloroindole-3-Acetic Acid Methyl Ester in Lathyrus Vicia and Pisum by Gas Chromatography - Mass Spectrometry

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen; Egsgaard, Helge; Larsen, Elfinn

    1980-01-01

    4-Chloroindole-3-acetic acid methyl ester was identified unequivocally in Lathyrus latifolius L., Vicia faba L. and Pisum sativum L. by thin layer chromatography, gas chromatography and mass spectrometry. The gas chromatographic system was able to separate underivatized chloroindole-3-acetic acid...... methyl ester isomers. The quantitative determination of 4-chloroindole-3-acetic acid methyl ester in immature seeds of these three species was performed by gas chromatography – mass spectrometry using deuterium labelled 4-chloro-indole-3-acetic acid methyl ester as an internal standard. P. sativum...

  19. Ruminal Methane Production on Simple Phenolic Acids Addition in in Vitro Gas Production Method

    Directory of Open Access Journals (Sweden)

    A. Jayanegara

    2009-04-01

    Full Text Available Methane production from ruminants contributes to total global methane production, which is an important contributor to global warming. In this experiment, six sources of simple phenolic acids (benzoic, cinnamic, phenylacetic, caffeic, p-coumaric and ferulic acids at two different levels (2 and 5 mM added to hay diet were evaluated for their potential to reduce enteric methane production using in vitro Hohenheim gas production method. The measured variables were gas production, methane, organic matter digestibility (OMD, and short chain fatty acids (SCFA. The results showed that addition of cinnamic, caffeic, p-coumaric and ferulic acids at 5 mM significantly (P p-coumaric > ferulic > cinnamic. The addition of simple phenols did not significantly decrease OMD. Addition of simple phenols tends to decrease total SCFA production. It was concluded that methane decrease by addition of phenolic acids was relatively small, and the effect of phenolic acids on methane decrease depended on the source and concentration applied.

  20. Seismic modeling of acid-gas injection in a deep saline reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Ursenbach, C.P.; Lawton, D.C. [Calgary Univ., AB (Canada). Dept. of Geoscience, Consortium for Research in Elastic Wave Exploration Seismology

    2008-07-01

    Carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S) are common byproducts of the energy industry. As such, remediation studies are underway to determine the feasibility of sequestering these byproducts in subsurface reservoirs, including deep saline reservoirs. Acid gas injection at smaller gas wells holds promise. However, in order for such injection programs to work, the progress of the injection plume must be tracked. A modeling study of fluid substitution was carried out to gain insight into the ability of seismic monitoring to distinguish pre- and post-injection states of the reservoir medium. The purpose of this study was to carry out fluid substitution calculations for the modeling of an injection process. A methodology that may be applied or adapted to a variety of acid-gas injection scenarios was also developed. The general approach involved determining acoustic properties at reservoir temperature and pressure of relevant fluids; obtaining elastic properties of the reservoir rock for some reference saturated state, and the elastic properties of the mineral comprising it; and, determining the change in reservoir elastic properties due to fluid substitution via Gassmann's equation. Water, brine and non-aqueous acid gas were the 3 fluids of interest in this case. The feasibility of monitoring was judged by the sensitivity of travel times and reflection coefficients to fluid substitution. 4 refs., 2 figs.

  1. Electron beam treatment technology for exhaust gas for preventing acid rain

    International Nuclear Information System (INIS)

    Aoki, Shinji

    1990-01-01

    Recently, accompanying the increase of the use of fossil fuel, the damage due to acid rain such as withering of trees and extinction of fishes and shells has occurred worldwide, and it has become a serious problem. The sulfur oxides and nitrogen oxides contained in exhaust gas are oxidized by the action of sunbeam to become sulfuric acid and nitric acid mists, which fall in the form of rain. Acid rain is closely related to the use of the coal containing high sulfur, and it hinders the use of coal which is rich energy source. In order to simplify the processing system for boiler exhaust gas and to reduce waste water and wastes, Ebara Corp. developed the dry simultaneous desulfurizing and denitrating technology utilizing electron beam in cooperation with Japan Atomic Energy Research Institute. The flow chart of the system applied to the exhaust gas treatment in a coal-fired thermal power station is shown. The mechanism of desulfurization and denitration, and the features of this system are described. The demonstration plant was constructed in a coal-fired thermal power station in Indianapolis, Indiana, USA, and the trial operation was completed in July, 1987. The test results are reported. (K.I.)

  2. Gas Antisolvent Approach for the Precipitation of α -Methoxyphenylacetic Acid – ( R -1-Cyclohexylethylamine Diateromeric Salt

    Directory of Open Access Journals (Sweden)

    A. Zodge

    2017-10-01

    Full Text Available One of the major drawbacks of diastereomeric salt precipitation based enantioseparation is the time and solvent requirement of crystallization. In the gas antisolvent (GAS approach, supercritical carbon dioxide is applied as an antisolvent, and the precipitation takes place in a couple of minutes. By setting the process parameters diastereomeric excess, yields, and selectivity can be controlled. Applicability of the process is demonstrated on the resolution of racemic 2-methoxyphenylacetic acid with enantiopure (R-(−-1-cyclohexylethylamine. Diastereomeric excess values over 55 % along with 80 % yields were achieved at optimal conditions in a single step.

  3. Ammonia Gas Sensing Behavior of Tanninsulfonic Acid Doped Polyaniline-TiO2 Composite

    Directory of Open Access Journals (Sweden)

    Venu Gopal Bairi

    2015-10-01

    Full Text Available A highly active tannin doped polyaniline-TiO2 composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO2 in TANIPANI matrix. UV-Visible and infrared spectroscopy studies provided information about the electronic interactions among tannin, polyaniline, and TiO2. Scanning electron microscopy (SEM along with energy dispersive X-ray spectroscopy (EDS and atomic force microscopy (AFM surface analysis techniques were used to investigate the metal oxide dispersions inside polyaniline matrix. Gas sensors were prepared by spin coating solutions of TANIPANI-TiO2 and TANIPANI composites onto glass slides. Sensors were tested at three different concentrations (20 ppm, 40 ppm, and 60 ppm of ammonia gas at ambient temperature conditions by measuring the changes in surface resistivity of the films with respect to time. Ammonia gas sensing plots are presented showing the response values, response times and recovery times. The TANIPANI-TiO2 composite exhibited better response and shorter recovery times when compared to TANIPANI control and other polyaniline composites that have been reported in the literature. For the first time a proposed mechanism of gas sensing basing on the polaron band localization and its effects on the gas sensing behavior of polyaniline are reported.

  4. Relocation of blood gas laboratory to the emergency department helps decrease lactic acid values.

    Science.gov (United States)

    Brazg, Jared; Huang, Phyllis; Weiner, Corey; Singh, Guneet; Likourezos, Antonios; Salem, Linda; Dickman, Eitan; Marshall, John

    2018-03-12

    Emergency Physicians often rely on Lactic Acid (LA) values to make important clinical decisions. Accuracy of LA values improve when blood gas analysis is performed in the emergency department (ED) as opposed to a satellite laboratory (SL). To investigate an association between blood gas laboratory location and accuracy of ED lactic acid samples. The study team evaluated lactic acid values from venous and arterial blood gas samples drawn between June 1, 2015 and September 30, 2016. The study was exempt from institutional review board approval. Samples were separated into two groups: those which were drawn prior to and after relocation of the blood gas laboratory to the ED. The data, including patient demographic characteristics, acute illness severity indices, and blood gas results were compared within and between each group using t-test for continuous variables and chi-square test for categorical variables. The primary outcome was the mean lactate value measured in the SL group in 2015 compared to the ED group in 2016. Potassium and creatinine values were measured between the two groups as secondary outcomes. Of the 21,595 consecutive samples drawn, 10,363 samples were from the SL group and 11,232 from the ED group. The SL group included 5458 (52.7%) women; mean (SD) age was 61.8 (21.0). The ED group contained 5860 (52.2%) women; mean (SD) age was 61.7 (20.5). Mean Emergency Severity Index (ESI) were the same in each group at 2.31 and rates of Systemic Inflammatory Response Syndrome (SIRS) were also equivalent in each group at 22.2%. Significant differences were found between LA values in the SL group (mean 2.21mmol/L) and in the ED group (mean 1.99mmol/L) with a p value of values in the SL group (mean 3.98meq/L) compared to the ED Group (mean 3.96meq/L) with a p value of 0.022. No significant difference was found between the creatinine values. These results suggest that mean lactate values decreased when measured in an ED blood gas laboratory and may provide more

  5. Relocation of blood gas laboratory to the emergency department helps decrease lactic acid values.

    Science.gov (United States)

    Brazg, Jared; Huang, Phyllis; Weiner, Corey; Singh, Guneet; Likourezos, Antonios; Salem, Linda; Dickman, Eitan; Marshall, John

    2018-03-20

    Emergency physicians often rely on Lactic Acid (LA) values to make important clinical decisions. Accuracy of LA values improve when blood gas analysis is performed in the emergency department (ED) as opposed to a satellite laboratory (SL). To investigate an association between blood gas laboratory location and accuracy of ED lactic acid samples. The study team evaluated lactic acid values from venous and arterial blood gas samples drawn between June 1, 2015 and September 30, 2016. The study was exempt from institutional review board approval. Samples were separated into two groups: those which were drawn prior to and after relocation of the blood gas laboratory to the ED. The data, including patient demographic characteristics, acute illness severity indices, and blood gas results were compared within and between each group using t-test for continuous variables and chi-square test for categorical variables. The primary outcome was the mean lactate value measured in the SL group in 2015 compared to the ED group in 2016. Potassium and creatinine values were measured between the two groups as secondary outcomes. Of the 21,595 consecutive samples drawn, 10,363 samples were from the SL group and 11,232 from the ED group. The SL group included 5458 (52.7%) women; mean (SD) age was 61.8 (21.0). The ED group contained 5860 (52.2%) women; mean (SD) age was 61.7 (20.5). Mean Emergency Severity Index (ESI) were the same in each group at 2.31 and rates of Systemic Inflammatory Response Syndrome (SIRS) were also equivalent in each group at 22.2%. Significant differences were found between LA values in the SL group (mean 2.21mmol/L) and in the ED group (mean 1.99mmol/L) with a p value of values in the SL group (mean 3.98meq/L) compared to the ED Group (mean 3.96meq/L) with a p value of 0.022. No significant difference was found between the creatinine values. These results suggest that mean lactate values decreased when measured in an ED blood gas laboratory and may provide more

  6. Comparison of Genetic Parameters Estimation of Fatty Acids from Gas Chromatography and FT-IR in Holsteins

    DEFF Research Database (Denmark)

    Poulsen, Nina Aagaard; Eskildsen, Carl Emil; Skov, T.

    or on fatty acids data measured from gas chromatography in 371 Danish Holstein cows. Results showed similar heritability estimates and strong genomic correlations for most of the fatty acids. However, for some fatty acids, the choice of data affected the genetic parameter estimation, which may be due...

  7. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    CERN Document Server

    Rondo, L.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosolnucleation. Based on quantum chemical calculations it has been suggested that the quantitative detectionof gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased inthe presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was setup at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection ofH2SO4in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time inthe CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF(Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutralsulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presenceof dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS...

  8. Prototype demonstration of dual sorbent injection for acid gas control on municipal solid waste combustion units

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-05-01

    This report gathered and evaluated emissions and operations data associated with furnace injection of dry hydrated lime and duct injection of dry sodium bicarbonate at a commercial, 1500 ton per day, waste-to-energy facility. The information compiled during the project sheds light on these sorbents to affect acid gas emissions from municipal solid waste combustors. The information assesses the capability of these systems to meet the 1990 Clean Air Act and 1991 EPA Emission Guidelines.

  9. Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region

    Science.gov (United States)

    Yuan, B.; Veres, P. R.; Warneke, C.; Roberts, J. M.; Gilman, J. B.; Koss, A.; Edwards, P. M.; Graus, M.; Kuster, W. C.; Li, S.-M.; Wild, R. J.; Brown, S. S.; Dubé, W. P.; Lerner, B. M.; Williams, E. J.; Johnson, J. E.; Quinn, P. K.; Bates, T. S.; Lefer, B.; Hayes, P. L.; Jimenez, J. L.; Weber, R. J.; Zamora, R.; Ervens, B.; Millet, D. B.; Rappenglück, B.; de Gouw, J. A.

    2015-02-01

    Formic acid (HCOOH) is one of the most abundant carboxylic acids in the atmosphere. However, current photochemical models cannot fully explain observed concentrations and in particular secondary formation of formic acid across various environments. In this work, formic acid measurements made at an urban receptor site (Pasadena) in June-July 2010 during CalNex (California Research at the Nexus of Air Quality and Climate Change) and a site in an oil and gas producing region (Uintah Basin) in January-February 2013 during UBWOS 2013 (Uintah Basin Winter Ozone Studies) will be discussed. Although the VOC (volatile organic compounds) compositions differed dramatically at the two sites, measured formic acid concentrations were comparable: 2.3 ± 1.3 in UBWOS 2013 and 2.0 ± 1.0 ppb in CalNex. We determine that concentrations of formic acid at both sites were dominated by secondary formation (> 99%). A constrained box model using the Master Chemical Mechanism (MCM v3.2) underestimates the measured formic acid concentrations drastically at both sites (by a factor of > 10). Compared to the original MCM model that includes only ozonolysis of unsaturated organic compounds and OH oxidation of acetylene, when we updated yields of ozonolysis of alkenes and included OH oxidation of isoprene, vinyl alcohol chemistry, reaction of formaldehyde with HO2, oxidation of aromatics, and reaction of CH3O2 with OH, the model predictions for formic acid were improved by a factor of 6.4 in UBWOS 2013 and 4.5 in CalNex, respectively. A comparison of measured and modeled HCOOH/acetone ratios is used to evaluate the model performance for formic acid. We conclude that the modified chemical mechanism can explain 19 and 45% of secondary formation of formic acid in UBWOS 2013 and CalNex, respectively. The contributions from aqueous reactions in aerosol and heterogeneous reactions on aerosol surface to formic acid are estimated to be 0-6 and 0-5% in UBWOS 2013 and CalNex, respectively. We observe that

  10. A novel decomposition technique of friable asbestos by CHClF2-decomposed acidic gas

    International Nuclear Information System (INIS)

    Yanagisawa, Kazumichi; Kozawa, Takahiro; Onda, Ayumu; Kanazawa, Masazumi; Shinohara, Junichi; Takanami, Tetsuro; Shiraishi, Masatsugu

    2009-01-01

    Asbestos was widely used in numerous materials and building products due to their desirable properties. It is, however, well known that asbestos inhalation causes health damage and its inexpensive decomposition technique is necessary to be developed for pollution prevention. We report here an innovative decomposition technique of friable asbestos by acidic gas (HF and HCl) generated from the decomposition of CHClF 2 by the reaction with superheated steam at 800 deg. C. Chrysotile-asbestos fibers were completely decomposed to sellaite and magnesium silicofluoride hexahydrate by the reaction with CHClF 2 -decomposed acidic gas at 150 deg. C for 30 min. At high temperatures beyond 400 deg. C, sellaite and hematite were detected in the decomposed product. In addition, crocidolite containing wastes and amosite containing wastes were decomposed at 500 deg. C and 600 deg. C for 30 min, respectively, by CHClF 2 -decomposed acidic gas. The observation of the reaction products by phase-contrast microscopy (PCM) and scanning electron microscopy (SEM) confirmed that the resulting products did not contain any asbestos

  11. Analysis of the fatty acid composition of taraxicuum officinale flowers oil by gas chromatography mass spectrometer

    International Nuclear Information System (INIS)

    Hussain, I.; Ullah, R.

    2013-01-01

    Taraxicum officinale, is a highly valuable medicinal plant. The roots is an important herbal drug, having long been used on the continent as a remedy for liver complaints. Keeping in view the importance and wide applications in the pharmaceutical industries, the present study was therefore aimed to analyze the chemical constituents of the flowers of T. officinale. The T. officinale flowers oil constituents of methyl ester derivatives of fatty acids were analyzed applying gas chromatography coupled to mass spectrometer. The results obtained showed the presence of both containing the saturated as well as unsaturated fatty acids in T. officinale flower oils. A total of 19 different components were identified and quantified. The concentration level of Methyl ester of Lenolenic acid was found very effective in concentration 3.33%, among the identified analytes of interest. In addition, the level of other chemical constituents of methyl ester of palmitic acid 3.11%, myristic acid 1.87, linolenic acids 1.67%, stearic acid 0.97 were found. The concentration level of the rest of identified fatty acids analytes were below 1%. Thus the results obtained from the current initiative is very promising due to the presence of high percentage of valuable analytes concentrations recorded in the fatty acid of T. officinale flower oil. Thus due to the presence of highly important analytes which have increased their importance for consumption in the pharmaceuticals as well as its applications in the new formulations for different skin, cosmetics and health purposes and for use by local practioners. The study will also provide a scientific database line. (author)

  12. Sensitivity Analysis of Population in The Generation of Hazardous and Non-Harzardous Wastes, and Gas from Dumpsites of Ogbomosoland in Nigeria

    Directory of Open Access Journals (Sweden)

    Samson O. Ojoawo

    2013-01-01

    Full Text Available This paper applies the principles of system dynamics modeling in studying the pattern of population changes and the corresponding non-hazardous wastes and gas being generated from the dumpsites of Ogbomosoland, Nigeria. The five (5 Local government Areas (LGAs of Ogbomosoland were categorized as Urban (Ogbomoso North and Ogbomoso South and Rural (Oriire, Ogo Oluwa and Suurulere based on the size, population of residents, consumption pattern and socio-economic activities of the area. A sensitivity analysis of the simulated variables i.e the population, wastes and gas, was performed by employing the developed model results. Findings showed that the wastes and gas increased with the increased population in the 1000 years period. Also, gas production exceeds wastes generation rates for the rural LGAs in all cases. After a 25 years benchmark, when the simulated population of the urban and rural LGAs are respectively 303,411 and 344,735, the rates of waste generation are 3.33x106 and 6.22 x106 m 3 , while the corresponding rates of gas production is 2.44x103 and 6.47x103 m 3 in same order. The study concludes that wastes and gas generation from dumpsites are highly sensitive to population growth. It also concluded that the rate of gas generation is higher in organic wastes of the rural LGAs. The maximum population permissible in the model is 300,000 thus design of full-fledge landfills is recommended to replace the existing dumpsites in the study area.

  13. Determination of long-chain fatty acids in serum by gas chromatography coupled to mass spectrometry

    International Nuclear Information System (INIS)

    Nuevas Paz, Lauro; Camayd Viera, Ivette

    2014-01-01

    The quantification of long-chain fatty acids is fundamental for the diagnosis of several peroxisome disorders, particularly those in which the β-oxidation peroxisome of fatty acids is affected. In this work the implementation of an analytical method for the determination of these markers in serum by gas chromatography coupled to mass spectrometry is described. Besides, samples from patients with a diagnostic impression of adrenoleukodystrophy linked to the X chromosome were analyzed. The necessary experimental conditions were achieved for the separation and quantification of C22:0, C24:0 and C26:0 fatty acids in serum, which are biochemical markers of various peroxisome diseases. The application of this method allowed confirming the diagnosis of three patients with a diagnostic impression of adrenoleukodystrophy linked to the X chromosome. The application of the method in daily practice will allow the Cuban medical system to count on a new laboratory parameter for the diagnosis of peroxisome disorders

  14. A method for the purification of natural gas from acidic components

    Energy Technology Data Exchange (ETDEWEB)

    Grinman, B.Kh.

    1981-01-01

    In the method of purifying natural gas from acidic components by means of injecting it into a layer of natural absorbers for the purpose of increasing the level of recovering CO/sub 2/, a water bearing terrigenic layer, containing silicates, carbonates, and sulfates of alkaline earth metals and layer water with a pH of 7.0 to 9.0 are used. Example. Specimens of rock from the Shatlyk deposit, saturated with layer water with a general mineralization of 19.8% grams per liter and natural gas from the Northern Dengiskul deposit with a CO/sub 2/ content of 3.2 volumetric percentage were used. The installation with the core specimens was placed in a thermostat, and was blown through with helium until complete air pressure was attained, and afterwards, 14.1 liters of natural gas were supplied. The initial pressure was 40.1 kilogauss per square centimeter, the test temperature was 50/sup 0/, and the duration of the experiment was 20 days. After finishing the test, the amount of CO/sub 2/ left in the gas was determined and the amount of the CO/sub 2/ absorbed by rock was also determined. The amount of CO/sub 2/, which entered the reaction with rock was 60% of the general amount of CO/sub 2/ in natural gas. The amount of CO/sub 2/ absorbed by the rock was 10%.

  15. Simultaneous determination of oxalic, citric, nitrilotriacetic and ethylenediamenetetraacetic acids by gas liquid chromatography of their methyl esters

    International Nuclear Information System (INIS)

    Eskell, C.J.; Pick, M.E.

    1980-04-01

    A procedure for simultaneous determination of ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), citric acid and oxalic acid by gas liquid chromatography is described. The involatile acids are first concerted to their volatile methyl ester derivatives by reaction with boron trifluoride in methanol. Transition metal ions (Fe 3+ , Cr 3+ and Ni 2+ ) which will be present in decontamination liquors from nuclear reactors, and form strong chelates with the acids, have been shown to cause no interference to the esterification reaction. The esters were separated by temperature programming on a 3.5 metre capillary column packed with 3% OV1 on Diatomite CQ and were detected by flame ionisation. (author)

  16. Concurrent Lactic and Volatile Fatty Acid Analysis of Microbial Fermentation Samples by Gas Chromatography with Heat Pre-treatment.

    Science.gov (United States)

    Darwin; WipaCharles; Cord-Ruwisch, Ralf

    2018-01-01

    Organic acid analysis of fermentation samples can be readily achieved by gas chromatography (GC), which detects volatile organic acids. However, lactic acid, a key fermentation acid is non-volatile and can hence not be quantified by regular GC analysis. However the addition of periodic acid to organic acid samples has been shown to enable lactic acid analysis by GC, as periodic acid oxidizes lactic acid to the volatile acetaldehyde. Direct GC injection of lactic acid standards and periodic acid generated inconsistent and irreproducible peaks, possibly due to incomplete lactic acid oxidation to acetaldehyde. The described method is developed to improve lactic acid analysis by GC by using a heat treated derivatization pre-treatment, such that it becomes independent of the retention time and temperature selection of the GC injector. Samples containing lactic acid were amended by periodic acid and heated in a sealed test tube at 100°C for at least 45 min before injecting it to the GC. Reproducible and consistent peaks of acetaldehyde were obtained. Simultaneous determination of lactic acid, acetone, ethanol, butanol, volatile fatty acids could also be accomplished by applying this GC method, enabling precise and convenient organic acid analysis of biological samples such as anaerobic digestion and fermentation processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Guidelines for Constructing Natural Gas and Liquid Hydrocarbon Pipelines Through Areas Prone to Landslide and Subsidence Hazards

    Science.gov (United States)

    2009-01-01

    These guidelines provide recommendations for the assessment of new and existing natural gas and liquid hydrocarbon pipelines subjected to potential ground displacements resulting from landslides and subsidence. The process of defining landslide and s...

  18. Degradation of gas-liquid gliding arc discharge on Acid Orange II

    International Nuclear Information System (INIS)

    Yan, J.H.; Liu, Y.N.; Bo, Zh.; Li, X.D.; Cen, K.F.

    2008-01-01

    The effects of pH value, initial concentration of dye solution and temperature on the degradation efficiency of Acid Orange II (AO7) using gas-liquid gliding arc discharge were investigated. The influences of pH value and temperature on degradation efficiency were not apparent. Increasing initial solution concentration caused the decrease of degradation rate and the increase of absolute degradation quantity. Considering energy efficiency and absolute degradation quantity, the gas-liquid gliding arc discharge is fit for treating high concentration organic wastewater. A possible mineralization pathway was proposed through the analysis of intermediate products detected by gas chromatograph coupled with mass spectrophotometer (GC-MS) and ion chromatograph (IC). Hydroxyl radicals reacted with the azo linkage-bearing carbon of a hydroxy-substituted ring, leading to the cleavage of -C-N- and degradation of AO7. The solution biodegradability was significantly improved (BOD 5 /COD from 0.02 to 0.43). The toxicity of intermediate products was lower than that of the initial Acid Orange II

  19. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids.

    Science.gov (United States)

    Hornung, Veit; Hartmann, Rune; Ablasser, Andrea; Hopfner, Karl-Peter

    2014-08-01

    Recent discoveries in the field of innate immunity have highlighted the existence of a family of nucleic acid-sensing proteins that have similar structural and functional properties. These include the well-known oligoadenylate synthase (OAS) family proteins and the recently identified OAS homologue cyclic GMP-AMP (cGAMP) synthase (cGAS). The OAS proteins and cGAS are template-independent nucleotidyltransferases that, once activated by double-stranded nucleic acids in the cytosol, produce unique classes of 2'-5'-linked second messenger molecules, which - through distinct mechanisms - have crucial antiviral functions. 2'-5'-linked oligoadenylates limit viral propagation through the activation of the enzyme RNase L, which degrades host and viral RNA, and 2'-5'-linked cGAMP activates downstream signalling pathways to induce de novo antiviral gene expression. In this Progress article, we describe the striking functional and structural similarities between OAS proteins and cGAS, and highlight their roles in antiviral immunity.

  20. Feasibility study of NaOH regeneration in acid gas removal unit using membrane electrolysis

    Science.gov (United States)

    Taufany, Fadlilatul; Pratama, Alvian; Romzuddin, Muhammad

    2017-05-01

    The world's energy demand is increasing with the development of human civilization. Due to limited energy resource, after 2020 fossil fuels thus is predicted will be replaced by renewable resources. Taking an example, one of the potential renewable energy to be considered is biogas, as its high content of methane, which can be produced via the fermentation process of the organic compounds under controlled anaerobic environment by utilizing the methanogen bacteria. However, prior the further use, this biogas must be purified from its impurities contents, i.e. acid gas of CO2 and H2S, up to 4% and 16 ppmv, respectively, in the acid gas removal unit. This such of purification efforts, will significantly increase the higher heating value of biogas, approximately from 600 to 900 Btu/Scf. During the purification process in this acid gas removal unit, NaOH solution is used as a liquid absorbent to reduce those acid gases content, in which the by-product of alkali salt (brine) was produced as waste. Here we report the feasibility study of the NaOH regeneration process in acid gas removal unit via membrane electrolysis technology, in which both the technical and economic aspects are taken account. To be precise in procedure, the anode semi-cell was filled with the brine solution, while the cathode semi-cell was filled with demineralized water, and those electrodes were separated by the cation exchange membrane. Furthermore, the applied potential was varied ranging from 5, 10, 15 and to 20 V, while the concentration of KCl electrolyte solutions were varied ranging from 0.01, 0.05, 0.1, and to 0.03 M. This study was conducted under controlled temperatures of 30 and 50 °C. Here we found that the % sodium recovery was increased along with the applied potential, temperature, and the decrease in KCl electrolyte concentration. We found that the best results, by means of the highest % sodium recovery, i.e. 97.26 %, was achieved under the experimental condition of temperature at 30

  1. Characterization of condensed phase nitric acid particles formed in the gas phase

    Institute of Scientific and Technical Information of China (English)

    Long Jia; Yongfu Xu

    2011-01-01

    The formation of nitric acid hydrates has been observed in a chamber during the dark reaction of NO2 with O3 in the presence of air.The size of condensed phase nitric acid was measured to be 40-100 nm and 20-65 nm at relative humidity (RH) ≤ 5% and RH = 67% under our experimental conditions, respectively.The nitric acid particles were collected on the glass fiber membrane and their chemical compositions were analyzed by infrared spectrum.The main components of nitric acid hydrates in particles are HNO3·3H2O and NO3-·xH2O (x≥ 4) at low RH, whereas at high RH HNO3·H2O, HNO3·2H2O, HNO3·3H2O and NO3-·xH2O (x≥ 4) all exist in the condensed phase.At high RH HNO3·xH2O (x ≤ 3) collected on the glass fiber membrane is greatly increased, while NO3-·xH2O (x ≥4) decreased, compared with low RH.To the best of our knowledge, this is the first time to report that condensed phase nitric acid can be generated in the gas phase at room temperature.

  2. Studies for the requirements of automatic and remotely controlled shutoff valves on hazardous liquids and natural gas pipelines with respect to public and environmental safety

    Energy Technology Data Exchange (ETDEWEB)

    Oland, C. Barry [XCEL Engineering, Inc. (United States); Rose, Simon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Engineering Science and Technology Div.; Grant, Herb L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fabrication, Hoisting and Rigging Div.; Lower, Mark D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fabrication, Hoisting and Rigging Div.; Spann, Mark A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Facility Management Div.; Kirkpatrick, John R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Sciences and Engineering Div.; Sulfredge, C. David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Sciences and Engineering Div.

    2012-12-01

    This study assesses the effectiveness of block valve closure swiftness in mitigating the consequences of natural gas and hazardous liquid pipeline releases on public and environmental safety. It also evaluates the technical, operational, and economic feasibility and potential cost benefits of installing automatic shutoff valves (ASVs) and remote control valves (RCVs) in newly constructed and fully replaced transmission lines. Risk analyses of hypothetical pipeline release scenarios are used as the basis for assessing: (1) fire damage to buildings and property in Class 1, Class 2, Class 3, and Class 4 high consequence areas (HCAs) caused by natural gas pipeline releases and subsequent ignition of the released natural gas; (2) fire damage to buildings and property in HCAs designated as high population areas and other populated areas caused by hazardous liquid pipeline releases and subsequent ignition of the released propane; and (3) socioeconomic and environmental damage in HCAs caused by hazardous liquid pipeline releases of crude oil. These risk analyses use engineering principles and fire science practices to characterize thermal radiation effects on buildings and humans and to quantify the total damage cost of socioeconomic and environmental impacts. The risk analysis approach used for natural gas pipelines is consistent with risk assessment standards developed by industry and incorporated into Federal pipeline safety regulations. Feasibility evaluations for the hypothetical pipeline release scenarios considered in this study show that installation of ASVs and RCVs in newly constructed and fully replaced natural gas and hazardous liquid pipelines is technically, operationally, and economically feasible with a positive cost benefit. However, these results may not apply to all newly constructed and fully replaced pipelines because site-specific parameters that influence risk analyses and feasibility evaluations often vary significantly from one pipeline segment to

  3. Synthesis of Fe Nanoparticles Functionalized with Oleic Acid Synthesized by Inert Gas Condensation

    Directory of Open Access Journals (Sweden)

    L. G. Silva

    2014-01-01

    Full Text Available In this work, we study the synthesis of monodispersed Fe nanoparticles (Fe-NPs in situ functionalized with oleic acid. The nanoparticles were self-assembled by inert gas condensation (IGC technique by using magnetron-sputtering process. Structural characterization of Fe-NPs was performed by transmission electron microscopy (TEM. Particle size control was carried out through the following parameters: (i condensation zone length, (ii magnetron power, and (iii gas flow (Ar and He. Typically the nanoparticles generated by IGC showed diameters which ranged from ~0.7 to 20 nm. Mass spectroscopy of Fe-NPs in the deposition system allowed the study of in situ nanoparticle formation, through a quadrupole mass filter (QMF that one can use together with a mass filter. When the deposition system works without quadrupole mass filter, the particle diameter distribution is around +/−20%. When the quadrupole is in line, then the distribution can be reduced to around +/−2%.

  4. Hydrofluoric acid burn resulting from ignition of gas from a compressed air duster.

    Science.gov (United States)

    Foster, Kevin N; Jones, LouAnn; Caruso, Daniel M

    2003-01-01

    A young female suffered burns to her hand after the ignition of gas from a compressed air duster. After debridement and dressing, the patient continued to have pain out of proportion to injury that was refractory to intravenous morphine. The material safety data sheet revealed that the chemical used was 1,1-difluoroethane. High temperatures can cause decompensation to form hydrofluoric acid. Calcium gluconate gel was applied topically to the patient's burns, which caused prompt and complete relief of her pain. A review of different compressed air duster products revealed that the main ingredient in each was a halogenated hydrocarbon. Although not considered flammable, all products have warnings regarding the possibility of ignition under various circumstances. Ignition of the gas in compressed air cleaners not only can cause flame burns, it can also cause chemical damage from exposure to hydrogen and fluoride ions. Prompt recognition and treatment is necessary to prevent severe injury.

  5. Determination of homovanillic acid and vanillylmandelic acid in urine of autistic children by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Kałuzna-Czaplińska, Joanna; Socha, Ewa; Rynkowski, Jacek

    2010-09-01

    Studies suggest dopamine nervous systems are involved in the pathogenesis of autistic disorder. Quantification of urinary homovanillic acid (HVA) and vanillylmandelic acid (VMA) can be a very important tool in the study of disorders of dopamine metabolism in autistic children. The urine specimens were collected from 20 autistic children and 36 neurologically normal children. Urinary HVA and VMA were simultaneously analyzed by gas chromatography-mass spectrometry. The method involves extraction of HVA and VMA from urinary samples and derivatization to N,O-bis(trimethylsilyl)trifluoroacetamide derivatives. The detection limits are 0.15 microg/mL and 0.23 microg/mL for VMA and HVA, respectively. The levels of HVA and VMA were higher in the urine of autistic children (28.8+/-15.5 micromol/mmol creatinine and 22.2+/-13.0 micromol/mmol creatinine, respectively) compared with those of the generally healthy children (4.6+/-0.7 micromol/mmol creatinine for HVA and 3.8+/-0.6 micromol/mmol creatinine for VMA). We proposed a simple, rapid method for a routine analysis of human urine to detect HVA and VMA related to an abnormal functional imbalance of the dopamine system, and showed our experience of application of this method to patients with a diagnosis of autism spectrum disorders. These results suggest significant differences in the levels of HVA and VMA between autistic and healthy children.

  6. Acid dispersion abatement: the use of flue gas desulphurisation in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, J.W.S.; Health, B.A.; Gibber, D.C. [Manchester Metropolitan University, Manchester (United Kingdom). Atmospheric Research and Information Centre, Dept. of Environmental and Geographical Sciences

    1995-12-31

    This paper reviews and evaluates the development of the UK flue gas desulphurisation (FGD) programme. This programme on establishment in 1986 represented a planned and coherent approach to acid deposition abatement which would progressively reduce emissions whilst maintaining the UK`s coal fired power generation capacity. It was anticipated that at least 12000 MW of electricity generating plant would be retrofitted with FGD. The programme has effectively been abandoned in favour of market based approach to emission control which sets the targets to be achieved but not the means. As a consequence the retrofitted capacity in 1995 is just 6000 MW. 17 refs., 1 tab.

  7. [Investigation of reference intervals of blood gas and acid-base analysis assays in China].

    Science.gov (United States)

    Zhang, Lu; Wang, Wei; Wang, Zhiguo

    2015-10-01

    To investigate and analyze the upper and lower limits and their sources of reference intervals in blood gas and acid-base analysis assays. The data of reference intervals were collected, which come from the first run of 2014 External Quality Assessment (EQA) program in blood gas and acid-base analysis assays performed by National Center for Clinical Laboratories (NCCL). All the abnormal values and errors were eliminated. Data statistics was performed by SPSS 13.0 and Excel 2007 referring to upper and lower limits of reference intervals and sources of 7 blood gas and acid-base analysis assays, i.e. pH value, partial pressure of carbon dioxide (PCO2), partial pressure of oxygen (PO2), Na+, K+, Ca2+ and Cl-. Values were further grouped based on instrument system and the difference between each group were analyzed. There were 225 laboratories submitting the information on the reference intervals they had been using. The three main sources of reference intervals were National Guide to Clinical Laboratory Procedures [37.07% (400/1 079)], instructions of instrument manufactures [31.23% (337/1 079)] and instructions of reagent manufactures [23.26% (251/1 079)]. Approximately 35.1% (79/225) of the laboratories had validated the reference intervals they used. The difference of upper and lower limits in most assays among 7 laboratories was moderate, both minimum and maximum (i.e. the upper limits of pH value was 7.00-7.45, the lower limits of Na+ was 130.00-156.00 mmol/L), and mean and median (i.e. the upper limits of K+ was 5.04 mmol/L and 5.10 mmol/L, the upper limits of PCO2 was 45.65 mmHg and 45.00 mmHg, 1 mmHg = 0.133 kPa), as well as the difference in P2.5 and P97.5 between each instrument system group. It was shown by Kruskal-Wallis method that the P values of upper and lower limits of all the parameters were lower than 0.001, expecting the lower limits of Na+ with P value 0.029. It was shown by Mann-Whitney that the statistic differences were found among instrument

  8. [Gas chromatography in quantitative analysis of hydrocyanic acid and its salts in cadaveric blood].

    Science.gov (United States)

    Iablochkin, V D

    2003-01-01

    A direct gas chromatography method was designed for the quantitative determination of cyanides (prussic acid) in cadaveric blood. Its sensitivity is 0.05 mg/ml. The routine volatile products, including substances, which emerge due to putrefaction of organic matters, do not affect the accuracy and reproducibility of the method; the exception is H-propanol that was used as the internal standard. The method was used in legal chemical expertise related with acute cyanide poisoning (suicide) as well as with poisoning of products of combustion of nonmetals (foam-rubber). The absolute error does not exceed 10% with a mean quadratic deviation of 0.0029-0.0033 mg.

  9. Method for the routine quantitative gas chromatographic analysis of major free fatty acids in butter and cream.

    Science.gov (United States)

    Woo, A H; Lindsay, R C

    1980-07-01

    A rapid quantiative method was developed for routine analysis of the major, even carbon-numbered free fatty acids in butter and cream. Free fatty acids were isolated directly from intact samples by a modified silicic acid-potassium hydroxide arrestant column and were separated by gas chromatography with a 1.8 m x 2 mm inner diameter glass column packed with 10% neopentyl glycol adipate on 80/100 Chromosorb W. Purified, formic acid-saturated carrier gas was required for minimal peak tailing and extended column life. The accuracy and reproducibility of the mmethod was established through quantitative recovery studies of free fatty acid mixtures, free fatty acids added to butter, and replicate analysis of butter and cream samples.

  10. 46 CFR 153.557 - Special requirements for hydrochloric acid.

    Science.gov (United States)

    2010-10-01

    ... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and... system that carries hydrochloric acid must be lined with: (1) Natural rubber; (2) Neoprene; or (3) A material approved for hydrochloric acid tanks by the Commandant (CG-522). (b) Containment systems for...

  11. Intercomparison of the measurements of oxalic acid in aerosols by gas chromatography and ion chromatography

    Science.gov (United States)

    Kawamura, Kimitaka; Barrie, Leonard A.; Toom-Sauntry, Desiree

    2010-12-01

    Oxalate, the anion of oxalic acid, is one of the most abundant measurable organic species in atmospheric aerosols. Traditionally, this bifunctional species has been measured by gas chromatography (GC) after derivatization to butyl ester and by ion chromatography (IC) without derivatization. However, there are few published comparisons of the two techniques. Here, we report the results of an intercomparison study for the measurement of oxalic acid in Arctic aerosols (oxalic acid by GC ranged from 6.5-59.1 ng m -3 (av. 26.0 ng m -3, median 26.2 ng m -3) whereas those by IC ranged from 6.6-52.1 ng m -3 (av. 26.6 ng m -3, median 25.4 ng m -3). They showed a good correlation ( r = 0.84) with a slope of 0.96. Thus, observations of oxalate obtained by GC employing dibutyl esters are almost equal to those by IC. Because the accuracy of oxalic acid by GC method largely depends on the method used, it is important to strictly examine the recovery in each study.

  12. Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution.

    Science.gov (United States)

    Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M Eugenia; Molteni, Carla

    2017-04-14

    The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.

  13. Retrofit acid gas emission control for municipal waste incineration application of dry sorbent injection

    International Nuclear Information System (INIS)

    Zmuda, J.T.; Smith, P.V.

    1991-01-01

    Dry sorbent injection (DSI) has been successfully demonstrated on coal fired boiler applications as a means of reducing sulfur dioxide emissions. More recently, the dry sorbent injection process was applied to an existing municipal waste incinerator to provide acid gas emission controls. The results obtained from the successful demonstration of the sorbent injection system on an existing municipal incinerator are presented. Removal efficiencies of compounds such as HCl, SO 2 , SO 3 , mercury, and others by the use of sorbent injection are shown. Effects of the DSI system on downstream equipment, such as electrostatic precipitators, fabric filters, ash handling systems, and waste management is included. The impacts of the DSI system on the furnace is also discussed. In this paper a discussion of dry sorbent injection as a means of reducing acid gas and other emissions from existing municipal waste incinerators which may be affected by the regulations is presented. An application case study will outline typical exhaust conditions, expected pollution reductions, capital and operating costs, and type of available sorbents and their costs

  14. Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution

    Science.gov (United States)

    Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M. Eugenia; Molteni, Carla

    2017-04-01

    The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.

  15. Government review of the countdown companies' 1991 acid gas emissions audits

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    An acid gas emissions verification program was implemented in Ontario in 1990 as part of a program for regulating emissions that are precursors to acid rain. The verification program applied to four companies, three in the metals industry and one electric utility. These emitters were required to limit annual SO[sub 2] and nitrogen oxides emissions to specified levels in stages according to a set schedule. The four companies were required to prepare and submit sulfur mass balance procedures manuals, determine the overall uncertainty of their respective annual emissions, and engage an independent auditor to develop an audit protocol manual and conduct audits of the reported emissions. For Ontario Hydro, the auditor was also required to evaluate the continuous flue gas monitoring systems at the utility's fossil-fuel power plants. The auditors confirmed that the metallurgical companies' reported emissions were within the required limits. For Ontario Hydro, the audit also confirmed that both SO[sub 2] and nitrogen oxide emissions were within the limits specified for 1991. The auditor also indicated that there were no major discrepancies with the procedures manuals that affected the calculated SO[sub 2] and nitrogen oxides emissions. 6 refs., 2 tabs.

  16. The microbial communities and potential greenhouse gas production in boreal acid sulphate, non-acid sulphate, and reedy sulphidic soils

    Energy Technology Data Exchange (ETDEWEB)

    Šimek, Miloslav, E-mail: misim@upb.cas.cz [Biology Centre AS CR, v. v. i., Institute of Soil Biology, 370 05 České Budějovice (Czech Republic); University of South Bohemia, Faculty of Science, 370 05 České Budějovice (Czech Republic); Virtanen, Seija; Simojoki, Asko [Department of Food and Environmental Sciences, University of Helsinki, FI-00014 Helsinki (Finland); Chroňáková, Alica; Elhottová, Dana; Krištůfek, Václav [Biology Centre AS CR, v. v. i., Institute of Soil Biology, 370 05 České Budějovice (Czech Republic); Yli-Halla, Markku [Department of Food and Environmental Sciences, University of Helsinki, FI-00014 Helsinki (Finland)

    2014-01-01

    Acid sulphate (AS) soils along the Baltic coasts contain significant amounts of organic carbon and nitrogen in their subsoils. The abundance, composition, and activity of microbial communities throughout the AS soil profile were analysed. The data from a drained AS soil were compared with those from a drained non-AS soil and a pristine wetland soil from the same region. Moreover, the potential production of methane, carbon dioxide, and nitrous oxide from the soils was determined under laboratory conditions. Direct microscopic counting, glucose-induced respiration (GIR), whole cell hybridisation, and extended phospholipid fatty acid (PLFA) analysis confirmed the presence of abundant microbial communities in the topsoil and also in the deepest Cg2 horizon of the AS soil. The patterns of microbial counts, biomass and activity in the profile of the AS soil and partly also in the non-AS soil therefore differed from the general tendency of gradual decreases in soil profiles. High respiration in the deepest Cg2 horizon of the AS soil (5.66 μg C g{sup − 1} h{sup − 1}, as compared to 2.71 μg C g{sup − 1} h{sup − 1} in a top Ap horizon) is unusual but reasonable given the large amount of organic carbon in this horizon. Nitrous oxide production peaked in the BCgc horizon of the AS and in the BC horizon of the non-AS soil, but the peak value was ten-fold higher in the AS soil than in the non-AS soil (82.3 vs. 8.6 ng N g{sup − 1}d{sup − 1}). The data suggest that boreal AS soils on the Baltic coast contain high microbial abundance and activity. This, together with the abundant carbon and total and mineral nitrogen in the deep layers of AS soils, may result in substantial gas production. Consequently, high GHG emissions could occur, for example, when the generally high water table is lowered because of arable farming. - Highlights: •Boreal acid sulphate soils contain large amounts of organic C and N in subsoils. •Microbial communities throughout the acid

  17. [Determination of residual solvents in 7-amino-3-chloro cephalosporanic acid by gas chromatography].

    Science.gov (United States)

    Ma, Li; Yao, Tong-wei

    2011-01-01

    To develop a gas chromatography method for determination of residual solvents in 7-amino-3-chloro cephalosporanic acid (7-ACCA). The residual levels of acetone, methanol, dichloromethane, ethyl acetate, isobutanol, pyridine and toluene in 7-ACCA were measured by gas chromatography using Agilent INNOWAX capillary column (30 m × 0.32 mm,0.5 μm). The initial column temperature was 70° maintained for 6 min and then raised (10°C/min) to 160°C for 1 min. Nitrogen gas was used as carrier and FID as detector. The flow of carrier was 1.0 ml/min, the temperature of injection port and detector was 200°C and 250°C, respectively. The limits of detection for acetone, methanol, dichloromethane, ethyl acetate, isobutanol, pyridine, toluene in 7-ACCA were 2.5 μg/ml, 1.5 μg/ml, 15 μg/ml, 2.5 μg/ml, 2.5 μg/ml, 2.5 μg/ml and 11 μg/ml, respectively. Only acetone was detected in the sample, and was less than the limits of Ch.P. The method can effectively detect the residual solvents in 7-ACCA.

  18. Fast derivatization of fatty acids in different meat samples for gas chromatography analysis.

    Science.gov (United States)

    Figueiredo, Ingrid Lima; Claus, Thiago; Oliveira Santos Júnior, Oscar; Almeida, Vitor Cinque; Magon, Thiago; Visentainer, Jesuí Vergilio

    2016-07-22

    In order to analyze the composition of fatty acids employing gas chromatography as the separation method, a derivatization of lipids using esterification and transesterification reactions is needed. The methodologies currently available are time consuming and use large amounts of sample and reagents. Thus, this work proposes a new procedure to carry out the derivatization of fatty acids without the need for prior extraction of lipids. The use of small amounts of sample (100mg) allows the analysis to be performed in specific parts of animals, in most cases without having them slaughtered. Another benefit is the use of small amounts of reagents (only 2mL of NaOH/Methanol and H2SO4/Methanol). The use of an experimental design procedure (Design Expert software) allows the optimization of the alkaline and acid reaction times. The procedure was validated for five minutes in both steps. The method was validated for bovine fat, beef, chicken, pork, fish and shrimp meats. The results for the merit figures of accuracy (from 101.07% to 109.18%), precision (RSDintra-day (from 0.65 to 3.93%), RSDinter-day (from 1.57 to 5.22%)), linearity (R(2)=0.9864) and robustness confirmed that the new method is satisfactory within the linear range of 2-30% of lipids in the sample. Besides the benefits of minimizing the amount of samples and reagents, the procedure enables gas chromatography sample preparation in a very short time compared with traditional procedures. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A rapid and simple procedure for monitoring valproic acid by gas chromatography

    Directory of Open Access Journals (Sweden)

    Mohamed Said Mostafa

    2018-02-01

    Full Text Available Valproic acid (VPA, a widely used antiepileptic drug, has a narrow therapeutic range of 50-100 μg/mL and shows large individual variability. It is very important to monitor the trough VPA concentration using a reliable method. The aim of this study was to develop and validate a rapid gas chromatographic (GC technique for VPA quantification in human plasma and to compare it with the traditional immunoassay method. VPA extraction from human serum was efficient by dichloromethane and hydrochloric acid using octanoic acid as an internal standard. GC analysis was performed using a gas-chromatograph equipped with a flame ionization detector (GC/FID. VPA detection and quantification were accomplished isothermally at 135°C on a Gs-BP 100% dimethylpolysiloxane capillary column (10 m×0.53 mm ID, 2.65 μm film thickness, Supelco, Bellefonte, PA. Injection port and detector temperature were 280°C. Retention times of VPA and internal standard were 1.83 min and 2.33 min, respectively. The calibration curve was linear over the concentration range of 5-320 μg/mL, with a lower limit of detection of 1.25 μg/mL. The internal and inter-day precision was less than 5.3% and 6.1%, respectively, and the accuracy was below 2.8%. VPA recovery was 94.6%. A quick and accurate method for VPA determination in human plasma was developed and validated. It resulted sufficiently selective and sensitive.

  20. Influence of liquid and gas flow rates on sulfuric acid mist removal from air by packed bed tower

    Directory of Open Access Journals (Sweden)

    Jafari Mohammad Javad

    2012-12-01

    Full Text Available Abstract The possible emission of sulfuric acid mists from a laboratory scale, counter-current packed bed tower operated with a caustic scrubbing solution was studied. Acid mists were applied through a local exhaust hood. The emissions from the packed bed tower were monitored in three different categories of gas flow rate as well as three liquid flow rates, while other influencing parameters were kept almost constant. Air sampling and sulfuric acid measurement were carried out iso-kinetically using USEPA method 8. The acid mists were measured by the barium-thorin titration method. According to the results when the gas flow rate increased from 10 L/s to 30 L/s, the average removal efficiency increased significantly (p 3, respectively. L/G of 2–3 was recommended for designing purposes of a packed tower for sulfuric acid mists and vapors removal from contaminated air stream.

  1. The microbial communities and potential greenhouse gas production in boreal acid sulphate, non-acid sulphate, and reedy sulphidic soils.

    Science.gov (United States)

    Šimek, Miloslav; Virtanen, Seija; Simojoki, Asko; Chroňáková, Alica; Elhottová, Dana; Krištůfek, Václav; Yli-Halla, Markku

    2014-01-01

    Acid sulphate (AS) soils along the Baltic coasts contain significant amounts of organic carbon and nitrogen in their subsoils. The abundance, composition, and activity of microbial communities throughout the AS soil profile were analysed. The data from a drained AS soil were compared with those from a drained non-AS soil and a pristine wetland soil from the same region. Moreover, the potential production of methane, carbon dioxide, and nitrous oxide from the soils was determined under laboratory conditions. Direct microscopic counting, glucose-induced respiration (GIR), whole cell hybridisation, and extended phospholipid fatty acid (PLFA) analysis confirmed the presence of abundant microbial communities in the topsoil and also in the deepest Cg2 horizon of the AS soil. The patterns of microbial counts, biomass and activity in the profile of the AS soil and partly also in the non-AS soil therefore differed from the general tendency of gradual decreases in soil profiles. High respiration in the deepest Cg2 horizon of the AS soil (5.66 μg Cg(-1)h(-1), as compared to 2.71 μg Cg(-1)h(-1) in a top Ap horizon) is unusual but reasonable given the large amount of organic carbon in this horizon. Nitrous oxide production peaked in the BCgc horizon of the AS and in the BC horizon of the non-AS soil, but the peak value was ten-fold higher in the AS soil than in the non-AS soil (82.3 vs. 8.6 ng Ng(-1)d(-1)). The data suggest that boreal AS soils on the Baltic coast contain high microbial abundance and activity. This, together with the abundant carbon and total and mineral nitrogen in the deep layers of AS soils, may result in substantial gas production. Consequently, high GHG emissions could occur, for example, when the generally high water table is lowered because of arable farming. © 2013.

  2. Stereometabolism of ethylbenzene in man: gas chromatographic determination of urinary excreted mandelic acid enantiomers and phenylglyoxylic acid and their relation to the height of occupational exposure.

    Science.gov (United States)

    Korn, M; Gfrörer, W; Herz, R; Wodarz, I; Wodarz, R

    1992-01-01

    Ethylbenzene is an important industrial solvent and a key substance in styrene production. Ethylbenzene metabolism leads to the formation of mandelic acid, which occurs in two enantiomeric forms, and phenylglyoxylic acid. To decide which enantiomer is preferably formed, 70 urine samples of exposed workers were taken at the end of shifts and--after 3-pentyl ester derivatisation--gas chromatographically analysed. The R/S ratio of mandelic acid enantiomers in urine amounts to 19:1, which means that R-mandelic acid is a major metabolite and S-mandelic acid is one of the minor urinary metabolites of ethylbenzene in man. The R/S ratio is independent of ambient air concentration of ethylbenzene within the investigated range. Compared to an ethylbenzene monoexposure the height of total mandelic acid excretion is decreased in the case of coexposure to other aromatic solvents.

  3. Comparison of gas chromotography, spectrophotometry and near infrared spectroscopy to quantify prussic acid potential in forages.

    Science.gov (United States)

    Goff, Ben M; Moore, Kenneth J; Fales, Steven L; Pedersen, Jeffery F

    2011-06-01

    Sorghum [Sorghum bicolor (L.) Moench] has been shown to contain the cyanogenic glycoside dhurrin, which is responsible for the disorder known as prussic acid poisoning in livestock. The current standard method for estimating hydrogen cyanide (HCN) uses spectrophotometry to measure the aglycone, p-hydroxybenzaldehyde (p-HB), after hydrolysis. Errors may occur due to the inability of this method to solely estimate the absorbance of p-HB at a given wavelength. The objective of this study was to compare the use of gas chromatography (GC) and near infrared spectroscopy (NIRS) methods, along with a spectrophotometry method to estimate the potential for prussic acid (HCNp) of sorghum and sudangrasses over three stages maturities. It was shown that the GC produced higher HCNp estimates than the spectrophotometer for the grain sorghums, but lower concentrations for the sudangrass. Based on what is known about the analytical process of each method, the GC data is likely closer to the true HCNp concentrations of the forages. Both the GC and spectrophotometry methods yielded robust equations with the NIRS method; however, using GC as the calibration method resulted in more accurate and repeatable estimates. The HCNp values obtained from using the GC quantification method are believed to be closer to the actual values of the forage, and that use of this method will provide a more accurate and easily automated means of quantifying prussic acid. Copyright © 2011 Society of Chemical Industry.

  4. Gas phase hydrolysis of formaldehyde to form methanediol: impact of formic acid catalysis.

    Science.gov (United States)

    Hazra, Montu K; Francisco, Joseph S; Sinha, Amitabha

    2013-11-21

    We find that formic acid (FA) is very effective at facilitating diol formation through its ability to reduce the barrier for the formaldehyde (HCHO) hydrolysis reaction. The rate limiting step in the mechanism involves the isomerization of a prereactive collision complex formed through either the HCHO···H2O + FA and/or HCHO + FA···H2O pathways. The present study finds that the effective barrier height, defined as the difference between the zero-point vibrational energy (ZPE) corrected energy of the transition state (TS) and the HCHO···H2O + FA and HCHO + FA···H2O starting reagents, are respectively only ∼1 and ∼4 kcal/mol. These barriers are substantially lower than the ∼17 kcal/mol barrier associated with the corresponding step in the hydrolysis of HCHO catalyzed by a single water molecule (HCHO + H2O + H2O). The significantly lower barrier heights for the formic acid catalyzed pathway reveal a new important role that organic acids play in the gas phase hydrolysis of atmospheric carbonyl compounds.

  5. The effect of zeolite treatment by acids on sodium adsorption ratio of coal seam gas water.

    Science.gov (United States)

    Wang, Xiaoyu; Ozdemir, Orhan; Hampton, Marc A; Nguyen, Anh V; Do, Duong D

    2012-10-15

    Many coal seam gas (CSG) waters contain a sodium ion concentration which is too high relative to calcium and magnesium ions for environment acceptance. Natural zeolites can be used as a cheap and effective method to control sodium adsorption ratio (SAR, which is a measure of the relative preponderance of sodium to calcium and magnesium) due to its high cation exchange capacity. In this study, a natural zeolite from Queensland was examined for its potential to treat CSG water to remove sodium ions to lower SAR and reduce the pH value. The results demonstrate that acid activated zeolite at 30%wt solid ratio can reduce the sodium content from 563.0 to 182.7 ppm; the pH from 8.74 to 6.95; and SAR from 70.3 to 18.5. Based on the results of the batch experiments, the sodium adsorption capacity of the acid-treated zeolite is three times greater than that of the untreated zeolite. Both the untreated and acid-treated zeolite samples were characterized using zeta potential, surface characterization, DTA/TG and particle size distribution in order to explain their adsorption behaviours. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Volcanic air pollution hazards in Hawaii

    Science.gov (United States)

    Elias, Tamar; Sutton, A. Jeff

    2017-04-20

    Noxious sulfur dioxide gas and other air pollutants emitted from Kīlauea Volcano on the Island of Hawai‘i react with oxygen, atmospheric moisture, and sunlight to produce volcanic smog (vog) and acid rain. Vog can negatively affect human health and agriculture, and acid rain can contaminate household water supplies by leaching metals from building and plumbing materials in rooftop rainwater-catchment systems. U.S. Geological Survey scientists, along with health professionals and local government officials are working together to better understand volcanic air pollution and to enhance public awareness of this hazard.

  7. Study on removal of elemental mercury from simulated flue gas over activated coke treated by acid

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jinfeng [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Li, Caiting, E-mail: ctli@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Zhao, Lingkui; Zhang, Jie; Song, Jingke; Zeng, Guangming; Zhang, Xunan; Xie, Yine [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2015-02-28

    Highlights: • HClO{sub 4} treated AC was developed for effective Hg{sup 0} removal from simulated flue gas. • The exceptional effect of SO{sub 2} on Hg{sup 0} removal by AC{sub 4.5} was discussed. • Possible reaction mechanism of Hg{sup 0} removal over AC{sub 4.5} was put forward. - Abstract: This work addressed the investigation of activated coke (AC) treated by acids. Effects of AC samples, modified by ether different acids (H{sub 2}SO{sub 4}, HNO{sub 3} and HClO{sub 4}) or HClO{sub 4} of varied concentrations, on Hg{sup 0} removal were studied under simulated flue gas conditions. In addition, effects of reaction temperature and individual flue gas components including O{sub 2}, NO, SO{sub 2} and H{sub 2}O were discussed. In the experiments, Brunauer–Emmett–Teller (BET), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) were applied to explore the surface properties of sorbents and possible mechanism of Hg{sup 0} oxidation. Results showed that AC sample treated by HClO{sub 4} of 4.5 mol/L exhibited maximum promotion of efficiency on Hg{sup 0} removal at 160 °C. NO was proved to be positive in the removal of Hg{sup 0}. And SO{sub 2} displayed varied impact in capturing Hg{sup 0} due to the integrated reactions between SO{sub 2} and modified AC. The addition of O{sub 2} could improve the advancement further to some extent. Besides, the Hg{sup 0} removal capacity had a slight declination when H{sub 2}O was added in gas flow. Based on the analysis of XPS and FTIR, the selected sample absorbed Hg{sup 0} mostly in chemical way. The reaction mechanism, deduced from results of characterization and performance of AC samples, indicated that Hg{sup 0} could firstly be absorbed on sorbent and then react with oxygen-containing (C−O) or chlorine-containing groups (C−Cl) on the surface of sorbent. And the products were mainly in forms of mercuric chloride (HgCl{sub 2}) and mercuric oxide (HgO)

  8. Use of hexadeuterated valproic acid and gas chromatography-mass spectrometry to determine the pharmacokinetics of valproic acid

    International Nuclear Information System (INIS)

    Acheampong, A.A.; Abbott, F.S.; Orr, J.M.; Ferguson, S.M.; Burton, R.W.

    1984-01-01

    Di-[( 3,3,3- 2 H3]propyl)acetic acid, a hexadeuterated analogue of valproic acid, was synthesized and its pharmacokinetic properties compared with valproic acid. Concentrations of valproic acid and [ 2 H]valproic acid in serum and saliva were determined by GC-MS using selected-ion monitoring. Saliva drug levels were measured with good precision down to 0.1 microgram/mL. Kinetic equivalence of valproic acid and [ 2 H]valproic acid was demonstrated in a single-dose study in a human volunteer. An isotope effect was observed for omega-oxidation, but the difference in metabolism was not sufficient to make [ 2 H]valproic acid biologically nonequivalent. The application of [ 2 H]valproic acid to determine the kinetics of valproic acid under steady-state concentrations was evaluated in the same volunteer. The kinetic data obtained with [ 2 H]valproic acid was consistent with previously reported values for valproic acid including kinetic differences observed between single-dose and steady-state experiments. Saliva levels of valproic acid were found to give a good correlation with total serum valproic acid under multiple-dose conditions. A concentration dependence was found for the ratio of saliva valproic acid to free valproic acid in serum, low ratios being observed at high serum concentrations of valproic acid

  9. Analysis of naphthenic acid mixtures as pentafluorobenzyl derivatives by gas chromatography-electron impact mass spectrometry.

    Science.gov (United States)

    Gutierrez-Villagomez, Juan Manuel; Vázquez-Martínez, Juan; Ramírez-Chávez, Enrique; Molina-Torres, Jorge; Trudeau, Vance L

    2017-01-01

    In this study, we report for the first time the efficiency of pentafluorobenzyl bromide (PFBBr) for naphthenic acid (NA) mixtures derivatization, and the comparison in the optimal conditions to the most common NAs derivatization reagents, BF 3 /MeOH and N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA). Naphthenic acids are carboxylic acid mixtures of petrochemical origin. These compounds are important for the oil industry because of their corrosive properties, which can damage oil distillation infrastructure. Moreover, NAs are commercially used in a wide range of products such as paint and ink driers, wood and fabric preservatives, fuel additives, emulsifiers, and surfactants. Naphthenic acids have also been found in sediments after major oils spills in the United States and South Korea. Furthermore, the toxicity of the oil sands process-affected water (OSPW), product of the oil sands extraction activities in Canada's oil sands, has largely been attributed to NAs. One of the main challenges for the chromatographic analysis of these mixtures is the resolution of the components. The derivatization optimization was achieved using surface response analysis with molar ratio and time as factors for derivatization signal yield. After gas chromatography-electron impact mass spectrometry (GC/EIMS) analysis of a mixture of NA standards, it was found that the signal produced by PFB-derivatives was 2.3 and 1.4 times higher than the signal produced by methylated and MTBS-derivatives, respectively. The pentafluorobenzyl derivatives have a characteristic fragment ion at 181m/z that is diagnostic for the differentiation of carboxylic and non-carboxylic acid components within mixtures. In the analysis of a Sigma and a Merichem derivatized oil extract NA mixtures, it was found that some peaks lack the characteristic fragment ion; therefore they are not carboxylic acids. Open column chromatography was used to obtain a hexane and a methanol fraction of the Sigma and

  10. Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications

    Energy Technology Data Exchange (ETDEWEB)

    Amy, Fabrice [Air Products and Chemicals Inc., Allentown, PA (United States); Hufton, Jeffrey [Air Products and Chemicals Inc., Allentown, PA (United States); Bhadra, Shubhra [Air Products and Chemicals Inc., Allentown, PA (United States); Weist, Edward [Air Products and Chemicals Inc., Allentown, PA (United States); Lau, Garret [Air Products and Chemicals Inc., Allentown, PA (United States); Jonas, Gordon [Air Products and Chemicals Inc., Allentown, PA (United States)

    2015-06-30

    Air Products has developed an acid gas removal technology based on adsorption (Sour PSA) that favorably compares with incumbent AGR technologies. During this DOE-sponsored study, Air Products has been able to increase the Sour PSA technology readiness level by successfully operating a two-bed test system on coal-derived sour syngas at the NCCC, validating the lifetime and performance of the adsorbent material. Both proprietary simulation and data obtained during the testing at NCCC were used to further refine the estimate of the performance of the Sour PSA technology when expanded to a commercial scale. In-house experiments on sweet syngas combined with simulation work allowed Air Products to develop new PSA cycles that allowed for further reduction in capital expenditure. Finally our techno economic analysis of the use the Sour PSA technology for both IGCC and coal-to-methanol applications suggests significant improvement of the unit cost of electricity and methanol compared to incumbent AGR technologies.

  11. Analysis of Gas Permeability Characteristics of Poly(Lactic Acid/Poly(Butylene Succinate Nanocomposites

    Directory of Open Access Journals (Sweden)

    Amita Bhatia

    2012-01-01

    Full Text Available Gas permeability and morphological properties of nanocomposites prepared by the mixing of poly(lactic acid (PLA, poly(butylene succinate (PBS, and clay was investigated. While the composition of PLA and PBS polymers was fixed as 80% and 20% by weight, respectively, for all the nanocomposites, clay contents varied from 1 to 10 wt%. From the morphological studies using both wide angle X-ray diffraction and transmission electron microscopy, the nanocomposite having 1 wt% of clay was considered to have a mixed morphology of intercalated and delaminated structure, while some clusters or agglomerated particles were detected for nanocomposites having 3 and more than 3 wt% of clay content. However, the average particle size of the dispersed PBS phase was reduced significantly from 7 μm to 30–40 nm with the addition of clay in the blend. The oxygen barrier property was improved significantly as compared to the water vapor. A model based on gas barrier property was used for the validation of the oxygen relative permeabilities of PLA/PBS/clay nanocomposites. PLA/PBS/clay nanocomposites validated the Bharadwaj model up to 3 wt% of clay contents only, while for nanocomposites of higher clay contents the Bharadwaj model was invalid due to the clusters and agglomerates formed.

  12. Studies on Synthesis of Electrochemically Exfoliated Functionalized Graphene and Polylactic Acid/Ferric Phytate Functionalized Graphene Nanocomposites as New Fire Hazard Suppression Materials.

    Science.gov (United States)

    Feng, Xiaming; Wang, Xin; Cai, Wei; Qiu, Shuilai; Hu, Yuan; Liew, Kim Meow

    2016-09-28

    Practical application of functionalized graphene in polymeric nanocomposites is hampered by the lack of cost-effective and eco-friendly methods for its production. Here, we reported a facile and green electrochemical approach for preparing ferric phytate functionalized graphene (f-GNS) by simultaneously utilizing biobased phytic acid as electrolyte and modifier for the first time. Due to the presence of phytic acid, electrochemical exfoliation leads to low oxidized graphene sheets (a C/O ratio of 14.8) that are tens of micrometers large. Successful functionalization of graphene was confirmed by the appearance of phosphorus and iron peaks in the X-ray photoelectron spectrum. Further, high-performance polylactic acid/f-GNS nanocomposites are readily fabricated by a convenient masterbatch strategy. Notably, inclusion of well-dispersed f-GNS resulted in dramatic suppression on fire hazards of polylactic acid in terms of reduced peak heat-release rate (decreased by 40%), low CO yield, and formation of a high graphitized protective char layer. Moreover, obviously improvements in crystallization rate and thermal conductivities of polylactic acid nanocomposites were observed, highlighting its promising potential in practical application. This novel strategy toward the simultaneous exfoliation and functionalization for graphene demonstrates a simple yet very effective approach for fabricating graphene-based flame retardants.

  13. Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties.

    Science.gov (United States)

    Aulin, Christian; Karabulut, Erdem; Tran, Amy; Wågberg, Lars; Lindström, Tom

    2013-08-14

    The layer-by-layer (LbL) deposition method was used for the build-up of alternating layers of nanofibrillated cellulose (NFC) or carboxymethyl cellulose (CMC) with a branched, cationic polyelectrolyte, polyethyleneimine (PEI) on flexible poly (lactic acid) (PLA) substrates. With this procedure, optically transparent nanocellulosic films with tunable gas barrier properties were formed. 50 layer pairs of PEI/NFC and PEI/CMC deposited on PLA have oxygen permeabilities of 0.34 and 0.71 cm(3)·μm/m(2)·day·kPa at 23 °C and 50% relative humidity, respectively, which is in the same range as polyvinyl alcohol and ethylene vinyl alcohol. The oxygen permeability of these multilayer nanocomposites outperforms those of pure NFC films prepared by solvent-casting. The nanocellulosic LbL assemblies on PLA substrates was in detailed characterized using a quartz crystal microbalance with dissipation (QCM-D). Atomic force microscopy (AFM) reveals large structural differences between the PEI/NFC and the PEI/CMC assemblies, with the PEI/NFC assembly showing a highly entangled network of nanofibrils, whereas the PEI/CMC surfaces lacked structural features. Scanning electron microscopy images showed a nearly perfect uniformity of the nanocellulosic coatings on PLA, and light transmittance results revealed remarkable transparency of the LbL-coated PLA films. The present work demonstrates the first ever LbL films based on high aspect ratio, water-dispersible nanofibrillated cellulose, and water-soluble carboxymethyl cellulose polymers that can be used as multifunctional films and coatings with tailorable properties, such as gas barriers and transparency. Owing to its flexibility, transparency and high-performance gas barrier properties, these thin film assemblies are promising candidates for several large-scale applications, including flexible electronics and renewable packaging.

  14. Gas-Phase Thermal Tautomerization of Imidazole-Acetic Acid: Theoretical and Computational Investigations

    Directory of Open Access Journals (Sweden)

    Saadullah G. Aziz

    2015-11-01

    Full Text Available The gas-phase thermal tautomerization reaction between imidazole-4-acetic (I and imidazole-5-acetic (II acids was monitored using the traditional hybrid functional (B3LYP and the long-range corrected functionals (CAM-B3LYP and ωB97XD with 6-311++G** and aug-cc-pvdz basis sets. The roles of the long-range and dispersion corrections on their geometrical parameters, thermodynamic functions, kinetics, dipole moments, Highest Occupied Molecular Orbital–Lowest Unoccupied Molecular Orbital (HOMO–LUMO energy gaps and total hyperpolarizability were investigated. All tested levels of theory predicted the preference of I over II by 0.750–0.877 kcal/mol. The origin of predilection of I is assigned to the H-bonding interaction (nN8→σ*O14–H15. This interaction stabilized I by 15.07 kcal/mol. The gas-phase interconversion between the two tautomers assumed a 1,2-proton shift mechanism, with two transition states (TS, TS1 and TS2, having energy barriers of 47.67–49.92 and 49.55–52.69 kcal/mol, respectively, and an sp3-type intermediate. A water-assisted 1,3-proton shift route brought the barrier height down to less than 20 kcal/mol in gas-phase and less than 12 kcal/mol in solution. The relatively high values of total hyperpolarizability of I compared to II were interpreted and discussed.

  15. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  16. Identification and hazard prediction of tattoo pigments by means of pyrolysis-gas chromatography/mass spectrometry.

    Science.gov (United States)

    Schreiver, Ines; Hutzler, Christoph; Andree, Sarah; Laux, Peter; Luch, Andreas

    2016-07-01

    The implementation of regulation for tattoo ink ingredients across Europe has generated the need for analytical methods suitable to identify prohibited compounds. Common challenges of this subject are the poor solubility and the lack of volatility for most pigments and polymers applied in tattoo inks. Here, we present pyrolysis coupled to online gas chromatography and electron impact ionization mass spectrometry (py-GC/MS) as quick and reliable tool for pigment identification using both purified pigments and tattoo ink formulations. Some 36 organic pigments frequently used in tattoo inks were subjected to py-GC/MS with the aim to establish a pyrogram library. To cross-validate pigment identification, 28 commercially available tattoo inks as well as 18 self-made pigment mixtures were analyzed. Pyrograms of inks and mixtures were evaluated by two different means to work out the most reliable and fastest strategy for an otherwise rather time-consuming data review. Using this approach, the declaration of tattoo pigments currently used on the market could be verified. The pyrolysis library presented here is also assumed suitable to predict decomposition patterns of pigments when affected by other degradation scenarios, such as sunlight exposure or laser irradiation. Thus, the consumers' risk associated with the exposure to toxicologically relevant substances that originate from pigment decomposition in the dermal layers of the skin can be assessed. Differentiation between more or less harmful pigments for this field of application now will become feasible.

  17. A Fine-Tuned MOF for Gas and Vapor Separation: A Multipurpose Adsorbent for Acid Gas Removal, Dehydration, and BTX Sieving

    KAUST Repository

    Haja Mohideen, Mohamed Infas; Pillai, Renjith S.; Adil, Karim; Bhatt, Prashant; Belmabkhout, Youssef; Shkurenko, Aleksander; Maurin, Guillaume; Eddaoudi, Mohamed

    2017-01-01

    Summary The development of highly stable separation agents is recognized as a decisive step toward the successful deployment of energy-efficient and cost-effective separation processes. Here, we report the synthesis and construction of a metal-organic framework (MOF), kag-MOF-1, that has adequate structural and chemical features and affords a stable adsorbent with unique and appropriate adsorption properties for gas processing akin to acid gas removal, dehydration, and benzene-toluene-xylene (BTX) sieving. A combination of X-ray diffraction experiments, adsorption studies, mixed-gas breakthrough adsorption column testing, calorimetric measurements, and molecular simulations corroborated the exceptional separation performance of kag-MOF-1 and its prospective use as a multifunctional adsorbent. The unique adsorption properties of kag-MOF-1, resulting from the contracted pore system with aligned periodic array of exposed functionalities, attest to the prominence of this new generation of ultra-microporous material as a prospective practical adsorbent toward cost-effective and more simplified gas and vapor processing flowcharts for natural gas upgrading and flue gas scrubbing.

  18. A Fine-Tuned MOF for Gas and Vapor Separation: A Multipurpose Adsorbent for Acid Gas Removal, Dehydration, and BTX Sieving

    KAUST Repository

    Haja Mohideen, Mohamed Infas

    2017-10-19

    Summary The development of highly stable separation agents is recognized as a decisive step toward the successful deployment of energy-efficient and cost-effective separation processes. Here, we report the synthesis and construction of a metal-organic framework (MOF), kag-MOF-1, that has adequate structural and chemical features and affords a stable adsorbent with unique and appropriate adsorption properties for gas processing akin to acid gas removal, dehydration, and benzene-toluene-xylene (BTX) sieving. A combination of X-ray diffraction experiments, adsorption studies, mixed-gas breakthrough adsorption column testing, calorimetric measurements, and molecular simulations corroborated the exceptional separation performance of kag-MOF-1 and its prospective use as a multifunctional adsorbent. The unique adsorption properties of kag-MOF-1, resulting from the contracted pore system with aligned periodic array of exposed functionalities, attest to the prominence of this new generation of ultra-microporous material as a prospective practical adsorbent toward cost-effective and more simplified gas and vapor processing flowcharts for natural gas upgrading and flue gas scrubbing.

  19. Thermodynamic modeling of acidic gas solubility in aqueous solutions of MEA, MDEA and MEA-MDEA blends

    DEFF Research Database (Denmark)

    Vrachnos, Ath.; Kontogeorgis, Georgios; Voutsas, EC

    2006-01-01

    and extended in this study to the absorption of carbon dioxide into aqueous monoethanolamine (MEA) solutions and aqueous MDEA-MEA blends. The results of the model are compared with experimental data taken from the literature. Very satisfactory predictions of acidic gas vapor-liquid equilibrium over MDEA, MEA...

  20. Rapid and simple clean-up and derivatizaton procedure for the gas chromatographic determination of acidic drugs in plasma

    NARCIS (Netherlands)

    Roseboom, H.; Hulshoff, A.

    1979-01-01

    A rapid and simple clean-up and derivatization procedure that can be generally applied to the gas chromatographie (GC) determination of acidic drugs of various chemical and therapeutic classes is described. The drugs are extracted from acidified plasma with chloroform containing 5% of isopropanol,

  1. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    Science.gov (United States)

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain; Jung, Hun Bok; Carroll, Kenneth C.

    2018-01-23

    An electrophilic acid gas-reactive fracturing fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. The proppant stabilizes fracture openings in the bedrock to enhance recovery of energy-producing materials.

  2. Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-03-01

    Full Text Available and Actuators B: Chemical Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment Z.P. Tshabalalaa,b, D.E. Motaunga,∗, G.H. Mhlongoa,∗, O.M. Ntwaeaborwab,∗ a DST/CSIR, National Centre...

  3. Measuring Gas-Phase Basicities of Amino Acids Using an Ion Trap Mass Spectrometer: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Sunderlin, Lee S.; Ryzhov, Victor; Keller, Lanea M. M.; Gaillard, Elizabeth R.

    2005-01-01

    An experiment is performed to measure the relative gas-phase basicities of a series of five amino acids to compare the results to literature values. The experiments use the kinetic method for deriving ion thermochemistry and allow students to perform accurate measurements of thermodynamics in a relatively short time.

  4. Critical Test of Some Computational Chemistry Methods for Prediction of Gas-Phase Acidities and Basicities.

    Science.gov (United States)

    Toomsalu, Eve; Koppel, Ilmar A; Burk, Peeter

    2013-09-10

    Gas-phase acidities and basicities were calculated for 64 neutral bases (covering the scale from 139.9 kcal/mol to 251.9 kcal/mol) and 53 neutral acids (covering the scale from 299.5 kcal/mol to 411.7 kcal/mol). The following methods were used: AM1, PM3, PM6, PDDG, G2, G2MP2, G3, G3MP2, G4, G4MP2, CBS-QB3, B1B95, B2PLYP, B2PLYPD, B3LYP, B3PW91, B97D, B98, BLYP, BMK, BP86, CAM-B3LYP, HSEh1PBE, M06, M062X, M06HF, M06L, mPW2PLYP, mPW2PLYPD, O3LYP, OLYP, PBE1PBE, PBEPBE, tHCTHhyb, TPSSh, VSXC, X3LYP. The addition of the Grimmes empirical dispersion correction (D) to B2PLYP and mPW2PLYP was evaluated, and it was found that adding this correction gave more-accurate results when considering acidities. Calculations with B3LYP, B97D, BLYP, B2PLYPD, and PBE1PBE methods were carried out with five basis sets (6-311G**, 6-311+G**, TZVP, cc-pVTZ, and aug-cc-pVTZ) to evaluate the effect of basis sets on the accuracy of calculations. It was found that the best basis sets when considering accuracy of results and needed time were 6-311+G** and TZVP. Among semiempirical methods AM1 had the best ability to reproduce experimental acidities and basicities (the mean absolute error (mae) was 7.3 kcal/mol). Among DFT methods the best method considering accuracy, robustness, and computation time was PBE1PBE/6-311+G** (mae = 2.7 kcal/mol). Four Gaussian-type methods (G2, G2MP2, G4, and G4MP2) gave similar results to each other (mae = 2.3 kcal/mol). Gaussian-type methods are quite accurate, but their downside is the relatively long computational time.

  5. Hazardous fluid leak detector

    Science.gov (United States)

    Gray, Harold E.; McLaurin, Felder M.; Ortiz, Monico; Huth, William A.

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  6. Hydrocarbon fuels from gas phase decarboxylation of hydrolyzed free fatty acid

    KAUST Repository

    Wang, Weicheng

    2012-01-01

    Gas phase decarboxylation of hydrolyzed free fatty acid (FFA) from canola oil has beeninvestigated in two fix-bed reactors by changing reaction parameters such as temperatures,FFA feed rates, and H 2-to-FFA molar ratios. FFA, which contains mostly C 18 aswell as a few C 16, C 20, C 22, and C 24 FFA, was fed into the boiling zone, evaporated, carriedby hydrogen flow at the rate of 0.5-20 ml/min, and reacted with the 5% Pd/C catalystin the reactor. Reactions were conducted atmospherically at 380-450 °C and the products,qualified and quantified through gas chromatography-flame ionization detector(GC-FID), showed mostly n-heptadecane and a few portion of n-C 15, n-C 19, n-C 21, n-C 23 as well as some cracking species. Results showed that FFA conversion increased withincreasing reaction temperatures but decreased with increasing FFA feed rates and H 2-to-FFA molar ratios. The reaction rates were found to decrease with higher temperatureand increase with higher H 2 flow rates. Highly selective heptadecane was achieved byapplying higher temperatures and higher H 2-to-FFA molar ratios. From the results, ascatalyst loading and FFA feed rate were fixed, an optimal reaction temperature of 415 °C as well as H 2-to-FFA molar ratio of 4.16 were presented. These results provided goodbasis for studying the kinetics of decarboxylation process. © 2012 American Society of Mechanical Engineers.

  7. Conformational preferences of γ-aminobutyric acid in the gas phase and in water

    Science.gov (United States)

    Song, Il Keun; Kang, Young Kee

    2012-09-01

    The conformational study of γ-aminobutyric acid (GABA) has been carried out at the M06-2X/cc-pVTZ level of theory in the gas phase and the SMD M06-2X/cc-pVTZ level of theory in water. In the gas phase, the folded conformation gG1 with gauche- and gauche+ conformations for the Cβsbnd Cα and Cγsbnd Cβ bonds, respectively, is found to be lowest in energy and enthalpy, which can be ascribed to the favored hyperconjugative n → π* interaction between the lone electron pair of the amine nitrogen atom and the Cdbnd O bond of the carboxylic group and the favored antiparallel dipole-dipole interaction between the Nsbnd H bond and the Cdbnd O bond. In addition, the intramolecular hydrogen bonds between the carboxylic group and the amine Nsbnd H group have contributed to stabilize some low-energy conformers. However, the most preferred conformation is found to be tG1 and more stable by 0.4 kcal/mol in ΔG than the conformer gG1, in which the favored entropic term due to the conformational flexibility and the other favored n → σ*, σ → σ*, and π → σ* interactions seem to play a role. The conformational preferences of the neutral GABA calculated by ΔG's are reasonably consistent with the populations deduced from FT microwave spectroscopy in supersonic jets combined with laser ablation. In water, the two folded conformers Gg and gG of the zwitterionic GABA are dominantly populated, each of which has the population of 47%, and the hydrogen bond between the ammonium Nsbnd H group and the lone electron pair of the Csbnd O- group seems to be crucial in stabilizing these conformers. Our calculated result that the folded conformers preferentially exist in water is consistent with the 1H NMR experiments in D2O.

  8. An optimized method for fatty acid analysis, including quantification of trans fatty acids, in human adipose tissue by gas-liquid chromatography

    DEFF Research Database (Denmark)

    Bysted, Anette; Cold, S; Hølmer, Gunhild Kofoed

    1999-01-01

    Considering the need for a quick direct method for measurement of the fatty acid composition including trans isomers ofhuman adipose tissue we have developed a procedure using gas-liquid chromatography (GLC) alone, which is thussuitable for validation of fatty acid status in epidemiological studies...... for 25 min, and finally raised at 25 degrees C/min to 225 degrees C. The trans and cis isomers of18:1 were well separated from each other, as shown by silver-ion thin-layer chromatography. Verification by standardsshowed that the trans 18:1 isomers with a double bond in position 12 or lower were...

  9. Simultaneous measurements of formaldehyde and nitrous acid in dews and gas phase in the atmosphere of Santiago, Chile

    Science.gov (United States)

    Rubio, María A.; Lissi, Eduardo; Villena, Guillermo; Elshorbany, Y. F.; Kleffmann, Jörg; Kurtenbach, Ralf; Wiesen, Peter

    2009-12-01

    The amounts of formaldehyde and nitrous acid (HONO) in gas phase and dews of Santiago de Chile were simultaneously measured. Formaldehyde concentrations values in the liquid phase (dews) correlate fairly well with those in the gaseous phase and are even higher than those expected from gas-dew equilibrium. On the other hand, nitrite concentrations in dews were considerably smaller (ca. 15 times) than those expected from the gas-phase concentrations. This under-saturation is attributed to diffusion limitations due to the relatively large HONO solubility. In agreement with this, under-saturation increases with the rate of dew formation and the pH of the collected waters, factors that should increase the rate of gas to liquid HONO transfer required to reach equilibrium.

  10. Dry flue gas desulfurization byproducts as amendments for reclamation of acid mine spoil

    International Nuclear Information System (INIS)

    Dick, W.A.; Stehouwer, R.C.; Beeghly, J.H.; Bigham, J.M.; Lal, R.

    1994-01-01

    Development of beneficial reuses of highly alkaline, dry flue gas desulfurization (FGD) byproducts can impact the economics of adopting these FGD technologies for retrofit on existing powerplants. Greenhouse studies were conducted to evaluate the use of two dry FGD byproducts for reclamation of acid mine spoil (pH, 3.1 to 5.8). Treatment rates of FGD ranges from 0% to 32% by dry weight and most treatments also included 6% by dry weight of sewage sludge. Fescue (Festuca arundinacea Schreb.) was harvested monthly for a total of six harvests. Plant tissue composition and root growth were determined after the sixth harvest. Leachate analyses and pH determination of mixes were done at the beginning and end of the experiments. Both FGD byproducts were effective in raising the spoil pH and in improving fescue growth. At the highest FGD application rate, fescue growth decreased from the optimum due to high pH and reduced rooting volume caused by cementation reactions between the FGD and spoil. Trace elements, with the exception of B, were decreased in the fescue tissue when FGD was applied. Leachate pH, electrical conductivity, dissolved organic carbon, Ca, Mg, and S tended to increase with increased FGD application rate; Al, Fe, Mn, and Zn decreased. pH was the most important variable controlling the concentrations of these elements in the leachate. Concentrations of elements of environmental concern were near or below drinking water standard levels. These results indicate that FGD applied at rates equivalent to spoil neutralization needs can aid in the revegetation of acid spoil revegetation with little potential for introduction of toxic elements into the leachate water or into the food chain

  11. Changes in monosaccharides, organic acids and amino acids during Cabernet Sauvignon wine ageing based on a simultaneous analysis using gas chromatography-mass spectrometry.

    Science.gov (United States)

    Zhang, Xin-Ke; Lan, Yi-Bin; Zhu, Bao-Qing; Xiang, Xiao-Feng; Duan, Chang-Qing; Shi, Ying

    2018-01-01

    Monosaccharides, organic acids and amino acids are the important flavour-related components in wines. The aim of this article is to develop and validate a method that could simultaneously analyse these compounds in wine based on silylation derivatisation and gas chromatography-mass spectrometry (GC-MS), and apply this method to the investigation of the changes of these compounds and speculate upon their related influences on Cabernet Sauvignon wine flavour during wine ageing. This work presented a new approach for wine analysis and provided more information concerning red wine ageing. This method could simultaneously quantitatively analyse 2 monosaccharides, 8 organic acids and 13 amino acids in wine. A validation experiment showed good linearity, sensitivity, reproducibility and recovery. Multiple derivatives of five amino acids have been found but their effects on quantitative analysis were negligible, except for methionine. The evolution pattern of each category was different, and we speculated that the corresponding mechanisms involving microorganism activities, physical interactions and chemical reactions had a great correlation with red wine flavours during ageing. Simultaneously quantitative analysis of monosaccharides, organic acids and amino acids in wine was feasible and reliable and this method has extensive application prospects. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Interactions of hydrated divalent metal cations with nucleic acid bases. How to relate the gas phase data to solution situation and binding selectivity in nucleic acids

    Czech Academy of Sciences Publication Activity Database

    Šponer, Judit E.; Sychrovský, Vladimír; Hobza, Pavel; Šponer, Jiří

    2004-01-01

    Roč. 6, č. 10 (2004), s. 2772-2780 ISSN 1463-9076 R&D Projects: GA MŠk LN00A016; GA MŠk LN00A032 Grant - others:Wellcome Trust(GB) GR067507MF Institutional research plan: CEZ:AV0Z5004920 Keywords : nucleic acids * gas phase * guanine Subject RIV: BO - Biophysics Impact factor: 2.076, year: 2004

  13. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  14. Decoupling damage mechanisms in acid-fractured gas/condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, R.C.; Walters, D.A. [Taurus Reservoir Solutions Ltd., Calgary, AB (Canada); Settari, A. [Calgary Univ., AB (Canada); Rahim, Z.; Ahmed, M.S. [Saudi Aramco, Dhahran (Saudi Arabia)

    2006-07-01

    The Khuff is a gas condensate field located 11,500 feet beneath the producing Ghawar oil field in Saudi Arabia. Wells are mainly acid fracture stimulated following drilling with excellent fracture conductivity and length properties. The wells experience a quick production loss however, after tie-in which eventually stabilizes after two to five months. In order to identify the source of productivity loss, such as near well liquid dropout, fracture conductivity loss, reservoir permeability loss due to increased effective stress, a study of a well in the Khuff field was conducted. The study reviewed basic geomechanical and reservoir properties and identified the mechanisms of production loss. The paper presented the methodology, data and preliminary analysis, relative permeability and results of the history matching. It was concluded that traditional production type curves in cases with changing skin may indicate that transient flow is occurring when boundary effects are felt. In addition, stress dependent fracture conductivity and reservoir permeability can be modeled with simpler pressure dependent functions for relatively low overall loss in reservoir pressure. 30 refs., 25 figs., 1 appendix.

  15. Gas-phase Dehydration of Glycerol over Supported Silicotungstic Acids Catalysts

    International Nuclear Information System (INIS)

    Kim, Yong Tae; Park, Eun Duck; Jung, Kwang Deog

    2010-01-01

    The gas-phase dehydration of glycerol to acrolein was carried out over 10 wt % HSiW catalysts supported on different supports, viz. γ-Al 2 O 3 , SiO 2 -Al 2 O 3 , TiO 2 , ZrO 2 , SiO 2 , AC, CeO 2 and MgO. The same reaction was also conducted over each support without HSiW for comparison. Several characterization techniques, N 2 -physisorption, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), the temperature-programmed desorption of ammonia (NH 3 - TPD), temperature-programmed oxidation (TPO) with mass spectroscopy and CHNS analysis were employed to characterize the catalysts. The glycerol conversion generally increased with increasing amount of acid sites. Ceria showed the highest 1-hydroxyacetone selectivity at 315 .deg. C among the various metal oxides. The supported HSiW catalyst showed superior catalytic activity to that of the corresponding support. Among the supported HSiW catalysts, HSiW/ZrO 2 and HSiW/SiO 2 -Al 2 O 3 showed the highest acrolein selectivity. In the case of HSiW/ZrO 2 , the initial catalytic activity was recovered after the removal of the accumulated carbon species at 550 .deg. C in the presence of oxygen

  16. Gas-phase hydrolysis of triplet SO2: A possible direct route to atmospheric acid formation

    Science.gov (United States)

    Donaldson, D. James; Kroll, Jay A.; Vaida, Veronica

    2016-07-01

    Sulfur chemistry is of great interest to the atmospheric chemistry of several planets. In the presence of water, oxidized sulfur can lead to new particle formation, influencing climate in significant ways. Observations of sulfur compounds in planetary atmospheres when compared with model results suggest that there are missing chemical mechanisms. Here we propose a novel mechanism for the formation of sulfurous acid, which may act as a seed for new particle formation. In this proposed mechanism, the lowest triplet state of SO2 (3B1), which may be accessed by near-UV solar excitation of SO2 to its excited 1B1 state followed by rapid intersystem crossing, reacts directly with water to form H2SO3 in the gas phase. For ground state SO2, this reaction is endothermic and has a very high activation barrier; our quantum chemical calculations point to a facile reaction being possible in the triplet state of SO2. This hygroscopic H2SO3 molecule may act as a condensation nucleus for water, giving rise to facile new particle formation (NPF).

  17. Factors affecting variations in the detailed fatty acid profile of Mediterranean buffalo milk determined by 2-dimensional gas chromatography.

    Science.gov (United States)

    Pegolo, S; Stocco, G; Mele, M; Schiavon, S; Bittante, G; Cecchinato, A

    2017-04-01

    Buffalo milk is the world's second most widely produced milk, and increasing attention is being paid to its composition, particularly the fatty acid profile. The objectives of the present study were (1) to characterize the fatty acid composition of Mediterranean buffalo milk, and (2) to investigate potential sources of variation in the buffalo milk fatty acid profile. We determined the profile of 69 fatty acid traits in 272 individual samples of Mediterranean buffalo milk using gas chromatography. In total, 51 individual fatty acids were identified: 24 saturated fatty acids, 13 monounsaturated fatty acids, and 14 polyunsaturated fatty acids. The major individual fatty acids in buffalo milk were in the order 16:0, 18:1 cis-9, 14:0, and 18:0. Saturated fatty acids were the predominant fraction in buffalo milk fat (70.49%); monounsaturated and polyunsaturated fatty acids were at 25.95 and 3.54%, respectively. Adopting a classification based on carbon-chain length, we found that medium-chain fatty acids (11-16 carbons) represented the greater part (53.7%) of the fatty acid fraction of buffalo milk, whereas long-chain fatty acids (17-24 carbons) and short-chain fatty acids (4-10 carbons) accounted for 32.73 and 9.72%, respectively. The n-3 and n-6 fatty acids were 0.46 and 1.77%, respectively. The main conjugated linoleic acid, rumenic acid, represented 0.45% of total milk fatty acids. Herd/test date and stage of lactation were confirmed as important sources of variation in the fatty acid profile of buffalo milk. The percentages of short-chain and medium-chain fatty acids in buffalo milk increased in early lactation (+0.6 and +3.5%, respectively), whereas long-chain fatty acids decreased (-4.2%). The only exception to this pattern was butyric acid, which linearly decreased from the beginning of lactation, confirmation that its synthesis is independent of malonyl-CoA. These results seem to suggest that in early lactation the mobilization of energy reserves may have less

  18. [Determination of naphthenic acids in distillates of crude oil by gas chromatography/chemical ionization-mass spectrometry].

    Science.gov (United States)

    Lü, Zhenbo; Tian, Songbai; Zhai, Yuchun; Sun, Yanwei; Zhuang, Lihong

    2004-05-01

    The petroleum carboxylic acids in 200-420 degrees C distillate of crude oil were separated by the extraction with column chromatography on an anion exchange resin. The effect of the composition and structure of naphthenic acids on separation were studied by the infra-red (IR) spectroscopic techniques. Naphthenic acids and iso-butane reagent gas were introduced into the ion source for chemical ionization, in which the ions represented by [M + C4H9]+ were used to calculate the relative molecular mass for each acid. Based on the mass spectra of pure fatty and naphthenic acids, in combination with the z-series formula CnH(2n + z)O2, the naphthenic acids can be classified into fatty, mono-, bi- ... hexa-cyclic types. The results indicated that the relative molecular mass range of naphthenic acids in this distillates was 170-510, and the carbon number range was C10-C35. The contents of bi-cyclic and tri-cyclic naphthenic acids were higher than others.

  19. Determination of naphthenic acid profile in Ghana's Jubilee Oil using gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Osuteye, I.

    2015-01-01

    Crude oil is the life-blood of the global economy. Its importance stems from the fact that it is a base product for a wide variety of goods [Drugs, Plastics, Liquefied Petroleum Gas (LPG)]. The oil discovery (over 3 billion barrel reserves in hydrocarbon and gas), about 60 km offshore between the Deepwater Tano and Cape Three Points Block in South western Ghana is a valuable natural asset and it has the potential of boosting the Ghanaian economy. During petroleum processing, various waste products are generated. One of such products is Naphthenic acids (NA). Naphthenic acids are organic acids naturally occurring in crude oil and a constituent of waste associated with oil refinery. Naphthenic acids serve as biomarkers for identification of the source of crude oil. The presence of Naphthenic acid in the aquatic environment causes toxic effects due to their weak biodegradable nature; the toxicity of Naphthenic acids depends on the class of Naphthenic acids present in the crude oil. The study assessed the profile of Naphthenic acids in Ghana’s Jubilee crude oil using Low Resolution Electron Impact – Gas Chromatography Mass Spectrometry (LREI-GCMS) after isolation of Naphthenic acids in the Jubilee oil by a modified Kupchan’s Partitioning Process. The Mass Spectrometric (MS) Work Station Software was used for the identification of the Naphthenic acids present in the Jubilee crude oil. The quality of the Jubilee oil was also evaluated through the use of some key physico-chemical parameters [Total Acid Number (TAN), Sulphur Content, Viscosity, Pour Point, Flashpoint, Water Content and Densities] based on the American Standards for Testing and Materials (ASTM, 2007). The Total Acid Number was determined by Colorimetric Titration (ASTM D974); Sulphur Content by X-ray Fluorescent Spectrometry (ASTM D4294); Pour Point by the use of the SETA cloud and Pour Point Refrigerator Technique (ASTM D97); Viscosity by Gravity Timed Method (ASTM D445); Density by the Hydrometer

  20. Health hazards of China's lead-acid battery industry: a review of its market drivers, production processes, and health impacts.

    Science.gov (United States)

    van der Kuijp, Tsering Jan; Huang, Lei; Cherry, Christopher R

    2013-08-03

    Despite China's leaded gasoline phase out in 2000, the continued high rates of lead poisoning found in children's blood lead levels reflect the need for identifying and controlling other sources of lead pollution. From 2001 to 2007, 24% of children in China studied (N = 94,778) were lead poisoned with levels exceeding 100 μg/L. These levels stand well above the global average of 16%. These trends reveal that China still faces significant public health challenges, with millions of children currently at risk of lead poisoning. The unprecedented growth of China's lead-acid battery industry from the electric bike, automotive, and photovoltaic industries may explain these persistently high levels, as China remains the world's leading producer, refiner, and consumer of both lead and lead-acid batteries.This review assesses the role of China's rising lead-acid battery industry on lead pollution and exposure. It starts with a synthesis of biological mechanisms of lead exposure followed by an analysis of the key technologies driving the rapid growth of this industry. It then details the four main stages of lead battery production, explaining how each stage results in significant lead loss and pollution. A province-level accounting of each of these industrial operations is also included. Next, reviews of the literature describe how this industry may have contributed to mass lead poisonings throughout China. Finally, the paper closes with a discussion of new policies that address the lead-acid battery industry and identifies policy frameworks to mitigate exposure.This paper is the first to integrate the market factors, production processes, and health impacts of China's growing lead-acid battery industry to illustrate its vast public health consequences. The implications of this review are two-fold: it validates calls for a nationwide assessment of lead exposure pathways and levels in China as well as for a more comprehensive investigation into the health impacts of the lead-acid

  1. Study on the correlation between volatile fatty acids and gas production in dry fermentation of kitchen waste

    Science.gov (United States)

    Li, Qiangqiang; Ma, Yunfeng; Du, Boying; Wang, Qi; Hu, Qiongqiong; Bian, Yushan

    2018-02-01

    In this study, continuous kitchen waste fermentation and anaerobic digestion experiments were conducted to analyze the gas production potential, and to study the correlation between gas production rate and volatile fatty acid (VFAs) and its component concentration. During the experiment, the total solid(TS) concentration of the reaction system was increased by adding the kitchen waste, analysis of kitchen waste dry fermentation process to start, run, imbalance and imbalance after recovery and the parameters in the process of realizing the change trend and influencing factors of dry fermentation process, pH and ammonia concentration.

  2. Influence of gas-particle partitioning on ammonia and nitric acid fluxes above a deciduous forest in the Midwestern USA

    DEFF Research Database (Denmark)

    Hansen, Kristina; Sørensen, Lise Lotte; Hornsby, Karen E.

    to bi-directionality of the flux, and the dynamics of the chemical gas/aerosol equilibrium of NH3 and HNO3 (or other atmospheric acids) with aerosol-phase ammonium (NH4+) and nitrate (NO3-). NH3 and HNO3 are both very reactive and typically exhibit higher deposition velocities than aerosol NH4...... diffusion denuders with detection by florescence and half-hourly flux measurements are calculated. HNO3 REA system is based on gas capture on sodium chloride (NaCl) coated denuders with subsequent analysis by ion-chromatography, and the resulting fluxes have a resolution of 3-4 hours. CO2 fluxes...

  3. Positive synergistic effect of the reuse and the treatment of hazardous waste on pyrometallurgical process of lead recovery from waste lead-acid batteries

    Directory of Open Access Journals (Sweden)

    Marija Štulović

    2014-09-01

    Full Text Available Modification and optimization of the pyrometallurgical process of lead recovering from the waste lead-acid batteries have been studied in this paper. The aim of this research is to develop a cleaner production in the field of the secondary lead metallurgy. Lead smelting process with the addition of flux (sodium(I-carbonate and reducing agents (coke, iron has been followed. The modified smelting process with the addition of hazardous waste (activated carbon as alternative reducing agents has shown positive results on the quality of the secondary lead, the generated slag and the process gases. Filtration efficiency of the gases, the return of baghouse dust to the process and use of oxygen burners have positive effect on the environment protection and energy efficiency. Optimization of the recycling process has been based on the properties of the slag. Stabilization of slag is proposed in the furnace with addition of waste dust from the recycling of cathode ray tube (CRT monitors. Phosphorus compounds from dust reduce leachability of toxic elements from the generated slag. Reduction the slag amount and its hazardous character through the elimination of migratory heavy metals and valorization of useful components have been proposed in the patented innovative device - cylindrical rotating washer/separator.

  4. Hazardous Waste

    Science.gov (United States)

    ... chemicals can still harm human health and the environment. When you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint thinner. U.S. residents ...

  5. Acidic sweep gas with carbonic anhydrase coated hollow fiber membranes synergistically accelerates CO2 removal from blood.

    Science.gov (United States)

    Arazawa, D T; Kimmel, J D; Finn, M C; Federspiel, W J

    2015-10-01

    The use of extracorporeal carbon dioxide removal (ECCO2R) is well established as a therapy for patients suffering from acute respiratory failure. Development of next generation low blood flow (carbonic anhydrase (CA) immobilized bioactive hollow fiber membrane (HFM) which significantly accelerates CO2 removal from blood in model gas exchange devices by converting bicarbonate to CO2 directly at the HFM surface. This present study tested the hypothesis that dilute sulfur dioxide (SO2) in oxygen sweep gas could further increase CO2 removal by creating an acidic microenvironment within the diffusional boundary layer adjacent to the HFM surface, facilitating dehydration of bicarbonate to CO2. CA was covalently immobilized onto poly (methyl pentene) (PMP) HFMs through glutaraldehyde activated chitosan spacers, potted in model gas exchange devices (0.0151 m(2)) and tested for CO2 removal rate with oxygen (O2) sweep gas and a 2.2% SO2 in oxygen sweep gas mixture. Using pure O2 sweep gas, CA-PMP increased CO2 removal by 31% (258 mL/min/m(2)) compared to PMP (197 mL/min/m(2)) (Premoval by 17% (230 mL/min/m(2)) compared to pure oxygen sweep gas control (Premoval increased by 109% (411 mL/min/m(2)) (Premoval, and when used in combination with bioactive CA-HFMs has a synergistic effect to more than double CO2 removal while maintaining physiologic pH. Through these technologies the next generation of intravascular and paracorporeal respiratory assist devices can remove more CO2 with smaller blood contacting surface areas. A clinical need exists for more efficient respiratory assist devices which utilize low blood flow rates (removal efficiency by shifting equilibrium from bicarbonate to gaseous CO2, through either a bioactive carbonic anhydrase enzyme coating or bulk blood acidification with lactic acid. In this study we demonstrate a novel approach to local blood acidification using an acidified sweep gas in combination with a bioactive coating to more than double CO2 removal

  6. Gas chromatography of alkylphosphonic and dialkyl phosphinic acids; Cromatografia en fase gaseosa de acidos alquifosfonicos y dialquilfosinicos

    Energy Technology Data Exchange (ETDEWEB)

    Gasco Sanchez, L; Barrera Peniero, R; Ramirez Caceres, A; Marin Munoz, M

    1978-07-01

    After carrying out an optimization study on the separation conditions for the TMSr- derivatives, of the hexyl-, cyclohexyl-, heptyl-, and octyl-phosphonic acids; dihexyl dicyclohexyl-, heptyl-, and octyl-phosphinic acids, and dioctyl phosphine oxide, their retention indices (I) at two temperatures and on the OV-1 and OV-17 stationary phase were determined. Correlations between I and molecular structure were established. Calibration factors of these compounds in the flame ionization detector were studied, and the results analyzed taking into account the variables affecting the quantitative results, These results were unbiased but they had a lower precision than that usually achievable in gas chromatography. (Author) 24 refs.

  7. Comparison of gas chromatographic and gravimetric methods for quantization of total fat and fatty acids in foodstuffs

    Directory of Open Access Journals (Sweden)

    Sabria Aued-Pimentel

    2010-01-01

    Full Text Available Different methods to determine total fat (TF and fatty acids (FA, including trans fatty acids (TFA, in diverse foodstuffs were evaluated, incorporating gravimetric methods and gas chromatography with flame ionization detector (GC/FID, in accordance with a modified AOAC 996.06 method. Concentrations of TF and FA obtained through these different procedures diverged (p< 0.05 and TFA concentrations varied beyond 20 % of the reference values. The modified AOAC 996.06 method satisfied both accuracy and precision, was fast and employed small amounts of low toxicity solvents. Therefore, the results showed that this methodology is viable to be adopted in Brazil for nutritional labeling purposes.

  8. Determination of priority and other hazardous substances in football fields of synthetic turf by gas chromatography-mass spectrometry: A health and environmental concern.

    Science.gov (United States)

    Celeiro, Maria; Dagnac, Thierry; Llompart, Maria

    2018-03-01

    Due to the high concern generated in the last years about the safety of recycled tire rubber used for recreational sports surfaces, this study aims at evaluating the presence of forty organic compounds including polycyclic aromatic hydrocarbons (PAHs), phthalates, adipates, vulcanisation additives and antioxidants in recycled tire crumb of synthetic turf football fields. Ultrasound Assisted Extraction (UAE) was successfully employed to extract the target compounds from the crumb rubber, and analysis was performed by gas chromatography-mass spectrometry (GC-MS). The transfer of the target chemicals from the crumb rubber to the runoff water and to the air above the rubber surface has also been evaluated employing solid-phase microextraction (SPME). Samples from fifteen football fields were analysed, and the results revealed the presence of 24 of the 40 target compounds, including 14 of the 16 EPA PAHs, with total concentrations up to 50 μg g -1 . Heavy metals such as Cd, Cr and Pb were also found. A partial transfer of organic compounds to the air and runoff water was also demonstrated. The analysis of rain water collected directly from the football field, showed the presence of a high number of the target compounds at concentrations reaching above 100 μg L -1 . The environmental risk arising from the burning of crumb rubber tires has been assessed, as well, analysing the crumb rubber, and the air and water in contact with this material, showing a substantial increase both of the number and concentration of the hazardous chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. 46 CFR 153.558 - Special requirements for phosphoric acid.

    Science.gov (United States)

    2010-10-01

    ... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and... containment system must be: (a) Lined with natural rubber or neoprene; (b) Lined with a material approved for phosphoric acid tanks by the Commandant (CG-522); or (c) Made of a stainless steel that resists corrosion by...

  10. Barrow hazards survey

    International Nuclear Information System (INIS)

    1980-06-01

    Following a series of public meetings at which PERG presented the results of a literature review and site specific accident study of the hazards of the maritime transport of spent nuclear reactor fuel to Barrow (en route to the Windscale reprocessing works), PERG was requested by the Planning Committee of Barrow Town Council to prepare an assessment of the interaction of the hazards arising from the concentration of nuclear activities in the area with those of a proposed gas-terminal. This report presents a preliminary review of the Environmental Impact Assessments prepared by the Borough Surveyor and a critical appraisal of the hazard analyses undertaken by the Health and Safety Executive, and the consultants to Cumbria County Council on this matter, the Safety and Reliability Directorate of the United Kingdom Atomic Energy Authority. After a general and historical introduction, the document continues under the following headings: a description of the hazards (BNFL spent fuel shipments; the gas terminal; gas condensate storage; the Vickers shipyard (involving nuclear powered submarines)); the interaction of hazards; planning implications and democratic decisions; recommendations. (U.K.)

  11. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries.

    Science.gov (United States)

    Prentice, Boone M; McLuckey, Scott A

    2013-02-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field.

  12. Transportation of hazardous goods

    CERN Multimedia

    TS Department

    2008-01-01

    A general reminder: any transportation of hazardous goods by road is subject to the European ADR rules. The goods concerned are essentially the following: Explosive substances and objects; Gases (including aerosols and non-flammable gases such as helium and nitrogen); Flammable substances and liquids (inks, paints, resins, petroleum products, alcohols, acetone, thinners); Toxic substances (acids, thinners); Radioactive substances; Corrosive substances (paints, acids, caustic products, disinfectants, electrical batteries). Any requests for the transport of hazardous goods must be executed in compliance with the instructions given at this URL: http://ts-dep.web.cern.ch/ts-dep/groups/he/HH/adr.pdf Heavy Handling Section TS-HE-HH 73793 - 160364

  13. Bio-toxicological supervision op workers exposed to lead poisoning hazard. Systematic examination of amino acids, in urine and plasma

    International Nuclear Information System (INIS)

    Harduin, Jean-Claude

    1971-01-01

    A bio-toxicological chart was established for the workers in a firm handling lead. The known facts concerning professional lead poisoning are outlined, after which the importance of lead work in a nuclear center is discussed. The work station of each man is described and the results of analyses made during atmospheric checks on the site are given with sampling techniques. Since the biological chart is centered on the chromatographic exploration of amino acids in blood and urine, the analytical technique used is described and the different technical modifications made to the standard technique reported. The results obtained on reference subjects are compared with those found in the specialized literature. The results found in lead workers are then presented in the form of histograms, which better illustrate the differences observed with respect to the reference subjects. An hematological and toxicological balance-sheet is drawn up and the correlation existing between the results of coproporphyrine, lead and delta-aminolevulinic acid analyses in urine is checked. Biological detection of lead-poisoning has the advantage of providing an early diagnosis, thus enabling the works doctor to forestall the effects of this professional disease before any clinical symptoms appear. (author) [fr

  14. In situ derivatization and hollow fiber membrane microextraction for gas chromatographic determination of haloacetic acids in water

    International Nuclear Information System (INIS)

    Varanusupakul, Pakorn; Vora-adisak, Narongchai; Pulpoka, Bancha

    2007-01-01

    An alternative method for gas chromatographic determination of haloacetic acids (HAAs) in water using direct derivatization followed by hollow fiber membrane liquid-phase microextraction (HF-LPME) has been developed. The method has improved the sample preparation step according to the conventional US EPA Method 552.2 by combining the derivatization and the extraction into one step prior to determination by gas chromatography electron captured detector (GC-ECD). The HAAs were derivatized with acidic methanol into their methyl esters and simultaneously extracted with supported liquid hollow fiber membrane in headspace mode. The derivatization was attempted directly in water sample without sample evaporation. The HF-LPME was performed using 1-octanol as the extracting solvent at 55 deg. C for 60 min with 20% Na 2 SO 4 . The linear calibration curves were observed for the concentrations ranging from 1 to 300 μg L -1 with the correlation coefficients (R 2 ) being greater than 0.99. The method detection limits of most analytes were below 1 μg L -1 except DCAA and MCAA that were 2 and 18 μg L -1 , respectively. The recoveries from spiked concentration ranged from 97 to 109% with %R.S.D. less than 12%. The method was applied for determination of HAAs in drinking water and tap water samples. The method offers an easy one step high sample throughput sample preparation for gas chromatographic determination of haloacetic acids as well as other contaminants in water

  15. A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-Acid Blue 113

    International Nuclear Information System (INIS)

    Gupta, V.K.; Gupta, Bina; Rastogi, Arshi; Agarwal, Shilpi; Nayak, Arunima

    2011-01-01

    Research highlights: → The system is cheap, efficient and fast for the removal of dyes from waters. → Higher adsorption capacity is due to higher mesoporous volume of the adsorbent. → The rate determining step of the adsorption process is particle diffusion. - Abstract: A mesoporous carbon developed from waste tire rubber, characterized by chemical analysis, FTIR, and SEM studies, was used as an adsorbent for the removal and recovery of a hazardous azo dye, Acid Blue 113. Surface area, porosity, and density were determined. The adsorption of the dye over the prepared adsorbent and a commercial activated carbon was achieved under different pH, adsorbate concentration, sieve size, adsorbent dosage, contact time and temperature conditions. Langmuir and Freundlich adsorption isotherm models were applied and thermodynamic parameters were calculated. Kinetic studies indicated that the adsorption process follow first order kinetics and particle diffusion mechanisms are operative. By percolating the dye solution through fixed-bed columns the bulk removal of the Acid Blue 113 was carried out and necessary parameters were determined to find out the percentage saturation of both the columns. Recovery of the dye was made by eluting 0.1 M NaOH through the column.

  16. Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching.

    Science.gov (United States)

    Li, Chuncheng; Xie, Fengchun; Ma, Yang; Cai, Tingting; Li, Haiying; Huang, Zhiyuan; Yuan, Gaoqing

    2010-06-15

    An ultrasonically enhanced two-stage acid leaching process on extracting and recovering multiple heavy metals from actual electroplating sludge was studied in lab tests. It provided an effective technique for separation of valuable metals (Cu, Ni and Zn) from less valuable metals (Fe and Cr) in electroplating sludge. The efficiency of the process had been measured with the leaching efficiencies and recovery rates of the metals. Enhanced by ultrasonic power, the first-stage acid leaching demonstrated leaching rates of 96.72%, 97.77%, 98.00%, 53.03%, and 0.44% for Cu, Ni, Zn, Cr, and Fe respectively, effectively separated half of Cr and almost all of Fe from mixed metals. The subsequent second-stage leaching achieved leaching rates of 75.03%, 81.05%, 81.39%, 1.02%, and 0% for Cu, Ni, Zn, Cr, and Fe that further separated Cu, Ni, and Zn from mixed metals. With the stabilized two-stage ultrasonically enhanced leaching, the resulting over all recovery rates of Cu, Ni, Zn, Cr and Fe from electroplating sludge could be achieved at 97.42%, 98.46%, 98.63%, 98.32% and 100% respectively, with Cr and Fe in solids and the rest of the metals in an aqueous solution discharged from the leaching system. The process performance parameters studied were pH, ultrasonic power, and contact time. The results were also confirmed in an industrial pilot-scale test, and same high metal recoveries were performed. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Validation of a method by gas chromatography for the determination of fatty acids that comprise the active ingredient D-004

    International Nuclear Information System (INIS)

    Rodriguez Leyes, Eduardo A; Marrero Delange, David; Gonzalez Canavaciolo, Victor L; Sierra Perez, Roxana; Adames Fajardo, Yuliamny

    2009-01-01

    D-004 is a new active ingredient obtained from the Cuban royal palm (Roystonea regia) fruits. This substance is mainly composed by a mixture of saturated and unsaturated free fatty acids, from 8 to 18 carbon atoms, and has shown to be effective in experimental model of prostate hyperplasia. A capillary gas chromatographic method for the determination of the fatty acids in D-004 was developed and validated. The acids were analyzed as methyl ester derivatives, which were obtained by reaction with 10 % acetyl chloride in methanol and separated in a BPX-5 wide-bore column using tridecanoic acid as internal standard. The specificity study showed no interferences regarding the determination of this mixture, once the samples were submitted to stress conditions. Determination of the total fatty acid content was linear (r > 0.999; CVs of the response factors and of the slopes lower than 5 and 2 %, respectively) and without bias in the studied concentration range, from 50 to 150 % of the nominal mass. In the accuracy study, over the range 80 to 120 % of the nominal fatty acid concentration, high recoveries (100.4 to 100.8 %) were reached. Good results were obtained in the repeatability and intermediate precision studies (CV < 2%), proving that the method is precise. These results support that this method is properly validated, being appropriate for the quality control and stability studies of this active ingredient

  18. [Determination of fatty acids in natural cream and artificial cream by comprehensive two-dimensional gas chromatography-mass spectrometry].

    Science.gov (United States)

    Zhou, Ruize; Zhou, Ya; Mao, Ting; Jiang, Jie

    2018-01-08

    A method for the determination of 37 fatty acids in natural cream and artificial cream was developed by comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS). The samples were extracted with toluene and acetyl chloride-methanol (1:9,v/v) solution was added to the extract for fat esterification. Finally, the fatty acids were analyzed by GC×GC-MS. The GC conditions were as follows:a DB-5 column (30 m×0.25 mm×0.25 μm) was set as the 1st dimensional column and a BPX-50 column (2.5 m×0.1 mm×0.25 μm) was the 2nd dimensional column. The primary oven temperature was programmed from 50℃ (held for 2 min) to 180℃ at a rate of 20℃/min, followed by an increase to 250℃ at 2.5℃/min, then raised up to 300℃ (held for 5 min) at 3℃/min. The ion source temperature was 200℃ with auxiliary temperature of 300℃ in scan mode. All fatty acids were separated effectively and determined accurately while the modulation period was 5s and the scan range of MS was m/z 40-385. This procedure was applied to analyze the fatty acids in commercial natural cream and artificial cream from Chinese markets, among which we found the characteristic components in different kinds of samples. Compared with gas chromatography-flame ionization detector (GC-FID), GC×GC-MS method was more sensitive and more components of fatty acids were detected. Conclusively, this work suggests a new technical approach in analyzing fatty acids in natural cream and artificial cream, which is meaningful to ensure the quality identification and safety of natural cream.

  19. Biosynthetic Studies of the Male Marking Pheromone in Bumblebees by Using Labelled Fatty Acids and Two-Dimensional Gas Chromatography with Mass Detection

    Czech Academy of Sciences Publication Activity Database

    Žáček, Petr; Kindl, Jiří; Frišonsová, K.; Průchová, Markéta; Votavová, A.; Hovorka, Oldřich; Kovalczuk, T.; Valterová, Irena

    2015-01-01

    Roč. 80, č. 5 (2015), s. 839-850 ISSN 2192-6506 Institutional support: RVO:61388963 Keywords : biosynthesis * bumblebees * fatty acids * gas chromatography * pheromones Subject RIV: CC - Organic Chemistry Impact factor: 2.836, year: 2015

  20. Data for generation of all Tables and Figures for AIMS-ES publication in 2016 pertaining to dry sorbent injection of trona for acid gas control

    Data.gov (United States)

    U.S. Environmental Protection Agency — emissions data and removal efficiencies for coal combustion utilizing PM control devices and dry sorbent injection of trona specifically for acid gas control. This...

  1. Gas chromatography/isotope ratio mass spectrometry: analysis of methanol, ethanol and acetic acid by direct injection of aqueous alcoholic and acetic acid samples.

    Science.gov (United States)

    Ai, Guomin; Sun, Tong; Dong, Xiuzhu

    2014-08-15

    Methanol, ethanol, and acetic acid are not easily extracted from aqueous samples and are susceptible to isotope fractionation in gas chromatography/isotope ratio mass spectrometry (GC/IRMS) analysis. Developing a direct dilution GC/IRMS method for aqueous samples, by adjusting the sample concentrations in common solvents to be similar to each other and using a fixed GC split ratio, is very convenient and important because any linearity effects caused by amount-dependent isotope fractionation can be avoided. The suitability of acetonitrile and acetone solvents for the GC/IRMS analysis of pure methanol, ethanol and acetic acid, and commercial liquor and vinegar samples was evaluated using n-hexane and water as control solvents. All the solvents including water were separated from the analyte on a HP-INNOWAX column and were diverted away from the combustion interface. The influence of liquor matrix on the ethanol GC/IRMS analyses was evaluated by adding pure ethanol to liquor samples. Acetonitrile and acetone gave similar δ(13) C values for pure ethanol and pure acetic acid to those obtained in water and n-hexane, and also gave similar δ(13) C values of ethanol in liquor and acetic acid in white vinegar to that obtained in water. For methanol analysis, acetonitrile and refined acetone gave similar δ(13) C values to that obtained in water, but n-hexane was not a suitable solvent. In addition, isotopic fractionation caused by solvent and solute interactions was observed. We recommend using acetonitrile for the GC/IRMS analysis of aqueous alcoholic samples, and acetone for the analysis of aqueous acetic acid samples. This direct dilution method can provide high accurate and precise GC/IRMS analysis of the relative changes in δ(13) C values of methanol, ethanol, and acetic acid. Copyright © 2014 John Wiley & Sons, Ltd.

  2. The microbial communities and potential greenhouse gas production in boreal acid sulphate, non-acid sulphate, and reedy sulphidic soils

    Czech Academy of Sciences Publication Activity Database

    Šimek, Miloslav; Virtanen, S.; Simojoki, A.; Chroňáková, Alica; Elhottová, Dana; Krištůfek, Václav; Yli-Halla, M.

    2014-01-01

    Roč. 466, January (2014), s. 663-672 ISSN 0048-9697 R&D Projects: GA ČR GA526/09/1570; GA MŠk LC06066 Grant - others:GAJU(CZ) GAJU 138/2010/P Institutional support: RVO:60077344 Keywords : acid sulphate soil * carbon * CARD-FISH * microorganisms * nitrogen * PLFA Subject RIV: EE - Microbiology, Virology Impact factor: 4.099, year: 2014

  3. Radiation hazards

    International Nuclear Information System (INIS)

    Rausch, L.

    1979-01-01

    On a scientific basis and with the aid of realistic examples, the author gives a popular introduction to an understanding and judgment of the public discussion over radiation hazards: Uses and hazards of X-ray examinations, biological radiation effects, civilisation risks in comparison, origins and explanation of radiation protection regulations. (orig.) [de

  4. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    Science.gov (United States)

    Rau, Gregory Hudson

    2014-07-01

    A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.

  5. Gas flushing through hyper-acidic crater lakes: the next steps within a reframed monitoring time window

    Science.gov (United States)

    Rouwet, Dmitri

    2016-04-01

    Tracking variations in the chemical composition, water temperature and pH of brines from peak-activity crater lakes is the most obvious way to forecast phreatic activity. Volcano monitoring intrinsically implies a time window of observation that should be synchronised with the kinetics of magmatic processes, such as degassing and magma intrusion. To decipher "how much time ago" a variation in degassing regime actually occurred before eventually being detected in a crater lake is key, and depends on the lake water residence time. The above reasoning assumes that gas is preserved as anions in the lake water (SO4, Cl, F anions), in other words, that scrubbing of acid gases is complete and irreversible. Less is true. Recent work has confirmed, by direct MultiGas measurement from evaporative plumes, that even the strongest acid in liquid medium (i.e. SO2) degasses from hyper-acidic crater lakes. The less strong acid HCl has long been recognised as being more volatile than hydrophyle in extremely acidic solutions (pH near 0), through a long-term steady increase in SO4/Cl ratios in the vigorously evaporating crater lake of Poás volcano. We now know that acidic gases flush through hyper-acidic crater lake brines, but we don't know to which extend (completely or partially?), and with which speed. The chemical composition hence only reflects a transient phase of the gas flushing through the lake. In terms of volcanic surveillance this brings the advantage that the monitoring time window is definitely shorter than defined by the water chemistry, but yet, we do not know how much shorter. Empirical experiments by Capaccioni et al. (in press) have tried to tackle this kinetic problem for HCl degassing from a "lab-lake" on the short-term (2 days). With this state of the art in mind, two new monitoring strategies can be proposed to seek for precursory signals of phreatic eruptions from crater lakes: (1) Tracking variations in gas compositions, fluxes and ratios between species in

  6. Acidic methanolysis v. alkaline saponification in gas chromatographic characterization of mycobacteria: differentiation between Mycobacterium avium-intracellulare and Mycobacterium gastri.

    Science.gov (United States)

    Larsson, L

    1983-08-01

    Mycobacterium avium-intracellulare and M.gastri were analyzed with capillary gas chromatography after each strain had been subjected to acidic methanolysis or to alkaline saponification followed by methylation. Prominent peaks of myristic, palmitoleic, palmitic, oleic, stearic and tuberculostearic acids were found in the chromatograms of both species, whereas 2-octadecanol and 2-eicosanol were detected only in M. avium-intracellulare. In initial runs, both of the derivatization principles yielded virtually identical chromatograms for a given strain. After repeated injections of extracts from alkaline saponification, however, the alcohol peaks showed pronounced tailing and finally almost disappeared from the chromatograms. This disadvantage, which was not observed when only acid methanolysis was used, could be overcome with trifluoroacetylation. Restored peak shape of the underivatized alcohols could be achieved by washing the cross-linked stationary phase in the capillary tubing with organic solvents. The study demonstrated the importance of conditions which enable separation of 2-octadecanol and 2-eicosanol when gas chromatography is used for species identification of mycobacteria.

  7. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-γ-aminobutyric acid (GABA)-producing lactic acid bacteria.

    Science.gov (United States)

    Wu, Qinglong; Shah, Nagendra P

    2015-02-01

    High γ-aminobutyric acid (GABA)-producing lactobacilli are promising for the manufacture of GABA-rich foods and to synthesize GRAS (generally recognized as safe)-grade GABA. However, common chromatography-based screening is time-consuming and inefficient. In the present study, Korean kimchi was used as a model of lactic acid-based fermented foods, and a gas release-based prescreening of potential GABA producers was developed. The ability to produce GABA by potential GABA producers in de Man, Rogosa, and Sharpe medium supplemented with or without monosodium glutamate was further determined by HPLC. Based on the results, 9 isolates were regarded as high GABA producers, and were further genetically identified as Lactobacillus brevis based on the sequences of 16S rRNA gene. Gas release-based prescreening combined with reversed-phase HPLC confirmation was an efficient and cost-effective method to identify high-GABA-producing LAB, which could be good candidates for probiotics. The GABA that is naturally produced by these high-GABA-producing LAB could be used as a food additive. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Chromatographic efficiency of polar capillary columns applied for the analysis of fatty acid methyl esters by gas chromatography.

    Science.gov (United States)

    Waktola, Habtewold D; Mjøs, Svein A

    2018-04-01

    The chromatographic efficiency that could be achieved in temperature-programmed gas chromatography was compared for four capillary columns that are typically applied for analysis of fatty acid methyl esters (FAME). Three different carrier gases, hydrogen, helium and nitrogen, were applied. For each experiment, the carrier gas velocities and the temperature rates were varied with a full 9 × 3 design, with nine levels on the carrier gas velocity and temperature rates of 1, 2 or 3°C/min. Response surface methodology was used to create models of chromatographic efficiency as a function of temperature rate and carrier gas velocity. The chromatographic efficiency was defined as the inverse of peak widths measured in retention index units. The final results were standardized so that the efficiencies that could be achieved within a certain time frame, defined by the retention time of the last compound in the chromatogram, could be compared. The results show that there were clear differences in the efficiencies that could be achieved with the different columns and that the efficiency decreased with increasing polarity of the stationary phase. The differences can be explained by higher resistance to mass transfer in the stationary phase in the most polar columns. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Experimental study and phase equilibrium modeling of systems containing acid gas and glycol

    DEFF Research Database (Denmark)

    Afzal, Waheed; Breil, Martin P.; Tsivintzelis, Ioannis

    2012-01-01

    In this work, we study phase equilibria of systems containing acid gases and glycols. The acid gases include carbonyl sulfide (COS), hydrogen sulfide (H2S), and carbon dioxide (CO2) while glycols include monoethylene glycol (MEG), diethylene glycol (DEG), and triethylene glycol (TEG). A brief lit...

  10. Identification of organic acids as potential biomarkers in the urine of autistic children using gas chromatography/mass spectrometry.

    Science.gov (United States)

    Kałużna-Czaplińska, Joanna; Żurawicz, Ewa; Struck, Wiktoria; Markuszewski, Michał

    2014-09-01

    There is a need to identify metabolic phenotypes in autism as they might each require unique approaches to prevention. Biological markers can help define autism subtypes and reveal potential therapeutic targets. The aim of the study was to identify alterations of small molecular weight compounds and to find potential biomarkers. Gas chromatography/mass spectrometry was employed to evaluate major metabolic changes in low molecular weight urine metabolites of 14 children with autism spectrum disorders vs. 10 non-autistic subjects. The results prove the usefulness of an identified set of 21 endogenous compounds (including 14 organic acids), whose levels are changed in diseased children. Gas chromatography/mass spectrometry method combined with multivariate statistical analysis techniques provide an efficient way of depicting metabolic perturbations of diseases, and may potentially be applicable as a novel strategy for the noninvasive diagnosis and treatment of autism. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. In situ derivatization and hollow fiber membrane microextraction for gas chromatographic determination of haloacetic acids in water

    Energy Technology Data Exchange (ETDEWEB)

    Varanusupakul, Pakorn [Chromatography and Separation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand)], E-mail: pakorn.v@chula.ac.th; Vora-adisak, Narongchai; Pulpoka, Bancha [Chromatography and Separation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand)

    2007-08-15

    An alternative method for gas chromatographic determination of haloacetic acids (HAAs) in water using direct derivatization followed by hollow fiber membrane liquid-phase microextraction (HF-LPME) has been developed. The method has improved the sample preparation step according to the conventional US EPA Method 552.2 by combining the derivatization and the extraction into one step prior to determination by gas chromatography electron captured detector (GC-ECD). The HAAs were derivatized with acidic methanol into their methyl esters and simultaneously extracted with supported liquid hollow fiber membrane in headspace mode. The derivatization was attempted directly in water sample without sample evaporation. The HF-LPME was performed using 1-octanol as the extracting solvent at 55 deg. C for 60 min with 20% Na{sub 2}SO{sub 4}. The linear calibration curves were observed for the concentrations ranging from 1 to 300 {mu}g L{sup -1} with the correlation coefficients (R{sup 2}) being greater than 0.99. The method detection limits of most analytes were below 1 {mu}g L{sup -1} except DCAA and MCAA that were 2 and 18 {mu}g L{sup -1}, respectively. The recoveries from spiked concentration ranged from 97 to 109% with %R.S.D. less than 12%. The method was applied for determination of HAAs in drinking water and tap water samples. The method offers an easy one step high sample throughput sample preparation for gas chromatographic determination of haloacetic acids as well as other contaminants in water.

  12. Fatty Acid and Carbon Isotopic Evidence for type I Methanotrophs in Microbial Mats from a Shallow Marine Gas Seep, Coal Oil Point, CA.

    Science.gov (United States)

    Ding, H.; Valentine, D.

    2005-12-01

    To study the microbial community in a Southern California seep field, sediment and bacterial mat samples were collected from natural gas-bearing and gas-free surfaces at two distinct seeps in the Coal Oil Point seep field, offshore Santa Barbara. Fatty acids in these samples were extracted, analyzed and identified. Using gas chromatography (GC), more than 30 different fatty acids were separated. Generally, fatty acid concentrations in natural gas-bearing samples were about 5-fold higher compared to gas-free samples. Using gas chromatography mass sepctrometry (GC-MS), all separated fatty acids were identified in each sample. The major constituents included saturated 14:0, 16:0, 18:0, branched i-15, a-15 and unsaturated 16:1 and 18:1 series fatty acids. GC-IRMS (isotope ratio mass spectrometry) analysis provided the 13C of all major fatty acids and some 16:1 series fatty acids were found to be more depleted than -40% in samples associated with gas seepage. After treatment with dimethyl disufide (DMDS), the 16:1 series fatty acids were resolved into five distinct components, including common composition 16:1(7), bacterial specific i-16:1(7) and typical biomarkers of type I methnotrophs 16:1(8), 16(6) and 16:1(5), suggesting an important role for methnotrophs in seep sediments and microbial mats. These results provide evidence for the activity of type I methanotrophic bacteria in microbial mats and surficial sediments at the Coal Oil Point seep field, and have implications for methane cycling in this and other seep

  13. Fatty acid profiling of raw human plasma and whole blood using direct thermal desorption combined with gas chromatography–mass spectrometry

    NARCIS (Netherlands)

    Akoto, L.; Vreuls, R.J.J.; Irth, H.; Pel, R.; Stellaard, F.

    2008-01-01

    Gas chromatography (GC) has in recent times become an important tool for the fatty acid profiling of human blood and plasma. An at-line procedure used in the fatty acid profiling of whole/intact aquatic micro-organisms without any sample preparation was adapted for this work. A direct thermal

  14. Fatty acid profiling of raw human plasma and whole blood using direct thermal desorption combined with gas chromatography-mass spectrometry.

    NARCIS (Netherlands)

    Akoto, L.; Vreuls, J.J.; Irth, H.; Pel, R.; Stellaard, F.

    2008-01-01

    Gas chromatography (GC) has in recent times become an important tool for the fatty acid profiling of human blood and plasma. An at-line procedure used in the fatty acid profiling of whole/intact aquatic micro-organisms without any sample preparation was adapted for this work. A direct thermal

  15. Fatty acid profiling of raw human plasma and whole blood using direct thermal desorption combined with gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Akoto, Lawrence; Vreuls, Rene J. J.; Irth, Hubertus; Pel, Roel; Stellaard, Frans

    2008-01-01

    Gas chromatography (GC) has in recent times become an important tool for the fatty acid profiling of human blood and plasma. An at-line procedure used in the fatty acid profiling of whole/intact aquatic micro-organisms without any sample preparation was adapted for this work. A direct thermal

  16. Exploring the Ideal Gas Law through a Quantitative Gasometric Analysis of Nitrogen Produced by the Reaction of Sodium Nitrite with Sulfamic Acid

    Science.gov (United States)

    Yu, Anne

    2010-01-01

    The gasometric analysis of nitrogen produced in a reaction between sodium nitrite, NaNO[superscript 2], and sulfamic acid, H(NH[superscript 2])SO[superscript 3], provides an alternative to more common general chemistry experiments used to study the ideal gas law, such as the experiment in which magnesium is reacted with hydrochloric acid. This…

  17. At-line gas chromatographic-mass spectrometric analysis of fatty acid profiles of green microalgae using a direct thermal desorption interface

    NARCIS (Netherlands)

    Blokker, P.; Pel, R.; Akoto, L.; Udo, A.; Brinkman, U.A.Th.; Vreuls, R.J.J.

    2002-01-01

    Thermally assisted hydrolysis and methylation¯gas chromatography (THM¯GC) is an important tool to analyse fatty acid in complex matrices. Since THM¯GC has major drawbacks such as isomerisation when applied to fatty acids in natural matrices, a direct thermal desorption (DTD) interface and an

  18. Comparison of two derivatization methods for the analysis of fatty acids and trans fatty acids in bakery products using gas chromatography.

    Science.gov (United States)

    Salimon, Jumat; Omar, Talal A; Salih, Nadia

    2014-01-01

    Two different procedures for the methylation of fatty acids (FAs) and trans fatty acids (TFAs) in food fats were compared using gas chromatography (GC-FID). The base-catalyzed followed by an acid-catalyzed method (KOCH3/HCl) and the base-catalyzed followed by (trimethylsilyl)diazomethane (TMS-DM) method were used to prepare FA methyl esters (FAMEs) from lipids extracted from food products. In general, both methods were suitable for the determination of cis/trans FAs. The correlation coefficients (r) between the methods were relatively small (ranging from 0.86 to 0.99) and had a high level of agreement for the most abundant FAs. The significant differences (P = 0.05) can be observed for unsaturated FAs (UFAs), specifically for TFAs. The results from the KOCH3/HCl method showed the lowest recovery values (%R) and higher variation (from 84% to 112%), especially for UFAs. The TMS-DM method had higher R values, less variation (from 90% to 106%), and more balance between variation and %RSD values in intraday and interday measurements (less than 4% and 6%, resp.) than the KOCH3/HCl method, except for C12:0, C14:0, and C18:0. Nevertheless, the KOCH3/HCl method required shorter time and was less expensive than the TMS-DM method which is more convenient for an accurate and thorough analysis of rich cis/trans UFA samples.

  19. Comparison of Two Derivatization Methods for the Analysis of Fatty Acids and Trans Fatty Acids in Bakery Products Using Gas Chromatography

    Science.gov (United States)

    Salimon, Jumat; Omar, Talal A.; Salih, Nadia

    2014-01-01

    Two different procedures for the methylation of fatty acids (FAs) and trans fatty acids (TFAs) in food fats were compared using gas chromatography (GC-FID). The base-catalyzed followed by an acid-catalyzed method (KOCH3/HCl) and the base-catalyzed followed by (trimethylsilyl)diazomethane (TMS–DM) method were used to prepare FA methyl esters (FAMEs) from lipids extracted from food products. In general, both methods were suitable for the determination of cis/trans FAs. The correlation coefficients (r) between the methods were relatively small (ranging from 0.86 to 0.99) and had a high level of agreement for the most abundant FAs. The significant differences (P = 0.05) can be observed for unsaturated FAs (UFAs), specifically for TFAs. The results from the KOCH3/HCl method showed the lowest recovery values (%R) and higher variation (from 84% to 112%), especially for UFAs. The TMS-DM method had higher R values, less variation (from 90% to 106%), and more balance between variation and %RSD values in intraday and interday measurements (less than 4% and 6%, resp.) than the KOCH3/HCl method, except for C12:0, C14:0, and C18:0. Nevertheless, the KOCH3/HCl method required shorter time and was less expensive than the TMS-DM method which is more convenient for an accurate and thorough analysis of rich cis/trans UFA samples. PMID:24719581

  20. Comparison of Two Derivatization Methods for the Analysis of Fatty Acids and Trans Fatty Acids in Bakery Products Using Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Jumat Salimon

    2014-01-01

    Full Text Available Two different procedures for the methylation of fatty acids (FAs and trans fatty acids (TFAs in food fats were compared using gas chromatography (GC-FID. The base-catalyzed followed by an acid-catalyzed method (KOCH3/HCl and the base-catalyzed followed by (trimethylsilyldiazomethane (TMS–DM method were used to prepare FA methyl esters (FAMEs from lipids extracted from food products. In general, both methods were suitable for the determination of cis/trans FAs. The correlation coefficients (r between the methods were relatively small (ranging from 0.86 to 0.99 and had a high level of agreement for the most abundant FAs. The significant differences (P=0.05 can be observed for unsaturated FAs (UFAs, specifically for TFAs. The results from the KOCH3/HCl method showed the lowest recovery values (%R and higher variation (from 84% to 112%, especially for UFAs. The TMS-DM method had higher R values, less variation (from 90% to 106%, and more balance between variation and %RSD values in intraday and interday measurements (less than 4% and 6%, resp. than the KOCH3/HCl method, except for C12:0, C14:0, and C18:0. Nevertheless, the KOCH3/HCl method required shorter time and was less expensive than the TMS-DM method which is more convenient for an accurate and thorough analysis of rich cis/trans UFA samples.

  1. Effects of total replacement of soybean meal and corn on ruminal fermentation, volatile fatty acids, protozoa concentration, and gas production

    Directory of Open Access Journals (Sweden)

    A. Bahri

    2018-03-01

    Full Text Available The main purpose of this study is to evaluate the effect of total replacement of soybean meal and corn with triticale and faba bean or field pea on rumen fermentation, protozoa counts, and gas production of lactating ewes. A total of 30 Sicilo-Sarde ewes were randomly allocated into three groups and were fed 1.8 kg drymatter of oat hay plus 500 g of one of three concentrates: the first concentrate (CS was mainly composed of soybean meal, corn, and barley; the second (TFB was formed by triticale and faba bean; and the third (TFP was composed of triticale and field pea. The type of concentrate did not affect ruminal pH or ammonia nitrogen concentration (P  >  0.05. The individual concentrations of volatile fatty acids showed a significant interaction between the type of concentrate and sampling time (P  <  0.05, except for Butyric and Isobutyric acids. Within a post-feeding time, the pattern of evolution of total volatile fatty, acetic, and propionic acids differed significantly at 2 h post feeding (P  <  0.05, while butyric and valeric acid changed at 0 and 4 h post feeding. The type of concentrate affected the total number of ciliate protozoa and the Isotricha species (P  <  0.05, whereas Entodinium, Ophryoscolex, and Polyplastron were similar among concentrates (P  >  0.05. The cumulative gas production from the in vitro fermentation, the time of incubation, and their interaction was affected by concentrate (P  <  0.001. The substitution of soybean meal and corn in the concentrate with faba bean or field peas and triticale might maintain rumen parameters of dairy ewes.

  2. Measurements for the determination of acid dew point and SO[sub 3] concentration in the flue gas of utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Derichs, W.; Menden, W.; Ebel, P.K. (RWE Energie AG, Bergheim (Germany))

    1991-10-01

    Until now, the well-known measuring systems for determining acid dewpoint have been applied primarily to flue gases from oil-fired combustion. Using an acid dewpoint measuring system which has now been available on the market for some time, it is possible to measure the acid dewpoint reliably and continuously in flue gas from coal-fired combustion, with low SO[sub 3] concentrations. This measuring system has also been used for flue gas from which the dust and sulphur have been removed as well as for untreated flue gas of conventional combustion systems with gas, oil, hard coal and brown coal firing and also in fluidized bed combustion systems. 6 refs., 11 figs., 2 tabs.

  3. Separation behavior of octadecadienoic acid isomers and identification of cis- and trans-isomers using gas chromatography.

    Science.gov (United States)

    Shibamoto, Shigeaki; Gooley, Andrew; Yamamoto, Kouhei

    2015-01-01

    Using a strongly polar cyanopropyl capillary column we have investigated the gas chromatography (GC) separation behaviors of 24 octadecadienoic acid methyl ester (18:2ME) isomers compared against saturated methyl stearate (18:0ME) and arachidic acid methyl ester (20:0ME), and the dependency on the GC column temperature. The 24 isomers were obtained by performing cis-to trans-isomerization of six regioisomers: five of the 18:2ME isomers were prepared by the partial reduction of methyl α-linolenate and methyl γ-linolenate C18 trienoic acids with different double bond positions, whereas the sixth isomer, 18:2ME (c5, c9), was obtained from a raw constituent fatty acid methyl ester (FAME) sample extracted from Japanese yew seeds. There are no reference standards commercially available for 18:2ME isomers, and in elucidating the elution order of these isomers this study should help the future identification of cis- and trans-type of 18:2ME. We also report the identification method of cis- and trans-type of FAME using equivalent chain lengths and attempt the identification of cis- and trans-type of 18:2ME isomers from partially hydrogenated canola oil.

  4. Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat.

    Science.gov (United States)

    Delmonte, Pierluigi; Fardin-Kia, Ali Reza; Kramer, John K G; Mossoba, Magdi M; Sidisky, Len; Tyburczy, Cynthia; Rader, Jeanne I

    2012-04-13

    The SLB-IL111, a new ionic liquid capillary column for gas chromatography available from Supelco Inc., was recently shown to provide enhanced separation of unsaturated geometric and positional isomers of fatty acid (FAs) when it was compared to cyanopropylsiloxane (CPS) columns currently recommended for the analysis of fatty acid methyl esters (FAMEs). A 200 m SLB-IL111 capillary column, operated under a combined temperature and eluent flow gradient, was successfully used to resolve most of the FAs contained in milk fat in a single 80 min chromatographic separation. The selected chromatographic conditions provided a balanced, simultaneous separation of short-chain (from 4:0), long-chain polyunsaturated fatty acids (PUFAs), and most of the unsaturated FA positional/geometric isomers contained in milk fat. Among the monounsaturated fatty acids (MUFAs), these conditions separated t11-18:1 and t10-18:1 FAs, the two most abundant trans fatty acids (t-FA) contained in most dairy products. These t-FAs reportedly have different biological activities. The conjugated linoleic acid (CLA) isomers commonly found in dairy products were separated from each other, including t7,c9-18:2 from c9,t11-18:2, which eliminated the need for their complementary silver ion HPLC analysis. The application of the SLB-IL111 column provided a complementary elution profile of FAMEs to those obtained by CPS columns, allowing for a more comprehensive FA analysis of total milk fat. The FAMEs were identified by the use of available reference materials, previously synthesized and characterized reference mixtures, and prior separations of the milk fat FAMEs by silver ion chromatography based on the number/geometry of double bonds. Published by Elsevier B.V.

  5. Effect of thermal annealing on a novel polyamide–imide polymer membrane for aggressive acid gas separations

    KAUST Repository

    Vaughn, Justin T.

    2012-05-01

    A fluorinated, 6FDA based polyamide-imide is investigated for the purification of CH 4 from CO 2 and H 2S containing gas streams. Dense polymer films were thermally annealed and showed that increased annealing temperatures at constant annealing time caused transport behavior that does not resemble physical aging. Free volume increased after annealing at 200°C for 24h relative to annealing at 150°C for the same time. CO 2 and CH 4 permeabilities and diffusivities did not decrease as a result of the higher annealing temperature, and in fact, were shown to increase slightly. A change to the intrinsic microstructure that cannot be described by simple, densification based physical aging is hypothesized to be the reason for this trend. Furthermore, annealing increased CO 2 induced plasticization resistance and a temperature of 200°C was shown to have the greatest effect on plasticization suppression. Annealing at 200°C for 24h suppressed pure gas CO 2 plasticization up to 450psia. Fluorescence spectroscopy revealed increased intramolecular charge transfer, which is presumably due to increased electron conjugation over the N-phenyl bond. Additionally, intermolecular charge transfer increased with thermal annealing, as inferred from fluorescence intensity measurements and XRD patterns. 50/50 CO 2/CH 4 mixed gas permeation measurements reveal stable separation performance up to 1000psia. Ternary mixed gas feeds containing toluene/CO 2/CH 4 and H 2S/CO 2/CH 4 show antiplasticization, but more importantly, selectivity losses due to plasticization did not occur up to 900psia of total feed pressure. These results show that the polyamide-imide family represents a promising class of separation materials for aggressive acid gas purifications. © 2012 Elsevier B.V.

  6. Effect of thermal annealing on a novel polyamide–imide polymer membrane for aggressive acid gas separations

    KAUST Repository

    Vaughn, Justin T.; Koros, William J.; Johnson, J.R.; Karvan, Oguz

    2012-01-01

    A fluorinated, 6FDA based polyamide-imide is investigated for the purification of CH 4 from CO 2 and H 2S containing gas streams. Dense polymer films were thermally annealed and showed that increased annealing temperatures at constant annealing time caused transport behavior that does not resemble physical aging. Free volume increased after annealing at 200°C for 24h relative to annealing at 150°C for the same time. CO 2 and CH 4 permeabilities and diffusivities did not decrease as a result of the higher annealing temperature, and in fact, were shown to increase slightly. A change to the intrinsic microstructure that cannot be described by simple, densification based physical aging is hypothesized to be the reason for this trend. Furthermore, annealing increased CO 2 induced plasticization resistance and a temperature of 200°C was shown to have the greatest effect on plasticization suppression. Annealing at 200°C for 24h suppressed pure gas CO 2 plasticization up to 450psia. Fluorescence spectroscopy revealed increased intramolecular charge transfer, which is presumably due to increased electron conjugation over the N-phenyl bond. Additionally, intermolecular charge transfer increased with thermal annealing, as inferred from fluorescence intensity measurements and XRD patterns. 50/50 CO 2/CH 4 mixed gas permeation measurements reveal stable separation performance up to 1000psia. Ternary mixed gas feeds containing toluene/CO 2/CH 4 and H 2S/CO 2/CH 4 show antiplasticization, but more importantly, selectivity losses due to plasticization did not occur up to 900psia of total feed pressure. These results show that the polyamide-imide family represents a promising class of separation materials for aggressive acid gas purifications. © 2012 Elsevier B.V.

  7. Hazardous materials

    Science.gov (United States)

    ... substances that could harm human health or the environment. Hazardous means dangerous, so these materials must be ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  8. ''Hazardous'' terminology

    International Nuclear Information System (INIS)

    Powers, J.

    1991-01-01

    A number of terms (e.g., ''hazardous chemicals,'' ''hazardous materials,'' ''hazardous waste,'' and similar nomenclature) refer to substances that are subject to regulation under one or more federal environmental laws. State laws and regulations also provide additional, similar, or identical terminology that may be confused with the federally defined terms. Many of these terms appear synonymous, and it easy to use them interchangeably. However, in a regulatory context, inappropriate use of narrowly defined terms can lead to confusion about the substances referred to, the statutory provisions that apply, and the regulatory requirements for compliance under the applicable federal statutes. This information Brief provides regulatory definitions, a brief discussion of compliance requirements, and references for the precise terminology that should be used when referring to ''hazardous'' substances regulated under federal environmental laws. A companion CERCLA Information Brief (EH-231-004/0191) addresses ''toxic'' nomenclature

  9. Hazardous Chemicals

    Centers for Disease Control (CDC) Podcasts

    Chemicals are a part of our daily lives, providing many products and modern conveniences. With more than three decades of experience, The Centers for Disease Control and Prevention (CDC) has been in the forefront of efforts to protect and assess people's exposure to environmental and hazardous chemicals. This report provides information about hazardous chemicals and useful tips on how to protect you and your family from harmful exposure.

  10. Welding hazards

    International Nuclear Information System (INIS)

    Khan, M.A.

    1992-01-01

    Welding technology is advancing rapidly in the developed countries and has converted into a science. Welding involving the use of electricity include resistance welding. Welding shops are opened in residential area, which was causing safety hazards, particularly the teenagers and children who eagerly see the welding arc with their naked eyes. There are radiation hazards from ultra violet rays which irritate the skin, eye irritation. Welding arc light of such intensity could damage the eyes. (Orig./A.B.)

  11. Hazards associated with stage one-mining

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Radiation hazards in uranium mining arise from the presence of radon-222, a gas which can escape from exposed rock surfaces into the air. Radon daughter products have been associated with an increased incidence of respiratory lung cancer. Other hazards include the tailings which arise from the extraction of uranium ores. The tailings still contain most of the original radium and emit gamma rays and radon gas. The hazards associated with uranium enrichment and fuel manufacture are also discussed. (R.L.)

  12. Influence of different storage times and temperatures on blood gas and acid-base balance in ovine venous blood.

    Science.gov (United States)

    Hussein, H A; Aamer, A A

    2013-01-01

    The present study was designed to investigate the effects of storage temperature and time on blood gas and acid-base balance of ovine venous blood. Ten clinically healthy sheep were used in this study. A total number of 30 blood samples, were divided into three different groups, and were stored in a refrigerator adjusted to +4 ºC (Group I, n = 10), at RT of about 22-25 ºC (Group II, n = 10) and in an incubator adjusted to 37 ºC (Group III, n = 10) for up to 48 h. Blood samples were analysed for blood gas and acid-base indices at 0, 1, 2, 3, 4, 5, 6, 12, 24 and 48 h of storage. In comparison to the baseline value (0), there were significant decreases of blood pH of samples stored at RT and in the incubator after 1 h (ppO2 values were significantly higher for Group I after 2 h and for Groups II and III after 1 h (preference range and it may be of clinical diagnostic use for up to 6 h.

  13. Identify alkylation hazards

    International Nuclear Information System (INIS)

    Scott, B.

    1992-01-01

    This paper reports that extensive experience shows that alkylation plants regardless of acid catalyst choice, can be operated safely, and with minimum process risk to employees or neighbors. Both types of plants require a comprehensive and fully supported hazard management program that accounts for differing physical properties of the acids involved. Control and mitigation cost to refiners will vary considerably from plant to plant and location to location. In the author's experience, the order of magnitude costs will be about $1 to $2 million for a sulfuric acid (SA) alkylation plant, and about $10 to $15 million for a hydrofluoric acid (HF) plant. These costs include water supply systems and impoundment facilities for contaminated runoff water. The alkylation process, which chemically reacts isobutane and light olefins in the presence of a strong acid catalyst into a premium gasoline component is described

  14. Ionic liquids as stationary phases for fatty acid analysis by gas chromatography.

    Science.gov (United States)

    Fanali, C; Micalizzi, G; Dugo, P; Mondello, L

    2017-12-04

    The present paper provides an overview of the application of ionic liquid (IL) columns for GC analysis of fatty acid methyl esters (FAMEs). Although their separation can be carried out utilizing GC columns containing polar stationary phases, some ILs have been employed as stationary phases, either commercial or laboratory made, in GC analysis. Monodimensional and bidimensional GC methods have been optimized in order to achieve the best separation especially considering the geometric and positional isomers of unsaturated fatty acids. Several methods for the analysis of trans-fatty acids have also been reported. The use of GC-GC, using either the same IL columns or different columns in the first and second dimensions, allowed the separation of a large number of FAMEs. The application of the IL columns for GC analysis of FAMEs in different types of real samples is described, e.g., oil of different nature (fish, flaxseed, and olive), margarine and butter, biodiesel, milk, bacteria etc.

  15. CO2 Capture from Flue gas using Amino acid salt solutions

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai

    to storage. Typical solvents for the process are based on aqueous solutions of alkanolamines, such as mono-ethanolamine (MEA), but their use implies economic disadvantages and environmental complications. Amino acid salt solutions have emerged as an alternative to the alkanolamines, partlybecause...... for measuring of CO2 solubility based on the semi-flow method. A validation study of CO2 solubility in aqueous solutions of MEA is presented. Chapter 5 focuses on the determination of the chemical compositions of the precipitations, which arise in the five amino acid salt solutions upon CO2 absorption...

  16. Influence of different storage times and temperatures on blood gas and acid-base balance in ovine venous blood

    Directory of Open Access Journals (Sweden)

    H.A. Hussein

    2013-01-01

    Full Text Available The present study was designed to investigate the effects of storage temperature and time on blood gas and acid-base balance of ovine venous blood. Ten clinically healthy sheep were used in this study. A total number of 30 blood samples, were divided into three different groups, and were stored in a refrigerator adjusted to +4 ºC (Group I, n = 10, at RT of about 22-25 ºC (Group II, n = 10 and in an incubator adjusted to 37 ºC (Group III, n = 10 for up to 48 h. Blood samples were analysed for blood gas and acid-base indices at 0, 1, 2, 3, 4, 5, 6, 12, 24 and 48 h of storage. In comparison to the baseline value (0, there were significant decreases of blood pH of samples stored at RT and in the incubator after 1 h (p<0.05, the pH value of refrigerated blood samples exhibited insignificant changes during the study (p<0.05. Mean values of pCO2 showed a significant increase in Group I and Group III after 1 h then a progressive decrease after 12 h in all Groups. Mean pO2 values were significantly higher for Group I after 2 h and for Groups II and III after 1 h (p<0.05. In general, base excess decreased significantly for all the groups during the study especially in Groups II and III. In comparison with baseline values, in all groups, bicarbonate (HCO3 increased between 1 h and 6 h (p<0.05, and later decreased at the end of the study (p<0.05. In conclusion, status of acid-base indices of the samples stored at refrigerator and RT were found within normal reference range and it may be of clinical diagnostic use for up to 6 h.

  17. delta 13C analyses of vegetable oil fatty acid components, determined by gas chromatography--combustion--isotope ratio mass spectrometry, after saponification or regiospecific hydrolysis.

    Science.gov (United States)

    Woodbury, S E; Evershed, R P; Rossell, J B

    1998-05-01

    The delta 13C values of the major fatty acids of several different commercially important vegetable oils were measured by gas chromatography--combustion--isotope ratio mass spectrometry. The delta 13C values obtained were found to fall into two distinct groups, representing the C3 and C4 plants classes from which the oils were derived. The delta 13C values of the oils were measured by continuous flow elemental isotope ratio mass spectrometry and were found to be similar to their fatty acids, with slight differences between individual fatty acids. Investigations were then made into the influence on the delta 13C values of fatty acids of the position occupied on the glycerol backbone. Pancreatic lipase was employed to selectively hydrolyse fatty acids from the 1- and 3-positions with the progress of the reaction being followed by high-temperature gas chromatography in order to determine the optimum incubation time. The 2-monoacylglycerols were then isolated by thin-layer chromatography and fatty acid methyl esters prepared. The delta 13C values obtained indicate that fatty acids from any position on the glycerol backbone are isotopically identical. Thus, whilst quantification of fatty acid composition at the 2-position and measurement of delta 13C values of oils and their major fatty acids are useful criteria in edible oil purity assessment, measurement of delta 13C values of fatty acids from the 2-position does not assist with oil purity assignments.

  18. Determination of alcohols, ethers and organic acids in irradiated sweet potato wine by capillary gas chromatography

    International Nuclear Information System (INIS)

    Zhou Yingcai; Yuan Bihuai; Xu Peishu; Wang Xiuying

    1986-01-01

    Alcohols, ethers and organic acids in irradiated sweet potato wine have been determined with capillary GC. The results show that the contents of some components have changed after irradiation, but no new species are formed. The G values of the changed components have been calculated

  19. Surface properties of calcium and magnesium oxide nanopowders grafted with unsaturated carboxylic acids studied with inverse gas chromatography.

    Science.gov (United States)

    Maciejewska, Magdalena; Krzywania-Kaliszewska, Alicja; Zaborski, Marian

    2012-09-28

    Inverse gas chromatography (IGC) was applied at infinite dilution to evaluate the surface properties of calcium and magnesium oxide nanoparticles and the effect of surface grafted unsaturated carboxylic acid on the nanopowder donor-acceptor characteristics. The dispersive components (γ(s)(D)) of the free energy of the nanopowders were determined by Gray's method, whereas their tendency to undergo specific interactions was estimated based on the electron donor-acceptor approach presented by Papirer. The calcium and magnesium oxide nanoparticles exhibited high surface energies (79 mJ/m² and 74 mJ/m², respectively). Modification of nanopowders with unsaturated carboxylic acids decreased their specific adsorption energy. The lowest value of γ(s)(D) was determined for nanopowders grafted with undecylenic acid, approximately 55 mJ/m². The specific interactions were characterised by the molar free energy (ΔG(A)(SP)) and molar enthalpy (ΔH(A)(SP)) of adsorption as well as the donor and acceptor interaction parameters (K(A), K(D)). Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Mineral concentrations of forage legumes and grasses grown in acidic soil amended with flue gas desulfurization products

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R.B.; Baligar, V.C. [USDA ARS, Beltsville, MD (USA). Beltsville Agricultural Research Center West

    2003-07-01

    Considerable quantities of flue gas desulfurization products (FGDs) are generated when coal is burned for production of electricity, and these products have the potential to be reused rather than discarded. Use of FGDs as soil amendments could be important in overall management of these products, especially on acidic soils. Glasshouse studies were conducted to determine shoot concentrations of calcium (Ca), sulfur (S), potassium (K), magnesium (Mg), phosphorus (P), boron (B), zinc (Zn), copper (Cu), manganese (Mn), iron (Fe), aluminum (Al), sodium (Na), molybdenum (Mo), nickel (Ni), cadmium (Cd), chromium (Cr), and lead (Pb) in alfalfa (Medicago sativa), white clover (Trifolium repens), orchardgrass (Dacrylis glomerata), tall fescue (Festuca arundinacea), switchgrass (Panicum virgatum), and eastern gamagrass (Tripsacum dactyloides) grown in acidic (pH 4) soil (Typic Hapludult) amended with various levels of three FGDs and the control compounds CaCO{sub 3}, CaSO{sub 3}, and CaSO{sub 4}. Shoot concentrations of Ca, S, Mg, and B generally increased as levels of soil applied FGD increased. Concentrations of Mn, Fe, Zn, Cu were lower in shoots, especially when soil pH was high ({gt}7). Shoot concentrations of the trace elements Mo, Ni, Cd, Cr, and Pb were not above those reported as normal for foliage. Overall concentrations of most minerals remained near normal for shoots when plants were grown in FGD amended acidic soil.

  1. Determining the fatty acid composition in plasma and tissues as fatty acid methyl esters using gas chromatography – a comparison of different derivatization and extraction procedures.

    Science.gov (United States)

    Ostermann, Annika I; Müller, Maike; Willenberg, Ina; Schebb, Nils Helge

    2014-12-01

    Analysis of the fatty acid (FA) composition in biological samples is commonly carried out using gas liquid chromatography (GC) after transesterification to volatile FA methyl esters (FAME). We compared the efficacy of six frequently used protocols for derivatization of different lipid classes as well as for plasma and tissue samples. Transesterification with trimethylsulfonium hydroxide (TMSH) led to insufficient derivatization efficacies for polyunsaturated FAs (PUFA, ester (CE) as well as triacylglycerols (TGs). In contrast, methanolic hydrochloric acid (HCl) as well as a combination of BF3 with methanolic sodium hydroxide (NaOH+BF3) were suitable for the derivatization of FFAs, polar lipids, TGs, and CEs (derivatization rate >80% for all tested lipids). Regarding plasma samples, all methods led to an overall similar relative FA pattern. However, significant differences were observed, for example, for the relative amount of EPA+DHA (n3-index). Absolute FA plasma concentrations differed considerably among the methods, with low yields for KOH and BF3. We also demonstrate that lipid extraction with tert-butyl methyl ether/methanol (MTBE/MeOH) is as efficient as the classical method according to Bligh and Dyer, making it possible to replace (environmentally) toxic chloroform.We conclude that HCl-catalyzed derivatization in combination with MeOH/MTBE extraction is the most appropriate among the methods tested for the analysis of FA concentrations and FA pattern in small biological samples. A detailed protocol for the analysis of plasma and tissues is included in this article.

  2. Hazardous Chemicals

    Centers for Disease Control (CDC) Podcasts

    2007-04-10

    Chemicals are a part of our daily lives, providing many products and modern conveniences. With more than three decades of experience, The Centers for Disease Control and Prevention (CDC) has been in the forefront of efforts to protect and assess people's exposure to environmental and hazardous chemicals. This report provides information about hazardous chemicals and useful tips on how to protect you and your family from harmful exposure.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

  3. Survey and Down-Selection of Acid Gas Removal Systems for the Thermochemical Conversion of Biomass to Ethanol with a Detailed Analysis of an MDEA System

    Energy Technology Data Exchange (ETDEWEB)

    Nexant, Inc., San Francisco, California

    2011-05-01

    The first section (Task 1) of this report by Nexant includes a survey and screening of various acid gas removal processes in order to evaluate their capability to meet the specific design requirements for thermochemical ethanol synthesis in NREL's thermochemical ethanol design report (Phillips et al. 2007, NREL/TP-510-41168). MDEA and selexol were short-listed as the most promising acid-gas removal agents based on work described in Task 1. The second report section (Task 2) describes a detailed design of an MDEA (methyl diethanol amine) based acid gas removal system for removing CO2 and H2S from biomass-derived syngas. Only MDEA was chosen for detailed study because of the available resources.

  4. Gas-phase studies of copper catalyzed aerobic cross coupling of thiol esters and arylboronic acids

    Czech Academy of Sciences Publication Activity Database

    Tsybizová, A.; Schröder, Detlef; Roithová, J.; Henke, A.; Šrogl, Jiří

    2014-01-01

    Roč. 27, č. 3 (2014), s. 198-203 ISSN 0894-3230 R&D Projects: GA ČR GAP207/12/0846 Grant - others:GA ČR(CZ) GAP207/11/0338 Institutional support: RVO:61388963 Keywords : boronic acids * catalysis * copper * cross coupling * electrospray ionization * mass spectrometry * kinetic studies Subject RIV: CC - Organic Chemistry Impact factor: 1.380, year: 2014

  5. Detection of lysergic acid diethylamide (LSD) in urine by gas chromatography-ion trap tandem mass spectrometry.

    Science.gov (United States)

    Sklerov, J H; Kalasinsky, K S; Ehorn, C A

    1999-10-01

    A confirmatory method for the detection and quantitation of lysergic acid diethylamide (LSD) is presented. The method employs gas chromatography-tandem mass spectrometry (GC-MS-MS) using an internal ionization ion trap detector for sensitive MS-MS-in-time measurements of LSD extracted from urine. Following a single-step solid-phase extraction of 5 mL of urine, underivatized LSD can be measured with limits of quantitation and detection of 80 and 20 pg/mL, respectively. Temperature-programmed on-column injections of urine extracts were linear over the concentration range 20-2000 pg/mL (r2 = 0.999). Intraday and interday coefficients of variation were LSD-positive samples in this laboratory. Comparisons with alternate GC-MS methods and extraction procedures are discussed.

  6. Multicenter comparative study of conventional mechanical gas ventilation to tidal liquid ventilation in oleic acid injured sheep.

    Science.gov (United States)

    Wolfson, Marla R; Hirschl, Ronald B; Jackson, J Craig; Gauvin, France; Foley, David S; Lamm, Wayne J E; Gaughan, John; Shaffer, Thomas H

    2008-01-01

    We performed a multicenter study to test the hypothesis that tidal liquid ventilation (TLV) would improve cardiopulmonary, lung histomorphological, and inflammatory profiles compared with conventional mechanical gas ventilation (CMV). Sheep were studied using the same volume-controlled, pressure-limited ventilator systems, protocols, and treatment strategies in three independent laboratories. Following baseline measurements, oleic acid lung injury was induced and animals were randomized to 4 hours of CMV or TLV targeted to "best PaO2" and PaCO2 35 to 60 mm Hg. The following were significantly higher (p ventilation, physiologic shunt, plasma lactate, lung interleukin-6, interleukin-8, myeloperoxidase, and composite total injury score. No significant laboratories by treatment group interactions were found. In summary, TLV resulted in improved cardiopulmonary physiology at lower ventilatory requirements with more favorable histological and inflammatory profiles than CMV. As such, TLV offers a feasible ventilatory alternative as a lung protective strategy in this model of acute lung injury.

  7. Branched-chain dicationic ionic liquids for fatty acid methyl ester assessment by gas chromatography.

    Science.gov (United States)

    Talebi, Mohsen; Patil, Rahul A; Sidisky, Leonard M; Berthod, Alain; Armstrong, Daniel W

    2017-12-06

    Twelve bis- or dicationic ionic liquids (ILs) including eight based on imidazolium, a single one based on phosphonium, and three based on pyrrolidinium cationic units were prepared with the bis(trifluoromethyl sulfonyl) imide anion. The two identical cationic moieties were attached by different alkyl spacers having three or five carbons and differing alkyl substituents attached to the spacer. The SLB-IL111 column, as the most polar commercial stationary phase known, was included in the study for comparison. Isothermal separations of a rapeseed oil fatty acid methyl ester (FAME) sample were used to study and compare the 12 IL-based column performances and selectivities. The retention times of the most retained methyl esters of lignoceric (C24:0) and erucic (C22:1) acids were used to estimate the IL polarity. The phosphonium dicationic IL column was, by far, the least polar. Imidazolium-based dicationic IL columns were the most polar. Polarity and selectivity for the FAME separation were somewhat related. The separation of a 37-FAME standard mixture allowed the investigation of selectivity variations observed on the 12 IL-based columns under temperature gradients up to 230 °C. The remarkable selectivity of the IL-based columns is demonstrated by the detailed analysis of the cis/trans C18:1 isomers of a partially hydrogenated vegetable oil sample on 30-m columns, separations competing with that done following an "official method" performed on a 100-m column. Graphical abstract Separation of fatty acid methyl esters on a 30-m 3m 2 C 5 (mpy) 2 . 2NTf 2 branched-chain dicationic IL-based column. Branched chain dicationic ILs show great selectivity for separation of cis/trans, ω-3/ω-6, and detailed analysis of cis/trans fats.

  8. Acid gas degradation by non-thermal plasma and energy estimation

    International Nuclear Information System (INIS)

    Valdivia-Barrientos, R; Pacheco-Sotelo, J; Pacheco-Pacheco, M; Rivera-Rodríguez, C; Ibañez-Olvera, M; Estrada-Martinez, N; Silva-Rosas, J

    2012-01-01

    This paper describes a method to estimate the energy efficiency in the system performed to treat acid gases by plasma discharges. The electrical energy consumed by the plasma is evaluated by an electrical diagnosis, taking into account the experimental voltage and current applied to the power source. The estimation of the electrical energy generated by solid oxide fuel cells is based on the method of modeling the energy produced by the species generated by the plasma discharge and taking also into account the temperature of the gases.

  9. Characterisation of capillary ionic liquid columns for gas chromatography-mass spectrometry analysis of fatty acid methyl esters.

    Science.gov (United States)

    Zeng, Annie Xu; Chin, Sung-Tong; Nolvachai, Yada; Kulsing, Chadin; Sidisky, Leonard M; Marriott, Philip J

    2013-11-25

    Due to their distinct chemical properties, the application of ionic liquid (IL) compounds as gas chromatography (GC) stationary phases offer unique GC separation especially in the analysis of geometric and positional fatty acid methyl ester (FAME) isomers. Elution behaviour of FAME on several commercialised IL capillary columns including phosphonium based SLB-IL59, SLB-IL60, SLB-IL61 and SLB-IL76 and imidazolium based SLB-IL82, SLB-IL100, and SLB-IL111 as well as a general purpose column SLB-5ms, were evaluated in gas chromatography-mass spectrometry (GC-MS) analysis. The phases were further characterised by using a linear solvation energy relationship (LSER) approach according to the equivalent chain length (ECL) index of FAME. Among all tested IL columns, elution temperatures of saturated FAME increased as their McReynolds' polarity value decreased, except for IL60. ECL values increased markedly as the stationary phase polarity increased, particularly for the polyunsaturated FAME. The LSER study indicated a lowest l/e value at 0.864 for IL111, displaying phase selectivity towards unsaturated FAME, with higher peak capacity within a carbon number isomer group. s and e descriptors calculated from LSER were validated by excellent correlation with dipole moments and lowest unoccupied molecular orbital (LUMO) energies, with R(2) values of 0.99 and 0.92 respectively, calculated using GAUSSIAN. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Chemometric deconvolution of gas chromatographic unresolved conjugated linoleic acid isomers triplet in milk samples.

    Science.gov (United States)

    Blasko, Jaroslav; Kubinec, Róbert; Ostrovský, Ivan; Pavlíková, Eva; Krupcík, Ján; Soják, Ladislav

    2009-04-03

    A generally known problem of GC separation of trans-7;cis-9; cis-9,trans-11; and trans-8,cis-10 CLA (conjugated linoleic acid) isomers was studied by GC-MS on 100m capillary column coated with cyanopropyl silicone phase at isothermal column temperatures in a range of 140-170 degrees C. The resolution of these CLA isomers obtained at given conditions was not high enough for direct quantitative analysis, but it was, however, sufficient for the determination of their peak areas by commercial deconvolution software. Resolution factors of overlapped CLA isomers determined by the separation of a model CLA mixture prepared by mixing of a commercial CLA mixture and CLA isomer fraction obtained by the HPLC semi-preparative separation of milk fatty acids methyl esters were used to validate the deconvolution procedure. Developed deconvolution procedure allowed the determination of the content of studied CLA isomers in ewes' and cows' milk samples, where dominant isomer cis-9,trans-11 is eluted between two small isomers trans-7,cis-9 and trans-8,cis-10 (in the ratio up to 1:100).

  11. Effect of Al content on the gas-phase dehydration of glycerol over silica-alumina-supported silicotungstic acid catalysts

    International Nuclear Information System (INIS)

    Kim, Yong Tae; You, Su Jin; Park, Eun Duck; Jung, Kwangdeog

    2012-01-01

    The gas-phase dehydration of glycerol to acrolein was carried out over silicotungstic acid (H 4 SiW 12 O 40 ·xH 2 O, HSiW) catalysts supported on SiO 2 , η-Al 2 O 3 , and silica-alumina with different Al contents. The HSiW catalysts supported on silica-alumina showed higher glycerol conversions and acrolein yields during the initial 2 h at 315.deg.C than did SiO 2 - and η-Al 2 O 3 -supported HSiW catalysts. Among the tested catalysts, HSiW/Si 0.9 Al 0.1Ox exhibited the highest space-time yield during the initial 2 h. The loaded HSiW species can change the acid types and suppress the formation of carbonaceous species on Al-rich silica-alumina. The deactivated HSiW supported on silica-alumina can be fully regenerated after calcination in air at 500.deg.C. As long as the molar ratio between water and glycerol was in the range of 2-11, the acrolein selectivity increased significantly with increasing water content in the feed, while the surface carbon content decreased owing to the suppression of heavy compounds

  12. Study of disulfide reduction and alkyl chloroformate derivatization of plasma sulfur amino acids using gas chromatography-mass spectrometry.

    Science.gov (United States)

    Svagera, Zdeněk; Hanzlíková, Dagmar; Simek, Petr; Hušek, Petr

    2012-03-01

    Four disulfide-reducing agents, dithiothreitol (DTT), 2,3-dimercaptopropanesulfonate (DMPS), and the newly tested 2-mercaptoethanesulfonate (MESNA) and Tris(hydroxypropyl)phosphine (THP), were investigated in detail for release of sulfur amino acids in human plasma. After protein precipitation with trichloroacetic acid (TCA), the plasma supernatant was treated with methyl, ethyl, or propyl chloroformate via the well-proven derivatization-extraction technique and the products were subjected to gas chromatographic-mass spectrometric (GC-MS) analysis. All the tested agents proved to be rapid and effective reducing agents for the assay of plasma thiols. When compared with DTT, the novel reducing agents DMPS, MESNA, and THP provided much cleaner extracts and improved analytical performance. Quantification of homocysteine, cysteine, and methionine was performed using their deuterated analogues, whereas other analytes were quantified by means of 4-chlorophenylalanine. Precise and reliable assay of all examined analytes was achieved, irrespective of the chloroformate reagent used. Average relative standard deviations at each analyte level were ≤6%, quantification limits were 0.1-0.2 μmol L(-1), recoveries were 94-121%, and linearity was over three orders of magnitude (r(2) equal to 0.997-0.998). Validation performed with the THP agent and propyl chloroformate derivatization demonstrated the robustness and reliability of this simple sample-preparation methodology.

  13. Enhanced levels of atmospheric low-molecular weight monocarboxylic acids in gas and particulates over Mt. Tai, North China, during field burning of agricultural wastes

    Science.gov (United States)

    Mochizuki, Tomoki; Kawamura, Kimitaka; Nakamura, Shinnosuke; Kanaya, Yugo; Wang, Zifa

    2017-12-01

    To understand the source and atmospheric behaviour of low molecular weight monocarboxylic acids (monoacids), gaseous (G) and particulate (P) organic acids were collected at the summit of Mt. Tai in the North China Plain (NCP) during field burning of agricultural waste (wheat straw). Particulate organic acids were collected with neutral quartz filter whereas gaseous organic acids were collected with KOH-impregnated quartz filter. Normal (C1-C10), branched (iC4-iC6), hydroxy (lactic and glycolic), and aromatic (benzoic) monoacids were determined with a capillary gas chromatography employing p-bromophenacyl esters. We found acetic acid as the most abundant gas-phase species whereas formic acid is the dominant particle-phase species. Concentrations of formic (G/P 1 570/1 410 ng m-3) and acetic (3 960/1 120 ng m-3) acids significantly increased during the enhanced field burning of agricultural wastes. Concentrations of formic and acetic acids in daytime were found to increase in both G and P phases with those of K+, a field-burning tracer (r = 0.32-0.64). Primary emission and secondary formation of acetic acid is linked with field burning of agricultural wastes. In addition, we found that particle-phase fractions (Fp = P/(G + P)) of formic (0.50) and acetic (0.31) acids are significantly high, indicating that semi-volatile organic acids largely exist as particles. Field burning of agricultural wastes may play an important role in the formation of particulate monoacids in the NCP. High levels (917 ng m-3) of particle-phase lactic acid, which is characteristic of microorganisms, suggest that microbial activity associated with terrestrial ecosystem significantly contributes to the formation of organic aerosols.

  14. Concentrations of nitrous acid, nitric acid, nitrite and nitrate in the gas and aerosol phase at a site in the emission zone during ESCOMPTE 2001 experiment

    Science.gov (United States)

    Acker, K.; Möller, D.; Auel, R.; Wieprecht, W.; Kalaß, D.

    2005-03-01

    Ground-based measurements were performed at the "Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d`Emissions" (ESCOMPTE) field site E3 (Realtor) about 30 km north of the urban environment of Marseille and east of the industrial centre Berre pond to investigate the formation of nitrous and nitric acid and to detect the distribution of reactive N-species between the gas and particle phase during photochemical pollution events. A wet denuder sampling for gases followed by a steam jet collection for aerosols was both coupled to anion chromatographic analysis. The analytical system provided data continuously with 30-min time resolution between June 13 and July 13, 2001. Indications for heterogeneous formation of nitrous acid during nighttime and daytime on ground and aerosol surfaces were found, the average HNO 2/NO 2 ratio was 6%. Highest concentrations were observed during two episodes of strong pollution accumulation when sea breeze transported industrial, traffic and urban pollution land-inwards. After nocturnal heterogeneous formation (about 0.1 ppb v h -1 were estimated corresponding to increasing HNO 2/NO 2 ratios) and accumulation processes up to 1.2 ppb v HNO 2 were observed. Their photolysis produces up to 5-9×10 6 OH cm -3 s -1 and will contribute significantly to initiation of the daily photochemistry in the lowest part of the troposphere. For the key tropospheric species, HNO 3 daily peaks up to 4 ppb v were detected.

  15. Radioactive hazards

    International Nuclear Information System (INIS)

    Gill, J.R.

    1980-01-01

    The use of radioactive substances in hospital laboratories is discussed and the attendant hazards and necessary precautions examined. The new legislation under the Health and Safety at Work Act which, it is proposed, will replace existing legal requirements in the field of health and safety at work by a system of regulations and approved codes of practice designed to maintain or improve the standards of health, safety and welfare already established, is considered with particular reference to protection against ionising radiations. (UK)

  16. Impacts of ocean acidification on respiratory gas exchange and acid-base balance in a marine teleost, Opsanus beta.

    Science.gov (United States)

    Esbaugh, Andrew J; Heuer, Rachael; Grosell, Martin

    2012-10-01

    The oceanic carbonate system is changing rapidly due to rising atmospheric CO(2), with current levels expected to rise to between 750 and 1,000 μatm by 2100, and over 1,900 μatm by year 2300. The effects of elevated CO(2) on marine calcifying organisms have been extensively studied; however, effects of imminent CO(2) levels on teleost acid-base and respiratory physiology have yet to be examined. Examination of these physiological processes, using a paired experimental design, showed that 24 h exposure to 1,000 and 1,900 μatm CO(2) resulted in a characteristic compensated respiratory acidosis response in the gulf toadfish (Opsanus beta). Time course experiments showed the onset of acidosis occurred after 15 min of exposure to 1,900 and 1,000 μatm CO(2), with full compensation by 2 and 4 h, respectively. 1,900-μatm exposure also resulted in significantly increased intracellular white muscle pH after 24 h. No effect of 1,900 μatm was observed on branchial acid flux; however, exposure to hypercapnia and HCO(3)(-) free seawater compromised compensation. This suggests branchial HCO(3)(-) uptake rather than acid extrusion is part of the compensatory response to low-level hypercapnia. Exposure to 1,900 μatm resulted in downregulation in branchial carbonic anhydrase and slc4a2 expression, as well as decreased Na(+)/K(+) ATPase activity after 24 h of exposure. Infusion of bovine carbonic anhydrase had no effect on blood acid-base status during 1,900 μatm exposures, but eliminated the respiratory impacts of 1,000 μatm CO(2). The results of the current study clearly show that predicted near-future CO(2) levels impact respiratory gas transport and acid-base balance. While the full physiological impacts of increased blood HCO(3)(-) are not known, it seems likely that chronically elevated blood HCO(3)(-) levels could compromise several physiological systems and furthermore may explain recent reports of increased otolith growth during exposure to elevated CO(2).

  17. Eddy covariance captures four-phase crassulacean acid metabolism (CAM) gas exchange signature in Agave.

    Science.gov (United States)

    Owen, Nick A; Choncubhair, Órlaith Ní; Males, Jamie; Del Real Laborde, José Ignacio; Rubio-Cortés, Ramón; Griffiths, Howard; Lanigan, Gary

    2016-02-01

    Mass and energy fluxes were measured over a field of Agave tequilana in Mexico using eddy covariance (EC) methodology. Data were gathered over 252 d, including the transition from wet to dry periods. Net ecosystem exchanges (FN,EC ) displayed a crassulacean acid metabolism (CAM) rhythm that alternated from CO2 sink at night to CO2 source during the day, and partitioned canopy fluxes (FA,EC ) showed a characteristic four-phase CO2 exchange pattern. Results were cross-validated against diel changes in titratable acidity, leaf-unfurling rates, energy exchange fluxes and reported biomass yields. Projected carbon balance (g C m(-2)  year(-1) , mean ± 95% confidence interval) indicated the site was a net sink of -333 ± 24, of which contributions from soil respiration were +692 ± 7, and FA,EC was -1025 ± 25. EC estimated biomass yield was 20.1 Mg (dry) ha(-1)  year(-1) . Average integrated daily FA,EC was -234 ± 5 mmol CO2  m(-2)  d(-1) and persisted almost unchanged after 70 d of drought conditions. Regression analyses were performed on the EC data to identify the best environmental predictors of FA . Results suggest that the carbon acquisition strategy of Agave offers productivity and drought resilience advantages over conventional semi-arid C3 and C4 bioenergy candidates. © 2015 John Wiley & Sons Ltd.

  18. Ionic liquid phases with comprehensive two-dimensional gas chromatography of fatty acid methyl esters.

    Science.gov (United States)

    Pojjanapornpun, Siriluck; Nolvachai, Yada; Aryusuk, Kornkanok; Kulsing, Chadin; Krisnangkura, Kanit; Marriott, Philip J

    2018-02-17

    New generation inert ionic liquid (iIL) GC columns IL60i, IL76i and IL111i, comprising phosphonium or imidazolium cationic species, were investigated for separation of fatty acid methyl esters (FAME). In general, the iIL phases provide comparable retention times to their corresponding conventional columns, with only minor selectivity differences. The average tailing factors and peak widths were noticeably improved (reduced) for IL60i and IL76i, while they were slightly improved for IL111i. Inert IL phase columns were coupled with conventional IL columns in comprehensive two-dimensional GC (GC × GC) with a solid-state modulator which offers variable modulation temperature (T M ), programmable T M during analysis and trapping stationary phase material during the trap/release (modulation) process, independent of oven T and column sets. Although IL phases are classified as polar, relative polarity of the two phases comprising individual GC × GC column sets permits combination of less-polar IL/polar IL and polar IL/less-polar IL column sets; it was observed that a polar/less-polar column set provided better separation of FAME. A higher first dimension ( 1 D) phase polarity combined with a lower 2 D phase polarity, for instance 1 D IL111i with 2 D IL59 gave the best result; the greater difference in 1 D/ 2 D phase polarity results in increasing occupancy of peak area in the 2D space. The IL111i/IL59 column set was selected for analysis of fatty acids in fat and oil products (butter, margarine, fish oil and canola oil). Compared with the conventional IL111, IL111i showed reduced column bleed which makes this more suited to GC × GC analysis of FAME. The proposed method offers a fast profiling approach with good repeatability of analysis of FAME.

  19. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  20. The tropospheric processing of acidic gases and hydrogen sulphide in volcanic gas plumes as inferred from field and model investigations

    Directory of Open Access Journals (Sweden)

    A. Aiuppa

    2007-01-01

    Full Text Available Improving the constraints on the atmospheric fate and depletion rates of acidic compounds persistently emitted by non-erupting (quiescent volcanoes is important for quantitatively predicting the environmental impact of volcanic gas plumes. Here, we present new experimental data coupled with modelling studies to investigate the chemical processing of acidic volcanogenic species during tropospheric dispersion. Diffusive tube samplers were deployed at Mount Etna, a very active open-conduit basaltic volcano in eastern Sicily, and Vulcano Island, a closed-conduit quiescent volcano in the Aeolian Islands (northern Sicily. Sulphur dioxide (SO2, hydrogen sulphide (H2S, hydrogen chloride (HCl and hydrogen fluoride (HF concentrations in the volcanic plumes (typically several minutes to a few hours old were repeatedly determined at distances from the summit vents ranging from 0.1 to ~10 km, and under different environmental conditions. At both volcanoes, acidic gas concentrations were found to decrease exponentially with distance from the summit vents (e.g., SO2 decreases from ~10 000 μg/m3at 0.1 km from Etna's vents down to ~7 μg/m3 at ~10 km distance, reflecting the atmospheric dilution of the plume within the acid gas-free background troposphere. Conversely, SO2/HCl, SO2/HF, and SO2/H2S ratios in the plume showed no systematic changes with plume aging, and fit source compositions within analytical error. Assuming that SO2 losses by reaction are small during short-range atmospheric transport within quiescent (ash-free volcanic plumes, our observations suggest that, for these short transport distances, atmospheric reactions for H2S and halogens are also negligible. The one-dimensional model MISTRA was used to simulate quantitatively the evolution of halogen and sulphur compounds in the plume of Mt. Etna. Model predictions support the hypothesis of minor HCl chemical processing during plume transport, at least in cloud-free conditions. Larger

  1. Derivatisation/solid-phase microextraction followed by gas chromatography-mass spectrometry for the analysis of phenoxy acid herbicides in aqueous samples

    DEFF Research Database (Denmark)

    Nilsson, Torben; Baglio, Daniela; Galdo-Miguez, Isabel

    1998-01-01

    Different combinations of derivatisation and solid-phase microextraction followed by gas chromatography-mass spectrometry were optimised and evaluated for the analysis of phenoxy acid herbicides in water. The most successful derivatisation approach was aqueous-phase derivatisation with benzyl...

  2. Involvement of placental/umbilical cord blood acid-base status and gas values on the radiosensitivity of human fetal/neonatal hematopoietic stem/progenitor cells

    International Nuclear Information System (INIS)

    Yamaguchi, Masaru; Ebina, Satoko; Kashiwakura, Ikuo

    2013-01-01

    Arterial cord blood (CB) acid-base status and gas values, such as pH, PCO 2 , PO 2 , HCO 3 - and base excess, provide useful information on the fetal and neonatal condition. However, it remains unknown whether these values affect the radiosensitivity of fetal/neonatal hematopoiesis. The present study evaluated the relationship between arterial CB acid-base status, gas values, and the radiosensitivity of CB hematopoietic stem/progenitor cells (HSPCs). A total of 25 CB units were collected. The arterial CB acid-base status and gas values were measured within 30 min of delivery. The CD34 + HSPCs obtained from CB were exposed to 2 Gy X-irradiation, and then assayed for colony-forming unit-granulocyte-macrophage, burst-forming unit-erythroid (BFU-E), and colony-forming unit-granulocyte erythroid, macrophage and megakaryocyte cells. Acid-base status and gas values for PCO 2 and HCO 3 - showed a statistically significant negative correlation with the surviving fraction of BFU-E. In addition, a significant positive correlation was observed between gestational age and PCO 2 . Moreover, the surviving fraction of BFU-E showed a significant negative correlation with gestational age. Thus, HSPCs obtained from CB with high PCO 2 /HCO 3 - levels were sensitive to X-irradiation, which suggests that the status of arterial PCO 2 /HCO 3 - influences the radiosensitivity of fetal/neonatal hematopoiesis, especially erythropoiesis. (author)

  3. High-resolution gas chromatography/mas spectrometry method for characterization and quantitative analysis of ginkgolic acids in ginkgo biloba plants, extracts, and dietary supplements

    Science.gov (United States)

    A high resolution GC/MS with Selected Ion Monitor (SIM) method focusing on the characterization and quantitative analysis of ginkgolic acids (GAs) in Ginkgo biloba L. plant materials, extracts and commercial products was developed and validated. The method involved sample extraction with (1:1) meth...

  4. The effect of lactic acid bacteria included as a probiotic or silage inoculant on in vitro rumen digestibility, total gas and methane production

    NARCIS (Netherlands)

    Ellis, J.L.; Bannink, A.; Hindrichsen, I.K.; Kinley, R.D.; Pellikaan, W.F.; Milora, N.L.; Dijkstra, J.

    2016-01-01

    Through alterations in silage and rumen fermentation, lactic acid bacteria (LAB) silage inoculants may affect OM digestibility and methane (CH4) emissions. In order to identify LAB that may have beneficial effects on CH4 emissions and/or OM digestibility in vivo, a series of in vitro gas production

  5. Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Guan, Wenna; Zhao, Hui; Lu, Xuefeng; Wang, Cong; Yang, Menglong; Bai, Fali

    2011-11-11

    Simple and rapid quantitative determination of fatty-acid-based biofuels is greatly important for the study of genetic engineering progress for biofuels production by microalgae. Ideal biofuels produced from biological systems should be chemically similar to petroleum, like fatty-acid-based molecules including free fatty acids, fatty acid methyl esters, fatty acid ethyl esters, fatty alcohols and fatty alkanes. This study founded a gas chromatography-mass spectrometry (GC-MS) method for simultaneous quantification of seven free fatty acids, nine fatty acid methyl esters, five fatty acid ethyl esters, five fatty alcohols and three fatty alkanes produced by wild-type Synechocystis PCC 6803 and its genetically engineered strain. Data obtained from GC-MS analyses were quantified using internal standard peak area comparisons. The linearity, limit of detection (LOD) and precision (RSD) of the method were evaluated. The results demonstrated that fatty-acid-based biofuels can be directly determined by GC-MS without derivation. Therefore, rapid and reliable quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria can be achieved using the GC-MS method founded in this work. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Multi-gas interaction modeling on decorated semiconductor interfaces: A novel Fermi distribution-based response isotherm and the inverse hard/soft acid/base concept

    Science.gov (United States)

    Laminack, William; Gole, James

    2015-12-01

    A unique MEMS/NEMS approach is presented for the modeling of a detection platform for mixed gas interactions. Mixed gas analytes interact with nanostructured decorating metal oxide island sites supported on a microporous silicon substrate. The Inverse Hard/Soft acid/base (IHSAB) concept is used to assess a diversity of conductometric responses for mixed gas interactions as a function of these nanostructured metal oxides. The analyte conductometric responses are well represented using a combination diffusion/absorption-based model for multi-gas interactions where a newly developed response absorption isotherm, based on the Fermi distribution function is applied. A further coupling of this model with the IHSAB concept describes the considerations in modeling of multi-gas mixed analyte-interface, and analyte-analyte interactions. Taking into account the molecular electronic interaction of both the analytes with each other and an extrinsic semiconductor interface we demonstrate how the presence of one gas can enhance or diminish the reversible interaction of a second gas with the extrinsic semiconductor interface. These concepts demonstrate important considerations in the array-based formats for multi-gas sensing and its applications.

  7. Multi-gas interaction modeling on decorated semiconductor interfaces: A novel Fermi distribution-based response isotherm and the inverse hard/soft acid/base concept

    Energy Technology Data Exchange (ETDEWEB)

    Laminack, William [Department of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Gole, James, E-mail: James.Gole@physics.gatech.edu [Department of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Department of Mechanical Engineering, Georgia Tech, Atlanta, GA 30332 (United States)

    2015-12-30

    Graphical abstract: Visual representation of the PS interface interacting with mixed gas configurations. The red dots correspond to nanostructured metal oxides. Each combination of distinct molecules are labeled below the pores, which are oversized in the figure. - Highlights: • First study of mixed gas analytes interacting with a micro-porous silicon substrate. • Responses are represented by a newly developed response absorption isotherm. • This isotherm is modeled on the basis of the Fermi distribution function. • The developing IHSAB concept explains multi-gas analyte–analyte interactions. - Abstract: A unique MEMS/NEMS approach is presented for the modeling of a detection platform for mixed gas interactions. Mixed gas analytes interact with nanostructured decorating metal oxide island sites supported on a microporous silicon substrate. The Inverse Hard/Soft acid/base (IHSAB) concept is used to assess a diversity of conductometric responses for mixed gas interactions as a function of these nanostructured metal oxides. The analyte conductometric responses are well represented using a combination diffusion/absorption-based model for multi-gas interactions where a newly developed response absorption isotherm, based on the Fermi distribution function is applied. A further coupling of this model with the IHSAB concept describes the considerations in modeling of multi-gas mixed analyte–interface, and analyte–analyte interactions. Taking into account the molecular electronic interaction of both the analytes with each other and an extrinsic semiconductor interface we demonstrate how the presence of one gas can enhance or diminish the reversible interaction of a second gas with the extrinsic semiconductor interface. These concepts demonstrate important considerations in the array-based formats for multi-gas sensing and its applications.

  8. The Tiptop coal-mine fire, Kentucky: Preliminary investigation of the measurement of mercury and other hazardous gases from coal-fire gas vents

    Energy Technology Data Exchange (ETDEWEB)

    Hower, James C.; Henke, Kevin [University of Kentucky Center for Applied Energy Research, Lexington, KY 40511 (United States); O' Keefe, Jennifer M.K. [Morehead State University, Morehead, KY 40351 (United States); Engle, Mark A. [U.S. Geological Survey, Reston, VA 20192 (United States); Blake, Donald R. [Department of Chemistry, University of California - Irvine, Irvine, CA 92697 (United States); Stracher, Glenn B. [East Georgia College, Swainsboro, GA 30401 (United States)

    2009-10-01

    The Tiptop underground coal-mine fire in the Skyline coalbed of the Middle Pennsylvanian Breathitt Formation was investigated in rural northern Breathitt County, Kentucky, in May 2008 and January 2009, for the purpose of determining the concentrations of carbon dioxide (CO{sub 2}), carbon monoxide (CO), and mercury (Hg) in the vent and for measuring gas-vent temperatures. At the time of our visits, concentrations of CO{sub 2} peaked at 2.0% and > 6.0% (v/v) and CO at 600 ppm and > 700 ppm during field analysis in May 2008 and January 2009, respectively. For comparison, these concentrations exceed the U.S. Occupational Safety and Health Administration (OSHA) eight-hour safe exposure limits (0.5% CO{sub 2} and 50 ppm CO), although the site is not currently mined. Mercury, as Hg{sup 0}, in excess of 500 and 2100 {mu}g/m{sup 3}, in May and January, respectively, in the field, also exceeded the OSHA eight-hour exposure limit (50 {mu}g/m{sup 3}). Carbonyl sulfide, dimethyl sulfide, carbon disulfide, and a suite of organic compounds were determined at two vents for the first sampling event. All gases are diluted by air as they exit and migrate away from a gas vent, but temperature inversions and other meteorological conditions could lead to unhealthy concentrations in the nearby towns. Variation in gas temperatures, nearly 300 C during the January visit to the fire versus < 50 C in May, demonstrates the large temporal variability in fire intensity at the Tiptop mine. These preliminary results suggest that emissions from coal fires may be important, but additional data are required that address the reasons for significant variations in the composition, flow, and temperature of vent gases. (author)

  9. Tsunami hazard

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Tohoku Earthquake Tsunami on 11 March, 2011 has led the Fukushima Daiichi nuclear power plant to a serious accident, which highlighted a variety of technical issues such as a very low design tsunami height and insufficient preparations in case a tsunami exceeding the design tsunami height. Lessons such as to take measures to be able to maintain the important safety features of the facility for tsunamis exceeding design height and to implement risk management utilizing Probabilistic Safety Assessment are shown. In order to implement the safety assessment on nuclear power plants across Japan accordingly to the back-fit rule, Nuclear Regulatory Commission will promulgate/execute the New Safety Design Criteria in July 2013. JNES has positioned the 'enhancement of probabilistic tsunami hazard assessment' as highest priority issue and implemented in order to support technically the Nuclear Regulatory Authority in formulating the new Safety Design Criteria. Findings of the research had reflected in the 'Technical Review Guidelines for Assessing Design Tsunami Height based on tsunami hazards'. (author)

  10. Tsunami hazard

    International Nuclear Information System (INIS)

    2013-01-01

    Tohoku Earthquake Tsunami on 11 March, 2011 has led the Fukushima Daiichi nuclear power plant to a serious accident, which highlighted a variety of technical issues such as a very low design tsunami height and insufficient preparations in case a tsunami exceeding the design tsunami height. Lessons such as to take measures to be able to maintain the important safety features of the facility for tsunamis exceeding design height and to implement risk management utilizing Probabilistic Safety Assessment are shown. In order to implement the safety assessment on nuclear power plants across Japan accordingly to the back-fit rule, Nuclear Regulatory Commission will promulgate/execute the New Safety Design Criteria in July 2013. JNES has positioned the 'enhancement of probabilistic tsunami hazard assessment' as highest priority issue and implemented in order to support technically the Nuclear Regulatory Authority in formulating the new Safety Design Criteria. Findings of the research had reflected in the 'Technical Review Guidelines for Assessing Design Tsunami Height based on tsunami hazards'. (author)

  11. The Tiptop coal-mine fire, Kentucky: Preliminary investigation of the measurement of mercury and other hazardous gases from coal-fire gas vents

    Science.gov (United States)

    Hower, James C.; Henke, Kevin R.; O'Keefe, Jennifer M.K.; Engle, Mark A.; Blake, Donald R.; Stracher, Glenn B.

    2009-01-01

    The Tiptop underground coal-mine fire in the Skyline coalbed of the Middle Pennsylvanian Breathitt Formation was investigated in rural northern Breathitt County, Kentucky, in May 2008 and January 2009, for the purpose of determining the concentrations of carbon dioxide (CO2), carbon monoxide (CO), and mercury (Hg) in the vent and for measuring gas-vent temperatures. At the time of our visits, concentrations of CO2 peaked at 2.0% and > 6.0% (v/v) and CO at 600 ppm and > 700 ppm during field analysis in May 2008 and January 2009, respectively. For comparison, these concentrations exceed the U.S. Occupational Safety & Health Administration (OSHA) eight-hour safe exposure limits (0.5% CO2 and 50 ppm CO), although the site is not currently mined. Mercury, as Hg0, in excess of 500 and 2100 μg/m3, in May and January, respectively, in the field, also exceeded the OSHA eight-hour exposure limit (50 μg/m3). Carbonyl sulfide, dimethyl sulfide, carbon disulfide, and a suite of organic compounds were determined at two vents for the first sampling event. All gases are diluted by air as they exit and migrate away from a gas vent, but temperature inversions and other meteorological conditions could lead to unhealthy concentrations in the nearby towns.

  12. The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes

    Science.gov (United States)

    Hari, Yvonne; Dugovič, Branislav; Istrate, Alena; Fignolé, Annabel; Leumann, Christian J.; Schürch, Stefan

    2016-07-01

    Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes.

  13. An analytical method for trifluoroacetic Acid in water and air samples using headspace gas chromatographic determination of the methyl ester.

    Science.gov (United States)

    Zehavi, D; Seiber, J N

    1996-10-01

    An analytical method has been developed for the determination of trace levels of trifluoroacetic acid (TFA), an atmospheric breakdown product of several of the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC) replacements for the chlorofluorocarbon (CFC) refrigerants, in water and air. TFA is derivatized to the volatile methyl trifluoroacetate (MTFA) and determined by automated headspace gas chromatography (HSGC) with electron-capture detection or manual HSGC using GC/MS in the selected ion monitoring (SIM) mode. The method is based on the reaction of an aqueous sample containing TFA with dimethyl sulfate (DMS) in concentrated sulfuric acid in a sealed headspace vial under conditions favoring distribution of MTFA to the vapor phase. Water samples are prepared by evaporative concentration, during which TFA is retained as the anion, followed by extraction with diethyl ether of the acidified sample and then back-extraction of TFA (as the anion) in aqueous bicarbonate solution. The extraction step is required for samples with a relatively high background of other salts and organic materials. Air samples are collected in sodium bicarbonate-glycerin-coated glass denuder tubes and prepared by rinsing the denuder contents with water to form an aqueous sample for derivatization and analysis. Recoveries of TFA from spiked water, with and without evaporative concentration, and from spiked air were quantitative, with estimated detection limits of 10 ng/mL (unconcentrated) and 25 pg/mL (concentrated 250 mL:1 mL) for water and 1 ng/m(3) (72 h at 5 L/min) for air. Several environmental air, fogwater, rainwater, and surface water samples were successfully analyzed; many showed the presence of TFA.

  14. Volcanic Gas

    Science.gov (United States)

    ... offensive odor. It is sometimes referred to as sewer gas. Interestingly, the human nose is more sensitive ... the atmosphere where they can potentially cause acid rain. In an ash -producing eruption, ash particles are ...

  15. Radiological hazards

    International Nuclear Information System (INIS)

    Hamilton, M.

    1984-01-01

    The work of the (United Kingdom) National Radiological Protection Board is discussed. The following topics are mentioned: relative contributions to genetically significant doses of radiation from various sources; radon gas in non-coal mines and in dwelling houses; effects of radiation accidents; radioactive waste disposal; radiological protection of the patient in medicine; microwaves, infrared radiation and cataracts; guidance notes for use with forthcoming Ionising Radiations Regulations; training courses; personal dosimetry service; work related to European Communities. (U.K.)

  16. Water availability drives gas exchange and growth of trees in northeastern US, not elevated CO2 and reduced acid deposition.

    Science.gov (United States)

    Levesque, Mathieu; Andreu-Hayles, Laia; Pederson, Neil

    2017-04-10

    Dynamic global vegetation models (DGVM) exhibit high uncertainty about how climate change, elevated atmospheric CO 2 (atm. CO 2 ) concentration, and atmospheric pollutants will impact carbon sequestration in forested ecosystems. Although the individual roles of these environmental factors on tree growth are understood, analyses examining their simultaneous effects are lacking. We used tree-ring isotopic data and structural equation modeling to examine the concurrent and interacting effects of water availability, atm. CO 2 concentration, and SO 4 and nitrogen deposition on two broadleaf tree species in a temperate mesic forest in the northeastern US. Water availability was the strongest driver of gas exchange and tree growth. Wetter conditions since the 1980s have enhanced stomatal conductance, photosynthetic assimilation rates and, to a lesser extent, tree radial growth. Increased water availability seemingly overrides responses to reduced acid deposition, CO 2 fertilization, and nitrogen deposition. Our results indicate that water availability as a driver of ecosystem productivity in mesic temperate forests is not adequately represented in DGVMs, while CO 2 fertilization is likely overrepresented. This study emphasizes the importance to simultaneously consider interacting climatic and biogeochemical drivers when assessing forest responses to global environmental changes.

  17. Urinary Metabolomic Study of Chlorogenic Acid in a Rat Model of Chronic Sleep Deprivation Using Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Wei-ni Ma

    2018-01-01

    Full Text Available The urinary metabolomic study based on gas chromatography-mass spectrometry (GC-MS had been developed to investigate the possible antidepressant mechanism of chlorogenic acid (CGA in a rat model of sleep deprivation (SD. According to pattern recognition analysis, there was a clear separation among big platform group (BP, sleep deprivation group (SD, and the CGA (model + CGA, and CGA group was much closer to the BP group by showing a tendency of recovering towards BP group. Thirty-six significantly changed metabolites related to antidepressant by CGA were identified and used to explore the potential mechanism. Combined with the result of the classic behavioral tests and biochemical indices, CGA has significant antidepressant effects in a rat model of SD, suggesting that the mechanism of action of CGA might be involved in regulating the abnormal pathway of nicotinate and nicotinamide metabolism; glyoxylate and dicarboxylate metabolism; glycine, serine, and threonine metabolism; and arginine and proline metabolism. Our results also show that metabolomics analysis based on GC-MS is a useful tool for exploring biomarkers involved in depression and elucidating the potential therapeutic mechanisms of Chinese medicine.

  18. Auditing hazardous waste incineration

    International Nuclear Information System (INIS)

    Jayanty, R.K.M.; Allen, J.M.; Sokol, C.K.; von Lehmden, D.J.

    1990-01-01

    This paper reports that audit standards consisting of volatile and semivoltile organics have been established by the EPA to be provided to federal, state, and local agencies or their contractors for use in performance audits to assess the accuracy of measurement methods used during hazardous waste trial burns. The volatile organic audit standards currently total 29 gaseous organics in 5, 6, 7, 9, and 18-component mixtures at part-per-billion (ppb) levels (1 to 10 000 ppb) in compressed gas cylinders in a balance gas of nitrogen. The semivoltile organic audit standards currently total six organics which are spiked onto XAD-2 cartridges for auditing analysis procedures. Studies of all organic standards have been performed to determine the stability of the compounds and the feasibility of using them as performance audit materials. Results as of July 1987 indicate that all of the selected organic compounds are adequately stabile for use as reliable audit materials. Performance audits have been conducted with the audit materials to assess the accuracy of the measurement methods. To date, 160 performance audits have been initiated with the ppb-level audit gases. The audit results obtained with audit gases during hazardous waste trial burn tests were generally within ±50% of the audit concentrations. A limited number of audit results have been obtained with spiked XAD-2 cartridges, and the results have generally been within ±35% of the audit concentrations

  19. Electrostatic hazards

    CERN Document Server

    Luttgens, Günter; Luttgens, Gnter; Luttgens, G Nter

    1997-01-01

    In the US, UK and Europe there is in excess of one notifiable dust or electrostatic explosion every day of the year. This clearly makes the hazards associated with the handling of materials subject to either cause or react to electrostatic discharge of vital importance to anyone associated with their handling or industrial bulk use. This book provides a comprehensive guide to the dangers of static electricity and how to avoid them. It will prove invaluable to safety managers and professionals, as well as all personnel involved in the activities concerned, in the chemical, agricultural, pharmaceutical and petrochemical process industries. The book makes extended use of case studies to illustrate the principles being expounded, thereby making it far more open, accessible and attractive to the practitioner in industry than the highly theoretical texts which are also available. The authors have many years' experience in the area behind them, including the professional teaching of the content provided here. Günte...

  20. Human hazards

    International Nuclear Information System (INIS)

    Delpla, M.; Vignes, S.; Wolber, G.

    1976-01-01

    Among health hazards from ionizing radiations, a distinction is made of observed, likely and theoretical risks. Theoretical risks, derived from extrapolation of observations on sublethal exposures to low doses may frighten. However, they have nothing in common with reality as shown for instance, by the study of carcinogenesis risks at Nagasaki. By extrapolation to low doses, theoretical mutation risks are derived by geneticians from the observation of some characters especially deleterious in the progeny of parents exposed to sublethal doses. One cannot agree when by calculation they express a population exposure by a shift of its genetic balance with an increase of the proportion of disabled individuals. As a matter of fact, experimental exposure of successive generations of laboratory animals shows no accumulation of deleterious genes, sublethal doses excepted. Large nuclear plants should not be overwhelmed by horrible charges on sanitary grounds, whereas small sources have but too often shown they may originate mortal risks [fr

  1. Hand-Held Femtogram Detection of Hazardous Picric Acid with 2 Hydrophobic Ag Nanopillar SERS Substrates and Mechanism of 3 Elasto-Capillarity

    DEFF Research Database (Denmark)

    Hakonen, Aron; Wang, FengChao; Andersson, Per Ola

    2017-01-01

    Picric acid (PA) is a severe environmental and security risk due to its unstable, toxic, and explosive properties. It is also challenging to detect in trace amounts and in situ because of its highly acidic and anionic character. Here, we assess sensing of PA under nonlaboratory conditions using...

  2. Overlapping Patterns of Rapid Evolution in the Nucleic Acid Sensors cGAS and OAS1 Suggest a Common Mechanism of Pathogen Antagonism and Escape.

    Science.gov (United States)

    Hancks, Dustin C; Hartley, Melissa K; Hagan, Celia; Clark, Nathan L; Elde, Nels C

    2015-05-01

    A diverse subset of pattern recognition receptors (PRRs) detects pathogen-associated nucleic acids to initiate crucial innate immune responses in host organisms. Reflecting their importance for host defense, pathogens encode various countermeasures to evade or inhibit these immune effectors. PRRs directly engaged by pathogen inhibitors often evolve under recurrent bouts of positive selection that have been described as molecular 'arms races.' Cyclic GMP-AMP synthase (cGAS) was recently identified as a key PRR. Upon binding cytoplasmic double-stranded DNA (dsDNA) from various viruses, cGAS generates the small nucleotide secondary messenger cGAMP to signal activation of innate defenses. Here we report an evolutionary history of cGAS with recurrent positive selection in the primate lineage. Recent studies indicate a high degree of structural similarity between cGAS and 2'-5'-oligoadenylate synthase 1 (OAS1), a PRR that detects double-stranded RNA (dsRNA), despite low sequence identity between the respective genes. We present comprehensive comparative evolutionary analysis of cGAS and OAS1 primate sequences and observe positive selection at nucleic acid binding interfaces and distributed throughout both genes. Our data revealed homologous regions with strong signatures of positive selection, suggesting common mechanisms employed by unknown pathogen encoded inhibitors and similar modes of evasion from antagonism. Our analysis of cGAS diversification also identified alternately spliced forms missing multiple sites under positive selection. Further analysis of selection on the OAS family in primates, which comprises OAS1, OAS2, OAS3 and OASL, suggests a hypothesis where gene duplications and domain fusion events result in paralogs that provide another means of escaping pathogen inhibitors. Together our comparative evolutionary analysis of cGAS and OAS provides new insights into distinct mechanisms by which key molecular sentinels of the innate immune system have adapted

  3. Overlapping Patterns of Rapid Evolution in the Nucleic Acid Sensors cGAS and OAS1 Suggest a Common Mechanism of Pathogen Antagonism and Escape.

    Directory of Open Access Journals (Sweden)

    Dustin C Hancks

    2015-05-01

    Full Text Available A diverse subset of pattern recognition receptors (PRRs detects pathogen-associated nucleic acids to initiate crucial innate immune responses in host organisms. Reflecting their importance for host defense, pathogens encode various countermeasures to evade or inhibit these immune effectors. PRRs directly engaged by pathogen inhibitors often evolve under recurrent bouts of positive selection that have been described as molecular 'arms races.' Cyclic GMP-AMP synthase (cGAS was recently identified as a key PRR. Upon binding cytoplasmic double-stranded DNA (dsDNA from various viruses, cGAS generates the small nucleotide secondary messenger cGAMP to signal activation of innate defenses. Here we report an evolutionary history of cGAS with recurrent positive selection in the primate lineage. Recent studies indicate a high degree of structural similarity between cGAS and 2'-5'-oligoadenylate synthase 1 (OAS1, a PRR that detects double-stranded RNA (dsRNA, despite low sequence identity between the respective genes. We present comprehensive comparative evolutionary analysis of cGAS and OAS1 primate sequences and observe positive selection at nucleic acid binding interfaces and distributed throughout both genes. Our data revealed homologous regions with strong signatures of positive selection, suggesting common mechanisms employed by unknown pathogen encoded inhibitors and similar modes of evasion from antagonism. Our analysis of cGAS diversification also identified alternately spliced forms missing multiple sites under positive selection. Further analysis of selection on the OAS family in primates, which comprises OAS1, OAS2, OAS3 and OASL, suggests a hypothesis where gene duplications and domain fusion events result in paralogs that provide another means of escaping pathogen inhibitors. Together our comparative evolutionary analysis of cGAS and OAS provides new insights into distinct mechanisms by which key molecular sentinels of the innate immune system

  4. Symposium on the transportation of hazardous goods

    Energy Technology Data Exchange (ETDEWEB)

    Mackay, D; Canniff, W; Coleman, R J; Ellison, T D; Estrin, D

    1980-06-11

    A symposium on the transportation of hazardous goods sponsored by the University of Toronto, the Canadian Society for Chemical Engineering, and Oyez Ltd. (Toronto May 1980), in view of a 11/10/79 explosion at Mississauga, Ont., following derailment of a Canadian Pacific Railways train carrying chlorine gas, covers comments by D. MacKay (Univ. Toronto), on the importance of quantifying the probability of an accident in transporting such hazardous materials as LPG's, chlorine, and corrosive acids, and of formulating contingency plans to reduce the probability or mitigate the effects; by W. Canniff of the Canadian Chemical Producers Association, on that group's Transportation Emergency Assistance Plan, which relies on the shipper of the chemical involved in an accident to provide advice and assistance; by R.J. Coleman (San Clemente, Calif., Fire Dep.), on coordination of efforts between firefighting and other emergency-handling groups to avoid confusion; by T.D. Ellison (Transp. Can.), on proposed Canadian legislation on the transport of dangerous goods, which would adopt, among others, a product classification system now used for international sea transport and a new system of labeling packages; and by D. Estrin, on the limitations of this proposed legislation.

  5. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers.

    Science.gov (United States)

    Kaur, Amandeep; Rose, Devin J; Rumpagaporn, Pinthip; Patterson, John A; Hamaker, Bruce R

    2011-01-01

    Sustained colonic fermentation supplies beneficial fermentative by-products to the distal colon, which is particularly prone to intestinal ailments. Blunted/delayed initial fermentation may also lead to less bloating. Previously, we reported that starch-entrapped alginate-based microspheres act as a slowly fermenting dietary fiber. This material was used in the present study to provide a benchmark to compare to other "slowly fermentable" fibers. Dietary fibers with previous reports of slow fermentation, namely, long-chain inulin, psyllium, alkali-soluble corn bran arabinoxylan, and long-chain β-glucan, as well as starch-entrapped microspheres were subjected to in vitro upper gastrointestinal digestion and human fecal fermentation and measured over 48 h for pH, gas, and short-chain fatty acids (SCFA). The resistant fraction of cooked and cooled potato starch was used as another form of fermentable starch and fructooligosaccharides (FOS) served as a fast fermenting control. Corn bran arabinoxylan and long-chain β-glucan initially appeared slower fermenting with comparatively low gas and SCFA production, but later fermented rapidly with little remaining in the final half of the fermentation period. Long-chain inulin and psyllium had slow and moderate, but incomplete, fermentation. The resistant fraction of cooked and cooled potato starch fermented rapidly and appeared similar to FOS. In conclusion, compared to the benchmark slowly fermentable starch-entrapped microspheres, a number of the purported slowly fermentable fibers fermented fairly rapidly overall and, of this group, only the starch-entrapped microspheres appreciably fermented in the second half of the fermentation period. Consumption of dietary fibers, particularly commercial prebiotics, leads to uncomfortable feelings of bloating and flatulence due to their rapid degradation in our large intestine. This article employs claimed potential slowly fermenting fibers and compares their fermentation rates

  6. Development of a gas-liquid chromatographic method for the analysis of fatty acid tryptamides in cocoa products.

    Science.gov (United States)

    Hug, Bernadette; Golay, Pierre-Alain; Giuffrida, Francesca; Dionisi, Fabiola; Destaillats, Frédéric

    2006-05-03

    The determination of the occurrence and level of cocoa shells in cocoa products and chocolate is an important analytical issue. The recent European Union directive on cocoa and chocolate products (2000/36/EC) has not retained the former limit of a maximum amount of 5% of cocoa shells in cocoa nibs (based on fat-free dry matter), previously authorized for the elaboration of cocoa products such as cocoa mass. In the present study, we report a reliable gas-liquid chromatography procedure suitable for the determination of the occurrence of cocoa shells in cocoa products by detection of fatty acid tryptamides (FATs). The precision of the method was evaluated by analyzing nine different samples (cocoa liquors with different ranges of shells) six times (replicate repeatability). The variations of the robust coefficient of variation of the repeatability demonstrated that FAT(C22), FAT(C24), and total FATs are good markers for the detection of shells in cocoa products. The trueness of the method was evaluated by determining the FAT content in two spiked matrices (cocoa liquors and cocoa shells) at different levels (from 1 to 50 mg/100 g). A good relation was found between the results obtained and the spiking (recovery varied between 90 and 130%), and the linearity range was established between 1 and 50 mg/100 g in cocoa products. For total FAT contents of cocoa liquor containing 5% shells, the measurement uncertainty allows us to conclude that FAT is equal to 4.01 +/- 0.8 mg/100 g. This validated method is perfectly suitable to determine shell contents in cocoa products using FAT(C22), FAT(C24), and total FATs as markers. The results also confirmed that cocoa shells contain FAT(C24) and FAT(C22) in a constant ratio of nearly 2:1.

  7. Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: Fatty acid profiling and biodiesel production.

    Science.gov (United States)

    Aslam, Ambreen; Thomas-Hall, Skye R; Manzoor, Maleeha; Jabeen, Faiza; Iqbal, Munawar; Uz Zaman, Qamar; Schenk, Peer M; Asif Tahir, M

    2018-02-01

    Biodiesel is produced by transesterification of fatty acid methyl esters (FAME) from oleaginous microalgae feedstock. Biodiesel fuel properties were studied and compared with biodiesel standards. Qualitative analysis of FAME was done while cultivating mixed microalgae consortia under three concentrations of coal fired flue gas (1%, 3.0% and 5.5% CO 2 ). Under 1% CO 2 concentration (flue gas), the FAME content was 280.3 μg/mL, whereas the lipid content was 14.03 μg/mL/D (day). Both FAMEs and lipid contents were low at other CO 2 concentrations (3.0 and 5.5%). However, mixed consortia in the presence of phosphate buffer and flue gas (PB + FG) showed higher saturated fatty acids (SFA) (36.28%) and unsaturated fatty acids (UFA) (63.72%) versus 5.5% CO 2 concentration, which might be responsible for oxidative stability of biodiesel. Subsequently, higher cetane number (52) and low iodine value (136.3 gI 2 /100 g) biodiesel produced from mixed consortia (PB + FG) under 5.5% CO 2 along with 50 mM phosphate buffer were found in accordance with European (EN 14214) standard. Results revealed that phosphate buffer significantly enhanced the biodiesel quality, but reduced the FAME yield. This study intended to develop an integrated approach for significant improvement in biodiesel quality under surplus phosphorus by utilizing waste flue gas (as CO 2 source) using microalgae. The CO 2 sequestration from industrial flue gas not only reduced greenhouse gases, but may also ensure the sustainable and eco-benign production of biodiesel. Copyright © 2018. Published by Elsevier B.V.

  8. Determination of the Thermodynamic Properties of Poly [2-(3-phenyl-3-methylcyclobutyl)-2-hydroxyethyl methacrylate-co-methacrylic acid] at Infinite Dilution by Inverse Gas Chromatography

    OpenAIRE

    KAYA, İsmet

    2014-01-01

    Some thermodynamic quantities were obtained for the interactions of poly [2-(3-phenyl -3- methylcyclobutyl)-2-hydroxyethyl methacrylate-co-methacrylic acid] Poly (PCHEMA-co-MA) with alcohols, ketones, acetates, aromatics and n-alkanes by inverse gas chromatography in the temperature range of 150-180oC. The specific retention volumes, Vgo, weight fraction activity coefficients of solute probes at infinite dilution, W1\\infty and Flory-Huggins thermodynamic interaction parameters, c12...

  9. Discriminating Properties of Alkali Metal Ions Towards the Constituents of Proteins and Nucleic Acids. Conclusions from Gas-Phase and Theoretical Studies.

    Science.gov (United States)

    Rodgers, Mary T; Armentrout, Peter B

    2016-01-01

    Quantitative insight into the structures and thermodynamics of alkali metal cations interacting with biological molecules can be obtained from studies in the gas phase combined with theoretical work. In this chapter, the fundamentals of the experimental and theoretical techniques are first summarized and results for such work on complexes of alkali metal cations with amino acids, small peptides, and nucleobases are reviewed. Periodic trends in how these interactions vary as the alkali metal cations get heavier are highlighted.

  10. Measurement of non-enteric emission fluxes of volatile fatty acids from a California dairy by solid phase micro-extraction with gas chromatography/mass spectrometry

    Science.gov (United States)

    Alanis, Phillip; Sorenson, Mark; Beene, Matt; Krauter, Charles; Shamp, Brian; Hasson, Alam S.

    Dairies are a major source of volatile organic compounds (VOCs) in California's San Joaquin Valley; a region that experiences high ozone levels during summer. Short-chain carboxylic acids, or volatile fatty acids (VFAs), are believed to make up a large fraction of VOC emissions from these facilities, although there are few studies to substantiate this. In this work, a method using a flux chamber coupled to solid phase micro-extraction (SPME) fibers followed by analysis using gas chromatography/mass spectrometry was developed to quantify emissions of six VFAs (acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid and 3-methyl butanoic acid) from non-enteric sources. The technique was then used to quantify VFA fluxes from a small dairy located on the campus of California State University Fresno. Both animal feed and animal waste are found to be major sources of VFAs, with acetic acid contributing 70-90% of emissions from the sources tested. Measured total acid fluxes during spring (with an average temperature of 20 °C) were 1.84 ± 0.01, 1.06 ± 0.08, (1.3 ± 0.5) × 10 -2, (1.7 ± 0.2) × 10 -2 and (1.2 ± 0.5) × 10 -2 g m -2 h -1 from silage, total mixed rations, flushing lane, open lot and lagoon sources, respectively. VFA emissions from the sources tested total 390 ± 80 g h -1. The data indicate high fluxes of VFAs from dairy facilities, but differences in the design and operation of dairies in the San Joaquin Valley as well as seasonal variations mean that additional measurements must be made to accurately determine emissions inventories for the region.

  11. Radon -- an environmental hazard

    International Nuclear Information System (INIS)

    Faheem, M.; Rahman, R.; Rahman, S.; Matiullah

    2005-01-01

    Humans have always been exposed throughout its period of experience to naturally occurring sources of ionizing radiation or natural background radiation, It is an established fact that even these low background doses are harmful to man and cause increased cancer risk. About half of our radiation comes from radon, a radioactive gas coming from normal materials in the ground. Several building materials such as granite, bricks, sand, cement etc., contain uranium in various amounts. The radioactive gas /sup 222/Rn produced in these materials due to decay of 226Ra is transported to indoor air through diffusion and convective flow. It seeps out of soil and rocks, well water, building materials and other sources at a varied rate. Amongst the naturally occurring radioisotopes, radon is the most harmful one that can be a cause of lung cancer. Radon isotopes are born by the decay of radium and radium production in turns comes from uranium or thorium decay. For humans the greatest importance among Radon isotopes is attributed to /sup 222/Rn because it is the longest lived of the three naturally produced isotopes. Drinking water also poses a threat. Radon gas is dissolved in water and is released into the air via water faucets, showerheads, etc. the lack of understanding has so far lead to speculative estimates of pollutant related health hazards. (author)

  12. Adsorption and reaction mechanism of arsenic vapors over γ-Al2O3 in the simulated flue gas containing acid gases.

    Science.gov (United States)

    Hu, Hongyun; Chen, Dunkui; Liu, Huan; Yang, Yuhan; Cai, Hexun; Shen, Junhao; Yao, Hong

    2017-08-01

    Arsenic emission from fuel combustion and metal smelting flue gas causes serious pollution. Addition of sorbents is a promising way for the arsenic capture from high temperature flue gas. However, it is difficult to remove arsenic from SO 2 /HCl-rich flue gas due to the competitive reaction of the sorbents with arsenic and these acid gases. To solve this problem, arsenic adsorption over γ-Al 2 O 3 was studied in this work to evaluate its adsorption mechanism, resistance to acid gases as well as regeneration behavior. The results show that γ-Al 2 O 3 had good resistance to acid gases and the arsenic adsorption by γ-Al 2 O 3 could be effectively carried out at a wide temperature range between 573 and 1023 K. Nevertheless, adsorption at higher-temperature (like 1173 K) leaded to the decrease of surface area and the rearrangement of crystal structure of γ-Al 2 O 3 , reducing the active sites for arsenic adsorption. The adsorption of arsenic was confirmed to occur at different active sites in γ-Al 2 O 3 by forming various adsorbed species. Increasing temperature facilitated arsenic transformation into more stable chemisorbed As 3+ and As 5+ which were difficult to remove through thermal treatment regeneration. Fortunately, the regeneration of spent γ-Al 2 O 3 could be well performed using NaOH solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Trade-off in emissions of acid gas pollutants and of carbon dioxide in fossil fuel power plants with carbon capture

    International Nuclear Information System (INIS)

    Tzimas, Evangelos; Mercier, Arnaud; Cormos, Calin-Cristian; Peteves, Stathis D.

    2007-01-01

    This paper investigates the impact of capture of carbon dioxide (CO 2 ) from fossil fuel power plants on the emissions of nitrogen oxides (NO X ) and sulphur oxides (SO X ), which are acid gas pollutants. This was done by estimating the emissions of these chemical compounds from natural gas combined cycle and pulverized coal plants, equipped with post-combustion carbon capture technology for the removal of CO 2 from their flue gases, and comparing them with the emissions of similar plants without CO 2 capture. The capture of CO 2 is not likely to increase the emissions of acid gas pollutants from individual power plants; on the contrary, some NO X and SO X will also be removed during the capture of CO 2 . The large-scale implementation of carbon capture is however likely to increase the emission levels of NO X from the power sector due to the reduced efficiency of power plants equipped with capture technologies. Furthermore, SO X emissions from coal plants should be decreased to avoid significant losses of the chemicals that are used to capture CO 2 . The increase in the quantity of NO X emissions will be however low, estimated at 5% for the natural gas power plant park and 24% for the coal plants, while the emissions of SO X from coal fired plants will be reduced by as much as 99% when at least 80% of the CO 2 generated will be captured

  14. Catalytic N{sub 2}O decomposition in a model tail gas from nitric acid plants; Decomposition catalytique du protoxyde d'azote dans un modele de gaz de queue produits par un atelier d'acide nitrique

    Energy Technology Data Exchange (ETDEWEB)

    Mul, G.; Xu, X.; Perez Ramirez, J.; Vaccaro, A.R.; Kapteijn, F.; Moulijn, J.A. [Delft University of Technology, Faculty of Chemical Technology and Materials Sciences, Delft (Netherlands)

    2001-07-01

    In this study direct catalytic decomposition of N{sub 2}O in simulated tail-gas from nitric acid plants, containing water, oxygen, NO{sub x}, was investigated. Three groups of catalysts were prepared: oxide-supported catalysts; zeolite-based catalysts; mixed oxides derived from hydrotalcites-like (HTLc) materials. The activity of these types of catalysts was tested in an advanced automated six-flow reactor system. Nobel metal (Ru, Rh) based catalysts, either supported on zeolites or ex-hydrotalcite compositions (Mg-Al or Co-Al mixed oxides), and Fe-ZSM-5 effectively decompose N{sub 2}O in tail-gas conditions at temperatures of about 400-450 deg C, typical for certain nitric acid plants. Catalysts active for tail gas temperatures of 230-250 deg C, typical for other nitric acid plants, were not found. This is mainly due to the dramatic negative effect of especially water and NO{sub x} on the conversion of N{sub 2}O. The negative effect of NO{sub x} observed for many catalysts might be related to the formation of surface nitrites and nitrates, blocking active sites for N{sub 2}O decomposition in the 200-300 deg C temperature range. (authors)

  15. Refractories for exhaust gas scrubbers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Primary metal smelters are recovering a greater percentage of their stack emissions because of increased global environmental pressures. Copper and nickel producers processing sulfide ore are under particular scrutiny for sulfur dioxide emissions. The use of various acid plant designs and associated scrubbers to capture the gas is commonplace. Failure of acid plant or sulfur dioxide control devices can be very expensive, both in terms of repair costs and lost production. Close attention should be paid to ensure smooth, long term and proper operation of these vessels. With INCO flash furnace shops smelter gases are treated immediately upon leaving the furnace in a particulate scrubber where the gases are cooled and de-dusted in a water spray chamber. The amount of chlorine and fluorine in the waste gas can vary widely, ranging from non-existent to being a major source of concern for refractory wear. Developed specifically for use in hazardous waste incinerators burning fluorine-containing materials, spall-resistant, high-purity alimina bricks were installed in various gas cleaning units in copper smelting plants. Because of the materials's combination of abrasion resistance, thermal cycling resistance, and chemical durability under conditions of variable SO(3) and fluorine attack, the material has proven to be more than adequate for the challenges of gas cleaning equipment. 2 refs.

  16. Evaluation of in-situ fatty acid extraction protocols for the analysis of staphylococcal cell membrane associated fatty acids by gas chromatography.

    Science.gov (United States)

    Crompton, Marcus J; Dunstan, R Hugh

    2018-05-01

    The composition and integrity of the bacterial cytoplasmic membrane is critical to the survival of staphylococci in dynamic environments and it is important to investigate how the cell membrane responds to changes in the environmental conditions. The staphylococcal membrane differs from eukaryotic and many other bacterial cell membranes by having a high abundance of branch fatty acids and relatively few unsaturated fatty acids. The range of available methods for extraction and efficient analyses of staphylococcal fatty acids was initially appraised to identify the best potential procedures for appraisal. Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 29213) was grown under optimal conditions to generate a cell biomass to compare the efficiencies of three approaches to extract and prepare methyl esters of the membrane fatty acids: (1) acidic direct transesterification of lipids, (2) modified basic direct transesterification of membrane lipids with adjusted reaction times and temperatures, and (3) base catalysed hydrolysis followed by acid catalysed esterification in two separate chemical reactions (MIDI process). All methods were able to extract fatty acids from the cell mass effectively where these lipids represented approximately 5% of the cellular dry mass. The acidic transesterification method had the least number of steps, the lowest coefficient of variation at 6.7% and good resistance to tolerating water. Basic transesterification was the least accurate method showing the highest coefficient of variation (26%). The MIDI method showed good recoveries, but had twice the number of steps and a coefficient of variation of 16%. It was also found that there was no need to use an anti-oxidant such as BHT for the protection of polyunsaturated fatty acids when the GC-MS injection liner was clean. It was concluded that the acidic transesterification procedures formed the most efficient and reproducible method for the analyses of staphylococcal membrane fatty acids

  17. Hydrogen Oxidation on Gas Diffusion Electrodes for Phosphoric Acid Fuel Cells in the Presence of Carbon Monoxide and Oxygen

    DEFF Research Database (Denmark)

    Gang, Xiao; Li, Qingfeng; Hjuler, Hans Aage

    1995-01-01

    Hydrogen oxidation has been studied on a carbon-supported platinum gas diffusion electrode in a phosphoric acidelectrolyte in the presence of carbon monoxide and oxygen in the feed gas. The poisoning effect of carbon monoxide presentin the feed gas was measured in the temperature range from 80...... to 150°C. It was found that throughout the temperaturerange, the potential loss due to the CO poisoning can be reduced to a great extent by the injection of small amounts ofgaseous oxygen into the hydrogen gas containing carbon monoxide. By adding 5 volume percent (v/o) oxygen, an almost...

  18. Lipids and Fatty Acids in Algae: Extraction, Fractionation into Lipid Classes, and Analysis by Gas Chromatography Coupled with Flame Ionization Detector (GC-FID).

    Science.gov (United States)

    Guihéneuf, Freddy; Schmid, Matthias; Stengel, Dagmar B

    2015-01-01

    Despite the number of biochemical studies exploring algal lipids and fatty acid biosynthesis pathways and profiles, analytical methods used by phycologists for this purpose are often diverse and incompletely described. Potential confusion and potential variability of the results between studies can therefore occur due to change of protocols for lipid extraction and fractionation, as well as fatty acid methyl esters (FAME) preparation before gas chromatography (GC) analyses. Here, we describe a step-by-step procedure for the profiling of neutral and polar lipids using techniques such as solid-liquid extraction (SLE), thin-layer chromatography (TLC), and gas chromatography coupled with flame ionization detector (GC-FID). As an example, in this protocol chapter, analyses of neutral and polar lipids from the marine microalga Pavlova lutheri (an EPA/DHA-rich haptophyte) will be outlined to describe the distribution of fatty acid residues within its major lipid classes. This method has been proven to be a reliable technique to assess changes in lipid and fatty acid profiles in several other microalgal species and seaweeds.

  19. Introducing Environmental and Sustainable Chemistry Topics Using a Nanotechnology Approach: Removing Hazardous Metal Ions by Means of Humic-Acid-Modified Superparamagnetic Nanoparticles

    Science.gov (United States)

    Gomes da Silva, Delmarcio; Menegatti de Melo, Fernando; Silveira, Alceu Totti, Jr.; Constancio da Cruz, Bruno; Prado, Caio Cesar Pestana; Pereira de Vasconcelos, Luana Cristina; Lucas, Vitor Amaral Sanches; Toma, Henrique Eisi

    2016-01-01

    A laboratory experiment has been developed to illustrate environmental and sustainability aspects, focusing on the wastewater treatment by means of superparamagnetic nanoparticles functionalized with humic acid. The experiment, conducted by a group of high school students, involves nanoparticle synthesis and minor characterization, followed by…

  20. Hazard classification methodology

    International Nuclear Information System (INIS)

    Brereton, S.J.

    1996-01-01

    This document outlines the hazard classification methodology used to determine the hazard classification of the NIF LTAB, OAB, and the support facilities on the basis of radionuclides and chemicals. The hazard classification determines the safety analysis requirements for a facility

  1. Fatty Acid Profiling of Lipid A Isolated from Indigenous salmonella typhi strain by gas chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jabbar, A.; Ali, A.; Tawab, A.; Haque, A.; Iqbal, M. [National Inst. for Biotechnology and Genetic Engineering, Faisalabad (Pakistan)

    2014-02-15

    Typhoid, caused by Salmonella enterica serovar Typhi (S. Typhi), is a major health problem worldwide especially in developing countries. Lipopolysaccharides are one of the main virulence factors of S. Typhi. Hydrophobic lipid A anchors the lipopolysaccharides into the bacterial outer membrane and also serves as the epicenter of endotoxicity, which is linked to the presence of several fatty acid chains. Fatty acid profiling is, therefore, very important to understand the endotoxicity of these pathogenic bacteria. To profile lipid A with respect to its fatty acid constituents, a S. Typhi was isolated from blood culture of a typhoid patient from the Faisalabad region of Pakistan. After its complete identification using biochemical and molecular techniques, this bacterium was cultivated in a fermentor. The cell pellet obtained was subjected to hot phenol process to extract and purify lipopolysaccharides. Acid hydrolysis of the lipopolysaccharides yielded lipid A, which was subjected to analyses using GC-MS after derivatization into their fatty acid methyl esters. The fatty acid methyl esters were identified on the basis of their retention times, compared with standards as well as characteristic mass fragmentation patterns of their respective mass spectra. This fatty acid profiling revealed the occurrence of dodecanoic acid (C12:0), tetradecanoic acid (C14:0), 3-hydroxy tetradecanoic acid (3-OH C14:0) and hexadecanoic acid (C16:0) in the lipid A component of S. Typhi strain with the relative percentage abundances 8.5%, 12.5%, 55.9% and 23.1%, respectively. (author)

  2. Fatty Acid Profiling of Lipid A Isolated from Indigenous salmonella typhi strain by gas chromatography mass spectrometry

    International Nuclear Information System (INIS)

    Jabbar, A.; Ali, A.; Tawab, A.; Haque, A.; Iqbal, M.

    2014-01-01

    Typhoid, caused by Salmonella enterica serovar Typhi (S. Typhi), is a major health problem worldwide especially in developing countries. Lipopolysaccharides are one of the main virulence factors of S. Typhi. Hydrophobic lipid A anchors the lipopolysaccharides into the bacterial outer membrane and also serves as the epicenter of endotoxicity, which is linked to the presence of several fatty acid chains. Fatty acid profiling is, therefore, very important to understand the endotoxicity of these pathogenic bacteria. To profile lipid A with respect to its fatty acid constituents, a S. Typhi was isolated from blood culture of a typhoid patient from the Faisalabad region of Pakistan. After its complete identification using biochemical and molecular techniques, this bacterium was cultivated in a fermentor. The cell pellet obtained was subjected to hot phenol process to extract and purify lipopolysaccharides. Acid hydrolysis of the lipopolysaccharides yielded lipid A, which was subjected to analyses using GC-MS after derivatization into their fatty acid methyl esters. The fatty acid methyl esters were identified on the basis of their retention times, compared with standards as well as characteristic mass fragmentation patterns of their respective mass spectra. This fatty acid profiling revealed the occurrence of dodecanoic acid (C12:0), tetradecanoic acid (C14:0), 3-hydroxy tetradecanoic acid (3-OH C14:0) and hexadecanoic acid (C16:0) in the lipid A component of S. Typhi strain with the relative percentage abundances 8.5%, 12.5%, 55.9% and 23.1%, respectively. (author)

  3. Hazard analysis in uranium hexafluoride production facility

    International Nuclear Information System (INIS)

    Marin, Maristhela Passoni de Araujo

    1999-01-01

    The present work provides a method for preliminary hazard analysis of nuclear fuel cycle facilities. The proposed method identify both chemical and radiological hazards, as well as the consequences associated with accident scenarios. To illustrate the application of the method, a uranium hexafluoride production facility was selected. The main hazards are identified and the potential consequences are quantified. It was found that, although the facility handles radioactive material, the main hazards as associated with releases of toxic chemical substances such as hydrogen fluoride, anhydrous ammonia and nitric acid. It was shown that a contention bung can effectively reduce the consequences of atmospheric release of toxic materials. (author)

  4. Instrumentation for Detecting Hazardous Materials.

    Science.gov (United States)

    1980-06-01

    equipment a detector for monitoring radioactivity . A portable device for detecting the presence of hazardous mate- rials should also be included in the...Acrylonitrile 2 Natural Gas/LNG 2 211 ----- Material Name (Cont’d.) Number of Times Listed Radioactive Materials 2 Fertilizers 1 Cellulose Nitrate 1 Acrolein...Birnbaum, and Curtis Fincher, L "Fluorescence Determination of the Atmospheric Polutant NO2 in Impact of Lasers in Spectroscopy, Vol. 49 of Proceed

  5. Health hazards of China’s lead-acid battery industry: a review of its market drivers, production processes, and health impacts

    Science.gov (United States)

    2013-01-01

    Despite China’s leaded gasoline phase out in 2000, the continued high rates of lead poisoning found in children’s blood lead levels reflect the need for identifying and controlling other sources of lead pollution. From 2001 to 2007, 24% of children in China studied (N = 94,778) were lead poisoned with levels exceeding 100 μg/L. These levels stand well above the global average of 16%. These trends reveal that China still faces significant public health challenges, with millions of children currently at risk of lead poisoning. The unprecedented growth of China’s lead-acid battery industry from the electric bike, automotive, and photovoltaic industries may explain these persistently high levels, as China remains the world’s leading producer, refiner, and consumer of both lead and lead-acid batteries. This review assesses the role of China’s rising lead-acid battery industry on lead pollution and exposure. It starts with a synthesis of biological mechanisms of lead exposure followed by an analysis of the key technologies driving the rapid growth of this industry. It then details the four main stages of lead battery production, explaining how each stage results in significant lead loss and pollution. A province-level accounting of each of these industrial operations is also included. Next, reviews of the literature describe how this industry may have contributed to mass lead poisonings throughout China. Finally, the paper closes with a discussion of new policies that address the lead-acid battery industry and identifies policy frameworks to mitigate exposure. This paper is the first to integrate the market factors, production processes, and health impacts of China’s growing lead-acid battery industry to illustrate its vast public health consequences. The implications of this review are two-fold: it validates calls for a nationwide assessment of lead exposure pathways and levels in China as well as for a more comprehensive investigation into the health

  6. Volcanic hazards to airports

    Science.gov (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  7. Pyrolysis-gas chromatography-isotope ratio mass spectrometry for monitoring natural additives in polylactic acid active food packages.

    Science.gov (United States)

    Llana-Ruíz-Cabello, M; Pichardo, S; Jiménez-Morillo, N T; González-Vila, F J; Guillamón, E; Bermúdez, J M; Aucejo, S; Camean, A M; González-Pérez, J A

    2017-11-24

    Compound-specific isotope analysis (CSIA) usually requires preparative steps (pretreatments, extraction, derivatization) to get amenable chromatographic analytes from bulk geological, biological or synthetic materials. Analytical pyrolysis (Py-GC/MS) can help to overcome such sample manipulation. This communication describe the results obtained by hyphenating analytical pyrolysis (Py-GC) with carbon isotope-ratio mass spectrometry (IRMS) for the analysis of a polylactic acid (PLA) a based bio-plastic extruded with variable quantities of a natural plant extract or oregano essential oil. The chemical structural information of pyrolysates was first determined by conventional analytical pyrolysis and the measure of δ 13 C in specific compounds was done by coupling a pyrolysis unit to a gas chromatograph connected to a continuous flow IRMS unit (Py-GC-C-IRMS). Using this Py-CSIA device it was possible to trace natural additives with depleted δ 13 C values produced by C3 photosystem vegetation (cymene: -26.7‰±2.52; terpinene: -27.1‰±0.13 and carvacrol: -27.5‰±1.80 from oregano and two unknown structures: -23.3‰±3.32 and -24.4‰±1.70 and butyl valerate: -24.1‰±3.55 from Allium spp.), within the naturally isotopically enriched bio-plastic backbone derived from corn (C4 vegetation) starch (cyclopentanones: -14.2‰±2.11; lactide enantiomers: -9.2‰±1.56 and larger polymeric units: -17.2‰±1.71). This is the first application of Py-CSIA to characterize a bio-plastic and is shown as a promising tool to study such materials, providing not only a fingerprinting, but also valuable information about the origin of the materials, allowing the traceability of additives and minimizing sample preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Reclamation of acid, toxic coal spoils using wet flue gas desulfurization by-product, fly ash and sewage sludge. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.A.; Vimmerstedt, J.P.; Stehouwer, R.C.

    1997-03-01

    Establishment of vegetation on acid abandoned minelands requires modification of soil physical and chemical conditions. Covering the acid minesoil with topsoil or borrow soil is a common practice but this method may be restricted by availability of borrow soil and cause damage to the borrow site. An alternative approach is to use waste materials as soil amendments. There is a long history of using sewage sludge and fly ash as amendments for acid minesoils. Flue gas desulfurization (FGD) by-products are newer materials that are also promising amendments. Most flue gas sludges are mixtures of Calcium sulfate (CaSO{sub 4}), calcium sulfite (CaSO{sub 3}), calcium carbonate (CaCO{sub 3}), calcium hydroxide [Ca(OH){sub 2}], and fly ash. Some scrubbing processes produce almost pure gypsum (CaSO{sub 4}2H{sub 2}O). The primary purpose of the project is to evaluate two wet FGD by-products for effects on vegetation establishment and surface and ground water quality on an acid minesoil. One by-product from the Conesville, OH power plant (American Electric Power Service Corporation) contains primarily calcium sulfite and fly ash. The other by-product (Mg-gypsum FGD) from an experimental scrubber at the Zimmer power plant (Cincinnati Gas and Electric Company) is primarily gypsum with 4% magnesium hydroxide. These materials were compared with borrow soil and sewage sludge as minesoil amendments. Combinations of each FGD sludge with sewage sludge were also tested. This report summarizes two years of measurements of chemical composition of runoff water, ground water at two depths in the subsoil, soil chemical properties, elemental composition and yield of herbaceous ground cover, and elemental composition, survival and height of trees planted on plots treated with the various amendments. The borrow soil is the control for comparison with the other treatments.

  9. Reclamation of acid, toxic coal spoils using wet flue gas desulfurization by-product, fly ash and sewage sludge. Final report

    International Nuclear Information System (INIS)

    Kost, D.A.; Vimmerstedt, J.P.; Stehouwer, R.C.

    1997-03-01

    Establishment of vegetation on acid abandoned minelands requires modification of soil physical and chemical conditions. Covering the acid minesoil with topsoil or borrow soil is a common practice but this method may be restricted by availability of borrow soil and cause damage to the borrow site. An alternative approach is to use waste materials as soil amendments. There is a long history of using sewage sludge and fly ash as amendments for acid minesoils. Flue gas desulfurization (FGD) by-products are newer materials that are also promising amendments. Most flue gas sludges are mixtures of Calcium sulfate (CaSO 4 ), calcium sulfite (CaSO 3 ), calcium carbonate (CaCO 3 ), calcium hydroxide [Ca(OH) 2 ], and fly ash. Some scrubbing processes produce almost pure gypsum (CaSO 4 2H 2 O). The primary purpose of the project is to evaluate two wet FGD by-products for effects on vegetation establishment and surface and ground water quality on an acid minesoil. One by-product from the Conesville, OH power plant (American Electric Power Service Corporation) contains primarily calcium sulfite and fly ash. The other by-product (Mg-gypsum FGD) from an experimental scrubber at the Zimmer power plant (Cincinnati Gas and Electric Company) is primarily gypsum with 4% magnesium hydroxide. These materials were compared with borrow soil and sewage sludge as minesoil amendments. Combinations of each FGD sludge with sewage sludge were also tested. This report summarizes two years of measurements of chemical composition of runoff water, ground water at two depths in the subsoil, soil chemical properties, elemental composition and yield of herbaceous ground cover, and elemental composition, survival and height of trees planted on plots treated with the various amendments. The borrow soil is the control for comparison with the other treatments

  10. Measurements to determine the sulfuric acid dew point and the SO sub 3 concentration in flue gas of power plant vessels. Messungen zur Bestimmung des Saeuretaupunktes und der SO sub 3 -Konzentration im Rauchgas von Kraftwerkskesseln

    Energy Technology Data Exchange (ETDEWEB)

    Derichs, W.; Menden, W. (RWE Energie AG, Bergheim (Germany)); Ebel, P.K. (Apparatebau Hundsbach GmbH, Baden-Baden (Germany))

    1990-01-01

    Among the customary methods of dew point determination, the technique of recording the increase in conductivity between two electrodes at the moment of acid condensing onto them, and measuring at the same time the temperature of the sensor, is appropriate to determine the sulfuric acid dew point in dust-laden flue gas. By means of the sensitivity of a newly developed sensor, the accuracy of the measurement method could be improved to such an extent that also low acid dew points and rapid changes can be recorded reliably. Measurements have shown that the acid dew point primarily depends on the SO{sub 3} content which is substantially determined by the sulfur content of the fuel and the type of flue gas ducts. Further influential quantities include flue gas humidity, air surplus, other gaseous flue gas components such as HCl and HF, as well as the quantity, composition and temperature-dependent adsorption capability of the flue dusts. (orig./BBR).

  11. Gas Cylinder Safety, Course 9518

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-27

    This course, Gas Cylinder Safety (#9518), presents an overview of the hazards and controls associated with handling, storing, using, and transporting gas cylinders. Standard components and markings of gas cylinders are also presented, as well as the process for the procurement, delivery, and return of gas cylinders at Los Alamos National Laboratory (LANL).

  12. Coalbed methane: from hazard to resource

    Science.gov (United States)

    Flores, R.M.

    1998-01-01

    Coalbed gas, which mainly consists of methane, has remained a major hazard affecting safety and productivity in underground coal mines for more than 100 yr. Coalbed gas emissions have resulted in outbursts and explosions where ignited by open lights, smoking or improper use of black blasting powder, and machinery operations. Investigations of coal gas outbursts and explosions during the past century were aimed at predicting and preventing this mine hazard. During this time, gas emissions were diluted with ventilation by airways (eg, tunnels, vertical and horizontal drillholes, shsfts) and by drainage boreholes. The 1970s 'energy crisis' led to studies of the feasibility of producing the gas for commercial use. Subsequent research on the origin, accumulation, distribution, availability, and recoverability has been pursued vigorously during the past two decades. Since the 1970s research investigations on the causes and effects of coal mine outbursts and gas emissions have led to major advances towards the recovery and development of coalbed methane for commercial use. Thus, coalbed methane as a mining hazard was harnessed as a conventional gas resource.Coalbed gas, which mainly consists of methane, has remained a major hazard affecting safety and productivity in underground coal mines for more than 100 years. Coalbed gas emissions have resulted in outbursts and explosions where ignited by open lights, smoking or improper use of black blasting powder, and machinery operations. Investigations of coal gas outbursts and explosions during the past century were aimed at predicting and preventing this mine hazard. During this time, gas emissions were diluted with ventilation by airways (e.g., tunnels, vertical and horizontal drillholes, shafts) and by drainage boreholes. The 1970's `energy crisis' led to studies of the feasibility of producing the gas for commercial use. Subsequent research on the origin, accumulation, distribution, availability, and recoverability has been

  13. Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part VI. Multicomponent mixtures with glycols relevant to oil and gas and to liquid or supercritical CO2 transport applications

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios M.

    2016-01-01

    to data on ternary and multicomponent mixtures) to model the phase behaviour of ternary and quaternary systems with CO2 and glycols. It is concluded that CPA performs satisfactorily for most multicomponent systems considered. Some differences between the various modelling approaches are observed....... This work is the last part of a series of studies, which aim to arrive in a single "engineering approach" for applying CPA to acid gas mixtures, without introducing significant changes to the model. An overall assessment, based also on the obtained results of this series (Tsivintzelis et al., 2010, 2011...

  14. Hazardous Waste Treatment Facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1994-01-01

    To centralize treatment, storage, and areas for hazardous wastes, Los Alamos National Laboratory has designed a 1115 m2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes, radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks; bulking small organic waste volumes; processing scintillation vials; treating reactives such as lithium hydride and pyrophoric uranium; treating contaminated solids such as barium sand; treating plating wastes and other solutions with heavy metals and oxidizing organics: Separate treatment rooms will allow workers to avoid mixing waste types and prevent cross-contamination. The ventilation air from the treatment areas may contain hazardous or radioactive dust. Gas may also leak from process equipment. The gas treatment process includes separating solids and gases and neutralization or adsorption of the hazardous gases. The ventilation air from each room will first be filtered before being scrubbed in a common gas caustic scrubber on an outside pad. There are two levels of exhaust in each treatment room, one for heavy gases and another for light gases. Several features help mitigate or eliminate hazards due to spills and releases: each treatment room is sealed and under slight negative pressure; each room has its own HEPA filtration; to avoid mixing of incompatible wastes and reagents, portable individual spill-containment trays are used for skids, to limit the danger of spills, the waste is directly transferred from outside storage to the treatment room; to mitigate the consequences of a gas release in the room, mobile hoods are connected to the exhaust-air treatment system; the floor, walls, ceilings, fixtures, ducts, and piping are made of acid-resistant material or are coated

  15. Combined thin layer chromatography and gas chromatography with mass spectrometric analysis of lipid classes and fatty acids in malnourished polar bears (Ursus maritimus) which swam to Iceland.

    Science.gov (United States)

    Eibler, Dorothee; Krüger, Sabine; Skírnisson, Karl; Vetter, Walter

    2017-03-01

    Between 2008 and 2011, four polar bears (Ursus maritimus) from the Greenland population swam and/or drifted on ice to Iceland where they arrived in very poor body condition. Body fat resources in these animals were only between 0% and 10% of the body weight (usually 25%). Here we studied the lipid composition in different tissues (adipose tissue if available, liver, kidney and muscle). Lipid classes were determined by thin layer chromatography (TLC) and on-column gas chromatography with mass spectrometry (GC/MS). The fatty acid pattern of total lipids and free fatty acids was analyzed by GC/MS in selected ion monitoring (SIM) mode. Additionally, cholesteryl esters and native fatty acid methyl esters, initially detected as zones in thin layer chromatograms, were enriched by solid phase extraction and quantified by GC/MS. The ratio of free fatty acids to native fatty acid methyl esters could be correlated with the remained body lipids in the polar bears and thus may also serve as a marker for other starving animals or even for humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Glutamate decarboxylase and. gamma. -aminobutyric acid transaminase activity in brain structures during action of high concentrated sulfide gas on a background of hypo- and hypercalcemia

    Energy Technology Data Exchange (ETDEWEB)

    Kadyrov, G.K.; Aliyev, A.M.

    Activity of the following enzymes was studied on the background of hypo- and hypercalcemia and exposure to high concentration of sulfide gas: glutamate decarboxylase (GDC) and {gamma}-aminobutyric acid transaminase (GABA-T). These enzymes regulate metabolism of GABA. The results showed that a 3.5 hr exposure to sulfide gas at a concentration of 0.3 mg/1 led to significantly increased activity of GDC in cerebral hemispheres, cerebellum and in brain stem. Activity of GABA-T dropped correspondingly. On the background of hypercalcemia induced by im. injection of 10% calcium gluconate (0.6 m1/200 g body weight of experimental rats) the negative effect caused by the exposure to sulfide gas was diminished. Under conditions of hypocalcemia (im. injection of 10 mg/200 g body weight of sodium oxalate), exposure to sulfide gas led to a significantly decreased activity of GDC and GABA-T in the hemispheres and in the brain stem, but in the cerebellum the activity of GDC increased sharply while that of GABA-T decreased correspondingly. 8 refs.

  17. Pyrolysis-Gas Chromatography/Mass Spectrometry Characterization of Humic Acids in Coastal Spodosols from Southeastern Brazil

    NARCIS (Netherlands)

    Buurman, P.; Vidal-Torrado, P.; Martin-Neto, L.

    2012-01-01

    This study on humic acids (HAs) of podzol horizons from the southeastern region of Brazil investigated the accumulation and degradation of soil organic matter (SOM) in warm-climate podzols. Humic acids from sandy coastal Spodosols (Histic Alaquod and Arenic Alorthod) from Cardoso Island in Sao Paulo

  18. Measurement of the metabolic interconversion of deuterium-labeled fatty acids by gas chromatography/mass spectrometry

    International Nuclear Information System (INIS)

    Rohwedder, W.K.; Duval, S.M.; Wolf, D.J.; Emken, E.A.

    1990-01-01

    An analytical method that was developed to analyze deuterium-labeled fatty acids in human blood has been extended to identify labeled fatty acids from C14 to C24 chain length which are formed by metabolic processes such as desaturation, elongation, or shortening of the labeled fatty acids fed. A new computer and a hardware adder have been utilized to assure reliable data acquisition. Relative standard deviations for the analysis of labeled fatty acids were measured at 0.02, 0.03, and 0.04 at the 5%, 1%, and 0.2% levels of the labeled fatty acid methyl esters, respectively. The method makes extensive use of standards and computer processing for accuracy and high productivity. Data from a chylomicron triacylglycerol fraction are included to demonstrate the sensitivity of detection of metabolites formed by desaturation and elongation

  19. Effects of xylazine on acid-base balance and arterial blood-gas tensions in goats under different environmental temperature and humidity conditions

    Directory of Open Access Journals (Sweden)

    E.G.M. Mogoa

    2000-07-01

    Full Text Available The effects of acute exposure to 3 different temperature and humidity conditions on arterial blood-gas and acid-base balance in goats were investigated after intravenous bolus administration of xylazine at a dose of 0.1 mg/kg. Significant (P < 0.05 changes in the variables occurred under all 3 environmental conditions. Decreases in pH, partial pressure of oxygen and oxyhaemoglobin saturation were observed, and the minimum values for oxygen tension and oxyhaemoglobin saturation were observed within 5 min of xylazine administration. The pH decreased to its minimum values between 5 and 15 min. Thereafter, the variables started to return towards baseline, but did not reach baseline values at the end of the 60 min observation period. Increases in the partial pressure of carbon dioxide, total carbon dioxide content, bicarbonate ion concentration, and the actual base excess were observed. The maximum increase in the carbon dioxide tension occurred within 5 min of xylazine administration. The increase in the actual base excess only became significant after 30 min in all 3 environments, and maximal increases were observed at 60 min. There were no significant differences between the variables in the 3 different environments. It was concluded that intravenous xylazine administration in goats resulted in significant changes in arterial blood-gas and acid-base balance that were associated with hypoxaemia and respiratory acidosis, followed by metabolic alkalosis that continued for the duration of the observation period. Acute exposure to different environmental temperature and humidity conditions after xylazine administration did not influence the changes in arterial blood-gas and acid-base balance.

  20. Hazard function theory for nonstationary natural hazards

    Science.gov (United States)

    Read, L.; Vogel, R. M.

    2015-12-01

    Studies from the natural hazards literature indicate that many natural processes, including wind speeds, landslides, wildfires, precipitation, streamflow and earthquakes, show evidence of nonstationary behavior such as trends in magnitudes through time. Traditional probabilistic analysis of natural hazards based on partial duration series (PDS) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance is constant through time. Given evidence of trends and the consequent expected growth in devastating impacts from natural hazards across the world, new methods are needed to characterize their probabilistic behavior. The field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (x) with its failure time series (t), enabling computation of corresponding average return periods and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose PDS magnitudes are assumed to follow the widely applied Poisson-GP model. We derive a 2-parameter Generalized Pareto hazard model and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series x, with corresponding failure time series t, should have application to a wide class of natural hazards.

  1. Gas chromatographic determination of organic acids from fruit juices by combined resin mediated methylation and extraction in supercritical carbon dioxide.

    Science.gov (United States)

    Barden, T J; Croft, M Y; Murby, E J; Wells, R J

    1997-10-17

    A procedure in which anionic analytes, trapped on ion exchange resin, are simultaneously methylated and released using methyl iodide in either supercritical carbon dioxide or acetonitrile has been extended to polyfunctional organic acids. The combined SFE methylation of fruit juice acids trapped onto ion exchange resin proceeds in good yield producing the methyl esters of fumaric, succinic, malic, tartaric, isocitric and citric acids which are readily separated by GC. Using this procedure low concentrations of one acid can be detected and quantitated in the presence of very high concentrations of another. This new method detects tartaric acid at levels of 10 ppm in juices containing 10,000 ppm citric acid. Quantitation was performed either by using GC-FID with triethyl citrate or diethyl tartrate as internal standards or with the element specific calibration capability of the GC-AED. A simple new technique for the determination of citric/isocitric acid ratio is now available. Also, in contrast to HPLC methods, the identity of an analyte is readily confirmed by GC-MS.

  2. Analysis of feed stream acid gas concentration effects on the transport properties and separation performance of polymeric membranes for natural gas sweetening: A comparison between a glassy and rubbery polymer

    KAUST Repository

    Vaughn, Justin T.

    2014-09-01

    A 6FDA based polyamide-imide, 6F-PAI-1, is compared to Pebax®, a commercially available rubbery polyether/polyamide block copolymer, for the simultaneous separation of CO2 and H2S from CH4. Feed streams of 20/20/60 and 5/45/50H2S/CO2/CH4 were used to compare the effect of acid gas concentration on the separation efficiency of 6F-PAI-1 and Pebax® under industrially relevant conditions. 6F-PAI-1 showed CO2/CH4 selectivities at 850psia total feed pressure of 30 and 40 for the 20/20/60 and 5/45/50 feed streams, respectively, while selectivity for H2S/CH4 was approximately 20 for both feeds. Pebax® showed selectivities of 40 and 10 for H2S/CH4 and CO2/CH4, respectively. Both selectivities were mostly independent of acid gas concentration in the feed, an unsurprising trend considering the non-glassy nature of this material. The selectivities in 6F-PAI-1 translated to less than 6% CH4 lost in the permeate stream for both feeds, while for the 5/45/50 feed, CH4 fraction in the permeate at 850psia was less than 4%. These promising results suggest that glassy polymers possessing favorable intrinsic plasticization resistance, such as 6F-PAI-1, may be appropriate for the typical case of natural gas sweetening where CO2 concentration in the feed is higher than it is for H2S. © 2014 Elsevier B.V.

  3. Combined Determination of Poly-β-Hydroxyalkanoic and Cellular Fatty Acids in Starved Marine Bacteria and Sewage Sludge by Gas Chromatography with Flame Ionization or Mass Spectrometry Detection

    Science.gov (United States)

    Odham, Göran; Tunlid, Anders; Westerdahl, Gunilla; Mårdén, Per

    1986-01-01

    Extraction of lipids from bacterial cells or sewage sludge samples followed by simple and rapid extraction procedures and room temperature esterification with pentafluorobenzylbromide allowed combined determinations of poly-β-hydroxyalkanoate constituents and fatty acids. Capillary gas chromatography and flame ionization or mass spectrometric detection was used. Flame ionization permitted determination with a coefficient of variation ranging from 10 to 27% at the picomolar level, whereas quantitative chemical ionization mass spectrometry afforded sensitivities for poly-β-hydroxyalkanoate constituuents in the attomolar range. The latter technique suggests the possibility of measuring such components in bacterial assemblies with as few as 102 cells. With the described technique using flame ionization detection, it was possible to study the rapid formation of poly-β-hydroxyalkanoate during feeding of a starved marine bacterium isolate with a complex medium or glucose and correlate the findings to changes in cell volumes. Mass spectrometric detection of short β-hydroxy acids in activated sewage sludge revealed the presence of 3-hydroxybutyric, 3-hydroxyhexanoic, and 3-hydroxyoctanoic acids in the relative proportions of 56, 5 and 39%, respectively. No odd-chain β-hydroxy acids were found. PMID:16347181

  4. Method for the determination of carboxylic acids in industrial effluents using dispersive liquid-liquid microextraction with injection port derivatization gas chromatography-mass spectrometry.

    Science.gov (United States)

    Makoś, Patrycja; Fernandes, Andre; Boczkaj, Grzegorz

    2017-09-29

    The paper presents a new method for the determination of 15 carboxylic acids in samples of postoxidative effluents from the production of petroleum bitumens using ion-pair dispersive liquid-liquid microextraction and gas chromatography coupled to mass spectrometry with injection port derivatization. Several parameters related to the extraction and derivatization efficiency were optimized. Under optimized experimental conditions, the obtained limit of detection and quantification ranged from 0.0069 to 1.12μg/mL and 0.014 to 2.24μg/mL, respectively. The precision (RSD ranged 1.29-6.42%) and recovery (69.43-125.79%) were satisfactory. Nine carboxylic acids at concentrations ranging from 0.10μg/mL to 15.06μg/mL were determined in the raw wastewater and in samples of effluents treated by various oxidation methods. The studies revealed a substantial increase of concentration of benzoic acids, in samples of wastewater after treatment, which confirms the need of carboxylic acids monitoring during industrial effluent treatment processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Frequent occurrence of Osteomalacia among grazing cattle caused by hydrofluoric acid contained in the flue gas discharged by a chemical plant

    Energy Technology Data Exchange (ETDEWEB)

    Hupka, E; Luy, P

    1929-01-01

    In 1928 a number of animals grazing in the vicinity of a chemical plant fell ill to a disease which was diagnosed as fluorosis. But the symptoms shown by the diseased animals were in many respects different from those commonly associated with such cases. The two front legs became lame, toes and ankles were swollen. The pulse rate was higher, an increased body temperature was measured and pain was felt. In some cases the hind legs became stiff. Furthermore, an enormous loss of weight was observed and swellings appeared along the ribs. The milk production decreased. All these symptoms indicate osteomalacia. The grass on which these animals fed was examined but it was found lush and in no way lacking in Ca and phosphoric acid (osteomalacia is a deficiency of these two minerals). The toxicant was found to be the fluorine deposited on the grass and plants. Hydrofluoric acid attacks the calcium in the bones and dissolves it. The consequence is osteoporosis. The fluorine is discharged with the flue gas of the nearby chemical plant. The disease did not occur outside the range of the chemical plant. The condition of the animals visibly improved during winter time when they were fed with fodder coming from an unpolluted area. The chemical physiological examinations which were conducted showed that the calcium of the bones is used to neutralize the hydrofluoric acid. The by-product of this neutralizing process, phosphoric acid, is discharged with the urine. 12 references.

  6. Fast comprehensive two-dimensional gas chromatography method for fatty acid methyl ester separation and quantification using dual ionic liquid columns.

    Science.gov (United States)

    Nosheen, Asia; Mitrevski, Blagoj; Bano, Asghari; Marriott, Philip J

    2013-10-18

    Safflower oil is a complex mixture of C18 saturated and unsaturated fatty acids amongst other fatty acids, and achieving separation between these similar structure components using one dimensional gas chromatography (GC) may be difficult. This investigation aims to obtain improved separation of fatty acid methyl esters in safflower oil, and their quantification using comprehensive two-dimensional GC (GC×GC). Here, GC×GC separation is accomplished by the coupling of two ionic liquid (IL) column phases: the combination of SLB-IL111 with IL59 column phases was finally selected since it provided excellent separation of a FAME standard mixture, as well as fatty acids in safflower and linseed oil, compared to other tested column sets. Safflower oil FAME were well separated in a short run of 16min. FAME validation was demonstrated by method reproducibility, linearity over a range up to 500mgL(-1), and limits of detection which ranged from 1.9mgL(-1) to 5.2mgL(-1) at a split ratio of 20:1. Quantification was carried out using two dilution levels of 200-fold for major components and 20-fold for trace components. The fatty acids C15:0 and C17:0 were not reported previously in safflower oil. The SLB-IL111/IL59 column set proved to be an effective and novel configuration for separation and quantification of vegetable and animal oil fatty acids. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Gas chromatographic-mass spectrometric investigation of n-alkanes and carboxylic acids in bottom sediments of the northern Caspian Sea

    Science.gov (United States)

    Kenzhegaliev, Akimgali; Zhumagaliev, Sagat; Kenzhegalieva, Dina; Orazbayev, Batyr

    2018-03-01

    Prior to the start of experimental oil production in the Kashagan field (northern part of the Caspian Sea), n-alkanes and carboxylic acids contained in samples obtained from bottom sediments in the area of artificial island "D" were investigated by gas chromatography-mass spectrometry. Concentrations of 10 n-alkanes (composed of C10-C13, C15-C20) and 11 carboxylic acids (composed of C6-C12, C14-C16) were identified and measured. Concentrations of individual alkanes and carboxylic acids in bottom sediments of the various samples varied between 0.001 ÷ 0.88 μg/g and 0.001 ÷ 1.94 μg/g, respectively. Mass spectra, in particular the M+ molecular ion peak and the most intense peaks of fragment ions, are given. The present study illustrates the stability of molecular ions to electronic ionisation and the main fragment ions to the total ion current and shows that the initial fragmentation of alkanes implies radical cleavage of C2H5 rather than CH3. All aliphatic monocarboxylic acids studied were characterised by McLafferty rearrangement leading to the formation of F4 cation-radical with m/z 60 and F3 cation-radical with m/z 88 in the case of ethylhexanoic acid. The formation of oxonium ions presents another important aspect of acid fragmentation. Using mass numbers of oxonium ions and rearrangement ions allows determination of the substitution character in α- and β- C atoms. The essence of our approach is to estimate the infiltration of hydrocarbon fluids from the enclosing formation into sea water, comprising an analysis of derivatives of organic compounds in bottom sediments. Thus, concentrations of derived organic molecules can serve as a basis for estimates of the depth at which hydrocarbon fluids leak, i.e., to serve as an auxiliary technique in the search for hydrocarbon deposits and to repair well leaks.

  8. Effects of formic acid hydrolysis on the quantitative analysis of radiation-induced DNA base damage products assayed by gas chromatography/mass spectrometry

    International Nuclear Information System (INIS)

    Swarts, S.G.; Smith, G.S.; Miao, L.; Wheeler, K.T.

    1996-01-01

    Gas chromatography/mass spectrometry (GC/ MS-SIM) is an excellent technique for performing both qualitative and quantitative analysis of DNA base damage products that are formed by exposure to ionizing radiation or by the interaction of intracellular DNA with activated oxygen species. This technique commonly uses a hot formic acid hydrolysis step to degrade the DNA to individual free bases. However, due to the harsh nature of this degradation procedure, the quantitation of DNA base damage products may be adversely affected. Consequently, we examined the effects of various formic acid hydrolysis procedures on the quantitation of a number of DNA base damage products and identified several factors that can influence this quantitation. These factors included (1) the inherent acid stabilities of both the lesions and the internal standards; (2) the hydrolysis temperature; (3) the source and grade of the formic acid; and (4) the sample mass during hydrolysis. Our data also suggested that the N, O-bis (trimethylsilyl)trifluoroacetamide (BSTFA) derivatization efficiency can be adversely affected, presumably by trace contaminants either in the formic acid or from the acid-activated surface of the glass derivatization vials. Where adverse effects were noted, modifications were explored in an attempt to improve the quantitation of these DNA lesions. Although experimental steps could be taken to minimize the influence of these factors on the quantitation of some base damage products, no single procedure solved the quantitation problem for all base lesions. However, a significant improvement in the quantitation was achieved if the relative molecular response factor (RMRF) values for these lesions were generated with authentic DNA base damage products that had been treated exactly like the experimental samples. (orig.)

  9. Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-03-01

    Full Text Available TiO2 nanoparticles were synthesized via a simple hydrothermal method in a sodium hydroxide (NaOH) aqueous solution and washed with distilled water and different concentrations of hydrochloric acid which acted as the morphological...

  10. Determination of the Cyanide Metabolite 2-Aminothiazoline-4-Carboxylic Acid in Urine and Plasma by Gas Chromatography-Mass Spectrometry

    National Research Council Canada - National Science Library

    Logue, Brian A; Kirschten, Nicholas P; Petrikovics, Ilona; Moser, Matthew A; Rockwood, Gary A; Baskin, Steven I

    2005-01-01

    The cyanide metabolite 2-aminothiazoline.4-carboxylic acid (ATCA) is a promising biomarker for cyanide exposure because of its stability and the limitations of direct determination of cyanide and more abundant cyanide metabolites...

  11. Interaction of silicene with amino acid analogues—from physical to chemical adsorption in gas and solvated phases

    Science.gov (United States)

    Jagvaral, Yesukhei; He, Haiying; Pandey, Ravindra

    2018-01-01

    Silicene is an emerging 2D material, and an understanding of its interaction with amino acids, the basic building blocks of protein, is of fundamental importance. In this paper, we investigate the nature of adsorption of amino-acid analogues on silicene employing density functional theory and an implicit solvation model. Amino acid analogues are defined as CH3-R molecules, where R is the functional group of the amino acid side chain. The calculated results find three distinct groups within the amino-acid analogues considered: (i) group I, which includes MeCH3 and MeSH, interacts with silicene via the van der Waals dispersive terms leading to physisorbed configurations; (ii) group II strongly interacts with silicene forming Si-O/N chemical bonds in the chemisorbed configurations; and (iii) group III, which consists of the phenyl group, interacts with silicene via π-π interactions leading to physisorbed configurations. The results show that the lateral chains of the amino acids intrinsically determine the interactions between protein and silicene at the interface under the given physiological conditions.

  12. Br2 production from the heterogeneous reaction of gas-phase OH with aqueous salt solutions: Impacts of acidity, halide concentration, and organic surfactants.

    Science.gov (United States)

    Frinak, Elizabeth K; Abbatt, Jonathan P D

    2006-09-07

    This study reports the first laboratory measurement of gas-phase Br2 production from the reaction between gas-phase hydroxyl radicals and aqueous salt solutions. Experiments were conducted at 269 K in a rotating wetted-wall flow tube coupled to a chemical-ionization mass spectrometer for analysis of gas-phase components. From both pure NaBr solutions and mixed NaCl/NaBr solutions, the amount of Br2 released was found to increase with increasing acidity, whereas it was found to vary little with increasing concentration of bromide ions in the sample. For mixed NaCl/NaBr solutions, Br2 was formed preferentially over Cl2 unless the Br- levels in the solution were significantly depleted by OH oxidation, at which point Cl2 formation was observed. Presence of a surfactant in solution, sodium dodecyl sulfate, significantly suppressed the formation of Br2; this is the first indication that an organic surfactant can affect the rate of interfacial mass transfer of OH to an aqueous surface. The OH-mediated oxidation of bromide may serve as a source of active bromine in the troposphere and contribute to the subsequent destruction of ozone that proceeds in marine-influenced regions of the troposphere.

  13. Periodic DFT study of acidic trace atmospheric gas molecule adsorption on Ca- and Fe-doped MgO(001) surface basic sites.

    Science.gov (United States)

    Baltrusaitis, Jonas; Hatch, Courtney; Orlando, Roberto

    2012-08-02

    The electronic properties of undoped and Ca- or Fe-doped MgO(001) surfaces, as well as their propensity toward atmospheric acidic gas (CO2, SO2, and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, O(surf), using periodic density functional theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the O(surf) sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe-doped MgO(001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca-doped MgO(001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces.

  14. Airborne geophysical radon hazard mapping

    International Nuclear Information System (INIS)

    Walker, P.

    1993-01-01

    Shales containing uranium pose a radon health hazard even when covered by several meters of overburden. Such an alum shale in southern Norway has been mapped with a joint helicopter borne electromagnetic (HEM) and radiometric survey. Results are compared with ground spectrometer, radon emanometer and radon gas measurements in dwellings, and a model to predict radon gas concentrations from the airborne data is developed. Since the shale is conductive, combining the HEM data with the radiometric channel allows the shale to be mapped with greater reliability than if the radiometric channel were used alone. Radiometrically more active areas which do not pose a radon gas hazard can thus be separated from the shales which do. The ground follow-up work consisted of spectrometer and radon emanometer measurements over a uranium anomaly coinciding with a conductor. The correlation between the airborne uranium channel, the ground uranium channel and emanometry is extremely good, indicating that airborne geophysics can, in this case, be used to predict areas having a high radon potential. Contingency tables comparing both radon exhalation and concentration in dwellings with the airborne uranium data show a strong relationship exists between exhalation and the airborne data and while a relationship between concentration and the airborne data is present, but weaker

  15. Hazard Analysis Database Report

    CERN Document Server

    Grams, W H

    2000-01-01

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for U S . Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR). The FSAR is part of the approved Authorization Basis (AB) for the River Protection Project (RPP). This document describes, identifies, and defines the contents and structure of the Tank Farms FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The Hazard Analysis Database supports the preparation of Chapters 3 ,4 , and 5 of the Tank Farms FSAR and the Unreviewed Safety Question (USQ) process and consists of two major, interrelated data sets: (1) Hazard Analysis Database: Data from t...

  16. Global Landslide Hazard Distribution

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Landslide Hazard Distribution is a 2.5 minute grid of global landslide and snow avalanche hazards based upon work of the Norwegian Geotechnical Institute...

  17. Job Hazard Analysis

    National Research Council Canada - National Science Library

    1998-01-01

    .... Establishing proper job procedures is one of the benefits of conducting a job hazard analysis carefully studying and recording each step of a job, identifying existing or potential job hazards...

  18. Determination of low-molecular-weight dicarboxylic acids in atmospheric aerosols by injection-port derivatization and gas chromatography-mass spectrometry

    Science.gov (United States)

    Ding, W.; Hsu, C.

    2008-12-01

    Currently, the investigations on aerosol water-soluble organic compounds (WSOCs) formed by burning biomass have become increasingly concerned with the role of these compounds in atmospheric chemistry and their effect on climate, because they have great potential to influence cloud formation, precipitation, and climate on both global and regional scales. Of these compounds, low-molecular weight (LMW) dicarboxylic acids (from C2 to C10) have attracted the most interest because of their properties as specific tracers for the burning of biomass. In this study, a modified injection-port derivatization and gas chromatography - mass spectrometry method was developed and evaluated for rapid determination of LMW dicarboxylic acids in atmospheric aerosol samples. The parameters related to the derivatization process (i.e., type of ion-pair reagent, injection-port temperature and concentration of ion-pair reagent) were optimized. Tetrabutylammonium hydroxide (TBA-OH) dissolved in methanol used as the ion-pair solution gave excellent yield for di-butyl ester low-molecular weight derivatives. Solid-phase extraction method instead of rotary evaporation was used to concentrate analytes from filter extracts. The recovery from filter extracts ranged from 67 to 86% with relative standard deviation (RSD) less than 13%. The concentrations of dicarboxylated C2, C3, C4, C5 and C6-C10 in atmospheric aerosols ranged from 91-240 ng/m3, 11-56 ng/m3, 12-49 ng/m3, 8-35 ng/m3 and n.d. to 17 ng/m3, respectively. Oxalic (C2) acid was the dominant dicarboxylic acids detected in aerosol samples. The total concentrations of the LMW dicarboxylic acids (from C2 to C10) correspond to 2.2 to 2.6% of the total aerosol mass.

  19. Oxygen Reduction on Gas-Diffusion Electrodes for Phosphoric Acid Fuel Cells by a Potential Decay Method

    DEFF Research Database (Denmark)

    Li, Qingfeng; Gang, Xiao; Hjuler, Hans Aage

    1995-01-01

    The reduction of gaseous oxygen on carbon supported platinum electrodes has been studied at 150 degrees C with polarization and potential decay measurements. The electrolyte was either 100 weight percent phosphoric acid or that acid with a fluorinated additive, potassium perfluorohexanesulfonate ......6F13SO3K). The pseudo-Tafel curves of the overpotential vs. log (ii(L)/(i(L) - i)) show a two-slope behavior, probably due to different adsorption mechanisms. The potential relaxations as functions of log (t + tau) and log (-d eta/dt) have been plotted. The variations of these slopes...

  20. Study of disulfide reduction and alkyl chloroformate derivatization of plasma sulfur amino acids using gas chromatography–mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Švagera, Z.; Hanzlíková, D.; Šimek, Petr; Hušek, Petr

    2012-01-01

    Roč. 402, č. 9 (2012), s. 2953-2963 ISSN 1618-2642 R&D Projects: GA MZd NS9755; GA ČR GAP206/10/2401; GA ČR GA203/09/2014 Institutional research plan: CEZ:AV0Z50070508 Keywords : plasma amino acids * disulfide-reducing agents * trichloroacetic acid deproteinization Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.659, year: 2012 http://www.springerlink.com/content/781wln3085q3v21r/

  1. Hazard function theory for nonstationary natural hazards

    Science.gov (United States)

    Read, Laura K.; Vogel, Richard M.

    2016-04-01

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.

  2. Acidic sweep gas with carbonic anhydrase coated hollow fiber membranes synergistically accelerates CO2 removal from blood

    OpenAIRE

    Arazawa, D. T.; Kimmel, J. D.; Finn, M.C.; Federspiel, W. J.

    2015-01-01

    The use of extracorporeal carbon dioxide removal (ECCO2R) is well established as a therapy for patients suffering from acute respiratory failure. Development of next generation low blood flow (< 500 mL/min) ECCO2R devices necessitates more efficient gas exchange devices. Since over 90% of blood CO2 is transported as bicarbonate (HCO3−), we previously reported development of a carbonic anhydrase (CA) immobilized bioactive hollow fiber membrane (HFM) which significantly accelerates CO2 removal ...

  3. Regulation of acid-base status in ectothermic vertebrates: the consequences for oxygen pressures in lung gas and arterial blood.

    Science.gov (United States)

    Glass, M L; Soncini, R

    1995-01-01

    Extensive literature reports a negative delta pHa/delta t in ectothermic vertebrates, but data are scarce as to its consequences for O2 transport. In reptiles, the negative delta pHa/delta t results from an elevated lung gas PCO2 (PACO2) at higher temperatures, implying a corresponding fall of PAO2. In parallel, arterial PO2 rises with temperature, due to a combination of central vascular shunt and decreasing Hb.O2 affinity. As a result, the PO2 gradient between lung gas and blood (PA-aO2) becomes reduced at higher temperatures. In amphibians, the negative delta pHa/delta t results from combined cutaneous and pulmonary CO2 elimination. We propose that this leads to a rather temperature-independent lung gas PO2. Moreover, our calculations suggest that resting reptiles and amphibians maintain a relatively large PA-aO2 also at high temperatures. The negative delta pHa/delta t in teleost fish is generally considered to be a result of modulated plasma [HCO3-]. Recent data from our laboratory suggest that acute pH adjustments at high temperatures may involve alterations of PaCO2 through gill ventilation, leading to a decrease of PaO2 with rising temperature.

  4. Hazardous waste operational plan for site 300

    International Nuclear Information System (INIS)

    Roberts, R.S.

    1982-01-01

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department

  5. Comparison of the Use of Gas Chromotography, Spectrophotometry, and Near Infrared Spectropscopy to Quantify Prussic Acid Potential in Forages

    Science.gov (United States)

    Sorghum [Sorghum bicolor (L.) Moench] has been shown to contain the cyanogenic glycoside dhurrin, which is responsible for the disorder known as prussic acid poisoning in livestock. The current standard method for estimating HCN uses spectrophotometery to measure the aglycone of the dhurrin, p-hydro...

  6. Gas chromatographic determination of acid herbicides in surface water samples with electron-capture detection and mass spectrometric confirmation

    NARCIS (Netherlands)

    Vink, M.; Poll, J.M. van der

    1996-01-01

    The development of a multi-residue method for the determination of eight polar acidic herbicides (MCPA, MCPB, mecoprop, 2,4-D, dichlorprop, bentazone, dicamba and dikegulac) in surface water is described. The method involves an off-line solid-phase extraction (SPE) procedure prior to instrumental

  7. Evidence of rich microbial communities in the subsoil of a boreal acid sulphate soil conducive to greenhouse gas emissions

    Czech Academy of Sciences Publication Activity Database

    Šimek, Miloslav; Virtanen, S.; Krištůfek, Václav; Simojoki, A.; Yli-Halla, M.

    2011-01-01

    Roč. 140, 1-2 (2011), s. 113-122 ISSN 0167-8809 R&D Projects: GA ČR GA526/09/1570; GA MŠk LC06066 Institutional research plan: CEZ:AV0Z60660521 Keywords : acid sulphate soil * microorganisms * carbon Subject RIV: EH - Ecology, Behaviour Impact factor: 3.004, year: 2011

  8. Determination of low-molecular-weight dicarboxylic acids in atmospheric aerosols by injection-port derivatization and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Hsu, Ching-Lin; Ding, Wang-Hsien

    2009-12-15

    A rapid and environmental-friendly injection-port derivatization with gas chromatography-mass spectrometry (GC-MS) method was developed to determine selected low-molecular weight (LMW) dicarboxylic acids (from C2 to C10) in atmospheric aerosol samples. The parameters related to the derivatization process (i.e., type of ion-pair reagent, injection-port temperature and concentration of ion-pair reagent) were optimized. Tetrabutylammonium hydroxide (TBA-OH) 20 mM in methanol gave excellent yield for di-butyl ester dicarboxylate derivatives at injection-port temperature at 300 degrees C. Solid-phase extraction (SPE) method instead of rotary evaporation was used to concentrate analytes from filter extracts. The recovery from filter extracts ranged from 78 to 95% with relative standard deviation (RSD) less than 12%. Limits of quantitation (LOQs) ranged from 25 to 250 pg/m(3). The concentrations of di-carboxylated C2-C5 and total C6-C10 in particles of atmospheric aerosols ranged from 91.9 to 240, 11.3 to 56.7, 9.2 to 49.2, 8.7 to 35.3 and n.d. to 37.8 ng/m(3), respectively. Oxalic acid (C2) was the dominant LMW-dicarboxylic acids detected in aerosol samples. The quantitative results were comparable to the results obtained by the off-line derivatization.

  9. Identification of ortho-Substituted Benzoic Acid/Ester Derivatives via the Gas-Phase Neighboring Group Participation Effect in (+)-ESI High Resolution Mass Spectrometry.

    Science.gov (United States)

    Blincoe, William D; Rodriguez-Granillo, Agustina; Saurí, Josep; Pierson, Nicholas A; Joyce, Leo A; Mangion, Ian; Sheng, Huaming

    2018-04-01

    Benzoic acid/ester/amide derivatives are common moieties in pharmaceutical compounds and present a challenge in positional isomer identification by traditional tandem mass spectrometric analysis. A method is presented for exploiting the gas-phase neighboring group participation (NGP) effect to differentiate ortho-substituted benzoic acid/ester derivatives with high resolution mass spectrometry (HRMS 1 ). Significant water/alcohol loss (>30% abundance in MS 1 spectra) was observed for ortho-substituted nucleophilic groups; these fragment peaks are not observable for the corresponding para and meta-substituted analogs. Experiments were also extended to the analysis of two intermediates in the synthesis of suvorexant (Belsomra) with additional analysis conducted with nuclear magnetic resonance (NMR), density functional theory (DFT), and ion mobility spectrometry-mass spectrometry (IMS-MS) studies. Significant water/alcohol loss was also observed for 1-substituted 1, 2, 3-triazoles but not for the isomeric 2-substituted 1, 2, 3-triazole analogs. IMS-MS, NMR, and DFT studies were conducted to show that the preferred orientation of the 2-substituted triazole rotamer was away from the electrophilic center of the reaction, whereas the 1-subtituted triazole was oriented in close proximity to the center. Abundance of NGP product was determined to be a product of three factors: (1) proton affinity of the nucleophilic group; (2) steric impact of the nucleophile; and (3) proximity of the nucleophile to carboxylic acid/ester functional groups. Graphical Abstract ᅟ.

  10. Gas processing industrial hygiene needs

    International Nuclear Information System (INIS)

    D'Orsie, S.M.

    1992-01-01

    Handling of gases and natural gas liquids provides many opportunities for workers to be exposed to adverse chemical and physical agents. A brief overview of common hazards found in the processing of gas and natural gas liquids is presented in this paper. Suggestions on how an employer can obtain assistance in evaluating his workplace are also presented.presented

  11. Gastro-oesophageal reflux monitoring: review and consensus report on detection and definitions of acid, non-acid, and gas reflux

    Science.gov (United States)

    Sifrim, D; Castell, D; Dent, J; Kahrilas, P J

    2004-01-01

    To date, most concepts on the frequency of gastro-oesophageal reflux episodes and the efficiency of the antireflux barrier have been based on inferences derived from measurement of oesophageal pH. The development of intraluminal impedance monitoring has highlighted the fact that pH monitoring does not detect all gastro-oesophageal reflux events when little or no acid is present in the refluxate, even if special pH tracing analysis criteria are used. In November 2002, a workshop took place at which 11 specialists in the field of gastro-oesophageal reflux disease discussed and criticised all currently available techniques for measurement of reflux. Here, a summary of their conclusions and recommendations of how to achieve the best results from the various techniques now available for reflux measurement is presented. PMID:15194656

  12. Prevalence of hazardous exposures in veterinary practice

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, P.; Schenker, M.B.; Green, R.; Samuels, S.

    1989-01-01

    All female graduates of a major U.S. veterinary school were surveyed by mailed questionnaire to obtain details of work practice and hazard exposure during the most recent year worked and during all pregnancies. Exposure questions were based on previously implicated occupational hazards which included anesthetic gases, radiation, zoonoses, prostaglandins, vaccines, physical trauma, and pesticides. The response rate was 86% (462/537). We found that practice type and pregnancy status were major determinants of hazard exposure within the veterinary profession. Small-animal practitioners reported the highest rates of exposure to anesthetic gas (94%), X-ray (90%), and pesticides (57%). Large-animal practitioners reported greater rates of trauma (64%) and potential exposure to prostaglandins (92%), Brucella abortus vaccine (23%), and carbon monoxide (18%). Potentially hazardous workplace practices or equipment were common. Forty-one percent of respondents who reported taking X-rays did not wear film badges, and 76% reported physically restraining animals for X-ray procedures. Twenty-seven percent of the respondents exposed to anesthetic gases worked at facilities which did not have waste anesthetic gas scavenging systems. Women who worked as veterinarians during a pregnancy attempted to reduce exposures to X-rays, insecticides, and other potentially hazardous exposures. Some potentially hazardous workplace exposures are common in veterinary practice, and measures to educate workers and to reduce these exposures should not await demonstration of adverse health effects.

  13. Prevalence of hazardous exposures in veterinary practice

    International Nuclear Information System (INIS)

    Wiggins, P.; Schenker, M.B.; Green, R.; Samuels, S.

    1989-01-01

    All female graduates of a major U.S. veterinary school were surveyed by mailed questionnaire to obtain details of work practice and hazard exposure during the most recent year worked and during all pregnancies. Exposure questions were based on previously implicated occupational hazards which included anesthetic gases, radiation, zoonoses, prostaglandins, vaccines, physical trauma, and pesticides. The response rate was 86% (462/537). We found that practice type and pregnancy status were major determinants of hazard exposure within the veterinary profession. Small-animal practitioners reported the highest rates of exposure to anesthetic gas (94%), X-ray (90%), and pesticides (57%). Large-animal practitioners reported greater rates of trauma (64%) and potential exposure to prostaglandins (92%), Brucella abortus vaccine (23%), and carbon monoxide (18%). Potentially hazardous workplace practices or equipment were common. Forty-one percent of respondents who reported taking X-rays did not wear film badges, and 76% reported physically restraining animals for X-ray procedures. Twenty-seven percent of the respondents exposed to anesthetic gases worked at facilities which did not have waste anesthetic gas scavenging systems. Women who worked as veterinarians during a pregnancy attempted to reduce exposures to X-rays, insecticides, and other potentially hazardous exposures. Some potentially hazardous workplace exposures are common in veterinary practice, and measures to educate workers and to reduce these exposures should not await demonstration of adverse health effects

  14. Pressure Build-up and Decay in Acid Gas Injection Operations in Reefs in the Zama Field, Canada, and Implications for CO2 Storage

    International Nuclear Information System (INIS)

    Pooladi-Darvish, M.; Hong, H.; Pooladi-Darvish, M.; Bachu, S.

    2011-01-01

    The objective of this paper is to examine reasons for pressure rise in the Zama X2X pool in northwestern Alberta, Canada, that was used for acid gas disposal, and whether subsequent pressure decay was a result of pressure dissipation into a larger aquifer. The Zama X2X pool, approximately 1 km 2 in size, is connected to four other nearby pools through a common underlying aquifer. Pressure analysis for all the pools indicates that they are in good hydraulic communication. Initial pressure in the Zama X2X pool was approximately 15 MPa. Pressure declined first during oil production, stabilizing at around 10 MPa in the early 1970's, after which started to increase such that it reached 26 MPa in 1986. Subsequently, pressure declined reaching 22 MPa by 1995 just prior to starting injection of acid gas (80% CO 2 and 20% H 2 S). The operator injected acid gas at lower rates and wellhead pressures than those licensed by the regulatory agency. Despite significant production of water and hydrocarbons, the pressure in the Zama X2X pool continued to be higher than the initial reservoir pressure by more than 5 MPa, such that disposal operations were suspended in late 1998. Oil production continued all this time until 2002. Numerical simulations using CMG-IMEM and corresponding sensitivity studies reported in this paper show that disposal of more than 1 million m 3 of water between 1970 and 1988 and again in 1992-1993 in the adjacent Zama YY pool, which is in good hydrodynamic communication with the Zama X2X pool through the aquifer below the oil column, is the main reason for the high pressures observed in the Zama X2X pool. Sensitivity studies indicate that pressure decay in the X2X pool was due to fluid production. The study indicates that while pressure rise has been caused by hydraulic communication between the X2X and YY pools through the common aquifer, the aquifer was not of large volume to allow dissipation of the pressure. In addition to the case study, the implications

  15. Detecting the effects of coal mining, acid rain, and natural gas extraction in Appalachian basin streams in Pennsylvania (USA) through analysis of barium and sulfate concentrations.

    Science.gov (United States)

    Niu, Xianzeng; Wendt, Anna; Li, Zhenhui; Agarwal, Amal; Xue, Lingzhou; Gonzales, Matthew; Brantley, Susan L

    2018-04-01

    To understand how extraction of different energy sources impacts water resources requires assessment of how water chemistry has changed in comparison with the background values of pristine streams. With such understanding, we can develop better water quality standards and ecological interpretations. However, determination of pristine background chemistry is difficult in areas with heavy human impact. To learn to do this, we compiled a master dataset of sulfate and barium concentrations ([SO 4 ], [Ba]) in Pennsylvania (PA, USA) streams from publically available sources. These elements were chosen because they can represent contamination related to oil/gas and coal, respectively. We applied changepoint analysis (i.e., likelihood ratio test) to identify pristine streams, which we defined as streams with a low variability in concentrations as measured over years. From these pristine streams, we estimated the baseline concentrations for major bedrock types in PA. Overall, we found that 48,471 data values are available for [SO 4 ] from 1904 to 2014 and 3243 data for [Ba] from 1963 to 2014. Statewide [SO 4 ] baseline was estimated to be 15.8 ± 9.6 mg/L, but values range from 12.4 to 26.7 mg/L for different bedrock types. The statewide [Ba] baseline is 27.7 ± 10.6 µg/L and values range from 25.8 to 38.7 µg/L. Results show that most increases in [SO 4 ] from the baseline occurred in areas with intensive coal mining activities, confirming previous studies. Sulfate inputs from acid rain were also documented. Slight increases in [Ba] since 2007 and higher [Ba] in areas with higher densities of gas wells when compared to other areas could document impacts from shale gas development, the prevalence of basin brines, or decreases in acid rain and its coupled effects on [Ba] related to barite solubility. The largest impacts on PA stream [Ba] and [SO 4 ] are related to releases from coal mining or burning rather than oil and gas development.

  16. An electron conductive polymer, poly-aniline, in gas separation: optimisation of transport properties by alternated acid-base treatment

    International Nuclear Information System (INIS)

    Rebattet, Laurence

    1994-01-01

    The objective of this research thesis is to study the variation of gas permeation properties of poly-aniline during a doping/de-doping/re-doping cycle, and to study the evolution of the separation power of this polymer. Scanning electronic microscopy is used to study the microstructure and more particularly how the doping agent is distributed within the polymer. Permeabilities, diffusion coefficients, sorption solubilities and interaction energies are measured by using coupled permeation and micro-gravimetry-calorimetry methods. A range of gases (H 2 , O 2 , CO 2 , N 2 , CH 4 ) is analysed [fr

  17. Rapid measurement of 13C-enrichment of acetic, propionic and butyric acids in plasma with solid phase microextraction coupled to gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Moreau, N.M.; Delepee, R.; Maume, D.; Le Bizec, B.; Nguyen, P.G.; Champ, M.M.; Martin, L.J.; Dumon, H.J.

    2004-01-01

    An analytical procedure based on solid phase microextraction (SPME) has been developed to quantify [1- 13 C]-labelled short-chain fatty acids (SCFAs)--mainly acetic, propionic and butyric acids--in a small volume (120 μl) of deproteinised plasma (corresponding to 200 μl of raw plasma) by gas chromatography-mass spectrometry (GC-MS) analysis. Simultaneous SCFA extraction was optimal after 5 min using a 75 μm Carboxen/polydimethylsiloxane-coated fiber. The base peak of the three analytes has been characterised by middle-resolution mass spectrometry (R>6000). All these data allowed the specificity reinforcement of the measure. The validation of the method also considered the linearity and the repeatability of the [ 13 C]SCFA measurements by SPME-GC-MS. Results were linear in a range from 5 to 100 mol% of [ 13 C]SCFA enrichment and the method provided a good intra-day (R.S.D. 13 C]butyric acid) by cecal infusion before blood sampling in portal vein. Results of [1- 13 C]butyric acid enrichment showed an excellent correlation (r 2 =0.9832; n=30) with data obtained on the same samples using a previously published procedure based on diethyl extraction and derivatisation before GC-MS analyses. SPME coupled to GC-MS appears to be a powerful analytical tool for the direct isotopic measurements of low deproteinised plasma volume avoiding consequently preliminary treatment such as extraction or derivatisation. The presented method could be of great interest for real time [ 13 C]SCFA plasma determination of in metabolic in vivo studies in small animal models

  18. Oxidation of Gas-Phase SO2 on the Surfaces of Acidic Microdroplets: Implications for Sulfate and Sulfate Radical Anion Formation in the Atmospheric Liquid Phase.

    Science.gov (United States)

    Hung, Hui-Ming; Hoffmann, Michael R

    2015-12-01

    The oxidation of SO2(g) on the interfacial layers of microdroplet surfaces was investigated using a spray-chamber reactor coupled to an electrospray ionization mass spectrometer. Four major ions, HSO3(-), SO3(•-), SO4(•-) and HSO4(-), were observed as the SO2(g)/N2(g) gas-mixture was passed through a suspended microdroplet flow, where the residence time in the dynamic reaction zone was limited to a few hundred microseconds. The relatively high signal intensities of SO3(•-), SO4(•-), and HSO4(-) compared to those of HSO3(-) as observed at pH SO2·H2O, which is also affected by the pH dependent uptake coefficient. When H2O2(g) was introduced into the spray chamber simultaneously with SO2(g), HSO3(-) is rapidly oxidized to form bisulfate in the pH range of 3 to 5. Conversion to sulfate was less at pH SO2(g) on the acidic microdroplets was estimated as 1.5 × 10(6) [S(IV)] (M s(-1)) at pH ≤ 3. In the presence of acidic aerosols, this oxidation rate is approximately 2 orders of magnitude higher than the rate of oxidation with H2O2(g) at a typical atmospheric H2O2(g) concentration of 1 ppb. This finding highlights the relative importance of the acidic surfaces for SO2 oxidation in the atmosphere. Surface chemical reactions on aquated aerosol surfaces, as observed in this study, are overlooked in most atmospheric chemistry models. These reaction pathways may contribute to the rapid production of sulfate aerosols that is often observed in regions impacted by acidic haze aerosol such as Beijing and other megacities around the world.

  19. Effects of chronic acetazolamide administration on gas exchange and acid-base control in pulmonary circulation in exercising horses.

    Science.gov (United States)

    Vengust, M; Stämpfli, H; De Moraes, A N; Teixeiro-Neto, F; Viel, L; Heigenhauser, G

    2010-11-01

    Carbonic anhydrase (CA) catalyses the hydration/dehydration reaction of CO(2) and increases the rate of Cl(-) and HCO(3)(-) exchange between the erythrocytes and plasma. Therefore, chronic inhibition of CA has a potential to attenuate CO(2) output and induce greater metabolic and respiratory acidosis in exercising horses. To determine the effects of Carbonic anhydrase inhibition on CO(2) output and ionic exchange between erythrocytes and plasma and their influence on acid-base balance in the pulmonary circulation (across the lung) in exercising horses with and without CA inhibition. Six horses were exercised to exhaustion on a treadmill without (Con) and with CA inhibition (AczTr). CA inhibition was achieved with administration of acetazolamide (10 mg/kg bwt t.i.d. for 3 days and 30 mg/kg bwt before exercise). Arterial, mixed venous blood and CO(2) output were sampled at rest and during exercise. An integrated physicochemical systems approach was used to describe acid base changes. AczTr decreased the duration of exercise by 45% (P changes across the lung with exception of lactate. CO(2) and chloride changes in erythrocytes across the lung seem to be the major contributors to acid-base and ions balance in pulmonary circulation in exercising horses. © 2010 EVJ Ltd.

  20. Gas chromatography and silver-ion high-performance liquid chromatography analysis of conjugated linoleic acid isomers in free fatty acid form using sulphuric acid in methanol as catalyst.

    Science.gov (United States)

    Luna, Pilar; Juárez, Manuela; de la Fuente, Miguel Angel

    2008-09-12

    This study used GC and silver-ion HPLC to examine the effects of temperature and time on methylation of individual and mixtures of conjugated linoleic acid (CLA) isomers in free fatty acid form using sulphuric acid as catalyst. In the conditions tested (temperatures between 20 and 50 degrees C and times between 10 and 60 min) methylation was complete while avoiding isomerization of conjugated dienes and the formation of artefacts that could interfere with chromatographic determinations. An analytical method using solvent extraction of the lipids followed by selective elution of the free fatty acids from aminopropyl bonded phase columns and methylation with H(2)SO(4) in mild conditions was then applied to determine the CLA isomers in free fatty acid form in rumen fluid, and the results were evaluated.

  1. Methods for the analysis of SO/sub 2/, SO/sub 3/ and H/sub 2/S in flue gas and the calculation of the acid dew point

    Energy Technology Data Exchange (ETDEWEB)

    Albertyn, C.H.

    1986-02-01

    Methods are given for the analysis of SO/sub 2/, SO/sub 3/, and H/sub 2/S in flue gas. Two methods are described for the determination of SO/sub 2/. The method to be used depends on whether or not H/sub 2/S is present in the gas stream. An equation for the calculation of acid dew point is given as well.

  2. Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part V: Multicomponent mixtures containing CO2 and alcohols

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios M.

    2015-01-01

    of CPA for ternary and multicomponent CO2 mixtures containing alcohols (methanol, ethanol or propanol) water and hydrocarbons. This work belongs to a series of studies aiming to arrive in a single "engineering approach" for applying CPA to acid gas mixtures, without introducing significant changes...... to the model. In this direction, CPA results were obtained using various approaches, i.e. different association schemes for pure CO2 (assuming that it is a non-associating compound, or that it is a self-associating fluid with two, three or four association sites) and different possibilities for modelling...... mixtures of CO2 with water and alcohols (only use of one interaction parameter kij or assuming cross-association interactions and obtaining the relevant parameters either via a combining rule or using an experimental value for the cross-association energy). It is concluded that CPA is a powerful model...

  3. Modeling Phase Equilibria for Acid Gas Mixtures using the Cubic-Plus-Association Equation of State. 3. Applications Relevant to Liquid or Supercritical CO2 Transport

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Ali, Shahid; Kontogeorgis, Georgios

    2014-01-01

    density data for both CO2 and CO2–water and for vapor–liquid equilibrium for mixtures of CO2 with various compounds present in transport systems. In all of these cases we consider various possibilities for modeling CO2 (inert, self-associating using two-, three-, and four sites) and the possibility......The CPA (cubic-plus-association) equation of state is applied in this work to a wide range of systems of relevance to CO2 transport. Both phase equilibria and densities over extensive temperature and pressure ranges are considered. More specifically in this study we first evaluate CPA against......” for applying CPA to acid gas mixtures. The overall conclusion is that CPA performs satisfactorily; the model in most cases correlates well binary data and predicts with good accuracy multicomponent vapor–liquid equilibria. Among the various approaches investigated, the best ones are when cross association...

  4. Use of [18O4] phosphoric acid in the quantitation of phosphate by gas-liquid chromatography-mass spectrometry analysis

    International Nuclear Information System (INIS)

    Graff, G.; Krick, T.P.; Walseth, T.F.; Goldberg, N.D.

    1980-01-01

    A procedure is described to quantitate inorganic phosphate in the form of the tris(trimethylsilyl) (TMS) phosphate by gas-liquid chromatography-mass spectrometry (glc-ms) that increases the previously reported detection limit from the microgram to the nanogram range. The sensitivity for detecting TMS-phosphate by glc-ms analysis was shown to be limited by an increasing fractional loss with decreasing concentrations of TMS-phosphate analyzed due to its adsorption on different types of glc column supports. The method developed employs [ 18 O 4 ] phosphoric acid which serves as both an internal standard to permit quantitation and as a carrier to minimize sample adsorption on the glc column support

  5. Hazard Analysis Database Report

    Energy Technology Data Exchange (ETDEWEB)

    GAULT, G.W.

    1999-10-13

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR). The FSAR is part of the approved TWRS Authorization Basis (AB). This document describes, identifies, and defines the contents and structure of the TWRS FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The TWRS Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The database supports the preparation of Chapters 3,4, and 5 of the TWRS FSAR and the USQ process and consists of two major, interrelated data sets: (1) Hazard Evaluation Database--Data from the results of the hazard evaluations; and (2) Hazard Topography Database--Data from the system familiarization and hazard identification.

  6. Acid Gas to Syngas (AG2S™) technology applied to solid fuel gasification: Cutting H_2S and CO_2 emissions by improving syngas production

    International Nuclear Information System (INIS)

    Bassani, Andrea; Pirola, Carlo; Maggio, Enrico; Pettinau, Alberto; Frau, Caterina; Bozzano, Giulia; Pierucci, Sauro; Ranzi, Eliseo; Manenti, Flavio

    2016-01-01

    Highlights: • Coal gasification with improved yield and reduced emissions. • AG2S™ process converts H_2S and CO_2 into syngas, elemental sulfur and water. • Techno-economic simulation of AG2S™ process is carried out. • Industrial case-study on the Sotacarbo S.p.A. gasification pilot plant is proposed. - Abstract: The paper deals with the application of the novel Acid Gas To Syngas (AG2S™) technology to the gasification of solid fuels. The AG2S technology is a completely new effective route of processing acid gases: H_2S and CO_2 are converted into syngas (CO and H_2) by means of a regenerative thermal reactor. To show the application of the AG2S technology, modeling and simulation advances for gasification systems are initially discussed. The multi-scale, multi-phase, and multi-component coal gasification system is described by means of detailed kinetic mechanisms for coal pyrolysis, char heterogeneous reactions and for successive gas-phase reactions. These kinetic mechanisms are then coupled with transport resistances resulting in first-principles dynamic modeling of non-ideal reactors of different types (e.g., downdraft, updraft, traveling grate), also including the catalytic effect of ashes. The generalized approach pursued in developing the model allows characterizing the main phenomena involved in the coal gasification process, including the formation of secondary species (e.g., COS, CS_2). This tool is here further validated on literature data and, then, adopted to demonstrate the AG2S effectiveness, where H_2S and CO_2 emissions are reduced with an increase of syngas production. The resulting process solution is more economically appealing with respect to the traditional Claus process and finds several application areas.

  7. A selective and sensitive method for quantitation of lysergic acid diethylamide (LSD) in whole blood by gas chromatography-ion trap tandem mass spectrometry.

    Science.gov (United States)

    Libong, Danielle; Bouchonnet, Stéphane; Ricordel, Ivan

    2003-01-01

    A gas chromatography-ion trap tandem mass spectrometry (GC-ion trap MS-MS) method for detection and quantitation of LSD in whole blood is presented. The sample preparation process, including a solid-phase extraction step with Bond Elut cartridges, was performed with 2 mL of whole blood. Eight microliters of the purified extract was injected with a cold on-column injection method. Positive chemical ionization was performed using acetonitrile as reagent gas; LSD was detected in the MS-MS mode. The chromatograms obtained from blood extracts showed the great selectivity of the method. GC-MS quantitation was performed using lysergic acid methylpropylamide as the internal standard. The response of the MS was linear for concentrations ranging from 0.02 ng/mL (detection threshold) to 10.0 ng/mL. Several parameters such as the choice of the capillary column, the choice of the internal standard and that of the ionization mode (positive CI vs. EI) were rationalized. Decomposition pathways under both ionization modes were studied. Within-day and between-day stability were evaluated.

  8. RPC gas recovery by open loop method

    International Nuclear Information System (INIS)

    Joshi, Avinash

    2009-01-01

    RPC detectors require to be flushed with small but continuous flow of gas mixture. Dealing with large number of detectors, gas consumption to very large volumes. Gas flow is a running expense and constituent gases are too expensive to be treated as consumables. Exhaust gas mixture from detectors is a potential environmental hazard if discharged directly into the atmosphere. Storage of gases on a large scale also leads to inventory- and safety-related problems. A solution to these problems is the recovery and reuse of exhaust gas mixture from RPC detectors. Close loop method employs recirculation of exhausted gas mixture after purification, analysis and addition of top-up quantities. In open loop method, under consideration here, individual component gases are separated from gas mixture and reused as source. During open loop process, gases liquefiable at low pressures are separated from ones liquefiable at high pressure. The gas phase components within each group are successively separated by either fractional condensation or gravity separation. Gas mixture coming from RPC exhaust is first desiccated by passage through molecular sieve adsorbent type (3A+4A). Subsequent scrubbing over basic activated alumina removes toxic and acidic contaminants such as S 2 F 10 produced during corona (arcing) discharge. In the first stage of separation isobutane and freon are concentrated by diffusion and liquefied by fractional condensation by cooling upto -30 deg. C. Liquefied gases are returned to source tanks. In the second stage of separation, argon and sulphur hexafluoride, the residual gases, are concentrated by settling due to density difference. SF 6 is stored for recovery by condensation at high pressure while argon is further purified by thermal cracking of crossover impurities at 1000 deg. C followed by wet scrubbing.

  9. RPC gas recovery by open loop method

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Avinash [Alpha Pneumatics, 11, Krishna Kutir, Madanlal Dhigra Road, Panch Pakhadi (India)], E-mail: alpha_pneumatics@hotmail.com

    2009-05-01

    RPC detectors require to be flushed with small but continuous flow of gas mixture. Dealing with large number of detectors, gas consumption to very large volumes. Gas flow is a running expense and constituent gases are too expensive to be treated as consumables. Exhaust gas mixture from detectors is a potential environmental hazard if discharged directly into the atmosphere. Storage of gases on a large scale also leads to inventory- and safety-related problems. A solution to these problems is the recovery and reuse of exhaust gas mixture from RPC detectors. Close loop method employs recirculation of exhausted gas mixture after purification, analysis and addition of top-up quantities. In open loop method, under consideration here, individual component gases are separated from gas mixture and reused as source. During open loop process, gases liquefiable at low pressures are separated from ones liquefiable at high pressure. The gas phase components within each group are successively separated by either fractional condensation or gravity separation. Gas mixture coming from RPC exhaust is first desiccated by passage through molecular sieve adsorbent type (3A+4A). Subsequent scrubbing over basic activated alumina removes toxic and acidic contaminants such as S{sub 2}F{sub 10} produced during corona (arcing) discharge. In the first stage of separation isobutane and freon are concentrated by diffusion and liquefied by fractional condensation by cooling upto -30 deg. C. Liquefied gases are returned to source tanks. In the second stage of separation, argon and sulphur hexafluoride, the residual gases, are concentrated by settling due to density difference. SF{sub 6} is stored for recovery by condensation at high pressure while argon is further purified by thermal cracking of crossover impurities at 1000 deg. C followed by wet scrubbing.

  10. Modeling Phase Equilibria for Acid Gas Mixtures Using the CPA Equation of State. I. Mixtures with H2S

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2010-01-01

    (water, methanol, and glycols) are modeled assuming presence or not of cross-association interactions. Such interactions are accounted for using either a combining rule or a cross-solvation energy obtained from spectroscopic data. Using the parameters obtained from the binary systems, one ternary......The Cubic-Plus-Association (CPA) equation of state is applied to a large variety of mixtures containing H2S, which are of interest in the oil and gas industry. Binary H2S mixtures with alkanes, CO2, water, methanol, and glycols are first considered. The interactions of H2S with polar compounds...... and three quaternary mixtures are considered. It is shown that overall excellent correlation for binary, mixtures and satisfactory prediction results for multicomponent systems are obtained. There are significant differences between the various modeling approaches and the best results are obtained when...

  11. Software safety hazard analysis

    International Nuclear Information System (INIS)

    Lawrence, J.D.

    1996-02-01

    Techniques for analyzing the safety and reliability of analog-based electronic protection systems that serve to mitigate hazards in process control systems have been developed over many years, and are reasonably well understood. An example is the protection system in a nuclear power plant. The extension of these techniques to systems which include digital computers is not well developed, and there is little consensus among software engineering experts and safety experts on how to analyze such systems. One possible technique is to extend hazard analysis to include digital computer-based systems. Software is frequently overlooked during system hazard analyses, but this is unacceptable when the software is in control of a potentially hazardous operation. In such cases, hazard analysis should be extended to fully cover the software. A method for performing software hazard analysis is proposed in this paper

  12. DOE Hazardous Waste Program

    International Nuclear Information System (INIS)

    Eyman, L.D.; Craig, R.B.

    1985-01-01

    The goal of the DOE Hazardous Waste Program is to support the implementation and improvement of hazardous-chemical and mixed-radioactive-waste management such that public health, safety, and the environment are protected and DOE missions are effectively accomplished. The strategy for accomplishing this goal is to define the character and magnitude of hazardous wastes emanating from DOE facilities, determine what DOE resources are available to address these problems, define the regulatory and operational constraints, and develop programs and plans to resolve hazardous waste issues. Over the longer term the program will support the adaptation and application of technologies to meet hazardous waste management needs and to implement an integrated, DOE-wide hazardous waste management strategy. 1 reference, 1 figure

  13. Radon and its hazards

    International Nuclear Information System (INIS)

    Chang Guilan

    2002-01-01

    The author describes basic physical and chemical properties of radon and the emanation, introduces methods of radon measurement, expounds the hazards of non-mine radon accumulation to the health of human being and the protection, as well as the history how the human being recognizes the hazards of radon through the specific data and examples, and finally proposes protecting measures to avoid the hazards of radon to the health of human being, and to do ecologic evaluation of environments

  14. Acid-yield measurements of the gas-phase ozonolysis of ethene as a function of humidity using Chemical Ionisation Mass Spectrometry (CIMS

    Directory of Open Access Journals (Sweden)

    K. E. Leather

    2012-01-01

    Full Text Available Gas-phase ethene ozonolysis experiments were conducted at room temperature to determine formic acid yields as a function of relative humidity (RH using the integrated EXTreme RAnge chamber-Chemical Ionisation Mass Spectrometry technique, employing a CH3I ionisation scheme. RHs studied were <1, 11, 21, 27, 30 % and formic acid yields of (0.07±0.01 and (0.41±0.07 were determined at <1 % RH and 30 % RH respectively, showing a strong water dependence. It has been possible to estimate the ratio of the rate coefficient for the reaction of the Criegee biradical, CH2OO with water compared with decomposition. This analysis suggests that the rate of reaction with water ranges between 1×10−12–1×10−15 cm3 molecule−1 s−1 and will therefore dominate its loss with respect to bimolecular processes in the atmosphere. Global model integrations suggest that this reaction between CH2OO and water may dominate the production of HC(OOH in the atmosphere.

  15. Classification of bacteria by simultaneous methylation-solid phase microextraction and gas chromatography/mass spectrometry analysis of fatty acid methyl esters.

    Science.gov (United States)

    Lu, Yao; Harrington, Peter B

    2010-08-01

    Direct methylation and solid-phase microextraction (SPME) were used as a sample preparation technique for classification of bacteria based on fatty acid methyl ester (FAME) profiles. Methanolic tetramethylammonium hydroxide was applied as a dual-function reagent to saponify and derivatize whole-cell bacterial fatty acids into FAMEs in one step, and SPME was used to extract the bacterial FAMEs from the headspace. Compared with traditional alkaline saponification and sample preparation using liquid-liquid extraction, the method presented in this work avoids using comparatively large amounts of inorganic and organic solvents and greatly decreases the sample preparation time as well. Characteristic gas chromatography/mass spectrometry (GC/MS) of FAME profiles was achieved for six bacterial species. The difference between Gram-positive and Gram-negative bacteria was clearly visualized with the application of principal component analysis of the GC/MS data of bacterial FAMEs. A cross-validation study using ten bootstrap Latin partitions and the fuzzy rule building expert system demonstrated 87 +/- 3% correct classification efficiency.

  16. [Determination of fatty acid esters of chloropropanediols in diet samples by gas chromatography-mass spectrometry coupled with solid-supported liquid-liquid extraction].

    Science.gov (United States)

    Gao, Jie; Liu, Qing; Han, Feng; Miao, Hong; Zhao, Yunfeng; Wu, Yongning

    2014-05-01

    To establish a method for the determination of fatty acid esters of 3-monochloropropane-1, 2-diol (3-MCPD) and 2-monochloropropane-1, 3-diol (2-MCPD) in diet samples by gas chromatography-mass spectrometry (GC-MS) with solid-supported liquid-liquid extraction (SLE). Diet samples were ultrasonically extracted by hexane, followed by ester cleavage reaction with sodium methylate in methanol, and then purified by solid-supported liquid-liquid extraction. (SLE) using diatomaceous earth as the sorbent. After derivatization with heptafluorobutyrylimidazole, the analytes were detected by GC-MS and quantified by the deuterated internal standards. The limits of detection (LODs) of 3-MCPD esters and 2-MCPD esters in different diet samples were 0.002 - 0.005 mg/kg and 0.002 - 0.006 mg/kg. The average recoveries of 3-MCPD esters and 2-MCPD esters at the spiking levels of 0.05 and 0.1 mg/kg in the diet samples were in the range of 65.9% - 104.2% and 75.4% - 118.0%, respectively, with the relative standard deviations in the range of 2.2% - 14.2% and 0.8% - .13.9%. The method is simple, accurate and rugged for the determination of fatty acid esters of 3-MCPD and 2-MCPD in diet samples.

  17. Transport of hazardous goods

    International Nuclear Information System (INIS)

    1989-01-01

    The course 'Transport of hazardous goods' was held in Berlin in November 1988 in cooperation with the Bundesanstalt fuer Materialforschung und -pruefung. From all lecturs, two are recorded separately: 'Safety of tank trucks - requirements on the tank, development possibiities of active and passive safety' and 'Requirements on the transport of radioactive materials - possible derivations for other hazardous goods'. The other lectures deal with hazardous goods law, requirements on packinging, risk assessment, railroad transport, hazardous goods road network, insurance matters, EC regulations, and waste tourism. (HSCH) [de

  18. Disposal of hazardous wastes

    International Nuclear Information System (INIS)

    Barnhart, B.J.

    1978-01-01

    The Fifth Life Sciences Symposium entitled Hazardous Solid Wastes and Their Disposal on October 12 through 14, 1977 was summarized. The topic was the passage of the National Resources Conservation and Recovery Act of 1976 will force some type of action on all hazardous solid wastes. Some major points covered were: the formulation of a definition of a hazardous solid waste, assessment of long-term risk, list of specific materials or general criteria to specify the wastes of concern, Bioethics, sources of hazardous waste, industrial and agricultural wastes, coal wastes, radioactive wastes, and disposal of wastes

  19. Gas and Gas Pains

    Science.gov (United States)

    ... to produce gas. Often, relatively simple changes in eating habits can lessen bothersome gas. Certain digestive system disorders, ... such as soda and beer, increase stomach gas. Eating habits, such as eating too quickly, drinking through a ...

  20. 75 FR 1235 - Revisions to the Requirements for: Transboundary Shipments of Hazardous Wastes Between OECD...

    Science.gov (United States)

    2010-01-08

    ..., Greece, Hungary, Iceland, Ireland, Italy, Japan, Luxembourg, Mexico, the Netherlands, New Zealand, Norway... Requirements for: Transboundary Shipments of Hazardous Wastes Between OECD Member Countries, Export Shipments of Spent Lead- Acid Batteries, Submitting Exception Reports for Export Shipments of Hazardous Wastes...

  1. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  2. Gas generation during waste treatment of acidic solutions from the dissolution of irradiated LEU targets for 99Mo production

    Energy Technology Data Exchange (ETDEWEB)

    Bakel, Allen J. [Argonne National Lab. (ANL), Argonne, IL (United States); Conner, Cliff [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    The goal of the Reduced Enrichment for Research and Test Reactors Program is to limit the use of high-enriched uranium (HEU) in research and test reactors by substituting low-enriched uranium (LEU) wherever possible. The work reported here documents our work to develop the calcining technologies and processes that will be needed for 99Mo production using LEU foil targets and the Modified Cintichem Process. The primary concern with the conversion to LEU from HEU targets is that it would result in a five- to six-fold increase in the total uranium. This increase results in more liquid waste from the process. We have been working to minimize the increase in liquid waste and to minimize the impact of any change in liquid waste. Direct calcination of uranium-rich nitric acid solutions generates NO2 gas and UO3 solid. We have proposed two processes for treating the liquid waste from a Modified Cintichem Process with a LEU foil. One is an optimized direct calcination process that is similar to the process currently in use. The other is a uranyl oxalate precipitation process. The specific goal of the work reported here was to characterize and compare the chemical reactions that occur during these two processes. In particular, the amounts and compositions of the gaseous and solid products were of interest. A series of experiments was carried out to show the effects of temperature and the redox potential of the reaction atmosphere. The primary products of the direct calcination process were mixtures of U3O8 and UO3 solids and NO2 gas. The primary products of the oxalate precipitation process were mixtures of U3O8 and UO2 solid and CO2 gas. Higher temperature and a reducing atmosphere tended to favor quadrivalent over hexavalent uranium in the solid product. These data will help producers to decide between the two processes. In addition, the data can be used

  3. Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part VI. Multicomponent mixtures with glycols relevant to oil and gas and to liquid or supercritical CO_2 transport applications

    International Nuclear Information System (INIS)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios M.

    2016-01-01

    Highlights: • CPA EoS was applied to predict the phase behaviour of multicomponent mixtures containing CO_2, glycols, water and alkanes. • Mixtures relevant to oil and gas, CO_2 capture and liquid or supercritical CO_2 transport applications were investigated. • Results are presented using various modelling approaches/association schemes. • The predicting ability of the model was evaluated against experimental data. • Conclusions for the best modelling approach are drawn. - Abstract: In this work the Cubic Plus Association (CPA) equation of state is applied to multicomponent mixtures containing CO_2 with alkanes, water, and glycols. Various modelling approaches are used i.e. different association schemes for pure CO_2 (assuming that it is a non-associating compound, or that it is a self-associating fluid with two, three or four association sites) and different possibilities for modelling mixtures of CO_2 with other hydrogen bonding fluids (only use of one interaction parameter k_i_j or assuming cross association interactions and obtaining the relevant parameters either via a combining rule or using an experimental value for the cross association energy). Initially, new binary interaction parameters were estimated for (CO_2 + glycol) binary mixtures. Having the binary parameters from the binary systems, the model was applied in a predictive way (i.e. no parameters were adjusted to data on ternary and multicomponent mixtures) to model the phase behaviour of ternary and quaternary systems with CO_2 and glycols. It is concluded that CPA performs satisfactorily for most multicomponent systems considered. Some differences between the various modelling approaches are observed. This work is the last part of a series of studies, which aim to arrive in a single “engineering approach” for applying CPA to acid gas mixtures, without introducing significant changes to the model. An overall assessment, based also on the obtained results of this series (Tsivintzelis

  4. Avoiding the Hazards of Hazardous Waste.

    Science.gov (United States)

    Hiller, Richard

    1996-01-01

    Under a 1980 law, colleges and universities can be liable for cleanup of hazardous waste on properties, in companies, and related to stocks they invest in or are given. College planners should establish clear policy concerning gifts, investigate gifts, distance university from business purposes, sell real estate gifts quickly, consult a risk…

  5. Compressed Gas Safety for Experimental Fusion Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  6. Handbook of hazardous waste management

    International Nuclear Information System (INIS)

    Metry, A.A.

    1980-01-01

    The contents of this work are arranged so as to give the reader a detailed understanding of the elements of hazardous waste management. Generalized management concepts are covered in Chapters 1 through 5 which are entitled: Introduction, Regulations Affecting Hazardous Waste Management, Comprehensive Hazardous Waste Management, Control of Hazardous Waste Transportation, and Emergency Hazardous Waste Management. Chapters 6 through 11 deal with treatment concepts and are entitled: General Considerations for Hazardous Waste Management Facilities, Physical Treatment of Hazardous Wastes, Chemical Treatment of Hazardous Wastes, Biological Treatment of Hazardous Wastes, Incineration of Hazardous Wastes, and Hazardous Waste Management of Selected Industries. Chapters 12 through 15 are devoted to ultimate disposal concepts and are entitled: Land Disposal Facilities, Ocean Dumping of Hazardous Wastes, Disposal of Extremely Hazardous Wastes, and Generalized Criteria for Hazardous Waste Management Facilities

  7. Radon gas in oil and natural gas production facilities

    International Nuclear Information System (INIS)

    Chandler, W.P.

    1994-01-01

    Radon gas is a naturally occurring radionuclide that can be found in some oil and natural gas production facilities, either as a contaminant in a natural gas stream or derived from Radium dissolved in formation waters. The gas itself is not normally a health hazard, but it's decay products, which can be concentrated by plate-out or deposition as a scale in process equipment, can be a health hazard for maintenance personnel. To evaluate possible health hazards, it is necessary to monitor for naturally occurring radioactive materials (NORM) in the gas stream and in the formation water. If Radon and/or Radium is found, a monitoring programme should be initiated to comply with National or State requirements. In some instances, it has been found necessary to dispose of silt and scale materials as low level radioactive waste. 8 refs

  8. Application of FIGAERO (Filter Inlet for Gases and AEROsol) coupled to a high resolution time of flight chemical ionization mass spectrometer to field and chamber organic aerosol: Implications for carboxylic acid formation and gas-particle partitioning from monoterpene oxidation

    Science.gov (United States)

    Lopez-Hilfiker, F.; Mohr, C.; Ehn, M.; Rubach, F.; Mentel, T. F.; Kleist, E.; Wildt, J.; Thornton, J. A.

    2013-12-01

    We present measurements of a large suite of gas and particle phase carboxylic acid containing compounds made with a Filter Inlet for Gas and AEROsol (FIGAERO) coupled to a high resolution time of flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. A prototype operated with acetate negative ion proton transfer chemistry was deployed on the Julich Plant Atmosphere Chamber to study a-pinene oxidation, and a modified version was deployed at the SMEAR II forest station in Hyytiälä, Finland and SOAS, in Brent Alabama. We focus here on results from JPAC and Hyytiälä, where we utilized the same ionization method most selective towards carboxylic acids. In all locations, 100's of organic acid compounds were observed in the gas and particles and many of the same composition acids detected in the gas-phase were detected in the particles upon temperature programmed thermal desorption. Particulate organics detected by FIGAERO are highly correlated with organic aerosol mass measured by an AMS, providing additional volatility and molecular level information about collected aerosol. The fraction of a given compound measured in the particle phase follows expected trends with elemental composition, but many compounds would not be well described by an absorptive partitioning model assuming unity activity coefficients. Moreover the detailed structure in the thermal desorption signals reveals a contribution from thermal decomposition of large molecular weight organics and or oligomers with implications for partitioning measurements and model validation

  9. An automated method for the analysis of phenolic acids in plasma based on ion-pairing micro-extraction coupled on-line to gas chromatography/mass spectrometry with in-liner derivatisation

    NARCIS (Netherlands)

    Peters, S.; Kaal, E.; Horsting, I.; Janssen, H.-G.

    2012-01-01

    A new method is presented for the analysis of phenolic acids in plasma based on ion-pairing ‘Micro-extraction in packed sorbent’ (MEPS) coupled on-line to in-liner derivatisation-gas chromatography-mass spectrometry (GC-MS). The ion-pairing reagent served a dual purpose. It was used both to improve

  10. Improved fatty acid detection in micro-algae and aquatic meiofauna species using a direct thermal desorption interface combined with comprehensive gas chromatography-time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Akoto, L.; Stellaard, F.; Irth, H.; Vreuls, R.J.J.; Pel, R.

    2008-01-01

    Comprehensive two-dimensional gas chromatography (GC × GC) with time-of-flight mass spectrometry detection is used to profile the fatty acid composition of whole/intact aquatic microorganisms such as the common fresh water green algae Scenedesmus acutus and the filamentous cyanobacterium Limnothrix

  11. Improved fatty acid detection in micro-algae and aquatic meiofauna species using a direct thermal desorption interface combined with comprehensive gas chromatography–time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Akoto, L.; Stellaard, F.; Irth, H.; Vreuls, R.J.J.; Pel, R.

    2008-01-01

    Comprehensive two-dimensional gas chromatography (GC × GC) with time-of-flight mass spectrometry detection is used to profile the fatty acid composition of whole/intact aquatic microorganisms such as the common fresh water green algae Scenedesmus acutus and the filamentous cyanobacterium Limnothrix

  12. Improved fatty acid detection in micro-algae and aquatic meiofauna species using a direct thermal desorption interface combined with comprehensive gas chromatography-time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Akoto, Lawrence; Stellaard, Frans; Irth, Hubertus; Vreuls, Rene J. J.; Pel, Roel

    2008-01-01

    Comprehensive two-dimensional gas chromatography (GC x GC) with time-of-flight mass spectrometry detection is used to profile the fatty acid composition of whole/intact aquatic microorganisms such as the common fresh water green algae Scenedesmus acutus and the filamentous cyanobacterium Limnothrix

  13. Hazardous solvent substitution

    International Nuclear Information System (INIS)

    Twitchell, K.E.

    1995-01-01

    This article is an overview of efforts at INEL to reduce the generation of hazardous wastes through the elimination of hazardous solvents. To aid in their efforts, a number of databases have been developed and will become a part of an Integrated Solvent Substitution Data System. This latter data system will be accessible through Internet

  14. Relative Hazard Calculation Methodology

    International Nuclear Information System (INIS)

    DL Strenge; MK White; RD Stenner; WB Andrews

    1999-01-01

    The methodology presented in this document was developed to provide a means of calculating the RH ratios to use in developing useful graphic illustrations. The RH equation, as presented in this methodology, is primarily a collection of key factors relevant to understanding the hazards and risks associated with projected risk management activities. The RH equation has the potential for much broader application than generating risk profiles. For example, it can be used to compare one risk management activity with another, instead of just comparing it to a fixed baseline as was done for the risk profiles. If the appropriate source term data are available, it could be used in its non-ratio form to estimate absolute values of the associated hazards. These estimated values of hazard could then be examined to help understand which risk management activities are addressing the higher hazard conditions at a site. Graphics could be generated from these absolute hazard values to compare high-hazard conditions. If the RH equation is used in this manner, care must be taken to specifically define and qualify the estimated absolute hazard values (e.g., identify which factors were considered and which ones tended to drive the hazard estimation)

  15. Hazardous Waste Manifest System

    Science.gov (United States)

    EPA’s hazardous waste manifest system is designed to track hazardous waste from the time it leaves the generator facility where it was produced, until it reaches the off-site waste management facility that will store, treat, or dispose of the waste.

  16. Request for Correction 12003 Greenhouse Gas Emissions Reporting from the Petroleum and Natural Gas Industry

    Science.gov (United States)

    Request for Correction by the U.S. Chamber of Commerce for information in Greenhouse Gas Emissions Reporting from the Petroleum Gas Industry that regarding methane emissions, volatile organic compounds, and hazardous air pollutants.

  17. Offsite transportation hazards assessment

    International Nuclear Information System (INIS)

    Burnside, M.E.

    1997-01-01

    This report documents the emergency preparedness Hazards Assessment for the offsite transportation of hazardous material from the Hanford Site. The assessment is required by the US Department of Energy (DOE) Order 151.1. Offsite transportation accidents are categorized using the DOE system to assist communication within the DOE and assure that appropriate assistance is provided to the people in charge at the scene. The assistance will initially include information about the load and the potential hazards. Local authorities will use the information to protect the public following a transportation accident. This Hazards Assessment will focus on the material being transported from the Hanford Site. Shipments coming to Hanford are the responsibility of the shipper and the carrier and, therefore, are not included in this Hazards Assessment, unless the DOE elects to be the shipper of record

  18. 75 FR 5244 - Pipeline Safety: Integrity Management Program for Gas Distribution Pipelines; Correction

    Science.gov (United States)

    2010-02-02

    ... Management Program for Gas Distribution Pipelines; Correction AGENCY: Pipeline and Hazardous Materials Safety... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... Regulations to require operators of gas distribution pipelines to develop and implement integrity management...

  19. 77 FR 2126 - Pipeline Safety: Implementation of the National Registry of Pipeline and Liquefied Natural Gas...

    Science.gov (United States)

    2012-01-13

    ... Natural Gas Operators AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...: ``Pipeline Safety: Updates to Pipeline and Liquefied Natural Gas Reporting Requirements.'' The final rule...

  20. 78 FR 65427 - Pipeline Safety: Reminder of Requirements for Liquefied Petroleum Gas and Utility Liquefied...

    Science.gov (United States)

    2013-10-31

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2013-0097] Pipeline Safety: Reminder of Requirements for Liquefied Petroleum Gas and Utility Liquefied Petroleum Gas Pipeline Systems AGENCY: Pipeline and Hazardous Materials Safety Administration...

  1. 75 FR 35366 - Pipeline Safety: Applying Safety Regulation to All Rural Onshore Hazardous Liquid Low-Stress Lines

    Science.gov (United States)

    2010-06-22

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... Onshore Hazardous Liquid Low-Stress Lines AGENCY: Pipeline and Hazardous Materials Safety Administration... to the risks that hazardous liquid and natural gas pipelines pose to the environment. In the Pipeline...

  2. Geological hazard monitoring system in Georgia

    Science.gov (United States)

    Gaprindashvili, George

    2017-04-01

    Georgia belongs to one of world's most complex mountainous regions according to the scale and frequency of Geological processes and damage caused to population, farmlands, and Infrastructure facilities. Geological hazards (landslide, debrisflow/mudflow, rockfall, erosion and etc.) are affecting many populated areas, agricultural fields, roads, oil and gas pipes, high-voltage electric power transmission towers, hydraulic structures, and tourist complexes. Landslides occur almost in all geomorphological zones, resulting in wide differentiation in the failure types and mechanisms and in the size-frequency distribution. In Georgia, geological hazards triggered by: 1. Activation of highly intense earthquakes; 2. Meteorological events provoking the disaster processes on the background of global climatic change; 3. Large-scale Human impact on the environment. The prediction and monitoring of Geological Hazards is a very wide theme, which involves different researchers from different spheres. Geological hazard monitoring is essential to prevent and mitigate these hazards. In past years in Georgia several monitoring system, such as Ground-based geodetic techniques, Debrisflow Early Warning System (EWS) were installed on high sensitive landslide and debrisflow areas. This work presents description of Geological hazard monitoring system in Georgia.

  3. Natural hazards science strategy

    Science.gov (United States)

    Holmes, Robert R.; Jones, Lucile M.; Eidenshink, Jeffery C.; Godt, Jonathan W.; Kirby, Stephen H.; Love, Jeffrey J.; Neal, Christina A.; Plant, Nathaniel G.; Plunkett, Michael L.; Weaver, Craig S.; Wein, Anne; Perry, Suzanne C.

    2012-01-01

    The mission of the U.S. Geological Survey (USGS) in natural hazards is to develop and apply hazard science to help protect the safety, security, and economic well-being of the Nation. The costs and consequences of natural hazards can be enormous, and each year more people and infrastructure are at risk. USGS scientific research—founded on detailed observations and improved understanding of the responsible physical processes—can help to understand and reduce natural hazard risks and to make and effectively communicate reliable statements about hazard characteristics, such as frequency, magnitude, extent, onset, consequences, and where possible, the time of future events.To accomplish its broad hazard mission, the USGS maintains an expert workforce of scientists and technicians in the earth sciences, hydrology, biology, geography, social and behavioral sciences, and other fields, and engages cooperatively with numerous agencies, research institutions, and organizations in the public and private sectors, across the Nation and around the world. The scientific expertise required to accomplish the USGS mission in natural hazards includes a wide range of disciplines that this report refers to, in aggregate, as hazard science.In October 2010, the Natural Hazards Science Strategy Planning Team (H–SSPT) was charged with developing a long-term (10-year) Science Strategy for the USGS mission in natural hazards. This report fulfills that charge, with a document hereinafter referred to as the Strategy, to provide scientific observations, analyses, and research that are critical for the Nation to become more resilient to natural hazards. Science provides the information that decisionmakers need to determine whether risk management activities are worthwhile. Moreover, as the agency with the perspective of geologic time, the USGS is uniquely positioned to extend the collective experience of society to prepare for events outside current memory. The USGS has critical statutory

  4. Hazardous Materials Hazard Analysis, Portland, Oregon.

    Science.gov (United States)

    1981-06-01

    poisons and flammables are found in all agriculture and garden supply shops, automotive repair facilities, retail paint and hardware stores, etc...Peroxide rompressed Gases and Welding 4 NON-FLAMMABLE GAS: Surpplies Liquid Nitrogen FLAMMABLE GAS: Acetylene Hydrogen Propane Propylene Oxide OTHER...this small community said Sunday and where the water and the chemicals and 16,000 bags of chemicals were de- that he was upset with the way officials

  5. Hazard screening application guide

    International Nuclear Information System (INIS)

    1992-06-01

    The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information

  6. [Investigation of emergency capacities for occupational hazard accidents in silicon solar cell producing enterprises].

    Science.gov (United States)

    Yang, D D; Xu, J N; Zhu, B L

    2016-11-20

    Objective: To investigate and analyze the influential factors of occupational hazard acci-dents, emergency facilities and emergency management in Silicon solar cell producing enterprises, then to pro-vide scientific strategies. Methods: The methods of occupationally healthy field investigating, inspecting of ven-tilation effectiveness, setup of emergency program and wearing chemical suit were used. Results: The mainly occupational hazard accidents factors in the process of Silicon solar cell producing included poisoning chemi-cals, high temperature, onizing radiation and some workplaces. The poisoning chemicals included nitric acid, hydrofluoric acid, sulfuric acid, hydrochloric acid, sodium hydroxide, potassium hydroxide, chlorine, phos-phorus oxychloride, phosphorus pentoxide, nitrogen dioxide, ammonia, silane, and so on; the workplaces in-cluded the area of producing battery slides and auxiliary producing area. Among the nine enterprises, gas detec-tors were installed in special gas supplying stations and sites, but the height, location and alarmvalues of gas detectors in six enterprises were not according with standard criteria; emergency shower and eyewash equip-ment were installed in workplaces with strong corrosive chemicals, but the issues of waste water were not solved; ventilation systems were set in the workplaces with ammonia and silane, but not qualified with part lo-cations and parameters in two enterprises; warehouses with materials of acid, alkali, chemical ammonia and phosphorus oxychloride were equipped with positive - pressure air respirator resuscitator and emergency cabi-nets, but with insufficient quantity in seven enterprises and expiration in part of products. The error rate of set-up emergency program and wearing chemical cloth were 30%~100% and 10%~30%, respectively. Among the nine enterprises, there were emergency rescue plans for dangerous chemical accidents, but without profession-al heatstroke and irradiation accident emergency plans

  7. Combined quantification of faecal sterols, stanols, stanones and bile acids in soils and terrestrial sediments by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Birk, Jago Jonathan; Dippold, Michaela; Wiesenberg, Guido L B; Glaser, Bruno

    2012-06-15

    Faeces incorporation can alter the concentration patterns of stanols, stanones, Δ(5)-sterols and bile acids in soils and terrestrial sediments. A joint quantification of these substances would give robust and specific information about the faecal input. Therefore, a method was developed for their purification and determination via gas chromatography-mass spectrometry (GC-MS) based on a total lipid extract (TLE) of soils and terrestrial sediments. Stanols, stanones, Δ(5)-steroles and bile acids were extracted by a single Soxhlet extraction yielding a TLE. The TLE was saponified with KOH in methanol. Sequential liquid-liquid extraction was applied to recover the biomarkers from the saponified extract and to separate the bile acids from the neutral stanoles, stanones and Δ(5)-steroles. The neutral fraction was directly purified using solid phase extraction (SPE) columns packed with 5% deactivated silica gel. The bile acids were methylated in dry HCl in methanol and purified on SPE columns packed with activated silica gel. A mixture of hexamethyldisilazane (HMDS), trimethylchlorosilane (TMCS) and pyridine was used to silylate the hydroxyl groups of the stanols and Δ(5)-sterols avoiding a silylation of the keto groups of the stanones in their enol-form. Silylation of the bile acids was carried out with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) containing N-trimethylsilylimidazole (TSIM). TLEs from a set of soils with different physico-chemical properties were used for method evaluation and for comparison of amounts of faecal biomarkers analysed with saponification and without saponification of the TLE. Therefore, a Regosol, a Podzol and a Ferralsol were sampled. To proof the applicability of the method for faecal biomarker analyses in archaeological soils and sediments, additional samples were taken from pre-Columbian Anthrosols in Amazonia and an Anthrosol from a site in central Europe settled since the Neolithic. The comparison of the amounts of steroids

  8. Classification of coal seam outburst hazards and evaluation of the importance of influencing factors

    OpenAIRE

    Shi Xianzhi; Song Dazhao; Qian Ziwei

    2017-01-01

    Coal and gas outbursts are the result of several geological factors related to coal seam gas (coal seam gas pressure P, coal seam sturdiness coefficient f and coal seam gas content W), and these parameters can be used to classify the outburst hazard level of a coal seam.

  9. A critical analysis of carbonic anhydrase function, respiratory gas exchange, and the acid-base control of secretion in the rectal gland of Squalus acanthias.

    Science.gov (United States)

    Shuttleworth, Trevor J; Thompson, Jill; Munger, R Stephen; Wood, Chris M

    2006-12-01

    We compared in vivo responses of rectal gland secretion to carbonic anhydrase (CA) inhibition (10(-4) mol l(-1) acetazolamide) in volume-loaded dogfish with in vitro responses in an isolated-perfused gland stimulated with 5 x 10(-6) mol l(-1) forskolin and removed from systemic influences. We also measured respiratory gas exchange in the perfused gland, described the acid-base status of the secreted fluid, and determined the relative importance of various extracellular and intracellular acid-base parameters in controlling rectal gland secretion in vitro. In vivo, acetazolamide inhibited Cl(-) secretion and decreased pHi in the rectal gland, but interpretation was confounded by an accompanying systemic respiratory acidosis, which would also have contributed to the inhibition. In the perfused gland, M(CO(2)) and M(O(2)) increased in linear relation to increases in Cl(-) secretion rate. CA inhibition (10(-4) mol l(-1) acetazolamide) had no effect on Cl(-) secretion rate or pHi in the perfused gland, in contrast to in vivo, but caused a transitory 30% inhibition of M(CO(2)) (relative to stable M(O(2))) and elevation in secretion P(CO(2)) effects, which peaked at 2 h and attenuated by 3.5-4 h. Secretion was inhibited by acidosis and stimulated by alkalosis; the relationship between relative Cl(-) secretion rate and pHe was almost identical to that seen in vivo. Experimental manipulations of perfusate pH, P(CO(2)) and HCO(3)(-) concentration, together with measurements of pHi, demonstrated that these responses were most strongly correlated with changes in pHe, and were not related to changes in P(CO(2)), extracellular HCO(3)(-), or intracellular HCO(3)(-) levels, though changes in pHi may also have played a role. The acid-base status of the secreted fluid varied with that of the perfusate, secretion pH remaining about 0.3-0.5 units lower, and changing in concert with pHe rather than pHi; secretion HCO(3)(-) concentrations remained low, even in the face of greatly

  10. Experiment and theory at the convergence limit: accurate equilibrium structure of picolinic acid by gas-phase electron diffraction and coupled-cluster computations.

    Science.gov (United States)

    Vogt, Natalja; Marochkin, Ilya I; Rykov, Anatolii N

    2018-04-18

    The accurate molecular structure of picolinic acid has been determined from experimental data and computed at the coupled cluster level of theory. Only one conformer with the O[double bond, length as m-dash]C-C-N and H-O-C[double bond, length as m-dash]O fragments in antiperiplanar (ap) positions, ap-ap, has been detected under conditions of the gas-phase electron diffraction (GED) experiment (Tnozzle = 375(3) K). The semiexperimental equilibrium structure, rsee, of this conformer has been derived from the GED data taking into account the anharmonic vibrational effects estimated from the ab initio force field. The equilibrium structures of the two lowest-energy conformers, ap-ap and ap-sp (with the synperiplanar H-O-C[double bond, length as m-dash]O fragment), have been fully optimized at the CCSD(T)_ae level of theory in conjunction with the triple-ζ basis set (cc-pwCVTZ). The quality of the optimized structures has been improved due to extrapolation to the quadruple-ζ basis set. The high accuracy of both GED determination and CCSD(T) computations has been disclosed by a correct comparison of structures having the same physical meaning. The ap-ap conformer has been found to be stabilized by the relatively strong NH-O hydrogen bond of 1.973(27) Å (GED) and predicted to be lower in energy by 16 kJ mol-1 with respect to the ap-sp conformer without a hydrogen bond. The influence of this bond on the structure of picolinic acid has been analyzed within the Natural Bond Orbital model. The possibility of the decarboxylation of picolinic acid has been considered in the GED analysis, but no significant amounts of pyridine and carbon dioxide could be detected. To reveal the structural changes reflecting the mesomeric and inductive effects due to the carboxylic substituent, the accurate structure of pyridine has been also computed at the CCSD(T)_ae level with basis sets from triple- to 5-ζ quality. The comprehensive structure computations for pyridine as well as for

  11. Collection of VLE data for acid gas - alkanolamine systems using Fourier transform infrared spectroscopy. Final report, September 29, 1990--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Bullin, J.A.; Rogers, W.J.

    1996-11-01

    This report describes research from September 29, 1990 through September 30, 1996, involving the development a novel Fourier transform infrared (FTIR) spectroscopic apparatus and method for measuring vapor - liquid equilibrium (VLE) systems of carbon dioxide and hydrogen sulfide with aqueous alkanolamine solutions. The original apparatus was developed and modified as it was used to collect VLE data on acid gas systems. Vapor and liquid calibrations were performed for spectral measurements of hydrogen sulfide and carbon dioxide in the vapor and in solution with aqueous diethanolamine (DEA) and methyldiethanolamine (MDEA). VLE measurements were made of systems of hydrogen sulfide and carbon dioxide in 20 wt % DEA at 50{degrees}C and 40{degrees}C. VLE measurements were made of systems of hydrogen sulfide and carbon dioxide in 50 wt% and 23 wt% MDEA at 40{degrees}C and in 23 wt% MDEA at 50{degrees}C. VLE measurements were made of systems of hydrogen sulfide and carbon dioxide in 35 wt% MDEA + 5 wt% DEA and in 35 wt% MDEA + 10 wt% DEA at 40{degrees}C and 50{degrees}C. Measurements were made of residual amounts of carbon dioxide in each VLE system. The new FTIR spectrometer is now a consistently working and performing apparatus.

  12. Single-step transesterification with simultaneous concentration and stable isotope analysis of fatty acid methyl esters by gas chromatography-combustion-isotope ratio mass spectrometry.

    Science.gov (United States)

    Panetta, Robert J; Jahren, A Hope

    2011-05-30

    Gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is increasingly applied to food and metabolic studies for stable isotope analysis (δ(13) C), with the quantification of analyte concentration often obtained via a second alternative method. We describe a rapid direct transesterification of triacylglycerides (TAGs) for fatty acid methyl ester (FAME) analysis by GC-C-IRMS demonstrating robust simultaneous quantification of amount of analyte (mean r(2) =0.99, accuracy ±2% for 37 FAMEs) and δ(13) C (±0.13‰) in a single analytical run. The maximum FAME yield and optimal δ(13) C values are obtained by derivatizing with 10% (v/v) acetyl chloride in methanol for 1 h, while lower levels of acetyl chloride and shorter reaction times skewed the δ(13) C values by as much as 0.80‰. A Bland-Altman evaluation of the GC-C-IRMS measurements resulted in excellent agreement for pure oils (±0.08‰) and oils extracted from French fries (±0.49‰), demonstrating reliable simultaneous quantification of FAME concentration and δ(13) C values. Thus, we conclude that for studies requiring both the quantification of analyte and δ(13) C data, such as authentication or metabolic flux studies, GC-C-IRMS can be used as the sole analytical method. Copyright © 2011 John Wiley & Sons, Ltd.

  13. Flood Hazard Area

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  14. Flood Hazard Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  15. Introduction: Hazard mapping

    Science.gov (United States)

    Baum, Rex L.; Miyagi, Toyohiko; Lee, Saro; Trofymchuk, Oleksandr M

    2014-01-01

    Twenty papers were accepted into the session on landslide hazard mapping for oral presentation. The papers presented susceptibility and hazard analysis based on approaches ranging from field-based assessments to statistically based models to assessments that combined hydromechanical and probabilistic components. Many of the studies have taken advantage of increasing availability of remotely sensed data and nearly all relied on Geographic Information Systems to organize and analyze spatial data. The studies used a range of methods for assessing performance and validating hazard and susceptibility models. A few of the studies presented in this session also included some element of landslide risk assessment. This collection of papers clearly demonstrates that a wide range of approaches can lead to useful assessments of landslide susceptibility and hazard.

  16. Hazardous Air Pollutants

    Science.gov (United States)

    ... Search Main menu Environmental Topics Air Bed Bugs Chemicals and Toxics Environmental Information by Location Greener Living Health Land, ... regulate toxic air pollutants, also known as air toxics, from categories of industrial facilities in two phases . About Hazardous Air Pollutants ...

  17. Natural Hazards Image Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photographs and other visual media provide valuable pre- and post-event data for natural hazards. Research, mitigation, and forecasting rely on visual data for...

  18. Hazardous Waste Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Engineer Waterways Experiment Station (WES) is playing a major role in development of technologies for cleanup of toxic and hazardous waste in military...

  19. Health Hazard Evaluations

    Science.gov (United States)

    ... May 1, 2018 Content source: National Institute for Occupational Safety and Health Division of Surveillance, Hazard Evaluation, and Field Studies ... Fear Act OIG 1600 Clifton Road Atlanta , GA 30329-4027 ...

  20. What Are Volcano Hazards?

    Science.gov (United States)

    ... Sheet 002-97 Revised March 2008 What Are Volcano Hazards? Volcanoes give rise to numerous geologic and ... as far as 15 miles from the volcano. Volcano Landslides A landslide or debris avalanche is a ...

  1. Hazards from aircraft

    International Nuclear Information System (INIS)

    Grund, J.E.; Hornyik, K.

    1975-01-01

    The siting of nuclear power plants has created innumerable environmental concerns. Among the effects of the ''man-made environment'' one of increasing importance in recent nuclear plant siting hazards analysis has been the concern about aircraft hazards to the nuclear plant. These hazards are of concern because of the possibility that an aircraft may have a malfunction and crash either near the plant or directly into it. Such a crash could be postulated to result, because of missile and/or fire effects, in radioactive releases which would endanger the public health and safety. The majority of studies related to hazards from air traffic have been concerned with the determination of the probability associated with an aircraft striking vulnerable portions of a given plant. Other studies have focused on the structural response to such a strike. This work focuses on the problem of strike probability. 13 references

  2. Treatment of hazardous metals by in situ vitrification

    International Nuclear Information System (INIS)

    Koegler, S.S.; Buelt, J.L.

    1989-02-01

    Soils contaminated with hazardous metals are a significant problem to many Defense Program sites. Contaminated soils have ranked high in assessments of research and development needs conducted by the Hazardous Waste Remedial Action Program (HAZWRAP) in FY 1988 and FY 1989. In situ vitrification (ISV) is an innovative technology suitable for stabilizing soils contaminated with radionuclides and hazardous materials. Since ISV treats the material in place, it avoids costly and hazardous preprocessing exhumation of waste. In situ vitrification was originally developed for immobilizing radioactive (primarily transuranic) soil constituents. Tests indicate that it is highly useful also for treating other soil contaminants, including hazardous metals. The ISV process produces an environmentally acceptable, highly durable glasslike product. In addition, ISV includes an efficient off-gas treatment system that eliminates noxious gaseous emissions and generates minimal hazardous byproducts. This document reviews the Technical Basis of this technology. 5 refs., 7 figs., 2 tabs

  3. Probabilistic Tsunami Hazard Analysis

    Science.gov (United States)

    Thio, H. K.; Ichinose, G. A.; Somerville, P. G.; Polet, J.

    2006-12-01

    The recent tsunami disaster caused by the 2004 Sumatra-Andaman earthquake has focused our attention to the hazard posed by large earthquakes that occur under water, in particular subduction zone earthquakes, and the tsunamis that they generate. Even though these kinds of events are rare, the very large loss of life and material destruction caused by this earthquake warrant a significant effort towards the mitigation of the tsunami hazard. For ground motion hazard, Probabilistic Seismic Hazard Analysis (PSHA) has become a standard practice in the evaluation and mitigation of seismic hazard to populations in particular with respect to structures, infrastructure and lifelines. Its ability to condense the complexities and variability of seismic activity into a manageable set of parameters greatly facilitates the design of effective seismic resistant buildings but also the planning of infrastructure projects. Probabilistic Tsunami Hazard Analysis (PTHA) achieves the same goal for hazards posed by tsunami. There are great advantages of implementing such a method to evaluate the total risk (seismic and tsunami) to coastal communities. The method that we have developed is based on the traditional PSHA and therefore completely consistent with standard seismic practice. Because of the strong dependence of tsunami wave heights on bathymetry, we use a full waveform tsunami waveform computation in lieu of attenuation relations that are common in PSHA. By pre-computing and storing the tsunami waveforms at points along the coast generated for sets of subfaults that comprise larger earthquake faults, we can efficiently synthesize tsunami waveforms for any slip distribution on those faults by summing the individual subfault tsunami waveforms (weighted by their slip). This efficiency make it feasible to use Green's function summation in lieu of attenuation relations to provide very accurate estimates of tsunami height for probabilistic calculations, where one typically computes

  4. Nitrous Oxide Explosive Hazards

    Science.gov (United States)

    2008-05-01

    concentrations of N2O. A test program is suggested that could answer questions about decomposition propagation control in large N2O systems and hazards...accident. OSHA fined Scaled Composites for not training their workers informing them about N2O hazards, instructing them on safe procedures, and...seemed present that could produce temperatures in excess of the autogeneous ignition temperature (AIT) for the polymers? Autogeneous ignition

  5. K Basin Hazard Analysis

    International Nuclear Information System (INIS)

    PECH, S.H.

    2000-01-01

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  6. K Basin Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  7. K Basins Hazard Analysis

    International Nuclear Information System (INIS)

    WEBB, R.H.

    1999-01-01

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062/Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  8. Disaster and hazard prevention research

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bok Youn; Kang, Chang Hee; Jo, Young Do; Lim, Sang Taek [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    It is third project year on `Application of mobile diesel equipment in underground mines` for providing appropriate measures to improve underground working environment contaminated by the diesel exhaust pollutants. The result of disaster and hazard prevention research is as follows ; 1) There are three categories of possible disaster of hazard in workings where diesel equipment are operating : a) exhausting pollutants, b) mine fire, c) other causes. 2) Workings employing diesel equipment should be properly ventilated all the time to maintain the gas concentration bellow the permissible level. 3) Major cause of fire is known as the high engine temperature by heavy duty and rupture of hydraulic hoses or fuel pipes and fuel spillage. So, sound engine maintenance and workers` train is essential matter to prevent fire outbreak. 4) By simulating the expected mine fire, The proper measures can be provided in actual fire. 5) Fuel and other are recommended to be stored at surface and, when the storage installed in underground, all the safety regulation should be kept strictly. (author). 6 tabs., 3 figs.

  9. HAZARD ANALYSIS SOFTWARE

    International Nuclear Information System (INIS)

    Sommer, S; Tinh Tran, T.

    2008-01-01

    Washington Safety Management Solutions, LLC developed web-based software to improve the efficiency and consistency of hazard identification and analysis, control selection and classification, and to standardize analysis reporting at Savannah River Site. In the new nuclear age, information technology provides methods to improve the efficiency of the documented safety analysis development process which includes hazard analysis activities. This software provides a web interface that interacts with a relational database to support analysis, record data, and to ensure reporting consistency. A team of subject matter experts participated in a series of meetings to review the associated processes and procedures for requirements and standard practices. Through these meetings, a set of software requirements were developed and compiled into a requirements traceability matrix from which software could be developed. The software was tested to ensure compliance with the requirements. Training was provided to the hazard analysis leads. Hazard analysis teams using the software have verified its operability. The software has been classified as NQA-1, Level D, as it supports the analysis team but does not perform the analysis. The software can be transported to other sites with alternate risk schemes. The software is being used to support the development of 14 hazard analyses. User responses have been positive with a number of suggestions for improvement which are being incorporated as time permits. The software has enforced a uniform implementation of the site procedures. The software has significantly improved the efficiency and standardization of the hazard analysis process

  10. Carbon Structure Hazard Control

    Science.gov (United States)

    Yoder, Tommy; Greene, Ben; Porter, Alan

    2015-01-01

    Carbon composite structures are widely used in virtually all advanced technology industries for a multitude of applications. The high strength-to-weight ratio and resistance to aggressive service environments make them highly desirable. Automotive, aerospace, and petroleum industries extensively use, and will continue to use, this enabling technology. As a result of this broad range of use, field and test personnel are increasingly exposed to hazards associated with these structures. No single published document exists to address the hazards and make recommendations for the hazard controls required for the different exposure possibilities from damaged structures including airborne fibers, fly, and dust. The potential for personnel exposure varies depending on the application or manipulation of the structure. The effect of exposure to carbon hazards is not limited to personnel, protection of electronics and mechanical equipment must be considered as well. The various exposure opportunities defined in this document include pre-manufacturing fly and dust, the cured structure, manufacturing/machining, post-event cleanup, and post-event test and/or evaluation. Hazard control is defined as it is applicable or applied for the specific exposure opportunity. The carbon exposure hazard includes fly, dust, fiber (cured/uncured), and matrix vapor/thermal decomposition products. By using the recommendations in this document, a high level of confidence can be assured for the protection of personnel and equipment.

  11. Safety aspects of gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Hansen, A.H.

    1987-01-01

    Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These and related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely

  12. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  13. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program

  14. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    2000-02-28

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program.

  15. Transportation of hazardous materials emergency preparedness hazards assessment

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program

  16. The California Hazards Institute

    Science.gov (United States)

    Rundle, J. B.; Kellogg, L. H.; Turcotte, D. L.

    2006-12-01

    California's abundant resources are linked with its natural hazards. Earthquakes, landslides, wildfires, floods, tsunamis, volcanic eruptions, severe storms, fires, and droughts afflict the state regularly. These events have the potential to become great disasters, like the San Francisco earthquake and fire of 1906, that overwhelm the capacity of society to respond. At such times, the fabric of civic life is frayed, political leadership is tested, economic losses can dwarf available resources, and full recovery can take decades. A patchwork of Federal, state and local programs are in place to address individual hazards, but California lacks effective coordination to forecast, prevent, prepare for, mitigate, respond to, and recover from, the harmful effects of natural disasters. Moreover, we do not know enough about the frequency, size, time, or locations where they may strike, nor about how the natural environment and man-made structures would respond. As California's population grows and becomes more interdependent, even moderate events have the potential to trigger catastrophes. Natural hazards need not become natural disasters if they are addressed proactively and effectively, rather than reactively. The University of California, with 10 campuses distributed across the state, has world-class faculty and students engaged in research and education in all fields of direct relevance to hazards. For that reason, the UC can become a world leader in anticipating and managing natural hazards in order to prevent loss of life and property and degradation of environmental quality. The University of California, Office of the President, has therefore established a new system-wide Multicampus Research Project, the California Hazards Institute (CHI), as a mechanism to research innovative, effective solutions for California. The CHI will build on the rich intellectual capital and expertise of the Golden State to provide the best available science, knowledge and tools for

  17. Apparatus for incinerating hazardous waste

    Science.gov (United States)

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  18. Identification of Aircraft Hazards

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  19. IDENTIFICATION OF AIRCRAFT HAZARDS

    International Nuclear Information System (INIS)

    K.L. Ashley

    2005-01-01

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7)

  20. Natural Hazards, Second Edition

    Science.gov (United States)

    Rouhban, Badaoui

    Natural disaster loss is on the rise, and the vulnerability of the human and physical environment to the violent forces of nature is increasing. In many parts of the world, disasters caused by natural hazards such as earthquakes, floods, landslides, drought, wildfires, intense windstorms, tsunami, and volcanic eruptions have caused the loss of human lives, injury, homelessness, and the destruction of economic and social infrastructure. Over the last few years, there has been an increase in the occurrence, severity, and intensity of disasters, culminating with the devastating tsunami of 26 December 2004 in South East Asia.Natural hazards are often unexpected or uncontrollable natural events of varying magnitude. Understanding their mechanisms and assessing their distribution in time and space are necessary for refining risk mitigation measures. This second edition of Natural Hazards, (following a first edition published in 1991 by Cambridge University Press), written by Edward Bryant, associate dean of science at Wollongong University, Australia, grapples with this crucial issue, aspects of hazard prediction, and other issues. The book presents a comprehensive analysis of different categories of hazards of climatic and geological origin.

  1. Identification of Aircraft Hazards

    International Nuclear Information System (INIS)

    K. Ashley

    2006-01-01

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7)

  2. Determination of valproic acid in human plasma using dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection

    Science.gov (United States)

    Fazeli-Bakhtiyari, Rana; Panahi-Azar, Vahid; Sorouraddin, Mohammad Hossein; Jouyban, Abolghasem

    2015-01-01

    Objective(s): Dispersive liquid-liquid microextraction coupled with gas chromatography (GC)-flame ionization detector was developed for the determination of valproic acid (VPA) in human plasma. Materials and Methods: Using a syringe, a mixture of suitable extraction solvent (40 µl chloroform) and disperser (1 ml acetone) was quickly added to 10 ml of diluted plasma sample containing VPA (pH, 1.0; concentration of NaCl, 4% (w/v)), resulting in a cloudy solution. After centrifugation (6000 rpm for 6 min), an aliquot (1 µl) of the sedimented organic phase was removed using a 1-µl GC microsyringe and injected into the GC system for analysis. One variable at a time optimization method was used to study various parameters affecting the extraction efficiency of target analyte. Then, the developed method was fully validated for its accuracy, precision, recovery, stability, and robustness. Results: Under the optimum extraction conditions, good linearity range was obtained for the calibration graph, with correlation coefficient higher than 0.998. Limit of detection and lower limit of quantitation were 3.2 and 6 μg/ml, respectively. The relative standard deviations of intra and inter-day analysis of examined compound were less than 11.5%. The relative recoveries were found in the range of 97 to 107.5%. Finally, the validated method was successfully applied to the analysis of VPA in patient sample. Conclusion: The presented method has acceptable levels of precision, accuracy and relative recovery and could be used for therapeutic drug monitoring of VPA in human plasma. PMID:26730332

  3. Experimental designs for modeling retention patterns and separation efficiency in analysis of fatty acid methyl esters by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Skartland, Liv Kjersti; Mjøs, Svein A; Grung, Bjørn

    2011-09-23

    The retention behavior of components analyzed by chromatography varies with instrumental settings. Being able to predict how changes in these settings alter the elution pattern is useful, both with regards to component identification, as well as with regards to optimization of the chromatographic system. In this work, it is shown how experimental designs can be used for this purpose. Different experimental designs for response surface modeling of the separation of fatty acid methyl esters (FAME) as function of chromatographic conditions in GC have been evaluated. Full factorial, central composite, Doehlert and Box-Behnken designs were applied. A mixture of 38 FAMEs was separated on a polar cyanopropyl substituted polysilphenylene-siloxane phase capillary column. The temperature gradient, the start temperature of the gradient, and the carrier gas velocity were varied in the experiments. The modeled responses, as functions of chromatographic conditions, were retention time, retention indices, peak widths, separation efficiency and resolution between selected peak pairs. The designs that allowed inclusion of quadratic terms among the predictors performed significantly better than factorial design. Box-Behnken design provided the best results for prediction of retention, but the differences between the central composite, Doehlert and Box-Behnken designs were small. Retention indices could be modeled with much better accuracy than retention times. However, because the errors of predicted tR of closely eluting peaks were highly correlated, models of resolution (Rs) that were based on retention time had errors in the same range as corresponding models based on ECL. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Determination of molecular structure of succinic acid in a very complex conformational landscape: Gas-phase electron diffraction (GED) and ab initio studies

    Science.gov (United States)

    Vogt, Natalja; Abaev, Maxim A.; Rykov, Anatolii N.; Shishkov, Igor F.

    2011-06-01

    The molecular structure of succinic acid has been investigated by the gas-phase electron diffraction (GED) method for the first time. According to predictions of MP2/cc-pVTZ calculations, the molecule has 18 stable conformers with the C sbnd C sbnd C sbnd C chain in the gauche ( G) or anti ( A) configuration, and four of them, I ( G), II ( A), III ( G) and IV ( A) belonging to the C 2, C 2h, C 1 and C 1 point groups, respectively, with relative energies ΔE ZPE within 2.2 kcal/mol can be present at the experimental temperature of 445 K in noticeable amounts. The ratio of the conformers I:II:III:IV = 45(15):20(15):10(assumed):25(15) (in %) has been determined in the GED analysis guided by theoretical predictions. To take into account vibrational effects, the corrections Δ( r e - r a) to the experimental r a bond lengths were calculated from the MP2/cc-pVTZ quadratic and cubic force constants. The obtained equilibrium structural parameters of the dominant conformer I are the following (bond lengths in Å, angles in degrees): r e(C sp3sbnd C sp3) = 1.508(3), r e(C sp3sbnd C sp2) = 1.499(2), r e(C sbnd O) = 1.343(2), r e(C dbnd O) = 1.202(1), e(C sbnd C sbnd C) = 111.8(4), e(C sbnd C sbnd O) = 112.0(4), e(O sbnd C dbnd O) = 123.0(1), τ(C sbnd C sbnd C sbnd C) = 69.9(11). Yielding the best agreement with the GED structure, the MP2/cc-pVQZ approximation overestimates the C sbnd O and C dbnd O bond lengths by ca. 0.005(2) Å.

  5. The perception of hazards

    International Nuclear Information System (INIS)

    Fritzsche, A.F.

    1986-01-01

    The fourth chapter deals with the profusion of factors determining the differing assessment of hazards by our society. Subjective factors influencing risk perception comprise, among others, general knowledge and recognition of a hazard; the degree of voluntariness when taking the risk and its influencibility; the problem of large scale accidents; immediate and delayed results. Next to the objective and the subjective risks, the individual and the social or collective risks are assessed differently. The author dicusses in detail recent investigations into and study methods for the determination of risk perception, while eliminating systematic trends from subjective perception since common assessments are shared by whole groups of individuals time and again which allow a better understanding of today's handling of hazards. (HSCH) [de

  6. Moral Hazard in Pediatrics.

    Science.gov (United States)

    Brunnquell, Donald; Michaelson, Christopher M

    2016-07-01

    "Moral hazard" is a term familiar in economics and business ethics that illuminates why rational parties sometimes choose decisions with bad moral outcomes without necessarily intending to behave selfishly or immorally. The term is not generally used in medical ethics. Decision makers such as parents and physicians generally do not use the concept or the word in evaluating ethical dilemmas. They may not even be aware of the precise nature of the moral hazard problem they are experiencing, beyond a general concern for the patient's seemingly excessive burden. This article brings the language and logic of moral hazard to pediatrics. The concept reminds us that decision makers in this context are often not the primary party affected by their decisions. It appraises the full scope of risk at issue when decision makers decide on behalf of others and leads us to separate, respect, and prioritize the interests of affected parties.

  7. Hazardous factories: Nigerian evidence.

    Science.gov (United States)

    Oloyede, Olajide

    2005-06-01

    The past 15 years have seen an increasing governmental and corporate concern for the environment worldwide. For governments, information about the environmental performance of the industrial sector is required to inform macro-level decisions about environmental targets such as those required to meet UN directives. However, in many African, Asian, and Latin American countries, researching and reporting company environmental performance is limited. This article serves as a contribution to filling the gap by presenting evidence of physical and chemical risk in Nigerian factories. One hundred and three factories with a total of 5,021 workers were studied. One hundred and twenty physical and chemical hazards were identified and the result shows a high number of workers exposed to such hazards. The study also reveals that workers' awareness level of chemical hazards was high. Yet the danger was perceived in behavioral terms, especially by manufacturing firms, which tend to see environmental investment in an increasingly global economy as detrimental to profitability.

  8. Onsite transportation hazards assessment

    International Nuclear Information System (INIS)

    Burnside, M.E.

    1998-01-01

    This report documents the emergency preparedness Hazards Assessment for the onsite transportation of hazardous material at the Hanford Site. The assessment is required by US Department of Energy (DOE) Order 5500.3A and provides the technical basis for the emergency classification and response procedures. A distinction is made between onsite for the purpose of emergency preparedness and onsite for the purpose of applying US Department of Transportation (DOT) regulations. Onsite for the purpose of emergency preparedness is considered to be within the physical boundary of the entire Hanford Site. Onsite for the purpose of applying DOT regulations is north of the Wye Barricade

  9. Hazard Communication Standard

    International Nuclear Information System (INIS)

    Sichak, S.

    1991-01-01

    The current rate of technological advances has brought with it an overwhelming increase in the usage of chemicals in the workplace and in the home. Coupled to this increase has been a heightened awareness in the potential for acute and chronic injuries attributable to chemical insults. The Hazard Communication Standard has been introduced with the desired goal of reducing workplace exposures to hazardous substances and thereby achieving a corresponding reduction in adverse health effects. It was created and proclaimed by the US Department of Labor and regulated by the Occupational Safety and Health Administration. 1 tab

  10. Technology survey for real-time monitoring of plutonium in a vitrifier off-gas system

    International Nuclear Information System (INIS)

    Berg, J.M.; Veirs, D.K.

    1996-01-01

    We surveyed several promising measurement technologies for the real-time monitoring of plutonium in a vitrifier off-gas system. The vitrifier is being developed by Westinghouse Savannah River Corp. and will be used to demonstrate vitrification of plutonium dissolved in nitric acid for fissile material disposition. The risk of developing a criticality hazard in the off-gas processing equipment can be managed by using available measurement technologies. We identified several potential technologies and methods for detecting plutonium that are sensitive enough to detect the accumulation of a mass sufficient to form a criticality hazard. We recommend gross alpha-monitoring technologies as the most promising option for Westinghouse Savannah River Corp. to consider because that option appears to require the least additional development. We also recommend further consideration for several other technologies because they offer specific advantages and because gross alpha-monitoring could prove unsuitable when tested for this specific application

  11. Flammable gas safety program

    International Nuclear Information System (INIS)

    Campbell, J.A.; Clauss, S.; Grant, K.; Hoopes, V.; Lerner, B.; Lucke, R.; Mong, G.; Rau, J.; Steele, R.

    1994-01-01

    This report describes the status of developing analytical methods to account for the organic constituents in Hanford waste tanks, with particular emphasis on those tanks that have been assigned to the Flammable Gas Watch List. Six samples of core segments from Tank 101-SY, obtained during the window E core sampling, have been analyzed for organic constituents. Four of the samples were from the upper region, or convective layer, of the tank and two were from the lower, nonconvective layer. The samples were analyzed for chelators, chelator fragments, and several carboxylic acids by derivatization gas chromatography/mass spectrometry (GC/MS). The major components detected were ethylenediaminetetraacetic acid (EDTA), nitroso-iminodiacetic acid (NIDA), nitrilotriacetic acid (NTA), citric acid (CA), succinic acid (SA), and ethylenediaminetriacetic acid (ED3A). The chelator of highest concentration was EDTA in all six samples analyzed. Liquid chromatography (LC) was used to quantitate low molecular weight acids (LMWA) including oxalic, formic, glycolic, and acetic acids, which are present in the waste as acid salts. From 23 to 61% of the total organic carbon (TOC) in the samples analyzed was accounted for by these acids. Oxalate constituted approximately 40% of the TOC in the nonconvective layer samples. Oxalate was found to be approximately 3 to 4 times higher in concentration in the nonconvective layer than in the convective layer. During FY 1993, LC methods for analyzing LWMA, and two chelators N-(2-hydroxyethyl) ethylenediaminetriacetic acid and EDTA, were transferred to personnel in the Analytical Chemistry Laboratory and the 222-S laboratory

  12. Overconfidence and Moral Hazard

    DEFF Research Database (Denmark)

    de la Rosa, Leonidas Enrique

    In this paper, I study the effects of overconfidence on incentive contracts in a moral-hazard framework in which principal and agent knowingly hold asymmetric beliefs regarding the probability of success of their enterprise. Agent overconfidence can have conflicting effects on the equilibrium con...

  13. SCI Hazard Report Methodology

    Science.gov (United States)

    Mitchell, Michael S.

    2010-01-01

    This slide presentation reviews the methodology in creating a Source Control Item (SCI) Hazard Report (HR). The SCI HR provides a system safety risk assessment for the following Ares I Upper Stage Production Contract (USPC) components (1) Pyro Separation Systems (2) Main Propulsion System (3) Reaction and Roll Control Systems (4) Thrust Vector Control System and (5) Ullage Settling Motor System components.

  14. Stop radiation hazards

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Brief general advice is presented for the employer unused to handling radioactive materials or using x-ray techniques. Topics mentioned are the definition of radiation and its hazards, measuring and monitoring the working environment, how to decide on and obtain equipment, standards and regulations, codes of practice, records, training, and useful sources of information. (U.K.)

  15. Overconfidence and Moral Hazard

    DEFF Research Database (Denmark)

    de la Rosa, Leonidas Enrique

    2011-01-01

    In this paper, I study the effects of overconfidence on incentive contracts in a moral-hazard framework. Agent overconfidence can have conflicting effects on the equilibrium contract. On the one hand, an optimistic or overconfident agent disproportionately values success-contingent payments...

  16. Hazardous industrial waste management

    International Nuclear Information System (INIS)

    Quesada, Hilda; Salas, Juan Carlos; Romero, Luis Guillermo

    2007-01-01

    The appropriate managing of hazardous wastes is a problem little dealed in the wastes management in the country. A search of available information was made about the generation and handling to internal and external level of the hazardous wastes by national industries. It was worked with eleven companies of different types of industrial activities for, by means of a questionnaire, interviews and visits, to determine the degree of integral and suitable handling of the wastes that they generate. It was concluded that exist only some isolated reports on the generation of hazardous industrial wastes and handling. The total quantity of wastes generated in the country was impossible to establish. The companies consulted were deficient in all stages of the handling of their wastes: generation, accumulation and storage, transport, treatment and final disposition. The lack of knowledge of the legislation and of the appropriate managing of the wastes is showed as the principal cause of the poor management of the residues. The lack of state or private entities entrusted to give services of storage, transport, treatment and final disposition of hazardous wastes in the country was evident. (author) [es

  17. Hazardous solvent substitution

    International Nuclear Information System (INIS)

    Twitchell, K.E.

    1995-01-01

    Eliminating hazardous solvents is good for the environment, worker safety, and the bottom line. However, even though we are motivated to find replacements, the big question is 'What can we use as replacements for hazardous solvents?'You, too, can find replacements for your hazardous solvents. All you have to do is search for them. Search through the vendor literature of hundreds of companies with thousands of products. Ponder the associated material safety data sheets, assuming of course that you can obtain them and, having obtained them, that you can read them. You will want to search the trade magazines and other sources for product reviews. You will want to talk to users about how well the product actually works. You may also want to check US Environmental Protection Agency (EPA) and other government reports for toxicity and other safety information. And, of course, you will want to compare the product's constituent chemicals with the many hazardous constituency lists to ensure the safe and legal use of the product in your workplace

  18. Maintenance and hazardous substances

    NARCIS (Netherlands)

    Kuhl, K.; Terwoert, J.; Cabecas, J.J.M.

    2012-01-01

    Maintenance workers come into close contact with a broad variety of often hazardous chemicals. Depending on the specific type, these chemicals may not only cause diseases like skin sores or cancer, but many of them are highly flammable and explosive. This e-facts focuses on the specific risks

  19. Assessing storm erosion hazards

    NARCIS (Netherlands)

    Ranasinghe, Ranasinghe W M R J B; Callaghan, D.; Ciavola, Paolo; Coco, Giovanni

    2017-01-01

    The storm erosion hazard on coasts is usually expressed as an erosion volume and/or associated episodic coastline retreat. The accurate assessment of present-day and future storm erosion volumes is a key task for coastal zone managers, planners and engineers. There are four main approaches that can

  20. Moral Hazard and Stability

    DEFF Research Database (Denmark)

    Tumennasan, Norovsambuu

    2014-01-01

    not form. Formally, we study the team formation problem in which the agents’ efforts are not verifiable and the size of teams does not exceed quota r . We show that if the team members cannot make transfers, then moral hazard affects stability positively in a large class of games. For example, a stable...