WorldWideScience

Sample records for acid dehydrogenase complex

  1. Purification of 2-oxo acid dehydrogenase multienzyme complexes from ox heart by a new method.

    OpenAIRE

    Stanley, C J; Perham, R N

    1980-01-01

    A new method is described that allows the parallel purification of the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multienzyme complexes from ox heart without the need for prior isolation of mitochondria. All the assayable activity of the 2-oxo acid dehydrogenase complexes in the disrupted tissue is made soluble by the inclusion of non-ionic detergents such as Triton X-100 or Tween-80 in the buffer used for the initial extraction of the enzyme complexes. The yields of the pyruvate...

  2. Solution structures of lipoyl domains of the 2-oxo acid dehydrogenase complexes from Azotobacter vinelandii : implications for molecular recognition

    NARCIS (Netherlands)

    Berg, A.

    1997-01-01

    The 2-oxo acid dehydrogenase complexes are large multienzyme complexes that catalyse the irreversible oxidative decarboxylation of a specific 2-oxo acid to the corresponding acyl-CoA derivative. The pyruvate dehydrogenase complex (PDHC) converts the product of the glycolysis, pyruvate, to

  3. Dissociation of branched-chain alpha-keto acid dehydrogenase kinase (BDK) from branched-chain alpha-keto acid dehydrogenase complex (BCKDC) by BDK inhibitors.

    Science.gov (United States)

    Murakami, Taro; Matsuo, Masayuki; Shimizu, Ayako; Shimomura, Yoshiharu

    2005-02-01

    Branched-chain alpha-keto acid dehydrogenase kinase (BDK) phosphorylates and inactivates the branched-chain alpha-keto acid dehydrogenase complex (BCKDC), which is the rate-limiting enzyme in the branched-chain amino acid catabolism. BDK has been believed to be bound to the BCKDC. However, recent our studies demonstrated that protein-protein interaction between BDK and BCKDC is one of the factors to regulate BDK activity. Furthermore, only the bound form of BDK appears to have its activity. In the present study, we examined effects of BDK inhibitors on the amount of BDK bound to the BCKDC using rat liver extracts. The bound form of BDK in the extracts of liver from low protein diet-fed rats was measured by an immunoprecipitation pull down assay with or without BDK inhibitors. Among the BDK inhibitors. alpha-ketoisocaproate, alpha-chloroisocaproate, and a-ketoisovalerate released the BDK from the complex. Furthermore, the releasing effect of these inhibitors on the BDK appeared to depend on their inhibition constants. On the other hand, clofibric acid and thiamine pyrophosphate had no effect on the protein-protein interaction between two enzymes. These results suggest that the dissociation of the BDK from the BCKDC is one of the mechanisms responsible for the action of some inhibitors to BDK.

  4. Phosphorylation site on yeast pyruvate dehydrogenase complex

    International Nuclear Information System (INIS)

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the 32 P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation

  5. The activity state of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues.

    OpenAIRE

    Wagenmakers, A J; Schepens, J T; Veldhuizen, J A; Veerkamp, J H

    1984-01-01

    An assay is described to define the proportion of the branched-chain 2-oxo acid dehydrogenase complex that is present in the active state in rat tissues. Activities are measured in homogenates in two ways: actual activities, present in tissues, by blocking both the kinase and phosphatase of the enzyme complex during homogenization, preincubation, and incubation with 1-14C-labelled branched-chain 2-oxo acid, and total activities by blocking only the kinase during the 5 min preincubation (neces...

  6. Regulation of hepatic branched-chain alpha-keto acid dehydrogenase complex in rats fed a high-fat diet

    Science.gov (United States)

    Objective: Branched-chain alpha-keto acid dehydrogenase complex (BCKDC) regulates branched-chain amino acid (BCAA) metabolism at the level of branched chain alpha-ketoacid (BCKA) catabolism. It has been demonstrated that the activity of hepatic BCKDC is markedly decreased in type 2 diabetic animal...

  7. Scanning mutagenesis of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Directory of Open Access Journals (Sweden)

    Nagib eAhsan

    2012-07-01

    Full Text Available The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1α subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated Ser-residue and the sequences of the flanking amino acids are highly conserved. We have used the synthetic peptide-based kinase client assay plus recombinant pyruvate dehydrogenase E1α and E1α-kinase to perform scanning mutagenesis of the residues flanking the site of phosphorylation. Consistent with the results from phylogenetic analysis of the flanking sequences, the direct peptide-based kinase assays tolerated very few changes. Even conservative changes such as Leu, Ile, or Val for Met, or Glu for Asp, gave very marked reductions in phosphorylation. Overall the results indicate that regulation of the mitochondrial pyruvate dehydrogenase complex by reversible phosphorylation is an extreme example of multiple, interdependent instances of co-evolution.

  8. Effects of clofibric acid on the activity and activity state of the hepatic branched-chain 2-oxo acid dehydrogenase complex.

    OpenAIRE

    Zhao, Y; Jaskiewicz, J; Harris, R A

    1992-01-01

    Feeding clofibric acid to rats caused little or no change in total activity of the liver branched-chain 2-oxo acid dehydrogenase complex (BCODC). No change in mass of liver BCODC was detected by immunoblot analysis in response to dietary clofibric acid. No changes in abundance of mRNAs for the BCODC E1 alpha, E1 beta and E2 subunits were detected by Northern-blot analysis. Likewise, dietary clofibric acid had no effect on the activity state of liver BCODC (percentage of enzyme in the dephosph...

  9. The activity state of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues.

    Science.gov (United States)

    Wagenmakers, A J; Schepens, J T; Veldhuizen, J A; Veerkamp, J H

    1984-05-15

    An assay is described to define the proportion of the branched-chain 2-oxo acid dehydrogenase complex that is present in the active state in rat tissues. Activities are measured in homogenates in two ways: actual activities, present in tissues, by blocking both the kinase and phosphatase of the enzyme complex during homogenization, preincubation, and incubation with 1-14C-labelled branched-chain 2-oxo acid, and total activities by blocking only the kinase during the 5 min preincubation (necessary for activation). The kinase is blocked by 5 mM-ADP and absence of Mg2+ and the phosphatase by the simultaneous presence of 50 mM-NaF. About 6% of the enzyme is active in skeletal muscle of fed rats, 7% in heart, 20% in diaphragm, 47% in kidney, 60% in brain and 98% in liver. An entirely different assay, which measures activities in crude tissue extracts before and after treatment with a broad-specificity protein phosphatase, gave similar results for heart, liver and kidney. Advantages of our assay with homogenates are the presence of intact mitochondria, the simplicity, the short duration and the high sensitivity. The actual activities measured indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and kidney and is limited in skeletal muscle in the fed state.

  10. Effects of clofibric acid on the activity and activity state of the hepatic branched-chain 2-oxo acid dehydrogenase complex.

    Science.gov (United States)

    Zhao, Y; Jaskiewicz, J; Harris, R A

    1992-01-01

    Feeding clofibric acid to rats caused little or no change in total activity of the liver branched-chain 2-oxo acid dehydrogenase complex (BCODC). No change in mass of liver BCODC was detected by immunoblot analysis in response to dietary clofibric acid. No changes in abundance of mRNAs for the BCODC E1 alpha, E1 beta and E2 subunits were detected by Northern-blot analysis. Likewise, dietary clofibric acid had no effect on the activity state of liver BCODC (percentage of enzyme in the dephosphorylated, active, form) of rats fed on a chow diet. However, dietary clofibric acid greatly increased the activity state of liver BCODC of rats fed on a diet deficient in protein. No stable change in liver BCODC kinase activity was found in response to clofibric acid in either chow-fed or low-protein-fed rats. Clofibric acid had a biphasic effect on flux through BCODC in hepatocytes prepared from low-protein-fed rats. Stimulation of BCODC flux at low concentrations was due to clofibric acid inhibition of BCODC kinase, which in turn allowed activation of BCODC by BCODC phosphatase. Inhibition of BCODC flux at high concentrations was due to direct inhibition of BCODC by clofibric acid. The results suggest that the effects of clofibric acid in vivo on branched-chain amino acid metabolism can be explained by the inhibitory effects of this drug on BCODC kinase. Images Fig. 2. Fig. 3. PMID:1637295

  11. Molecular structure of the pyruvate dehydrogenase complex from Escherichia coli K-12.

    Science.gov (United States)

    Vogel, O; Hoehn, B; Henning, U

    1972-06-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 x 10(6). All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This "excess" component is bound differently than are the eight dimers in the core complex.

  12. Overexpression of Lactobacillus casei D-hydroxyisocaproic acid dehydrogenase in cheddar cheese.

    Science.gov (United States)

    Broadbent, Jeffery R; Gummalla, Sanjay; Hughes, Joanne E; Johnson, Mark E; Rankin, Scott A; Drake, Mary Anne

    2004-08-01

    Metabolism of aromatic amino acids by lactic acid bacteria is an important source of off-flavor compounds in Cheddar cheese. Previous work has shown that alpha-keto acids produced from Trp, Tyr, and Phe by aminotransferase enzymes are chemically labile and may degrade spontaneously into a variety of off-flavor compounds. However, dairy lactobacilli can convert unstable alpha-keto acids to more-stable alpha-hydroxy acids via the action of alpha-keto acid dehydrogenases such as d-hydroxyisocaproic acid dehydrogenase. To further characterize the role of this enzyme in cheese flavor, the Lactobacillus casei d-hydroxyisocaproic acid dehydrogenase gene was cloned into the high-copy-number vector pTRKH2 and transformed into L. casei ATCC 334. Enzyme assays confirmed that alpha-keto acid dehydrogenase activity was significantly higher in pTRKH2:dhic transformants than in wild-type cells. Reduced-fat Cheddar cheeses were made with Lactococcus lactis starter only, starter plus L. casei ATCC 334, and starter plus L. casei ATCC 334 transformed with pTRKH2:dhic. After 3 months of aging, the cheese chemistry and flavor attributes were evaluated instrumentally by gas chromatography-mass spectrometry and by descriptive sensory analysis. The culture system used significantly affected the concentrations of various ketones, aldehydes, alcohols, and esters and one sulfur compound in cheese. Results further indicated that enhanced expression of d-hydroxyisocaproic acid dehydrogenase suppressed spontaneous degradation of alpha-keto acids, but sensory work indicated that this effect retarded cheese flavor development.

  13. Cloning and cDNA sequence of the dihydrolipoamide dehydrogenase component of human α-ketoacid dehydrogenase complexes

    International Nuclear Information System (INIS)

    Pons, G.; Raefsky-Estrin, C.; Carothers, D.J.; Pepin, R.A.; Javed, A.A.; Jesse, B.W.; Ganapathi, M.K.; Samols, D.; Patel, M.S.

    1988-01-01

    cDNA clones comprising the entire coding region for human dihydrolipoamide dehydrogenase have been isolated from a human liver cDNA library. The cDNA sequence of the largest clone consisted of 2082 base pairs and contained a 1527-base open reading frame that encodes a precursor dihydrolipoamide dehydrogenase of 509 amino acid residues. The first 35-amino acid residues of the open reading frame probably correspond to a typical mitochondrial import leader sequence. The predicted amino acid sequence of the mature protein, starting at the residue number 36 of the open reading frame, is almost identical (>98% homology) with the known partial amino acid sequence of the pig heart dihydrolipoamide dehydrogenase. The cDNA clone also contains a 3' untranslated region of 505 bases with an unusual polyadenylylation signal (TATAAA) and a short poly(A) track. By blot-hybridization analysis with the cDNA as probe, two mRNAs, 2.2 and 2.4 kilobases in size, have been detected in human tissues and fibroblasts, whereas only one mRNA (2.4 kilobases) was detected in rat tissues

  14. “Scanning mutagenesis” of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Science.gov (United States)

    The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1alpha subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated...

  15. Structural and Thermodynamic Basis for Weak Interactions between Dihydrolipoamide Dehydrogenase and Subunit-binding Domain of the Branched-chain [alpha]-Ketoacid Dehydrogenase Complex

    Energy Technology Data Exchange (ETDEWEB)

    Brautigam, Chad A.; Wynn, R. Max; Chuang, Jacinta L.; Naik, Mandar T.; Young, Brittany B.; Huang, Tai-huang; Chuang, David T. (AS); (UTSMC)

    2012-02-27

    The purified mammalian branched-chain {alpha}-ketoacid dehydrogenase complex (BCKDC), which catalyzes the oxidative decarboxylation of branched-chain {alpha}-keto acids, is essentially devoid of the constituent dihydrolipoamide dehydrogenase component (E3). The absence of E3 is associated with the low affinity of the subunit-binding domain of human BCKDC (hSBDb) for hE3. In this work, sequence alignments of hSBDb with the E3-binding domain (E3BD) of the mammalian pyruvate dehydrogenase complex show that hSBDb has an arginine at position 118, where E3BD features an asparagine. Substitution of Arg-118 with an asparagine increases the binding affinity of the R118N hSBDb variant (designated hSBDb*) for hE3 by nearly 2 orders of magnitude. The enthalpy of the binding reaction changes from endothermic with the wild-type hSBDb to exothermic with the hSBDb* variant. This higher affinity interaction allowed the determination of the crystal structure of the hE3/hSBDb* complex to 2.4-{angstrom} resolution. The structure showed that the presence of Arg-118 poses a unique, possibly steric and/or electrostatic incompatibility that could impede E3 interactions with the wild-type hSBDb. Compared with the E3/E3BD structure, the hE3/hSBDb* structure has a smaller interfacial area. Solution NMR data corroborated the interactions of hE3 with Arg-118 and Asn-118 in wild-type hSBDb and mutant hSBDb*, respectively. The NMR results also showed that the interface between hSBDb and hE3 does not change significantly from hSBDb to hSBDb*. Taken together, our results represent a starting point for explaining the long standing enigma that the E2b core of the BCKDC binds E3 far more weakly relative to other {alpha}-ketoacid dehydrogenase complexes.

  16. O-Alkyl Hydroxamates as Metaphors of Enzyme-Bound Enolate Intermediates in Hydroxy Acid Dehydrogenases. Inhibitors of Isopropylmalate Dehydrogenase, Isocitrate Dehydrogenase, and Tartrate Dehydrogenase(1).

    Science.gov (United States)

    Pirrung, Michael C.; Han, Hyunsoo; Chen, Jrlung

    1996-07-12

    The inhibition of Thermus thermophilus isopropylmalate dehydrogenase by O-methyl oxalohydroxamate was studied for comparison to earlier results of Schloss with the Salmonella enzyme. It is a fairly potent (1.2 &mgr;M), slow-binding, uncompetitive inhibitor against isopropylmalate and is far superior to an oxamide (25 mM K(i) competitive) that is isosteric with the ketoisocaproate product of the enzyme. This improvement in inhibition was attributed to its increased NH acidity, which presumably is due to the inductive effect of the hydroxylamine oxygen. This principle was extended to the structurally homologous enzyme isocitrate dehydrogenase from E. coli, for which the compound O-(carboxymethyl) oxalohydroxamate is a 30 nM inhibitor, uncompetitive against isocitrate. The pH dependence of its inhibition supports the idea that it is bound to the enzyme in the anionic form. Another recently discovered homologous enzyme, tartrate dehydrogenase from Pseudomonas putida, was studied with oxalylhydroxamate. It has a relatively low affinity for the enzyme, though it is superior to tartrate. On the basis of these leads, squaric hydroxamates with increased acidity compared to squaric amides directed toward two of these enzymes were prepared, and they also show increased inhibitory potency, though not approaching the nanomolar levels of the oxalylhydroxamates.

  17. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis.

    Science.gov (United States)

    Nair, Ramesh B; Bastress, Kristen L; Ruegger, Max O; Denault, Jeff W; Chapple, Clint

    2004-02-01

    Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants. Positional cloning of the REF1 gene revealed that it encodes an aldehyde dehydrogenase, a member of a large class of NADP(+)-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. Consistent with this finding, extracts of ref1 leaves exhibit low sinapaldehyde dehydrogenase activity. These data indicate that REF1 encodes a sinapaldehyde dehydrogenase required for sinapic acid and sinapate ester biosynthesis. When expressed in Escherichia coli, REF1 was found to exhibit both sinapaldehyde and coniferaldehyde dehydrogenase activity, and further phenotypic analysis of ref1 mutant plants showed that they contain less cell wall-esterified ferulic acid. These findings suggest that both ferulic acid and sinapic acid are derived, at least in part, through oxidation of coniferaldehyde and sinapaldehyde. This route is directly opposite to the traditional representation of phenylpropanoid metabolism in which hydroxycinnamic acids are instead precursors of their corresponding aldehydes.

  18. The Role of Pyruvate Dehydrogenase Kinase in Diabetes and Obesity

    Directory of Open Access Journals (Sweden)

    In-Kyu Lee

    2014-06-01

    Full Text Available The pyruvate dehydrogenase complex (PDC is an emerging target for the treatment of metabolic syndrome. To maintain a steady-state concentration of adenosine triphosphate during the feed-fast cycle, cells require efficient utilization of fatty acid and glucose, which is controlled by the PDC. The PDC converts pyruvate, coenzyme A (CoA, and oxidized nicotinamide adenine dinucleotide (NAD+ into acetyl-CoA, reduced form of nicotinamide adenine dinucleotide (NADH, and carbon dioxide. The activity of the PDC is up- and down-regulated by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase, respectively. In addition, pyruvate is a key intermediate of glucose oxidation and an important precursor for the synthesis of glucose, glycerol, fatty acids, and nonessential amino acids.

  19. Escherichia coli pyruvate dehydrogenase complex: particle masses of the complex and component enzymes measured by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    CaJacob, C.A.; Frey, P.A.; Hainfeld, J.F.; Wall, J.S.; Yang, H.

    1985-01-01

    Particle masses of the Escherichia coli pyruvate dehydrogenase (PDH) complex and its component enzymes have been measured by scanning transmission electron microscopy (STEM). The particle mass of PDH complex measured by STEM is 5.28 X 10(6) with a standard deviation of 0.40 X 10(6). The masses of the component enzymes are 2.06 X 10(5) for the dimeric pyruvate dehydrogenase (E1), 1.15 X 10(5) for dimeric dihydrolipoyl dehydrogenase (E3), and 2.20 X 10(6) for dihydrolipoyl transacetylase (E2), the 24-subunit core enzyme. STEM measurements on PDH complex incubated with excess E3 or E1 failed to detect any additional binding of E3 but showed that the complex would bind additional E1 under forcing conditions. The additional E1 subunits were bound too weakly to represent binding sites in an isolated or isolable complex. The mass measurements by STEM are consistent with the subunit composition 24:24:12 when interpreted in the light of the flavin content of the complex and assuming 24 subunits in the core enzyme (E2)

  20. Ketogenic diet in pyruvate dehydrogenase complex deficiency: short- and long-term outcomes.

    Science.gov (United States)

    Sofou, Kalliopi; Dahlin, Maria; Hallböök, Tove; Lindefeldt, Marie; Viggedal, Gerd; Darin, Niklas

    2017-03-01

    Our aime was to study the short- and long-term effects of ketogenic diet on the disease course and disease-related outcomes in patients with pyruvate dehydrogenase complex deficiency, the metabolic factors implicated in treatment outcomes, and potential safety and compliance issues. Pediatric patients diagnosed with pyruvate dehydrogenase complex deficiency in Sweden and treated with ketogenic diet were evaluated. Study assessments at specific time points included developmental and neurocognitive testing, patient log books, and investigator and parental questionnaires. A systematic literature review was also performed. Nineteen patients were assessed, the majority having prenatal disease onset. Patients were treated with ketogenic diet for a median of 2.9 years. All patients alive at the time of data registration at a median age of 6 years. The treatment had a positive effect mainly in the areas of epilepsy, ataxia, sleep disturbance, speech/language development, social functioning, and frequency of hospitalizations. It was also safe-except in one patient who discontinued because of acute pancreatitis. The median plasma concentration of ketone bodies (3-hydroxybutyric acid) was 3.3 mmol/l. Poor dietary compliance was associated with relapsing ataxia and stagnation of motor and neurocognitive development. Results of neurocognitive testing are reported for 12 of 19 patients. Ketogenic diet was an effective and safe treatment for the majority of patients. Treatment effect was mainly determined by disease phenotype and attainment and maintenance of ketosis.

  1. Pyruvate dehydrogenase complex and lactate dehydrogenase as targets for therapy of acute liver failure.

    Science.gov (United States)

    Ferriero, Rosa; Nusco, Edoardo; De Cegli, Rossella; Carissimo, Annamaria; Manco, Giuseppe; Brunetti-Pierri, Nicola

    2018-03-23

    Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate in the nucleus to regulate histone acetylation and gene expression. Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-Ab, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by Gene Ontology Enrichment Analysis. Efficacy of histone acetyltransferase inhibitor garcinol and LDH inhibitor galloflavin at reducing liver damage was evaluated in mice with induced hepatotoxicity. Levels and activities of PDHC and LDH were increased in cytoplasmatic and nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-coA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to response to damage. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. PDHC and LDH translocate to the nucleus and are targets for therapy of acute liver failure. Acute liver failure is a rapidly progressive and life-threatening deterioration of liver function resulting in high mortality and

  2. Leucine-induced activation of translational initiation is partly regulated by the branched-chain α-keto acid dehydrogenase complex in C2C12 cells

    International Nuclear Information System (INIS)

    Nakai, Naoya; Shimomura, Yoshiharu; Tamura, Tomohiro; Tamura, Noriko; Hamada, Koichiro; Kawano, Fuminori; Ohira, Yoshinobu

    2006-01-01

    Branched-chain amino acid leucine has been shown to activate the translational regulators through the mammalian target of rapamycin. However, the leucine's effects are self-limiting because leucine promotes its own disposal by an oxidative pathway. The irreversible and rate-limiting step in the leucine oxidation pathway is catalyzed by the branched-chain α-keto acid dehydrogenase (BCKDH) complex. The complex contains E1 (α2β2), E2, and E3 subunits, and its activity is abolished by phosphorylation of the E1α subunit by BCKDH kinase. The relationship between the activity of BCKDH complex and leucine-mediated activation of the protein translation was investigated using the technique of RNA interference. The activity of BCKDH complex in C2C12 cell was modulated by transfection of small interfering RNA (siRNA) for BCKDH E2 subunit or BCKDH kinase. Transfection of siRNAs decreased the mRNA expression and protein amount of corresponding gene. Suppression of either E2 subunit or kinase produced opposite effects on the cell proliferation and the activation of translational regulators by leucine. Suppression of BCKDH kinase for 48 h resulted in decreasing cell proliferation. In contrast, E2 suppression led to increased amount of total cellular protein. The phosphorylation of p70 S6 kinase by leucine was increased in E2-siRNA transfected C2C12 cells, whereas the leucine's effect was diminished in kinase-siRNA transfected cells. These results suggest that the activation of the translational regulators by leucine was partly regulated by the activity of BCKDH complex

  3. 15-hydroxyprostaglandin dehydrogenase activity in vitro in lung and kidney of essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Toft, B.S.

    1978-01-01

    Weanling rats were fed for 6 months on a diet deficient in essential fatty acids: either fat-free, or with 28% (w/w) partially hydrogenated fish oil. Control rats were fed a diet with 28% (w/w) arachis oil for 6 months. 15-Hydroxyprostaglandin dehydrogenase activity was determined as initial rates...... of the two groups on diets deficient in essential fatty acids as compared to the control group. No difference was observed in dehydrogenase activity in the kidneys. The dehydrogenase may be of importance for the regulation of the level of endogenous prostaglandins and, thus, a decrease in activity could...

  4. Increased superoxide accumulation in pyruvate dehydrogenase complex deficient fibroblasts.

    Science.gov (United States)

    Glushakova, Lyudmyla G; Judge, Sharon; Cruz, Alex; Pourang, Deena; Mathews, Clayton E; Stacpoole, Peter W

    2011-11-01

    The pyruvate dehydrogenase complex (PDC) oxidizes pyruvate to acetyl CoA and is critically important in maintaining normal cellular energy homeostasis. Loss-of-function mutations in PDC give rise to congenital lactic acidosis and to progressive cellular energy failure. However, the subsequent biochemical consequences of PDC deficiency that may contribute to the clinical manifestations of the disorder are poorly understood. We postulated that altered flux through PDC would disrupt mitochondrial electron transport, resulting in oxidative stress. Compared to cells from 4 healthy subjects, primary cultures of skin fibroblasts from 9 patients with variable mutations in the gene encoding the alpha subunit (E1α) of pyruvate dehydrogenase (PDA1) demonstrated reduced growth and viability. Superoxide (O(2)(.-)) from the Qo site of complex III of the electron transport chain accumulated in these cells and was associated with decreased activity of manganese superoxide dismutase. The expression of uncoupling protein 2 was also decreased in patient cells, but there were no significant changes in the expression of cellular markers of protein or DNA oxidative damage. The expression of hypoxia transcription factor 1 alpha (HIF1α) also increased in PDC deficient fibroblasts. We conclude that PDC deficiency is associated with an increase in O(2)(.-) accumulation coupled to a decrease in mechanisms responsible for its removal. Increased HIF1α expression may contribute to the increase in glycolytic flux and lactate production in PDC deficiency and, by trans-activating pyruvate dehydrogenase kinase, may further suppress residual PDC activity through phosphorylation of the E1α subunit. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids

    DEFF Research Database (Denmark)

    Mourtzakis, Marina; Saltin, B.; Graham, T.

    2006-01-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline...... amino acid taken up during exercise and recovery. Alanine and glutamine were also associated...... with pyruvate metabolism, and they comprised 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism...

  6. Monitoring of fatty aldehyde dehydrogenase by formation of pyrenedecanoic acid from pyrenedecanal

    NARCIS (Netherlands)

    Keller, Markus A.; Watschinger, Katrin; Golderer, Georg; Maglione, Manuel; Sarg, Bettina; Lindner, Herbert H.; Werner-Felmayer, Gabriele; Terrinoni, Alessandro; Wanders, Ronald J. A.; Werner, Ernst R.

    2010-01-01

    Fatty aldehyde dehydrogenase (EC 1.2.1.48) converts long-chain fatty aldehydes to the corresponding acids. Deficiency in this enzyme causes the Sjogren Larsson Syndrome, a rare inherited disorder characterized by ichthyosis, spasticity, and mental retardation. Using a fluorescent aldehyde,

  7. Regulation of the activity of lactate dehydrogenases from four lactic acid bacteria

    NARCIS (Netherlands)

    Feldman-Salit, A.; Hering, S.; Messiha, H.L.; Veith, N.; Cojocaru, V.; Sieg, A.; Westerhoff, H.V.; Kreikemeyer, B.; Wade, R.C.; Fiedler, T.

    2013-01-01

    Despite high similarity in sequence and catalytic properties, the l-lactate dehydrogenases (LDHs) in lactic acid bacteria (LAB) display differences in their regulation that may arise from their adaptation to different habitats. We combined experimental and computational approaches to investigate the

  8. Developmental changes in rat liver branched-chain 2-oxo acid dehydrogenase.

    OpenAIRE

    May, E E; May, M E; Aftring, R P; Buse, M G

    1982-01-01

    Branched-chain 2-oxo acid dehydrogenase catalyses the first irreversible step in the degradation of the branched-chain amino acids leucine, isoleucine and valine. With specifically labelled 4-methyl-2-oxo[1-14C]pentanoate as substrate, the enzyme's activity was measured in rat liver homogenates. Activity (per g wet wL of liver or per mg of protein) increased most rapidly during the perinatal period (2 days before to 1 day after birth), reaching approximately adult values by the time of weanin...

  9. Structural characterization of a D-isomer specific 2-hydroxyacid dehydrogenase from Lactobacillus delbrueckii ssp. bulgaricus.

    Science.gov (United States)

    Holton, Simon J; Anandhakrishnan, Madhankumar; Geerlof, Arie; Wilmanns, Matthias

    2013-02-01

    Hydroxyacid dehydrogenases, responsible for the stereospecific conversion of 2-keto acids to 2-hydroxyacids in lactic acid producing bacteria, have a range of biotechnology applications including antibiotic synthesis, flavor development in dairy products and the production of valuable synthons. The genome of Lactobacillus delbrueckii ssp. bulgaricus, a member of the heterogeneous group of lactic acid bacteria, encodes multiple hydroxyacid dehydrogenases whose structural and functional properties remain poorly characterized. Here, we report the apo and coenzyme NAD⁺ complexed crystal structures of the L. bulgaricusD-isomer specific 2-hydroxyacid dehydrogenase, D2-HDH. Comparison with closely related members of the NAD-dependent dehydrogenase family reveals that whilst the D2-HDH core fold is structurally conserved, the substrate-binding site has a number of non-canonical features that may influence substrate selection and thus dictate the physiological function of the enzyme. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Dihydrolipoamide Dehydrogenases of Advenella mimigardefordensis and Ralstonia eutropha Catalyze Cleavage of 3,3′-Dithiodipropionic Acid into 3-Mercaptopropionic Acid ▿ †

    Science.gov (United States)

    Wübbeler, Jan Hendrik; Raberg, Matthias; Brandt, Ulrike; Steinbüchel, Alexander

    2010-01-01

    The catabolism of the disulfide 3,3′-dithiodipropionic acid (DTDP) is initiated by the reduction of its disulfide bond. Three independent Tn5::mob-induced mutants of Advenella mimigardefordensis strain DPN7T were isolated that had lost the ability to utilize DTDP as the sole source of carbon and energy and that harbored the transposon insertions in three different sites of the same dihydrolipoamide dehydrogenase gene encoding the E3 subunit of the pyruvate dehydrogenase multi-enzyme complex of this bacterium (LpdAAm). LpdAAm was analyzed in silico and compared to homologous proteins, thereby revealing high similarities to the orthologue in Ralstonia eutropha H16 (PdhLRe). Both bacteria are able to cleave DTDP into two molecules of 3-mercaptopropionic acid (3MP). A. mimigardefordensis DPN7T converted 3MP to 3-sulfinopropionic acid, whereas R. eutropha H16 showed no growth with DTDP as the sole carbon source but was instead capable of synthesizing heteropolythioesters using the resulting cleavage product 3MP. Subsequently, the genes lpdAAm and pdhLRe were cloned, heterologously expressed in Escherichia coli applying the pET23a expression system, purified, and assayed by monitoring the oxidation of NADH. The physiological substrate lipoamide was reduced to dihydrolipoamide with specific activities of 1,833 mkat/kg of protein (LpdAAm) or 1,667 mkat/kg of protein (PdhLRe). Reduction of DTDP was also unequivocally detected with the purified enzymes, although the specific enzyme activities were much lower: 0.7 and 0.5 mkat/kg protein, respectively. PMID:20833784

  11. Pyruvate dehydrogenase kinase inhibition: Reversing the Warburg effect in cancer therapy

    Directory of Open Access Journals (Sweden)

    Hayden Bell

    2016-06-01

    Full Text Available The poor efficacy of many cancer chemotherapeutics, which are often non-selective and highly toxic, is attributable to the remarkable heterogeneity and adaptability of cancer cells. The Warburg effect describes the up regulation of glycolysis as the main source of adenosine 5’-triphosphate in cancer cells, even under normoxic conditions, and is a unique metabolic phenotype of cancer cells. Mitochondrial suppression is also observed which may be implicated in apoptotic suppression and increased funneling of respiratory substrates to anabolic processes, conferring a survival advantage. The mitochondrial pyruvate dehydrogenase complex is subject to meticulous regulation, chiefly by pyruvate dehydrogenase kinase. At the interface between glycolysis and the tricarboxylic acid cycle, the pyruvate dehydrogenase complex functions as a metabolic gatekeeper in determining the fate of glucose, making pyruvate dehydrogenase kinase an attractive candidate in a bid to reverse the Warburg effect in cancer cells. The small pyruvate dehydrogenase kinase inhibitor dichloroacetate has, historically, been used in conditions associated with lactic acidosis but has since gained substantial interest as a potential cancer chemotherapeutic. This review considers the Warburg effect as a unique phenotype of cancer cells in-line with the history of and current approaches to cancer therapies based on pyruvate dehydrogenase kinase inhibition with particular reference to dichloroacetate and its derivatives.

  12. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10.

    Science.gov (United States)

    Zhang, Huili; Zhu, Jianzhong; Zhu, Xiangcheng; Cai, Jin; Zhang, Anyi; Hong, Yizhi; Huang, Jin; Huang, Lei; Xu, Zhinan

    2012-07-01

    A new exogenous glutamic acid-independent γ-PGA producing strain was isolated and characterized as Bacillus subtilis C10. The factors influencing the endogenous glutamic acid supply and the biosynthesis of γ-PGA in this strain were investigated. The results indicated that citric acid and oxalic acid showed the significant capability to support the overproduction of γ-PGA. This stimulated increase of γ-PGA biosynthesis by citric acid or oxalic acid was further proved in the 10 L fermentor. To understand the possible mechanism contributing to the improved γ-PGA production, the activities of four key intracellular enzymes were measured, and the possible carbon fluxes were proposed. The result indicated that the enhanced level of pyruvate dehydrogenase (PDH) activity caused by oxalic acid was important for glutamic acid synthesized de novo from glucose. Moreover, isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) were the positive regulators of glutamic acid biosynthesis, while 2-oxoglutarate dehydrogenase complex (ODHC) was the negative one. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Inactivation of pyruvate dehydrogenase kinase 2 by mitochondrial reactive oxygen species.

    Science.gov (United States)

    Hurd, Thomas R; Collins, Yvonne; Abakumova, Irina; Chouchani, Edward T; Baranowski, Bartlomiej; Fearnley, Ian M; Prime, Tracy A; Murphy, Michael P; James, Andrew M

    2012-10-12

    Reactive oxygen species are byproducts of mitochondrial respiration and thus potential regulators of mitochondrial function. Pyruvate dehydrogenase kinase 2 (PDHK2) inhibits the pyruvate dehydrogenase complex, thereby regulating entry of carbohydrates into the tricarboxylic acid (TCA) cycle. Here we show that PDHK2 activity is inhibited by low levels of hydrogen peroxide (H(2)O(2)) generated by the respiratory chain. This occurs via reversible oxidation of cysteine residues 45 and 392 on PDHK2 and results in increased pyruvate dehydrogenase complex activity. H(2)O(2) derives from superoxide (O(2)(.)), and we show that conditions that inhibit PDHK2 also inactivate the TCA cycle enzyme, aconitase. These findings suggest that under conditions of high mitochondrial O(2)(.) production, such as may occur under nutrient excess and low ATP demand, the increase in O(2)() and H(2)O(2) may provide feedback signals to modulate mitochondrial metabolism.

  14. Inhibiting sperm pyruvate dehydrogenase complex and its E3 subunit, dihydrolipoamide dehydrogenase affects fertilization in Syrian hamsters.

    Directory of Open Access Journals (Sweden)

    Archana B Siva

    Full Text Available BACKGROUND/AIMS: The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc and its E3 subunit, dihydrolipoamide dehydrogenase (DLD in hamster in vitro fertilization (IVF via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium. METHODOLOGY AND PRINCIPAL FINDINGS: Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid. Oocytes fertilized with MICA-treated (MT [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization. CONCLUSIONS: This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In

  15. Ethylmalonic aciduria is associated with an amino acid variant of short chain acyl-coenzyme A dehydrogenase

    DEFF Research Database (Denmark)

    Corydon, M J; Gregersen, N; Lehnert, W

    1996-01-01

    Ethylmalonic aciduria is a common biochemical finding in patients with inborn errors of short chain fatty acid beta-oxidation. The urinary excretion of ethylmalonic acid (EMA) may stem from decreased oxidation by short chain acyl-CoA dehydrogenase (SCAD) of butyryl-CoA, which is alternatively...

  16. Efficient production of (R-2-hydroxy-4-phenylbutyric acid by using a coupled reconstructed D-lactate dehydrogenase and formate dehydrogenase system.

    Directory of Open Access Journals (Sweden)

    Binbin Sheng

    Full Text Available (R-2-hydroxy-4-phenylbutyric acid [(R-HPBA] is a key precursor for the production of angiotensin-converting enzyme inhibitors. However, the product yield and concentration of reported (R-HPBA synthetic processes remain unsatisfactory.The Y52L/F299Y mutant of NAD-dependent D-lactate dehydrogenase (D-nLDH in Lactobacillus bulgaricus ATCC 11842 was found to have high bio-reduction activity toward 2-oxo-4-phenylbutyric acid (OPBA. The mutant D-nLDHY52L/F299Y was then coexpressed with formate dehydrogenase in Escherichia coli BL21 (DE3 to construct a novel biocatalyst E. coli DF. Thus, a novel bio-reduction process utilizing whole cells of E. coli DF as the biocatalyst and formate as the co-substrate for cofactor regeneration was developed for the production of (R-HPBA from OPBA. The biocatalysis conditions were then optimized.Under the optimum conditions, 73.4 mM OPBA was reduced to 71.8 mM (R-HPBA in 90 min. Given its high product enantiomeric excess (>99% and productivity (47.9 mM h(-1, the constructed coupling biocatalysis system is a promising alternative for (R-HPBA production.

  17. Over-Expression, Purification and Crystallization of Human Dihydrolipoamide Dehydrogenase

    Science.gov (United States)

    Hong, Y. S.; Ciszak, Ewa; Patel, Mulchand

    2000-01-01

    Dehydrolipoamide dehydrogenase (E3; dihydrolipoan-tide:NAD+ oxidoreductase, EC 1.8.1.4) is a common catalytic component found in pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain cc-keto acid dehydrogenase complex. E3 is also a component (referred to as L protein) of the glycine cleavage system in bacterial metabolism (2). Active E3 forms a homodimer with four distinctive subdomain structures (FAD binding, NAD+ binding, central and interface domains) with non-covalently but tightly bound FAD in the holoenzyme. Deduced amino acids from cloned full-length human E3 gene showed a total of 509 amino acids with a leader sequence (N-terminal 35 amino acids) that is excised (mature form) during transportation of expressed E3 into mitochondria membrane. So far, three-dimensional structure of human E3 has not been reported. Our effort to achieve the elucidation of the X-ray crystal structure of human E3 will be presented. Recombinant pPROEX-1 expression vector (from GIBCO BRL Life Technologies) having the human E3 gene without leader sequence was constructed by Polymerase Chain Reaction (PCR) and subsequent ligation, and cloned in E.coli XL1-Blue by transformation. Since pPROEX-1 vector has an internal His-tag (six histidine peptide) located at the upstream region of a multicloning site, one-step affinity purification of E3 using nickelnitriloacetic acid (Ni-NTA) agarose resin, which has a strong affinity to His-tag, was feasible. Also a seven-amino-acid spacer peptide and a recombinant tobacco etch virus protease recognition site (seven amino acids peptide) found between His-tag and first amino acid of expressed E3 facilitated the cleavage of His-tag from E3 after the affinity purification. By IPTG induction, ca. 15 mg of human E3 (mature form) was obtained from 1L LB culture with overnight incubation at 25C. Over 98% of purity of E3 from one-step Ni-NTA agarose affinity purification was confirmed by SDS-PAGE analysis. For

  18. Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Jun [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Tsujimura, Seiya [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: seiya@kais.kyoto-u.ac.jp; Kano, Kenji [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: kkano@kais.kyoto-u.ac.jp

    2008-12-30

    This paper describes the characterization of mediated electro-enzymatic electrolysis systems based on NAD-dependent dehydrogenase reactions in the tricarboxylic acid (TCA) cycle. A micro-bulk electrolysis system with a carbon felt anode immersed in an electrolysis solution with a value of about 10 {mu}L was constructed for coulometric analysis of the substrate oxidation. Diaphorase (DI) was used to couple the NAD-dependent dehydrogenase reaction with the anode reaction of a suitable redox mediator. We focused on three types of NAD-dependant dehydrogenases reactions in this research: (1) isocitrate oxidation, in which the standard Gibbs energy change ({delta}G{sup o}') is negative; (2) {alpha}-ketoglutarate oxidation, which involves an electrochemically active coenzyme A (CoA); and (3) malate oxidation, which is thermodynamically unfavorable because of a large positive {delta}G{sup o}' value. The complete electrolysis of isocitrate was easily achieved, supporting the effective re-oxidation of NADH in the diaphorase-catalyzed electrochemical reaction. CoA was unfavorably oxidized at the electrodes in the presence of some mediators. The electrocatalytic oxidation of CoA was suppressed and the quantitative electrochemical oxidation of {alpha}-ketoglutarate was achieved by selecting a suitable mediator with negligibly slow electron transfer kinetics with CoA. The uphill malate oxidation was susceptible to product inhibition in the bioelectrochemical system, although NADH generated in the malate dehydrogenase reaction was immediately oxidized in the electrochemical system. The inhibition was successfully suppressed by linking citrate synthase to quench oxaloacetate and to make the total {delta}G{sup o}' value negative.

  19. Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle

    International Nuclear Information System (INIS)

    Fukuda, Jun; Tsujimura, Seiya; Kano, Kenji

    2008-01-01

    This paper describes the characterization of mediated electro-enzymatic electrolysis systems based on NAD-dependent dehydrogenase reactions in the tricarboxylic acid (TCA) cycle. A micro-bulk electrolysis system with a carbon felt anode immersed in an electrolysis solution with a value of about 10 μL was constructed for coulometric analysis of the substrate oxidation. Diaphorase (DI) was used to couple the NAD-dependent dehydrogenase reaction with the anode reaction of a suitable redox mediator. We focused on three types of NAD-dependant dehydrogenases reactions in this research: (1) isocitrate oxidation, in which the standard Gibbs energy change (ΔG o ') is negative; (2) α-ketoglutarate oxidation, which involves an electrochemically active coenzyme A (CoA); and (3) malate oxidation, which is thermodynamically unfavorable because of a large positive ΔG o ' value. The complete electrolysis of isocitrate was easily achieved, supporting the effective re-oxidation of NADH in the diaphorase-catalyzed electrochemical reaction. CoA was unfavorably oxidized at the electrodes in the presence of some mediators. The electrocatalytic oxidation of CoA was suppressed and the quantitative electrochemical oxidation of α-ketoglutarate was achieved by selecting a suitable mediator with negligibly slow electron transfer kinetics with CoA. The uphill malate oxidation was susceptible to product inhibition in the bioelectrochemical system, although NADH generated in the malate dehydrogenase reaction was immediately oxidized in the electrochemical system. The inhibition was successfully suppressed by linking citrate synthase to quench oxaloacetate and to make the total ΔG o ' value negative

  20. Potentiation of insulin release in response to amino acid methyl esters correlates to activation of islet glutamate dehydrogenase activity

    DEFF Research Database (Denmark)

    Kofod, Hans; Lernmark, A; Hedeskov, C J

    1986-01-01

    Column perifusion of mouse pancreatic islets was used to study the ability of amino acids and their methyl esters to influence insulin release and activate islet glutamate dehydrogenase activity. In the absence of L-glutamine, L-serine and the methyl ester of L-phenylalanine, but neither L...... glutamate dehydrogenase activity showed that only the two methyl esters of L-phenylalanine and L-serine activated the enzyme. It is concluded that the mechanism by which methyl esters of amino acids potentiate insulin release is most likely to be mediated by the activation of pancreatic beta-cell glutamate...

  1. Changes of α-glycerophosphate dehydrogenase activity in fatty liver of rats by amino acid imbalance

    International Nuclear Information System (INIS)

    Ogura, Masaji; Katsunuma, Eiichi; Akabane, Tomoko; Ogawa, Seiichi

    1976-01-01

    The previous study on the lipogenesis in the fatty livers of rats, which was induced by feeding the diet with imbalanced amino acid, revealed that the induction of this type of fatty livers was due mainly to the acceleration of triglyceride synthesis by the increase in both synthesis and esterification of fatty acid in the livers. Although many studies have been carried out on the dietary control of α-glycerophosphate dehydrogenase activity in rat livers, the enzyme change in amino acid imbalance has not been reported. In the present study, in order to elucidate the difference in the supply of glycerol moiety of triglyceride due to the imbalance, the change of the α-glycerophosphate dehydrogenase activity in livers was investigated. The experimental diets were 8% casein basal diet and basal + 0.3% DL-methionine imbalanced diet. 5 rats of each group were killed after 0.5 and 10 days on the diet, and the analysis of the lipid content in the livers and the determination of the α-glycerophosphate dehydrogenase activity were carried out. The linear response of the enzyme activity to time and protein concentration was obtained. The development of fatty livers was observed in the imbalanced diet group in the feeding period of 10 days. It was found that the specific activity of the imbalanced diet group increased significantly in 5 and 10 days as compared with that of the basal diet group. The elevation in the enzyme activity may suggest that the supply of α-glycerophosphate for triglyceride synthesis is also increased in this type of fatty livers. (Kako, I.)

  2. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of glucuronic acid dehydrogenase from Chromohalobacter salexigens

    International Nuclear Information System (INIS)

    Ahn, Jae-Woo; Lee, Shin Youp; Kim, Sangwoo; Cho, Sun Ja; Lee, Sun Bok; Kim, Kyung-Jin

    2011-01-01

    Recombinant glucuronic acid dehydrogenase from the halophilic bacterium Chromohalobacter salexigens has been crystallized and X-ray diffraction data collected to a maximum resolution of 2.1 Å. Glucuronic acid dehydrogenase (GluUADH), the product of the Csal-2474 gene from the halophilic bacterium Chromohalobacter salexigens DSM 3043, is an enzyme with potential use in the conversion of glucuronic acid in seaweed biomass to fuels and chemicals. GluUADH is an enzyme that catalyzes the oxidation of glucuronic acid (GluUA) and galacturonic acid (GalUA) and has a preference for NAD + rather than NADP + as a cofactor. Recombinant GluUADH was crystallized in the presence of 0.2 M calcium acetate, 0.1 M Tris–HCl pH 7.0 and 20% PEG 3000 at 295 K. X-ray diffraction data were collected to a maximum resolution of 2.1 Å. The GluUADH crystal belonged to space group P6 3 , with unit-cell parameters a = b = 122.58, c = 150.49 Å, γ = 120°. With one molecule per asymmetric unit, the crystal volume per unit protein weight (V M ) is 2.78 Å 3 Da −1 . The structure was solved by the single anomalous dispersion method and structure refinement is in progress

  3. Kinetic studies of the inhibition of a human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isozyme by bile acids and anti-inflammatory drugs.

    Science.gov (United States)

    Miyabe, Y; Amano, T; Deyashiki, Y; Hara, A; Tsukada, F

    1995-01-01

    We have investigated the steady-state kinetics for a cytosolic 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isozyme of human liver and its inhibition by several bile acids and anti-inflammatory drugs such as indomethacin, flufemanic acid and naproxen. Initial velocity and product inhibition studies performed in the NADP(+)-linked (S)-1-indanol oxidation at pH 7.4 were consistent with a sequential ordered mechanism in which NADP+ binds first and leaves last. The bile acids and drugs, competitive inhibitors with respect to the alcohol substrate, exhibited uncompetitive inhibition with respect to the coenzyme, with Ki values less than 1 microM, whereas indomethacin exhibited noncompetitive inhibition (Ki < 24 microM). The kinetics of the inhibition by a mixture of the two inhibitors suggests that bile acids and drugs, except indomethacin, bind to overlapping sites at the active center of the enzyme-coenzyme binary complex.

  4. Expression of Aeromonas caviae ST pyruvate dehydrogenase complex components mediate tellurite resistance in Escherichia coli

    International Nuclear Information System (INIS)

    Castro, Miguel E.; Molina, Roberto C.; Diaz, Waldo A.; Pradenas, Gonzalo A.; Vasquez, Claudio C.

    2009-01-01

    Potassium tellurite (K 2 TeO 3 ) is harmful to most organisms and specific mechanisms explaining its toxicity are not well known to date. We previously reported that the lpdA gene product of the tellurite-resistant environmental isolate Aeromonas caviae ST is involved in the reduction of tellurite to elemental tellurium. In this work, we show that expression of A. caviae ST aceE, aceF, and lpdA genes, encoding pyruvate dehydrogenase, dihydrolipoamide transacetylase, and dihydrolipoamide dehydrogenase, respectively, results in tellurite resistance and decreased levels of tellurite-induced superoxide in Escherichia coli. In addition to oxidative damage resulting from tellurite exposure, a metabolic disorder would be simultaneously established in which the pyruvate dehydrogenase complex would represent an intracellular tellurite target. These results allow us to widen our vision regarding the molecular mechanisms involved in bacterial tellurite resistance by correlating tellurite toxicity and key enzymes of aerobic metabolism.

  5. Prospects for robust biocatalysis: engineering of novel specificity in a halophilic amino acid dehydrogenase.

    Science.gov (United States)

    Munawar, Nayla; Engel, Paul C

    2013-01-01

    Heat- and solvent-tolerant enzymes from halophiles, potentially important industrially, offer a robust framework for protein engineering, but few solved halophilic structures exist to guide this. Homology modelling has guided mutations in glutamate dehydrogenase (GDH) from Halobacterium salinarum to emulate conversion of a mesophilic GDH to a methionine dehydrogenase. Replacement of K89, A163 and S367 by leucine, glycine and alanine converted halophilic GDH into a dehydrogenase accepting L-methionine, L-norleucine and L-norvaline as substrates. Over-expression in the halophilic expression host Haloferax volcanii and three-step purification gave ~98 % pure protein exhibiting maximum activity at pH 10. This enzyme also showed enhanced thermostability and organic solvent tolerance even at 70 °C, offering a biocatalyst resistant to harsh industrial environments. To our knowledge, this is the first reported amino acid specificity change engineered in a halophilic enzyme, encouraging use of mesophilic models to guide engineering of novel halophilic biocatalysts for industrial application. Calibrated gel filtration experiments show that both the mutant and the wild-type enzyme are stable hexamers.

  6. Crystal structure of product-bound complex of UDP-N-acetyl-D-mannosamine dehydrogenase from Pyrococcus horikoshii OT3

    Energy Technology Data Exchange (ETDEWEB)

    Pampa, K.J., E-mail: sagarikakj@gmail.com [Department of Studies in Microbiology, University of Mysore, Mysore 570 006 (India); Lokanath, N.K. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Girish, T.U. [Department of General Surgery, JSS Medical College and Hospital, JSS University, Mysore 570 015 (India); Kunishima, N. [Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148 (Japan); Rai, V.R. [Department of Studies in Microbiology, University of Mysore, Mysore 570 006 (India)

    2014-10-24

    Highlights: • Determined the structure of UDP-D-ManNAcADH to a resolution of 1.55 Å. • First complex structure of PhUDP-D-ManNAcADH with UDP-D-ManMAcA. • The monomeric structure consists of three distinct domains. • Cys258 acting as catalytic nucleophilic and Lys204 acts as acid/base catalyst. • Oligomeric state plays an important role for the catalytic function. - Abstract: UDP-N-acetyl-D-mannosamine dehydrogenase (UDP-D-ManNAcDH) belongs to UDP-glucose/GDP-mannose dehydrogenase family and catalyzes Uridine-diphospho-N-acetyl-D-mannosamine (UDP-D-ManNAc) to Uridine-diphospho-N-acetyl-D-mannosaminuronic acid (UDP-D-ManNAcA) through twofold oxidation of NAD{sup +}. In order to reveal the structural features of the Pyrococcus horikoshii UDP-D-ManNAcADH, we have determined the crystal structure of the product-bound enzyme by X-ray diffraction to resolution of 1.55 Å. The protomer folds into three distinct domains; nucleotide binding domain (NBD), substrate binding domain (SBD) and oligomerization domain (OD, involved in the dimerization). The clear electron density of the UDP-D-ManNAcA is observed and the residues binding are identified for the first time. Crystal structures reveal a tight dimeric polymer chains with product-bound in all the structures. The catalytic residues Cys258 and Lys204 are conserved. The Cys258 acts as catalytic nucleophile and Lys204 as acid/base catalyst. The product is directly interacts with residues Arg211, Thr249, Arg244, Gly255, Arg289, Lys319 and Arg398. In addition, the structural parameters responsible for thermostability and oligomerization of the three dimensional structure are analyzed.

  7. Shikimate dehydrogenase from Pinu sylvestris L. needles

    International Nuclear Information System (INIS)

    Osipov, V.I.; Shein, I.V.

    1986-01-01

    Shikimate dehydrogenase was isolated by extraction from pine needles and partially purified by fractionation with ammonium sulfate. In conifers, in contrast to other plants, all three isoenzymes of shikimate dehydrogenase exhibit activity not only with NADP + , but also with NAD + . The values of K/sub m/ for shikimate, when NADP + and NAD + are used as cofactors, are 0.22 and 1.13 mM, respectively. The enzyme is maximally active at pH 10 with both cofactors. It is suggested that NAD-dependent shikimate dehydrogenase catalyzes the initial reaction of the alternative pathway of the conversion of shikimic acid to hydroxybenzoic acid. The peculiarities of the organization and regulation of the initial reactions of the shikimate pathway in conifers and in plants with shikimate dehydrogenase absolutely specific for NADP are discussed

  8. The crystal structure of Lactococcus lactis dihydroorotate dehydrogenase A complexed with the enzyme reaction product throws light on its enzymatic function

    DEFF Research Database (Denmark)

    Rowland, Paul; Bjørnberg, Olof; Nielsen, Finn S.

    1998-01-01

    Dihydroorotate dehydrogenases (DHODs) catalyze the oxidation of (S)-dihydroorotate to orotate, the fourth step and only redox reaction in the de novo biosynthesis of pyrimidine nucleotides. A description is given of the crystal structure of Lactococcus lactis dihydroorotate dehydrogenase A (DHODA......) complexed with the product of the enzyme reaction orotate. The structure of the complex to 2.0 A resolution has been compared with the structure of the native enzyme. The active site of DHODA is known to contain a water filled cavity buried beneath a highly conserved and flexible loop. In the complex...

  9. Magnetic resonance and fluorescence studies on pyruvate dehydrogenase complexes and their small molecular weight constituents

    NARCIS (Netherlands)

    Grande, H.J.

    1976-01-01

    The articles presented in this thesis do not describe at first glance one well-defined subject. They are, however, in fact connected by one central theme: the study of large enzyme aggregates by molecular physical methods. Chosen was the pyruvate dehydrogenase complex (PDC) because of its

  10. Expression of Lactate Dehydrogenase in Aspergillus niger for L-Lactic Acid Production

    Science.gov (United States)

    Dave, Khyati K.; Punekar, Narayan S.

    2015-01-01

    Different engineered organisms have been used to produce L-lactate. Poor yields of lactate at low pH and expensive downstream processing remain as bottlenecks. Aspergillus niger is a prolific citrate producer and a remarkably acid tolerant fungus. Neither a functional lactate dehydrogenase (LDH) from nor lactate production by A. niger is reported. Its genome was also investigated for the presence of a functional ldh. The endogenous A. niger citrate synthase promoter relevant to A. niger acidogenic metabolism was employed to drive constitutive expression of mouse lactate dehydrogenase (mldhA). An appraisal of different branches of the A. niger pyruvate node guided the choice of mldhA for heterologous expression. A high copy number transformant C12 strain, displaying highest LDH specific activity, was analyzed under different growth conditions. The C12 strain produced 7.7 g/l of extracellular L-lactate from 60 g/l of glucose, in non-neutralizing minimal media. Significantly, lactate and citrate accumulated under two different growth conditions. Already an established acidogenic platform, A. niger now promises to be a valuable host for lactate production. PMID:26683313

  11. Acquired multiple Acyl-CoA dehydrogenase deficiency in 10 horses with atypical myopathy.

    Science.gov (United States)

    Westermann, C M; Dorland, L; Votion, D M; de Sain-van der Velden, M G M; Wijnberg, I D; Wanders, R J A; Spliet, W G M; Testerink, N; Berger, R; Ruiter, J P N; van der Kolk, J H

    2008-05-01

    The aim of the current study was to assess lipid metabolism in horses with atypical myopathy. Urine samples from 10 cases were subjected to analysis of organic acids, glycine conjugates, and acylcarnitines revealing increased mean excretion of lactic acid, ethylmalonic acid, 2-methylsuccinic acid, butyrylglycine, (iso)valerylglycine, hexanoylglycine, free carnitine, C2-, C3-, C4-, C5-, C6-, C8-, C8:1-, C10:1-, and C10:2-carnitine as compared with 15 control horses (12 healthy and three with acute myopathy due to other causes). Analysis of plasma revealed similar results for these predominantly short-chain acylcarnitines. Furthermore, measurement of dehydrogenase activities in lateral vastus muscle from one horse with atypical myopathy indeed showed deficiencies of short-chain acyl-CoA dehydrogenase (0.66 as compared with 2.27 and 2.48 in two controls), medium-chain acyl-CoA dehydrogenase (0.36 as compared with 4.31 and 4.82 in two controls) and isovaleryl-CoA dehydrogenase (0.74 as compared with 1.43 and 1.61 nmol min(-1) mg(-1) in two controls). A deficiency of several mitochondrial dehydrogenases that utilize flavin adenine dinucleotide as cofactor including the acyl-CoA dehydrogenases of fatty acid beta-oxidation, and enzymes that degrade the CoA-esters of glutaric acid, isovaleric acid, 2-methylbutyric acid, isobutyric acid, and sarcosine was suspected in 10 out of 10 cases as the possible etiology for a highly fatal and prevalent toxic equine muscle disease similar to the combined metabolic derangements seen in human multiple acyl-CoA dehydrogenase deficiency also known as glutaric acidemia type II.

  12. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2015-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH and the aldehyde dehydrogenase (ALDH. We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6 and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  13. Inhibition of the alpha-ketoglutarate dehydrogenase complex alters mitochondrial function and cellular calcium regulation.

    Science.gov (United States)

    Huang, Hsueh-Meei; Zhang, Hui; Xu, Hui; Gibson, Gary E

    2003-01-20

    Mitochondrial dysfunction occurs in many neurodegenerative diseases. The alpha-ketoglutarate dehydrogenase complex (KGDHC) catalyzes a key and arguably rate-limiting step of the tricarboxylic acid cycle (TCA). A reduction in the activity of the KGDHC occurs in brains and cells of patients with many of these disorders and may underlie the abnormal mitochondrial function. Abnormalities in calcium homeostasis also occur in fibroblasts from Alzheimer's disease (AD) patients and in cells bearing mutations that lead to AD. Thus, the present studies test whether the reduction of KGDHC activity can lead to the alterations in mitochondrial function and calcium homeostasis. alpha-Keto-beta-methyl-n-valeric acid (KMV) inhibits KGDHC activity in living N2a cells in a dose- and time-dependent manner. Surprisingly, concentration of KMV that inhibit in situ KGDHC by 80% does not alter the mitochondrial membrane potential (MMP). However, similar concentrations of KMV induce the release of cytochrome c from mitochondria into the cytosol, reduce basal [Ca(2+)](i) by 23% (Pcalcium release from the endoplasmic reticulum (ER) by 46% (P<0.005). This result suggests that diminished KGDHC activities do not lead to the Ca(2+) abnormalities in fibroblasts from AD patients or cells bearing PS-1 mutations. The increased release of cytochrome c with diminished KGDHC activities will be expected to activate other pathways including cell death cascades. Reductions in this key mitochondrial enzyme will likely make the cells more vulnerable to metabolic insults that promote cell death.

  14. Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria.

    Science.gov (United States)

    Araújo, Wagner L; Ishizaki, Kimitsune; Nunes-Nesi, Adriano; Larson, Tony R; Tohge, Takayuki; Krahnert, Ina; Witt, Sandra; Obata, Toshihiro; Schauer, Nicolas; Graham, Ian A; Leaver, Christopher J; Fernie, Alisdair R

    2010-05-01

    The process of dark-induced senescence in plants is relatively poorly understood, but a functional electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports respiration during carbon starvation, has recently been identified. Here, we studied the responses of Arabidopsis thaliana mutants deficient in the expression of isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase to extended darkness and other environmental stresses. Evaluations of the mutant phenotypes following carbon starvation induced by extended darkness identify similarities to those exhibited by mutants of the ETF/ETFQO complex. Metabolic profiling and isotope tracer experimentation revealed that isovaleryl-CoA dehydrogenase is involved in degradation of the branched-chain amino acids, phytol, and Lys, while 2-hydroxyglutarate dehydrogenase is involved exclusively in Lys degradation. These results suggest that isovaleryl-CoA dehydrogenase is the more critical for alternative respiration and that a series of enzymes, including 2-hydroxyglutarate dehydrogenase, plays a role in Lys degradation. Both physiological and metabolic phenotypes of the isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase mutants were not as severe as those observed for mutants of the ETF/ETFQO complex, indicating some functional redundancy of the enzymes within the process. Our results aid in the elucidation of the pathway of plant Lys catabolism and demonstrate that both isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase act as electron donors to the ubiquinol pool via an ETF/ETFQO-mediated route.

  15. Cellobiose dehydrogenase entrapped within specifically designed Os-complex modified electrodeposition polymers as potential anodes for biofuel cells

    International Nuclear Information System (INIS)

    Shao, Minling; Guschin, Dmitrii A.; Kawah, Zahma; Beyl, Yvonne; Stoica, Leonard; Ludwig, Roland; Schuhmann, Wolfgang; Chen, Xingxing

    2014-01-01

    Electron-transfer pathways between cellobiose dehydrogenase from Myriococcum thermophilum (MtCDH) and the related flavodehydrogenase domain (FAD-MtCDH) and electrodes were evaluated using specifically designed Os-complex modified electrodeposition paints (EDPs). The properties of the Os-complex modified EDPs were varied by variation of the monomer composition, the coordination sphere of the polymer-bound Os-complexes, and the length and flexibility of the spacer chain between Os complex and polymer backbone. The MtCDH-to-EDP weight ratio, the pH value, as well as the operational temperature have been optimized

  16. Short-chain Acyl-CoA dehydrogenase deficiency: studies in a large family adding to the complexity of the disorder

    NARCIS (Netherlands)

    Bok, Levinus A.; Vreken, Peter; Wijburg, Frits A.; Wanders, Ronald J. A.; Gregersen, Niels; Corydon, Morten J.; Waterham, Hans R.; Duran, Marinus

    2003-01-01

    OBJECTIVE: To understand the expanding clinical and biochemical spectrum of short-chain acyl-CoA dehydrogenase (SCAD) deficiency, the impact of which is not fully understood. STUDY DESIGN: We studied a family with SCAD deficiency and determined urinary ethylmalonic acid excretion, plasma

  17. Linkage and radiation hybrid mapping of the porcine gene for subunit C of succinate dehydrogenase complex (SDHC)

    Czech Academy of Sciences Publication Activity Database

    Stratil, Antonín; Reiner, G.; Peelman, L. J.; Poucke, M.; Geldermann, H.

    2001-01-01

    Roč. 32, č. 2 (2001), s. 110-112 ISSN 0268-9146 R&D Projects: GA AV ČR KSK5052113; GA ČR GA523/00/0669 Keywords : succinate dehydrogenase complex Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.020, year: 2001

  18. Direct evidence for the inactivation of branched-chain oxo-acid dehydrogenase by enzyme phosphorylation

    International Nuclear Information System (INIS)

    Odessey, R.

    1980-01-01

    The branched-chain 2-oxo-acid dehydrogenase (BCOAD) from mitochondria of several different rat tissues is inactivated by ATP and can be reactivated by incubation in Mg 2+ -containing buffers. Work carried out on the system from skeletal muscle mitochondria has shown that inactivation requires the cleavage of the γ-phosphate group of ATP and that modification is covalent. The non-metabolized ATP analog, p[NH]ppA, can block the inhibitory effect of ATP when added prior to ATP addition, but cannot reverse the inhibition of the inactivated dehydrogenase. These and other data raise the possibility that BCOAD may be regulated by enzyme phosphorylation. This hypothesis is supported by the finding that various procedures which separate the enzyme from its mitochondrial environment (e.g. detergent treatment, ammonium sulfate precipitation and freeze-thawing) do not alter the degree of inhibition induced by ATP in the mitochondrial preincubation. These experiments suggested the feasibility of labelling the enzyme with 32 P and purifying it. (Auth.)

  19. Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes.

    Science.gov (United States)

    Taha, Mohamed; Khan, Imran; Coutinho, João A P

    2016-04-01

    With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1M NaNO3 at (298.2 ± 0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Identification of the 2-Hydroxyglutarate and Isovaleryl-CoA Dehydrogenases as Alternative Electron Donors Linking Lysine Catabolism to the Electron Transport Chain of Arabidopsis Mitochondria[W][OA

    Science.gov (United States)

    Araújo, Wagner L.; Ishizaki, Kimitsune; Nunes-Nesi, Adriano; Larson, Tony R.; Tohge, Takayuki; Krahnert, Ina; Witt, Sandra; Obata, Toshihiro; Schauer, Nicolas; Graham, Ian A.; Leaver, Christopher J.; Fernie, Alisdair R.

    2010-01-01

    The process of dark-induced senescence in plants is relatively poorly understood, but a functional electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports respiration during carbon starvation, has recently been identified. Here, we studied the responses of Arabidopsis thaliana mutants deficient in the expression of isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase to extended darkness and other environmental stresses. Evaluations of the mutant phenotypes following carbon starvation induced by extended darkness identify similarities to those exhibited by mutants of the ETF/ETFQO complex. Metabolic profiling and isotope tracer experimentation revealed that isovaleryl-CoA dehydrogenase is involved in degradation of the branched-chain amino acids, phytol, and Lys, while 2-hydroxyglutarate dehydrogenase is involved exclusively in Lys degradation. These results suggest that isovaleryl-CoA dehydrogenase is the more critical for alternative respiration and that a series of enzymes, including 2-hydroxyglutarate dehydrogenase, plays a role in Lys degradation. Both physiological and metabolic phenotypes of the isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase mutants were not as severe as those observed for mutants of the ETF/ETFQO complex, indicating some functional redundancy of the enzymes within the process. Our results aid in the elucidation of the pathway of plant Lys catabolism and demonstrate that both isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase act as electron donors to the ubiquinol pool via an ETF/ETFQO-mediated route. PMID:20501910

  1. Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase.

    Science.gov (United States)

    Bomati, Erin K; Noel, Joseph P

    2005-05-01

    We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities.

  2. Distribution of the branched-chain α-ketoacid dehydrogenase complex E1α subunit and glutamate dehydrogenase in the human brain and their role in neuro-metabolism.

    Science.gov (United States)

    Hull, Jonathon; Usmari Moraes, Marcela; Brookes, Emma; Love, Seth; Conway, Myra E

    2018-01-01

    Glutamate is the major excitatory neurotransmitter of the central nervous system, with the branched-chain amino acids (BCAAs) acting as key nitrogen donors for de novo glutamate synthesis. Despite the importance of these major metabolites, their metabolic pathway in the human brain is still not well characterised. The metabolic pathways that influence the metabolism of BCAAs have been well characterised in rat models. However, the expression of key proteins such as the branched-chain α-ketoacid dehydrogenase (BCKD) complex and glutamate dehydrogenase isozymes (GDH) in the human brain is still not well characterised. We have used specific antibodies to these proteins to analyse their distribution within the human brain and report, for the first time, that the E1α subunit of the BCKD is located in both neurons and vascular endothelial cells. We also demonstrate that GDH is localised to astrocytes, although vascular immunolabelling does occur. The labelling of GDH was most intense in astrocytes adjacent to the hippocampus, in keeping with glutamatergic neurotransmission in this region. GDH was also present in astrocyte processes abutting vascular endothelial cells. Previously, we demonstrated that the branched-chain aminotransferase (hBCAT) proteins were most abundant in vascular cells (hBCATm) and neurons (hBCATc). Present findings are further evidence that BCAAs are metabolised within both the vasculature and neurons in the human brain. We suggest that GDH, hBCAT and the BCKD proteins operate in conjunction with astrocytic glutamate transporters and glutamine synthetase to regulate the availability of glutamate. This has important implications given that the dysregulation of glutamate metabolism, leading to glutamate excitotoxicity, is an important contributor to the pathogenesis of several neurodegenerative conditions such as Alzheimer's disease. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Diglycolic acid inhibits succinate dehydrogenase activity in human proximal tubule cells leading to mitochondrial dysfunction and cell death.

    Science.gov (United States)

    Landry, Greg M; Dunning, Cody L; Conrad, Taylor; Hitt, Mallory J; McMartin, Kenneth E

    2013-08-29

    Diethylene glycol (DEG) is a solvent used in consumer products allowing the increased risk for consumer exposure. DEG metabolism produces two primary metabolites, 2-hydroxyethoxyacetic acid (2-HEAA) and diglycolic acid (DGA). DGA has been shown to be the toxic metabolite responsible for the proximal tubule cell necrosis seen in DEG poisoning. The mechanism of DGA toxicity in the proximal tubule cell is not yet known. The chemical structure of DGA is very similar to citric acid cycle intermediates. Studies were designed to assess whether its mechanism of toxicity involves disruption of cellular metabolic pathways resulting in mitochondrial dysfunction. First, DGA preferentially inhibited succinate dehydrogenase, including human kidney cell enzyme, but had no effect on other citric acid cycle enzyme activities. DGA produces a cellular ATP depletion that precedes cell death. Human proximal tubule (HPT) cells, pre-treated with increasing DGA concentrations, showed significantly decreased oxygen consumption. DGA did not increase lactate levels, indicating no effect on glycolytic activity. DGA increased reactive oxygen species (ROS) production in HPT cells in a concentration and time dependent manner. These results indicate that DGA produced proximal tubule cell dysfunction by specific inhibition of succinate dehydrogenase and oxygen consumption. Disruption of these processes results in decreased energy production and proximal tubule cell death. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Expression of mitochondrial branched-chain aminotransferase and α-keto-acid dehydrogenase in rat brain: implications for neurotransmitter metabolism

    Science.gov (United States)

    Cole, Jeffrey T.; Sweatt, Andrew J.; Hutson, Susan M.

    2012-01-01

    In the brain, metabolism of the essential branched chain amino acids (BCAAs) leucine, isoleucine, and valine, is regulated in part by protein synthesis requirements. Excess BCAAs are catabolized or excreted. The first step in BCAA catabolism is catalyzed by the branched chain aminotransferase (BCAT) isozymes, mitochondrial BCATm and cytosolic BCATc. A product of this reaction, glutamate, is the major excitatory neurotransmitter and precursor of the major inhibitory neurotransmitter γ-aminobutyric acid (GABA). The BCATs are thought to participate in a α-keto-acid nitrogen shuttle that provides nitrogen for synthesis of glutamate from α-ketoglutarate. The branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC) catalyzes the second, irreversible step in BCAA metabolism, which is oxidative decarboxylation of the branched-chain α-keto acid (BCKA) products of the BCAT reaction. Maple Syrup Urine Disease (MSUD) results from genetic defects in BCKDC, which leads to accumulation of toxic levels of BCAAs and BCKAs that result in brain swelling. Immunolocalization of BCATm and BCKDC in rats revealed that BCATm is present in astrocytes in white matter and in neuropil, while BCKDC is expressed only in neurons. BCATm appears uniformly distributed in astrocyte cell bodies throughout the brain. The segregation of BCATm to astrocytes and BCKDC to neurons provides further support for the existence of a BCAA-dependent glial-neuronal nitrogen shuttle since the data show that BCKAs produced by glial BCATm must be exported to neurons. Additionally, the neuronal localization of BCKDC suggests that MSUD is a neuronal defect involving insufficient oxidation of BCKAs, with secondary effects extending beyond the neuron. PMID:22654736

  5. Impaired growth and neurological abnormalities in branched-chain α-keto acid dehydrogenase kinase-deficient mice

    Science.gov (United States)

    Joshi, Mandar A.; Jeoung, Nam Ho; Obayashi, Mariko; Hattab, Eyas M.; Brocken, Eric G.; Liechty, Edward A.; Kubek, Michael J.; Vattem, Krishna M.; Wek, Ronald C.; Harris, Robert A.

    2006-01-01

    The BCKDH (branched-chain α-keto acid dehydrogenase complex) catalyses the rate-limiting step in the oxidation of BCAAs (branched-chain amino acids). Activity of the complex is regulated by a specific kinase, BDK (BCKDH kinase), which causes inactivation, and a phosphatase, BDP (BCKDH phosphatase), which causes activation. In the present study, the effect of the disruption of the BDK gene on growth and development of mice was investigated. BCKDH activity was much greater in most tissues of BDK−/− mice. This occurred in part because the E1 component of the complex cannot be phosphorylated due to the absence of BDK and also because greater than normal amounts of the E1 component were present in tissues of BDK−/− mice. Lack of control of BCKDH activity resulted in markedly lower blood and tissue levels of the BCAAs in BDK−/− mice. At 12 weeks of age, BDK−/− mice were 15% smaller than wild-type mice and their fur lacked normal lustre. Brain, muscle and adipose tissue weights were reduced, whereas weights of the liver and kidney were greater. Neurological abnormalities were apparent by hind limb flexion throughout life and epileptic seizures after 6–7 months of age. Inhibition of protein synthesis in the brain due to hyperphosphorylation of eIF2α (eukaryotic translation initiation factor 2α) might contribute to the neurological abnormalities seen in BDK−/− mice. BDK−/− mice show significant improvement in growth and appearance when fed a high protein diet, suggesting that higher amounts of dietary BCAA can partially compensate for increased oxidation in BDK−/− mice. Disruption of the BDK gene establishes that regulation of BCKDH by phosphorylation is critically important for the regulation of oxidative disposal of BCAAs. The phenotype of the BDK−/− mice demonstrates the importance of tight regulation of oxidative disposal of BCAAs for normal growth and neurological function. PMID:16875466

  6. Leigh syndrome associated with a deficiency of the pyruvate dehydrogenase complex: results of treatment with a ketogenic diet

    NARCIS (Netherlands)

    Wijburg, F. A.; Barth, P. G.; Bindoff, L. A.; Birch-Machin, M. A.; van der Blij, J. F.; Ruitenbeek, W.; TURNBULL, D. M.; Schutgens, R. B.

    1992-01-01

    A one-year-old boy suffering from intermittent lactic acidosis, muscular hypotonia, horizontal gaze paralysis and spasticity in both legs had low activity of the pyruvate dehydrogenase complex associated with low amounts of immunoreactive E 1 alpha and E 1 beta. Leigh syndrome was diagnosed on the

  7. Phylogenomic reconstruction of archaeal fatty acid metabolism

    Science.gov (United States)

    Dibrova, Daria V.; Galperin, Michael Y.; Mulkidjanian, Armen Y.

    2014-01-01

    While certain archaea appear to synthesize and/or metabolize fatty acids, the respective pathways still remain obscure. By analyzing the genomic distribution of the key lipid-related enzymes, we were able to identify the likely components of the archaeal pathway of fatty acid metabolism, namely, a combination of the enzymes of bacterial-type β-oxidation of fatty acids (acyl-CoA-dehydrogenase, enoyl-CoA hydratase, and 3-hydroxyacyl-CoA dehydrogenase) with paralogs of the archaeal acetyl-CoA C-acetyltransferase, an enzyme of the mevalonate biosynthesis pathway. These three β-oxidation enzymes working in the reverse direction could potentially catalyze biosynthesis of fatty acids, with paralogs of acetyl-CoA C-acetyltransferase performing addition of C2 fragments. The presence in archaea of the genes for energy-transducing membrane enzyme complexes, such as cytochrome bc complex, cytochrome c oxidase, and diverse rhodopsins, was found to correlate with the presence of the proposed system of fatty acid biosynthesis. We speculate that because these membrane complexes functionally depend on fatty acid chains, their genes could have been acquired via lateral gene transfer from bacteria only by those archaea that already possessed a system of fatty acid biosynthesis. The proposed pathway of archaeal fatty acid metabolism operates in extreme conditions and therefore might be of interest in the context of biofuel production and other industrial applications. PMID:24818264

  8. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase.

    Science.gov (United States)

    Modig, Tobias; Lidén, Gunnar; Taherzadeh, Mohammad J

    2002-01-01

    The kinetics of furfural inhibition of the enzymes alcohol dehydrogenase (ADH; EC 1.1.1.1), aldehyde dehydrogenase (AlDH; EC 1.2.1.5) and the pyruvate dehydrogenase (PDH) complex were studied in vitro. At a concentration of less than 2 mM furfural was found to decrease the activity of both PDH and AlDH by more than 90%, whereas the ADH activity decreased by less than 20% at the same concentration. Furfural inhibition of ADH and AlDH activities could be described well by a competitive inhibition model, whereas the inhibition of PDH was best described as non-competitive. The estimated K(m) value of AlDH for furfural was found to be about 5 microM, which was lower than that for acetaldehyde (10 microM). For ADH, however, the estimated K(m) value for furfural (1.2 mM) was higher than that for acetaldehyde (0.4 mM). The inhibition of the three enzymes by 5-hydroxymethylfurfural (HMF) was also measured. The inhibition caused by HMF of ADH was very similar to that caused by furfural. However, HMF did not inhibit either AlDH or PDH as severely as furfural. The inhibition effects on the three enzymes could well explain previously reported in vivo effects caused by furfural and HMF on the overall metabolism of Saccharomyces cerevisiae, suggesting a critical role of these enzymes in the observed inhibition. PMID:11964178

  9. Inhibition of several enzymes by gold compounds. II. beta-Glucuronidase, acid phosphatase and L-malate dehydrogenase by sodium thiomalatoraurate (I), sodium thiosulfatoaurate (I) and thioglucosoaurate (I).

    Science.gov (United States)

    Lee, M T; Ahmed, T; Haddad, R; Friedman, M E

    1989-01-01

    Bovine liver beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32), wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) and bovine liver L-malate dehydrogenase (L-malate: NAD oxidoreductase, EC 1.1.1.37) were inhibited by a series of gold (I) complexes that have been used as anti-inflammatory drugs. Both sodium thiosulfatoaurate (I) (Na AuTs) and sodium thiomalatoraurate (NaAuTM) effectively inhibited all three enzymes, while thioglucosoaurate (I) (AuTG) only inhibited L-malate dehydrogenase. The equilibrium constants (K1) ranged from nearly 4000 microM for the NaAuTM-beta-glucuronidase interaction to 24 microM for the NaAuTS-beta-glucuronidase interaction. The rate of covalent bond formation (kp) ranged from 0.00032 min-1 for NaAuTM-beta-glucuronidase formation to 1.7 min-1 for AuTG-L-malate dehydrogenase formation. The equilibrium data shows that the gold (I) drugs bind by several orders lower than the gold (III) compounds, suggesting a significantly stronger interaction between the more highly charged gold ion and the enzyme. Yet the rate of covalent bond formation depends as much on the structure of the active site as upon the lability of the gold-ligand bond. It was also observed that the more effective the gold inhibition the more toxic the compound.

  10. Expression of Mitochondrial Branched-Chain Aminotransferase and α-Keto-Acid Dehydrogenase in Rat Brain: Implications for Neurotransmitter Metabolism

    Directory of Open Access Journals (Sweden)

    Jeffrey Thomas Cole

    2012-05-01

    Full Text Available In the brain, metabolism of the essential branched chain amino acids (BCAAs leucine, isoleucine and valine, is regulated in part by protein synthesis requirements. Excess BCAAs are catabolized or excreted. The first step in BCAA catabolism is catalyzed by the branched chain aminotransferase (BCAT isozymes, mitochondrial BCATm and cytosolic BCATc. A product of this reaction, glutamate, is the major excitatory neurotransmitter and precursor of the major inhibitory neurotransmitter -aminobutyric acid (GABA. The BCATs are thought to participate in an α-keto-acid nitrogen shuttle that provides nitrogen for synthesis of glutamate from -ketoglutarate. The branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC catalyzes the second and first irreversible step in BCAA metabolism, which is oxidative decarboxylation of the branched-chain α-keto acid (BCKA products of the BCAT reaction. Maple Syrup Urine Disease (MSUD results from genetic defects in BCKDC, which leads to accumulation of toxic levels of BCAAs and BCKAs that result in brain swelling. Immunolocalization of BCATm and BCKDC in rats revealed that BCATm is present in astrocytes in white matter and in neuropil, while BCKDC is expressed only in neurons. BCATm appears uniformly distributed in astrocyte cell bodies throughout the brain. The segregation of BCATm to astrocytes and BCKDC to neurons provides further support for the existence of a BCAA-dependent glial-neuronal nitrogen shuttle since the data show that BCKAs produced by glial BCATm must be exported to neurons. Additionally, the neuronal localization of BCKDC suggests that MSUD is a neuronal defect involving insufficient oxidation of BCKAs, with secondary effects extending beyond the neuron.

  11. Chronic alcoholism in rats induces a compensatory response, preserving brain thiamine diphosphate, but the brain 2-oxo acid dehydrogenases are inactivated despite unchanged coenzyme levels.

    Science.gov (United States)

    Parkhomenko, Yulia M; Kudryavtsev, Pavel A; Pylypchuk, Svetlana Yu; Chekhivska, Lilia I; Stepanenko, Svetlana P; Sergiichuk, Andrej A; Bunik, Victoria I

    2011-06-01

    Thiamine-dependent changes in alcoholic brain were studied using a rat model. Brain thiamine and its mono- and diphosphates were not reduced after 20 weeks of alcohol exposure. However, alcoholism increased both synaptosomal thiamine uptake and thiamine diphosphate synthesis in brain, pointing to mechanisms preserving thiamine diphosphate in the alcoholic brain. In spite of the unchanged level of the coenzyme thiamine diphosphate, activities of the mitochondrial 2-oxoglutarate and pyruvate dehydrogenase complexes decreased in alcoholic brain. The inactivation of pyruvate dehydrogenase complex was caused by its increased phosphorylation. The inactivation of 2-oxoglutarate dehydrogenase complex (OGDHC) correlated with a decrease in free thiols resulting from an elevation of reactive oxygen species. Abstinence from alcohol following exposure to alcohol reactivated OGDHC along with restoration of the free thiol content. However, restoration of enzyme activity occurred before normalization of reactive oxygen species levels. Hence, the redox status of cellular thiols mediates the action of oxidative stress on OGDHC in alcoholic brain. As a result, upon chronic alcohol consumption, physiological mechanisms to counteract the thiamine deficiency and silence pyruvate dehydrogenase are activated in rat brain, whereas OGDHC is inactivated due to impaired antioxidant ability. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  12. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci

    Directory of Open Access Journals (Sweden)

    Guillermo Hugo Peralta

    Full Text Available ABSTRACT Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  13. Effect of palladium α-lipoic acid complex on energy in the brain mitochondria of aged rats.

    Science.gov (United States)

    Ajith, Thekkuttuparambil Ananthanarayanan; Nima, Nalin; Veena, Ravindran Kalathil; Janardhanan, Kainoor Krishnankutty; Antonawich, Francis

    2014-01-01

    According to the mitochondrial mutation theory of aging, the impairment of mitochondrial functions and decline of cellular bioenergetics are induced by highly reactive oxygen species (ROS). Supplementation with antioxidants may protect mitochondria against respiration-linked oxidative stress and reduce decay by preserving genomic and structural integrity. Several clinical studies have reported beneficial effects of α-lipoic acid (LA) administration in individuals with Alzheimer's disease, particularly improving their spatial orientation; however, no studies have been reported on the effects of palladium α-lipoic acid (Pd-LA). The current study examined the effects of the Pd-LA complex on mitochondrial energy status in the brains of aged rats. The study used male Wistar rats, some that were older than 24 mo and weighed approximately 350 ± 50 g and some that were younger than 24 mo and weighed approximately 175 ± 25 g. The research team divided the rats into 5 groups of 6 rats. The study was conducted at the Amala Cancer Research Centre in Amala Nagar, Thrissur, Kerala, India. Three groups of rats were controls: (1) young controls administered no solution, (2) aged controls administered 1 mL/kg of a 0.25% solution (PO) of sodium hydroxide (NaOH), and (3) positive aged controls treated with LA (7.6 mg/kg, PO) dissolved in an alkaline saline (0.25% NaOH, w/v). Two groups were intervention groups: (1) aged rats treated with 1.2 mg/kg of Pd-LA (PO) and (2) aged rats treated with 23.5 mg/kg of Pd-LA (PO). The research team administered the solutions once daily for 30 d. After 30 d, all animals were sacrificed. The research team evaluated serum transaminases, lactate dehydrogenase (LDH), serum urea, and creatinine. The activities of superoxide dismutase (SOD), catalase (CAT), and the levels of reduced glutathione (GSH) were determined in the blood samples. Krebs cycle dehydrogenases were evaluated in the brain mitochondria. Furthermore, the activities of the

  14. Disease-causing missense mutations affect enzymatic activity, stability and oligomerization of glutaryl-CoA dehydrogenase (GCDH)

    DEFF Research Database (Denmark)

    Keyser, B.; Muhlhausen, C.; Dickmanns, A.

    2008-01-01

    Glutaric aciduria type 1 (GA1) is an autosomal recessive neurometabolic disorder caused by mutations in the glutaryl-CoA dehydrogenase gene (GCDH), leading to an accumulation and high excretion of glutaric acid and 3-hydroxyglutaric acid. Considerable variation in severity of the clinical phenotype......Da GCDH complexes. Molecular modeling of mutant GCDH suggests that Met263 at the surface of the GCDH protein might be part of the contact interface to interacting proteins. These results indicate that reduced intramitochondrial stability as well as the impaired formation of homo- and heteromeric GCDH...

  15. Mitochondrial type II NAD(PH dehydrogenases in fungal cell death

    Directory of Open Access Journals (Sweden)

    A. Pedro Gonçalves

    2015-03-01

    Full Text Available During aerobic respiration, cells produce energy through oxidative phosphorylation, which includes a specialized group of multi-subunit complexes in the inner mitochondrial membrane known as the electron transport chain. However, this canonical pathway is branched into single polypeptide alternative routes in some fungi, plants, protists and bacteria. They confer metabolic plasticity, allowing cells to adapt to different environmental conditions and stresses. Type II NAD(PH dehydrogenases (also called alternative NAD(PH dehydrogenases are non-proton pumping enzymes that bypass complex I. Recent evidence points to the involvement of fungal alternative NAD(PH dehydrogenases in the process of programmed cell death, in addition to their action as overflow systems upon oxidative stress. Consistent with this, alternative NAD(PH dehydrogenases are phylogenetically related to cell death - promoting proteins of the apoptosis-inducing factor (AIF-family.

  16. Impact of Branched-Chain Amino Acid Catabolism on Fatty Acid and Alkene Biosynthesis in Micrococcus luteus.

    Science.gov (United States)

    Surger, Maximilian J; Angelov, Angel; Stier, Philipp; Übelacker, Maria; Liebl, Wolfgang

    2018-01-01

    Micrococcus luteus naturally produces alkenes, unsaturated aliphatic hydrocarbons, and represents a promising host to produce hydrocarbons as constituents of biofuels and lubricants. In this work, we identify the genes for key enzymes of the branched-chain amino acid catabolism in M. luteus , whose first metabolic steps lead also to the formation of primer molecules for branched-chain fatty acid and olefin biosynthesis, and demonstrate how these genes can be used to manipulate the production of specific olefins in this organism. We constructed mutants of several gene candidates involved in the branched-chain amino acid metabolism or its regulation and investigated the resulting changes in the cellular fatty acid and olefin profiles by GC/MS. The gene cluster encoding the components of the branched-chain α-keto acid dehydrogenase (BCKD) complex was identified by deletion and promoter exchange mutagenesis. Overexpression of the BCKD gene cluster resulted in about threefold increased olefin production whereas deletion of the cluster led to a drastic reduction in branched-chain fatty acid content and a complete loss of olefin production. The specificities of the acyl-CoA dehydrogenases of the branched amino acid degradation pathways were deduced from the fatty acid and olefin profiles of the respective deletion mutant strains. In addition, growth experiments with branched amino acids as the only nitrogen source were carried out with the mutants in order to confirm our annotations. Both the deletion mutant of the BCKD complex, responsible for the further degradation of all three branched-chain amino acids, as well as the deletion mutant of the proposed isovaleryl-CoA dehydrogenase (specific for leucine degradation) were not able to grow on leucine in contrast to the parental strain. In conclusion, our experiments allow the unambigous assignment of specific functions to the genes for key enzymes of the branched-chain amino acid metabolism of M. luteus . We also show how

  17. Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor

    International Nuclear Information System (INIS)

    Savkur, Rajesh S.; Bramlett, Kelli S.; Michael, Laura F.; Burris, Thomas P.

    2005-01-01

    The pyruvate dehydrogenase complex (PDC) functions as an important junction in intermediary metabolism by influencing the utilization of fat versus carbohydrate as a source of fuel. Activation of PDC is achieved by phosphatases, whereas, inactivation is catalyzed by pyruvate dehydrogenase kinases (PDKs). The expression of PDK4 is highly regulated by the glucocorticoid and peroxisome proliferator-activated receptors. We demonstrate that the farnesoid X receptor (FXR; NR1H4), which regulates a variety of genes involved in lipoprotein metabolism, also regulates the expression of PDK4. Treatment of rat hepatoma cells as well as human primary hepatocytes with FXR agonists stimulates the expression of PDK4 to levels comparable to those obtained with glucocorticoids. In addition, treatment of mice with an FXR agonist significantly increased hepatic PDK4 expression, while concomitantly decreasing plasma triglyceride levels. Thus, activation of FXR may suppress glycolysis and enhance oxidation of fatty acids via inactivation of the PDC by increasing PDK4 expression

  18. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset

    DEFF Research Database (Denmark)

    Smelt, A H; Poorthuis, B J; Onkenhout, W

    1998-01-01

    Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9), tetrade......Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9......), tetradecadienoic acid, 14:2(n-6), and hexadecadienoic acid, 16:2(n-6). Palmitoyl-CoA and behenoyl-CoA dehydrogenase in fibroblasts were deficient. Muscle VLCAD activity was very low. DNA analysis revealed compound heterozygosity for two missense mutations in the VLCAD gene. The relatively mild clinical course may...... be due to residual enzyme activity as a consequence of the two missense mutations. Treatment with L-carnitine and medium chain triglycerides in the diet did not reduce the attacks of rhabdomyolysis....

  19. Promysalin Elicits Species-Selective Inhibition of Pseudomonas aeruginosa by Targeting Succinate Dehydrogenase.

    Science.gov (United States)

    Keohane, Colleen E; Steele, Andrew D; Fetzer, Christian; Khowsathit, Jittasak; Van Tyne, Daria; Moynié, Lucile; Gilmore, Michael S; Karanicolas, John; Sieber, Stephan A; Wuest, William M

    2018-02-07

    Natural products have served as an inspiration to scientists both for their complex three-dimensional architecture and exquisite biological activity. Promysalin is one such Pseudomonad secondary metabolite that exhibits narrow-spectrum antibacterial activity, originally isolated from the rhizosphere. We herein utilize affinity-based protein profiling (AfBPP) to identify succinate dehydrogenase (Sdh) as the biological target of the natural product. The target was further validated in silico, in vitro, in vivo, and through the selection, and sequencing, of a resistant mutant. Succinate dehydrogenase plays an essential role in primary metabolism of Pseudomonas aeruginosa as the only enzyme that is involved both in the tricarboxylic acid cycle (TCA) and in respiration via the electron transport chain. These findings add credence to other studies that suggest that the TCA cycle is an understudied target in the development of novel therapeutics to combat P. aeruginosa, a significant pathogen in clinical settings.

  20. Overexpression of the NADP+-specific isocitrate dehydrogenase gene (icdA) in citric acid-producing Aspergillus niger WU-2223L.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Hayashi, Rie; Kirimura, Kohtaro

    2014-01-01

    In the tricarboxylic acid (TCA) cycle, NADP(+)-specific isocitrate dehydrogenase (NADP(+)-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP(+) as a cofactor. We constructed an NADP(+)-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP(+)-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP(+)-ICDH activity. Therefore, NADP(+)-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.

  1. The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants.

    Directory of Open Access Journals (Sweden)

    Sven Vilain

    2012-01-01

    Full Text Available Pink1 is a mitochondrial kinase involved in Parkinson's disease, and loss of Pink1 function affects mitochondrial morphology via a pathway involving Parkin and components of the mitochondrial remodeling machinery. Pink1 loss also affects the enzymatic activity of isolated Complex I of the electron transport chain (ETC; however, the primary defect in pink1 mutants is unclear. We tested the hypothesis that ETC deficiency is upstream of other pink1-associated phenotypes. We expressed Saccaromyces cerevisiae Ndi1p, an enzyme that bypasses ETC Complex I, or sea squirt Ciona intestinalis AOX, an enzyme that bypasses ETC Complex III and IV, in pink1 mutant Drosophila and find that expression of Ndi1p, but not of AOX, rescues pink1-associated defects. Likewise, loss of function of subunits that encode for Complex I-associated proteins displays many of the pink1-associated phenotypes, and these defects are rescued by Ndi1p expression. Conversely, expression of Ndi1p fails to rescue any of the parkin mutant phenotypes. Additionally, unlike pink1 mutants, fly parkin mutants do not show reduced enzymatic activity of Complex I, indicating that Ndi1p acts downstream or parallel to Pink1, but upstream or independent of Parkin. Furthermore, while increasing mitochondrial fission or decreasing mitochondrial fusion rescues mitochondrial morphological defects in pink1 mutants, these manipulations fail to significantly rescue the reduced enzymatic activity of Complex I, indicating that functional defects observed at the level of Complex I enzymatic activity in pink1 mutant mitochondria do not arise from morphological defects. Our data indicate a central role for Complex I dysfunction in pink1-associated defects, and our genetic analyses with heterologous ETC enzymes suggest that Ndi1p-dependent NADH dehydrogenase activity largely acts downstream of, or in parallel to, Pink1 but upstream of Parkin and mitochondrial remodeling.

  2. Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5

    International Nuclear Information System (INIS)

    Kitanovic, Ana; Bonowski, Felix; Heigwer, Florian; Ruoff, Peter; Kitanovic, Igor; Ungewiss, Christin; Wölfl, Stefan

    2012-01-01

    Metabolic pathways play an indispensable role in supplying cellular systems with energy and molecular building blocks for growth, maintenance and repair and are tightly linked with lifespan and systems stability of cells. For optimal growth and survival cells rapidly adopt to environmental changes. Accumulation of acetic acid in stationary phase budding yeast cultures is considered to be a primary mechanism of chronological aging and induction of apoptosis in yeast, which has prompted us to investigate the dependence of acetic acid toxicity on extracellular conditions in a systematic manner. Using an automated computer controlled assay system, we investigated and model the dynamic interconnection of biomass yield- and growth rate-dependence on extracellular glucose concentration, pH conditions and acetic acid concentration. Our results show that toxic concentrations of acetic acid inhibit glucose consumption and reduce ethanol production. In absence of carbohydrates uptake, cells initiate synthesis of storage carbohydrates, trehalose and glycogen, and upregulate gluconeogenesis. Accumulation of trehalose and glycogen, and induction of gluconeogenesis depends on mitochondrial activity, investigated by depletion of the Hap2-3-4-5 complex. Analyzing the activity of glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK), and glucose-6-phosphate dehydrogenase (G6PDH) we found that while high acetic acid concentration increased their activity, lower acetic acids concentrations significantly inhibited these enzymes. With this study we determined growth and functional adjustment of metabolism to acetic acid accumulation in a complex range of extracellular conditions. Our results show that substantial acidification of the intracellular environment, resulting from accumulation of dissociated acetic acid in the cytosol, is required for acetic acid toxicity, which creates a state of energy deficiency and nutrient starvation.

  3. Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5

    Energy Technology Data Exchange (ETDEWEB)

    Kitanovic, Ana; Bonowski, Felix; Heigwer, Florian [Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg (Germany); Ruoff, Peter [Faculty of Science and Technology, Centre for Organelle Research, University of Stavanger, Stavanger (Norway); Kitanovic, Igor; Ungewiss, Christin; Wölfl, Stefan, E-mail: wolfl@uni-hd.de [Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg (Germany)

    2012-09-21

    Metabolic pathways play an indispensable role in supplying cellular systems with energy and molecular building blocks for growth, maintenance and repair and are tightly linked with lifespan and systems stability of cells. For optimal growth and survival cells rapidly adopt to environmental changes. Accumulation of acetic acid in stationary phase budding yeast cultures is considered to be a primary mechanism of chronological aging and induction of apoptosis in yeast, which has prompted us to investigate the dependence of acetic acid toxicity on extracellular conditions in a systematic manner. Using an automated computer controlled assay system, we investigated and model the dynamic interconnection of biomass yield- and growth rate-dependence on extracellular glucose concentration, pH conditions and acetic acid concentration. Our results show that toxic concentrations of acetic acid inhibit glucose consumption and reduce ethanol production. In absence of carbohydrates uptake, cells initiate synthesis of storage carbohydrates, trehalose and glycogen, and upregulate gluconeogenesis. Accumulation of trehalose and glycogen, and induction of gluconeogenesis depends on mitochondrial activity, investigated by depletion of the Hap2-3-4-5 complex. Analyzing the activity of glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK), and glucose-6-phosphate dehydrogenase (G6PDH) we found that while high acetic acid concentration increased their activity, lower acetic acids concentrations significantly inhibited these enzymes. With this study we determined growth and functional adjustment of metabolism to acetic acid accumulation in a complex range of extracellular conditions. Our results show that substantial acidification of the intracellular environment, resulting from accumulation of dissociated acetic acid in the cytosol, is required for acetic acid toxicity, which creates a state of energy deficiency and nutrient starvation.

  4. Kinetic and modelling studies of NAD+ and poly(ethylene glycol)-bound NAD+ in horse liver alcohol dehydrogenase

    NARCIS (Netherlands)

    Vanhommerig, S.A.M.; Sluyterman, L.A.A.E.; Meijer, E.M.

    1996-01-01

    Poly(ethylene glycol)-bound nicotinamide adenine dinucleotide (PEG-NAD+) has been successfully employed in the continuous production of L-amino acids from the corresponding alpha-keto acids by stereospecific reductive amination. Like many other dehydrogenases also horse liver alcohol dehydrogenase

  5. Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors.

    Science.gov (United States)

    Lai, J C; Cooper, A J

    1986-11-01

    The substrate and cofactor requirements and some kinetic properties of the alpha-ketoglutarate dehydrogenase complex (KGDHC; EC 1.2.4.2, EC 2.3.1.61, and EC 1.6.4.3) in purified rat brain mitochondria were studied. Brain mitochondrial KGDHC showed absolute requirement for alpha-ketoglutarate, CoA and NAD, and only partial requirement for added thiamine pyrophosphate, but no requirement for Mg2+ under the assay conditions employed in this study. The pH optimum was between 7.2 and 7.4, but, at pH values below 7.0 or above 7.8, KGDHC activity decreased markedly. KGDHC activity in various brain regions followed the rank order: cerebral cortex greater than cerebellum greater than or equal to midbrain greater than striatum = hippocampus greater than hypothalamus greater than pons and medulla greater than olfactory bulb. Significant inhibition of brain mitochondrial KGDHC was noted at pathological concentrations of ammonia (0.2-2 mM). However, the purified bovine heart KGDHC and KGDHC activity in isolated rat heart mitochondria were much less sensitive to inhibition. At 5 mM both beta-methylene-D,L-aspartate and D,L-vinylglycine (inhibitors of cerebral glucose oxidation) inhibited the purified heart but not the brain mitochondrial enzyme complex. At approximately 10 microM, calcium slightly stimulated (by 10-15%) the brain mitochondrial KGDHC. At concentrations above 100 microM, calcium (IC50 = 1 mM) inhibited both brain mitochondrial and purified heart KGDHC. The present results suggest that some of the kinetic properties of the rat brain mitochondrial KGDHC differ from those of the purified bovine heart and rat heart mitochondrial enzyme complexes. They also suggest that the inhibition of KGDHC by ammonia and the consequent effect on the citric acid cycle fluxes may be of pathophysiological and/or pathogenetic importance in hyperammonemia and in diseases (e.g., hepatic encephalopathy, inborn errors of urea metabolism, Reye's syndrome) where hyperammonemia is a

  6. Membrane-bound alcohol dehydrogenase is essential for glyceric acid production in Acetobacter tropicalis.

    Science.gov (United States)

    Habe, Hiroshi; Sato, Shun; Fukuoka, Tokuma; Kitamoto, Dai; Yakushi, Toshiharu; Matsushita, Kazunobu; Sakaki, Keiji

    2011-01-01

    Acetobacter tropicalis NBRC16470 can produce highly enantiomerically pure D-glyceric acid (D-GA; >99 % enantiomeric excess) from glycerol. To investigate whether membrane-bound alcohol dehydrogenase (mADH) is involved in GA production in A. tropicalis, we amplified part of the gene encoding mADH subunit I (adhA) using polymerase chain reaction and constructed an adhA-disrupted mutant of A. tropicalis (ΔadhA). Because ΔadhA did not produce GA, we confirmed that mADH is essential for the conversion of glycerol to GA. We also cloned and sequenced the entire region corresponding to adhA and adhB, which encodes mADH subunit II. The sequences showed high identities (84-86 %) with the equivalent mADH subunits from other Acetobacter spp.

  7. Crystal structure of product-bound complex of UDP-N-acetyl-d-mannosamine dehydrogenase from Pyrococcus horikoshii OT3.

    Science.gov (United States)

    Pampa, K J; Lokanath, N K; Girish, T U; Kunishima, N; Rai, V R

    2014-10-24

    UDP-N-acetyl-d-mannosamine dehydrogenase (UDP-d-ManNAcDH) belongs to UDP-glucose/GDP-mannose dehydrogenase family and catalyzes Uridine-diphospho-N-acetyl-d-mannosamine (UDP-d-ManNAc) to Uridine-diphospho-N-acetyl-d-mannosaminuronic acid (UDP-d-ManNAcA) through twofold oxidation of NAD(+). In order to reveal the structural features of the Pyrococcus horikoshii UDP-d-ManNAcADH, we have determined the crystal structure of the product-bound enzyme by X-ray diffraction to resolution of 1.55Å. The protomer folds into three distinct domains; nucleotide binding domain (NBD), substrate binding domain (SBD) and oligomerization domain (OD, involved in the dimerization). The clear electron density of the UDP-d-ManNAcA is observed and the residues binding are identified for the first time. Crystal structures reveal a tight dimeric polymer chains with product-bound in all the structures. The catalytic residues Cys258 and Lys204 are conserved. The Cys258 acts as catalytic nucleophile and Lys204 as acid/base catalyst. The product is directly interacts with residues Arg211, Thr249, Arg244, Gly255, Arg289, Lys319 and Arg398. In addition, the structural parameters responsible for thermostability and oligomerization of the three dimensional structure are analyzed. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Evolutionary factors affecting Lactate dehydrogenase A and B variation in the Daphnia pulex species complex

    Directory of Open Access Journals (Sweden)

    Cristescu Melania E

    2011-07-01

    Full Text Available Abstract Background Evidence for historical, demographic and selective factors affecting enzyme evolution can be obtained by examining nucleotide sequence variation in candidate genes such as Lactate dehydrogenase (Ldh. Two closely related Daphnia species can be distinguished by their electrophoretic Ldh genotype and habitat. Daphnia pulex populations are fixed for the S allele and inhabit temporary ponds, while D. pulicaria populations are fixed for the F allele and inhabit large stratified lakes. One locus is detected in most allozyme surveys, but genome sequencing has revealed two genes, LdhA and LdhB. Results We sequenced both Ldh genes from 70 isolates of these two species from North America to determine if the association between Ldh genotype and habitat shows evidence for selection, and to elucidate the evolutionary history of the two genes. We found that alleles in the pond-dwelling D. pulex and in the lake-dwelling D. pulicaria form distinct groups at both loci, and the substitution of Glutamine (S for Glutamic acid (F at amino acid 229 likely causes the electrophoretic mobility shift in the LDHA protein. Nucleotide diversity in both Ldh genes is much lower in D. pulicaria than in D. pulex. Moreover, the lack of spatial structuring of the variation in both genes over a wide geographic area is consistent with a recent demographic expansion of lake populations. Neutrality tests indicate that both genes are under purifying selection, but the intensity is much stronger on LdhA. Conclusions Although lake-dwelling D. pulicaria hybridizes with the other lineages in the pulex species complex, it remains distinct ecologically and genetically. This ecological divergence, coupled with the intensity of purifying selection on LdhA and the strong association between its genotype and habitat, suggests that experimental studies would be useful to determine if variation in molecular function provides evidence that LDHA variants are adaptive.

  9. Mechanisms of activation of muscle branched-chain alpha-keto acid dehydrogenase during exercise in man

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; MacLean, D A; Saltin, B

    1996-01-01

    1. Exercise leads to activation (dephosphorylation) of the branched-chain alpha-keto acid dehydrogenase (BCKADH). Here we investigate the effect of low pre-exercise muscle glycogen content and of branched-chain amino acid (BCAA) ingestion on the activity of BCKADH at rest and after 90 min of one......-leg knee-extensor exercise at 65% maximal one-leg power output in five subjects. 2. Pre-exercise BCAA ingestion (308 mg BCAAs (kg body wt)-1) caused an increased muscle BCAA uptake, a higher intramuscular BCAA concentration and activation of BCKADH both at rest (9 +/- 1 versus 25 +/- 5% for the control...... and BCAA test, respectively) and after exercise (27 +/- 4 versus 54 +/- 7%). 3. At rest the percentage active BCKADH was not different, 6 +/- 2% versus 5 +/- 1%, in the normal and low glycogen content leg (392 +/- 21 and 147 +/- 34 mumol glycosyl units (g dry muscle)-1, respectively). The post...

  10. Acid-base properties of complexes with three-dimensional polyligands. Complexes with three-dimensional polyphosphoric acids

    International Nuclear Information System (INIS)

    Kopylova, V.D.; Bojko, Eh.T.; Saldadze, K.M.

    1985-01-01

    By the method of potentiometric titration acid-base properties of uranyl (2) complexes with three-dimensional polyphosphoric acids, KRF-8p, KF-1, KF-7 prepared by phosphorylation of copolymer of styrene and divinylbenzene or saponification of the copolymers of di-2,2'-chloroethyl ester of vinylphosphonic acid with divinyl benzene are studied. It is shown that in case of formation in the phase of three-dimensional polyphosphoric acids of UO 2 2+ complexes with the growth of bond covalence of metal ion-phosphonic group the acidjty of the second hydroxyl of the phosphonic group increases

  11. Structural characterization of tartrate dehydrogenase: a versatile enzyme catalyzing multiple reactions

    International Nuclear Information System (INIS)

    Malik, Radhika; Viola, Ronald E.

    2010-01-01

    The first structure of an NAD-dependent tartrate dehydrogenase (TDH) has been solved to 2 (angstrom) resolution by single anomalous diffraction (SAD) phasing as a complex with the intermediate analog oxalate, Mg 2+ and NADH. This TDH structure from Pseudomonas putida has a similar overall fold and domain organization to other structurally characterized members of the hydroxy-acid dehydrogenase family. However, there are considerable differences between TDH and these functionally related enzymes in the regions connecting the core secondary structure and in the relative positioning of important loops and helices. The active site in these complexes is highly ordered, allowing the identification of the substrate-binding and cofactor-binding groups and the ligands to the metal ions. Residues from the adjacent subunit are involved in both the substrate and divalent metal ion binding sites, establishing a dimer as the functional unit and providing structural support for an alternating-site reaction mechanism. The divalent metal ion plays a prominent role in substrate binding and orientation, together with several active-site arginines. Functional groups from both subunits form the cofactor-binding site and the ammonium ion aids in the orientation of the nicotinamide ring of the cofactor. A lysyl amino group (Lys192) is the base responsible for the water-mediated proton abstraction from the C2 hydroxyl group of the substrate that begins the catalytic reaction, followed by hydride transfer to NAD. A tyrosyl hydroxyl group (Tyr141) functions as a general acid to protonate the enolate intermediate. Each substrate undergoes the initial hydride transfer, but differences in substrate orientation are proposed to account for the different reactions catalyzed by TDH.

  12. Characterization and complexation of humic acid

    International Nuclear Information System (INIS)

    Kim, J.I.; Buckau, G.; Klenze, R.; Rhee, D.S.; Wimmer, H.

    1990-05-01

    This paper summarizes the research contributions to the CEC project MIRAGE II, particularly the research area: complexation and colloids (COCO). The first part of the paper comprises the characterization of humic and fulvic acids from different origins: a commercial product from Aldrich Co. used as a reference humic acid and site specific humic acids from Gorleben (FRG), Boom Clay (B) and Fanay Augeres (F) aquifer systems. The second part includes the complexation of trivalent actinides: Am(III) and Cm(III) with various humic acids. A number of different methods have been applied for the complexation study: spectrophotometry, ultrafiltration, laser-indused photoacoustic spectroscopy (LPAS) and time resolved laser fluorescence spectroscopy (TRLFS). The evaluation process of complexation constant is discussed extensively and the well consolidated results are presented, which can be directly used for the geochemical modelling of the radionuclide migration. (orig.)

  13. Clinical aspects of short-chain acyl-CoA dehydrogenase deficiency

    NARCIS (Netherlands)

    Maldegem, B.T.; Wanders, R.J.A.; Wijburg, F.A.

    2010-01-01

    Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is an autosomal recessive inborn error of mitochondrial fatty acid oxidation. SCADD is biochemically characterized by increased C4-carnitine in plasma and ethylmalonic acid in urine. The diagnosis of SCADD is confirmed by DNA analysis showing

  14. Medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin

    2006-01-01

    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We ...

  15. Regulation of bovine kidney alpha-ketoglutarate dehydrogenase complex by calcium ion and adenine nucleotides. Effects on S0.5 for alpha-ketoglutarate.

    Science.gov (United States)

    Lawlis, V B; Roche, T E

    1981-04-28

    Regulation of bovine kidney alpha-ketoglutarate dehydrogenase complex by energy-linked metabolites was investigated. Ca2+, ADP, or inorganic phosphate markedly enhanced the activity of the complex, and ATP or, to a lesser extent, GTP decreased the activity of the complex. Initial velocity studies with alpha-ketoglutarate as the varied substrate demonstrated that these modulators induced large changes in S0.5 for alpha-ketoglutarate (based on analysis in Hill plots) with no change in the maximum velocity (as determined by double-reciprocal plots). For all conditions studied, the Hill coefficients were significantly less than 1.0 with slopes that were linear over wide ranges of alpha-ketoglutarate concentrations, indicating negative cooperativity that probably resulted from multiple site-site interactions. Ca2+ (maintained at 10 muM by a Ca2+ buffer) decreased the S0.5 for alpha-ketoglutarate 63-fold (from 25 to 0.40 mM); even in the presence of a positive effector, ADP or phosphate, Ca2+ decreased the S0.5 for alpha-ketoglutarate 7.8- or 28-fold, respectively. Consistent with a mechanism of action dependent of Ca2+, ADP (1.60 mM) or phosphate (20 mM) reduced the S0.5 for alpha-ketoglutarate in the presence of Ca2+ (i.e., 4.5- or 1.67-fold, respectively); however, these effectors elicited larger decreases in S0.5 in the absence of Ca2+ (i.e., 37- or 3.7-fold, respectively). ATP (1.6 mM) increased the S0.5 for alpha-ketoglutarate, and Ca2+ appreciably reduced the effect, lowering the S0.5 98-fold from 66 to 0.67 mM. Thus the activity of the kidney alpha-ketoglutarate dehydrogenase complex is poised to increase as the energy potential in mitochondria declines, and Ca2+ has a pronounced modulatory effect. Comparative studies on bovine heart alpha-ketoglutarate dehydrogenase complex and the effects of varying the ADP/ATP ratio in the presence or absence of Ca2+ or phosphate are also described.

  16. Pyruvate Dehydrogenase and Pyruvate Dehydrogenase Kinase Expression in Non Small Cell Lung Cancer and Tumor-Associated Stroma

    Directory of Open Access Journals (Sweden)

    Michael I. Koukourakis

    2005-01-01

    Full Text Available Pyruvate dehydrogenase (PDH catalyzes the conversion of pyruvate to acetyl-coenzyme A, which enters into the Krebs cycle, providing adenosine triphosphate (ATP to the cell. PDH activity is under the control of pyruvate dehydrogenase kinases (PDKs. Under hypoxic conditions, conversion of pyruvate to lactate occurs, a reaction catalyzed by lactate dehydrogenase 5 (LDH5. In cancer cells, however, pyruvate is transformed to lactate occurs, regardless of the presence of oxygen (aerobic glycolysis/Warburg effect. Although hypoxic intratumoral conditions account for HIFia stabilization and induction of anaerobic metabolism, recent data suggest that high pyruvate concentrations also result in HIFia stabilization independently of hypoxia. In the present immunohistochemical study, we provide evidence that the PDH/PDK pathway is repressed in 73% of non small cell lung carcinomas, which may be a key reason for HIFia stabilization and “aerobic glycolysis.” However, about half of PDHdeficient carcinomas are not able to switch on the HIF pathway, and patients harboring these tumors have an excellent postoperative outcome. A small subgroup of clinically aggressive tumors maintains a coherent PDH and HIF/LDH5 expression. In contrast to cancer cells, fibroblasts in the tumor-supporting stroma exhibit an intense PDH but reduced PDK1 expression favoring maximum PDH activity. This means that stroma may use lactic acid produced by tumor cells, preventing the creation of an intolerable intratumoral acidic environment at the same time.

  17. Characterization of human short chain dehydrogenase/reductase SDR16C family members related to retinol dehydrogenase 10.

    Science.gov (United States)

    Adams, Mark K; Lee, Seung-Ah; Belyaeva, Olga V; Wu, Lizhi; Kedishvili, Natalia Y

    2017-10-01

    All-trans-retinoic acid (RA) is a bioactive derivative of vitamin A that serves as an activating ligand for nuclear transcription factors, retinoic acid receptors. RA biosynthesis is initiated by the enzymes that oxidize retinol to retinaldehyde. It is well established that retinol dehydrogenase 10 (RDH10, SDR16C4), which belongs to the 16C family of the short chain dehydrogenase/reductase (SDR) superfamily of proteins, is the major enzyme responsible for the oxidation of retinol to retinaldehyde for RA biosynthesis during embryogenesis. However, several lines of evidence point towards the existence of additional retinol dehydrogenases that contribute to RA biosynthesis in vivo. In close proximity to RDH10 gene on human chromosome 8 are located two genes that are phylogenetically related to RDH10. The predicted protein products of these genes, retinol dehydrogenase epidermal 2 (RDHE2, SDR16C5) and retinol dehydrogenase epidermal 2-similar (RDHE2S, SDR16C6), share 59% and 56% sequence similarity with RDH10, respectively. Previously, we showed that the single ortholog of the human RDHE2 and RDHE2S in frogs, Xenopus laevis rdhe2, oxidizes retinol to retinaldehyde and is essential for frog embryonic development. In this study, we explored the potential of each of the two human proteins to contribute to RA biosynthesis. The results of this study demonstrate that human RDHE2 exhibits a relatively low but reproducible activity when expressed in either HepG2 or HEK293 cells. Expression of the native RDHE2 is downregulated in the presence of elevated levels of RA. On the other hand, the protein encoded by the human RDHE2S gene is unstable when expressed in HEK293 cells. RDHE2S protein produced in Sf9 cells is stable but has no detectable catalytic activity towards retinol. We conclude that the human RDHE2S does not contribute to RA biosynthesis, whereas the low-activity RA-sensitive human RDHE2 may have a role in adjusting the cellular levels of RA in accord with

  18. Structural Insights into l-Tryptophan Dehydrogenase from a Photoautotrophic Cyanobacterium, Nostoc punctiforme.

    Science.gov (United States)

    Wakamatsu, Taisuke; Sakuraba, Haruhiko; Kitamura, Megumi; Hakumai, Yuichi; Fukui, Kenji; Ohnishi, Kouhei; Ashiuchi, Makoto; Ohshima, Toshihisa

    2017-01-15

    l-Tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH), despite exhibiting high amino acid sequence identity (>30%)/homology (>50%) with NAD(P) + -dependent l-Glu/l-Leu/l-Phe/l-Val dehydrogenases, exclusively catalyzes reversible oxidative deamination of l-Trp to 3-indolepyruvate in the presence of NAD + Here, we determined the crystal structure of the apo form of NpTrpDH. The structure of the NpTrpDH monomer, which exhibited high similarity to that of l-Glu/l-Leu/l-Phe dehydrogenases, consisted of a substrate-binding domain (domain I, residues 3 to 133 and 328 to 343) and an NAD + /NADH-binding domain (domain II, residues 142 to 327) separated by a deep cleft. The apo-NpTrpDH existed in an open conformation, where domains I and II were apart from each other. The subunits dimerized themselves mainly through interactions between amino acid residues around the β-1 strand of each subunit, as was observed in the case of l-Phe dehydrogenase. The binding site for the substrate l-Trp was predicted by a molecular docking simulation and validated by site-directed mutagenesis. Several hydrophobic residues, which were located in the active site of NpTrpDH and possibly interacted with the side chain of the substrate l-Trp, were arranged similarly to that found in l-Leu/l-Phe dehydrogenases but fairly different from that of an l-Glu dehydrogenase. Our crystal structure revealed that Met-40, Ala-69, Ile-74, Ile-110, Leu-288, Ile-289, and Tyr-292 formed a hydrophobic cluster around the active site. The results of the site-directed mutagenesis experiments suggested that the hydrophobic cluster plays critical roles in protein folding, l-Trp recognition, and catalysis. Our results provide critical information for further characterization and engineering of this enzyme. In this study, we determined the three-dimensional structure of l-Trp dehydrogenase, analyzed its various site-directed substitution mutants at residues located in the active site, and obtained the

  19. Metabolism of Oxo-Bile Acids and Characterization of Recombinant 12α-Hydroxysteroid Dehydrogenases from Bile Acid 7α-Dehydroxylating Human Gut Bacteria.

    Science.gov (United States)

    Doden, Heidi; Sallam, Lina A; Devendran, Saravanan; Ly, Lindsey; Doden, Greta; Daniel, Steven L; Alves, João M P; Ridlon, Jason M

    2018-05-15

    Bile acids are important cholesterol-derived nutrient signaling hormones, synthesized in the liver, that act as detergents to solubilize dietary lipids. Bile acid 7α-dehydroxylating gut bacteria generate the toxic bile acids deoxycholic acid and lithocholic acid from host bile acids. The ability of these bacteria to remove the 7-hydroxyl group is partially dependent on 7α-hydroxysteroid dehydrogenase (HSDH) activity, which reduces 7-oxo-bile acids generated by other gut bacteria. 3α-HSDH has an important enzymatic activity in the bile acid 7α-dehydroxylation pathway. 12α-HSDH activity has been reported for the low-activity bile acid 7α-dehydroxylating bacterium Clostridium leptum ; however, this activity has not been reported for high-activity bile acid 7α-dehydroxylating bacteria, such as Clostridium scindens , Clostridium hylemonae , and Clostridium hiranonis Here, we demonstrate that these strains express bile acid 12α-HSDH. The recombinant enzymes were characterized from each species and shown to preferentially reduce 12-oxolithocholic acid to deoxycholic acid, with low activity against 12-oxochenodeoxycholic acid and reduced activity when bile acids were conjugated to taurine or glycine. Phylogenetic analysis suggests that 12α-HSDH is widespread among Firmicutes , Actinobacteria in the Coriobacteriaceae family, and human gut Archaea IMPORTANCE 12α-HSDH activity has been established in the medically important bile acid 7α-dehydroxylating bacteria C. scindens , C. hiranonis , and C. hylemonae Experiments with recombinant 12α-HSDHs from these strains are consistent with culture-based experiments that show a robust preference for 12-oxolithocholic acid over 12-oxochenodeoxycholic acid. Phylogenetic analysis identified novel members of the gut microbiome encoding 12α-HSDH. Future reengineering of 12α-HSDH enzymes to preferentially oxidize cholic acid may provide a means to industrially produce the therapeutic bile acid ursodeoxycholic acid. In

  20. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans.

    Science.gov (United States)

    Wang, Limin; Cai, Yumeng; Zhu, Lingfeng; Guo, Honglian; Yu, Bo

    2014-12-01

    Bacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production-NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)-were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid. Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (a d-lactic acid producer) and Lactobacillus plantarum subsp. plantarum DSM 20174 (a dl-lactic acid producer) were also examined in this study as comparative strains, in addition to B. coagulans. The specific activities of key enzymes for lactic acid production in the three strains were characterized in vivo and in vitro, and the levels of transcription of the ldhL, ldhD, and GOX genes during fermentation were also analyzed. The catalytic activities of l-nLDH and d-nLDH were different in l-, d-, and dl-lactic acid producers. Only l-nLDH activity was detected in B. coagulans 2-6 under native conditions, and the level of transcription of ldhL in B. coagulans 2-6 was much higher than that of ldhD or the GOX gene at all growth phases. However, for the two Lactobacillus strains used in this study, ldhD transcription levels were higher than those of ldhL. The high catalytic efficiency of l-nLDH toward pyruvate and the high transcription ratios of ldhL to ldhD and ldhL to the GOX gene provide the key explanations for the high optical purity of l-lactic acid produced by B. coagulans 2-6. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Crystal structures of complexes of NAD+-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 with formate

    International Nuclear Information System (INIS)

    Filippova, E. V.; Polyakov, K. M.; Tikhonova, T. V.; Stekhanova, T. N.; Boiko, K. M.; Sadykhov, I. G.; Tishkov, V. I.; Popov, V. O.; Labru, N.

    2006-01-01

    Formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 catalyzes oxidation of formate to NI 2 with the coupled reduction of nicotinamide adenine dinucleotide (NAD + ). The three-dimensional structures of the apo form (the free enzyme) and the holo form (the ternary FDH-NAD + -azide complex) of FDH have been established earlier. In the present study, the structures of FDH complexes with formate are solved at 2.19 and 2.28 A resolution by the molecular replacement method and refined to the R factors of 22.3 and 20.5%, respectively. Both crystal structures contain four protein molecules per asymmetric unit. These molecules form two dimers identical to the dimer of the apo form of FDH. Two possible formatebinding sites are found in the active site of the FDH structure. In the complexes the sulfur atom of residue Cys354 exists in the oxidized state

  2. Complexes of salicylic acid and its derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Tel' zhenskaya, P N; Shvarts, E M [AN Latvijskoj SSR, Riga. Inst. Neorganicheskoj Khimii

    1977-01-01

    A generalization and systematization have been made of literature data on complexing of various elements, including beryllium, cadmium, boron, indium, rare-earth elements, actinides, and transition elements with salicylic acid and it derivatives (amino-, nitro- and halosalicylic acids). The effect of the position and nature of the substitute, in the case of salicylic acid derivatives, on the complexing process is discussed. Certain physicochemical properties of the complexes under consideration are described along with data indicative of their stability.

  3. -Heterocyclic Carbene Complexes of Mineral Acids

    KAUST Repository

    Brill, Marcel; Nahra, Fady; Gó mez-Herrera, Alberto; Zinser, Caroline; Cordes, David B.; Slawin, Alexandra M. Z.; Nolan, Steven P.

    2016-01-01

    We have synthesized and characterized new gold-N-heterocyclic carbene (NHC) complexes derived from the deprotonation of mineral acids. The use of sulfuric acid was a particularly interesting case. These complexes were tested in known gold-catalyzed reactions, such as the hydration of alkynes and the Meyer–Schuster rearrangement. They proved to be highly efficient in both reactions.

  4. -Heterocyclic Carbene Complexes of Mineral Acids

    KAUST Repository

    Brill, Marcel

    2016-11-08

    We have synthesized and characterized new gold-N-heterocyclic carbene (NHC) complexes derived from the deprotonation of mineral acids. The use of sulfuric acid was a particularly interesting case. These complexes were tested in known gold-catalyzed reactions, such as the hydration of alkynes and the Meyer–Schuster rearrangement. They proved to be highly efficient in both reactions.

  5. Complexing of vanadium(3) with chromotropic acid derivatives

    International Nuclear Information System (INIS)

    Babenko, N.L.; Busev, A.I.; Sukhorukova, N.V.; Frolova, O.S.

    1976-01-01

    A spectrophotometric study has been made of the complex formation of vanadium (3) with arsenazo(1), arsenazo(3) and some monosubstituted derivatives of chromotropic acid and sulphanylamides. In acid medium vanadium (3) reacts with each of these reagents to produce a 1:1 complex. Optimum conditions of the complex formation was found. The effect of H + on the complex formation of vanadium (3) with chromotropic acid derivatives was established. It was found by the graphical method that the formation of the complex is accompanied by the elimination of one proton. Patterns were found of the influence of the nature of substituents in the organic compound on the ionization constants of acid groups and stability of complexes. Molar extinction coefficients, equilibrium constants of the formation reactions and instability constants for the complexes were calculated. The structure of complexes was suggested. Similar behaviour of all the reagents was established in the complex formation with vanadium (3)

  6. Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology.

    Science.gov (United States)

    Yakushi, Toshiharu; Matsushita, Kazunobu

    2010-05-01

    Pyrroquinoline quinone-dependent alcohol dehydrogenase (PQQ-ADH) of acetic acid bacteria is a membrane-bound enzyme involved in the acetic acid fermentation by oxidizing ethanol to acetaldehyde coupling with reduction of membranous ubiquinone (Q), which is, in turn, re-oxidized by ubiquinol oxidase, reducing oxygen to water. PQQ-ADHs seem to have co-evolved with the organisms fitting to their own habitats. The enzyme consists of three subunits and has a pyrroloquinoline quinone, 4 heme c moieties, and a tightly bound Q as the electron transfer mediators. Biochemical, genetic, and electrochemical studies have revealed the unique properties of PQQ-ADH since it was purified in 1978. The enzyme is unique to have ubiquinol oxidation activity in addition to Q reduction. This mini-review focuses on the molecular properties of PQQ-ADH, such as the roles of the subunits and the cofactors, particularly in intramolecular electron transport of the enzyme from ethanol to Q. Also, we summarize biotechnological applications of PQQ-ADH as to enantiospecific oxidations for production of the valuable chemicals and bioelectrocatalysis for sensors and fuel cells using indirect and direct electron transfer technologies and discuss unsolved issues and future prospects related to this elaborate enzyme.

  7. A novel 3-hydroxysteroid dehydrogenase that regulates reproductive development and longevity.

    Directory of Open Access Journals (Sweden)

    Joshua Wollam

    Full Text Available Endogenous small molecule metabolites that regulate animal longevity are emerging as a novel means to influence health and life span. In C. elegans, bile acid-like steroids called the dafachronic acids (DAs regulate developmental timing and longevity through the conserved nuclear hormone receptor DAF-12, a homolog of mammalian sterol-regulated receptors LXR and FXR. Using metabolic genetics, mass spectrometry, and biochemical approaches, we identify new activities in DA biosynthesis and characterize an evolutionarily conserved short chain dehydrogenase, DHS-16, as a novel 3-hydroxysteroid dehydrogenase. Through regulation of DA production, DHS-16 controls DAF-12 activity governing longevity in response to signals from the gonad. Our elucidation of C. elegans bile acid biosynthetic pathways reveals the possibility of novel ligands as well as striking biochemical conservation to other animals, which could illuminate new targets for manipulating longevity in metazoans.

  8. Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine.

    Science.gov (United States)

    Bontpart, Thibaut; Marlin, Thérèse; Vialet, Sandrine; Guiraud, Jean-Luc; Pinasseau, Lucie; Meudec, Emmanuelle; Sommerer, Nicolas; Cheynier, Véronique; Terrier, Nancy

    2016-05-01

    In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) 'classically' catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth. In grapevine berries, gallic acid mainly accumulates as galloylated flavan-3-ols. The four grapevine SDH proteins have been produced in Escherichia coli In vitro, VvSDH1 exhibited the highest 'classical' SDH activity. Two genes, VvSDH3 and VvSDH4, mainly expressed in immature berry tissues in which galloylated flavan-3-ols are accumulated, encoded enzymes with lower 'classical' activity but were able to produce gallic acid in vitro The over-expression of VvSDH3 in hairy-roots increased the content of aromatic amino acids and hydroxycinnamates, but had little or no effect on molecules more distant from the shikimate pathway (stilbenoids and flavan-3-ols). In parallel, the contents of gallic acid, β-glucogallin, and galloylated flavan-3-ols were increased, attesting to the influence of this gene on gallic acid metabolism. Phylogenetic analysis from dicotyledon SDHs opens the way for the examination of genes from other plants which accumulate gallic acid-based metabolites. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Identification and quantification of intermediates of unsaturated fatty acid metabolism in plasma of patients with fatty acid oxidation disorders

    NARCIS (Netherlands)

    Onkenhout, W.; Venizelos, V.; van der Poel, P. F.; van den Heuvel, M. P.; Poorthuis, B. J.

    1995-01-01

    The free fatty acid and total fatty acid profiles in plasma of nine patients with medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, two with very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency and two with mild-type multiple acyl-CoA dehydrogenase (MAD-m) deficiency, were analyzed by gas

  10. Developmental Defects of Caenorhabditis elegans Lacking Branched-chain α-Ketoacid Dehydrogenase Are Mainly Caused by Monomethyl Branched-chain Fatty Acid Deficiency.

    Science.gov (United States)

    Jia, Fan; Cui, Mingxue; Than, Minh T; Han, Min

    2016-02-05

    Branched-chain α-ketoacid dehydrogenase (BCKDH) catalyzes the critical step in the branched-chain amino acid (BCAA) catabolic pathway and has been the focus of extensive studies. Mutations in the complex disrupt many fundamental metabolic pathways and cause multiple human diseases including maple syrup urine disease (MSUD), autism, and other related neurological disorders. BCKDH may also be required for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs) from BCAAs. The pathology of MSUD has been attributed mainly to BCAA accumulation, but the role of mmBCFA has not been evaluated. Here we show that disrupting BCKDH in Caenorhabditis elegans causes mmBCFA deficiency, in addition to BCAA accumulation. Worms with deficiency in BCKDH function manifest larval arrest and embryonic lethal phenotypes, and mmBCFA supplementation suppressed both without correcting BCAA levels. The majority of developmental defects caused by BCKDH deficiency may thus be attributed to lacking mmBCFAs in worms. Tissue-specific analysis shows that restoration of BCKDH function in multiple tissues can rescue the defects, but is especially effective in neurons. Taken together, we conclude that mmBCFA deficiency is largely responsible for the developmental defects in the worm and conceivably might also be a critical contributor to the pathology of human MSUD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Mobile sequences in the pyruvate dehydrogenase complex, the E2 component, the catalytic domain and the 2-oxogluturate dehydrogenase complex of Azotobacter vinelandii, as detected by 600 MHz 1H-NMR spectroscopy

    International Nuclear Information System (INIS)

    Hanemaaijer, R.; Vervoort, J.; Westphal, A.H.; Kok, A. de.; Veeger, C.

    1988-01-01

    600 MHz 1 H-NMR spectroscopy demonstrates that the pyruvate dehydrogenase complex of Azotobacter vinelandii contains regions of the polypeptide chain with intramolecular mobility. This mobility is located in the E 2 component and can probably be ascribed to alanine-proline-rich regions that link the lipoyl sibdiomains to each other as well as to the E 1 and E 3 binding domain. In the catalytic domain of E 2 which is thought to form a compact, rigid core, also conformational flexibility is observed. It is conceivable that the N-terminal region of the catalytic domain, which contains many alanine residues, is responsible for the observed mobility. In the low-field region of the 1 H-NMR spectrum of E 2 specific resonances are found, which can be ascribed to mobile phenylalanine, histidine and/or tyrosine residues which are located in the E 1 and E 3 binding domain that links the lipoyl domain to the catalytic domain. In the 1 H-NMR spectrum of the intact complex, these resonances cannot be observed, indicating a decreased mobility of the E 1 and E 3 binding domain. (author). 24 refs.; 2 figs

  12. Inhibitors of the alpha-ketoglutarate dehydrogenase complex alter [1-13C]glucose and [U-13C]glutamate metabolism in cerebellar granule neurons.

    Science.gov (United States)

    Santos, Sónia Sá; Gibson, Gary E; Cooper, Arthur J L; Denton, Travis T; Thompson, Charles M; Bunik, Victoria I; Alves, Paula M; Sonnewald, Ursula

    2006-02-15

    Diminished activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), an important component of the tricarboxylic acid (TCA) cycle, occurs in several neurological diseases. The effect of specific KGDHC inhibitors [phosphonoethyl ester of succinyl phosphonate (PESP) and the carboxy ethyl ester of succinyl phosphonate (CESP)] on [1-13C]glucose and [U-13C]glutamate metabolism in intact cerebellar granule neurons was investigated. Both inhibitors decreased formation of [4-13C]glutamate from [1-13C]glucose, a reduction in label in glutamate derived from [1-13C]glucose/[U-13C]glutamate through a second turn of the TCA cycle and a decline in the amounts of gamma-aminobutyric acid (GABA), aspartate, and alanine. PESP decreased formation of [U-13C]aspartate and total glutathione, whereas CESP decreased concentrations of valine and leucine. The findings are consistent with decreased KGDHC activity; increased alpha-ketoglutarate formation; increased transamination of alpha-ketoglutarate with valine, leucine, and GABA; and new equilibrium position of the aspartate aminotransferase reaction. Overall, the findings also suggest that some carbon derived from alpha-ketoglutarate may bypass the block in the TCA cycle at KGDHC by means of the GABA shunt and/or conversion of valine to succinate. The results suggest the potential of succinyl phosphonate esters for modeling the biochemical and pathophysiological consequences of reduced KGDHC activity in brain diseases.

  13. Ser95, Asn97, and Thr78 are important for the catalytic function of porcine NADP-dependent isocitrate dehydrogenase

    OpenAIRE

    Kim, Tae-Kang; Colman, Roberta F.

    2005-01-01

    The mammalian mitochondrial NADP-dependent isocitrate dehydrogenase is a citric acid cycle enzyme and an important contributor to cellular defense against oxidative stress. The Mn2+-isocitrate complex of the porcine enzyme was recently crystallized; its structure indicates that Ser95, Asn97, and Thr78 are within hydrogen-bonding distance of the γ-carboxylate of enzyme-bound isocitrate. We used site-directed mutagenesis to replace each of these residues by Ala and Asp. The wild-type and mutant...

  14. Physiological covalent regulation of rat liver branched-chain alpha-ketoacid dehydrogenase

    International Nuclear Information System (INIS)

    Harris, R.A.; Powell, S.M.; Paxton, R.; Gillim, S.E.; Nagae, H.

    1985-01-01

    A radiochemical assay was developed for measuring branched-chain alpha-ketoacid dehydrogenase activity of Triton X-100 extracts of freeze-clamped rat liver. The proportion of active (dephosphorylated) enzyme was determined by measuring enzyme activities before and after activation of the complex with a broad-specificity phosphoprotein phosphatase. Hepatic branched-chain alpha-ketoacid dehydrogenase activity in normal male Wistar rats was 97% active but decreased to 33% active after 2 days on low-protein (8%) diet and to 13% active after 4 days on the same diet. Restricting protein intake of lean and obese female Zucker rats also caused inactivation of hepatic branched-chain alpha-ketoacid dehydrogenase complex. Essentially all of the enzyme was in the active state in rats maintained for 14 days on either 30 or 50% protein diets. This was also the case for rats maintained on a commercial chow diet (minimum 23% protein). However, maintaining rats on 20, 8, and 0% protein diets decreased the percentage of the active form of the enzyme to 58, 10, and 7% of the total, respectively. Fasting of chow-fed rats for 48 h had no effect on the activity state of hepatic branched-chain alpha-ketoacid dehydrogenase, i.e., 93% of the enzyme remained in the active state compared to 97% for chow-fed rats. However, hepatic enzyme of rats maintained on 8% protein diet was 10% active before starvation and 83% active after 2 days of starvation. Thus, dietary protein deficiency results in inactivation of hepatic branched-chain alpha-ketoacid dehydrogenase complex, presumably as a consequence of low hepatic levels of branched-chain alpha-ketoacids

  15. Decomposition of peracetic acid catalyzed by vanadium complexes

    International Nuclear Information System (INIS)

    Makarov, A.P.; Gekhman, A.E.; Moiseev, I.I.; Polotryuk, O.Y.

    1986-01-01

    This paper studies the decomposition of peracetic acid (AcOOH) in acetic acid (AcOH) catalyzed by vanadium complexes. It is shown that peractic acid in acetic acid solutions of ammonium anadate decomposes with the predominant formation of 0 2 and small amounts of CO 2 , the yield of which increases with increasing temperature and peracetic acid concentration. Both reactions proceed without the formation of free radicals in amounts detectable by ESR spectroscopy. The rate of oxygen release under conditions in which the formation of CO 2 is insignificant obeys a kinetic equation indicating the intermediate formation of a complex between V 5+ ions and peracetic acid and the slow conversion of this complex into the observed products

  16. Determination of dehydrogenase activities involved in D-glucose oxidation in Gluconobacter and Acetobacter strains

    Directory of Open Access Journals (Sweden)

    Florencia Sainz

    2016-08-01

    Full Text Available Acetic acid bacteria (AAB are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane bound dehydrogenases. In the present study, the enzyme activity of the membrane bound dehydrogenases (membrane-bound PQQ-glucose dehydrogenase (mGDH, D-gluconate dehydrogenase (GADH and membrane-bound glycerol dehydrogenase (GLDH involved in the oxidation of D-glucose and D-gluconic acid (GA was determined in six strains of three different species of AAB (three natural and three type strains. Moreover, the effect of these activities on the production of related metabolites (GA, 2-keto-D-gluconic acid (2KGA and 5-keto-D-gluconic acid (5KGA was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the A. malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h, which coincided with glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of G. oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition.Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter were

  17. Rhenium(V) complexes with sulfur-containing amino acids

    International Nuclear Information System (INIS)

    Gagieva, S.Ch.; Tautieva, M.A.; Tsaloev, A.T.; Galimov, Yu.B.; Gagieva, L.Ch.; Belyaeva, T.N.

    2007-01-01

    Rhenium(V) complexes with 2-amino-4-(methylthio)butanoic acid (methionine, Met) and 2-amino-3-sulfopropionic acid (cysteine, Cys) have been synthesized. Depending on the initial reagent ratio, the resulting complexes contain one or two ligand molecules. On heating the compounds with one amino acid molecule, two hydrogen halide molecules are removed at 128-132 deg C to form a molecular complex. The composition, structure, and thermal stability of the complexes have been studied by elemental analysis, conductometry, IR spectroscopy, NMR, and mass spectrometry [ru

  18. Retinol dehydrogenase-10 regulates pancreas organogenesis and endocrine cell differentiation via paracrine retinoic acid signalling

    DEFF Research Database (Denmark)

    Arregi, Igor; Climent, Maria; Iliev, Dobromir

    2016-01-01

    Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here we show that Retinol dehydrogenase-10 (Rdh......10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation. Rdh10 was expressed in the developing pancreas epithelium and surrounding mesenchyme. Rdh10 null mutant mouse embryos exhibited dorsal pancreas agenesis...... and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early...

  19. Basicity and ionization constants of some molybdenum(6) complex acids

    International Nuclear Information System (INIS)

    Fedorov, A.A.

    1975-01-01

    Coordination of the Mo(6) ions of the malic, trioxyglutaric, glucaric and mucic acids changes their acidity. Complex Mo(6) acids are stronger then corresponding oxyacids. It was demonstrated that complexes of Mo(6) with malic, trioxyglutaric, glutaric, mucic acids and mannitol were behaving as polybasic acids during titration. Sequential ionization constants of the complex acids were determined

  20. Immobilization of malate dehydrogenase on carbon nanotubes for development of malate biosensor.

    Science.gov (United States)

    Ruhal, A; Rana, J S; Kumar, S; Kumar, A

    2012-12-22

    An amperometric malic acid biosensor was developed by immobilizing malate dehydrogenase on multi-walled carbon nanotubes (MWCNT) coated on screen printed carbon electrode. The screen printed carbon electrode is made up of three electrodes viz., carbon as working, platinum as counter and silver as reference electrode. Detection of L-malic acid concentration provides important information about the ripening and shelf life of the fruits. The NADP specific malate dehydrogenase was immobilized on carboxylated multiwalled carbon nanotubes using cross linker EDC [1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide] on screen printed carbon electrode. An amperometric current was measured by differential pulse voltammetry (DPV) which increases with increasing concentrations of malic acid at fixed concentration of NADP. Enzyme electrode was characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The detection limit of malic acid by the sensor was 60 - 120 μM and sensitivity of the sensor was 60 μM with a response time of 60s. The usual detection methods of malic acid are nonspecific, time consuming and less sensitive. However, an amperometric malic acid nanosensor is quick, specific and more sensitive for detection of malic acid in test samples.

  1. Production of natural fragrance aromatic acids by coexpression of trans-anethole oxygenase and p-anisaldehyde dehydrogenase genes of Pseudomonas putida JYR-1 in Escherichia coli.

    Science.gov (United States)

    Han, Dongfei; Kurusarttra, Somwang; Ryu, Ji-Young; Kanaly, Robert A; Hur, Hor-Gil

    2012-12-05

    A gene encoding p-anisaldehyde dehydrogenase (PAADH), which catalyzes the oxidation of p-anisaldehyde to p-anisic acid, was identified to be clustered with the trans-anethole oxygenase (tao) gene in Pseudomonas putida JYR-1. Heterologously expressed PAADH in Escherichia coli catalyzed the oxidation of vanillin, veratraldehyde, and piperonal to the corresponding aromatic acids vanillic acid, veratric acid, and piperonylic acid, respectively. Coexpression of trans-anethole oxygenase (TAO) and PAADH in E. coli also resulted in the successful transformation of trans-anethole, isoeugenol, O-methyl isoeugenol, and isosafrole to p-anisic acid, vanillic acid, veratric acid, and piperonylic acid, respectively, which are compounds found in plants as secondary metabolites. Because of the relaxed substrate specificity and high transformation rates by coexpressed TAO and PAADH in E. coli , the engineered strain has potential to be applied in the fragrance industry.

  2. Effects of sh-reagents on rat hepatic aldehyde dehydrogenase activity

    Energy Technology Data Exchange (ETDEWEB)

    Konoplitskaya, K.L.; Kuz' mina, G.I.; Grigor' yeva, M.V.; Poznyakova, T.N.

    The liver serves as the primary organ for the oxidation of ingested ethanol via a pathway involving alcohol- and aldehyde dehydrogenase. In view of the problem of alcoholism, three enzymes are of particular interest in understanding the biochemical mechanism that may be involved in alcohol addiction and in the formulation of therapeutic approaches. While alcohol dehydrogenase has been studied in considerable detail, current attention is centered on aldehyde dehydrogenase. A comparative analysis of the effects of a series of SH-active reagents - tetraethylthiuram disulfide (TETD), 5,5-dithiobisnitrobenzoic acid (DTNB), p-chloromercurybenzoate (PCMB), and N-ethylmaleimide (NEM) - were tested for their effects on the activity of aldehyde dehydrogenase of the hepatic mitochondrial (isozymes I and II) and microsomal (isozyme II) fractions of outbred albino rats. DTNB was found to be inhibited by 100 and 50% mitochondrial isozymes I and II, respectively, and by 20%, the microsomal enzyme under the conditions employed. DTNB and NEM inhibited by 30 and 50% isozymes I and II of the mitochondria, but had no effect on the microsomal isozyme. 24 references, 3 figures.

  3. Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans.

    Science.gov (United States)

    Sun, Lifan; Zhang, Caili; Lyu, Pengcheng; Wang, Yanping; Wang, Limin; Yu, Bo

    2016-11-25

    Thermotolerant Bacillus coagulans is considered to be a more promising producer for bio-chemicals, due to its capacity to withstand harsh conditions. Two L-lactate dehydrogenase (LDH) encoding genes (ldhL1 and ldhL2) and one D-LDH encoding gene (ldhD) were annotated from the B. coagulans DSM1 genome. Transcriptional analysis revealed that the expression of ldhL2 was undetectable while the ldhL1 transcription level was much higher than that of ldhD at all growth phases. Deletion of the ldhL2 gene revealed no difference in fermentation profile compared to the wild-type strain, while ldhL1 single deletion or ldhL1ldhL2 double deletion completely blocked L-lactic acid production. Complementation of ldhL1 in the above knockout strains restored fermentation profiles to those observed in the wild-type strain. This study demonstrates ldhL1 is crucial for L-lactic acid production and NADH balance in B. coagulans DSM1 and lays the fundamental for engineering the thermotolerant B. coagulans strain as a platform chemicals producer.

  4. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon.

    Science.gov (United States)

    Lee, Ja-Young; Arai, Hisashi; Nakamura, Yusuke; Fukiya, Satoru; Wada, Masaru; Yokota, Atsushi

    2013-11-01

    Bile acid composition in the colon is determined by bile acid flow in the intestines, the population of bile acid-converting bacteria, and the properties of the responsible bacterial enzymes. Ursodeoxycholic acid (UDCA) is regarded as a chemopreventive beneficial bile acid due to its low hydrophobicity. However, it is a minor constituent of human bile acids. Here, we characterized an UDCA-producing bacterium, N53, isolated from human feces. 16S rDNA sequence analysis identified this isolate as Ruminococcus gnavus, a novel UDCA-producer. The forward reaction that produces UDCA from 7-oxo-lithocholic acid was observed to have a growth-dependent conversion rate of 90-100% after culture in GAM broth containing 1 mM 7-oxo-lithocholic acid, while the reverse reaction was undetectable. The gene encoding 7β-hydroxysteroid dehydrogenase (7β-HSDH), which facilitates the UDCA-producing reaction, was cloned and overexpressed in Escherichia coli. Characterization of the purified 7β-HSDH revealed that the kcat/Km value was about 55-fold higher for the forward reaction than for the reverse reaction, indicating that the enzyme favors the UDCA-producing reaction. As R. gnavus is a common, core bacterium of the human gut microbiota, these results suggest that this bacterium plays a pivotal role in UDCA formation in the colon.

  5. Photodissociation spectroscopy of the Mg+-acetic acid complex

    Science.gov (United States)

    Abate, Yohannes; Kleiber, P. D.

    2006-11-01

    We have studied the structure and photodissociation of Mg+-acetic acid clusters. Ab initio calculations suggest four relatively strongly bound ground state isomers for the [MgC2H4O2]+ complex. These isomers include the cis and trans forms of the Mg+-acetic acid association complex with Mg+ bonded to the carbonyl O atom of acetic acid, the Mg+-acetic acid association complex with Mg+ bonded to the hydroxyl O atom of acetic acid, or to a Mg+-ethenediol association complex. Photodissociation through the Mg+-based 3p←3s absorption bands in the near UV leads to direct (nonreactive) and reactive dissociation products: Mg+, MgOH+, Mg(H2O )+, CH3CO+, and MgCH3+. At low energies the dominant reactive quenching pathway is through dehydration to Mg(H2O)+, but additional reaction channels involving C-H and C-C bond activation are also open at higher energies.

  6. Cloning and mRNA Expression of NADH Dehydrogenase during Ochlerotatus taeniorhynchus Development and Pesticide Response

    Science.gov (United States)

    NADH dehydrogenase, the largest of the respiratory complexes, is the first enzyme of the mitochondrial electron transport chain. We have cloned and sequenced cDNA of NADH dehydrogenase gene from Ochlerotatus (Ochlerotatus) taeniorhynchus (Wiedemann) adult (GeneBank Accession number: FJ458415). The ...

  7. Amylose-dicarboxylic acid inclusion complexes: Characterization and comparison to monocarboxylic acid complexes

    Science.gov (United States)

    One of the main components in starch, amylose is an essentially linear polymer composed of glucose connected through alpha-1,4-bonds. Amylose is well known to form helical inclusion complexes with various types of ligands such as iodine, medium and long chain fatty acids, alcohols, lactones, and fl...

  8. Complexing of zirconium and hafnium with ortho-aminobenzoic acid and paraaminobenzoic acid

    International Nuclear Information System (INIS)

    Alekseeva, I.I.; Nemzer, I.I.; Yuranova, L.I.; Borisova, V.V.; Prozorovskaya, Z.N.

    1977-01-01

    Formation of complexes between zirconium and hafnium and ortho- and para-aminobenzoic acids has been studied by the kinetic method. It has been found that at pH=1.3-2.0 and concentrations of metals 10 -5 -10 -6 mole complex compounds are formed with composition Me:L=1:2 and 1:1 (Me=Zr, Hf; L=ortho- or para-aminobenzoic acids). Stepwise constants and overall effective constants of complex formation have been calculated

  9. High-fat diet enhanced retinal dehydrogenase activity, but suppressed retinol dehydrogenase activity in liver of rats

    Directory of Open Access Journals (Sweden)

    Mian Zhang

    2015-04-01

    Full Text Available Evidence has shown that hyperlipidemia is associated with retinoid dyshomeostasis. In liver, retinol is mainly oxidized to retinal by retinol dehydrogenases (RDHs and alcohol dehydrogenases (ADHs, further converted to retinoic acid by retinal dehydrogenases (RALDHs. The aim of this study was to investigate whether high-fat diet (HFD induced hyperlipidemia affected activity and expression of hepatic ADHs/RDHs and RALDHs in rats. Results showed that retinol levels in liver, kidney and adipose tissue of HFD rats were significantly increased, while plasma retinol and hepatic retinal levels were markedly decreased. HFD rats exhibited significantly downregulated hepatic ADHs/RDHs activity and Adh1, Rdh10 and Dhrs9 expression. Oppositely, hepatic RALDHs activity and Raldh1 expression were upregulated in HFD rats. In HepG2 cells, treatment of HFD rat serum inhibited ADHs/RDHs activity and induced RALDHs activity. Among the tested abnormally altered components in HFD rat serum, cholesterol reduced ADHs/RDHs activity and RDH10 expression, while induced RALDHs activity and RALDH1 expression in HepG2 cells. Contrary to the effect of cholesterol, cholesterol-lowering agent pravastatin upregulated ADHs/RDHs activity and RDH10 expression, while suppressed RALDHs activity and RALDH1 expression. In conclusion, hyperlipidemia oppositely altered activity and expression of hepatic ADHs/RDHs and RALDHs, which is partially due to the elevated cholesterol levels.

  10. Positive selection on D-lactate dehydrogenases of Lactobacillus delbrueckii subspecies bulgaricus.

    Science.gov (United States)

    Zhang, Jifeng; Gong, Guangyu; Wang, Xiao; Zhang, Hao; Tian, Weidong

    2015-08-01

    Lactobacillus delbrueckii has been widely used for yogurt fermentation. It has genes encoding both D- and L-type lactate dehydrogenases (LDHs) that catalyse the production of L(+) or D(-) stereoisomer of lactic acid. D-lactic acid is the primary lactate product by L. delbrueckii, yet it cannot be metabolised by human intestine. Since it has been domesticated for long time, an interesting question arises regarding to whether the selection pressure has affected the evolution of both L-LDH and D-LDH genes in the genome. To answer this question, in this study the authors first investigated the evolution of these two genes by constructing phylogenetic trees. They found that D-LDH-based phylogenetic tree could better represent the phylogenetic relationship in the acidophilus complex than L-LDH-based tree. They next investigated the evolutions of LDH genes of L. delbrueckii at amino acid level, and found that D-LDH gene in L. delbrueckii is positively selected, possibly a consequence of long-term domestication. They further identified four amino acids that are under positive selection. One of them, V261, is located at the centre of three catalytic active sites, indicating likely functional effects on the enzyme activity. The selection from the domestication process thus provides direction for future engineering of D-LDH.

  11. Crystallization and preliminary X-ray analysis of d-2-hydroxyacid dehydrogenase from Haloferax mediterranei

    International Nuclear Information System (INIS)

    Domenech, J.; Baker, P. J.; Sedelnikova, S. E.; Rodgers, H. F.; Rice, D. W.; Ferrer, J.

    2009-01-01

    The d-2-hydroxyacid dehydrogenase from Haloferax mediterranei has been crystallized in two different forms. Diffraction data have been collected to 1.9 Å resolution for the non-productive ternary complex of the enzyme and to 2.7 Å for the selenomethionyl derivative. d-2-Hydroxyacid dehydrogenase (D2-HDH) from Haloferax mediterranei has been overexpressed in Escherichia coli, solubilized in 8 M urea and refolded by rapid dilution. The protein was purified and crystallized by the hanging-drop vapour-diffusion method using ammonium sulfate or PEG 3350 as precipitant. Two crystal forms representing the free enzyme and the nonproductive ternary complex with α-ketohexanoic acid and NAD + grew under these conditions. Crystals of form I diffracted to beyond 3.0 Å resolution and belonged to the monoclinic space group P2 1 , with unit-cell parameters a = 66.0, b = 119.6, c = 86.2 Å, β = 96.3°. Crystals of form II diffracted to beyond 2.0 Å resolution and belonged to the triclinic space group P1, with unit-cell parameters a = 66.5, b = 75.2, c = 77.6 Å, α = 109.1, β = 107.5, γ = 95.9°. The calculated values for V M and analysis of the self-rotation and self-Patterson functions suggest that the asymmetric unit in both crystal forms contains two dimers related by pseudo-translational symmetry

  12. Characterization and complexation of humic acids. Part 1

    International Nuclear Information System (INIS)

    Kim, J.L.; Buckau, G.; Klenze, R.; Rhee, D.S.; Wimmer, H.

    1991-01-01

    This paper summarizes the research contributions to the CEC Mirage II project, particularly the research area on complexation and colloids (COCO). The first part of the paper comprises the characterization of humic and fulvic acids from different origins: a commercial product from the Aldrich Co. used as a reference humic acid and site-specific humic acids from Gorleben (Germany), Boom Clay (Belgium) and Fanay Augeres (France) aquifer systems. The second part includes the complexation of trivalent actinides: Am(III) and Cm(III) with various humic acids. A number of different methods have been applied for the complexation study: spectrophotometry, ultrafiltration, laser-induced photo-acoustic spectroscopy (LPAS) and time-resolved laser fluorescence spectroscopy (TRLFS). The evaluation process of complexation constant is discussed extensively and the well consolidated results are presented, which can be directly used for the geochemical modelling of the radionuclide migration

  13. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels

    International Nuclear Information System (INIS)

    Akduman, Begüm; Uygun, Murat; Uygun, Deniz Aktaş; Akgöl, Sinan; Denizli, Adil

    2013-01-01

    In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. - Highlights: • Poly(HEMA–GMA) cryogels were synthesized by radical cryocopolymerization technique. • Prepared cryogels were functionalized with IDA, then Zn(II) ions were chelated to the cryogel. • Zn(II) chelated poly

  14. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels

    Energy Technology Data Exchange (ETDEWEB)

    Akduman, Begüm [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Uygun, Murat [Koçarlı Vocational and Training School, Adnan Menderes University, Aydın (Turkey); Uygun, Deniz Aktaş, E-mail: daktas@adu.edu.tr [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Akgöl, Sinan [Biochemistry Department, Ege University, İzmir (Turkey); Denizli, Adil [Chemistry Department, Hacettepe University, Ankara (Turkey)

    2013-12-01

    In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. - Highlights: • Poly(HEMA–GMA) cryogels were synthesized by radical cryocopolymerization technique. • Prepared cryogels were functionalized with IDA, then Zn(II) ions were chelated to the cryogel. • Zn(II) chelated poly

  15. Structural and Functional Studies of WlbA: A Dehydrogenase Involved in the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Thoden, James B.; Holden, Hazel M. (UW)

    2010-09-08

    2,3-Diacetamido-2,3-dideoxy-D-mannuronic acid (ManNAc3NAcA) is an unusual dideoxy sugar first identified nearly 30 years ago in the lipopolysaccharide of Pseudomonas aeruginosa O:3a,d. It has since been observed in other organisms, including Bordetella pertussis, the causative agent of whooping cough. Five enzymes are required for the biosynthesis of UDP-ManNAc3NAcA starting from UDP-N-acetyl-D-glucosamine. Here we describe a structural study of WlbA, the NAD-dependent dehydrogenase that catalyzes the second step in the pathway, namely, the oxidation of the C-3{prime} hydroxyl group on the UDP-linked sugar to a keto moiety and the reduction of NAD{sup +} to NADH. This enzyme has been shown to use {alpha}-ketoglutarate as an oxidant to regenerate the oxidized dinucleotide. For this investigation, three different crystal structures were determined: the enzyme with bound NAD(H), the enzyme in a complex with NAD(H) and {alpha}-ketoglutarate, and the enzyme in a complex with NAD(H) and its substrate (UDP-N-acetyl-D-glucosaminuronic acid). The tetrameric enzyme assumes an unusual quaternary structure with the dinucleotides positioned quite closely to one another. Both {alpha}-ketoglutarate and the UDP-linked sugar bind in the WlbA active site with their carbon atoms (C-2 and C-3{prime}, respectively) abutting the re face of the cofactor. They are positioned {approx}3 {angstrom} from the nicotinamide C-4. The UDP-linked sugar substrate adopts a highly unusual curved conformation when bound in the WlbA active site cleft. Lys 101 and His 185 most likely play key roles in catalysis.

  16. A novel mutation in the succinate dehydrogenase subunit D gene in siblings with the hereditary paraganglioma–pheochromocytoma syndrome

    Directory of Open Access Journals (Sweden)

    Chaithra Prasad

    2014-10-01

    Full Text Available Germline mutations in the succinate dehydrogenase complex subunit D gene are now known to be associated with hereditary paraganglioma–pheochromocytoma syndromes. Since the initial succinate dehydrogenase complex subunit D gene mutation was identified about a decade ago, more than 131 unique variants have been reported. We report the case of two siblings presenting with multiple paragangliomas and pheochromocytomas; they were both found to carry a mutation in the succinate dehydrogenase complex subunit D gene involving a substitution of thymine to guanine at nucleotide 236 in exon 3. This particular mutation of the succinate dehydrogenase complex subunit D gene has only been reported in one previous patient in Japan; this is, therefore, the first report of this pathogenic mutation in siblings and the first report of this mutation in North America. With continued screening of more individuals, we will be able to create a robust mutation database that can help us understand disease patterns associated with particular variants and may be a starting point in the development of new therapies for familial paraganglioma syndromes.

  17. Construction of mutant glucose oxidases with increased dye-mediated dehydrogenase activity.

    Science.gov (United States)

    Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2012-11-02

    Mutagenesis studies on glucose oxidases (GOxs) were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe) and Aspergillus niger GOx (PDB ID; 1cf3). We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC) oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.

  18. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    Science.gov (United States)

    Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2012-01-01

    Mutagenesis studies on glucose oxidases (GOxs) were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe) and Aspergillus niger GOx (PDB ID; 1cf3). We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC) oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor. PMID:23203056

  19. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation

    DEFF Research Database (Denmark)

    Kanavin, Oivind J; Woldseth, Berit; Jellum, Egil

    2007-01-01

    BACKGROUND: 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine. METHODS: We report a four-year-old mentally retarded Somali boy with autism and a history...... cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD....

  20. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production.

    Science.gov (United States)

    Tian, Guangming; Wang, Qin; Wei, Xuetuan; Ma, Xin; Chen, Shouwen

    2017-04-01

    Poly-γ-glutamic acid (γ-PGA), a natural biopolymer, is widely used in cosmetics, medicine, food, water treatment, and agriculture owing to its features of moisture sequestration, cation chelation, non-toxicity and biodegradability. Intracellular glutamic acid, the substrate of γ-PGA, is a limiting factor for high yield in γ-PGA production. Bacillus subtilis and Bacillus licheniformis are both important γ-PGA producing strains, and B. subtilis synthesizes glutamic acid in vivo using the unique GOGAT/GS pathway. However, little is known about the glutamate synthesis pathway in B. licheniformis. The aim of this work was to characterize the glutamate dehydrogenase (RocG) in glutamic acid synthesis from B. licheniformis with both in vivo and in vitro experiments. By re-directing the carbon flux distribution, the rocG gene deletion mutant WX-02ΔrocG produced intracellular glutamic acid with a concentration of 90ng/log(CFU), which was only 23.7% that of the wild-type WX-02 (380ng/log(CFU)). Furthermore, the γ-PGA yield of mutant WX-02ΔrocG was 5.37g/L, a decrease of 45.3% compared to the wild type (9.82g/L). In vitro enzymatic assays of RocG showed that RocG has higher affinity for 2-oxoglutarate than glutamate, and the glutamate synthesis rate was far above degradation. This is probably the first study to reveal the glutamic acid synthesis pathway and the specific functions of RocG in B. licheniformis. The results indicate that γ-PGA production can be enhanced through improving intracellular glutamic acid synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Structural studies of MFE-1: the 1.9 A crystal structure of the dehydrogenase part of rat peroxisomal MFE-1.

    Science.gov (United States)

    Taskinen, Jukka P; Kiema, Tiila R; Hiltunen, J Kalervo; Wierenga, Rik K

    2006-01-27

    The 1.9 A structure of the C-terminal dehydrogenase part of the rat peroxisomal monomeric multifunctional enzyme type 1 (MFE-1) has been determined. In this construct (residues 260-722 and referred to as MFE1-DH) the N-terminal hydratase part of MFE-1 has been deleted. The structure of MFE1-DH shows that it consists of an N-terminal helix, followed by a Rossmann-fold domain (domain C), followed by two tightly associated helical domains (domains D and E), which have similar topology. The structure of MFE1-DH is compared with the two known homologous structures: human mitochondrial 3-hydroxyacyl-CoA dehydrogenase (HAD; sequence identity is 33%) (which is dimeric and monofunctional) and with the dimeric multifunctional alpha-chain (alphaFOM; sequence identity is 28%) of the bacterial fatty acid beta-oxidation alpha2beta2-multienzyme complex. Like MFE-1, alphaFOM has an N-terminal hydratase part and a C-terminal dehydrogenase part, and the structure comparisons show that the N-terminal helix of MFE1-DH corresponds to the alphaFOM linker helix, located between its hydratase and dehydrogenase part. It is also shown that this helix corresponds to the C-terminal helix-10 of the hydratase/isomerase superfamily, suggesting that functionally it belongs to the N-terminal hydratase part of MFE-1.

  2. Mutations of the Corynebacterium glutamicum NCgl1221 Gene, Encoding a Mechanosensitive Channel Homolog, Induce l-Glutamic Acid Production▿

    OpenAIRE

    Nakamura, Jun; Hirano, Seiko; Ito, Hisao; Wachi, Masaaki

    2007-01-01

    Corynebacterium glutamicum is a biotin auxotroph that secretes l-glutamic acid in response to biotin limitation; this process is employed in industrial l-glutamic acid production. Fatty acid ester surfactants and penicillin also induce l-glutamic acid secretion, even in the presence of biotin. However, the mechanism of l-glutamic acid secretion remains unclear. It was recently reported that disruption of odhA, encoding a subunit of the 2-oxoglutarate dehydrogenase complex, resulted in l-gluta...

  3. Succinate dehydrogenase assembly factor 2 is needed for assembly and activity of mitochondrial complex II and for normal root elongation in Arabidopsis.

    Science.gov (United States)

    Huang, Shaobai; Taylor, Nicolas L; Ströher, Elke; Fenske, Ricarda; Millar, A Harvey

    2013-02-01

    Mitochondria complex II (succinate dehydrogenase, SDH) plays a central role in respiratory metabolism as a component of both the electron transport chain and the tricarboxylic acid cycle. We report the identification of an SDH assembly factor by analysis of T-DNA insertions in At5g51040, a protein with unknown function that was identified by mass spectrometry analysis as a low abundance mitochondrial protein. This gene is co-expressed with a number of genes encoding mitochondrial proteins, including SDH1-1, and has low partial sequence similarity to human SDHAF2, a protein required for flavin-adenine dinucleotide (FAD) insertion into SDH. In contrast to observations of other SDH deficient lines in Arabidopsis, the sdhaf2 line did not affect photosynthetic rate or stomatal conductance, but instead showed inhibition of primary root elongation with early lateral root emergence, presumably due to the low SDH activity caused by the reduced abundance of SDHAF2. Both roots and leaves showed succinate accumulation but different responses in the abundance of other organic acids and amino acids assayed. Isolated mitochondria showed lowered SDH1 protein abundance, lowered maximal SDH activity and less protein-bound flavin-adenine dinucleotide (FAD) at the molecular mass of SDH1 in the gel separation. The short root phenotype and SDH function of sdhaf2 was fully complemented by transformation with SDHAF2. Application of the SDH inhibitor, malonate, phenocopied the sdhaf2 root architecture in WT. Whole root respiratory assays showed no difference between WT and sdhaf2, but micro-respirometry of the tips of roots clearly showed low oxygen consumption in sdhaf2 which could explain a metabolic deficit responsible for root tip growth. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  4. Oxidative modification of lipoic acid by HNE in Alzheimer disease brain

    Directory of Open Access Journals (Sweden)

    Sarita S. Hardas

    2013-01-01

    Full Text Available Alzheimer disease (AD is an age-related neurodegenerative disease characterized by the presence of three pathological hallmarks: synapse loss, extracellular senile plaques (SP and intracellular neurofibrillary tangles (NFTs. The major component of SP is amyloid β-peptide (Aβ, which has been shown to induce oxidative stress. The AD brain shows increased levels of lipid peroxidation products, including 4-hydroxy-2-nonenal (HNE. HNE can react covalently with Cys, His, or Lys residues on proteins, altering structure and function of the latter. In the present study we measured the levels of the HNE-modified lipoic acid in brain of subjects with AD and age-matched controls. Lipoic acid is a key co-factor for a number of proteins including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, key complexes for cellular energetics. We observed a significant decrease in the levels of HNE-lipoic acid in the AD brain compared to that of age-matched controls. To investigate this phenomenon further, the levels and activity of lipoamide dehydrogenase (LADH were measured in AD and control brains. Additionally, LADH activities were measured after in-vitro HNE-treatment to mice brains. Both LADH levels and activities were found to be significantly reduced in AD brain compared to age-matched control. HNE-treatment also reduced the LADH activity in mice brain. These data are consistent with a two-hit hypothesis of AD: oxidative stress leads to lipid peroxidation that, in turn, causes oxidative dysfunction of key energy-related complexes in mitochondria, triggering neurodegeneration. This study is consonant with the notion that lipoic acid supplementation could be a potential treatment for the observed loss of cellular energetics in AD and potentiate the antioxidant defense system to prevent or delay the oxidative stress in and progression of this devastating dementing disorder.

  5. Characterization of immunoglobulin A kappa autoantibodies to human lactate dehydrogenase isoenzyme-3

    NARCIS (Netherlands)

    Weijers, R. N.; Oude Elferink, R. P.; Mulder, J.; Kruijswijk, H.

    1987-01-01

    We have purified with a cumulative recovery of 48% from the serum of a patient the immunoglobulin A kappa subunit of the lactate dehydrogenase-immunoglobulin A kappa (LD-IgA kappa) complex. It appears that the pI range of the complex is 5.4-5.8. The Ig part of the complex showed a monoclonal

  6. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Chihiro Moriya

    2016-01-01

    Full Text Available We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD or a 60% high-fat diet (HFD with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects.

  7. Cloning of D-lactate dehydrogenase genes of Lactobacillus delbrueckii subsp. bulgaricus and their roles in D-lactic acid production.

    Science.gov (United States)

    Huang, Yanna; You, Chunping; Liu, Zhenmin

    2017-07-01

    Lactobacillus delbrueckii subsp. bulgaricus is a heterogenous lactic acid bacterium that converts pyruvate mainly to D-lactic acid using D-lactate dehydrogenases (D-LDHs), whose functional properties remain poorly characterized. Here, the D-LDHs genes (ldb0101, ldb0813, ldb1010, ldb1147 and ldb2021) were cloned and overexpressed in Escherichia coli JM109 from an inducible pUC18 vector, respectively, and the resulting strains were compared in terms of D-lactic acid production. The strain expressing ldb0101 and ldb1010 gene individually produced more D-lactate than other three strains. Further study revealed that Ldb0101 activity was down-regulated by the oxygen and, therefore, achieved a highest titer of D-lactate (1.94 g/L) under anaerobic condition, and introduction of ldb1010 gene enhanced D-lactate formation (0.94 and 0.85 g/L, respectively) both in aerobic and anaerobic conditions due to a relatively stable q d-lactate . Our results suggested that the enzyme Ldb0101 and Ldb1010 played a role of more importance in D-lactate formation. To the best of our knowledge, we demonstrate for the first time the roles of different D-LDH homologs from L. bulgaricus in D-lactic acid production.

  8. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri.

    Science.gov (United States)

    Li, Fuli; Hinderberger, Julia; Seedorf, Henning; Zhang, Jin; Buckel, Wolfgang; Thauer, Rudolf K

    2008-02-01

    Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0' = -410 mV) with NADH (E0' = -320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0' = -10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper.

  9. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon[S

    Science.gov (United States)

    Lee, Ja-Young; Arai, Hisashi; Nakamura, Yusuke; Fukiya, Satoru; Wada, Masaru; Yokota, Atsushi

    2013-01-01

    Bile acid composition in the colon is determined by bile acid flow in the intestines, the population of bile acid-converting bacteria, and the properties of the responsible bacterial enzymes. Ursodeoxycholic acid (UDCA) is regarded as a chemopreventive beneficial bile acid due to its low hydrophobicity. However, it is a minor constituent of human bile acids. Here, we characterized an UDCA-producing bacterium, N53, isolated from human feces. 16S rDNA sequence analysis identified this isolate as Ruminococcus gnavus, a novel UDCA-producer. The forward reaction that produces UDCA from 7-oxo-lithocholic acid was observed to have a growth-dependent conversion rate of 90–100% after culture in GAM broth containing 1 mM 7-oxo-lithocholic acid, while the reverse reaction was undetectable. The gene encoding 7β-hydroxysteroid dehydrogenase (7β-HSDH), which facilitates the UDCA-producing reaction, was cloned and overexpressed in Escherichia coli. Characterization of the purified 7β-HSDH revealed that the kcat/Km value was about 55-fold higher for the forward reaction than for the reverse reaction, indicating that the enzyme favors the UDCA-producing reaction. As R. gnavus is a common, core bacterium of the human gut microbiota, these results suggest that this bacterium plays a pivotal role in UDCA formation in the colon. PMID:23729502

  10. Cloning and characterization of the gene encoding IMP dehydrogenase from Arabidopsis thaliana.

    Science.gov (United States)

    Collart, F R; Osipiuk, J; Trent, J; Olsen, G J; Huberman, E

    1996-10-03

    We have cloned and characterized the gene encoding inosine monophosphate dehydrogenase (IMPDH) from Arabidopsis thaliana (At). The transcription unit of the At gene spans approximately 1900 bp and specifies a protein of 503 amino acids with a calculated relative molecular mass (M(r)) of 54,190. The gene is comprised of a minimum of four introns and five exons with all donor and acceptor splice sequences conforming to previously proposed consensus sequences. The deduced IMPDH amino-acid sequence from At shows a remarkable similarity to other eukaryotic IMPDH sequences, with a 48% identity to human Type II enzyme. Allowing for conservative substitutions, the enzyme is 69% similar to human Type II IMPDH. The putative active-site sequence of At IMPDH conforms to the IMP dehydrogenase/guanosine monophosphate reductase motif and contains an essential active-site cysteine residue.

  11. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Koji Sode

    2012-11-01

    Full Text Available Mutagenesis studies on glucose oxidases (GOxs were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe and Aspergillus niger GOx (PDB ID; 1cf3. We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.

  12. Engineering 7β-Hydroxysteroid Dehydrogenase for Enhanced Ursodeoxycholic Acid Production by Multiobjective Directed Evolution.

    Science.gov (United States)

    Zheng, Ming-Min; Chen, Ke-Cai; Wang, Ru-Feng; Li, Hao; Li, Chun-Xiu; Xu, Jian-He

    2017-02-15

    Ursodeoxycholic acid (UDCA) is the main active ingredient of natural bear bile powder with multiple pharmacological functions. 7β-Hydroxysteroid dehydrogenase (HSDH) is a key biocatalyst for the synthesis of UDCA. However, all the 7β-HSDHs reported commonly suffer from poor activity and thermostability, resulting in limited productivity of UDCA. In this study, a multiobjective directed evolution (MODE) strategy was proposed and applied to improve the activity, thermostability, and pH optimum of a 7β-HSDH. The best variant (V 3-1 ) showed a specific activity 5.5-fold higher than and a half-life 3-fold longer than those of the wild type. In addition, the pH optimum of the variant was shifted to a weakly alkaline value. In the cascade reaction, the productivity of UDCA with V 3-1 increased to 942 g L -1 day -1 , in contrast to 141 g L -1 day -1 with the wild type. Therefore, this study provides a useful strategy for improving the catalytic efficiency of a key enzyme that significantly facilitated the bioproduction of UDCA.

  13. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids.

    Science.gov (United States)

    Tucci, Sara; Behringer, Sidney; Spiekerkoetter, Ute

    2015-11-01

    An even medium-chain triglyceride (MCT)-based diet is the mainstay of treatment in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD). Previous studies with magnetic resonance spectroscopy have shown an impact of MCT on the average fatty acid chain length in abdominal fat. We therefore assume that medium-chain fatty acids (MCFAs) are elongated and accumulate in tissue as long-chain fatty acids. In this study, we explored the hepatic effects of long-term supplementation with MCT or triheptanoin, an odd-chain C7-based triglyceride, in wild-type and VLCAD-deficient (VLCAD(-/-) ) mice after 1 year of supplementation as compared with a control diet. The de novo biosynthesis and elongation of fatty acids, and peroxisomal β-oxidation, were quantified by RT-PCR. This was followed by a comprehensive analysis of hepatic and cardiac fatty acid profiles by GC-MS. Long-term application of even and odd MCFAs strongly induced de novo biosynthesis and elongation of fatty acids in both wild-type and VLCAD(-/-) mice, leading to an alteration of the hepatic fatty acid profiles. We detected de novo-synthesized and elongated fatty acids, such as heptadecenoic acid (C17:1n9), eicosanoic acid (C20:1n9), erucic acid (C22:1n9), and mead acid (C20:3n9), that were otherwise completely absent in mice under control conditions. In parallel, the content of monounsaturated fatty acids was massively increased. Furthermore, we observed strong upregulation of peroxisomal β-oxidation in VLCAD(-/-) mice, especially when they were fed an MCT diet. Our data raise the question of whether long-term MCFA supplementation represents the most efficient treatment in the long term. Studies on the hepatic toxicity of triheptanoin are still ongoing. © 2015 FEBS.

  14. Formation of W(3)A(1) electron-transferring flavoprotein (ETF) hydroquinone in the trimethylamine dehydrogenase x ETF protein complex.

    Science.gov (United States)

    Jang, M H; Scrutton, N S; Hille, R

    2000-04-28

    The electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus (sp. W(3)A(1)) exhibits unusual oxidation-reduction properties and can only be reduced to the level of the semiquinone under most circumstances (including turnover with its physiological reductant, trimethylamine dehydrogenase (TMADH), or reaction with strong reducing reagents such as sodium dithionite). In the present study, we demonstrate that ETF can be reduced fully to its hydroquinone form both enzymatically and chemically when it is in complex with TMADH. Quantitative titration of the TMADH x ETF protein complex with sodium dithionite shows that a total of five electrons are taken up by the system, indicating that full reduction of ETF occurs within the complex. The results indicate that the oxidation-reduction properties of ETF are perturbed upon binding to TMADH, a conclusion further supported by the observation of a spectral change upon formation of the TMADH x ETF complex that is due to a change in the environment of the FAD of ETF. The results are discussed in the context of ETF undergoing a conformational change during formation of the TMADH x ETF electron transfer complex, which modulates the spectral and oxidation-reduction properties of ETF such that full reduction of the protein can take place.

  15. The acidic complexation of tetracycline with sucralfate for its mucoadhesive preparation.

    Science.gov (United States)

    Higo, Shoichi; Takeuchi, Hirofumi; Yamamoto, Hiromitsu; Hino, Tomoaki; Kawashima, Yoshiaki

    2004-08-01

    The complex of antibiotics with sucralfate (SF) was prepared with acid. The mechanism of the complexation and some factors concerning the preparation, which influence the mucoadhering property, were studied. The complexation was confirmed by the change in color and instrumental analysis. The acidic complex appeared to be produced by reagglomeration of SF preliminary particles. It was suggested that the amide or amine groups of tetracycline (TC) and aluminum moieties of SF serve as the binding sites. The potential of multiple binding sites and a priority in them were suggested by the Scatchard plot analysis. The additional amounts of acid and the increase in the surface area increased the number of sites. The amount of the additional acid appeared to be the most important factor during the preparation of the acidic complex. The appropriate amount of acid added appeared to produce a complex rich in TC. However, an excess amount might cause the excess dissociation of aluminum moieties, which destroys the mucoadhesive paste-forming property.

  16. NADP-Dependent Aldehyde Dehydrogenase from Archaeon Pyrobaculum sp.1860: Structural and Functional Features

    Directory of Open Access Journals (Sweden)

    Ekaterina Yu. Bezsudnova

    2016-01-01

    Full Text Available We present the functional and structural characterization of the first archaeal thermostable NADP-dependent aldehyde dehydrogenase AlDHPyr1147. In vitro, AlDHPyr1147 catalyzes the irreversible oxidation of short aliphatic aldehydes at 60–85°С, and the affinity of AlDHPyr1147 to the NADP+ at 60°С is comparable to that for mesophilic analogues at 25°С. We determined the structures of the apo form of AlDHPyr1147 (3.04 Å resolution, three binary complexes with the coenzyme (1.90, 2.06, and 2.19 Å, and the ternary complex with the coenzyme and isobutyraldehyde as a substrate (2.66 Å. The nicotinamide moiety of the coenzyme is disordered in two binary complexes, while it is ordered in the ternary complex, as well as in the binary complex obtained after additional soaking with the substrate. AlDHPyr1147 structures demonstrate the strengthening of the dimeric contact (as compared with the analogues and the concerted conformational flexibility of catalytic Cys287 and Glu253, as well as Leu254 and the nicotinamide moiety of the coenzyme. A comparison of the active sites of AlDHPyr1147 and dehydrogenases characterized earlier suggests that proton relay systems, which were previously proposed for dehydrogenases of this family, are blocked in AlDHPyr1147, and the proton release in the latter can occur through the substrate channel.

  17. Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Andresen, B S; Olpin, S; Poorthuis, B J

    1999-01-01

    Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the initial rate-limiting step in mitochondrial fatty acid beta-oxidation. VLCAD deficiency is clinically heterogenous, with three major phenotypes: a severe childhood form, with early onset, high mortality, and high incidence of cardiomyop......Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the initial rate-limiting step in mitochondrial fatty acid beta-oxidation. VLCAD deficiency is clinically heterogenous, with three major phenotypes: a severe childhood form, with early onset, high mortality, and high incidence...... of cardiomyopathy; a milder childhood form, with later onset, usually with hypoketotic hypoglycemia as the main presenting feature, low mortality, and rare cardiomyopathy; and an adult form, with isolated skeletal muscle involvement, rhabdomyolysis, and myoglobinuria, usually triggered by exercise or fasting......-phenotype relationship is in sharp contrast to what has been observed in medium-chain acyl-CoA dehydrogenase deficiency, in which no correlation between genotype and phenotype can be established....

  18. Effects of 20 standard amino acids on the growth, total fatty acids production, and γ-linolenic acid yield in Mucor circinelloides.

    Science.gov (United States)

    Tang, Xin; Zhang, Huaiyuan; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2014-12-01

    Twenty standard amino acids were examined as single nitrogen source on the growth, total fatty acids production, and yield of γ-linolenic acid (GLA) in Mucor circinelloides. Of the amino acids, tyrosine gave the highest biomass and lipid accumulation and thus resulted in a high GLA yield with respective values of 17.8 g/L, 23 % (w/w, dry cell weight, DCW), and 0.81 g/L, which were 36, 25, and 72 % higher than when the fungus was grown with ammonium tartrate. To find out the potential mechanism underlying the increased lipid accumulation of M. circinelloides when grown on tyrosine, the activity of lipogenic enzymes of the fungus during lipid accumulation phase was measured. The enzyme activities of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and ATP-citrate lyase were up-regulated, while NADP-isocitrate dehydrogenase was down-regulated by tyrosine during the lipid accumulation phase of the fungus which suggested that these enzymes may be involved in the increased lipid biosynthesis by tyrosine in this fungus.

  19. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  20. Novel binding motif and new flexibility revealed by structural analyses of a pyruvate dehydrogenase-dihydrolipoyl acetyltransferase subcomplex from the Escherichia coli pyruvate dehydrogenase multienzyme complex.

    Science.gov (United States)

    Arjunan, Palaniappa; Wang, Junjie; Nemeria, Natalia S; Reynolds, Shelley; Brown, Ian; Chandrasekhar, Krishnamoorthy; Calero, Guillermo; Jordan, Frank; Furey, William

    2014-10-24

    The Escherichia coli pyruvate dehydrogenase multienzyme complex contains multiple copies of three enzymatic components, E1p, E2p, and E3, that sequentially carry out distinct steps in the overall reaction converting pyruvate to acetyl-CoA. Efficient functioning requires the enzymatic components to assemble into a large complex, the integrity of which is maintained by tethering of the displaced, peripheral E1p and E3 components to the E2p core through non-covalent binding. We here report the crystal structure of a subcomplex between E1p and an E2p didomain containing a hybrid lipoyl domain along with the peripheral subunit-binding domain responsible for tethering to the core. In the structure, a region at the N terminus of each subunit in the E1p homodimer previously unseen due to crystallographic disorder was observed, revealing a new folding motif involved in E1p-E2p didomain interactions, and an additional, unexpected, flexibility was discovered in the E1p-E2p didomain subcomplex, both of which probably have consequences in the overall multienzyme complex assembly. This represents the first structure of an E1p-E2p didomain subcomplex involving a homodimeric E1p, and the results may be applicable to a large range of complexes with homodimeric E1 components. Results of HD exchange mass spectrometric experiments using the intact, wild type 3-lipoyl E2p and E1p are consistent with the crystallographic data obtained from the E1p-E2p didomain subcomplex as well as with other biochemical and NMR data reported from our groups, confirming that our findings are applicable to the entire E1p-E2p assembly. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Novel Binding Motif and New Flexibility Revealed by Structural Analyses of a Pyruvate Dehydrogenase-Dihydrolipoyl Acetyltransferase Subcomplex from the Escherichia coli Pyruvate Dehydrogenase Multienzyme Complex*

    Science.gov (United States)

    Arjunan, Palaniappa; Wang, Junjie; Nemeria, Natalia S.; Reynolds, Shelley; Brown, Ian; Chandrasekhar, Krishnamoorthy; Calero, Guillermo; Jordan, Frank; Furey, William

    2014-01-01

    The Escherichia coli pyruvate dehydrogenase multienzyme complex contains multiple copies of three enzymatic components, E1p, E2p, and E3, that sequentially carry out distinct steps in the overall reaction converting pyruvate to acetyl-CoA. Efficient functioning requires the enzymatic components to assemble into a large complex, the integrity of which is maintained by tethering of the displaced, peripheral E1p and E3 components to the E2p core through non-covalent binding. We here report the crystal structure of a subcomplex between E1p and an E2p didomain containing a hybrid lipoyl domain along with the peripheral subunit-binding domain responsible for tethering to the core. In the structure, a region at the N terminus of each subunit in the E1p homodimer previously unseen due to crystallographic disorder was observed, revealing a new folding motif involved in E1p-E2p didomain interactions, and an additional, unexpected, flexibility was discovered in the E1p-E2p didomain subcomplex, both of which probably have consequences in the overall multienzyme complex assembly. This represents the first structure of an E1p-E2p didomain subcomplex involving a homodimeric E1p, and the results may be applicable to a large range of complexes with homodimeric E1 components. Results of HD exchange mass spectrometric experiments using the intact, wild type 3-lipoyl E2p and E1p are consistent with the crystallographic data obtained from the E1p-E2p didomain subcomplex as well as with other biochemical and NMR data reported from our groups, confirming that our findings are applicable to the entire E1p-E2p assembly. PMID:25210042

  2. Study of alkaline-earth element complexes in anhydrous acetic acid

    International Nuclear Information System (INIS)

    Petit, N.

    1968-10-01

    We have studied the complexes of alkaline-earth elements in anhydrous acetic acid. Using glass-electrode potentiometry we have studied the titration of alkaline earth acetates with perchloric acid which is the strongest acid in anhydrous acetic acid. These titrations have shown that the basic strength of these acetates increases as follows: Mg 4 ); the mixed acetate-acid sulfate complex of barium: Ba (OAc)(HSO 4 ); the mixed acetate-chloride of barium: Ba (OAc)(Cl). (author) [fr

  3. Luminescent properties of terbium complex with phenylanthranilic acid

    International Nuclear Information System (INIS)

    Alakaeva, L.A.; Kalazhokova, I.A.; Naurzhanova, F.Kh.

    1990-01-01

    Existence of terbium luminescence reaction in complex with phenanthranilic acid (FAA) is ascertained. The optimal conditions of terbium complexing with FAA are found. The ratio of components in the complex is 1:1. The influence of foreign rare earth in terbium luminescence intensity in complex with FAA is studied

  4. Boron complexing with H-resorcinol and acidic hydroxyxanthene dyes

    International Nuclear Information System (INIS)

    Nazarenko, V.A.; Flyantikova, G.V.; Chekirda, T.N.

    1984-01-01

    Complex formation of boron with H-resorcinol (hr; 2,4-dihydroxybenzene-azo -8-hydroxynaphtalene-3,6-disulfonic acid) and acidic hydroxyxanthene dyes (hxd: fluorescein, eosine, erathrosine). Mixed-ligand complexes with a ratio of r:hr:hxd=1:1:1 are formed at pH=5-6. The chemism of the complex formation of boron with H-resorcinol and fluorescein has been studied. The stability consta nt of the complex is 1.12x10 21 , the conditional molar absorptivitis 1.80x10 0 . This complex formation reaction was used for photometric determination of boron in natural water

  5. Complex formation between glutamic acid and molybdenum (VI)

    International Nuclear Information System (INIS)

    Gharib, Farrokh; Khorrami, S.A.; Sharifi, Sasan

    1997-01-01

    Equilibria of the reaction of molybdenum (VI) with L-glutamic acid have been studied in aqueous solution in the pH range 2.5 to 9.5, using spectrophotometric and optical rotation methods at constant ionic strength (0.15 mol dm -3 sodium perchlorate) and temperature 25 ± 0.1 degC. Our studies have shown that glutamic acid forms a mononuclear complex with Mo(VI) of the type MoO 3 L 2- at pH 5.5. The stability constant of this complexation and the dissociation constants of L-glutamic acid have been determined. (author). 17 refs., 2 figs., 4 tabs

  6. Crystal structure of the NADP+ and tartrate-bound complex of L-serine 3-dehydrogenase from the hyperthermophilic archaeon Pyrobaculum calidifontis.

    Science.gov (United States)

    Yoneda, Kazunari; Sakuraba, Haruhiko; Araki, Tomohiro; Ohshima, Toshihisa

    2018-05-01

    A gene encoding L-serine dehydrogenase (L-SerDH) that exhibits extremely low sequence identity to the Agrobacterium tumefaciens L-SerDH was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The predicted amino acid sequence showed 36% identity with that of Pseudomonas aeruginosa L-SerDH, suggesting that P. calidifontis L-SerDH is a novel type of L-SerDH, like Ps. aeruginosa L-SerDH. The overexpressed enzyme appears to be the most thermostable L-SerDH described to date, and no loss of activity was observed by incubation for 30 min at temperatures up to 100 °C. The enzyme showed substantial reactivity towards D-serine, in addition to L-serine. Two different crystal structures of P. calidifontis L-SerDH were determined using the Se-MAD and MR method: the structure in complex with NADP + /sulfate ion at 1.18 Å and the structure in complex with NADP + /L-tartrate (substrate analog) at 1.57 Å. The fold of the catalytic domain showed similarity with that of Ps. aeruginosa L-SerDH. However, the active site structure significantly differed between the two enzymes. Based on the structure of the tartrate, L- and D-serine and 3-hydroxypropionate molecules were modeled into the active site and the substrate binding modes were estimated. A structural comparison suggests that the wide cavity at the substrate binding site is likely responsible for the high reactivity of the enzyme toward both L- and D-serine enantiomers. This is the first description of the structure of the novel type of L-SerDH with bound NADP + and substrate analog, and it provides new insight into the substrate binding mechanism of L-SerDH. The results obtained here may be very informative for the creation of L- or D-serine-specific SerDH by protein engineering.

  7. Clofibric acid stimulates branched-chain amino acid catabolism by three mechanisms.

    Science.gov (United States)

    Kobayashi, Rumi; Murakami, Taro; Obayashi, Mariko; Nakai, Naoya; Jaskiewicz, Jerzy; Fujiwara, Yoko; Shimomura, Yoshiharu; Harris, Robert A

    2002-11-15

    Clofibrate promotes catabolism of branched-chain amino acids by increasing the activity of the branched-chain alpha-keto acid dehydrogenase [BCKDH] complex. Depending upon the sex of the rats, nutritional state, and tissue being studied, clofibrate can affect BCKDH complex activity by three different mechanisms. First, by directly inhibiting BCKDH kinase activity, clofibrate can increase the proportion of the BCKDH complex in the active, dephosphorylated state. This occurs in situations in which the BCKDH complex is largely inactive due to phosphorylation, e.g., in the skeletal muscle of chow-fed rats or in the liver of female rats late in the light cycle. Second, by increasing the levels at which the enzyme components of the BCKDH complex are expressed, clofibrate can increase the total enzymatic activity of the BCKDH complex. This is readily demonstrated in livers of rats fed a low-protein diet, a nutritional condition that induces a decrease in the level of expression of the BCKDH complex. Third, by decreasing the amount of BCKDH kinase expressed and therefore its activity, clofibrate induces an increase in the percentage of the BCKDH complex in the active, dephosphorylated state. This occurs in the livers of rats fed a low-protein diet, a nutritional condition that causes inactivation of the BCKDH complex due to upregulation of the amount of BCKDH kinase. WY-14,643, which, like clofibric acid, is a ligand for the peroxisome-proliferator-activated receptor alpha [PPARalpha], does not directly inhibit BCKDH kinase but produces the same long-term effects as clofibrate on expression of the BCKDH complex and its kinase. Thus, clofibrate is unique in its capacity to stimulate BCAA oxidation through inhibition of BCKDH kinase activity, whereas PPARalpha activators in general promote BCAA oxidation by increasing expression of components of the BCKDH complex and decreasing expression of the BCKDH kinase.

  8. 3-Sulfinopropionyl-coenzyme A (3SP-CoA) desulfinase from Advenella mimigardefordensis DPN7T: crystal structure and function of a desulfinase with an acyl-CoA dehydrogenase fold

    Science.gov (United States)

    Schürmann, Marc; Meijers, Rob; Schneider, Thomas R.; Steinbüchel, Alexander; Cianci, Michele

    2015-01-01

    3-Sulfinopropionyl-coenzyme A (3SP-CoA) desulfinase (AcdDPN7; EC 3.13.1.4) was identified during investigation of the 3,3′-dithiodipropionic acid (DTDP) catabolic pathway in the betaproteobacterium Advenella mimigardefordensis strain DPN7T. DTDP is an organic disulfide and a precursor for the synthesis of polythioesters (PTEs) in bacteria, and is of interest for biotechnological PTE production. AcdDPN7 catalyzes sulfur abstraction from 3SP-CoA, a key step during the catabolism of DTDP. Here, the crystal structures of apo AcdDPN7 at 1.89 Å resolution and of its complex with the CoA moiety from the substrate analogue succinyl-CoA at 2.30 Å resolution are presented. The apo structure shows that AcdDPN7 belongs to the acyl-CoA dehydrogenase superfamily fold and that it is a tetramer, with each subunit containing one flavin adenine dinucleotide (FAD) molecule. The enzyme does not show any dehydrogenase activity. Dehydrogenase activity would require a catalytic base (Glu or Asp residue) at either position 246 or position 366, where a glutamine and a glycine are instead found, respectively, in this desulfinase. The positioning of CoA in the crystal complex enabled the modelling of a substrate complex containing 3SP-CoA. This indicates that Arg84 is a key residue in the desulfination reaction. An Arg84Lys mutant showed a complete loss of enzymatic activity, suggesting that the guanidinium group of the arginine is essential for desulfination. AcdDPN7 is the first desulfinase with an acyl-CoA dehydrogenase fold to be reported, which underlines the versatility of this enzyme scaffold. PMID:26057676

  9. Crystallochemical particularities of complexes with lower representatives of dicarboiylic acids

    International Nuclear Information System (INIS)

    Dmitrova, G.I.; Kiosse, G.A.

    1982-01-01

    A review is given of crystallochemical particularities of nonsubstituted dicarboxylic acids, HOOC-(CHsub(2))sub(n)-COOH, complexes with lower representatives of the given series (n=0.1). Besides published data, the studies on the structures obtained by the authors are included herein. From the structure data of salts and complexes with the lower representatives of dicarboxylic acids and oxyacids (among which there are complexes of rare earths and niobium) one can distinguish the formation of two-and polynuclear chelate complexes. Configuration of molecules of oxalic and malonic (and its derivatives) acids does not depend on the type of the compounds formed. The turn of carboxylic groups with respect to the plane of central carbon atoms in oxalate- and malonate-ions depends on their structural environment. The structures of complexes with malonic acid derivatives are not studied well although they are of great theoretical and practical interest

  10. Electrochemical behaviour of cuprous complexes of dithia-alkanedicarboxylic acids

    NARCIS (Netherlands)

    Pieterse, M.M.J.; Janssen, L.J.J.

    1972-01-01

    The composition and electrochemical behaviour of the cuprous complexes of dithia-alkanedicarboxylic acids viz., 2,5-dithiahexane-1,6-dicarboxylic acid (I); 3,6 dithiaoctane-1,8-dicarboxylic acid (II); 4,7-dithiadecane-1,10-dicarboxylic acid (III) and 2,2,

  11. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    International Nuclear Information System (INIS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-01-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as · OH and ONOO - . In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  12. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Rodacka, Aleksandra, E-mail: olakow@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Serafin, Eligiusz, E-mail: serafin@biol.uni.lodz.p [Laboratory of Computer and Analytical Techniques, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Puchala, Mieczyslaw, E-mail: puchala@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland)

    2010-09-15

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as {sup {center_dot}}OH and ONOO{sup -}. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  13. Structural determinants of enzyme binding affinity: the E1 component of pyruvate dehydrogenase from Escherichia coli in complex with the inhibitor thiamin thiazolone diphosphate.

    Science.gov (United States)

    Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Sax, Martin; Brunskill, Andrew; Nemeria, Natalia; Jordan, Frank; Furey, William

    2004-03-09

    Thiamin thiazolone diphosphate (ThTDP), a potent inhibitor of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc), binds to the enzyme with greater affinity than does the cofactor thiamin diphosphate (ThDP). To identify what determines this difference, the crystal structure of the apo PDHc E1 component complex with ThTDP and Mg(2+) has been determined at 2.1 A and compared to the known structure of the native holoenzyme, PDHc E1-ThDP-Mg(2+) complex. When ThTDP replaces ThDP, reorganization occurs in the protein structure in the vicinity of the active site involving positional and conformational changes in some amino acid residues, a change in the V coenzyme conformation, addition of new hydration sites, and elimination of others. These changes culminate in an increase in the number of hydrogen bonds to the protein, explaining the greater affinity of the apoenzyme for ThTDP. The observed hydrogen bonding pattern is not an invariant feature of ThDP-dependent enzymes but rather specific to this enzyme since the extra hydrogen bonds are made with nonconserved residues. Accordingly, these sequence-related hydrogen bonding differences likewise explain the wide variation in the affinities of different thiamin-dependent enzymes for ThTDP and ThDP. The sequence of each enzyme determines its ability to form hydrogen bonds to the inhibitor or cofactor. Mechanistic roles are suggested for the aforementioned reorganization and its reversal in PDHc E1 catalysis: to promote substrate binding and product release. This study also provides additional insight into the role of water in enzyme inhibition and catalysis.

  14. Biotransformation of plutonium complexed with citric acid

    International Nuclear Information System (INIS)

    Francis, A.J.; Dodge, C.J.; Gillow, J.B.

    2006-01-01

    The presence of organic ligands in radioactive wastes is a major concern because of their potential for increasing the transport of radionuclides from disposal sites. Biotransformation of radionuclides complexed with organic ligands should precipitate the radionuclides and retard their migration. We investigated the biotransformation of Pu(IV) (10 -8 to 10 -5 M), by Pseudomonas fluorescens in the presence of excess citric acid. Analysis of 242 Pu-citrate by electrospray ionization-mass spectrometry (ESI-MS) indicated the presence of biligand Pu-cit 2 as the predominant complex. XANES and EXAFS analyses showed that Pu was in the +4 oxidation state and associated with citric acid as a mononuclear complex. Citric acid was metabolized by P. fluorescens at a rate of 4.9 μM/h, but in the presence of 10 -8 and 10 -6 M Pu, this rate decreased to 4.0 and 3.8 μM/h, respectively. An increase in the ionic strength of the medium from 0.18 M to 0.9 M lowered citrate metabolism by ∝ 65%. Pu added to the growth medium in the absence of bacteria remained as Pu(IV) in solution as a complex with citric acid. However, solvent extraction by thenoyltrifluoroacetone (TTA) and microfiltration (0.03 μm) of the medium containing bacteria after citrate biodegradation revealed the presence of polymeric Pu. The extent of formation of the Pu polymer depended on the Pu: citrate ratio, the extent of citrate metabolism, and the ionic strength of the medium. (orig.)

  15. Purification and properties of a 3 alpha-hydroxysteroid dehydrogenase of rat liver cytosol and its inhibition by anti-inflammatory drugs.

    OpenAIRE

    Penning, T M; Mukharji, I; Barrows, S; Talalay, P

    1984-01-01

    An NAD(P)-dependent 3 alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50) was purified to homogeneity from rat liver cytosol, where it is responsible for most if not all of the capacity for the oxidation of androsterone, 1-acenaphthenol and benzenedihydrodiol (trans-1,2-dihydroxycyclohexa-3,5-diene). The dehydrogenase has many properties (substrate specificity, pI, Mr, amino acid composition) in common with the dihydrodiol dehydrogenase (EC 1.3.1.20) purified from the same source [Vogel, Bentley...

  16. Rate constants for a mechanism including intermediates in the interconversion of ternary complexes by horse liver alcohol dehydrogenase

    International Nuclear Information System (INIS)

    Sekhar, V.C.; Plapp, B.V.

    1990-01-01

    Transient kinetic data for partial reactions of alcohol dehydrogenase and simulations of progress curves have led to estimates of rate constants for the following mechanism, at pH 8.0 and 25 degrees C: E in equilibrium E-NAD+ in equilibrium *E-NAD+ in equilibrium E-NAD(+)-RCH2OH in equilibrium E-NAD+-RCH2O- in equilibrium *E-NADH-RCHO in equilibrium E-NADH-RCHO in equilibrium E-NADH in equilibrium E. Previous results show that the E-NAD+ complex isomerizes with a forward rate constant of 620 s-1. The enzyme-NAD(+)-alcohol complex has a pK value of 7.2 and loses a proton rapidly (greater than 1000 s-1). The transient oxidation of ethanol is 2-fold faster in D 2 O, and proton inventory results suggest that the transition state has a charge of -0.3 on the substrate oxygen. Rate constants for hydride ion transfer in the forward or reverse reactions were similar for short-chain aliphatic substrates (400-600 s-1). A small deuterium isotope effect for transient oxidation of longer chain alcohols is apparently due to the isomerization of the E-NAD+ complex. The transient reduction of aliphatic aldehydes showed no primary deuterium isotope effect; thus, an isomerization of the E-NADH-aldehyde complex is postulated, as isomerization of the E-NADH complex was too fast to be detected. The estimated microscopic rate constants show that the observed transient reactions are controlled by multiple steps

  17. Interactions among the branched-chain amino acids and their effects on methionine utilization in growing pigs: effects on plasma amino- and keto-acid concentrations and branched-chain keto-acid dehydrogenase activity.

    Science.gov (United States)

    Langer, S; Scislowski, P W; Brown, D S; Dewey, P; Fuller, M F

    2000-01-01

    The present experiment was designed to elucidate the mechanism of the methionine-sparing effect of excess branched-chain amino acids (BCAA) reported in the previous paper (Langer & Fuller, 2000). Twelve growing gilts (30-35 kg) were prepared with arterial catheters. After recovery, they received for 7 d a semipurified diet with a balanced amino acid pattern. On the 7th day blood samples were taken before (16 h postabsorptive) and after the morning meal (4 h postprandial). The animals were then divided into three groups and received for a further 7 d a methionine-limiting diet (80% of requirement) (1) without any amino acid excess; (2) with excess leucine (50% over requirement); or (3) with excesses of all three BCAA (leucine, isoleucine, valine, each 50% over the requirement). On the 7th day blood samples were taken as in the first period, after which the animals were killed and liver and muscle samples taken. Plasma amino acid and branched-chain keto acid (BCKA) concentrations in the blood and branched-chain keto-acid dehydrogenase (BCKDH; EC 1.2.4.4) activity in liver and muscle homogenates were determined. Compared with those on the balanced diet, pigs fed on methionine-limiting diets had significantly lower (P < 0.05) plasma methionine concentrations in the postprandial but not in the postabsorptive state. There was no effect of either leucine or a mixture of all three BCAA fed in excess on plasma methionine concentrations. Excess dietary leucine reduced (P < 0.05) the plasma concentrations of isoleucine and valine in both the postprandial and postabsorptive states. Plasma concentrations of the BCKA reflected the changes in the corresponding amino acids. Basal BCKDH activity in the liver and total BCKDH activity in the biceps femoris muscle were significantly (P < 0.05) increased by excesses of leucine or all BCAA.

  18. Spectrophotometric study into complexing of vanadium(3) with salicylic acid derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Dolgorev, A V; Serikov, Yu A; Zolotavin, V L

    1977-03-01

    Complexing of vanadium (3) with 5 amino-salicylic acid and amide of salicylhydroxamic acid has been studied. It has been shown that in acidic medium V/sup 3 +/ forms yellow complexes of the composition 1:1 with instability constants 2.2x10/sup -19/, 7.8x10/sup -11/, and 2.2x10/sup -12/, respectively. Complexes of V/sup 3 +/ with derivatives of salicylic acid can be used for determining V(3) content in the presence of V(4).

  19. An L-glucitol oxidizing dehydrogenase from Bradyrhizobium japonicum USDA 110 for production of D-sorbose with enzymatic or electrochemical cofactor regeneration

    DEFF Research Database (Denmark)

    Gauer, Sabrina; Wang, Zhijie; Otten, Harm

    2014-01-01

    A gene in Bradyrhizobium japonicum USDA 110, annotated as a ribitol dehydrogenase (RDH), had 87 % sequence identity (97 % positives) to the N-terminal 31 amino acids of an L-glucitol dehydrogenase from Stenotrophomonas maltophilia DSMZ 14322. The 729-bp long RDH gene coded for a protein consistin...

  20. [Discovery of the target genes inhibited by formic acid in Candida shehatae].

    Science.gov (United States)

    Cai, Peng; Xiong, Xujie; Xu, Yong; Yong, Qiang; Zhu, Junjun; Shiyuan, Yu

    2014-01-04

    At transcriptional level, the inhibitory effects of formic acid was investigated on Candida shehatae, a model yeast strain capable of fermenting xylose to ethanol. Thereby, the target genes were regulated by formic acid and the transcript profiles were discovered. On the basis of the transcriptome data of C. shehatae metabolizing glucose and xylose, the genes responsible for ethanol fermentation were chosen as candidates by the combined method of yeast metabolic pathway analysis and manual gene BLAST search. These candidates were then quantitatively detected by RQ-PCR technique to find the regulating genes under gradient doses of formic acid. By quantitative analysis of 42 candidate genes, we finally identified 10 and 5 genes as markedly down-regulated and up-regulated targets by formic acid, respectively. With regard to gene transcripts regulated by formic acid in C. shehatae, the markedly down-regulated genes ranking declines as follows: xylitol dehydrogenase (XYL2), acetyl-CoA synthetase (ACS), ribose-5-phosphate isomerase (RKI), transaldolase (TAL), phosphogluconate dehydrogenase (GND1), transketolase (TKL), glucose-6-phosphate dehydrogenase (ZWF1), xylose reductase (XYL1), pyruvate dehydrogenase (PDH) and pyruvate decarboxylase (PDC); and a declining rank for up-regulated gens as follows: fructose-bisphosphate aldolase (ALD), glucokinase (GLK), malate dehydrogenase (MDH), 6-phosphofructokinase (PFK) and alcohol dehydrogenase (ADH).

  1. A Functional Tricarboxylic Acid Cycle Operates during Growth of Bordetella pertussis on Amino Acid Mixtures as Sole Carbon Substrates.

    Directory of Open Access Journals (Sweden)

    Marie Izac

    Full Text Available It has been claimed that citrate synthase, aconitase and isocitrate dehydrogenase activities are non-functional in Bordetella pertussis and that this might explain why this bacterium's growth is sometimes associated with accumulation of polyhydroxybutyrate (PHB and/or free fatty acids. However, the sequenced genome includes the entire citric acid pathway genes. Furthermore, these genes were expressed and the corresponding enzyme activities detected at high levels for the pathway when grown on a defined medium imitating the amino acid content of complex media often used for growth of this pathogenic microorganism. In addition, no significant PHB or fatty acids could be detected. Analysis of the carbon balance and stoichiometric flux analysis based on specific rates of amino acid consumption, and estimated biomass requirements coherent with the observed growth rate, clearly indicate that a fully functional tricarboxylic acid cycle operates in contrast to previous reports.

  2. Additive effects of clofibric acid and pyruvate dehydrogenase kinase isoenzyme 4 (PDK4) deficiency on hepatic steatosis in mice fed a high-saturated fat diet

    OpenAIRE

    Hwang, Byounghoon; Wu, Pengfei; Harris, Robert A.

    2012-01-01

    Although improving glucose metabolism by inhibition of pyruvate dehydrogenase kinase 4 (PDK4) might prove beneficial in the treatment of type 2 diabetes or diet-induced obesity, it might induce detrimental effects by inhibiting fatty acid oxidation. PPARα agonists are often used to treat dyslipidemia in patients, especially in type 2 diabetes. Combinational treatment with a PDK4 inhibitor and PPARα agonists may prove beneficial. However, PPARα agonists may be less effective in the presence of...

  3. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose

    Science.gov (United States)

    Wang, Qingzhao; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(−)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L-1 of optically pure D(−)-lactic acid from glucose in coagulans and the QZ19 derivative can be used to produce either L(+) or D(−) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  4. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    Science.gov (United States)

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  5. Complex forming properties of natural organic acids. Pt. 2

    International Nuclear Information System (INIS)

    Ephraim, J.H.; Mathuthu, A.S.; Marinsky, J.A.

    1990-07-01

    An ultrafiltration technique combined with ion-selective-electrode and atomic absorption methods have been employed to obtain information on the complex forming properties of fulvic acid with iron and calcium. A model for interpreting complexation of metal ions to fulvic acid at any pH, medium ionic strength and metal to fulvic acid ratio developed earlier has been used in an attempt to predict the nature of iron and calcium interaction to Armadale Horizon Bh fulvic acid. Binding of calcium to fulvic acid which is enhanced at pHs greater than 6.0 has reasonably been predicted by the model taking into consideration complications due to the polyelectrolyte nature and the heterogeneity of the fulvic acid. The lack of agreement observed between the model predicted binding behavior and the experimentally observed results for the fulvic acid-iron system has been attributed to the formation of metal-induced aggregation. Reduction of Fe(III) to Fe(II) by the fulvic acid as reported by other workers is corroborated. (orig.)

  6. Single-stranded nucleic acids promote SAMHD1 complex formation.

    Science.gov (United States)

    Tüngler, Victoria; Staroske, Wolfgang; Kind, Barbara; Dobrick, Manuela; Kretschmer, Stefanie; Schmidt, Franziska; Krug, Claudia; Lorenz, Mike; Chara, Osvaldo; Schwille, Petra; Lee-Kirsch, Min Ae

    2013-06-01

    SAM domain and HD domain-containing protein 1 (SAMHD1) is a dGTP-dependent triphosphohydrolase that degrades deoxyribonucleoside triphosphates (dNTPs) thereby limiting the intracellular dNTP pool. Mutations in SAMHD1 cause Aicardi-Goutières syndrome (AGS), an inflammatory encephalopathy that mimics congenital viral infection and that phenotypically overlaps with the autoimmune disease systemic lupus erythematosus. Both disorders are characterized by activation of the antiviral cytokine interferon-α initiated by immune recognition of self nucleic acids. Here we provide first direct evidence that SAMHD1 associates with endogenous nucleic acids in situ. Using fluorescence cross-correlation spectroscopy, we demonstrate that SAMHD1 specifically interacts with ssRNA and ssDNA and establish that nucleic acid-binding and formation of SAMHD1 complexes are mutually dependent. Interaction with nucleic acids and complex formation do not require the SAM domain, but are dependent on the HD domain and the C-terminal region of SAMHD1. We finally demonstrate that mutations associated with AGS exhibit both impaired nucleic acid-binding and complex formation implicating that interaction with nucleic acids is an integral aspect of SAMHD1 function.

  7. Apicoplast lipoic acid protein ligase B is not essential for Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Svenja Günther

    2007-12-01

    Full Text Available Lipoic acid (LA is an essential cofactor of alpha-keto acid dehydrogenase complexes (KADHs and the glycine cleavage system. In Plasmodium, LA is attached to the KADHs by organelle-specific lipoylation pathways. Biosynthesis of LA exclusively occurs in the apicoplast, comprising octanoyl-[acyl carrier protein]: protein N-octanoyltransferase (LipB and LA synthase. Salvage of LA is mitochondrial and scavenged LA is ligated to the KADHs by LA protein ligase 1 (LplA1. Both pathways are entirely independent, suggesting that both are likely to be essential for parasite survival. However, disruption of the LipB gene did not negatively affect parasite growth despite a drastic loss of LA (>90%. Surprisingly, the sole, apicoplast-located pyruvate dehydrogenase still showed lipoylation, suggesting that an alternative lipoylation pathway exists in this organelle. We provide evidence that this residual lipoylation is attributable to the dual targeted, functional lipoate protein ligase 2 (LplA2. Localisation studies show that LplA2 is present in both mitochondrion and apicoplast suggesting redundancy between the lipoic acid protein ligases in the erythrocytic stages of P. falciparum.

  8. Amino acid detection using fluoroquinolone–Cu2+ complex as a switch-on fluorescent probe by competitive complexation without derivatization

    International Nuclear Information System (INIS)

    Farokhcheh, Alireza; Alizadeh, Naader

    2014-01-01

    In this work, we describe the use of fluoroquinolone–Cu 2+ complex as a competitive switch-on fluorescence probe for amino acid determination without derivatization. The fluorescence intensity of this probe, which has been reduced due to effective quenching by Cu 2+ ion, increases drastically by an addition of amino acid (glycine, phenylalanine, sarcosine, aspargine, alanine, proline, arginine, aspartic acid, glutamic acid, lysine, leucine and isoleucine). The overall stability constants of Cu 2+ ion complexes with amino acids were determined by fluorometric titration of fluoroquinolone-Cu 2+ complex with the amino acid solution. Furthermore, the probe shows high calibration sensitivity toward aspartic acid. The fluorescence signal depends linearly on the amino acid concentration within the range of concentration from 1.2×10 −7 to 1.1×10 −5 mol L −1 for aspartic acid. The detection limit was found 2.7×10 −8 mol L −1 with the relative standard deviation (RSD%) about 2.1% (five replicate). -- Highlights: • Amino acids are detected by using fluoroquinolone–Cu 2+ complex as fluorescent probe. • Amino acids were detected based on a competitive complexation reaction. • Probe has been able to recognize amino acids through switch-on fluorescence behavior. • Ultra-trace level of aspartic and glutamic acid is determined without derivatization

  9. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes.

    Science.gov (United States)

    Baggetto, L G; Lehninger, A L

    1987-05-29

    Oxidation of 1 mM pyruvate by Ehrlich and AS30-D tumor mitochondria is inhibited by acetoin, an unusual and important metabolite of pyruvate utilization by cancer cells, by acetaldehyde, methylglyoxal and excess pyruvate. The respiratory inhibition is reversed by other substrates added to pyruvate and also by 0.5 mM ATP. Kinetic properties of pyruvate dehydrogenase complex isolated from these tumor mitochondria have been studied. This complex appears to be able to synthesize acetoin from acetaldehyde plus pyruvate and is competitively inhibited by acetoin. The role of a new regulatory pattern for tumoral pyruvate dehydrogenase is presented.

  10. Electrochemical behaviour of silver complexes of dithia-alkanedicarboxylic acids

    NARCIS (Netherlands)

    Janssen, L.J.J.; Hoogland, J.G.

    1972-01-01

    The composition and electrochemical behaviour of the Ag-complexes of dithia-alkane-dicarboxylic acids, viz. 2,5-dithiahexane-1,6-dicarboxylic acid (I), 3,6-dithiaoctane-1,8-dicarboxylic acid(II), 4,7-dithiadecane-1,10-dicarboxylic acid (III) and 2,2,7,7,-tetramethyl-3,6-dithiaoctane-1,8-dicarboxylic

  11. Heterologous Production of an Energy-Conserving Carbon Monoxide Dehydrogenase Complex in the Hyperthermophile Pyrococcus furiosus

    Directory of Open Access Journals (Sweden)

    Gerrit Jan Schut

    2016-01-01

    Full Text Available Carbon monoxide (CO is an important intermediate in anaerobic carbon fixation pathways in acetogenesis and methanogenesis. In addition, some anaerobes can utilize CO as an energy source. In the hyperthermophilic archaeon Thermococcus onnurineus, which grows optimally at 80°C, CO oxidation and energy conservation is accomplished by a respiratory complex encoded by a 16-gene cluster containing a carbon monoxide dehydrogenase, a membrane-bound [NiFe]-hydrogenase and a Na+/H+ antiporter module. This complex oxidizes CO, evolves CO2 and H2, and generates a Na+ motive force that is used to conserve energy by a Na+-dependent ATP synthase. Herein we used a bacterial artificial chromosome to insert the 13.2 kb gene cluster encoding the CO-oxidizing respiratory complex of T. onnurineus into the genome of the heterotrophic archaeon, Pyrococcus furiosus, which grows optimally at 100°C. P. furiosus is normally unable to utilize CO, however, the recombinant strain readily oxidized CO and generated H2 at 80°C. Moreover, CO also served as an energy source and allowed the P. furiosus strain to grow with a limiting concentration of sugar or with peptides as the carbon source. Moreover, CO oxidation by P. furiosus was also coupled to the re-utilization, presumably for biosynthesis, of acetate generated by fermentation. The functional transfer of CO utilization between Thermococcus and Pyrococcus species demonstrated herein is representative of the horizontal gene transfer of an environmentally-relevant metabolic capability. The transfer of CO utilizing, hydrogen-producing genetic modules also has applications for biohydrogen production and a CO-based industrial platform for various thermophilic organisms.

  12. A new dawn for plant mitochondrial NAD(P)H dehydrogenases

    DEFF Research Database (Denmark)

    Møller, I.M.

    2002-01-01

    The expression of complex I and two homologues of bacterial and yeast NADH dehydrogenases, NDA and NDB, have been studied in potato leaf mitochondria. The mRNA level of NDA is completely light dependent and shows a diurnal rhythm with a sharp maximum just after dawn. NDA protein quantity and inte...

  13. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    International Nuclear Information System (INIS)

    White, Tommi A.; Tanner, John J.

    2005-01-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ 1 -pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2 1 2 1 2 1 , with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative

  14. A novel type of pathogen defense-related cinnamyl alcohol dehydrogenase.

    Science.gov (United States)

    Logemann, E; Reinold, S; Somssich, I E; Hahlbrock, K

    1997-08-01

    We describe an aromatic alcohol dehydrogenase with properties indicating a novel type of function in the defense response of plants to pathogens. To obtain the enzyme free of contamination with possible isoforms, a parsley (Petroselinum crispum) cDNA comprising the entire coding region of the elicitor-responsive gene, ELI3, was expressed in Escherichia coli. In accord with large amino acid sequence similarities with established cinnamyl and benzyl alcohol dehydrogenases from other plants, the enzyme efficiently reduced various cinnamyl and benzyl aldehydes using NADPH as a co-substrate. Highest substrate affinities were observed for cinnamaldehyde, 4-coumaraldehyde and coniferaldehyde, whereas sinapaldehyde, one of the most efficient substrates of several previously analyzed cinnamyl alcohol dehydrogenases and a characteristic precursor molecule of angiosperm lignin, was not converted. A single form of ELI3 mRNA was strongly and rapidly induced in fungal elicitor-treated parsley cells. These results, together with earlier findings that the ELI3 gene is strongly activated both in elicitor-treated parsley cells and at fungal infection sites in parsley leaves, but not in lignifying tissue, suggest a specific role of this enzyme in pathogen defense-related phenylpropanoid metabolism.

  15. Physiological regulation of isocitrate dehydrogenase and the role of 2-oxoglutarate in Prochlorococcus sp. strain PCC 9511.

    Directory of Open Access Journals (Sweden)

    María Agustina Domínguez-Martín

    Full Text Available The enzyme isocitrate dehydrogenase (ICDH; EC 1.1.1.42 catalyzes the oxidative decarboxylation of isocitrate, to produce 2-oxoglutarate. The incompleteness of the tricarboxylic acids cycle in marine cyanobacteria confers a special importance to isocitrate dehydrogenase in the C/N balance, since 2-oxoglutarate can only be metabolized through the glutamine synthetase/glutamate synthase pathway. The physiological regulation of isocitrate dehydrogenase was studied in cultures of Prochlorococcus sp. strain PCC 9511, by measuring enzyme activity and concentration using the NADPH production assay and Western blotting, respectively. The enzyme activity showed little changes under nitrogen or phosphorus starvation, or upon addition of the inhibitors DCMU, DBMIB and MSX. Azaserine, an inhibitor of glutamate synthase, induced clear increases in the isocitrate dehydrogenase activity and icd gene expression after 24 h, and also in the 2-oxoglutarate concentration. Iron starvation had the most significant effect, inducing a complete loss of isocitrate dehydrogenase activity, possibly mediated by a process of oxidative inactivation, while its concentration was unaffected. Our results suggest that isocitrate dehydrogenase responds to changes in the intracellular concentration of 2-oxoglutarate and to the redox status of the cells in Prochlorococcus.

  16. Characterization of cDNAs encoding human pyruvate dehydrogenase α subunit

    International Nuclear Information System (INIS)

    Ho, Lap; Wexler, I.D.; Liu, Techung; Thekkumkara, T.J.; Patel, M.S.

    1989-01-01

    A cDNA clone (1,423 base pairs) comprising the entire coding region of the precursor form of the α subunit of pyruvate dehydrogenase (E 1 α) has been isolated from a human liver cDNA library in phage λgt11. The first 29 amino acids deduced from the open reading frame correspond to a typical mitochondrial targeting leader sequence. The remaining 361 amino acids, starting at the N terminus with phenylalanine, represent the mature mitochondrial E 1 α peptide. The cDNA has 43 base pairs in the 5' untranslated region and 210 base pairs in the 3' untranslated region, including a polyadenylylation signal and a short poly(A) tract. The nucleotide sequence of human liver E 1 α cDNA was confirmed by the nucleotide sequences of three overlapping fragments generated from human liver and fibroblast RNA by reverse transcription and DNA amplification by the polymerase chain reaction. This consensus nucleotide sequence of human liver E 1 α cDNA resolves existing discrepancies among three previously reported human E 1 α cDNAs and provides the unambiguous reference sequence needed for the characterization of genetic mutations in pyruvate dehydrogenase-deficient patients

  17. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120.

    Science.gov (United States)

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants.

  18. Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from Clostridium kluyveri▿ †

    Science.gov (United States)

    Li, Fuli; Hinderberger, Julia; Seedorf, Henning; Zhang, Jin; Buckel, Wolfgang; Thauer, Rudolf K.

    2008-01-01

    Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0′ = −410 mV) with NADH (E0′ = −320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0′ = −10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper. PMID:17993531

  19. Tissue carnitine homeostasis in very-long-chain acyl-CoA dehydrogenase-deficient mice

    NARCIS (Netherlands)

    Spiekerkoetter, Ute; Tokunaga, Chonan; Wendel, Udo; Mayatepek, Ertan; Ijlst, Lodewijk; Vaz, Frederic M.; van Vlies, Naomi; Overmars, Henk; Duran, Marinus; Wijburg, Frits A.; Wanders, Ronald J.; Strauss, Arnold W.

    2005-01-01

    Deficiency of very-long-chain acyl-CoA dehydrogenase (VLCAD) is the most common long-chain fatty acid oxidation defect and presents with heterogeneous clinical manifestations. Accumulation of long-chain acylcarnitines and deficiency of free carnitine have often been proposed to play an important

  20. CEC mechanism in electrochemical oxidation of nitrocatechol-boric acid complexes

    International Nuclear Information System (INIS)

    Rafiee, Mohammad; Nematollahi, Davood; Salehzadeh, Hamid

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → Nitrochetechol and its anionic form undergo complex reaction with boric acid. → The electron transfer of complex is coupled with both proceeding and following chemical reactions. → Electrochemical behavior of complex is resolved by diagnostic criteria and digital simulation. - Abstract: The electrochemical behavior of nitrocatechols-boric acid complexes in aqueous solution has been studied using cyclic voltammetry. The results indicate that nitrocatechol-boric acid complex derivatives are involved in the CEC mechanism. In this work, the impact of empirical parameters on the shape of the voltammograms is examined based on a CEC mechanism. In addition, homogeneous rate constants of both the preceding and the following reactions were estimated by comparing the experimental cyclic voltammograms with the digitally simulated results. The calculated dissociation constants for the complexes (K d ) and for ring cleavage of nitroquinone (k f2 ) were found to vary in the following order: 4-nitrocatechol > 3-methylnitrocatechol > 3-metoxynitrocatechol.

  1. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation: a case report

    DEFF Research Database (Denmark)

    Kanavin, Øjvind; Woldseth, Berit; Jellum, Egil

    2007-01-01

    previously reported cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD. PMID: 17883863 [PubMed - in process]......ABSTRACT: BACKGROUND: 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine. METHODS: We report a four-year-old mentally retarded Somali boy with autism...

  2. Plant Formate Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  3. Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin.

    Science.gov (United States)

    Fleige, Christian; Hansen, Gunda; Kroll, Jens; Steinbüchel, Alexander

    2013-01-01

    The actinomycete Amycolatopsis sp. strain ATCC 39116 is capable of synthesizing large amounts of vanillin from ferulic acid, which is a natural cell wall component of higher plants. The desired intermediate vanillin is subject to undesired catabolism caused by the metabolic activity of a hitherto unknown vanillin dehydrogenase (VDH(ATCC 39116)). In order to prevent the oxidation of vanillin to vanillic acid and thereby to obtain higher yields and concentrations of vanillin, the responsible vanillin dehydrogenase in Amycolatopsis sp. ATCC 39116 was investigated for the first time by using data from our genome sequence analysis and further bioinformatic approaches. The vdh gene was heterologously expressed in Escherichia coli, and the encoded vanillin dehydrogenase was characterized in detail. VDH(ATCC 39116) was purified to apparent electrophoretic homogeneity and exhibited NAD(+)-dependent activity toward vanillin, coniferylaldehyde, cinnamaldehyde, and benzaldehyde. The enzyme showed its highest level of activity toward vanillin at pH 8.0 and at a temperature of 44°C. In a next step, a precise vdh deletion mutant of Amycolatopsis sp. ATCC 39116 was generated. The mutant lost its ability to grow on vanillin and did not show vanillin dehydrogenase activity. A 2.3-times-higher vanillin concentration and a substantially reduced amount of vanillic acid occurred with the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant when ferulic acid was provided for biotransformation in a cultivation experiment on a 2-liter-bioreactor scale. Based on these results and taking further metabolic engineering into account, the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant represents an optimized and industrially applicable platform for the biotechnological production of natural vanillin.

  4. Amino acid detection using fluoroquinolone–Cu{sup 2+} complex as a switch-on fluorescent probe by competitive complexation without derivatization

    Energy Technology Data Exchange (ETDEWEB)

    Farokhcheh, Alireza; Alizadeh, Naader, E-mail: alizaden@modares.ac.ir

    2014-01-15

    In this work, we describe the use of fluoroquinolone–Cu{sup 2+} complex as a competitive switch-on fluorescence probe for amino acid determination without derivatization. The fluorescence intensity of this probe, which has been reduced due to effective quenching by Cu{sup 2+} ion, increases drastically by an addition of amino acid (glycine, phenylalanine, sarcosine, aspargine, alanine, proline, arginine, aspartic acid, glutamic acid, lysine, leucine and isoleucine). The overall stability constants of Cu{sup 2+} ion complexes with amino acids were determined by fluorometric titration of fluoroquinolone-Cu{sup 2+} complex with the amino acid solution. Furthermore, the probe shows high calibration sensitivity toward aspartic acid. The fluorescence signal depends linearly on the amino acid concentration within the range of concentration from 1.2×10{sup −7} to 1.1×10{sup −5} mol L{sup −1} for aspartic acid. The detection limit was found 2.7×10{sup −8} mol L{sup −1} with the relative standard deviation (RSD%) about 2.1% (five replicate). -- Highlights: • Amino acids are detected by using fluoroquinolone–Cu{sup 2+} complex as fluorescent probe. • Amino acids were detected based on a competitive complexation reaction. • Probe has been able to recognize amino acids through switch-on fluorescence behavior. • Ultra-trace level of aspartic and glutamic acid is determined without derivatization.

  5. Investigation of rare earth complexes with pyridoxalydenamino acids by optical methods. Structure of complexes on basis of hydrophobic amino acids

    International Nuclear Information System (INIS)

    Zolin, V.F.; Koreneva, L.G.; Serbinova, T.A.; Tsaryuk, V.I.

    1975-01-01

    The structure of pyridoxalidene amino acid complexes was studied by circular dichroism, magnetic circular dichroism and luminescence spectroscopy. It was shown that these are two-ligand complexes, whereby in the case of those based on valine, leucine and isoleucine the chromophores are almost perpendicular to one another. In the case of complexes based on glycine and alanine the co-ordination sphere is strongly deformed. (author)

  6. Two novel mutations in the BCKDK (branched-chain keto-acid dehydrogenase kinase) gene are responsible for a neurobehavioral deficit in two pediatric unrelated patients.

    Science.gov (United States)

    García-Cazorla, Angels; Oyarzabal, Alfonso; Fort, Joana; Robles, Concepción; Castejón, Esperanza; Ruiz-Sala, Pedro; Bodoy, Susanna; Merinero, Begoña; Lopez-Sala, Anna; Dopazo, Joaquín; Nunes, Virginia; Ugarte, Magdalena; Artuch, Rafael; Palacín, Manuel; Rodríguez-Pombo, Pilar; Alcaide, Patricia; Navarrete, Rosa; Sanz, Paloma; Font-Llitjós, Mariona; Vilaseca, Ma Antonia; Ormaizabal, Aida; Pristoupilova, Anna; Agulló, Sergi Beltran

    2014-04-01

    Inactivating mutations in the BCKDK gene, which codes for the kinase responsible for the negative regulation of the branched-chain α-keto acid dehydrogenase complex (BCKD), have recently been associated with a form of autism in three families. In this work, two novel exonic BCKDK mutations, c.520C>G/p.R174G and c.1166T>C/p.L389P, were identified at the homozygous state in two unrelated children with persistently reduced body fluid levels of branched-chain amino acids (BCAAs), developmental delay, microcephaly, and neurobehavioral abnormalities. Functional analysis of the mutations confirmed the missense character of the c.1166T>C change and showed a splicing defect r.[520c>g;521_543del]/p.R174Gfs1*, for c.520C>G due to the presence of a new donor splice site. Mutation p.L389P showed total loss of kinase activity. Moreover, patient-derived fibroblasts showed undetectable (p.R174Gfs1*) or barely detectable (p.L389P) levels of BCKDK protein and its phosphorylated substrate (phospho-E1α), resulting in increased BCKD activity and the very rapid BCAA catabolism manifested by the patients' clinical phenotype. Based on these results, a protein-rich diet plus oral BCAA supplementation was implemented in the patient homozygous for p.R174Gfs1*. This treatment normalized plasma BCAA levels and improved growth, developmental and behavioral variables. Our results demonstrate that BCKDK mutations can result in neurobehavioral deficits in humans and support the rationale for dietary intervention. © 2014 WILEY PERIODICALS, INC.

  7. Study of Stoichiometry and Stability of some Fe(III)-Amino Acid Complexes

    International Nuclear Information System (INIS)

    Latif, S.; Shirin, K.; Nisar, S.; Zahida, T. M.

    2005-01-01

    The complexation of ferric with three amino acids (Glycine, Glutamic acid and Aspartic acid) was studied spectrophotometrically and potentiometrically at pH 5.0 and in aqueous medium. The stoichiometry was calculated spectrophotometrically using mole ratio method and is found to be ML3 for Fe (III)-Glycine and ML2 for Fe (III)-Glutamate for Fe (III)-Glutamate and Aspartate complex. The stabilities of these complexes were calculated spectrophotometrically and potentiometrically. The experimental results of potentiometric titrations were treated by well known computer program B EST . The values were further refined till least sigma fit i.e. 0.03. The complexes were not formed under normal conditions. Each complex was studied at more than one wavelength and no kmax was obtained because Fe (III) solution and the complexes absorb in similar wavelength region. The formation constants of all these complexes are not very high shows weak complexation of Fe (III) with these amino acids. (author)

  8. Crystallization and preliminary X-ray analysis of the complex of NADH and 3α-hydroxysteroid dehydrogenase from Pseudomonas sp. B-0831

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Sachiyo [Graduate School of Agriculture, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522 (Japan); Nakamura, Shota; Ohkubo, Tadayasu [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ueda, Shigeru [Diagnostics Department, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321 (Japan); Uchiyama, Susumu [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kobayashi, Yuji [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Oda, Masayuki, E-mail: oda@kpu.ac.jp [Graduate School of Agriculture, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522 (Japan)

    2006-06-01

    The complex of NADH and 3α-HSD from Pseudomonas sp. B-0831 has been crystallized and X-ray diffraction data have been collected to 1.8 Å resolution. The NAD(P){sup +}-dependent enzyme 3α-hydroxysteroid dehydrogenase (3α-HSD) catalyzes the reversible interconversion of hydroxyl and oxo groups at position 3 of the steroid nucleus. The complex of NADH and 3α-HSD from Pseudomonas sp. B-0831 was crystallized by the hanging-drop vapour-diffusion method. Refinement of crystallization conditions with microseeding improved the quality of the X-ray diffraction data to a resolution of 1.8 Å. The crystals belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 62.46, b = 82.25, c = 86.57 Å, and contained two molecules, reflecting dimer formation of 3α-HSD, in the asymmetric unit.

  9. Expression and kinetic properties of a recombinant 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzyme of human liver.

    Science.gov (United States)

    Deyashiki, Y; Tamada, Y; Miyabe, Y; Nakanishi, M; Matsuura, K; Hara, A

    1995-08-01

    Human liver cytosol contains multiple forms of 3 alpha-hydroxysteroid dehydrogenase and dihydrodiol dehydrogenase with hydroxysteroid dehydrogenase activity, and multiple cDNAs for the enzymes have been cloned from human liver cDNA libraries. To understand the relationship of the multiple enzyme froms to the genes, a cDNA, which has been reported to code for an isoenzyme of human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase, was expressed in Escherichia coli. The recombinant enzyme showed structural and functional properties almost identical to those of the isoenzyme purified from human liver. In addition, the recombinant isoenzyme efficiently reduced 5 alpha-dihydrotestosterone and 5 beta-dihydrocortisone, the known substrates of human liver 3 alpha-hydroxysteroid dehydrogenase and chlordecone reductase previously purified, which suggests that these human liver enzymes are identical. Furthermore, the steady-state kinetic data for NADP(+)-linked (S)-1-indanol oxidation by the recombinant isoenzyme were consistent with a sequential ordered mechanism in which NADP+ binds first. Phenolphthalein inhibited this isoenzyme much more potently than it did the other human liver dihydrodiol dehydrogenases, and was a competitive inhibitor (Ki = 20 nM) that bound to the enzyme-NADP+ complex.

  10. Complex coacervates of hyaluronic acid and lysozyme

    DEFF Research Database (Denmark)

    Water, Jorrit J.; Schack, Malthe M.; Velazquez-Campoy, Adrian

    2014-01-01

    stoichiometry was determined using solution depletion and isothermal titration calorimetry. The binding stoichiometry of lysozyme to hyaluronic acid (870 kDa) determined by solution depletion was found to be 225.9 ± 6.6 mol, or 0.1 bound lysozyme molecules per hyaluronic acid monomer. This corresponded well...... with that obtained by isothermal titration calorimetry of 0.09 bound lysozyme molecules per hyaluronic acid monomer. The complexation did not alter the secondary structure of lysozyme measured by Fourier-transform infrared spectroscopy overlap analysis and had no significant impact on the Tm of lysozyme determined...

  11. Influencing of resorption and side-effects of salicylic acid by complexing with β-cyclodextrin

    International Nuclear Information System (INIS)

    Szejtli, J.; Gerloczy, A.; Sebestyen, G.; Fonagy, A.

    1981-01-01

    After oral administration of 14 C-labelled salicylic acid and its β-cyclodextrin complex to rats, the radioactivity level of the blood reached its maximum during the first 2 h. The blood level obtained with the complex is somewhat but not significantly lower than with free acid. Since the resorption of cyclodextrin is a considerably slower process, it is very likely that the resorption of salicylic acid takes place in the form of free acid after dissociation of the complex. The urinary excretion cumulative curves showed that the free salicylic acid was completely excreted, while about 10% of the salicylic acid administered in the form of complex is lost. The cyclodextrin complex formation increased the pK values of all hydroxybenzoic acids. Direct observations revealed that complex formation decreased the stomach-irritating effect of salicylic acid. The ratio of radioactivity was nearly the same in the organs of animals treated by both free salicylic and cyclodextrin complex. (author)

  12. Ferulic acid with ascorbic acid synergistically extenuates the mitochondrial dysfunction during beta-adrenergic catecholamine induced cardiotoxicity in rats.

    Science.gov (United States)

    Yogeeta, Surinder Kumar; Raghavendran, Hanumantha Rao Balaji; Gnanapragasam, Arunachalam; Subhashini, Rajakannu; Devaki, Thiruvengadam

    2006-10-27

    Disruption of mitochondria and free radical mediated tissue injury have been reported during cardiotoxicity induced by isoproterenol (ISO), a beta-adrenergic catecholamine. The present study was designed to investigate the effect of the combination of ferulic acid (FA) and ascorbic acid (AA) on the mitochondrial damage in ISO induced cardiotoxicity. Induction of rats with ISO (150 mg/kg b.wt., i.p.) for 2 days resulted in a significant decrease in the activities of respiratory chain enzymes (NADH dehydrogenase and cytochrome c-oxidase), tricarboxylic acid cycle enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, alpha-ketoglutarate dehydrogenase), mitochondrial antioxidants (GPx, GST, SOD, CAT, GSH), cytochromes (b, c, c1, aa3) and in the level of mitochondrial phospholipids. A marked elevation in mitochondrial lipid peroxidation, mitochondrial levels of cholesterol, triglycerides and free fatty acids were also observed in ISO intoxicated rats. Pre-co-treatment with the combination of FA (20 mg/kg b.wt.) and AA (80 mg/kg b.wt.) orally for 6 days significantly enhanced the attenuation of these functional abnormalities and restored normal mitochondrial function when compared to individual drug treated groups. Mitigation of ISO induced biochemical and morphological changes in mitochondria were more pronounced with a combination of FA and AA rather than the individual drug treated groups. Transmission electron microscopic observations also correlated with these biochemical parameters. Hence, these findings demonstrate the synergistic ameliorative potential of FA and AA on mitochondrial function during beta-adrenergic catecholamine induced cardiotoxicity and associated oxidative stress in rats.

  13. Complex compound polyvinyl alcohol-titanic acid/titanium dioxide

    Science.gov (United States)

    Prosanov, I. Yu.

    2013-02-01

    A complex compound polyvinyl alcohol-titanic acid has been produced and investigated by means of IR and Raman spectroscopy, X-ray diffraction, and synchronous thermal analysis. It is claimed that it represents an interpolymeric complex of polyvinyl alcohol and hydrated titanium oxide.

  14. Complex formation of p-carboxybenzeneboronic acid with fructose

    International Nuclear Information System (INIS)

    Bulbul Islam, T.M.; Yoshino, K.

    2000-01-01

    To increase the solubility of p-caboxybenzeneboronic acid (PCBA) in physiological pH 7.4, the complex formation of PCBA with fructose has been studied by 11 B-NMR. PCBA formed complex with fructose and the complex increased the solubility of PCBA. The complex formation constant (log K) was obtained in pH 7.4 as 2.75 from the 11 B-NMR spectra. Based on this result the complex formation ability of PCBA with fructose has been discussed. (author)

  15. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis.

    Science.gov (United States)

    Stiti, Naim; Missihoun, Tagnon D; Kotchoni, Simeon O; Kirch, Hans-Hubert; Bartels, Dorothea

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected ArabidopsisALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.

  16. Polarographic determination of stability constants of Eu(III) complexes with acrylic acid and crotonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Rao, A L.J.; Makhan, S [Punjabi Univ., Patiala (India). Dept. of Chemistry

    1979-07-01

    Compositions and formation constants of Eu(III) complexes with acrylic acid and crotonic acid have been studied polarographically. The reductions are reversible and diffusion-controlled. The plot of Esub(1/2) versus -log Csub(x) is linear in the case of Eu(III)-acrylic acid system. The change in number of ligands bound to europium during reduction was found to be approximately equal to 1 and ratio of dissociation constants of Eu(III) and Eu(II) was found to be 40.76 x 10sup(-2). In the case of Eu(III)-crotonic acid system, composition and formation constants have been calculated by the method of Deford and Hume. Crotonic acid forms two complex species with europium (..beta../sub 1/, 60; ..beta../sub 2/, 4.2x10sup(+2)). The percentage distribution of various complex species as a function of ligand concentration has been calculated in the case of Eu(III)-crotonic acid system. A polarographic method for the determination of micro amounts of Eu(III) in the presence of diverse ions has been developed. Under optimum conditions Eu(III) in the concentration range 4x10sup(-4)-2x10sup(-3)M can be successfully determined in various mixtures.

  17. Optical Absorption, Stability and Structure of NpO2+ Complexes with Dicarboxylic Acids

    International Nuclear Information System (INIS)

    Guoxin Tian; Linfeng Rao

    2006-01-01

    Complexation of NpO2+ with oxalic acid (OX),2,2'-oxydiacetic acid (ODA), 2,2'-iminodiacetic acid (IDA) and 2,2'-thiodiacetic acid (TDA), has been studied using spectrophotometry in1 M NaClO4. Both the position and the intensity of the absorption band of NpO2+ at 980 nm are affected by the formation of NpO2+/dicarboxylate complexes, providing useful information on the complexation strength, the coordination mode and the structure of the complexes

  18. Purification and characterization of the amine dehydrogenase from a facultative methylotroph.

    Science.gov (United States)

    Coleman, J P; Perry, J J

    1984-01-01

    Strain RA-6 is a pink-pigmented organism which can grow on a variety of substrates including methylamine. It can utilize methylamine as sole source of carbon via an isocitrate lyase negative serine pathway. Methylamine grown cells contain an inducible primary amine dehydrogenase [primary amine: (acceptor) oxidoreductase (deaminating)] which is not present in succinate grown cells. The amine dehydrogenase was purified to over 90% homogeneity. It is an acidic protein (isoelectric point of 5.37) with a molecular weight of 118,000 containing subunits with approximate molecular weights of 16,500 and 46,000. It is active on an array of primary terminal amines and is strongly inhibited by carbonyl reagents. Cytochrome c or artificial electron acceptors are required for activity; neither NAD nor NADP can serve as primary electron acceptor.

  19. Natural spectroscopic hydrogen isotope transfer in alcohol dehydrogenase-catalysed reduction

    International Nuclear Information System (INIS)

    Ben-Li Zhang; Pionnier, S.

    2002-01-01

    The enantiomeric purity of natural α-mono deuterated enantiomers, (R) and (S)ethanol-1-d 1 , in the alcohol produced by sugar fermentation with yeast was studied by 2 H NMR using their esters derived from optical mandelic acid. The results of isotope tracing experiments show that the transfer pathways of the two eantiotopic hydrogens of the methylene group are different. It was observed that (S)-deuterium comes only from the medium water. The (R)-deuterium transferred by NADH in alcohol dehydrogenase reduction of the acetaldehyde is complex origin. Some of them originates from carbon bound hydrogen of the sugar, especially from C(4) position of glucose and most of them comes from water. Only a small portion of the NADH deuterium is incorporated indirectly from water through enzyme catalysed exchange between the pro-S site of NADH and flavin. When a carbonyl compound (ethyl acetoacetate) was reduced under the same conditions during the alcoholic fermentation, among the NADH-transferred deuterium, only a small portion comes from water while most comes from the unexchangeable positions of the glucose. (author)

  20. Metal complexes of salicylhydroxamic acid (H2Sha), anthranilic hydroxamic acid and benzohydroxamic acid. Crystal and molecular structure of [Cu(phen)2(Cl)]Cl x H2Sha, a model for a peroxidase-inhibitor complex.

    Science.gov (United States)

    O'Brien, E C; Farkas, E; Gil, M J; Fitzgerald, D; Castineras, A; Nolan, K B

    2000-04-01

    Stability constants of iron(III), copper(II), nickel(II) and zinc(II) complexes of salicylhydroxamic acid (H2Sha), anthranilic hydroxamic acid (HAha) and benzohydroxamic acid (HBha) have been determined at 25.0 degrees C, I=0.2 mol dm(-3) KCl in aqueous solution. The complex stability order, iron(III) > copper(II) > nickel(II) approximately = zinc(II) was observed whilst complexes of H2Sha were found to be more stable than those of the other two ligands. In the preparation of ternary metal ion complexes of these ligands and 1,10-phenanthroline (phen) the crystalline complex [Cu(phen)2(Cl)]Cl x H2Sha was obtained and its crystal structure determined. This complex is a model for hydroxamate-peroxidase inhibitor interactions.

  1. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in serum...

  2. Pyruvate dehydrogenase complexes from the equine nematode, Parascaris equorum, and the canine cestode, Dipylidium caninum, helminths exhibiting anaerobic mitochondrial metabolism.

    Science.gov (United States)

    Diaz, F; Komuniecki, R W

    1994-10-01

    The pyruvate dehydrogenase complex (PDC) has been purified to apparent homogeneity from 2 parasitic helminths exhibiting anaerobic mitochondrial metabolism, the equine nematode, Parascaris equorum, and the canine cestode, Dipylidium caninum. The P. equorum PDC yielded 7 major bands when separated by SDS-PAGE. The bands of 72, 55-53.5, 41 and 36 kDa corresponded to E2, E3, E1 alpha and E1 beta, respectively. The complex also contained additional unidentified proteins of 43 and 45 kDa. Incubation of the complex with [2-14C]pyruvate resulted in the acetylation of only E2. These results suggest that the P. equorum PDC lacks protein X and exhibits an altered subunit composition, as has been described previously for the PDC of the related nematode, Ascaris suum. In contrast, the D. caninum PDC yielded only four major bands after SDS-PAGE of 59, 58, 39 and 34 kDa, which corresponded to E3, E2, E1 alpha and E1 beta, respectively. Incubation of the D. caninum complex with [2-14C]pyruvate resulted in the acetylation of E2 and a second protein which comigrated with E3, suggesting that the D. caninum complex contained protein X and had a subunit composition similar to PDCs from other eukaryotic organisms. Both helminth complexes appeared less sensitive to inhibition by elevated NADH/NAD+ ratios than complexes isolated from aerobic organisms, as would be predicted for PDCs from organisms exploiting microaerobic habitats. These results suggest that although these helminths have similar anaerobic mitochondrial pathways, they contain significantly different PDCs.

  3. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    White, Tommi A.; Tanner, John J., E-mail: tannerjj@missouri.edu [Departments of Chemistry and Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211 (United States)

    2005-08-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ{sup 1}-pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  4. Prevalence of Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency in Estonia

    DEFF Research Database (Denmark)

    Joost, K; Ounap, K; Zordania, R

    2012-01-01

    The aim of our study was to evaluate the prevalence of long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) in the general Estonian population and among patients with symptoms suggestive of fatty acid oxidation (FAO) defects. We collected DNA from a cohort of 1,040 anonymous newborn blo...... prevalence of LCHADD in Estonia would be 1: 91,700....

  5. Structural organization of the human short-chain acyl-CoA dehydrogenase gene

    DEFF Research Database (Denmark)

    Corydon, M J; Andresen, B S; Bross, P

    1997-01-01

    Short-chain acyl-CoA dehydrogenase (SCAD) is a homotetrameric mitochondrial flavoenzyme that catalyzes the initial reaction in short-chain fatty acid beta-oxidation. Defects in the SCAD enzyme are associated with failure to thrive, often with neuromuscular dysfunction and elevated urinary excretion...... shown to be associated with ethylmalonic aciduria. From analysis of 18 unrelated Danish families, we show that the four SCAD gene polymorphisms constitute five allelic variants of the SCAD gene, and that the 625A variant together with the less frequent variant form of the three other polymorphisms (321C....... The evolutionary relationship between SCAD and five other members of the acyl-CoA dehydrogenase family was investigated by two independent approaches that gave similar phylogenetic trees....

  6. Influence of lysozyme complexation with purified Aldrich humic acid on lysozyme activity

    NARCIS (Netherlands)

    Li, Y.; Tan, W.F.; Wang, M.X.; Liu, F.; Weng, L.P.; Norde, W.; Koopal, L.K.

    2012-01-01

    Humic acid is an important component of dissolved organic matter and in two previous papers it has been shown that purified Aldrich humic acid (PAHA) forms strong complexes with the oppositely charged protein lysozyme (LSZ). The complexation and aggregation of enzymes with humic acids may lead to

  7. The conserved Lysine69 residue plays a catalytic role in Mycobacterium tuberculosis shikimate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Rodrigues Valnês

    2009-01-01

    Full Text Available Abstract Background The shikimate pathway is an attractive target for the development of antitubercular agents because it is essential in Mycobacterium tuberculosis, the causative agent of tuberculosis, but absent in humans. M. tuberculosis aroE-encoded shikimate dehydrogenase catalyzes the forth reaction in the shikimate pathway. Structural and functional studies indicate that Lysine69 may be involved in catalysis and/or substrate binding in M. tuberculosis shikimate dehydrogenase. Investigation of the kinetic properties of mutant enzymes can bring important insights about the role of amino acid residues for M. tuberculosis shikimate dehydrogenase. Findings We have performed site-directed mutagenesis, steady-state kinetics, equilibrium binding measurements and molecular modeling for both the wild-type M. tuberculosis shikimate dehydrogenase and the K69A mutant enzymes. The apparent steady-state kinetic parameters for the M. tuberculosis shikimate dehydrogenase were determined; the catalytic constant value for the wild-type enzyme (50 s-1 is 68-fold larger than that for the mutant K69A (0.73 s-1. There was a modest increase in the Michaelis-Menten constant for DHS (K69A = 76 μM; wild-type = 29 μM and NADPH (K69A = 30 μM; wild-type = 11 μM. The equilibrium dissociation constants for wild-type and K69A mutant enzymes are 32 (± 4 μM and 134 (± 21, respectively. Conclusion Our results show that the residue Lysine69 plays a catalytic role and is not involved in substrate binding for the M. tuberculosis shikimate dehydrogenase. These efforts on M. tuberculosis shikimate dehydrogenase catalytic mechanism determination should help the rational design of specific inhibitors, aiming at the development of antitubercular drugs.

  8. Spectrographic study of neodymium complexing with hydroxyethylidenediphosphonic acid in acid media

    International Nuclear Information System (INIS)

    Afonin, E.G.; Pechurova, N.I.; Martynenko, L.I.

    1987-01-01

    High resolution spectrography is used to study neodymium (3) complexing with hydroxyethylidenediphosphonic acid (H 4 X) in aqueous solution with hydrogen ion concentration being 0.35-4.5 g-ion/l. It is shown that complex of NdH 2 X + composition characterized by λ=4290 A absorption band in electron spectrum in transition range 4 I 9/2 → 2 P 1/2 is formed in a system. The lgK stab =5.62 ± 0.07 value is calculated. It is supposed that high stability of a complex is conditioned by participation of ligand nondissociated alcohol group in coordination

  9. Structure of β- N-dimethylamino-4-dodecyloxypropiophenone complexes with di- and polycarboxylic acids

    Science.gov (United States)

    Lebedeva, Tamara L.; Shandryuk, George A.; Sycheva, Tatyana I.; Bezborodov, Vladimir S.; Talroze, Raissa V.; Platé, Nicolai A.

    1995-07-01

    The type of bonds responsible for the complexation of di- and polyacids with the tertiary amine β- N-dimethylamino-4-dodecyloxypropiophenone is studied by means of FTIR spectroscopy. The complexes are shown to be stable due to strong H-bonding with partial charge transfer. The characteristic composition for complexes of polyacrylic, polymethacrylic and malonic acids is calculated as 2:1 (number of carboxylic groups per number of amine molecules) whereas glutaric acid forms complexes of different composition including 1:1. The characteristic composition results from the structure of the initial acid. The structures of both the characteristic complex and "excess" acid are also discussed.

  10. Cellobiose dehydrogenase of Chaetomium sp. INBI 2-26(-): structural basis of enhanced activity toward glucose at neutral pH.

    Science.gov (United States)

    Vasilchenko, Liliya G; Karapetyan, Karen N; Yershevich, Olga P; Ludwig, Roland; Zamocky, Marcel; Peterbauer, Clemens K; Haltrich, Dietmar; Rabinovich, Mikhail L

    2011-05-01

    Cellobiose dehydrogenase (CDH) is an extracellular fungal flavocytochrome specifically oxidizing cellooligosaccharides and lactose to corresponding (-lactones by a variety of electron acceptors. In contrast to basidiomycetous CDHs, CDHs of ascomycetes also display certain activity toward glucose. The objective of this study was to establish the structural reasons of such an activity of CDH from mesophilic ascomycete Chaetomium sp. INBI 2-26 (ChCDH). The complete amino acid sequence of ChCDH displayed high levels of similarity with the amino acid sequences of CDHs from the thermophilic fungi Thielavia heterotallica and Myriococcum thermophilum. Peptide mass fingerprinting of purified ChCDH provided evidence for the oxidation of methionine residues in the FAD-domain. Comparative homology modeling of the structure of the ChCDH FAD-domain in complex with the transition state analog based on the structure of the same complex of basidiomycetous CDH (1NAA) as template indicated possible structural reasons for the enhanced activity of ascomycetous CDHs toward glucose at neutral pH, which is a prerequisite for application of CDH in a variety of biocompatible biosensors and biofuel cells. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Structural and functional characterization of plant aminoaldehyde dehydrogenase from Pisum sativum with a broad specificity for natural and synthetic aminoaldehydes

    Czech Academy of Sciences Publication Activity Database

    Tylichová, M.; Kopečný, D.; Moréra, S.; Briozzo, P.; Lenobel, René; Snégaroff, J.; Šebela, M.

    2010-01-01

    Roč. 396, č. 4 (2010), s. 870-882 ISSN 0022-2836 R&D Projects: GA ČR GA522/08/0555; GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : aminoaldehyde dehydrogenase * betaine aldehyde dehydrogenase * NAD+ complex Subject RIV: CE - Biochemistry Impact factor: 4.008, year: 2010

  12. Purification, crystallization and preliminary X-ray analysis of isocitrate dehydrogenase kinase/phosphatase from Escherichia coli

    International Nuclear Information System (INIS)

    Zheng, Jimin; Lee, Daniel C.; Jia, Zongchao

    2009-01-01

    Isocitrate dehydrogenase kinase/phosphatase has been crystallized in three different crystal forms. Data were collected from each crystal form for structure determination. The Escherichia coli aceK gene encodes isocitrate dehydrogenase kinase/phosphatase (EC 2.7.11.5), a bifunctional protein that phosphorylates and dephosphorylates isocitrate dehydrogenase (IDH), resulting in its inactivation and activation, respectively. This reversible (de)phosphorylation directs isocitrate, an intermediate of the citric acid cycle, to either go through the full cycle or to enter the glyoxylate bypass. In the present study, the AceK protein from E. coli has been purified and crystallized. Three crystal forms were obtained from very similar crystallization conditions. The crystals belong to space groups P4 1 2 1 2, P3 2 21 and P2 1 2 1 2 1 and diffracted X-rays to resolutions of 2.9, 3.0 and 2.7 Å, respectively

  13. Omega-3 Fatty Acids and Mood Stabilizers Alter Behavioural and Energy Metabolism Parameters in Animals Subjected to an Animal Model of Mania Induced by Fenproporex.

    Science.gov (United States)

    Cancelier, Kizzy; Gomes, Lara M; Carvalho-Silva, Milena; Teixeira, Letícia J; Rebelo, Joyce; Mota, Isabella T; Arent, Camila O; Mariot, Edemilson; Kist, Luiza W; Bogo, Maurício R; Quevedo, João; Scaini, Giselli; Streck, Emilio L

    2017-08-01

    Studies have shown that changes in energy metabolism are involved in the pathophysiology of bipolar disorder (BD). It was suggested that omega-3 (ω3) fatty acids have beneficial properties in the central nervous system and that this fatty acid plays an important role in energy metabolism. Therefore, the study aimed to evaluate the effect of ω3 fatty acids alone and in combination with lithium (Li) or valproate (VPA) on behaviour and parameters of energy metabolism in an animal model of mania induced by fenproporex. Our results showed that co-administration of ω3 fatty acids and Li was able to prevent and reverse the increase in locomotor and exploratory activity induced by fenproporex. The combination of ω3 fatty acids with VPA was only able to prevent the fenproporex-induced hyperactivity. For the energy metabolism parameters, our results showed that the administration of Fen for the reversal or prevention protocol inhibited the activities of succinate dehydrogenase, complex II and complex IV in the hippocampus. However, hippocampal creatine kinase (CK) activity was decreased only for the reversal protocol. The ω3 fatty acids, alone and in combination with VPA or Li, prevented and reversed the decrease in complex II, IV and succinate dehydrogenase activity, whereas the decrease in CK activity was only reversed after the co-administration of ω3 fatty acids and VPA. In conclusion, our results showed that the ω3 fatty acids combined with VPA or Li were able to prevent and reverse manic-like hyperactivity and the inhibition of energy metabolism in the hippocampus, suggesting that ω3 fatty acids may play an important role in the modulation of behavioural parameters and energy metabolism.

  14. Complex formation of americium (III) with humic acid

    International Nuclear Information System (INIS)

    Zhang Yingjie; Zhao Xin; Wen Liansheng; Lin Zhangji

    2004-01-01

    The presence of humic substances in natural waters will modify the migration behavior of actinides in the geosphere due to the strong reaction properties of these ligands with actinides. Therefore, the possible reactions of humic acid with actinides have been studied widely in recent years. The complex formation of Am (III) with humic acid is studied with solvent extraction technique in this paper. The experiments are performed in the pH range from 4.0 to 8.0 in 0.1 M NaClO 4 solution at ambient temperature. Experimental results show that the complex formation constants of Am (III) with humic acid are varied with the variation of pH value in solution. 1:2 complex is obtained in the experiments and the complex formation constants determined at each pH are: lgβ 1 =6.56±0.05, lgβ 2 =10.77±0.31 at pH=4.0; lgβ 1 =7.94±0.11, lgβ 2 =11.80±0.21 at pH=5.0; lgβ 1 =10.74±0.28, lgβ 2 =12.88±0.49 at pH=6.0; lgβ 1 =12.85±0.30, lgβ 2 =14.80±0.62 at pH=7.0; lgβ 1 =14.88±0.48, lgβ 2 =15.65±0.69 at pH=8.0, respectively. The dependence of the complex of the complex formation constant on pH is: lgβ 1 =2.16(±0.98)pH-2.34(±1.03), lgβ 2 =1.28(±1.04)pH+5.52(±1.21), respectively. (author)

  15. Branched-chain amino acid (BCAA) supplementation enhances adaptability to exercise training of mice with a muscle-specific defect in the control of BCAA catabolism.

    Science.gov (United States)

    Xu, Minjun; Kitaura, Yasuyuki; Shindo, Daichi; Shimomura, Yoshiharu

    2018-03-01

    Branched-chain α-keto acid dehydrogenase (BCKDH) kinase (BDK) suppresses the branched-chain amino acid (BCAA) catabolism by inactivation of the BCKDH complex. The muscle-specific BDK-deficient (BDK-mKO) mice showed accelerated BCAA oxidation in muscle and decreased endurance capacity after training (Xu et al. PLoS One. 12 (2017) e0180989). We here report that BCAA supplementation overcompensated endurance capacity in BDK-mKO mice after training.

  16. Riboflavin-Responsive Multiple Acyl-CoA Dehydrogenase Deficiency Associated with Hepatoencephalomyopathy and White Matter Signal Abnormalities on Brain MRI.

    Science.gov (United States)

    Vieira, Päivi; Myllynen, Päivi; Perhomaa, Marja; Tuominen, Hannu; Keski-Filppula, Riikka; Rytky, Seppo; Risteli, Leila; Uusimaa, Johanna

    2017-06-01

    Multiple acyl-CoA dehydrogenase deficiency (MADD) is a rare inborn error of metabolism affecting both fatty acid and amino acid oxidation. It can manifest at any age, but riboflavin-responsiveness has mainly been described in less severely affected patients. We describe an infant with severe MADD presenting with profound hypotonia and hepatomegaly. Treatment with riboflavin improved his muscle strength, liver size, and biochemical markers. A homozygous mutation of electron transfer flavoprotein dehydrogenase ( ETFDH ) was found. His motor skills continued to progress until a fatal infection-triggered deterioration at the age of 34 months. We show changes in brain magnetic resonance imaging over the course of the disease, with profound white matter abnormalities during the deterioration phase. Aggregates of mitochondria with abnormal cristae in muscle electron microscopy were noticed already in infancy. An unusual lactate dehydrogenase (LDH) isoenzyme pattern with LDH-1 predominance was additionally observed. This case demonstrates riboflavin-responsiveness in a severely affected infant with both muscular and extramuscular involvement and further underlines the variable nature of this disease. Georg Thieme Verlag KG Stuttgart · New York.

  17. Non-sterilized fermentation of high optically pure D-lactic acid by a genetically modified thermophilic Bacillus coagulans strain.

    Science.gov (United States)

    Zhang, Caili; Zhou, Cheng; Assavasirijinda, Nilnate; Yu, Bo; Wang, Limin; Ma, Yanhe

    2017-11-25

    Optically pure D-lactic acid (≥ 99%) is an important precursor of polylactic acid. However, there are relatively few studies on D-lactic acid fermentation compared with the extensive investigation of L-lactic acid production. Most lactic acid producers are mesophilic organisms. Optically pure D-lactic acid produced at high temperature not only could reduce the costs of sterilization but also could inhibit the growth of other bacteria, such as L-lactic acid producers. Thermophilic Bacillus coagulans is an excellent producer of L-lactic acid with capable of growing at 50 °C. In our previous study, the roles of two L-lactic acid dehydrogenases have been demonstrated in B. coagulans DSM1. In this study, the function of another annotated possible L-lactate dehydrogenase gene (ldhL3) was verified to be leucine dehydrogenase with an activity of 0.16 units (μmol/min) per mg protein. Furthermore, the activity of native D-lactate dehydrogenase was too low to support efficient D-lactic acid production, even under the control of strong promoter. Finally, an engineered B. coagulans D-DSM1 strain with the capacity for efficient production of D-lactic acid was constructed by deletion of two L-lactate dehydrogenases genes (ldhL1 and ldhL2) and insertion of the D-lactate dehydrogenase gene (LdldhD) from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 at the position of ldhL1. This genetically engineered strain produced only D-lactic acid under non-sterilized condition, and finally 145 g/L of D-lactic acid was produced with an optical purity of 99.9% and a high yield of 0.98 g/g. This is the highest optically pure D-lactic acid titer produced by a thermophilic strain.

  18. The behavior and importance of lactic acid complexation in Talspeak extraction systems

    International Nuclear Information System (INIS)

    Grimes, Travis S.; Nilsson, Mikael; Nash, Kenneth L.

    2008-01-01

    Advanced partitioning of spent nuclear fuel in the UREX +la process relies on the TALSPEAK process for separation of fission-product lanthanides from trivalent actinides. The classic TALSPEAK utilizes an aqueous medium of both lactic acid and diethylenetriaminepentaacetic acid and the extraction reagent di(2-ethylhexyl)phosphoric acid in an aromatic diluent. In this study, the specific role of lactic acid and the complexes involved in the extraction of the trivalent actinides and lanthanides have been investigated using 14 C-labeled lactic acid. Our results show that lactic acid partitions between the phases in a complex fashion. (authors)

  19. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity.

    Science.gov (United States)

    Hecht, K; Wrba, A; Jaenicke, R

    1989-07-15

    Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.

  20. Genetics Home Reference: dihydropyrimidine dehydrogenase deficiency

    Science.gov (United States)

    ... 5-fluorouracil and capecitabine. These drugs are not broken down efficiently by people with dihydropyrimidine dehydrogenase deficiency ... of this enzyme. Because fluoropyrimidine drugs are also broken down by the dihydropyrimidine dehydrogenase enzyme, deficiency of ...

  1. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based upon the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with continuous cofactor recycle. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value commodity chemical.

  2. Novel chiral tool, (R)-2-octanol dehydrogenase, from Pichia finlandica: purification, gene cloning, and application for optically active α-haloalcohols.

    Science.gov (United States)

    Yamamoto, Hiroaki; Kudoh, Masatake

    2013-09-01

    A novel enantioselective alcohol dehydrogenase, (R)-2-octanol dehydrogenase (PfODH), was discovered among methylotrophic microorganisms. The enzyme was purified from Pichia finlandica and characterized. The molecular mass of the enzyme was estimated to be 83,000 and 30,000 by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively. The enzyme was an NAD(+)-dependent secondary alcohol dehydrogenase and showed a strict enantioselectivity, very broad substrate specificity, and high tolerance to SH reagents. A gene-encoding PfODH was cloned and sequenced. The gene consisted of 765 nucleotides, coding polypeptides of 254 amino acids. The gene was singly expressed and coexpressed together with a formate dehydrogenase as an NADH regenerator in an Escherichia coli. Ethyl (S)-4-chloro-3-hydroxybutanoate and (S)-2-chloro-1-phenylethanol were synthesized using a whole-cell biocatalyst in more than 99 % optical purity.

  3. Bioelectrochemical fuel cell and sensor based on quinoprotein alcohol dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G; Hill, H A.O.; Aston, W J; Higgins, I J; Turner, A P.F.

    1983-09-01

    A biofuel cell, yielding a stable and continuous low-power output, based on the enzymatic oxidation of methanol to formic acid has been designed and investigated. The homogeneous kinetics of the electrochemically-coupled enzymatic oxidation reaction were investigated and optimized. The biofuel cell also functioned as a sensitive method for the detection of primary alcohols. A method for medium-scale preparation of the enzyme alcohol dehydrogenase (alcohol: (acceptor) oxidoreductase, EC 1.1.99.8) is described. (Refs. 14).

  4. Application of a radioimmunoassay to the induction of the 20β hydroxy steroid dehydrogenases with streptomyces hydrogenans

    International Nuclear Information System (INIS)

    Lotz, B.

    1978-01-01

    An antiserum has been prepared against crystallized 20β-hydroxysteroid dehydrogenate of streptomyces hydrogenous and used for different immunodiffusion and immunoprecipitation tests. A de novo synthesis of the 20β-hydroxysteroid dehydrogenase with streptomyces hydrogenous after cultivation of the cells in the presence of diene diol was hence found. The halflife of the 20β-hydroxysteroid dehydrogenase synthetizing mRNA in induced cells and that of the total mRNA in non-induced cells were calculated to be 126 sec and 66 sec respectively. The 20β-hydroxysteroid dehydrogenase in vivo appears to consist of four identical subunits. The monomers with a molecular weight of 27 350 exhibited a strong tendency to form diners and tetrameric complexes in the absence of dissociation agents. The synthesis rates of the 20β-hydroxysteroid dehydrogenase under induction conditions was 8.33%, the percentage of the total protein after induction 1.6%. (orig.) [de

  5. complex formation of americium (III) with humic acid

    International Nuclear Information System (INIS)

    Zhang Yingjie; Zhao Xin; Wei Liansheng; Lin Zhangji

    1998-01-01

    The presence of humic substances in natural waters will modify the migration behavior of actinides in the geosphere due to the strong reaction properties of these ligands with actinides. Therefore, the possible reactions of humic acid with actinides have been studied widely in recent years. The complex formation of Am(III) with humic acid is studied with solvent extraction technique. The experiments are performed in the pH range from 4.0 to 8.0 in 0.1 mol/kg NaClO 4 solution at ambient temperature. Experimental results show that the complex formation constants of Am(III) with humic acid are varied with the variation of pH value in solution. 1:2 complex is obtained in the experiments and the complex formation constants determined at each pH are: lgβ 1 = 6.56 +- 0.05, lgβ 2 = 10.77 +- 0.31 at pH 4.0. lgβ 1 = 7.94 +- 0.11, lgβ 2 = 11.80 +- 0.21 at pH = 5.0. lgβ 1 = 10.74 +- 0.28, lgβ 2 = 12.88 +- 0.49 at pH = 6.0. lgβ 1 = 12.85 +- 0.30, lgβ 2 = 14.80 +- 0.62 at pH = 7.0. lgβ 1 = 14.88 +- 0.48, lgβ 2 = 15.65 +- 0.69 at pH = 8.0, respectively. The dependence of the complex formation constant on pH is: lgβ 1 = 2.16 (+-0.98)pH-2.34(+-0.93),lgβ 2 1.28(+-1.04)pH+5.52(+-1.21), respectively

  6. Structures of Saccharomyces cerevisiae D-arabinose dehydrogenase Ara1 and its complex with NADPH: implications for cofactor-assisted substrate recognition.

    Science.gov (United States)

    Hu, Xiao-Qian; Guo, Peng-Chao; Ma, Jin-Di; Li, Wei-Fang

    2013-11-01

    The primary role of yeast Ara1, previously mis-annotated as a D-arabinose dehydrogenase, is to catalyze the reduction of a variety of toxic α,β-dicarbonyl compounds using NADPH as a cofactor at physiological pH levels. Here, crystal structures of Ara1 in apo and NADPH-complexed forms are presented at 2.10 and 2.00 Å resolution, respectively. Ara1 exists as a homodimer, each subunit of which adopts an (α/β)8-barrel structure and has a highly conserved cofactor-binding pocket. Structural comparison revealed that induced fit upon NADPH binding yielded an intact active-site pocket that recognizes the substrate. Moreover, the crystal structures combined with computational simulation defined an open substrate-binding site to accommodate various substrates that possess a dicarbonyl group.

  7. l-Galactono-gamma-lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis.

    NARCIS (Netherlands)

    Leferink, N.G.H.; Berg, van den W.A.M.; Berkel, van W.J.H.

    2008-01-01

    l-Galactono-1,4-lactone dehydrogenase (GALDH; ferricytochrome c oxidoreductase; EC 1.3.2.3) is a mitochondrial flavoenzyme that catalyzes the final step in the biosynthesis of vitamin C (l-ascorbic acid) in plants. In the present study, we report on the biochemical properties of recombinant

  8. Enzymatic conversion of CO2 to CH3OH via reverse dehydrogenase cascade biocatalysis: Quantitative comparison of efficiencies of immobilized enzyme systems

    DEFF Research Database (Denmark)

    Marpani, Fauziah Binti; Pinelo, Manuel; Meyer, Anne S.

    2017-01-01

    A designed biocatalytic cascade system based on reverse enzymatic catalysis by formate dehydrogenase (EC 1.2.1.2), formaldehyde dehydrogenase (EC 1.2.1.46), and alcohol dehydrogenase (EC 1.1.1.1) can convert carbon dioxide (CO2) to methanol (CH3OH) via formation of formic acid (CHOOH......) and formaldehyde (CHOH) during equimolar cofactor oxidation of NADH to NAD+. This reaction is appealing because it represents a double gain: (1) reduction of CO2 and (2) an alternative to fossil fuel based production of CH3OH. The present review evaluates the efficiency of different immobilized enzyme systems...

  9. Studies on the complexes of uranium(IV), thorium(IV) and lanthanum(III) acetates with p-aminobenzoic acid, m-aminobenzoic acid, benzilic acid and phthalic acid

    International Nuclear Information System (INIS)

    Singh, Mangal; Singh, Ajaib

    1979-01-01

    Complexes of acetates of U(IV), Th(IV) and La(III) with the ligands p-aminobenzoic acid, m-aminobenzoic acid, benzilic acid and phthalic acid have been prepared. Colour and chemical analytical data are recorded. They are characterised on the basis of IR and reflectance spectra and magnetic susceptibility data. (M.G.B.)

  10. Isolation, characterization, and mapping of gene encoding dihydrolipoyl succinyltransferase (E2k) of human [alpha]-ketoglutarate dehydrogenase complex

    Energy Technology Data Exchange (ETDEWEB)

    Ali, G.; Cai, Xingang; Sheu, Kwan-Fu R.; Blass, J.P. (Cornell Univ. Medical College, White Plains, NY (United States)); Wasco, W.; Gaston, S.M.; Tanzi, R.E.; Cooper, A.J.L.; Gusella, J.F. (Massachusetts General Hospital, Charleston, MA (United States)); Szabo, P. (Cornell Univ. Medical College, New York, NY (United States))

    1994-03-01

    The authors have isolated and sequenced cDNAs representing the full-length (2987-bp) gene for dihydrolipoyl succinyltransferase (E2k component) of the human [alpha]-ketoglutarate dehydrogenase complex (KHDHC) from a human fetal brain cDNA library. The E2k cDNA was mapped to human chromosome 14 using a somatic cell hybrid panel, and more precisely to band 14q24.3 by in situ hybridization. This cDNA also cross-hybridized to an apparent E2k pseudogene on chromosome 1p31. Northern analysis revealed the E2k gene to be ubiquitously expressed in peripheral tissues and brain. Interestingly, chromosome 14q24.3 has recently been reported to contain gene defects for an early-onset form of familial Alzheimer's disease and for Machado-Joseph disease. Future studies will be necessary to determine whether the E2K gene plays a role in either of these two disorders.

  11. Additive effects of clofibric acid and pyruvate dehydrogenase kinase isoenzyme 4 (PDK4) deficiency on hepatic steatosis in mice fed a high-saturated fat diet

    Science.gov (United States)

    Hwang, Byounghoon; Wu, Pengfei; Harris, Robert A.

    2012-01-01

    SUMMARY Although improving glucose metabolism by inhibition of pyruvate dehydrogenase kinase 4 (PDK4) might prove beneficial in the treatment of type 2 diabetes or diet-induced obesity, it might induce detrimental effects by inhibiting fatty acid oxidation. PPARα agonists are often used to treat dyslipidemia in patients, especially in type 2 diabetes. Combinational treatment with a PDK4 inhibitor and PPARα agonists may prove beneficial. However, PPARα agonists may be less effective in the presence of a PDK4 inhibitor because PPARα agonists induce PDK4 expression. In the present study, the effects of clofibric acid, a PPARα agonist, on blood and liver lipids were determined in wild type and PDK4 knockout mice fed a high fat diet. As expected, treatment of wild type mice with clofibric acid resulted in less body weight gain, smaller epididymal fat pads, greater insulin sensitivity, and lower levels of serum and liver triacylglycerol. Surprisingly, rather than decreasing the effectiveness of clofibric acid, PDK4 deficiency enhanced the beneficial effects of clofibric acid on hepatic steatosis, lowered blood glucose levels, and did not prevent the positive effects of clofibric acid on serum triacylglycerols and free fatty acids. The metabolic effects of clofibric acid are therefore independent of the induction of PDK4 expression. The additive beneficial effects on hepatic steatosis may be due to induction of increased capacity for fatty acid oxidation and partial uncoupling of oxidative phosphorylation by clofibric acid and a reduction in the capacity for fatty acid synthesis by PDK4 deficiency. PMID:22429297

  12. Copper Complexes of Nicotinic-Aromatic Carboxylic Acids as Superoxide Dismutase Mimetics

    Directory of Open Access Journals (Sweden)

    Virapong Prachayasittikul

    2008-12-01

    Full Text Available Nicotinic acid (also known as vitamin B3 is a dietary element essential for physiological and antihyperlipidemic functions. This study reports the synthesis of novel mixed ligand complexes of copper with nicotinic and other select carboxylic acids (phthalic, salicylic and anthranilic acids. The tested copper complexes exhibited superoxide dismutase (SOD mimetic activity and antimicrobial activity against Bacillus subtilis ATCC 6633, with a minimum inhibition concentration of 256 μg/mL. Copper complex of nicotinic-phthalic acids (CuNA/Ph was the most potent with a SOD mimetic activity of IC50 34.42 μM. The SOD activities were observed to correlate well with the theoretical parameters as calculated using density functional theory (DFT at the B3LYP/LANL2DZ level of theory. Interestingly, the SOD activity of the copper complex CuNA/Ph was positively correlated with the electron affinity (EA value. The two quantum chemical parameters, highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO, were shown to be appropriate for understanding the mechanism of the metal complexes as their calculated energies show good correlation with the SOD activity. Moreover, copper complex with the highest SOD activity were shown to possess the lowest HOMO energy. These findings demonstrate a great potential for the development of value-added metallovitamin-based therapeutics.

  13. Stability constant of the lanthanum complex with humic acid

    International Nuclear Information System (INIS)

    Jimenez R, M.; Solache R, M. J.

    2008-01-01

    The work described here is a study on the formation of trivalent lanthanum complex with humic acid. Commercial humic acid was purified and then characterized by various analytical techniques. The stability constant determined by a radiochemical method has a worth of log β La , AHA = 13.6. (Author)

  14. A novel cofactor-binding mode in bacterial IMP dehydrogenases explains inhibitor selectivity.

    Science.gov (United States)

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-02-27

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5'-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD(+), which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD(+) and XMP/NAD(+). In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD(+) adenosine moiety. More importantly, this new NAD(+)-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD(+)-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. A Novel Cofactor-binding Mode in Bacterial IMP Dehydrogenases Explains Inhibitor Selectivity*

    Science.gov (United States)

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R.; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-01-01

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5′-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD+, which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD+ and XMP/NAD+. In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD+ adenosine moiety. More importantly, this new NAD+-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD+-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization. PMID:25572472

  16. Spectrographic investigation of neodymium complexing with hexamethylenediaminetetraacetic acid

    International Nuclear Information System (INIS)

    Kuz'mina, N.P.; Martynenko, L.I.

    1980-01-01

    Complex formation between neodymium and hexamethylenediamine-tetraacetic acid (HMTA, H 2 L) in aqueous solution has been studied by high-resolution spectrography. Formation of NdHL, Hd(HL) 2 3- , Nd(HL) 3 6- complexes has been proved, their values of formation constants (lg Csub(form)) being equal to 5.63+-0.45, 4.20+-0.15, 2.63+-0.15, respectively

  17. Complexation of Pu and Am with fulvic acid under saline condition

    International Nuclear Information System (INIS)

    Nagao, Seiya; Tanaka, Tadao; Ogawa, Hiromichi; Nakaguchi, Yuzuru; Suzuki, Yasuhiro; Hiraki, Keizo

    1999-01-01

    Molecular size distribution of Pu and Am in the presence of groundwater fulvic acid was studied in an ionic medium of artificial seawater by ultrafiltration technique. The 80% of Pu was mainly associated with the fulvic acid having molecular size fraction less than 5,000 daltons. The molecular size distribution of Pu was almost similar with that of fulvic acid. The results indicate that the complexation of Pu depends on the percentage of each molecular size of fulvic acid. On the other hand, 34% and 54% of Am were found in molecular size of more than 0.45 μm and less than 30,000 daltons, respectively. Am was selectively complexed with fulvic acid having molecular size of 30,000-10,000 daltons at seawater condition. (author)

  18. STABILITY OF BINARY COMPLEXES OF L-ASPARTIC ACID IN ...

    African Journals Online (AJOL)

    Preferred Customer

    KEY WORDS: Binary complexes, Stability constants, Aspartic acid, Speciation, Dioxan. INTRODUCTION. 1,4-Dioxan (Dox) is ... It is miscible with water, oils, and most organic solvents, including aromatic .... of mineral acid in metal ion and ligand solutions was determined using the Gran plot method. [28, 29]. To assess the ...

  19. Molybdenum(6) complexing with ethylenediaminedisuccinic acid from PMR spectroscopy data

    International Nuclear Information System (INIS)

    Larchenko, V.E.; Kovaleva, I.B.; Mitrofanova, N.D.; Martynenko, L.I.

    1989-01-01

    Methods of high resolution PMR spectroscopy and pH potentiometry are used to study molybdenum(6) complexing with ethylenediaminedisuccinic acid in aqueous solutions. It is shown that molybdenum(6) interacts with ethylenediaminedisuccinic acid in the narrow range of pH values 4.0-6.5, where MoO 3 H 2 L 2 - and MoO 3 HL 3- complexes with asymmetrical structure are formed. Composition and structure of molybdenum(6) ethylenediaminedisuccinates and ethylenediaminetetraacetates are compared

  20. PMR investigation into complexes of lanthanum and lutetium with ethylenediaminediacetic acid

    International Nuclear Information System (INIS)

    Kostromina, N.A.; Novikova, L.B.

    1975-01-01

    Proton resonance spectra of ethylendiaminediacetic acid (EDDA) and EDDA mixtures with La and Lu as function of pH of solution was studied. Sequence of EDDA (A 2- ) protonation was established; cations H 3 A + and H 4 A 2+ were found; dissociation constants of above mentioned cations were determined. Formation of H 2 LnA 3+ , HLnA 2+ and LnA + complexes in EDDA-Ln (1:1) system was found. Difference in the bonds mobility of lanthanum and lutetium complexes was determined: lanthanum forms complexes with labile, lutetium with non-labile bonds. Information on complexes structure is collected. Acid dissociation constants of protonated complexes of lanthanum with EDDA were determined

  1. The Ferredoxin-Like Proteins HydN and YsaA Enhance Redox Dye-Linked Activity of the Formate Dehydrogenase H Component of the Formate Hydrogenlyase Complex.

    Science.gov (United States)

    Pinske, Constanze

    2018-01-01

    Formate dehydrogenase H (FDH-H) and [NiFe]-hydrogenase 3 (Hyd-3) form the catalytic components of the hydrogen-producing formate hydrogenlyase (FHL) complex, which disproportionates formate to H 2 and CO 2 during mixed acid fermentation in enterobacteria. FHL comprises minimally seven proteins and little is understood about how this complex is assembled. Early studies identified a ferredoxin-like protein, HydN, as being involved in FDH-H assembly into the FHL complex. In order to understand how FDH-H and its small subunit HycB, which is also a ferredoxin-like protein, attach to the FHL complex, the possible roles of HydN and its paralogue, YsaA, in FHL complex stability and assembly were investigated. Deletion of the hycB gene reduced redox dye-mediated FDH-H activity to approximately 10%, abolished FHL-dependent H 2 -production, and reduced Hyd-3 activity. These data are consistent with HycB being an essential electron transfer component of the FHL complex. The FDH-H activity of the hydN and the ysaA deletion strains was reduced to 59 and 57% of the parental, while the double deletion reduced activity of FDH-H to 28% and the triple deletion with hycB to 1%. Remarkably, and in contrast to the hycB deletion, the absence of HydN and YsaA was without significant effect on FHL-dependent H 2 -production or total Hyd-3 activity; FDH-H protein levels were also unaltered. This is the first description of a phenotype for the E. coli ysaA deletion strain and identifies it as a novel factor required for optimal redox dye-linked FDH-H activity. A ysaA deletion strain could be complemented for FDH-H activity by hydN and ysaA , but the hydN deletion strain could not be complemented. Introduction of these plasmids did not affect H 2 production. Bacterial two-hybrid interactions showed that YsaA, HydN, and HycB interact with each other and with the FDH-H protein. Further novel anaerobic cross-interactions of 10 ferredoxin-like proteins in E. coli were also discovered and described

  2. Aromatic Amino Acids-Guanidinium Complexes through Cation-π Interactions

    Directory of Open Access Journals (Sweden)

    Cristina Trujillo

    2015-05-01

    Full Text Available Continuing with our interest in the guanidinium group and the different interactions than can establish, we have carried out a theoretical study of the complexes formed by this cation and the aromatic amino acids (phenylalanine, histidine, tryptophan and tyrosine using DFT methods and PCM-water solvation. Both hydrogen bonds and cation-π interactions have been found upon complexation. These interactions have been characterized by means of the analysis of the molecular electron density using the Atoms-in-Molecules approach as well as the orbital interactions using the Natural Bond Orbital methodology. Finally, the effect that the cation-π and hydrogen bond interactions exert on the aromaticity of the corresponding amino acids has been evaluated by calculating the theoretical NICS values, finding that the aromatic character was not heavily modified upon complexation.

  3. Mutations in ALDH6A1 encoding methylmalonate semialdehyde dehydrogenase are associated with dysmyelination and transient methylmalonic aciduria

    NARCIS (Netherlands)

    Marcadier, Julien L.; Smith, Amanda M.; Pohl, Daniela; Schwartzentruber, Jeremy; Al-Dirbashi, Osama Y.; Majewski, Jacek; Ferdinandusse, Sacha; Wanders, Ronald J. A.; Bulman, Dennis E.; Boycott, Kym M.; Chakraborty, Pranesh; Geraghty, Michael T.; Boycott, Kym; Friedman, Jan; Michaud, Jacques; Bernier, Francois; Brudno, Michael; Fernandez, Bridget; Knoppers, Bartha; Samuels, Mark; Scherer, Steve

    2013-01-01

    Methylmalonate semialdehyde dehydrogenase (MMSDH) deficiency is a rare autosomal recessive disorder with varied metabolite abnormalities, including accumulation of 3-hydroxyisobutyric, 3-hydroxypropionic, 3-aminoisobutyric and methylmalonic acids, as well as β-alanine. Existing reports describe a

  4. PURIFICATION AND CHARACTERIZATION OF AN OXYGEN-LABILE, NAD-DEPENDENT ALCOHOL-DEHYDROGENASE FROM DESULFOVIBRIO-GIGAS

    NARCIS (Netherlands)

    HENSGENS, CMH; VONCK, J; VANBEEUMEN, J; VANBRUGGEN, EFJ; HANSEN, TA

    A NAD-dependent, oxygen-labile alcohol dehydrogenase was purified from Desulfovibrio gigas. It was decameric, with subunits of M(r) 43,000. The best substrates were ethanol (K(m), 0.15 mM) and 1-propanol (K(m), 0.28 mM). N-terminal amino acid sequence analysis showed that the enzyme belongs to the

  5. Potentiometric studies on ternary complexes involving some divalent transition metal ions, gallic acid and biologically abundant aliphatic dicarboxylic acids in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Abdelatty Mohamed Radalla

    2015-06-01

    Full Text Available Formation of binary and ternary complexes of the divalent transition metal ions, Cu2+, Ni2+, Co2+ and Zn2+ with gallic acid and the biologically important aliphatic dicarboxylic acids (adipic, succinic, malic, malonic, maleic, tartaric and oxalic acids were investigated by means of the potentiometric technique at 25 °C and I = 0.10 mol dm−3 NaNO3. The acid-base properties of the ligands were investigated and discussed. The acidity constants of gallic acid and aliphatic dicarboxylic acids were determined and used for determining the stability constants of the binary and ternary complexes formed in the aqueous medium under the above experimental conditions. The formation of the different 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes are inferred from the corresponding potentiometric pH-metric titration curves. The ternary complex formation was found to occur in a stepwise manner. The stability constants of these binary and ternary systems were calculated. The values of Δ log K, percentage of relative stabilization (%R.S. and log X were evaluated and discussed. The concentration distribution of the various complex species formed in solution was evaluated and discussed. The mode of chelation of ternary complexes formed was ascertained by conductivity measurements.

  6. Lactate dehydrogenase activity is inhibited by methylmalonate in vitro.

    Science.gov (United States)

    Saad, Laura O; Mirandola, Sandra R; Maciel, Evelise N; Castilho, Roger F

    2006-04-01

    Methylmalonic acidemia (MMAemia) is an inherited metabolic disorder of branched amino acid and odd-chain fatty acid metabolism, involving a defect in the conversion of methylmalonyl-coenzyme A to succinyl-coenzyme A. Systemic and neurological manifestations in this disease are thought to be associated with the accumulation of methylmalonate (MMA) in tissues and biological fluids with consequent impairment of energy metabolism and oxidative stress. In the present work we studied the effect of MMA and two other inhibitors of mitochondrial respiratory chain complex II (malonate and 3-nitropropionate) on the activity of lactate dehydrogenase (LDH) in tissue homogenates from adult rats. MMA potently inhibited LDH-catalyzed conversion of lactate to pyruvate in liver and brain homogenates as well as in a purified bovine heart LDH preparation. LDH was about one order of magnitude less sensitive to inhibition by MMA when catalyzing the conversion of pyruvate to lactate. Kinetic studies on the inhibition of brain LDH indicated that MMA inhibits this enzyme competitively with lactate as a substrate (K (i)=3.02+/-0.59 mM). Malonate and 3-nitropropionate also strongly inhibited LDH-catalyzed conversion of lactate to pyruvate in brain homogenates, while no inhibition was observed by succinate or propionate, when present in concentrations of up to 25 mM. We propose that inhibition of the lactate/pyruvate conversion by MMA contributes to lactate accumulation in blood, metabolic acidemia and inhibition of gluconeogenesis observed in patients with MMAemia. Moreover, the inhibition of LDH in the central nervous system may also impair the lactate shuttle between astrocytes and neurons, compromising neuronal energy metabolism.

  7. Mixed metal complexes of isoniazid and ascorbic acid: chelation ...

    African Journals Online (AJOL)

    Novel mixed complexes of isoniazid and ascorbic acid have been synthesized and characterized using infrared, electronic absorption data, elemental analysis, molar conductivity, melting point, thin layer chromatography and solubility. The metal ions involved in the complex formation are Cu2+, Zn2+ and Cd2+. The melting ...

  8. Complex Pharmacology of Free Fatty Acid Receptors

    DEFF Research Database (Denmark)

    Milligan, Graeme; Shimpukade, Bharat; Ulven, Trond

    2017-01-01

    pharmacology have shaped understanding of the complex pharmacology of receptors that recognize and are activated by nonesterified or "free" fatty acids (FFAs). The FFA family of receptors is a recently deorphanized set of GPCRs, the members of which are now receiving substantial interest as novel targets...

  9. A new approach to study cadmium complexes with oxalic acid in soil solution.

    Science.gov (United States)

    Dytrtová, Jana Jaklová; Jakl, Michal; Sestáková, Ivana; Zins, Emilie-Laure; Schröder, Detlef; Navrátil, Tomáš

    2011-05-05

    This study presents a new analytical approach for the determination of heavy metals complexed to low-molecular-weight-organic acids in soil solutions, which combines the sensitivity of differential pulse anodic stripping voltammetry (DPASV) with the molecular insight gained by electrospray ionization mass spectrometry (ESI-MS). The combination of these analytical methods allows the investigation of such complexes in complex matrixes. On the voltammograms of the soil solutions, in addition to the expected complexes of oxalic acid with cadmium and lead, respectively, also peaks belonging to mixed complexes of cadmium, lead, and oxalic acid (OAH(2)) were observed. In order to verify the possible formation of complexes with OAH(2), aqueous solutions of OAH(2) with traces of Cd(II) were investigated as model systems. Signals corresponding to several distinct molecular complexes between cadmium and oxalic acid were detected in the model solutions using negative-ion ESI-MS, which follow the general formula [Cd(n)(X,Y)((2n+1))](-), where n is the number of cadmium atoms, X=Cl(-), and Y=OAH(-). Some of these complexes were also identified in the ESI mass spectra taken from the soil solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. A new approach to study cadmium complexes with oxalic acid in soil solution

    International Nuclear Information System (INIS)

    Jaklova Dytrtova, Jana; Jakl, Michal; Sestakova, Ivana; Zins, Emilie-Laure; Schroeder, Detlef; Navratil, Tomas

    2011-01-01

    This study presents a new analytical approach for the determination of heavy metals complexed to low-molecular-weight-organic acids in soil solutions, which combines the sensitivity of differential pulse anodic stripping voltammetry (DPASV) with the molecular insight gained by electrospray ionization mass spectrometry (ESI-MS). The combination of these analytical methods allows the investigation of such complexes in complex matrixes. On the voltammograms of the soil solutions, in addition to the expected complexes of oxalic acid with cadmium and lead, respectively, also peaks belonging to mixed complexes of cadmium, lead, and oxalic acid (OAH 2 ) were observed. In order to verify the possible formation of complexes with OAH 2 , aqueous solutions of OAH 2 with traces of Cd(II) were investigated as model systems. Signals corresponding to several distinct molecular complexes between cadmium and oxalic acid were detected in the model solutions using negative-ion ESI-MS, which follow the general formula [Cd n (X,Y) (2n+1) ] - , where n is the number of cadmium atoms, X = Cl - , and Y = OAH - . Some of these complexes were also identified in the ESI mass spectra taken from the soil solutions.

  11. A new approach to study cadmium complexes with oxalic acid in soil solution

    Energy Technology Data Exchange (ETDEWEB)

    Jaklova Dytrtova, Jana, E-mail: dytrtova@uochb.cas.cz [Institute of Organic Chemistry and Biochemistry of the AS CR, v.v.i., Flemingovo namesti 2, 16610 Prague 6 (Czech Republic); Jakl, Michal [Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 16521 Prague - Suchdol (Czech Republic); Sestakova, Ivana [J. Heyrovsky Institute of Physical Chemistry of the AS CR, v.v.i., Dolejskova 3, 182 23 Prague 8 (Czech Republic); Zins, Emilie-Laure; Schroeder, Detlef [Institute of Organic Chemistry and Biochemistry of the AS CR, v.v.i., Flemingovo namesti 2, 16610 Prague 6 (Czech Republic); Navratil, Tomas [J. Heyrovsky Institute of Physical Chemistry of the AS CR, v.v.i., Dolejskova 3, 182 23 Prague 8 (Czech Republic)

    2011-05-05

    This study presents a new analytical approach for the determination of heavy metals complexed to low-molecular-weight-organic acids in soil solutions, which combines the sensitivity of differential pulse anodic stripping voltammetry (DPASV) with the molecular insight gained by electrospray ionization mass spectrometry (ESI-MS). The combination of these analytical methods allows the investigation of such complexes in complex matrixes. On the voltammograms of the soil solutions, in addition to the expected complexes of oxalic acid with cadmium and lead, respectively, also peaks belonging to mixed complexes of cadmium, lead, and oxalic acid (OAH{sub 2}) were observed. In order to verify the possible formation of complexes with OAH{sub 2}, aqueous solutions of OAH{sub 2} with traces of Cd(II) were investigated as model systems. Signals corresponding to several distinct molecular complexes between cadmium and oxalic acid were detected in the model solutions using negative-ion ESI-MS, which follow the general formula [Cd{sub n}(X,Y){sub (2n+1)}]{sup -}, where n is the number of cadmium atoms, X = Cl{sup -}, and Y = OAH{sup -}. Some of these complexes were also identified in the ESI mass spectra taken from the soil solutions.

  12. Very long-chain acyl-coenzyme A dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    A. V. Degtyareva

    2014-01-01

    Full Text Available The paper describes a case of a baby with a severe infant form of very long-chain acyl-coenzyme A dehydrogenase deficiency, a very rare genetic disorder. The basis for the disease is a disorder of mitochondrial β-oxidation of long-chain fatty acids. Accumulation of acyl-CoA-derived fatty acids causes a toxic effect on the myocardium and cardiac conduction system, liver, skeletal muscles, and other organs. The development of hypoglycemia is typical. Treatment in the acute period involves the immediately ceased delivery of long-chain triglycerides, the provision of the body with medium-chain triglycerides, and the correction of glycemia. In our observation the baby was born at term with a satisfactory condition in a family with a poor history (the first baby had suddenly died at the age of 3,5 months. The disease manifested itself as bradyarrhythmia and cardiac arrest on day 2 of life. The clinical symptom complex also included hepatomegalia, hypoglycemic episodes, lactate acidosis, and elevated blood levels of cytolytic enzymes and creatine phosphokinase. The diagnosis was suspected on the basis of the high blood values of acylcarnitines (primarily C14:1 and verified by a molecular genetic examination. Syndrome therapy and dietotherapy resulted in the abolishment of the abnormality. At the age of 2 years of life, the infant’s physical, motor, mental, and speech development corresponded to his age although he had mild right-sided hemiparesis. Thus, timely therapy determines the favorable prognosis of the disease even in its severe infant forms. 

  13. Distribution, industrial applications, and enzymatic synthesis of D-amino acids.

    Science.gov (United States)

    Gao, Xiuzhen; Ma, Qinyuan; Zhu, Hailiang

    2015-04-01

    D-Amino acids exist widely in microbes, plants, animals, and food and can be applied in pharmaceutical, food, and cosmetics. Because of their widespread applications in industry, D-amino acids have recently received more and more attention. Enzymes including D-hydantoinase, N-acyl-D-amino acid amidohydrolase, D-amino acid amidase, D-aminopeptidase, D-peptidase, L-amino acid oxidase, D-amino acid aminotransferase, and D-amino acid dehydrogenase can be used for D-amino acids synthesis by kinetic resolution or asymmetric amination. In this review, the distribution, industrial applications, and enzymatic synthesis methods are summarized. And, among all the current enzymatic methods, D-amino acid dehydrogenase method not only produces D-amino acid by a one-step reaction but also takes environment and atom economics into consideration; therefore, it is deserved to be paid more attention.

  14. Additive effects of clofibric acid and pyruvate dehydrogenase kinase isoenzyme 4 (PDK4) deficiency on hepatic steatosis in mice fed a high saturated fat diet.

    Science.gov (United States)

    Hwang, Byounghoon; Wu, Pengfei; Harris, Robert A

    2012-05-01

    Although improving glucose metabolism by inhibition of pyruvate dehydrogenase kinase 4 (PDK4) may prove beneficial in the treatment of type 2 diabetes or diet-induced obesity, it may have detrimental effects by inhibiting fatty acid oxidation. Peroxisome proliferator-activated receptor α (PPARα) agonists are often used to treat dyslipidemia in patients, especially in type 2 diabetes. Combinational treatment using a PDK4 inhibitor and PPARα agonists may prove beneficial. However, PPARα agonists may be less effective in the presence of a PDK4 inhibitor because PPARα agonists induce PDK4 expression. In the present study, the effects of clofibric acid, a PPARα agonist, on blood and liver lipids were determined in wild-type and PDK4 knockout mice fed a high-fat diet. As expected, treatment of wild-type mice with clofibric acid resulted in less body weight gain, smaller epididymal fat pads, greater insulin sensitivity, and lower levels of serum and liver triacylglycerol. Surprisingly, rather than decreasing the effectiveness of clofibric acid, PDK4 deficiency enhanced the beneficial effects of clofibric acid on hepatic steatosis, reduced blood glucose levels, and did not prevent the positive effects of clofibric acid on serum triacylglycerols and free fatty acids. The metabolic effects of clofibric acid are therefore independent of the induction of PDK4 expression. The additive beneficial effects on hepatic steatosis may be due to induction of increased capacity for fatty acid oxidation and partial uncoupling of oxidative phosphorylation by clofibric acid, and a reduction in the capacity for fatty acid synthesis as a result of PDK4 deficiency. Journal compilation © 2012 FEBS. No claim to original US government works.

  15. Electron transfer between a quinohemoprotein alcohol dehydrogenase and an electrode via a redox polymer network

    NARCIS (Netherlands)

    Stigter, E.C.A.; Jong, G.A.H. de; Jongejan, J.A.; Duine, J.A.; Lugt, J.P. van der; Somers, W.A.C.

    1996-01-01

    A quinohemoprotein alcohol dehydrogenase (QH-EDH) from Comamonas testosteroni was immobilized on an electrode in a redox polymer network consisting of a polyvinylpyridine partially N-complexed with osmiumbis-(bipyridine)chloride. The enzyme effectively transfers electrons to the electrode via the

  16. Crystallization and preliminary crystallographic analysis of Gre2p, an NADP+-dependent alcohol dehydrogenase from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Breicha, Klaus; Müller, Marion; Hummel, Werner; Niefind, Karsten

    2010-01-01

    The alcohol dehydrogenase Gre2p from S. cerevisiae catalyses the stereospecific reduction of a variety of different keto compounds and can therefore be applied as a valuable biocatalyst. The crystallization of the complex of Gre2p with NADP + and its preliminary X-ray analysis are described. Gre2p [Genes de respuesta a estres (stress-response gene)] from Saccharomyces cerevisiae is a monomeric enzyme of 342 amino acids with a molecular weight of 38.1 kDa. The enzyme catalyses both the stereospecific reduction of keto compounds and the oxidation of various hydroxy compounds and alcohols by the simultaneous consumption of the cofactor NADPH and formation of NADP + . Crystals of a Gre2p complex with NADP + were grown using PEG 8000 as a precipitant. They belong to the monoclinic space group P2 1 . The current diffraction resolution is 3.2 Å. In spite of the monomeric nature of Gre2p in solution, packing and self-rotation calculations revealed the existence of two Gre2p protomers per asymmetric unit related by a twofold noncrystallographic axis

  17. Complex formation of calcium with humic acid and polyacrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kirishima, A.; Tanaka, K.; Niibori, Y.; Tochiyama, O. [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku Univ., Sendai (Japan)

    2002-07-01

    In order to understand the migration behavior of radionuclides in the underground, it is also important to estimate the effect of the competing cations originally present in the groundwater. In this connection, the complexation of Ca(II) with Aldrich humic acid has been examined. For the study at trace concentrations ({proportional_to} 10{sup -10} M) of Ca(II), the solvent extraction of {sup 45}Ca with TTA and TOPO in cyclohexane has been used. At macro concentrations (10{sup -4} M) of Ca(II), the measurement of the free Ca{sup 2+} ion concentration with a calcium selective electrode has been conducted. To estimate the polyelectrolyte effect of humic acid separately from its heterogeneous composition effect, polyacrylic acid ([-CH{sub 2}CH(COOH)-]{sub n}) has been selected as a representative of the homogeneous polymeric weak acids and its complexation with Ca(II) has also been examined. The values of log {beta}{sub {alpha}} have been obtained at pH 5 {proportional_to} 7 in 0.1, 0.4 and 1.0 M NaCl, where {beta}{sub {alpha}} is the apparent formation constants defined by {beta}{sub {alpha}} = [ML]/([M][R]). In this definition, [ML] and [M] are the concentrations of bound and free Ca{sup 2+} respectively, [R] is the concentration of dissociated proton exchanging sites. log {beta}{sub {alpha}} of humate decreases from 2.19 {proportional_to} 2.92 (depending on pH and ionic strength 1.0 < I < 0.4) at pCa = 10 to 1.98 {proportional_to} 2.44 at pCa = 4, while the variation of pCa has no appreciable influence on the log {beta}{sub {alpha}} of polyacrylate (1.36 {proportional_to} 3.24 for I = 0.1 {proportional_to} 1.0). For both humate and polyacrylate, log {beta}{sub {alpha}} decreases linearly with log[Na{sup +}], where [Na{sup +}] is the bulk concentration of sodium ion. Their dependences of log {beta}{sub {alpha}} on ionic strength are stronger than those of log {beta} of monomeric carboxylates such as oxalate and EDTA, indicating the large electrostatic effect of

  18. 3d-METAL COMPLEXES WITH BARBITURIC ACID DERIVATIVES

    Directory of Open Access Journals (Sweden)

    T. V. Koksharova

    2015-04-01

    Full Text Available The various aspects of the 3d-metal complexes with barbiturates and uric acid chemistry such as composition, structure, physicochemical properties, possible fields of application – have been illustrated in this review

  19. A case of pyruvate dehydrogenase deficiency with low density areas in white matter noticed by CT scan

    International Nuclear Information System (INIS)

    Kimura, Akiko; Kyoya, Seizo; Matsushima, Akihiro; Irimichi, Hideki; Koike, Yoshiko.

    1985-01-01

    The patient was a 4-month-old boy, the first child of healthy, non-consanguineous patient. He was mildly asphyxiated at birth and developed severe convulsions at two days of age. At 4 months of age, he was referred to us because of infantile spasms and motor retardation. The EEG showed hypsarhythmia, ACTH and anticonvulsants were started, but his seizures were not controlled completely. At 8 months of age, the CT scan demonstrated a cerebral atrophy with enlarged ventricles and a diffuse low density of cerebral white matter, and lactic acidosis was first noticed. The glucose, glucagon, fructose, and alanine tolerance tests revealed almost normal responses in blood glucose levels and elevation of lactate levels above the initial value. Enzyme studies revealed a severe deficiency of pyruvate dehydrogenase complex and pyruvate dehydrogenase (E 1 ), and a normal activity of pyruvate carboxylase in liver obtained by biopsy. In biopsied muscle, mitochondria appeared normal. Treatment with thiamine, lipoic acid and anticonvulsants was not effective. The clinical picture of PDC deficiency has been correlated with the amount of the residual activity, and this case confirmed to the ''severe'' category. Several pathologic entities may be associated with PDHC deficiency, and CT findings in our case demonstrated the demyelinating condition. The precise relationship between the defect and the pathogenesis remains to be elucidated. (author)

  20. Regulation of Muscle Pyruvate Dehydrogenase Complex in Insulin Resistance: Effects of Exercise and Dichloroacetate

    Directory of Open Access Journals (Sweden)

    Dumitru Constantin-Teodosiu

    2013-10-01

    Full Text Available Since the mitochondrial pyruvate dehydrogenase complex (PDC controls the rate of carbohydrate oxidation, impairment of PDC activity mediated by high-fat intake has been advocated as a causative factor for the skeletal muscle insulin resistance, metabolic syndrome, and the onset of type 2 diabetes (T2D. There are also situations where muscle insulin resistance can occur independently from high-fat dietary intake such as sepsis, inflammation, or drug administration though they all may share the same underlying mechanism, i.e., via activation of forkhead box family of transcription factors, and to a lower extent via peroxisome proliferator-activated receptors. The main feature of T2D is a chronic elevation in blood glucose levels. Chronic systemic hyperglycaemia is toxic and can lead to cellular dysfunction that may become irreversible over time due to deterioration of the pericyte cell's ability to provide vascular stability and control to endothelial proliferation. Therefore, it may not be surprising that T2D's complications are mainly macrovascular and microvascular related, i.e., neuropathy, retinopathy, nephropathy, coronary artery, and peripheral vascular diseases. However, life style intervention such as exercise, which is the most potent physiological activator of muscle PDC, along with pharmacological intervention such as administration of dichloroacetate or L-carnitine can prove to be viable strategies for treating muscle insulin resistance in obesity and T2D as they can potentially restore whole body glucose disposal.

  1. Simultaneous demonstration of acid phosphatase and glucose-6-phosphate dehydrogenase in mouse hepatocytes. A novel electron-microscopic dual staining enzyme-cytochemistry

    Directory of Open Access Journals (Sweden)

    S Matsubara

    2010-01-01

    Full Text Available Acid phosphatase (ACPase and glucose-6-phosphate dehydrogenase (G6PD play important roles in cell biology/disease pathophysiology in various organs including the liver. The purpose of the present report is to introduce a new enzymecytochemical method to simultaneously demonstrate the subcellular localization of ACPase and G6PD within the same hepatocyte in the mouse liver. The ultrastructural localization of ACPase and G6PD were demonstrated, with concomitant use of the cerium method and the copper-ferrocyanide method, respectively. ACPase labelings were localized in the lysosomes, and G6PD labelings were visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of the hepatocyte. This novel double staining procedure may be a useful histochemical tool for the study of liver functions in both physiological and pathological conditions.

  2. Sequence of the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Nicotiana plumbaginifolia and phylogenetic origin of the gene family.

    Science.gov (United States)

    Habenicht, A; Quesada, A; Cerff, R

    1997-10-01

    A cDNA-library has been constructed from Nicotiana plumbaginifolia seedlings, and the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GapN, EC 1.2.1.9) was isolated by plaque hybridization using the cDNA from pea as a heterologous probe. The cDNA comprises the entire GapN coding region. A putative polyadenylation signal is identified. Phylogenetic analysis based on the deduced amino acid sequences revealed that the GapN gene family represents a separate ancient branch within the aldehyde dehydrogenase superfamily. It can be shown that the GapN gene family and other distinct branches of the superfamily have its phylogenetic origin before the separation of primary life-forms. This further demonstrates that already very early in evolution, a broad diversification of the aldehyde dehydrogenases led to the formation of the superfamily.

  3. [Effects of Light Near-Infrared Radiation on Rats Assessed by Succinate Dehydrogenase Activity in Lymphocytes on Blood Smears].

    Science.gov (United States)

    Khunderyakova, N V; Zakharchenko, A V; Zakharchenko, M V; Muller, H; Fedotcheva, I; Kondrashova, M N

    2015-01-01

    Biological effects of light near infrared radiation (850 nm), with modulation acoustic frequency of 101 Hz, was studied. The study was conducted on rats, the effect was recorded by succinate dehydrogenase activity in lymphocytes on the blood smear after administration of the activating dose of adrenaline, which simulates the state of the organism in the early stages of the pathogenic effects (stress). A pronounced regulating effect of infrared radiation on the activity of succinate dehydrogenase in animals activated by adrenaline was shown. Infrared radiation has a normalizing effect reducing the degree of inhibition or activation of the enzyme induced by adrenaline and had no effect on the control animals. Thus, by modulating the activity of succinate dehydrogenase infrared radiation regulates energy production in the mitochondria supported by the most powerful oxidation substrate--succinic acid, which is especially pronounced under stress.

  4. Enhancement of L-3-hydroxybutyryl-CoA dehydrogenase activity and circulating ketone body levels by pantethine. Relevance to dopaminergic injury.

    Science.gov (United States)

    Cornille, Emilie; Abou-Hamdan, Mhamad; Khrestchatisky, Michel; Nieoullon, André; de Reggi, Max; Gharib, Bouchra

    2010-04-23

    The administration of the ketone bodies hydroxybutyrate and acetoacetate is known to exert a protective effect against metabolic disorders associated with cerebral pathologies. This suggests that the enhancement of their endogenous production might be a rational therapeutic approach. Ketone bodies are generated by fatty acid beta-oxidation, a process involving a mitochondrial oxido-reductase superfamily, with fatty acid-CoA thioesters as substrates. In this report, emphasis is on the penultimate step of the process, i.e. L-3-hydroxybutyryl-CoA dehydrogenase activity. We determined changes in enzyme activity and in circulating ketone body levels in the MPTP mouse model of Parkinson's disease. Since the active moiety of CoA is pantetheine, mice were treated with pantethine, its naturally-occurring form. Pantethine has the advantage of being known as an anti-inflammatory and hypolipidemic agent with very few side effects. We found that dehydrogenase activity and circulating ketone body levels were drastically reduced by the neurotoxin MPTP, whereas treatment with pantethine overcame these adverse effects. Pantethine prevented dopaminergic neuron loss and motility disorders. In vivo and in vitro experiments showed that the protection was associated with enhancement of glutathione (GSH) production as well as restoration of respiratory chain complex I activity and mitochondrial ATP levels. Remarkably, pantethine treatment boosted the circulating ketone body levels in MPTP-intoxicated mice, but not in normal animals. These finding demonstrate the feasibility of the enhancement of endogenous ketone body production and provide a promising therapeutic approach to Parkinson's disease as well as, conceivably, to other neurodegenerative disorders.

  5. Enhancement of L-3-hydroxybutyryl-CoA dehydrogenase activity and circulating ketone body levels by pantethine. Relevance to dopaminergic injury

    Directory of Open Access Journals (Sweden)

    de Reggi Max

    2010-04-01

    Full Text Available Abstract Background The administration of the ketone bodies hydroxybutyrate and acetoacetate is known to exert a protective effect against metabolic disorders associated with cerebral pathologies. This suggests that the enhancement of their endogenous production might be a rational therapeutic approach. Ketone bodies are generated by fatty acid beta-oxidation, a process involving a mitochondrial oxido-reductase superfamily, with fatty acid-CoA thioesters as substrates. In this report, emphasis is on the penultimate step of the process, i.e. L-3-hydroxybutyryl-CoA dehydrogenase activity. We determined changes in enzyme activity and in circulating ketone body levels in the MPTP mouse model of Parkinson's disease. Since the active moiety of CoA is pantetheine, mice were treated with pantethine, its naturally-occurring form. Pantethine has the advantage of being known as an anti-inflammatory and hypolipidemic agent with very few side effects. Results We found that dehydrogenase activity and circulating ketone body levels were drastically reduced by the neurotoxin MPTP, whereas treatment with pantethine overcame these adverse effects. Pantethine prevented dopaminergic neuron loss and motility disorders. In vivo and in vitro experiments showed that the protection was associated with enhancement of glutathione (GSH production as well as restoration of respiratory chain complex I activity and mitochondrial ATP levels. Remarkably, pantethine treatment boosted the circulating ketone body levels in MPTP-intoxicated mice, but not in normal animals. Conclusions These finding demonstrate the feasibility of the enhancement of endogenous ketone body production and provide a promising therapeutic approach to Parkinson's disease as well as, conceivably, to other neurodegenerative disorders.

  6. Moessbauer and EPR studies on iron-dihydroxybenzoic acid and iron-itoic acid chelate complexes

    International Nuclear Information System (INIS)

    Bagyinka, Cs.; Horvath, L.I.; Keszthelyi, L.

    1984-01-01

    Low molecular weight iron-dihydroxybenzoic acid and iron-itoic acid complexes were investigated by Moessbauer and EPR spectroscopy. In strong acidic medium the iron is chelated in high spin ferrous form. By varying the pH of the medium a (S=2)Fesup(2+)→(S=5/2)Fesup(3+) transition was found with a midpoint pH value of 4. From the g'-tensor anisotropy it is concluded that the metal atom is coordinated by six oxygen atoms in rhombically distorted octahedral configuration. The biological significance of these structural data is briefly discussed. (author)

  7. Cofactor specificity switch in Shikimate dehydrogenase by rational design and consensus engineering.

    Science.gov (United States)

    García-Guevara, Fernando; Bravo, Iris; Martínez-Anaya, Claudia; Segovia, Lorenzo

    2017-08-01

    Consensus engineering has been used to design more stable variants using the most frequent amino acid at each site of a multiple sequence alignment; sometimes consensus engineering modifies function, but efforts have mainly been focused on studying stability. Here we constructed a consensus Rossmann domain for the Shikimate dehydrogenase enzyme; separately we decided to switch the cofactor specificity through rational design in the Escherichia coli Shikimate dehydrogenase enzyme and then analyzed the effect of consensus mutations on top of our design. We found that consensus mutations closest to the 2' adenine moiety increased the activity in our design. Consensus engineering has been shown to result in more stable proteins and our findings suggest it could also be used as a complementary tool for increasing or modifying enzyme activity during design. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Isolation and characterization of two cDNA clones encoding for glutamate dehydrogenase in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Ficarelli, A; Tassi, F; Restivo, F M

    1999-03-01

    We have isolated two full length cDNA clones encoding Nicotiana plumbaginifolia NADH-glutamate dehydrogenase. Both clones share amino acid boxes of homology corresponding to conserved GDH catalytic domains and putative mitochondrial targeting sequence. One clone shows a putative EF-hand loop. The level of the two transcripts is affected differently by carbon source.

  9. Scandium and zirconium ion complexing with salicylic acid

    International Nuclear Information System (INIS)

    Fadeeva, V.I.; Kochetkova, S.K.

    1979-01-01

    A study has been made of the extraction of complexes containing scandium and zirconium compounds and salicylic acid by using benzene, nitrobenzene, chloroform and isoamyl alcohol. It is shown that in the metal concentration range 10 -5 -10 -3 mole/l scandium forms mononuclear complexes composed of Sc(HSal) 3 (pH 2 (pH>4), zirconium - polynuclear complexes Zrsub(x)(OH)sub(y)(HSal)sub(n), where the x:n ratio varies from 0.5 to 1.5. Stability constants have been calculated for the salicylate scandium complexes in aqueous solution, equal to β 1 =(3+-1)x10 2 ; β 2 =(5.0+-0.6)x10 4 ; β 3 =(5.3+-0.3)x10 6

  10. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass.

    Science.gov (United States)

    Spinelli, Jessica B; Yoon, Haejin; Ringel, Alison E; Jeanfavre, Sarah; Clish, Clary B; Haigis, Marcia C

    2017-11-17

    Ammonia is a ubiquitous by-product of cellular metabolism; however, the biological consequences of ammonia production are not fully understood, especially in cancer. We found that ammonia is not merely a toxic waste product but is recycled into central amino acid metabolism to maximize nitrogen utilization. In our experiments, human breast cancer cells primarily assimilated ammonia through reductive amination catalyzed by glutamate dehydrogenase (GDH); secondary reactions enabled other amino acids, such as proline and aspartate, to directly acquire this nitrogen. Metabolic recycling of ammonia accelerated proliferation of breast cancer. In mice, ammonia accumulated in the tumor microenvironment and was used directly to generate amino acids through GDH activity. These data show that ammonia is not only a secreted waste product but also a fundamental nitrogen source that can support tumor biomass. Copyright © 2017, American Association for the Advancement of Science.

  11. Novel one-pot synthesis of dicarboxylic acids mediated alginate-zirconium biopolymeric complex for defluoridation of water.

    Science.gov (United States)

    Prabhu, Subbaiah Muthu; Meenakshi, Sankaran

    2015-04-20

    The present investigation explains the fluoride removal from aqueous solution using alginate-zirconium complex prepared with respective dicarboxylic acids like oxalic acid (Ox), malonic acid (MA) and succinic acid (SA) as a medium. The complexes viz., alginate-oxalic acid-zirconium (Alg-Ox-Zr), alginate-malonic acid-zirconium (Alg-MA-Zr) and alginate-succinic acid-zirconium (Alg-SA-Zr) were synthesized and studied for fluoride removal. The synthesized complexes were characterized by FTIR, XRD, SEM with EDAX and mapping images. The effects of various operating parameters were optimized. The result showed that the maximum removal of fluoride 9653mgF(-)/kg was achieved by Alg-Ox-Zr complex at acidic pH in an ambient atmospheric condition. Equilibrium data of Alg-Ox-Zr complex was fitted well with Freundlich isotherm. The calculated values of thermodynamic parameters indicated that the fluoride adsorption is spontaneous and endothermic in nature. The mechanism of fluoride removal behind Alg-Ox-Zr complex has been proposed in detail. The suitability of the Alg-Ox-Zr complex has been tested with the field sample collected in a nearby fluoride endemic area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4 defines a new subtype of D-bifunctional protein deficiency

    Directory of Open Access Journals (Sweden)

    McMillan Hugh J

    2012-11-01

    Full Text Available Abstract Background D-bifunctional protein (DBP deficiency is typically apparent within the first month of life with most infants demonstrating hypotonia, psychomotor delay and seizures. Few children survive beyond two years of age. Among patients with prolonged survival all demonstrate severe gross motor delay, absent language development, and severe hearing and visual impairment. DBP contains three catalytically active domains; an N-terminal dehydrogenase, a central hydratase and a C-terminal sterol carrier protein-2-like domain. Three subtypes of the disease are identified based upon the domain affected; DBP type I results from a combined deficiency of dehydrogenase and hydratase activity; DBP type II from isolated hydratase deficiency and DBP type III from isolated dehydrogenase deficiency. Here we report two brothers (16½ and 14 years old with DBP deficiency characterized by normal early childhood followed by sensorineural hearing loss, progressive cerebellar and sensory ataxia and subclinical retinitis pigmentosa. Methods and results Biochemical analysis revealed normal levels of plasma VLCFA, phytanic acid and pristanic acid, and normal bile acids in urine; based on these results no diagnosis was made. Exome analysis was performed using the Agilent SureSelect 50Mb All Exon Kit and the Illumina HiSeq 2000 next-generation-sequencing (NGS platform. Compound heterozygous mutations were identified by exome sequencing and confirmed by Sanger sequencing within the dehydrogenase domain (c.101C>T; p.Ala34Val and hydratase domain (c.1547T>C; p.Ile516Thr of the 17β-hydroxysteroid dehydrogenase type 4 gene (HSD17B4. These mutations have been previously reported in patients with severe-forms of DBP deficiency, however each mutation was reported in combination with another mutation affecting the same domain. Subsequent studies in fibroblasts revealed normal VLCFA levels, normal C26:0 but reduced pristanic acid beta-oxidation activity. Both DBP

  13. Heat-stable, FE-dependent alcohol dehydrogenase for aldehyde detoxification

    Science.gov (United States)

    Elkins, James G.; Clarkson, Sonya

    2018-04-24

    The present invention relates to microorganisms and polypeptides for detoxifying aldehydes associated with industrial fermentations. In particular, a heat-stable, NADPH- and iron-dependent alcohol dehydrogenase was cloned from Thermoanaerobacter pseudethanolicus 39E and displayed activity against a number of aldehydes including inhibitory compounds that are produced during the dilute-acid pretreatment process of lignocellulosic biomass before fermentation to biofuels. Methods to use the microorganisms and polypeptides of the invention for improved conversion of bio mass to biofuel are provided as well as use of the enzyme in metabolic engineering strategies for producing longer-chain alcohols from sugars using thermophilic, fermentative microorganisms.

  14. Oxidation of aromatic alcohols on zeolite-encapsulated copper amino acid complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Teixeira Florencio, J.M. [Kaiserslautern Univ. (Germany). Dept. of Chemistry, Chemical Technology

    1998-12-31

    Copper complexes of the amino acids histidine, arginine and lysine have been introduced into the supercages of zeolite Y and, for the first time, into the large intracrystalline cavities of zeolites EMT and MCM-22. The resulting host/guest compounds are characterized by X-ray powder diffraction, UV/VIS-spectroscopy in the diffuse reflectance mode and by catalytic tests in the liquid-phase oxidation of aromatic alcohols (viz. benzyl alcohol, 2- and 3-methylbenzyl alcohol and 2,5-dimethylbenzyl alcohol) with tertiary-butylhydroperoxide as oxidant. It was observed that intracrystalline copper-amino acid complexes possess remarkable catalytic activity, yielding the corresponding aromatic aldehydes and acids. (orig.)

  15. Inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex by reduced nicotinamide adenine dinucleotide in the presence or absence of calcium ion and effect of adenosine 5'-diphosphate on reduced nicotinamide adenine dinucleotide inhibition.

    Science.gov (United States)

    Lawlis, V B; Roche, T E

    1981-04-28

    Micromolar Ca2+ markedly reduces NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex [Lawlis, V. B., & Roche, T. E. (1980) Mol. Cell. Biochem. 32, 147-152]. Product inhibition patterns from initial velocity studies conducted at less than 10(-9) M or at 1.5 X 10(-5) M Ca2+ with NAD+, CoA, or alpha-ketoglutarate as the variable substrate showed that NADH was a noncompetitive inhibitor with respect to each of these substrates, except at high NAD+ concentrations, where reciprocal plots were nonlinear and the inhibition pattern for NADH vs. NAD+ changed from a noncompetitive to a competitive pattern. From slope and intercept replots, 2-fold to 12-fold higher inhibition constants were estimated for inhibition by NADH vs. the various substrates in the presence of 1.5 X 10(-5) M Ca2+ than for inhibition at less than 10(-9) M Ca2+. These inhibition patterns and the lack of an effect of Ca2+ on the inhibition of the dihydrolipoyl dehydrogenase component suggested that Ca2+-modulated NADH inhibition occurs at an allosteric site with competitive binding at the site by high levels of NAD+. Decarboxylation of alpha-keto[1-14C]glutarate by the resolved alpha-ketoglutarate dehydrogenase component was investigated in the presence of 5.0 mM glyoxylate which served as an efficient acceptor. NADH (0.2 mM) or 1.0 mM ATP inhibited the partial reaction whereas 15 muM Ca2+, 1.0 mM ADP, or 10 mM NAD+ stimulated the partial reaction and reduced NADH inhibition of this reaction. Thus these effectors alter the activity of the alpha-ketoglutarate dehydrogenase complex by binding at allosteric sites on the alpha-ketoglutarate dehydrogenase component. Inhibition by NADH over a wide range of NADH/NAD+ ratios was measured under conditions in which the level of alpha-ketoglutarate was adjusted to give matching control activities at less than 10(-9) M Ca2+ or 1.5 X 10(-5) M Ca2+ in either the presence or the absence of 1.6 mM ADP. These studies establish that both Ca2+ and ADP

  16. Synthesis and Characterization of Chromium (III) Complexes with L-Glutamic Acid, Glycine and LCysteine

    OpenAIRE

    Kun Sri Budiasih; Chairil Anwar; Sri Juari Santosa; Hilda Ismail

    2013-01-01

    Some Chromium (III) complexes were synthesized with three amino acids: L Glutamic Acid, Glycine, and L-cysteine as the ligands, in order to provide a new supplement containing Cr(III) for patients with type 2 diabetes mellitus. The complexes have been prepared by refluxing a mixture of Chromium(III) chloride in aqueous solution with L-glutamic acid, Glycine, and L-cysteine after pH adjustment by sodium hydroxide. These complexes were characterized by Infrared and Uv-Vis s...

  17. Structural analysis and binding domain of albumin complexes with natural dietary supplement humic acid

    International Nuclear Information System (INIS)

    Ding Fei; Diao Jianxiong; Yang Xinling; Sun Ying

    2011-01-01

    Humic acid, a natural ionic molecule, is rapidly being recognized as one of the crucial elements in our modern diets of the new century. A biophysical protocol utilizing circular dichroism (CD), steady state and time-resolved fluorescence for the investigation of the complexation of the humic acid to the staple in vivo transporter, human serum albumin (HSA), as a model for protein-humic substances, is proclaimed. The alterations of CD and three-dimensional fluorescence suggest that the polypeptide chain of HSA partially folded after complexation with humic acid. The data of fluorescence emission displayed that the binding of humic acid to HSA is the formation of HSA-humic acid complex with an association constant of 10 4 M -1 ; this corroborates the fluorescence lifetime measurements that the static mechanism was operated. The precise binding domain of humic acid in HSA has been verified from the denaturation of albumin, hydrophobic ANS displacement, and site-specific ligands; subdomain IIA (Sudlow's site I) was earmarked to possess high-affinity for humic acid. The observations are relevant for other albumin-humic substance systems when the ligands have analogous configuration with humic acid. - Highlights: → Albumin structure partially folds upon humic acid complexation. → Static type is dominance for the diminution in the Trp-214 fluorescence.→ Subdomain IIA is designate to possess high-affinity site for humic acid.

  18. Structural studies of cinnamoyl-CoA reductase and cinnamyl-alcohol dehydrogenase, key enzymes of monolignol biosynthesis.

    Science.gov (United States)

    Pan, Haiyun; Zhou, Rui; Louie, Gordon V; Mühlemann, Joëlle K; Bomati, Erin K; Bowman, Marianne E; Dudareva, Natalia; Dixon, Richard A; Noel, Joseph P; Wang, Xiaoqiang

    2014-09-01

    The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates. © 2014 American Society of Plant Biologists. All rights reserved.

  19. Structural Studies of Cinnamoyl-CoA Reductase and Cinnamyl-Alcohol Dehydrogenase, Key Enzymes of Monolignol Biosynthesis[C][W

    Science.gov (United States)

    Pan, Haiyun; Zhou, Rui; Louie, Gordon V.; Mühlemann, Joëlle K.; Bomati, Erin K.; Bowman, Marianne E.; Dudareva, Natalia; Dixon, Richard A.; Noel, Joseph P.; Wang, Xiaoqiang

    2014-01-01

    The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates. PMID:25217505

  20. Changes in cinnamyl alcohol dehydrogenase activities from sugarcane cultivars inoculated with Sporisorium scitamineum sporidia.

    Science.gov (United States)

    Santiago, Rocío; Alarcón, Borja; de Armas, Roberto; Vicente, Carlos; Legaz, María Estrella

    2012-06-01

    This study describes a method for determining cinnamyl alcohol dehydrogenase activity in sugarcane stems using reverse phase (RP) high-performance liquid chromatography to elucidate their possible lignin origin. Activity is assayed using the reverse mode, the oxidation of hydroxycinnamyl alcohols into hydroxycinnamyl aldehydes. Appearance of the reaction products, coniferaldehyde and sinapaldehyde is determined by measuring absorbance at 340 and 345 nm, respectively. Disappearance of substrates, coniferyl alcohol and sinapyl alcohol is measured at 263 and 273 nm, respectively. Isocratic elution with acetonitrile:acetic acid through an RP Mediterranea sea C18 column is performed. As case examples, we have examined two different cultivars of sugarcane; My 5514 is resistant to smut, whereas B 42231 is susceptible to the pathogen. Inoculation of sugarcane stems elicits lignification and produces significant increases of coniferyl alcohol dehydrogenase (CAD) and sinapyl alcohol dehydrogenase (SAD). Production of lignin increases about 29% in the resistant cultivar and only 13% in the susceptible cultivar after inoculation compared to uninoculated plants. Our results show that the resistance of My 5514 to smut is likely derived, at least in part, to a marked increase of lignin concentration by the activation of CAD and SAD. Copyright © Physiologia Plantarum 2012.

  1. Purification and Characterization of a Novel NAD(P)+-Farnesol Dehydrogenase from Polygonum minus Leaves.

    Science.gov (United States)

    Ahmad-Sohdi, Nor-Ain-Shahajar; Seman-Kamarulzaman, Ahmad-Faris; Mohamed-Hussein, Zeti-Azura; Hassan, Maizom

    2015-01-01

    Juvenile hormones have attracted attention as safe and selective targets for the design and development of environmentally friendly and biorational insecticides. In the juvenile hormone III biosynthetic pathway, the enzyme farnesol dehydrogenase catalyzes the oxidation of farnesol to farnesal. In this study, farnesol dehydrogenase was extracted from Polygonum minus leaves and purified 204-fold to apparent homogeneity by ion-exchange chromatography using DEAE-Toyopearl, SP-Toyopearl, and Super-Q Toyopearl, followed by three successive purifications by gel filtration chromatography on a TSK-gel GS3000SW. The enzyme is a heterodimer comprised of subunits with molecular masses of 65 kDa and 70 kDa. The optimum temperature and pH were 35°C and pH 9.5, respectively. Activity was inhibited by sulfhydryl reagents, metal-chelating agents and heavy metal ions. The enzyme utilized both NAD+ and NADP+ as coenzymes with Km values of 0.74 mM and 40 mM, respectively. Trans, trans-farnesol was the preferred substrate for the P. minus farnesol dehydrogenase. Geometrical isomers of trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol were also oxidized by the enzyme with lower activity. The Km values for trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol appeared to be 0.17 mM, 0.33 mM and 0.42 mM, respectively. The amino acid sequences of 4 tryptic peptides of the enzyme were analyzed by MALDI-TOF/TOF-MS spectrometry, and showed no significant similarity to those of previously reported farnesol dehydrogenases. These results suggest that the purified enzyme is a novel NAD(P)+-dependent farnesol dehydrogenase. The purification and characterization established in the current study will serve as a basis to provide new information for recombinant production of the enzyme. Therefore, recombinant farnesol dehydrogenase may provide a useful molecular tool in manipulating juvenile hormone biosynthesis to generate transgenic plants for pest control.

  2. INFLUENCE OF SELECTED PHARMACEUTICALS ON ACTIVATED SLUDGE DEHYDROGENASE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Agnieszka Tomska

    2016-06-01

    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  3. Identification of a mitochondrial external NADPH dehydrogenase by overexpression in transgenic ¤Nicotiana sylvestris¤

    DEFF Research Database (Denmark)

    Michalecka, A.M.; Agius, S.C.; Møller, I.M.

    2004-01-01

    The plant respiratory chain contains a complex setup of non-energy conserving NAD(P)H dehydrogenases, the physiological consequences of which are highly unclear. An expression construct for the potato (Solanum tuberosum L., cv. Desiree) ndb1 gene, a homologue of bacterial and fungal type II NAD...

  4. Enzymatic synthesis of 11C-pyruvic acid and 11C-L-lactic acid

    International Nuclear Information System (INIS)

    Cohen, M.B.; Spolter, L.; Chang, C.C.; Cook, J.S.; Macdonald, N.S.

    1980-01-01

    L-Lactic acid is formed as the end product of glycolysis under anaerobic conditions in all cells, but this reaction is of special significance in the myocardium. L-Lactic acid is reversibly formed from and is in equilibrium with myocardial pyruvic acid, which is its sole metabolic pathway. 11 C-Pyruvic acid is synthesized from 11 C carbon dioxide using pyruvate-ferredoxin oxidoreductase and coenzymes. The 11 C-pyruvic acid is then converted to 11 -L-lactic acid by lactic acid dehydrogenase. The availability of 11 C-pyruvic acid and 11 C-L-lactic acid will permit the in vivo investigation of lactate metabolism. (author)

  5. 21 CFR 172.315 - Nicotinamide-ascorbic acid complex.

    Science.gov (United States)

    2010-04-01

    ... 172.315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex...

  6. Preliminary results for complexation of Pu with humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Guczi, J.; Szabo, G. [National Research Inst. for Radiobiology and Radiohygi ene, Budapest, H-1775 (Hungary)]. e-mail: guczi@hp.osski.hu; Reiller, P. [CEA, CE Sac lay, Nuclear Energy Division/DPC/SERC, Laboratoire de Speciation des Radionuclei des et des Molecules, F-91191 Gif-sue-Yvette (France); Bulman, R.A. [Radiation Protection Division Division, Health Protection Agency, Chilton, Didcot (United Kingdom); Geckeis, H. [FZK - Inst. fuer Nukleare Entsorgung, Karlsruhe (Germany)

    2007-06-15

    Interaction of plutonium with humic substances has been investigated by a batch method use of the surface bound humic acid from perchlorate solutions at pH 4-6. By using these novel solid phases, complexing capacities and interaction constants are obtained. The complexing behavior of plutonium is analyzed. Pu(IV)-humate conditional stability constants have been evaluated from data obtained from these experiments by using non-linear regression of binding isotherms. The results have been interpreted in terms of complexes of 1:1 stoichiometry.

  7. NMR detected metabolites in complex natural fluids. Quinic acid in apple juice

    Directory of Open Access Journals (Sweden)

    Ailiesei Gabriela Liliana

    2015-12-01

    Full Text Available Different types of 1D and 2D NMR experiments were used to completely characterize quinic acid and demonstrate its presence in complex mixtures. The identification of quinic acid in apple juice was done without any separation step. The NMR experiments presented in this study can be used to analyze other metabolites in different complex natural fluids, of vegetal or biological origin.

  8. Highly Atom Economic Synthesis of d?2?Aminobutyric Acid through an In?Vitro Tri?enzymatic Catalytic System

    OpenAIRE

    Chen, Xi; Cui, Yunfeng; Cheng, Xinkuan; Feng, Jinhui; Wu, Qiaqing; Zhu, Dunming

    2017-01-01

    Abstract d?2?Aminobutyric acid is an unnatural amino acid serving as an important intermediate in pharmaceutical production. Developing a synthetic method that uses cheaper starting materials and produces less by?product is a pressing demand. A tri?enzymatic catalytic system, which is composed of l?threonine ammonia lyase (l?TAL), d?amino acid dehydrogenase (d?AADH), and formate dehydrogenase (FDH), has thus been developed for the synthesis of d?2?aminobutyric acid with high optical purity. I...

  9. Physico-chemical studies of some aminobenzoic acid hydrazide complexes

    Directory of Open Access Journals (Sweden)

    S. ABD EL HALEEM

    2004-04-01

    Full Text Available The stability constants and related thermodynamic functions characterizing the formation of divalent Ni, Cu, Zn, Cd and Hg complexes with o- and p-aminobenzoic acid hydrazide were determined potentiometrically at different temperatures. The formations of the complexes are endothermic processes. The formed bonds are mainly electrostatic. Conductometric titration was carried out to determine the stoichiometry and stability of the formed complexes. The structures of complexes were characterized by their IR, 1H-NMR and 13C-NMR spectra, as well as X-ray diffractograms. The coordination process takes place through the carbonyl group and the terminal hydrazinic amino group. The thermal stability of the complexes was followed in the temperature range 20–600ºC.

  10. Differential impact of amino acids on OXPHOS system activity following carbohydrate starvation in Arabidopsis cell suspensions.

    Science.gov (United States)

    Cavalcanti, João Henrique F; Quinhones, Carla G S; Schertl, Peter; Brito, Danielle S; Eubel, Holger; Hildebrandt, Tatjana; Nunes-Nesi, Adriano; Braun, Hans-Peter; Araújo, Wagner L

    2017-12-01

    Plant respiration mostly depends on the activity of glycolysis and the oxidation of organic acids in the tricarboxylic acid cycle to synthesize ATP. However, during stress situations plant cells also use amino acids as alternative substrates to donate electrons through the electron-transfer flavoprotein (ETF)/ETF:ubiquinone oxidoreductase (ETF/ETFQO) complex to the mitochondrial electron transport chain (mETC). Given this, we investigated changes of the oxidative phosphorylation (OXPHOS) system in Arabidopsis thaliana cell culture under carbohydrate starvation supplied with a range of amino acids. Induction of isovaleryl-CoA dehydrogenase (IVDH) activity was observed under carbohydrate starvation which was associated with increased amounts of IVDH protein detected by immunoblotting. Furthermore, activities of the protein complexes of the mETC were reduced under carbohydrate starvation. We also observed that OXPHOS system activity behavior is differently affected by different amino acids and that proteins associated with amino acids catabolism are upregulated in cells following carbohydrate starvation. Collectively, our results support the contention that ETF/ETFQO is an essential pathway to donate electrons to the mETC and that amino acids are alternative substrates to maintain respiration under carbohydrate starvation. © 2017 Scandinavian Plant Physiology Society.

  11. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Tomofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu-shi, Fukuoka 818-0135 (Japan); Ichinose, Hirofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Wariishi, Hiroyuki, E-mail: hirowari@agr.kyushu-u.ac.jp [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2010-04-09

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD{sup +}-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  12. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    Nakamura, Tomofumi; Ichinose, Hirofumi; Wariishi, Hiroyuki

    2010-01-01

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD + -binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  13. On dependence of stability of lanthanum complexes with aminopolycarboxylic acids on the complex structure

    International Nuclear Information System (INIS)

    Poluehktov, N.S.; Meshkova, S.B.; Danilkovich, M.M.; Topilova, Z.M.

    1985-01-01

    Regularities in changes of stability constants of lanthanum complexes with aminopolycarboxylic acids (APA) versus their structure are studied, The stability of lathanum-APA complexes depends mainly on the number of carboxyl groups in a ligand molecule. At that, the highest stability constant is characteristic of a complex with a ligand, containing 3 nitrogen atoms and 5 carboxyl groups, in the presenoe of which the lanthanum ion coordination sphere gets satupated. The oxyethy group introduction into a ligand molecule also improves the lanthanum complex stability but to a lesser degree than during the introduction of a carboxyl group. The number of nitrogen atoms in a ligand polecule affects insignificantly the complex stability constant value, and the elongation of a chain of CH 2 groups, separating nitrogen atoms, reduces the constant to a -0.6 power

  14. Scandium and zirconium ion complexing with salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Fadeeva, V I; Kochetkova, S K [Moskovskij Gosudarstvennyj Univ. (USSR)

    1979-08-01

    A study has been made of the extraction of complexes containing scandium and zirconium compounds and salicylic acid by using benzene, nitrobenzene, chloroform and isoamyl alcohol. It is shown that in the metal concentration range 10/sup -5/-10/sup -3/ mole/l scandium forms mononuclear complexes composed of Sc(HSal)/sub 3/ (pH<=4) and Sc(OH)(HSal)/sub 2/ (pH>4), zirconium - polynuclear complexes Zrsub(x)(OH)sub(y)(HSal)sub(n), where the x:n ratio varies from 0.5 to 1.5. Stability constants have been calculated for the salicylate scandium complexes in aqueous solution, equal to ..beta../sub 1/=(3+-1)x10/sup 2/; ..beta../sub 2/=(5.0+-0.6)x10/sup 4/; ..beta../sub 3/=(5.3+-0.3)x10/sup 6/.

  15. Phosphorescent emissions of phosphine copper(I) complexes bearing 8-hydroxyquinoline carboxylic acid analogue ligands

    Energy Technology Data Exchange (ETDEWEB)

    Małecki, Jan G., E-mail: gmalecki@us.edu.pl [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Łakomska, Iwona, E-mail: iwolak@chem.umk.pl [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Maroń, Anna [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Szala, Marcin [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland); Fandzloch, Marzena [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Nycz, Jacek E., E-mail: jacek.nycz@us.edu.pl [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland)

    2015-05-15

    The pseudotetrahedral complexes of [Cu(PPh{sub 3}){sub 2}(L)], where L=8-hydroxy-2-methylquinoline-7-carboxylic acid (1), 8-hydroxy-2,5-dimethylquinoline-7-carboxylic acid (2) or 5-chloro-8-hydroxy-2-methylquinoline-7-carboxylic acid (3) have been synthesized and structurally characterized by X-ray crystallography. Their properties have been examined through combinations of IR, NMR, electronic absorption spectroscopy and cyclic voltammetry. The complexes exhibit extraordinary photophysical properties. Complex (1) in solid state exhibits an emission quantum yield of 4.67% and an excited life time of 1.88 ms (frozen DCM solution up to 6.7 ms). When dissolved in a coordinating solvent (acetonitrile) the charge transfer emission was quenched on a microsecond scale. - Highlights: • Synthesis of copper(I) complexes with 8-hydroxyquinoline carboxylic acid ligands. • Very long lived phosphorescent copper(I) complexes. • [Cu(PPh{sub 3}){sub 2}(L)] where L=8-hydroxy-2-methylquinoline-7-carboxylic acid luminesce in the solid state exhibits extremely long lifetime on millisecond scale (1.9 ms). • In frozen MeOH:EtOH solution lifetime increases to 7 ms. • Quantum efficiency equal to 4.7%.

  16. Different specificities of two aldehyde dehydrogenases from Saccharomyces cerevisiae var. boulardii.

    Science.gov (United States)

    Datta, Suprama; Annapure, Uday S; Timson, David J

    2017-04-30

    Aldehyde dehydrogenases play crucial roles in the detoxification of exogenous and endogenous aldehydes by catalysing their oxidation to carboxylic acid counterparts. The present study reports characterization of two such isoenzymes from the yeast Saccharomyces cerevisiae var. boulardii (NCYC 3264), one mitochondrial (Ald4p) and one cytosolic (Ald6p). Both Ald4p and Ald6p were oligomeric in solution and demonstrated positive kinetic cooperativity towards aldehyde substrates. Wild-type Ald6p showed activity only with aliphatic aldehydes. Ald4p, on the contrary, showed activity with benzaldehyde along with a limited range of aliphatic aldehydes. Inspection of modelled structure of Ald6p revealed that a bulky amino acid residue (Met 177 , compared with the equivalent residue Leu 196 in Ald4p) might cause steric hindrance of cyclic substrates. Therefore, we hypothesized that specificities of the two isoenzymes towards aldehyde substrates were partly driven by steric hindrance in the active site. A variant of wild-type Ald6p with the Met 177 residue replaced by a valine was also characterized to address to the hypothesis. It showed an increased specificity range and a gain of activity towards cyclohexanecarboxaldehyde. It also demonstrated an increased thermal stability when compared with both the wild-types. These data suggest that steric bulk in the active site of yeast aldehyde dehydrogenases is partially responsible for controlling specificity. © 2017 The Author(s).

  17. Antibacterial, Prooxidative and Genotoxic Activities of Gallic Acid and its Copper and Iron Complexes against Escherichia coli

    Directory of Open Access Journals (Sweden)

    JONATHAN M. BARCELO

    2014-12-01

    Full Text Available In this study, gallic acid and its complexes with aluminum and iron were investigated for their antibacterial, pro-oxidative, and genotoxic properties at alkaline pH. At 4.0μmol/mL, gallic acid displayed bacteriostatic property while aluminum-gallic acid and iron-gallic acid complexes showed bactericidal property against Escherichia coli ATCC 25922. A higher antibacterial activity was observed in the turbidimetric assay compared to the well-diffusion assay. The metal complexes of gallic acid also generated a higher concentration of malondialdehyde and hydrogen peroxide compared to gallic acid alone at > 0.50µmol/mL. Using the SOS response of the DNA repair-deficient Escherichia coli PQ37, the metal complexes of gallic acid resulted to a significantly higher SOS Induction Factors (ρ<0.01 at ≥0.25μmol/mL. In addition, gallic acid and its metal complexes decrease the cell surface hydrophobicity of E. coli ATCC 25922 in a dose-dependent manner. The present study suggests that the antibacterial property of gallic acid and its metal complexes against Escherichia coli was caused by its pro-oxidative and genotoxic properties. Since metals are involved in the synthesis of the metal complexes of gallic acid, further tests should be conducted to determine their stability and effects to human health.

  18. Synthesis and spectroscopic characterization of gallic acid and some of its azo complexes

    Science.gov (United States)

    Masoud, Mamdouh S.; Hagagg, Sawsan S.; Ali, Alaa E.; Nasr, Nessma M.

    2012-04-01

    A series of gallic acid and azo gallic acid complexes were prepared and characterized by elemental analysis, IR, electronic spectra and magnetic susceptibility. The complexes were of different geometries: Octahedral, Tetrahedral and Square Planar. ESR was studied for copper complexes. All of the prepared complexes were of isotropic nature. The thermal analyses of the complexes were studied by DTA and DSC techniques. The thermodynamic parameters and the thermal transitions, such as glass transitions, crystallization and melting temperatures for some ligands and their complexes were evaluated and discussed. The entropy change values, ΔS#, showed that the transition states are more ordered than the reacting complexes. The biological activities of some ligands and their complexes are tested against Gram positive and Gram negative bacteria. The results showed that some complexes have a well considerable activity against different organisms.

  19. Pseudoracemic amino acid complexes: blind predictions for flexible two-component crystals.

    Science.gov (United States)

    Görbitz, Carl Henrik; Dalhus, Bjørn; Day, Graeme M

    2010-08-14

    Ab initio prediction of the crystal packing in complexes between two flexible molecules is a particularly challenging computational chemistry problem. In this work we present results of single crystal structure determinations as well as theoretical predictions for three 1 ratio 1 complexes between hydrophobic l- and d-amino acids (pseudoracemates), known from previous crystallographic work to form structures with one of two alternative hydrogen bonding arrangements. These are accurately reproduced in the theoretical predictions together with a series of patterns that have never been observed experimentally. In this bewildering forest of potential polymorphs, hydrogen bonding arrangements and molecular conformations, the theoretical predictions succeeded, for all three complexes, in finding the correct hydrogen bonding pattern. For two of the complexes, the calculations also reproduce the exact space group and side chain orientations in the best ranked predicted structure. This includes one complex for which the observed crystal packing clearly contradicted previous experience based on experimental data for a substantial number of related amino acid complexes. The results highlight the significant recent advances that have been made in computational methods for crystal structure prediction.

  20. Behaviours of trinitratonitrosyl complexes of ruthenium in dilute nitric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, S [Radia Industry Co. Ltd., Takasaki (Japan)

    1979-07-01

    This study aimed to elucidate the protolysis and condensation processes of the Ru complexes in relation to the concentration of nitric acid. The compositions of the dissociated and undissociated complexes were determined by the extraction with tributyl phosphate (TBP) and absorption spectroscopy in order to follow the rather rapid protolysis reaction of the complexes. The test solutions were prepared by dissolving the freshly obtained complexes into 0.50 - 0.001 M nitric acid solutions. The amounts of the undissociated complexes were determined at different elapses of time in the test solutions. The protolysis became significant when the concentration was below 0.15 M, and the dissociation rate suddenly increased at this concentration. At the concentrations above 0.2 M, the absorption peak of the complexes at 480 nm survived even after 144 hours. But below 0.15 M, the formation of dissociation products by protolysis was observed after the disappearance of the absorption peak. The amount of dissociation products rapidly increased after the preparation of the test solution as the concentration decreased below 0.15 M.

  1. Enzymatic routes for the synthesis of ursodeoxycholic acid.

    Science.gov (United States)

    Eggert, Thorsten; Bakonyi, Daniel; Hummel, Werner

    2014-12-10

    Ursodeoxycholic acid, a secondary bile acid, is used as a drug for the treatment of various liver diseases, the optimal dose comprises the range of 8-10mg/kg/day. For industrial syntheses, the structural complexity of this bile acid requires the use of an appropriate starting material as well as the application of regio- and enantio-selective enzymes for its derivatization. Most strategies for the synthesis start from cholic acid or chenodeoxycholic acid. The latter requires the conversion of the hydroxyl group at C-7 from α- into β-position in order to obtain ursodeoxycholic acid. Cholic acid on the other hand does not only require the same epimerization reaction at C-7 but the removal of the hydroxyl group at C-12 as well. There are several bacterial regio- and enantio-selective hydroxysteroid dehydrogenases (HSDHs) to carry out the desired reactions, for example 7α-HSDHs from strains of Clostridium, Bacteroides or Xanthomonas, 7β-HSDHs from Clostridium, Collinsella, or Ruminococcus, or 12α-HSDH from Clostridium or from Eggerthella. However, all these bioconversion reactions need additional steps for the regeneration of the coenzymes. Selected multi-step reaction systems for the synthesis of ursodeoxycholic acid are presented in this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Cloning and characterization of human very-long-chain acyl-CoA dehydrogenase cDNA, chromosomal assignment of the gene and identification in four patients of nine different mutations within the VLCAD gene

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Vianey-Saban, C

    1996-01-01

    Very-long-chain acyl-CoA dehydrogenase (VLCAD) is one of four straight-chain acyl-CoA dehydrogenase (ACD) enzymes, which are all nuclear encoded mitochondrial flavoproteins catalyzing the initial step in fatty acid beta-oxidation. We have used the very fast, Rapid Amplification of cDNA Ends (RACE...

  3. Reversible inactivation of CO dehydrogenase with thiol compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kreß, Oliver [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Gnida, Manuel [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Pelzmann, Astrid M. [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Marx, Christian [Institute of Biochemistry and Biophysics, Friedrich-Schiller-University of Jena, 07745 Jena (Germany); Meyer-Klaucke, Wolfram [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Meyer, Ortwin, E-mail: Ortwin.Meyer@uni-bayreuth.de [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany)

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceeds at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in

  4. ESR study of /sup 99/Tc(II) complex formed by reduction of ammonium pertechnetate with ascorbic acid in concentrated hydrochloric acid

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, T; Tsuchihashi, N; Ogata, T

    1987-07-30

    Paramagnetic /sup 99/Tc complex formed by the reduction of ammonium pertechnetate by ascorbic acid with excess sodium nitrite in concentrated hydrochloric acid was investigated by ESR technique. This complex had total electron spin S=1/2 and the obtained ESR parameters are 2.032, 2.043; and 264, 108 gauss, respectively. It was concluded that the formed species was low spin /sup 99/Tc(II) complex. (author) 13 refs.

  5. Discovering novel Alternaria solani succinate dehydrogenase inhibitors by in silico modeling and virtual screening strategies to combat early blight

    NARCIS (Netherlands)

    Iftikhar, Sehrish; Shahid, Ahmad A.; Halim, Sobia A.; Wolters, Pieter J.; Vleeshouwers, Vivianne G.A.A.; Khan, Ajmal; Al-Harrasi, Ahmed; Ahmad, Shahbaz

    2017-01-01

    Alternaria blight is an important foliage disease caused by Alternaria solani. The enzyme Succinate dehydrogenase (SDH) is a potential drug target because of its role in tricarboxylic acid cycle. Hence targeting Alternaria solani SDH enzyme could be efficient tool to design novel fungicides against

  6. Mixed complexes formed by rare earths with nitrilotriacetic and malic acids

    International Nuclear Information System (INIS)

    Samir Abu Ali; Dobrynina, N.A.; Martynenko, L.I.; Borisova, L.I.

    1980-01-01

    The composition of the mixed ligand and homogeneous complexes, forming in the Ln 3+ system-nitrilotriacetic acid (H 3 X)-malic acid (H 2 Mal) is determined and stability constants are calculated according to the data of the spectrography and pH-metry with the help of the mathematical statistics. The LnHMal 2+ , LnX 0 , LnX 2 - 3 and LnXMal 2- complexes are found in the solutions with the LnCl 3 : H 3 X : H 2 Mal= 1 : 1 : 1 and 1 : 1 : 2 composition

  7. Injectable hydrogels derived from phosphorylated alginic acid calcium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Sem; Song, Minsoo, E-mail: minsoosong00@gmail.com; Lee, Eun-Jung; Shin, Ueon Sang, E-mail: usshin12@dankook.ac.kr

    2015-06-01

    Phosphorylation of sodium alginate salt (NaAlg) was carried out using H{sub 3}PO{sub 4}/P{sub 2}O{sub 5}/Et{sub 3}PO{sub 4} followed by acid–base reaction with Ca(OAc){sub 2} to give phosphorylated alginic acid calcium complexes (CaPAlg), as a water dispersible alginic acid derivative. The modified alginate derivatives including phosphorylated alginic acid (PAlg) and CaPAlg were characterized by nuclear magnetic resonance spectroscopy for {sup 1}H, and {sup 31}P nuclei, high resolution inductively coupled plasma optical emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. CaPAlg hydrogels were prepared simply by mixing CaPAlg solution (2 w/v%) with NaAlg solution (2 w/v%) in various ratios (2:8, 4:6, 6:4, 8:2) of volume. No additional calcium salts such as CaSO{sub 4} or CaCl{sub 2} were added externally. The gelation was completed within about 3–40 min indicating a high potential of hydrogel delivery by injection in vivo. Their mechanical properties were tested to be ≤ 6.7 kPa for compressive strength at break and about 8.4 kPa/mm for elastic modulus. SEM analysis of the CaPAlg hydrogels showed highly porous morphology with interconnected pores of width in the range of 100–800 μm. Cell culture results showed that the injectable hydrogels exhibited comparable properties to the pure alginate hydrogel in terms of cytotoxicity and 3D encapsulation of cells for a short time period. The developed injectable hydrogels showed suitable physicochemical and mechanical properties for injection in vivo, and could therefore be beneficial for the field of soft tissue engineering. - Highlights: • Preparation of water-soluble alginic acid complexes with calcium phosphate • Self-assembly of the phosphorylated alginic acid calcium complexes with sodium alginate • Preparation of injectable hydrogels with diverse gelation times within about 3–40 min.

  8. Leaching behavior and chemical stability of copper butyl xanthate complex under acidic conditions.

    Science.gov (United States)

    Chang, Yi Kuo; Chang, Juu En; Chiang, Li Choung

    2003-08-01

    Although xanthate addition can be used for treating copper-containing wastewater, a better understanding of the leaching toxicity and the stability characteristics of the copper xanthate complexes formed is essential. This work was undertaken to evaluate the leaching behavior of copper xanthate complex precipitates by means of toxicity characteristics leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) using 1 N acetic acid solution as the leachant. Also, the chemical stability of the copper xanthate complex during extraction has been examined with the studying of variation of chemical structure using UV-vis, Fourier transform infrared and X-ray photoelectron spectroscopies (XPS). Both TCLP and SDLT results showed that a negligible amount of copper ion was leached out from the copper xanthate complex precipitate, indicating that the complex exhibited a high degree of copper leaching stability under acidic conditions. Nevertheless, chemical structure of the copper xanthate complex precipitate varied during the leaching tests. XPS data suggested that the copper xanthate complex initially contained both cupric and cuprous xanthate, but the unstable cupric xanthate change to the cuprous form after acid extraction, indicating the cuprous xanthate to be the final stabilizing structure. Despite that, the changes of chemical structure did not induce the rapid leaching of copper from the copper xanthate complex.

  9. XoxF Is Required for Expression of Methanol Dehydrogenase in Methylobacterium extorquens AM1 ▿

    Science.gov (United States)

    Skovran, Elizabeth; Palmer, Alexander D.; Rountree, Austin M.; Good, Nathan M.; Lidstrom, Mary E.

    2011-01-01

    In Gram-negative methylotrophic bacteria, the first step in methylotrophic growth is the oxidation of methanol to formaldehyde in the periplasm by methanol dehydrogenase. In most organisms studied to date, this enzyme consists of the MxaF and MxaI proteins, which make up the large and small subunits of this heterotetrameric enzyme. The Methylobacterium extorquens AM1 genome contains two homologs of MxaF, XoxF1 and XoxF2, which are ∼50% identical to MxaF and ∼90% identical to each other. It was previously reported that xoxF is not required for methanol growth in M. extorquens AM1, but here we show that when both xoxF homologs are absent, strains are unable to grow in methanol medium and lack methanol dehydrogenase activity. We demonstrate that these defects result from the loss of gene expression from the mxa promoter and suggest that XoxF is part of a complex regulatory cascade involving the 2-component systems MxcQE and MxbDM, which are required for the expression of the methanol dehydrogenase genes. PMID:21873495

  10. A complex of equine lysozyme and oleic acid with bactericidal activity against Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Emily A Clementi

    Full Text Available HAMLET and ELOA are complexes consisting of oleic acid and two homologous, yet functionally different, proteins with cytotoxic activities against mammalian cells, with HAMLET showing higher tumor cells specificity, possibly due to the difference in propensity for oleic acid binding, as HAMLET binds 5-8 oleic acid molecules per protein molecule and ELOA binds 11-48 oleic acids. HAMLET has been shown to possess bactericidal activity against a number of bacterial species, particularly those with a respiratory tropism, with Streptococcus pneumoniae displaying the greatest degree of sensitivity. We show here that ELOA also displays bactericidal activity against pneumococci, which at lower concentrations shows mechanistic similarities to HAMLET's bactericidal activity. ELOA binds to S. pneumoniae and causes perturbations of the plasma membrane, including depolarization and subsequent rupture, and activates an influx of calcium into the cells. Selective inhibition of calcium channels and sodium/calcium exchange activity significantly diminished ELOA's bactericidal activity, similar to what we have observed with HAMLET. Finally, ELOA-induced death was also accompanied by DNA fragmentation into high molecular weight fragments - an apoptosis-like morphological phenotype that is seen during HAMLET-induced death. Thus, in contrast to different mechanisms of eukaryote cell death induced by ELOA and HAMLET, these complexes are characterized by rather similar activities towards bacteria. Although the majority of these events could be mimicked using oleic acid alone, the concentrations of oleic acid required were significantly higher than those present in the ELOA complex, and for some assays, the results were not identical between oleic acid alone and the ELOA complex. This indicates that the lipid, as a common denominator in both complexes, is an important component for the complexes' bactericidal activities, while the proteins are required both to solubilize

  11. Complexation of metal ions with humic acid: charge neutralization model

    International Nuclear Information System (INIS)

    Kim, J.I.; Czerwinski, K.R.

    1995-01-01

    A number of different approaches are being used for describing the complexation equilibrium of actinide ions with humic or fulvic acid. The approach chosen and verified experimentally by Tu Muenchen will be discussed with notable examples from experiment. This approach is based on the conception that a given actinide ion is neutralized upon complexation with functional groups of humic or fulvic acid, e.g. carboxylic and phenolic groups, which are known as heterogeneously cross-linked polyelectrolytes. The photon energy transfer experiment with laser light excitation has shown that the actinide ion binding with the functional groups is certainly a chelation process accompanied by metal ion charge neutralization. This fact is in accordance with the experimental evidence of the postulated thermodynamic equilibrium reaction. The experimental results are found to be independent of origin of humic or fulvic acid and applicable for a broad range of pH. (authors). 23 refs., 7 figs., 1 tab

  12. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... deficiency Encyclopedia: Glucose-6-phosphate dehydrogenase test Encyclopedia: Hemolytic anemia Encyclopedia: Newborn jaundice Health Topic: Anemia Health Topic: G6PD Deficiency Health Topic: Newborn Screening Genetic and Rare Diseases Information Center (1 link) Glucose-6-phosphate dehydrogenase ...

  13. Investigation of the Amycolatopsis sp. Strain ATCC 39116 Vanillin Dehydrogenase and Its Impact on the Biotechnical Production of Vanillin

    OpenAIRE

    Fleige, Christian; Hansen, Gunda; Kroll, Jens; Steinbüchel, Alexander

    2013-01-01

    The actinomycete Amycolatopsis sp. strain ATCC 39116 is capable of synthesizing large amounts of vanillin from ferulic acid, which is a natural cell wall component of higher plants. The desired intermediate vanillin is subject to undesired catabolism caused by the metabolic activity of a hitherto unknown vanillin dehydrogenase (VDHATCC 39116). In order to prevent the oxidation of vanillin to vanillic acid and thereby to obtain higher yields and concentrations of vanillin, the responsible vani...

  14. Synthesis and Characterization of Lanthanum Complexes with Amino Acid Schiff Base

    Institute of Scientific and Technical Information of China (English)

    张秀英; 张有娟; 杨林

    2001-01-01

    Six new complexes of lanthanum with amino acid Schiff base ligands, A-F, were prepared in methanol-aqueous solution. The composition and properties of the title complexes were characterized by elemental analysis, molar conductance, infrared, electronic spectra, 1H NMR, thermogravimetric and differential thermal analysis.

  15. Adaptation to a high protein, carbohydrate-free diet induces a marked reduction of fatty acid synthesis and lipogenic enzymes in rat adipose tissue that is rapidly reverted by a balanced diet.

    Science.gov (United States)

    Brito, S M R C; Moura, M A F; Kawashita, N H; Festuccia, W T L; Garófalo, M A R; Kettelhut, I C; Migliorini, R H

    2005-06-01

    We have previously shown that in vivo lipogenesis is markedly reduced in liver, carcass, and in 4 different depots of adipose tissue of rats adapted to a high protein, carbohydrate-free (HP) diet. In the present work, we investigate the activity of enzymes involved in lipogenesis in the epididymal adipose tissue (EPI) of rats adapted to an HP diet before and 12 h after a balanced diet was introduced. Rats fed an HP diet for 15 days showed a 60% reduction of EPI fatty acid synthesis in vivo that was accompanied by 45%-55% decreases in the activities of pyruvate dehydrogenase complex, ATP-citrate lyase, acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase, and malic enzyme. Reversion to a balanced diet for 12 h resulted in a normalization of in vivo EPI lipogenesis, and in a restoration of acetyl-CoA carboxylase activity to levels that did not differ significantly from control values. The activities of ATP-citrate lyase and pyruvate dehydrogenase complex increased to about 75%-86% of control values, but the activities of glucose-6-phosphate dehydrogenase and malic enzyme remained unchanged 12 h after diet reversion. The data indicate that in rats, the adjustment of adipose tissue lipogenic activity is an important component of the metabolic adaptation to different nutritional conditions.

  16. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus.

    Science.gov (United States)

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further studies are needed for introducing aldehyde dehydrogenase as a prognostic

  17. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus*

    Science.gov (United States)

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Background Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. Objective This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Method Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. Results The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. Limitations of the study This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. Conclusions The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further

  18. EPR spectra of vanadyl(2) intra-complexes with amino acids in solutions

    International Nuclear Information System (INIS)

    Shodiev, U.M.; Musaev, Z.M.; Khodzhaev, O.F.; Usmankhodzhaeva, Ya.S.; Parpiev, N.A.

    1987-01-01

    EPR spectra of vanadyl (2) intracomplexes with glycine, α- and β-alanines, benzoylglycine, lencine, glutamine and the aspartic acid of VOL 2 xH 2 O composition as well as with cystine of VOLxH 2 O composition (where L-monodeprotonated, in case of cystine and the aspartic acid - dideprotonated form of the amino acid) in aqueous, methanol, dimethylsulfoxide and pyridine solutions are studied. It is established that the structure determined in the solid state is retained in the dimethylsulfoxide solution and partially - in methanol. In aqueous, pyridine and partially in methanol solutions complexes are distorted and two molecules of the amino acid are coordinated monodentately through oxygen atoms of the carboxyl group, and ''vacant'' coordination places in the equatorial plane take two molecules of the solvent. From the data obtained it follows that the metal - nitrogen bond in the vanadyl (2) complexes studied with amino acids is not so strong than the metal - oxygen bond of the carboxyl ligand group

  19. Glucose-6-phosphate dehydrogenase deficiency in Singapore.

    Science.gov (United States)

    Quak, S H; Saha, N; Tay, J S

    1996-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) in man is an X-linked enzyme. The deficiency of this enzyme is one of the most common inherited metabolic disorders in man. In Singapore, three clinical syndromes associated with G6PD deficiency had been described: severe haemolysis in neonates with kernicterus, haemoglobinuria and "viral hepatitis"-like syndrome. The human G6PD monomer consists of 515 amino acids. Only the tetrameric or dimeric forms composed of a single type subunit are catylitically active. The complete amino acid sequence of G6PD had been elucidated in man and various other animals. The region of high homology among the enzymes of various animals is presumably functionally active. Among the Chinese in Singapore, three common molecular variants had been identified: Canton (nt 1376 G --> T), Kaiping (nt 1388 G --> A) and Mediterranean (nt 563 C --> T) in frequencies of 24%, 21% and 10% respectively. In addition, two common mutants (Gaozhou, nt 95 A --> G and Chinese 5, nt 1024 C --> T) have been detected in Singapore Chinese in low frequencies. In Malays, 6 different deficient variants are known in Singapore (3 new, 1 Mahidol, 1 Indonesian and 1 Mediterranean).

  20. The ORF slr0091 of Synechocystis sp. PCC6803 encodes a high-light induced aldehyde dehydrogenase converting apocarotenals and alkanals

    KAUST Repository

    Trautmann, Danika

    2013-07-05

    Oxidative cleavage of carotenoids and peroxidation of lipids lead to apocarotenals and aliphatic aldehydes called alkanals, which react with vitally important compounds, promoting cytotoxicity. Although many enzymes have been reported to deactivate alkanals by converting them into fatty acids, little is known about the mechanisms used to detoxify apocarotenals or the enzymes acting on them. Cyanobacteria and other photosynthetic organisms must cope with both classes of aldehydes. Here we report that the Synechocystis enzyme SynAlh1, encoded by the ORF slr0091, is an aldehyde dehydrogenase that mediates oxidation of both apocarotenals and alkanals into the corresponding acids. Using a crude lysate of SynAlh1-expressing Escherichia coli cells, we show that SynAlh1 converts a wide range of apocarotenals and alkanals, with a preference for apocarotenals with defined chain lengths. As suggested by in vitro incubations and using engineered retinal-forming E. coli cells, we found that retinal is not a substrate for SynAlh1, making involvement in Synechocystis retinoid metabolism unlikely. The transcript level of SynAlh1 is induced by high light and cold treatment, indicating a role in the stress response, and the corresponding gene is a constituent of a stress-related operon. The assumptions regarding the function of SynAlh are further supported by the surprisingly high homology to human and plant aldehyde dehydrogenase that have been assigned to aldehyde detoxification. SynAlh1 is the first aldehyde dehydrogenase that has been shown to form both apocarotenoic and fatty acids. This dual function suggests that its eukaryotic homologs may also be involved in apocarotenal metabolism, a function that has not been considered so far. Aldehyde dehydrogenases play an important role in detoxification of reactive aldehydes. Here, we report on a cyanbacterial enzyme capable in converting two classes of lipid-derived aldehydes, apocaotenals and alkanals. The corresponding gene is a

  1. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6.

    Science.gov (United States)

    Papapetridis, Ioannis; van Dijk, Marlous; Dobbe, Arthur P A; Metz, Benjamin; Pronk, Jack T; van Maris, Antonius J A

    2016-04-26

    Acetic acid, an inhibitor of sugar fermentation by yeast, is invariably present in lignocellulosic hydrolysates which are used or considered as feedstocks for yeast-based bioethanol production. Saccharomyces cerevisiae strains have been constructed, in which anaerobic reduction of acetic acid to ethanol replaces glycerol formation as a mechanism for reoxidizing NADH formed in biosynthesis. An increase in the amount of acetate that can be reduced to ethanol should further decrease acetic acid concentrations and enable higher ethanol yields in industrial processes based on lignocellulosic feedstocks. The stoichiometric requirement of acetate reduction for NADH implies that increased generation of NADH in cytosolic biosynthetic reactions should enhance acetate consumption. Replacement of the native NADP(+)-dependent 6-phosphogluconate dehydrogenase in S. cerevisiae by a prokaryotic NAD(+)-dependent enzyme resulted in increased cytosolic NADH formation, as demonstrated by a ca. 15% increase in the glycerol yield on glucose in anaerobic cultures. Additional deletion of ALD6, which encodes an NADP(+)-dependent acetaldehyde dehydrogenase, led to a 39% increase in the glycerol yield compared to a non-engineered strain. Subsequent replacement of glycerol formation by an acetate reduction pathway resulted in a 44% increase of acetate consumption per amount of biomass formed, as compared to an engineered, acetate-reducing strain that expressed the native 6-phosphogluconate dehydrogenase and ALD6. Compared to a non-acetate reducing reference strain under the same conditions, this resulted in a ca. 13% increase in the ethanol yield on glucose. The combination of NAD(+)-dependent 6-phosphogluconate dehydrogenase expression and deletion of ALD6 resulted in a marked increase in the amount of acetate that was consumed in these proof-of-principle experiments, and this concept is ready for further testing in industrial strains as well as in hydrolysates. Altering the cofactor

  2. Stimulation of d- and l-lactate dehydrogenases transcriptional levels in presence of diammonium hydrogen phosphate resulting to enhanced lactic acid production by Lactobacillus strain.

    Science.gov (United States)

    Singhvi, Mamata; Zendo, Takeshi; Iida, Hiroshi; Gokhale, Digambar; Sonomoto, Kenji

    2017-12-01

    The present study revealed the effect of nitrogen sources on lactic acid production and stimulation of d- and l-lactate dehydrogenases (LDH) of parent Lactobacillus lactis NCIM 2368 and its mutant RM2-24 generated after UV mutagenesis. Both the parent and mutant strains were evaluated for d-lactic acid production in control and modified media. The modified media did not show remarkable effect on lactic acid production in case of parent whereas mutant exhibited significant enhancement in d-lactic acid production along with the appearance of l-lactic acid in the broth. Both LDH activities and specific activities were found to be higher in mutant than the parent strain. These results suggested that the diammonium hydrogen phosphate in modified media triggered the expression of LDH genes leading to enhanced lactic acid production. This observation has been proved by studying the expression levels of d- and l-LDH genes of parent and mutant in control and modified media using quantitative RT-PCR technique. In case of mutant, the transcriptional levels of d-LDH and l-LDH increased ∼17 fold and ∼1.38 fold respectively in modified medium compared to the values obtained with control medium. In case of parent, no significant change in transcriptional levels of d- and l-LDH was found when the cells were grown in either control medium or modified medium. This study suggested that the mutant, RM2-24 has l-LDH gene which is expressed in presence of (NH 4 ) 2 HPO 4 resulting in l-lactic acid production. Co-production of l-lactic acid in d-lactic acid fermentation may be detrimental in the PLA production. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Cloning and Polymorphisms of Yak Lactate Dehydrogenase b Gene

    Directory of Open Access Journals (Sweden)

    Yaou Xu

    2013-06-01

    Full Text Available The main objective of this work was to study the unique polymorphisms of the lactate dehydrogenase-1 (LDH1 gene in yak (Bos grunniens. Native polyacrylamide gel electrophoresis revealed three phenotypes of LDH1 (a tetramer of H subunit in yak heart and longissimus muscle extracts. The corresponding gene, ldhb, encoding H subunits of three LDH1 phenotypes was obtained by RT-PCR. A total of six nucleotide differences were detected in yak ldhb compared with that of cattle, of which five mutations cause amino acid substitutions. Sequence analysis shows that the G896A and C689A, mutations of ldhb gene, result in alterations of differently charged amino acids, and create the three phenotypes (F, M, and S of yak LDH1. Molecular modeling of the H subunit of LDH indicates that the substituted amino acids are not located within NAD+ or substrate binding sites. PCR-RFLP examination of G896A mutation demonstrated that most LDH1-F samples are actually heterozygote at this site. These results help to elucidate the molecular basis and genetic characteristic of the three unique LDH1 phenotypes in yak.

  4. Determination of glutamate dehydrogenase activity and its kinetics in mouse tissues using metabolic mapping (quantitative enzyme histochemistry)

    NARCIS (Netherlands)

    Botman, Dennis; Tigchelaar, Wikky; van Noorden, Cornelis J. F.

    2014-01-01

    Glutamate dehydrogenase (GDH) catalyses the reversible conversion of glutamate into α-ketoglutarate with the concomitant reduction of NAD(P)(+) to NAD(P)H or vice versa. GDH activity is subject to complex allosteric regulation including substrate inhibition. To determine GDH kinetics in situ, we

  5. Flavin Adenine Dinucleotide Status and the Effects of High-Dose Riboflavin Treatment in Short-Chain Acyl-CoA Dehydrogenase Deficiency

    NARCIS (Netherlands)

    van Maldegem, Bianca T.; Duran, Marinus; Wanders, Ronald J. A.; Waterham, Hans R.; Wijburg, Frits A.

    2010-01-01

    Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is an inborn error, biochemically characterized by increased plasma butyrylcarnitine (C4-C) concentration and increased ethylmalonic acid (EMA) excretion and caused by rare mutations and/or common gene variants in the SCAD encoding gene. Although

  6. NMR studies of inclusion complexes formed by (R)-α-lipoic acid with α-, β-, and γ-cyclodextrins

    International Nuclear Information System (INIS)

    Ikeda, Hiroshi; Ikuta, Naoko; Nakata, Daisuke; Ishida, Yoshiyuki; Terao, Keiji

    2015-01-01

    The structures of inclusion complexes of (R)-α-lipoic acid with α-, β-, and γ-cyclodextrin (CD) were constructed using restraints derived from ROESY spectra and MMFF94 molecular mechanics calculations. (R)-α-lipoic acid and α-CD generate a single stable inclusion complex, in which the 1,2-dithiolane ring of the (R)-α-lipoic acid is oriented toward the secondary hydroxy side of the α-CD. NMR data suggests that β-CD produces two kinds of inclusion complexes with α-lipoic acid. Finally, γ-CD yields 1:1 and 1:2 host/guest complexes with (R)-α-lipoic acid. The estimated structure of the 1:1 γ-CD inclusion complex has the 1,2-dithiolane ring oriented toward the primary hydroxy side of the γ-CD. (author)

  7. Cloning and sequencing of the gene coding for alcohol dehydrogenase of Bacillus stearothermophilus and rational shift of the optimum pH.

    OpenAIRE

    Sakoda, H; Imanaka, T

    1992-01-01

    Using Bacillus subtilis as a host and pTB524 as a vector plasmid, we cloned the thermostable alcohol dehydrogenase (ADH-T) gene (adhT) from Bacillus stearothermophilus NCA1503 and determined its nucleotide sequence. The deduced amino acid sequence (337 amino acids) was compared with the sequences of ADHs from four different origins. The amino acid residues responsible for the catalytic activity of horse liver ADH had been clarified on the basis of three-dimensional structure. Since those cata...

  8. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Directory of Open Access Journals (Sweden)

    Margit Winkler

    2013-08-01

    Full Text Available Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S-selectivity and together with a highly (R-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  9. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase.

    Science.gov (United States)

    Napora-Wijata, Kamila; Strohmeier, Gernot A; Sonavane, Manoj N; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-08-12

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  10. Antibacterial, Prooxidative and Genotoxic Activities of Gallic Acid and its Copper and Iron Complexes against Escherichia coli

    OpenAIRE

    JONATHAN M. BARCELO; MILDIAMOND GUIEB; ANDERSON VENTURA; ARYZA NACINO; HERMINIA PINASEN; LEAH VIERNES; TRISHIA YODONG; BIANCA LOU ESTRADA; DANIEL VALDEZ; THRESHA BINWAG

    2014-01-01

    In this study, gallic acid and its complexes with aluminum and iron were investigated for their antibacterial, pro-oxidative, and genotoxic properties at alkaline pH. At 4.0μmol/mL, gallic acid displayed bacteriostatic property while aluminum-gallic acid and iron-gallic acid complexes showed bactericidal property against Escherichia coli ATCC 25922. A higher antibacterial activity was observed in the turbidimetric assay compared to the well-diffusion assay. The metal complexes of ...

  11. The development of quantitative determination method of organic acids in complex poly herbal extraction

    Directory of Open Access Journals (Sweden)

    I. L. Dyachok

    2016-08-01

    Full Text Available Aim. The development of sensible, economical and expressive method of quantitative determination of organic acids in complex poly herbal extraction counted on izovaleric acid with the use of digital technologies. Materials and methods. Model complex poly herbal extraction of sedative action was chosen as a research object. Extraction is composed of these medical plants: Valeriana officinalis L., Crataégus, Melissa officinalis L., Hypericum, Mentha piperita L., Húmulus lúpulus, Viburnum. Based on chemical composition of plant components, we consider that main pharmacologically active compounds, which can be found in complex poly herbal extraction are: polyphenolic substances (flavonoids, which are contained in Crataégus, Viburnum, Hypericum, Mentha piperita L., Húmulus lúpulus; also organic acids, including izovaleric acid, which are contained in Valeriana officinalis L., Mentha piperita L., Melissa officinalis L., Viburnum; the aminoacid are contained in Valeriana officinalis L. For the determination of organic acids content in low concentration we applied instrumental method of analysis, namely conductometry titration which consisted in the dependences of water solution conductivity of complex poly herbal extraction on composition of organic acids. Result. The got analytical dependences, which describes tangent lines to the conductometry curve before and after the point of equivalence, allow to determine the volume of solution expended on titration and carry out procedure of quantitative determination of organic acids in the digital mode. Conclusion. The proposed method enables to determine the point of equivalence and carry out quantitative determination of organic acids counted on izovaleric acid with the use of digital technologies, that allows to computerize the method on the whole.

  12. Should anti-inhibitor coagulant complex and tranexamic acid be used concomitantly?

    Science.gov (United States)

    Valentino, L A; Holme, P A

    2015-11-01

    Inhibitor development in haemophilia patients is challenging especially when undergoing surgical procedures. The development of an inhibitor precludes using factor VIII (FVIII) therapy thereby requiring a bypassing agent (BPA) for surgical bleeding prophylaxis if the FVIII inhibitor titre >5 BU. Concomitant use of anti-inhibitor coagulant complex (AICC) and tranexamic acid has been reported in the literature as a beneficial treatment for this population. Anti-inhibitor coagulant complex is known to cause an increase in thrombin generation and tranexamic acid inhibits fibrinolysis. Hence, the combined used of AICC and tranexamic acid has been limited due to safety concerns over possibilities of increased risk of thrombotic events and disseminated intravascular coagulation. However, the rationale for concomitant therapy is to obtain a potential synergistic effect and to increase clot stability. We conducted a literature review of past studies and individual case reports of concomitant use of AICC and tranexamic acid, which was extensively used during dental procedures. Evidence also exists for concomitant use of the combined therapy in orthopaedic procedures, control of gastrointestinal bleeding, epistaxis and cerebral haemorrhages. Some patients who received the combined therapy had failed monotherapy with a single BPA prior to combined therapy. There were no reports of thrombotic complications related to the concomitant therapy and haemostasis was achieved in all cases. Anti-inhibitor coagulant complex and tranexamic acid therapy was found to be safe, well-tolerated and effective therapy in haemophilia patients with inhibitors. Additional randomized controlled studies should be performed to confirm these findings. © 2015 John Wiley & Sons Ltd.

  13. Thermodynamics and Structure of Actinide(IV) Complexes with Nitrilotriacetic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, L.; Guillaumont, D.; Jeanson, A.; Den Auwer, C.; Moisy, Ph. [CEA Marcoule, DEN, DRCP, SCPS, F-30207 Bagnols Sur Ceze (France); Grigoriev, M. [RAS, AN Frumkin Inst Phys Chem and Electrochem, Moscow 119991 (Russian Federation); Berthet, J.C. [CEA Saclay, DSM, IRAMIS, URA 331, Serv Chim Mol, CNRS, F-91191 Gif Sur Yvette (France); Hennig, C.; Scheinost, A. [Forschungszentrum Dresden Rossendorf, Inst Radiochem, D-01314 Dresden (Germany)

    2009-05-15

    Nitrilotriacetic acid, commonly known as NITA (N(CH{sub 2}CO{sub 2}H){sub 3}), can be considered a representative of the polyamino-carboxylic family. The results presented in this paper describe the thermodynamical complexation and structural investigation of An(IV) complexes with NTA in aqueous solution. In the first part, the stability constants of the An(IV) complexes (An = Pu, Np, U, and Th) have been determined by spectrophotometry. In the second part, the coordination spheres of the actinide cation in these complexes have been described using extended X-ray absorption fine structure spectroscopy and compared to the solid-state structure of (Hpy){sub 2}[U(NTA){sub 2}].H{sub 2}O. These data are further compared to quantum chemical calculations, and their evolution across the actinide series is discussed. In particular, an interpretation of the role of the nitrogen atom in the coordination mode is proposed. These results are considered to be model behavior of polyamino-carboxylic ligands such as diethylenetriamine pentaacetic acid, which is nowadays the best candidate for a chelating agent in the framework of actinide decorporation for the human body. (authors)

  14. Steric structure and thermodynamic aspects of Dy3+ complexes with aminobenzoic acids in aqueous solutions

    International Nuclear Information System (INIS)

    Kondrashina, Yu.G.; Mustafina, A.R.; Vul'fson, S.G.

    1994-01-01

    Stability and structure of dysprosium(3) aminobenzoate complexes with molar ratios Dy:L 1:1 and 1:2 (HL-aminobenzoic acid) in aqueous solutions are determined on the basis of pH-metric and paramagnetic birefringence data. The increase of conjugation effect in the series of benzoic, meta- ortho-, and para-aminobenzoic acid results in the increase of stability of 1:1 and 1:2 complexes. Features of the structure and coordination of ligands in dysprosium complexes with meta-, ortho-, and para-aminobenzoic acid are considered. 11 refs.; 4 figs.; 2 tabs

  15. Thermodynamic Features of Benzene-1,2-Diphosphonic Acid Complexes with Several Metal Ions

    Energy Technology Data Exchange (ETDEWEB)

    Syouhei Nishihama; Ryan P. Witty; Leigh R Martin; Kenneth L. Nash

    2013-08-01

    Among his many contributions to the advancement of f-element chemistry and separation science, Professor Gregory R. Choppin’s research group completed numerous investigations featuring the application of distribution techniques to the determination of metal complexation equilibrium quotients. Most of these studies focused on the chemistry of lanthanide and actinide complexes. In keeping with that tradition, this report discusses the complex formation equilibrium constants for complexes of trivalent europium (Eu3+) with benzene-1,2-diphosphonic acid (H4BzDP) determined using solvent extraction distribution experiments in 0.2 M (Na,H)ClO4 media in the temperature range of 5 – 45 degrees C. Protonation constants for HnBzDP4-n and stoichiometry and stability of BzDP4- complexes with Zn2+, Ni2+, and Cu2+ have also been determined using potentiometric titration (at I = 0.1 M) and 31P NMR spectroscopy. Heats of protonation of HnBzDPn-4 species have been determined by titration calorimetry. From the temperature dependence of the complex Eu3+-HnBzDPn-4 equilibrium constant, a composite enthalpy (?H = -15.1 (+/-1.0) kJ mol-1) of complexation has been computed. Comparing these thermodynamic parameters with literature reports on other diphosphonic acids and structurally similar carboxylic acids indicates that exothermic heats of complexation are unique to the Eu-BzDP system. Comparisons with thermodynamic data from the literature indicate that the fixed geometry imposed by the benzene ring enhances complex stability.

  16. Cloning and expression analysis of alcohol dehydrogenase ( Adh ...

    African Journals Online (AJOL)

    Hybrid promoters are created by shuffling of DNA fragments while keeping intact regulatory regions crucial of promoter activity. Two fragments of alcohol dehydrogenase (Adh) promoter from Zea mays were selected to generate hybrid promoter. Sequence analysis of both alcohol dehydrogenase promoter fragments through ...

  17. Contribution to the study of pertechnetate (sup(99m)Tc) stannous citrate - citric acid complexation

    International Nuclear Information System (INIS)

    Calmes, E.-P.

    1978-03-01

    Pertechnetate/citric acid/stannous citrate complexation carried out from a lyophilisate of stannous citrate in citric medium at pH5 leads to the formation of separable compounds. These compounds are tin-free technetium citrates. Similar results have been described in the case of complexation reactions with glycolic, thioglycolic and thiomalic acids and with other carboxylates such as dimercaptosuccinic acid. These processes include the reduction of Tcsup(VIII) by Snsup(II) in the presence of thiomalic acid under conditions similar to our own: stannous thiomalate in thiomalic medium to which is added the pertechnetate solution producing Tc-thiomalate complexes variable with the reaction pH. Also worth considering is the possible complexation between pertechnetate and the same acid in the absence of reducing ion, following a special procedure (heating). The complexes described here contain the oxotechnetium bond (terminal oxygen-technetium) and a strong probability exists in favour of dimerisation. Their stability, for a reaction in acid solution: pH 5.0/5.5, becomes satisfactory if: the solution is concentrated enough; bubbling by an inert gas is carried out; room temperature is not exceeded. The development takes place through a partial reoxidation characterised by colour change. An original interaction between reduced states of Tc and citric acid may be claimed with certainty under our experimental conditions. The difficulty then lies in the passage to the tracer stage when the isotope sup(99m)Tc is used [fr

  18. Complexation of the actinides (III, IV and V) with organic acids

    International Nuclear Information System (INIS)

    Leguay, S.

    2012-01-01

    A thorough knowledge of the chemical properties of actinides is now required in a wide variety of fields: extraction processes involved in spent fuel reprocessing, groundwater in the vicinity of radioactive waste packages, environmental and biological media in the case of accidental release of radionuclides. In this context, the present work has been focused on the complexation of Am(III), Cm(III), Cf(III), Pu(IV) and Pa(V) with organic ligands: DTPA, NTA and citric acid. The complexation of pentavalent protactinium with citric and nitrilotriacetic acids was studied using liquid-liquid extraction with the element at tracer scale (C Pa ≤ 10 -10 M). The order and the mean charge of each complex were determined from the analysis of the systematic variations of the distribution coefficient of Pa(V) as function of ligand and proton concentration. Then, the apparent formation constants related of the so-identified complexes were calculated. The complexation of trivalent actinides with DTPA was studied by fluorescence spectroscopy (TRLFS) and capillary electrophoresis (CE-ICP-MS). The coexistence of the mono-protonated and non-protonated complexes (AnHDTPA - and AnDTPA 2- ) in acidic media (1.5 ≤ pH ≤ 3.5) was shown unambiguously. Literature data have been reinterpreted by taking into account both complexes and a consistent set of formation constants of An(III)-DTPA has been obtained. The experimental study was completed by theoretical calculations (DFT) on Cm-DTPA system. The coordination geometry of Cm in CmDTPA 2- and CmHDTPA - including water molecules in the first coordination sphere has been determined as well as interatomic distances. Finally, a study on the complexation of Pu(IV) with DTPA was initiated in order to more closely mimic physiological conditions. A three-step approach was proposed to avoid plutonium hydrolysis: i/ complexation of Pu(IV) with (NTA) in order to protect Pu(IV) from hydrolysis (at low pH) ii/ increase of pH toward neutral conditions

  19. Diphosphonic acid complexants for improved separation efficiency of transuranic elements

    International Nuclear Information System (INIS)

    Nash, K.L.

    1994-01-01

    A study was made of the thermodynamics of protonation and complexation of Eu(III), Th(IV), and U(VI) by a series of simple diphosphonic acid chelating agents to assess the potential for application in actinide waste processing. It was found that the strongest complexes are formed with ligands having two phosphonate binding groups on the same C atom (1,1-diphosphonates) and that the water-soluble complexes are formed with protonated ligand species. More efficient separation/recovery processes could be designed using these ligands

  20. Dynamic mechanistic modeling of the multienzymatic one-pot reduction of dehydrocholic acid to 12-keto ursodeoxycholic acid with competing substrates and cofactors.

    Science.gov (United States)

    Sun, Boqiao; Hartl, Florian; Castiglione, Kathrin; Weuster-Botz, Dirk

    2015-01-01

    Ursodeoxycholic acid (UDCA) is a bile acid which is used as pharmaceutical for the treatment of several diseases, such as cholesterol gallstones, primary sclerosing cholangitis or primary biliary cirrhosis. A potential chemoenzymatic synthesis route of UDCA comprises the two-step reduction of dehydrocholic acid to 12-keto-ursodeoxycholic acid (12-keto-UDCA), which can be conducted in a multienzymatic one-pot process using 3α-hydroxysteroid dehydrogenase (3α-HSDH), 7β-hydroxysteroid dehydrogenase (7β-HSDH), and glucose dehydrogenase (GDH) with glucose as cosubstrate for the regeneration of cofactor. Here, we present a dynamic mechanistic model of this one-pot reduction which involves three enzymes, four different bile acids, and two different cofactors, each with different oxidation states. In addition, every enzyme faces two competing substrates, whereas each bile acid and cofactor is formed or converted by two different enzymes. First, the kinetic mechanisms of both HSDH were identified to follow an ordered bi-bi mechanism with EBQ-type uncompetitive substrate inhibition. Rate equations were then derived for this mechanism and for mechanisms describing competing substrates. After the estimation of the model parameters of each enzyme independently by progress curve analyses, the full process model of a simple batch-process was established by coupling rate equations and mass balances. Validation experiments of the one-pot multienzymatic batch process revealed high prediction accuracy of the process model and a model analysis offered important insight to the identification of optimum reaction conditions. © 2015 American Institute of Chemical Engineers.

  1. Multiple roles of mobile active center loops in the E1 component of the Escherichia coli pyruvate dehydrogenase complex - Linkage of protein dynamics to catalysis

    Science.gov (United States)

    Jordan, Frank; Arjunan, Palaniappa; Kale, Sachin; Nemeria, Natalia S.; Furey, William

    2009-01-01

    The region encompassing residues 401–413 on the E1 component of the pyruvate dehydrogenase multienzyme complex from Escherichia coli comprises a loop (the inner loop) which was not seen in the X-ray structure in the presence of thiamin diphosphate, the required cofactor for the enzyme. This loop is seen in the presence of a stable analogue of the pre-decarboxylation intermediate, the covalent adduct between the substrate analogue methyl acetylphosphonate and thiamin diphosphate, C2α-phosphonolactylthiamin diphosphate. It has been shown that the residue H407 and several other residues on this loop are required to reduce the mobility of the loop so electron density corresponding to it can be seen once the pre-decarboxylation intermediate is formed. Concomitantly, the loop encompassing residues 541–557 (the outer loop) appears to work in tandem with the inner loop and there is a hydrogen bond between the two loops ensuring their correlated motion. The inner loop was shown to: a) sequester the active center from carboligase side reactions; b) assist the interaction between the E1 and the E2 components, thereby affecting the overall reaction rate of the entire multienzyme complex; c) control substrate access to the active center. Using viscosity effects on kinetics it was shown that formation of the pre-decarboxylation intermediate is specifically affected by loop movement. A cysteine-less variant was created for the E1 component, onto which cysteines were substituted at selected loop positions. Introducing an electron spin resonance spin label and an 19F NMR label onto these engineered cysteines, the loop mobility was examined: a) both methods suggested that in the absence of ligand, the loop exists in two conformations; b) line-shape analysis of the NMR signal at different temperatures, enabled estimation of the rate constant for loop movement, and this rate constant was found to be of the same order of magnitude as the turnover number for the enzyme under the

  2. Role of pyruvate dehydrogenase inhibition in the development of hypertrophy in the hyperthyroid rat heart: a combined magnetic resonance imaging and hyperpolarized magnetic resonance spectroscopy study.

    Science.gov (United States)

    Atherton, Helen J; Dodd, Michael S; Heather, Lisa C; Schroeder, Marie A; Griffin, Julian L; Radda, George K; Clarke, Kieran; Tyler, Damian J

    2011-06-07

    Hyperthyroidism increases heart rate, contractility, cardiac output, and metabolic rate. It is also accompanied by alterations in the regulation of cardiac substrate use. Specifically, hyperthyroidism increases the ex vivo activity of pyruvate dehydrogenase kinase, thereby inhibiting glucose oxidation via pyruvate dehydrogenase. Cardiac hypertrophy is another effect of hyperthyroidism, with an increase in the abundance of mitochondria. Although the hypertrophy is initially beneficial, it can eventually lead to heart failure. The aim of this study was to use hyperpolarized magnetic resonance spectroscopy to investigate the rate and regulation of in vivo pyruvate dehydrogenase flux in the hyperthyroid heart and to establish whether modulation of flux through pyruvate dehydrogenase would alter cardiac hypertrophy. Hyperthyroidism was induced in 18 male Wistar rats with 7 daily intraperitoneal injections of freshly prepared triiodothyronine (0.2 mg x kg(-1) x d(-1)). In vivo pyruvate dehydrogenase flux, assessed with hyperpolarized magnetic resonance spectroscopy, was reduced by 59% in hyperthyroid animals (0.0022 ± 0.0002 versus 0.0055 ± 0.0005 second(-1); P=0.0003), and this reduction was completely reversed by both short- and long-term delivery of dichloroacetic acid, a pyruvate dehydrogenase kinase inhibitor. Hyperpolarized [2-(13)C]pyruvate was also used to evaluate Krebs cycle metabolism and demonstrated a unique marker of anaplerosis, the level of which was significantly increased in the hyperthyroid heart. Cine magnetic resonance imaging showed that long-term dichloroacetic acid treatment significantly reduced the hypertrophy observed in hyperthyroid animals (100 ± 20 versus 200 ± 30 mg; P=0.04) despite no change in the increase observed in cardiac output. This work has demonstrated that inhibition of glucose oxidation in the hyperthyroid heart in vivo is mediated by pyruvate dehydrogenase kinase. Relieving this inhibition can increase the metabolic

  3. Selection and Characterization of Palmitic Acid Responsive Patients with an OXPHOS Complex I Defect

    Directory of Open Access Journals (Sweden)

    Tom E. J. Theunissen

    2017-10-01

    Full Text Available Mitochondrial disorders are genetically and clinically heterogeneous, mainly affecting high energy-demanding organs due to impaired oxidative phosphorylation (OXPHOS. Currently, effective treatments for OXPHOS defects, with complex I deficiency being the most prevalent, are not available. Yet, clinical practice has shown that some complex I deficient patients benefit from a high-fat or ketogenic diet, but it is unclear how these therapeutic diets influence mitochondrial function and more importantly, which complex I patients could benefit from such treatment. Dietary studies in a complex I deficient patient with exercise intolerance showed increased muscle endurance on a high-fat diet compared to a high-carbohydrate diet. We performed whole-exome sequencing to characterize the genetic defect. A pathogenic homozygous p.G212V missense mutation was identified in the TMEM126B gene, encoding an early assembly factor of complex I. A complementation study in fibroblasts confirmed that the p.G212V mutation caused the complex I deficiency. The mechanism turned out to be an incomplete assembly of the peripheral arm of complex I, leading to a decrease in the amount of mature complex I. The patient clinically improved on a high-fat diet, which was supported by the 25% increase in maximal OXPHOS capacity in TMEM126B defective fibroblast by the saturated fatty acid palmitic acid, whereas oleic acid did not have any effect in those fibroblasts. Fibroblasts of other patients with a characterized complex I gene defect were tested in the same way. Patient fibroblasts with complex I defects in NDUFS7 and NDUFAF5 responded to palmitic acid, whereas ACAD9, NDUFA12, and NDUFV2 defects were non-responding. Although the data are too limited to draw a definite conclusion on the mechanism, there is a tendency that protein defects involved in early assembly complexes, improve with palmitic acid, whereas proteins defects involved in late assembly, do not. Our data show at

  4. Beneficial effect of feeding a ketogenic diet to mothers on brain development in their progeny with a murine model of pyruvate dehydrogenase complex deficiency.

    Science.gov (United States)

    Pliss, Lioudmila; Jatania, Urvi; Patel, Mulchand S

    2016-06-01

    Pyruvate dehydrogenase complex (PDC) deficiency is a major inborn error of oxidative metabolism of pyruvate in the mitochondria causing congenital lactic acidosis and primarily structural and functional abnormalities of the central nervous system. To provide an alternate source of acetyl-CoA derived from ketone bodies to the developing brain, a formula high in fat content is widely employed as a treatment. In the present study we investigated efficacy of a high-fat diet given to mothers during pregnancy and lactation on lessening of the impact of PDC deficiency on brain development in PDC-deficient female progeny. A murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene was employed in this study. Maternal consumption of a high-fat diet during pregnancy and lactation had no effect on number of live-birth, body growth, tissue PDC activity levels, as well as the in vitro rates of glucose oxidation and fatty acid biosynthesis by the developing brain of PDC-deficient female offspring during the postnatal age 35 days, as compared to the PDC-deficient progeny born to dams on a chow diet. Interestingly, brain weight was normalized in PDC-deficient progeny of high fat-fed mothers with improvement in impairment in brain structure deficit whereas brain weight was significantly decreased and was associated with greater cerebral structural defects in progeny of chow-fed mothers as compared to control progeny of mothers fed either a chow or high fat diet. The findings provide for the first time experimental support for beneficial effects of a ketogenic diet during the prenatal and early postnatal periods on the brain development of PDC-deficient mammalian progeny.

  5. KEJADIAN INDEL SIMULTAN PADA INTRON 7 GEN BRANCHED-CHAIN Α-KETOACID DEHYDROGENASE E1A (BCKDHA PADA SAPI MADURA

    Directory of Open Access Journals (Sweden)

    Asri Febriana

    2015-08-01

    Full Text Available Madura cattle is one of the Indonesian local cattle breeds derived from crossing between Zebu cattle (Bos indicus and banteng (Bos javanicus. Branched-chain α-ketoacid dehydrogenase (BCKDH is one of the main enzyme complexes in the inner mitochondrial membrane that metabolizes branched chain amino acid (BCAA, ie valine, leucine, and isoleucine. The diversity of the nucleotide sequences of the genes largely determine the efficiency of enzyme encoded. This paper aimed to determine the nucleotide variation contained in section intron 7, exon 8, and intron 8 genes BCKDHA on Madura cattle. This study was conducted on three Madura cattle that used as bull race (karapan, beauty contest (sonok, and beef cattle. The analysis showed that the variation in intron higher than occurred in the exon. Simultaneous indel found at base position 34 and 68 in sonok cattle. In addition, the C266T variant found in beef cattle. These variants do not cause significant changes in amino acids. There was no specific mutation in intron 7, exon 8, and intron 8 were found in Madura cattle designation. This indicated the absence of differentiation Madura cattle designation of selection pressure of BCKDHA gene.

  6. Study on the triphenyl tetrazolium chloride– dehydrogenase activity ...

    African Journals Online (AJOL)

    A quick analysis of the sludge activity method based on triphenyltetrazolium chloride-dehydrogenase activity (TTC-DHA) was developed to change the rule and status of the biological activity of the activated sludge in tomato paste wastewater treatment. The results indicate that dehydrogenase activity (DHA) can effectively ...

  7. Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia

    Science.gov (United States)

    Boutzen, Héléna; Saland, Estelle; Larrue, Clément; de Toni, Fabienne; Gales, Lara; Castelli, Florence A.; Cathebas, Mathilde; Zaghdoudi, Sonia; Stuani, Lucille; Kaoma, Tony; Riscal, Romain; Yang, Guangli; Hirsch, Pierre; David, Marion; De Mas-Mansat, Véronique; Delabesse, Eric; Vallar, Laurent; Delhommeau, François; Jouanin, Isabelle; Ouerfelli, Ouathek; Le Cam, Laurent; Linares, Laetitia K.; Junot, Christophe; Portais, Jean-Charles; Vergez, François; Récher, Christian

    2016-01-01

    Acute myeloid leukemia (AML) is characterized by the accumulation of malignant blasts with impaired differentiation programs caused by recurrent mutations, such as the isocitrate dehydrogenase (IDH) mutations found in 15% of AML patients. These mutations result in the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG), leading to a hypermethylation phenotype that dysregulates hematopoietic differentiation. In this study, we identified mutant R132H IDH1-specific gene signatures regulated by key transcription factors, particularly CEBPα, involved in myeloid differentiation and retinoid responsiveness. We show that treatment with all-trans retinoic acid (ATRA) at clinically achievable doses markedly enhanced terminal granulocytic differentiation in AML cell lines, primary patient samples, and a xenograft mouse model carrying mutant IDH1. Moreover, treatment with a cell-permeable form of 2-HG sensitized wild-type IDH1 AML cells to ATRA-induced myeloid differentiation, whereas inhibition of 2-HG production significantly reduced ATRA effects in mutant IDH1 cells. ATRA treatment specifically decreased cell viability and induced apoptosis of mutant IDH1 blasts in vitro. ATRA also reduced tumor burden of mutant IDH1 AML cells xenografted in NOD–Scid–IL2rγnull mice and markedly increased overall survival, revealing a potent antileukemic effect of ATRA in the presence of IDH1 mutation. This therapeutic strategy holds promise for this AML patient subgroup in future clinical studies. PMID:26951332

  8. Evidence of redox imbalance in a patient with succinic semialdehyde dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    Anna-Kaisa Niemi

    2014-01-01

    Full Text Available The pathophysiology of succinic semialdehyde dehydrogenase (SSADH deficiency is not completely understood. Oxidative stress, mitochondrial pathology, and low reduced glutathione levels have been demonstrated in mice, but no studies have been reported in humans. We report on a patient with SSADH deficiency in whom we found low levels of blood reduced glutathione (GSH, and elevations of dicarboxylic acids in urine, suggestive of possible redox imbalance and/or mitochondrial dysfunction. Thus, targeting the oxidative stress axis may be a potential therapeutic approach if our findings are confirmed in other patients.

  9. Enhanced splicing correction effect by an oligo-aspartic acid-PNA conjugate and cationic carrier complexes.

    Science.gov (United States)

    Bae, Yun Mi; Kim, Myung Hee; Yu, Gwang Sig; Um, Bong Ho; Park, Hee Kyung; Lee, Hyun-il; Lee, Kang Taek; Suh, Yung Doug; Choi, Joon Sig

    2014-02-10

    Peptide nucleic acids (PNAs) are synthetic structural analogues of DNA and RNA. They recognize specific cellular nucleic acid sequences and form stable complexes with complementary DNA or RNA. Here, we designed an oligo-aspartic acid-PNA conjugate and showed its enhanced delivery into cells with high gene correction efficiency using conventional cationic carriers, such as polyethylenimine (PEI) and Lipofectamine 2000. The negatively charged oligo-aspartic acid-PNA (Asp(n)-PNA) formed complexes with PEI and Lipofectamine, and the resulting Asp(n)-PNA/PEI and Asp(n)-PNA/Lipofectamine complexes were introduced into cells. We observed significantly enhanced cellular uptake of Asp(n)-PNA by cationic carriers and detected an active splicing correction effect even at nanomolar concentrations. We found that the splicing correction efficiency of the complex depended on the kind of the cationic carriers and on the number of repeating aspartic acid units. By enhancing the cellular uptake efficiency of PNAs, these results may provide a novel platform technology of PNAs as bioactive substances for their biological and therapeutic applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Complex Formation of Selected Radionuclides with Ligands Commonly Found in Ground Water: Low Molecular Organic Acids

    DEFF Research Database (Denmark)

    Jensen, Bror Skytte; Jensen, H.

    1985-01-01

    A general approach to the analysis of potentiometric data on complex formation between cations and polybasic amphoteric acids is described. The method is used for the characterisation of complex formation between Cs+, Sr2+, Co2+, La 3+, and Eu3+ with a α-hydroxy acids, tartaric acid and citric ac......, and with the α-amino acids, aspartic acid and L-cysteine. The cations have been chosen as typical components of reactor waste, and the acids because they are often found as products of microbial activity in pits or wherever organic material decays...

  11. Inducible xylitol dehydrogenases in enteric bacteria.

    OpenAIRE

    Doten, R C; Mortlock, R P

    1985-01-01

    Morganella morganii ATCC 25829, Providencia stuartii ATCC 25827, Serratia marcescens ATCC 13880, and Erwinia sp. strain 4D2P were found to induce a xylitol dehydrogenase when grown on a xylitol-containing medium. The xylitol dehydrogenases were partially purified from the four strains, and those from M. morganii ATCC 25829, P. stuartii ATCC 25827, and S. marcescens ATCC 13880 were all found to oxidize xylitol to D-xylulose. These three enzymes had KmS for xylitol of 7.1 to 16.4 mM and molecul...

  12. X-ray studies on crystalline complexes involving amino acids and peptides. XXXII. Effect of chirality on ionisation state, stoichiometry and aggregation in the complexes of oxalic acid with DL- and L-lysine.

    Science.gov (United States)

    Venkatraman, J; Prabu, M M; Vijayan, M

    1997-08-01

    Crystals of the oxalic acid complex of DL-lysine (triclinic P1; a = 5.540(1), b = 10.764(2), c = 12.056(2) A, alpha = 77.8(1), beta = 80.6(1), gamma = 75.6(1).; R = 4.7% for 2023 observed reflections) contain lysine and semioxalate ions in the 1:1 ratio, whereas the ratio of lysine and semioxalate/oxalate ions is 2:3 in the crystals of the L-lysine complex (monoclinic P2(1); alpha = 4.906(1), b = 20.145(4), c = 12.455(1) A, beta = 92.5(1).; R = 4.4% for 1494 observed reflections). The amino acid molecule in the L-lysine complex has an unusual ionisation state with positively charged alpha- and side-chain amino groups and a neutral carboxyl group. The unlike molecules aggregate into separate alternating layers in the DL-lysine complex in a manner similar to that observed in several of the amino acid complexes. The L-lysine complex exhibits a new aggregation pattern which cannot be easily explained in terms of planar features, thus emphasizing the fundamental dependence of aggregation on molecular characteristics. Despite the differences in stoichiometry, ionisation state and long-range aggregation patterns, the basic element of aggregation in the two complexes exhibits considerable similarity.

  13. Identification, Cloning, and Characterization of l-Phenylserine Dehydrogenase from Pseudomonas syringae NK-15

    Directory of Open Access Journals (Sweden)

    Sakuko Ueshima

    2010-01-01

    Full Text Available The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of l-phenylserine dehydrogenase (ORF3 were quite different from those of d-phenylserine dehydrogenase previously reported. l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-Phenylserine and l-threo-(2-thienylserine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon. The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2.

  14. Protonation of D-gluconate and its complexation with Np(V) in acidic to nearly neutral solutions

    International Nuclear Information System (INIS)

    Zhang, Z.; Clark, S.B.; Tian, G.; Rao, L.; Zanonato, P.L.

    2006-01-01

    Thermodynamic properties of the protonation of D-gluconic acid (HGH 4 (aq)) and its complexation with Np(V) have been studied in acidic to nearly neutral solutions at t = 25 C and I = 1 M NaClO 4 by potentiometry, spectrophotometry and calorimetry. The protonation constant (log K H ) and enthalpy (ΔH H ) of the carboxylate group are determined to be (3.30 ± 0.10) and -(4.03 ± 0.07) kJ mol -1 , respectively. Gluconate forms two Np(V) complexes in nearly neutral solutions. The formation constants and enthalpies of complexation are: log β 1 = (1.48 ± 0.03) and ΔH 1 = -(7.42 ± 0.13) kJ mol -1 for NpO 2 (GH 4 )(aq), log β = (2.14 ± 0.09) and ΔH 2 = -(12.08 ± 0.45) kJ mol -1 for NpO 2 (GH 4 ) 2 - . The thermodynamic parameters indicate that gluconic acid, like isosaccharinic acid and other α-hydroxycarboxylic acids, is a slightly stronger acid and forms stronger complexes with Np(V) than simple monocarboxylic acids. (orig.)

  15. Kinetic isotope effect studies on milk xanthine oxidase and on chicken liver xanthine dehydrogenase

    International Nuclear Information System (INIS)

    D'Ardenne, S.C.; Edmondson, D.E.

    1990-01-01

    The effect of isotopic substitution of the 8-H of xanthine (with 2 H and 3 H) on the rate of oxidation by bovine xanthine oxidase and by chicken xanthine dehydrogenase has been measured. V/K isotope effects were determined from competition experiments. No difference in H/T (V/K) values was observed between xanthine oxidase and xanthine dehydrogenase. Xanthine dehydrogenase exhibited a larger T/D (V/K) value than that observed for xanthine oxidase. Observed H/T (V/K) values for either enzyme are less than those H/T (V/K) values calculated with D/T (V/K) data. These discrepancies are suggested to arise from the presence of a rate-limiting step(s) prior to the irreversible C-H bond cleavage step in the mechanistic pathways of both enzymes. These kinetic complexities preclude examination of whether tunneling contributes to the reaction coordinate for the H-transfer step in each enzyme. No observable exchange of tritium with solvent is observed during the anaerobic incubation of [8- 3 H]xanthine with either enzyme, which suggests the reverse commitment to catalysis (C r ) is essentially zero. With the assumption of adherence to reduced mass relationships, the intrinsic deuterium isotope effect ( D k) for xanthine oxidation is calculated. By the use of these values and steady-state kinetic data, the minimal rate for the hydrogen-transfer step is calculated to be ∼75-fold faster than k cat for xanthine oxidase and ∼10-fold faster than k cat for xanthine dehydrogenase. Values calculated for each enzyme were found to be identical within experimental uncertainty

  16. Enzymatic urea adaptation: lactate and malate dehydrogenase in elasmobranchs

    Czech Academy of Sciences Publication Activity Database

    Lagana, G.; Bellocco, E.; Mannucci, C.; Leuzzi, U.; Tellone, E.; Kotyk, Arnošt; Galtieri, A.

    2006-01-01

    Roč. 55, č. 6 (2006), s. 675-688 ISSN 0862-8408 Institutional research plan: CEZ:AV0Z50110509 Keywords : elasmobranchs * lactate dehydrogenase * malate dehydrogenase Subject RIV: CE - Biochemistry Impact factor: 2.093, year: 2006

  17. Lewis Acid Assisted Nitrate Reduction with Biomimetic Molybdenum Oxotransferase Complex.

    Science.gov (United States)

    Elrod, Lee Taylor; Kim, Eunsuk

    2018-03-05

    The reduction of nitrate (NO 3 - ) to nitrite (NO 2 - ) is of significant biological and environmental importance. While Mo IV (O) and Mo VI (O) 2 complexes that mimic the active site structure of nitrate reducing enzymes are prevalent, few of these model complexes can reduce nitrate to nitrite through oxygen atom transfer (OAT) chemistry. We present a novel strategy to induce nitrate reduction chemistry of a previously known catalyst Mo IV (O)(SN) 2 (2), where SN = bis(4- tert-butylphenyl)-2-pyridylmethanethiolate, that is otherwise incapable of achieving OAT with nitrate. Addition of nitrate with the Lewis acid Sc(OTf) 3 (OTf = trifluoromethanesulfonate) to 2 results in an immediate and clean conversion of 2 to Mo VI (O) 2 (SN) 2 (1). The Lewis acid additive further reacts with the OAT product, nitrite, to form N 2 O and O 2 . This work highlights the ability of Sc 3+ additives to expand the reactivity scope of an existing Mo IV (O) complex together with which Sc 3+ can convert nitrate to stable gaseous molecules.

  18. Physiological and fermentation properties of Bacillus coagulans and a mutant lacking fermentative lactate dehydrogenase activity.

    Science.gov (United States)

    Su, Yue; Rhee, Mun Su; Ingram, Lonnie O; Shanmugam, K T

    2011-03-01

    Bacillus coagulans, a sporogenic lactic acid bacterium, grows optimally at 50-55 °C and produces lactic acid as the primary fermentation product from both hexoses and pentoses. The amount of fungal cellulases required for simultaneous saccharification and fermentation (SSF) at 55 °C was previously reported to be three to four times lower than for SSF at the optimum growth temperature for Saccharomyces cerevisiae of 35 °C. An ethanologenic B. coagulans is expected to lower the cellulase loading and production cost of cellulosic ethanol due to SSF at 55 °C. As a first step towards developing B. coagulans as an ethanologenic microbial biocatalyst, activity of the primary fermentation enzyme L-lactate dehydrogenase was removed by mutation (strain Suy27). Strain Suy27 produced ethanol as the main fermentation product from glucose during growth at pH 7.0 (0.33 g ethanol per g glucose fermented). Pyruvate dehydrogenase (PDH) and alcohol dehydrogenase (ADH) acting in series contributed to about 55% of the ethanol produced by this mutant while pyruvate formate lyase and ADH were responsible for the remainder. Due to the absence of PDH activity in B. coagulans during fermentative growth at pH 5.0, the l-ldh mutant failed to grow anaerobically at pH 5.0. Strain Suy27-13, a derivative of the l-ldh mutant strain Suy27, that produced PDH activity during anaerobic growth at pH 5.0 grew at this pH and also produced ethanol as the fermentation product (0.39 g per g glucose). These results show that construction of an ethanologenic B. coagulans requires optimal expression of PDH activity in addition to the removal of the LDH activity to support growth and ethanol production.

  19. Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria.

    Science.gov (United States)

    Filannino, Pasquale; Gobbetti, Marco; De Angelis, Maria; Di Cagno, Raffaella

    2014-12-01

    The metabolism of hydroxycinnamic acids by strictly heterofermentative lactic acid bacteria (19 strains) was investigated as a potential alternative energy route. Lactobacillus curvatus PE5 was the most tolerant to hydroxycinnamic acids, followed by strains of Weissella spp., Lactobacillus brevis, Lactobacillus fermentum, and Leuconostoc mesenteroides, for which the MIC values were the same. The highest sensitivity was found for Lactobacillus rossiae strains. During growth in MRS broth, lactic acid bacteria reduced caffeic, p-coumaric, and ferulic acids into dihydrocaffeic, phloretic, and dihydroferulic acids, respectively, or decarboxylated hydroxycinnamic acids into the corresponding vinyl derivatives and then reduced the latter compounds to ethyl compounds. Reductase activities mainly emerged, and the activities of selected strains were further investigated in chemically defined basal medium (CDM) under anaerobic conditions. The end products of carbon metabolism were quantified, as were the levels of intracellular ATP and the NAD(+)/NADH ratio. Electron and carbon balances and theoretical ATP/glucose yields were also estimated. When CDM was supplemented with hydroxycinnamic acids, the synthesis of ethanol decreased and the concentration of acetic acid increased. The levels of these metabolites reflected on the alcohol dehydrogenase and acetate kinase activities. Overall, some biochemical traits distinguished the common metabolism of strictly heterofermentative strains: main reductase activity toward hydroxycinnamic acids, a shift from alcohol dehydrogenase to acetate kinase activities, an increase in the NAD(+)/NADH ratio, and the accumulation of supplementary intracellular ATP. Taken together, the above-described metabolic responses suggest that strictly heterofermentative lactic acid bacteria mainly use hydroxycinnamic acids as external acceptors of electrons. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Separation of glycols from dilute aqueous solutions via complexation with boronic acids

    Energy Technology Data Exchange (ETDEWEB)

    Randel, L.A.; King, C.J.

    1991-07-01

    This work examines methods of separating low molecular weight glycols from dilute aqueous solution. Extraction into conventional solvents is generally not economical, since, in the literature reviewed, distribution ratios for the two- to four-carbon glycols are all less than one. Distribution ratios can be increased, however, by incorporating into the organic phase an extracting agent that will complex with the solute of interest. The extracting agent investigated in this work is 3-nitrophenylboronic acid (NPBA). NPBA, a boric acid derivative, reversibly complexes with many glycols. The literature on complexation of borate and related compounds with glycols, including mechanistic data, measurement techniques, and applications to separation processes, provides information valuable for designing experiments with NPBA and is reviewed herein. 88 refs., 15 figs., 24 tabs.

  1. Stability constants of mixed ligand complexes of lanthanide(III) and yttrium(III) with complexone and substituted salicylic acids

    International Nuclear Information System (INIS)

    Kolhe, Vishnu; Dwivedi, K.

    1996-01-01

    Salicylic acid and substituted salicylic acids are potential antimicrobial agents. Binary complexes of salicylic acid and its substituted derivatives with lanthanide(III) and yttrium(III) metal ions have been reported. There are reports on the ternary metal complexing equilibria with some lanthanide(III) and yttrium(III) metal ions involving aminopolycarboxylic acid as one ligand and salicylic acid (SA) and other related compounds as the second ligands. Ethylene glycol bis(2-aminoethylether)- N, N, N', N'-tetraacetic acid (EGTA) is an important member of aminopolycarboxylic acid and finds many applications in medicine and biology. Recently, few ternary complexes have been reported using EGTA as ligand. In view of biological importance of simple and mixed ligand complexes EGTA, SA and DNSA (3,5-dinitrosalicylic acid), a systematic study has been undertaken for the determination of stability constant and the results are reported. (author). 6 refs., 1 fig., 2 tabs

  2. 2-Methylbutyryl-coenzyme A dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Sass, Jörn Oliver; Ensenauer, Regina; Röschinger, Wulf

    2008-01-01

    2-Methylbutyryl-CoA dehydrogenase (MBD; coded by the ACADSB gene) catalyzes the step in isoleucine metabolism that corresponds to the isovaleryl-CoA dehydrogenase reaction in the degradation of leucine. Deficiencies of both enzymes may be detected by expanded neonatal screening with tandem...... individuals showed clinical symptoms attributable to MBD deficiency although the defect in isoleucine catabolism was demonstrated both in vivo and in vitro. Several mutations in the ACADSB gene were identified, including a novel one. MBD deficiency may be a harmless metabolic variant although significant...

  3. Thermochemical properties of rare earth complexes with salicylic acid

    International Nuclear Information System (INIS)

    Yang Xuwu; Sun Wujuan; Ke Congyu; Zhang Hangguo; Wang Xiaoyan; Gao Shengli

    2007-01-01

    Fourteen rare earth complexes with salicylic acid RE(HSal) 3 .nH 2 O (HSal = C 7 H 5 O 3 ; RE = La-Sm, n = 2; RE = Eu-Lu, n = 1) were synthesized and characterized by elemental analysis, and their thermal decomposition mechanism were studied with TG-DTG technology. The constant-volume combustion energies of complexes, Δ c U, were determined by a precise rotating-bomb calorimeter at 298.15 K. Their standard molar enthalpies of combustion, Δ c H m 0 , and standard molar enthalpies of formation, Δ f H m o , were calculated

  4. Dynamic modeling of lactic acid fermentation metabolism with Lactococcus lactis.

    Science.gov (United States)

    Oh, Euhlim; Lu, Mingshou; Park, Changhun; Park, Changhun; Oh, Han Bin; Lee, Sang Yup; Lee, Jinwon

    2011-02-01

    A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/ MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).

  5. A new, simple assay for long-chain acyl-CoA dehydrogenase in cultured skin fibroblasts using stable isotopes and GC-MS

    NARCIS (Netherlands)

    Niezen-Koning, K. E.; Wanders, R. J.; Nagel, G. T.; IJlst, L.; Heymans, H. S.

    1992-01-01

    In this paper, we present a new method for measurement of long-chain acyl-CoA dehydrogenase (LCAD) activities in cultured skin fibroblasts. The method is based upon gas chromatographic/mass spectrometric determination of 3-OH-hexadecanoic acid formed during incubation of fibroblasts in a medium

  6. Structure of d-3-hydroxybutyrate dehydrogenase prepared in the presence of the substrate d-3-hydroxybutyrate and NAD+

    International Nuclear Information System (INIS)

    Hoque, Md Mominul; Shimizu, Satoru; Juan, Ella Czarina Magat; Sato, Yoshiteru; Hossain, Md Tofazzal; Yamamoto, Tamotsu; Imamura, Shigeyuki; Suzuki, Kaoru; Amano, Hitoshi; Sekiguchi, Takeshi; Tsunoda, Masaru; Takénaka, Akio

    2009-01-01

    The crystal structure of A. faecalisd-3-hydroxybutyrate dehydrogenase prepared in the presence of d-3-hydroxybutyrate and NAD + reveals the substrate/product-binding geometry as the first example which suggests that the catalytic reaction occurs by shuttle movements of a hydrogen negative ion from the substrate to NAD + and from NADH to the product. d-3-Hydroxybutyrate dehydrogenase from Alcaligenes faecalis catalyzes the reversible conversion between d-3-hydroxybutyrate and acetoacetate. The enzyme was crystallized in the presence of the substrate d-3-hydroxybutyrate and the cofactor NAD + at the optimum pH for the catalytic reaction. The structure, which was solved by X-ray crystallography, is isomorphous to that of the complex with the substrate analogue acetate. The product as well as the substrate molecule are accommodated well in the catalytic site. Their binding geometries suggest that the reversible reactions occur by shuttle movements of a hydrogen negative ion from the C3 atom of the substrate to the C4 atom of NAD + and from the C4 atom of NADH to the C3 atom of the product. The reaction might be further coupled to the withdrawal of a proton from the hydroxyl group of the substrate by the ionized Tyr155 residue. These structural features strongly support the previously proposed reaction mechanism of d-3-hydroxybutyrate dehydrogenase, which was based on the acetate-bound complex structure

  7. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    dehydrogenase encoding region of the bacterium, or is inserted into a phosphotransacetylase encoding region of the bacterium, or is inserted into an acetate kinase encoding region of the bacterium. It is operably linked to an inducible, a regulated or a constitutive promoter. The up-regulated glycerol......TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...

  8. Some Properties of Glutamate Dehydrogenase from the Marine Red ...

    African Journals Online (AJOL)

    Keywords: ammonia assimilation, glutamate dehydrogenase, GDH, Gracilaria sordida, red alga, enzyme activity. Glutamate dehydrogenases (GDH, EC ... Anabolic functions could be assimilation of ammonia released during photorespiration and synthesis of N-rich transport compounds. Western Indian Ocean Journal of ...

  9. Comparative genomics of aldehyde dehydrogenase 5a1 (succinate semialdehyde dehydrogenase and accumulation of gamma-hydroxybutyrate associated with its deficiency

    Directory of Open Access Journals (Sweden)

    Malaspina Patrizia

    2009-01-01

    Full Text Available Abstract Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5A1 [ALDH5A1]; locus 6p22 occupies a central position in central nervous system (CNS neurotransmitter metabolism as one of two enzymes necessary for γ-aminobutyric acid (GABA recycling from the synaptic cleft. Its importance is highlighted by the neurometabolic disease associated with its inherited deficiency in humans, as well as the severe epileptic phenotype observed in Aldh5a1-/- knockout mice. Expanding evidence now suggests, however, that even subtle decreases in human SSADH activity, associated with rare and common single nucleotide polymorphisms, may produce subclinical pathological effects. SSADH, in conjunction with aldo-keto reductase 7A2 (AKR7A2, represent two neural enzymes responsible for further catabolism of succinic semialdehyde, producing either succinate (SSADH or γ-hydroxybutyrate (GHB; AKR7A2. A GABA analogue, GHB is a short-chain fatty alcohol with unusual properties in the CNS and a long pharmacological history. Moreover, SSADH occupies a further role in the CNS as the enzyme responsible for further metabolism of the lipid peroxidation aldehyde 4-hydroxy-2-nonenal (4-HNE, an intermediate known to induce oxidant stress. Accordingly, subtle decreases in SSADH activity may have the capacity to lead to regional accumulation of neurotoxic intermediates (GHB, 4-HNE. Polymorphisms in SSADH gene structure may also associate with quantitative traits, including intelligence quotient and life expectancy. Further population-based studies of human SSADH activity promise to reveal additional properties of its function and additional roles in CNS tissue.

  10. The thermodynamic stability of hydrogen bonded and cation bridged complexes of humic acid models-A theoretical study

    International Nuclear Information System (INIS)

    Aquino, Adelia J.A.; Tunega, Daniel; Pasalic, Hasan; Haberhauer, Georg; Gerzabek, Martin H.; Lischka, Hans

    2008-01-01

    Hydrogen bonded and cation bridged complexation of poly(acrylic acid) oligomers, representing a model compound for humic acids, with acetic acid and the herbicide (4-chloro-2-methylphenoxy) acetic acid (MCPA) have been studied by means of density functional theory. Solvation effects were computed by means of a combination of microsolvation (explicit insertion of water molecules) and global solvation (polarizable continuum approach). The stability of hydrogen bonded complexes in solution is characterized by a strong competition between solute and solvent molecules. The cation bridged complexes of the negatively charged (deprotonated) ligands were found to be strongly favored explaining the capability of humic acids to fixate anionic species from soil solutions and the ability to form cross-linking structures within the humic acid macromolecules

  11. Lambda Red-mediated mutagenesis and efficient large scale affinity purification of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I).

    Science.gov (United States)

    Pohl, Thomas; Uhlmann, Mareike; Kaufenstein, Miriam; Friedrich, Thorsten

    2007-09-18

    The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. The Escherichia coli complex I consists of 13 different subunits named NuoA-N (from NADH:ubiquinone oxidoreductase), that are coded by the genes of the nuo-operon. Genetic manipulation of the operon is difficult due to its enormous size. The enzymatic activity of variants is obscured by an alternative NADH dehydrogenase, and purification of the variants is hampered by their instability. To overcome these problems the entire E. coli nuo-operon was cloned and placed under control of the l-arabinose inducible promoter ParaBAD. The exposed N-terminus of subunit NuoF was chosen for engineering the complex with a hexahistidine-tag by lambda-Red-mediated recombineering. Overproduction of the complex from this construct in a strain which is devoid of any membrane-bound NADH dehydrogenase led to the assembly of a catalytically active complex causing the entire NADH oxidase activity of the cytoplasmic membranes. After solubilization with dodecyl maltoside the engineered complex binds to a Ni2+-iminodiacetic acid matrix allowing the purification of approximately 11 mg of complex I from 25 g of cells. The preparation is pure and monodisperse and comprises all known subunits and cofactors. It contains more lipids than earlier preparations due to the gentle and fast purification procedure. After reconstitution in proteoliposomes it couples the electron transfer with proton translocation in an inhibitor sensitive manner, thus meeting all prerequisites for structural and functional studies.

  12. Kinetic and biophysical investigation of the inhibitory effect of caffeine on human salivary aldehyde dehydrogenase: Implications in oral health and chemotherapy

    Science.gov (United States)

    Laskar, Amaj Ahmed; Alam, Md Fazle; Ahmad, Mohammad; Younus, Hina

    2018-04-01

    Human salivary aldehyde dehydrogenase (hsALDH) is primarily a class 3 ALDH (ALDH3A1), and is an important antioxidant enzyme present in the saliva which maintains healthy oral cavity. It detoxifies toxic aldehydes into non-toxic carboxylic acids in the oral cavity. Reduced level of hsALDH activity is a risk factor for oral cancer development. It is involved in the resistance of certain chemotherapeutic drugs. Coffee has been reported to affect the activity of salivary ALDH. In this study, the effect of caffeine on the activity (dehydrogenase and esterase) of hsALDH was investigated. The binding of caffeine to hsALDH was studied using different biophysical methods and molecular docking analysis. Caffeine was found to inhibit both crude and purified hsALDH. The Km increased and the Vmax decreased showing a mixed type of inhibition. Caffeine decreased the nucleophilicity of the catalytic cysteine residue. It binds to the active site of ALDH3A1 by forming a complex through non-covalent interactions with some highly conserved amino acid residues. It partially alters the secondary structure of the enzyme. Therefore, it is very likely that caffeine binds and inhibits the activity of hsALDH by decreasing substrate binding affinity and the catalytic efficiency of the enzyme. The study indicates that oral intake of caffeine may have a harmful effect on the oral health and may increase the risk of carcinogenesis through the inhibition of this important enzyme. Further, the inactivation of oxazaphosphorine based chemotherapeutic drugs by ALDH3A1 may be prevented by using caffeine as an adjuvant during medication which is expected to increase the sensitivity of these drugs through its inhibitory effect on the enzyme.

  13. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery.

    Science.gov (United States)

    Sajeesh, S; Sharma, Chandra P

    2006-11-15

    Present investigation was aimed at developing an oral insulin delivery system based on hydroxypropyl beta cyclodextrin-insulin (HPbetaCD-I) complex encapsulated polymethacrylic acid-chitosan-polyether (polyethylene glycol-polypropylene glycol copolymer) (PMCP) nanoparticles. Nanoparticles were prepared by the free radical polymerization of methacrylic acid in presence of chitosan and polyether in a solvent/surfactant free medium. Dynamic light scattering (DLS) experiment was conducted with particles dispersed in phosphate buffer (pH 7.4) and size distribution curve was observed in the range of 500-800 nm. HPbetaCD was used to prepare non-covalent inclusion complex with insulin and complex was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopic studies. HPbetaCD complexed insulin was encapsulated into PMCP nanoparticles by diffusion filling method and their in vitro release profile was evaluated at acidic/alkaline pH. PMCP nanoparticles displayed good insulin encapsulation efficiency and release profile was largely dependent on the pH of the medium. Enzyme linked immunosorbent assay (ELISA) study demonstrated that insulin encapsulated inside the particles was biologically active. Trypsin inhibitory effect of PMCP nanoparticles was evaluated using N-alpha-benzoyl-L-arginine ethyl ester (BAEE) and casein as substrates. Mucoadhesive studies of PMCP nanoparticles were conducted using freshly excised rat intestinal mucosa and the particles were found fairly adhesive. From the preliminary studies, cyclodextrin complexed insulin encapsulated mucoadhesive nanoparticles appear to be a good candidate for oral insulin delivery.

  14. Adsorption of saturated fatty acid in urea complexation: Kinetics and equilibrium studies

    Science.gov (United States)

    Setyawardhani, Dwi Ardiana; Sulistyo, Hary; Sediawan, Wahyudi Budi; Fahrurrozi, Mohammad

    2018-02-01

    Urea complexation is fractionation process for concentrating poly-unsaturated fatty acids (PUFAs) from vegetable oil or animal fats. For process design and optimization in commercial industries, it is necessary to provide kinetics and equilibrium data. Urea inclusion compounds (UICs) as the product is a unique complex form which one molecule (guest) is enclosed within another molecule (host). In urea complexation, the guest-host bonding exists between saturated fatty acids (SFAs) and crystalline urea. This research studied the complexation is analogous to an adsorption process. The Batch adsorption process was developed to obtain the experimental data. The ethanolic urea solution was mixed with SFA in certain compositions and adsorption times. The mixture was heated until it formed homogenous and clear solution, then it cooled very slowly until the first numerous crystal appeared. Adsorption times for the kinetic data were determined since the crystal formed. The temperature was maintained constant at room temperature. Experimental sets of data were observed with adsorption kinetics and equilibrium models. High concentration of saturated fatty acid (SFA) was used to represent adsorption kinetics and equilibrium parameters. Kinetic data were examined with pseudo first-order, pseudo second-order and intra particle diffusion models. Linier, Freundlich and Langmuir isotherm were used to study the equilibrium model of this adsorption. The experimental data showed that SFA adsorption in urea crystal followed pseudo second-order model. The compatibility of the data with Langmuir isotherm showed that urea complexation was a monolayer adsorption.

  15. Bioreduction of Uranium(VI) Complexed with Citric Acid by Clostridia Affects its Structure and Mobility

    International Nuclear Information System (INIS)

    Francis, A.; Dodge, C.

    2008-01-01

    Uranium contamination of the environment from mining and milling operations, nuclear-waste disposal, and ammunition use is a widespread global problem. Natural attenuation processes such as bacterial reductive precipitation and immobilization of soluble uranium is gaining much attention. However, the presence of naturally occurring organic ligands can affect the precipitation of uranium. Here, we report that the anaerobic spore-forming bacteria Clostridia, ubiquitous in soils, sediments, and wastes, capable of reduction of Fe(III) to Fe(II), Mn(IV) to Mn(II), U(VI) to U(IV), Pu(IV) to Pu(III), and Tc(VI) to Tc(IV); reduced U(VI) associated with citric acid in a dinuclear 2:2 U(VI):citric acid complex to a biligand mononuclear 1:2 U(IV):citric acid complex, which remained in solution, in contrast to reduction and precipitation of uranium. Our findings show that U(VI) complexed with citric acid is readily accessible as an electron acceptor despite the inability of the bacterium to metabolize the complexed organic ligand. Furthermore, it suggests that the presence of organic ligands at uranium-contaminated sites can affect the mobility of the actinide under both oxic and anoxic conditions by forming such soluble complexes.

  16. Cytotoxic evaluation upon cis-platinum aminodiacetic acid complexes

    International Nuclear Information System (INIS)

    Almah binti Awaluddin; Parsons, Peter G.; Lean, Jenny M.; Jacobs, Jeffrey J.

    1990-01-01

    Cytoxic study of cis-platinum aminodiacetic acid complexes. Three novel platinum complexes have been synthesised and characterised by Awaluddin et. al (1987). This introduces a new area of radiopharmaceuticals based on technician and platinum. Cytotoxic studies were conducted on these complexes using four different types of cell lines. The para amina was found to be highly active against multi-resistant ovarian tumor cells compared to normal cells (fibroblast) and other tumor cells. The chemical structure of para-amina appears to be devoid of any functional group resembling current antitumor drugs except for a distant similarity to metotrexate with respect to the p-aminobenzoic type structure. However cell lines such as Hela and MM 253c-1, which is sensitive to metotrexate, were not sensitive to the para amina. Preliminary studies have shown that cells are blocked in the G phase of the cell cycle, suggesting an antimetabolite effect

  17. Polarographic determination of stability constants of Eu(III) complexes with acrylic and crotonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Rao, A L.J.; Singh, Makhan [Punjabi Univ., Patiala (India). Dept. of Chemistry

    1979-07-01

    Compositions and formation constants of Eu(III) complexes with acrylic acid and crotonic acid have been studied polarographically. The reductions are reversible and diffusion-controlled. The plot of Esub(1/2) versus--log Csub(x) is linear in the case of Eu(III)-acrylic acid system. The change in number of ligands bound to europium during reduction was found to be approximately 1 and ratio of dissociation constants of Eu(III) and Eu(II) was found to be 40.76X10sup(-2). In the case of Eu(III)-crotonic acid system, composition and formation constants have been calculated by the method of Deford and Hume. Crotonic acid forms two complex species with europium (..beta../sub 1/,60; ..beta../sub 2/, 4.2x10sup(+2)). The percentage distribution of various complex species as a function of ligand concentration has been calculated in the case of Eu(III)-crotonic acid system. A polarographic method for the determination of micro amounts of Eu(III) in the presence of diverse ions has been developed. Under optimum conditions Eu(III) in the concentration range 4x19sup(-4)-2x10sup(-2)M can be successfully determined in various mixtures.

  18. Correlation between root respiration and the levels of biomass and glycyrrhizic acid in Glycyrrhiza uralensis.

    Science.gov (United States)

    Liu, Wenlan; Sun, Zhirong; Qu, Jixu; Yang, Chunning; Zhang, Xiaomin; Wei, Xinxin

    2017-09-01

    The aim of the present study was to investigate the correlation between root respiration and the levels of biomass and glycyrrhizic acid in Glycyrrhiza uralensis . Root respiration was determined using a biological oxygen analyzer. Respiration-related enzymes including glucose-6-phosphate dehydrogenase plus 6-phosphogluconate dehydrogenase, phosphohexose isomerase and succinate dehydrogenase, and respiratory pathways were evaluated. Biomass was determined by a drying-weighing method. In addition, the percentage of glycyrrhizic acid was detected using high-performance liquid chromatography. The association between root respiration and the levels of biomass and glycyrrhizic acid was investigated. The glycolysis pathway (EMP), tricarboxylic acid cycle (TCA) and pentose phosphate (PPP) pathway acted concurrently in the roots of G. uralensis . Grey correlation analysis showed that TCA had the strongest correlation (correlation coefficient, 0.8003) with biomass. Starch and acetyl coenzyme A had the closest association with above-ground biomass, while soluble sugar correlated less strongly with above-ground biomass. Grey correlation analysis between biochemical pathways and the intermediates showed that pyruvic acid had the strongest correlation with EMP, while acetyl coenzyme A correlated most strongly with TCA. Among the intermediates and pathways, pyruvic acid and EMP exhibited the greatest correlation with glycyrrhizic acid, while acetyl coenzyme A and TCA correlated with glycyrrhizic acid less closely. The results of this study may aid the cultivation of G. uralensis . However, these results require verification in further studies.

  19. Interaction of glutaric aciduria type 1-related glutaryl-CoA dehydrogenase with mitochondrial matrix proteins.

    Directory of Open Access Journals (Sweden)

    Jessica Schmiesing

    Full Text Available Glutaric aciduria type 1 (GA1 is an inherited neurometabolic disorder caused by mutations in the GCDH gene encoding glutaryl-CoA dehydrogenase (GCDH, which forms homo- and heteromeric complexes in the mitochondrial matrix. GA1 patients are prone to the development of encephalopathic crises which lead to an irreversible disabling dystonic movement disorder. The clinical and biochemical manifestations of GA1 vary considerably and lack correlations to the genotype. Using an affinity chromatography approach we report here for the first time on the identification of mitochondrial proteins interacting directly with GCDH. Among others, dihydrolipoamide S-succinyltransferase (DLST involved in the formation of glutaryl-CoA, and the β-subunit of the electron transfer flavoprotein (ETFB serving as electron acceptor, were identified as GCDH binding partners. We have adapted the yellow fluorescent protein-based fragment complementation assay and visualized the oligomerization of GCDH as well as its direct interaction with DLST and ETFB in mitochondria of living cells. These data suggest that GCDH is a constituent of multimeric mitochondrial dehydrogenase complexes, and the characterization of their interrelated functions may provide new insights into the regulation of lysine oxidation and the pathophysiology of GA1.

  20. Alternative NADH dehydrogenase (NDH2): intermembrane-space-facing counterpart of mitochondrial complex I in the procyclic Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Verner, Zdeněk; Škodová, Ingrid; Poláková, S.; Ďurišová-Benkovičková, V.; Horváth, A.; Lukeš, Julius

    2013-01-01

    Roč. 140, č. 3 (2013), s. 328-337 ISSN 0031-1820 R&D Projects: GA MŠk LC07032; GA ČR GA204/09/1667 Institutional support: RVO:60077344 Keywords : Trypanosoma * mitochondrion * dehydrogenase * respiration * NDH2 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.350, year: 2013 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8838254

  1. Caenorhabditis elegans expressing the Saccharomyces cerevisiae NADH alternative dehydrogenase Ndi1p, as a tool to identify new genes involved in complex I related diseases

    Directory of Open Access Journals (Sweden)

    Raynald eCossard

    2015-06-01

    Full Text Available Isolated complex I deficiencies are one of the most commonly observed biochemical features in patients suffering from mitochondrial disorders. In the majority of these clinical cases the molecular bases of the diseases remain unknown suggesting the involvement of unidentified factors that are critical for complex I function.The Saccharomyces cerevisiae NDI1 gene, encoding the mitochondrial internal NADH dehydrogenase was previously shown to complement a complex I deficient strain in Caenorhabitis elegans with notable improvements in reproduction, whole organism respiration. These features indicate that Ndi1p can functionally integrate the respiratory chain, allowing complex I deficiency complementation. Taking into account the Ndi1p ability to bypass complex I, we evaluate the possibility to extend the range of defects/mutations causing complex I deficiencies that can be alleviated by NDI1 expression.We report here that NDI1 expressing animals unexpectedly exhibit a slightly shortened lifespan, a reduction in the progeny and a depletion of the mitochondrial genome. However, Ndi1p is expressed and targeted to the mitochondria as a functional protein that confers rotenone resistance to those animals and without affecting their respiration rate and ATP content.We show that the severe embryonic lethality level caused by the RNAi knockdowns of complex I structural subunit encoding genes (e.g. NDUFV1, NDUFS1, NDUFS6, NDUFS8 or GRIM-19 human orthologs in wild type animals is significantly reduced in the Ndi1p expressing worm.All together these results open up the perspective to identify new genes involved in complex I function, assembly or regulation by screening an RNAi library of genes leading to embryonic lethality that should be rescued by NDI1 expression.

  2. Chemistry of rhenium and technetium. II. Schiff base complexes with polyfunctional amino acids

    International Nuclear Information System (INIS)

    Du Preez, J.G.H.; Gerber, T.I.A.; Fourie, P.J.; Van Wyk, A.J.

    1984-01-01

    Amino acid Schiff base technetium(V) complexes of salicylaldehyde with l-cysteine, l-serine, l-histodine, l-threonine, l-glutamic acid and l-tryptophan have been preapred by direct reaction and by constituent combination. The amino acid part of the ligands coordinates to the technetium through the carboxylate group, while the other available functional group of the amino acids plays a more minor role as blocking group or in intramolecular bonding. 3 tables

  3. Thermodynamics of mixed-ligand complex formation of mercury (II) ethylenediaminetetraacetate with amino acids in solution

    Energy Technology Data Exchange (ETDEWEB)

    Pyreu, Dmitrii, E-mail: pyreu@mail.ru [Department of Inorganic and Analytic Chemistry, Ivanovo State University, Ermak 39, Ivanovo 153025 (Russian Federation); Kozlovskii, Eugenii [Department of Inorganic and Analytic Chemistry, Ivanovo State University, Ermak 39, Ivanovo 153025 (Russian Federation); Gruzdev, Matvei; Kumeev, Roman [Institute of Solution Chemistry, Ivanovo (Russian Federation)

    2012-11-20

    Highlights: Black-Right-Pointing-Pointer Stable mixed ligand complexes of HgEdta with amino acids at physiological pH value. Black-Right-Pointing-Pointer The thermodynamic and NMR data evident the ambidentate coordination mode of arginine. Black-Right-Pointing-Pointer Participation of the guanidinic group of Arg in coordination process. Black-Right-Pointing-Pointer Binuclear complexes (HgEdta){sub 2}L with the bridging function of amino acid. - Abstract: The mixed-ligand complex formation in the systems Hg{sup 2+} - Edta{sup 4-} - L{sup -}(L = Arg, Orn, Ser) has been studied by means of calorimetry, pH-potentiometry and NMR spectroscopy in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO{sub 3}). The thermodynamic parameters of formation of the HgEdtaL, HgEdtaHL and (HgEdta){sub 2}L complexes have been determined. The most probable coordination mode for the complexone and the amino acid in the mixed-ligand complexes was discussed.

  4. Characterization of phosphorylated isocitrate dehydrogenase and purification of the isocitrate dehydrogenase kinase/phosphatase of Escherichia coli

    International Nuclear Information System (INIS)

    Malloy, P.J.

    1985-01-01

    NADP + -specific isocitrate dehydrogenase (IDH; EC 1.1.1.42) was shown to be phosphorylated with ( 32 P)-orthophosphate in vivo in several strains of Escherichia coli. In strain KC 13, an adenylate cyclase deficient mutant, the specific activity of IDH decreased 70% when acetate was added to stationary phase cultures grown on glucose. The enzyme was immunoprecipitated from sonic extracts and shown to contain 32 P by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. The results demonstrate that unlike many eukaryotic protein kinases, the protein kinase involved in the phosphorylation of IDH in E. coli does not require cyclic adenosine monophosphate for catalysis. Similarly, the phosphorylation of IDH was demonstrated in E. coli mutants deficient in either isocitrate lyase or malate synthase. The incorporation of 32 P in IDH was demonstrated following SDS-PAGE and autoradiography of the immunoprecipitated enzyme. These results suggest that the conditions required for the phosphorylation of IDH do not depend on the functioning of the glyoxylate shunt. Following in vivo 32 P-labeling of E. coli strain F143/KL259 in the presence of acetate, 32 P-labeled IDH was isolated from sonicated extracts of the cells. The 32 P-enzyme was carboxylmethylated and digested with trypsin. A single 32 P-labeled peptide was isolated from the tryptic digest. Amino acid analysis of the purified 32 P-labeled peptide showed that the peptide contains seven amino acids, including a single phosphorylated serine residue

  5. Characterization of GDP-mannose dehydrogenase from the brown alga Ectocarpus siliculosus providing the precursor for the alginate polymer.

    Science.gov (United States)

    Tenhaken, Raimund; Voglas, Elena; Cock, J Mark; Neu, Volker; Huber, Christian G

    2011-05-13

    Alginate is a major cell wall polymer of brown algae. The precursor for the polymer is GDP-mannuronic acid, which is believed to be derived from a four-electron oxidation of GDP-mannose through the enzyme GDP-mannose dehydrogenase (GMD). So far no eukaryotic GMD has been biochemically characterized. We have identified a candidate gene in the Ectocarpus siliculosus genome and expressed it as a recombinant protein in Escherichia coli. The GMD from Ectocarpus differs strongly from related enzymes in bacteria and is as distant to the bacterial proteins as it is to the group of UDP-glucose dehydrogenases. It lacks the C-terminal ∼120 amino acid domain present in bacterial GMDs, which is believed to be involved in catalysis. The GMD from brown algae is highly active at alkaline pH and contains a catalytic Cys residue, sensitive to heavy metals. The product GDP-mannuronic acid was analyzed by HPLC and mass spectroscopy. The K(m) for GDP-mannose was 95 μM, and 86 μM for NAD(+). No substrate other than GDP-mannose was oxidized by the enzyme. In gel filtration experiments the enzyme behaved as a dimer. The Ectocarpus GMD is stimulated by salts even at low molar concentrations as a possible adaptation to marine life. It is rapidly inactivated at temperatures above 30 °C.

  6. Evidence for involvement of medium chain acyl-CoA dehydrogenase in the metabolism of phenylbutyrate.

    Science.gov (United States)

    Kormanik, Kaitlyn; Kang, Heejung; Cuebas, Dean; Vockley, Jerry; Mohsen, Al-Walid

    2012-12-01

    Sodium phenylbutyrate is used for treating urea cycle disorders, providing an alternative for ammonia excretion. Following conversion to its CoA ester, phenylbutyryl-CoA is postulated to undergo one round of β-oxidation to phenylacetyl-CoA, the active metabolite. Molecular modeling suggests that medium chain acyl-CoA dehydrogenase (MCAD; EC 1.3.99.3), a key enzyme in straight chain fatty acid β-oxidation, could utilize phenylbutyryl-CoA as substrate. Moreover, phenylpropionyl-CoA has been shown to be a substrate for MCAD and its intermediates accumulate in patients with MCAD deficiency. We have examined the involvement of MCAD and other acyl-CoA dehydrogenases (ACADs) in the metabolism of phenylbutyryl-CoA. Anaerobic titration of purified recombinant human MCAD with phenylbutyryl-CoA caused changes in the MCAD spectrum that are similar to those induced by octanoyl-CoA, its bona fide substrate, and unique to the development of the charge transfer ternary complex. The calculated apparent dissociation constant (K(D app)) for these substrates was 2.16 μM and 0.12 μM, respectively. The MCAD reductive and oxidative half reactions were monitored using the electron transfer flavoprotein (ETF) fluorescence reduction assay. The catalytic efficiency and the K(m) for phenylbutyryl-CoA were 0.2 mM 34(-1)·sec(-1) and 5.3 μM compared to 4.0 mM(-1)·sec(-1) and 2.8 μM for octanoyl-CoA. Extracts of wild type and MCAD-deficient lymphoblast cells were tested for the ability to reduce ETF using phenylbutyryl-CoA as substrate. While ETF reduction activity was detected in extracts of wild type cells, it was undetectable in extracts of cells deficient in MCAD. The results are consistent with MCAD playing a key role in phenylbutyrate metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Electron transfer reactions of ruthenium(II) complexes with polyphenolic acids in micelles

    Energy Technology Data Exchange (ETDEWEB)

    Rajeswari, Angusamy [School of Chemistry, Madurai Kamaraj University, Madurai 625 021 (India); Department of Chemistry, Fatima College, Madurai 625 018 (India); Ramdass, Arumugam [School of Chemistry, Madurai Kamaraj University, Madurai 625 021 (India); Research Department of Chemistry, Aditanar College of Arts and Science, Tiruchendur 628 216 (India); Muthu Mareeswaran, Paulpandian [School of Chemistry, Madurai Kamaraj University, Madurai 625 021 (India); Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003 (India); Rajagopal, Seenivasan, E-mail: rajagopalseenivasan@yahoo.com [School of Chemistry, Madurai Kamaraj University, Madurai 625 021 (India)

    2016-02-15

    The electron transfer in a microhetrogeneous system is a perfect mimic of biological electron transfer. The electron transfer between biologically important phenolic acids and ruthenium (II) complexes is systematically studied in the presence of anionic and cationic micelles. The photophysical properties of these ruthenium (II) complexes with anionic and cationic micelles and their binding abilities with these two type of micelles are also studies using absorption, emission and excited state lifetime spectral techniques. Pseudophase Ion Exchange (PIE) Model is applied to derive mechanism of electron transfer in two types of micelles. - Highlights: • Effect of microhetrogeneous system is studied using ruthenium (II) complexes and gallic acid is studied. • Pseudophase Ion exchange model is applied to derive the mechanism. • Binding constants are in the range of 10{sup 2}–10{sup 4} M{sup −1}.

  8. Genetic Basis for Correction of Very‐Long‐Chain Acyl-Coenzyme A Dehydrogenase Deficiency by Bezafibrate in Patient Fibroblasts: Toward a Genotype‐Based Therapy

    DEFF Research Database (Denmark)

    Gobin‐Limballe, S.; Djouadi, F.; Aubey, F.

    2007-01-01

    Very‐long‐chain acyl-coenzyme A dehydrogenase (VLCAD) deficiency is an inborn mitochondrial fatty‐acid β‐oxidation (FAO) defect associated with a broad mutational spectrum, with phenotypes ranging from fatal cardiopathy in infancy to adolescent‐onset myopathy, and for which there is no established...

  9. An improved method for the assay of platelet pyruvate dehydrogenase

    International Nuclear Information System (INIS)

    Schofield, P.J.; Griffiths, L.R.; Rogers, S.H.

    1980-01-01

    An improved method for the assay of human platelet pyruvate dehydrogenase is described. By generating the substrate [1- 14 C]pyruvate in situ from [1- 14 C]lactate plus L-lactate dehydrogenase, the rate of spontaneous decarboxylation is dramatically reduced, allowing far greater sensitivity in the assay of low activities of pyruvate dehydrogenase. In addition, no special precautions are required for the storage and use of [1- 14 C]lactate, in contrast to those for [1- 14 C]pyruvate. These factors allow a 5-10-fold increase in sensitivity compared with current methods. The pyruvate dehydrogenase activity of normal subjects as determined by the [1- 14 C]lactate system was 215+-55 pmol min -1 mg -1 protein (n=18). The advantages of this assay system are discussed. (Auth.)

  10. New 3,4-diaminobenzoic acid Schiff base compounds and their complexes: synthesis, characterization and thermodynamics.

    Science.gov (United States)

    Mohammadi, Khosro; Niad, Mahmood; Jafari, Tahereh

    2014-03-25

    Some new tetradentate Schiff base ligands (H3L) were prepared via condensation of 3,4-diaminobenzoic acid with 2-hydroxybenzaldehyde derivatives, such as 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (H3L(1)), 3,4-bis((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (H3L(2)) and 3,4-bis((E)-5-bromo-2-hydroxybenzylideneamino)benzoic acid (H3L(4)). Additionally, a tetradentate Schiff base ligand 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (H3L(3)) and its complexes were synthesized. Their metal complexes of Co(II), Ni(II), Cu(II) and Zn(II) were prepared in good yields from the reaction of the ligands with the corresponding metal acetate. They were characterized based on IR, (1)H NMR, Mass spectroscopy and UV-Vis spectroscopy. Also, the formation constants of the complexes were measured by UV-Vis spectroscopic titration at constant ionic strength 0.1M (NaClO4), at 25 °C in dimethylformamide (DMF) as a solvent. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  11. Interaction between metals and nucleic acids. Part 3. Synthesis and structural studies of copper(II) complexes with Schiff base ligands derived from barbituric acid

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, I.; Gaudemer, A.; Chiaroni, A.; Riche, C.

    1986-02-17

    Schiff bases have been prepared from 5-formylbarbituric acid and 5-formyl-1,3-dimethyl-barbituric acid and various di- or tri-amines. The structure of the corresponding copper(II) complexes have been established by elemental analysis and spectroscopic methods. The molecular structure of one of the complexes, Cu(DiMeBardpt), was determined by X-ray diffraction. Electrochemical study shows that these complexes are reduced at slightly more negative potentials than the corresponding complexes obtained from uracil, which suggests that these new ligands are better electron-donors.

  12. Novel ETF dehydrogenase mutations in a patient with mild glutaric aciduria type II and complex II-III deficiency in liver and muscle.

    Science.gov (United States)

    Wolfe, Lynne A; He, Miao; Vockley, Jerry; Payne, Nicole; Rhead, William; Hoppel, Charles; Spector, Elaine; Gernert, Kim; Gibson, K Michael

    2010-12-01

    We describe a 22-year-old male who developed severe hypoglycemia and lethargy during an acute illness at 4 months of age and subsequently grew and developed normally. At age 4 years he developed recurrent vomiting with mild hyperammonemia and dehydration requiring frequent hospitalizations. Glutaric aciduria Type II was suspected based upon biochemical findings and managed with cornstarch, carnitine and riboflavin supplements. He did not experience metabolic crises between ages 4-12 years. He experienced recurrent vomiting, mild hyperammonemia, and generalized weakness associated with acute illnesses and growth spurts. At age 18 years, he developed exercise intolerance and proximal muscle weakness leading to the identification of multiple acyl-CoA dehydrogenase and complex II/III deficiencies in both skeletal muscle and liver. Subsequent molecular characterization of the ETFDH gene revealed novel heterozygous mutations, p.G274X:c.820 G > T (exon 7) and p.P534L: c.1601 C > T (exon 12), the latter within the iron sulfur-cluster and predicted to affect ubiquinone reductase activity of ETFDH and the docking of ETF to ETFDH. Our case supports the concept of a structural interaction between ETFDH and other enzyme partners, and suggests that the conformational change upon ETF binding to ETFDH may play a key role in linking ETFDH to II/III super-complex formation.

  13. Equine acquired multiple acyl-CoA dehydrogenase deficiency (MADD) in 14 horses associated with ingestion of Maple leaves (Acer pseudoplatanus) covered with European tar spot (Rhytisma acerinum).

    Science.gov (United States)

    van der Kolk, J H; Wijnberg, I D; Westermann, C M; Dorland, L; de Sain-van der Velden, M G M; Kranenburg, L C; Duran, M; Dijkstra, J A; van der Lugt, J J; Wanders, R J A; Gruys, E

    2010-01-01

    This case-series describes fourteen horses suspected of equine acquired multiple acyl-CoA dehydrogenase deficiency (MADD) also known as atypical myopathy of which seven cases were confirmed biochemically with all horses having had access to leaves of the Maple tree (Acer pseudoplatanus) covered with European tar spot (Rhytisma acerinum). Assessment of organic acids, glycine conjugates, and acylcarnitines in urine was regarded as gold standard in the biochemical diagnosis of equine acquired multiple acyl-CoA dehydrogenase deficiency. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Idiopathic intracranial hypertension, hormones, and 11ß-hydroxysteroid dehydrogenases

    Directory of Open Access Journals (Sweden)

    Markey KA

    2016-04-01

    Full Text Available Keira A Markey,1 Maria Uldall,2 Hannah Botfield,1 Liam D Cato,1 Mohammed A L Miah,1 Ghaniah Hassan-Smith,1 Rigmor H Jensen,2 Ana M Gonzalez,1 Alexandra J Sinclair1 1Neurometabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; 2Danish Headache Center, Clinic of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark Abstract: Idiopathic intracranial hypertension (IIH results in raised intracranial pressure (ICP leading to papilledema, visual dysfunction, and headaches. Obese females of reproductive age are predominantly affected, but the underlying pathological mechanisms behind IIH remain unknown. This review provides an overview of pathogenic factors that could result in IIH with particular focus on hormones and the impact of obesity, including its role in neuroendocrine signaling and driving inflammation. Despite occurring almost exclusively in obese women, there have been a few studies evaluating the mechanisms by which hormones and adipokines exert their effects on ICP regulation in IIH. Research involving 11ß-hydroxysteroid dehydrogenase type 1, a modulator of glucocorticoids, suggests a potential role in IIH. Improved understanding of the complex interplay between adipose signaling factors such as adipokines, steroid hormones, and ICP regulation may be key to the understanding and future management of IIH. Keywords: 11beta-hydroxysteroid dehydrogenase type 1, steroid and adipokines, obesity, leptin

  15. Purification, properties and immunological relationship of L (+)-lactate dehydrogenase from Lactobacillus casei.

    Science.gov (United States)

    Gordon, G L; Doelle, H W

    1976-08-16

    The fructose-1,6-bisphosphate-activated L-lactate dehydrogenase (EC 1.1.1.27) from Lactobacillus casei ATCC 393 has been purified to homogenity by including affinity chromatography (cibacronblue-Sephadex-G-200) and preparative polyacrylamide gel electrophoresis into the purification procedures. The enzyme has an Mr of 132000-135000 with a subunit Mr of 34000. The pH optimum was found to be 5.4 insodium acetate buffer. Tris/maleate and citrate/phosphate buffers inhibited enzyme activity at this pH. The enzyme was completely inactivated by a temperature increase from 60 degrees C to 70 degrees C. Pyruvate saturation curves were sigmoidal in the absence of fructose 1,6-bisphosphate. In the presence of 20 muM fructose 1,6-bisphosphate a Km of 1.0 mM for pyruvate was obtained, whereas fructose 1,6-bisphosphate had no effect on the Km of 0.01 mM for NADH. The use of pyruvate analogues revealed two types of pyruvate binding sites, a catalytic and an effector site. The enzyme from L. casei appears to be subject to strict metabolic control, since ADP, ATP, dihydroxyacetone phosphate and 6-phosphogluconate are strong inhibitors. Immunodiffusion experiments with a rabbit antiserum to L. casei lactate dehydrogenase revealed that L. casei ATCC 393 L (+)-lactate dehydrogenase is probably not immunologically related to group D and group N streptococci. Of 24 lactic acid bacterial strains tested only 5 strains did cross-react: L. casei ATCC 393 = L. casei var. rhamnosus ATCC 7469 - L. casei var. alactosus NCDO 680 greater than L. casei UQM 95 greater than L. plantarum ATCC 14917.

  16. Communication between Thiamin Cofactors in the Escherichia coli Pyruvate Dehydrogenase Complex E1 Component Active Centers EVIDENCE FOR A DIRECT PATHWAY BETWEEN THE 4′-AMINOPYRIMIDINE N1′ ATOMS

    Energy Technology Data Exchange (ETDEWEB)

    Nemeria, Natalia S; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Mossad, Madouna; Tittmann, Kai; Furey, William; Jordan, Frank [Pitt; (Goettingen); (VA); (Rutgers)

    2010-11-03

    Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4{prime}-aminopyrimidine N1{prime} atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu{sup 571}, Glu{sup 235}, and Glu{sup 237}) and Arg{sup 606} resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway for communication between the two ThDPs. (1) Steady-state kinetic and fluorescence quenching studies revealed that upon E571A, E235A, E237A, and R606A substitutions, ThDP binding in the second active center was affected. (2) Analysis of the kinetics of thiazolium C2 hydrogen/deuterium exchange of enzyme-bound ThDP suggests half-of-the-sites reactivity for the E1 component, with fast (activated site) and slow exchanging sites (dormant site). The E235A and E571A variants gave no evidence for the slow exchanging site, indicating that only one of two active sites is filled with ThDP. (3) Titration of the E235A and E237A variants with methyl acetylphosphonate monitored by circular dichroism suggested that only half of the active sites were filled with a covalent predecarboxylation intermediate analog. (4) Crystal structures of E235A and E571A in complex with ThDP revealed the structural basis for the spectroscopic and kinetic observations and showed that either substitution affects cofactor binding, despite the fact that Glu{sup 235} makes no direct contact with the cofactor. The role of the conserved Glu{sup 571} residue in both catalysis and cofactor orientation is revealed by the combined results for the first time.

  17. Complexes of molybdenum (6) and tungsten (6) with amino- and pyridine carboxylic acids

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Mozgin, S.V.; Felin, M.G.; Subbotina, N.A.; Ajzenberg, M.I.

    1984-01-01

    By interaction of Na 2 MO 4 With amino acid excess in muriatic medium the complexes Mo 2 O 4 (OH) 3 L (LH-anthranilic, nicotinic acids, histidine), Mo 2 O 5 (OH)L' (L'H-α- and β-alanine, valine, isonicotinic acid), W 3 O 8 (OH) (H 2 O) 4 L'' (L'H-nicotinic, isonicotinic acids, histidine) are isolated. On the basis of the data of elementary analysis, IR spectrosfopy and thermogravimetry assumptions on their composition and structure have been suggested

  18. Interaction of Aldehyde dehydrogenase with acetaminophen as examined by spectroscopies and molecular docking

    Directory of Open Access Journals (Sweden)

    Ayodele O. Kolawole

    2017-07-01

    Full Text Available The interaction of acetaminophen, a non-substrate anionic ligand, with Aldehyde Dehydrogenase was studied by fluorescence, UV–Vis absorption, and circular dichroism spectroscopies under simulated physiological conditions. The fluorescence spectra and data generated showed that acetaminophen binding to ALDH is purely dynamic quenching mechanism. The acetaminophen-ALDH is kinetically rapid reversible interaction with a binding constant, Ka, of 4.91×103 L mol−1. There was an existence of second binding site of ALDH for acetaminophen at saturating acetaminophen concentration. The binding sites were non-cooperative. The thermodynamic parameters obtained suggest that Van der Waal force and hydrogen bonding played a major role in the binding of acetaminophen to ALDH. The interaction caused perturbation of the ALDH structures with an obvious reduction in the α-helix. The binding distance of 4.43 nm was obtained between Acetaminophen and ALDH. Using Ficoll 400 as macro-viscosogen and glycerol as micro-viscosogen, Stoke-Einstein empirical plot demonstrated that acetaminophen-ALDH binding was diffusion controlled. Molecular docking showed the participation of some amino acids in the complex formation with −5.3 kcal binding energy. With these, ALDH might not an excipient detoxifier of acetaminophen but could be involved in its pegylation/encapsulation.

  19. Compound heterozygous mutations in electron transfer flavoprotein dehydrogenase identified in a young Chinese woman with late-onset glutaric aciduria type II

    OpenAIRE

    Xue, Ying; Zhou, Yun; Zhang, Keqin; Li, Ling; Kayoumu, Abudurexiti; Chen, Liye; Wang, Yuhui; Lu, Zhiqiang

    2017-01-01

    Background Glutaric aciduria type II (GA II) is an autosomal recessive disorder affecting fatty acid and amino acid metabolism. The late-onset form of GA II disorder is almost exclusively associated with mutations in the electron transfer flavoprotein dehydrogenase (ETFDH) gene. Till now, the clinical features of late-onset GA II vary widely and pose a great challenge for diagnosis. The aim of the current study is to characterize the clinical phenotypes and genetic basis of a late-onset GAII ...

  20. Removal of Aqueous Boron by Using Complexation of Boric Acid with Polyols: A Raman Spectroscopic Study

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Ki Heon; Jeong, Hui Cheol; An, Hye Young; Lim, Jun-Heok; Lee, Jea-Keun; Won, Yong Sun [Pukyong National University, Busan (Korea, Republic of)

    2015-12-15

    Boron is difficult to be removed from seawater by simple RO (reverse osmosis) membrane process, because the size of boric acid (B(OH){sub 3}), the major form of aqueous boron, is as small as the nominal pore size of RO membrane. Thus, the complexation of boric acid with polyols was suggested as an alternative way to increase the size of aqueous boron compounds and the complexation behavior was investigated with Raman spectroscopy. As a reference, the Raman peak for symmetric B-O stretching vibrational mode both in boric acid and borate ion (B(OH){sub 4}{sup -}) was selected. A Raman peak shift (877 cm{sup -1} →730 cm{sup -1}) was observed to confirm that boric acid in water is converted to borate ion as the pH increases, which is also correctly predicted by frequency calculation. Meanwhile, the Raman peak of borate ion (730 cm{sup -1}) did not appear as the pH increased when polyols were applied into aqueous solution of boric acid, suggesting that the boric acid forms complexing compounds by combining with polyols.

  1. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiangping [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China); Wang, Ziquan; Lu, Guannan [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); He, Wenxiang, E-mail: wenxianghe@nwafu.edu.cn [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A& F University, Yangling, 712100, Shaanxi (China); Wei, Gehong [College of Life Sciences, Northwest A& F University, Yangling, 712100, Shaanxi (China); Huang, Feng; Xu, Xinlan; Shen, Weijun [Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China)

    2017-05-05

    Highlights: • pH explained 30–45% of the dehydrogenase activity (DHA), V{sub max}, and K{sub m} variations across soils. • Different inhibition mechanism of Cd to DHA varied soil types. • Soil properties and inhibition constant affect the toxicity of Cd. • Reaction constant (k) could indicate sensitively the toxicity of Cd to DHA. - Abstract: Soil dehydrogenase plays a role in the biological oxidation of soil organic matter and can be considered a good measure of the change of microbial oxidative activity under environmental pollutions. However, the kinetic characteristic of soil dehydrogenase under heavy metal stresses has not been investigated thoroughly. In this study, we characterized the kinetic characteristic of soil dehydrogenase in 14 soil types, and investigated how kinetic parameters changed under spiked with different concentrations of cadmium (Cd). The results showed that the K{sub m} and V{sub max} values of soil dehydrogenase was among 1.4–7.3 mM and 15.9–235.2 μM h{sup −1} in uncontaminated soils, respectively. In latosolic red soil and brown soil, the inhibitory kinetic mechanism of Cd to soil dehydrogenase was anticompetitive inhibition with inhibition constants (K{sub i}) of 12 and 4.7 mM, respectively; in other soils belonged to linear mixed inhibition, the values of K{sub i} were between 0.7–4.2 mM. Soil total organic carbon and K{sub i} were the major factors affecting the toxicity of Cd to dehydrogenase activity. In addition, the velocity constant (k) was more sensitive to Cd contamination compared to V{sub max} and K{sub m}, which was established as an early indicator of gross changes in soil microbial oxidative activity caused by Cd contamination.

  2. Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases.

    Science.gov (United States)

    Alkorta, Ibon; Blanco, Fernando; Solimannejad, Mohammad; Elguero, Jose

    2008-10-30

    A theoretical study of the complexes formed by hypohalous acids (HOX, X = F, Cl, Br, I, and At) with three nitrogenated bases (NH 3, N 2, and NCH) has been carried out by means of ab initio methods, up to MP2/aug-cc-pVTZ computational method. In general, two minima complexes are found, one with an OH...N hydrogen bond and the other one with a X...N halogen bond. While the first one is more stable for the smallest halogen derivatives, the two complexes present similar stabilities for the iodine case and the halogen-bonded structure is the most stable one for the hypoastatous acid complexes.

  3. Fulminant lipid storage myopathy due to multiple acyl-coenzyme a dehydrogenase deficiency.

    Science.gov (United States)

    Whitaker, Charles H; Felice, Kevin J; Silvers, David; Wu, Qian

    2015-08-01

    The lipid storage myopathies, primary carnitine deficiency, neutral lipid storage disease, and multiple acyl coenzyme A dehydrogenase deficiency (MADD), are progressive disorders that cause permanent weakness. These disorders of fatty acid metabolism and intracellular triglyceride degradation cause marked fat deposition and damage to muscle cells. We describe a rapidly progressive myopathy in a previously healthy 33-year-old woman. Over 4 months, she developed a proximal and axial myopathy associated with diffuse myalgia and dysphagia, ultimately leading to respiratory failure and death. Muscle biopsy showed massive accumulation of lipid. Plasma acylcarnitine and urine organic acid analysis was consistent with MADD. This was confirmed by molecular genetic testing, which revealed 2 pathogenic mutations in the ETFDH gene. This report illustrates a late-onset case of MADD and reviews the differential diagnosis and evaluation of patients with proximal myopathy and excessive accumulation of lipid on muscle biopsy. © 2014 Wiley Periodicals, Inc.

  4. Identification and characterization of the vanillin dehydrogenase YfmT in Bacillus subtilis 3NA.

    Science.gov (United States)

    Graf, Nadja; Wenzel, Marian; Altenbuchner, Josef

    2016-04-01

    With vanillin as one of the most important flavoring agents, many efforts have been made to optimize its biotechnological production from natural abundant substrates. However, its toxicity against the hosts results in rather low yields and product concentrations. Bacillus subtilis as a soil-dwelling bacterium is a possible lignin-derived compound-degrading microorganism. Therefore, its vanillin and ferulic acid metabolism was investigated. With a rather high tolerance for vanillin up to 20 mM, it is a promising candidate to produce natural vanillin. In this study, the well-studied phenolic acid decarboxylases PadC and BsdBCD could be ascribed to function as the only enzymes in B. subtilis 3NA converting ferulic acid to 4-vinylguaiacol and vanillic acid to guaiacol, respectively. As vanillin also becomes converted to guaiacol, a previous conversion to vanillic acid was assumed. Usage of bioinformatic tools revealed YfmT, which could be shown to function as the only vanillin dehydrogenase in B. subtilis 3NA. Thus, YfmT was further characterized regarding its temperature and pH optima as well as its substrate range. Vanillin and ferulic acid metabolic routes in the tested B. subtilis strain were revealed, a direct conversion of ferulic acid to vanillin, however, could not be found.

  5. Gluconic Acid: Properties, Applications and Microbial Production

    Directory of Open Access Journals (Sweden)

    Sumitra Ramachandran

    2006-01-01

    Full Text Available Gluconic acid is a mild organic acid derived from glucose by a simple oxidation reaction. The reaction is facilitated by the enzyme glucose oxidase (fungi and glucose dehydrogenase (bacteria such as Gluconobacter. Microbial production of gluconic acid is the preferred method and it dates back to several decades. The most studied and widely used fermentation process involves the fungus Aspergillus niger. Gluconic acid and its derivatives, the principal being sodium gluconate, have wide applications in food and pharmaceutical industry. This article gives a review of microbial gluconic acid production, its properties and applications.

  6. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    Science.gov (United States)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values

  7. Spectrophotometric study of the complexes of cerium and uranides with diethylenetetraaminepentaacetic acid (DTPA); Contribution a l'etude de la complexation du cerium et des uranides par l'acide diethylenetetraminepentaacetique (DTPA)

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, M B [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-03-01

    A spectrophotometric determination was made of the complexes of cerium and uranides in their different degrees of oxidation with diethylenetriaminepentaacetic acid (DTPA). Two physico-chemical states, the ionic and hydrolysis ones, were considered. In the former case, we studied the influence of the pH on the formation of the complex, and whenever the complexes were stable, we determined the molecular ratio and calculated their stability constants. In the latter case, we studied the conditions of solubilization of the precipitate by formation of complexes soluble in water as a function of pH, age of the precipitate and time of precipitate-chelate contact. (authors) [French] Etude spectrophotometrique de la complexation du cerium et des uranides (uranium, neptunium, plutonium et americium) dans leurs differents etats d'oxydation par l'acide diethylenetriaminepentaacetique (DTPA). Deux etats physicochimiques ont retenu notre attention, l'etat ionique et l'etat precipite d'hydrolyse. Dans le premier cas, nous avons etudie l'influence du pH sur la formation du complexe, et dans tous les cas ou le complexe est stable, nous avons determine le rapport moleculaire (5) [element]/[chelatant] du complexe forme et nous avons calcule leurs constantes de stabilite. Dans le deuxieme cas, l'etat de precipite d'hydrolyse, nous avons etudie les conditions de solubilisation du precipite, par formation du complexe, en fonction du pH, de l'age du precipite et du temps de contact precipite - chelatant. (auteurs)

  8. Fractionation of SWNT/nucleic acid complexes by agarose gel electrophoresis

    International Nuclear Information System (INIS)

    Vetcher, Alexandre A; Srinivasan, Srimeenakshi; Vetcher, Ivan A; Abramov, Semen M; Kozlov, Mikhail; Baughman, Ray H; Levene, Stephen D

    2006-01-01

    We show that aqueous dispersions of single-walled carbon nanotubes (SWNTs), prepared with the aid of nucleic acids (NAs) such as RNA or DNA, can be separated into fractions using agarose gel electrophoresis. In a DC electric field, SWNT/NA complexes migrate in the gel in the direction of positive potential to form well-defined bands. Raman spectroscopy as a function of band position shows that nanotubes having different spectroscopic properties possess different electrophoretic mobilities. The migration patterns for SWNT/RNA and SWNT/DNA complexes differ. Parallel elution of the SWNT/NA complexes from the gel during electrophoresis and subsequent characterization by AFM reveals differences in nanotube diameter, length and curvature. The results suggest that fractionation of nanotubes can be achieved by this procedure. We discuss factors affecting the mobility of the nanotube complexes and propose analytical applications of this technique

  9. Fractionation of SWNT/nucleic acid complexes by agarose gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Vetcher, Alexandre A [Institute of Biomedical Sciences and Technology and Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 (United States); Srinivasan, Srimeenakshi [Institute of Biomedical Sciences and Technology and Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 (United States); Vetcher, Ivan A [Institute of Biomedical Sciences and Technology and Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 (United States); Abramov, Semen M [NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083 (United States); Kozlov, Mikhail [NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083 (United States); Baughman, Ray H [NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083 (United States); Levene, Stephen D [Institute of Biomedical Sciences and Technology and Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 (United States)

    2006-08-28

    We show that aqueous dispersions of single-walled carbon nanotubes (SWNTs), prepared with the aid of nucleic acids (NAs) such as RNA or DNA, can be separated into fractions using agarose gel electrophoresis. In a DC electric field, SWNT/NA complexes migrate in the gel in the direction of positive potential to form well-defined bands. Raman spectroscopy as a function of band position shows that nanotubes having different spectroscopic properties possess different electrophoretic mobilities. The migration patterns for SWNT/RNA and SWNT/DNA complexes differ. Parallel elution of the SWNT/NA complexes from the gel during electrophoresis and subsequent characterization by AFM reveals differences in nanotube diameter, length and curvature. The results suggest that fractionation of nanotubes can be achieved by this procedure. We discuss factors affecting the mobility of the nanotube complexes and propose analytical applications of this technique.

  10. Complexes of molybdenum (6) and tungsten (6) with amino- and pyridine carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Spitsyn, V I; Mozgin, S V; Felin, M G; Subbotina, N A; Ajzenberg, M I [Moskovskij Gosudarstvennyj Univ. (USSR)

    1984-01-01

    By interaction of Na/sub 2/MO/sub 4/ with amino acid excess in muriatic medium the complexes Mo/sub 2/O/sub 4/ (OH)/sub 3/L (LH-anthranilic, nicotinic acids, histidine), Mo/sub 2/O/sub 5/ (OH)L' (L'H-..cap alpha..- and ..beta..-alanine, valine, isonicotinic acid), W/sub 3/O/sub 8/ (OH) (H/sub 2/O)/sub 4/ L'' (L'H-nicotinic, isonicotinic acids, histidine) are isolated. On the basis of the data of elementary analysis, IR spectroscopy and thermogravimetry assumptions on their composition and structure have been suggested.

  11. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans.

    Science.gov (United States)

    Tuck, Laura R; Altenbach, Kirsten; Ang, Thiau Fu; Crawshaw, Adam D; Campopiano, Dominic J; Clarke, David J; Marles-Wright, Jon

    2016-02-22

    The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD(+). This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes.

  12. Rhenium(V) complexing with benzimidazole in acidic media

    International Nuclear Information System (INIS)

    Zakaeva, R.Sh.; Gagieva, S.Ch.; Kaloev, N.I.; Bukov, N.N.; Panyushkin, V.T.

    2003-01-01

    Coordination compounds of rhenium(V) with 1H-benzimidazole (L) separated from acid media: (HL) 2 [ReOX 5 ](H 2 O) n and [ReOL x X y (H 2 O) z ](H 2 O) n (HL and L - protonated and deprotonated forms of benzimidazole; X = Cl - , Br - ) were studied by the methods of IR spectroscopy, 1 H NMR spectroscopy and thermal gravimetric analysis. Methods of ligand coordination in the complexes are discussed on the basis of data obtained [ru

  13. Abnormalities in the tricarboxylic acid (TCA) cycle in the brains of schizophrenia patients.

    Science.gov (United States)

    Bubber, P; Hartounian, V; Gibson, G E; Blass, J P

    2011-03-01

    Images of brain metabolism and measurements of activities of components of the electron transport chain support earlier studies that suggest that brain glucose oxidation is inherently abnormal in a significant proportion of persons with schizophrenia. Therefore, we measured the activities of enzymes of the tricarboxylic (TCA) cycle in dorsolateral-prefrontal-cortex from schizophrenia patients (N=13) and non-psychiatric disease controls (N=13): the pyruvate dehydrogenase complex (PDHC), citrate synthase (CS), aconitase, isocitrate dehydrogenase (ICDH), the alpha-ketoglutarate dehydrogenase complex (KGDHC), succinate thiokinase (STH), succinate dehydrogenase (SDH), fumarase and malate dehydrogenase (MDH). Activities of aconitase (18.4%, pTCA cycle, were lower, but SDH (18.3%, pTCA cycle and cognitive function, age or choline acetyl transferase activity, except for aconitase activity which decreased slightly with age (r=0.55, p=003). The increased activities of dehydrogenases in the second half of the TCA cycle may reflect a compensatory response to reduced activities of enzymes in the first half. Such alterations in the components of TCA cycle are adequate to alter the rate of brain metabolism. These results are consistent with the imaging studies of hypometabolism in schizophrenia. They suggest that deficiencies in mitochondrial enzymes can be associated with mental disease that takes the form of schizophrenia. Copyright © 2010 Elsevier B.V. and ECNP. All rights reserved.

  14. Phenolic biotransformations during conversion of ferulic acid to vanillin by lactic acid bacteria.

    Science.gov (United States)

    Kaur, Baljinder; Chakraborty, Debkumar; Kumar, Balvir

    2013-01-01

    Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB), and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel of LAB isolates for their ability to release phenolics from agrowaste materials like rice bran and their biotransformation to industrially important compounds such as ferulic acid, 4-ethyl phenol, vanillic acid, vanillin, and vanillyl alcohol. Bacterial isolates were evaluated using ferulic acid esterase, ferulic acid decarboxylase, and vanillin dehydrogenase assays. This work highlights the importance of lactic acid bacteria in phenolic biotransformations for the development of food grade flavours and additives.

  15. Phenolic Biotransformations during Conversion of Ferulic Acid to Vanillin by Lactic Acid Bacteria

    Science.gov (United States)

    Kaur, Baljinder; Kumar, Balvir

    2013-01-01

    Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB), and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel of LAB isolates for their ability to release phenolics from agrowaste materials like rice bran and their biotransformation to industrially important compounds such as ferulic acid, 4-ethyl phenol, vanillic acid, vanillin, and vanillyl alcohol. Bacterial isolates were evaluated using ferulic acid esterase, ferulic acid decarboxylase, and vanillin dehydrogenase assays. This work highlights the importance of lactic acid bacteria in phenolic biotransformations for the development of food grade flavours and additives. PMID:24066293

  16. Investigation into complexing of pentavalent actinide forms with some anions of organic acids by the coprecipitation method

    International Nuclear Information System (INIS)

    Moskvin, A.I.; Poznyakov, A.N.; AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii)

    1979-01-01

    Complexing of pentavolent forms of Np, Pu, Am actinides with anions of acetic, oxalic acids and EDTA is studied using the method of coprecipitation with iron hydroxide. Composition and stability constants of the actinide complexes formed are determined. The acids anions are arranged in a row in the order of decrease of complexing tendency that is EDTA anion>C 2 O 4 2- >CH 3 COO -

  17. Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum (VI) complex-carbon nanotube paste electrode

    International Nuclear Information System (INIS)

    Beitollahi, Hadi; Sheikhshoaie, Iran

    2011-01-01

    Highlights: → A molybdenum (VI) complex-carbon nanotube paste electrode have been fabricated. → This electrode reduced the oxidation potential of isoproterenol by about 175 mV. → It resolved the voltammetric waves of isoproterenol, uric acid and folic acid. - Abstract: This paper describes the development, electrochemical characterization and utilization of a novel modified molybdenum (VI) complex-carbon nanotube paste electrode for the electrocatalytic determination of isoproterenol (IP). The electrochemical profile of the proposed modified electrode was analyzed by cyclic voltammetry (CV) that showed a shift of the oxidation peak potential of IP at 175 mV to less positive value, compared with an unmodified carbon paste electrode. Differential pulse voltammetry (DPV) in 0.1 M phosphate buffer solution (PBS) at pH 7.0 was performed to determine IP in the range from 0.7 to 600.0 μM, with a detection limit of 35.0 nM. Then the modified electrode was used to determine IP in an excess of uric acid (UA) and folic acid (FA) by DPV. Finally, this method was used for the determination of IP in some real samples.

  18. 9-Hydroxyprostaglandin dehydrogenase activity in the adult rat kidney. Regional distribution and sub-fractionation.

    Science.gov (United States)

    Asciak, C P; Domazet, Z

    1975-02-20

    1. Catabolism of prostaglandin F2alpha in the adult rat kidney takes place by the following sequence of enzymatic steps: (1) 15-hydroxyprostaglandin dehydrogenase; (2) prostaglandin delta13-reductase; and (3) 9-hydroxyprostaglandin dehydrogenase. 2. 9-Hydroxyprostaglandin dehydrogenase activity was highest in the cortex with lesser amounts in the medulla and negligible activity detected in the papilla. A similar distribution was observed for 15-hydroxyprostaglandin dehydrogenase and prostaglandin delta13-reductase. 3. Most of the 9-hydroxyprostaglandin dehydrogenase activity in the homogenate was found in the high-speed supernatant as also observed for 15-hydroxyprostaglandin dehydrogenase and prostaglandin delta13-reductase. 4. These observations indicate that the rat kidney contains an abundance of prostaglandin-catabolising enzymes which favour formation of metabolites of the E-type.

  19. Genetic analysis of central carbon metabolism unveils an amino acid substitution that alters maize NAD-dependent isocitrate dehydrogenase activity.

    Directory of Open Access Journals (Sweden)

    Nengyi Zhang

    2010-04-01

    Full Text Available Central carbon metabolism (CCM is a fundamental component of life. The participating genes and enzymes are thought to be structurally and functionally conserved across and within species. Association mapping utilizes a rich history of mutation and recombination to achieve high resolution mapping. Therefore, applying association mapping in maize (Zea mays ssp. mays, the most diverse model crop species, to study the genetics of CCM is a particularly attractive system.We used a maize diversity panel to test the CCM functional conservation. We found heritable variation in enzyme activity for every enzyme tested. One of these enzymes was the NAD-dependent isocitrate dehydrogenase (IDH, E.C. 1.1.1.41, in which we identified a novel amino-acid substitution in a phylogenetically conserved site. Using candidate gene association mapping, we identified that this non-synonymous polymorphism was associated with IDH activity variation. The proposed mechanism for the IDH activity variation includes additional components regulating protein level. With the comparison of sequences from maize and teosinte (Zea mays ssp. Parviglumis, the maize wild ancestor, we found that some CCM genes had also been targeted for selection during maize domestication.Our results demonstrate the efficacy of association mapping for dissecting natural variation in primary metabolic pathways. The considerable genetic diversity observed in maize CCM genes underlies heritable phenotypic variation in enzyme activities and can be useful to identify putative functional sites.

  20. Differential Sensitivities of Fast- and Slow-Cycling Cancer Cells to Inosine Monophosphate Dehydrogenase 2 Inhibition by Mycophenolic Acid

    Science.gov (United States)

    Chen, Kan; Cao, Wanlu; Li, Juan; Sprengers, Dave; Hernanda, Pratika Y; Kong, Xiangdong; van der Laan, Luc JW; Man, Kwan; Kwekkeboom, Jaap; Metselaar, Herold J; Peppelenbosch, Maikel P; Pan, Qiuwei

    2015-01-01

    As uncontrolled cell proliferation requires nucleotide biosynthesis, inhibiting enzymes that mediate nucleotide biosynthesis constitutes a rational approach to the management of oncological diseases. In practice, however, results of this strategy are mixed and thus elucidation of the mechanisms by which cancer cells evade the effect of nucleotide biosynthesis restriction is urgently needed. Here we explored the notion that intrinsic differences in cancer cell cycle velocity are important in the resistance toward inhibition of inosine monophosphate dehydrogenase (IMPDH) by mycophenolic acid (MPA). In short-term experiments, MPA treatment of fast-growing cancer cells effectively elicited G0/G1 arrest and provoked apoptosis, thus inhibiting cell proliferation and colony formation. Forced expression of a mutated IMPDH2, lacking a binding site for MPA but retaining enzymatic activity, resulted in complete resistance of cancer cells to MPA. In nude mice subcutaneously engrafted with HeLa cells, MPA moderately delayed tumor formation by inhibiting cell proliferation and inducing apoptosis. Importantly, we developed a lentiviral vector–based Tet-on label-retaining system that enables to identify, isolate and functionally characterize slow-cycling or so-called label-retaining cells (LRCs) in vitro and in vivo. We surprisingly found the presence of LRCs in fast-growing tumors. LRCs were superior in colony formation, tumor initiation and resistance to MPA as compared with fast-cycling cells. Thus, the slow-cycling compartment of cancer seems predominantly responsible for resistance to MPA. PMID:26467706

  1. Biochemical characterization of a recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius.

    Science.gov (United States)

    Pennacchio, Angela; Giordano, Assunta; Pucci, Biagio; Rossi, Mosè; Raia, Carlo A

    2010-03-01

    The gene encoding a novel alcohol dehydrogenase that belongs to the short-chain dehydrogenases/reductases (SDRs) superfamily was identified in the aerobic thermoacidophilic crenarchaeon Sulfolobus acidocaldarius strain DSM 639. The saadh gene was heterologously overexpressed in Escherichia coli, and the protein (SaADH) was purified to homogeneity and characterized. SaADH is a tetrameric enzyme consisting of identical 28,978-Da subunits, each composed of 264 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to 75 degrees C and a 30-min half-inactivation temperature of ~90 degrees C, and shows good tolerance to common organic solvents. SaADH has a strict requirement for NAD(H) as the coenzyme, and displays a preference for the reduction of alicyclic, bicyclic and aromatic ketones and alpha-keto esters, but is poorly active on aliphatic, cyclic and aromatic alcohols, and shows no activity on aldehydes. The enzyme catalyses the reduction of alpha-methyl and alpha-ethyl benzoylformate, and methyl o-chlorobenzoylformate with 100% conversion to methyl (S)-mandelate [17% enantiomeric excess (ee)], ethyl (R)-mandelate (50% ee), and methyl (R)-o-chloromandelate (72% ee), respectively, with an efficient in situ NADH-recycling system which involves glucose and a thermophilic glucose dehydrogenase. This study provides further evidence supporting the critical role of the D37 residue in discriminating NAD(H) from NAD(P)H in members of the SDR superfamily.

  2. Characterization of Two Mitochondrial Flavin Adenine Dinucleotide-Dependent Glycerol-3-Phosphate Dehydrogenases in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Škodová, Ingrid; Verner, Zdeněk; Bringaud, F.; Fabian, P.; Lukeš, Julius; Horváth, A.

    2013-01-01

    Roč. 12, č. 12 (2013), s. 1664-1673 ISSN 1535-9778 R&D Projects: GA ČR(CZ) GAP305/11/2179; GA ČR GD206/09/H026; GA MŠk LH12104 Institutional support: RVO:60077344 Keywords : alternative NADH dehydrogenase * inducible expression system * blood-stream forms * complex-I * procyclic trypanosomes * sleeping sickness * oxidase * localization * metabolism * cycle Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.179, year: 2013

  3. Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study

    DEFF Research Database (Denmark)

    Ferrari, P.; McKay, J. D.; Jenab, M.

    2012-01-01

    BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian populati...

  4. ald of Mycobacterium tuberculosis Encodes both the Alanine Dehydrogenase and the Putative Glycine Dehydrogenase

    Science.gov (United States)

    Giffin, Michelle M.; Modesti, Lucia; Raab, Ronald W.; Wayne, Lawrence G.

    2012-01-01

    The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the reductive amination of glyoxylate to glycine but not the reverse reaction. The enzyme was purified and identified as the previously characterized alanine dehydrogenase. The Ald enzyme was expressed in Escherichia coli and had both pyruvate and glyoxylate aminating activities. The gene, ald, was inactivated in M. tuberculosis, which resulted in the loss of all activities. Both enzyme activities were found associated with the cell and were not detected in the extracellular filtrate. By using an anti-Ald antibody, the protein was localized to the cell membrane, with a smaller fraction in the cytosol. None was detected in the extracellular medium. The ald knockout strain grew without alanine or glycine and was able to utilize glycine but not alanine as a nitrogen source. Transcription of ald was induced when alanine was the sole nitrogen source, and higher levels of Ald enzyme were measured. Ald is proposed to have several functions, including ammonium incorporation and alanine breakdown. PMID:22210765

  5. Metabolism of branched-chain amino acids in leg muscles from tail-cast suspended intact and adrenalectomized rats

    Science.gov (United States)

    Jaspers, Stephen R.; Henriksen, Erik; Jacob, Stephan; Tischler, Marc E.

    1989-01-01

    The effects of muscle unloading, adrenalectomy, and cortisol treatment on the metabolism of branched-chain amino acids in the soleus and extensor digitorum longus of tail-cast suspended rats were investigated using C-14-labeled lucine, isoleucine, and valine in incubation studies. It was found that, compared to not suspended controls, the degradation of branched-chain amino acids in hind limb muscles was accelerated in tail-cast suspended rats. Adrenalectomy was found to abolish the aminotransferase flux and to diminish the dehydrogenase flux in the soleus. The data also suggest that cortisol treatment increases the rate of metabolism of branched-chain amino acids at the dehydrogenase step.

  6. Investigation of Complexation of Linear Poly(N-vinyl-2-pyrrolidone) with Poly(methacrylic acid-co-methyl methacrylate) Gel

    OpenAIRE

    Liu, Guoqin; Yan, Guojin; Zou, Wenjun; Li, Zhengxin

    2011-01-01

    The contraction of poly(methacrylic acid-co-methyl methacrylate) (P(MAA-co-MMA)) gel induced by complexation with linear poly(N-vinyl-2-pyrrolidone) (PVP) is quite different from that of poly(acrylic acid) (PAA) or poly(methacrylic acid) (PMAA) gel. It was found that the concentration of PVP has a strong effect on the complexation with P(MAA-co-MMA) gel. When PVP was introduced into the P(MAA-co-MMA) network, its dynamic mechanic properties vary greatly between complexed and uncomplexed netwo...

  7. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongchao [ORNL; Tschaplinski, Timothy J [ORNL; Engle, Nancy L [ORNL; Hamilton, Choo Yieng [ORNL; Rodriguez, Jr., Miguel [ORNL; Liao, James C [ORNL; Schadt, Christopher Warren [ORNL; Guss, Adam M [ORNL; Yang, Yunfeng [ORNL; Graham, David E [ORNL

    2012-01-01

    Background: The model bacterium Clostridium cellulolyticum efficiently hydrolyzes crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels. Therefore genetic engineering will likely be required to improve the ethanol yield. Random mutagenesis, plasmid transformation, and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism. Results: The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh) and L-malate dehydrogenase (Ccel_0137; mdh) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products (by molarity), corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four-times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant s TCA pathway. Conclusions: The efficient intron-based gene inactivation system produced the first gene-targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in C. cellulolyticum and rapid genetic engineering to

  8. Diversity and dispersal of a ubiquitous protein family: acyl-CoA dehydrogenases.

    Science.gov (United States)

    Shen, Yao-Qing; Lang, B Franz; Burger, Gertraud

    2009-09-01

    Acyl-CoA dehydrogenases (ACADs), which are key enzymes in fatty acid and amino acid catabolism, form a large, pan-taxonomic protein family with at least 13 distinct subfamilies. Yet most reported ACAD members have no subfamily assigned, and little is known about the taxonomic distribution and evolution of the subfamilies. In completely sequenced genomes from approximately 210 species (eukaryotes, bacteria and archaea), we detect ACAD subfamilies by rigorous ortholog identification combining sequence similarity search with phylogeny. We then construct taxonomic subfamily-distribution profiles and build phylogenetic trees with orthologous proteins. Subfamily profiles provide unparalleled insight into the organisms' energy sources based on genome sequence alone and further predict enzyme substrate specificity, thus generating explicit working hypotheses for targeted biochemical experimentation. Eukaryotic ACAD subfamilies are traditionally considered as mitochondrial proteins, but we found evidence that in fungi one subfamily is located in peroxisomes and participates in a distinct beta-oxidation pathway. Finally, we discern horizontal transfer, duplication, loss and secondary acquisition of ACAD genes during evolution of this family. Through these unorthodox expansion strategies, the ACAD family is proficient in utilizing a large range of fatty acids and amino acids-strategies that could have shaped the evolutionary history of many other ancient protein families.

  9. Level of coenzyme A and the activity of certain dehydrogenases under chronic low dose X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cherkasova, L A; Novik, V A; Tsychun, G F [AN Belorusskoj SSR, Minsk. Inst. Fiziologii

    1975-01-01

    A study was made of the effect of long-term x ray irradiation (cumulative dose 50 R) on: the content of co-enzyme A (KoA) in the brain and liver, the activity of a number of oxydizing reducing enzymes in the brain mitochondria and heart muscle, and the blood glucocorticoid content. It was established that the metabolism of brain and liver KoA is quite stable, the enzymes of the brain tricarbonic acids and pyruvate-dehydrogenase cycle are labile.

  10. Isotopic effects in mechanistic studies of biotransformations of fluorine derivatives of L-alanine catalysed by L-alanine dehydrogenase

    International Nuclear Information System (INIS)

    Szymańska-Majchrzak, Jolanta; Pałka, Katarzyna; Kańska, Marianna

    2017-01-01

    Synthesis of 3-fluoro-[2- 2 H]-L-alanine (3-F-[ 2 H]-L-Ala) in reductive amination of 3-fluoropyruvic acid catalysed by L-alanine dehydrogenase (AlaDH) was described. Fluorine derivative was used to study oxidative deamination catalysed by AlaDH applied kinetic (for 3-F-L-Ala in H 2 O - KIE’s on V max : 1.1; on V max /K M : 1.2; for 3-F-L-Ala in 2 H 2 O – on V max : 1.4; on V max /K M : 2.1) and solvent isotope effect methods (for 3-F-L-Ala - SIE’s on V max : 1.0; on V max /K M : 0.87; for 3-F-[2- 2 H]-L-Ala – on V max : 1.4; on V max /K M : 1.5). Studies explain some details of reaction mechanism. - Highlights: • Synthesis of 3-fluoro-[2- 2 H]-L-alanine was performed. • The reactions were catalysed using the enzyme L-alanine dehydrogenase. • Performed reactions involved fluorinated analogues of L-alanine. • Solvent isotope effects of deuterium were determined. • Kinetic isotope effects were determined for obtained 3-fluoro-L-alanine. • The mechanism of reaction catalysed by L-alanine dehydrogenase was proposed.

  11. Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycete Phanerochaete chrysosporium against exogenous addition of vanillin.

    Science.gov (United States)

    Shimizu, Motoyuki; Yuda, Naoki; Nakamura, Tomofumi; Tanaka, Hiroo; Wariishi, Hiroyuki

    2005-10-01

    A proteomic differential display technique was utilized to study cellular responses of Phanerochaete chrysosporium exposed to vanillin, one of the key intermediates found during lignin biodegradation. Intracellular proteins were resolved by 2-DE and target protein spots were identified using MALDI-MS after in-gel tryptic digestions. Upon addition of vanillin to P. chrysosporium, up-regulation of homogentisate 1,2-dioxygenase, 1,4-benzoquinone reductases, aldehyde dehydrogenase, and aryl-alcohol dehydrogenase, which seem to play roles in vanillin metabolism, was observed. Furthermore, enzymes involved in glycolysis, the tricarboxylic acid cycle, the pentose-phosphate cycle, and heme biosynthesis were also activated. Up-regulation of extracellular peroxidase was also observed. One of the most unique phenomena against exogenous vanillin was a switch from the glyoxylate cycle to the tricarboxylic acid cycle, where a drastic increase in isocitrate dehydrogenase activity was observed. The exogenous addition of other aromatic compounds also caused an increase in its activity, which in turn triggered NAD(P)H production via the action of dehydrogenases in the tricarboxylic acid cycle, heme biosynthesis via the action of aminolevulinic acid synthase on succinyl-CoA, and energy production via activation of the mitochondrial electron transfer system. These metabolic shifts seem to be required for activating a metabolic system for aromatic compounds.

  12. A single amino acid change (Y318F) in the L-arabitol dehydrogenase (LadA) from Aspergillus niger results in a significant increase in affinity for D-sorbitol

    Science.gov (United States)

    2009-01-01

    Background L-arabitol dehydrogenase (LAD) and xylitol dehydrogenase (XDH) are involved in the degradation of L-arabinose and D-xylose, which are among the most abundant monosaccharides on earth. Previous data demonstrated that LAD and XDH not only differ in the activity on their biological substrate, but also that only XDH has significant activity on D-sorbitol and may therefore be more closely related to D-sorbitol dehydrogenases (SDH). In this study we aimed to identify residues involved in the difference in substrate specificity. Results Phylogenetic analysis demonstrated that LAD, XDH and SDH form 3 distinct groups of the family of dehydrogenases containing an Alcohol dehydrogenase GroES-like domain (pfam08240) and likely have evolved from a common ancestor. Modelling of LadA and XdhA of the saprobic fungus Aspergillus niger on human SDH identified two residues in LadA (M70 and Y318), that may explain the absence of activity on D-sorbitol. While introduction of the mutation M70F in LadA of A. niger resulted in a nearly complete enzyme inactivation, the Y318F resulted in increased activity for L-arabitol and xylitol. Moreover, the affinity for D-sorbitol was increased in this mutant. Conclusion These data demonstrates that Y318 of LadA contributes significantly to the substrate specificity difference between LAD and XDH/SDH. PMID:19674460

  13. Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials

    International Nuclear Information System (INIS)

    Alkan, Cemil; Günther, Eva; Hiebler, Stefan; Himpel, Michael

    2012-01-01

    Highlights: ► Complexing groups to PEGs in a polymer could stabilize PEG at different molecular weights. ► Shape stabilized PEGs for thermal energy storage are prepared using compounds with interacting groups. ► Phase change temperature of PEGs could be changed using a complexing copolymer with acid groups. - Abstract: Blends of poly(ethylene glycol) (PEG) at 1000, 6000, and 10,000 g/mole average molecular weights and poly(acrylic acid) (PAA) or poly(ethylene-co-acrylic acid) (EcoA) have been prepared by solution blending and accounted for thermal energy storage properties as shape stabilized polymer blends. The blends have been analyzed using Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) techniques. Total thermal energy values of the complexes have been determined by the method of Mehling et al. As a result of the investigation it is found that polymers with acid groups form interpolymer complexes (IPCs) and miscible and immiscible IPC–PEG blends when blended with PEGs. PEGs formed IPCs with PAA and EcoA polymers in solutions and reach to saturation and turns to be blends of IPC and PEG polymer. PEGs in this work bleed out of the blends when its compositions reach to a degree of immiscibility. In the first range where blends are IPCs and in the third range where bleeding of PEG occurs, blends are not feasible for thermal energy storage applications. However, in the second range, the blends are potential materials for passive thermal energy storage applications.

  14. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes

    Science.gov (United States)

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M. Arif

    2016-05-01

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.

  15. Complexation and biodistribution study of 111In complexes of bifunctional phosphinic acid analogues of H4DOTA

    Czech Academy of Sciences Publication Activity Database

    Forsterová, Michaela; Zimová, Jana; Petrík, M.; Lázníček, M.; Lázníčková, A.; Hermann, P.; Melichar, František

    2007-01-01

    Roč. 2, č. 337 (2007), s. 34-34 ISSN 1619-7070 R&D Projects: GA AV ČR 1QS100480501 Institutional research plan: CEZ:AV0Z10480505 Keywords : bifunctional H4DOTA ligands * phosphinic acid analogues, * complexation of 111In Subject RIV: FR - Pharmacology ; Medidal Chemistry

  16. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Hasunuma, Tomohisa; Yoshimura, Kazuya; Matsuda, Fumio [Kobe Univ., Hyogo (Japan). Organization of Advanced Science and Technology; Sung, Kyung-mo; Sanda, Tomoya; Kondo, Akihiko [Kobe Univ., Hyogo (Japan). Dept. of Chemical Science and Engineering

    2011-05-15

    Recombinant yeast strains highly tolerant to formic acid during xylose fermentation were constructed. Microarray analysis of xylose-fermenting Saccharomyces cerevisiae strain overexpressing endogenous xylulokinase in addition to xylose reductase and xylitol dehydrogenase from Pichia stipitis revealed that upregulation of formate dehydrogenase genes (FDH1 and FDH2) was one of the most prominent transcriptional events against excess formic acid. The quantification of formic acid in medium indicated that the innate activity of FDH was too weak to detoxify formic acid. To reinforce the capability for formic acid breakdown, the FDH1 gene was additionally overexpressed in the xylose-metabolizing recombinant yeast. This modification allowed the yeast to rapidly decompose excess formic acid. The yield and final ethanol concentration in the presence of 20 mM formic acid is as essentially same as that of control. The fermentation profile also indicated that the production of xylitol and glycerol, major by-products in xylose fermentation, was not affected by the upregulation of FDH activity. (orig.)

  17. Screening of Glucose-6-Phosphate Dehydrogenase Deficiency in Cord Blood

    Directory of Open Access Journals (Sweden)

    Can Acipayam

    2014-02-01

    Aim: Glucose-6-phosphate dehydrogenase deficiency is an important factor in etiology of pathologic neonatal jaundice. The aim of this study was to indicate the significance of screening glucose-6-phosphate dehydrogenase deficiency in the cord blood of neonates and the frequency of this deficiency in the etiology of neonatal hyperbilirubinemia. Material and Method: The study was performed consecutive 1015 neonates were included. Five hundred fifty six (54.8% of them were male and 459 (45.2% were female. The following parameters were recorded: Gender, birth weight, birth height, head circumference and gestational age. The glucose-6-phosphate dehydrogenase level of neonates were measured with quantitative method in cord blood. Also, hemoglobine, hematocrite, red blood cell count and blood group were measured. The following parameters were recorded in cases with jaundice: exchange transfusion, phototherapy, physiologic and pathologic jaundice, peak bilirubin day, maximum bilirubin level, total bilirubin level at the first day of jaundice, beginning time of jaundice. Results: Enzyme deficiency was detected in 133 (13.1% of neonates and 76 (57% of them were male, 57 (43% were female. Significant difference was detected in low glucose-6-phosphate dehydrogenase enzyme level with jaundice group for total bilirubin level at the first day of jaundice, maximum total bilirubin level and pathologic jaundice (p<0.05. Discussion: The ratio of glucose-6-phosphate dehydrogenase deficiency was found in Edirne in this study and this ratio was higher than other studies conducted in our country. For this reason, glucose-6-phosphate dehydrogenase enzyme level in cord blood of neonates should be measured routinely and high risk neonates should be followed up for hyperbilirubinemia and parents should be informed in our region.

  18. Synthesis of 3,5-diisopropyl[carboxy-14C]salicylic acid and its 67Cu complex

    International Nuclear Information System (INIS)

    Chidambaram, M.V.; Epperson, C.E.; Williams, S.; Gray, R.A.; Sorenson, J.R.J.

    1991-01-01

    The synthesis of 3,5-diisopropyl[carboxy- 14 C]salicylic acid was achieved via Kolbe-Schmitt carboxylation of potassium 2,4-di-isopropylphenolate. The yield of this acid was 81% based upon the weight of the product and 93% based upon radioactivity incorporated into the labeled acid which contains 98% 14 C in the carboxyl group (specific activity = 5.1 μCi/mg). The labeled acid was characterized by ultraviolet spectrophotometry and purity established by thin-layer chromatography, autoradiography, and liquid scintillation counting. A 90% yield of the double labeled 14 C, 67 Cu-complex (specific activity = 4.6 μCi 67 Cu/mg) was obtained using conditions developed with non-radioactive reactants. The presence of 67 Cu in this complex was established using γ-ray emission spectrophometry. (author)

  19. Protective effect of minocycline, a semi-synthetic second-generation tetracycline against 3-nitropropionic acid (3-NP)-induced neurotoxicity

    International Nuclear Information System (INIS)

    Ahuja, Manuj; Bishnoi, Mahendra; Chopra, Kanwaljit

    2008-01-01

    3-Nitropropionic acid (3-NP) is an irreversible inhibitor of the electron transport enzyme succinate dehydrogenase, a mitochondrial Complex II enzyme. Minocycline is a semi-synthetic second-generation tetracycline with neuroprotective activity and has the capability to effectively cross the blood-brain barrier. We investigated the effects of minocycline on behavioral, biochemical, inflammation related and neurochemical alterations induced by the sub-chronic administration of 3-nitropropionic acid to rats. Chronic pre-administration of minocycline (50 and 100 mg/kg) dose dependently prevented 3-NP-induced dysfunction behavioral (hypoactivity, memory retention, locomotor and rota-rod activity). In addition, 3-NP produced a marked increase in lipid peroxidation levels whereas decreased the activities of catalase and succinate dehydrogenase. In contrast, pretreatment of 3-NP injected rats with minocycline resulted in the attenuation of all these alterations. A marked increase in an inflammatory cytokine TNF-α by 3-NP was also decreased by minocycline treatment. Neurochemically, the administration of 3-NP significantly decreased the levels of catecholamines in the brain homogenates (dopamine, norepinephrine and serotonin) which were reversed by pretreatment of minocycline. The present finding explains the neuroprotective effect of minocycline against 3-NP toxicity by virtue of its antioxidant and anti-inflammatory activity

  20. Nitrido-technetium(V) complexes with amino acids: Preparation and X-ray crystal structure of the L-cysteinate ethyl ester technetium(V) complex

    International Nuclear Information System (INIS)

    Marchi, A.; Rossi, R.; Marvelli, L.; Bertolasi, V.

    1993-01-01

    Technetium-99m is the radionuclide of choice in diagnostic nuclear medicine due to its ideal photon energy of 140 keV and half-life of 6 h. Neutral, stable, and lipophilic technetium complexes with diamino dithiol ligands (DADT) have been widely studied as potential brain perfusion agents and a 99m Tc complex of N,N'-1,2-ethylenediylbis(L-cysteine diethyl ester) (L,L-ECD) has been proposed as a marker of regional cerebral blood flow. It crosses the blood brain barrier (BBB) and is retained in the brain owing to enzymatic hydrolysis of one ester group yielding to a more polar species. More recently, 99m Tc-cysteine complex has been evaluated in animal distribution studies for tumor diagnosis, but its chemical structure has not been determined. A large number of transition metal complexes with amino acids and peptides have been synthesized and structurally characterized to understand their interactions with proteins and antibodies, as well as biocatalytic processes, but only a limited number of rhenium and technetium compounds have been reported. Up to now, the only technetium complex to be characterized by X-ray analysis that contains amino acids as ligand is [TcO(L,L-ECD)]. The author's interest in the nitrido-technetium chemistry is due to the discovery of a new method for preparing radiopharmaceuticals containing the [ 99m Tc triple-bond N] 2+ core. In this communication the authors report the synthesis and characterization of nitrido-technetium complexes with L-cysteine ethyl ester (CYS-OEt), L-cysteine (CYS) and cysteamine (CSA) and the first X-ray crystal structure of a [TcN] 2+ -amino acid complex

  1. Histochemical localization of cytokinin oxidase/dehydrogenase ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    dehydrogenase, Withania somnifera, CKX localization. INTRODUCTION. Cytokinin (Ck) is a plant hormone that plays a crucial role in many fundamental processes of plant development throughout the life cycle. These include ...

  2. Electrochemical and spectroscopic studies of the complexed species of models of nitrohumic acids derived from phthalic acid

    Directory of Open Access Journals (Sweden)

    Mercê Ana Lucia Ramalho

    1998-01-01

    Full Text Available The study of model compounds is necessary in order to obtain information about complex organic substances as in the case of humic substances (HS. These substances are potential organic fertilizers and have other important functions in soils, natural waters and organic sediments. The main chemical properties of the complexes formed from 3-nitrophthalic and 4-nitrophthalic acids and the metal ions Fe(III and Zn(II were studied using potentiometric titrations, ultraviolet-visible spectroscopy (UV-Vis and cyclic voltammetry (CV. A trial potentiometric titration was done with a mixture of the models for nitrohumic acids and Cu(II. Equilibrium constants for the systems were calculated and UV-Vis and CV were employed to monitor the formation of the species. Comparative studies involving chelating centres of nitrosalicylic acids and nitrocatechols with Fe(III, Zn(II and Cu(II are presented. The initial studies involving the nitrohumic substances (NHS, a laboratory artifact of HS have been made and good evidence was found for the further use of NHS as a potential organic fertilizer as well as HS. In this present work one of the observed advantages of NHS over HS was that some aromatic nitro- centres can bind some metal ions at p[H] values of normal soils, near 7.0 to 7.5.

  3. Determination of aminoglycoside antibiotics using complex compounds of chromotropic acid bisazoderivatives with rare earth ions

    International Nuclear Information System (INIS)

    Alykov, N.M.

    1981-01-01

    Studies of complex formation of bisazo derivatives of chromotropic acid with rare earth ions and aminoglycoside antibiotics have made it possible to choose carboxyarsenazo, orthanyl R and carboxynitrazo as highly sensitive reagents for determining aminoglycoside antibiotics. Conditions have been found for the formation of precipitates of different-ligand complexes containing rare earth ions, bisazo derivatives of chromotropic acid and aminogylcoside antibiotics. A procedure has been worked out of determining the antibiotics in biological samples with carboxyarsenazo [ru

  4. Phenolic Biotransformations during Conversion of Ferulic Acid to Vanillin by Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Baljinder Kaur

    2013-01-01

    Full Text Available Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB, and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel of LAB isolates for their ability to release phenolics from agrowaste materials like rice bran and their biotransformation to industrially important compounds such as ferulic acid, 4-ethyl phenol, vanillic acid, vanillin, and vanillyl alcohol. Bacterial isolates were evaluated using ferulic acid esterase, ferulic acid decarboxylase, and vanillin dehydrogenase assays. This work highlights the importance of lactic acid bacteria in phenolic biotransformations for the development of food grade flavours and additives.

  5. Catabolism of biomass-derived sugars in fungi and metabolic engineering as a tool for organic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Koivistoinen, O.

    2013-11-01

    The use of metabolic engineering as a tool for production of biochemicals and biofuels requires profound understanding of cell metabolism. The pathways for the most abundant and most important hexoses have already been studied quite extensively but it is also important to get a more complete picture of sugar catabolism. In this thesis, catabolic pathways of L-rhamnose and D-galactose were studied in fungi. Both of these hexoses are present in plant biomass, such as in hemicellulose and pectin. Galactoglucomannan, a type of hemicellulose that is especially rich in softwood, is an abundant source of D-galactose. As biotechnology is moving from the usage of edible and easily metabolisable carbon sources towards the increased use of lignocellulosic biomass, it is important to understand how the different sugars can be efficiently turned into valuable biobased products. Identification of the first fungal L-rhamnose 1-dehydrogenase gene, which codes for the first enzyme of the fungal catabolic L-rhamnose pathway, showed that the protein belongs to a protein family of short-chain alcohol dehydrogenases. Sugar dehydrogenases oxidising a sugar to a sugar acid are not very common in fungi and thus the identification of the L-rhamnose dehydrogenase gene provides more understanding of oxidative sugar catabolism in eukaryotic microbes. Further studies characterising the L-rhamnose cluster in the yeast Scheffersomyces stipitis including the expression of the L-rhamnonate dehydratase in Saccharomyces cerevisiae finalised the biochemical characterisation of the enzymes acting on the pathway. In addition, more understanding of the regulation and evolution of the pathway was gained. D-Galactose catabolism was studied in the filamentous fungus Aspergillus niger. Two genes coding for the enzymes of the oxido-reductive pathway were identified. Galactitol dehydrogenase is the second enzyme of the pathway converting galactitol to L-xylo-3-hexulose. The galactitol dehydrogenase encoding

  6. Preparation and Property of Acrylic Acid Rare Earth Complex and Its Hydrosilylation

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming; Chen Haiyan; Chen Xiaosong; Dai Shaojun; Inoue Shinich; Okamoto Hiroshi

    2004-01-01

    Acrylic acid rare earth complex was prepared. Its chemical composition was determined by chemical and elemental analysis, and its structure as well as properties was characterized using IR, Fluorescence and UV spectrum, and its solubility was also investigated. Meanwhile a kind of elastic functional polymer with rare earth units in the side chains was produced. It is confirmed by IR spectrum that the Si-H bonds really react with acrylic acid rare earth.

  7. Photoreactions of ruthenium(II) and osmium(II) complexes with deoxyribonucleic acid (DNA).

    Science.gov (United States)

    Moucheron, C; Kirsch-De Mesmaeker, A; Kelly, J M

    1997-09-01

    The design of Ru(II) and Os(II) complexes which are photoreactive with deoxyribonucleic acid (DNA) represents one of the main targets for the development of novel molecular tools for the study of DNA and, in the future, for the production of new, metal-based, anti-tumor drugs. In this review, we explain how it is possible to make a complex photoreactive with nucleobases and nucleic acids. According to the photophysical behaviour of the Ru(II) compounds, two types of photochemistry are expected: (1) photosubstitution of a ligand by a nucleobase and another monodentate ligand, which takes place from the triplet, metal-centred (3MC) state; this state is populated thermally from the lowest lying triplet metal to ligand charge transfer (3MLCT) state; (2) photoreaction from the 3MLCT state, corresponding to photoredox processes with DNA bases. The two photoreactivities are in competition. By modulating appropriately the redox properties of the 3MLCT state, an electron transfer process from the base to the excited complex takes place, and is directly correlated with DNA cleavage or the formation of an adduct of the complex to DNA. In this adduct, guanine is linked by N2 to the alpha-position of a non-chelating nitrogen of the polyazaaromatic ligand without destruction of the complex. Different strategies are explained which increase the affinity of the complexes for DNA and direct the complex photoreactivity to sites of special DNA topology or targeted sequences of bases. Moreover, the replacement of the Ru(II) ion by the Os(II) ion in the photoreactive complexes leads to an increased specificity of photoreaction. Indeed, only one type of photoreactivity (from the 3MLCT state) is present for the Os(II) complexes because the 3MC state is too high in energy to be populated at room temperature.

  8. Potentiometric and spectral studies of complex formation of La(3), Pr(3) and Lu(3) with aspartic acid and asparagine

    International Nuclear Information System (INIS)

    Wojciechowska, A.; Lomozik, L.; Zielinski, S.

    1987-01-01

    The composition and stability of La 3+ , Pr 3+ and Lu 3+ complexes with aspartic acid and asparagine were analysed. The formation of complexes of the type ML and MHL was determined for La 3+ and Pr 3+ with aspartic acid, and of the type MHL for Lu 3+ with aspartic acid. For La 3+ , Pr 3+ and Lu 3+ with asparagine the formation of ML(OH) complexes was observed. By means of 1 HNMR and 13 CNMR studies the participation in the coordination of both -COOH groups was determined for aspartic acid, whereas for asparagine the participation of the -COOH group was determined in complexes with La 3+ , Pr 3+ , and of the -COOH and the -NH 2 groups in the complex with Lu 3+ . (Author)

  9. Aspartic acid complexation of Am(III) and U(VI)

    International Nuclear Information System (INIS)

    Saito, A.; Choppin, G.R.

    1984-01-01

    Stability constants of Am(III) and U(VI) with L-aspartic acid have been determined at pH 8.00 by means of the solvent extraction technique. It was found that Am(III) forms 1:1 and 1:2 complexes while U(VI) formed only the 1:1 complex under these conditions. The stability constants were: Am +3 : I = 0.10 M; log β 1 = 4.81 +- 0.03, log β 2 = 6.75 +- 0.03 I = 0.70 M; log β 1 = 4.53 +- 0.08 log β 2 = 6.65 +- 0.06 UO +2 2 : I = 0.70 M; log β 1 = 3.32 +- 0.04. Comparison of these stability constants with corresponding values of some dicarboxylate ligands suggests that at pH 8 the binding of Am +3 and UO +2 2 involves both carboxylates. In the Am-aspartate complex, the data indicate the possibility of weak interaction between the Am +3 and the amino group. (orig.)

  10. Eucalypt NADP-Dependent Isocitrate Dehydrogenase1

    Science.gov (United States)

    Boiffin, Vincent; Hodges, Michael; Gálvez, Susana; Balestrini, Raffaella; Bonfante, Paola; Gadal, Pierre; Martin, Francis

    1998-01-01

    NADP-dependent isocitrate dehydrogenase (NADP-ICDH) activity is increased in roots of Eucalyptus globulus subsp. bicostata ex Maiden Kirkp. during colonization by the ectomycorrhizal fungus Pisolithus tinctorius Coker and Couch. To investigate the regulation of the enzyme expression, a cDNA (EgIcdh) encoding the NADP-ICDH was isolated from a cDNA library of E. globulus-P. tinctorius ectomycorrhizae. The putative polypeptide sequence of EgIcdh showed a high amino acid similarity with plant NADP-ICDHs. Because the deduced EgICDH protein lacks an amino-terminal targeting sequence and shows highest similarity to plant cytosolic ICDHs, it probably represents a cytoplasmic isoform. RNA analysis showed that the steady-state level of EgIcdh transcripts was enhanced nearly 2-fold in ectomycorrhizal roots compared with nonmycorrhizal roots. Increased accumulation of NADP-ICDH transcripts occurred as early as 2 d after contact and likely led to the observed increased enzyme activity. Indirect immunofluorescence microscopy indicated that NADP-ICDH was preferentially accumulated in the epidermis and stele parenchyma of nonmycorrhizal and ectomycorrhizal lateral roots. The putative role of cytosolic NADP-ICDH in ectomycorrhizae is discussed. PMID:9662536

  11. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex

    Directory of Open Access Journals (Sweden)

    Lin Yuheng

    2012-04-01

    Full Text Available Abstract Background Caffeic acid (3,4-dihydroxycinnamic acid is a natural phenolic compound derived from the plant phenylpropanoid pathway. Caffeic acid and its phenethyl ester (CAPE have attracted increasing attention for their various pharmaceutical properties and health-promoting effects. Nowadays, large-scale production of drugs or drug precursors via microbial approaches provides a promising alternative to chemical synthesis and extraction from plant sources. Results We first identified that an Escherichia coli native hydroxylase complex previously characterized as the 4-hydroxyphenylacetate 3-hydroxylase (4HPA3H was able to convert p-coumaric acid to caffeic acid efficiently. This critical enzymatic step catalyzed in plants by a membrane-associated cytochrome P450 enzyme, p-coumarate 3-hydroxylase (C3H, is difficult to be functionally expressed in prokaryotic systems. Moreover, the performances of two tyrosine ammonia lyases (TALs from Rhodobacter species were compared after overexpression in E. coli. The results indicated that the TAL from R. capsulatus (Rc possesses higher activity towards both tyrosine and L-dopa. Based on these findings, we further designed a dual pathway leading from tyrosine to caffeic acid consisting of the enzymes 4HPA3H and RcTAL. This heterologous pathway extended E. coli native tyrosine biosynthesis machinery and was able to produce caffeic acid (12.1 mg/L in minimal salt medium. Further improvement in production was accomplished by boosting tyrosine biosynthesis in E. coli, which involved the alleviation of tyrosine-induced feedback inhibition and carbon flux redirection. Finally, the titer of caffeic acid reached 50.2 mg/L in shake flasks after 48-hour cultivation. Conclusion We have successfully established a novel pathway and constructed an E. coli strain for the production of caffeic acid. This work forms a basis for further improvement in production, as well as opens the possibility of microbial synthesis

  12. Gibbs energies of protonation and complexation of platinum and vanadate metal ions with naringenin and phenolic acids: Theoretical calculations associated with experimental values

    International Nuclear Information System (INIS)

    Fazary, Ahmed E.; Alshihri, Ayed S.; Alfaifi, Mohammad Y.; Saleh, Kamel A.; Elbehairi, Serag Eldin I.; Fawy, Khaled F.; Abd-Rabboh, Hisham S.M.

    2016-01-01

    Highlights: • The experimental thermodynamic equilibrium and stability constants of vanadium and platinum complexes involving naringin, ferulic acid, p-coumaric acid, caffeic acid, vanillic acid, sinapic acid, and gallic acid were determined. • The theoretical calculations of the free energy changes associated with the ligand protonation, and metal ion–ligand complex formation equilibria using density function theory calculations, providing a complete picture of the microscopic equilibria of the studied complex systems. - Abstract: The Experimental thermodynamic equilibrium (pK_a values) and stability (log β) constants of vanadium and platinum binary and mixed ligand complexes involving naringenin, ferulic acid, p-coumaric acid, caffeic acid, vanillic acid, sinapic acid, and gallic acid were determined at 310.15 K in 0.16 mol·dm"−"3 KCl aqueous solutions using pH-potentiometric technique and by means of two estimation models (HYPERQUAD 2008 and Bjerrum–Calvin). The theoretical calculations of overall protonation and stability constants of the metal complex species in solution were predicted as the free energy change associated with the ligand protonation, and metal ion–ligand complex formation equilibria (species solvation/de-solvation) using ab initio and density function theory (DFT) calculations. The usage of the experimental potentiometry technique and theoretical predictions provides a complete picture of the microscopic equilibria of the studied systems (vanadium/platinum–naringenin–phenolic acid). Specifically, this theoretically DFT predications would be useful to determine the most real protonation constants of the studied bioligands in which the binding sites changes due to the ligand protonation/deprotonation equilibria. Also, the complexing capacities of vanadium and platinum towards naringenin, ferulic acid, p-coumaric acid, caffeic acid, vanillic acid, sinapic acid, and gallic acid in solutions were evaluated and discussed. From the

  13. Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol.

    Science.gov (United States)

    Plaggenborg, Rainer; Overhage, Jörg; Loos, Andrea; Archer, John A C; Lessard, Philip; Sinskey, Anthony J; Steinbüchel, Alexander; Priefert, Horst

    2006-10-01

    The potential of two Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol was investigated. Genome sequence data of Rhodococcus sp. I24 suggested a coenzyme A-dependent, non-beta-oxidative pathway for ferulic acid bioconversion, which involves feruloyl-CoA synthetase (Fcs), enoyl-CoA hydratase/aldolase (Ech), and vanillin dehydrogenase (Vdh). This pathway was proven for Rhodococcus opacus PD630 by physiological characterization of knockout mutants. However, expression and functional characterization of corresponding structural genes from I24 suggested that degradation of ferulic acid in this strain proceeds via a beta-oxidative pathway. The vanillin precursor eugenol facilitated growth of I24 but not of PD630. Coniferyl aldehyde was an intermediate of eugenol degradation by I24. Since the genome sequence of I24 is devoid of eugenol hydroxylase homologous genes (ehyAB), eugenol bioconversion is most probably initiated by a new step in this bacterium. To establish eugenol bioconversion in PD630, the vanillyl alcohol oxidase gene (vaoA) from Penicillium simplicissimum CBS 170.90 was expressed in PD630 together with coniferyl alcohol dehydrogenase (calA) and coniferyl aldehyde dehydrogenase (calB) genes from Pseudomonas sp. HR199. The recombinant strain converted eugenol to ferulic acid. The obtained data suggest that genetically engineered strains of I24 and PD630 are suitable candidates for vanillin production from eugenol.

  14. Complexes of rare earths with hydrazide of salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Abashmadze, M Sh; Pirtskhalava, N I; Kharitonov, Yu Ya; Machkhoshvili, R I [Tbilisskij Gosudarstvennyj Univ. (USSR); AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii; Moskovskij Khimiko-Tekhnologicheskij Inst. (USSR))

    1978-10-01

    Complex compounds M(HOC/sub 6/H/sub 4/CONNH/sub 2/)/sub 3/ xnH/sub 2/O, where M is one of the following metals and n=0 or 1, have been obtained in the reactions of salts (chlorides or nitrates) of praseodymium, neodymium, europium, gadolinium, erbium, thulium or lutecium with salicylic acid hydrazide in a weakly alkaline medium. Some properties and infrared absorption spectra of the compounds obtained have been studied.

  15. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes.

    Science.gov (United States)

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M Arif

    2016-05-15

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Endurance performance and energy metabolism during exercise in mice with a muscle-specific defect in the control of branched-chain amino acid catabolism.

    Science.gov (United States)

    Xu, Minjun; Kitaura, Yasuyuki; Ishikawa, Takuya; Kadota, Yoshihiro; Terai, Chihaya; Shindo, Daichi; Morioka, Takashi; Ota, Miki; Morishita, Yukako; Ishihara, Kengo; Shimomura, Yoshiharu

    2017-01-01

    It is known that the catabolism of branched-chain amino acids (BCAAs) in skeletal muscle is suppressed under normal and sedentary conditions but is promoted by exercise. BCAA catabolism in muscle tissues is regulated by the branched-chain α-keto acid (BCKA) dehydrogenase complex, which is inactivated by phosphorylation by BCKA dehydrogenase kinase (BDK). In the present study, we used muscle-specific BDK deficient mice (BDK-mKO mice) to examine the effect of uncontrolled BCAA catabolism on endurance exercise performance and skeletal muscle energy metabolism. Untrained control and BDK-mKO mice showed the same performance; however, the endurance performance enhanced by 2 weeks of running training was somewhat, but significantly less in BDK-mKO mice than in control mice. Skeletal muscle of BDK-mKO mice had low levels of glycogen. Metabolome analysis showed that BCAA catabolism was greatly enhanced in the muscle of BDK-mKO mice and produced branched-chain acyl-carnitine, which induced perturbation of energy metabolism in the muscle. These results suggest that the tight regulation of BCAA catabolism in muscles is important for homeostasis of muscle energy metabolism and, at least in part, for adaptation to exercise training.

  17. Endurance performance and energy metabolism during exercise in mice with a muscle-specific defect in the control of branched-chain amino acid catabolism.

    Directory of Open Access Journals (Sweden)

    Minjun Xu

    Full Text Available It is known that the catabolism of branched-chain amino acids (BCAAs in skeletal muscle is suppressed under normal and sedentary conditions but is promoted by exercise. BCAA catabolism in muscle tissues is regulated by the branched-chain α-keto acid (BCKA dehydrogenase complex, which is inactivated by phosphorylation by BCKA dehydrogenase kinase (BDK. In the present study, we used muscle-specific BDK deficient mice (BDK-mKO mice to examine the effect of uncontrolled BCAA catabolism on endurance exercise performance and skeletal muscle energy metabolism. Untrained control and BDK-mKO mice showed the same performance; however, the endurance performance enhanced by 2 weeks of running training was somewhat, but significantly less in BDK-mKO mice than in control mice. Skeletal muscle of BDK-mKO mice had low levels of glycogen. Metabolome analysis showed that BCAA catabolism was greatly enhanced in the muscle of BDK-mKO mice and produced branched-chain acyl-carnitine, which induced perturbation of energy metabolism in the muscle. These results suggest that the tight regulation of BCAA catabolism in muscles is important for homeostasis of muscle energy metabolism and, at least in part, for adaptation to exercise training.

  18. Cloning, expression, purification and preliminary crystallographic analysis of the short-chain dehydrogenase enzymes WbmF, WbmG and WbmH from Bordetella bronchiseptica

    International Nuclear Information System (INIS)

    Harmer, Nicholas J.; King, Jerry D.; Palmer, Colin M.; Preston, Andrew; Maskell, Duncan J.; Blundell, Tom L.

    2007-01-01

    The expression, purification, and crystallisation of the short-chain dehydrogenases WbmF, WbmG and WbmH from B. bronchiseptica are described. Native diffraction data to 1.5, 2.0, and 2.2 Å were obtained for the three proteins, together with complexes with nucleotides. The short-chain dehydrogenase enzymes WbmF, WbmG and WbmH from Bordetella bronchiseptica were cloned into Escherichia coli expression vectors, overexpressed and purified to homogeneity. Crystals of all three wild-type enzymes were obtained using vapour-diffusion crystallization with high-molecular-weight PEGs as a primary precipitant at alkaline pH. Some of the crystallization conditions permitted the soaking of crystals with cofactors and nucleotides or nucleotide sugars, which are possible substrate compounds, and further conditions provided co-complexes of two of the proteins with these compounds. The crystals diffracted to resolutions of between 1.50 and 2.40 Å at synchrotron X-ray sources. The synchrotron data obtained were sufficient to determine eight structures of the three enzymes in complex with a variety of cofactors and substrate molecules

  19. Enzymatic regulation of organic acid metabolism in an alkali-tolerant ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-10-05

    Oct 5, 2016 ... seedlings of C. virgata were treated with varying salt and alkali stress. First, the composition and .... mechanisms of organic acid accumulation in C. virgata ..... dehydrogenase and ferredoxin-dependent glutamate synthase in.

  20. Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of 'Honeycrisp' apple (Malus domestica Borkh) with excessive accumulation of carbohydrates.

    Science.gov (United States)

    Wang, Huicong; Ma, Fangfang; Cheng, Lailiang

    2010-07-01

    Metabolite profiles and activities of key enzymes in the metabolism of organic acids, nitrogen and amino acids were compared between chlorotic leaves and normal leaves of 'Honeycrisp' apple to understand how accumulation of non-structural carbohydrates affects the metabolism of organic acids, nitrogen and amino acids. Excessive accumulation of non-structural carbohydrates and much lower CO(2) assimilation were found in chlorotic leaves than in normal leaves, confirming feedback inhibition of photosynthesis in chlorotic leaves. Dark respiration and activities of several key enzymes in glycolysis and tricarboxylic acid (TCA) cycle, ATP-phosphofructokinase, pyruvate kinase, citrate synthase, aconitase and isocitrate dehydrogenase were significantly higher in chlorotic leaves than in normal leaves. However, concentrations of most organic acids including phosphoenolpyruvate (PEP), pyruvate, oxaloacetate, 2-oxoglutarate, malate and fumarate, and activities of key enzymes involved in the anapleurotic pathway including PEP carboxylase, NAD-malate dehydrogenase and NAD-malic enzyme were significantly lower in chlorotic leaves than in normal leaves. Concentrations of soluble proteins and most free amino acids were significantly lower in chlorotic leaves than in normal leaves. Activities of key enzymes in nitrogen assimilation and amino acid synthesis, including nitrate reductase, glutamine synthetase, ferredoxin and NADH-dependent glutamate synthase, and glutamate pyruvate transaminase were significantly lower in chlorotic leaves than in normal leaves. It was concluded that, in response to excessive accumulation of non-structural carbohydrates, glycolysis and TCA cycle were up-regulated to "consume" the excess carbon available, whereas the anapleurotic pathway, nitrogen assimilation and amino acid synthesis were down-regulated to reduce the overall rate of amino acid and protein synthesis.

  1. Toxicity of Nitrification Inhibitors on Dehydrogenase Activity in Soils

    OpenAIRE

    Ferisman Tindaon; Gero Benckiser; Johannes C. G. Ottow

    2011-01-01

    The objective of this research was to determine the effects of nitrification inhibitors (NIs) such as 3,4-dimethylpyrazolephosphate=DMPP, 4-Chlor-methylpyrazole phosphate=ClMPP and dicyandiamide,DCD) which might be expected to inhibit microbial activity, on dehydrogenase activity (DRA),in three different soils in laboratory conditions. Dehydrogenase activity were assessed via reduction of 2-p-Iodophenyl-3-p-nitrophenyl-5-phenyltetrazoliumchloride (INT). The toxicity and dose response curve of...

  2. Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar, Narayanasami [NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, Argonne, IL 60439 (United States); Dewanti, Asteriani [Department of Chemistry and Physics, Western Carolina University, Cullowhee, NC 28723 (United States); Merli, Angelo; Rossi, Gian Luigi [Department of Biochemistry and Molecular Biology, University of Parma, Parma (Italy); Mitra, Bharati [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Mathews, F. Scott, E-mail: mathews@biochem.wustl.edu [Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110 (United States); NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2009-06-01

    The crystal structure of the G81A mutant form of the chimera of (S)-mandelate dehydrogenase and of its complexes with two of its substrates reveal productive and non-productive modes of binding for the catalytic reaction. The structure also indicates the role of G81A in lowering the redox potential of the flavin co-factor leading to an ∼200-fold slower catalytic rate of substrate oxidation. (S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida, a membrane-associated flavoenzyme, catalyzes the oxidation of (S)-mandelate to benzoylformate. Previously, the structure of a catalytically similar chimera, MDH-GOX2, rendered soluble by the replacement of its membrane-binding segment with the corresponding segment of glycolate oxidase (GOX), was determined and found to be highly similar to that of GOX except within the substituted segments. Subsequent attempts to cocrystallize MDH-GOX2 with substrate proved unsuccessful. However, the G81A mutants of MDH and of MDH-GOX2 displayed ∼100-fold lower reactivity with substrate and a modestly higher reactivity towards molecular oxygen. In order to understand the effect of the mutation and to identify the mode of substrate binding in MDH-GOX2, a crystallographic investigation of the G81A mutant of the MDH-GOX2 enzyme was initiated. The structures of ligand-free G81A mutant MDH-GOX2 and of its complexes with the substrates 2-hydroxyoctanoate and 2-hydroxy-3-indolelactate were determined at 1.6, 2.5 and 2.2 Å resolution, respectively. In the ligand-free G81A mutant protein, a sulfate anion previously found at the active site is displaced by the alanine side chain introduced by the mutation. 2-Hydroxyoctanoate binds in an apparently productive mode for subsequent reaction, while 2-hydroxy-3-indolelactate is bound to the enzyme in an apparently unproductive mode. The results of this investigation suggest that a lowering of the polarity of the flavin environment resulting from the displacement of nearby water molecules caused by

  3. Horse Liver Alcohol Dehydrogenase: Zinc Coordination and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Plapp, Bryce V.; Savarimuthu, Baskar Raj; Ferraro, Daniel J.; Rubach, Jon K.; Brown, Eric N.; Ramaswamy, S. (Iowa)

    2017-07-07

    During catalysis by liver alcohol dehydrogenase (ADH), a water bound to the catalytic zinc is replaced by the oxygen of the substrates. The mechanism might involve a pentacoordinated zinc or a double-displacement reaction with participation by a nearby glutamate residue, as suggested by studies of human ADH3, yeast ADH1, and some other tetrameric ADHs. Zinc coordination and participation of water in the enzyme mechanism were investigated by X-ray crystallography. The apoenzyme and its complex with adenosine 5'-diphosphoribose have an open protein conformation with the catalytic zinc in one position, tetracoordinated by Cys-46, His-67, Cys-174, and a water molecule. The bidentate chelators 2,2'-bipyridine and 1,10-phenanthroline displace the water and form a pentacoordinated zinc. The enzyme–NADH complex has a closed conformation similar to that of ternary complexes with coenzyme and substrate analogues; the coordination of the catalytic zinc is similar to that found in the apoenzyme, except that a minor, alternative position for the catalytic zinc is ~1.3 Å from the major position and closer to Glu-68, which could form the alternative coordination to the catalytic zinc. Complexes with NADH and N-1-methylhexylformamide or N-benzylformamide (or with NAD+ and fluoro alcohols) have the classical tetracoordinated zinc, and no water is bound to the zinc or the nicotinamide rings. The major forms of the enzyme in the mechanism have a tetracoordinated zinc, where the carboxylate group of Glu-68 could participate in the exchange of water and substrates on the zinc. Hydride transfer in the Michaelis complexes does not involve a nearby water.

  4. Investigation of Complexation of Linear Poly(N-vinyl-2-pyrrolidone with Poly(methacrylic acid-co-methyl methacrylate Gel

    Directory of Open Access Journals (Sweden)

    Guoqin Liu

    2011-01-01

    Full Text Available The contraction of poly(methacrylic acid-co-methyl methacrylate (P(MAA-co-MMA gel induced by complexation with linear poly(N-vinyl-2-pyrrolidone (PVP is quite different from that of poly(acrylic acid (PAA or poly(methacrylic acid (PMAA gel. It was found that the concentration of PVP has a strong effect on the complexation with P(MAA-co-MMA gel. When PVP was introduced into the P(MAA-co-MMA network, its dynamic mechanic properties vary greatly between complexed and uncomplexed networks. It had the following results: (1 the higher modulus ratio; (2 a slight contraction of gel.

  5. Simultaneous analysis of free and humic acid complexed europium and gadolinium species by CE-ICP-MS

    International Nuclear Information System (INIS)

    Kautenburger, R.; Nowotka, K.; Beck, H.P.

    2005-01-01

    Full text of publication follows: For the long-term safety assessment of waste repositories, detailed information about geo-chemical behaviour of radioactive and toxic metal ions under environmental conditions (geological matrix and aquifer systems) is necessary. It includes knowledge about the mechanism of relevant geochemical reactions, as well as thermodynamic and kinetic data. Several previous studies have shown that humic acid can play an important role in the immobilisation or mobilization of metal ions due to complexation and colloid formation. In this project we investigate the complexation behaviour of humic acid (purified Aldrich humic acid) and its influence on the migration of the lanthanides europium and gadolinium (homologues of the actinides americium and curium) in the the ternary system consisting of these heavy metals, humic acid and kaolinite (KGa-1b) as geological model system under conditions close to nature. Capillary electrophoresis (CE, Beckman Coulter P/ACE MDQ), with its excellent separation performance, was coupled to Inductively Coupled Plasma Mass Spectrometry (ICP-MS, VG Elemental Plasma Quad 3) to obtain a high sensitivity for the determination of the rare earth elements europium (Eu 3+ ) and gadolinium (Gd 3+ ) and their complexes with humic acid. Additionally, the used humic acid was halogenated with iodine as ICP-MS marker. A fused-silica capillary was flexibly fitted into a MicroMist 50 μl nebulizer with a Cinnabar cyclonic spray chamber. The chamber was chilled to a temperature of 4 deg. C for best sensitivity. 200 ppb of caesium were added to the CE separation buffer to observe the capillary flow. A make-up fluid including 4 ppb Ho as an internal standard was combined with the flow from the capillary within the interface to obtain a fluid throughput high enough to maintain a continuous nebulization. Very low detection limits were achieved, 100 ppt for 153 Eu and 125 ppt for 158 Gd. With this optimized CE-ICP-MS coupling

  6. Eco-physiological studies on Indian arid zone plants. VI. Effect of sodium chloride and abscisic acid on amino-acid and protein metabolism in leaves of Phaseolus aconitifolius

    Energy Technology Data Exchange (ETDEWEB)

    Huber, W.; Kreutmeier, F.; Sankhla, N.

    1977-01-01

    The effect of sodium chloride (NaCl) and abscisic acid (ABA) on protein synthesis, protein hydrolysis, activities of alanine and aspartate aminotransferases, glutamate dehydrogenase, glutamine synthetase, ..delta..-pyrroline-5-carboxylate-reductase and amino-acid composition was investigated in the leaves of four days old Phaseolus aconitifolius seedlings. Both NaCl and ABA inhibited protein synthesis, but promoted the activities of leucine arylamidase, alanine and aspartate aminotransferases, glutamate dehydrogenase, glutamine synthetase and ..delta..-pyrroline-5-carboxylate-reductase. The results of the amino-acid analysis indicated following treatment with NaCl the amounts of proline, arginine, serine and glutamic acid increased significantly in the leaves. An increase of the proline concentration could be observed only up to a salt concentration of 8.5 x 10/sup -3/ M. Increasing concentrations of ABA also brought a corresponding rise in proline, serine and glutamic acid content. Interestingly the decrease of proline concentration by a salt concentration of more than 8.5 x 10/sup -3/ M is correlated with a decrease in endogenous ABA-content. The possible significance of the similarites between the action of abscisic acid and salinity in influencing the amino-acid and protein metabolism in Phaseolus aconitifolius seedlings during stress is discussed. 31 references, 8 figures, 2 tables.

  7. Fatal hepatic short-chain L-3-hydroxyacyl-coenzyme A dehydrogenase deficiency: clinical, biochemical, and pathological studies on three subjects with this recently identified disorder of mitochondrial beta-oxidation

    NARCIS (Netherlands)

    Bennett, M. J.; Spotswood, S. D.; Ross, K. F.; Comfort, S.; Koonce, R.; Boriack, R. L.; IJlst, L.; Wanders, R. J.

    1999-01-01

    This report describes the clinical, biochemical, and pathological findings in three infants with hepatic short-chain L-3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) deficiency, a recently recognized disorder of the mitochondrial oxidation of straight-chain fatty acids. Candidate subjects were

  8. Some new protonated ternary complexes of rare-earths with CDTA/DTPA and keto-glutaric acid

    International Nuclear Information System (INIS)

    Tripathi, S.P.; Chaturvedi, G.K.; Sharma, R.C.

    1981-01-01

    Potentiometric evidences have been cited for the formation of 1:1:1, M(III)-CDTA/DTPA-H 2 KGA ternary complexes in the solution equilibria (where M(III)=LA(III), Pr(III), Nd(III), Gd(III) or Dy(III); CDTA=1,2-diaminocyclohexanetetra-acetic acid; DTPA=diethylenetriaminepenta-acetic acid and H 2 KGA= β-ketoglutaric acid). Indications have been cited for the formation of protonated mixed ligand complexes at low pH as intermediate products, which undergo deprotonation at comparatively high pH forming 1:1:1, ternary species. The formation constants (log Ksub(MLL')) for the protonated ternary species, formed by simultaneous addition of both the ligands to metal ion and their deprotonation constants - log Ksub(A)sup(H) have been evaluated. The following order in the relative stabilities of the resulting complexes in terms of metal ions, La(III) < Pr(III) < Nd(III) < Gd(III) < Dy(III), has been observed. (author)

  9. Polarographic study of mixed-ligand complexes of cadmium(II) with L-amino acid and vitamin B5

    International Nuclear Information System (INIS)

    Jain, Alok K.; Khan, Farid

    1998-01-01

    A survey of literature shows that ternary complexes of Cd II with L-amino acids and vitamin B 5 have not been studied so far. The present communication reports the formation of mixed-ligand complexes of Cd II with L-amino acids as primary ligands and vitamin B 5 as secondary ligand, studied by polarographic technique. (author)

  10. Silver(I) complexes of 2,4-dihydroxybenzaldehyde-amino acid Schiff bases-Novel noncompetitive α-glucosidase inhibitors.

    Science.gov (United States)

    Zheng, Jingwei; Ma, Lin

    2015-01-01

    A series of silver(I) complexes of 2,4-dihydroxybenzaldehyde-amino acid Schiff bases were designed and tested for α-glucosidase inhibition. Our results indicate that all the silver complexes (4a-18a) possessed strong inhibitory activity at μmolL(-1) level, especially glutamine (12a) and histidine (18a) Schiff base silver(I) complexes exhibited an IC50 value of less than 0.01μmolL(-1). This series of compounds exhibited noncompetitive inhibition characteristics in kinetic studies. In addition, we investigated the mechanism of inhibition and the structure-activity relationships of the amino acid Schiff base silver complexes. Our results reveal that Schiff base silver complexes may be explored for their therapeutic potential as alternatives of α-glucosidase inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Synthesis and physicochemical study of rare earth complexes with o-hydroxyphenoxymethylphosphonic acid

    International Nuclear Information System (INIS)

    Alibaeva, Z.M.; Snezhko, N.I.; Pechurova, N.I.; Martynenko, L.I.; Alekseeva, N.A.; Bovin, A.N.

    1987-01-01

    Rare earth complexes with o-hydroxyphenoxymethylphosphonic acid (C 7 H 9 PO 5 , N 2 L) of the HMl 2 xnH 2 O composition are synthesized. The compounds separated are studied by IR spectroscopy, X-ray phase and elementary analysis methods. The data obtained permit to suppose on the polymer structure of rare earth complexes, except HLaL 2 x2H 2 O which is evidently of the island structure

  12. A high effective NADH-ferricyanide dehydrogenase coupled with laccase for NAD(+) regeneration.

    Science.gov (United States)

    Wang, Jizhong; Yang, Chengli; Chen, Xing; Bao, Bingxin; Zhang, Xuan; Li, Dali; Du, Xingfan; Shi, Ruofu; Yang, Junfang; Zhu, Ronghui

    2016-08-01

    To find an efficient and cheap system for NAD(+) regeneration A NADH-ferricyanide dehydrogenase was obtained from an isolate of Escherichia coli. Optimal activity of the NADH dehydrogenase was at 45 °C and pH 7.5, with a K m value for NADH of 10 μM. By combining the NADH dehydrogenase, potassium ferricyanide and laccase, a bi-enzyme system for NAD(+) regeneration was established. The system is attractive in that the O2 consumed by laccase is from air and the sole byproduct of the reaction is water. During the reaction process, 10 mM NAD(+) was transformed from NADH in less than 2 h under the condition of 0.5 U NADH dehydrogenase, 0.5 U laccase, 0.1 mM potassium ferricyanide at pH 5.6, 30 °C CONCLUSION: The bi-enzyme system employed the NADH-ferricyanide dehydrogenase and laccase as catalysts, and potassium ferricyanide as redox mediator, is a promising alternative for NAD(+) regeneration.

  13. Combined effect of formaldehyde and gamma-irradiation. Vitamin complex effect

    International Nuclear Information System (INIS)

    Ban'kovskij, A.A.; El'chaninova, M.A.

    1996-01-01

    Combined inhalation effect of formaldehyde and gamma-irradiation on the activities of alcohol and aldehyde dehydrogenases in rat lung tissue was studied. The possibility of fitting the parameters studied by the vitamin PP, A and E and complex was shown. At investigation of white rats in conditions of formaldehyde inhalation in concentration 10 mg/m 3 and gamma-irradiation by dose 0.25 Gy the changes of activities of alcohol and aldehyde dehydrogenases in the rat lung tissue were detected. An injection of PP, A and E vitamin complex after combined effect of formaldehyde and gamma-irradiation contributes to normalization of studied parameters. The K(C -1 ) constant is reduced. On this basis it is proposed that in such conditions formaldehyde stabilizes membranes and protects important metabolic processes against damages. Thus, vitamin complex is capable to level a toxic combined effect of formaldehyde and gamma-irradiation. 9 refs., 1 tab

  14. Development of a D-amino acids electrochemical sensor based on immobilization of thermostable D-Proline dehydrogenase within agar gel membrane

    International Nuclear Information System (INIS)

    Tani, Yuji; Tanaka, Katsuhito; Yabutani, Tomoki; Mishima, Yuji; Sakuraba, Haruhiko; Ohshima, Toshihisa; Motonaka, Junko

    2008-01-01

    A novel biosensor for determination of D-amino acids (DAAs) in biological samples by using an electrode based on immobilization of a thermostable D-Proline dehydrogenase (D-Pro DH) within an agar gel membrane was developed. The electrode was simply prepared by spin-coating the agar solution with the D-Pro DH on a glassy carbon (GC) electrode. An electrocatalytic oxidation current of 2,6-dichloroindophenol (DCIP) was observed at -100 mV vs. Ag/AgCl with the addition of 5 and 20 mmol L -1 D-proline. The current response and its relative standard deviation were 0.15 μA and 7.6% (n = 3), respectively, when it was measured in a pH 8.0 phosphate buffer solution containing 10 mmol L -1 D-pr