WorldWideScience

Sample records for acid antisense oligonucleotide

  1. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides.

    Science.gov (United States)

    Kasuya, Takeshi; Hori, Shin-Ichiro; Watanabe, Ayahisa; Nakajima, Mado; Gahara, Yoshinari; Rokushima, Masatomo; Yanagimoto, Toru; Kugimiya, Akira

    2016-01-01

    Gapmer antisense oligonucleotides cleave target RNA effectively in vivo, and is considered as promising therapeutics. Especially, gapmers modified with locked nucleic acid (LNA) shows potent knockdown activity; however, they also cause hepatotoxic side effects. For developing safe and effective gapmer drugs, a deeper understanding of the mechanisms of hepatotoxicity is required. Here, we investigated the cause of hepatotoxicity derived from LNA-modified gapmers. Chemical modification of gapmer's gap region completely suppressed both knockdown activity and hepatotoxicity, indicating that the root cause of hepatotoxicity is related to intracellular gapmer activity. Gene silencing of hepatic ribonuclease H1 (RNaseH1), which catalyses gapmer-mediated RNA knockdown, strongly supressed hepatotoxic effects. Small interfering RNA (siRNA)-mediated knockdown of a target mRNA did not result in any hepatotoxic effects, while the gapmer targeting the same position on mRNA as does the siRNA showed acute toxicity. Microarray analysis revealed that several pre-mRNAs containing a sequence similar to the gapmer target were also knocked down. These results suggest that hepatotoxicity of LNA gapmer is caused by RNAseH1 activity, presumably because of off-target cleavage of RNAs inside nuclei. PMID:27461380

  2. Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates

    DEFF Research Database (Denmark)

    Straarup, Ellen Marie; Fisker, Niels; Hedtjärn, Maj;

    2010-01-01

    -life as longer oligonucleotides. Pharmacology studies in both mice and non-human primates were conducted with a 13-mer LNA oligonucleotide against apoB, and the data showed that repeated dosing of the 13-mer at 1-2 mg/kg/week was sufficient to provide a significant and long lasting lowering of non-high-density......The potency and specificity of locked nucleic acid (LNA) antisense oligonucleotides was investigated as a function of length and affinity. The oligonucleotides were designed to target apolipoprotein B (apoB) and were investigated both in vitro and in vivo. The high affinity of LNA enabled...... the design of short antisense oligonucleotides (12- to 13-mers) that possessed high affinity and increased potency both in vitro and in vivo compared to longer oligonucleotides. The short LNA oligonucleotides were more target specific, and they exhibited the same biodistribution and tissue half...

  3. Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents.

    Science.gov (United States)

    Stein, C A; Hansen, J Bo; Lai, Johnathan; Wu, SiJian; Voskresenskiy, Anatoliy; Høg, Anja; Worm, Jesper; Hedtjärn, Maj; Souleimanian, Naira; Miller, Paul; Soifer, Harris S; Castanotto, Daniella; Benimetskaya, Luba; Ørum, Henrik; Koch, Troels

    2010-01-01

    For the past 15-20 years, the intracellular delivery and silencing activity of oligodeoxynucleotides have been essentially completely dependent on the use of a delivery technology (e.g. lipofection). We have developed a method (called 'gymnosis') that does not require the use of any transfection reagent or any additives to serum whatsoever, but rather takes advantage of the normal growth properties of cells in tissue culture in order to promote productive oligonucleotide uptake. This robust method permits the sequence-specific silencing of multiple targets in a large number of cell types in tissue culture, both at the protein and mRNA level, at concentrations in the low micromolar range. Optimum results were obtained with locked nucleic acid (LNA) phosphorothioate gap-mers. By appropriate manipulation of oligonucleotide dosing, this silencing can be continuously maintained with little or no toxicity for >240 days. High levels of oligonucleotide in the cell nucleus are not a requirement for gene silencing, contrary to long accepted dogma. In addition, gymnotic delivery can efficiently deliver oligonucleotides to suspension cells that are known to be very difficult to transfect. Finally, the pattern of gene silencing of in vitro gymnotically delivered oligonucleotides correlates particularly well with in vivo silencing. The establishment of this link is of particular significance to those in the academic research and drug discovery and development communities.

  4. Optimization of Peptide Nucleic Acid Antisense Oligonucleotides for Local and Systemic Dystrophin Splice Correction in the mdx Mouse

    OpenAIRE

    Yin, Haifang; Betts, Corinne; Saleh, Amer F; Ivanova, Gabriela D; Lee, Hyunil; Seow, Yiqi; Kim, Dalsoo; Gait, Michael J.; Wood, Matthew JA

    2010-01-01

    Antisense oligonucleotides (AOs) have the capacity to alter the processing of pre-mRNA transcripts in order to correct the function of aberrant disease-related genes. Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle degenerative disease that arises from mutations in the DMD gene leading to an absence of dystrophin protein. AOs have been shown to restore the expression of functional dystrophin via splice correction by intramuscular and systemic delivery in animal models of DMD and ...

  5. Antisense oligonucleotides and all-trans retinoic acid have a synergistic anti-tumor effect on oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Chen Wantao

    2008-06-01

    Full Text Available Abstract Background Antisense oligonucleotides against hTR (As-ODN-hTR have shown promising results as treatment strategies for various human malignancies. All-trans retinoic acid (ATRA is a signalling molecule with important roles in differentiation and apoptosis. Biological responses to ATRA are currently used therapeutically in various human cancers. The aim of this study was to evaluate the anti-tumor effects of As-ODN-hTR combined with ATRA in vivo. Methods In situ human oral squamous cell carcinoma (OSCC models were established by subcutaneous injection of Tca8113 cells. Mice were treated with sense oligonucleotides against hTR(S-ODN-hTR alone, As-ODN-hTR alone, ATRA alone, As-ODN-hTR plus ATRA, or S-ODN-hTR plus ATRA. Tumor size and weight were assessed in the mice. Telomerase activity was detected by a TRAP assay, apoptotic cells were evaluated with a Tunel assay, the expression of apoptosis-related proteins (Bcl-2 and Bax was evaluated by immunohistochemistry and ultrastructural morphological changes in the tumor specimen were examined. Results Both As-ODN-hTR and ATRA can significantly inhibit tumor growth in this OSCC xenograft solid-tumor model, and the combination of the two agents had a synergistic anti-tumorogenic effect. We also demonstrated that this anti-tumor effect correlated with inhibition of telomerase activity. Furthermore, significant increases in the number of apoptotic cells, typical apoptotic morphology and a downregulation of the anti-apoptotic protein, bcl-2 were observed in the treated tissues. Conclusion The combination of As-ODN-hTR and ATRA has a synergistic anti-tumor effect. This anti-tumor effect can be mainly attributed to apoptosis induced by a decrease in telomerase activity. Bcl-2 plays an important role in this process. Therefore, combining As-ODN-hTR and ATRA may be an approach for the treatment of human oral squamous cell carcinoma.

  6. Chemosensitization by antisense oligonucleotides targeting MDM2.

    Science.gov (United States)

    Bianco, Roberto; Ciardiello, Fortunato; Tortora, Giampaolo

    2005-02-01

    The MDM2 oncogene is overexpressed in many human cancers, including sarcomas, certain hematologic malignancies, and breast, colon and prostate cancers. The p53-MDM2 interaction pathway has been suggested as a novel target for cancer therapy. To that end, several strategies have been explored, including the use of small polypeptides targeted to the MDM2-p53 binding domain, anti-MDM2 antisense oligonucleotides, and natural agents. Different generations of anti-human-MDM2 oligonucleotides have been tested in in vitro and in vivo human cancer models, revealing specific inhibition of MDM2 expression and significant antitumor activity. Use of antisense oligos potentiated the effects of growth inhibition, p53 activation and p21 induction by several chemotherapeutic agents. Increased therapeutic effectiveness of chemotherapeutic drugs in human cancer cell lines carrying p53 mutations or deletions have shown the ability of MDM2 inhibitors to act as chemosensitizers in various types of tumors through both p53-dependent and p53-independent mechanisms. Inhibiting MDM2 appears to also have a role in radiation therapy for human cancer, regardless of p53 status, providing a rationale for the development of a new class of radiosensitizers. Moreover, MDM2 antisense oligonucleotides potentiate the effect of epidermal growth factor receptor (EGFR) inhibitors by affecting in vitro and in vivo proliferation, apoptosis and protein expression in hormone-refractory and hormone-dependent human prostate cancer cells. These data support the development, among other MDM2 inhibitors, of anti-MDM2 antisense oligonucleotides as a novel class of anticancer agents, and suggest a potentially relevant role for the oligonucleotides when integrated with conventional treatments and/or other signaling inhibitors in novel therapeutic strategies.

  7. Voltage-gated calcium channel and antisense oligonucleotides thereto

    Science.gov (United States)

    Hruska, Keith A. (Inventor); Friedman, Peter A. (Inventor); Barry, Elizabeth L. R. (Inventor); Duncan, Randall L. (Inventor)

    1998-01-01

    An antisense oligonucleotide of 10 to 35 nucleotides in length that can hybridize with a region of the .alpha..sub.1 subunit of the SA-Cat channel gene DNA or mRNA is provided, together with pharmaceutical compositions containing and methods utilizing such antisense oligonucleotide.

  8. A locked nucleic acid antisense oligonucleotide (LNA silences PCSK9 and enhances LDLR expression in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Nidhi Gupta

    Full Text Available BACKGROUND: The proprotein convertase subtilisin/kexin type 9 (PCSK9 is an important factor in the etiology of familial hypercholesterolemia (FH and is also an attractive therapeutic target to reduce low density lipoprotein (LDL cholesterol. PCSK9 accelerates the degradation of hepatic low density lipoprotein receptor (LDLR and low levels of hepatic PCSK9 activity are associated with reduced levels of circulating LDL-cholesterol. METHODOLOGY/PRINCIPAL FINDINGS: The present study presents the first evidence for the efficacy of a locked nucleic acid (LNA antisense oligonucleotide (LNA ASO that targets both human and mouse PCSK9. We employed human hepatocytes derived cell lines HepG2 and HuH7 and a pancreatic mouse beta-TC3 cell line known to express high endogenous levels of PCSK9. LNA ASO efficiently reduced the mRNA and protein levels of PCSK9 with a concomitant increase in LDLR protein levels after transfection in these cells. In vivo efficacy of LNA ASO was further investigated in mice by tail vein intravenous administration of LNA ASO in saline solution. The level of PCSK9 mRNA was reduced by approximately 60%, an effect lasting more than 16 days. Hepatic LDLR protein levels were significantly up-regulated by 2.5-3 folds for at least 8 days and approximately 2 fold for 16 days. Finally, measurement of liver alanine aminotransferase (ALT levels revealed that long term LNA ASO treatment (7 weeks does not cause hepatotoxicity. CONCLUSION/SIGNIFICANCE: LNA-mediated PCSK9 mRNA inhibition displayed potent reduction of PCSK9 in cell lines and mouse liver. Our data clearly revealed the efficacy and safety of LNA ASO in reducing PCSK9 levels, an approach that is now ready for testing in primates. The major significance and take home message of this work is the development of a novel and promising approach for human therapeutic intervention of the PCSK9 pathway and hence for reducing some of the cardiovascular risk factors associated with the metabolic

  9. Antisense Oligonucleotide Therapy for Inherited Retinal Dystrophies.

    Science.gov (United States)

    Gerard, Xavier; Garanto, Alejandro; Rozet, Jean-Michel; Collin, Rob W J

    2016-01-01

    Inherited retinal dystrophies (IRDs) are an extremely heterogeneous group of genetic diseases for which currently no effective treatment strategies exist. Over the last decade, significant progress has been made utilizing gene augmentation therapy for a few genetic subtypes of IRD, although several technical challenges so far prevent a broad clinical application of this approach for other forms of IRD. Many of the mutations leading to these retinal diseases affect pre-mRNA splicing of the mutated genes . Antisense oligonucleotide (AON)-mediated splice modulation appears to be a powerful approach to correct the consequences of such mutations at the pre-mRNA level , as demonstrated by promising results in clinical trials for several inherited disorders like Duchenne muscular dystrophy, hypercholesterolemia and various types of cancer. In this mini-review, we summarize ongoing pre-clinical research on AON-based therapy for a few genetic subtypes of IRD , speculate on other potential therapeutic targets, and discuss the opportunities and challenges that lie ahead to translate splice modulation therapy for retinal disorders to the clinic. PMID:26427454

  10. Optimizing antisense oligonucleotides using phosphorodiamidate morpholino oligomers.

    Science.gov (United States)

    Popplewell, Linda J; Malerba, Alberto; Dickson, George

    2012-01-01

    Duchenne muscular dystrophy (DMD) is caused by mutations that disrupt the reading frame of the human DMD gene. Selective removal of exons flanking an out-of-frame DMD mutation can result in an in-frame mRNA transcript that may be translated into an internally deleted Becker muscular dystrophy-like functionally active dystrophin protein with therapeutic activity. Antisense oligonucleotides (AOs) can be designed to bind to complementary sequences in the targeted mRNA and modify pre-mRNA splicing to correct the reading frame of a mutated transcript. AO-induced exon skipping resulting in functional truncated dystrophin has been demonstrated in animal models of DMD both in vitro and in vivo, in DMD patient cells in vitro in culture, and in DMD muscle explants. The recent advances made in this field suggest that it is likely that AO-induced exon skipping will be the first gene therapy for DMD to reach the clinic. However, it should be noted that personalized molecular medicine may be necessary, since the various reading frame-disrupting mutations are spread across the DMD gene. The different deletions that cause DMD would require skipping of different exons, which would require the optimization and clinical trial workup of many specific AOs. This chapter describes the methodologies available for the optimization of AOs, in particular phosphorodiamidate morpholino oligomers, for the targeted skipping of specific exons on the DMD gene. PMID:22454060

  11. Effect of CD44 Suppression by Antisense Oligonucleotide on Attachment of Human Trabecular Meshwork Cells to HA

    Institute of Scientific and Technical Information of China (English)

    李中国; 张虹

    2004-01-01

    The effects of suppression of CD44 by CD44-specific antisense oligonucleotide on attachment of human trabecular meshwork cells to hyaluronic acid (HA) were observed and the possible relationship between CD44 and primary open-angle glaucoma (POAG) investigated. CD44-specific antisense oligonucleotide was delivered with cationic lipid to cultured human trabecular meshwork cells. The expression of CD44 suppressed by CD44-specific antisense oligonucleotide was detected by RT-PCR and Western blotting. The effect of CD44 suppression by specific antisense oligonucleotide on attachment of trabecular meshwork cells to HA was measured by MTT assay. Results showed that expression of CD44 was suppressed by CD4, specific antisense oligonucleotide. Antisense oligonucleotide also suppressed the adhesion of human trabecular meshwork cells to HA in a concentration dependent manner. It was concluded that attachment of human trabecular meshwork cells to HA was decreased when CD44 was suppressed by specific antisense oligonucleotide. CD44might play a role in pathogenesis of POAG by affecting the adhesion of trabecular meshwork cells to HA.

  12. Antisense oligonucleotide induction of progerin in human myogenic cells.

    Directory of Open Access Journals (Sweden)

    Yue-Bei Luo

    Full Text Available We sought to use splice-switching antisense oligonucleotides to produce a model of accelerated ageing by enhancing expression of progerin, translated from a mis-spliced lamin A gene (LMNA transcript in human myogenic cells. The progerin transcript (LMNA Δ150 lacks the last 150 bases of exon 11, and is translated into a truncated protein associated with the severe premature ageing disease, Hutchinson-Gilford progeria syndrome (HGPS. HGPS arises from de novo mutations that activate a cryptic splice site in exon 11 of LMNA and result in progerin accumulation in tissues of mesodermal origin. Progerin has also been proposed to play a role in the 'natural' ageing process in tissues. We sought to test this hypothesis by producing a model of accelerated muscle ageing in human myogenic cells. A panel of splice-switching antisense oligonucleotides were designed to anneal across exon 11 of the LMNA pre-mRNA, and these compounds were transfected into primary human myogenic cells. RT-PCR showed that the majority of oligonucleotides were able to modify LMNA transcript processing. Oligonucleotides that annealed within the 150 base region of exon 11 that is missing in the progerin transcript, as well as those that targeted the normal exon 11 donor site induced the LMNA Δ150 transcript, but most oligonucleotides also generated variable levels of LMNA transcript missing the entire exon 11. Upon evaluation of different oligomer chemistries, the morpholino phosphorodiamidate oligonucleotides were found to be more efficient than the equivalent sequences prepared as oligonucleotides with 2'-O-methyl modified bases on a phosphorothioate backbone. The morpholino oligonucleotides induced nuclear localised progerin, demonstrated by immunostaining, and morphological nuclear changes typical of HGPS cells. We show that it is possible to induce progerin expression in myogenic cells using splice-switching oligonucleotides to redirect splicing of LMNA. This may offer a model

  13. Antisense Oligonucleotides: Treating Neurodegeneration at the Level of RNA

    OpenAIRE

    DeVos, Sarah L.; Miller, Timothy M.

    2013-01-01

    Adequate therapies are lacking for Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and other neurodegenerative diseases. The ability to use antisense oligonucleotides (ASOs) to target disease-associated genes by means of RNA may offer a potent approach for the treatment of these, and other, neurodegenerative disorders. In modifying the basic backbone chemistry, chemical groups, and target sequence, ASOs can act through numerous mechanisms to decr...

  14. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates.

    Science.gov (United States)

    Lindholm, Marie W; Elmén, Joacim; Fisker, Niels; Hansen, Henrik F; Persson, Robert; Møller, Marianne R; Rosenbohm, Christoph; Ørum, Henrik; Straarup, Ellen M; Koch, Troels

    2012-02-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for the reduction of low-density lipoprotein cholesterol (LDL-C). PCSK9 increases the degradation of the LDL receptor, resulting in high LDL-C in individuals with high PCSK9 activity. Here, we show that two locked nucleic acid (LNA) antisense oligonucleotides targeting PCSK9 produce sustained reduction of LDL-C in nonhuman primates after a loading dose (20 mg/kg) and four weekly maintenance doses (5 mg/kg). PCSK9 messenger RNA (mRNA) and serum PCSK9 protein were reduced by 85% which resulted in a 50% reduction in circulating LDL-C. Serum total cholesterol (TC) levels were reduced to the same extent as LDL-C with no reduction in high-density lipoprotein levels, demonstrating a specific pharmacological effect on LDL-C. The reduction in hepatic PCSK9 mRNA correlated with liver LNA oligonucleotide content. This verified that anti-PCSK9 LNA oligonucleotides regulated LDL-C through an antisense mechanism. The compounds were well tolerated with no observed effects on toxicological parameters (liver and kidney histology, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine). The pharmacologic evidence and initial safety profile of the compounds used in this study indicate that LNA antisense oligonucleotides targeting PCSK9 provide a viable therapeutic strategy and are potential complements to statins in managing high LDL-C.

  15. Advancements of antisense oligonucleotides in treatment of breast cancer

    Institute of Scientific and Technical Information of China (English)

    YANGShuan-Ping; SONGSan-Tai; 等

    2003-01-01

    Breast cancer is one kind of multi-gene related malignancy.Overexpression of some oncogenes such as HER-2(c-erbB-2,Neu),bcl-2/bcl-xL,protein kinase A(PKA),and transferrin receptor gene(TfR gene),etc significantly affect the prognosis of breast cancer.It was shown that specific suppression of the overexpressed genes above resulted in the improvement of the therapy of breast cancer.Antisense interference.one of useful tools for inhibiting the overexpression of specific oncogenes,was involved in the therapy of breast cancer in recent years. Data indicated that antisense oligonucleotides(ON)could inhibit specially the expression of the target genes on mRNA or protein levels in most of cases;some ON candidates showed encouraging therapeutic effects in vitro and in vivo on breast cancer cell lines or xenografts.Furthermore,the combination use of the antisense ON and normal chemotherapeutic agents indicated synergistic antitumor effects,which was probably the best utilization of antisense ON in the treatment of breast cancer.

  16. Cytokines and therapeutic oligonucleotides.

    Science.gov (United States)

    Hartmann, G; Bidlingmaier, M; Eigler, A; Hacker, U; Endres, S

    1997-12-01

    Therapeutic oligonucleotides - short strands of synthetic nucleic acids - encompass antisense and aptamer oligonucleotides. Antisense oligonucleotides are designed to bind to target RNA by complementary base pairing and to inhibit translation of the target protein. Antisense oligonucleotides enable specific inhibition of cytokine synthesis. In contrast, aptamer oligonucleotides are able to bind directly to specific proteins. This binding depends on the sequence of the oligonucleotide. Aptamer oligonucleotides with CpG motifs can exert strong immunostimulatory effects. Both kinds of therapeutic oligonucleotides - antisense and aptamer oligonucleotides - provide promising tools to modulate immunological functions. Recently, therapeutic oligonucleotides have moved towards clinical application. An antisense oligonucleotide directed against the proinflammatory intercellular adhesion molecule 1 (ICAM-1) is currently being tested in clinical trials for therapy of inflammatory disease. Immunostimulatory aptamer oligonucleotides are in preclinical development for immunotherapy. In the present review we summarize the application of therapeutic oligonucleotides to modulate immunological functions. We include technological aspects as well as current therapeutic concepts and clinical studies. PMID:9740353

  17. Respirable antisense oligonucleotides: a new drug class for respiratory disease

    Directory of Open Access Journals (Sweden)

    Tanaka Makoto

    2000-12-01

    Full Text Available Abstract Respirable antisense oligonucleotides (RASONs, which attenuate specific disease-associated mRNAs, represent a new class of respiratory therapeutics with considerable potential. RASONs overcome previous obstacles that have impeded the development of antisense therapeutics targeting diseases in other organ systems. RASONs are delivered directly to the target tissue via inhalation; their uptake seems to be enhanced by cationic properties inherent in pulmonary surfactant, and, because of the markedly different target properties of mRNA and proteins, they can have very long durations of effect compared with traditional drugs targeting the protein of the same gene. RASONs contain chemical modifications that decrease their degradation by cellular nucleases. However, total insensitivity to nucleases is probably not an optimal design criterion for RASONs, because moderate nuclease sensitivity can prevent their systemic delivery, decreasing the potential for systemic toxicity. EPI-2010 is a 21-mer phosphorothioate RASON that attenuates bronchoconstriction, inflammation and surfactant depletion in preclinical models of human asthma, has a duration of effect of seven days, and seems to undergo minimal systemic delivery.

  18. Comparison of hepatic transcription profiles of locked ribonucleic acid antisense oligonucleotides: evidence of distinct pathways contributing to non-target mediated toxicity in mice.

    Science.gov (United States)

    Kakiuchi-Kiyota, Satoko; Koza-Taylor, Petra H; Mantena, Srinivasa R; Nelms, Linda F; Enayetallah, Ahmed E; Hollingshead, Brett D; Burdick, Andrew D; Reed, Lori A; Warneke, James A; Whiteley, Lawrence O; Ryan, Anne M; Mathialagan, Nagappan

    2014-03-01

    Development of LNA gapmers, antisense oligonucleotides used for efficient inhibition of target RNA expression, is limited by non-target mediated hepatotoxicity issues. In the present study, we investigated hepatic transcription profiles of mice administered non-toxic and toxic LNA gapmers. After repeated administration, a toxic LNA gapmer (TS-2), but not a non-toxic LNA gapmer (NTS-1), caused hepatocyte necrosis and increased serum alanine aminotransferase levels. Microarray data revealed that, in addition to gene expression patterns consistent with hepatotoxicity, 17 genes in the clathrin-mediated endocytosis (CME) pathway were altered in the TS-2 group. TS-2 significantly down-regulated myosin 1E (Myo1E), which is involved in release of clathrin-coated pits from plasma membranes. To map the earliest transcription changes associated with LNA gapmer-induced hepatotoxicity, a second microarray analysis was performed using NTS-1, TS-2, and a severely toxic LNA gapmer (HTS-3) at 8, 16, and 72 h following a single administration in mice. The only histopathological change observed was minor hepatic hypertrophy in all LNA groups across time points. NTS-1, but not 2 toxic LNA gapmers, increased immune response genes at 8 and 16 h but not at 72 h. TS-2 significantly perturbed the CME pathway only at 72 h, while Myo1E levels were decreased at all time points. In contrast, HTS-3 modulated DNA damage pathway genes at 8 and 16 h and also modulated the CME pathway genes (but not Myo1E) at 16 h. Our results may suggest that different LNAs modulate distinct transcriptional genes and pathways contributing to non-target mediated hepatotoxicity in mice.

  19. Microinjection of antisense c-mos oligonucleotides prevents meiosis II in the maturing mouse egg.

    OpenAIRE

    O'Keefe, S J; Wolfes, H; Kiessling, A A; Cooper, G M

    1989-01-01

    Injection of antisense oligonucleotides was used to investigate the function of c-mos in murine oocytes. Oocytes injected with antisense c-mos oligonucleotides completed the first meiotic division but failed to initiate meiosis II. Instead, loss of c-mos function led to chromosome decondensation, reformation of a nucleus after meiosis I, and cleavage to two cells. Therefore, c-mos is required for meiosis II during murine oocyte maturation.

  20. Intracerebroventricular Administration of Mineralocorticoid Receptor Antisense Oligonucleotides Attenuates Salt Appetite in the Rat.

    Science.gov (United States)

    Ma; Itharat; Fluharty; Sakai

    1997-10-01

    The anterior ventral third ventricle (AV3V) region of the brain contains high concentrations of mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) that are important in the maintenance of body fluid and electrolyte balance as well as other physiological processes. Daily intracerebroventricular pulse injections of MR antisense oligonucleotides significantly suppressed deoxycorticosterone acetate (DOCA) induced salt appetite in a dose-related manner. Similar administration of GR antisense or scrambled/sense oligonucleotide into the third ventricle failed to inhibit salt appetite. Salt appetite aroused after adrenalectomy was not suppressed by MR antisense oligonucleotide treatments but was suppressed by an antisense oligonucleotide directed against the angiotensin II AT1 receptor subtype. Receptor binding analysis demonstrated that MR and GR oligonucleotide treatments each reduced their respective receptor subtypes. Finally, although GR antisense oligonucleotide treatment was ineffective in suppressing DOCA-induced salt appetite, this treatment did increase stress induced corticosterone release as well as delayed the recovery of corticosterone to basal levels after stress. PMID:9787254

  1. Bolaamphiphile-based nanocomplex delivery of phosphorothioate gapmer antisense oligonucleotides as a treatment for Clostridium difficile

    Science.gov (United States)

    Hegarty, John P; Krzeminski, Jacek; Sharma, Arun K; Guzman-Villanueva, Diana; Weissig, Volkmar; Stewart, David B

    2016-01-01

    Despite being a conceptually appealing alternative to conventional antibiotics, a major challenge toward the successful implementation of antisense treatments for bacterial infections is the development of efficient oligonucleotide delivery systems. Cationic vesicles (bolasomes) composed of dequalinium chloride (“DQAsomes”) have been used to deliver plasmid DNA across the cardiolipin-rich inner membrane of mitochondria. As cardiolipin is also a component of many bacterial membranes, we investigated the application of cationic bolasomes to bacteria as an oligonucleotide delivery system. Antisense sequences designed in silico to target the expression of essential genes of the bacterial pathogen, Clostridium difficile, were synthesized as 2′-O-methyl phosphorothioate gapmer antisense oligonucleotides (ASO). These antisense gapmers were quantitatively assessed for their ability to block mRNA translation using luciferase reporter and C. difficile protein expression plasmid constructs in a coupled transcription–translation system. Cationic bolaamphiphile compounds (dequalinium derivatives) of varying alkyl chain length were synthesized and bolasomes were prepared via probe sonication of an aqueous suspension. Bolasomes were characterized by particle size distribution, zeta potential, and binding capacities for anionic oligonucleotide. Bolasomes and antisense gapmers were combined to form antisense nanocomplexes. Anaerobic C. difficile log phase cultures were treated with serial doses of gapmer nanocomplexes or equivalent amounts of empty bolasomes for 24 hours. Antisense gapmers for four gene targets achieved nanomolar minimum inhibitory concentrations for C. difficile, with the lowest values observed for oligonucleotides targeting polymerase genes rpoB and dnaE. No inhibition of bacterial growth was observed from treatments at matched dosages of scrambled gapmer nanocomplexes or plain, oligonucleotide-free bolasomes compared to untreated control cultures. We

  2. Therapeutic Antisense Oligonucleotides against Cancer: Hurdling to the Clinic

    Science.gov (United States)

    Moreno, Pedro; Pêgo, Ana

    2014-10-01

    Under clinical development since the early 90’s and with two successfully approved drugs (Fomivirsen and Mipomersen), oligonucleotide-based therapeutics have not yet delivered a clinical drug to the market in the cancer field. Whilst many pre-clinical data has been generated, a lack of understanding still exists on how to efficiently tackle all the different challenges presented for cancer targeting in a clinical setting. Namely, effective drug vectorization, careful choice of target gene or synergistic multi-gene targeting are surely decisive, while caution must be exerted to avoid potential toxic, often misleading off-target-effects. Here a brief overview will be given on the nucleic acid chemistry advances that established oligonucleotide technologies as a promising therapeutic alternative and ongoing cancer related clinical trials. Special attention will be given towards a perspective on the hurdles encountered specifically in the cancer field by this class of therapeutic oligonucleotides and a view on possible avenues for success is presented, with particular focus on the contribution from nanotechnology to the field.

  3. Correction of a Cystic Fibrosis Splicing Mutation by Antisense Oligonucleotides.

    Science.gov (United States)

    Igreja, Susana; Clarke, Luka A; Botelho, Hugo M; Marques, Luís; Amaral, Margarida D

    2016-02-01

    Cystic fibrosis (CF), the most common life-threatening genetic disease in Caucasians, is caused by ∼2,000 different mutations in the CF transmembrane conductance regulator (CFTR) gene. A significant fraction of these (∼13%) affect pre-mRNA splicing for which novel therapies have been somewhat neglected. We have previously described the effect of the CFTR splicing mutation c.2657+5G>A in IVS16, showing that it originates transcripts lacking exon 16 as well as wild-type transcripts. Here, we tested an RNA-based antisense oligonucleotide (AON) strategy to correct the aberrant splicing caused by this mutation. Two AONs (AON1/2) complementary to the pre-mRNA IVS16 mutant region were designed and their effect on splicing was assessed at the RNA and protein levels, on intracellular protein localization and function. To this end, we used the 2657+5G>A mutant CFTR minigene stably expressed in HEK293 Flp-In cells that express a single copy of the transgene. RNA data from AON1-treated mutant cells show that exon 16 inclusion was almost completely restored (to 95%), also resulting in increased levels of correctly localized CFTR protein at the plasma membrane (PM) and with increased function. A novel two-color CFTR splicing reporter minigene developed here allowed the quantitative monitoring of splicing by automated microscopy localization of CFTR at the PM. The AON strategy is thus a promising therapeutic approach for the specific correction of alternative splicing.

  4. Repair of Thalassemic Human β -globin mRNA in Mammalian Cells by Antisense Oligonucleotides

    Science.gov (United States)

    Sierakowska, Halina; Sambade, Maria J.; Agrawal, Sudhir; Kole, Ryszard

    1996-11-01

    In one form of β -thalassemia, a genetic blood disorder, a mutation in intron 2 of the β -globin gene (IVS2-654) causes aberrant splicing of β -globin pre-mRNA and, consequently, β -globin deficiency. Treatment of mammalian cells stably expressing the IVS2-654 human β -globin gene with antisense oligonucleotides targeted at the aberrant splice sites restored correct splicing in a dose-dependent fashion, generating correct human β -globin mRNA and polypeptide. Both products persisted for up to 72 hr posttreatment. The oligonucleotides modified splicing by a true antisense mechanism without overt unspecific effects on cell growth and splicing of other pre-mRNAs. This novel approach in which antisense oligonucleotides are used to restore rather than to down-regulate the activity of the target gene is applicable to other splicing mutants and is of potential clinical interest.

  5. Delivery of antisense oligonucleotide to the cornea by iontophoresis.

    Science.gov (United States)

    Berdugo, M; Valamanesh, F; Andrieu, C; Klein, C; Benezra, D; Courtois, Y; Behar-Cohen, F

    2003-04-01

    We wished to evaluate the potential of iontophoresis to promote the delivery of antisense oligonucleotides (ODN) directed at the vascular endothelial growth factor (VEGF)-R2 receptor (KDR/Flk) to the cornea of the rat eye. Fluorescence (CY5)-labeled ODNs in phosphate-buffered saline (PBS) (20 microM) were locally administered to rat eyes, and their fate within the anterior segment was studied. Thirty-four male, 5-week-old Wistar rats were used for all experiments. The rats were divided in four groups. In group I (12 rats, 12 eyes), the ODNs (20 microM) were delivered by iontophoresis (300 microA for 5 minutes) using a specially designed corneal applicator. In group II (12 rats, 12 eyes), the ODNs (20 microM) were delivered using the same applicator, but no electrical current was applied. In group III (6 rats, 6 eyes), a corneal neovascular reaction was induced prior to the application of ODNs (20 microM), and iontophoresis electrical current was delivered as for group I rats. Group IV (4 rats, 4 eyes) received ODN (60 microM) iontophoresis application (300 microA for 5 minutes) and were used for ODN integrity studies. The animals were killed 5 minutes, 90 minutes, and 24 hours after a single ODN application and studied. Topically applied ODNs using the same iontophoresis applicator but without current do not penetrate the cornea and remain confined to the superficial epithelial layer. ODNs delivered with transcorneoscleral iontophoresis penetrate into all corneal layers and are also detected in the iris. In corneas with neovascularization, ODNs were particularly localized within the vascular endothelial cells of the stroma. ODNs extracted from eye tissues 24 hours after iontophoresis remained unaltered. The iontophoresis current did not cause any detectable ocular damage under these conditions. Iontophoresis promotes the delivery of ODNs to the anterior segment of the eye, including all corneal layers. Iontophoresis of ODNs directed at VEGF-R2 may be used for the

  6. Polymerase-endonuclease amplification reaction (PEAR for large-scale enzymatic production of antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Xiaolong Wang

    Full Text Available Antisense oligonucleotides targeting microRNAs or their mRNA targets prove to be powerful tools for molecular biology research and may eventually emerge as new therapeutic agents. Synthetic oligonucleotides are often contaminated with highly homologous failure sequences. Synthesis of a certain oligonucleotide is difficult to scale up because it requires expensive equipment, hazardous chemicals and a tedious purification process. Here we report a novel thermocyclic reaction, polymerase-endonuclease amplification reaction (PEAR, for the amplification of oligonucleotides. A target oligonucleotide and a tandem repeated antisense probe are subjected to repeated cycles of denaturing, annealing, elongation and cleaving, in which thermostable DNA polymerase elongation and strand slipping generate duplex tandem repeats, and thermostable endonuclease (PspGI cleavage releases monomeric duplex oligonucleotides. Each round of PEAR achieves over 100-fold amplification. The product can be used in one more round of PEAR directly, and the process can be further repeated. In addition to avoiding dangerous materials and improved product purity, this reaction is easy to scale up and amenable to full automation. PEAR has the potential to be a useful tool for large-scale production of antisense oligonucleotide drugs.

  7. Obstructive Effects of Ultrasonic Microbubble Intensifier on CHG-5 Cell with Survivin Antisense Oligonucleotides Transfection

    Institute of Scientific and Technical Information of China (English)

    CAO Hong-ying; CAO You-de; WANG Zhi-gang; LI Pan

    2008-01-01

    Objective:To study the effects on human glioma cell line CHG-5 by ultrasonic microbubble intensifier with survivin antisense oligonucleotides (ASODN)transfection. Methods: Antisense oligonucleotides targeting survivin mRNA was designed and synthesized.Four regimen groups were designed,group A:survivin antisense oligonucleotides transfected with ultrasonic microbubble intensifier combined with ultrasound irradiation,group B: survivin antisense oligonucleotides transfected with lipofectamine combined with ultrasound irradiation,group C:survivin antisense oligonucelotides with lipofectamine transfection.group D:blank control.The expression changes of surviving protein were measured by immunohistochemical staining and Western blotting,and MTr assay was used to measure the changes of proliferation.Results:Survivin protein expression in group A was decreased significantly in human glioma cell line CHG-5 than other groups(P<0.05),and the proliferating rate of CHG-5 in group A was also significantly inhibited(P<0.05).Conclusion:Ultrasonic microbubble intensifier transfection combined with ultrasound irradiation is a promising method in gene transfection effectively and noninvasively.

  8. Optimizing RNA/ENA chimeric antisense oligonucleotides using in vitro splicing.

    Science.gov (United States)

    Takeshima, Yasuhiro; Yagi, Mariko; Matsuo, Masafumi

    2012-01-01

    A molecular therapy for Duchenne muscular dystrophy (DMD) that converts dystrophin mRNA from out-of-frame to in-frame transcripts by inducing exon skipping with antisense oligonucleotides (AOs) is now approaching clinical application. To exploit the broad therapeutic applicability of exon skipping therapy, it is necessary to identify AOs that are able to induce efficient and specific exon skipping. To optimize AOs, we have established an in vitro splicing system using cultured DMD myocytes. Here, we describe the process of identifying the best AO.Cultured DMD myocytes are established from a biopsy sample and the target exon is chosen. A series of AOs are designed to cover the whole target exon sequence. As AOs, we use 15-20-mer chimeric oligonucleotides consisting of 2'-O-methyl RNA and modified nucleic acid (2'-O, 4'-C-ethylene-bridged nucleic acid). Each AO is transfected individually into cultured DMD myocytes, and the resulting mRNA is analyzed by reverse transcription-PCR. The ability of each AO to induce exon skipping is examined by comparing the amount of cDNA with and without exon skipping. If necessary, having roughly localized the target region, another set of AOs are designed and the exon skipping abilities of the new AOs are examined. Finally, one AO is determined as the best for the molecular therapy.Our simple and reliable methods using an in vitro splicing system have enabled us to identify optimized AOs against many exons of the DMD gene.

  9. Refinement of antisense oligonucleotide mediated exon skipping as therapy for Duchenne muscular dystrophy

    NARCIS (Netherlands)

    Heemskerk, Johannes Antonius

    2011-01-01

    In recent years, modulation of mRNA has emerged as a promising therapeutic tool. For instance, in the field of neuromuscular disorders therapeutic strategies are being developed for several diseases, including antisense oligonucleotide (AON) mediated exon skipping for Duchenne Muscular Dystrophy (DM

  10. Effects of antisense oligonucleotides on the expression of macrophage migration inhibitory factor on macrophages

    Institute of Scientific and Technical Information of China (English)

    WEIYINGCHEN; GUANGRANLI; XUEQINGYU; XIAOYANLI; XIAOYANG

    2005-01-01

    To investigate the effects of antisense oligonucleotides on the expression of macrophage migration inhibitory factor (MIF) on macrophages, the mouse phosphorothioate oligonucleotides were designed and synthesized with the sequences of antisense, 5'-TACGGATACAAGTAGCAC-3';Sense, 5'-ATGC-CTATGTTCATCGTG-3';Missense, 5'-CTCTCAGACTCGATCTGT-3'. These phosphorothioate oligonucleotides were then transfected into cultured macrophages (RAW264.7) by luciferase vector, and the transfected macrophages were incubated with Lipopolysaccharide (LPS) (1 ng/ml) for various periods of times and collected afterwards. The content of MIF protein in the cultural supernatants was determined by ELISA, cellular RNA extracted and the expression of MIF mRNA was examined by RT-PCR analysis.The experimental results showed that LPS could induce a time-dependent specific expression of MIF on macrophages, in which the MIF mRNA in cells and the MIF protein in cultural supernatants appeared after 3 h and reached their highest concentration at 9-12 h after LPS stimulation. The levels of mRNA and proteins in the macrophages treated with antisense olignucleotides were decreased significantly after stimulation with LPS in comparison with that of stimulation with LPS alone or with that with LPS plus sense or missense oligonucleotides.There were no differences among those without LPS stimulation. It is concluded that macrophages stimulated with LPS express MIF, and the antisense olignucleotides of MIF inhibitthe expression of MIF mRNA as well as the secretion of MIF proteins in macrophages.

  11. THE EFFECT OF ANTISENSE OLIGONUCLEOTIDE ON THE INTERLEUKIN-5 IN THE SUPERNATANTS OF SPLEEN CELL CULTURES OF ASTHMATIC MICE

    Institute of Scientific and Technical Information of China (English)

    王美琴; 白春学; 钮善福; 方晓惠; 陈常庆; 陈波

    2001-01-01

    To explore the effect of antisense oligonucleotide on the production of IL-5 by mouse spleen T lymphocytes.Methods Based on the IL-5 cDNA sequence of mouse, a segment of antisense oligonucleotide was designed and synthesized. 5’-labeling of antisense oligonucleotide was signed by T4 PNK in order that the efficiency of stearylamine liposome in transfecting antisense oligonucleotide can be evaluated. Asthma model was duplicated with ovalbumin(OVA) absorbed to aluminum hydroxide. T lymphocytes of mice were separated by nylon fiber method, then T lymphocytes transfected with different concentration of antisense oligonucleotide with cation stearylamine liposme were incubated respectively in order to observe the effect of antisense oligonucleotide on Il-5 production by T lymphocytes. IL-5 levels in the supernatants of T lymphocyte cultures were determined by ELISA.Results Stearylamine liposome could markedly increase the efficiency of antisense oligonucleotide transfection. The transfection efficiency of antisense oligouncleotide increased approximately 12 times at a ratio of 1: 15m/m (antisense oligonucleotide to SA liposome). In healthy and asthma Balb/c mice, IL-5 was not detectable in the supernatants of T lymphocyte cultures without stimulated with OVA; however, IL-5 was increased markedly in the supernatants of T lymphocyte cultures stimulated with OVA. After transfection with different concentrations of antisense oligonucleotide, IL-5 levels in the supernatants of T lymphocyte cultures were significantly lower than those in control cultured without antisense oligonucleotide transfection. IL-5 levels decreased from 44.60±6.23 pg/ml to 30.70±7.362 pg/ml, 17.20±6.181 pg/ml and 8.16±2.34 pg/ml respectively. And IL-5 synthesis was inhibited by 31.17%, 61.43% and 81.7% respectively.Conclusion IL-5 synthesis could be obviously inhibited by antisense oligonucleotide and showed a markedly correlation between dose and effectiveness. It suggests the production

  12. Antisense oligonucleotides as innovative therapeutic strategy in the treatment of high-grade gliomas.

    Science.gov (United States)

    Caruso, Gerardo; Caffo, Mariella; Raudino, Giuseppe; Alafaci, Concetta; Salpietro, Francesco M; Tomasello, Francesco

    2010-01-01

    Despite the intensive recent research in cancer therapy, the prognosis in patients affected by high-grade gliomas is still very unfavorable. The efficacy of classical anti-cancer strategies is seriously limited by lack of specific therapies against malignant cells. The extracellular matrix plays a pivotal role in processes such as differentiation, apoptosis, and migration in both the normal and the pathologic nervous system. Glial tumors seem to be able to create a favorable environment for the invasion of glioma cells in cerebral parenchyma when they combine with the extracellular matrix via cell surface receptors. Glioma cells synthesize matrix proteins, such as tenascin, laminin, fibronectin that facilitate the tumor cell's motility. New treatments have shown to hit the acting molecules in the tumor growth and to increase the efficacy and minimize the toxicity. Antisense oligonucleotides are synthetic stretches of DNA which hybridize with specific mRNA strands. The specificity of hybridization makes antisense method an interesting strategy to selectively modulate the expression of genes involved in tumorigenesis. In this review we will focus on the mechanisms of action of antisense oligonucleotides and report clinical and experimental studies on the treatment of high-grade gliomas. We will also report the patents of preclinical and/or clinical studies that adopt the antisense oligonucleotide therapy list in cerebral gliomas.

  13. Effect of antisense oligonucleotides targeting telomerase catalytic subunit on tumor cell proliferationin vitro

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To screen specific antitumor drugs targeting telomerase catalytic subunit (hEST2), 12 different hEST2 antisense oligonucleotides were designed based on hEST2 mRNA second structure and transfected into tumor cell lines by the lipofectin-mediated method. Cell growth activity was evaluated by MTT assay. hEST212 was picked out and its specificity, antitumor tree and continuous effect were analyzed. The results showed that hEST212 had promising antitumor activity in vitro, hEST2 can be used as a pratical target and an antisense drug candidate for cancer.

  14. Effects of HSP70 Antisense Oligonucleotide on the Proliferation and Apoptosis of Human Hepatocellular Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    杨雪; 贺海斌; 杨威; 宋涛; 郭成; 郑鑫; 刘青光

    2010-01-01

    The study investigated the effects of heat shock protein 70(HSP70) antisense oligonucleotide(ASODN) on the proliferation and apoptosis of a human hepatocellular carcinoma cell line(SMMC-7721 cells) in vitro.HSP70 oligonucleotide was transfected into SMMC-7721 cells by the mediation of SofastTM transfection reagent.Inhibition rate of SMMC-7721 cells was determined by using MTT method.Apoptosis rate and cell cycle distribution were measured by flow cytometry.Immunocytochemistry staining was used to observe th...

  15. Serial incorporation of a monovalent GalNAc phosphoramidite unit into hepatocyte-targeting antisense oligonucleotides.

    Science.gov (United States)

    Yamamoto, Tsuyoshi; Sawamura, Motoki; Wada, Fumito; Harada-Shiba, Mariko; Obika, Satoshi

    2016-01-01

    The targeting of abundant hepatic asialoglycoprotein receptors (ASGPR) with trivalent N-acetylgalactosamine (GalNAc) is a reliable strategy for efficiently delivering antisense oligonucleotides (ASOs) to the liver. We here experimentally demonstrate the high systemic potential of the synthetically-accessible, phosphodiester-linked monovalent GalNAc unit when tethered to the 5'-terminus of well-characterised 2',4'-bridged nucleic acid (also known as locked nucleic acid)-modified apolipoprotein B-targeting ASO via a bio-labile linker. Quantitative analysis of the hepatic disposition of the ASOs revealed that phosphodiester is preferable to phosphorothioate as an interunit linkage in terms of ASGPR binding of the GalNAc moiety, as well as the subcellular behavior of the ASO. The flexibility of this monomeric unit was demonstrated by attaching up to 5 GalNAc units in a serial manner and showing that knockdown activity improves as the number of GalNAc units increases. Our study suggests the structural requirements for efficient hepatocellular targeting using monovalent GalNAc and could contribute to a new molecular design for suitably modifying ASO.

  16. Nanoparticle Delivery of Antisense Oligonucleotides and Their Application in the Exon Skipping Strategy for Duchenne Muscular Dystrophy

    OpenAIRE

    Falzarano, Maria Sofia; Passarelli, Chiara; Ferlini, Alessandra

    2014-01-01

    Antisense therapy is a powerful tool for inducing post-transcriptional modifications and thereby regulating target genes associated with disease. There are several classes of antisense oligonucleotides (AONs) with therapeutic use, such as double-stranded RNAs (interfering RNAs, utilized for gene silencing, and single-stranded AONs with various chemistries, which are useful for antisense targeting of micro-RNAs and mRNAs. In particular, the use of AONs for exon skipping, by targeting pre-mRNA,...

  17. Purification of noncoding RNA and bound proteins using FLAG peptide-conjugated antisense-oligonucleotides.

    Science.gov (United States)

    Adachi, Shungo; Natsume, Tohru

    2015-01-01

    To understand the function of certain RNAs, including noncoding RNAs, it is important to identify the proteins that interact with the RNAs. Here we describe the method for purification of ribonucleoprotein (RNP) complexes composed of specific cellular RNAs by pull-down with FLAG peptide-conjugated antisense oligonucleotide (ASO). Using this method, we identified a novel protein component of U7 snRNP complex.

  18. Antisense Oligonucleotide-Mediated Exon Skipping for Duchenne Muscular Dystrophy: Progress and Challenges.

    OpenAIRE

    Arechavala-Gomeza, V.; Anthony, K.; Morgan, J; Muntoni, F.

    2012-01-01

    Duchenne muscular dystrophy (DMD) is the most common childhood neuromuscular disorder. It is caused by mutations in the DMD gene that disrupt the open reading frame (ORF) preventing the production of functional dystrophin protein. The loss of dystrophin ultimately leads to the degeneration of muscle fibres, progressive weakness and premature death. Antisense oligonucleotides (AOs) targeted to splicing elements within DMD pre-mRNA can induce the skipping of targeted exons, restoring the ORF an...

  19. Delivering Antisense Morpholino Oligonucleotides to Target Telomerase Splice Variants in Human Embryonic Stem Cells.

    Science.gov (United States)

    Radan, Lida; Hughes, Chris S; Teichroeb, Jonathan H; Postovit, Lynne-Marie; Betts, Dean H

    2016-01-01

    Morpholino oligonucleotides (MO) are an innovative tool that provides a means for examining and modifying gene expression outcomes by antisense interaction with targeted RNA transcripts. The site-specific nature of their binding facilitates focused modulation to alter splice variant expression patterns. Here we describe the steric-blocking of human telomerase reverse transcriptase (hTERT) Δα and Δβ splice variants using MO to examine cellular outcomes related to pluripotency and differentiation in human embryonic stem cells.

  20. Antisense oligonucleotide for tissue factor inhibits hepatic ischemic reperfusion injury.

    Science.gov (United States)

    Nakamura, Kenji; Kadotani, Yayoi; Ushigome, Hidetaka; Akioka, Kiyokazu; Okamoto, Masahiko; Ohmori, Yoshihiro; Yaoi, Takeshi; Fushiki, Shinji; Yoshimura, Rikio; Yoshimura, Norio

    2002-09-27

    Tissue factor (TF) is an initiation factor for blood coagulation and its expression is induced on endothelial cells during inflammatory or immune responses. We designed an antisense oligodeoxynucleotide (AS-1/TF) for rat TF and studied its effect on hepatic ischemic reperfusion injury. AS-1/TF was delivered intravenously to Lewis rats. After 10 h, hepatic artery and portal vein were partially clamped. Livers were reperfused after 180 min and harvested. TF expression was studied using immunohistochemical staining. One of 10 rats survived in a 5-day survival rate and TF was strongly stained on endothelial cells in non-treatment group. However, by treatment with AS-1/TF, six of seven survived and TF staining was significantly reduced. Furthermore, we observed that fluorescein-labeled AS-1/TF was absorbed into endothelial cells. These results suggest that AS-1/TF can strongly suppress the expression of TF and thereby inhibit ischemic reperfusion injury to the rat liver. PMID:12270110

  1. From Cryptic Toward Canonical Pre-mRNA Splicing in Pompe Disease: a Pipeline for the Development of Antisense Oligonucleotides.

    Science.gov (United States)

    Bergsma, Atze J; In 't Groen, Stijn Lm; Verheijen, Frans W; van der Ploeg, Ans T; Pijnappel, Wwm Pim

    2016-01-01

    While 9% of human pathogenic variants have an established effect on pre-mRNA splicing, it is suspected that an additional 20% of otherwise classified variants also affect splicing. Aberrant splicing includes disruption of splice sites or regulatory elements, or creation or strengthening of cryptic splice sites. For the majority of variants, it is poorly understood to what extent and how these may affect splicing. We have identified cryptic splicing in an unbiased manner. Three types of cryptic splicing were analyzed in the context of pathogenic variants in the acid α-glucosidase gene causing Pompe disease. These involved newly formed deep intronic or exonic cryptic splice sites, and a natural cryptic splice that was utilized due to weakening of a canonical splice site. Antisense oligonucleotides that targeted the identified cryptic splice sites repressed cryptic splicing at the expense of canonical splicing in all three cases, as shown by reverse-transcriptase-quantitative polymerase chain reaction analysis and by enhancement of acid α-glucosidase enzymatic activity. This argues for a competition model for available splice sites, including intact or weakened canonical sites and natural or newly formed cryptic sites. The pipeline described here can detect cryptic splicing and correct canonical splicing using antisense oligonucleotides to restore the gene defect. PMID:27623443

  2. Dynamics of human telomerase RNA structure revealed by antisense oligonucleotide technique.

    Science.gov (United States)

    Vasilkova, Daria V; Azhibek, Dulat M; Zatsepin, Timofei S; Naraikina, Yulia V; Prassolov, Vladimir S; Prokofjeva, Maria M; Zvereva, Maria I; Rubtsova, Maria P

    2013-12-01

    Telomeres are the nucleoprotein complexes that cap the linear chromosome ends. Telomerase is a ribonucleoprotein that maintains telomere length in stem, embryonic and cancer cells. Somatic cells don't contain active telomerase and telomere function as mitotic clock and telomere length determines the number of cell divisions. Telomerase RNA (TER) contains the template for telomere synthesis and serves as a structural scaffold for holoenzyme assembly. We compared different oligonucleotide based methods for telomerase RNA inhibition, such as antisense oligonucleotides, knockdown by transient siRNA transfection and silencing by miRNA derived from short expressed RNA hairpin in HEK293 cells. All of these methods were applied to different TER regions. Our results revealed that CR2/CR3 domain of TER is accessible in vitro and in vivo and could serve as an optimal site for oligonucleotide-based telomerase silencing.

  3. Advances in Antisense Oligonucleotide Development for Target Identification, Validation, and as Novel Therapeutics

    Directory of Open Access Journals (Sweden)

    Moizza Mansoor

    2008-01-01

    Full Text Available Antisense oligonucleotides (As-ODNs are single stranded, synthetically prepared strands of deoxynucleotide sequences, usually 18–21 nucleotides in length, complementary to the mRNA sequence of the target gene. As-ODNs are able to selectively bind cognate mRNA sequences by sequence-specific hybridization. This results in cleavage or disablement of the mRNA and, thus, inhibits the expression of the target gene. The specificity of the As approach is based on the probability that, in the human genome, any sequence longer than a minimal number of nucleotides (nt, 13 for RNA and 17 for DNA, normally occurs only once. The potential applications of As-ODNs are numerous because mRNA is ubiquitous and is more accessible to manipulation than DNA. With the publication of the human genome sequence, it has become theoretically possible to inhibit mRNA of almost any gene by As-ODNs, in order to get a better understanding of gene function, investigate its role in disease pathology and to study novel therapeutic targets for the diseases caused by dysregulated gene expression. The conceptual simplicity, the availability of gene sequence information from the human genome, the inexpensive availability of synthetic oligonucleotides and the possibility of rational drug design makes As-ODNs powerful tools for target identification, validation and therapeutic intervention. In this review we discuss the latest developments in antisense oligonucleotide design, delivery, pharmacokinetics and potential side effects, as well as its uses in target identification and validation, and finally focus on the current developments of antisense oligonucleotides in therapeutic intervention in various diseases.

  4. Efficient inhibition of human telomerase activity by antisense oligonucleotides sensitizes cancer cells to radiotherapy

    Institute of Scientific and Technical Information of China (English)

    Xue-mei JI; Cong-hua XIE; Ming-hao FANG; Fu-xiang ZHOU; Wen-jie ZHANG; Ming-sheng ZHANG; Yun-feng ZHOU

    2006-01-01

    Aim: To investigate the effect of the antisense oligonucleotides (ASODN) specific for human telomerase RNA (hTR) on radio sensitization and proliferation inhibition in human neurogliocytoma cells (U251). Methods: U251 cells were transfected with hTR ASODN or nonspecific oligonucleotides (NSODN). Before and after irradiation of 60Co-γray, telomerase activity was assayed by telomeric repeat amplification protocol (TRAP-PCR-ELISA), and DNA damage and repair were examined by the comet assay. The classical colony assay was used to plot the cell-survival curve, to detect the D0 value. Results: hTR antisense oligonucleotides could downregulate the telomerase activity, increase radiation induced DNA damage and reduce the subsequent repair. Furthermore, it could inhibit the proliferation and decrease the D0 value which demonstrates rising radiosensitivity. However, telomere length was unchanged over a short period of time. Conclusion: These findings suggest that an ASODN-based strategy may be used to develop telomerase inhibitors, which can efficiently sensitize radiotherapy.

  5. Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2'-modifications and enhances antisense activity.

    Science.gov (United States)

    Liang, Xue-Hai; Shen, Wen; Sun, Hong; Kinberger, Garth A; Prakash, Thazha P; Nichols, Joshua G; Crooke, Stanley T

    2016-05-01

    RNase H1-dependent antisense oligonucleotides (ASOs) are chemically modified to enhance pharmacological properties. Major modifications include phosphorothioate (PS) backbone and different 2'-modifications in 2-5 nucleotides at each end (wing) of an ASO. Chemical modifications can affect protein binding and understanding ASO-protein interactions is important for better drug design. Recently we identified many intracellular ASO-binding proteins and found that protein binding could affect ASO potency. Here, we analyzed the structure-activity-relationships of ASO-protein interactions and found 2'-modifications significantly affected protein binding, including La, P54nrb and NPM. PS-ASOs containing more hydrophobic 2'-modifications exhibit higher affinity for proteins in general, although certain proteins, e.g. Ku70/Ku80 and TCP1, are less affected by 2'-modifications. We found that Hsp90 protein binds PS-ASOs containing locked-nucleic-acid (LNA) or constrained-ethyl-bicyclic-nucleic-acid ((S)-cEt) modifications much more avidly than 2'-O-methoxyethyl (MOE). ASOs bind the mid-domain of Hsp90 protein. Hsp90 interacts with more hydrophobic 2' modifications, e.g. (S)-cEt or LNA, in the 5'-wing of the ASO. Reduction of Hsp90 protein decreased activity of PS-ASOs with 5'-LNA or 5'-cEt wings, but not with 5'-MOE wing. Together, our results indicate Hsp90 protein enhances the activity of PS/LNA or PS/(S)-cEt ASOs, and imply that altering protein binding of ASOs using different chemical modifications can improve therapeutic performance of PS-ASOs. PMID:26945041

  6. Antisense oligonucleotide to insulin—like growth factor Ⅱ induces apotosis in human ovarian cancer AO cell line

    Institute of Scientific and Technical Information of China (English)

    YINDELING; LUPU; 等

    1998-01-01

    The effects of antisense oligonucleotide to insulin0like growth factor -Ⅱ(IGFⅡ)to induce apotosis in human ovarian cancer cells were evaluated.Antiproliferation effects of antisense to IGFⅡin ovarian cancer AO cells were determined by 3H-thymidine incorporation.Apoptosis of the IGFⅡ antisense-treated cells was quantitated by both nuclear condensation and flow cytometry after cells were stained with propidium iodide,IGFⅡ antisense(4.5μM) treatment of 48h maximally inhibited proliferation of AO cells,More than 25% of IGFⅡantisense-treated cells(4.5μM for 24h) had undergone apoptosis,whereas less than 3% of the cells were apoptotic in either IGFⅡ sense-treated cells or untreated cells.Antisense oligonucleotide to IGFⅡ significantly inhibited cell proliferation and induced apoptosis in human ovarian cancer AO cell.These data suggest that IGFII may be a potential target in treatment of ovarian cancer and antisense oligonucleotide to IGFⅡ may serve as a therapeutic approach.

  7. Efficient Synthesis and Biological Evaluation of 5'-GalNAc Conjugated Antisense Oligonucleotides.

    Science.gov (United States)

    Østergaard, Michael E; Yu, Jinghua; Kinberger, Garth A; Wan, W Brad; Migawa, Michael T; Vasquez, Guillermo; Schmidt, Karsten; Gaus, Hans J; Murray, Heather M; Low, Audrey; Swayze, Eric E; Prakash, Thazha P; Seth, Punit P

    2015-08-19

    Conjugation of triantennary N-acetyl galactosamine (GalNAc) to oligonucleotide therapeutics results in marked improvement in potency for reducing gene targets expressed in hepatocytes. In this report we describe a robust and efficient solution-phase conjugation strategy to attach triantennary GalNAc clusters (mol. wt. ∼2000) activated as PFP (pentafluorophenyl) esters onto 5'-hexylamino modified antisense oligonucleotides (5'-HA ASOs, mol. wt. ∼8000 Da). The conjugation reaction is efficient and was used to prepare GalNAc conjugated ASOs from milligram to multigram scale. The solution phase method avoids loading of GalNAc clusters onto solid-support for automated synthesis and will facilitate evaluation of GalNAc clusters for structure activity relationship (SAR) studies. Furthermore, we show that transfer of the GalNAc cluster from the 3'-end of an ASO to the 5'-end results in improved potency in cells and animals.

  8. Lipid-Albumin Nanoparticles (LAN) for Therapeutic Delivery of Antisense Oligonucleotide against HIF-1α.

    Science.gov (United States)

    Li, Hong; Quan, Jishan; Zhang, Mengzi; Yung, Bryant C; Cheng, Xinwei; Liu, Yang; Lee, Young B; Ahn, Chang-Ho; Kim, Deog Joong; Lee, Robert J

    2016-07-01

    Lipid-albumin nanoparticles (LAN) were synthesized for delivery of RX-0047, an antisense oligonucleotide (ASO) against the hypoxia inducible factor-1 alpha (HIF-1α) to solid tumor. These lipid nanoparticles (LNs) incorporated a human serum albumin-pentaethylenehexamine (HSA-PEHA) conjugate, which is cationic and can form electrostatic complexes with negatively charged oligonucleotides. The delivery efficiency of LAN-RX-0047 was investigated in KB cells and a KB murine xenograft model. When KB cells were treated with LAN-RX-0047, significant HIF-1α downregulation and enhanced cellular uptake were observed compared to LN-RX-0047. LN-RX-0047 and LAN-RX-0047 showed similar cytotoxicity against KB cells with IC50 values of 19.3 ± 3.8 and 20.1 ± 4.2 μM, respectively. LAN-RX-0047 was shown to be taken up by the cells via the macropinocytosis and caveolae-mediated endocytosis pathways while LN-RX-0047 was taken up by cells via caveolae-mediated endocytosis. In the KB xenograft tumor model, LAN-RX-0047 exhibited tumor suppressive activity and significantly reduced intratumoral HIF-1α expression compared to LN-RX-0047. Furthermore, LAN-RX-0047 greatly increased survival time of mice bearing KB-1 xenograft tumors at doses of either 3 mg/kg or 16 mg/kg. These results indicated that LAN-RX-0047 is a highly effective vehicle for therapeutic delivery of antisense agents to tumor.

  9. Antisense oligonucleotides targeting midkine induced apoptosis and increased chemosensitivity in hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Li-cheng DAI; Xiang WANG; Xing YAO; Yong-liang LU; Jin-liang PING; Jian-fang HE

    2006-01-01

    Aim: Overexpression of midkine (MK) has been observed in many malignancies. This aim of this study is to screen for suitable antisense oligonucleotides (ASODN) targeting MK in hepatocellular carcinoma (HCC) cells and evaluate its antitumor activity. Methods: Ten ASODN targeting MK were designed and synthesized. After transfection with ASODN, cell proliferation was analyzed with MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2//-tetrazolium, inner salt] assay. In addition, MK mRNA, protein levels, as well as apoptosis and caspase-3 activity were also examined in HepG2 cells. Cell proliferation was then analyzed after treatment with both ASODN and chemotherapeu-tic drugs. Results: In this experiment, the ASODN5 among the 10 ASODN showed higher inhibitory activity against proliferation of hepatocellular carcinoma cells in a dose-dependent manner. In HepG2 cells, ASODN5 could significantly reduce the MK mRNA level and protein content. After transfection with ASODN5 for 48 h, accompanied with a decline of survivin and Bcl-2 protein content, a remarkable increase of apoptosis and caspase-3 activity was observed in HepG2 cells. Furthermore, ASODN5 transfer can significantly increase chemosensitivity in HepG2 cells. Conclusion: Antisense oligonucleotides targeting MK shows therapeutic effects on HCC; ASODN5 has the possibility to be developed as an effective antitumor agent.

  10. Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake.

    Science.gov (United States)

    Márquez-Miranda, Valeria; Peñaloza, Juan Pablo; Araya-Durán, Ingrid; Reyes, Rodrigo; Vidaurre, Soledad; Romero, Valentina; Fuentes, Juan; Céric, Francisco; Velásquez, Luis; González-Nilo, Fernando D; Otero, Carolina

    2016-12-01

    Poly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes.

  11. Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake.

    Science.gov (United States)

    Márquez-Miranda, Valeria; Peñaloza, Juan Pablo; Araya-Durán, Ingrid; Reyes, Rodrigo; Vidaurre, Soledad; Romero, Valentina; Fuentes, Juan; Céric, Francisco; Velásquez, Luis; González-Nilo, Fernando D; Otero, Carolina

    2016-12-01

    Poly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes. PMID:26847692

  12. Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake

    Science.gov (United States)

    Márquez-Miranda, Valeria; Peñaloza, Juan Pablo; Araya-Durán, Ingrid; Reyes, Rodrigo; Vidaurre, Soledad; Romero, Valentina; Fuentes, Juan; Céric, Francisco; Velásquez, Luis; González-Nilo, Fernando D.; Otero, Carolina

    2016-02-01

    Poly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes.

  13. A cytoplasmic pathway for gapmer antisense oligonucleotide-mediated gene silencing in mammalian cells

    Science.gov (United States)

    Castanotto, Daniela; Lin, Min; Kowolik, Claudia; Wang, LiAnn; Ren, Xiao-Qin; Soifer, Harris S.; Koch, Troels; Hansen, Bo Rode; Oerum, Henrik; Armstrong, Brian; Wang, Zhigang; Bauer, Paul; Rossi, John; Stein, C.A.

    2015-01-01

    Antisense oligonucleotides (ASOs) are known to trigger mRNA degradation in the nucleus via an RNase H-dependent mechanism. We have now identified a putative cytoplasmic mechanism through which ASO gapmers silence their targets when transfected or delivered gymnotically (i.e. in the absence of any transfection reagent). We have shown that the ASO gapmers can interact with the Ago-2 PAZ domain and can localize into GW-182 mRNA-degradation bodies (GW-bodies). The degradation products of the targeted mRNA, however, are not generated by Ago-2-directed cleavage. The apparent identification of a cytoplasmic pathway complements the previously known nuclear activity of ASOs and concurrently suggests that nuclear localization is not an absolute requirement for gene silencing. PMID:26433227

  14. Multi-exon Skipping Using Cocktail Antisense Oligonucleotides in the Canine X-linked Muscular Dystrophy.

    Science.gov (United States)

    Miskew Nichols, Bailey; Aoki, Yoshitsugu; Kuraoka, Mutsuki; Lee, Joshua J A; Takeda, Shin'ichi; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic diseases worldwide, caused by mutations in the dystrophin (DMD) gene. Exon skipping employs short DNA/RNA-like molecules called antisense oligonucleotides (AONs) that restore the reading frame and produce shorter but functional proteins. However, exon skipping therapy faces two major hurdles: limited applicability (up to only 13% of patients can be treated with a single AON drug), and uncertain function of truncated proteins. These issues were addressed with a cocktail AON approach. While approximately 70% of DMD patients can be treated by single exon skipping (all exons combined), one could potentially treat more than 90% of DMD patients if multiple exon skipping using cocktail antisense drugs can be realized. The canine X-linked muscular dystrophy (CXMD) dog model, whose phenotype is more similar to human DMD patients, was used to test the systemic efficacy and safety of multi-exon skipping of exons 6 and 8. The CXMD dog model harbors a splice site mutation in intron 6, leading to a lack of exon 7 in dystrophin mRNA. To restore the reading frame in CXMD requires multi-exon skipping of exons 6 and 8; therefore, CXMD is a good middle-sized animal model for testing the efficacy and safety of multi-exon skipping. In the current study, a cocktail of antisense morpholinos targeting exon 6 and exon 8 was designed and it restored dystrophin expression in body-wide skeletal muscles. Methods for transfection/injection of cocktail oligos and evaluation of the efficacy and safety of multi-exon skipping in the CXMD dog model are presented. PMID:27285612

  15. Depletion of Bcl-2 by an antisense oligonucleotide induces apoptosis accompanied by oxidation and externalization of phosphatidylserine in NCI-H226 lung carcinoma cells.

    Science.gov (United States)

    Koty, Patrick P; Tyurina, Yulia Y; Tyurin, Vladimir A; Li, Shang-Xi; Kagan, Valerian E

    2002-01-01

    Oxidant-induced apoptosis involves oxidation of many different and essential molecules including phospholipids. As a result of this non-specific oxidation, any signaling role of a particular phospholipid-class of molecules is difficult to elucidate. To determine whether preferential oxidation of phosphatidylserine (PS) is an early event in apoptotic signaling related to PS externalization and is independent of direct oxidant exposure, we chose a genetic-based induction of apoptosis. Apoptosis was induced in the lung cancer cell line NCI-H226 by decreasing the amount of Bcl-2 protein expression by preventing the translation of bcl-2 mRNA using an antisense bcl-2 oligonucleotide. Peroxidation of phospholipids was assayed using a fluorescent technique based on metabolic integration of an oxidation-sensitive and fluorescent fatty acid, cis-parinaric acid (PnA), into cellular phospholipids and subsequent HPLC separation of cis-PnA-labeled phospholipids. We found a decrease in Bcl-2 was associated with a selective oxidation of PS in a sub-population of the cells with externalized PS. No significant difference in oxidation of cis-PnA-labeled phospholipids was observed in cells treated with medium alone or a nonsense oligonucleotide. Treatment with either nonsensc or antisense bcl-2 oligonucleotides was not associated with changes in the pattern of individual phospholipid classes as determined by HPTLC. These metabolic and topographical changes in PS arrangement in plasma membrane appear to be early responses to antisense bcl-2 exposure that trigger a PS-dependent apoptotic signaling pathway. This observed externalization of PS may facilitate the 'labeling' of apoptotic cells for recognition by macrophage scavenger receptors and subsequent phagocytic clearance. PMID:12162425

  16. Kinetics and mechanisms of steps in anti-sense oligonucleotide synthesis

    OpenAIRE

    Russell, Mark A.

    2007-01-01

    Mechanistic studies are reported for the detritylation, coupling and sulphurisation reactions involved in oligonucleotide synthesis by the phosphoramidite method. Detritylation is the acid catalysed removal of a 4,4-dimethoxytrityl protecting group from the 5' protected nucleotide to give the 5' deprotected nucleotide and the 4,4- dimethoxytrityl carbocation. In the absence of water and at high acid concentrations the equilibrium favours carbocation formation. Equilibrium profi...

  17. Down-regulation of protein kinase Ceta by antisense oligonucleotides sensitises A549 lung cancer cells to vincristine and paclitaxel.

    Science.gov (United States)

    Sonnemann, Jürgen; Gekeler, Volker; Ahlbrecht, Katrin; Brischwein, Klaus; Liu, Chao; Bader, Peter; Müller, Cornelia; Niethammer, Dietrich; Beck, James F

    2004-06-25

    Previous studies point to protein kinase C (PKC) isozyme eta as a resistance factor in cancer cells. Therefore, we investigated whether down-regulation of PKCeta with second generation antisense oligonucleotides (ODNs) would sensitise A549 human lung carcinoma cells to cytostatics. The effects were compared to the outcome of Bcl-xL down-regulation. Upon treatment with antisense ODNs, PKCeta and Bcl-xL were both significantly reduced on mRNA and protein level. Down-regulation of either PKCeta or Bcl-xL in combination with vincristine or paclitaxel resulted in a significant increase in caspase-3 activity compared to that in the control oligonucleotide treated cells. In addition, PKCeta down-regulation augmented vincristine-induced dissipation of mitochondrial transmembrane potential. In conclusion, these results confirm that PKCeta might represent a considerable resistance factor and an interesting target to improve anticancer chemotherapy. PMID:15159020

  18. Antisense oligonucleotides-induced local blockade of T-bet expression leads to airway inflammation in rats

    Institute of Scientific and Technical Information of China (English)

    Gang WANG; Chun-tao LIU; Zeng-li WANG; Li-li JIANG; Cuniang YAN; Feng-min LUO

    2006-01-01

    Aim: To explore whether local blockade of T-box expressed in T cells (T-bet) expression in the 1ungs could lead to airway inflammation. Methods: Twenty-four rats were randomly divided into 4 groups: saline group, ovalbumin (OVA)-sensitized group, nonsense group, and the antisense group. The OVA-sensitized rats were sensitized and challenged with OVA, and the rats in the nonsense and antisense groups were subjected to an aerosol delivery of the nonsense and antisense oligonucleotides (AS-ODN)of T-bet(0.1%, w/v). The levels of interferon-γ(IFN-γ), interleukin-4(IL-4), and IL-5 in the bronchoalveolar lavage fluid (BALF) were detected by ELISA, and the mRNA and the protein expression of T-bet and GATA-3 genes were examined by in situ hybridization and Western blot analysis, respectively. Results: The expression of T-bet mRNA and protein in the lungs of the rats in the antisense group were inhibited effectively. The lungs of the rats in the antisense and OVA-sensitized groups showed eosinophil and lymphocyte inflammatory infiltration, and eosinophilia located predominantly around the airways. The number of GATA-3 mRNA-positive cells and the level of GAllA-3 protein in the 1ungs of the rats in the antisense and the OVA-sensitized groups significantly increased. The level of IL-4 and IL-5 in the BALF in the antisense and OVA-sensitized groups were elevated, but the level of IFN-γ decreased markedly. Conclusion: Antisense ODN-induced local blockade of T-bet expression leads to airway inflammation with a selective alteration in patterns of cytokine expression and recruitment of eosinophil cells similar to that in the OVA-sensitized

  19. Functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II.

    Science.gov (United States)

    Matos, Liliana; Gonçalves, Vânia; Pinto, Eugénia; Laranjeira, Francisco; Prata, Maria João; Jordan, Peter; Desviat, Lourdes R; Pérez, Belén; Alves, Sandra

    2015-12-01

    Mucopolysaccharidosis II is a lysosomal storage disorder caused by mutations in the IDS gene, including exonic alterations associated with aberrant splicing. In the present work, cell-based splicing assays were performed to study the effects of two splicing mutations in exon 3 of IDS, i.e., c.241C>T and c.257C>T, whose presence activates a cryptic splice site in exon 3 and one in exon 8, i.e., c.1122C>T that despite being a synonymous mutation is responsible for the creation of a new splice site in exon 8 leading to a transcript shorter than usual. Mutant minigene analysis and overexpression assays revealed that SRSF2 and hnRNP E1 might be involved in the use and repression of the constitutive 3' splice site of exon 3 respectively. For the c.1122C>T the use of antisense therapy to correct the splicing defect was explored, but transfection of patient fibroblasts with antisense morpholino oligonucleotides (n=3) and a locked nucleic acid failed to abolish the abnormal transcript; indeed, it resulted in the appearance of yet another aberrant splicing product. Interestingly, the oligonucleotides transfection in control fibroblasts led to the appearance of the aberrant transcript observed in patients' cells after treatment, which shows that the oligonucleotides are masking an important cis-acting element for 5' splice site regulation of exon 8. These results highlight the importance of functional studies for understanding the pathogenic consequences of mis-splicing and highlight the difficulty in developing antisense therapies involving gene regions under complex splicing regulation. PMID:26407519

  20. Evaluation of 2'-Deoxy-2'-fluoro Antisense Oligonucleotides for Exon Skipping in Duchenne Muscular Dystrophy

    Science.gov (United States)

    Jirka, Silvana M G; Tanganyika-de Winter, Christa L; Boertje-van der Meulen, Joke W; van Putten, Maaike; Hiller, Monika; Vermue, Rick; de Visser, Peter C; Aartsma-Rus, Annemieke

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder typically caused by frame-shifting mutations in the DMD gene. Restoration of the reading frame would allow the production of a shorter but partly functional dystrophin protein as seen in Becker muscular dystrophy patients. This can be achieved with antisense oligonucleotides (AONs) that induce skipping of specific exons during pre-mRNA splicing. Different chemical modifications have been developed to improve AON properties. The 2'-deoxy-2'-fluoro (2F) RNA modification is attractive for exon skipping due to its ability to recruit ILF2/3 proteins to the 2F/pre-mRNA duplex, which resulted in enhanced exon skipping in spinal muscular atrophy models. In this study, we examined the effect of two different 2'-substituted AONs (2'-F phosphorothioate (2FPS) and 2'-O-Me phosphorothioate (2OMePS)) on exon skipping in DMD cell and animal models. In human cell cultures, 2FPS AONs showed higher exon skipping levels than their isosequential 2OMePS counterparts. Interestingly, in the mdx mouse model, 2FPS was less efficient than 2OMePS and suggested safety issues as evidenced by increased spleen size and weight loss. Our results do not support a clinical application for 2FPS AON. PMID:26623937

  1. Thiolated polycarbophil as an adjuvant for permeation enhancement in nasal delivery of antisense oligonucleotides.

    Science.gov (United States)

    Vetter, A; Martien, R; Bernkop-Schnürch, A

    2010-03-01

    The purpose of this study was to investigate the effect of thiolated polycarbophil as an adjuvant to enhance the permeation and improve the stability of a phosphorothioate antisense oligonucleotide (PTO-ODN) on the nasal mucosa. Polycarbophil-cysteine (PCP-Cys) was synthesized by the covalent attachment of L-cysteine to the polymeric backbone. Cytotoxicity tests were examined on human nasal epithelial cells from surgery of nasal polyps confirmed by histological studies. Deoxyribonuclease I activity in respiratory region of the porcine nasal cavity was analyzed by an enzymatic assay. The enzymatic degradation of PTO-ODNs on freshly excised porcine nasal mucosa was analyzed and protection of PCP-cysteine toward DNase I degradation was evaluated. Permeation studies were performed in Ussing-type diffusion chambers. PCP-Cys/GSH did not arise a remarkable mortal effect. Porcine respiratory mucosa was shown to possess nuclease activity corresponding to 0.69 Kunitz units/mL. PTO-ODNs were degraded by incubation with nasal mucosa. In the presence of 0.45% thiolated polycarbophil and 0.5% glutathione (GSH), this degradation process could be lowered. In the presence of thiolated polycarbophil and GSH the uptake of PTO-ODNs from the nasal mucosa was 1.7-fold improved. According to these results thiolated polycarbophil/GSH might be a promising excipient for nasal administration of PTO-ODNs.

  2. Antisense oligonucleotide induced exon skipping and the dystrophin gene transcript: cocktails and chemistries

    Directory of Open Access Journals (Sweden)

    Fletcher Sue

    2007-07-01

    Full Text Available Abstract Background Antisense oligonucleotides (AOs can interfere with exon recognition and intron removal during pre-mRNA processing, and induce excision of a targeted exon from the mature gene transcript. AOs have been used in vitro and in vivo to redirect dystrophin pre-mRNA processing in human and animal cells. Targeted exon skipping of selected exons in the dystrophin gene transcript can remove nonsense or frame-shifting mutations that would otherwise have lead to Duchenne Muscular Dystrophy, the most common childhood form of muscle wasting. Results Although many dystrophin exons can be excised using a single AO, several exons require two motifs to be masked for efficient or specific exon skipping. Some AOs were inactive when applied individually, yet pronounced exon excision was induced in transfected cells when the AOs were used in select combinations, clearly indicating synergistic rather than cumulative effects on splicing. The necessity for AO cocktails to induce efficient exon removal was observed with 2 different chemistries, 2'-O-methyl modified bases on a phosphorothioate backbone and phosphorodiamidate morpholino oligomers. Similarly, other trends in exon skipping, as a consequence of 2'-O-methyl AO action, such as removal of additional flanking exons or variations in exon skipping efficiency with overlapping AOs, were also seen when the corresponding sequences were prepared as phosphorodiamidate morpholino oligomers. Conclusion The combination of 2 AOs, directed at appropriate motifs in target exons was found to induce very efficient targeted exon skipping during processing of the dystrophin pre-mRNA. This combinatorial effect is clearly synergistic and is not influenced by the chemistry of the AOs used to induce exon excision. A hierarchy in exon skipping efficiency, observed with overlapping AOs composed of 2'-O-methyl modified bases, was also observed when these same sequences were evaluated as phosphorodiamidate morpholino

  3. The effect of in vitro exposure to antisense oligonucleotides on macrophage morphology and function

    Directory of Open Access Journals (Sweden)

    Ann Brasey

    2011-11-01

    Full Text Available Antisense oligonucleotides (AON delivered via inhalation are in drug development for respiratory diseases. In rodents and monkeys, repeated exposure to high doses of inhaled phosphorothioate (PS AON can lead to microscopic changes in the lungs, including accumulation of alveolar macrophages in the lower airway that have a foamy appearance. The functional consequences that result from this morphological change are unclear as there is controversy whether the vacuoles/inclusion bodies reflect normal clearance of the inhaled AON or are early indicators of lung toxicity. The morphological and functional responses of macrophage to PS AON were characterized in vitro using the comparator drug amiodarone, as a known inducer of foamy macrophages. Morphological changes of increased vacuolization with the presence of lamellated structures were observed in macrophages in response to both amiodarone and AON treatment. Functional responses to the drugs clearly differed with amiodarone treatment leading to apoptosis of cells and cell death, release of proinflammatory mediators IL-1RA, MIP-1α and TNFα, decrease in IP-10, a cytokine shown to be involved in protection against pulmonary fibrosis and altered phagocytosis capacity of the cells. In contrast, AON in concentrations up to 30 μM, had no effect on cell viability or apoptosis, had minimal effects on pro-inflammatory cytokines, increased IP-10 levels and did not alter the phagocytic capacity of the cells. Exposure of macrophages to AON in vitro, led to morphological changes of increased vacuolization, but did not lead to functional consequences which were observed with another vacuolization-inducing drug, suggesting that the in vivo phenotypic changes observed following inhalation of AON may be consistent with a clearance mechanism and not an activation or impairment of macrophages.

  4. Enhanced therapeutic effects of combined chemotherapeutic drugs and midkine antisense oligonucleotides for hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Li-Cheng Dai; Xiang Wang; Xing Yao; Yong-Liang Lu; Jin-Liang Ping; Jian-Fang He

    2007-01-01

    AIM: To evaluate the effect of combined antisense oligonucleotides targeting midkine (MK-AS) and chemotherapeutic drugs [cisplatin(DDP), 5-fluorouracil(5-FU) and adriamycin (ADM)] on inhibition of HepG2cell proliferation, and to analyze the efficacy of MK-AS used in combined ADM in in situ human hepatocellular carcinoma (HCC) model.METHODS: HepG2 cells were treated with MK-AS and/or chemotherapeutic drugs mediated by Lipofectin,and cell growth activity was determined by MTS assay.An in situ HCC model was used in this experiment. MKAS, ADM and MK-AS + ADM were given intravenously for 20 d, respectively. The animal body weight and their tumor weight were measured to assess the effect of the combined therapy in vivo.RESULTS: Combined treatment with MK-AS reduced the IC50 of DDP, 5-FU and ADM in HepG2 cells. MK-AS significantly increased the inhibition rate of DDP, 5-FU and ADM. Additionally, synergism (Q 1.15) occurred at a lower concentration of ADM, 5-FU and DDP with combined MK-AS. Combined treatment with MK-AS and ADM resulted in the more growth inhibition on in situ human HCC model compared with treatment with chemotherapeutic drugs alone.CONCLUSION: MK-AS increases the chemosensitivity in HepG2 cells and in situ human HCC model, and the combination of MK-AS and ADM has a much better in vitro and in vivo synergism.

  5. Improved antisense oligonucleotide design to suppress aberrant SMN2 gene transcript processing: towards a treatment for spinal muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Chalermchai Mitrpant

    Full Text Available Spinal muscular atrophy (SMA is caused by loss of the Survival Motor Neuron 1 (SMN1 gene, resulting in reduced SMN protein. Humans possess the additional SMN2 gene (or genes that does produce low level of full length SMN, but cannot adequately compensate for loss of SMN1 due to aberrant splicing. The majority of SMN2 gene transcripts lack exon 7 and the resultant SMNΔ7 mRNA is translated into an unstable and non-functional protein. Splice intervention therapies to promote exon 7 retention and increase amounts of full-length SMN2 transcript offer great potential as a treatment for SMA patients. Several splice silencing motifs in SMN2 have been identified as potential targets for antisense oligonucleotide mediated splice modification. A strong splice silencer is located downstream of exon 7 in SMN2 intron 7. Antisense oligonucleotides targeting this motif promoted SMN2 exon 7 retention in the mature SMN2 transcripts, with increased SMN expression detected in SMA fibroblasts. We report here systematic optimisation of phosphorodiamidate morpholino oligonucleotides (PMO that promote exon 7 retention to levels that rescued the phenotype in a severe mouse model of SMA after intracerebroventricular delivery. Furthermore, the PMO gives the longest survival reported to date after a single dosing by ICV.

  6. Translational inhibition of CTX M extended spectrum β-lactamase in clinical strains of Escherichia coli by synthetic antisense oligonucleotides partially restores sensitivity to cefotaxime.

    Directory of Open Access Journals (Sweden)

    John Benedict Readman

    2016-03-01

    Full Text Available Synthetic antisense oligomers are DNA mimics that can specifically inhibit gene expression at the translational level by ribosomal steric hindrance. They bind to their mRNA targets by Watson Crick base pairing and are resistant to degradation by both nucleases and proteases. A 25 mer phosphorodiamidate morpholino oligomer (PMO and a 13 mer polyamide (peptide nucleic acid (PNA were designed to target mRNA (positions -4 to +21, and –17 to –5 respectively close to the translational initiation site of the extended spectrum β lactamase resistance genes of CTX M group 1. These antisense oligonucleotides were found to inhibit β lactamase activity by up to 96% in a cell free translation transcription coupled system using an expression vector carrying a blaCTX-M-15 gene cloned from a clinical isolate. Despite evidence for up regulation of CTX-M gene expression, they were both found to significantly restore sensitivity to cefotaxime in E. coli AS19, an atypical cell wall permeable mutant, in a dose dependant manner (0 - 40 nM. The PMO and PNA were covalently bound to the cell penetrating peptide (KFF3K and both significantly (P<0.05 increased sensitivity to cefotaxime in a dose dependent manner (0 - 40 nM in field isolates harbouring CTX-M group 1 β-lactamases. Antisense oligonucleotides targeted to the translational initiation site and Shine Dalgarno region of blaCTX-M-15 inhibited gene expression, and when conjugated to a cell penetrating delivery vehicle, partially restored antibiotic sensitivity to both field and clinical isolates.

  7. Translational Inhibition of CTX-M Extended Spectrum β-Lactamase in Clinical Strains of Escherichia coli by Synthetic Antisense Oligonucleotides Partially Restores Sensitivity to Cefotaxime.

    Science.gov (United States)

    Readman, John B; Dickson, George; Coldham, Nick G

    2016-01-01

    Synthetic antisense oligomers are DNA mimics that can specifically inhibit gene expression at the translational level by ribosomal steric hindrance. They bind to their mRNA targets by Watson-Crick base pairing and are resistant to degradation by both nucleases and proteases. A 25-mer phosphorodiamidate morpholino oligomer (PMO) and a 13-mer polyamide (peptide) nucleic acid (PNA) were designed to target mRNA (positions -4 to +21, and -17 to -5, respectively) close to the translational initiation site of the extended-spectrum β-lactamase resistance genes of CTX-M group 1. These antisense oligonucleotides were found to inhibit β-lactamase activity by up to 96% in a cell-free translation-transcription coupled system using an expression vector carrying a bla CTX-M-15 gene cloned from a clinical isolate. Despite evidence for up-regulation of CTX-M gene expression, they were both found to significantly restore sensitivity to cefotaxime (CTX) in E. coli AS19, an atypical cell wall permeable mutant, in a dose dependant manner (0-40 nM). The PMO and PNA were covalently bound to the cell penetrating peptide (CPP; (KFF)3K) and both significantly (P < 0.05) increased sensitivity to CTX in a dose dependent manner (0-40 nM) in field and clinical isolates harboring CTX-M group 1 β-lactamases. Antisense oligonucleotides targeted to the translational initiation site and Shine-Dalgarno region of bla CTX-M-15 inhibited gene expression, and when conjugated to a cell penetrating delivery vehicle, partially restored antibiotic sensitivity to both field and clinical isolates. PMID:27047482

  8. Heat shock protein 70 antisense oligonucleotide inhibits cell growth and induces apoptosis in human gastric cancer cell line SGC-7901

    Institute of Scientific and Technical Information of China (English)

    Zhi-Gang Zhao; Wen-Lu Shen

    2005-01-01

    AIM: Heat shock protein (HSP)70 is over-expressed in human gastric cancer and plays an important role in the progression of this cancer. We investigated the effects of antisense HSP70 oligomer on human gastric cancer cell line SGC-7901, and its potential role in gene therapy for this cancer.METHODS: Human gastric cancer cell line SGC-7901 was treated in vitro with various concentrations of antisense HSP70 oligonucleotides at different intervals. Growth inhibition was determined as percentage by trypan blue dye exclusion test. Extracted DNA was electrophoresed on agarose gel, and distribution of cell cycle and kinetics of apoptosis induction were analyzed by propidium iodide DNA incorporation using flow cytometry, which was also used to detect the effects of antisense oligomer pretreatment on the subsequent apoptosis induced by heat shock in SGC-7901 cells. Proteins were extracted for simultaneous measurement of HSP70 expression level by SDS-PAGE Western blotting.RESULTS: The number of viable cells decreased in a doseand time-dependent manner, and ladder-like patterns of DNA fragments were observed in SGC-7901 cells treated with antisense HSP70 oligomers at a concentration of 10 μmol/L for 48 h or 8 μmol/L for 72 h, which were consistent with inter-nucleosomal DNA fragmentation. Flow cytometric analysis showed a dose- and time-dependent increase in apoptotic rate by HSP70 antisense oligomers. This response was accompanied with a decrease in the percentage of cells in the G1 and S phases of the cell cycle, suggesting inhibition of cell proliferation. In addition, flow cytometry also showed that pretreatment of SGC-7901 cells with HSP70 antisense oligomers enhanced the subsequent apoptosis induced by heat shock treatment. Western blotting demonstrated that HSP70 antisense oligomers inhibited HSP70 expression, which preceded apoptosis, and HSP70 was undetectable at the concentration of 10 μmol/L for 48 h or 8 μmol/L for 72 h.CONCLUSION: Antisense HSP70 oligomers

  9. Antisense oligonucleotide targeting at the initiator of hTERT arrests growth of hepatoma cells

    Institute of Scientific and Technical Information of China (English)

    Su-Xia Liu; Wen-Sheng Sun; Ying-Lin Cao; Chun-Hong Ma; Li-Hui Han; Li-Ning Zhang; Zhen-Guang Wang; Fa-Liang Zhu

    2004-01-01

    AIM: To evaluate the inhibitory effect of antisense phosphorothioate oligonucleotide (asON) complementary to the initiator of human telomerase catalytic subunit (hTERT)on the growth of hepatoma cells.METHODS: The as-hTERT was synthesized by using a DNA synthesizer. HepG2.2.15 cells were treated with ashTERT at the concentration of 10 μmol/L. After 72 h, these cells were obtained for detecting growth inhibition,telomerase activity using the methods of MTT, TRAP-PCR-ELISA, respectively. BALB/c(nu/nu) mice were injected HepG2.2.15 cells and a human-nude mice model was obtained. There were three groups for anti-tumor activity study. Once tumors were established, these animals in the first group were administered as-hTERT and saline.Apoptosis of tumor cells was detected by FCM. In the 2nd group, the animals were injected HepG2.2.15 cells together with as-hTERT. In the third group, the animals were given as-hTERT 24 hours postinjection of HepG2.2.15 cells. The anti-HBV effects were assayed with ELISA ih vitro and in vivo.RESULTS: Growth inhibition was observed in cells treated with as-hTERT ih vitro. A significant different in the value of A570-A630 was found between cells treated with as-hTERT and control (P<0.01) by MTT method. The telomerase activity of tumor cells treated with as-hTERT was reduced,the value of A450 nm was 0.42 compared to control (1,49)with TRAP-PCR-ELISA. The peak of apoptosis in tumor cells given as-hTERT was 21. 12%, but not seen in saline-treated control. A prolonged period of carcinogenesis was observed in the second and third group animals. There was inhibitory effect on the expression of HBsAg and HBeAg ih vivo and in vitro.CONCLUSION: As-hTERT has an anti-tumor activity, which may be useful for gene therapy of tumors.

  10. Sterilization of sterlet Acipenser ruthenus by using knockdown agent, antisense morpholino oligonucleotide, against dead end gene.

    Science.gov (United States)

    Linhartová, Zuzana; Saito, Taiju; Kašpar, Vojtěch; Rodina, Marek; Prášková, Eva; Hagihara, Seishi; Pšenička, Martin

    2015-10-15

    Sturgeons (chondrostean, acipenseridae) are ancient fish species, widely known for their caviar. Nowadays, most of them are critically endangered. The sterlet (Acipenser ruthenus) is a common Eurasian sturgeon species with a small body size and the fastest reproductive cycle among sturgeons. Such species can be used as a host for surrogate production; application is of value for recovery of critically endangered and huge sturgeon species with an extremely long reproductive cycle. One prerequisite for production of the donor's gametes only is to have a sterile host. Commonly used sterilization techniques in fishes such as triploidization or hybridization do not guarantee sterility in sturgeon. Alternatively, sterilization can be achieved by using a temporary germ cell exclusion-specific gene by a knockdown agent, the antisense morpholino oligonucleotide (MO). The targeted gene for the MO is the dead end gene (dnd) which is a vertebrate-specific gene encoding a RNA-binding protein which is crucial for migration and survival of primordial germ cells (PGCs). For this purpose, a dnd homologue of Russian sturgeon (Agdnd), resulting in the same sequence in the start codon region with isolated fragments of sterlet dnd (Ardnd), was used. Reverse transcription polymerase chain reaction confirmed tissue-specific expression of Ardnd only in the gonads of both sexes. Dnd-MO for depletion of PGCs together with fluorescein isothiocyanate (FITC)-biotin-dextran for PGCs labeling was injected into the vegetal region of one- to four-cell-stage sterlet embryos. In the control groups, only FITC was injected to validate the injection method and labeling of PGCs. After optimization of MO concentration together with volume injection, 250-μM MO was applied for sterilization of sturgeon embryos. Primordial germ cells were detected under a fluorescent stereomicroscope in the genital ridge of the FITC-labeled control group only, whereas no PGCs were present in the body cavities of morphants

  11. Cooperative inhibitory effects of antisense oligonucleotide of cell adhesion molecules and cimetidine on cancer cell adhesion

    Institute of Scientific and Technical Information of China (English)

    Nan-Hong Tang; Yan-Ling Chen; Xiao-Qian Wang; Xiu-Jin Li; Feng-Zhi Yin; Xiao-Zhong Wang

    2004-01-01

    AIM: To explore the cooperative effects of antisense oligonucleotide (ASON) of cell adhesion molecules and cimetidine on the expression of E-selectin and ICAM-1 in endothelial cells and their adhesion to tumor cells.METHODS: After treatment of endothelial cells with ASON and/or cimetidine and induction with TNF-α, the protein and mRNA changes of E-selectin and ICAM-1 in endothelial cells were examined by flow cytometry and RT-PCR,respectively. The adhesion rates of endothelial cells to tumor cells were measured by cell adhesion experiment.RESULTS: In comparison with TNF-α inducing group, lipoASON and lipo-ASON/cimetidine could significantly decrease the protein and mRNA levels of E-selectin and ICAM-1 in endothelial cells, and lipo-ASON/cimetidine had most significant inhibitory effect on E-selectin expression (from 36.37±1.56% to 14.23±1.07%, P<0.001). Meanwhile,cimetidine alone could inhibit the expression of E-selectin (36.37±1.56% vs 27.2±1.31%, P<0.001), but not ICAM-1 (69.34±2.50% vs68.07±2.10%,P>O.05)and the two kinds of mRNA, either. Compared with TNF-αα inducing group, the rate of adhesion was markedly decreased in lipo-E-selectin ASON and lipo-E-selectin ASON/cimetidine treated groups(P<0.05),and Jipo-E-selectin ASON/cimetidine worked better than lipo-E-selectin ASON alone except for HepG2/ECV304 group(P<0.05). However, the decrease of adhesion was not significant in lipo-ICAM-1 ASON and lipo-ICAM-1 ASON/cimetidine treated groups except for HepG2/ECV304 group (P >0.05).CONCLUSION: These data demonstrate that ASON in combination with cimetidine in vitro can significantly reduce the adhesion between endothelial cells and hepatic or colorectal cancer cells, which is stronger than ASON or cimetidine alone. This study provides some useful proofs for gene therapy of antiadhesion.

  12. Antisense Oligonucleotide Targeting TGF-β1 Abrogates Tumorigenicity of Rhabdomyosarcoma in vivo

    Institute of Scientific and Technical Information of China (English)

    Shouli Wang; Huihua Yao; Lingling Guo; Liang Dong; Shigang Li; Haizhen Deng; Maomin Sun

    2008-01-01

    OBJECTIVE Over-expression of transforming growth factor β1 (TGF-β1) has been observed in many advanced cancers.The present study was aimed at developing potential antisense oligonucleotides (ASONs) to repress TGF-β1 expression in rhabdomyosarcoma (RMS) RD cells, and to examine their effect on tumorigenicity of RD cells in vivo.METHODS ASONs targeting the region surrounding the start codon of TGF-β1 were synthesized and transferred into cells in the form of complexes with Lipofectamine 2000. The TGF-β1 protein was determined by immunofluorescence and ELISA.The cell viability and cell cycle were examined by MTT and flow cytometry. The RD cells, with or without TGF-β1ASON, in 50 μl of serum-free EMDM medium were injected subcutaneously into the right flank of nude mice. The tumors were then measured and weighed.RESULTS The ASON sequence targeting the first start site at bases 841-855 of the human TGF-β1 gene had the greatest effect on attenuating the expression of TGF-β1 (P<0.05). The ASONs induced a decrease in OD values after 6 d (P<0.05). Analysis of the cell cycle revealed that the ASON induced a significant decrease in cells in the S phase and an increase in cells in the G1 phase (P<0.05). In the nude mice model, the mean tumor volume, after 2 weeks of treatment with Lipofectamine or ASON,decreased to 88.5% or 55% respectively, compared to the control tumor size, resulting in a significant difference (P<0.01).CONCLUSION The sequence of the ASON, which targeted the start condon at the bases 841-855 of the human TGF-β1 gene, was demonstrated to be a useful agent for studying the regulation of TGF-β1 over-expression in RD cells, and has important therapeutic potential for suppressing the tumorigenicity of human RMS in vivo.

  13. Scavenger Receptor-Mediated Delivery of Antisense Mini-Exon Phosphorothioate Oligonucleotide to Leishmania-Infected Macrophages: SELECTIVE AND EFFICIENT ELIMINATION OF THE PARASITE

    OpenAIRE

    Chaudhuri, Gautam

    1997-01-01

    Targeted delivery of a 17-mer antisense phosphorothioate oligodeoxyribonucleotide, complementary to the common 5′-end of every mRNA of the parasite cells, to the phagolysosomes of cultured murine macrophages infected with Leishmania mexicana amazonensis selectively and efficiently eliminated the parasite cells without causing any detectable harm to the host cells. The antisense mini-exon oligonucleotide (ASM) was encapsulated into liposomes coated with maleylated bovine serum albumin (MBSA), ...

  14. Peptide nucleic acid (PNA) antisense effects in Escherichia coli

    DEFF Research Database (Denmark)

    Good, L; Nielsen, P E

    1999-01-01

    Antisense peptide nucleic acid (PNA) can be used to control cell growth, gene expression and growth phenotypes in the bacteria Escherichia coli. PNAs targeted to the RNA components of the ribosome can inhibit translation and cell growth, and PNAs targeted to mRNA can limit gene expression with gene...... and sequence specificity. In an E. coli cell extract, efficient inhibition is observed when using PNA concentrations in the nanomolar range, whereas micromolar concentrations are required for inhibition in growing cells. A mutant strain of E. coli that is more permeable to antibiotics also is more susceptible...... to antisense PNAs than the wild type. This chapter details methods for testing the antisense activities of PNA in E. coli. As an example of the specific antisense inhibition possible, we show the effects of an anti-beta-galactosidase PNA in comparison to control PNAs. With improvements in cell uptake...

  15. Novel Cationic Carotenoid Lipids as Delivery Vectors of Antisense Oligonucleotides for Exon Skipping in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Vassilia Partali

    2012-01-01

    Full Text Available Duchenne Muscular Dystrophy (DMD is a common, inherited, incurable, fatal muscle wasting disease caused by deletions that disrupt the reading frame of the DMD gene such that no functional dystrophin protein is produced. Antisense oligonucleotide (AO-directed exon skipping restores the reading frame of the DMD gene, and truncated, yet functional dystrophin protein is expressed. The aim of this study was to assess the efficiency of two novel rigid, cationic carotenoid lipids, C30-20 and C20-20, in the delivery of a phosphorodiamidate morpholino (PMO AO, specifically designed for the targeted skipping of exon 45 of DMD mRNA in normal human skeletal muscle primary cells (hSkMCs. The cationic carotenoid lipid/PMO-AO lipoplexes yielded significant exon 45 skipping relative to a known commercial lipid, 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC.

  16. Formulation and drug-content assay of microencapsulated antisense oligonucleotide to NF-κB using ATR-FTIR

    International Nuclear Information System (INIS)

    Antisense oligonucleotide to NF-κB sequence: 5′-GGA AAC ACA TCC TCC ATG-3′, was microencapsulated in an albumin matrix by the method of spray dryingTM. Spectral analysis was performed on varying drug loading formulations of both drugs by mid-IR attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). An out of plane O–H bending vibration at 948 cm−1, unique to both the native and microencapsulated drugs was identified. The calculated peak areas corresponded to the drug loadings in the microsphere formulations. A standard curve could then be used to determine the drug content of an unknown microsphere formulation. Accuracy and precision were determined to be comparable to other analytical techniques such as HPLC. (paper)

  17. Down-regulation of Survivin by Antisense Oligonucleotides Increases Apoptosis, Inhibits Cytokinesis and Anchorage-Independent Growth

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2000-05-01

    Full Text Available Survivin, a member of the inhibitor of apoptosis protein (IAP family, is detected in most common human cancers but not in adjacent normal cells. Previous studies suggest that survivin associates with the mitotic spindle and directly inhibits caspase activity. To further investigate the function of survivin, we used a survivin antisense (AS oligonucleotide to downregulate survivin expression in normal and cancer cells. We found that inhibition of survivin expression increased apoptosis and polyploidy while decreasing colony formation in soft agar. Immunohistochemistry showed that cells without survivin can initiate the cleavage furrow and contractile ring, but cannot complete cytokinesis, thus resulting in multinucleated cells. These findings indicate that survivin plays important roles in a late stage of cytokinesis, as well as in apoptosis.

  18. In vitro and in vivo suppression of hepatocellular carcinoma growth by midkine-antisense oligonucleotide-loaded nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Li-Cheng Dai; Xing Yao; Xiang Wang; Shu-Qiong Niu; Lin-Fu Zhou; Fang-Fang Fu; Shui-Xin Yang; Jin-Liang Ping

    2009-01-01

    AIM: To synthesize antisense oligonucleotides (ASODNs) of midkine (MK), package the ASODNs with nanoparticles, and to inhibit hepatocellular carcinoma (HCC) growth using these nanoparticles.METHODS: HepG2 cell proliferation was analyzed in vitro using the 3-(4,5-dimethythiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)- 2Htetrazolium, inner salt assay. The in vivo activity of nanoparticles delivering the MK-ASODNs was analyzed by histopathological and immunohistochemical staining and quantitative real time polymerase chain reaction (PCR).RESULTS: The in vitro proliferation of HepG2 cells was significantly inhibited by the nanoparticles packaged with MK-ASODNs (NANO-ASODNs). Furthermore, the NANOASODNs significantly inhibited the growth of HCC in the mouse model.

  19. Formulation and drug-content assay of microencapsulated antisense oligonucleotide to NF-κB using ATR-FTIR

    Science.gov (United States)

    Siwale, Rodney; Meadows, Fred; Mody, Vicky V.; Shah, Samit

    2013-09-01

    Antisense oligonucleotide to NF-κB sequence: 5‧-GGA AAC ACA TCC TCC ATG-3‧, was microencapsulated in an albumin matrix by the method of spray dryingTM. Spectral analysis was performed on varying drug loading formulations of both drugs by mid-IR attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). An out of plane O-H bending vibration at 948 cm-1, unique to both the native and microencapsulated drugs was identified. The calculated peak areas corresponded to the drug loadings in the microsphere formulations. A standard curve could then be used to determine the drug content of an unknown microsphere formulation. Accuracy and precision were determined to be comparable to other analytical techniques such as HPLC.

  20. Mismatched single stranded antisense oligonucleotides can induce efficient dystrophin splice switching

    Directory of Open Access Journals (Sweden)

    Kole Ryszard

    2011-10-01

    Full Text Available Abstract Background Antisense oligomer induced exon skipping aims to reduce the severity of Duchenne muscular dystrophy by redirecting splicing during pre-RNA processing such that the causative mutation is by-passed and a shorter but partially functional Becker muscular dystrophy-like dystrophin isoform is produced. Normal exons are generally targeted to restore the dystrophin reading frame however, an appreciable subset of dystrophin mutations are intra-exonic and therefore have the potential to compromise oligomer efficiency, necessitating personalised oligomer design for some patients. Although antisense oligomers are easily personalised, it remains unclear whether all patient polymorphisms within antisense oligomer target sequences will require the costly process of producing and validating patient specific compounds. Methods Here we report preclinical testing of a panel of splice switching antisense oligomers, designed to excise exon 25 from the dystrophin transcript, in normal and dystrophic patient cells. These patient cells harbour a single base insertion in exon 25 that lies within the target sequence of an oligomer shown to be effective at removing exon 25. Results It was anticipated that such a mutation would compromise oligomer binding and efficiency. However, we show that, despite the mismatch an oligomer, designed and optimised to excise exon 25 from the normal dystrophin mRNA, removes the mutated exon 25 more efficiently than the mutation-specific oligomer. Conclusion This raises the possibility that mismatched AOs could still be therapeutically applicable in some cases, negating the necessity to produce patient-specific compounds.

  1. Suppression of intracranial glioma tumorigenesis with vascular endothelial growth factor antisense oligonucleotide in rats

    Institute of Scientific and Technical Information of China (English)

    李维方; 张光霁; 朱诚; 金由辛; 卢亦成

    2003-01-01

    Objective: To observe the inhibition of intracranial glioma tumorigenesis by vascular endothelial growth factor (VEGF) antisense oligodeoxynucleotide (ODN) in rats. Methods: Totally 20 μl Hank's liquid containing 1×106 C6 glioma cells was seeded into rat right caudate putamen in high-flow microinfusion with stereotactic technique. VEGF antisense ODN was simultaneously used with glioma cell. Each rat of the treated groupⅠ and the treated group Ⅱ was treated with 1 000 μmol/L VEGF antisense ODN. Each rat of the treated group Ⅲ and the treated group Ⅳ was treated with 2 000 μmol/L VEGF antisense ODN. The experimental periods of the treated group Ⅰ, the treated group Ⅲ and the control group Ⅰ were 2 weeks, those of the treated group Ⅱ, the treated group Ⅳ and the control group Ⅱ were 3 weeks. Before sacrifice, MRI was performed on each rat. Tumor magnitude and pathologic examination were detected after samples were dissected. Results: The survival state of all treated rats was better, and that of the control rats was in severe danger. The tumor volumes of the treated group Ⅰ and the treated group Ⅱ were remarkably lessened. Tumor tissue could not be found macroscopically in the brain samples of the treated group Ⅲ and the treated group Ⅳ, but tumor nest could be found with microscopy. Tumors of the treated groupⅠand the treated group Ⅱ had weak expressions of VEGF mRNA and VEGF, while normal brains and the samples of the treated group Ⅲ and the treated group Ⅳ had negative expressions, but tumors of the control groups had strong expressions. Conclusion: VEGF antisense ODN used early in situ can suppress angiogenesis and growth of rat intracranial glioma to retard tumorigenesis.

  2. Cellular uptake of antisense oligonucleotides after complexing or conjugation with cell-penetrating model peptides.

    Science.gov (United States)

    Oehlke, J; Birth, P; Klauschenz, E; Wiesner, B; Beyermann, M; Oksche, A; Bienert, M

    2002-08-01

    The uptake by mammalian cells of phosphorothioate oligonucleotides was compared with that of their respective complexes or conjugates with cationic, cell-penetrating model peptides of varying helix-forming propensity and amphipathicity. An HPLC-based protocol for the synthesis and purification of disulfide bridged conjugates in the 10-100 nmol range was developed. Confocal laser scanning microscopy (CLSM) in combination with gel-capillary electrophoresis and laser induced fluorescence detection (GCE-LIF) revealed cytoplasmic and nuclear accumulationin all cases. The uptake differences between naked oligonucleotides and their respective peptide complexes or conjugates were generally confined to one order of magnitude. No significant influence of the structural properties of the peptide components upon cellular uptake was found. Our results question the common belief that the increased biological activity of oligonucleotides after derivatization with membrane permeable peptides may be primarily due to improved membrane translocation.

  3. Expression of heparanase mRNA in anti-sense oligonucleotide-transfected human esophageal cancer EC9706 cells

    Institute of Scientific and Technical Information of China (English)

    Kui-Sheng Chen; Lan Zhang; Lin Tang; Yun-Han Zhang; Dong-Ling Gao; Liang Yan; Lei Zhang

    2005-01-01

    AIM: To investigate the effects of anti-sense oligonucleotides (ASODNs) on mRNA expression of heparanase in human esophageal cancer EC9706 cells.METHODS: One non-sense oligonucleotide (N-ODN) and five ASODNs against different heparanase mRNA sites were transfected into EC9706 cells, then the expression of heparanase mRNA in EC9706 cells was studied byin situ hybridization.RESULTS: The expression of heparanase mRNA could be inhibited by ASODNs.There was no significant difference among five ASODNs (P>0.05), but there was a significant difference between ASODNs and N-ODN or non-transfected group (ASODN1: 2.25±0.25, ASODN2: 2.21±0.23, ASODN3:2.23±0.23, ASODN4:2.25±0.24 vs N-ODN: 3.47±2.80 or non- transfected group: 3.51±2.93 respectively, P<0.05).CONCLUSION: The expression of heparanase mRNA in EC9706 cells can be inhibited by ASODNs in vivo, and heparanase ASODNs can inhibit metastasis of esophageal squamous cell carcinoma or other tumors by inhibiting the expression of heparanase.

  4. Effective exon skipping and dystrophin restoration by 2'-o-methoxyethyl antisense oligonucleotide in dystrophin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Lu Yang

    Full Text Available Antisense oligonucleotide (AO-mediated exon-skipping therapy is one of the most promising therapeutic strategies for Duchenne Muscular Dystrophy (DMD and several AO chemistries have been rigorously investigated. In this report, we focused on the effect of 2'-O-methoxyethyl oligonucleotides (MOE on exon skipping in cultured mdx myoblasts and mice. Efficient dose-dependent skipping of targeted exon 23 was achieved in myoblasts with MOE AOs of different lengths and backbone chemistries. Furthermore, we established that 25-mer MOE phosphorothioate (PS AOs provided the greatest exon-skipping efficacy. When compared with 2'O methyl phosphorothioate (2'OmePS AOs, 25-mer MOE (PS AOs also showed higher exon-skipping activity in vitro and in mdx mice after intramuscular injections. Characterization of uptake in vitro corroborated with exon-skipping results, suggesting that increased uptake of 25-mer MOE PS AOs might partly contribute to the difference in exon-skipping activity observed in vitro and in mdx mice. Our findings demonstrate the substantial potential for MOE PS AOs as an alternative option for the treatment of DMD.

  5. Development of Multiexon Skipping Antisense Oligonucleotide Therapy for Duchenne Muscular Dystrophy

    OpenAIRE

    Yoshitsugu Aoki; Toshifumi Yokota; Wood, Matthew J. A.

    2013-01-01

    Duchenne muscular dystrophy (DMD) is an incurable, X-linked progressive muscle degenerative disorder that results from the absence of dystrophin protein and leads to premature death in affected individuals due to respiratory and/or cardiac failure typically by age of 30. Very recently the exciting prospect of an effective oligonucleotide therapy has emerged which restores dystrophin protein expression to affected tissues in DMD patients with highly promising data from a series of clinical tri...

  6. Antisense oligonucleotide targeting p53 increased apoptosis of MCF-7 cells induced by ionizing radiation

    Institute of Scientific and Technical Information of China (English)

    Li-cheng DAI; Xiang WANG; Xing YAO; Li-shan MIN; Fu-chu QIAN; Jian-fang HE

    2006-01-01

    Aim: To investigate the effect of antisense compounds (AS) targeting human p53 mRNA on radiosensitivity of MCF-7 cells. Methods: Western blotting and RT-PCR were used to analyze the protein content and mRNA level. Additionally, cell proliferation, cell cycle and cell apoptosis were all analyzed in irradiated or sham-irradiated cells. Results: Among the five antisense compounds (AS), AS3 was identified to efficiently inhibit p53 mRNA level and protein content. Interestingly, ASS transfer has little effect on cell proliferation in DU-145 cells (mutant p53) after ionizing radiation (IR). In contrast, a marked increase of cell apoptosis and growth inhibition were observed in MCF-7 cells (wild-type p53), suggesting that AS3 can increase radiosensitivity of MCF-7 cells. Additionally, it was also observed that the transfection of AS3 decreased the fraction of G1 phase cells, and increased the proportion of S phase cells compared to untreated cells 24 h after IR in MCF-7 cell lines. Conclusion: AS3 transfection increases MCF-7 cell apoptosis induced by 5 Gy-radiation, and this mechanism may be closely associated with abrogation of G1 phase arrest.

  7. Antitumor activity of antisense oligonucleotide p45Skp2 in soft palate carcinoma cell squamous in vitro

    Directory of Open Access Journals (Sweden)

    Supriatno Supriatno

    2013-03-01

    Full Text Available Background: Human soft palate cancers are characterized by a high degree of local invasion and metastasis to the regional lymph nodes. Treatment options for this cancer are limited. However, a new strategy for refractory cancer, gene therapy is watched with keen interest. p45Skp2 gene as a tumor promoter gene is one of target of the oral cancer therapy. To inhibit the activity of p45Skp2 gene is carried-out the genetic engineering via antisense technique. Purpose: To examine the antitumor activity of p45Skp2 antisense (p45Skp2 AS gene therapy in human soft palate [Hamakawa-Inoue (HI] cancer cells. Methods: Pure laboratory experimental study with post test only control group design was conducted as a research design. To investigate the apoptosis induction of p45Skp2 AStransfected cell was evaluated by colorimetric caspase-3 assay and Flow cytometry. Furthermore, to detect the suppression of in vitro HI cell invasion and cell growth of p45Skp2 AS-treatment cell was examined by Boyden chamber kit and MTT assay, respectively. Results: The cell number of p45Skp2 AS-treated HI cell was significant decreased when compared with that of p45Skp2 sense (p45Skp2 S cells (p<0.05. p45Skp2 AS-treated cell induced apoptosis characterized by an increase in the early and late apoptosis, and activation of caspase-3 (p<0.05. Therefore, suppression of HI cell invasion and cell growth were markedly increased by p45Skp2 AS treatment (p<0.05. Conclusion: Antisense oligonucleotide p45Skp2 has a high antitumor activity in human soft palate cancer cell, targeting this molecule could represent a promising new therapeutics approach for this type of cancer.Latar belakang: Kanker palatum lunak mempunyai karakteristik invasi dan metastasis ke limfonodi regional yang tinggi. Pilihan perawatan kanker tersebut masih sangat terbatas. Walaupun demikian, strategi baru untuk penanganan kanker yaitu terapi gen menjadi pilihan utama. Gen p45Skp2 sebagai gen pemacu tumor merupakan salah

  8. Inhibition of PCNA Antisense Oligonucleotides Mediated by Liposome on mRNA Expression and Proliferation of h-RPE Cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianbin; XIANG Nan; XU Lili; ZENG Shuiqing

    2006-01-01

    The proliferating cell nuclear antigen (PCNA) gene expression was blocked and retinal pigment epithelium (RPE) proliferation was inhibited by using antisense oligonucleotides (AS-ODN)mediated by liposome, to find a new genetic therapy of proliferative vitreoretinopathy (PVR). RPE cells cultured in vitro were transfected with synthetic fluorescence labled AS-ODN mediated by liposome-Lipofectamine, and the intracellular distribution and persistence time of AS-ODN were dynamically observed. AS-ODN (0.07, 0.28 and 1.12 μ mol/L and sense oligonucleotides (S-ODN with the same concentrations as AS-ODN) mediated by liposome were delivered to the RPE cells cultured in vitro, and CPM values were measured by 3H-TdR incorporation assay and analyzed statistically by variance by comparison with blank control group.Expression of PCNA mRNA in RPE cells was detected by in situ hybridization after the treatment of different concentrations of PCNA AS-ODN and S-ODN, and the average optic density (AOD) was measured by image analysis system and was subjected to q-test and correlation analysis with CPM.Our results showed that AS-ODN mediated by liposome could quickly aggregate in cellular plasma and nuclei in 30 min and 6 h, and stayed for as long as 6 days. AS-ODN (0.28 and 1.12 μ mol/L) markedly suppressed proliferation of RPE cells in a dose-dependent manner with the difference being statistically significant (P<0.05 and P<0.01,repectively) as compared with blank control group. AOD was well correlated with CPM (r=0.975). It is concluded that liposome could increase transfection efficiency of AS-ODN in RPE cells, and AS-ODN could sequence-specifically suppress PCNA mRNA expression and proliferation of human RPE cells.

  9. Reliable Assessment and Quantification of the Fluorescence-Labeled Antisense Oligonucleotides In Vivo

    Directory of Open Access Journals (Sweden)

    Maria Chiara Munisso

    2014-01-01

    Full Text Available The availability of fluorescent dyes and the advances in the optical systems for in vivo imaging have stimulated an increasing interest in developing new methodologies to study and quantify the biodistribution of labeled agents. However, despite these great achievements, we are facing significant challenges in determining if the observed fluorescence does correspond to the quantity of the dye in the tissues. In fact, although the far-red and near-infrared lights can propagate through several centimetres of tissue, they diffuse within a few millimetres as consequence of the elastic scattering of photons. In addition, when dye-labeled oligonucleotides form stable complex with cationic carriers, a large change in the fluorescence intensity of the dye is observed. Therefore, the measured fluorescence intensity is altered by the tissue heterogeneity and by the fluctuation of dye intensity. Hence, in this study a quantification strategy for fluorescence-labeled oligonucleotides was developed to solve these disadvantageous effects. Our results proved that upon efficient homogenization and dilution with chaotropic agents, such as guanidinium thiocyanate, it is possible to achieve a complete fluorescence intensity recovery. Furthermore, we demonstrated that this method has the advantage of good sensitivity and reproducibility, as well as easy handling of the tissue samples.

  10. A Polyethylenimine-Containing and Transferrin-Conjugated Lipid Nanoparticle System for Antisense Oligonucleotide Delivery to AML

    Directory of Open Access Journals (Sweden)

    Yiming Yuan

    2016-01-01

    Full Text Available Limited success of antisense oligonucleotides (ASO in clinical anticancer therapy calls for more effective delivery carriers. The goal of this study was to develop a nanoparticle system for delivery of ASO G3139, which targets mRNA of antiapoptotic protein Bcl-2, to acute myeloid leukemia (AML cells. The synthesized nanoparticle Tf-LPN-G3139 contained a small molecular weight polyethylenimine and two cationic lipids as condensing agents, with transferrin on its surface for selective binding and enhanced cellular uptake. The optimized nitrogen to phosphate (N/P ratio was 4 to achieve small particle size and high G3139 entrapment efficiency. The Tf-LPN-G3139 exhibited excellent colloidal stability during storage for at least 12 weeks and remained intact for 4 hours in nuclease-containing serum. The cellular uptake results showed extensive internalization of fluorescence-labelled G3139 in MV4-11 cells through Tf-LPN. Following transfection, Tf-LPN-G3139 at 1 µM ASO level induced 54% Bcl-2 downregulation and >20-fold apoptosis compared to no treatment. When evaluated in mice bearing human xenograft AML tumors, Tf-LPN-G3139 suppressed tumor growth by ~60% at the end of treatment period, accompanied by remarkable pharmacological effect of Bcl-2 inhibition in tumor. In conclusion, Tf-LPN-G3139 is a promising nanoparticle system for ASO G3139 delivery to AML and warrants further investigations.

  11. Presymptomatic Treatment with Acetylcholinesterase Antisense Oligonucleotides Prolongs Survival in ALS (G93A-SOD1 Mice

    Directory of Open Access Journals (Sweden)

    Gotkine Marc

    2013-01-01

    Full Text Available Objective. Previous research suggests that acetylcholinesterase (AChE may be involved in ALS pathogenesis. AChE enzyme inhibitors can upregulate AChE transcription which in certain contexts can have deleterious (noncatalytic effects, making them theoretically harmful in ALS, whilst AChE antisense-oligonucleotides (mEN101, which downregulate AChE may be beneficial. Our aim was to investigate whether downregulation of AChE using mEN101 is beneficial in an ALS mouse model. Methods. ALS (G93A-SOD1 mice received saline, mEN101, inverse-EN101, or neostigmine. Treatments were administered from 5 weeks. Disease-onset and survival were recorded. Additional mice were sacrificed for pathological analysis at 15 weeks of age. In a follow-up experiment treatment was started at the symptomatic stage at a higher dose. Results. mEN101 given at the presymptomatic (but not symptomatic stage prolonged survival and attenuated motor-neuron loss in ALS mice. In contrast, neostigmine exacerbated the clinical parameters. Conclusions. These results suggest that AChE may be involved in ALS pathogenesis. The accelerated disease course with neostigmine suggests that any beneficial effects of mEN101 occur through a non-catalytic rather than cholinergic mechanism.

  12. In Vitro and In Vivo Enhancement of Antitumoral Activity of Liposomal Antisense Oligonucleotides by Cineole as a Chemical Penetration Enhancer

    Directory of Open Access Journals (Sweden)

    Hamid Reza Moghimi

    2015-01-01

    Full Text Available Cellular uptake and cytoplasmic release of liposomal antisense oligonucleotides (AsODNs, which can act as rate-limiting steps, are still remained to be completely optimized. Here, the possibility of enhancing such processes at cellular and animal levels by cineole, as a penetration enhancer, was investigated. A cationic nanoliposome containing an AsODN against PKC-α and a cineole-containing nanoliposome were prepared and characterized. The effect of nanoliposomal cineole on sequence-specific cytotoxicity of nanoliposomal AsODN against A549, was studied in vitro (MTT, flow cytometry, fluorescence microscopy, and real time PCR and in vivo (xenograft lung tumor in nude mice using different concentrations and treatment times. Results showed specific cytotoxicity of nanoliposomal AsODN was increased significantly from 11% to 25% when A549 cells were exposed to 10 µg/mL cineole for 1 or 4 hours. This inhibitory effect was further increased to about 40% when the concentration was increased to 40 µg/mL for 1 hour. In animal studies, cineole significantly decreased the tumor volume (about 75% and increased its doubling time from 13 days to 31 days. A linear relationship exists between cineole concentration and its enhancement effects. Finally it was concluded that cineole, and possibly other membrane fluidizers, can improve nanoliposomal gene therapy at cellular and animal levels.

  13. Histopathological Defects in Intestine in Severe Spinal Muscular Atrophy Mice Are Improved by Systemic Antisense Oligonucleotide Treatment.

    Directory of Open Access Journals (Sweden)

    Palittiya Sintusek

    Full Text Available Gastrointestinal (GI defects, including gastroesophageal reflux, constipation and delayed gastric emptying, are common in patients with spinal muscular atrophy (SMA. Similar GI dysmotility has been identified in mouse models with survival of motor neuron (SMN protein deficiency. We previously described vascular defects in skeletal muscle and spinal cord of SMA mice and we hypothesized that similar defects could be involved in the GI pathology observed in these mice. We therefore investigated the gross anatomical structure, enteric vasculature and neurons in the small intestine in a severe mouse model of SMA. We also assessed the therapeutic response of GI histopathology to systemic administration of morpholino antisense oligonucleotide (AON designed to increase SMN protein expression. Significant anatomical and histopathological abnormalities, with striking reduction of vascular density, overabundance of enteric neurons and increased macrophage infiltration, were detected in the small intestine in SMA mice. After systemic AON treatment in neonatal mice, all the abnormalities observed were significantly restored to near-normal levels. We conclude that the observed GI histopathological phenotypes and functional defects observed in these SMA mice are strongly linked to SMN deficiency which can be rescued by systemic administration of AON. This study on the histopathological changes in the gastrointestinal system in severe SMA mice provides further indication of the complex role that SMN plays in multiple tissues and suggests that at least in SMA mice restoration of SMN production in peripheral tissues is essential for optimal outcome.

  14. Apoptosis of drug-resistant human ovarian carcinoma cell line COC1/DDP induced by survivin antisense oligonucleotides

    Institute of Scientific and Technical Information of China (English)

    ZHENG Fei; RUAN Fei; XIE Xian-kuan; LIU Shao-yang

    2006-01-01

    @@ Currently, surgery-oriented treatment plays a major role in the treatment of ovarian cancer patients. But 5-year survival rate of patients is still around 30%. One of the main reasons for the Iow survival rate is the drug resistance of tumor cells against chemotherapy.1,2 The function of antiapoptosis in the course of initiation and progress of cancer has a close relationship with drug resistance of tumor cells. Survivin is a new discovered anti-apoptosis gene, its expression levels correlating with more aggressive disease and poor clinical outcome in many of these tumors. It has been reported that survivin is expressed during fetal development and in cancer tissues.3 Furthermore,survivin overexpression, by disrupting the balance between cell proliferation/differentiation and apoptosis, may relate with the resistance to a variety of apoptotic stimuli, including chemotherapy.4,5 We designed antisense oligonucleotides of survivin to treat the drug-resistant human ovarian carcinoma cell line COC1/DDP, and studied its effects on inducing COC1/DDP apoptosis. The purpose of this study was to find a novel approach to improve the sensitivity of ovarian carcinoma chemotherapy.

  15. Effect of Dexamethasone and Aquaporin-1 Antisense Oligonucleotides on the Aquaporin-1 Expression in Cultured Human Trabecular Meshwork Cells

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The changes in the expression of aquaporin-1 (AQP1) mRNA and protein in cultured human trabecular meshwork (HTM) cells treated with dexamethasone and transfected with antisense oligonucleotides (AS-ODN) were studied, and the implication of AQP1 regulation in corticosteroid-glaucoma and the possibility of AS-ODN inhibiting the AQP1 expression were evaluated.The cultured HTM cells in vitro were treated with different concentrations of dexamethasone and transfected with oligonucleotides for 5 days respectively. Then, total RNA and protein of HTM cells were extracted. The changes of AQP1 mRNA and protein were demonstrated qualitatively and quantitatively by RT-PCR and Western blot. Band intensities were detected by imaging analysis.There was a parallel relationship between the results of RT-PCR and those of Western blot. The expression levels of AQP1 mRNA and protein in dexamethasone-treated groups were increased initially and decreased later as dexamethasone concentration was stepped up. In the 0.04 μg/mL and 0.4 μg/mL groups, the levels of AQP1 were higher than in control group (0μg/mL). In the 4μg/mL and 40μg/mL groups, the AQP1 expression levels were lower than in control group. AS-ODN could down-regulate the expression of AQP1 mRNA and protein in a dose-dependent manner. At 5 μg/mL, down-regulation efficiency reached the maximum. There was no statistically significant difference in the expression of AQP1 mRNA and protein between all sense oligonucleotides groups and control group. It was suggested that dexamethasone may induce the changes of the AQP1 expression in HTM cells to be involved in the occurrence of corticosteroid-glaucoma. AS-ODN can down-regulate the AQP1 expression in HTM cells to some extent.

  16. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts.

    Science.gov (United States)

    Burel, Sebastien A; Hart, Christopher E; Cauntay, Patrick; Hsiao, Jill; Machemer, Todd; Katz, Melanie; Watt, Andy; Bui, Huynh-Hoa; Younis, Husam; Sabripour, Mahyar; Freier, Susan M; Hung, Gene; Dan, Amy; Prakash, T P; Seth, Punit P; Swayze, Eric E; Bennett, C Frank; Crooke, Stanley T; Henry, Scott P

    2016-03-18

    High affinity antisense oligonucleotides (ASOs) containing bicylic modifications (BNA) such as locked nucleic acid (LNA) designed to induce target RNA cleavage have been shown to have enhanced potency along with a higher propensity to cause hepatotoxicity. In order to understand the mechanism of this hepatotoxicity, transcriptional profiles were collected from the livers of mice treated with a panel of highly efficacious hepatotoxic or non-hepatotoxic LNA ASOs. We observed highly selective transcript knockdown in mice treated with non-hepatotoxic LNA ASOs, while the levels of many unintended transcripts were reduced in mice treated with hepatotoxic LNA ASOs. This transcriptional signature was concurrent with on-target RNA reduction and preceded transaminitis. Remarkably, the mRNA transcripts commonly reduced by toxic LNA ASOs were generally not strongly associated with any particular biological process, cellular component or functional group. However, they tended to have much longer pre-mRNA transcripts. We also demonstrate that the off-target RNA knockdown and hepatotoxicity is attenuated by RNase H1 knockdown, and that this effect can be generalized to high affinity modifications beyond LNA. This suggests that for a certain set of ASOs containing high affinity modifications such as LNA, hepatotoxicity can occur as a result of unintended off-target RNase H1 dependent RNA degradation. PMID:26553810

  17. Effect of 2'-O-methyl/thiophosphonoacetate-modified antisense oligonucleotides on huntingtin expression in patient-derived cells.

    Science.gov (United States)

    Matsui, Masayuki; Threlfall, Richard N; Caruthers, Marvin H; Corey, David R

    2014-12-15

    Optimizing oligonucleotides as therapeutics will require exploring how chemistry can be used to enhance their effects inside cells. To achieve this goal it will be necessary to fully explore chemical space around the native DNA/RNA framework to define the potential of diverse chemical modifications. In this report we examine the potential of thiophosphonoacetate (thioPACE)-modified 2'-O-methyl oligoribonucleotides as inhibitors of human huntingtin (HTT) expression. Inhibition occurred, but was less than with analogous locked nucleic acid (LNA)-substituted oligomers lacking the thioPACE modification. These data suggest that thioPACE oligonucleotides have the potential to control gene expression inside cells. However, advantages relative to other modifications were not demonstrated. Additional modifications are likely to be necessary to fully explore any potential advantages of thioPACE substitutions. PMID:26865404

  18. Modulation of p53 expression using antisense oligonucleotides complementary to the 5'-terminal region of p53 mRNA in vitro and in the living cells.

    Directory of Open Access Journals (Sweden)

    Agnieszka Gorska

    Full Text Available The p53 protein is a key player in cell response to stress events and cancer prevention. However, up-regulation of p53 that occurs during radiotherapy of some tumours results in radio-resistance of targeted cells. Recently, antisense oligonucleotides have been used to reduce the p53 level in tumour cells which facilitates their radiation-induced apoptosis. Here we describe the rational design of antisense oligomers directed against the 5'-terminal region of p53 mRNA aimed to inhibit the synthesis of p53 protein and its ΔNp53 isoform. A comprehensive analysis of the sites accessible to oligomer hybridization in this mRNA region was performed. Subsequently, translation efficiency from the initiation codons for both proteins in the presence of selected oligomers was determined in rabbit reticulocyte lysate and in MCF-7 cells. The antisense oligomers with 2'-OMe and LNA modifications were used to study the mechanism of their impact on translation. It turned out that the remaining RNase H activity of the lysate contributed to modulation of protein synthesis efficiency which was observed in the presence of antisense oligomers. A possibility of changing the ratio of the newly synthetized p53 and ΔNp53 in a controlled manner was revealed which is potentially very attractive considering the relationship between the functioning of these two proteins. Selected antisense oligonucleotides which were designed based on accessibility mapping of the 5'-terminal region of p53 mRNA were able to significantly reduce the level of p53 protein in MCF-7 cells. One of these oligomers might be used in the future as a support treatment in anticancer therapy.

  19. Nucleic acid sequence detection using multiplexed oligonucleotide PCR

    Science.gov (United States)

    Nolan, John P.; White, P. Scott

    2006-12-26

    Methods for rapidly detecting single or multiple sequence alleles in a sample nucleic acid are described. Provided are all of the oligonucleotide pairs capable of annealing specifically to a target allele and discriminating among possible sequences thereof, and ligating to each other to form an oligonucleotide complex when a particular sequence feature is present (or, alternatively, absent) in the sample nucleic acid. The design of each oligonucleotide pair permits the subsequent high-level PCR amplification of a specific amplicon when the oligonucleotide complex is formed, but not when the oligonucleotide complex is not formed. The presence or absence of the specific amplicon is used to detect the allele. Detection of the specific amplicon may be achieved using a variety of methods well known in the art, including without limitation, oligonucleotide capture onto DNA chips or microarrays, oligonucleotide capture onto beads or microspheres, electrophoresis, and mass spectrometry. Various labels and address-capture tags may be employed in the amplicon detection step of multiplexed assays, as further described herein.

  20. STAT1 Antisense Oligonucleotides Attenuate the Proinflammatory Cytokine Release of Alveolar Macrophages in Bleomycin-Induced Fibrosis

    Institute of Scientific and Technical Information of China (English)

    Xianming Fan; Zengli Wang

    2005-01-01

    To investigate the effect of signal transducers and activators of transcription 1 (STAT1) antisense oligonucleotides (ASON) on concentrations of TNF-α, IL-8, NO secreted by alveolar macrophages (AMs) in bleomycin-induced rat pulmonary fibrosis, five adult female Wistar rats were intratracheally instilled with bleomycin. After 7 days, the rats were killed by right ventricle of heart exsanguinations under ketamine anaesthesia and bronchoalveolar lavage (BAL) was performed to obtain AMs. AMs were divided into four groups, treated with STAT1 ASON, STAT1 sense oligonucleotides (SON), dexamethasone (DEX) and medium alone (control), respectively. AMs and media were collected after culture for 36 h. The mRNA and protein expressions of STAT1 and ICAM-1 in AMs were detected by RT-PCR and ELISA, respectively. The concentrations of TNF-α, IL-8, NO in cultured medium were detected.The STAT1 mRNA expression by AMs in the STAT1 ASON group was lower than those of AMs in the STAT1 SON group, the DEX group and the control group (p < 0.05). Moreover, the STAT1 mRNA expression by AMs in the DEX group was also lower than those of AMs in the STAT1 SON group and the control group (p < 0.05), but the STAT1 mRNA expression by AMs in the STAT1 SON group was not different from that of the control group (p >0.05). The protein expressions of STAT1 and ICAM-1 and the mRNA expression of ICAM-1 showed similar changes to the STAT1 mRNA expression by AMs. The concentrations of TNF-α, IL-8, NO in cultured medium from STAT1 ASON group were lower than those from STAT1 SON, DEX and the control groups (p < 0.05). Moreover,the concentrations of TNF-α, IL-8, NO in cultured medium from DEX group were also lower than those from the control and STAT1 SON group (p < 0.05), but no difference between STAT1 SON group and the control (p > 0.05).The results suggest that STAT1 ASON could inhibit the secretion of TNF-α, IL-8, NO in AMs, and STAT1 could become a target of treating pulmonary fibrosis.

  1. Targeting eukaryotic translation in mesothelioma cells with an eIF4E-specific antisense oligonucleotide.

    Directory of Open Access Journals (Sweden)

    Blake A Jacobson

    Full Text Available BACKGROUND: Aberrant cap-dependent translation is implicated in tumorigenesis in multiple tumor types including mesothelioma. In this study, disabling the eIF4F complex by targeting eIF4E with eIF4E-specific antisense oligonucleotide (4EASO is assessed as a therapy for mesothelioma. METHODS: Mesothelioma cells were transfected with 4EASO, designed to target eIF4E mRNA, or mismatch-ASO control. Cell survival was measured in mesothelioma treated with 4EASO alone or combined with either gemcitabine or pemetrexed. Levels of eIF4E, ODC, Bcl-2 and β-actin were assessed following treatment. Binding to a synthetic cap-analogue was used to study the strength of eIF4F complex activation following treatment. RESULTS: eIF4E level and the formation of eIF4F cap-complex decreased in response to 4EASO, but not mismatch control ASO, resulting in cleavage of PARP indicating apoptosis. 4EASO treatment resulted in dose dependent decrease in eIF4E levels, which corresponded to cytotoxicity of mesothelioma cells. 4EASO resulted in decreased levels of eIF4E in non-malignant LP9 cells, but this did not correspond to increased cytotoxicity. Proteins thought to be regulated by cap-dependent translation, Bcl-2 and ODC, were decreased upon treatment with 4EASO. Combination therapy of 4EASO with pemetrexed or gemcitabine further reduced cell number. CONCLUSION: 4EASO is a novel drug that causes apoptosis and selectively reduces eIF4E levels, eIF4F complex formation, and proliferation of mesothelioma cells. eIF4E knockdown results in decreased expression of anti-apoptotic and pro-growth proteins and enhances chemosensitivity.

  2. Curcumin synergistically augments bcr/abl phosphorethieate antisense oligonucleotides to inhibit growth of chronic myelogenous leukemia cells

    Institute of Scientific and Technical Information of China (English)

    Kun-zhong ZHANG; Jian-hua XU; Xiu-wang HUANG; Li-xian WU; Yu SU; Yuan-zhong CHEN

    2007-01-01

    Aim: To investigate the growth inhibition effect of the combination of bcr/abl phosphorothioate antisense oligonucleotides (PS-ASODN) and curcumin (cur), and the possible mechanisms of cur on the chronic myelogenous leukemia cell line K562. Methods: The K562 cell line was used as a P210bcr/abl-positive cell model in vitro and was exposed to different concentrations of PS-ASODN (0-20 μmol/L), cur (0-20 μmol/L), or a combination of both. Growth inhibition and apoptosis of K562 cells were assessed by MTT assay and AO/EB fluorescent staining, respec-tively. The expression levels of P210bct/abl, NF-κB and heat shock protein 90 (Hsp90) were assessed by Western blot. Results: Exposure to cur (5-20 μmol/L) and PS-ASODN (5-20 μmol/L) resulted in a synergistic inhibitory effect on cell growth.Growth inhibition was associated with the inhibition of the proliferation and in-duction of apoptosis. Western blot analysis showed that the drugs synergisti-cally downregulated the level of P210bcr/abl and NF-κB. Cur downregulated Hsp90,whereas no synergism was observed when cur was combined with PS-ASODN.Conclusion: PS-ASODN and cur exhibited a synergistic inhibitory effect on the cell growth of K562. The synergistic growth inhibition was mediated through different mechanisms that involved the inhibition of P210bcr/abl.

  3. Dynamics of co-transcriptional pre-mRNA folding influences the induction of dystrophin exon skipping by antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Keng Boon Wee

    Full Text Available Antisense oligonucleotides (AONs mediated exon skipping offers potential therapy for Duchenne muscular dystrophy. However, the identification of effective AON target sites remains unsatisfactory for lack of a precise method to predict their binding accessibility. This study demonstrates the importance of co-transcriptional pre-mRNA folding in determining the accessibility of AON target sites for AON induction of selective exon skipping in DMD. Because transcription and splicing occur in tandem, AONs must bind to their target sites before splicing factors. Furthermore, co-transcriptional pre-mRNA folding forms transient secondary structures, which redistributes accessible binding sites. In our analysis, to approximate transcription elongation, a "window of analysis" that included the entire targeted exon was shifted one nucleotide at a time along the pre-mRNA. Possible co-transcriptional secondary structures were predicted using the sequence in each step of transcriptional analysis. A nucleotide was considered "engaged" if it formed a complementary base pairing in all predicted secondary structures of a particular step. Correlation of frequency and localisation of engaged nucleotides in AON target sites accounted for the performance (efficacy and efficiency of 94% of 176 previously reported AONs. Four novel insights are inferred: (1 the lowest frequencies of engaged nucleotides are associated with the most efficient AONs; (2 engaged nucleotides at 3' or 5' ends of the target site attenuate AON performance more than at other sites; (3 the performance of longer AONs is less attenuated by engaged nucleotides at 3' or 5' ends of the target site compared to shorter AONs; (4 engaged nucleotides at 3' end of a short target site attenuates AON efficiency more than at 5' end.

  4. Effects of Repeated Complement Activation Associated with Chronic Treatment of Cynomolgus Monkeys with 2'-O-Methoxyethyl Modified Antisense Oligonucleotide.

    Science.gov (United States)

    Shen, Lijiang; Engelhardt, Jeffrey A; Hung, Gene; Yee, Jenna; Kikkawa, Rie; Matson, John; Tayefeh, Bryan; Machemer, Todd; Giclas, Patricia C; Henry, Scott P

    2016-08-01

    The effects of repeated complement activation in cynomolgus monkeys after chronic antisense oligonucleotide (ASO) treatment were evaluated by using ISIS 104838, a representative 2'-O-methoxyethyl (2'-MOE) modified ASO. The treatment was up to 9 months with a total weekly dose of 30 mg/kg, given either as daily [4.3 mg/kg/day, subcutaneous (s.c.) injection] or once weekly [30 mg/kg, either as s.c. injection or 30-min intravenous (i.v.) infusion]. Acute elevations of complement split products (Bb and C3a) and a transient decrease in C3 occurred after the first dose and were drug plasma concentration dependent. However, with repeated complement activation after chronic ASO treatment, there were progressive increases in basal (predose) levels of Bb and C3a, and a sustained C3 reduction in all treated groups. There was also a progressive increase in C3d-bound circulating immune complex (CIC) that was considered secondary to the C3 depletion. Evidence of vascular inflammation was observed, mostly in the liver, kidney, and heart, and correlated with severe C3 depletion and increases in plasma IgG and IgM. Vascular inflammation was accompanied by increased C3 and IgM immunereactivity in the affected vasculatures and endothelial activation markers in serum. In summary, repeated complement activations in monkeys lead to a sustained decrease in circulating C3 over time. The concomitantly increased inflammatory signals and decreased CIC clearance due to impairment of complement function may lead to vascular inflammation after chronic ASO treatment in monkeys. However, based on the known sensitivity of monkeys to ASO-induced complement activation, these findings have limited relevance to humans. PMID:27140858

  5. XRN2 is required for the degradation of target RNAs by RNase H1-dependent antisense oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Shin-Ichiro; Yamamoto, Tsuyoshi; Obika, Satoshi, E-mail: obika@phs.osaka-u.ac.jp

    2015-08-21

    Antisense oligonucleotides (ASOs) can suppress the expression of a target gene by cleaving pre-mRNA and/or mature mRNA via RNase H1. Following the initial endonucleolytic cleavage by RNase H1, the target RNAs are degraded by a mechanism that is poorly understood. To better understand this degradation pathway, we depleted the expression of two major 5′ to 3′ exoribonucleases (XRNs), named XRN1 and XRN2, and analyzed the levels of 3′ fragments of the target RNAs in vitro. We found that the 3′ fragments of target pre-mRNA generated by ASO were almost completely degraded from their 5′ ends by nuclear XRN2 after RNase H1-mediated cleavage, whereas the 3′ fragments of mature mRNA were partially degraded by XRN2. In contrast to ASO, small interference RNA (siRNA) could reduce the expression level of only mature mRNA, and the 3′ fragment was degraded by cytoplasmic XRN1. Our findings indicate that the RNAs targeted by RNase H1-dependent ASO are rapidly degraded in the nucleus, contrary to the cytoplasmic degradation pathway mediated by siRNA. - Highlights: • We compared the degradation mechanism of the transcript targeted by ASO and siRNA. • We focused on two 5′ to 3′ exoribonucleases, cytoplasmic XRN1, and nuclear XRN2. • The 3′ fragment of target pre-mRNA generated by ASO was degraded by XRN2. • The 3′ fragment of target mRNA generated by ASO was partially degraded by XRN2. • XRN1 depletion promoted accumulation of the 3′ fragment of mRNA generated by siRNA.

  6. Summarization on the synthesis and radionuclide-labeling of peptide nucleic acid for an oligonucleotide analogue

    International Nuclear Information System (INIS)

    Peptide nucleic acid (PNA), which is one kind of antisense nucleic acid compounds and an oligonucleotide analogue that binds strongly to DNA and RNA in a sequence specific manner, has its unique advantages in the field of molecular diagnostics and treatment of diseases. Now, people gradually attach more importance to PNA. To optimize the application of PNA in genetic re- search and therapy, a great number of backbone modifications on the newly- type structures of PNA were synthesized to improve its physicochemical proper- ties, such as hybridization speciality, solubility in biofluid, or cell permeability. The modified PNA labeled with radionuclides, which can obtain the aim at specific target and minimal non-target trauma, has important role in research and application of tumorous genitherapy. Here a review on the basic synthesis idea and several primary synthetic methods of PNA analogs was given, and also correlative studies and expectation on the compounds belonging to PNA series labeled with radionuclides were included. (authors)

  7. Comparative analysis of antisense oligonucleotide sequences for targeted skipping of Exon 51 during dystrophin Pre-mRNA splicing in human muscle

    OpenAIRE

    Arechavala-Gomeza, V.; Graham, I R; Popplewell, L. J.; Adams, A.M.; Aartsma-Rus, A.; Kinali, M.; Morgan, J E; van Deutekom, J C; Wilton, S D; Dickson, G.; Muntoni, F.

    2007-01-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in the absence of functional protein. In the majority of cases these are out-of-frame deletions that disrupt the reading frame. Several attempts have been made to restore the dystrophin mRNA reading frame by modulation of pre-mRNA splicing with antisense oligonucleotides (AOs), demonstrating success in cultured cells, muscle explants, and animal models. We are preparing for a phase I/IIa clinical trial...

  8. In vitro inhibition of promyelocytic leukemia/retinoic acid receptor-alpha (PML/RARalpha) expression and leukemogenic activity by DNA/LNA chimeric antisense oligos.

    Science.gov (United States)

    Caprodossi, Sara; Galluzzi, Luca; Biagetti, Simona; Della Chiara, Giulia; Pelicci, Pier Giuseppe; Magnani, Mauro; Fanelli, Mirco

    2005-01-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by the chromosomal translocation t(15:17) that leads to the expression of promyelocytic leukemia/retinoic acid receptor-alpha (PML/ RARalpha) oncofusion protein. The block of differentiation at the promyelocytic stage of the blasts and their increased survival induced by PML/RARalpha are the principal biological features of the disease. Therapies based on pharmacological doses of retinoic acid (RA, 10(-6) M) are able to restore APL cell differentiation in most cases, but not to achieve complete hematological remission because retinoic acid resistance occurs in many patients. In order to elaborate alternative therapeutic approaches, we focused our attention on the use of antisense oligonucleotides as gene-specific drug directed to PML/RARalpha mRNA target. We used antisense molecules containing multiple locked nucleic acid (LNA) modifications. The LNAs are nucleotide analogues that are able to form duplexes with complementary DNA or RNA sequences with highly increased thermal stability and are resistant to 3'-exonuclease degradation in vitro. The DNA/LNA chimeric molecules were designed on the fusion sequence of PML and RARalpha genes to specifically target the oncofusion protein. Cell-free and in vitro experiments using U937-PR9-inducible cell line showed that DNA/LNA oligonucleotides were able to interfere with PML/RARalpha expression more efficiently than the corresponding unmodified DNA oligo. Moreover, the treatment of U937-PR9 cells with these chimeric antisense molecules was able to abrogate the block of differentiation induced by PML/RARalpha oncoprotein. These data suggest a possible application of oligonucleotides containing LNA in an antisense therapeutic strategy for APL.

  9. Effect of antisense oligonucleotide targeting bFGF on apoptosis of hepatoma cells%多层螺旋CT同层动态扫描结合MPR技术诊断肝外胆管癌的研究

    Institute of Scientific and Technical Information of China (English)

    Jielin Qi; Ning Wu; Li Li; Bing Bu; Dengfeng Zhou; Xiqin Zhang

    2009-01-01

    Objective:To investigate the cell cycle changes of hepatoma cells and the rote of antisense oligonucleotide targeting bFGF.Methods:Inhibition of bFGF protein expression was investigated by conical microscopy analysis and Western blot in the best condition of transfecting antisense oligonucleotide targeting bFGF.Cell cycle and apoptosis were detected with flow cytometry analysis.Results:Treatmenl with antisense oligonucleotide of bFGF not only reduced the expression of bFGF by conical microscopy and Western blot analysises,but also increased the apoptosis of HepG2 cells(P<0.01).Conclusion:bFGF may take part in apoptosis regulation of hepatoma cells and be used as a target of hepatocel-lular carcinoma therapy.

  10. Lack of Interactions Between an Antisense Oligonucleotide with 2'-O-(2-Methoxyethyl) Modifications and Major Drug Transporters.

    Science.gov (United States)

    Yu, Rosie Z; Warren, Mark S; Watanabe, Tanya; Nichols, Brandon; Jahic, Mirza; Huang, Jane; Burkey, Jennifer; Geary, Richard S; Henry, Scott P; Wang, Yanfeng

    2016-04-01

    ISIS 141923 is a model compound of 2'-O-(2-methoxyethyl) (2'-MOE) modified antisense oligonucleotides (ASOs). The purpose of this study is to determine whether ISIS 141923 is a substrate or an inhibitor against a panel of nine major uptake or efflux drug transporters, namely breast cancer resistance protein (BCRP), P-glycoprotein (P-gp), organic anion transporter (OAT)1, OAT3, organic cation transporter (OCT)1, OCT2, organic anion transporting polypeptide 1B (OATP1B)1, OATP1B3, and bile salt export pump (BSEP), in vitro. The uptake test system for transporters in the solute carrier (SLC) family (OAT1, OAT3, OCT1, OCT2, OATP1B1, and OATP1B3) was studied in Madin-Darby canine kidney (MDCK)-II cells transfected to express the transporters of interest. BCRP was studied using carcinoma colon-2 (Caco-2) cells with endogenously expressed BCRP. P-gp transporter was studied in MDCK-multi-drug resistance 1 (MDR1) cells, while BSEP was studied using Spodoptera frugiperda 9 (Sf9) membrane vesicles containing human BSEP. The ISIS 141293 concentrations evaluated were 10 and 100 μM for the substrate and inhibition study, respectively. Cellular uptake of ISIS 141923 was analyzed using a high performance liquid chromatography-mass spectrometry method, while concentrations of known substrates (used as positive controls) of each transporters evaluated were determined by radiometric detection. At 10 μM ISIS 141923, there was no significant transporter-mediated uptake of ISIS 141923 (P > 0.05) in the SLC family, and the efflux ratios were not above 2.0 for either BCRP or P-gp. Therefore, no transporter-mediated uptake of ISIS 141923 was observed by any of the nine transporters studied. At 100 μM ISIS 141923, the % inhibition was in the range of -16.0% to 19.0% for the nine transporters evaluated. Therefore, ISIS 141923 is not considered as an inhibitor of the nine transporters studied. Overall, the results from this study suggest that it is unlikely that ISIS 141923 or similar 2

  11. Cationic polyelectrolyte-mediated delivery of antisense morpholino oligonucleotides for exon-skipping in vitro and in mdx mice

    Directory of Open Access Journals (Sweden)

    Wang M

    2015-09-01

    Full Text Available Mingxing Wang, Bo Wu, Jason D Tucker, Peijuan Lu, Qilong Lu Department of Neurology, McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Charlotte, NC, USA Abstract: In this study, we investigated a series of cationic polyelectrolytes (PEs with different size and composition for their potential to improve delivery of an antisense phosphorodiamidate morpholino oligomer (PMO both in vitro and in vivo. The results showed that the poly(diallyldimethylammonium chloride (PDDAC polymer series, especially PE-3 and PE-4, improves the delivery efficiency of PMO, comparable with Endoporter-mediated PMO delivery in vitro. The enhanced PMO delivery and targeting to dystrophin exon 23 was further observed in mdx mice, up to fourfold with the PE-4, compared with PMO alone. The cytotoxicity of the PEs was lower than that of Endoporter and polyethylenimine 25,000 Da in vitro, and was not clearly detected in muscle in vivo under the tested concentrations. Together, these results demonstrate that optimization of PE molecular size, composition, and distribution of cationic charge are key factors to achieve enhanced PMO exon-skipping efficiency. The increased efficiency and lower toxicity show this PDDAC series to be capable gene/antisense oligonucleotide delivery-enhancing agents for treating muscular dystrophy and other diseases. Keywords: cationic polyelectrolytes, antisense delivery, exon-skipping, PMO, muscular dystrophy

  12. PLGA-PEG-PLGA microspheres as a delivery vehicle for antisense oligonucleotides to CTGF: Implications on post-surgical peritoneal adhesion prevention

    Science.gov (United States)

    Azeke, John Imuetinyan-Jesu, Jr.

    Abdominal adhesions are the aberrant result of peritoneal wound healing commonly associated with surgery and inflammation. A subject of a large number of studies since the first half of the last century, peritoneal adhesion prevention has, for the most part, evaded the scientific community and continues to cost Americans an estimated $2-4 billion annually. It is known that transforming growth factor-beta (TGF-beta) plays a key role in the wound healing cascade; however, suppression of this multifunctional growth factor's activity may have more harmful consequences than can be tolerated. As a result, much attention has fallen on connective tissue growth factor (CTGF), a downstream mediator of TGF-beta's fibrotic action. It has been demonstrated in several in vitro models, that the suppression of CTGF hinders fibroblast proliferation, a necessary condition for fibrosis. Furthermore, antisense oligonucleotides (antisense oligos, AO) to CTGF have been shown to knock down CTGF mRNA levels by specifically hindering the translation of CTGF protein. Antisense technologies have met with a great deal of excitement as a viable means of preventing diseases such as adhesions by hindering protein translation at the mRNA level. However, the great challenge associated with the use of these drugs lies in the short circulation time when administered "naked". Viral delivery systems, although excellent platforms in metabolic studies, are not ideal for diagnostic use because of the inherent danger associated with viral vectors. Microparticles made of biodegradable polymers have therefore presented themselves as a viable means of delivering these drugs to target cells over extended periods. Herein, we present two in vivo studies confirming the up-regulation of TGF-beta protein and CTGF mRNA following injury to the uterine tissues of female rats. We were able to selectively knockdown post-operative CTGF protein levels following surgery, however, our observations led us to conclude that

  13. In situ entry of oligonucleotides into brain cells can occur through a nucleic acid channel

    NARCIS (Netherlands)

    Shi, Fuxin; Gounko, Natasha V.; Wang, Xiaoqin; Ronken, Eric; Hoekstra, Dick

    2007-01-01

    Brain tissue has become a challenging therapeutic target, in part because of failure of conventional treatments of brain tumors and a gradually increasing number of neurodegenerative diseases. Because antisense oligonucleotides are readily internalized by neuronal cells in culture, these compounds c

  14. Combination of telomerase antisense oligonucleotides simultaneously targeting hTR and hTERT produces synergism of inhibition of telomerase activity and growth in human colon cancer cell line

    OpenAIRE

    FU, XIAO-HUA; Zhang, Jian-Song; Zhang, Na; Zhang, Yang-de

    2005-01-01

    AIM: To investigate synergism of inhibition of telomerase activity and proliferation of human colon cancer cells by combination of telomerase antisense oligonucleotides (ASODNs) simultaneously targeting human telomerase RNA (hTR) and human telomerase reverse transcriptase (hTERT) in vitro.

  15. Beneficial metabolic effects of CB1R anti-sense oligonucleotide treatment in diet-induced obese AKR/J mice.

    Directory of Open Access Journals (Sweden)

    Yuting Tang

    Full Text Available An increasing amount of evidence supports pleiotropic metabolic roles of the cannibinoid-1 receptor (CB1R in peripheral tissues such as adipose, liver, skeletal muscle and pancreas. To further understand the metabolic consequences of specific blockade of CB1R function in peripheral tissues, we performed a 10-week-study with an anti-sense oligonucleotide directed against the CB1R in diet-induced obese (DIO AKR/J mice. DIO AKR/J mice were treated with CB1R ASO Isis-414930 (6.25, 12.5 and 25 mg/kg/week or control ASO Isis-141923 (25 mg/kg/week via intraperitoneal injection for 10 weeks. At the end of the treatment, CB1R mRNA from the 25 mg/kg/week CB1R ASO group in the epididymal fat and kidney was decreased by 81% and 63%, respectively. Body weight gain was decreased in a dose-dependent fashion, significantly different in the 25 mg/kg/week CB1R ASO group (46.1±1.0 g vs veh, 51.2±0.9 g, p<0.05. Body fat mass was reduced in parallel with attenuated body weight gain. CB1R ASO treatment led to decreased fed glucose level (at week 8, 25 mg/kg/week group, 145±4 mg/dL vs veh, 195±10 mg/dL, p<0.05. Moreover, CB1R ASO treatment dose-dependently improved glucose excursion during an oral glucose tolerance test, whereas control ASO exerted no effect. Liver steatosis was also decreased upon CB1R ASO treatment. At the end of the study, plasma insulin and leptin levels were significantly reduced by 25 mg/kg/week CB1R ASO treatment. SREBP1 mRNA expression was decreased in both epididymal fat and liver. G6PC and fatty acid translocase/CD36 mRNA levels were also reduced in the liver. In summary, CB1R ASO treatment in DIO AKR/J mice led to improved insulin sensitivity and glucose homeostasis. The beneficial effects of CB1R ASO treatment strongly support the notion that selective inhibition of the peripheral CB1R, without blockade of central CB1R, may serve as an effective approach for treating type II diabetes, obesity and the metabolic syndrome.

  16. Conjugation of mono and di-GalNAc sugars enhances the potency of antisense oligonucleotides via ASGR mediated delivery to hepatocytes.

    Science.gov (United States)

    Kinberger, Garth A; Prakash, Thazha P; Yu, Jinghua; Vasquez, Guillermo; Low, Audrey; Chappell, Alfred; Schmidt, Karsten; Murray, Heather M; Gaus, Hans; Swayze, Eric E; Seth, Punit P

    2016-08-01

    Antisense oligonucleotides (ASOs) conjugated to trivalent GalNAc ligands show 10-fold enhanced potency for suppressing gene targets expressed in hepatocytes. Trivalent GalNAc is a high affinity ligand for the asialoglycoprotein receptor (ASGR)-a C-type lectin expressed almost exclusively on hepatocytes in the liver. In this communication, we show that conjugation of two and even one GalNAc sugar to single stranded chemically modified ASOs can enhance potency 5-10 fold in mice. Evaluation of the mono- and di-GalNAc ASO conjugates in an ASGR binding assay suggested that chemical features of the ASO enhance binding to the receptor and provide a rationale for the enhanced potency.

  17. Effects of connective tissue growth factor antisense oligonucleotides on the proliferation and collagen synthesis of the cultured human keloid fibroblasts in vitro

    Institute of Scientific and Technical Information of China (English)

    刘剑毅; 李世荣; 纪淑兴

    2004-01-01

    Objective: To explore the effects of connective tissue growth factor (CTGF) on the pathogenesis of human keloid. Methods: CTGF antisense oligonucleotides (ASODN) conjugated with isothiocyananate fluorescence was encapsulated by liposome, and then added into the human keloid fibroblasts (HKFs) culture media. The intracellular distribution of CTGF ASODN was observed by fluorescence microscopy in the fixed HKFs. The proliferation of HKFs was measured by MTT test. The collagen synthesis of HKFs was measured by 3H-proline incorporation method. Results: Compared with control group, the CTGF ASODN can inhibit the proliferation and collagen synthesis of the HKFs (P < 0.01 ). Conclusion: CTGF ASODN has anti-fibrotic effects on keloid in vitro, and CTGF play an important role in promoting the fibrosis of keloid.

  18. Antisense Therapy in Neurology

    OpenAIRE

    Lee, Joshua J.A.; Toshifumi Yokota

    2013-01-01

    Antisense therapy is an approach to fighting diseases using short DNA-like molecules called antisense oligonucleotides. Recently, antisense therapy has emerged as an exciting and promising strategy for the treatment of various neurodegenerative and neuromuscular disorders. Previous and ongoing pre-clinical and clinical trials have provided encouraging early results. Spinal muscular atrophy (SMA), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), Duchenne muscular dystrophy (DMD)...

  19. Cationic polyelectrolyte-mediated delivery of antisense morpholino oligonucleotides for exon-skipping in vitro and in mdx mice

    OpenAIRE

    Wang, Mingxing; Wu, Bo; Tucker, Jason D; Lu, Peijuan; Lu, Qilong

    2015-01-01

    In this study, we investigated a series of cationic polyelectrolytes (PEs) with different size and composition for their potential to improve delivery of an antisense phosphorodiamidate morpholino oligomer (PMO) both in vitro and in vivo. The results showed that the poly(diallyldimethylammonium chloride) (PDDAC) polymer series, especially PE-3 and PE-4, improves the delivery efficiency of PMO, comparable with Endoporter-mediated PMO delivery in vitro. The enhanced PMO delivery and targeting t...

  20. Improved cellular uptake of antisense Peptide nucleic acids by conjugation to a cell-penetrating Peptide and a lipid domain

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    Unaided cellular uptake of RNA interference agents such as antisense oligonucleotides and siRNA is extremely poor, and in vivo bioavailability is also limited. Thus, effective delivery strategies for such potential drugs are in high demand. Recently, a novel approach using a class of short cationic...

  1. Inefficient cationic lipid-mediated siRNA and antisense oligonucleotide transfer to airway epithelial cells in vivo

    Directory of Open Access Journals (Sweden)

    Hu Jim

    2006-02-01

    Full Text Available Abstract Background The cationic lipid Genzyme lipid (GL 67 is the current "gold-standard" for in vivo lung gene transfer. Here, we assessed, if GL67 mediated uptake of siRNAs and asODNs into airway epithelium in vivo. Methods Anti-lacZ and ENaC (epithelial sodium channel siRNA and asODN were complexed to GL67 and administered to the mouse airway epithelium in vivo Transfection efficiency and efficacy were assessed using real-time RT-PCR as well as through protein expression and functional studies. In parallel in vitro experiments were carried out to select the most efficient oligonucleotides. Results In vitro, GL67 efficiently complexed asODNs and siRNAs, and both were stable in exhaled breath condensate. Importantly, during in vitro selection of functional siRNA and asODN we noted that asODNs accumulated rapidly in the nuclei of transfected cells, whereas siRNAs remained in the cytoplasm, a pattern consistent with their presumed site of action. Following in vivo lung transfection siRNAs were only visible in alveolar macrophages, whereas asODN also transfected alveolar epithelial cells, but no significant uptake into conducting airway epithelial cells was seen. SiRNAs and asODNs targeted to β-galactosidase reduced βgal mRNA levels in the airway epithelium of K18-lacZ mice by 30% and 60%, respectively. However, this was insufficient to reduce protein expression. In an attempt to increase transfection efficiency of the airway epithelium, we increased contact time of siRNA and asODN using the in vivo mouse nose model. Although highly variable and inefficient, transfection of airway epithelium with asODN, but not siRNA, was now seen. As asODNs more effectively transfected nasal airway epithelial cells, we assessed the effect of asODN against ENaC, a potential therapeutic target in cystic fibrosis; no decrease in ENaC mRNA levels or function was detected. Conclusion This study suggests that although siRNAs and asODNs can be developed to inhibit

  2. Antisense mediated exon skipping therapy for duchenne muscular dystrophy (DMD).

    Science.gov (United States)

    Brolin, Camilla; Shiraishi, Takehiko

    2011-01-01

    Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutations in the dystrophin gene (DMD) that result in the absence of essential muscle protein dystrophin. Among many different approaches for DMD treatment, exon skipping, mediated by antisense oligonucleotides, is one of the most promising methods for restoration of dystrophin expression. This approach has been tested extensively targeting different exons in numerous models both in vitro and in vivo. During the past 10 years, there has been a considerable progress by using DMD animal models involving three types of antisense oligonucleotides (2'-O-methyl phosphorothioate (2OME-PS), phosphorodiamidate morpholino oligomer (PMO)) and peptide nucleic acid (PNA). PMID:21686247

  3. A Phase 1 Dose-Escalation, Pharmacokinetic, and Pharmacodynamic Evaluation of eIF-4E Antisense Oligonucleotide LY2275796 in Patients with Advanced Cancer

    Science.gov (United States)

    Hong, David S.; Kurzrock, Razelle; Oh, Yun; Wheler, Jennifer; Naing, Aung; Brail, Les; Callies, Sophie; André, Valérie; Kadam, Sunil K; Nasir, Aejaz; Holzer, Timothy R.; Meric-Bernstam, Funda; Fishman, Mayer; Simon, George

    2016-01-01

    Purpose The antisense oligonucleotide, LY2275796, blocks expression of eIF-4E, an mRNA translation regulator upregulated in tumors. This Phase I study sought an appropriate LY2275796 dose in patients with advanced tumors. Experimental Design A 3-day loading dose, then weekly maintenance doses, were given to 1–3 patient cohorts, beginning with 100 mg and escalating. Plasma samples were collected to determine LY2275796 concentrations; tumor biopsies, to quantify eIF-4E mRNA/protein. Results Thirty patients with Stage 4 disease received ≥1 LY2275796 dose. A dose-limiting toxicity was observed at 1200 mg, with 1000 mg the maximum-tolerated dose. Across all dose levels, most patients (87%) had only grade 1–2 toxicities. LY2275796 pharmacokinetics supported the dosing regimen. Comparison of pre- and post-dose biopsies showed eIF-4E decreased in most patients. Fifteen patients had progressive disease, and seven patients achieved stable disease (minimum of 6 weeks) as best response, with two patients on therapy >3 months (one with melanoma, one with cystadenocarcinoma of the head/neck). Conclusions LY2275796 was well tolerated up to 1000 mg. Since tumor eIF-4E expression was decreased, but no tumor response observed, LY2275796 should be studied combined with other treatment modalities. PMID:21831956

  4. Inhibition of tumor growth and metastasis with antisense oligonucleotides(Cantide) targeting hTERT in an in situ human hepatocellular carcinoma model

    Institute of Scientific and Technical Information of China (English)

    Ru-xian LIN; Chao-wei TUO; Qiu-jun L(u); Wei ZHANG; Sheng-qi WANG

    2005-01-01

    Aim: To evaluate the in vivo antitumor effects of Cantide and the combined effect with 5-fluorouracil. Methods: An in situ human hepatocellular carcinoma model was established in mice livers orthotopically. Drugs were administered intravenously and tumor sizes were monitored with calipers. Plasma alpha-fetoprotein (AFP) were detected by radiation immunoassay. Morphology of tumors was evaluated by hematoxylin-eosin (H&E) staining of histological sections. Human telomerase reverse transcriptase (hTERT) protein levels were detected by Western blotting. Results: Cantide significantly inhibit in situ human hepatocellular compared to the saline group in a dose-dependent manner, which included injectthe tumor in liver. Cantide was also found to prevent tumor recurrence in the liver and metastasis in the lung, showing a dose-dependent response. When Cantide was administered by iv combined with 5-fluorouracil, it resulted in a significant reduction in tumor growth compared to either agent alone treatment group. After the treatment with Cantide alone or combined with 5-fluorouracil, plasma AFP concentration decreased in a dose-dependent manner. Conclusion: These results demonstrated that Cantide was an effective antitumor antisense oligonucleotide in vivo and has the potential to be developed into a clinical anti-cancer drug.

  5. Depressive Effect of the Antisense Oligonucleotides of C-myc and PCNA on the Proliferation of VSMC

    Institute of Scientific and Technical Information of China (English)

    Qingxian Li; Yanfu Wang; Yuhua Liao; Huiling Zhang; Yanying Jiang

    2007-01-01

    To study the depressive effect of the antisense oligonuceotides (ASODN) of c-myc and proliferating cell nuclear antigen (PCNA) on the proliferation of VSMC.Methods Taking the VSMC obtained from rat aorta thoracalis cultured 4 ~ 8 generation as research object.The objects were divided into three groups to carry out control study:control group,PCNA ASODN group and c-myc ASODN group.The ASODNs' working concentration all were 1:50.The depressive effect of ASODN on VSMC proliferation was investigated by cell counting,MTT and 3H-TdR incorporation assay;PCNA and c-myc expression were detected by immunohistochemical method after transferring PCNA successfully;the corresponding gene was inhibited obviously;compared with control group ( P < 0.05 ).Conclusions PCNA and c-myc might play a considerable role in the VSMC proliferation process.The corresponding gene could be depressed successfully after transferring PCNA and c-myc ASODN into VSMC,and then the proliferation of VSMC was slowed down.This study presented a beneficial proposal and theoretical fundament for atherosclerotic treatment.

  6. Oligonucleotide therapeutics: chemistry, delivery and clinical progress.

    Science.gov (United States)

    Sharma, Vivek K; Watts, Jonathan K

    2015-01-01

    Oligonucleotide therapeutics have the potential to become a third pillar of drug development after small molecules and protein therapeutics. However, the three approved oligonucleotide drugs over the past 17 years have not proven to be highly successful in a commercial sense. These trailblazer drugs have nonetheless laid the foundations for entire classes of drug candidates to follow. This review will examine further advances in chemistry that are earlier in the pipeline of oligonucleotide drug candidates. Finally, we consider the possible effect of delivery systems that may provide extra footholds to improve the potency and specificity of oligonucleotide drugs. Our overview focuses on strategies to imbue antisense oligonucleotides with more drug-like properties and their applicability to other nucleic acid therapeutics.

  7. Phosphorothioate anti-sense oligonucleotides: the kinetics and mechanism of the generation of the sulfurising agent from phenylacetyl disulfide (PADS).

    Science.gov (United States)

    Scotson, James L; Andrews, Benjamin I; Laws, Andrew P; Page, Michael I

    2016-09-21

    The synthesis of phosphorothioate oligonucleotides is often accomplished in the pharmaceutical industry by the sulfurisation of the nucleotide-phosphite using phenylacetyl disulfide (PADS) which has an optimal combination of properties. This is best achieved by an initial 'ageing' of PADS for 48 h in acetonitrile with 3-picoline to generate polysulfides. The initial base-catalysed degradation of PADS occurs by an E1cB-type elimination to generate a ketene and acyldisulfide anion. Proton abstraction to reversibly generate a carbanion is demonstrated by H/D exchange, the rate of which is greatly increased by electron-withdrawing substituents in the aromatic ring of PADS. The ketene can be trapped intramolecularly by an o-allyl group. The disulfide anion generated subsequently attacks unreacted PADS on sulfur to give polysulfides, the active sulfurising agent. The rate of degradation of PADS is decreased by less basic substituted pyridines and is only first order in PADS indicating that the rate-limiting step is formation of the disulfide anion from the carbanion. PMID:27531007

  8. Cell number and transfection volume dependent peptide nucleic acid antisense activity by cationic delivery methods

    DEFF Research Database (Denmark)

    Llovera Nadal, Laia; Berthold, Peter; Nielsen, Peter E;

    2012-01-01

    Efficient intracellular delivery is essential for high activity of nucleic acids based therapeutics, including antisense agents. Several strategies have been developed and practically all rely on auxiliary transfection reagents such as cationic lipids, cationic polymers and cell penetrating...... peptides as complexing agents and carriers of the nucleic acids. However, uptake mechanisms remain rather poorly understood, and protocols always require optimization of transfection parameters. Considering that cationic transfection complexes bind to and thus may up-concentrate on the cell surface, we...... have now quantitatively compared the cellular activity (in the pLuc705 HeLa cell splice correction system) of PNA antisense oligomers using lipoplex delivery of cholesterol- and bisphosphonate-PNA conjugates, polyplex delivery via a PNA-polyethyleneimine conjugate and CPP delivery via a PNA...

  9. Carboranyl oligonucleotides. 3. Biochemical properties of oligonucleotides containing 5-(o-carboranyl-l-yl)-2{prime}-deoxyuridine

    Energy Technology Data Exchange (ETDEWEB)

    Lesnikowski, Z.J.; Fulcrand, G.; Lloyd, R.M. Jr. [Veterans Affairs Medical Center and Georgia Research Center for AIDS and HIV Infections, Decatur, GA (United States)]|[Emory Univ. School of Medicine, Atlanta, GA (United States)

    1996-05-07

    Boronated oligonucleotides are potential candidates for boron neutron capture therapy, antisense technology, and as tools in molecular biology. The biological properties of dodecathymidylic acids containing one or more 5-(o-carboran-l-yl)-2{prime}-deoxyuridine residues at different locations within the oligonucleotide chain were studied. 5-(o-carboran-l-yl)-2{prime}-deoxyuridine containing oligonucleotides manifested marked increased lipophilicity and resistance to 3{prime}- or 5{prime}-phosphodiesterases compared to the corresponding unmodified oligomer. They were substrates for T4 polynucleotide kinase and primers for Escherichia coli polymerase I and human immunodeficiency virus type 1 reverse transcriptase but not for human DNA polymerase {alpha} and {beta}. They also formed heteroduplexes that were substrates for E. coli RNase H, an essential property for antisense technology. These studies indicate that the carboranyl-containing oligonucleotides have desirable properties that need to be exploited further in the design of novel biopharmaceuticals. 33 refs., 2 figs., 1 tab.

  10. Antisense-Mediated Depletion of Tomato Chloroplast Omega-3 Fatty Acid Desaturase Enhances Thermal Tolerance

    Institute of Scientific and Technical Information of China (English)

    Xun-Yan Liu; Jing-Hua Yang; Bin Li; Xiu-Mei Yang; Qing-Wei Meng

    2006-01-01

    A chloroplast-localized tomato (Lycopersicon esculentum Mill.) ω-3 fatty acid desaturase gene (LeFAD7) was isolated and characterized with regard to its sequence, response to various temperatures, and function in antisense transgenic tomato plants. The deduced amino acid sequence had four histidine-rich regions, of which three regions were highly conserved throughout the whole ω-3 fatty acid desaturase gene family.Southern blotting analysis showed that LeFAD7was encoded by a single copy gene and had two homologous genes in the tomato genome. Northern blot showed that LeFAD7was expressed in all organs and was especially abundant in leaf tissue. Meanwhile, expression of LeFAD7was induced by chilling stress (4 ℃),but was inhibited by high temperature (45 ℃), in leaves. Transgenic tomato plants were produced by integration of the antisense LeFAD7 DNA under the control of a CaMV35S promoter into the genome. Antisense transgenic plants with lower 18: 3 content could maintain a higher maximal photochemical efficiency (Fv/Fm)and O2 evolution rate than wild-type plants. These results suggested that silence of the LeFAD7 gene alleviated high-temperature stress. There was also a correlation between the low content of 18: 3 resulting from silence of the LeFAD7 gene and tolerance to high-temperature stress.

  11. Cellular delivery and antisense effects of peptide nucleic acid conjugated to polyethyleneimine via disulfide linkers

    DEFF Research Database (Denmark)

    Berthold, Peter R; Shiraishi, Takehiko; Nielsen, Peter E

    2010-01-01

    Peptide nucleic acid (PNA) is potentially an attractive antisense and antigene agent for which more efficient cellular delivery systems are still warranted. The cationic polymer polyethylenimine (PEI) is commonly used for cellular transfection of DNA and RNA complexes, but is not readily applicable...... for PNA due to the (inherent) charge neutrality of PNA. However, PEI could function as an efficient scaffold for PNA via chemical conjugation. Accordingly, we modified PEI with the amine-reactive heterobifunctional linker agent N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP) (with and without a PEG...... moiety) and further reacted this with a cysteine PNA. The level of modification was determined spectrophotometrically with high accuracy, and the PNA transfection efficiency of the conjugates was evaluated in an antisense luciferase splice-correction assay using HeLa pLuc705 cells. We find that PEI...

  12. Reversing multidrug resistance in Caco-2 by silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL using liposomal antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Yu-Li Lo

    Full Text Available Multidrug resistance (MDR is a major impediment to chemotherapy. In the present study, we designed antisense oligonucleotides (ASOs against MDR1, MDR-associated protein (MRP1, MRP2, and/or BCL-2/BCL-xL to reverse MDR transporters and induce apoptosis, respectively. The cationic liposomes (100 nm composed of N-[1-(2,3-dioleyloxypropyl]-n,n,n-trimethylammonium chloride and dioleoyl phosphotidylethanolamine core surrounded by a polyethylene glycol (PEG shell were prepared to carry ASOs and/or epirubicin, an antineoplastic agent. We aimed to simultaneously suppress efflux pumps, provoke apoptosis, and enhance the chemosensitivity of human colon adenocarcinoma Caco-2 cells to epirubicin. We evaluated encapsulation efficiency, particle size, cytotoxicity, intracellular accumulation, mRNA levels, cell cycle distribution, and caspase activity of these formulations. We found that PEGylated liposomal ASOs significantly reduced Caco-2 cell viability and thus intensified epirubicin-mediated apoptosis. These formulations also decreased the MDR1 promoter activity levels and enhanced the intracellular retention of epirubicin in Caco-2 cells. Epirubicin and ASOs in PEGylated liposomes remarkably decreased mRNA expression levels of human MDR1, MRP1, MRP2, and BCL-2. The combined treatments all significantly increased the mRNA expressions of p53 and BAX, and activity levels of caspase-3, -8, and -9. The formulation of epirubicin and ASOs targeting both pump resistance of MDR1, MRP1, and MRP2 and nonpump resistance of BCL-2/BCL-xL demonstrated more superior effect to all the other formulations used in this study. Our results provide a novel insight into the mechanisms by which PEGylated liposomal ASOs against both resistance types act as activators to epirubicin-induced apoptosis through suppressing MDR1, MRP1, and MRP2, as well as triggering intrinsic mitochondrial and extrinsic death receptor pathways. The complicated regulation of MDR highlights the necessity

  13. Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2012-01-01

    splicing correction of the mutated luciferase gene in the HeLa pLuc705 cell line, reporting cellular (nuclear) uptake of the antisense PNA via luciferase activity measurement. Carrier CPP-PNA constructs were studied in terms of construct modification (with octaarginine and/or decanoic acid) and carrier PNA...... that the carrier might facilitate endosomal escape. Furthermore, 50% downregulation of luciferase expression at 60 nM siRNA was obtained using this carrier CPP-PNA delivery strategy (with CQ co-treatment) for a single stranded antisense RNA targeting normal luciferase mRNA. These results indicated that CPP...

  14. Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain

    DEFF Research Database (Denmark)

    Koppelhus, Uffe; Shiraishi, Takehiko; Zachar, Vladimir;

    2008-01-01

    for future in vivo applications. We find that simply conjugating a lipid domain (fatty acid) to the cationic peptide (a CatLip conjugate) increases the biological effect of the corresponding PNA (CatLip) conjugates in a luciferase cellular antisense assay up to 2 orders of magnitude. The effect increases...

  15. Cationic polyelectrolyte-mediated delivery of antisense morpholino oligonucleotides for exon-skipping in vitro and in mdx mice

    OpenAIRE

    Wang, Mingxing

    2015-01-01

    Mingxing Wang, Bo Wu, Jason D Tucker, Peijuan Lu, Qilong Lu Department of Neurology, McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Charlotte, NC, USA Abstract: In this study, we investigated a series of cationic polyelectrolytes (PEs) with different size and composition for their potential to improve delivery of an antisense phosphorodiamidate morpholino oligomer (PMO) both in vitro and in vivo. The results showed that...

  16. Cationic polyelectrolyte-mediated delivery of antisense morpholino oligonucleotides for exon-skipping in vitro and in mdx mice

    OpenAIRE

    Wang M; Wu B; Tucker JD; Lu P; Lu Q

    2015-01-01

    Mingxing Wang, Bo Wu, Jason D Tucker, Peijuan Lu, Qilong Lu Department of Neurology, McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Charlotte, NC, USA Abstract: In this study, we investigated a series of cationic polyelectrolytes (PEs) with different size and composition for their potential to improve delivery of an antisense phosphorodiamidate morpholino oligomer (PMO) both in vitro and in vivo. The results showed that the...

  17. Antisense oligonucleotide against GSK-3β in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: Involvement of transcription factor Nrf2 and implications for Alzheimer disease.

    Science.gov (United States)

    Farr, Susan A; Ripley, Jessica L; Sultana, Rukhsana; Zhang, Zhaoshu; Niehoff, Michael L; Platt, Thomas L; Murphy, M Paul; Morley, John E; Kumar, Vijaya; Butterfield, D Allan

    2014-02-01

    Glycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer's disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. In this study we used 12-month-old SAMP8 mice, an AD model, to examine the effects GSK-3β may cause regarding the cognitive impairment and oxidative stress associated with AD. To suppress the level of GSK-3β, SAMP8 mice were treated with an antisense oligonucleotide (GAO) directed at this kinase. We measured a decreased level of GSK-3β in the cortex of the mice, indicating the success of the antisense treatment. Learning and memory assessments of the SAMP8 mice were tested post-antisense treatment using an aversive T-maze and object recognition test, both of which observably improved. In cortex samples of the SAMP8 mice, decreased levels of protein carbonyl and protein-bound HNE were measured, indicating decreased oxidative stress. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor known to increase the level of many antioxidants, including glutathione-S transferase (GST), and is negatively regulated by the activity of GSK-3β. Our results indicated the increased nuclear localization of Nrf2 and level of GST, suggesting the increased activity of the transcription factor as a result of GSK-3β suppression, consistent with the decreased oxidative stress observed. Consistent with the improved learning and memory, and consistent with GSK-3b being a tau kinase, we observed decreased tau phosphorylation in brain of GAO-treated SAMP8 mice compared to that of RAO-treated SAMP8 mice. Lastly, we examined the ability of GAO to cross the blood-brain barrier and determined it to be possible. The results presented in this study demonstrate that reducing GSK-3 with a phosphorothionated antisense against GSK-3 improves learning and memory, reduces oxidative stress, possibly coincident with increased

  18. Amino acids attached to 2'-amino-LNA: Synthesis of DNA mixmer oligonucleotides with increased duplex stability

    DEFF Research Database (Denmark)

    Johannsen, Marie Willaing; Wengel, Jesper; Wamberg, Michael Chr.;

    2010-01-01

    The synthesis of 2'-amino-LNA (locked nucleic acid) opens up exciting possibilities for modification of nucleic acids by conjugation to the 2'-nitrogen. Incorporation of unmodified and N-functionalized 2'-amino-LNA nucleotides improve duplex stability compared to unmodified DNA. 2'-Amino......-LNA nucleosides derivatized with amino acids have been synthesized and incorporated into DNA oligonucleotides. Following oligonucleotide synthesis, peptides have been added using solid phase peptide coupling chem. Modification of oligonucleotides with pos. charged residues greatly improves thermal stability....

  19. Poly(ester amine) Composed of Polyethylenimine and Pluronic Enhance Delivery of Antisense Oligonucleotides In Vitro and in Dystrophic mdx Mice

    OpenAIRE

    Wang, Mingxing; Wu, Bo; Tucker, Jason D; Bollinger, Lauren E; Lu, Peijuan; Lu, Qilong

    2016-01-01

    A series of poly(esteramine)s (PEAs) constructed from low molecular weight polyethyleneimine (LPEI) and Pluronic were evaluated for the delivery of antisense oligonuclotides (AOs), 2′-O-methyl phosphorothioate RNA (2′-OMePS) and phosphorodiamidate morpholino oligomer (PMO) in cell culture and dystrophic mdx mice. Improved exon-skipping efficiency of both 2′-OMePS and PMO was observed in the C2C12E50 cell line with all PEA polymers compared with PEI 25k or LF-2k. The degree of efficiency was f...

  20. Poly(ester amine) Composed of Polyethylenimine and Pluronic Enhance Delivery of Antisense Oligonucleotides In Vitro and in Dystrophic mdx Mice.

    Science.gov (United States)

    Wang, Mingxing; Wu, Bo; Tucker, Jason D; Bollinger, Lauren E; Lu, Peijuan; Lu, Qilong

    2016-01-01

    A series of poly(esteramine)s (PEAs) constructed from low molecular weight polyethyleneimine (LPEI) and Pluronic were evaluated for the delivery of antisense oligonuclotides (AOs), 2'-O-methyl phosphorothioate RNA (2'-OMePS) and phosphorodiamidate morpholino oligomer (PMO) in cell culture and dystrophic mdx mice. Improved exon-skipping efficiency of both 2'-OMePS and PMO was observed in the C2C12E50 cell line with all PEA polymers compared with PEI 25k or LF-2k. The degree of efficiency was found in the order of PEA 01, PEA 04 > PEA 05 > others. The in vivo study in mdx mice demonstrated enhanced exon-skipping of 2'-OMePS with the order of PEA 06 > PEA 04, PEA 07 > PEA 03 > PEA 01 > others, and much higher than PEI 25k formulated 2'-OMePS. Exon-skipping efficiency of PMO in formulation with the PEAs were significantly enhanced in the order of PEA 02 > PEA 10 > PEA 01, PEA 03 > PEA 05, PEA 07, PEA 08 > others, with PEA 02 reaching fourfold of Endo-porter formulated PMO. PEAs improve PMO delivery more effectively than 2'-OMePS delivery in vivo, and the systemic delivery evaluation further highlight the efficiency of PEA for PMO delivery in all skeletal muscle. The results suggest that the flexibility of PEA polymers could be explored for delivery of different AO chemistries, especially for antisense therapy. PMID:27483024

  1. Antisense suppression of an acid invertase gene (MAI1) in muskmelon alters plant growth and fruit development.

    Science.gov (United States)

    Yu, Xiyan; Wang, Xiufeng; Zhang, Wenqian; Qian, Tingting; Tang, Guimin; Guo, Yankui; Zheng, Chengchao

    2008-01-01

    To unravel the roles of soluble acid invertase in muskmelon (Cucumis melo L.), its activity in transgenic muskmelon plants was reduced by an antisense approach. For this purpose, a 1038 bp cDNA fragment of muskmelon soluble acid invertase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the stems were obviously thinner. Transmission electron microscopy revealed that degradation of the chloroplast membrane occurred in transgenic leaves and the number of grana in the chloroplast was significantly reduced, suggesting that the slow growth and weaker phenotype of the transgenic plants may be due to damage to the chloroplast ultrastructure, which in turn resulted in a decrease in net photosynthetic rate. The sucrose concentration increased and levels of acid invertase decreased in transgenic fruit, and the fruit size was 60% smaller than that of the control. In addition, transgenic fruit reached full-slip at 25 d after pollination (DAP), approximately 5 d before the control fruit (full-slip at 30 DAP), and this accelerated maturity correlated with a dramatic elevation of ethylene production at the later stages of fruit development. Together, these results suggest that soluble acid invertase not only plays an important role during muskmelon plant and fruit development but also controls the sucrose content in muskmelon fruit.

  2. Cell patterning on polylactic acid through surface-tethered oligonucleotides.

    Science.gov (United States)

    Matsui, Toshiki; Arima, Yusuke; Takemoto, Naohiro; Iwata, Hiroo

    2015-02-01

    Polylactic acid (PLA) is a candidate material to prepare scaffolds for 3-D tissue regeneration. However, cells do not adhere or proliferate well on the surface of PLA because it is hydrophobic. We report a simple and rapid method for inducing cell adhesion to PLA through DNA hybridization. Single-stranded DNA (ssDNA) conjugated to poly(ethylene glycol) (PEG) and to a terminal phospholipid (ssDNA-PEG-lipid) was used for cell surface modification. Through DNA hybridization, modified cells were able to attach to PLA surfaces modified with complementary sequence (ssDNA'). Different cell types can be attached to PLA fibers and films in a spatially controlled manner by using ssDNAs with different sequences. In addition, they proliferate well in a culture medium supplemented with fetal bovine serum. The coexisting modes of cell adhesion through DNA hybridization and natural cytoskeletal adhesion machinery revealed no serious effects on cell growth. The combination of a 3-D scaffold made of PLA and cell immobilization on the PLA scaffold through DNA hybridization will be useful for the preparation of 3-D tissue and organs.

  3. Overexpression of members of the AP-1 transcriptional factor family from an early stage of renal carcinogenesis and inhibition of cell growth by AP-1 gene antisense oligonucleotides in the Tsc2 gene mutant (Eker) rat model.

    Science.gov (United States)

    Urakami, S; Tsuchiya, H; Orimoto, K; Kobayashi, T; Igawa, M; Hino, O

    1997-12-01

    We previously isolated subtracted cDNA clones for genes having increased expression in Tsc2 gene mutant (Eker) rat renal carcinomas (RCs). Among them, fra-1 encoding a transcriptional factor activator protein 1 (AP-1) was identified. We have therefore investigated whether other members of the AP-1 transcription factor family might also be involved in renal carcinogenesis in the Eker rat model. In the present study, overexpression of fra-1, fra-2, c-jun, junB, and junD mRNAs was demonstrated in RCs by Northern blot analysis. Interestingly, AP-1 proteins were highly expressed even in the earliest preneoplastic lesions (e.g., phenotypically altered tubules) as suggested by immunohistochemistry. Moreover, 12-O-tetradecanoylphorbol-13-acetate-responsive element (TRE)-binding activity of AP-1 proteins was observed in RC cell extracts by electrophoretic mobility shift assay. As a next step, we transfected antisense oligonucleotides targeting AP-1 genes into RC cells and demonstrated that their growth was strongly inhibited. Thus, the data suggest that overexpression of AP-1 genes might play a crucial role in renal carcinogenesis in the Eker rat model. PMID:9405228

  4. [Study toward practical use of oligonucleotide therapeutics].

    Science.gov (United States)

    Inoue, Takao; Yoshida, Tokuyuki

    2014-01-01

    Over the past decade, oligonucleotide-based therapeutics such as antisense oligonucleotides and small interfering RNAs (siRNAs) have been developed extensively. For example, mipomersen (Kynamro; ISIS Pharmaceuticals), which is a second-generation antisense oligonucleotide administered by subcutaneous injection, has recently been approved by the FDA for the treatment of homozygous familial hypercholesterolemia. On the other hands, methods for the evaluation of quality, efficacy and safety of oligonucleotide therapeutics have not been fully discussed. Furthermore, the regulatory guidance specific for oligonucleotide therapeutics has not been established yet. Under these circumstances, we started to collaborate with Osaka University and PMDA to discuss regulatory science focused on oligonucleotide therapeutics. Through the collaboration, we would like to propose the possible design of quality evaluation and preclinical safety-evaluation of oligonucleotide therapeutics. PMID:25707197

  5. Electroporation-based delivery of cell-penetrating peptide conjugates of peptide nucleic acids for antisense inhibition of intracellular bacteria.

    Science.gov (United States)

    Ma, Sai; Schroeder, Betsy; Sun, Chen; Loufakis, Despina Nelie; Cao, Zhenning; Sriranganathan, Nammalwar; Lu, Chang

    2014-10-01

    Cell penetrating peptides (CPPs) have been used for a myriad of cellular delivery applications and were recently explored for delivery of antisense agents such as peptide nucleic acids (PNAs) for bacterial inhibition. Although these molecular systems (i.e. CPP-PNAs) have shown ability to inhibit growth of bacterial cultures in vitro, they show limited effectiveness in killing encapsulated intracellular bacteria in mammalian cells such as macrophages, presumably due to difficulty involved in the endosomal escape of the reagents. In this report, we show that electroporation delivery dramatically increases the bioavailability of CPP-PNAs to kill Salmonella enterica serovar Typhimurium LT2 inside macrophages. Electroporation delivers the molecules without involving endocytosis and greatly increases the antisense effect. The decrease in the average number of Salmonella per macrophage under a 1200 V cm(-1) and 5 ms pulse was a factor of 9 higher than that without electroporation (in an experiment with a multiplicity of infection of 2 : 1). Our results suggest that electroporation is an effective approach for a wide range of applications involving CPP-based delivery. The microfluidic format will allow convenient functional screening and testing of PNA-based reagents for antisense applications.

  6. Locked nucleic acid

    DEFF Research Database (Denmark)

    Jepsen, Jan Stenvang; Sørensen, Mads D; Wengel, Jesper;

    2004-01-01

    Locked nucleic acid (LNA) is a class of nucleic acid analogs possessing very high affinity and excellent specificity toward complementary DNA and RNA, and LNA oligonucleotides have been applied as antisense molecules both in vitro and in vivo. In this review, we briefly describe the basic...

  7. Effect of a antisense oligonucleotide to noggin on the expression of nestin and GFAP in the hippocampus of adult rats%反义Noggin基因对成年大鼠海马内Nestin及GFAP表达的影响

    Institute of Scientific and Technical Information of China (English)

    徐海伟; 范晓棠

    2005-01-01

    目的探讨Noggin基因对成年大鼠海马内Nestin及GFAP表达的影响.方法反义寡核苷酸技术封闭内源性Noggin基因的表达,免疫组化法检测成年大鼠海马内Nestin与GFAP的表达.结果侧脑室连续4 d注射Noggin基因的反义寡核苷酸后,可见海马齿状回(dentate gyrus,DG)内Nestin阳性细胞数与GFAP阳性细胞数较对照组显著增加;室下区GFAP阳性细胞数亦明显增加.结论Noggin对成年海马干细胞的分化有重要作用,内源性Noggin基因的表达可使神经干细胞向神经元方向分化.%Objective To examine the role of noggin on the expression of nestin and glial fibrillary acidic protein (GFAP) in the hippocampus of adult rats. Methods Antisense oligodeoxynucleotide (ASODN) technique was employed to inhibit endogenous noggin expression and immunohistochemistry was used to detect the expressions of Nestin and GFAP in the hippocampus of adult rats. Results It was observed that the number of nestin and GFAP immunoreactive cells in the dentate gyrus (DG) of hippocampus was increased in adult rats treated with antisense oligodeoxynucleotide to noggin. Moreover, the number of GFAP immunoreactive cells was increased in the subventricular zone of the rats treated with antisense oligodeoxynucleotide to noggin. Conclusion The results in the present study indicates that noggin may play a role in the differentiation of neural stem cells in the adult hippocampus, and it promotes the differentiation of neural stem cells in the DG to neuronal fate.

  8. Different effects of antisense RelA p65 and NF-κB1 p50 oligonucleotides on the nuclear factor-κB mediated expression of ICAM-1 in human coronary endothelial and smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Both Anton

    2001-08-01

    Full Text Available Abstract Background Activation of nuclear factor-κB (NF-κB is one of the key events in early atherosclerosis and restenosis. We hypothesized that tumor necrosis factor-α (TNF-α induced and NF-κB mediated expression of intercellular adhesion molecule-1 (ICAM-1 can be inhibited by antisense RelA p65 and NF-κB1 p50 oligonucleotides (RelA p65 and NF-κB1 p50. Results Smooth muscle cells (SMC from human coronary plaque material (HCPSMC, plaque material of 52 patients, SMC from the human coronary media (HCMSMC, human endothelial cells (EC from umbilical veins (HUVEC, and human coronary EC (HCAEC were successfully isolated (HCPSMC, HUVEC, identified and cultured (HCPSMC, HCMSMC, HUVEC, HCAEC. 12 hrs prior to TNF-α stimulus (20 ng/mL, 6 hrs RelA p65 and NF-κB1 p50 (1, 2, 4, 10, 20, and 30 μM and controls were added for a period of 18 hrs. In HUVEC and HCAEC there was a dose dependent inhibition of ICAM-1 expression after adding of both RelA p65 and NF-κB1 p50. No inhibitory effect was seen after incubation of HCMSMC with RelA p65 and NF-κB1 p50. A moderate inhibition of ICAM-1 expression was found after simultaneous addition of RelA p65 and NF-κB1 p50 to HCPSMC, no inhibitory effect was detected after individual addition of RelA p65 and NF-κB1 p50. Conclusions The data point out that differences exist in the NF-κB mediated expression of ICAM-1 between EC and SMC. Experimental antisense strategies directed against RelA p65 and NF-κB1 p50 in early atherosclerosis and restenosis are promising in HCAEC but will be confronted with redundant pathways in HCMSMC and HCPSMC.

  9. LNA-antisense rivals siRNA for gene silencing

    DEFF Research Database (Denmark)

    Jepsen, Jan Stenvang; Wengel, Jesper; Stenvang, Jan

    2004-01-01

    Locked nucleic acid (LNA) is a class of nucleic acid analogs possessing unprecedented binding affinity toward complementary DNA and RNA while obeying the Watson-Crick base-pairing rules. For efficient gene silencing in vitro and in vivo, fully modified or chimeric LNA oligonucleotides have been...... applied. LNA oligonucleotides are commercially available, can be transfected using standard techniques, are non-toxic, lead to increased target accessibility, can be designed to activate RNase H, and function in steric block approaches. LNA-Antisense, including gapmer LNA containing a central DNA...... or phosphorothioate-DNA segment flanked by LNA gaps, rivals siRNA as the technology of choice for target validation and therapeutic applications....

  10. Potent Antibacterial Antisense Peptide-Peptide Nucleic Acid Conjugates Against Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Ghosal, Anubrata; Nielsen, Peter E

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections in hospital settings, especially with immune compromised patients, and the increasing prevalence of multidrug resistant strains urges search for new drugs with novel mechanisms of action. In this study we introduce...... significantly reduced bacterial survival. These results open the possibility of development of antisense antibacterials for treatment of Pseudomonas infections....

  11. Combination of telomerase antisense oligonucleotides simultaneously targeting hTR and hTERT produces synergism of inhibition of telomerase activity and growth in human colon cancer cell line

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hua Fu; Jian-Song Zhang; Na Zhang; Yang-De Zhang

    2005-01-01

    AIM: To investigate synergism of inhibition of telomerase activity and proliferation of human colon cancer cells by combination of telomerase antisense oligonucleotides (ASODNs) simultaneously targeting human telomerase RNA (hTR) and human telomerase reverse transcriptase (hTERT)in vitro.METHODS: ASODN of hTR and ASODN of hTERT were transfected into human colon cancer SW480 cells by liposomal transfection reagents. Telomerase activity of SW480 cells was examined using telomeric repeat amplification protocol (TRAP)-enzyme-linked immunosorbent assay (PCR-ELISA). Proliferation activity of SW480 cells was tested by methyl thiazolyl tetrazolium assay. Apoptosis and cell cycle were analyzed by flow cytometry.RESULTS: The telomerase activity and cell survival rate in SW480 cells transfected with 0.2 μmol/L of ASODN of hTR or ASODN of hTERT for 24-72 h were significantly decreased in a time-dependent manner compared with those after treatment with sense oligonucleotides and untreated (telomerase activity: 24 h, 73%, 74% vs 99%,98%; 48 h, 61%, 55% vs 98%, 99%; 72 h, 41%, 37% vs 99%, 97%; P<0.01; cell survival rate: 24 h, 88%, 86%vs94%, 98%; 48 h, 49%, 47% vs94%, 97%; 72 h, 44%,42% vs 92%, 96%; P<0.01). Moreover, the telomerase activity and the cell survival rate in SW480 cells treated by the combination of telomerase anti-hTR and anti-hTERT were more significantly suppressed than single anti-hTR or anti-hTERT (telomerase activity: 24 h, 59% vs 73%,74%; 48 h, 43% vs61%, 55%; 72 h, 18% vs41%, 37%;P<0.01; cell survival rate: 24 h, 64% vs88%, 86%; 48 h,37% vs49%, 47%; 72 h, 25% vs44%, 42%; P<0.01).Meanwhile, the apoptosis rates in the combination group were markedly increased compared with those in the single group (24 h, 18.0% vs 7.2%, 7.4%; 48 h, 23.0%vs 13.0%, 14.0%; 72 h, 28.6% vs13.2%, 13.75; P<0.01).Cells in combination group were arrested at G0/G1 phase.CONCLUSION: Telomerase anti-hRT and anti-hTERT suppress telomerase activity, and inhibit growth of human

  12. Synthetic oligonucleotide antigens modified with locked nucleic acids detect disease specific antibodies

    Science.gov (United States)

    Samuelsen, Simone V.; Solov’yov, Ilia A.; Balboni, Imelda M.; Mellins, Elizabeth; Nielsen, Christoffer Tandrup; Heegaard, Niels H. H.; Astakhova, Kira

    2016-01-01

    New techniques to detect and quantify antibodies to nucleic acids would provide a significant advance over current methods, which often lack specificity. We investigate the potential of novel antigens containing locked nucleic acids (LNAs) as targets for antibodies. Particularly, employing molecular dynamics we predict optimal nucleotide composition for targeting DNA-binding antibodies. As a proof of concept, we address a problem of detecting anti-DNA antibodies that are characteristic of systemic lupus erythematosus, a chronic autoimmune disease with multiple manifestations. We test the best oligonucleotide binders in surface plasmon resonance studies to analyze binding and kinetic aspects of interactions between antigens and target DNA. These DNA and LNA/DNA sequences showed improved binding in enzyme-linked immunosorbent assay using human samples of pediatric lupus patients. Our results suggest that the novel method is a promising tool to create antigens for research and point-of-care monitoring of anti-DNA antibodies. PMID:27775006

  13. Characterization of peptide-oligonucleotide heteroconjugates by mass spectrometry.

    OpenAIRE

    Jensen, O N; Kulkarni, S; Aldrich, J V; Barofsky, D F

    1996-01-01

    Two peptide-oligothymidylic acids, prepared by joining an 11 residue synthetic peptide containing one internal carboxyl group (Asp side chain) to amino-linker-5'pdT6 and amino-linker-5'pdT10 oligonucleotides, were analyzed by matrix-assisted laser desorption/ionization (MALDI) on a linear time-of-flight mass spectrometer and by electrospray ionization (ESI) on a triple-quadrupole system. These synthetic compounds model peptide-nucleic acid heteroconjugates encountered in antisense research an...

  14. Progress toward therapy with antisense-mediated splicing modulation

    OpenAIRE

    Du, Liutao; Gatti, Richard A.

    2009-01-01

    Antisense oligonucleotides (AO) or antisense RNA can complementarily bind to a target site in pre-mRNA and regulate gene splicing, either to restore gene function by reprogramming gene splicing or to inhibit gene expression by disrupting splicing. These two applications represent novel therapeutic strategies for several types of diseases such as genetic disorders, cancers and infectious diseases. In this review, the recent developments and applications of antisense-mediated splicing modulatio...

  15. Modulation of tumor eIF4E by antisense inhibition: A phase I/II translational clinical trial of ISIS 183750-an antisense oligonucleotide against eIF4E-in combination with irinotecan in solid tumors and irinotecan-refractory colorectal cancer.

    Science.gov (United States)

    Duffy, A G; Makarova-Rusher, O V; Ulahannan, S V; Rahma, O E; Fioravanti, S; Walker, M; Abdullah, S; Raffeld, M; Anderson, V; Abi-Jaoudeh, N; Levy, E; Wood, B J; Lee, S; Tomita, Y; Trepel, J B; Steinberg, S M; Revenko, A S; MacLeod, A R; Peer, C J; Figg, W D; Greten, T F

    2016-10-01

    The eukaryotic translation initiation factor 4E (eIF4E) is a potent oncogene that is found to be dysregulated in 30% of human cancer, including colorectal carcinogenesis (CRC). ISIS 183750 is a second-generation antisense oligonucleotide (ASO) designed to inhibit the production of the eIF4E protein. In preclinical studies we found that EIF4e ASOs reduced expression of EIF4e mRNA and inhibited proliferation of colorectal carcinoma cells. An additive antiproliferative effect was observed in combination with irinotecan. We then performed a clinical trial evaluating this combination in patients with refractory cancer. No dose-limiting toxicities were seen but based on pharmacokinetic data and tolerability the dose of irinotecan was reduced to 160 mg/m(2) biweekly. Efficacy was evaluated in 15 patients with irinotecan-refractory colorectal cancer. The median time of disease control was 22.1 weeks. After ISIS 183750 treatment, peripheral blood levels of eIF4E mRNA were decreased in 13 of 19 patients. Matched pre- and posttreatment tumor biopsies showed decreased eIF4E mRNA levels in five of nine patients. In tumor tissue, the intracellular and stromal presence of ISIS 183750 was detected by IHC in all biopsied patients. Although there were no objective responses stable disease was seen in seven of 15 (47%) patients who were progressing before study entry, six of whom were stable at the time of the week 16 CT scan. We were also able to confirm through mandatory pre- and posttherapy tumor biopsies penetration of the ASO into the site of metastasis. PMID:27194579

  16. Survivin反义寡核苷酸协同Taxol诱导肺癌细胞株凋亡%Effect of Survivin Antisense Oligonucleotide Combined with Taxol on Induced Apoptosis in Lung Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    陈余清; 夏雪梅; 蔡映云; 黄礼年; 李殿明; 胡俊锋

    2005-01-01

    [目的]研究Survivin反义寡核苷酸(antisense oligonucleotide,ASODN)单独或联合Taxol对肺癌细胞株Survivin mRNA和蛋白表达,细胞凋亡,生长抑制率的影响.[方法]Survivin ASODN经脂质体介导转染人小细胞肺癌细胞株NCI-H446,用RT-PCR法、Western blot法检测Survivin表达;Survivin ASODN单独、联合Taxol作用NCI-H446细胞后,用MTT法检测细胞生长抑制率,台盼兰拒染实验检测细胞死亡率,流式细胞仪检测细胞凋亡并计算两药相互作用指数(CDI).[结果]Survivin ASODN转染NCI-H446细胞后,Survivin mRNA表达和蛋白表达明显下调,其中SurvivinASODN 500nM作用72h时Survivin mRNA抑制率达62.72%,效果最佳;Survivin ASODN单独或联合Taxol作用NCI-H446细胞后发现Survivin ASODN联合Taxol作用的效果明显优于两药单独应用(P<0.01).其联用时细胞凋亡率达73.3%,而单用时分别为43.6%和23.8%.其联用时细胞生长抑制率达80.1%,而单用时抑制率分别为50.4%和30.5%(P均<0.01).两药联用组细胞死亡率达69.9%,高于两药单用时的41.4%和24.8%(P均<0.01);CDI值为0.43,表明两药具有显著协同作用.[结论]Survivin ASODN能够抑制肺癌细胞株Survivin mRNA和蛋白表达并诱导肺癌细胞凋亡;Survivin ASODN能够增加Taxol的敏感性.

  17. 联合VEGF反义寡核苷酸和PDGF三链形成寡核苷酸抑制大鼠脑胶质瘤生长%Triplex forming oligonucleotide of PDGF-B chain combined with antisense oligonucleotide of VEGF inhibits glioma growth in rats

    Institute of Scientific and Technical Information of China (English)

    李维方; 周定标; 余新光; 金由辛

    2006-01-01

    目的:观察血小板源生长因子(PDGF) B链基因(PDGF-B)的三链形成寡核苷酸(triplex forming oligonucleotide,TFO)PDGF-TFO和血管内皮生长因子(VEGF)反义寡核苷酸(antisense oligonucleotide,AON)VEGF-AON对大鼠脑胶质瘤生长的抑制作用.方法:36只雄性SD大鼠,分为4组,所有大鼠均在立体定向导引下行右尾状核区微量灌注含1×106 C6胶质瘤细胞的生理盐水20 μl.在细胞接种后第8天,实验Ⅰ组6只大鼠原位注射含PDGF-TFO 1.5 mg的 20 μl生理盐水,实验Ⅱ组12只和实验Ⅲ组12只大鼠则分别原位注射含PDGF-TFO 1.5 mg+VEGF-AON 0.125 mg和PDGF-TFO 1.5 mg+VEGF-AON 0.25 mg的20 μl生理盐水.以后每隔72 h原位注射相同剂量的药物1次,共注射3次.对照组6只大鼠仅在相同时间原位注射20 μl生理盐水.实验3周时处死所有大鼠,观察肿瘤的生长情况,定性和定量观察肿瘤PDGF-B、VEGF和肿瘤核增殖抗原(PCNA)表达.结果:实验Ⅰ组的成瘤抑制率为53.1 %,实验Ⅱ组为81.4 %,实验Ⅲ组为93.1 %,3组比较有明显差异(P<0.01).PDGF-TFO对C6胶质瘤细胞PDGF-B、VEGF、PCNA表达有明显的抑制作用;联合应用PDGF-TFO和VEGF-AON能更好地抑制PDGF-B、VEGF、PCNA表达.结论:联合应用PDGF-TFO和VEGF-AON 比单用PFGF-TFO能更有效地抑制肿瘤生长.

  18. Antisense-mediated suppression of C-hordein biosynthesis in the barley grain results in correlated changes in the transcriptome, protein profile, and amino acid composition

    DEFF Research Database (Denmark)

    Hansen, Mette; Lange, Marianne; Friis, Carsten;

    2007-01-01

    Antisense- or RNAi-mediated suppression of the biosynthesis of nutritionally inferior storage proteins is a promising strategy for improving the amino acid profile of seeds. However, the potential pleiotropic effects of this on interconnected pathways and the agronomic quality traits need to be a...

  19. Affinity hydrogels for controlled protein release using nucleic acid aptamers and complementary oligonucleotides.

    Science.gov (United States)

    Soontornworajit, Boonchoy; Zhou, Jing; Snipes, Matthew P; Battig, Mark R; Wang, Yong

    2011-10-01

    Biomaterials for the precise control of protein release are important to the development of new strategies for treating human diseases. This study aimed to fundamentally understand aptamer--protein dissociation triggered by complementary oligonucleotides, and to apply this understanding to develop affinity hydrogels for controlled protein release. The results showed that the oligonucleotide tails of the aptamers played a critical role in inducing intermolecular hybridization and triggering aptamer--protein dissociation. In addition, the attachment of the oligonucleotide tails to the aptamers and the increase of hybridizing length could produce a synergistic effect on the dissociation of bound proteins from their aptamers. More importantly, pegylated complementary oligonucleotides could successfully trigger protein release from the aptamer-functionalized hydrogels at multiple time points. Based on these results, it is believed that aptamer-functionalized hydrogels and complementary oligonucleotides hold great potential of controlling the release of protein drugs to treat human diseases.

  20. Application of graphene–pyrenebutyric acid nanocomposite as probe oligonucleotide immobilization platform in a DNA biosensor

    International Nuclear Information System (INIS)

    A stable and uniform organic–inorganic nanocomposite that consists of graphene (GR) and pyrenebutyric acid (PBA) was obtained by ultrasonication, which was characterized by scanning electron microscopy (SEM) and UV–vis absorption spectra. The dispersion was dropped onto a gold electrode surface to obtain GR–PBA modified electrode (GR–PBA/Au). Electrochemical behaviors of the modified electrode were characterized by cyclic voltammetry and electrochemical impedance spectroscopy using [Fe(CN)6]3−/4− as the electroactive probe. A novel DNA biosensor was constructed based on the covalent coupling of amino modified oligonucleotides with the carboxylic group on PBA. By using methylene blue (MB) as a redox-active hybridization indicator, the biosensor was applied to electrochemically detect the complementary sequence, and the results suggested that the peak currents of MB showed a good linear relationship with the logarithm values of target DNA concentrations in the range from 1.0 × 10−15 to 5.0 × 10−12 M with a detection limit of 3.8 × 10−16 M. The selectivity experiment also showed that the biosensor can well distinguish the target DNA from the non-complementary sequences. - Highlights: • A nanocomposite containing graphene and pyrenebutyric acid was prepared. • The nanocomposite was applied as a function platform for DNA immobilization platform. • The developed biosensor shows excellent selectivity and sensitivity for target DNA detection

  1. Circular RNA oligonucleotides. Synthesis, nucleic acid binding properties, and a comparison with circular DNAs.

    Science.gov (United States)

    Wang, S; Kool, E T

    1994-06-25

    We report the synthesis and nucleic acid binding properties of two cyclic RNA oligonucleotides designed to bind single-stranded nucleic acids by pyr.pur.pyr-type triple helix formation. The circular RNAs are 34 nucleotides in size and were cyclized using a template-directed nonenzymatic ligation. To ensure isomeric 3'-5' purity in the ligation reaction, one nucleotide at the ligation site is a 2'-deoxyribose. One circle (1) is complementary to the sequence 5'-A12, and the second (2) is complementary to 5'-AAGAAAGAAAAG. Results of thermal denaturation experiments and mixing studies show that both circles bind complementary single-stranded DNA or RNA substrates by triple helix formation, in which two domains in a pyrimidine-rich circle sandwich a central purine-rich substrate. The affinities of these circles with their purine complements are much higher than the affinities of either the linear precursors or simple Watson-Crick DNA complements. For example, circle 1 binds rA12 (pH 7.0, 10 mM MgCl2, 100 mM NaCl) with a Tm of 48 degrees C and a Kd (37 degrees C) of 4.1 x 10(-9) M, while the linear precursor of the circle binds with a Tm of 34 degrees C and a Kd of 1.2 x 10(-6) M. The complexes of circle 2 are pH-dependent, as expected for triple helical complexes involving C(+)G.C triads, and mixing plots for both circles reveal one-to-one stoichiometry of binding either to RNA or DNA substrates. Comparison of circular RNAs with previously synthesized circular DNA oligonucleotides of the same sequence reveals similar behavior in the binding of DNA, but strikingly different behavior in the binding of RNA. The cyclic DNAs show high DNA-binding selectivity, giving relatively weaker duplex-type binding with complementary RNAs. The relative order of thermodynamic stability for the four types of triplex studied here is found to be DDD > RRR > RDR > DRD. The results are discussed in the context of recent reports of strong triplex dependence on RNA versus DNA backbones. Triplex

  2. Antisense approaches in prostate cancer.

    Science.gov (United States)

    Chi, Kim N; Gleave, Martin E

    2004-06-01

    Patients with hormone refractory prostate cancer have limited treatment options and new therapies are urgently needed. Advances in the understanding of the molecular mechanisms implicated in prostate cancer progression have identified many potential therapeutic gene targets that are involved in apoptosis, growth factors, cell signalling and the androgen receptor (AR). Antisense oligonucleotides are short sequences of synthetic modified DNA that are designed to be complimentary to a selected gene's mRNA and thereby specifically inhibit expression of that gene. The antisense approach continues to hold promise as a therapeutic modality to target genes involved in cancer progression, especially those in which the gene products are not amenable to small molecule inhibition or antibodies. The current status and future direction of a number of antisense oligonucleotides targeting several genes, including BCL-2, BCL-XL, clusterin, the inhibitors of apoptosis (IAP) family, MDM2, protein kinase C-alpha, c-raf, insulin-like growth factor binding proteins and the AR, that have potential clinical use in prostate cancer are reviewed. PMID:15174974

  3. Formulation of polylactide-co-glycolic acid nanospheres for encapsulation and sustained release of poly(ethylene imine-poly(ethylene glycol copolymers complexed to oligonucleotides

    Directory of Open Access Journals (Sweden)

    Wheatley Margaret A

    2009-04-01

    Full Text Available Abstract Antisense oligonucleotides (AOs have been shown to induce dystrophin expression in muscles cells of patients with Duchenne Muscular Dystrophy (DMD and in the mdx mouse, the murine model of DMD. However, ineffective delivery of AOs limits their therapeutic potential. Copolymers of cationic poly(ethylene imine (PEI and non-ionic poly(ethylene glycol (PEG form stable nanoparticles when complexed with AOs, but the positive surface charge on the resultant PEG-PEI-AO nanoparticles limits their biodistribution. We adapted a modified double emulsion procedure for encapsulating PEG-PEI-AO polyplexes into degradable polylactide-co-glycolic acid (PLGA nanospheres. Formulation parameters were varied including PLGA molecular weight, ester end-capping, and sonication energy/volume. Our results showed successful encapsulation of PEG-PEI-AO within PLGA nanospheres with average diameters ranging from 215 to 240 nm. Encapsulation efficiency ranged from 60 to 100%, and zeta potential measurements confirmed shielding of the PEG-PEI-AO cationic charge. Kinetic measurements of 17 kDa PLGA showed a rapid burst release of about 20% of the PEG-PEI-AO, followed by sustained release of up to 65% over three weeks. To evaluate functionality, PEG-PEI-AO polyplexes were loaded into PLGA nanospheres using an AO that is known to induce dystrophin expression in dystrophic mdx mice. Intramuscular injections of this compound into mdx mice resulted in over 300 dystrophin-positive muscle fibers distributed throughout the muscle cross-sections, approximately 3.4 times greater than for injections of AO alone. We conclude that PLGA nanospheres are effective compounds for the sustained release of PEG-PEI-AO polyplexes in skeletal muscle and concomitant expression of dystrophin, and may have translational potential in treating DMD.

  4. Subnanomolar antisense activity of phosphonate-peptide nucleic acid (PNA) conjugates delivered by cationic lipids to HeLa cells

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Hamzavi, Ramin; Nielsen, Peter E

    2008-01-01

    as inferred from induced luciferase activity as a consequence of pre-mRNA splicing correction by the antisense-PNA. Antisense activity depended on the number of phosphonate moieties and the most potent hexa-bis-phosphonate-PNA showed at least 20-fold higher activity than that of an optimized PNA/DNA hetero...

  5. Optimal design of parallel triplex forming oligonucleotides containing Twisted Intercalating Nucleic Acids--TINA.

    Science.gov (United States)

    Schneider, Uffe V; Mikkelsen, Nikolaj D; Jøhnk, Nina; Okkels, Limei M; Westh, Henrik; Lisby, Gorm

    2010-07-01

    Twisted intercalating nucleic acid (TINA) is a novel intercalator and stabilizer of Hoogsteen type parallel triplex formations (PT). Specific design rules for position of TINA in triplex forming oligonucleotides (TFOs) have not previously been presented. We describe a complete collection of easy and robust design rules based upon more than 2500 melting points (T(m)) determined by FRET. To increase the sensitivity of PT, multiple TINAs should be placed with at least 3 nt in-between or preferable one TINA for each half helixturn and/or whole helixturn. We find that Delta T(m) of base mismatches on PT is remarkably high (between 7.4 and 15.2 degrees C) compared to antiparallel duplexes (between 3.8 and 9.4 degrees C). The specificity of PT by Delta T(m) increases when shorter TFOs and higher pH are chosen. To increase Delta Tms, base mismatches should be placed in the center of the TFO and when feasible, A, C or T to G base mismatches should be avoided. Base mismatches can be neutralized by intercalation of a TINA on each side of the base mismatch and masked by a TINA intercalating direct 3' (preferable) or 5' of it. We predict that TINA stabilized PT will improve the sensitivity and specificity of DNA based clinical diagnostic assays. PMID:20338879

  6. Nucleoside, nucleotide and oligonucleotide based amphiphiles: a successful marriage of nucleic acids with lipids.

    Science.gov (United States)

    Gissot, Arnaud; Camplo, Michel; Grinstaff, Mark W; Barthélémy, Philippe

    2008-04-21

    Amphiphilic molecules based on nucleosides, nucleotides and oligonucleotides are finding more and more biotechnological applications. This Perspective highlights their synthesis, supramolecular organization as well as their applications in the field of biotechnology.

  7. Antisense gene therapy using anti-k-ras and antitelomerase oligonucleotides in colorectal cancer Eficacia de la terapia génica antisentido utilizando oligonucleótidos anti K-ras y antitelomerasa en cáncer colorrectal

    Directory of Open Access Journals (Sweden)

    S. Lledó

    2005-07-01

    Full Text Available Aim: to test the efficacy of anti-k-ras and antitelomerase oligonucleotides for disabling colorectal cancer cell growth. Material and methods: an established human colorectal cancer cell line (SW 480, ATTC® was used. Oligodeoxiribonucleotides (ODNs have a phosphorotioate modification to ensure intracellular intake. We used an antitelomerase ODN (Telp5 and two anti-k-ras ODNs (AS-KRAS and ISIS. AS-KRAS is designed to join the k-ras oncogene's exon 1. ISIS links to the terminal transcription unit 5' of k-ras. Telp5 joins the template region of the hTR telomerase subunit. ODNs have been tested in different concentrations (1, 5, 10, 20 micromolar. Cell viability has been tested at 48 and 72 hours. Statistical analysis and graphic design were made with the statistical package "Analyzing Data with GraphPad Prism-1999", GraphPad Sofware Inc., San Diego CA©. We used the Student's t test for statistical analysis. Results: the lowest dose (1 µM was not effective. Using the highest dose (20 mM for 48 hours of combined AS-KRAS and Telp5 cell viability decreased to 99.67%. The rest of results varied depending on ODN type, dose, and exposure time. Conclusions: tested antisense ODNs stop colorectal cancer cell growth, and a combination of anti-telomerase and anti-k-ras is the most useful treatment. Efficacy is best with a higher dose and longer treatment period.Objetivo: evaluar la eficacia de oligonucleótidos anti k-ras y antitelomerasa para detener el crecimiento tumoral en el cáncer colorrectal. Material y métodos: se ha empleado una línea celular establecida de cáncer colorrectal humano (SW 480, ATTC®. Los oligodesoxirribonucleótidos (ODN utilizados en el presente trabajo presentan modificación fosforotioato con el fin de mejorar su estabilidad en presencia de fluidos biológicos. Hemos utilizado un ODN antitelomerasa (Telp5, y dos ODN anti k-ras (AS-KRAS e ISIS. AS-KRAS actúa en el exón 1 e ISIS actúa a nivel de la unidad terminal de

  8. Ku70反义寡核苷酸增强甲状腺癌细胞的辐射敏感性%Ku70 antisense oligo-nucleotide enhances the radiosensitivity of thyroid carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    王奇金; 邹大进

    2009-01-01

    目的 研究DNA修复基因Ku70反义寡核苷酸(ASODN)对甲状腺癌细胞辐射敏感性的影响.方法 设计合成特异性靶向Ku70的ASODN,以不同浓度转染人甲状腺髓样癌细胞(TT),并设脂质体和正义寡核苷酸(SODN)对照组进行比较.采用Western印迹技术检测各组细胞中Ku70蛋白表达水平.利用不同剂量60 Co γ射线照射细胞后,细胞克隆形成实验检测细胞存活分数.CCK-8法、Annexin-V/PI染色法分析ASODN对细胞活力和细胞凋亡的影响.彗星电泳法比较γ射线照射后DNA双链断裂的修复效率.结果 转染ASODN各组细胞Ku70蛋白表达均较脂质体对照组、SODN组明显降低,并呈浓度依赖性;照射后细胞存活率降低(P<0.01),凋亡率显著增加(P<0.01),DNA双链断裂的修复效率降低(P<0.01).结论 ASODN能够特异性地下调甲状腺癌细胞Ku70的表达,抑制γ射线照射后细胞存活和DNA双链断裂修复,提高肿瘤细胞的辐射敏感性.%Objective To investigate the effect of Ku70 antisense oligonueleotide(ASODN) on the radiosensitivity of thyroid carcinoma cells.Methods Targeted ASODN of Ku70 was synthesized and transfected into human medullary thyroid carcinoma cell lines at different concentrations,with lipofectamine and sense oligonucleotides (SODN) as control groups.Western blotting was used to detect the expression level of Ku70 protein.Cell clonogenic assay was performed to determine the cell survival fraction after 60 Co γ ray radiation.CCK-8 assay and Annexin-V/PI staining were applied to evaluate the cell viability and apoptosis after radiation.The DNA repair efficiency for double-strand breaks (DSB) was evaluated by Comet assay.Results Compared with lipofectamine and SODN control groups,the expression of Ku70 protein in cells of ASODN group was obviously decreased.The cell survival was markedly inhibited by ASODN in a dose dependent manner and apoptosis rate significantly increased (P <0.01).The repair efficiency for

  9. Optimization of the Formulation and Design of Oligonucleotide-based Pharmaceuticals for the Purpose of Gene Therapy

    OpenAIRE

    Zaghloul, Eman M.

    2012-01-01

    Oligonucleotides (ONs) are short sequences of nucleic acids which may be used in a therapeutic context to modulate gene expression. According to their target, ONs can be classified into two main classes: antisense ONs which target mRNA and antigene ONs that target chromosomal DNA. In order to be pharmaceutically efficient, both kinds of ONs have to possess enough stability against degrading enzymes and rapid clearance. They must pass the cell membrane, and in some cases the nuc...

  10. Protective effect of c-fos antisense oligonucleotides on brain damage induced by glutamate%c-fos反义寡核苷酸对谷氨酸神经毒性鼠脑损伤的防护

    Institute of Scientific and Technical Information of China (English)

    岳少杰; 陶永光; 罗自强; 冯德云; 伍赶球

    2001-01-01

    Objective To investigate the relation between glutamate neurotoxicity and c-fos gene expression. Methods c-fos antisense oligonucleotides (AS ODN) was injected into the right lateral ventricles of 9 SD rats to block the c-fos gene expression in brain tissue. c-fos sense oligonucleotides (S ODN)was used a control. The numbers and morphology of neurons in both cerebral cortex and hippocampal CA1 were detected by MIAS-300 image analysing instrument. c-fos gene expression in brain was observed by immunohistochemical method. The content of water and electrolytes in the brain tissue and Ca2+ in the synapse were measured. Results The c-fos AS ODN blocked the c-fos gene expression and reduced the content of both water and sodium in brain tissue and Ca2+ in symptosome, thus alleviating the morphological damage in neuron. S ODN did not have such effect. Conclusion c-fos gene expression plays an important role in mediating the effect of glutamate neurotoxicity. Blocking the c-fos gene expression could antagonize glutamate neurotoxicity.%目的 探讨c-fos基因的表达在谷氨酸神经毒性中的作用。方法 在9只SD大鼠侧脑室注射c-fos反义寡核苷酸以阻断脑组织c-fos基因的表达,并用c-fos正义寡核苷酸为对照。观察脑组织中水、电解质含量和突触体内Ca2+浓度的变化,并采用细胞形态计量分析及免疫组织化学方法,观察大脑皮质、海马CA1区神经细胞数目、形态的变化及c-fos基因的表达。结果 c-fos反义寡核苷酸可有效地阻断脑组织c-fos基因的表达,降低脑组织c-fos阳性细胞率(9.4%±2.8%和74%±3%,P<0.01),抑制谷氨酸神经毒性所致的脑组织含水量(79.9%±0.4%和82.3%±0.8%,P<0.01)、钠(5.05 mg/g干重±0.39 mg/g干重和5.98 mg/g干重±0.50 mg/g干重,P<0.01)及细胞内Ca2+(176 nmol/L±35 nmol/L和344.12±50.13,P<0.01)含量的增加,抑制谷氨酸所致大脑皮质(157±10和145±7,P<0

  11. Screening of effective antisense peptide nucleic acids targeting gyrA from multidrug-resistant Acinetobacter baumannii and their antimicrobial effects in vitro%多重耐药鲍曼不动杆菌gyrA基因高效反义肽核酸序列筛选及其体外抗菌活性观察

    Institute of Scientific and Technical Information of China (English)

    王慧娟; 何云燕; 夏云; 王立朋; 梁树梅

    2013-01-01

    Objective To screen the effective antisense peptide nucleic acids targeting gyrA gene from multidrug-resistant Acinetobacter baumannii,and to evaluate their antimicrobial effects in vitro.Methods Two RNA folding computer programs,Mfold and RNA structure 4.6,were used to predict the secondary structure of gyrA mRNA,and then 10 antisense oligonucleotides were designed based on free energy theory.The full length of gyrA mRNA was transcribed in vitro and labeled by digoxigenin-ll-uridine-5'-triphosphate.Dot blothybridization was used to screen the gyrA mRNA accessible sites which showed strong binding affinity to the antisense oligonucleotides.Peptide nucleic acid (PNA) was synthesized based on the sequence of antisense oligonucleotide showing high affinity.Another PNA oligomer containing 6 mismatched nucleotides was used as a negative control.Both the 2 PNAs were conjugated to cell penetrating peptide (CPPs) (KFF)3 K to form peptide-PNA (PPNA).After the bacterial culture was treated with different concentrations of PPNA,OD600 and viable cell counts were measured to evaluate the growth inhibitory effect of the antisense oligonucleotide.Reverse transcript (RT)-PCR was applied to evaluate the level of gyrA expression.Results Of the 10 antisense oligonucleotides,5 showed binding affinity to gyrA mRNA and one of them showed strong binding affinity.PPNA designed based on the oligonucleotide significantly inhibited the growth of the bacterium and gyrA gene expression at a dose of 5 μmol/L,and exhibited anti-bactericidal effect at a dose of l0 μmol/L.Mismatched PPNA had no effect on the bacterial growth.Conclusion Combination of computer-aided prediction with dot blot hybridization is a high-flux and rapid way to screen effective antisense oligonucleotides in vitro.The screened anti-gyrA PPNA exerts significant inhibitory effect on the growth and gene expression in the bacterium in vitro.%目的 筛选出能与多重耐药鲍曼不动杆菌gyrA基因的mRNA紧密结合的

  12. Comparative study on imaging of 99Tcm-survivin mRNA antisense peptide nucleic acid in tumor and inflammation animal models

    International Nuclear Information System (INIS)

    Objective: To investigate the value of 99Tcm labeled survivin mRNA antisense peptide nucleic acid (PNA) as an imaging agent in the specific diagnosis for carcinoma. Methods: Survivin mRNA antisense PNA was labeled directly with 99Tcm by the ligand-exchange method. Twenty nude mice with lung carcinoma A549 xenografts were randomly divided into 4 groups. Three groups were used for biodistribution study and one group was used for imaging study. Other twenty mice infected by staphylococcus aureus underwent the same procedure. The biodistribution and imaging of 99Tcm-survivin mRNA antisense PNA was studied at 1, 2 and 4 h respectively after the intravenous injection in nude mice bearing lung carcinoma A549 xenografts or inflammation models. SPSS 13.0 was used in the study and all data were analyzed by t test. Results: Biodistribution results showed that the highest radioactivity was found in the liver,and then in the kidney. Four hours after the administration of the imaging agent, the radioactivity ratios of target-to-non target (T/NT, tumor or inflammatory lesions to the contralateral regions) in tumor model group were significantly higher than those in inflammation model group (3.69 ± 1.13 vs 2.03 ± 0.47, t=3.01, P=0.02). Tumors were clearly visible in the tumor model groups at 0.5 h and still clearly seen at 4 h after the injection of antisense PNA. On the contrary,inflammatory lesions could not be seen clearly. Conclusion: 99Tcm labeled survivin mRNA antisense PNA can be used to distinguish tumor from inflammation and it may provide a new feasible method for specific tumor diagnosis. (authors)

  13. Diversification of antisense research and development: review of the Ringberg meeting, April 1994. Mechanisms of antisense-mediated gene silencing.

    Science.gov (United States)

    Hawkins, J W; Nellen, W

    1994-01-01

    Antisense technology has established itself as a new and vibrant entrant into the discipline of molecular biology. As such, it has contributed to basic research by providing tools for the molecular dissection of diverse experimental systems. In applied research, antisense approaches have contributed to development of agricultural products (D. Grierson) now coming to market and to the design of a number of oligonucleotide drugs, now in clinical trials. However, few activities to date have focused on the study of antisense per se. Further, few conceptual perspectives have regarded antisense as an integral part of cellular function and genetic regulation. The Ringberg conference showcased a number of systems that would seem unrelated if we regard antisense as a superficial tool to be imposed on nature. On the other hand, if we want to begin to regard antisense as a field of its own with deeper biological and genetic rationales, the Ringberg meeting provided much tantalizing evidence to do so.

  14. Effects of antisense oligonucleotides targeting VEGF on radio sensitivity of uterine cervix cancer Hela cells%血管内皮生长因子反义核酸对宫颈癌Hela细胞的放射增敏作用

    Institute of Scientific and Technical Information of China (English)

    Lina Xing; Li Qi

    2009-01-01

    Objective: To determine the impact of antisense oligonucleotides targeting vascular endothelial growth factor (VEGF) on radiosensitivity of uterine cervix cancer Hela cells. Methods: VEGF antisense oligodeoxynucleotides (ASODN) was transfected into Hela cells by liposome-mediated method. Cells transfected with the oligodeoxynuclecotide and saline were used as control groups. Cells were irradiated by 6 MV X ray at the dose of 0 Gy, 2 Gy, 4 Gy and 6 Gy respectively. The expression of VEGF mRNA was determined by RT-PCR. Apoptosis were evaluated using FCM. Cloning efficiency was deter-mined by colony formation assay. Results: The expression of VEGF mRNA was inhibited by ASODN (P < 0.01) in Hela cells. The inhibited activation which was influenced by radiation resulted in increasing apoptosis (P < 0.01) and inhibiting plating efficiency (P < 0.01). Conclusion: The expression of VEGF induced by Ⅹ irradiation in Hela cells can be blocked by VEGF ASODN. Treatment with VEGF might increase apoptosis in HeLa cells and enhance radiosensitivity.

  15. Logic gates and antisense DNA devices operating on a translator nucleic Acid scaffold.

    Science.gov (United States)

    Shlyahovsky, Bella; Li, Yang; Lioubashevski, Oleg; Elbaz, Johann; Willner, Itamar

    2009-07-28

    A series of logic gates, "AND", "OR", and "XOR", are designed using a DNA scaffold that includes four "footholds" on which the logic operations are activated. Two of the footholds represent input-recognition strands, and these are blocked by complementary nucleic acids, whereas the other two footholds are blocked by nucleic acids that include the horseradish peroxidase (HRP)-mimicking DNAzyme sequence. The logic gates are activated by either nucleic acid inputs that hybridize to the respective "footholds", or by low-molecular-weight inputs (adenosine monophosphate or cocaine) that yield the respective aptamer-substrate complexes. This results in the respective translocation of the blocking nucleic acids to the footholds carrying the HRP-mimicking DNAzyme sequence, and the concomitant release of the respective DNAzyme. The released product-strands then self-assemble into the hemin/G-quadruplex-HRP-mimicking DNAzyme that biocatalyzes the formation of a colored product and provides an output signal for the different logic gates. The principle of the logic operation is, then, implemented as a possible paradigm for future nanomedicine. The nucleic acid inputs that bind to the blocked footholds result in the translocation of the blocking nucleic acids to the respective footholds carrying the antithrombin aptamer. The released aptamer inhibits, then, the hydrolytic activity of thrombin. The system demonstrates the regulation of a biocatalytic reaction by a translator system activated on a DNA scaffold. PMID:19507821

  16. Functional correction by antisense therapy of a splicing mutation in the GALT gene.

    Science.gov (United States)

    Coelho, Ana I; Lourenço, Sílvia; Trabuco, Matilde; Silva, Maria João; Oliveira, Anabela; Gaspar, Ana; Diogo, Luísa; Tavares de Almeida, Isabel; Vicente, João B; Rivera, Isabel

    2015-04-01

    In recent years, antisense therapy has emerged as an increasingly important therapeutic approach to tackle several genetic disorders, including inborn errors of metabolism. Intronic mutations activating cryptic splice sites are particularly amenable to antisense therapy, as the canonical splice sites remain intact, thus retaining the potential for restoring constitutive splicing. Mutational analysis of Portuguese galactosemic patients revealed the intronic variation c.820+13A>G as the second most prevalent mutation, strongly suggesting its pathogenicity. The aim of this study was to functionally characterize this intronic variation, to elucidate its pathogenic molecular mechanism(s) and, ultimately, to correct it by antisense therapy. Minigene splicing assays in two distinct cell lines and patients' transcript analyses showed that the mutation activates a cryptic donor splice site, inducing an aberrant splicing of the GALT pre-mRNA, which in turn leads to a frameshift with inclusion of a premature stop codon (p.D274Gfs*17). Functional-structural studies of the recombinant wild-type and truncated GALT showed that the latter is devoid of enzymatic activity and prone to aggregation. Finally, two locked nucleic acid oligonucleotides, designed to specifically recognize the mutation, successfully restored the constitutive splicing, thus establishing a proof of concept for the application of antisense therapy as an alternative strategy for the clearly insufficient dietary treatment in classic galactosemia. PMID:25052314

  17. Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly.

    OpenAIRE

    Steel, A B; Levicky, R L; Herne, T M; Tarlov, M J

    2000-01-01

    This report investigates the effect of DNA length and the presence of an anchoring group on the assembly of presynthesized oligonucleotides at a gold surface. The work seeks to advance fundamental insight into issues that impact the structure and behavior of surface-immobilized DNA layers, as in, for instance, DNA microarray and biosensor devices. The present study contrasts immobilization of single-stranded DNA (ssDNA) containing a terminal, 5' hexanethiol anchoring group with that of unfunc...

  18. Quantification of syntrophic fatty acid-beta-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    DEFF Research Database (Denmark)

    Hansen, K.W.; Ahring, Birgitte Kiær; Raskin, L.

    1999-01-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-beta-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYE, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S, wolfei LYE was closely related...... to S. wolfei subsp. wolfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas, Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-beta-oxidizing...... fatty acid-beta-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria-and methanogens were compared to specific methanogenic activities...

  19. Enzymatic Synthesis of Modified Oligonucleotides by PEAR Using Phusion and KOD DNA Polymerases

    OpenAIRE

    Wang, Xuxiang; Zhang, Jianye; Li, Yingjia; Chen, Gang; Wang, Xiaolong

    2015-01-01

    Antisense synthetic oligonucleotides have been developed as potential gene-targeted therapeutics. We previously reported polymerase–endonuclease amplification reaction (PEAR) for amplification of natural and 5′-O-(1-thiotriphosphate) (S)-modified oligonucleotides. Here, we extended the PEAR technique for enzymatic preparation of 2′-deoxy-2′-fluoro-(2′-F) and 2′-F/S double-modified oligonucleotides. The result showed that KOD and Phusion DNA polymerase could synthesize oligonucleotides with on...

  20. hPOT1 antisense-nucieic acids inhibit the proliferation of gastric cancer cell line SGC7901

    Institute of Scientific and Technical Information of China (English)

    帖君

    2006-01-01

    Objective To investigate the effect of hPOT1 (human protection of telomeres,hPOT1) on the growth and proliferation of human gastric cancer cell line SGC7901. Methods The constructed sense and antisense hPOT1 gene eukaryotic expressing vectors were transfected into SGC7901 cells respectively, and positive clones were selected by G418. Changes of hPOT1 protein expression,

  1. Gibberellic Acid, Synthetic Auxins, and Ethylene Differentially Modulate α-l-Arabinofuranosidase Activities in Antisense 1-Aminocyclopropane-1-Carboxylic Acid Synthase Tomato Pericarp Discs1

    Science.gov (United States)

    Sozzi, Gabriel O.; Greve, L. Carl; Prody, Gerry A.; Labavitch, John M.

    2002-01-01

    α-l-Arabinofuranosidases (α-Afs) are plant enzymes capable of releasing terminal arabinofuranosyl residues from cell wall matrix polymers, as well as from different glycoconjugates. Three different α-Af isoforms were distinguished by size exclusion chromatography of protein extracts from control tomatoes (Lycopersicon esculentum) and an ethylene synthesis-suppressed (ESS) line expressing an antisense 1-aminocyclopropane-1-carboxylic synthase transgene. α-Af I and II are active throughout fruit ontogeny. α-Af I is the first Zn-dependent cell wall enzyme isolated from tomato pericarp tissues, thus suggesting the involvement of zinc in fruit cell wall metabolism. This isoform is inhibited by 1,10-phenanthroline, but remains stable in the presence of NaCl and sucrose. α-Af II activity accounts for over 80% of the total α-Af activity in 10-d-old fruit, but activity drops during ripening. In contrast, α-Af III is ethylene dependent and specifically active during ripening. α-Af I released monosaccharide arabinose from KOH-soluble polysaccharides from tomato cell walls, whereas α-Af II and III acted on Na2CO3-soluble pectins. Different α-Af isoform responses to gibberellic acid, synthetic auxins, and ethylene were followed by using a novel ESS mature-green tomato pericarp disc system. α-Af I and II activity increased when gibberellic acid or 2,4-dichlorophenoxyacetic acid was applied, whereas ethylene treatment enhanced only α-Af III activity. Results suggest that tomato α-Afs are encoded by a gene family under differential hormonal controls, and probably have different in vivo functions. The ESS pericarp explant system allows comprehensive studies involving effects of physiological levels of different growth regulators on gene expression and enzyme activity with negligible wound-induced ethylene production. PMID:12114586

  2. Efficiency of cellular delivery of antisense peptide nucleic acid by electroporation depends on charge and electroporation geometry

    DEFF Research Database (Denmark)

    Joergensen, Mette; Agerholm-Larsen, Birgit; Nielsen, Peter E;

    2011-01-01

    Electroporation is potentially a very powerful technique for both in vitro cellular and in vivo drug delivery, particularly relating to oligonucleotides and their analogs for genetic therapy. Using a sensitive and quantitative HeLa cell luciferase RNA interference mRNA splice correction assay wit......, polymerase chain reaction, and confocal microscopy. In conclusion, we have found that the charge of PNA and electroporation system combination greatly influences the transfer efficiency, thereby illustrating the complexity of the electroporation mechanism....

  3. Oligonucleotide conjugates - Candidates for gene silencing therapeutics.

    Science.gov (United States)

    Gooding, Matt; Malhotra, Meenakshi; Evans, James C; Darcy, Raphael; O'Driscoll, Caitriona M

    2016-10-01

    The potential therapeutic and diagnostic applications of oligonucleotides (ONs) have attracted great attention in recent years. The capability of ONs to selectively inhibit target genes through antisense and RNA interference mechanisms, without causing un-intended sideeffects has led them to be investigated for various biomedical applications, especially for the treatment of viral diseases and cancer. In recent years, many researchers have focused on enhancing the stability and target specificity of ONs by encapsulating/complexing them with polymers or lipid chains to formulate nanoparticles/nanocomplexes/micelles. Also, chemical modification of nucleic acids has emerged as an alternative to impart stability to ONs against nucleases and other degrading enzymes and proteins found in blood. In addition to chemically modifying the nucleic acids directly, another strategy that has emerged, involves conjugating polymers/peptide/aptamers/antibodies/proteins, preferably to the sense strand (3'end) of siRNAs. Conjugation to the siRNA not only enhances the stability and targeting specificity of the siRNA, but also allows for the development of self-administering siRNA formulations, with a much smaller size than what is usually observed for nanoparticle (∼200nm). This review concentrates mainly on approaches and studies involving ON-conjugates for biomedical applications. PMID:27521696

  4. Effects of MDM2 Antisense Oligonucleotide Combined with Paclitaxel on Human Breast Cancer Cells MCF-7%MDM2反义寡核苷酸联合紫杉醇对乳腺癌MCF-7细胞株的作用

    Institute of Scientific and Technical Information of China (English)

    田国梅; 赵长久; 付鹏; 栾厦; 张月红; 吴琼

    2012-01-01

    Objective: To investigate the effects of the MDM2 antisense oligonucleotide (ASON) combined with Paclitaxel on human breast cancer cells MCF-7. Methods: The synthesis of antisense oligonucleotides specific binding of MDM2 mRNA and missense oligonucleotides(MON) different from four bases, different concentrations of MDM2 ASON mediated by Lipofectamine 2000 transfected MCF-7 breast cancer cell lines, breast cancer cells transfected by 1 μmol/L paclitaxel treatment.The expression of MDM2 mRNA and protein was determined by RT-PCR and Western blotting, To detect synergies of MDM2 ASON combined with paclitaxel and the inhibition efficiency of breast cancer cells MCF-7, the proliferation of MCF-7 cell to paclitaxe and chemosensitivity were observed by MTT assay. Results: The antisense oligonucleotide combined with Paclitaxel efficiently down-regulated MDM2 mRNA and protein expression, inhibit the growth of MCF-7 cells. MDM2 expression was getting lower and lower with the increase of the concentration of MDM2 ASON growing in a dose dependent relationship, the synergy of the A500 combined with paclitaxel was the most obvious. MTT showed that proliferation inhibition rate of MCF-7 cell transfected to pactitaxel increased significantly, A500 was the most significant effect, inhibition rate was (13.0 ± 0.84)%. Conclusion: Human breast cancer cell MCF-7 transfected was treated by a concentration of paclitaxel, MDM2 expression was significantly decreased, increased apoptosis, MDM2 ASON combined with paclitaxel on MCF-7 cells had a syn-ergistic effect, improved the sensitivity of breast cancer MCF-7 cells to paclitaxel.%目的:探讨靶向MDM2反义寡核苷酸(ASON)联合紫杉醇对乳腺癌MCF-7细胞株的影响.方法:合成一段与MDM2 mRNA特异性结合的反义寡核苷酸和与反义寡核苷酸有4个碱基不同的的错义寡核苷酸(MON),脂质体2000介导不同浓度的MDM2ASON转染MCF-7乳腺癌细胞系,转染的乳腺癌细胞通过1μmol/L紫

  5. Stimuli-Responsive Codelivery of Oligonucleotides and Drugs by Self-Assembled Peptide Nanoparticles.

    Science.gov (United States)

    Sigg, Severin J; Postupalenko, Viktoriia; Duskey, Jason T; Palivan, Cornelia G; Meier, Wolfgang

    2016-03-14

    Ever more emerging combined treatments exploiting synergistic effects of drug combinations demand smart, responsive codelivery carriers to reveal their full potential. In this study, a multifunctional stimuli-responsive amphiphilic peptide was designed and synthesized to self-assemble into nanoparticles capable of co-bearing and -releasing hydrophobic drugs and antisense oligonucleotides for combined therapies. The rational design was based on a hydrophobic l-tryptophan-d-leucine repeating unit derived from a truncated sequence of gramicidin A (gT), to entrap hydrophobic cargo, which is combined with a hydrophilic moiety of histidines to provide electrostatic affinity to nucleotides. Stimuli-responsiveness was implemented by linking the hydrophobic and hydrophilic sequence through an artificial amino acid bearing a disulfide functional group (H3SSgT). Stimuli-responsive peptides self-assembled in spherical nanoparticles in sizes (100-200 nm) generally considered as preferable for drug delivery applications. Responsive peptide nanoparticles revealed notable nucleotide condensing abilities while maintaining the ability to load hydrophobic cargo. The disulfide cleavage site introduced in the peptide sequence induced responsiveness to physiological concentrations of reducing agent, serving to release the incorporated molecules. Furthermore, the peptide nanoparticles, singly loaded or coloaded with boron-dipyrromethene (BODIPY) and/or antisense oligonucleotides, were efficiently taken up by cells. Such amphiphilic peptides that led to noncytotoxic, reduction-responsive nanoparticles capable of codelivering hydrophobic and nucleic acid payloads simultaneously provide potential toward combined treatment strategies to exploit synergistic effects. PMID:26871486

  6. Development of bis-locked nucleic acid (bisLNA) oligonucleotides for efficient invasion of supercoiled duplex DNA

    DEFF Research Database (Denmark)

    Moreno, Pedro M D; Geny, Sylvain; Pabon, Y Vladimir;

    2013-01-01

    In spite of the many developments in synthetic oligonucleotide (ON) chemistry and design, invasion into double-stranded DNA (DSI) under physiological salt and pH conditions remains a challenge. In this work, we provide a new ON tool based on locked nucleic acids (LNAs), designed for strand invasion...... into duplex DNA (DSI). We thus report on the development of a clamp type of LNA ON-bisLNA-with capacity to bind and invade into supercoiled double-stranded DNA. The bisLNA links a triplex-forming, Hoogsteen-binding, targeting arm with a strand-invading Watson-Crick binding arm. Optimization was carried out...... by varying the number and location of LNA nucleotides and the length of the triplex-forming versus strand-invading arms. Single-strand regions in target duplex DNA were mapped using chemical probing. By combining design and increase in LNA content, it was possible to achieve a 100-fold increase in potency...

  7. Antisense mediated exon skipping therapy for duchenne muscular dystrophy (DMD)

    DEFF Research Database (Denmark)

    Brolin, Camilla; Shiraishi, Takehiko

    2011-01-01

    Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutations in the dystrophin gene (DMD) that result in the absence of essential muscle protein dystrophin. Among many different approaches for DMD treatment, exon skipping, mediated by antisense oligonucleotides, is one of the most...... promising methods for restoration of dystrophin expression. This approach has been tested extensively targeting different exons in numerous models both in vitro and in vivo. During the past 10 years, there has been a considerable progress by using DMD animal models involving three types of antisense...

  8. Thermal Stability of Modified i-Motif Oligonucleotides with Naphthalimide Intercalating Nucleic Acids

    DEFF Research Database (Denmark)

    El-Sayed, Ahmed Ali; Pedersen, Erik B.; Khaireldin, Nahid Y.

    2016-01-01

    naphthalimide (1H-benzo[de]isoquinoline-1,3(2H)-dione) as the intercalating nucleic acid. The stabilities of i-motif structures with inserted naphthalimide intercalating nucleotides were studied using UV melting temperatures (Tm) and circular dichroism spectra at different pH values and conditions (crowding and...

  9. Monoclonal antibodies targeted to alpha-oligonucleotides. Characterisation and application in nucleic acid detection.

    OpenAIRE

    Cros, P.; Kurfürst, R; Allibert, P; Battail, N; Piga, N; Roig, V; Thuong, N T; Mandrand, B; Hélène, C

    1994-01-01

    The aim of the present study was to test the antigenicity of alpha-deoxyribonucleotides in order to develop a new tool for the detection of nucleic acid sequences for use in diagnostic applications. We describe four monoclonal antibodies (Mabs) which recognize alpha-deoxyribonucleotides. Two were raised against a poly(alpha-dT) sequence and specifically recognized the alpha-dT nucleotide. Two were raised against a sequence containing all four common nucleotides as alpha-nucleotides and, surpr...

  10. Studies of Liposomal bcl-2 Antisense Oligode-oxynucleofide Induction of Apoptosis in Raji Cells

    Institute of Scientific and Technical Information of China (English)

    DongmeiHe; HuanZhong

    2004-01-01

    OBJECTIVE To explore the effect of liposomal G3139 and transfected antisense phosphorothioate oligodeoxynucleotides directed against the coding region of the bcl-2 messenger RNA and the translation site on apoptosis in Raji cells.METHODS Cytotoxic effects were measured by use of the MTT method; The expression levels of Bcl-2 protein were assayed by immunofiuorescence using a fluoresce isothiocyanate label. Apoptosis was determined by morphological observation and flow cytometric analysis.RESULTS The 2 antisense oligonucleotides and G3139 can reduce Bcl-2 protein levels and Raji cell viability (IC50=4.54, 4.72 and 4.26 μmol/L, respectively), and induce apoptosis. A scrambled sequence control oligonucleotide and empty liposomes did not alter cell viability, Bcl-2 protein expression or apoptosis rates. There was no difference in reducing Bcl-2 protein levels and apoptosis rates found among the 3 antisense oligonucleotides.CONCLUSION The 2 antisense oligodeoxynucleotides of bcl-2 messenger RNA can effectively induce apoptosis of Raji cells. The 2 antisense sequences and G3139 have a similarity in their antisense effect.

  11. Antisense mediated exon skipping therapy for duchenne muscular dystrophy (DMD)

    OpenAIRE

    Brolin, Camilla; Shiraishi, Takehiko

    2011-01-01

    Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutations in the dystrophin gene (DMD) that result in the absence of essential muscle protein dystrophin. Among many different approaches for DMD treatment, exon skipping, mediated by antisense oligonucleotides, is one of the most promising methods for restoration of dystrophin expression. This approach has been tested extensively targeting different exons in numerous models both in vitro and in vivo. During the past 10 years, th...

  12. Progress in therapeutic antisense applications for neuromuscular disorders

    OpenAIRE

    Aartsma-Rus, Annemieke; van Ommen, Gert-Jan B.

    2009-01-01

    Neuromuscular disorders are a frequent cause of chronic disability in man. They often result from mutations in single genes and are thus, in principle, well suited for gene therapy. However, the tissues involved (muscle and the central nervous system) are post-mitotic, which poses a challenge for most viral vectors. In some cases, alternative approaches may use small molecules, for example, antisense oligonucleotides (AONs). These do not deliver a new gene, but rather modulate existing gene p...

  13. Antisense mRNA for NPY-Y1 receptor in the medial preoptic area increases prolactin secretion

    Directory of Open Access Journals (Sweden)

    N.A. Silveira

    1999-09-01

    Full Text Available We investigated the participation of neuropeptide Y-Y1 receptors within the medial preoptic area in luteinizing hormone, follicle-stimulating hormone and prolactin release. Four bilateral microinjections of sense (control or antisense 18-base oligonucleotides of messenger ribonucleic acid (mRNA (250 ng corresponding to the NH2-terminus of the neuropeptide Y1 receptor were performed at 12-h intervals for two days into the medial preoptic area of ovariectomized Wistar rats (N = 16, weighing 180 to 200 g, treated with estrogen (50 µg and progesterone (25 mg two days before the experiments between 8.00 and 10:00 a.m. Blockade of Y1 receptor synthesis in the medial preoptic area by the antisense mRNA did not change plasma luteinizing hormone or follicle-stimulating hormone but did increase prolactin from 19.6 ± 5.9 ng/ml in the sense group to 52.9 ± 9.6 ng/ml in the antisense group. The plasma hormones were measured by radioimmunoassay and the values are reported as mean ± SEM. These data suggest that endogenous neuropeptide Y in the medial preoptic area has an inhibitory action on prolactin secretion through Y1 receptors.

  14. EFFECT OF TWO NEW BCL-2 ANTISENSES ON DRUG-SENSITIVITY OF CELLS FROMN LEUKEMIA PATIENTS

    Institute of Scientific and Technical Information of China (English)

    LEI Xiao-yong; ZHANG Huan

    2005-01-01

    Objective:To investigate the effect of two antisense oligonucleotides on cell surviving, bcl-2 expression and apoptosis of leukemia cells. Methods: The experimental assays were performed with cell culture, immunochemistry and flowcytometry. Results: The two antisense oligodeoxynucleotides, combined with Vp16 or Ara-c or DNR, were able to decline the survival rate of myeleukemic cells, downregulate bcl-2 gene expression and induce apoptosis of leukemic cells significantly, as compared with Vp16 or Ara-c or DNR alone. Conclusion: It is possible for the two new bcl-2 antisenses to be developed into clinical trials for leukemia and tumor with bcl-2 gene overexpression.

  15. Construction of Prokaryotic Expressing Vector of Antisense Nucleic Acid of LasR and Its Effect on the Virulence of Pseudomonas Aeruginosus

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ling; ZHOU Junli; LI Jingming; LIAO Fang

    2007-01-01

    To construct a pUCP18/lasRantisense plasmid carrying the reversed gene and analyze its effect on the virulence of Pseudomonas aeruginosus, LasR gene was amplified from the genome of Pseudomonas aeruginosus by PCR and reversely recombined with plasmid pUCP18. The recombinant pUCP18/lasRantisense was verified by enzyme digestion, PCR and sequencing. The biological effects of pUCP18/lasRantisense were examined by using RT-PCR, NAD method and the assay of pyocyanin. Our results showed that the expected full length lasR fragment (721 bp) was extended from Pseudomonas aeruginosus gene with PCR. And it is consistent with LasR gene of Pseudomonas aeruginosa in GenBank (No. NC_002516). The recombinant plasmid was successfully constructed and transferred into Pseudomonas aeruginosus. The antisense nucleic acid of LasR gene could reduce the virulence of Pseudomonas aeruginosus and might serve as a new target site for treatment purpose.

  16. Sense-, antisense- and RNAi-4CL1 regulate soluble phenolic acids, cell wall components and growth in transgenic Populus tomentosa Carr.

    Science.gov (United States)

    Tian, Xiaoming; Xie, Jin; Zhao, Yanling; Lu, Hai; Liu, Shichang; Qu, Long; Li, Jianmei; Gai, Ying; Jiang, Xiangning

    2013-04-01

    Regulation of lignin biosynthesis affects plant growth and wood properties. Transgenic downregulation of 4-coumarate:coenzyme A ligase (4CL, EC 6.2.1.12) may reduce lignin content in cell walls, which could improve the qualities of pulp in papermaking and increase the efficiency of bioenergy applications. To determine the effects of Ptc4CL1 on lignin biosynthesis and plant growth, Populus tomentosa Carr. was transformed using sense-, antisense-, and RNAi-4CL1 genes. The growth properties, gene expression, enzyme activity, lignin content and composition and content of soluble phenolic acids were investigated in 1-year-old field-grown transgenic poplar trees. Transgenic up- and down-regulation of 4CL1 altered lignin content and composition in transgenic poplars, but there were no negative effects on the growth of transgenic plants. In addition, the severe changes in auxin observed in transgenic lines led to significantly enhanced growth performance. Furthermore, lignin content was tightly correlated with the alteration of 4CL1 enzymatic activity, which was correlated with 4CL1 gene expression. A significant increase in S units in lignin with a slight increase in sinapic acid was observed in 4CL1 down-regulated transgenic poplars. These results suggest that 4CL1 is a traffic control gene in monolignol biosynthesis and confirm that 4CL1 activity has been implicated with sinapoyl activation. Finally, our data demonstrate that there is cross-correlation among 4CL1 gene expression, 4CL1 enzyme activity, soluble phenolic acid, lignin monomer biosynthesis, and lignin content. PMID:23434928

  17. MPC30-DEA70-loaded transforming growth factor beta1 antisense oligonucleotide for transfection of cardiomyocytes%磷酸胆碱聚合物MPC30-DEA70负载转化生长因子β1AS-ODN转染心肌细胞

    Institute of Scientific and Technical Information of China (English)

    杨煜; 张敏; 徐建荣; 林雪烽; 赵侠; 王志荣; 曹希传; 张卓琦

    2015-01-01

    BACKGROUND:Currently, antisense oligonucleotides (AS-ODN) have a good prospect in gene therapy, but AS-ODN with smal molecular weight cannot easily enter into the cels, which is susceptible to nuclease degradation. Therefore, there is stil a lack of fundamental understanding about how to improve their transfection efficiency, and target-based transferring. OBJECTIVE:To investigate whether a weak cationic and phosphorylcholine-containing diblock copolymer (MPC30-DEA70) can act as a carrier system to deliver a chemicaly synthesized transforming growth factor-β1 (TGF-β1) AS-ODN into myocardial cels. METHODS: MPC30-DEA70 was compounded with TGF-β1 AS-ODN at various N/P ratios and the MPC30-DEA70/TGF-β1 AS-ODN complexes were characterized by DNA electrophoresis. MTT assay was used to observe the biocompatibility. Confocal laser scanning microscope was used to observe the distribution and location of MPC30- DEA70/TGF-β1 AS-ODN in cells. Flow cytometry was used to detect the transfection efficiency and fluorescence intensity of MPC30-DEA70/TGF-β1 AS-ODN in cells. Western blot and RT-PCR methods were employed to measure the expression of TGF-β1 in cells. RESULTS AND CONCLUSION: Cell growth inhibition showed that the MPC30-DEA70 had low cytotoxicity to myocardial cells within the effective transfection dosage range (20 mg/L)下才表现出一定的细胞毒性并呈剂量依赖;MPC30-DEA70/TGF-β1AS-ODN 复合物对心肌细胞具有较高的转染效率,并且能够携带转化生长因子β1 AS-ODN进入细胞后下调转化生长因子β1 mRNA和蛋白的表达。新型阳离子磷酸胆碱基聚合物MPC30-DEA70可以有效负载和运输转化生长因子。

  18. HIF-1α反义寡核苷酸对骨肉瘤细胞系MG-63 HIF-1α和VEGF表达的影响%Effects of HIF-1α Antisense Oligonucleotides on the Expression of HIF-1α and VEGF in the Osteosarcoma Cell Line MG-63

    Institute of Scientific and Technical Information of China (English)

    蔡文涛; 陈安民; 郭风劲; 朱波

    2006-01-01

    目的:观察缺氧诱导因子HIF-1α反义寡核苷酸(antisense oligonucleotides,ASODN)在缺氧环境下对骨肉瘤细胞系MG-63 HIF-1α和血管内皮生长因子VEGF表达的影响.方法:设计针对HIF-1αRNA亚基模板序列的反义、正义寡核苷酸(sense oligodeoxynucleotides,SODN),并建立骨肉瘤细胞体外缺氧培养模型,观察缺氧培养不同时相HIF-1α反义寡核苷酸对骨肉瘤细胞系MG-63 HIF-1α和VEGF的表达的影响.RT-PCR方法检测HIF-1α和VEGF mRNA水平,免疫组化和免疫印迹方法检测HIF-1α和VEGF蛋白表达情况.结果:与常氧组比较,单纯缺氧组及SODN缺氧组的HIF-1α转录水平未见明显改变,蛋白表达水平却随缺氧时间延长明显升高;而VEGF mRNA以及蛋白的表达水平较常氧组均显著增强.然而在ASODN缺氧组,HIF-1α、VEGF mRNA活性以及蛋白的表达水平明显减弱,且HIF-1α蛋白水平与VEGF转录活性有明显的相关性.结论:在缺氧环境下,转染HIF-1α反义寡核苷酸能够抑制HIF-1α活性,从而使VEGF mRNA和蛋白的表达水平明显下降.

  19. Targeting chromosomal sites with locked nucleic acid-modified triplex-forming oligonucleotides: study of efficiency dependence on DNA nuclear environment

    OpenAIRE

    Brunet, Erika; Corgnali, Maddalena; Cannata, Fabio; Perrouault, Loïc; Giovannangeli, Carine

    2006-01-01

    Triplex-forming oligonucleotides (TFOs) are synthetic DNA code-reading molecules that have been demonstrated to function to some extent in chromatin within cell nuclei. Here we have investigated the impact of DNA nuclear environment on the efficiency of TFO binding. For this study we have used locked nucleic acid-containing TFOs (TFO/LNAs) and we report the development of a rapid PCR-based method to quantify triplex formation. We have first compared triplex formation on genes located at diffe...

  20. TSUNAMI: an antisense method to phenocopy splicing-associated diseases in animals

    OpenAIRE

    Sahashi, Kentaro; Hua, Yimin; Ling, Karen K Y; Hung, Gene; Rigo, Frank; Horev, Guy; Katsuno, Masahisa; Sobue, Gen; Ko, Chien-Ping; Bennett, C. Frank; Krainer, Adrian R.

    2012-01-01

    This study presents an antisense oligonucleotide methodology to phenocopy a disease—in this case, the motor neuron disease spinal muscular atrophy in mice. Sahashi et al. show that it is possible to fine-tune disease severity through dose-dependent effects on RNA splicing, making this a novel animal model for monitoring disease onset and progression as well as testing candidate therapeutics.

  1. [Exon skipping therapy for Duchenne muscular dystrophy by using antisense Morpholino].

    Science.gov (United States)

    Takeda, Shin'ichi

    2009-11-01

    Duchenne muscular dystrophy (DMD) is caused by the lack of dystrophin protein at the sarcolemma. Exon skipping by antisense oligonucleotides is a novel method to restore the reading frame of the mutated DMD gene, and rescue dystrophin production. We recently reported that systemic delivery of Morpholino antisense oligonucleotides targeting exon 6 and 8 of the canine DMD gene, efficiently recovered functional dystrophin proteins at the sarcolamma of dystrophic dogs, and improved performance of affected dogs without serious side effects (Yokota et al., Ann Neurol. 65 (6): 667-676, 2009). To optimize therapeutic antisense Morpholinos for more frequent mutations of the DMD gene, we designed antisense Morpholinos targeting exon 51 of the mouse DMD gene, and injected them separately or in combination into the muscles of mdx52 mice, in which exon 52 has been deleted by a gene targeting technique (Araki et al., 1997). We also tried systemic delivery of antisense Morpholino to skip exon 51 in mdx52 mice. It is important to verify the effectiveness and side effects of antisense Morpholino in experimental animal models such as dystrophic dogs or mdx52 mice, before clinical trials in DMD patients. PMID:20030230

  2. Inhibiting the growth of methicillin-resistant Staphylococcus aureus in vitro with antisense peptide nucleic acid conjugates targeting the ftsZ gene

    Directory of Open Access Journals (Sweden)

    Shumei Liang

    2015-01-01

    Conclusion: Our results demonstrate that the potent effects of PNAs on bacterial growth and cell viability were mediated by the down-regulation or even knock-out of ftsZ gene expression. This highlights the utility of ftsZ as a promising target for the development of new antisense antibacterial agents to treat MRSA infections.

  3. Identification and characterization of high affinity antisense PNAs for the human unr (upstream of N-ras) mRNA which is uniquely overexpressed in MCF-7 breast cancer cells.

    Science.gov (United States)

    Fang, Huafeng; Yue, Xuan; Li, Xiaoxu; Taylor, John-Stephen

    2005-01-01

    We have recently shown that an MCF-7 tumor can be imaged in a mouse by PET with 64Cu-labeled Peptide nucleic acids (PNAs) tethered to the permeation peptide Lys4 that recognize the uniquely overexpressed and very abundant upstream of N-ras or N-ras related gene (unr mRNA) expressed in these cells. Herein we describe how the high affinity antisense PNAs to the unr mRNA were identified and characterized. First, antisense binding sites on the unr mRNA were mapped by an reverse transcriptase random oligonucleotide library (RT-ROL) method that we have improved, and by a serial analysis of antisense binding sites (SAABS) method that we have developed which is similar to another recently described method. The relative binding affinities of oligodeoxynucleotides (ODNs) complementary to the antisense binding sites were then qualitatively ranked by a new Dynabead-based dot blot assay. Dissociation constants for a subset of the ODNs were determined by a new Dynabead-based solution assay and were found to be 300 pM for the best binders in 1 M salt. PNAs corresponding to the ODNs with the highest affinities were synthesized with an N-terminal CysTyr and C-terminal Lys4 sequence. Dissociation constants of these hybrid PNAs were determined by the Dynabead-based solution assay to be about 10 pM for the highest affinity binders. PMID:16314303

  4. c-FLIP antisense oligonucleotide-loaded nanoparticles inhibit growth of human orbital rhabdomyosarcoma xenograft in nude mice%c-FLIP反义寡核苷酸纳米粒抑制人眼眶横纹肌肉瘤裸鼠移植瘤的生长

    Institute of Scientific and Technical Information of China (English)

    梁莉; 魏锐利

    2013-01-01

    Objective To investigate the effect of cellular Fas-associated death domain-like interleukin-1β-converting enzyme-inhibitory protein (c-FLIP) antisense oligonucleotide (ASODN)-loaded nanoparticles (NP) on the human orbital rhabdomyosarcoma xenograft in nude mice,so as to assess the feasibility of nanoparticles as a gene vector.Methods The model of human orbital rhabdomyosarcoma xenograft was established in nude mice,and the tumors were injected with c-FLIP ASODN NP,c-FLIP ASODN or normal saline (NS).The tumor volume and histopathological changes of tumor were observed.Western blotting analysis and immunohistochemical analysis were used to examine the expression of c-FLIP in tumor tissues of each group.Apoptosis of tumor cells was detected using TUNEL method.Results The growth of human orbital rhabdomyosarcoma in nude mice was significantly inhibited in ASODN NP group compared with the other two groups.Western blotting analysis showed that c-FLIP protein expression in ASODN NP and ASODN groups was significantly decreased compared with NS group (P<0.05).Immunohistochemical study showed that c-FLIP expression was found in the endochylema,and the c-FLIP positive cells in ASODN NP group was significantly less than those in the other two groups (P<0.05).Tumor cell apoptosis was observed in both ASODN NP and ASODN groups,with more found in the former,and only a few apoptotic cells were found in the NS group.Conclusion c-FLIP ASODN NP can effectively inhibit the growth of human orbital rhabdomyosarcoma xenograft in nude mice,indicating that nanoparticles may serve as a safe and effective vector for ASODN.%目的 探讨c-FLIP反义寡核苷酸(c-FLIP ASODN)纳米粒(NP)对裸鼠体内人眼眶横纹肌肉瘤移植瘤生长的影响,评估纳米粒作为基因载体的可行性.方法 皮下种植法建立裸鼠人眼眶横纹肌肉瘤动物模型,瘤体内分别注射c-FLIP反义寡核苷酸纳米粒(ASODN NP组)、未包裹的c-FLIP反义寡核苷酸(ASODN组)及生

  5. Enhanced cellular delivery of cell-penetrating peptide-peptide nucleic acid conjugates by photochemical internalization

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    )) or tetraphenylporphyrin tetrasulfonic acid (TPPS). Cellular uptake of the PNA conjugates were evaluated by using a sensitive cellular method with HeLa pLuc705 cells based on the splicing correction of luciferase gene by targeting antisense oligonucleotides to a cryptic splice site of the mutated luciferase gene....... The cellular efficacy of CPP conjugates were evaluated by measuring luciferase activity as a result of splicing correction and was also confirmed by RT-PCR analysis of luciferase pre-mRNA....

  6. Ca2+ enrichment in culture medium potentiates effect of oligonucleotides.

    Science.gov (United States)

    Hori, Shin-Ichiro; Yamamoto, Tsuyoshi; Waki, Reiko; Wada, Shunsuke; Wada, Fumito; Noda, Mio; Obika, Satoshi

    2015-10-30

    Antisense and RNAi-related oligonucleotides have gained attention as laboratory tools and therapeutic agents based on their ability to manipulate biological events in vitro and in vivo. We show that Ca(2+) enrichment of medium (CEM) potentiates the in vitro activity of multiple types of oligonucleotides, independent of their net charge and modifications, in various cells. In addition, CEM reflects in vivo silencing activity more consistently than conventional transfection methods. Microscopic analysis reveals that CEM provides a subcellular localization pattern of oligonucleotides resembling that obtained by unassisted transfection, but with quantitative improvement. Highly monodispersed nanoparticles ~100 nm in size are found in Ca(2+)-enriched serum-containing medium regardless of the presence or absence of oligonucleotides. Transmission electron microscopy analysis reveals that the 100-nm particles are in fact an ensemble of much smaller nanoparticles (ϕ ∼ 15 nm). The presence of these nanoparticles is critical for the efficient uptake of various oligonucleotides. In contrast, CEM is ineffective for plasmids, which are readily transfected via the conventional calcium phosphate method. Collectively, CEM enables a more accurate prediction of the systemic activity of therapeutic oligonucleotides, while enhancing the broad usability of oligonucleotides in the laboratory. PMID:26101258

  7. Ca2+ enrichment in culture medium potentiates effect of oligonucleotides.

    Science.gov (United States)

    Hori, Shin-Ichiro; Yamamoto, Tsuyoshi; Waki, Reiko; Wada, Shunsuke; Wada, Fumito; Noda, Mio; Obika, Satoshi

    2015-10-30

    Antisense and RNAi-related oligonucleotides have gained attention as laboratory tools and therapeutic agents based on their ability to manipulate biological events in vitro and in vivo. We show that Ca(2+) enrichment of medium (CEM) potentiates the in vitro activity of multiple types of oligonucleotides, independent of their net charge and modifications, in various cells. In addition, CEM reflects in vivo silencing activity more consistently than conventional transfection methods. Microscopic analysis reveals that CEM provides a subcellular localization pattern of oligonucleotides resembling that obtained by unassisted transfection, but with quantitative improvement. Highly monodispersed nanoparticles ~100 nm in size are found in Ca(2+)-enriched serum-containing medium regardless of the presence or absence of oligonucleotides. Transmission electron microscopy analysis reveals that the 100-nm particles are in fact an ensemble of much smaller nanoparticles (ϕ ∼ 15 nm). The presence of these nanoparticles is critical for the efficient uptake of various oligonucleotides. In contrast, CEM is ineffective for plasmids, which are readily transfected via the conventional calcium phosphate method. Collectively, CEM enables a more accurate prediction of the systemic activity of therapeutic oligonucleotides, while enhancing the broad usability of oligonucleotides in the laboratory.

  8. Undetected antisense tRNAs in mitochondrial genomes?

    Directory of Open Access Journals (Sweden)

    Seligmann Hervé

    2010-06-01

    Full Text Available Abstract Background The hypothesis that both mitochondrial (mt complementary DNA strands of tRNA genes code for tRNAs (sense-antisense coding is explored. This could explain why mt tRNA mutations are 6.5 times more frequently pathogenic than in other mt sequences. Antisense tRNA expression is plausible because tRNA punctuation signals mt sense RNA maturation: both sense and antisense tRNAs form secondary structures potentially signalling processing. Sense RNA maturation processes by default 11 antisense tRNAs neighbouring sense genes. If antisense tRNAs are expressed, processed antisense tRNAs should have adapted more for translational activity than unprocessed ones. Four tRNA properties are examined: antisense tRNA 5' and 3' end processing by sense RNA maturation and its accuracy, cloverleaf stability and misacylation potential. Results Processed antisense tRNAs align better with standard tRNA sequences with the same cognate than unprocessed antisense tRNAs, suggesting less misacylations. Misacylation increases with cloverleaf fragility and processing inaccuracy. Cloverleaf fragility, misacylation and processing accuracy of antisense tRNAs decrease with genome-wide usage of their predicted cognate amino acid. Conclusions These properties correlate as if they adaptively coevolved for translational activity by some antisense tRNAs, and to avoid such activity by other antisense tRNAs. Analyses also suggest previously unsuspected particularities of aminoacylation specificity in mt tRNAs: combinations of competition between tRNAs on tRNA synthetases with competition between tRNA synthetases on tRNAs determine specificities of tRNA amino acylations. The latter analyses show that alignment methods used to detect tRNA cognates yield relatively robust results, even when they apparently fail to detect the tRNA's cognate amino acid and indicate high misacylation potential. Reviewers This article was reviewed by Dr Juergen Brosius, Dr Anthony M Poole and

  9. Transfection of hypertrophic cardiac myocytes in vitro with 99Tcm-labeled antisense miR208b oligonucleotide%99Tcm标记反义miR208b寡核苷酸及其转染离体肥大心肌细胞的实验研究

    Institute of Scientific and Technical Information of China (English)

    王静; 冯会娟; 欧阳伟; 孙云钢; 吴菊清; 陈盼

    2015-01-01

    Objective To test the efficiency of transfecting 9 Tcm-labeled anti-miR208b oligonucleotide into early hypertrophic cardiac myocytes in vitro. Methods The anti-oligonucleotide targeting miR208b (AMO) was synthesized and modified with LNA followed by conjugation with N-hydroxysuccinimidyl S-acetyl-meraptoacetyl triglycine (NHS-MAG3) and radiolabeling with 9 Tcm. NHS-MAG3-LNA-AMO and labeled AMO were purified with Sep-Pak C18 column chromatography, and the former was examined for UV absorption at the 260 nm using Gene Quant DNA/RNA calculator. The labeling efficiency, radiochemical purity, stability and molecular hybridization activity were analyzed. An angiotensin II-induced cell model of hypertrophic cardiac myocytes was transfected with 9 Tcm-NHS-MAG3-LNA-AMO via liposome, and the relative expression of miRNA208b and retention ratio of the labeled AMO in early hypertrophic cells were determined. Results The labeling efficiency and radiochemical purity of the labeled AMO after purification exceeded 84% and 86%, respectively. The radio-chemical purities of the labeled AMO incubated in serum and normal saline for 12 h were both higher than 80%, and the labeled AMO showed a capacity to hybridize with the target gene. In the hypertrophic model of cardiac myocytes, the retention ratio of labeled AMO at 6 h was higher than 20%. Conclusion The 9 Tcm-labeled antisense probe can be efficiently transfected into hypertrophic cardiac myocytes in vitro, which provides an experimental basis for subsequent radionuclide imaging studies.%目的:探索用放射性核素99Tcm标记反义miR208b寡核苷酸,并转染离体早期肥大心肌细胞的实验过程及方法。方法合成针对miR208b的反义miR寡核苷酸(AMO),LNA(带锁核酸)修饰AMO,将双功能螯合剂NHS-MAG3(N-羟基琥珀酰亚胺-巯基乙酰基三甘氨酸)与LNA-AMO偶联后,用99Tcm标记,然后用Sep-Pak C18反相层析法对NHS-MAG3-LNA-AMO及其标记物进行洗

  10. Synthesis of Biotin Linkers with the Activated Triple Bond Donor [p-(N-propynoylaminotoluic Acid] (PATA for Efficient Biotinylation of Peptides and Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Martina Jezowska

    2012-11-01

    Full Text Available Biotin is an important molecule for modern biological studies including, e.g., cellular transport. Its exclusive affinity to fluorescent streptavidin/avidin proteins allows ready and specific detection. As a consequence methods for the attachment of biotin to various biological targets are of high importance, especially when they are very selective and can also proceed in water. One useful method is Hüisgen dipolar [3+2]-cycloaddition, commonly referred to as “click chemistry”. As we reported recently, the activated triple bond donor p-(N-propynoylaminotoluic acid (PATA gives excellent results when used for conjugations at submicromolar concentrations. Thus, we have designed and synthesized two biotin linkers, with different lengths equipped with this activated triple bond donor and we proceeded with biotinylation of oligonucleotides and C-myc peptide both in solution and on solid support with excellent yields of conversion.

  11. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte;

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...... improve biomolecular recognition by synthetic nucleic acid analogues. Circular dichroism (CD) measurements showed no distortion of the duplex structure by the incorporated peptide chains while studies in human serum indicated superior stability of the POCs compared to LNA/DNA mixmers and unmodified DNA...

  12. Design and analysis of effects of triplet repeat oligonucleotides in cell models for myotonic dystrophy

    NARCIS (Netherlands)

    Gonzalez-Barriga, A.; Mulders, S.A.M.; Giessen, J. van der; Hooijer, J.D.; Bijl, S.; Kessel, I.D.G. van; Beers, J. van; Deutekom, J.C. van; Fransen, J.A.M.; Wieringa, B.; Wansink, D.G.

    2013-01-01

    Myotonic dystrophy type 1 (DM1) is caused by DM protein kinase (DMPK) transcripts containing an expanded (CUG)n repeat. Antisense oligonucleotide (AON)-mediated suppression of these mutant RNAs is considered a promising therapeutic strategy for this severe disorder. Earlier, we identified a 2'-O-met

  13. Modulating anti-MicroRNA-21 activity and specificity using oligonucleotide derivatives and length optimization

    DEFF Research Database (Denmark)

    Munoz-Alarcon, Andres; Guterstam, Peter; Romero, Cristian;

    2012-01-01

    MicroRNAs are short, endogenous RNAs that direct posttranscriptional regulation of gene expression vital for many developmental and cellular functions. Implicated in the pathogenesis of several human diseases, this group of RNAs provides interesting targets for therapeutic intervention. Anti......-microRNA oligonucleotides constitute a class of synthetic antisense oligonucleotides used to interfere with microRNAs. In this study, we investigate the effects of chemical modifications and truncations on activity and specificity of anti-microRNA oligonucleotides targeting microRNA-21. We observed an increased activity...

  14. In vitro detection of mdr1 mRNA in murine leukemia cells with {sup 111}In-labeled oligonucleotide

    Energy Technology Data Exchange (ETDEWEB)

    Bai Jingming; Yokoyama, Kunihiko; Kinuya, Seigo; Michigishi, Takatoshi; Tonami, Norihisa [Kanazawa University Graduate School of Medical Sciences, Department of Biotracer Medicine (Nuclear Medicine), Kanazawa (Japan); Shiba, Kazuhiro [Kanazawa University, Radioisotope Center, Kanazawa (Japan); Matsushita, Ryo [Kanazawa University, Laboratory for Development of Medicine, Faculty of Pharmaceutical Sciences, Kanazawa (Japan); Nomura, Masaaki [Kanazawa University Hospital, Hospital Pharmacy, Kanazawa (Japan)

    2004-11-01

    The feasibility of intracellular mdr1 mRNA expression detection with radiolabeled antisense oligonucleotide (ODN) was investigated in the murine leukemia cell line, P388/S, and its subclonal, adriamycin-resistant cell line, P388/R. The expression level of mdr1 mRNA was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Existence of the multidrug resistance (MDR) phenomenon was assessed via cellular uptake of {sup 99m}Tc-sestamibi (MIBI), a known substrate for P-glycoprotein. A 15-mer phosphorothioate antisense ODN complementary to the sequences located at -1 to 14 of mdr1 mRNA and its corresponding sense ODN were conjugated with the cyclic anhydride of diethylene triamine penta-acetic acid (cDTPA) via an amino group linked to the terminal phosphate at the 5' end at pH 8-9. The DTPA-ODN complexes at concentrations of 0.1-17.4 {mu}Mwere reacted with {sup 111}InCl{sub 3} at pH 5 for 1 h. The hybridization affinity of labeled ODN was evaluated with size-exclusion high-performance liquid chromatography following incubation with the complementary sequence. Cellular uptake of labeled ODN was examined in vitro. Furthermore, enhancing effects of synthetic lipid carriers (Transfast) on transmembrane delivery of ODN were assessed. P388/R cells displayed intense mdr1 mRNA expression in comparison with P388/S cells. {sup 99m}Tc-MIBI uptake in P388/S cells was higher than that in P388/R cells. Specific radioactivity up to 1,634 MBq/nmol was achieved via elevation of added radioactivity relative to ODN molar amount. The hybridization affinity of antisense {sup 111}In-ODN was preserved at approximately 85% irrespective of specific activity. Cellular uptake of antisense {sup 111}In-ODN did not differ from that of sense {sup 111}In-ODN in either P388/S cells or P388/R cells. However, lipid carrier incorporation significantly increased transmembrane delivery of {sup 111}In-ODN; moreover, specific uptake of antisense {sup 111}In-ODN was demonstrated in P388/R

  15. Mucin-mediated nanocarrier disassembly for triggered uptake of oligonucleotides as a delivery strategy for the potential treatment of mucosal tumours

    Science.gov (United States)

    Martirosyan, A.; Olesen, M. J.; Fenton, R. A.; Kjems, J.; Howard, K. A.

    2016-06-01

    This work demonstrates gastric mucin-triggered nanocarrier disassembly for release of antisense oligonucleotides and consequent unassisted cellular entry as a novel oral delivery strategy. A fluorescence activation-based reporter system was used to investigate the interaction and mucin-mediated disassembly of chitosan-based nanocarriers containing a 13-mer DNA oligonucleotide with a flanked locked RNA nucleic acid gapmer design. Gastric mucins were shown to trigger gapmer release from nanocarriers that was dependent on the interaction time, mucin concentration and N : P ratio with a maximal release at N : P 10. In contrast to siRNA, naked gapmers exhibited uptake into mucus producing HT-MTX mono-cultures and HT-MTX co-cultured with the carcinoma epithelial cell line Caco-2. Importantly, in vivo gapmer uptake was observed in epithelial tissue 30 min post-injection in murine intestinal loops. The findings present a mucosal design-based system tailored for local delivery of oligonucleotides that may maximize the effectiveness of gene silencing therapeutics within tumours at mucosal sites.This work demonstrates gastric mucin-triggered nanocarrier disassembly for release of antisense oligonucleotides and consequent unassisted cellular entry as a novel oral delivery strategy. A fluorescence activation-based reporter system was used to investigate the interaction and mucin-mediated disassembly of chitosan-based nanocarriers containing a 13-mer DNA oligonucleotide with a flanked locked RNA nucleic acid gapmer design. Gastric mucins were shown to trigger gapmer release from nanocarriers that was dependent on the interaction time, mucin concentration and N : P ratio with a maximal release at N : P 10. In contrast to siRNA, naked gapmers exhibited uptake into mucus producing HT-MTX mono-cultures and HT-MTX co-cultured with the carcinoma epithelial cell line Caco-2. Importantly, in vivo gapmer uptake was observed in epithelial tissue 30 min post-injection in murine intestinal

  16. The tetramethylammonium chloride method for screening of cDNA libraries using highly degenerate oligonucleotides obtained by backtranslation of amino-acid sequences

    DEFF Research Database (Denmark)

    Honoré, B; Madsen, Peder; Leffers, H

    1993-01-01

    filters were prehybridized in buffered sodium chloride and hybridized with labelled oligonucleotide in buffer containing 3 M TMAC. In TMAC the melting temperature of the oligonucleotide is independent of the G + C content, thus only depending on the length. This was confirmed by the cloning of 13 specific...

  17. Synthesis of a new intercalating nucleic acid 6H-INDOLO[2,3-b] quinoxaline oligonucleotides to improve thermal stability of Hoogsteen-type triplexes.

    Science.gov (United States)

    Osman, Amany M A; Pedersen, Erik B; Bergman, Jan

    2013-01-01

    A new intercalating nucleic acid monomer X was obtained in high yield starting from alkylation of 4-iodophenol with (S)-(+)-2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethanol under Mitsunobu conditions followed by hydrolysis with 80% aqueous acetic acid to give a diol which was coupled under Sonogashira conditions with trimethylsilylacetylene (TMSA) to achieve the TMS protected (S)-4-(4-((trimethylsilyl)ethynyl)phenoxy)butane-1,2-diol. Tetrabutylammonium flouride was used to remove the silyl protecting group to obtain (S)-4-(4-ethynylphenoxy)butane-1,2-diol which was coupled under Sonogashira conditions with 2-(9-bromo-6H-indolo[2,3-b]quinoxalin-6-yl)-N,N-dimethylethanamine to achieve (S)-4-(4-((6-(2-(dimethylamino)ethyl)-6H-indolo[2,3-b]quinoxalin-9-yl)ethynyl)phenoxy)butane-1,2-diol. This compound was tritylated with 4,4'-dimethoxytrityl chloride followed by treatment with 2-cyanoethyltetraisopropylphosphordiamidite in the presence of N,N'-diisopropyl ammonium tetrazolide to afford the corresponding phosphoramidite. This phosphoramidite was used to insert the monomer X into an oligonucleotide which was used for thermal denaturation studies of a corresponding parallel triplex.

  18. Sense antisense DNA strand?

    Science.gov (United States)

    Boldogkói, Z; Kaliman, A V; Murvai, J; Fodor, I

    1994-01-01

    Recent evidence indicates that alphaherpesviruses express latency associated transcripts (LATs) from the antisense strand of immediate-early (IE) genes of the viral genome. It has been suggested that LATs containing extended open reading frames (ORFs), might be translated into (a) protein product(s). We found that a salient feature of some herpesvirus DNAs is a high GC preference at the third codon positions. The consequence of this feature is that the probability of a stop-codon appearing at two of the six reading frames of the DNA strand is very low. Therefore, the presence of an extended ORF does not necessarily mean that it is relevant to real translation. PMID:7810418

  19. Polymalic Acid-based Nano Biopolymers for Targeting of Multiple Tumor Markers: An Opportunity for Personalized Medicine?

    Science.gov (United States)

    Ljubimova, Julia Y.; Ding, Hui; Portilla-Arias, Jose; Patil, Rameshwar; Gangalum, Pallavi R.; Chesnokova, Alexandra; Inoue, Satoshi; Rekechenetskiy, Arthur; Nassoura, Tala; Black, Keith L.; Holler, Eggehard

    2014-01-01

    Tumors with similar grade and morphology often respond differently to the same treatment because of variations in molecular profiling. To account for this diversity, personalized medicine is developed for silencing malignancy associated genes. Nano drugs fit these needs by targeting tumor and delivering antisense oligonucleotides for silencing of genes. As drugs for the treatment are often administered repeatedly, absence of toxicity and negligible immune response are desirable. In the example presented here, a nano medicine is synthesized from the biodegradable, non-toxic and non-immunogenic platform polymalic acid by controlled chemical ligation of antisense oligonucleotides and tumor targeting molecules. The synthesis and treatment is exemplified for human Her2-positive breast cancer using an experimental mouse model. The case can be translated towards synthesis and treatment of other tumors. PMID:24962356

  20. Phylogenetic group- and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms

    NARCIS (Netherlands)

    Quevedo, Beatrice; Giertsen, Elin; Zijnge, Vincent; Luethi-Schaller, Helga; Guggenheim, Bernhard; Thurnheer, Thomas; Gmuer, Rudolf

    2011-01-01

    Background: The purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH) probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotroph

  1. 博来霉素致肺纤维化大鼠不同时间点吸人STAT1反义寡核苷酸的疗效比较%Therapeutic effects of aerosolized signal transducer and activator of transcription 1 antisense oligonucleotide administered at different time points on bleomycin-induced pulmonary fibrosis: experiment with rats

    Institute of Scientific and Technical Information of China (English)

    李晶; 曾鸣; 朱晨; 王文军; 湛晓勤; 范贤明

    2009-01-01

    目的 探讨雾化吸入信号转导和转录活化因子1(STAT1)反义寡核苷酸(ASON)干预肺纤维化的最佳给药时机.方法 Wistar雌性大鼠25只随机均分为博来霉素(BLM)组、ASON 0 d组、ASON 7 d组、ASON 14 d组和生理盐水(NS)组,前4组气管内灌注BLM建立肺纤维化模型,NS组气管内灌注NS.ASON 0、7、14 d组分别于气管内灌注BLM后立即、第7和14天开始雾化吸入STATI ASON;NS组和BLM组雾化吸入NS.气管内灌注BLM后第28天处死各组大鼠,取肺组织分别行HE和Masson染色,观察肺泡炎和纤维化情况并评分;酶联免疫吸附试验(ELISA)测定支气管肺泡灌洗液(BALF)中转化生长因子β(TGF-β)和肿瘤坏死因子α(TNF-α)浓度.结果 肺组织病理学观察显示ASON 0 d组大鼠肺泡炎和肺纤维化程度明显轻于BLM组和ASON 14 d组,肺泡炎评分(1.80±0.84)和肺纤维化评分(2.60±0.55)均明显低于BLM组(2.40±0.55、4.40±0.55)、ASON 7 d组(2.20±0.45、3.00 ±0.71)和ASON 14 d组(2.20±0.84、4.00±1.00)(均P<0.05);ASON 7 d组肺纤维化评分也明显低于BLM组和ASON 14 d组(均P<0.05).ASON 0 d组BALF中TGF-β与TNF-α浓度[(48.11±3.46)pg/ml、(1.93±0.14)ng/ml]均明显低于BLM组[(57.67±2.46)pg/ml、(2.45±0.25)ng/ml,均P<0.05],TGF-β浓度明显低于ASON 7 d组[(51.42±3.57)pg/ml]和ASON 14 d组[(55.83±1.79)pg/ml](均P<0.05);ASON 7 d组BALF中TGF-β浓度也明显低于BLM组和ASON 14d组(均P<0.05).结论 早期雾化吸入STAT1 ASON对BLM致肺纤维化大鼠的肺纤维化形成有明显阻抑作用,用药越早效果越好,提示雾化吸入STAT1 ASON有可能成为肺纤维化的早期干预手段.%Objective To investigate the curative effects of inhaling signal transducer and activator of transcription 1 (STAT1) antisense oligonucleotide (ASON) on alveolitis and pulmonary fibrosis and the best administration time. Methods Twenty-five adult female Wistar rats were randomly divided into 5 equal groups: BLM group, undergoing intra

  2. Antisense Mediated Splicing Modulation For Inherited Metabolic Diseases: Challenges for Delivery

    OpenAIRE

    Pérez, Belen; Vilageliu, Lluisa; Grinberg, Daniel; Desviat, Lourdes R.

    2014-01-01

    In the past few years, research in targeted mutation therapies has experienced significant advances, especially in the field of rare diseases. In particular, the efficacy of antisense therapy for suppression of normal, pathogenic, or cryptic splice sites has been demonstrated in cellular and animal models and has already reached the clinical trials phase for Duchenne muscular dystrophy. In different inherited metabolic diseases, splice switching oligonucleotides (SSOs) have been used with suc...

  3. Increasing the Analytical Sensitivity by Oligonucleotides Modified with Para- and Ortho-Twisted Intercalating Nucleic Acids - TINA

    DEFF Research Database (Denmark)

    Schneider, Uffe V; Géci, Imrich; Jøhnk, Nina;

    2011-01-01

    . Here, we report the synthesis of a novel ortho-Twisted Intercalating Nucleic Acid (TINA) amidite utilizing the phosphoramidite approach, and examine the stabilizing effect of ortho- and para-TINA molecules in antiparallel DNA duplex formation. In a thermal stability assay, ortho- and para......The sensitivity and specificity of clinical diagnostic assays using DNA hybridization techniques are limited by the dissociation of double-stranded DNA (dsDNA) antiparallel duplex helices. This situation can be improved by addition of DNA stabilizing molecules such as nucleic acid intercalators......-TINA molecules increased the melting point (Tm) of Watson-Crick based antiparallel DNA duplexes. The increase in Tm was greatest when the intercalators were placed at the 5' and 3' termini (preferable) or, if placed internally, for each half or whole helix turn. Terminally positioned TINA molecules improved...

  4. VIP grafted long-circulation liposome for targeted delivery of oligonucleotide to breast cancer cells

    International Nuclear Information System (INIS)

    Purpose: To investigate the use of long-circulation liposome (LCL) for the delivery of encapsulated oligonucleotide with or without radioiodine-125 (125I) to MCF-7 breast cancer cells in vitro. Methods: (1) Oligonucleotide was labeled with 125I using thallium chloride tetrahydrate (TICL3) as an oxidant. 125I-oligonucleotide was separated from free oligonucleotide or 125I by column chromatography (Sephadex G-25). The efficiency of labeling and the radiochemistry purity were obtained using chromatography of paper. (2) Oligonucleotide with or without 125I encapsulating LCL were prepared in the means of reverse-phase evaporation. The crude LCL were then repeatedly extruded through 400 nm, 200 nm, 100 nm polycarbonate membranes consecutively. Uncapsulated oligonucleotide with or without 125I was separated from LCL formulations by passing down a sephadex G-50 column in 0.01 M HEPES buffer. Pooled LCL encapsulated oligonucleotide with or without 125I fractions were sterile through 0.22 μm filters prior to use. The method of protamine sulfate precipitation was utilized to gain the efficiency of encapsulation. (3) MCF-7 cells were grown in RPMI1640 media containing 10% heat-inactivated fetal calf serum. (4)Time-dependent uptake of 125I-oligonucleotide was studied by measuring the radioactivity of MCF-7 cells. Results: The efficiency of labeling and radiochemistry purity of bcl-2 antisense-, sense- and nonsense-oligonucleotide were 84.52% and 97.49%, 58.05% and 95.40%, 74.6% and 98.7%, respectively. The efficiency of encapsulation of bcl-2 antisense-, sense- and nonsense-oligonucleotide is 77.58%, 45.98%, 38.2%, respectively. (3) The par cle size of LCL formulations(∼120 nm) was determined by laser scattering techniques. During the period of observation from 20 min to 300 min, the radioactivity of tumor cells was almost as same as the background. Conclusions: LCL can not effectively deliver oligonucleotide with 125I into MCF-7 cells in vitro. To achieve the active

  5. Fragment-based solid-phase assembly of oligonucleotide conjugates with peptide and polyethylene glycol ligands.

    Science.gov (United States)

    Dirin, Mehrdad; Urban, Ernst; Noe, Christian R; Winkler, Johannes

    2016-10-01

    Ligand conjugation to oligonucleotides is an attractive strategy for enhancing the therapeutic potential of antisense and siRNA agents by inferring properties such as improved cellular uptake or better pharmacokinetic properties. Disulfide linkages enable dissociation of ligands and oligonucleotides in reducing environments found in endosomal compartments after cellular uptake. Solution-phase fragment coupling procedures for producing oligonucleotide conjugates are often tedious, produce moderate yields and reaction byproducts are frequently difficult to remove. We have developed an improved method for solid-phase coupling of ligands to oligonucleotides via disulfides directly after solid-phase synthesis. A 2'-thiol introduced using a modified nucleotide building block was orthogonally deprotected on the controlled pore glass solid support with N-butylphosphine. Oligolysine peptides and a short monodisperse ethylene glycol chain were successfully coupled to the deprotected thiol. Cleavage from the resin and full removal of oligonucleotide protection groups were achieved using methanolic ammonia. After standard desalting, and without further purification, homogenous conjugates were obtained as demonstrated by HPLC, gel electrophoresis, and mass spectrometry. The attachment of both amphiphilic and cationic ligands proves the versatility of the conjugation procedure. An antisense oligonucleotide conjugate with hexalysine showed pronounced gene silencing in a cell culture tumor model in the absence of a transfection reagent and the corresponding ethylene glycol conjugate resulted in down regulation of the target gene to nearly 50% after naked application. PMID:27236069

  6. Sustained Release of Cx43 Antisense Oligodeoxynucleotides from Coated Collagen Scaffolds Promotes Wound Healing.

    Science.gov (United States)

    Gilmartin, Daniel J; Soon, Allyson; Thrasivoulou, Christopher; Phillips, Anthony R J; Jayasinghe, Suwan N; Becker, David L

    2016-07-01

    Antisense oligodeoxynucleotides targeting the mRNA of the gap junction protein Cx43 promote tissue repair in a variety of different wounds. Delivery of the antisense drug has most often been achieved by a thermoreversible hydrogel, Pluronic F-127, which is very effective in the short term but does not allow for sustained delivery over several days. For chronic wounds that take a long time to heal, repeated dosing with the drug may be desirable but is not always compatible with conventional treatments such as the weekly changing of compression bandages on venous leg ulcers. Here the coating of collagen scaffolds with antisense oligonucleotides is investigated and a way to provide protection of the oligodeoxynucleotide drug is found in conjunction with sustained release over a 7 d period. This approach significantly reduces the normal foreign body reaction to the scaffold, which induces an increase of Cx43 protein and an inhibition of healing. As a result of the antisense integration into the scaffold, inflammation is reduced with the rate of wound healing and contracture is significantly improved. This coated scaffold approach may be very useful for treating venous leg ulcers and also for providing a sustained release of any other types of oligonucleotide drugs that are being developed. PMID:27253638

  7. Phylogenetic group- and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms

    Directory of Open Access Journals (Sweden)

    Thurnheer Thomas

    2011-01-01

    Full Text Available Abstract Background The purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotrophia/Granulicatella. Results As lactobacilli are known for notorious resistance to probe penetration, probe-specific assay protocols were experimentally developed to provide maximum cell wall permeability, probe accessibility, hybridization stringency, and fluorescence intensity. The new assays were then applied in a pilot study to three biofilm samples harvested from variably demineralized bovine enamel discs that had been carried in situ for 10 days by different volunteers. Best probe penetration and fluorescent labeling of reference strains were obtained after combined lysozyme and achromopeptidase treatment followed by exposure to lipase. Hybridization stringency had to be established strictly for each probe. Thereafter all probes showed the expected specificity with reference strains and labeled the anticipated morphotypes in dental plaques. Applied to in situ grown biofilms the set of probes detected only Lactobacillus fermentum and bacteria of the Lactobacillus casei group. The most cariogenic biofilm contained two orders of magnitude higher L. fermentum cell numbers than the other biofilms. Abiotrophia/Granulicatella and streptococci from the mitis group were found in all samples at high levels, whereas Streptococcus mutans was detected in only one sample in very low numbers. Conclusions Application of these new group- and species-specific FISH probes to oral biofilm-forming lactic acid bacteria will allow a clearer understanding of the supragingival biome, its spatial architecture and of structure-function relationships implicated during plaque homeostasis and caries development. The probes should prove of value far beyond the field of

  8. Lysine metabolism in antisense C-hordein barley grains

    DEFF Research Database (Denmark)

    Schmidt, Daiana; Rizzi, Vanessa; Gaziola, Salete A;

    2015-01-01

    The grain proteins of barley are deficient in lysine and threonine due to their low concentrations in the major storage protein class, the hordeins, especially in the C-hordein subgroup. Previously produced antisense C-hordein transgenic barley lines have an improved amino acid composition, with ...

  9. Mucin-mediated nanocarrier disassembly for triggered uptake of oligonucleotides as a delivery strategy for the potential treatment of mucosal tumours.

    Science.gov (United States)

    Martirosyan, A; Olesen, M J; Fenton, R A; Kjems, J; Howard, K A

    2016-07-01

    This work demonstrates gastric mucin-triggered nanocarrier disassembly for release of antisense oligonucleotides and consequent unassisted cellular entry as a novel oral delivery strategy. A fluorescence activation-based reporter system was used to investigate the interaction and mucin-mediated disassembly of chitosan-based nanocarriers containing a 13-mer DNA oligonucleotide with a flanked locked RNA nucleic acid gapmer design. Gastric mucins were shown to trigger gapmer release from nanocarriers that was dependent on the interaction time, mucin concentration and N : P ratio with a maximal release at N : P 10. In contrast to siRNA, naked gapmers exhibited uptake into mucus producing HT-MTX mono-cultures and HT-MTX co-cultured with the carcinoma epithelial cell line Caco-2. Importantly, in vivo gapmer uptake was observed in epithelial tissue 30 min post-injection in murine intestinal loops. The findings present a mucosal design-based system tailored for local delivery of oligonucleotides that may maximize the effectiveness of gene silencing therapeutics within tumours at mucosal sites. PMID:26694897

  10. Cell penetrating peptide delivery of splice directing oligonucleotides as a treatment for Duchenne muscular dystrophy.

    Science.gov (United States)

    Betts, Corinne A; Wood, Matthew J A

    2013-01-01

    Duchenne muscular dystrophy is a severe, X-linked muscle wasting disorder caused by the absence of an integral structural protein called dystrophin. This is caused by mutations or deletions in the dystrophin gene which disrupt the reading frame, thereby halting the production of a functional protein. A number of potential therapies have been investigated for the treatment of this disease including utrophin upregulation, 'stop-codon read through' aminoglycosides and adeno-associated virus gene replacement as well as stem cell therapy. However, the most promising treatment to date is the use of antisense oligonucleotides which cause exon skipping by binding to a specific mRNA sequence, skipping the desired exon, thereby restoring the reading frame and producing a truncated yet functional protein. The results from recent 2'OMePS and morpholino clinical trials have renewed hope for Duchenne patients; however in vivo studies in a mouse model, mdx, have revealed low systemic distribution and poor delivery of oligonucleotides to affected tissues such as the brain and heart. However a variety of cell penetrating peptides directly conjugated to antisense oligonucleotides have been shown to enhance delivery in Duchenne model systems with improved systemic distribution and greater efficacy compared to 'naked' antisense oligonucleotides. These cell penetrating peptides, combined with an optimised dose and dosing regimen, as well as thorough toxicity profile have the potential to be developed into a promising treatment which may be progressed to clinical trial. PMID:23140454

  11. Nucleic acid-based approaches to STAT inhibition.

    Science.gov (United States)

    Sen, Malabika; Grandis, Jennifer R

    2012-10-01

    Silencing of abnormally activated genes can be accomplished in a highly specific manner using nucleic acid based approaches. The focus of this review includes the different nucleic acid based inhibition strategies such as antisense oligodeoxynucleotides, small interfering RNA (siRNA), dominant-negative constructs, G-quartet oligonucleotides and decoy oligonucleotides, their mechanism of action and the effectiveness of these approaches to targeting the STAT (signal transducer and activator of transcription) proteins in cancer. Among the STAT proteins, especially STAT3, followed by STAT5, are the most frequently activated oncogenic STATs, which have emerged as plausible therapeutic cancer targets. Both STAT3 and STAT5 have been shown to regulate numerous oncogenic signaling pathways including proliferation, survival, angiogenesis and migration/invasion. PMID:24058785

  12. Mucin-mediated nanocarrier disassembly for triggered uptake of oligonucleotides as a delivery strategy for the potential treatment of mucosal tumours

    DEFF Research Database (Denmark)

    Martirosyan, A; Olesen, M J; Fenton, R A;

    2015-01-01

    This work demonstrates gastric mucin-triggered nanocarrier disassembly for release of antisense oligonucleotides and consequent unassisted cellular entry as a novel oral delivery strategy. A fluorescence activation-based reporter system was used to investigate the interaction and mucin-mediated d......This work demonstrates gastric mucin-triggered nanocarrier disassembly for release of antisense oligonucleotides and consequent unassisted cellular entry as a novel oral delivery strategy. A fluorescence activation-based reporter system was used to investigate the interaction and mucin...

  13. Survivin antisense compound inhibits proliferation and promotes apoptosis in liver cancer cells

    Institute of Scientific and Technical Information of China (English)

    De-Jian Dai; Cai-De Lu; Ri-Yong Lai; Jun-Ming Guo; Hua Meng; Wei-Sheng Chen; Jun Gu

    2005-01-01

    AIM: To evaluate the effects of survivin on cell proliferation and apoptosis in liver cancer.METHODS: MTT assay was used to generate and optimize phosphorothioate antisense oligonucleotides (ODNs)LipofectamineTM2000 (LiP) compound by varying ODNs (μg):LiP (μL) ratios from 1:0.5 to 1:5. Then, liver cancer cells (HepG2) were transfected with the compound. By using RT-PCR and Western blot, the expression levels of survivin mRNA and proteins were detected in HepG2 cells treated with antisense compounds (ODNs:LiP = 1:4), and compared with those treated with sense compounds (1:4) as control.MTT assay was applied to the determination of cell proliferation in HepG2 cells. Active caspase-3 was evaluated by flow cytometric analysis. The morphological changes were assessed by electron microscopy. Laser scanning confocal microscopy was performed to detect the subcellular localization of survivin proteins in treated and untreated cells.RESULTS: Antisense compounds (1:4) down-regulated survivin expression (mRNA and protein) in a dose-dependent manner with an IC50 of 250 nmol/L. Its maximum effect was achieved at a concentration of 500 nmol/L, at whichmRNA and protein levels were down-regulated by 80%.The similar results were found in MTT assay. Antisense compound (1:4)-treated cells revealed increased caspase3-like protease activity compared with untreated cells.Untreated cells as control were primarily negative for the presence of active-caspase-3. As shown by transmission electron microscopy, treated cells with antisense compounds (1:4) resulted in morphological changes such as blebbing and loss of microvilli, vacuolization in the cytoplasm,condensation of the cytoplasm and nuclei, and fragmented chromatin. Immunofluorescence analysis confirmed the presence of survivin protein pool inside the cytoplasm in untreated cells. Labeled-FITC immunofluorescence staining of survivin clearly showed that survivin was distributed mainly in a spotted form inside the cytoplasm. Whereas

  14. Oligonucleotide delivery with cell surface binding and cell penetrating Peptide amphiphile nanospheres.

    Science.gov (United States)

    Mumcuoglu, Didem; Sardan, Melis; Tekinay, Turgay; Guler, Mustafa O; Tekinay, Ayse B

    2015-05-01

    A drug delivery system designed specifically for oligonucleotide therapeutics can ameliorate the problems associated with the in vivo delivery of these molecules. The internalization of free oligonucleotides is challenging, and cytotoxicity is the main obstacle for current transfection vehicles. To develop nontoxic delivery vehicles for efficient transfection of oligonucleotides, we designed a self-assembling peptide amphiphile (PA) nanosphere delivery system decorated with cell penetrating peptides (CPPs) containing multiple arginine residues (R4 and R8), and a cell surface binding peptide (KRSR), and report the efficiency of this system in delivering G-3129, a Bcl-2 antisense oligonucleotide (AON). PA/AON (peptide amphiphile/antisense oligonucleotide) complexes were characterized with regards to their size and secondary structure, and their cellular internalization efficiencies were evaluated. The effect of the number of arginine residues on the cellular internalization was investigated by both flow cytometry and confocal imaging, and the results revealed that uptake efficiency improved as the number of arginines in the sequence increased. The combined effect of cell penetration and surface binding property on the cellular internalization and its uptake mechanism was also evaluated by mixing R8-PA and KRSR-PA. R8 and R8/KRSR decorated PAs were found to drastically increase the internalization of AONs compared to nonbioactive PA control. Overall, the KRSR-decorated self-assembled PA nanospheres were demonstrated to be noncytotoxic delivery vectors with high transfection rates and may serve as a promising delivery system for AONs. PMID:25828697

  15. Enzymatic synthesis of modified oligonucleotides by PEAR using Phusion and KOD DNA polymerases.

    Science.gov (United States)

    Wang, Xuxiang; Zhang, Jianye; Li, Yingjia; Chen, Gang; Wang, Xiaolong

    2015-02-01

    Antisense synthetic oligonucleotides have been developed as potential gene-targeted therapeutics. We previously reported polymerase-endonuclease amplification reaction (PEAR) for amplification of natural and 5'-O-(1-thiotriphosphate) (S)-modified oligonucleotides. Here, we extended the PEAR technique for enzymatic preparation of 2'-deoxy-2'-fluoro-(2'-F) and 2'-F/S double-modified oligonucleotides. The result showed that KOD and Phusion DNA polymerase could synthesize oligonucleotides with one or two modified nucleotides, and KOD DNA polymerase is more suitable than Phusion DNA polymerase for PEAR amplification of 2'-F and 2'-F/S double modified oligonucleotides. The composition of PEAR products were analyzed by electrospray ionization liquid chromatography mass spectrometry (ESI/LC/MS) detection and showed that the sequence of the PEAR products are maintained at an extremely high accuracy (>99.9%), and after digestion the area percent of full-length modified oligonucleotides reaches 89.24%. PEAR is suitable for synthesis of modified oligonucleotides efficiently and with high purity. PMID:25517220

  16. 中脑腹侧被盖区注射M5受体反义寡核苷酸抑制海洛因敏化大鼠伏隔核和海马中FosB表达%Microinjection of M5 muscarinic receptor antisense oligonucleotide into VTA inhibits FosB expression in the NAc and the hippocampns of heroin sensitized rats

    Institute of Scientific and Technical Information of China (English)

    刘惠芬; 周文华; 朱华强; 赖苗军; 陈为升

    2007-01-01

    Objective To investigate the effect of M5 muscarinic receptor subtype on the locomotor sensitization induced by heroin priming, and it's effect on the FosB expression in the nucleus accumbens (NAc) and the hippocampus in the heroin sensitized rats. Methods Locomotor activity was measured every 10 min for 1 h after subcutaneous injection of heroin. FosB expression was assayed by immunohistochemistry, and the antisense oligonucleotides (AS-ONs) targeting M5 muscarinic receptor was transferred with the lipofectin. Results Microinjection of AS-ONs targeting M5 muscarinic receptor in the ventral tegmental area (VTA) blocked the expression of behavioral sensitization induced by heroin priming in rats. Meanwhile, the expression of FosB-positive neurons in either the NAc or the dentate gyrus (DG) of the hippocampus increased in heroin-induced locomotor sensitized rats. The enhancement of FosB-positive neurons in the NAc or DG could be inhibited by microinjection of M5 muscarinic receptor AS-ONs into the VTA before the heroin-induced locomotor sensitization was performed. In contrast, microinjection of M5 muscarinic receptor sense oligonucleotide (S-ONs) into the VTA did not block the expression of behavioral sensitization or the expression of FosB in the NAc or DG in the heroin sensitized rats. Conclusion Blocking M5 muscarinic receptor in the VTA inhibits the expression of heroin-induced locomotor sensitization, which is associated with the regulation of FosB expression in the NAc and hippocampus neurons.M5 muscarinic receptor may be a useful pharmacological target for the treatment of heroin addiction.%目的 探讨M5毒蕈碱受体亚型对海洛因诱导的大鼠行为敏化以及敏化后大脑伏隔核(NAc)和海马中FosB蛋白表达的影响.方法 建立海洛因诱导的大鼠行为敏化模型,测定大鼠的自主活动量(locomotor activity,LA),观察M5毒蕈碱受体反义寡核苷酸(M5AS-ONs)对行为敏化表达的影响.用免疫组化法测定大鼠NAc

  17. Synthesis of 5'-Aldehyde Oligonucleotide.

    Science.gov (United States)

    Lartia, Rémy

    2016-01-01

    Synthesis of oligonucleotide ending with an aldehyde functional group at their 5'-end (5'-AON) is possible for both DNA (5'-AODN) and RNA (5'-AORN) series irrespectively of the nature of the last nucleobase. The 5'-alcohol of on-support ODN is mildly oxidized under Moffat conditions. Transient protection of the resulting aldehyde by N,N'-diphenylethylenediamine derivatives allows cleavage, deprotection, and RP-HPLC purification of the protected 5'-AON. Finally, 5'-AON is deprotected by usual acetic acid treatment. In the aggregates, 5'-AON can be now synthesized and purified as routinely as non-modified ODNs, following procedures similar to the well-known "DMT-On" strategy. PMID:26967469

  18. Amplification-Free Detection of Circulating microRNA Biomarkers from Body Fluids Based on Fluorogenic Oligonucleotide-Templated Reaction between Engineered Peptide Nucleic Acid Probes: Application to Prostate Cancer Diagnosis.

    Science.gov (United States)

    Metcalf, Gavin A D; Shibakawa, Akifumi; Patel, Hinesh; Sita-Lumsden, Ailsa; Zivi, Andrea; Rama, Nona; Bevan, Charlotte L; Ladame, Sylvain

    2016-08-16

    Highly abundant in cells, microRNAs (or miRs) play a key role as regulators of gene expression. A proportion of them are also detectable in biofluids making them ideal noninvasive biomarkers for pathologies in which miR levels are aberrantly expressed, such as cancer. Peptide nucleic acids (PNAs) are engineered uncharged oligonucleotide analogues capable of hybridizing to complementary nucleic acids with high affinity and high specificity. Herein, novel PNA-based fluorogenic biosensors have been designed and synthesized that target miR biomarkers for prostate cancer (PCa). The sensing strategy is based on oligonucleotide-templated reactions where the only miR of interest serves as a matrix to catalyze an otherwise highly unfavorable fluorogenic reaction. Validated in vitro using synthetic RNAs, these newly developed biosensors were then shown to detect endogenous concentrations of miR in human blood samples without the need for any amplification step and with minimal sample processing. This low-cost, quantitative, and versatile sensing technology has been technically validated using gold-standard RT-qPCR. Compared to RT-qPCR however, this enzyme-free, isothermal blood test is amenable to incorporation into low-cost portable devices and could therefore be suitable for widespread public screening. PMID:27498854

  19. Inhibition of HSP70 Gene Expression by Modified Antisense and Its Effects on Embryonic Sensitivity to Heat Shock

    Institute of Scientific and Technical Information of China (English)

    TIAN Wen-ru; DU Li-yin; HE Jian-bin; LI Shou-jun

    2004-01-01

    Experiments were performed to evaluate the efficiency of inhibition of HSP70 gene expression by antisense oligonucleotides complementary to the mRNA of HSP70 and to test the effects of inhibition of HSP70 gene expression on subsequent embryonic sensitivity to heat shock. The results showed that transfection of pre-implantation embryos at 4-cell stage with 5 μM antisense oligo had no effect on in vitro blastocyst development. However, transfection with 10 to 40 μM antisense oligo had reduced in vitro blastocyst development to 15, 10% and 0; For the embryos which exposed to 40 μM As arrested at the 16-cell stage, there was no blastocyst formation within the heat shock groups. In contrast, transfection had no effect on embryonic sensitivity to heat shock, above 25% of embryos developed to blastocyst stage in control groups.

  20. Inhibitory effects of antisense phosphorothioate oligodeoxynucleotides on pancreatic cancer cell Bxpc-3 telomerase activity and cell growth in vitro

    Institute of Scientific and Technical Information of China (English)

    Yun-Feng Wang; Ke-Jian Guo; Bei-Ting Huang; Yong Liu; Xiao-Yun Tang; Jian-Jun Zhang; Qiang Xia

    2006-01-01

    AIM: To investigate the effect of telomerase hTERT gene antisense oligonucleotide (hTERT-ASO) on proliferation and telomerase activity of pancreatic cancer cell line Bxpc-3.METHODS: MTT assay was used to detect the effect of different doses of hTERT-ASO on proliferation of Bxpc-3 cell for different times. To study the anti-tumor activity,the cells were divided into there groups: Control group (pancreatic cancer cell Bxpc-3); antisense oligonucleotide (hTERT-ASO) group; and nosense oligonucleotide group decorated with phosphorothioate. Telomerase activity was detected using TRAP-PCR-ELISA. Cell DNA distribution was examined using flow cytometry assay.Cell apoptosis was observed by transmission electron microscope in each group.RESULTS: After treatment with 6 mmol/L hTERTASO, cell proliferation was inhibited in dose- and timedependent manner. The telomerase activity decreased after treatment with hTERT-ASO for 72 h. Flow cytometry showed the cell number of G0/G1 phase increased from 2.7% to 14.7%, the cell number of S phase decreased from 72.7% to 51.0%, and a sub-G1 stage cell apoptosis peak appeared in front of G1 stage.CONCLUSION: Telomerase antisense oligodeoxynucleotide can inhibit the proliferation of pancreatic cancer cell line Bxpc-3 and decrease the telomerase activity and increase cell apoptosis rate in vitro.

  1. Nano and Microtechnologies for the Delivery of Oligonucleotides with Gene Silencing Properties

    Directory of Open Access Journals (Sweden)

    Giuseppe De Rosa

    2009-07-01

    Full Text Available Oligonucleotides (ONs are synthetic fragments of nucleic acid designed to modulate the expression of target proteins. DNA-based ONs (antisense, antigene, aptamer or decoy and more recently a new class of RNA-based ONs, the small interfering RNAs (siRNAs, have gained great attention for the treatment of different disease states, such as viral infections, inflammation, diabetes, and cancer. However, the development of therapeutic strategies based on ONs is hampered by their low bioavailability, poor intracellular uptake and rapid degradation in biological fluids. The use of a non-viral carrier can be a powerful tool to overcome these drawbacks. Lipid or polymer-based nanotechnologies can improve biological stability and cellular uptake of ONs, with possibility of tissue and/or cellular targeting. The use of polymeric devices can also produce a prolonged release of the ON, thus reducing the need of frequent administrations. This review summarizes advantages and issues related to the main non-viral vectors used for ON delivery.

  2. Intercalator conjugates of pyrimidine locked nucleic acid-modified triplex-forming oligonucleotides: improving DNA binding properties and reaching cellular activities

    OpenAIRE

    Brunet, Erika; Corgnali, Maddalena; Perrouault, Loïc; Roig, Victoria; Asseline, Ulysse; Sørensen, Mads D.; Babu, B. Ravindra; Wengel, Jesper; Giovannangeli, Carine

    2005-01-01

    Triplex-forming oligonucleotides (TFOs) are powerful tools to interfere sequence-specifically with DNA-associated biological functions. (A/T,G)-containing TFOs are more commonly used in cells than (T,C)-containing TFOs, especially C-rich sequences; indeed the low intracellular stability of the non-covalent pyrimidine triplexes make the latter less active. In this work we studied the possibility to enhance DNA binding of (T,C)-containing TFOs, aiming to reach cellular activities; to this end, ...

  3. Electron migration in oligonucleotides upon γ-irradiation in solution

    International Nuclear Information System (INIS)

    Electron migration in irradiated solutions of DNA was investigated using 5-bromouracil synthetically incorporated into oligonucleotides of defined base composition as a molecular indicator of electron interactions. Solvated electrons interact quantitatively with 5-bromouracil, leading to a highly reactive 5-yl radical which can abstract an adjacent hydrogen atom to yield uracil. Yields of uracil, or loss of 5-bromouracil, from irradiated oligonucleotide samples were measured using gas chromatography-mass spectrometric analysis of their trimethylsilylated acid hydrolysates. (author)

  4. Water-absorbent polymer as a carrier for a discrete deposit of antisense oligodeoxynucleotides in the central nervous system.

    Science.gov (United States)

    Bannai, M; Ichikawa, M; Nishimura, F; Nishihara, M; Takahashi, M

    1998-09-01

    One of the problems of introducing antisense oligodeoxynucleotides (ODN) into the central nervous system (CNS) is their rapid disappearance from the target site due to their dispersion and diffusion, which results in poor uptake and/or retention in cells (M. Morris, A.B. Lucion, Antisense oligonucleotides in the study of neuroendocrine systems, J. Neuroendocrinol. 7 (1995) 493-500; S. Ogawa, H.E. Brown, H.J. Okano, D.W. Pfaff, Cellular uptake of intracerebrally administrated oligodeoxynucleotides in mouse brain, Regul. Pept. 59 (1995) 143-149) [2,5]. Recently, we adapted a new method using water-absorbent polymer (WAP; internally cross-linked starch-grafted-polyacrylates) as a carrier for antisense ODN. The polymer forms a hydro-gel after absorbing water which is chemically and biologically inert. In these studies, the polymer (powder-form) is fully swollen by physiological saline containing antisense ODN (0.2 micromol/ml) to make 80-fold volume gel. Hydro-gel (1 microliter) is injected into the target site, and water solutes are assumed to be diffused stoichiometrically into CNS from the surface of the gel. Histological studies indicate that 24 h after the injection, antisense ODN (5'biotinylated-S-oligos of 15 mer) are distributed to within 800 micrometer from the edge of the area where the gel is located and then gradually disappear from this area within days, but still remain within 300-micrometer distance 7 days later. Antisense ODN are effectively incorporated by all the cell types examined, i.e., neurons, astrocytes and microglias, and suppress the synthesis of the target protein. This method can be adapted to slow delivery of antisense ODN and other water soluble substances into the CNS. PMID:9767125

  5. Antisense PMO found in dystrophic dog model was effective in cells from exon 7-deleted DMD patient.

    Directory of Open Access Journals (Sweden)

    Takashi Saito

    Full Text Available BACKGROUND: Antisense oligonucleotide-induced exon skipping is a promising approach for treatment of Duchenne muscular dystrophy (DMD. We have systemically administered an antisense phosphorodiamidate morpholino oligomer (PMO targeting dystrophin exons 6 and 8 to a dog with canine X-linked muscular dystrophy in Japan (CXMD(J lacking exon 7 and achieved recovery of dystrophin in skeletal muscle. To date, however, antisense chemical compounds used in DMD animal models have not been directly applied to a DMD patient having the same type of exon deletion. We recently identified a DMD patient with an exon 7 deletion and tried direct translation of the antisense PMO used in dog models to the DMD patient's cells. METHODOLOGY/PRINCIPAL FINDINGS: We converted fibroblasts of CXMD(J and the DMD patient to myotubes by FACS-aided MyoD transduction. Antisense PMOs targeting identical regions of dog and human dystrophin exons 6 and 8 were designed. These antisense PMOs were mixed and administered as a cocktail to either dog or human cells in vitro. In the CXMD(J and human DMD cells, we observed a similar efficacy of skipping of exons 6 and 8 and a similar extent of dystrophin protein recovery. The accompanying skipping of exon 9, which did not alter the reading frame, was different between cells of these two species. CONCLUSION/SIGNIFICANCE: Antisense PMOs, the effectiveness of which has been demonstrated in a dog model, achieved multi-exon skipping of dystrophin gene on the FACS-aided MyoD-transduced fibroblasts from an exon 7-deleted DMD patient, suggesting the feasibility of systemic multi-exon skipping in humans.

  6. AMO-miR-204 antisense oligonucleotides enhance the sensitivity of MOLT-4 cells to matrine%Hsa-miR-204反义核酸提高MOLT-4细胞对苦参碱的敏感性研究

    Institute of Scientific and Technical Information of China (English)

    孙文洪; 何金花; 韩泽平; 黄国贤; 朱丽梨; 何琨仪; 陈炳豪

    2014-01-01

    目的 研究miR-204的反义核酸(anti-miR204 oligonucleotides,AMO-miR-204)联合苦参碱观察其对人急性淋巴细胞白血病细胞株(MOLT-4)生长与凋亡的影响及机制.方法 将一定浓度的人工合成的AMO-miR-204经脂质体包裹转染MOLT-4细胞,并联合不同浓度的苦参碱作用于MOLT-4细胞48 h后,采用MTT法检测单用AMO-miR-204、单用苦参碱及AMO-miR-204联合苦参碱对MOLT-4细胞增殖抑制作用,流式细胞术检测细胞早期凋亡率;实时荧光定量RT-PCR检测细胞 Bcl-2mRNA 的表达水平;克隆形成抑制实验检测克隆形成能力.结果单用苦参碱的IC50为0.75 mg·L-1;苦参碱与阴性对照联合使用,IC50为0.29 mg·L-1,表现为相加作用;苦参碱与AMO- miR-204联合使用,IC50为0.07 mg·L-1,增敏倍数为10.7,表现为协同作用.流式细胞术结果显示:联合组比单用组早期凋亡率明显增高,凋亡率达25.4%.单用AMO-miR-204、苦参碱及两者联均能下调 Bcl-2mRNA基因的表达水平,对MOLT-4细胞克隆形成逐渐减小,其中两者联合的克隆数为(28±3.0).结论 AMO- miR-204可提高MOLT-4细胞对苦参碱的敏感性,其机制可能为通过下调Bcl-2 mRNA的表达水平,促进MOLT-4细胞早期凋亡,并抑制其克隆形成有关.

  7. Working with Oligonucleotide Arrays.

    Science.gov (United States)

    Carvalho, Benilton S

    2016-01-01

    Preprocessing microarray data consists of a number of statistical procedures that convert the observed intensities into quantities that represent biological events of interest, like gene expression and allele-specific abundances. Here, we present a summary of the theory behind microarray data preprocessing for expression, whole transcriptome and SNP designs and focus on the computational protocol used to obtain processed data that will be used on downstream analyses. We describe the main features of the oligo Bioconductor package, an application designed to support oligonucleotide microarrays using the R statistical environment and the infrastructure provided by Bioconductor, allowing the researcher to handle probe-level data and interface with advanced statistical tools under a simplified framework. We demonstrate the use of the package by preprocessing data originated from three different designs. PMID:27008013

  8. Retinoic acid signaling acts via Hox1 to establish the posterior limit of the pharynx in the chordate amphioxus

    OpenAIRE

    Schubert, Michael; Yu, Jr-Kai; Holland, Nicholas D; Escriva, Hector; Laudet, Vincent; Holland, Linda Z

    2004-01-01

    In the invertebrate chordate amphioxus, as in vertebrates, retinoic acid (RA) specifies position along the anterior/posterior axis with elevated RA signaling in the middle third of the endoderm setting the posterior limit of the pharynx. Here we show that AmphiHox1 is also expressed in the middle third of the developing amphioxus endoderm and is activated by RA signaling. Knockdown of AmphiHox1 function with an antisense morpholino oligonucleotide shows that AmphiHox1 mediates the role of RA ...

  9. Nucleic Acids in Human Glioma Treatment: Innovative Approaches and Recent Results

    Directory of Open Access Journals (Sweden)

    S. Catuogno

    2012-01-01

    Full Text Available Gliomas are the most common primary central nervous system tumors with a dismal prognosis. Despite recent advances in surgery, radiotherapy, and chemotherapy, current treatment regimens have a modest survival benefit. A crucial challenge is to deliver drugs effectively to invasive glioma cells residing in a sanctuary within the central nervous system. New therapies are essential, and oligonucleotide-based approaches, including antisense, microRNAs, small interfering RNAs, and nucleic acid aptamers, may provide a viable strategy. Thanks to their unique characteristics (low size, good affinity for the target, no immunogenicity, chemical structures that can be easily modified to improve their in vivo applications, these molecules may represent a valid alternative to antibodies particularly to overcome challenges presented by the blood-brain barrier. Here we will discuss recent results on the use of oligonucleotides that will hopefully provide new effective treatment for gliomas.

  10. Pip6-PMO, A New Generation of Peptide-oligonucleotide Conjugates With Improved Cardiac Exon Skipping Activity for DMD Treatment

    OpenAIRE

    Betts, Corinne; Saleh, Amer F.; Arzumanov, Andrey A; Hammond, Suzan M.; Godfrey, Caroline; Coursindel, Thibault; Gait, Michael J.; Wood, Matthew JA

    2012-01-01

    Antisense oligonucleotides (AOs) are currently the most promising therapeutic intervention for Duchenne muscular dystrophy (DMD). AOs modulate dystrophin pre-mRNA splicing, thereby specifically restoring the dystrophin reading frame and generating a truncated but semifunctional dystrophin protein. Challenges in the development of this approach are the relatively poor systemic AO delivery and inefficient dystrophin correction in affected non-skeletal muscle tissues, including the heart. We hav...

  11. Detection and Enumeration of Methanotrophs in Acidic Sphagnum Peat by 16S rRNA Fluorescence In Situ Hybridization, Including the Use of Newly Developed Oligonucleotide Probes for Methylocella palustris

    OpenAIRE

    Dedysh, Svetlana N.; Derakshani, Manigee; Liesack, Werner

    2001-01-01

    Two 16S rRNA-targeted oligonucleotide probes, Mcell-1026 and Mcell-181, were developed for specific detection of the acidophilic methanotroph Methylocella palustris using fluorescence in situ hybridization (FISH). The fluorescence signal of probe Mcell-181 was enhanced by its combined application with the oligonucleotide helper probe H158. Mcell-1026 and Mcell-181, as well as 16S rRNA oligonucleotide probes with reported group specificity for either type I methanotrophs (probes M-84 and M-705...

  12. Effects of Peptide Nucleic Acids against Ki-67 Gene on the Proliferation and Apoptosis of Human Renal Carcinoma Cell Line

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To investigate the effects of anti-sense peptide nucleic acids (PNAs) targeting Ki-67gene on modulation of the proliferation and apoptosis of human renal carcinoma cell lines, human renal carcinoma cell line 786-0 cells were treated with anti-sense PNAs at different concentrations (1.0 μmol/L, 2.0 μmol/L, 10.0 μmol/L). The Ki-67 expression of 786-0 cells was detected by immunohistochemical technique and Western blot method respectively. The proliferation of 786-0 cells was studied by cell growth curves and 3H-thymidine incorporation. The apoptosis of 786-0 cells was detected by TUNEL assay. The control groups were treated with anti-sense oligonucleotide (ASODNs)targeting Ki-67 gene. Our results showed that the Ki-67 expression of 786-0 cells treated with anti-sense PNAs (16.9±0.7) was significantly inhibited as compared with that of the control groups (28.6±0.4) (P<0.01). The Ki-67 protein rate of 786-0 cells treated with anti-sense PNAs (42.1±2.2)was significantly reduced when compared with that of the control groups (83.6±1.4) (P<0.01). Proliferation of 786-0 cells treated with anti-sense PNAs (20.7±1.5) was significantly inhibited as compared with that of the control groups (58.6±1.4) (P<0.01). The apoptosis rate of 786-0 cells treated with anti-sense PNAs (28.7±2.3) was significantly increased higher compared with that of the control groups (13.8±1.0) (P<0.01). From these finds we are led to conclude that anti-sense PNAs targeting Ki-67 gene have stronger effects on the inhibition of the proliferation and induction of apoptosis of human renal carcinoma cells than ASODNs targeting Ki-67 gene. The strategies using anti-sense PNAs targeting Ki-67 gene may be a promising approach for the treatment of renal cell carcinoma.

  13. Antisense mediated splicing modulation for inherited metabolic diseases: challenges for delivery.

    Science.gov (United States)

    Pérez, Belen; Vilageliu, Lluisa; Grinberg, Daniel; Desviat, Lourdes R

    2014-02-01

    In the past few years, research in targeted mutation therapies has experienced significant advances, especially in the field of rare diseases. In particular, the efficacy of antisense therapy for suppression of normal, pathogenic, or cryptic splice sites has been demonstrated in cellular and animal models and has already reached the clinical trials phase for Duchenne muscular dystrophy. In different inherited metabolic diseases, splice switching oligonucleotides (SSOs) have been used with success in patients' cells to force pseudoexon skipping or to block cryptic splice sites, in both cases recovering normal transcript and protein and correcting the enzyme deficiency. However, future in vivo studies require individual approaches for delivery depending on the gene defect involved, given the different patterns of tissue and organ expression. Herein we review the state of the art of antisense therapy targeting RNA splicing in metabolic diseases, grouped according to their expression patterns-multisystemic, hepatic, or in central nervous system (CNS)-and summarize the recent progress achieved in the field of in vivo delivery of oligonucleotides to each organ or system. Successful body-wide distribution of SSOs and preferential distribution in the liver after systemic administration have been reported in murine models for different diseases, while for CNS limited data are available, although promising results with intratechal injections have been achieved. PMID:24506780

  14. Pressure-Mediated Oligonucleotide Transfection of Rat and Human Cardiovascular Tissues

    Science.gov (United States)

    Mann, Michael J.; Gibbons, Gary H.; Hutchinson, Howard; Poston, Robert S.; Hoyt, E. Grant; Robbins, Robert C.; Dzau, Victor J.

    1999-05-01

    The application of gene therapy to human disease is currently restricted by the relatively low efficiency and potential hazards of methods of oligonucleotide or gene delivery. Antisense or transcription factor decoy oligonucleotides have been shown to be effective at altering gene expression in cell culture expreriments, but their in vivo application is limited by the efficiency of cellular delivery, the intracellular stability of the compounds, and their duration of activity. We report herein the development of a highly efficient method for naked oligodeoxynucleotide (ODN) transfection into cardiovascular tissues by using controlled, nondistending pressure without the use of viral vectors, lipid formulations, or exposure to other adjunctive, potentially hazardous substances. In this study, we have documented the ability of ex vivo, pressure-mediated transfection to achieve nuclear localization of fluorescent (FITC)-labeled ODN in approximately 90% and 50% of cells in intact human saphenous vein and rat myocardium, respectively. We have further documented that pressure-mediated delivery of antisense ODN can functionally inhibited target gene expression in both of these tissues in a sequence-specific manner at the mRNA and protein levels. This oligonucleotide transfection system may represent a safe means of achieving the intraoperative genetic engineering of failure-resistant human bypass grafts and may provide an avenue for the genetic manipulation of cardiac allograft rejection, allograft vasculopathy, or other transplant diseases.

  15. Gene cloning based on long oligonucleotide probes

    International Nuclear Information System (INIS)

    The most commonly used technique for gene cloning has been to utilize oligonucleotide probe based on protein sequence data. Of course this approach requires characterized and purified protein so that at least a portion of amino acid sequence can be determined and used to infer the corresponding DNA sequence. Based on the amino acid sequence information, either short or long oligonucleotide probes can be synthesized chemically. Long probes are typically 30-100 nucleotides long and are a single sequence based on a best guess for each codon. The long probe approach was first used to screen for three different genes: bovine trypsin inhibitor, human insulin-like growth factor I, and human factor IX. There are three advantages of long probes. (1) Any stretch of amino acid sequence 10 or longer can be used. (2) The amino acid sequence need not be absolutely correct. (3) These probes can be used to screen high-complexity libraries with fewer false positives. In spite of the uncertainties over codon selection, the long probe approach is currently the method of choice in screening for genes based on protein sequence data

  16. Interaction of α-Melanocortin and Its Pentapeptide Antisense LVKAT: Effects on Hepatoprotection in Male CBA Mice

    Directory of Open Access Journals (Sweden)

    Paško Konjevoda

    2011-08-01

    Full Text Available The genetic code defines nucleotide patterns that code for individual amino acids and their complementary, i.e., antisense, pairs. Peptides specified by the complementary mRNAs often bind to each other with a higher specificity and efficacy. Applications of this genetic code property in biomedicine are related to the modulation of peptide and hormone biological function, selective immunomodulation, modeling of discontinuous and linear epitopes, modeling of mimotopes, paratopes and antibody mimetics, peptide vaccine development, peptidomimetic and drug design. We have investigated sense-antisense peptide interactions and related modulation of the peptide function by modulating the effects of a-MSH on hepatoprotection with its antisense peptide LVKAT. First, transcription of complementary mRNA sequence of a-MSH in 3’→5’ direction was used to design antisense peptide to the central motif that serves as a-MSH pharmacophore for melanocortin receptors. Second, tryptophan spectrofluorometric titration was applied to evaluate the binding of a-MSH and its central pharmacophore motif to the antisense peptide, and it was concluded that this procedure represents a simple and efficient method to evaluate sense-antisense peptide interaction in vitro. Third, we showed that antisense peptide LVKAT abolished potent hepatoprotective effects of a-MSH in vivo.

  17. Preparation and application of triple helix forming oligonucleotides and single strand oligonucleotide donors for gene correction.

    Science.gov (United States)

    Alam, Rowshon; Thazhathveetil, Arun Kalliat; Li, Hong; Seidman, Michael M

    2014-01-01

    Strategies for site-specific modulation of genomic sequences in mammalian cells require two components. One must be capable of recognizing and activating a specific target sequence in vivo, driving that site into an exploitable repair pathway. Information is transferred to the site via participation in the pathway by the second component, a donor nucleic acid, resulting in a permanent change in the target sequence. We have developed biologically active triple helix forming oligonucleotides (TFOs) as site-specific gene targeting reagents. These TFOs, linked to DNA reactive compounds (such as a cross-linking agent), activate pathways that can engage informational donors. We have used the combination of a psoralen-TFO and single strand oligonucleotide donors to generate novel cell lines with directed sequence changes at the target site. Here we describe the synthesis and purification of bioactive psoralen-linked TFOs, their co-introduction into mammalian cells with donor nucleic acids, and the identification of cells with sequence conversion of the target site. We have emphasized details in the synthesis and purification of the oligonucleotides that are essential for preparation of reagents with optimal activity. PMID:24557899

  18. Synthesis of a new intercalating nucleic acid analogue with pyrenol insertions and the thermal stability of the resulting oligonucleotides towards DNA over RNA

    DEFF Research Database (Denmark)

    Osman, Amany M. A.; Pedersen, Erik Bjerregaard

    2010-01-01

    A new intercalating nucleic acid monomer Y was obtained via alkylation of pyren-1-ol with (S)-(?)-2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethanol under Mitsunobu conditions followed by hydrolysis with 80% aqueous acetic acid to give a diol which was tritylated with 4,40-dimethoxytrityl chloride followed...... nearly identical hybridization properties with those of intercalating nucleic acid (INA) where neighboring oxygen and carbon atoms are interchanged in the linker. The synthesis of monomer Y avoids the use of allergic intermediates which are a problem in the synthesis of INA....

  19. In silico screening based on predictive algorithms as a design tool for exon skipping oligonucleotides in Duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Yusuke Echigoya

    Full Text Available The use of antisense 'splice-switching' oligonucleotides to induce exon skipping represents a potential therapeutic approach to various human genetic diseases. It has achieved greatest maturity in exon skipping of the dystrophin transcript in Duchenne muscular dystrophy (DMD, for which several clinical trials are completed or ongoing, and a large body of data exists describing tested oligonucleotides and their efficacy. The rational design of an exon skipping oligonucleotide involves the choice of an antisense sequence, usually between 15 and 32 nucleotides, targeting the exon that is to be skipped. Although parameters describing the target site can be computationally estimated and several have been identified to correlate with efficacy, methods to predict efficacy are limited. Here, an in silico pre-screening approach is proposed, based on predictive statistical modelling. Previous DMD data were compiled together and, for each oligonucleotide, some 60 descriptors were considered. Statistical modelling approaches were applied to derive algorithms that predict exon skipping for a given target site. We confirmed (1 the binding energetics of the oligonucleotide to the RNA, and (2 the distance in bases of the target site from the splice acceptor site, as the two most predictive parameters, and we included these and several other parameters (while discounting many into an in silico screening process, based on their capacity to predict high or low efficacy in either phosphorodiamidate morpholino oligomers (89% correctly predicted and/or 2'O Methyl RNA oligonucleotides (76% correctly predicted. Predictions correlated strongly with in vitro testing for sixteen de novo PMO sequences targeting various positions on DMD exons 44 (R² 0.89 and 53 (R² 0.89, one of which represents a potential novel candidate for clinical trials. We provide these algorithms together with a computational tool that facilitates screening to predict exon skipping efficacy at each

  20. In silico screening based on predictive algorithms as a design tool for exon skipping oligonucleotides in Duchenne muscular dystrophy.

    Science.gov (United States)

    Echigoya, Yusuke; Mouly, Vincent; Garcia, Luis; Yokota, Toshifumi; Duddy, William

    2015-01-01

    The use of antisense 'splice-switching' oligonucleotides to induce exon skipping represents a potential therapeutic approach to various human genetic diseases. It has achieved greatest maturity in exon skipping of the dystrophin transcript in Duchenne muscular dystrophy (DMD), for which several clinical trials are completed or ongoing, and a large body of data exists describing tested oligonucleotides and their efficacy. The rational design of an exon skipping oligonucleotide involves the choice of an antisense sequence, usually between 15 and 32 nucleotides, targeting the exon that is to be skipped. Although parameters describing the target site can be computationally estimated and several have been identified to correlate with efficacy, methods to predict efficacy are limited. Here, an in silico pre-screening approach is proposed, based on predictive statistical modelling. Previous DMD data were compiled together and, for each oligonucleotide, some 60 descriptors were considered. Statistical modelling approaches were applied to derive algorithms that predict exon skipping for a given target site. We confirmed (1) the binding energetics of the oligonucleotide to the RNA, and (2) the distance in bases of the target site from the splice acceptor site, as the two most predictive parameters, and we included these and several other parameters (while discounting many) into an in silico screening process, based on their capacity to predict high or low efficacy in either phosphorodiamidate morpholino oligomers (89% correctly predicted) and/or 2'O Methyl RNA oligonucleotides (76% correctly predicted). Predictions correlated strongly with in vitro testing for sixteen de novo PMO sequences targeting various positions on DMD exons 44 (R² 0.89) and 53 (R² 0.89), one of which represents a potential novel candidate for clinical trials. We provide these algorithms together with a computational tool that facilitates screening to predict exon skipping efficacy at each position of

  1. Antisense bcl-2 treatment increases programmed cell death in non-small cell lung cancer cell lines.

    Science.gov (United States)

    Koty, P P; Zhang, H; Levitt, M L

    1999-02-01

    Programmed cell death (PCD) is a genetically regulated pathway that is altered in many cancers. This process is, in part, regulated by the ratio of PCD inducers (Bax) or inhibitors (Bcl-2). An abnormally high ratio of Bcl-2 to Bax prevents PCD, thus contributing to resistance to chemotherapeutic agents, many of which are capable of inducing PCD. Non-small cell lung cancer (NSCLC) cells demonstrate resistance to these PCD-inducing agents. If Bcl-2 prevents NSCLC cells from entering the PCD pathway, then reducing the amount of endogenous Bcl-2 product may allow these cells to spontaneously enter the PCD pathway. Our purpose was to determine the effects of bcl-2 antisense treatment on the levels of programmed cell death in NSCLC cells. First, we determined whether bcl-2 and bax mRNA were expressed in three morphologically distinct NSCLC cell lines: NCI-H226 (squamous), NCI-H358 (adenocarcinoma), and NCI-H596 (adenosquamous). Cells were then exposed to synthetic antisense bcl-2 oligonucleotide treatment, after which programmed cell death was determined, as evidenced by DNA fragmentation. Bcl-2 protein expression was detected immunohistochemically. All three NSCLC cell lines expressed both bcl-2 and bax mRNA and had functional PCD pathways. Synthetic antisense bcl-2 oligonucleotide treatment resulted in decreased Bcl-2 levels, reduced cell proliferation, decreased cell viability, and increased levels of spontaneous PCD. This represents the first evidence that decreasing Bcl-2 in three morphologically distinct NSCLC cell lines allows the cells to spontaneously enter a PCD pathway. It also indicates the potential therapeutic use of antisense bcl-2 in the treatment of NSCLC. PMID:10217615

  2. VirOligo: a database of virus-specific oligonucleotides

    OpenAIRE

    Onodera, Kenji; Melcher, Ulrich

    2002-01-01

    VirOligo is a database of virus-specific oligonucleotides. The VirOligo database consists of two tables, Common data and Oligo data. The Oligo data table contains PCR primers and hybridization probes used for detection of viral nucleic acids and the Common data table contains the experimental conditions used in their detection. Each oligonucleotide entry contains links to PubMed, GenBank, NCBI Taxonomy databases and BLAST. As of July 2001, the VirOligo database contains a complete listing of ...

  3. Functionalization of an Antisense Small RNA

    Science.gov (United States)

    Rodrigo, Guillermo; Prakash, Satya; Cordero, Teresa; Kushwaha, Manish; Jaramillo, Alfonso

    2016-01-01

    In order to explore the possibility of adding new functions to preexisting genes, we considered a framework of riboregulation. We created a new riboregulator consisting of the reverse complement of a known riboregulator. Using computational design, we engineered a cis-repressing 5′ untranslated region that can be activated by this new riboregulator. As a result, both RNAs can orthogonally trans-activate translation of their cognate, independent targets. The two riboregulators can also repress each other by antisense interaction, although not symmetrically. Our work highlights that antisense small RNAs can work as regulatory agents beyond the antisense paradigm and that, hence, they could be interfaced with other circuits used in synthetic biology. PMID:26756967

  4. Immunomodulation with IL-4 Receptor-α Antisense Oligonucleotide Prevents RSV-Mediated Pulmonary Disease1

    OpenAIRE

    Ripple, Michael J.; You, Dahui; Honnegowda, Srinivasa; Giaimo, Joseph D.; Sewell, Andrew B.; Becnel, David M.; Cormier, Stephania A

    2010-01-01

    Respiratory syncytial virus (RSV) causes significant morbidity and mortality in infants worldwide. Severe RSV infections in infants cause bronchiolitis, wheeze, and/or cough and significantly increase the risk of developing asthma. RSV pathogenesis is thought to be due to a Th2-type immune response initiated in response to RSV infection specifically in the infant. Using a neonatal mouse system as an appropriate model for human infants, we sought to determine if local inhibition of IL-4Rα expr...

  5. Study of HIV-2 primer-template initiation complex using antisense oligonucleotides

    DEFF Research Database (Denmark)

    Boulmé, F; Freund, F; Gryaznov, S;

    2000-01-01

    HIV-2 reverse transcription is initiated by the retroviral DNA polymerase (reverse transcriptase) from a cellular tRNALys3 partially annealed to the primer binding site in the 5'-region of viral RNA. The HIV-2 genome has two A-rich regions upstream of the primer binding site. In contrast to HIV-1...

  6. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates

    DEFF Research Database (Denmark)

    Lindholm, Marie W; Elmén, Joacim; Fisker, Niels;

    2012-01-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for the reduction of low-density lipoprotein cholesterol (LDL-C). PCSK9 increases the degradation of the LDL receptor, resulting in high LDL-C in individuals with high PCSK9 activity. Here, we show that two ...

  7. Does Active Learning through an Antisense Jigsaw Make Sense?

    Science.gov (United States)

    Seetharaman, Mahadevan; Musier-Forsyth, Karin

    2003-12-01

    Three journal articles on nucleic acid antisense modification strategies were assigned to 12 students as part of an active learning "jigsaw" exercise for a graduate-level chemistry course on nucleic acids. Each student was required to read one of the three articles. This assignment was preceded by an hour-long lecture on the basic concepts in antisense antigene technology. On the day of the jigsaw, the students with the same article (three groups of four students) discussed their article briefly, and then formed four new groups where no one had read the same article. Each student spent about five minutes teaching his or her article to the other group members, using specific questions provided to guide the discussion. This exercise laid the foundation for bringing the discussion to the entire class, where most of the students actively participated. To test the students' comprehension of the reading materials, a problem set was designed that required not only an understanding of the three articles, but also application of the concepts learned. The effectiveness of this active learning strategy and its applicability to other topics are discussed in this article.

  8. Thermodynamics of Oligonucleotide Duplex Melting

    Science.gov (United States)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  9. Peptide nucleic acids arrest the growth of gastric cancer cells SGC7901

    Institute of Scientific and Technical Information of China (English)

    王宽; 张岂凡; 王锡山; 薛英威; 庞达; 傅松滨

    2004-01-01

    Background Peptide nucleic acid (PNA) has many characteristics useful in molecular biology. This paper described an effective way to raise the cell ingestion rate of PNA so as to kill gastric cancer cells.Methods Heteroduplexes of PNAs and oligonucleotides, wrapped by Lipofectamine 2000, were used to infect SGC7901 cells. The inhibitive effect of heteroduplexes was evaluated by analyzing cell clone forming and cell growth rate. Telomerase activity of SGC7901 cells was detected by polymerase chain reaction enzyme-linked immunosorbent assay (PCR-ELISA) and silver staining assay.Results PNAs showed a dose-dependent inhibition of cell proliferation. The percentage of proliferation inhibition was 99.4% after 7 days; the rate of cloning inhibition was 98.2% after 8 days;whereas for oligonucleotide groups, at the same concentration, the percentages were 50. 1% and 67. 5% respectively. Antisense PNA-DNA-Lipofectamine 2000 group (AP-D-L group) exhibited significantly different percentages from the control groups (P<0.05). The test result indicated that telomerase activity of the AP-D-L group was inhibited (P<0.05). At the same time, the impact on cell morphology was observed.Conclusions The results showed that PNAs are potent antisense reagents. The telomeraseassociated therapies are very promising for the treatment of malignant tumours.

  10. Internalization of oligodeoxynucleotide antisense to type-1 plasminogen activator inhibitor mRNA in endothelial cells: a three-dimensional reconstruction by confocal microscopy.

    Science.gov (United States)

    Wyroba, E; Pawlowska, Z; Kobylanska, A; Pluskota, E; Maszewska, M; Stec, W J; Cierniewski, C S

    1996-01-01

    A three-dimensional reconstruction analysis of localization of phosphodiester and phosphorothioate oligonucleotide antisense to type-1 plasminogen activator inhibitor (PAI-1) mRNA within endothelial cells is described. When EA.hy 926 cells were incubated with fluorescently labelled phosphodiester (PO-16) or phosphorothioate (PS-16) oligonucleotides at low, not cytotoxical concentrations, the relative brightness composition of the images of the particular samples was much higher for PS-16 than PO-16 and dependent upon the extracellular concentration and the incubation time. The 3-D reconstructions based on the series of optical sections of the samples, spaced every 1.5 microns, showed the punctuate accumulation of the oligonucleotides and a striking difference in a spatial distribution between PO-16 and PS-16 within the cytoplasm. Even after 24 h incubation of endothelial cells with 2.5 microM of PO-16 and PS-16 oligonucleotides, there was a predominant oligonucleotide localization within the cytoplasm and only traces of oligonucleotides could be seen in the cell nucleus and/or perinuclear organelles.

  11. Functional comparison of antisense proteins of HTLV-1 and HTLV-2 in viral pathogenesis

    Directory of Open Access Journals (Sweden)

    Benoit eBarbeau

    2013-08-01

    Full Text Available The production of antisense transcripts from the 3’ long terminal repeat (LTR in human T-lymphotropic retroviruses has now been clearly demonstrated. After the identification of the antisense strand-encoded HTLV-1 bZIP (HBZ factor, we reported that HBZ could interact with CREB transcription factors and consequently turn off the important activating potential of the viral Tax protein on HTLV-1 5’ LTR promoter activity. We have recently accumulated new results demonstrating that antisense transcripts also exist in HTLV-2, -3 and -4. Furthermore, our data have confirmed the existence of encoded proteins from these antisense transcripts (termed antisense proteins of HTLVs or APHs. APHs are also involved in the down-regulation of Tax-dependent viral transcription. In this review, we will focus on the different molecular mechanisms used by HBZ and APH-2 to control viral expression. While HBZ interacts with CREB through its basic zipper domain, APH-2 binds to this cellular factor through a five amino acid motif localized in its carboxyl terminus. Moreover, unlike APH-2, HBZ possesses an N-terminal activation domain that also contributes to the inhibition of the viral transcription by interacting with the KIX domain of p300/CBP. On the other hand, HBZ was found to induce T-cell proliferation while APH-2 was unable to promote such proliferation. Interestingly, HTLV-2 has not been causally linked to human T-cell leukemia, while HTLV-1 is responsible for the development of the Adult T-cell Leukemia/Lymphoma (ATLL. We will further discuss the possible role played by antisense proteins in the establishment of pathologies induced by viral infection.

  12. Bioconjugation of oligonucleotides for treating liver fibrosis.

    Science.gov (United States)

    Ye, Zhaoyang; Houssein, Houssam S Hajj; Mahato, Ram I

    2007-01-01

    Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is urgently needed to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remain the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of alpha1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in-depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed. PMID:18154454

  13. A novel catechol-based universal support for oligonucleotide synthesis.

    Science.gov (United States)

    Anderson, Keith M; Jaquinod, Laurent; Jensen, Michael A; Ngo, Nam; Davis, Ronald W

    2007-12-21

    A novel universal support for deoxyribo- and ribonucleic acid synthesis has been developed. The support, constructed from 1,4-dimethoxycatechol, represents an improvement over existing universal supports because of its ability to cleave and deprotect under mild conditions in standard reagents. Because no nonvolatile additives are required for cleavage and deprotection, the synthesized oligonucleotides do not require purification prior to use in biochemical assays. Using reverse phase HPLC and electrospray mass spectroscopy, it was determined that oligonucleotides synthesized on the universal support (UL1) 3'-dephosphorylate quickly (9 h in 28-30% ammonium hydroxide (NH4OH) at 55 degrees C, 2 h in 28-30% NH4OH at 80 degrees C, or <1 h in ammonium hydroxide/methylamine (1:1) (AMA) at 80 degrees C). Oligonucleotides used as primers for the polymerase chain reaction (PCR) assay were found to perform identically to control primers, demonstrating full biological compatibility. In addition, a method was developed for sintering the universal support directly into a filter plug which can be pressure fit into the synthesis column of a commercial synthesizer. The universal support plugs allow the synthesis of high-quality oligonucleotides at least 120 nucleotides in length, with purity comparable to non-universal commercial supports and approximately 50% lower reagent consumption. The universal support plugs are routinely used to synthesize deoxyribo-, ribo-, 3'-modified, 5'-modified, and thioated oligonucleotides. The flexibility of the universal support and the efficiency of 3'-dephosphorylation are expected to increase the use of universal supports in oligonucleotide synthesis.

  14. Physicochemical and biological properties of self-assembled antisense/poly(amidoamine dendrimer nanoparticles: the effect of dendrimer generation and charge ratio

    Directory of Open Access Journals (Sweden)

    Alireza Nomani

    2010-05-01

    Full Text Available Alireza Nomani1,6, Ismaeil Haririan1,5, Ramin Rahimnia2,4, Shamileh Fouladdel2, Tarane Gazori1, Rassoul Dinarvand1, Yadollah Omidi3, Ebrahim Azizi2,41Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; 2Molecular Research Lab, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; 3Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; 4Department of Medical Biotechnology, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; 5Biomaterials Research Center (BRC Tehran, Iran; 6Department of Pharmaceutics, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, IranAbstract: To gain a deeper understanding of the physicochemical phenomenon of self-assembled nanoparticles of different generations and ratios of poly (amidoamine dendrimer (PAMAM dendrimer and a short-stranded DNA (antisense oligonucleotide, multiple methods were used to characterize these nanoparticles including photon correlation spectroscopy (PCS; zeta potential measurement; and atomic force microscopy (AFM. PCS and AFM results revealed that, in contrast to larger molecules of DNA, smaller molecules produce more heterodisperse and large nanoparticles when they are condensed with a cationic dendrimer. AFM images also showed that such nanoparticles were spherical. The stability of the antisense content of the nanoparticles was investigated over different charge ratios using polyacrylamide gel electrophoresis. It was clear from such analyses that much more than charge neutrality point was required to obtain stable nanoparticles. For cell uptake, self-assembled nanoparticles were prepared with PAMAM G5 and 5’-FITC labeled antisense and the uptake experiment was carried out in T47D cell culture. This investigation also shows that the cytotoxicity of the nanoparticles was

  15. Triplex formation at single-stranded nucleic acid target sites of unrestricted sequence by two added strands of oligonucleotides: A proposed model

    Energy Technology Data Exchange (ETDEWEB)

    Trapane, T.L.; Ts' o, P.O.P. (John Hopkins Univ., Baltimore, MD (United States))

    1994-11-16

    By using the standard purine nucleosides, guanosine and adenosine, and the pyrimidine C-nucleosides, pseudoisocytidine and pseudouridine, as complements on a probe strand, it is possible to construct a regular Watson-Crick helix with a single-stranded target sequence having any arrangement of the four naturally-occurring bases found in nucleic acids. The major groove of this helix will have a unique configuration of hydrogen-bonding sites on the probe strand for each of these four base pairs. By using this duplex as a framework, an ensemble of recognition patterns composed of base triads may be constructed. In these patterns, either a homopyrimidine or homopurine third strand binds in the major groove of the duplex formed by the target and probe strands. Ten distinct geometries, or motifs, are shown, each one consisting of four isomorphic base triads built upon recognition of C, G, A, or U(T) residues in the target strand. In order to maintain specific hydrogen bonding and to construct isomorphous triads, the use of several nonstandard bases is proposed. 33 refs., 9 figs., 3 tabs.

  16. The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes

    Science.gov (United States)

    Hari, Yvonne; Dugovič, Branislav; Istrate, Alena; Fignolé, Annabel; Leumann, Christian J.; Schürch, Stefan

    2016-07-01

    Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes.

  17. Antisense precision polymer micelles require less poly(ethylenimine) for efficient gene knockdown

    Science.gov (United States)

    Fakhoury, Johans J.; Edwardson, Thomas G.; Conway, Justin W.; Trinh, Tuan; Khan, Farhad; Barłóg, Maciej; Bazzi, Hassan S.; Sleiman, Hanadi F.

    2015-12-01

    Therapeutic nucleic acids are powerful molecules for shutting down protein expression. However, their cellular uptake is poor and requires transport vectors, such as cationic polymers. Of these, poly(ethylenimine) (PEI) has been shown to be an efficient vehicle for nucleic acid transport into cells. However, cytotoxicity has been a major hurdle in the development of PEI-DNA complexes as clinically viable therapeutics. We have synthesized antisense-polymer conjugates, where the polymeric block is completely monodisperse and sequence-controlled. Depending on the polymer sequence, these can self-assemble to produce micelles of very low polydispersity. The introduction of linear poly(ethylenimine) to these micelles leads to aggregation into size-defined PEI-mediated superstructures. Subsequently, both cellular uptake and gene silencing are greatly enhanced over extended periods compared to antisense alone, while at the same time cellular cytotoxicity remains very low. In contrast, gene silencing is not enhanced with antisense polymer conjugates that are not able to self-assemble into micelles. Thus, using antisense precision micelles, we are able to achieve significant transfection and knockdown with minimal cytotoxicity at much lower concentrations of linear PEI then previously reported. Consequently, a conceptual solution to the problem of antisense or siRNA delivery is to self-assemble these molecules into `gene-like' micelles with high local charge and increased stability, thus reducing the amount of transfection agent needed for effective gene silencing.Therapeutic nucleic acids are powerful molecules for shutting down protein expression. However, their cellular uptake is poor and requires transport vectors, such as cationic polymers. Of these, poly(ethylenimine) (PEI) has been shown to be an efficient vehicle for nucleic acid transport into cells. However, cytotoxicity has been a major hurdle in the development of PEI-DNA complexes as clinically viable

  18. Effective Antisense Gene Regulation via Noncationic, Polyethylene Glycol Brushes.

    Science.gov (United States)

    Lu, Xueguang; Jia, Fei; Tan, Xuyu; Wang, Dali; Cao, Xueyan; Zheng, Jiamin; Zhang, Ke

    2016-07-27

    Negatively charged nucleic acids are often complexed with polycationic transfection agents before delivery. Herein, we demonstrate that a noncationic, biocompatible polymer, polyethylene glycol, can be used as a transfection vector by forming a brush polymer-DNA conjugate. The brush architecture provides embedded DNA strands with enhanced nuclease stability and improved cell uptake. Because of the biologically benign nature of the polymer component, no cytotoxicity was observed. This approach has the potential to address several long-lasting challenges in oligonucleotide therapeutics. PMID:27420413

  19. ENHANCEMENT OF RADIATION-INDUCED APOPTOSIS IN RAJI CELL LINE BY BC1-2 ANTISENSE OLIGODEOXYNUCLEOTIDE

    Institute of Scientific and Technical Information of China (English)

    HE Dong-mei; ZHANG Huan

    2005-01-01

    Objective: To investigate whether the Bc1-2 antisense oligonucleotide(ASODN) may enhance radiation-induced apoptosis in Raji cell line. Methods: Cell surviving fraction was determined using the trypan blue dye exclusion assay. The expression level of bc1-2 protein was assayed by immunofluorescence using fluoresce isothiocyanate label. Apoptosis was detected by Giemsa staining and flow cytomertric cell cycle analysis. Results: It was found that Bc1-2 ASODN combined with radiation had significantly reduced the number of viable cells (P<0.05). There was no difference on cell survival between mismatch Bc1-2 oligodeoxynucleotide/radiation combination and radiation-treated cells alone. Bc1-2 ASODN combined with radiation could significantly inhibit expression of Bc1-2 protein in Raji cells (P<0.05). Cells treated with Bc1-2 ASODN combined with radiation at 72 h displayed classic apoptotic changes. Apoptosis rates of Raji cells treated with Bc1-2 oligodeoxynucleotide/radiation combination and radiation-treated cells alone, respectively. Conclusion: Bc1-2 antisense oligonucleotide can enhance radiation-induced apoptosis in Raji cell line.

  20. Antisense-mediated RNA targeting: versatile and expedient genetic manipulation in the brain

    Directory of Open Access Journals (Sweden)

    Ioannis eZalachoras

    2011-07-01

    Full Text Available A limiting factor in brain research still is the difficulty to evaluate in vivo the role of the increasing number of proteins implicated in neuronal processes. We discuss here the potential of antisense-mediated RNA targeting approaches. We mainly focus on those that manipulate splicing (exon skipping and exon inclusion, but will also briefly discuss mRNA targeting. Classic knockdown of expression by mRNA targeting is only one possible application of antisense oligonucleotides (AON in the control of gene function. Exon skipping and inclusion are based on the interference of AONs with splicing of pre-mRNAs. These are powerful, specific and particularly versatile techniques, which can be used to circumvent pathogenic mutations, shift splice variant expression, knock down proteins, or to create molecular models using in-frame deletions. Pre-mRNA targeting is currently used both as a research tool, e.g. in models for motor neuron disease, and in clinical trials for Duchenne muscular dystrophy and amyotrophic lateral sclerosis.AONs are particularly promising in relation to brain research, as the modified AONs are taken up extremely fast in neurons and glial cells with a long residence, and without the need for viral vectors or other delivery tools, once inside the blood brain barrier. In this review we cover 1. The principles of antisense-mediated techniques, chemistry and efficacy.2. The pros and cons of AON approaches in the brain compared to other techniques of interfering with gene function, such as transgenesis and short hairpin RNAs, in terms of specificity of the manipulation, spatial and temporal control over gene expression, toxicity and delivery issues.3. The potential applications for Neuroscience. We conclude that there is good evidence from animal studies that the CNS can be successfully targeted, but the potential of the diverse AON-based approaches appears to be under-recognized.

  1. A New Achiral Linker Reagent for the Incorporation of Multiple Amino Groups Into Oligonucleotides

    DEFF Research Database (Denmark)

    1997-01-01

    with the linker in conventional phosphoamidite or H-phosphonate DNA syntheses. Directly, or via a post modification step, an oligonucleotide is labelled with one or more reporter moieties, e.g. dansyl (5-dimethylamino)-1-naphthalenesulfonyl), biotin, digoxigenin, DOXYL (N-oxyl-4,4-dimethyloxazolidine), PROXYL (N......, to a method for preparing a labelled oligonucleotide, and to the use of the labelled oligonucleotide as hybridisation probe, in polymerase chain reactions (PCR), in nucleic acid sequencing, in cloning recombinant DNA and $i(in vitro) mutagenesis....

  2. Modulation of 5' splice site selection using tailed oligonucleotides carrying splicing signals

    Directory of Open Access Journals (Sweden)

    Elela Sherif

    2006-01-01

    Full Text Available Abstract Background We previously described the use of tailed oligonucleotides as a means of reprogramming alternative pre-mRNA splicing in vitro and in vivo. The tailed oligonucleotides that were used interfere with splicing because they contain a portion complementary to sequences immediately upstream of the target 5' splice site combined with a non-hybridizing 5' tail carrying binding sites for the hnRNP A1/A2 proteins. In the present study, we have tested the inhibitory activity of RNA oligonucleotides carrying different tail structures. Results We show that an oligonucleotide with a 5' tail containing the human β-globin branch site sequence inhibits the use of the 5' splice site of Bcl-xL, albeit less efficiently than a tail containing binding sites for the hnRNP A1/A2 proteins. A branch site-containing tail positioned at the 3' end of the oligonucleotide also elicited splicing inhibition but not as efficiently as a 5' tail. The interfering activity of a 3' tail was improved by adding a 5' splice site sequence next to the branch site sequence. A 3' tail carrying a Y-shaped branch structure promoted similar splicing interference. The inclusion of branch site or 5' splice site sequences in the Y-shaped 3' tail further improved splicing inhibition. Conclusion Our in vitro results indicate that a variety of tail architectures can be used to elicit splicing interference at low nanomolar concentrations, thereby broadening the scope and the potential impact of this antisense technology.

  3. The prevalence and regulation of antisense transcripts in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Ting Ni

    Full Text Available A strand-specific transcriptome sequencing strategy, directional ligation sequencing or DeLi-seq, was employed to profile antisense transcriptome of Schizosaccharomyces pombe. Under both normal and heat shock conditions, we found that polyadenylated antisense transcripts are broadly expressed while distinct expression patterns were observed for protein-coding and non-coding loci. Dominant antisense expression is enriched in protein-coding genes involved in meiosis or stress response pathways. Detailed analyses further suggest that antisense transcripts are independently regulated with respect to their sense transcripts, and diverse mechanisms might be potentially involved in the biogenesis and degradation of antisense RNAs. Taken together, antisense transcription may have profound impacts on global gene regulation in S. pombe.

  4. Using both strands: The fundamental nature of antisense transcription.

    Science.gov (United States)

    Murray, Struan C; Mellor, Jane

    2016-01-01

    Non-coding transcription across the antisense strands of genes is an abundant, pervasive process in eukaryotes from yeast to humans, however its biological function remains elusive. Here, we provide commentary on a recent study of ours, which demonstrates a genome-wide role for antisense transcription: establishing a unique, dynamic chromatin architecture over genes. Antisense transcription increases the level of nucleosome occupancy and histone acetylation at the promoter and body of genes, without necessarily modulating the level of protein-coding sense transcription. It is also associated with high levels of histone turnover. By allowing genes to sample a wider range of chromatin configurations, antisense transcription could serve to make genes more sensitive to changing signals, priming them for responses to developmental programs or stressful cellular environments. Given the abundance of antisense transcription and the breadth of these chromatin changes, we propose that antisense transcription represents a fundamental, canonical feature of eukaryotic genes.

  5. The Effect of Organic Modifiers on Electrospray Ionization Charge-State Distribution and Desorption Efficiency for Oligonucleotides

    Science.gov (United States)

    Chen, Buyun; Mason, Sadie F.; Bartlett, Michael G.

    2013-02-01

    The chemical composition of the solution has a critical impact on the electrospray desorption efficiency of oligonucleotides. Several physiochemical properties of various organic modifiers were investigated with respect to their role in the desorption process of oligonucleotides. The Henry's Law Constant, which reflects the volatility of alkylamines, was found to have a prominent effect on both the electrospray charge state distribution and desorption efficiency of oligonucleotides. Alkylamines with higher k_{H,cc}( {aq/gas} ) values such as hexylamine, piperidine, and imidazole reduced the charge state distribution by forming complexes with the oligonucleotide and dissociating from it in the gas phase, while alkylamines with extremely low k_{H,cc}( {aq/gas} ) values reduced the electrospray charge state distribution by facilitating ion emission at an earlier stage of the electrospray desorption process. Ion-pairing agents with moderate k_{H,cc}( {aq/gas} ) values do not alter the electrospray charge state distribution of oligonucleotides and their ability to enhance oligonucleotide ionization followed the order of decreasing k_{H,cc}( {aq/gas} ) values. The Henry's Law Constant also correlated to the impact of the acidic modifiers on oligonucleotide ionization efficiency. Ionization enhancement effects were observed with hexafluoroisopropanol, and this effect was attributed to its low k_{H,cc}( {aq/gas} ) and moderate acidity. The comprehensive effects of both alkylamine and hexafluoroisoproapnol on the electrospray ionization desorption of oligonucleotides were also evaluated, and acid-base equilibrium was found to play a critical role in determining these effects.

  6. Evaluation of Therapeutic Oligonucleotides for Familial Amyloid Polyneuropathy in Patient-Derived Hepatocyte-Like Cells.

    Science.gov (United States)

    Niemietz, Christoph J; Sauer, Vanessa; Stella, Jacqueline; Fleischhauer, Lutz; Chandhok, Gursimran; Guttmann, Sarah; Avsar, Yesim; Guo, Shuling; Ackermann, Elizabeth J; Gollob, Jared; Monia, Brett P; Zibert, Andree; Schmidt, Hartmut H-J

    2016-01-01

    Familial amyloid polyneuropathy (FAP) is caused by mutations of the transthyretin (TTR) gene, predominantly expressed in the liver. Two compounds that knockdown TTR, comprising a small interfering RNA (siRNA; ALN-TTR-02) and an antisense oligonucleotide (ASO; IONIS-TTRRx), are currently being evaluated in clinical trials. Since primary hepatocytes from FAP patients are rarely available for molecular analysis and commercial tissue culture cells or animal models lack the patient-specific genetic background, this study uses primary cells derived from urine of FAP patients. Urine-derived cells were reprogrammed to induced pluripotent stem cells (iPSCs) with high efficiency. Hepatocyte-like cells (HLCs) showing typical hepatic marker expression were obtained from iPSCs of the FAP patients. TTR mRNA expression of FAP HLCs almost reached levels measured in human hepatocytes. To assess TTR knockdown, siTTR1 and TTR-ASO were introduced to HLCs. A significant downregulation (>80%) of TTR mRNA was induced in the HLCs by both oligonucleotides. TTR protein present in the cell culture supernatant of HLCs was similarly downregulated. Gene expression of other hepatic markers was not affected by the therapeutic oligonucleotides. Our data indicate that urine cells (UCs) after reprogramming and hepatic differentiation represent excellent primary human target cells to assess the efficacy and specificity of novel compounds. PMID:27584576

  7. Variable coordination of cotranscribed genes in Escherichia coli following antisense repression

    Directory of Open Access Journals (Sweden)

    Kulyté Agne

    2006-11-01

    Full Text Available Abstract Background A majority of bacterial genes belong to tight clusters and operons, which complicates gene functional studies using conventional knock-out methods. Antisense agents can down-regulate the expression of genes without disrupting the genome because they bind mRNA and block its expression. However, it is unclear how antisense inhibition affects expression from genes that are cotranscribed with the target. Results To examine the effects of antisense inhibition on cotranscribed genes, we constructed a plasmid expressing the two reporter genes gfp and DsRed as one transcriptional unit. Incubation with antisense peptide nucleic acid (PNA targeted to the mRNA start codon region of either the upstream gfp or the downstream DsRed gene resulted in a complete expression discoordination from this artificial construct. The same approach was applied to the three cotranscribed genes in the endogenously expressed lac-operon (lacZ, Y and A and partial downstream expression coordination was seen when the lacZ start codon was targeted with antisense PNA. Targeting the lacY mRNA start codon region showed no effect on the upstream lacZ gene expression whereas expression from the downstream lacA gene was affected as strongly as the lacY gene. Determination of lacZ and lacY mRNA levels revealed a pattern of reduction that was similar to the Lac-proteins, indicating a relation between translation inhibition and mRNA degradation as a response to antisense PNA treatment. Conclusion The results show that antisense mediated repression of genes within operons affect cotranscribed genes to a variable degree. Target transcript stability appears to be closely related to inhibition of translation and presumably depends on translating ribosomes protecting the mRNA from intrinsic decay mechanisms. Therefore, for genes within operons and clusters it is likely that the nature of the target transcript will determine the inhibitory effects on cotranscribed genes

  8. Sheath liquid effects in capillary high-performance liquid chromatography-electrospray mass spectrometry of oligonucleotides.

    Science.gov (United States)

    Huber, C G; Krajete, A

    2000-02-18

    Fused-silica capillary columns of 200 microm inner diameter were packed with micropellicular, octadecylated, 2.3 microm poly(styrene-divinylbenzene) particles and applied to the separation of oligonucleotides by ion-pair reversed-phase high-performance liquid chromatography. Oligonucleotides were eluted at 50 degrees C with gradients of 3-13% acetonitrile in 50 mM triethylammonium bicarbonate. Addition of sheath liquid to the column effluent allowed the detection of oligonucleotides by electrospray ionization mass spectrometry using full-scan data acquisition with a detectability comparable to that obtained with UV detection. The signal-to-noise ratios with different sheath liquids increased in the order isopropanolacids or bases such as triethylamine or hexafluoroisopropanol into the sheath liquid was found to influence the charge state distribution of oligonucleotides longer than 20 nucleotide units whereas no significant effect was observed with shorter oligonucleotides. Organic acids and bases in the sheath liquid generally deteriorated the signal-to-noise ratios in the chromatograms and mass spectra mainly because of increased background noise. Only a few charge states were observed in the mass spectra of oligonucleotides because of charge state reduction due to the presence of carbonic acid in the eluent. With triethylammonium hydrogencarbonate as chromatographic eluent and acetonitrile as sheath liquid, very few cation adducts of oligonucleotides were observed in the mass spectra. However, the presence of small amounts of monopotassium adducts enabled the calculation of the charge state of multiply charged ions. With acetonitrile as sheath liquid, 710 amol of a 16-mer oligonucleotide were detected using selected ion monitoring data acquisition with a signal-to-noise ratio of 3:1. Finally, capillary ion-pair reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry was

  9. Particle-Based Microarrays of Oligonucleotides and Oligopeptides

    Directory of Open Access Journals (Sweden)

    Alexander Nesterov-Mueller

    2014-10-01

    Full Text Available In this review, we describe different methods of microarray fabrication based on the use of micro-particles/-beads and point out future tendencies in the development of particle-based arrays. First, we consider oligonucleotide bead arrays, where each bead is a carrier of one specific sequence of oligonucleotides. This bead-based array approach, appearing in the late 1990s, enabled high-throughput oligonucleotide analysis and had a large impact on genome research. Furthermore, we consider particle-based peptide array fabrication using combinatorial chemistry. In this approach, particles can directly participate in both the synthesis and the transfer of synthesized combinatorial molecules to a substrate. Subsequently, we describe in more detail the synthesis of peptide arrays with amino acid polymer particles, which imbed the amino acids inside their polymer matrix. By heating these particles, the polymer matrix is transformed into a highly viscous gel, and thereby, imbedded monomers are allowed to participate in the coupling reaction. Finally, we focus on combinatorial laser fusing of particles for the synthesis of high-density peptide arrays. This method combines the advantages of particles and combinatorial lithographic approaches.

  10. The landscape of antisense gene expression in human cancers.

    Science.gov (United States)

    Balbin, O Alejandro; Malik, Rohit; Dhanasekaran, Saravana M; Prensner, John R; Cao, Xuhong; Wu, Yi-Mi; Robinson, Dan; Wang, Rui; Chen, Guoan; Beer, David G; Nesvizhskii, Alexey I; Chinnaiyan, Arul M

    2015-07-01

    High-throughput RNA sequencing has revealed more pervasive transcription of the human genome than previously anticipated. However, the extent of natural antisense transcripts' (NATs) expression, their regulation of cognate sense genes, and the role of NATs in cancer remain poorly understood. Here, we use strand-specific paired-end RNA sequencing (ssRNA-seq) data from 376 cancer samples covering nine tissue types to comprehensively characterize the landscape of antisense expression. We found consistent antisense expression in at least 38% of annotated transcripts, which in general is positively correlated with sense gene expression. Investigation of sense/antisense pair expressions across tissue types revealed lineage-specific, ubiquitous and cancer-specific antisense loci transcription. Comparisons between tumor and normal samples identified both concordant (same direction) and discordant (opposite direction) sense/antisense expression patterns. Finally, we provide OncoNAT, a catalog of cancer-related genes with significant antisense transcription, which will enable future investigations of sense/antisense regulation in cancer. Using OncoNAT we identified several functional NATs, including NKX2-1-AS1 that regulates the NKX2-1 oncogene and cell proliferation in lung cancer cells. Overall, this study provides a comprehensive account of NATs and supports a role for NATs' regulation of tumor suppressors and oncogenes in cancer biology. PMID:26063736

  11. Antisense transcription as a tool to tune gene expression.

    Science.gov (United States)

    Brophy, Jennifer A N; Voigt, Christopher A

    2016-01-14

    A surprise that has emerged from transcriptomics is the prevalence of genomic antisense transcription, which occurs counter to gene orientation. While frequent, the roles of antisense transcription in regulation are poorly understood. We built a synthetic system in Escherichia coli to study how antisense transcription can change the expression of a gene and tune the response characteristics of a regulatory circuit. We developed a new genetic part that consists of a unidirectional terminator followed by a constitutive antisense promoter and demonstrate that this part represses gene expression proportionally to the antisense promoter strength. Chip-based oligo synthesis was applied to build a large library of 5,668 terminator-promoter combinations that was used to control the expression of three repressors (PhlF, SrpR, and TarA) in a simple genetic circuit (NOT gate). Using the library, we demonstrate that antisense promoters can be used to tune the threshold of a regulatory circuit without impacting other properties of its response function. Finally, we determined the relative contributions of antisense RNA and transcriptional interference to repressing gene expression and introduce a biophysical model to capture the impact of RNA polymerase collisions on gene repression. This work quantifies the role of antisense transcription in regulatory networks and introduces a new mode to control gene expression that has been previously overlooked in genetic engineering.

  12. Typing of enteroviruses by use of microwell oligonucleotide arrays.

    Science.gov (United States)

    Susi, P; Hattara, L; Waris, M; Luoma-Aho, T; Siitari, H; Hyypiä, T; Saviranta, P

    2009-06-01

    We have developed a straightforward assay for the rapid typing of enteroviruses using oligonucleotide arrays in microtiter wells. The viral nucleic acids are concomitantly amplified and labeled during reverse transcription-PCR, and unpurified PCR products are used for hybridization. DNA strands are separated by alkaline denaturation, and hybridization is started by neutralization. The microarray hybridization reactions and the subsequent washes are performed in standard 96-well microtiter plates, which makes the method easily adaptable to high-throughput analysis. We describe here the assay principle and its potential in clinical laboratory use by correctly identifying 10 different enterovirus reference strains. Furthermore, we explore the detection of unknown sequence variants using serotype consensus oligonucleotide probes. With just two consensus probes for the coxsackievirus A9 (CVA9) serotype, we detected 23 out of 25 highly diverse CVA9 isolates. Overall, the assay involves several features aiming at ease of performance, robustness, and applicability to large-scale studies.

  13. Spherical Nucleic Acids as Intracellular Agents for Nucleic Acid Based Therapeutics

    Science.gov (United States)

    Hao, Liangliang

    Recent functional discoveries on the noncoding sequences of human genome and transcriptome could lead to revolutionary treatment modalities because the noncoding RNAs (ncRNAs) can be applied as therapeutic agents to manipulate disease-causing genes. To date few nucleic acid-based therapeutics have been translated into the clinic due to challenges in the delivery of the oligonucleotide agents in an effective, cell specific, and non-toxic fashion. Unmodified oligonucleotide agents are destroyed rapidly in biological fluids by enzymatic degradation and have difficulty crossing the plasma membrane without the aid of transfection reagents, which often cause inflammatory, cytotoxic, or immunogenic side effects. Spherical nucleic acids (SNAs), nanoparticles consisting of densely organized and highly oriented oligonucleotides, pose one possible solution to circumventing these problems in both the antisense and RNA interference (RNAi) pathways. The unique three dimensional architecture of SNAs protects the bioactive oligonucleotides from unspecific degradation during delivery and supports their targeting of class A scavenger receptors and endocytosis via a lipid-raft-dependent, caveolae-mediated pathway. Owing to their unique structure, SNAs are able to cross cell membranes and regulate target genes expression as a single entity, without triggering the cellular innate immune response. Herein, my thesis has focused on understanding the interactions between SNAs and cellular components and developing SNA-based nanostructures to improve therapeutic capabilities. Specifically, I developed a novel SNA-based, nanoscale agent for delivery of therapeutic oligonucleotides to manipulate microRNAs (miRNAs), the endogenous post-transcriptional gene regulators. I investigated the role of SNAs involving miRNAs in anti-cancer or anti-inflammation responses in cells and in in vivo murine disease models via systemic injection. Furthermore, I explored using different strategies to construct

  14. Properties of hybrid TiO2 -oligonucleotide nanocomposites

    International Nuclear Information System (INIS)

    Recent advancements in hybrid nanotechnology involving nucleic acids and inorganic molecules/structures are predominantly oriented towards cellular imaging or DNA microarray development or for nanoconstruction (such as assembly of ordered patterns of nanocrystals). Nevertheless, in this evolving field there is little work reported yet about the development of nanoparticles that can be used to manipulate biological materials in a novel way. We have synthesized TiO2 -DNA nanocomposites as new vehicles for biotechnology that express new biochemical properties, in an attempt to develop them into nanodevices that would be able to enter cells and conduct their functions in vivo and in situ. Absorption of light and ionizing radiation leads to charge separation in TiO2 , and nanocrystallites modified by the presence of oligonucleotides exhibit semiconducting through both constituents. In such a system charge pairs are instantaneously separated and electropositive holes accumulate on the oligonucleotide DNA, leading to a photo-/radio- catalytic DNA endonuclease reaction. In addition, hybrid nanocomposites of 4.5 nm TiO2 nanoparticles covalently attached to DNA oligonucleotides can be transferred across cellular and nuclear membranes using standard transfection techniques and retained inside mammalian cells. Therefore, TiO2 nanoparticles-biopolymer nanocomposites integrate intrinsic biological/ electrochemical (DNA) and photoelectrical (TiO2 ) properties of the biomolecule and inorganic components, which makes them suitable for development of new tools for biology and medicine

  15. Therapeutic nucleic acids: current clinical status.

    Science.gov (United States)

    Sridharan, Kannan; Gogtay, Nithya Jaideep

    2016-09-01

    Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are simple linear polymers that have been the subject of considerable research in the last two decades and have now moved into the realm of being stand-alone therapeutic agents. Much of this has stemmed from the appreciation that they carry out myriad functions that go beyond mere storage of genetic information and protein synthesis. Therapy with nucleic acids either uses unmodified DNA or RNA or closely related compounds. From both a development and regulatory perspective, they fall somewhere between small molecules and biologics. Several of these compounds are in clinical development and many have received regulatory approval for human use. This review addresses therapeutic uses of DNA based on antisense oligonucleotides, DNA aptamers and gene therapy; and therapeutic uses of RNA including micro RNAs, short interfering RNAs, ribozymes, RNA decoys and circular RNAs. With their specificity, functional diversity and limited toxicity, therapeutic nucleic acids hold enormous promise. However, challenges that need to be addressed include targeted delivery, mass production at low cost, sustaining efficacy and minimizing off-target toxicity. Technological developments will hold the key to this and help accelerate drug approvals in the years to come. PMID:27111518

  16. A multi-target antisense approach against PDE4 and PDE7 reduces smoke-induced lung inflammation in mice

    Directory of Open Access Journals (Sweden)

    Séguin Rosanne

    2009-05-01

    Full Text Available Abstract Background Recent development in the field of COPD has focused on strategies aimed at reducing the underlying inflammation through selective inhibition of the phosphodiesterase type IV (PDE4 isoform. Although the anti-inflammatory and bronchodilator activity of selective PDE4 inhibitors has been well documented, their low therapeutic ratio and dose-dependent systemic side effects have limited their clinical utility. This study examined the effect of 2'-deoxy-2'-Fluoro-β-D-Arabinonucleic Acid (FANA-containing antisense oligonucleotides (AON targeting the mRNA for the PDE4B/4D and 7A subtypes on lung inflammatory markers, both in vitro and in vivo. Methods Normal human bronchial epithelial (NHBE cells were transfected with FANA AON against PDE4B/4D and 7A alone or in combination. mRNA levels for target PDE subtypes, as well as secretion of pro-inflammatory chemokines were then measured following cell stimulation. Mice were treated with combined PDE4B/4D and 7A AON via endo-tracheal delivery, or with roflumilast via oral delivery, and exposed to cigarette smoke for one week. Target mRNA inhibition, as well as influx of inflammatory cells and mediators were measured in lung lavages. A two-week smoke exposure protocol was also used to test the longer term potency of PDE4B/4D and 7A AONs. Results In NHBE cells, PDE4B/4D and 7A AONs dose-dependently and specifically inhibited expression of their respective target mRNA. When used in combination, PDE4B/4D and 7A AONs significantly abrogated the cytokine-induced secretion of IL-8 and MCP-1 to near baseline levels. In mice treated with combined PDE4B/4D and 7A AONs and exposed to cigarette smoke, significant protection against the smoke-induced recruitment of neutrophils and production of KC and pro-MMP-9 was obtained, which was correlated with inhibition of target mRNA in cells from lung lavages. In this model, PDE AONs exerted more potent and broader anti-inflammatory effects against smoke

  17. Inhibition of allergic airway inflammation by antisense-induced blockade of STAT6 expression

    Institute of Scientific and Technical Information of China (English)

    TIAN Xin-rui; TIAN Xin-li; BO Jian-ping; LI Shao-gang; LIU Zhuo-la; NIU Bo

    2011-01-01

    Background The signal transducer and activator of transcription 6 (STAT6) expression in lung epithelial cells plays a pivotal role in asthma pathogenesis. Activation of STAT6 expression results in T helper cell type 2 (Th2) cell differentiation leading to Th2-mediated IgE production, development of allergic airway inflammation and hyperreactivity. Therefore,antagonizing the expression and/or the function of STAT6 could be used as a mode of therapy for allergic airway inflammation.Methods In this study, we synthesized a 20-mer phosphorothioate antisense oligonucleotide (ASODN) overlapping the translation starting site of STAT6 and constructed STAT6 antisense RNA (pANTI-STAT6), then transfected them into murine spleen lymphocytes and analyzed the effects of antagonizing STAT6 function in vitro and in a murine model of asthma.Results In vitro, we showed suppression of STAT6 expression and interleukin (IL)-4 production of lymphocytes by STAT6 ASODN. This effect was more prominent when cells were cultured with pANTI-STAT6. In a murine model of asthma associated with allergic pulmonary inflammation in ovalbumin (OVA)-sensitized mice, local intranasal administration of fluorescein isothiocyanate (FITC)-labeled STAT6 ASODN to DNA uptake in lung cells was accompanied by a reduction of intracellular STAT6 expression. Such intrapulmonary blockade of STAT6 expression abrogated signs of lung inflammation, infiltration of eosinophils and Th2 cytokine production.Conclusion These data suggest a critical role of STAT6 in the pathogenesis of asthma and the use of local delivery of STAT6 ASODN as a novel approach for the treatment of allergic airway inflammation such as in asthma.

  18. Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    van Ommen Gert-Jan B

    2007-07-01

    Full Text Available Abstract Background Antisense-mediated exon skipping is currently one of the most promising therapeutic approaches for Duchenne muscular dystrophy (DMD. Using antisense oligonucleotides (AONs targeting specific exons the DMD reading frame is restored and partially functional dystrophins are produced. Following proof of concept in cultured muscle cells from patients with various deletions and point mutations, we now focus on single and multiple exon duplications. These mutations are in principle ideal targets for this approach since the specific skipping of duplicated exons would generate original, full-length transcripts. Methods Cultured muscle cells from DMD patients carrying duplications were transfected with AONs targeting the duplicated exons, and the dystrophin RNA and protein were analyzed. Results For two brothers with an exon 44 duplication, skipping was, even at suboptimal transfection conditions, so efficient that both exons 44 were skipped, thus generating, once more, an out-of-frame transcript. In such cases, one may resort to multi-exon skipping to restore the reading frame, as is shown here by inducing skipping of exon 43 and both exons 44. By contrast, in cells from a patient with an exon 45 duplication we were able to induce single exon 45 skipping, which allowed restoration of wild type dystrophin. The correction of a larger duplication (involving exons 52 to 62, by combinations of AONs targeting the outer exons, appeared problematic due to inefficient skipping and mistargeting of original instead of duplicated exons. Conclusion The correction of DMD duplications by exon skipping depends on the specific exons targeted. Its options vary from the ideal one, restoring for the first time the true, wild type dystrophin, to requiring more 'classical' skipping strategies, while the correction of multi-exon deletions may need the design of tailored approaches.

  19. Effects of phosphorothioate anti-sense oligodeoxynucleotides on colorectal cancer cell growth and telomerase activity

    Institute of Scientific and Technical Information of China (English)

    Xi-Shan Wang; Kuan Wang; Xue Li; Song-Bin Fu

    2004-01-01

    AIM: To investigate the inhibitory effect of phosphorothioate anti-sense oligodeoxynucleotides (PASODN) on colorectal cancer LS-174T cells in vitro and the mechanism of inhibition of telomerase activity in these cells.METHODS: PASODN were used to infect LS-174T cells and block human telomerase RNA (hTR) through anti-sense technology. The inhibitory effect of PASODN was evaluated by colony-forming inhibition assay and growth curve. Changes of telomerase activity in LS-174T cells were detected by polymerase chain reaction-enzyme-linked immunosorbent assay (PCR-ELISA), and the level of apoptosis was analyzed by flow cytometry (FCM) assay.RESULTS: PASODN showed a dose and time-dependent inhibition of cell proliferation. The optimal dosage of PASODN was 10 μmol/L. The colony-forming efficiency was 10.3% in PASODN group after 10 d, whereas that in phosphorothioate mis-sense oligodeoxynucleotides (PMSODN) group with the same concentration and in PBS group (blank control) was 49.1% and 50.7%, respectively. PCR-ELISA results indicated that telomerase activity in the PASODN group was obviously inhibited in comparison with in the control groups (P<0.01,t = 3.317 and 3.241, t0.01 (20) = 2.845). Meanwhile, before the number of cells was decreased, the morphological changes were observed in the cells of PASODN group. The cells in PASODN group showed the apoptotic peak at 72 h after infection, whereas the control group did not show.CONCLUSION: Specific sequence oligonucleotides can inhibit telomerase activity and lead to cell apoptosis,suggesting a novel treatment strategy for malignant tumors induced by telomerase.

  20. Re-sensitizing drug-resistant bacteria to antibiotics by designing Antisense Therapeutics

    Science.gov (United States)

    Courtney, Colleen; Chatterjee, Anushree

    2014-03-01

    ``Super-bugs'' or ``multi-drug resistant organisms'' are a serious international health problem, with devastating consequences to patient health care. The Center for Disease Control has identified antibiotic resistance as one of the world's most pressing public health problems as a significant fraction of bacterial infections contracted are drug resistant. Typically, antibiotic resistance is encoded by ``resistance-genes'' which express proteins that carryout the resistance causing functions inside the bacterium. We present a RNA based therapeutic strategy for designing antimicrobials capable of re-sensitizing resistant bacteria to antibiotics by targeting labile regions of messenger RNAs encoding for resistance-causing proteins. We perform in silico RNA secondary structure modeling to identify labile target regions in an mRNA of interest. A synthetic biology approach is then used to administer antisense nucleic acids to our model system of ampicillin resistant Escherichia coli. Our results show a prolonged lag phase and decrease in viability of drug-resistant E. colitreated with antisense molecules. The antisense strategy can be applied to alter expression of other genes in antibiotic resistance pathways or other pathways of interest.

  1. Cleavage of Oligonucleotides Containing a P3’→N5’ Phosphoramidate Linkage Mediated by Single-Stranded Oligonucleotide Templates

    Directory of Open Access Journals (Sweden)

    Takeshi Imanishi

    2011-12-01

    Full Text Available Double-stranded DNA (dsDNA templates can hybridize to and accelerate cleavage of oligonucleotides containing a P3’→N5’ phosphoramidate (P-N linkage. This dsDNA-templated cleavage of P-N linkages could be due to conformational strain placed on the linkage upon triplex formation. To determine whether duplex formation also induced conformational strain, we examined the reactivity of the oligonucleotides with a P-N linkage in the presence of single-stranded templates, and compared these reactions to those with dsDNA templates. P-N oligonucleotides that are cleaved upon duplex formation could be used as probes to detect single-stranded nucleic acids.

  2. Thiolated chitosan nanoparticles as a delivery system for antisense therapy: evaluation against EGFR in T47D breast cancer cells

    Directory of Open Access Journals (Sweden)

    Talaei F

    2011-09-01

    Full Text Available Fatemeh Talaei1, Ebrahim Azizi2, Rassoul Dinarvand3, Fatemeh Atyabi31Novel Drug Delivery Systems Lab, 2Molecular Research Lab, Department of Pharmacology and Toxicology, 3Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IranAbstract: Thiolated chitosan has high transfection and mucoadhesive properties. We investigated the potential of two recently synthesized polymers: NAC-C (N-acetyl cysteine-chitosan and NAP-C (N-acetyl penicillamine-chitosan in anticancer drug delivery targeting epidermal growth factor receptor (EGFR. Doxorubicin (DOX and antisense oligonucleotide (ASOND-loaded polymer nanoparticles were prepared in water by a gelation process. Particle characterization, drug loading, and drug release were evaluated. To verify drug delivery efficiency in vitro experiments on a breast cancer cell line (T47D were performed. EGFR gene and protein expression was analyzed by real time quantitative polymerase chain reaction and Western blotting, respectively. A loading percentage of 63% ± 5% for ASOND and 70% ± 5% for DOX was achieved. Drug release data after 15 hours showed that ASOND and DOX were completely released from chitosan-based particles while a lower and more sustained release of only 22% ± 8% was measured for thiolated particles. In a cytosol simulated release medium/reducing environment, such as found intracellularly, polymer-based nanoparticles dissociated, liberating approximately 50% of both active substances within 7 hours. ASOND-loaded polymer nanoparticles had higher stability and high mucoadhesive properties. The ASOND-loaded thiolated particles significantly suppressed EGFR gene expression in T47D cells compared with ASOND-loaded chitosan particles and downregulated EGFR protein expression in cells. This study could facilitate future investigations into the functionality of NAP-C and NAC-C polymers as an efficient ASOND delivery system in vitro and in vivo

  3. Preparation of liposome-coated oligonucleotide labeled with 99mTc and its uptake in vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To explore the preparation method of liposome-coated 99mTc-labeled antisense oligonucleotide (ASON),targeteing the proliferating cell nuclear antigen (PCNA), and to explore the biological characteristics and the uptake kinetics of a radiolabeled probe in vascular smooth muscle cells, an 18-base single-stranded antisense oligonucleotide targeting PCNA mRNA and the complementary strand (sense oligonucleotide, SON) were synthesized. The ASON (SON) was labeled with 99mTc, by conjugating the bifunctional chelator (hydrazino nicotinamide, HYNIC), and purified through a gel filtration column of Sephadex G-25. The product was then encapsulated in cationic liposome (oligofectamineTM). The radiolabeling efficiency, radiochemical purity, stability of the liposome-coated 99mTc-HYNIC-ASON in a phosphate buffered solution (PBS), and fresh human serum and its uptake rate were studied. There was no significant difference between the 99mTc radiolabeling efficiencies of HYNIC-ASON and HYNIC-SON, which were 60.04% ± 1.92% and 59.60% ± 2.53%, respectively (P > 0.05, n = 5). The radiochemical purity of the liposome-coated 99mTc-HYNIC-ASON was 94.70% ± 1.90% (n = 5). And after incubation with PBS and fresh human seAt 90 min after transfection, the uptake rate of the liposome-coated 99mTc-HYNIC-ASON reached its peak of 83.8% ±5.92% in vascular smooth muscle cells (VSMCs) and was much higher than that of the nonliposome-coated 99mTc-HYNIC-ASON, which was 11.16% ± 0.54% (P < 0.01, n = 4). The labeling method of PCNA ASON (SON) conjugated by HYNIC has been proved successful. The liposome was able to enhance the ASON (SON) uptake in VSMCs,and could be widely used as a safe, convenient, effective gene transfer carrier.

  4. The landscape of antisense gene expression in human cancers

    OpenAIRE

    Balbin, O. Alejandro; Malik, Rohit; Dhanasekaran, Saravana M.; Prensner, John R.; Cao, Xuhong; Wu, Yi-Mi; Robinson, Dan; Wang, Rui; Chen, Guoan; Beer, David G.; NesvizhskiI, Alexey I.; Arul M Chinnaiyan

    2015-01-01

    High-throughput RNA sequencing has revealed more pervasive transcription of the human genome than previously anticipated. However, the extent of natural antisense transcripts’ (NATs) expression, their regulation of cognate sense genes, and the role of NATs in cancer remain poorly understood. Here, we use strand-specific paired-end RNA sequencing (ssRNA-seq) data from 376 cancer samples covering nine tissue types to comprehensively characterize the landscape of antisense expression. We found c...

  5. Combination Antisense Treatment for Destructive Exon Skipping of Myostatin and Open Reading Frame Rescue of Dystrophin in Neonatal mdx Mice.

    Science.gov (United States)

    Lu-Nguyen, Ngoc B; Jarmin, Susan A; Saleh, Amer F; Popplewell, Linda; Gait, Michael J; Dickson, George

    2015-08-01

    The fatal X-linked Duchenne muscular dystrophy (DMD), characterized by progressive muscle wasting and muscle weakness, is caused by mutations within the DMD gene. The use of antisense oligonucleotides (AOs) modulating pre-mRNA splicing to restore the disrupted dystrophin reading frame, subsequently generating a shortened but functional protein has emerged as a potential strategy in DMD treatment. AO therapy has recently been applied to induce out-of-frame exon skipping of myostatin pre-mRNA, knocking-down expression of myostatin protein, and such an approach is suggested to enhance muscle hypertrophy/hyperplasia and to reduce muscle necrosis. Within this study, we investigated dual exon skipping of dystrophin and myostatin pre-mRNAs using phosphorodiamidate morpholino oligomers conjugated with an arginine-rich peptide (B-PMOs). Intraperitoneal administration of B-PMOs was performed in neonatal mdx males on the day of birth, and at weeks 3 and 6. At week 9, we observed in treated mice (as compared to age-matched, saline-injected controls) normalization of muscle mass, a recovery in dystrophin expression, and a decrease in muscle necrosis, particularly in the diaphragm. Our data provide a proof of concept for antisense therapy combining dystrophin restoration and myostatin inhibition for the treatment of DMD. PMID:25959011

  6. Antiproliferation effects of an androgen receptor triple-helix forming oligonucleotide on prostate cancer cells

    International Nuclear Information System (INIS)

    Objective: To provide experimental basis for antigene radiation therapy through exploring the effects of antigene strategy on androgen receptor (AR) expression and proliferation of prostate cancer cells. Methods: The triple-helix forming oligonucleotide (TFO) targeting 2447-2461nt of AR cDNA was designed and transfected LNCaP prostate cancer cells with liposome. 24-72 h after transfection, the cellular proliferation was detected by 3H-thymidine (TdR) incorporation test, the expression of AR gene was examined by reverse transcription-polymerase chain reaction (RT-PCR) and expression of AR protein was performed by radioligand binding assay. The results of TFO were compared with antisense oligonucleotide (ASON). Results: At all time points, the AR expression levels in TFO group were markedly lower than that of ASON group (P<0.05). The inhibitory rate of TFO for cellular proliferation was significantly higher than that of ASON (P<0.05). Conclusion: The TFO was a potent inhibitor for AR expression and cell proliferation of LNCaP cells , and could be used in antigene radiotherapy. (authors)

  7. Optimization of single-base-pair mismatch discrimination in oligonucleotide microarrays

    NARCIS (Netherlands)

    Urakawa, H.; Fantroussi, El S.; Smidt, H.; Smoot, J.C.; Tribou, E.H.; Kelly, J.J.; Noble, P.A.; Stahl, D.A.

    2003-01-01

    The discrimination between perfect-match and single-base-pair-mismatched nucleic acid duplexes was investigated by using oligonucleotide DNA microarrays and nonequilibrium dissociation rates (melting profiles). DNA and RNA versions of two synthetic targets corresponding to the 16S rRNA sequences of

  8. Customized oligonucleotide microchips that convert multiple genetic information to simple patterns, are portable and reusable

    Science.gov (United States)

    Mirzabekov, Andrei; Guschin, Dmitry Y.; Chik, Valentine; Drobyshev, Aleksei; Fotin, Alexander; Yershov, Gennadiy; Lysov, Yuri

    2002-01-01

    This invention relates to using customized oligonucleotide microchips as biosensors for the detection and identification of nucleic acids specific for different genes, organisms and/or individuals in the environment, in food and in biological samples. The microchips are designed to convert multiple bits of genetic information into simpler patterns of signals that are interpreted as a unit. Because of an improved method of hybridizing oligonucleotides from samples to microchips, microchips are reusable and transportable. For field study, portable laser or bar code scanners are suitable.

  9. In vivo delivery of transcription factors with multifunctional oligonucleotides

    Science.gov (United States)

    Lee, Kunwoo; Rafi, Mohammad; Wang, Xiaojian; Aran, Kiana; Feng, Xuli; Lo Sterzo, Carlo; Tang, Richard; Lingampalli, Nithya; Kim, Hyun Jin; Murthy, Niren

    2015-07-01

    Therapeutics based on transcription factors have the potential to revolutionize medicine but have had limited clinical success as a consequence of delivery problems. The delivery of transcription factors is challenging because it requires the development of a delivery vehicle that can complex transcription factors, target cells and stimulate endosomal disruption, with minimal toxicity. Here, we present a multifunctional oligonucleotide, termed DARTs (DNA assembled recombinant transcription factors), which can deliver transcription factors with high efficiency in vivo. DARTs are composed of an oligonucleotide that contains a transcription-factor-binding sequence and hydrophobic membrane-disruptive chains that are masked by acid-cleavable galactose residues. DARTs have a unique molecular architecture, which allows them to bind transcription factors, trigger endocytosis in hepatocytes, and stimulate endosomal disruption. The DARTs have enhanced uptake in hepatocytes as a result of their galactose residues and can disrupt endosomes efficiently with minimal toxicity, because unmasking of their hydrophobic domains selectively occurs in the acidic environment of the endosome. We show that DARTs can deliver the transcription factor nuclear erythroid 2-related factor 2 (Nrf2) to the liver, catalyse the transcription of Nrf2 downstream genes, and rescue mice from acetaminophen-induced liver injury.

  10. Oligonucleotide-based therapy for neurodegenerative diseases.

    Science.gov (United States)

    Magen, Iddo; Hornstein, Eran

    2014-10-10

    Molecular genetics insight into the pathogenesis of several neurodegenerative diseases, such as Alzheimer׳s disease, Parkinson׳s disease, Huntington׳s disease and amyotrophic lateral sclerosis, encourages direct interference with the activity of neurotoxic genes or the molecular activation of neuroprotective pathways. Oligonucleotide-based therapies are recently emerging as an efficient strategy for drug development and these can be employed as new treatments of neurodegenerative states. Here we review advances in this field in recent years which suggest an encouraging assessment that oligonucleotide technologies for targeting of RNAs will enable the development of new therapies and will contribute to preservation of brain integrity. PMID:24727531

  11. Electroporation increases antitumoral efficacy of the bcl-2 antisense G3139 and chemotherapy in a human melanoma xenograft

    OpenAIRE

    Baldi Alfonso; D'Angelo Carmen; Scarsella Marco; De Mori Roberta; Biroccio Annamaria; Spugnini Enrico P; Leonetti Carlo

    2011-01-01

    Abstract Background Nucleic acids designed to modulate the expression of target proteins remain a promising therapeutic strategy in several diseases, including cancer. However, clinical success is limited by the lack of efficient intracellular delivery. In this study we evaluated whether electroporation could increase the delivery of antisense oligodeoxynucleotides against bcl-2 (G3139) as well as the efficacy of combination chemotherapy in human melanoma xenografts. Methods Melanoma-bearing ...

  12. LNA-modified isothermal oligonucleotide microarray for differentiating bacilli of similar origin

    Indian Academy of Sciences (India)

    Jing Yan; Ying Yuan; Runqing Mu; Hong Shang; Yifu Guan

    2014-12-01

    Oligonucleotide microarray has been one of the most powerful tools in the ‘Post-Genome Era’ for its high sensitivity, high throughput and parallel processing capability. To achieve high detection specificity, we fabricated an isothermal microarray using locked nucleic acid (LNA)-modified oligonucleotide probes, since LNA has demonstrated the advanced ability to enhance the binding affinity toward their complementary nucleotides. After designing the nucleotide sequences of these oligonucleotide probes for gram-positive bacilli of similar origin (Bacillus subtilis, Bacillus licheniformis, Bacillus pumilus, Bacillus megaterium and Bacillus circulans), we unified the melting temperatures of these oligonucleotide probes by modifying some nucleotides using LNA. Furthermore, we optimized the experimental procedures of hydrating microarray slides, blocking side surface as well as labelling the PCR products. Experimental results revealed that KOD Dash DNA polymerase could efficiently incorporate Cy3-dCTP into the PCR products, and the LNA-isothermal oligonucleotide microarray were able to distinguish the bacilli of similar origin with a high degree of accuracy and specificity under the optimized experimental condition.

  13. Combined in vitro transcription and reverse transcription to amplify and label complex synthetic oligonucleotide probe libraries.

    Science.gov (United States)

    Murgha, Yusuf; Beliveau, Brian; Semrau, Kassandra; Schwartz, Donald; Wu, Chao-Ting; Gulari, Erdogan; Rouillard, Jean-Marie

    2015-06-01

    Oligonucleotide microarrays allow the production of complex custom oligonucleotide libraries for nucleic acid detection-based applications such as fluorescence in situ hybridization (FISH). We have developed a PCR-free method to make single-stranded DNA (ssDNA) fluorescent probes through an intermediate RNA library. A double-stranded oligonucleotide library is amplified by transcription to create an RNA library. Next, dye- or hapten-conjugate primers are used to reverse transcribe the RNA to produce a dye-labeled cDNA library. Finally the RNA is hydrolyzed under alkaline conditions to obtain the single-stranded fluorescent probes library. Starting from unique oligonucleotide library constructs, we present two methods to produce single-stranded probe libraries. The two methods differ in the type of reverse transcription (RT) primer, the incorporation of fluorescent dye, and the purification of fluorescent probes. The first method employs dye-labeled reverse transcription primers to produce multiple differentially single-labeled probe subsets from one microarray library. The fluorescent probes are purified from excess primers by oligonucleotide-bead capture. The second method uses an RNA:DNA chimeric primer and amino-modified nucleotides to produce amino-allyl probes. The excess primers and RNA are hydrolyzed under alkaline conditions, followed by probe purification and labeling with amino-reactive dyes. The fluorescent probes created by the combination of transcription and reverse transcription can be used for FISH and to detect any RNA and DNA targets via hybridization.

  14. Simple Method To Prepare Oligonucleotide-Conjugated Antibodies and Its Application in Multiplex Protein Detection in Single Cells.

    Science.gov (United States)

    Gong, Haibiao; Holcomb, Ilona; Ooi, Aik; Wang, Xiaohui; Majonis, Daniel; Unger, Marc A; Ramakrishnan, Ramesh

    2016-01-20

    The diversity of nucleic acid sequences enables genomics studies in a highly multiplexed format. Since multiplex protein detection is still a challenge, it would be useful to use genomics tools for this purpose. This can be accomplished by conjugating specific oligonucleotides to antibodies. Upon binding of the oligonucleotide-conjugated antibodies to their targets, the protein levels can be converted to oligonucleotide levels. In this report we describe a simple method for preparing oligonucleotide-conjugated antibodies and discuss this method's application in oligonucleotide extension reaction (OER) for multiplex protein detection. Conjugation is based on strain-promoted alkyne-azide cycloaddition (the Cu-free click reaction), in which the antibody is activated with a dibenzocyclooctyne (DBCO) moiety and subsequently linked covalently with an azide-modified oligonucleotide. In the functional test, the reaction conditions and purification processes were optimized to achieve maximum yield and best performance. The OER assay employs a pair of antibody binders (two antibodies, each conjugated with its own oligonucleotide) developed for each protein target. The two oligonucleotides contain unique six-base complementary regions at their 3' prime ends to allow annealing and extension by DNA synthesis enzymes to form a DNA template. Following preamplification, the DNA template is detected by qPCR. Distinct oligonucleotide sequences are assigned to different antibody binders to enable multiplex protein detection. When tested using recombinant proteins, some antibody binders, such as those specific to CSTB, MET, EpCAM, and CASP3, had dynamic ranges of 5-6 logs. The antibody binders were also used in a multiplexed format in OER assays, and the binders successfully detected their protein targets in cell lysates, and in single cells in combination with the C1 system. This click reaction-based antibody conjugation procedure is cost-effective, needs minimal hands-on time, and

  15. Radio-marking and in vivo imagery of oligonucleotides

    International Nuclear Information System (INIS)

    This research thesis is part of activities aimed at the development of new molecules like oligonucleotides. Its first objective was the development and validation of a marking method with fluorine-18 of oligonucleotides for their in-vivo pharmacological assessment with positron emission tomography (PET). Further investigations addressed the use of iodine-125 for oligonucleotide marking purpose. This radio-marking, and in vivo and ex vivo imagery techniques are described, and their potential is highlighted for the pharmacological assessment of different oligonucleotides

  16. Linoleic Acid Activates GPR40/FFA1 and Phospholipase C to Increase [Ca2+]i Release and Insulin Secretion in Islet Beta-Cells

    Institute of Scientific and Technical Information of China (English)

    Yi-jun Zhou; Yu-ling Song; Hui Zhou; Yan Li

    2012-01-01

    To elucidate GPR40/FFA 1 and its downstream signaling pathways in regulating insulin secretion.Methods GPR40/FFA 1 expression was detected by immunofluorescence imaging.We employed linoleic acid (LA),a free fatty acid that has a high affinity to the rat GPR40,and examined its effect on cytosolic free calcium concentration ([Ca2+]i) in primary rat β-cells by Fluo-3 intensity under confocal microscopy recording.Downregulation of GPR40/FFA1 expression by antisense oligonucleotides was performed in pancreatic β-cells,and insulin secretion was assessed by enzyme-linked immunosorbent assay.Results LA acutely stimulated insulin secretion from primary cultured rat pancreatic islets.LA induced significant increase of [Ca2+]i in the presence of 5.6 mmol/L and 11.1 mmol/L glucose,which was reflected by increased Fluo-3 intensity under confocal microscopy recording.LA-stimulated increase in [Ca2+]i and insulin secretion were blocked by inhibition of GPR40/FFA1 expression in β-cells after GPR40/FFA1-specific antisense treatment.In addition,the inhibition of phospholipase C (PLC) activity by U73122,PLC inhibitor,also markedly inhibited the LA-induced [Ca2+]i increase.Conclusion LA activates GPR40/FFA1 and PLC to stimulate Ca2+ release,resulting in an increase in [Ca2+]i and insulin secretion in rat islet β-cells.

  17. Guanine Analogues Enhance Antisense Oligonucleotide-induced Exon Skipping in Dystrophin Gene In Vitro and In Vivo

    OpenAIRE

    Hu, Yihong; Wu, Bo; Zillmer, Allen; Lu, Peijuan; Benrashid, Ehsan; Wang, Mingxing; Doran, Timothy; Shaban, Mona; Wu, Xiaohua; Long Lu, Qi

    2010-01-01

    Exon skipping has demonstrated great potential for treating Duchenne muscular dystrophy (DMD) and other diseases. We have developed a drug-screening system using C2C12 myoblasts expressing a reporter green fluorescent phosphate (GFP), with its reading frame disrupted by the insertion of a targeted dystrophin exon. A library of 2,000 compounds (Spectrum collection; Microsource Discovery System) was screened to identify drugs capable of skipping targeted dystrophin exons or enhancing the exon-s...

  18. Inhibition of the intrinsic coagulation pathway factor XI by antisense oligonucleotides: a novel antithrombotic strategy with lowered bleeding risk

    NARCIS (Netherlands)

    H. Zhang; E.C. Löwenberg; J.R. Crosby; A.R. Macleod; C. Zhao; D. Gao; C. Black; A.S. Revenko; J.C.M. Meijers; E.S. Stroes; M. Levi; B.P. Monia

    2010-01-01

    Existing anticoagulants effectively inhibit the activity of coagulation factors of the extrinsic and common pathway but have substantial limitations and can cause severe bleeding complications. Here we describe a novel therapeutic approach to thrombosis treatment. We have developed and characterized

  19. In vivo imaging of oligonucleotidic aptamers

    Energy Technology Data Exchange (ETDEWEB)

    Tavitian, B.; Boisgard, R. [Inserm U803, Laboratoire d' Imagerie Moleculaire Experimentale, Service hospitalier Frederic joliot, Intitut d' Imagerie Biomedicale, CEA, Orsay (France); Duconge, F.; Dolle, F. [Groupe de Radiochimie, Laboratoire d' Imagerie Moleculaire Experimentale, Service hospitalier Frederic joliot, Intitut d' Imagerie Biomedicale, CEA, Orsay (France)

    2009-07-01

    In this chapter we present the methods developed in our laboratory for in vivo imaging of oligonucleotidic aptamers. These methods relate to (i) the labelling of aptamers with fluorine-18, a positron emitter (ii) Positron Emission Tomography imaging of laboratory animals with [({sup 18})F]aptamers and (iii) labelling with fluorescent dyes and optical imaging of aptamers in mice. (authors)

  20. Triplex-forming ability of modified oligonucleotides

    DEFF Research Database (Denmark)

    Højland, Torben; Babu, Bolle Ravindra; Bryld, Torsten;

    2007-01-01

    We present our studies on the ability of several different nucleotide analogs as triplex-forming oligonucleotides. The modifications tested include 4'-C-hydroxymethyl, LNA, 2'-amino-LNA and N2'-functionalized 2'-amino-LNA. Triplexes containing monomers of N2'-glycyl-functionalized 2'-amino-LNA are...

  1. Preparation of 99Tcm labeled survivin mRNA antisense PNA and gene imaging in nude mice bearing lung carcinoma A549 xenografts

    International Nuclear Information System (INIS)

    Objective: To prepare the 99Tcm-survivin mRNA antisense peptide nucleic acid (PNA)and investigate its value as a gene imaging agent in tumor bearing mice and early diagnosis in tumor. Methods: Survivin mRNA antisense PNA and mismatch PNA were synthesized. Four amino acids (Gly- (D)Ala-Gly-Gly) and Aba (4-aminobutyric acid) were linked to the 5' end of PNA. Gly- (D)Ala-Gly-Gly served as a chelating moiety for strong chelation of 99Tcm and Aba acted as a spacer to minimize the steric hindrance. PNAs were labeled with 99Tcm by the ligand-exchange method. The labeling efficiency and radiochemical purity were measured by HPLC and ITLC methods. There were five BALB/c nude mice bearing human lung carcinoma (A549) in each of antisense PNA and mismatch PNA groups. Gene imaging of 99Tcm-survivin mRNA antisense and mismatch PNAs were performed at 1, 2 and 4 h post the injection, respectively, and the T/NT ratio was measured by the method of ROI. The statistical comparisons of average values were performed with the two-group t-test for independent sample by SPSS 13.0. Results: The product kept stable in vitro. The labeling efficiency of 99Tcm-survivin mRNA antisense PNA was (95.48 ±1.92)% and more than 85% after the incubation for 24 h in serum. The radiochemical purity was >95%. The labeling efficiency of mismatch PNA was similar to the antisense PNA. 99Tcm-survivin mRNA antisense PNA was especially uptaken by tumor lesion, and its accumulation reached the top at 4 h post the injection. T/NT ratios at 1, 2, and 4 h were 2.70 ± 0.28, 3.44 ± 0.35,4.21 ± 0.63, respectively. In the comparison, the T/NT ratio of 99Tcm-survivin mRNA mismatch PNA at 4 h (3.12 ±0.50) was significantly lower (t=2.918, P=0.019). Conclusions: 99Tcm-survivin mRNA antisense PNA has high labeling efficiency,good stability and no need of purification. Its characteristic of especial uptake by tumor lesion provides the potential value in early diagnosis of tumor. (authors)

  2. Antisense suppression of LOX3 gene expression in rice endosperm enhances seed longevity.

    Science.gov (United States)

    Xu, Huibin; Wei, Yidong; Zhu, Yongsheng; Lian, Ling; Xie, Hongguang; Cai, Qiuhua; Chen, Qiushi; Lin, Zhongping; Wang, Zonghua; Xie, Huaan; Zhang, Jianfu

    2015-05-01

    Lipid peroxidation plays a major role in seed longevity and viability. In rice grains, lipid peroxidation is catalyzed by the enzyme lipoxygenase 3 (LOX3). Previous reports showed that grain from the rice variety DawDam in which the LOX3 gene was deleted had less stale flavour after grain storage than normal rice. The molecular mechanism by which LOX3 expression is regulated during endosperm development remains unclear. In this study, we expressed a LOX3 antisense construct in transgenic rice (Oryza sativa L.) plants to down-regulate LOX3 expression in rice endosperm. The transgenic plants exhibited a marked decrease in LOX mRNA levels, normal phenotypes and a normal life cycle. We showed that LOX3 activity and its ability to produce 9-hydroperoxyoctadecadienoic acid (9-HPOD) from linoleic acid were significantly lower in transgenic seeds than in wild-type seeds by measuring the ultraviolet absorption of 9-HPOD at 234 nm and by high-performance liquid chromatography. The suppression of LOX3 expression in rice endosperm increased grain storability. The germination rate of TS-91 (antisense LOX3 transgenic line) was much higher than the WT (29% higher after artificial ageing for 21 days, and 40% higher after natural ageing for 12 months). To our knowledge, this is the first report to demonstrate that decreased LOX3 expression can preserve rice grain quality during storage with no impact on grain yield, suggesting potential applications in agricultural production. PMID:25545811

  3. Inhibition of retroviral replication by anti-sense RNA.

    OpenAIRE

    To, R Y; Booth, S C; Neiman, P E

    1986-01-01

    We tested the effect of anti-sense RNA on the replication of avian retroviruses in cultured cells. The replication of a recombinant retrovirus carrying a neomycin resistance gene (neor) in the anti-sense orientation was blocked when the cells expressed high steady-state levels of RNA molecules with neor in sequence in the sense was blocked when the cells expressed high steady-state levels of RNA molecules with neor sequences in the sense orientation, i.e., complementary to the viral sequence....

  4. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters

    Science.gov (United States)

    Lavender, Christopher A.; Hoffman, Jackson A.; Trotter, Kevin W.; Gilchrist, Daniel A.; Bennett, Brian D.; Burkholder, Adam B.; Fargo, David C.; Archer, Trevor K.

    2016-01-01

    Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment. PMID:27487356

  5. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters.

    Science.gov (United States)

    Lavender, Christopher A; Cannady, Kimberly R; Hoffman, Jackson A; Trotter, Kevin W; Gilchrist, Daniel A; Bennett, Brian D; Burkholder, Adam B; Burd, Craig J; Fargo, David C; Archer, Trevor K

    2016-08-01

    Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment. PMID:27487356

  6. Oligonucleotide-based systems: DNA, microRNAs, DNA/RNA aptamers.

    Science.gov (United States)

    Jolly, Pawan; Estrela, Pedro; Ladomery, Michael

    2016-06-30

    There are an increasing number of applications that have been developed for oligonucleotide-based biosensing systems in genetics and biomedicine. Oligonucleotide-based biosensors are those where the probe to capture the analyte is a strand of deoxyribonucleic acid (DNA), ribonucleic acid (RNA) or a synthetic analogue of naturally occurring nucleic acids. This review will shed light on various types of nucleic acids such as DNA and RNA (particularly microRNAs), their role and their application in biosensing. It will also cover DNA/RNA aptamers, which can be used as bioreceptors for a wide range of targets such as proteins, small molecules, bacteria and even cells. It will also highlight how the invention of synthetic oligonucleotides such as peptide nucleic acid (PNA) or locked nucleic acid (LNA) has pushed the limits of molecular biology and biosensor development to new perspectives. These technologies are very promising albeit still in need of development in order to bridge the gap between the laboratory-based status and the reality of biomedical applications. PMID:27365033

  7. Highly expressed genes are associated with inverse antisense transcription in mouse

    Indian Academy of Sciences (India)

    Andras Györffy; Pawel Surowiak; Zsolt Tulassay; Balazs Györffy

    2007-08-01

    There is a growing evidence, that antisense transcription might have a key role in a range of human diseases. Although predefined sense–antisense pairs were extensively studied, the antisense expression of the known sense genes is rarely investigated. We retrieved and correlated the expression of sense and antisense sequences of 1182 mouse transcripts to assess the prevalence and to find the characteristic pattern of antisense transcription. We contrasted three Affymetrix MGU74A version 1 mouse genome chips to six MGU74A version 2 chips. For these 1182 transcripts, the version 1 chips contain the antisense sequences of the transcripts presented on the version 2 chips. The original data was taken from the GEO database (GDS431 and GDS432). As the Affymetrix data are semiquantitative, the relative expression levels of antisense partners were analysed. We detected antisense transcription, although the average antisense expression is shifted towards smaller expression values (MGU74A version 1, 516; version 2, 1688). An inverse direct correlation between sense and antisense expression values could be observed at high expression values. At a very high relative expression—above 40,000—the Pearson correlation coefficient is getting closer to −1. Transcripts with high inverse expression ratio may be correlated to the investigated gene (major histocompatibility complex class II trans activator). The ratio of sense to antisense transcripts varied among different chromosomes; on chromosomes 14 and 1 the level of antisense expression was higher than that of sense. We conclude that antisense transcription is a common phenomenon in the mouse genome. The hypothesis of regulatory role of antisense transcripts is supported by the inverse antisense gene expression of highly expressed genes.

  8. The Role of Fluorinated Alcohols as Mobile Phase Modifiers for LC-MS Analysis of Oligonucleotides

    Science.gov (United States)

    Basiri, Babak; van Hattum, Hilde; van Dongen, William D.; Murph, Mandi M.; Bartlett, Michael G.

    2016-09-01

    Hexafluoroisopropanol (HFIP) has been widely used as an acidic modifier for mobile phases for liquid chromatography-mass spectrometry (LC-MS) analysis of oligonucleotides ever since the first report of its use for this purpose. This is not surprising, considering the exceptional performance of HFIP compared with carboxylic acids, which cause significant MS signal suppression in electrospray ionization. However, we have found that other fluorinated alcohols can also be utilized for mobile phase preparation and the choice of optimal fluorinated alcohol is determined by the ion-pairing (IP) agent. Although HFIP is a very good choice to be used alongside less hydrophobic IP agents, other fluorinated alcohols such as 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol (HFMIP) can significantly outperform HFIP when used with more hydrophobic IP agents. We also found that more acidic fluorinated alcohols assist with the transfer of oligonucleotides with secondary structure (e.g., folded strands and hairpins) into the gas phase.

  9. Watson-Crick hydrogen bonding of unlocked nucleic acids

    DEFF Research Database (Denmark)

    Langkjær, Niels; Wengel, Jesper; Pasternak, Anna

    2015-01-01

    We herein describe the synthesis of two new unlocked nucleic acid building blocks containing hypoxanthine and 2,6-diaminopurine as nucleobase moieties and their incorporation into oligonucleotides. The modified oligonucleotides were used to examine the thermodynamic properties of UNA against unmo...... unmodified oligonucleotides and the resulting thermodynamic data support that the hydrogen bonding face of UNA is Watson-Crick like....

  10. Electrochemical study of hepta–oligonucleotides

    Directory of Open Access Journals (Sweden)

    Zdenka Balcarova

    2010-12-01

    Full Text Available The study deals with the description and characterization of twohepta–oligonucleotides (DNA and RNA forming special structures.We studied their electrochemical behaviour by means of cyclicvoltammetry (CV and elimination voltammetry with linear scan(EVLS in combination with adsorptive stripping (AdS technique.Differences in electrochemical behaviour of hepta–deoxyribonucleotide and its RNA analog were discussed with regardto their different structures in solutions and their melting points.

  11. A review of statistical methods for preprocessing oligonucleotide microarrays.

    Science.gov (United States)

    Wu, Zhijin

    2009-12-01

    Microarrays have become an indispensable tool in biomedical research. This powerful technology not only makes it possible to quantify a large number of nucleic acid molecules simultaneously, but also produces data with many sources of noise. A number of preprocessing steps are therefore necessary to convert the raw data, usually in the form of hybridisation images, to measures of biological meaning that can be used in further statistical analysis. Preprocessing of oligonucleotide arrays includes image processing, background adjustment, data normalisation/transformation and sometimes summarisation when multiple probes are used to target one genomic unit. In this article, we review the issues encountered in each preprocessing step and introduce the statistical models and methods in preprocessing.

  12. Inhibitory effect of antisense oligodeoxynucleotide to p44/p42 MAPK on angiotensin II-induced hypertrophic response in cultured neonatal rat cardiac myocyte

    Institute of Scientific and Technical Information of China (English)

    Shi-qinZHANG; BoDING; Zhao-guiGUO; Yun-xiaLI

    2004-01-01

    AIM: To explore the inhibitory effect of antisense oligonucleotide (ODN) to mitogen activated protein kinase(MAPK) on cardiomyocyte hypertrophy induced by angiotensin Ⅱ (Ang Ⅱ). METHODS: A 17-mer phosphorothioate-protected antisense ODN directed against the initiation of translation sites of the p42 and p44 MAPK isoforms byliposomal transfection was applied to inhibit the translation of p44/p42 MAPK mRNA. The sense and random ODNs to p44/p42MAPK were used as sequence controls. Neonatal cardiac myocytes were exposed to Ang Ⅱ (10nmol/L) for 5 min and then harvested in lysis buffer for the measurement of the activity and the phosphorylated protein content of p44/p42MAPK that were tested by P-81 phosphocellulose filter paper method and Western blotting, respectively. The rate of protein synthesis by [3H]leucine incorporation and the diameter of cell were measured after exposure to Ang Ⅱ for 24 h and 72 h, respectively. RESULTS: In cardiac myocyte Ang Ⅱ increased p44/p42MAPK activity and phosphorylated protein content by 140 % and 699 %, and also increased [3H]leucine incorporation and cell diameter by 40 % and 27 %. c-fos and c-myc mRNAs were induced significantly after exposure to Ang Ⅱ. Antisense ODN to p44/p42MAPK (0.2 μmol/L) reduced Ang Ⅱ-induced MAPK activity by 30 %,and phophorylated MAPK protein expression by 59 % in cardiac myocyte, and inhibited c-fos and c-myc mRNA expression induced by Ang Ⅱ by 44 % and 43 %, respectively. The diameter and the rate of protein synthesis of cardiac myocyte induced by Ang Ⅱ were decreased by 16 % and 22 % after pretreatment with antisense ODN to p44/p42MAPK. CONCLUSION: Antisense ODN to p44/p42 MAPK inhibited the increase of rate of protein synthesis,and the augmentation of cell diameter and expression of c-fos and c-myc mRNA induced by Ang Ⅱ in culturedcardiac myocytes, p44/p42 MAPK played a critical role in the hypertrophic response induced by Ang Ⅱ in cultured neonatal rat cardiac myocytes.

  13. Antisense expression of a rice cellular apoptosis susceptibility gene (OsCAS) alters the height of transgenic rice

    Institute of Scientific and Technical Information of China (English)

    XU Chunxiao; HE Chaozu

    2007-01-01

    Cellular apoptosis susceptibility (CAS) gene plays important roles in mitosis, development and export of importin αfrom the nucleus, but its function in plant is unknown. In this study, a rice CAS ortholog (OsCAS), which encodes a predicted protein of 983 amino acids with 62% similarity to human CAS, was identified. DNA gel blot analysis revealed a single copy of OsCAS in the rice genome. A 973 bp fragment at the 3' end of OsCAS cDNA was cloned from rice cDNA library and transferred into rice in the antisense direction under the control of CaMV 35S promoter via Agrobacterium-mediated transformation method, 105 transgenic lines were obtained. Expression of OsCAS was suppressed in the antisense transgenic lines as revealed by semi-quantitative RT-PCR. The antisense transgenic lines showed dwarf phenotypes. The results indicated that OsCAS was involved in culm development of rice.

  14. Dicationic Surfactants with Glycine Counter Ions for Oligonucleotide Transportation.

    Science.gov (United States)

    Pietralik, Zuzanna; Skrzypczak, Andrzej; Kozak, Maciej

    2016-08-01

    Gemini surfactants are good candidates to bind, protect, and deliver nucleic acids. Herein, the concept of amino acids (namely glycine) as counter ions of gemini surfactants for gene therapy application was explored. This study was conducted on DNA and RNA oligomers and two quaternary bis-imidazolium salts, having 2,5-dioxahexane and 2,8-dioxanonane spacer groups. The toxicity level of surfactants was assessed by an MTT assay, and their ability to bind nucleic acids was tested through electrophoresis. The nucleic acid conformation was established based on circular dichroism and infrared spectroscopic analyses. The structures of the formed complexes were characterized by small-angle scattering of synchrotron radiation. Both studied surfactants appear to be suitable for gene therapy; however, although they vary by only three methylene groups in the spacer, they differ in binding ability and toxicity. The tested oligonucleotides maintained their native conformations upon surfactant addition and the studied lipoplexes formed a variety of structures. In systems based on a 2,5-dioxahexane spacer, a hexagonal phase was observed for DNA-surfactant complexes and a micellar phase was dominant with RNA. For the surfactant with a 2,8-dioxanonane spacer group, the primitive cubic phase prevailed. PMID:27214208

  15. Hyphenation of a Deoxyribonuclease I immobilized enzyme reactor with liquid chromatography for the online stability evaluation of oligonucleotides.

    Science.gov (United States)

    Álvarez Porebski, Piotr Wiktor; Gyssels, Ellen; Madder, Annemieke; Lynen, Frederic

    2015-11-27

    The stability of antisense oligonucleotides (ONs) toward nucleases is a key aspect for their possible implementation as therapeutic agents. Typically, ON stability studies are performed off-line, where the ONs are incubated with nucleases in solution, followed by their analysis. The problematics of off-line processing render the detailed comparison of relative ON stability quite challenging. Therefore, the development of an online platform based on an immobilized enzyme reactor (IMER) coupled to liquid chromatography (LC) was developed as an alternative for improved ON stability testing. More in detail, Deoxyribonuclease I (DNase I) was immobilized on epoxy-silica particles of different pore sizes and packed into a column for the construction of an IMER. Subsequently, the hyphenation of the IMER with ion-pair chromatography (IPC) and ion-exchange chromatography (IEC) was evaluated, leading to the successful development of two online methodologies: IMER-IPC and IMER-IEC. More specifically, natural and modified DNA and RNA oligonucleotides were used for testing the performance of the methodologies. Both methodologies proved to be simple, automatable, fast and highly reproducible for the quantitative and qualitative evaluation of ON degradation. In addition, the extended IMER life time in combination with a more straightforward control of the reaction kinetics substantiate the applicability of the IMER-LC platform for ON stability tests and its implementation in routine and research laboratories.

  16. Cationic liposomes loaded with pro-apoptotic peptide D-(KLAKLAK)2 and bcl-2 antisense oligodeoxynucleotide G3139 for enhanced anti-cancer therapy

    Science.gov (United States)

    Ko, Young Tag; Falcao, Claudio; Torchilin, Vladimir P.

    2009-01-01

    The treatment of cancer using macromolecular therapeutics such as oligonucleotides or peptides requires efficient delivery systems capable of intracellular penetration and may also benefit from use of a combination of therapeutics with different mechanisms of action. With this possibility in mind, we constructed cationic liposome loaded with the proapoptotic peptide, D-(KLAKLAK)2 and the bcl-2 antisense oligodeoxynucleotide, G3139, and determined whether the combination of the proapoptotic macromolecules in a single cationic liposome can enhance antitumor efficacy. Advantage was taken of alternating charge interaction to entrap macromolecules of opposite charge. The polycationic pepetide D-(KLAKLAK)2 was first condensed with the polyanionic oligodeoxynucleotide G3139 to obtain overall negatively charged peptide/oligodeoxynucleotide complexes. The complexes were then entrapped into DOTAP/DOPE cationic liposomes (CL). This sequential charge interaction ensured efficient entrapment of D-(KLAKLAK)2 and G3139 with a high loading efficiency (50 %) and capacity (7.5 wt%). In vitro treatment of mouse melanoma B16(F10) with CL loaded with D-(KLAKLAK)2/G3139 led to significantly enhanced antitumor efficacy, mediated by stimulated induction of apoptotic (Caspase 3/7) activity, when compared to CL loaded with G3139 alone. Intratumoral injection of CL loaded with D-(KLAKLAK)2/G3139 in B16(F10) mice xenograft also led to suppressed tumor growth associated with enhanced apoptotic activity. Thus, the combination of proapoptotic peptide D-(KLAKLAK)2 and antisense oligonucleotide G3139 in a cationic liposome led to enhanced apoptotic/antitumor efficacy and may provide a promising tool for cancer treatment. PMID:19317442

  17. Double-tailed lipid modification as a promising candidate for oligonucleotide delivery in mammalian cells

    OpenAIRE

    Ugarte-Uribe, Begoña; Grijalvo, Santiago; Busto, Jon V.; Martín, César; Eritja Casadellà, Ramón; Goñi, Félix Lix M; Alkorta, Itziar

    2013-01-01

    Background The potential use of nucleic acids as therapeutic drugs has triggered the quest for oligonucleotide conjugates with enhanced cellular permeability. To this end, the biophysical aspects of previously reported potential lipid oligodeoxyribonucleotide conjugates were studied including its membrane-binding properties and cellular uptake. Methods These conjugates were fully characterized by MALDI-TOF mass spectrometry and HPLC chromatography. Their ability to insert into lipid model mem...

  18. Optimal design of parallel triplex forming oligonucleotides containing Twisted Intercalating Nucleic Acids—TINA

    OpenAIRE

    Schneider, Uffe V.; Mikkelsen, Nikolaj D.; Jøhnk, Nina; Okkels, Limei M.; Westh, Henrik; Lisby, Gorm

    2010-01-01

    Twisted intercalating nucleic acid (TINA) is a novel intercalator and stabilizer of Hoogsteen type parallel triplex formations (PT). Specific design rules for position of TINA in triplex forming oligonucleotides (TFOs) have not previously been presented. We describe a complete collection of easy and robust design rules based upon more than 2500 melting points (T m) determined by FRET. To increase the sensitivity of PT, multiple TINAs should be placed with at least 3 nt in-between or preferabl...

  19. Enzymatic electrochemical detection of epidemic-causing Vibrio cholerae with a disposable oligonucleotide-modified screen-printed bisensor coupled to a dry-reagent-based nucleic acid amplification assay.

    Science.gov (United States)

    Yu, Choo Yee; Ang, Geik Yong; Chan, Kok Gan; Banga Singh, Kirnpal Kaur; Chan, Yean Yean

    2015-08-15

    In this study, we developed a nucleic acid-sensing platform in which a simple, dry-reagent-based nucleic acid amplification assay is combined with a portable multiplex electrochemical genosensor. Preparation of an amplification reaction mix targeting multiple DNA regions of interest is greatly simplified because the lyophilized reagents need only be reconstituted with ultrapure water before the DNA sample is added. The presence of single or multiple target DNAs causes the corresponding single-stranded DNA (ssDNA) amplicons to be generated and tagged with a fluorescein label. The fluorescein-labeled ssDNA amplicons are then analyzed using capture probe-modified screen-printed gold electrode bisensors. Enzymatic amplification of the hybridization event is achieved through the catalytic production of electroactive α-naphthol by anti-fluorescein-conjugated alkaline phosphatase. The applicability of this platform as a diagnostic tool is demonstrated with the detection of toxigenic Vibrio cholerae serogroups O1 and O139, which are associated with cholera epidemics and pandemics. The platform showed excellent diagnostic sensitivity and specificity (100%) when challenged with 168 spiked stool samples. The limit of detection was low (10 colony-forming units/ml) for both toxigenic V. cholerae serogroups. A heat stability assay revealed that the dry-reagent amplification reaction mix was stable at temperatures of 4-56 °C, with an estimated shelf life of seven months. The findings of this study highlight the potential of combining a dry-reagent-based nucleic acid amplification assay with an electrochemical genosensor in a more convenient, sensitive, and sequence-specific detection strategy for multiple target nucleic acids.

  20. Development of a Quantitative BRET Affinity Assay for Nucleic Acid-Protein Interactions.

    Science.gov (United States)

    Vickers, Timothy A; Crooke, Stanley T

    2016-01-01

    Protein-nucleic acid interactions play a crucial role in the regulation of diverse biological processes. Elucidating the roles that protein-nucleic acid complexes play in the regulation of transcription, translation, DNA replication, repair and recombination, and RNA processing continues to be a crucial aspect of understanding of cell biology and the mechanisms of disease. In addition, proteins have been demonstrated to interact with antisense oligonucleotide therapeutics in a sequence and chemistry dependent manner, influencing ASO potency and distribution in cells and in vivo. While many assays have been developed to measure protein-nucleic acid interactions, many suffer from lack of throughput and sensitivity, or challenges with protein purification and scalability. In this report we present a new BRET assay for the analysis of DNA-protein interactions which makes use of an extremely bright luciferase as a tag for the binding protein, along with a long-wavelength fluorophore conjugated to the nucleic acid. The resulting assay is high throughput, sensitive, does not require protein purification, and even allows for quantitative characterization of these interactions within the biologically relevant context of whole cells. PMID:27571227

  1. Optically Triggered Immune Response through Photocaged Oligonucleotides

    Science.gov (United States)

    Govan, Jeane M.; Young, Douglas D.; Lively, Mark O.

    2015-01-01

    Bacterial and viral CpG oligonculeotides are unmethylated cytosine-phosphate-guanosine dinucleotide sequences and trigger an innate immune response through activation of the toll-like receptor 9 (TLR9). We have developed synthetic photocaged CpGs via site-specific incorporation of nitropiperonyloxymethyl (NPOM)-caged thymidine residues. These oligonucleotides enable the optical control of TLR9 function and thereby provide light-activation of an immune response. We provide a proof-of-concept model by applying a reporter assay in live cells and by quantification of endogenous production of interleukin 6. PMID:26034339

  2. Synthesis of 4'-Methoxy 2'-Deoxynucleoside Phosphoramidites for Incorporation into Oligonucleotides.

    Science.gov (United States)

    Petrová, Magdalena; Rosenberg, Ivan

    2016-01-01

    This unit contains detailed synthetic protocols for the preparation of 4'-methoxy 2'-deoxynucleoside phosphoramidite monomers for A, G, C, T, and U. First, 3'-silyl-protected 2'-deoxynucleosides (dNs) are converted in two steps to 4',5'-enol acetates as the key starting compounds. Next, 4'-methoxy dNs are prepared by a one-pot procedure comprising N-iodosuccinimide-promoted methoxylation, hydrolysis, and reduction of the formed intermediates. Finally, 3'-phosphoramidites of 4'-methoxy dNs are obtained by a routine three-step procedure. Title phosphoramidite monomers are suitable for the synthesis of oligonucleotides on solid phase according to conventional amidite chemistry. 4'-Methoxy substitution represents a simple modification of the sugar part of dNs, where β-D-erythro epimers preferentially adopt N-type (C3'-endo, RNA-like) conformation. Moreover, it imparts superior chemical stability, nuclease resistance, and excellent hybridization properties to modified 4'-methoxyoligodeoxynucleotides. The strong tendency toward RNA-selective hybridization suggests its potential utilization in antisense and/or RNAi technologies. © 2016 by John Wiley & Sons, Inc. PMID:27584701

  3. Bacterial antisense RNAs are mainly the product of transcriptional noise

    Science.gov (United States)

    Lloréns-Rico, Verónica; Cano, Jaime; Kamminga, Tjerko; Gil, Rosario; Latorre, Amparo; Chen, Wei-Hua; Bork, Peer; Glass, John I.; Serrano, Luis; Lluch-Senar, Maria

    2016-01-01

    cis-Encoded antisense RNAs (asRNAs) are widespread along bacterial transcriptomes. However, the role of most of these RNAs remains unknown, and there is an ongoing discussion as to what extent these transcripts are the result of transcriptional noise. We show, by comparative transcriptomics of 20 bacterial species and one chloroplast, that the number of asRNAs is exponentially dependent on the genomic AT content and that expression of asRNA at low levels exerts little impact in terms of energy consumption. A transcription model simulating mRNA and asRNA production indicates that the asRNA regulatory effect is only observed above certain expression thresholds, substantially higher than physiological transcript levels. These predictions were verified experimentally by overexpressing nine different asRNAs in Mycoplasma pneumoniae. Our results suggest that most of the antisense transcripts found in bacteria are the consequence of transcriptional noise, arising at spurious promoters throughout the genome. PMID:26973873

  4. Coupling strategies for the synthesis of Peptide-oligonucleotide conjugates for patterned synthetic biomineralization.

    Science.gov (United States)

    Carter, Joshua D; Labean, Thomas H

    2011-01-01

    This work describes preparation strategies for peptide-oligonucleotide conjugates that combine the self-assembling behavior of DNA oligonucleotides with the molecular recognition capabilities of peptides. The syntheses include a solution-phase fragment coupling reaction and a solid-phase fragment coupling strategy where the oligonucleotide has been immobilized on DEAE Sepharose. The yield of four coupling reagents is evaluated, two reagents in water, EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride) and DMTMM (4-(4,6-dimethoxy[1,3,5]triazin-2-yl)-4-methyl-morpholinium chloride), and two in dimethylformamide (DMF), PyBOP ((Benzotriazol-1-yloxy) tripyrrolidinophosphonium hexafluorophosphate) and HBTU (O-benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate), while the oligonucleotide fragment is either in solution or immobilized on DEAE. These coupling strategies rely on an unprotected 5' amino linker on the oligonucleotide reacting with the peptide C-terminus. The peptide, selected from a combinatorial library for its gold-binding behavior, was 12 amino acids long with an N-terminus acetyl cap. Formation of the conjugates was confirmed by gel electrophoresis and mass spectrometry while molecular recognition functionality of the peptide portion was verified using atomic force microscopy. Solution-phase yields were superior to their solid-phase counterparts. EDC resulted in the highest yield for both solution-phase (95%) and solid-phase strategies (24%), while the DMF-based reagents, PyBOP and HBTU, resulted in low yields with reduced recovery. All recoverable conjugates demonstrated gold nanoparticle templating capability. PMID:22007290

  5. Coupling Strategies for the Synthesis of Peptide-Oligonucleotide Conjugates for Patterned Synthetic Biomineralization

    Directory of Open Access Journals (Sweden)

    Joshua D. Carter

    2011-01-01

    Full Text Available This work describes preparation strategies for peptide-oligonucleotide conjugates that combine the self-assembling behavior of DNA oligonucleotides with the molecular recognition capabilities of peptides. The syntheses include a solution-phase fragment coupling reaction and a solid-phase fragment coupling strategy where the oligonucleotide has been immobilized on DEAE Sepharose. The yield of four coupling reagents is evaluated, two reagents in water, EDC (1-ethyl-3-(3-dimethylaminopropyl carbodiimide hydrochloride and DMTMM (4-(4,6-dimethoxy[1,3,5]triazin-2-yl-4-methyl-morpholinium chloride, and two in dimethylformamide (DMF, PyBOP ((Benzotriazol-1-yloxy tripyrrolidinophosphonium hexafluorophosphate and HBTU (O-benzotriazole-N,N,N′,N′-tetramethyluronium hexafluorophosphate, while the oligonucleotide fragment is either in solution or immobilized on DEAE. These coupling strategies rely on an unprotected 5′ amino linker on the oligonucleotide reacting with the peptide C-terminus. The peptide, selected from a combinatorial library for its gold-binding behavior, was 12 amino acids long with an N-terminus acetyl cap. Formation of the conjugates was confirmed by gel electrophoresis and mass spectrometry while molecular recognition functionality of the peptide portion was verified using atomic force microscopy. Solution-phase yields were superior to their solid-phase counterparts. EDC resulted in the highest yield for both solution-phase (95% and solid-phase strategies (24%, while the DMF-based reagents, PyBOP and HBTU, resulted in low yields with reduced recovery. All recoverable conjugates demonstrated gold nanoparticle templating capability.

  6. Antisense treatment of caliciviridae: an emerging disease agent of animals and humans.

    Science.gov (United States)

    Smith, Alvin W; Matson, David O; Stein, David A; Skilling, Douglas E; Kroeker, Andrew D; Berke, Tamas; Iversen, Patrick L

    2002-04-01

    The Earth's oceans are the primary reservoir for an emerging family of RNA viruses, the Caliciviridae, which can cause a spectrum of diseases in marine animals, wildlife, farm animals, pets and humans. Certain members of this family have unusually broad host ranges, and some are zoonotic (transmissible from animals to humans). The RNA virus replicative processes lack effective genetic repair mechanisms, and, therefore, virtually every calicivirus replicate is a mutant. Hence, traditional therapeutics dependent on specific nucleic acid sequences or protein epitopes lack the required diversity of sequence or conformational specificity that would be required to reliably detect, prevent or treat infections from these mutant clusters (quasi-species) of RNA viruses, including the Caliciviridae. Antisense technology using phosphorodiamidate morpholino oligomers shows promise in overcoming these current diagnostic and therapeutic problems inherent with newly emerging viral diseases. PMID:12044040

  7. Interfacing click chemistry with automated oligonucleotide synthesis for the preparation of fluorescent DNA probes containing internal xanthene and cyanine dyes

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Wengel, Jesper

    2013-01-01

    for the first time performed solid-phase copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click labeling during the automated phosphoramidite oligonucleotide synthesis followed by postsynthetic click reactions in solution. We demonstrate that our novel strategy is rapid and efficient for the preparation...... of novel oligonucleotide probes containing internally positioned xanthene and cyanine dye pairs and thus represents a significant step forward for the preparation of advanced fluorescent oligonucleotide probes. Furthermore, we demonstrate that the novel xanthene and cyanine labeled probes display unusual...... and very promising photophysical properties resulting from energy-transfer interactions between the fluorophores controlled by nucleic acid assembly. Potential benefits of using these novel fluorescent probes within, for example, molecular diagnostics and fluorescence microscopy include: Considerable...

  8. Therapeutic Liabilities of in Vivo Viral Vector Tropism: Adeno-Associated Virus Vectors, NMDAR1 Antisense, and Focal Seizure Sensitivity

    OpenAIRE

    Haberman, Rebecca P.; Criswell, Hugh E.; Snowdy, Stephen; Ming, Zhen; Breese, George R.; Samulski, R. Jude; McCown, Thomas J.

    2002-01-01

    The N-methyl-d-aspartic acid (NMDA) receptor provides a potential target for gene therapy of focal seizure disorders. To test this approach, we cloned a 729-bp NMDA receptor (NMDAR1) cDNA fragment in the antisense orientation into adeno-associated virus (AAV) vectors, where expression was driven by either a tetracycline-off regulatable promoter (AAV-tTAK-NR1A) or a cytomegalovirus (CMV) promoter (AAV-CMV-NR1A). After infection of primary cultured cortical neurons with recombinant AAV-tTAK-NR1...

  9. Investigations of oligonucleotide usage variance within and between prokaryotes

    DEFF Research Database (Denmark)

    Bohlin, J.; Skjerve, E.; Ussery, David

    2008-01-01

    of different DNA 'word-sizes' and explore how oligonucleotide frequencies differ in coding and non-coding regions. In addition, we used oligonucleotide frequencies to investigate DNA composition and how DNA sequence patterns change within and between prokaryotic organisms. Among the results found...

  10. Sense and antisense transcription are associated with distinct chromatin architectures across genes.

    Science.gov (United States)

    Murray, Struan C; Haenni, Simon; Howe, Françoise S; Fischl, Harry; Chocian, Karolina; Nair, Anitha; Mellor, Jane

    2015-09-18

    Genes from yeast to mammals are frequently subject to non-coding transcription of their antisense strand; however the genome-wide role for antisense transcription remains elusive. As transcription influences chromatin structure, we took a genome-wide approach to assess which chromatin features are associated with nascent antisense transcription, and contrast these with features associated with nascent sense transcription. We describe a distinct chromatin architecture at the promoter and gene body specifically associated with antisense transcription, marked by reduced H2B ubiquitination, H3K36 and H3K79 trimethylation and increased levels of H3 acetylation, chromatin remodelling enzymes, histone chaperones and histone turnover. The difference in sense transcription between genes with high or low levels of antisense transcription is slight; thus the antisense transcription-associated chromatin state is not simply analogous to a repressed state. Using mutants in which the level of antisense transcription is reduced at GAL1, or altered genome-wide, we show that non-coding transcription is associated with high H3 acetylation and H3 levels across the gene, while reducing H3K36me3. Set1 is required for these antisense transcription-associated chromatin changes in the gene body. We propose that nascent antisense and sense transcription have fundamentally distinct relationships with chromatin, and that both should be considered canonical features of eukaryotic genes.

  11. The Use of Antisense-Mediated Inhibition to Delineate The Role of Inflammatory Agents in The Pathophysiology of Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Damien D. Pearse

    2002-01-01

    Full Text Available Injuries to the central nervous system (CNS usually lead to a potent and acute inflammatory response[1]. During this period, glia and immune cells respond to chemical cues associated with the debris of lysed neurons, disrupted axons, and a broken blood-brain-barrier by releasing a battery of cytokines including tumor necrosis factor-α (TNF-α and, interleukin-β (IL-1β as well as reactive oxygen species such as nitric oxide (NO-[2]. The secretion of these factors may be primarily responsible for secondary damage to surrounding uninjured tissue that potentiates the initial injury[3]. Antisense oligonucleotides (ASOs are designed to hybridize to specific regions of specific mRNAs. Hybridization of the oligonucleotide to the mRNA then interferes with the normal processing of that mRNA at the ribosome or targets the RNA duplex for cleavage by the RNA digestive enzyme, ribonuclease H, resulting in greatly reduced expression of the coded protein. This effectively reduces the amount of corresponding translated protein product and experiments can be designed to examine the requirement of particular inflammatory agents in eliciting specific deleterious responses after injury, e.g., cell death.

  12. Predicting oligonucleotide-directed mutagenesis failures in protein engineering.

    Science.gov (United States)

    Wassman, Christopher D; Tam, Phillip Y; Lathrop, Richard H; Weiss, Gregory A

    2004-01-01

    Protein engineering uses oligonucleotide-directed mutagenesis to modify DNA sequences through a two-step process of hybridization and enzymatic synthesis. Inefficient reactions confound attempts to introduce mutations, especially for the construction of vast combinatorial protein libraries. This paper applied computational approaches to the problem of inefficient mutagenesis. Several results implicated oligonucleotide annealing to non-target sites, termed 'cross-hybridization', as a significant contributor to mutagenesis reaction failures. Test oligonucleotides demonstrated control over reaction outcomes. A novel cross-hybridization score, quickly computable for any plasmid and oligonucleotide mixture, directly correlated with yields of deleterious mutagenesis side products. Cross-hybridization was confirmed conclusively by partial incorporation of an oligonucleotide at a predicted cross-hybridization site, and by modification of putative template secondary structure to control cross-hybridization. Even in low concentrations, cross-hybridizing species in mixtures poisoned reactions. These results provide a basis for improved mutagenesis efficiencies and increased diversities of cognate protein libraries.

  13. Bioresponsive antisense DNA gold nanobeacons as a hybrid in vivo theranostics platform for the inhibition of cancer cells and metastasis

    Science.gov (United States)

    Bao, Chenchen; Conde, João; Curtin, James; Artzi, Natalie; Tian, Furong; Cui, Daxiang

    2015-07-01

    Gold nanobeacons can be used as a powerful tool for cancer theranostics. Here, we proposed a nanomaterial platform based on gold nanobeacons to detect, target and inhibit the expression of a mutant Kras gene in an in vivo murine gastric cancer model. The conjugation of fluorescently-labeled antisense DNA hairpin oligonucleotides to the surface of gold nanoparticles enables using their localized surface plasmon resonance properties to directly track the delivery to the primary gastric tumor and to lung metastatic sites. The fluorescently labeled nanobeacons reports on the interaction with the target as the fluorescent Cy3 signal is quenched by the gold nanoparticle and only emit light following conjugation to the Kras target owing to reorganization and opening of the nanobeacons, thus increasing the distance between the dye and the quencher. The systemic administration of the anti-Kras nanobeacons resulted in approximately 60% tumor size reduction and a 90% reduction in tumor vascularization. More important, the inhibition of the Kras gene expression in gastric tumors prevents the occurrence of metastasis to lung (80% reduction), increasing mice survival in more than 85%. Our developed platform can be easily adjusted to hybridize with any specific target and provide facile diagnosis and treatment for neoplastic diseases.

  14. Targeting DNA with triplex-forming oligonucleotides to modify gene sequence.

    Science.gov (United States)

    Simon, Philippe; Cannata, Fabio; Concordet, Jean-Paul; Giovannangeli, Carine

    2008-08-01

    Molecules that interact with DNA in a sequence-specific manner are attractive tools for manipulating gene sequence and expression. For example, triplex-forming oligonucleotides (TFOs), which bind to oligopyrimidine.oligopurine sequences via Hoogsteen hydrogen bonds, have been used to inhibit gene expression at the DNA level as well as to induce targeted mutagenesis in model systems. Recent advances in using oligonucleotides and analogs to target DNA in a sequence-specific manner will be discussed. In particular, chemical modification of TFOs has been used to improve binding to chromosomal target sequences in living cells. Various oligonucleotide analogs have also been found to expand the range of sequences amenable to manipulation, including so-called "Zorro" locked nucleic acids (LNAs) and pseudo-complementary peptide nucleic acids (pcPNAs). Finally, we will examine the potential of TFOs for directing targeted gene sequence modification and propose that synthetic nucleases, based on conjugation of sequence-specific DNA ligands to DNA damaging molecules, are a promising alternative to protein-based endonucleases for targeted gene sequence modification. PMID:18460344

  15. The sense and antisense expression of gibberellin 20-oxidase gene (rga5) in rice and its effects on GA1 level and agronomic traits

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A gibberellin 20-oxidase gene rga5 was isolated by PCR from genomic DNA of rice (Oryza sativa ssp indica) cultivars 'Aizizhan' and 'Nante'. Compared with the reported OsGA20ox, the rga5 was partial-frame-shifted with 11 different amino acids. Then the rga5 with CaMV 35S promotor and NOS terminator was inserted into the polylinker site of pCambia1301 to construct sense and antisense gene expressing vectors pSrga5 and pArga5. The transgenic plants were obtained by biolistic bombardment with pSrga5 or pArga5. The transgenic rice plants showed that the over- expression and antisense-expression of rga5 have remarkable effects on the biological characters of rice. The sense transgenic plants showed heightening with longer spike, more seed-bearing and unaffected flowering, whereas antisense transgenic plants showed dwarfing, early-flowering with slender stem, dark leaf color, shorter leaf and shorter spike. The PCR amplification and Southern blot hybridization showed that the rga5 has been integrated into the transgenic rice genome and the transcription of rga5 was identified by Northern blot hybridization. In the sense transgenic plants the GA1 content increased of about 50%, however, the antisense transgenic rice decreased of 90% approximately compared with control plant 'Zhonghua 8'. These results demonstrated that the rga5 is a functional gene encoding gibberellin 20-oxidase in rice. Over-expressing rga5 significantly increases the endogenous GA1 level and plant height of rice, whereas the expression of antisense rga5 decreases the GA1 level and plant height of rice dramatically.

  16. Inhibition of flower formation by antisense repression of mitochondrial citrate synthase in transgenic potato plants leads to a specific disintegration of the ovary tissues of flowers.

    OpenAIRE

    Landschütze, V; Willmitzer, L.; Müller-Röber, B

    1995-01-01

    The tricarboxylic acid (TCA) cycle constitutes a major component of the mitochondrial metabolism of eucaryotes, including higher plants. To analyze the importance of this pathway, we down-regulated mitochondrial citrate synthase (mCS; EC 4.1.3.7), the first enzyme of the TCA cycle, in transgenic potato plants using an antisense RNA approach. Several transformants were identified with reduced citrate synthase activity (down to approximately 6% of wild-type activity). These plants were indistin...

  17. Gene-Specific Effects of Antisense Phosphorodiamidate Morpholino Oligomer-Peptide Conjugates on Escherichia coli and Salmonella enterica Serovar Typhimurium in Pure Culture and in Tissue Culture

    OpenAIRE

    Lucas D Tilley; Hine, Orion S.; Kellogg, Jill A.; Hassinger, Jed N.; Weller, Dwight D.; Iversen, Patrick L.; Geller, Bruce L.

    2006-01-01

    The objective was to improve efficacy of antisense phosphorodiamidate morpholino oligomers (PMOs) by improving their uptake into bacterial cells. Four different bacterium-permeating peptides, RFFRFFRFFXB, RTRTRFLRRTXB, RXXRXXRXXB, and KFFKFFKFFKXB (X is 6-aminohexanoic acid and B is β-alanine), were separately coupled to two different PMOs that are complementary to regions near the start codons of a luciferase reporter gene (luc) and a gene required for viability (acpP). Luc peptide-PMOs targ...

  18. Hole hopping rates in single strand oligonucleotides

    Science.gov (United States)

    Borrelli, Raffaele; Capobianco, Amedeo; Peluso, Andrea

    2014-08-01

    The rates of hole transfer between guanine and adenine in single strand DNA have been evaluated by using Fermi’s golden rule and Kubo’s generating function approach for the Franck-Condon weighted density of states. The whole sets of the normal modes and vibrational frequencies of the two nucleobases, obtained at DFT/B3LYP level of calculation, have been considered in computations. The results show that in single strand the pyramidalization/planarization mode of the amino groups of both nucleobases plays the major role. At room temperature, the Franck-Condon density of states extends over a wide range of hole site energy difference, 0-1 eV, giving some hints about the design of oligonucleotides of potential technological interest.

  19. Identification and characterization of high affinity antisense PNAs for the human unr (upstream of N-ras) mRNA which is uniquely overexpressed in MCF-7 breast cancer cells

    OpenAIRE

    Fang, Huafeng; Yue, Xuan; Li, Xiaoxu; Taylor, John-Stephen

    2005-01-01

    We have recently shown that an MCF-7 tumor can be imaged in a mouse by PET with 64Cu-labeled Peptide nucleic acids (PNAs) tethered to the permeation peptide Lys4 that recognize the uniquely overexpressed and very abundant upstream of N-ras or N-ras related gene (unr mRNA) expressed in these cells. Herein we describe how the high affinity antisense PNAs to the unr mRNA were identified and characterized. First, antisense binding sites on the unr mRNA were mapped by an reverse transcriptase rand...

  20. Design and analysis of mismatch probes for long oligonucleotide microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong

    2008-08-15

    Nonspecific hybridization is currently a major concern with microarray technology. One of most effective approaches to estimating nonspecific hybridizations in oligonucleotide microarrays is the utilization of mismatch probes; however, this approach has not been used for longer oligonucleotide probes. Here, an oligonucleotide microarray was constructed to evaluate and optimize parameters for 50-mer mismatch probe design. A perfect match (PM) and 28 mismatch (MM) probes were designed for each of ten target genes selected from three microorganisms. The microarrays were hybridized with synthesized complementary oligonucleotide targets at different temperatures (e.g., 42, 45 and 50 C). In general, the probes with evenly distributed mismatches were more distinguishable than those with randomly distributed mismatches. MM probes with 3, 4 and 5 mismatched nucleotides were differentiated for 50-mer oligonucleotide probes hybridized at 50, 45 and 42 C, respectively. Based on the experimental data generated from this study, a modified positional dependent nearest neighbor (MPDNN) model was constructed to adjust the thermodynamic parameters of matched and mismatched dimer nucleotides in the microarray environment. The MM probes with four flexible positional mismatches were designed using the newly established MPDNN model and the experimental results demonstrated that the redesigned MM probes could yield more consistent hybridizations. Conclusions: This study provides guidance on the design of MM probes for long oligonucleotides (e.g., 50 mers). The novel MPDNN model has improved the consistency for long MM probes, and this modeling method can potentially be used for the prediction of oligonucleotide microarray hybridizations.

  1. Identification of antisense long noncoding RNAs that function as SINEUPs in human cells

    DEFF Research Database (Denmark)

    Schein, Aleks; Zucchelli, Silvia; Kauppinen, Sakari;

    2016-01-01

    , increasing PPP1R12A protein translation in human cells. The SINEUP activity depends on the aforementioned sense-antisense interaction and a free right Alu monomer repeat element at the 3' end of R12A-AS1. In addition, we identify another human antisense lncRNA with SINEUP activity. Our results demonstrate...

  2. Intra-Amygdala Injections of CREB Antisense Impair Inhibitory Avoidance Memory: Role of Norepinephrine and Acetylcholine

    Science.gov (United States)

    Canal, Clinton E.; Chang, Qing; Gold, Paul E.

    2008-01-01

    Infusions of CREB antisense into the amygdala prior to training impair memory for aversive tasks, suggesting that the antisense may interfere with CRE-mediated gene transcription and protein synthesis important for the formation of new memories within the amygdala. However, the amygdala also appears to modulate memory formation in distributed…

  3. Optical Characterization of Oligonucleotide DNA Influenced by Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Seyedeh Maryam Banihashemian

    2013-09-01

    Full Text Available UV-VIS spectroscopic analysis of oligonucleotide DNA exposed to different magnetic fields was performed in order to investigate the relationship between DNA extinction coefficients and optical parameters according to magnetic-field strength. The results with the oligonucleotides adenine-thymine 100 mer (AT-100 DNA and cytosine-guanine 100 mer (CG-100 DNA indicate that the magnetic field influences DNA molar extinction coefficients and refractive indexes. The imaginary parts of the refractive index and molar extinction coefficients of the AT-100 and CG-100 DNA decreased after exposure to a magnetic field of 750 mT due to cleavage of the DNA oligonucleotides into smaller segments.

  4. Energy Transfer Assays Using Quantum Dot-Gold Nanoparticle Complexes: Optimizing Oligonucleotide Assay Configuration Using Monovalently Conjugated Quantum Dots.

    Science.gov (United States)

    Uddayasankar, Uvaraj; Krull, Ulrich J

    2015-07-28

    The energy transfer between quantum dots (QDs) and gold nanoparticles (AuNPs) represents a popular transduction scheme in analytical assays that use nanomaterials. The impact of the spatial arrangement of the two types of nanoparticles on analytical performance has now been evaluated using a nucleic acid strand displacement assay. The first spatial arrangement (configuration 1) involved the assembly of a number of monovalently functionalized QD-oligonucleotide conjugates around a single central AuNP that was functionalized with complementary oligonucleotide sequences. The assembly of these complexes, and subsequent disassembly via target oligonucleotide-mediated displacement, were used to evaluate energy transfer efficiencies. Furthermore, the inner filter effect of AuNPs on the fluorescence intensity of the QD was studied. AuNPs of three different diameters (6, 13, and 30 nm) were used in these studies. Configuration 2 was based on the placement of monovalently functionalized AuNP-oligonucleotide conjugates around a single QD that was functionalized with a complementary oligonucleotide. The optimal assay configuration, established by evaluating energy transfer efficiencies and inner filter effects, was obtained by arranging at most 15 QDs around the 13 nm AuNP (configuration 1). These assays provided a 2.5-fold change in fluorescence intensity in the presence of target oligonucleotides. To obtain the same response with configuration 2 required the placement of three 6 nm AuNPs around the QD. This resulted in configuration 2 having a 5-fold lower fluorescence intensity when compared to configuration 1. The use of low-cost detection systems (digital camera) further emphasized the higher analytical performance of configuration 1. Response curves obtained using these detection systems demonstrated that configuration 1 had a 10-fold higher sensitivity when compared to configuration 2. This study provides an important framework for the development of sensitive assays

  5. Construction of antisense Bmi-1 expression plasmid and its inhibitory effect on K562 cells proliferation

    Institute of Scientific and Technical Information of China (English)

    MENG Xiu-xiang; LIU Wei-hong; LIU Dan-dan; ZHAO Xin-yu; SU Ben-li

    2005-01-01

    Background Bmi-1 gene determines the proliferative capacity of normal and leukemia stem cells. Expression of Bmi-1 has been found in all types of myeloid leukemia cells in both humans and mice. This study aimed at assessing the effect of antisense Bmi-1 expression on K562 cells proliferation and p16 protein (p16) expression.Results K562 cells transfected with antisense Bmi-1 plasmid grew significantly slower than that of controls (the parental K562 and cells transfected with empty plasmid). The colony forming ability of antisense Bmi-1 plasmid transfected cells decreased significantly (P<0.01) compared with controls. The p16 expression of cells transfected with antisense Bmi-1 was upgraded more apparently than that of controls.Conclusion The antisense Bmi-1 gene can inhibit the growth of K562 cell and upgrade expression of p16 in K562 cells.

  6. Antineoplastic Effect of Decoy Oligonucleotide Derived from MGMT Enhancer

    Science.gov (United States)

    Refael, Miri; Zrihan, Daniel; Siegal, Tali; Lavon, Iris

    2014-01-01

    Silencing of O(6)-methylguanine-DNA-methyltransferase (MGMT) in tumors, mainly through promoter methylation, correlates with a better therapeutic response and with increased survival. Therefore, it is conceivable to consider MGMT as a potential therapeutic target for the treatment of cancers. Our previous results demonstrated the pivotal role of NF-kappaB in MGMT expression, mediated mainly through p65/NF-kappaB homodimers. Here we show that the non-canonical NF-KappaB motif (MGMT-kappaB1) within MGMT enhancer is probably the major inducer of MGMT expression following NF-kappaB activation. Thus, in an attempt to attenuate the transcription activity of MGMT in tumors we designed locked nucleic acids (LNA) modified decoy oligonucleotides corresponding to the specific sequence of MGMT-kappaB1 (MGMT-kB1-LODN). Following confirmation of the ability of MGMT-kB1-LODN to interfere with the binding of p65/NF-kappaB to the NF-KappaB motif within MGMT enhancer, the efficacy of the decoy was studied in-vitro and in-vivo. The results of these experiments show that the decoy MGMT-kB1-LODN have a substantial antineoplastic effect when used either in combination with temozolomide or as monotherapy. Our results suggest that MGMT-kB1-LODN may provide a novel strategy for cancer therapy. PMID:25460932

  7. Integrated Microfluidic Isolation of Aptamers Using Electrophoretic Oligonucleotide Manipulation

    Science.gov (United States)

    Kim, Jinho; Olsen, Timothy R.; Zhu, Jing; Hilton, John P.; Yang, Kyung-Ae; Pei, Renjun; Stojanovic, Milan N.; Lin, Qiao

    2016-05-01

    We present a microfluidic approach to integrated isolation of DNA aptamers via systematic evolution of ligands by exponential enrichment (SELEX). The approach employs a microbead-based protocol for the processes of affinity selection and amplification of target-binding oligonucleotides, and an electrophoretic DNA manipulation scheme for the coupling of these processes, which are required to occur in different buffers. This achieves the full microfluidic integration of SELEX, thereby enabling highly efficient isolation of aptamers in drastically reduced times and with minimized consumption of biological material. The approach as such also offers broad target applicability by allowing selection of aptamers with respect to targets that are either surface-immobilized or solution-borne, potentially allowing aptamers to be developed as readily available affinity reagents for a wide range of targets. We demonstrate the utility of this approach on two different procedures, respectively for isolating aptamers against a surface-immobilized protein (immunoglobulin E) and a solution-phase small molecule (bisboronic acid in the presence of glucose). In both cases aptamer candidates were isolated in three rounds of SELEX within a total process time of approximately 10 hours.

  8. Antineoplastic effect of decoy oligonucleotide derived from MGMT enhancer.

    Directory of Open Access Journals (Sweden)

    Tamar Canello

    Full Text Available Silencing of O(6-methylguanine-DNA-methyltransferase (MGMT in tumors, mainly through promoter methylation, correlates with a better therapeutic response and with increased survival. Therefore, it is conceivable to consider MGMT as a potential therapeutic target for the treatment of cancers. Our previous results demonstrated the pivotal role of NF-kappaB in MGMT expression, mediated mainly through p65/NF-kappaB homodimers. Here we show that the non-canonical NF-KappaB motif (MGMT-kappaB1 within MGMT enhancer is probably the major inducer of MGMT expression following NF-kappaB activation. Thus, in an attempt to attenuate the transcription activity of MGMT in tumors we designed locked nucleic acids (LNA modified decoy oligonucleotides corresponding to the specific sequence of MGMT-kappaB1 (MGMT-kB1-LODN. Following confirmation of the ability of MGMT-kB1-LODN to interfere with the binding of p65/NF-kappaB to the NF-KappaB motif within MGMT enhancer, the efficacy of the decoy was studied in-vitro and in-vivo. The results of these experiments show that the decoy MGMT-kB1-LODN have a substantial antineoplastic effect when used either in combination with temozolomide or as monotherapy. Our results suggest that MGMT-kB1-LODN may provide a novel strategy for cancer therapy.

  9. Cis-Antisense Transcription Gives Rise to Tunable Genetic Switch Behavior: A Mathematical Modeling Approach.

    Science.gov (United States)

    Bordoy, Antoni E; Chatterjee, Anushree

    2015-01-01

    Antisense transcription has been extensively recognized as a regulatory mechanism for gene expression across all kingdoms of life. Despite the broad importance and extensive experimental determination of cis-antisense transcription, relatively little is known about its role in controlling cellular switching responses. Growing evidence suggests the presence of non-coding cis-antisense RNAs that regulate gene expression via antisense interaction. Recent studies also indicate the role of transcriptional interference in regulating expression of neighboring genes due to traffic of RNA polymerases from adjacent promoter regions. Previous models investigate these mechanisms independently, however, little is understood about how cells utilize coupling of these mechanisms in advantageous ways that could also be used to design novel synthetic genetic devices. Here, we present a mathematical modeling framework for antisense transcription that combines the effects of both transcriptional interference and cis-antisense regulation. We demonstrate the tunability of transcriptional interference through various parameters, and that coupling of transcriptional interference with cis-antisense RNA interaction gives rise to hypersensitive switches in expression of both antisense genes. When implementing additional positive and negative feed-back loops from proteins encoded by these genes, the system response acquires a bistable behavior. Our model shows that combining these multiple-levels of regulation allows fine-tuning of system parameters to give rise to a highly tunable output, ranging from a simple-first order response to biologically complex higher-order response such as tunable bistable switch. We identify important parameters affecting the cellular switch response in order to provide the design principles for tunable gene expression using antisense transcription. This presents an important insight into functional role of antisense transcription and its importance towards

  10. Electroporation increases antitumoral efficacy of the bcl-2 antisense G3139 and chemotherapy in a human melanoma xenograft

    Directory of Open Access Journals (Sweden)

    Baldi Alfonso

    2011-07-01

    Full Text Available Abstract Background Nucleic acids designed to modulate the expression of target proteins remain a promising therapeutic strategy in several diseases, including cancer. However, clinical success is limited by the lack of efficient intracellular delivery. In this study we evaluated whether electroporation could increase the delivery of antisense oligodeoxynucleotides against bcl-2 (G3139 as well as the efficacy of combination chemotherapy in human melanoma xenografts. Methods Melanoma-bearing nude mice were treated i.v. with G3139 and/or cisplatin (DDP followed by the application of trains of electric pulses to tumors. Western blot, immunohistochemistry and real-time PCR were performed to analyze protein and mRNA expression. The effect of electroporation on muscles was determined by histology, while tumor apoptosis and the proliferation index were analyzed by immunohistochemistry. Antisense oligodeoxynucleotides tumor accumulation was measured by FACS and confocal microscopy. Results The G3139/Electroporation combined therapy produced a significant inhibition of tumor growth (TWI, more than 50% accompanied by a marked tumor re-growth delay (TRD, about 20 days. The efficacy of this treatment was due to the higher G3139 uptake in tumor cells which led to a marked down-regulation of bcl-2 protein expression. Moreover, the G3139/EP combination treatment resulted in an enhanced apoptotic index and a decreased proliferation rate of tumors. Finally, an increased tumor response was observed after treatment with the triple combination G3139/DDP/EP, showing a TWI of about 75% and TRD of 30 days. Conclusions These results demonstrate that electroporation is an effective strategy to improve the delivery of antisense oligodeoxynucleotides within tumor cells in vivo and it may be instrumental in optimizing the response of melanoma to chemotherapy. The high response rate observed in this study suggest to apply this strategy for the treatment of melanoma patients.

  11. Carboranyl Nucleosides & Oligonucleotides for Neutron Capture Therapy Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Schinazi, Raymond F.

    2004-12-01

    -methyl)phosphonate (CBMP) internucleotide group. Unmodified phosphodiester linkages were formed using a standard {beta}-cyanoethyl cycle and automated DNA synthesizer. Modified CBMP internucleotide linkage was produced using the phosphotriester method and 5'-O-monomethoxytritylthymidine 3'-O-[(o-carboran-1-yl-methyl)phosphonate] monomer. Several dodecathymidylic acids bearing modification at 3'- or 5'-end, or in the middle of oligonucleotide chain were synthesized. The resulting oligomers are being characterized by reverse phase high-pressure liquid chromatography (RP-HPLC), electrospray ionization mass spectrometry (ESIMS), ultraviolet spectroscopy (UV), and circular dichroism (CD). In collaboration with Cornell University, we employed a secondary ion mass spectrometry (SIMS) based subcellular isotopic imaging technique of ion microscopy for evaluating 4 carboranyl nucleosides. Nucleosides synthesized by our group, including CDU, HMCDU, CTU, and CFAU were tested for their boron delivery to the nuclear and cytoplasmic compartments of U251 human and F98 rat glioma cells. Quantitative SIMS analysis of boron was performed in cryogenically prepared cells. For all drugs, the cell cytoplasm revealed significantly higher boron than the nucleus. However, the boron partitioning between the cell nucleus and the nutrient medium indicated 6.4-10.6 times higher boron in the nucleus. The results suggested that these novel carboranyl nucleosides should provide efficient BNCT agents that accumulate in malignant cells and the need for further evaluations in vitro and in animal models.

  12. Carboranyl Oligonucleotides for Neutron Capture Therapy Final Report

    International Nuclear Information System (INIS)

    -methyl)phosphonate (CBMP) internucleotide group. Unmodified phosphodiester linkages were formed using a standard β-cyanoethyl cycle and automated DNA synthesizer. Modified CBMP internucleotide linkage was produced using the phosphotriester method and 5'-O-monomethoxytritylthymidine 3'-O-[(o-carboran-1-yl-methyl)phosphonate] monomer. Several dodecathymidylic acids bearing modification at 3'- or 5'-end, or in the middle of oligonucleotide chain were synthesized. The resulting oligomers are being characterized by reverse phase high-pressure liquid chromatography (RP-HPLC), electrospray ionization mass spectrometry (ESIMS), ultraviolet spectroscopy (UV), and circular dichroism (CD). In collaboration with Cornell University, we employed a secondary ion mass spectrometry (SIMS) based subcellular isotopic imaging technique of ion microscopy for evaluating 4 carboranyl nucleosides. Nucleosides synthesized by our group, including CDU, HMCDU, CTU, and CFAU were tested for their boron delivery to the nuclear and cytoplasmic compartments of U251 human and F98 rat glioma cells. Quantitative SIMS analysis of boron was performed in cryogenically prepared cells. For all drugs, the cell cytoplasm revealed significantly higher boron than the nucleus. However, the boron partitioning between the cell nucleus and the nutrient medium indicated 6.4-10.6 times higher boron in the nucleus. The results suggested that these novel carboranyl nucleosides should provide efficient BNCT agents that accumulate in malignant cells and the need for further evaluations in vitro and in animal models

  13. The nonenzymatic template-directed ligation of oligonucleotides

    Directory of Open Access Journals (Sweden)

    A.V. Lutay

    2006-01-01

    Full Text Available The nonenzymatic template-directed ligation of oligonucleotides containing 2',3'-cyclic phosphate was investigated in the presence of divalent cations. Ligation of the oligonucleotides readily occurred in the presence of Mg2+, Mn2+, Co2+, Zn2+, Pb2+. Efficacy of the metal ion catalysts inversely correlated with pKa values of the metal-bound water molecules. The intermolecular transesterification reaction yielded at least 95% of 2',5'-phosphodiester bonds independently on the nature of the metal ion. Relatively high reaction yields (up to 15% suggest, that RNA fragmentation to oligonucleotides with 2',3'-cyclic phosphates, followed by reactions of those oligonucleotides could provide a source of new RNA molecules under prebiotic conditions.

  14. Nucleic acid extraction, oligonucleotide probes and PCR methods

    International Nuclear Information System (INIS)

    Complex microbiomes of rumen and gastrointestinal tracts. Bacteria, fungi and protozoa, present in rumen and gastrointestinal (GI) tracts, interact with feed, with each other, and with their host animals, resulting in a complex symbiotic microbiota of distinctive composition and structure. Such microbiota is dynamic and highly responsive to a variety of biotic and abiotic factors, such as diet, feed additives, age, health and physiological status of the host animal, geographical locations, season and feeding regimen (reviewed in Ref. [39]). This symbiotic microbiota has been the focus of microbial research for over half a century in search for improved ruminant nutrition. Before the advent of molecular biology techniques, microorganisms in rumen and GI tracts, as in other habitats, were studied with cultivation-based techniques, which only allows for the isolation and characterization of a limited number of readily culturable species. As estimated, there are more than 400 species of bacteria and up to 100 species of protozoa and fungi inhabiting rumen and GI tracts. In human GI tracts, as much as 60% of these members cannot be isolated on agar plates and, thus, remain unknown. In ruminants, although it is not known, the culturable species of the microbiota are probably in the same range. Even among the culturable species, probably only some of them have been isolated and described. The application of cultivation-independent, more sensitive and accurate molecular techniques to the study of ruminal and GI microorganisms provided an alternative to directly examining the diversity and the community structure of ruminal and GI microbiota on the basis of genotypes, instead of phenotypes. Both polymerase chain reaction (PCR)-based methods, such as denaturing gradient gel electrophoresis (DGGE), ribosomal intergenic spacer analysis, terminal restriction fragment length polymorphism, cloning and sequencing of PCR amplicons and amplified 16S ribosomal DNA restriction analysis, and hybridization-based methods, such as RNA-targeted hybridization, fluorescence in situ hybridization (FISH), and microarray, have been employed. The application of these molecular techniques has been changing our perspectives about ruminal and GI microbiota. Except for FISH, all these methods analyse DNA or RNA extracted from samples collected from rumen or GI tracts. Therefore, reliable and efficient DNA/RNA extraction is the pre-requisite of molecular ecological studies of ruminal microbiota

  15. Pluronic-PEI copolymers enhance exon-skipping of 2'-O-methyl phosphorothioate oligonucleotide in cell culture and dystrophic mdx mice.

    Science.gov (United States)

    Wang, M; Wu, B; Lu, P; Tucker, J D; Milazi, S; Shah, S N; Lu, Q L

    2014-01-01

    A series of small-size polyethylenimine (PEI)-conjugated pluronic polycarbamates (PCMs) have been investigated for the ability to modulate the delivery of 2'-O-methyl phosphorothioate RNA (2'-OMePS) in vitro and in dystrophic mdx mice. The PCMs retain strong binding capacity to negatively charged oligomer as demonstrated by agarose gel retardation assay, with the formation of condensed polymer/oligomer complexes at a wide-range weight ratio from 1:1 to 20:1. The condensed polymer/oligomer complexes form 100-300 nm nanoparticles. Exon-skipping effect of 2'-OMePS was dramatically enhanced with the use of the most effective PCMs in comparison with 2'-OMePS alone in both cell culture and in vivo, respectively. More importantly, the effective PCMs, especially those composed of moderate size (2k-5kDa) and intermediate hydrophilic-lipophilic balance (7-23) of pluronics, enhanced exon-skipping of 2'-OMePS with low toxicity as compared with Lipofectamine-2000 in vitro or PEI 25k in vivo. The variability of individual PCM for delivery of antisense oligomer and plasmid DNA indicate the complexity of interaction between polymer and their cargos. Our data demonstrate the potential of PCMs to mediate delivery of modified antisense oligonucleotides to the muscle for treating muscular dystrophy or other appropriate myodegenerative diseases. PMID:24131982

  16. Portable System for Microbial Sample Preparation and Oligonucleotide Microarray Analysis

    OpenAIRE

    Bavykin, Sergei G.; Akowski, James P.; Zakhariev, Vladimir M.; Barsky, Viktor E.; Perov, Alexander N.; Mirzabekov, Andrei D.

    2001-01-01

    We have developed a three-component system for microbial identification that consists of (i) a universal syringe-operated silica minicolumn for successive DNA and RNA isolation, fractionation, fragmentation, fluorescent labeling, and removal of excess free label and short oligonucleotides; (ii) microarrays of immobilized oligonucleotide probes for 16S rRNA identification; and (iii) a portable battery-powered device for imaging the hybridization of fluorescently labeled RNA fragments with the ...

  17. Synthesis and applications of oligonucleotides containing 2'-modified nucleosides

    OpenAIRE

    Shelbourne, Montserrat

    2012-01-01

    This thesis describes the synthesis and applications of chemically modified oligonucleotides, principally those containing modifications at the 2?-position of ribose. One application is their use in triplex-forming oligonucleotides (TFOs). DNA triplexes are formed by the binding of a TFO to a DNA duplex. TFOs are potential therapeutic agents against cancer and viral infections. TFOs containing 2?-aminoethoxy-T and 5-MeC were shown by UV melting studies to strongly stabilise parallel triple...

  18. Potent Antiscrapie Activities of Degenerate Phosphorothioate Oligonucleotides

    Science.gov (United States)

    Kocisko, David A.; Vaillant, Andrew; Lee, Kil Sun; Arnold, Kevin M.; Bertholet, Nadine; Race, Richard E.; Olsen, Emily A.; Juteau, Jean-Marc; Caughey, Byron

    2006-01-01

    Although transmissible spongiform encephalopathies (TSEs) are incurable, a key therapeutic approach is prevention of conversion of the normal, protease-sensitive form of prion protein (PrP-sen) to the disease-specific protease-resistant form of prion protein (PrP-res). Here degenerate phosphorothioate oligonucleotides (PS-ONs) are introduced as low-nM PrP-res conversion inhibitors with strong antiscrapie activities in vivo. Comparisons of various PS-ON analogs indicated that hydrophobicity and size were important, while base composition was only minimally influential. PS-ONs bound avidly to PrP-sen but could be displaced by sulfated glycan PrP-res inhibitors, indicating the presence of overlapping binding sites. Labeled PS-ONs also bound to PrP-sen on live cells and were internalized. This binding likely accounts for the antiscrapie activity. Prophylactic PS-ON treatments more than tripled scrapie survival periods in mice. Survival times also increased when PS-ONs were mixed with scrapie brain inoculum. With these antiscrapie activities and their much lower anticoagulant activities than that of pentosan polysulfate, degenerate PS-ONs are attractive new compounds for the treatment of TSEs. PMID:16495266

  19. Hole hopping rates in single strand oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, Raffaele [Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Largo Paolo Braccini 2, I-10095 Grugliasco, TO (Italy); Capobianco, Amedeo [Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA (Italy); Peluso, Andrea, E-mail: apeluso@unisa.it [Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA (Italy)

    2014-08-31

    Highlights: • DNA hole transfer rates have been computed. • Delocalized adenine domains significantly affect hole transfer rates in DNA. • Franck–Condon weighted density of state from DFT normal modes. • DNA application in molecular electronics. - Abstract: The rates of hole transfer between guanine and adenine in single strand DNA have been evaluated by using Fermi’s golden rule and Kubo’s generating function approach for the Franck–Condon weighted density of states. The whole sets of the normal modes and vibrational frequencies of the two nucleobases, obtained at DFT/B3LYP level of calculation, have been considered in computations. The results show that in single strand the pyramidalization/planarization mode of the amino groups of both nucleobases plays the major role. At room temperature, the Franck–Condon density of states extends over a wide range of hole site energy difference, 0–1 eV, giving some hints about the design of oligonucleotides of potential technological interest.

  20. Silver and Cyanine Staining of Oligonucleotides in Polyacrylamide Gel.

    Directory of Open Access Journals (Sweden)

    Weizhong Tang

    Full Text Available To explore why some oligonucleotides in denaturing polyacrylamide gel could not be silver-stained, 134 different oligonucleotides were analyzed using denaturing polyacrylamide gel electrophoresis stained with silver and asymmetric cyanine. As a result, we found that the sensitivity of oligos (dA, (dC, (dG and (dT to silver staining could be ranged as (dA > (dG > (dC > (dT from high to low. It was unexpected that oligo (dT was hard to be silver-stained. Moreover, the silver staining of an oligonucleotide containing base T could be partially or completely inhibited by base T. The inhibition of silver staining by base T was a competitive inhibition which could be affected by the amounts of the argyrophil nucleobase and base T, the cis-distance between the argyrophil nucleobase and base T, and the gel concentration. The changes of the intensity of an oligonucleotide band caused by the changes of DNA base composition were diverse and interesting. The intensity of some oligonucleotide bands would significantly change when the changes of DNA base composition accumulated to a certain extent (usually ≥ 4 nt. The sensitivity of cyanine staining of ≤ 11-nt long oligonucleotides could be enhanced about 250-fold by fixing the gels with methanol fixing solution.

  1. Inhibitory effects of antisense oligodeoxynucleotide on replication and expression of HDV genome in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    MAO Qing; LI Qi-fen; LI Hong-wen; WANG Sheng-qi; ZHENG Hong; DING Jian; WU Chun-qing; ZHU Bao-zhen

    2001-01-01

    Objective: To study the inhibitory effects of antisense oligodeoxynucleotide (ASODN) and its thiophosphate (S-ASODN) on the replication and expression of hepatitis D virus (HDV) in H1δ9 cells and in tupaia body. Methods:After 15mer-ASODN and S-ASODN were synthesized, different concentrations of ASODN and S-ASODN were added to the culture medium of H1δ9 cell line and then HDAg in the supernatant of the culture was examined with ELISA and HDV-RNA in the cells determined with dot blot hybridization. Sixteen tupaiae were successfully infected with HDV and mg every other day for 7 times and the control group were injected with sime volume of normal saline. On the 5th, 10th,15th and 20th day after the administration, samples of blood and liver tissues were examined with immunohistochemical method for HDAg and dot blot hybridizaton and in situ hybridization for HDV-RNA. Results: Twenty-four hours after the addition ofa tinal concentration of 6 μmol/L of S-ASODN, the replication of HDV-RNA and the release of HDAg in th e H1δ9 cells were suppressed by 84.5% and 76.14% respectvely. The inhibition was dose-dependent when the final concentrations of 2, 4 and 6 μmol/L of S-ASODN were given. When ASODN and S-ASODN were administered in the same dosage, the inhibition showed no significantly difference between the 2 agents. On the last day of the administration of S-ASODN, 7 out of the 8 tupaiae of the treated group showed negative HDAg and HDV-RNA in the liver tissue while only 1 out of the 8 tupaiae of the congrol group was negative. Ten days after the cessation of drug administration, 3 tupaiae of the treated group and 7 of control were positive of HDAg and HDV-RNA. Conclusion: Our findings show that SASODN efficiently inhibites the replication and expression of HDV gene in H1 δ9 cells and in the body of tupaia, which provides an experimental basis for the anti-HDV application of antisense oligonucleotides.

  2. Imaging Functional Nucleic Acid Delivery to Skin.

    Science.gov (United States)

    Kaspar, Roger L; Hickerson, Robyn P; González-González, Emilio; Flores, Manuel A; Speaker, Tycho P; Rogers, Faye A; Milstone, Leonard M; Contag, Christopher H

    2016-01-01

    Monogenic skin diseases arise from well-defined single gene mutations, and in some cases a single point mutation. As the target cells are superficial, these diseases are ideally suited for treatment by nucleic acid-based therapies as well as monitoring through a variety of noninvasive imaging technologies. Despite the accessibility of the skin, there remain formidable barriers for functional delivery of nucleic acids to the target cells within the dermis and epidermis. These barriers include the stratum corneum and the layered structure of the skin, as well as more locally, the cellular, endosomal and nuclear membranes. A wide range of technologies for traversing these barriers has been described and moderate success has been reported for several approaches. The lessons learned from these studies include the need for combinations of approaches to facilitate nucleic acid delivery across these skin barriers and then functional delivery across the cellular and nuclear membranes for expression (e.g., reporter genes, DNA oligonucleotides or shRNA) or into the cytoplasm for regulation (e.g., siRNA, miRNA, antisense oligos). The tools for topical delivery that have been evaluated include chemical, physical and electrical methods, and the development and testing of each of these approaches has been greatly enabled by imaging tools. These techniques allow delivery and real time monitoring of reporter genes, therapeutic nucleic acids and also triplex nucleic acids for gene editing. Optical imaging is comprised of a number of modalities based on properties of light-tissue interaction (e.g., scattering, autofluorescence, and reflectance), the interaction of light with specific molecules (e.g., absorbtion, fluorescence), or enzymatic reactions that produce light (bioluminescence). Optical imaging technologies operate over a range of scales from macroscopic to microscopic and if necessary, nanoscopic, and thus can be used to assess nucleic acid delivery to organs, regions, cells

  3. Imaging Functional Nucleic Acid Delivery to Skin.

    Science.gov (United States)

    Kaspar, Roger L; Hickerson, Robyn P; González-González, Emilio; Flores, Manuel A; Speaker, Tycho P; Rogers, Faye A; Milstone, Leonard M; Contag, Christopher H

    2016-01-01

    Monogenic skin diseases arise from well-defined single gene mutations, and in some cases a single point mutation. As the target cells are superficial, these diseases are ideally suited for treatment by nucleic acid-based therapies as well as monitoring through a variety of noninvasive imaging technologies. Despite the accessibility of the skin, there remain formidable barriers for functional delivery of nucleic acids to the target cells within the dermis and epidermis. These barriers include the stratum corneum and the layered structure of the skin, as well as more locally, the cellular, endosomal and nuclear membranes. A wide range of technologies for traversing these barriers has been described and moderate success has been reported for several approaches. The lessons learned from these studies include the need for combinations of approaches to facilitate nucleic acid delivery across these skin barriers and then functional delivery across the cellular and nuclear membranes for expression (e.g., reporter genes, DNA oligonucleotides or shRNA) or into the cytoplasm for regulation (e.g., siRNA, miRNA, antisense oligos). The tools for topical delivery that have been evaluated include chemical, physical and electrical methods, and the development and testing of each of these approaches has been greatly enabled by imaging tools. These techniques allow delivery and real time monitoring of reporter genes, therapeutic nucleic acids and also triplex nucleic acids for gene editing. Optical imaging is comprised of a number of modalities based on properties of light-tissue interaction (e.g., scattering, autofluorescence, and reflectance), the interaction of light with specific molecules (e.g., absorbtion, fluorescence), or enzymatic reactions that produce light (bioluminescence). Optical imaging technologies operate over a range of scales from macroscopic to microscopic and if necessary, nanoscopic, and thus can be used to assess nucleic acid delivery to organs, regions, cells

  4. Functional Analysis of Polyphenol Oxidases by Antisense/Sense Technology

    Directory of Open Access Journals (Sweden)

    Jutharat Attajarusit

    2007-07-01

    Full Text Available Polyphenol oxidases (PPOs catalyze the oxidation of phenolics to quinones, the secondary reactions of which lead to oxidative browning and postharvest losses of many fruits and vegetables. PPOs are ubiquitous in angiosperms, are inducible by both biotic and abiotic stresses, and have been implicated in several physiological processes including plant defense against pathogens and insects, the Mehler reaction, photoreduction of molecular oxygen by PSI, regulation of plastidic oxygen levels, aurone biosynthesis and the phenylpropanoid pathway. Here we review experiments in which the roles of PPO in disease and insect resistance as well as in the Mehler reaction were investigated using transgenic tomato (Lycopersicon esculentum plants with modified PPO expression levels (suppressed PPO and overexpressing PPO. These transgenic plants showed normal growth, development and reproduction under laboratory, growth chamber and greenhouse conditions. Antisense PPO expression dramatically increased susceptibility while PPO overexpression increased resistance of tomato plants to Pseudomonas syringae. Similarly, PPO-overexpressing transgenic plants showed an increase in resistance to various insects, including common cutworm (Spodoptera litura (F., cotton bollworm (Helicoverpa armigera (Hübner and beet army worm (Spodoptera exigua (Hübner, whereas larvae feeding on plants with suppressed PPO activity had higher larval growth rates and consumed more foliage. Similar increases in weight gain, foliage consumption, and survival were also observed with Colorado potato beetles (Leptinotarsa decemlineata (Say feeding on antisense PPO transgenic tomatoes. The putative defensive mechanisms conferred by PPO and its interaction with other defense proteins are discussed. In addition, transgenic plants with suppressed PPO exhibited more favorable water relations and decreased photoinhibition compared to nontransformed controls and transgenic plants

  5. EFFECTS OF CYCLOOXYGENASE-2 ANTISENSE VECTOR ON PROLIFERATION OF HUMAN CHOLANGIOCARCINOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    Gao-song Wu; Sheng-quan Zou; Xiao-yong Wu; Fa-zu Qiu

    2004-01-01

    Objective To transfect antisense vector of human cyclooxygenase-2 (COX-2) gene into COX-2 highly expressing cholangiocarcinoma cell line QBC939 and explore its biological activities and role in carcinogenesis.Methods QBC939 cells were transfected with antisense vector of human COX-2 gene using LipoVecTM transfecting technique. Transfected cells were selected with G418; COX-2 mRNA was examined using reverse transcription polymerase chain reaction (RT-PCR) and COX-2 protein expression was detected by immunocytochemistry using isozyme selective antibodies. The proliferative status of transfected cells was measured by using methabenzthiazuron (MTT) assay; Cell cycle and apoptosis were analyzed by using flow cytometry.Results RT-PCR showed a lower COX-2 mRNA level in antisense vector transfected cells and immunocytochemistry showed a weaker COX-2 protein expression in antisense vector transfected cells. The antisense vector transfected cells proliferative index decreased significantly (P< 0.01), the percentage of S phase decreased remarkably (P< 0.05) in antisense vector transfected cells (9.27% ± 1.91%) compared with that in QBC939 cells without transfection(16.35% ± 2.87%), and the percentage of G0/G 1 phase increased remarkably (P < 0.05) in antisense vector transfected cells (75.16%±4.13%) compared with that in QBC939 cells without transfection (57.31%± 10.16%). Transfection with antisense vector of human COX-2 gene had no significant influence on the apoptosis in QBC939 cells (P > 0.05).Conclusion Transfection with antisense vector of human COX-2 gene could inhibit the proliferation of human cholangiocarcinoma QBC939 cells.

  6. Inhibitory effect of IGF-Ⅱ antisense RNA on malignant phenotype of hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Dong Hua Yang; Ming Qing Zhang; Han Rong Qin; Zi Rong Fan; Jiang Du; Chong Xu; Qiao Ming Liang; Ji Fang Mao

    2000-01-01

    @@INTRODUCTION According to the therapeutic effect and strategy of antisense RNA for hepatocellular carcinoma (HCC), we have specifically synthesized partial cDNA of human insulin-like growth factor Ⅱ (IGFⅡ ) and constructed IGF-Ⅱ cDNA antisense eukaryotic expression vector. The constructed vector was introduced into hepatoma cell line SMMC-7721 to block the intrinsic IGF- Ⅱexpression. The biological behavior changes of hepatoma cells were observed. All these would provide scientific basis for IGF- Ⅱ antisense RNA in the treatment of HCC.

  7. An antisense RNA that governs the expression kinetics of a multifunctional virulence gene

    OpenAIRE

    Lee, Eun-Jin; Groisman, Eduardo A.

    2010-01-01

    Genome-wide transcriptome analyses of several bacterial species have recently uncovered a hitherto unappreciated amount of antisense transcription. However, the physiological role, regulation and significance of such antisense transcripts are presently unclear. We now report the identification of a cis-encoded 1.2 kb long antisense RNA – termed AmgR – that is complementary to the mgtC portion of the mgtCBR polycistronic message from Salmonella enterica. The mgtCBR mRNA specifies the MgtC prot...

  8. HCCCH Experiment for Through-Bond Correlation of Thymine Resonances in 13C-Labeled DNA Oligonucleotides

    Science.gov (United States)

    Sklenář, Vladimír.; Masse, James E.; Feigon, Juli

    1999-04-01

    Application of heteronuclear magnetic resonance pulse methods to13C,15N-labeled nucleic acids is important for the accurate structure determination of larger RNA and DNA oligonucleotides and protein-nucleic acid complexes. These methods have been applied primarily to RNA, due to the availability of labeled samples. The two major differences between DNA and RNA are at the C2‧ of the ribose and deoxyribose and the additional methyl group on thymine versus uracil. We have enzymatically synthesized a13C,15N-labeled 32 base DNA oligonucleotide that folds to form an intramolecular triplex. We present two- and three-dimensional versions of a new HCCCH-TOCSY experiment that provides intraresidue correlation between the thymine H6 and methyl resonances via the intervening carbons (H6-C6-C5-Cme-Hme).

  9. Inhibition of Leukemic Cell Telomerase Activity by Antisense Phosphorothioate Oligodeoxynucleotides

    Institute of Scientific and Technical Information of China (English)

    HEDongmei; ZHANGYuan

    2002-01-01

    Objective To evaluate the effect of human telomerase reverse transcriptase(hTERT) gene antisense oligodeoxynucleotide (ASON) on telomerase activity in K562 cells.Methods Telomerase activity was detemined by polymerase chain reaction enzyme-linked immunoassay (PCR-ELISA) in K562 cells treated with ASODN and hTERTmRNA expression was detected by reverse transcriptase polymerase chain reaction (RT-PCR). Results The hTERTmRNA level was decreased,and telomerase activity was significantly inhibited when the K562 cells were treated with ASODN for 48 h. Conclusion It is suggested that hTETR ASODN might specifically inhibit telomrase activity of K562 cells at translation level,and it is further proved that hTERT gene has significant correlation with telopmerase activity.

  10. Development and Application of an Ultrasensitive Hybridization-Based ELISA Method for the Determination of Peptide-Conjugated Phosphorodiamidate Morpholino Oligonucleotides.

    Science.gov (United States)

    Burki, Umar; Keane, Jonathan; Blain, Alison; O'Donovan, Liz; Gait, Michael John; Laval, Steven H; Straub, Volker

    2015-10-01

    Antisense oligonucleotide (AON)-induced exon skipping is one of the most promising strategies for treating Duchenne muscular dystrophy (DMD) and other rare monogenic conditions. Phosphorodiamidate morpholino oligonucleotides (PMOs) and 2'-O-methyl phosphorothioate (2'OMe) are two of the most advanced AONs in development. The next generation of peptide-conjugated PMO (P-PMO) is also showing great promise, but to advance these therapies it is essential to determine the pharmacokinetic and biodistribution (PK/BD) profile using a suitable method to detect AON levels in blood and tissue samples. An enzyme-linked immunosorbent assay (ELISA)-based method, which shows greater sensitivity than the liquid chromatography-mass spectrometry method, is the method of choice for 2'OMe detection in preclinical and clinical studies. However, no such assay has been developed for PMO/P-PMO detection, and we have, therefore, developed an ultrasensitive hybridization-based ELISA for this purpose. The assay has a linear detection range of 5-250 pM (R(2)>0.99) in mouse serum and tissue lysates. The sensitivity was sufficient for determining the 24-h PK/BD profile of PMO and P-PMO injected at standard doses (12.5 mg/kg) in mdx mice, the dystrophin-deficient mouse model for DMD. The assay demonstrated an accuracy approaching 100% with precision values under 12%. This provides a powerful cost-effective assay for the purpose of accelerating the development of these emerging therapeutic agents. PMID:26176274

  11. Oligonucleotide recombination in corynebacteria without the expression of exogenous recombinases.

    Science.gov (United States)

    Krylov, Alexander A; Kolontaevsky, Egor E; Mashko, Sergey V

    2014-10-01

    Brevibacterium lactofermentum and Corynebacterium glutamicum are important biotechnology species of the genus Corynebacterium. The single-strand DNA annealing protein (SSAP)-independent oligonucleotide-mediated recombination procedure was successfully applied to the commonly used wild-type strains B. lactofermentum AJ1511 and C. glutamicum ATCC13032. When the rpsL gene was used as a target, the optimized protocol yielded up to (1.4±0.3)×10(3) and (6.7±1.3)×10(3) streptomycin-resistant colonies per 10(8) viable cells for the corresponding strains. We tested the influence of several parameters that are known to enhance the efficiency of oligonucleotide-mediated recombination in other bacterial species. Among them, increasing the concentration of oligonucleotides and targeting the lagging strand of the chromosome have proven to have positive effects on both of the tested species. No difference in the efficiency of recombination was observed between the oligonucleotides phosphorothiorated at the 5' ends and the unmodified oligonucleotides or between the oligonucleotides with four mutated nucleotides and those with one mutated nucleotide. The described approach demonstrates that during the adaptation of the recombineering technique, testing SSAP-independent oligonucleotide-mediated recombination could be a good starting point. Such testing could decrease the probability of an incorrect interpretation of the effect of exogenous protein factors (such as SSAP and/or corresponding exonucleases) due to non-optimal experimental conditions. In addition, SSAP-independent recombination itself could be useful in combination with suitable selection/enrichment methods. PMID:25087479

  12. Biominetic High Density Lipoproteins for the Delivery of Therapeutic Oligonucleotides

    Science.gov (United States)

    Tripathy, Sushant

    Advances in nanotechnology have brought about novel inorganic and hybrid nanoparticles with unique physico-chemical properties that make them suitable for a broad range of applications---from nano-circuitry to drug delivery. A significant part of those advancements have led to ground-breaking discoveries that have changed the approaches to formulation of therapeutics against diseases, such as cancer. Now-a-days the focus does not lie solely on finding a candidate small-molecule therapeutic with minimal adverse effects, but researchers are looking up to nanoparticles to improve biodistribution and biocompatibility profile of clinically proven therapeutics. The plethora of conjugation chemistries offered by currently extant inorganic nanoparticles have, in recent years, led to great leaps in the field of biomimicry---a modality that promises high biocompatibility. Further, in the pursuit of highly specific therapeutic molecules, researchers have turned to silencing oligonucleotides and some have already brought together the strengths of nanoparticles and silencing oligonucleotides in search of an efficacious therapy for cancer with minimal adverse effects. This dissertation work focuses on such a biomimetic platform---a gold nanoparticle based high density lipoprotein biomimetic (HDL NP), for the delivery of therapeutic oligonucleotides. The first chapter of this body of work introduces the molecular target of the silencing oligonucleotides---VEGFR2, and its role in the progression of solid tumor cancers. The background information also covers important aspects of natural high density lipoproteins (HDL), especially their innate capacity to bind and deliver exogenous and endogenous silencing oligonucleotides to tissues that express their high affinity receptor SRB1. We subsequently describe the synthesis of the biomimetic HDL NP and its oligonucleotide conjugates, and establish their biocompatibility. Further on, experimental data demonstrate the efficacy of silencing

  13. Antisense angiopoietin-1 inhibits tumorigenesis and angiogenesis of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Kai-Chun Wu; De-Xin Zhang; Dai-Ming Fan

    2006-01-01

    AIM: To investigate the effect of angiopoietin-1 (Ang-1)on biological behaviors in vitro and tumorigenesis and angiogenesis in vitro of human gastric cancer cells.METHODS: Human full-length Ang-1 gene was cloned from human placental tissues by RT-PCR method.Recombinant human Ang-1 antisense eukaryotic expression vector was constructed by directional cloning,and transfected by lipofectin method into human gastric cancer line SGC7901 with high Ang-1 expression level.Inhibition efficiency was confirmed by semi- quantitive PCR and Western blot method. Cell growth curve and cell cycle were observed with MTT assays and flow cytometry, respectively. Nude mice tumorigenicity test was employed to compare in vitro tumorigenesis of cells with Ang-1 suppression. Microvessel density (MVD) of implanted tumor tissues was analyzed by immunohistochemistry for factor Ⅷ staining.RESULTS: Full-length Ang-1 gene was successfully cloned and stable transfectants were established,namely 7Ang1- for antisense, and 7901P for empty vector transfected. 7Ang1- cells showed down-regulated Ang-1 expression, while its in vitro proliferation and cell cycle distribution were not significantly changed.In contrast, xenograft of 7Ang1- cells in nude mice had lower volume and weight than those of 7901P after 30 days' implantation (P<0.01, 293.00±95.54 mg vs. 624.00±77.78 mg) accompanied with less vessel formation with MVD 6.00±1.73 compared to 7901P group 8.44±1.33 (P<0.01).CONCLUSION: Ang-1 may play an important role in tumorigenesis and angiogenesis of gastric cancer, and targeting its expression may be beneficial for the therapy of gastric cancer.

  14. Prednisolone treatment does not interfere with 2'-O-methyl phosphorothioate antisense-mediated exon skipping in Duchenne muscular dystrophy.

    Science.gov (United States)

    Verhaart, Ingrid E C; Heemskerk, Hans; Karnaoukh, Tatyana G; Kolfschoten, Ingrid G M; Vroon, Anne; van Ommen, Gert-Jan B; van Deutekom, Judith C T; Aartsma-Rus, Annemieke

    2012-03-01

    In Duchenne muscular dystrophy (DMD), dystrophin deficiency leading to progressive muscular degeneration is caused by frame-shifting mutations in the DMD gene. Antisense oligonucleotides (AONs) aim to restore the reading frame by skipping of a specific exon(s), thereby allowing the production of a shorter, but semifunctional protein, as is found in the mostly more mildly affected patients with Becker muscular dystrophy. AONs are currently being investigated in phase 3 placebo-controlled clinical trials. Most of the participating patients are treated symptomatically with corticosteroids (mainly predniso[lo]ne) to stabilize the muscle fibers, which might affect the uptake and/or efficiency of AONs. Therefore the effect of prednisolone on 2'-O-methyl phosphorothioate AON efficacy in patient-derived cultured muscle cells and the mdx mouse model (after local and systemic AON treatment) was assessed in this study. Both in vitro and in vivo skip efficiency and biomarker expression were comparable between saline- and prednisolone-cotreated cells and mice. After systemic exon 23-specific AON (23AON) treatment for 8 weeks, dystrophin was detectable in all treated mice. Western blot analyses indicated slightly higher dystrophin levels in prednisolone-treated mice, which might be explained by better muscle condition and consequently more target dystrophin pre-mRNA. In addition, fibrotic and regeneration biomarkers were normalized to some extent in prednisolone- and/or 23AON-treated mice. Overall these results show that the use of prednisone forms no barrier to participation in clinical trials with AONs. PMID:22017442

  15. Mass spectral characterization of a protein-nucleic acid photocrosslink.

    OpenAIRE

    Golden, M. C.; Resing, K. A.; Collins, B. D.; Willis, M. C.; Koch, T H

    1999-01-01

    A photocrosslink between basic fibroblast growth factor (bFGF155) and a high affinity ssDNA oligonucleotide was characterized by positive ion electrospray ionization mass spectrometry (ESIMS). The DNA was a 61-mer oligonucleotide photoaptamer bearing seven bromodeoxyuridines, identified by in vitro selection. Specific photocrosslinking of the protein to the oligonucleotide was achieved by 308 nm XeCl excimer laser excitation. The cross-linked protein nucleic acid complex was proteolyzed with ...

  16. Fructose Promotes Uptake and Activity of Oligonucleotides With Different Chemistries in a Context-dependent Manner in mdx Mice.

    Science.gov (United States)

    Cao, Limin; Han, Gang; Lin, Caorui; Gu, Ben; Gao, Xianjun; Moulton, Hong M; Seow, Yiqi; Yin, HaiFang

    2016-01-01

    Antisense oligonucleotide (AO)-mediated exon-skipping therapeutics shows great promise in correcting frame-disrupting mutations in the DMD gene for Duchenne muscular dystrophy. However, insufficient systemic delivery limits clinical adoption. Previously, we showed that a glucose/fructose mixture augmented AO delivery to muscle in mdx mice. Here, we evaluated if fructose alone could enhance the activities of AOs with different chemistries in mdx mice. The results demonstrated that fructose improved the potency of AOs tested with the greatest effect on phosphorodiamidate morpholino oligomer (PMO), resulted in a 4.25-fold increase in the number of dystrophin-positive fibres, compared to PMO in saline in mdx mice. Systemic injection of lissamine-labeled PMO with fructose at 25 mg/kg led to increased uptake and elevated dystrophin expression in peripheral muscles, compared to PMO in saline, suggesting that fructose potentiates PMO by enhancing uptake. Repeated intravenous administration of PMO in fructose at 50 mg/kg/week for 3 weeks and 50 mg/kg/month for 5 months restored up to 20% of wild-type dystrophin levels in skeletal muscles with improved functions without detectable toxicity, compared to untreated mdx controls. Collectively, we show that fructose can potentiate AOs of different chemistries in vivo although the effect diminished over repeated administration. PMID:27351681

  17. Fructose Promotes Uptake and Activity of Oligonucleotides With Different Chemistries in a Context-dependent Manner in mdx Mice

    Science.gov (United States)

    Cao, Limin; Han, Gang; Lin, Caorui; Gu, Ben; Gao, Xianjun; Moulton, Hong M; Seow, Yiqi; Yin, HaiFang

    2016-01-01

    Antisense oligonucleotide (AO)-mediated exon-skipping therapeutics shows great promise in correcting frame-disrupting mutations in the DMD gene for Duchenne muscular dystrophy. However, insufficient systemic delivery limits clinical adoption. Previously, we showed that a glucose/fructose mixture augmented AO delivery to muscle in mdx mice. Here, we evaluated if fructose alone could enhance the activities of AOs with different chemistries in mdx mice. The results demonstrated that fructose improved the potency of AOs tested with the greatest effect on phosphorodiamidate morpholino oligomer (PMO), resulted in a 4.25-fold increase in the number of dystrophin-positive fibres, compared to PMO in saline in mdx mice. Systemic injection of lissamine-labeled PMO with fructose at 25 mg/kg led to increased uptake and elevated dystrophin expression in peripheral muscles, compared to PMO in saline, suggesting that fructose potentiates PMO by enhancing uptake. Repeated intravenous administration of PMO in fructose at 50 mg/kg/week for 3 weeks and 50 mg/kg/month for 5 months restored up to 20% of wild-type dystrophin levels in skeletal muscles with improved functions without detectable toxicity, compared to untreated mdx controls. Collectively, we show that fructose can potentiate AOs of different chemistries in vivo although the effect diminished over repeated administration. PMID:27351681

  18. Cis-encoded noncoding antisense RNAs in streptococci and other low GC Gram (+ bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Kyu Hong eCho

    2015-03-01

    Full Text Available Due to recent advances of bioinformatics and high throughput sequencing technology, discovery of regulatory noncoding RNAs in bacteria has been increased to a great extent. Based on this bandwagon, many studies searching for trans-acting small noncoding RNAs in streptococci have been performed intensively, especially in the important human pathogen, group A and B streptococci. However, studies for cis-encoded noncoding antisense RNAs in streptococci have been scarce. A recent study shows antisense RNAs are involved in virulence gene regulation in group B streptococcus, S. agalactiae. This suggests antisense RNAs could have important roles in the pathogenesis of streptococcal pathogens. In this review, we describe recent discoveries of chromosomal cis-encoded antisense RNAs in streptococcal pathogens and other low GC Gram (+ bacteria to provide a guide for future studies.

  19. STUDY ON THE INHIBITORY EFFECT OF ANTISENSE ETAR OLIGODEOXYNUCLEOTIDES ON THE PROLIFERATION OF VASCULAR SMOOTH CELLS

    Institute of Scientific and Technical Information of China (English)

    张岚; 张柏根; 张纪蔚; 钱济先; 张皓; 黄晓钟

    2002-01-01

    Objective To study the inhibitory effect of antisense endothelin receptor A (ETAR) on the proliferation of the vascular smooth muscle cells. Methods The sense, antisense and mismatched ODNs for ETAR were designed and synthetized. The study was carried out using MTT method and binding assays.Results ETAR-ODNs could move successfully across VSMC membranes. Photo-absorption in the MTT test was reduced significantly (P<0.05) in the antisense group at 5μmol/L; the reduction of CPM also occurred in the 125I-ET-1 specific binding assay; and the sense and mismatched ODNs groups did not show this reduction. Conclusion Our study suggested that the antisense oligomers inhibited the proliferation of VSMCs by hindering the translation of target mRNA and by reducing the production of related protein.

  20. The effects of antisense PTEN gene transfection on the growth and invasion of glioma cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong-jie; ZHENG Zhao-cong; WANG Ru-mi; WANG Shou-sen; YANG Wei-zhong

    2006-01-01

    Objective:To study the effects of antisense PTEN gene on the growth and invasion of glioma cells. Methods:A pcDNA3. 1/Hygro (-) recombinant plasmid containing antisense PTEN gene fragment was constructed. Glioma cells of primary culture were transfected with antisense PTEN gene vector and stably transfected clones were selected. Then, the different growth and invasion abilities and the different MMP9 mRNA expressions of three kinds of cells were observed, including the transfected cells, untransfected cells and the cells transfected with empty vector. Results :The abilities of growth and invasion of the transfected cells and the expressions of MMP9 mRNA were obviously enhanced. Conclusion: Antisense PTEN gene could have a negative impact on the growth and invasion of primary culture glioma cells.

  1. Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts.

    Science.gov (United States)

    Kramer, Nicholas J; Carlomagno, Yari; Zhang, Yong-Jie; Almeida, Sandra; Cook, Casey N; Gendron, Tania F; Prudencio, Mercedes; Van Blitterswijk, Marka; Belzil, Veronique; Couthouis, Julien; Paul, Joseph West; Goodman, Lindsey D; Daughrity, Lillian; Chew, Jeannie; Garrett, Aliesha; Pregent, Luc; Jansen-West, Karen; Tabassian, Lilia J; Rademakers, Rosa; Boylan, Kevin; Graff-Radford, Neill R; Josephs, Keith A; Parisi, Joseph E; Knopman, David S; Petersen, Ronald C; Boeve, Bradley F; Deng, Ning; Feng, Yanan; Cheng, Tzu-Hao; Dickson, Dennis W; Cohen, Stanley N; Bonini, Nancy M; Link, Christopher D; Gao, Fen-Biao; Petrucelli, Leonard; Gitler, Aaron D

    2016-08-12

    An expanded hexanucleotide repeat in C9orf72 causes amyotrophic lateral sclerosis and frontotemporal dementia (c9FTD/ALS). Therapeutics are being developed to target RNAs containing the expanded repeat sequence (GGGGCC); however, this approach is complicated by the presence of antisense strand transcription of expanded GGCCCC repeats. We found that targeting the transcription elongation factor Spt4 selectively decreased production of both sense and antisense expanded transcripts, as well as their translated dipeptide repeat (DPR) products, and also mitigated degeneration in animal models. Knockdown of SUPT4H1, the human Spt4 ortholog, similarly decreased production of sense and antisense RNA foci, as well as DPR proteins, in patient cells. Therapeutic targeting of a single factor to eliminate c9FTD/ALS pathological features offers advantages over approaches that require targeting sense and antisense repeats separately. PMID:27516603

  2. Construction and transfection of sense/antisense eukaryotic expression vectors for human cathepsin L gene

    Institute of Scientific and Technical Information of China (English)

    Maolin He; Anmin Chen

    2005-01-01

    Objective: To obtain sense/antisense eukaryotic expression vectors for human cathepsin L gene, and study the biological effects on human osteosarcoma cell line MG-63 after transfection. Methods: Cathepsin L gene sense/antisense eukaryotic expression vectors were constructed with recombinant technology and transfected into the human osteosarcoma cell line MG-63. The expression of cathepsin L gene mRNA was examined with RT-PCR and the expression of cathepsin L was examined with Western blot. Results: The sense/antisense recombinant eukaryotic expression vectors for cathepsin L were successfully constructed and transfected into MG-63 cell.Conclusion: Antisense cathepsin L gene can significantly inhibit the expression of cathepsin L mRNA and protein.

  3. Interfacing click chemistry with automated oligonucleotide synthesis for the preparation of fluorescent DNA probes containing internal xanthene and cyanine dyes.

    Science.gov (United States)

    Astakhova, I Kira; Wengel, Jesper

    2013-01-14

    Double-labeled oligonucleotide probes containing fluorophores interacting by energy-transfer mechanisms are essential for modern bioanalysis, molecular diagnostics, and in vivo imaging techniques. Although bright xanthene and cyanine dyes are gaining increased prominence within these fields, little attention has thus far been paid to probes containing these dyes internally attached, a fact which is mainly due to the quite challenging synthesis of such oligonucleotide probes. Herein, by using 2'-O-propargyl uridine phosphoramidite and a series of xanthenes and cyanine azide derivatives, we have for the first time performed solid-phase copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click labeling during the automated phosphoramidite oligonucleotide synthesis followed by postsynthetic click reactions in solution. We demonstrate that our novel strategy is rapid and efficient for the preparation of novel oligonucleotide probes containing internally positioned xanthene and cyanine dye pairs and thus represents a significant step forward for the preparation of advanced fluorescent oligonucleotide probes. Furthermore, we demonstrate that the novel xanthene and cyanine labeled probes display unusual and very promising photophysical properties resulting from energy-transfer interactions between the fluorophores controlled by nucleic acid assembly. Potential benefits of using these novel fluorescent probes within, for example, molecular diagnostics and fluorescence microscopy include: Considerable Stokes shifts (40-110 nm), quenched fluorescence of single-stranded probes accompanied by up to 7.7-fold light-up effect of emission upon target DNA/RNA binding, remarkable sensitivity to single-nucleotide mismatches, generally high fluorescence brightness values (FB up to 26), and hence low limit of target detection values (LOD down to <5 nM).

  4. Electrochemistry and in situ scanning tunnelling microscopy of pure and redox-marked DNA- and UNA-based oligonucleotides on Au(111)-electrode surfaces

    DEFF Research Database (Denmark)

    Hansen, Allan Glargaard; Salvatore, Princia; Karlsen, K.;

    2013-01-01

    We have studied adsorption and electrochemical electron transfer of several 13- and 15-base DNA and UNA (unlocked nucleic acids) oligonucleotides (ONs) linked to Au(111)-electrode surfaces via a 50-C6-SH group using cyclic voltammetry (CV) and scanning tunnelling microscopy in aqueous buffer under...

  5. Targeted Skipping of Human Dystrophin Exons in Transgenic Mouse Model Systemically for Antisense Drug Development

    OpenAIRE

    Bo Wu; Ehsan Benrashid; Peijuan Lu; Caryn Cloer; Allen Zillmer; Mona Shaban; Qi Long Lu

    2011-01-01

    Antisense therapy has recently been demonstrated with great potential for targeted exon skipping and restoration of dystrophin production in cultured muscle cells and in muscles of Duchenne Muscular Dystrophy (DMD) patients. Therapeutic values of exon skipping critically depend on efficacy of the drugs, antisense oligomers (AOs). However, no animal model has been established to test AO targeting human dystrophin exon in vivo systemically. In this study, we applied Vivo-Morpholino to the hDMD/...

  6. Cathepsin B antisense oligodeoxynucleotide suppresses invasive potential of MG-63 cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective To study the biological effects of cathepsin B phosporothioated antisense oligodeoxynucleotide on human osteosarcoma cell line MG-63 after transfection.Methods A 18-mer phosphorothioate antisense oligodeoxynucleotide(ASODN)targeted against the cathepsin B mRNA was transfected into the human osteosarcoma cell line MG-63 by lipofectamine 2000.The sense and nonsense oligodeoxynucleotides to cathepsin B and blank vector were used as controls.The expression of cathepsin B mRNA was examined by RT-PCR an...

  7. Oligonucleotide Tagging for Copper-Free Click Conjugation

    Directory of Open Access Journals (Sweden)

    Alan Rowan

    2013-06-01

    Full Text Available Copper-free click chemistry between cyclooctynes and azide is a mild, fast and selective technology for conjugation of oligonucleotides. However, technology for site-specific introduction of the requisite probes by automated protocols is scarce, while the reported cyclooctynes are large and hydrophobic. In this work, it is demonstrated that the introduction of bicyclo[6.1.0]nonyne (BCN into synthetic oligonucleotides is feasible by standard solid-phase phosphoramidite chemistry. A range of phosphoramidite building blocks is presented for incoporation of BCN or azide, either on-support or in solution. The usefulness of the approach is demonstrated by the straightforward and high-yielding conjugation of the resulting oligonucleotides, including biotinylation, fluorescent labeling, dimerization and attachment to polymer.

  8. Delivery of RNAi-Based Oligonucleotides by Electropermeabilization

    Directory of Open Access Journals (Sweden)

    Muriel Golzio

    2013-04-01

    Full Text Available For more than a decade, understanding of RNA interference (RNAi has been a growing field of interest. The potent gene silencing ability that small oligonucleotides have offers new perspectives for cancer therapeutics. One of the present limits is that many biological barriers exist for their efficient delivery into target cells or tissues. Electropermeabilization (EP is one of the physical methods successfully used to transfer small oligonucleotides into cells or tissues. EP consists in the direct application of calibrated electric pulses to cells or tissues that transiently permeabilize the plasma membranes, allowing efficient in vitro and in vivo. cytoplasmic delivery of exogenous molecules. The present review reports on the type of therapeutic RNAi-based oligonucleotides that can be electrotransferred, the mechanism(s of their electrotransfer and the technical settings for pre-clinical purposes.

  9. Rapid and accurate synthesis of TALE genes from synthetic oligonucleotides.

    Science.gov (United States)

    Wang, Fenghua; Zhang, Hefei; Gao, Jingxia; Chen, Fengjiao; Chen, Sijie; Zhang, Cuizhen; Peng, Gang

    2016-01-01

    Custom synthesis of transcription activator-like effector (TALE) genes has relied upon plasmid libraries of pre-fabricated TALE-repeat monomers or oligomers. Here we describe a novel synthesis method that directly incorporates annealed synthetic oligonucleotides into the TALE-repeat units. Our approach utilizes iterative sets of oligonucleotides and a translational frame check strategy to ensure the high efficiency and accuracy of TALE-gene synthesis. TALE arrays of more than 20 repeats can be constructed, and the majority of the synthesized constructs have perfect sequences. In addition, this novel oligonucleotide-based method can readily accommodate design changes to the TALE repeats. We demonstrated an increased gene targeting efficiency against a genomic site containing a potentially methylated cytosine by incorporating non-conventional repeat variable di-residue (RVD) sequences.

  10. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation

    International Nuclear Information System (INIS)

    Among all biopolymers, ribonucleic acids or RNA have unique functional versatility, which led to the early suggestion that RNA alone (or a closely related biopolymer) might have once sustained a primitive form of life based on a single type of biopolymer. This has been supported by the demonstration of processive RNA-based replication and the discovery of 'riboswitches' or RNA switches, which directly sense their metabolic environment. In this paper, we further explore the plausibility of this 'RNA world' scenario and show, through synthetic molecular design guided by advanced RNA simulations, that RNA can also perform elementary regulation tasks on its own. We demonstrate that RNA synthetic regulatory modules directly inspired from bacterial transcription attenuators can efficiently activate or repress the expression of other RNA by merely controlling their folding paths 'on the fly' during transcription through simple RNA–RNA antisense interaction. Factors, such as NTP concentration and RNA synthesis rate, affecting the efficiency of this kinetic regulation mechanism are also studied and discussed in the light of evolutionary constraints. Overall, this suggests that direct coupling among synthesis, folding and regulation of RNAs may have enabled the early emergence of autonomous RNA-based regulation networks in absence of both DNA and protein partners

  11. Mesoporous Silica Nanoparticles Decorated with Carbosilane Dendrons as New Non-viral Oligonucleotide Delivery Carriers.

    Science.gov (United States)

    Martínez, Ángel; Fuentes-Paniagua, Elena; Baeza, Alejandro; Sánchez-Nieves, Javier; Cicuéndez, Mónica; Gómez, Rafael; de la Mata, F Javier; González, Blanca; Vallet-Regí, María

    2015-10-26

    A novel nanosystem based on mesoporous silica nanoparticles covered with carbosilane dendrons grafted on the external surface of the nanoparticles is reported. This system is able to transport single-stranded oligonucleotide into cells, avoiding an electrostatic repulsion between the cell membrane and the negatively charged nucleic acids thanks to the cationic charge provided by the dendron coating under physiological conditions. Moreover, the presence of the highly ordered pore network inside the silica matrix would make possible to allocate other therapeutic agents within the mesopores with the aim of achieving a double delivery. First, carbosilane dendrons of second and third generation possessing ammonium or tertiary amine groups as peripheral functional groups were prepared. Hence, different strategies were tested in order to obtain their suitable grafting on the outer surface of the nanoparticles. As nucleic acid model, a single-stranded DNA oligonucleotide tagged with a fluorescent Cy3 moiety was used to evaluate the DNA adsorption capacity. The hybrid material functionalised with the third generation of a neutral dendron showed excellent DNA binding properties. Finally, the cytotoxicity as well as the capability to deliver DNA into cells, was tested in vitro by using a human osteoblast-like cell line, achieving good levels of internalisation of the vector DNA/carbosilane dendron-functionalised material without affecting the cellular viability. PMID:26361378

  12. Genome-wide analysis of antisense transcription with Affymetrix exon array

    Directory of Open Access Journals (Sweden)

    Jung Yong-chul

    2008-01-01

    Full Text Available Abstract Background A large number of natural antisense transcripts have been identified in human and mouse genomes. Study of their potential functions clearly requires cost-efficient method for expression analysis. Results Here we show that Affymetrix Exon arrays, which were designed to detect conventional transcripts in the sense orientation, can be used to monitor antisense expression across all exonic loci in mammalian genomes. Through modification of the cDNA synthesis protocol, we labeled single-strand cDNA in the reverse orientation as in the standard protocol, thus enabling the detection of antisense transcripts using the same array. Applying this technique to human Jurkat cells, we identified antisense transcription at 2,088 exonic loci of 1,516 UniGene clusters. Many of these antisense transcripts were not observed previously and some were validated by orientation-specific RT-PCR. Conclusion Our results suggest that with a modified protocol Affymetrix human, mouse and rat Exon arrays can be used as a routine method for genome-wide analysis of antisense transcription in these genomes.

  13. Bidirectional regulation between WDR83 and its natural antisense transcript DHPS in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Wen-Yu Su; Xuan Kong; Qin-Yan Gao; Li-Ping Wei; Jing-Yuan Fang; Jiong-Tang Li; Yun Cui; Jie Hong; Wan Du; Ying-Chao Wang; Yan-Wei Lin; Hua Xiong; Ji-Lin Wang

    2012-01-01

    Natural antisense transcripts (NATs) exist ubiquitously in mammalian genomes and play roles in the regulation of gene expression.However,both the existence of bidirectional antisense RNA regulation and the possibility of proteincoding genes that function as antisense RNAs remain speculative.Here,we found that the protein-coding gene,deoxyhypusine synthase (DHPS),as the NAT of WDR83,concordantly regulated the expression of WDR83 mRNA and protein.Conversely,WDR83 also regulated DHPS by antisense pairing in a concordant manner.WDR83 and DHPS were capable of forming an RNA duplex at overlapping 3′ untranslated regions and this duplex increased their mutual stability,which was required for the bidirectional regulation.As a pair of protein-coding cis-sense/antisense transcripts,WDR83 and DHPS were upregulated simultaneously and correlated positively in gastric cancer (GC),driving GC pathophysiology by promoting cell proliferation.Furthermore,the positive relationship between WDR83 and DHPS was also observed in other cancers.The bidirectional regulatory relationship between WDR83 and DHPS not only enriches our understanding of antisense regulation,but also provides a more complete understanding of their functions in tumor development.

  14. Optimizing the design of oligonucleotides for homology directed gene targeting.

    Directory of Open Access Journals (Sweden)

    Judith Miné-Hattab

    Full Text Available BACKGROUND: Gene targeting depends on the ability of cells to use homologous recombination to integrate exogenous DNA into their own genome. A robust mechanistic model of homologous recombination is necessary to fully exploit gene targeting for therapeutic benefit. METHODOLOGY/PRINCIPAL FINDINGS: In this work, our recently developed numerical simulation model for homology search is employed to develop rules for the design of oligonucleotides used in gene targeting. A Metropolis Monte-Carlo algorithm is used to predict the pairing dynamics of an oligonucleotide with the target double-stranded DNA. The model calculates the base-alignment between a long, target double-stranded DNA and a probe nucleoprotein filament comprised of homologous recombination proteins (Rad51 or RecA polymerized on a single strand DNA. In this study, we considered different sizes of oligonucleotides containing 1 or 3 base heterologies with the target; different positions on the probe were tested to investigate the effect of the mismatch position on the pairing dynamics and stability. We show that the optimal design is a compromise between the mean time to reach a perfect alignment between the two molecules and the stability of the complex. CONCLUSION AND SIGNIFICANCE: A single heterology can be placed anywhere without significantly affecting the stability of the triplex. In the case of three consecutive heterologies, our modeling recommends using long oligonucleotides (at least 35 bases in which the heterologous sequences are positioned at an intermediate position. Oligonucleotides should not contain more than 10% consecutive heterologies to guarantee a stable pairing with the target dsDNA. Theoretical modeling cannot replace experiments, but we believe that our model can considerably accelerate optimization of oligonucleotides for gene therapy by predicting their pairing dynamics with the target dsDNA.

  15. Introduction of radiolabeled therapeutic oligonucleotides as nanonuclear explosive gene therapy

    International Nuclear Information System (INIS)

    The synthetic oligonucleotide technology is also at early trial points in human testing against HIV, leukemia, Herpes virus, and other diseases, whose outcome will remain for the future. The current status of these varied approaches is presented in later parts in this article: What are therapeutic oligonucleotides?, Why Auger-emitters are useful in gene therapy?, What is the synergistic effect on combining Auger emitter and Triplex-forming ODN?, How have TFO researches evolved from the starting point?, In which areas of clinical research will this research illuminating?

  16. Detection of cyclin D1 mRNA by hybridization sensitive NIC-oligonucleotide probe.

    Science.gov (United States)

    Kovaliov, Marina; Segal, Meirav; Kafri, Pinhas; Yavin, Eylon; Shav-Tal, Yaron; Fischer, Bilha

    2014-05-01

    A large group of fluorescent hybridization probes, includes intercalating dyes for example thiazole orange (TO). Usually TO is coupled to nucleic acids post-synthetically which severely limits its use. Here, we have developed a phosphoramidite monomer, 10, and prepared a 2'-OMe-RNA probe, labeled with 5-(trans-N-hexen-1-yl-)-TO-2'-deoxy-uridine nucleoside, dU(TO), (Nucleoside bearing an Inter-Calating moiety, NIC), for selective mRNA detection. We investigated a series of 15-mer 2'-OMe-RNA probes, targeting the cyclin D1 mRNA, containing one or several dU(TO) at various positions. dU(TO)-2'-OMe-RNA exhibited up to 7-fold enhancement of TO emission intensity upon hybridization with the complementary RNA versus that of the oligomer alone. This NIC-probe was applied for the specific detection of a very small amount of a breast cancer marker, cyclin D1 mRNA, in total RNA extract from cancerous cells (250 ng/μl). Furthermore, this NIC-probe was found to be superior to our related NIF (Nucleoside with Intrinsic Fluorescence)-probe which could detect cyclin D1 mRNA target only at high concentrations (1840 ng/μl). Additionally, dU(T) can be used as a monomer in solid-phase oligonucleotide synthesis, thus avoiding the need for post-synthetic modification of oligonucleotide probes. Hence, we propose dU(TO) oligonucleotides, as hybridization probes for the detection of specific RNA in homogeneous solutions and for the diagnosis of breast cancer.

  17. DNA microarray synthesis by using PDMS molecular stamp (II) -- Oligonucleotide on-chip synthesis using PDMS stamp

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the standard phosphoramidites chemistry protocol, two oligonucleotides synthetic routes were studied by contact stamping reactants to a modified glass slide. Route A was a contact coupling reaction, in which a nucleoside monomer was transferred and coupled to reactive groups (OH) on a substrate by spreading the nucleoside activated with tetrazole on a polydimethylsiloxane (PDMS) stamp. Route B was a contact detritylation, in which one nucleoside was fixed on the desired synthesis regions where dimethoxytrityl (DMT) protecting groups on the 5′-hydroxyl of the support-bound nucleoside were removed by stamping trichloroacetic acid (TCA) distributed on features on a PDMS stamp. Experiments showed that the synthetic yield and the reaction speed of route A were higher than those of route B. It was shown that 20 mer oligonucleotide arrays immobilized on the glass slide were successfully synthesized using the PDMS stamps, and the coupling efficiency showed no difference between the PDMS stamping and the conventional synthesis methods.

  18. Enzyme-Free Detection of Mutations in Cancer DNA Using Synthetic Oligonucleotide Probes and Fluorescence Microscopy

    DEFF Research Database (Denmark)

    Miotke, Laura; Maity, Arindam; Ji, Hanlee;

    2015-01-01

    BACKGROUND: Rapid reliable diagnostics of DNA mutations are highly desirable in research and clinical assays. Current development in this field goes simultaneously in two directions: 1) high-throughput methods, and 2) portable assays. Non-enzymatic approaches are attractive for both types...... microscopy and nucleic acid analogues have been proposed so far. METHODS AND RESULTS: Here we report a novel enzyme-free approach to efficiently detect cancer mutations. This assay includes gene-specific target enrichment followed by annealing to oligonucleotides containing locked nucleic acids (LNAs...... 1000-fold above the potential detection limit. CONCLUSION: Overall, the novel assay we describe could become a new approach to rapid, reliable and enzyme-free diagnostics of cancer or other associated DNA targets. Importantly, stoichiometry of wild type and mutant targets is conserved in our assay...

  19. Fabrication of oligonucleotide microarray for the detection of Japanese encephalitis virus

    Institute of Scientific and Technical Information of China (English)

    HAI YAN ZHANG; WEN LI MA; XIAO MING ZHANG; WEN LING ZHENG

    2006-01-01

    A low-density oligonucleotide microarray was used for the detection of Japanese encephalitis virus (JEV), combining with restriction display PCR labeling method. The hybridization targets were amplified from 6 plasmids containing several JEV gene fragments. Corresponding oligonucleotide probe spots were detected unambiguously. We claim that the oligonucleotide microarray technology is feasible and may have potential for clinical laboratory application.

  20. Systematic design of mouse Vh gene family-specific oligonucleotides

    NARCIS (Netherlands)

    Seijen, AM; Seijen, HG; Bos, NA

    2001-01-01

    Kabat's database has often been used to design mouse Vh gene-specific 5 ' primers. The emphasis was mostly on constructing a universal (degenerate) 5 ' primer or 5 ' primer set, which would be able to match every mouse Vh gene. We were interested in finding oligonucleotides that could be used as pri

  1. Oligonucleotides with 1,4-dioxane-based nucleotide monomers

    DEFF Research Database (Denmark)

    Madsen, Andreas S; Wengel, Jesper

    2012-01-01

    An epimeric mixture of H-phosphonates 5R and 5S has been synthesized in three steps from known secouridine 1. Separation of the epimers has been accomplished by RP-HPLC, allowing full characterization and incorporation of monomers X and Y into 9-mer oligonucleotides using H-phosphonates building ...

  2. LNA 5'-phosphoramidites for 5'→3'-oligonucleotide synthesis

    DEFF Research Database (Denmark)

    Madsen, Andreas Stahl; Kumar, Santhosh T.; Wengel, Jesper

    2010-01-01

    Hereby we report an efficient synthesis of LNA thymine and LNA 5-methylcytosine 5′-phosphoramidites, allowing incorporation of LNA thymine and LNA 5-methylcytosine into oligonucleotides synthesized in the 5′→3′ direction. Key steps include regioselective enzymatic benzoylation of the 5′-hydroxy...

  3. Solid-phase-supported synthesis of morpholinoglycine oligonucleotide mimics

    Directory of Open Access Journals (Sweden)

    Tatyana V. Abramova

    2014-05-01

    Full Text Available An efficient solid-phase-supported peptide synthesis (SPPS of morpholinoglycine oligonucleotide (MorGly mimics has been developed. The proposed strategy includes a novel specially designed labile linker group containing the oxalyl residue and the 2-aminomethylmorpholino nucleoside analogues as first subunits.

  4. Oligonucleotide-directed mutagenesis for precision gene editing.

    Science.gov (United States)

    Sauer, Noel J; Mozoruk, Jerry; Miller, Ryan B; Warburg, Zachary J; Walker, Keith A; Beetham, Peter R; Schöpke, Christian R; Gocal, Greg F W

    2016-02-01

    Differences in gene sequences, many of which are single nucleotide polymorphisms, underlie some of the most important traits in plants. With humanity facing significant challenges to increase global agricultural productivity, there is an urgent need to accelerate the development of these traits in plants. oligonucleotide-directed mutagenesis (ODM), one of the many tools of Cibus' Rapid Trait Development System (RTDS(™) ) technology, offers a rapid, precise and non-transgenic breeding alternative for trait improvement in agriculture to address this urgent need. This review explores the application of ODM as a precision genome editing technology, with emphasis on using oligonucleotides to make targeted edits in plasmid, episomal and chromosomal DNA of bacterial, fungal, mammalian and plant systems. The process of employing ODM by way of RTDS technology has been improved in many ways by utilizing a fluorescence conversion system wherein a blue fluorescent protein (BFP) can be changed to a green fluorescent protein (GFP) by editing a single nucleotide of the BFP gene (CAC→TAC; H66 to Y66). For example, dependent on oligonucleotide length, applying oligonucleotide-mediated technology to target the BFP transgene in Arabidopsis thaliana protoplasts resulted in up to 0.05% precisely edited GFP loci. Here, the development of traits in commercially relevant plant varieties to improve crop performance by genome editing technologies such as ODM, and by extension RTDS, is reviewed. PMID:26503400

  5. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    López-Barragán María J

    2011-11-01

    Full Text Available Abstract Background It has been shown that nearly a quarter of the initial predicted gene models in the Plasmodium falciparum genome contain errors. Although there have been efforts to obtain complete cDNA sequences to correct the errors, the coverage of cDNA sequences on the predicted genes is still incomplete, and many gene models for those expressed in sexual or mosquito stages have not been validated. Antisense transcripts have widely been reported in P. falciparum; however, the extent and pattern of antisense transcripts in different developmental stages remain largely unknown. Results We have sequenced seven bidirectional libraries from ring, early and late trophozoite, schizont, gametocyte II, gametocyte V, and ookinete, and four strand-specific libraries from late trophozoite, schizont, gametocyte II, and gametocyte V of the 3D7 parasites. Alignment of the cDNA sequences to the 3D7 reference genome revealed stage-specific antisense transcripts and novel intron-exon splicing junctions. Sequencing of strand-specific cDNA libraries suggested that more genes are expressed in one direction in gametocyte than in schizont. Alternatively spliced genes, antisense transcripts, and stage-specific expressed genes were also characterized. Conclusions It is necessary to continue to sequence cDNA from different developmental stages, particularly those of non-erythrocytic stages. The presence of antisense transcripts in some gametocyte and ookinete genes suggests that these antisense RNA may play an important role in gene expression regulation and parasite development. Future gene expression studies should make use of directional cDNA libraries. Antisense transcripts may partly explain the observed discrepancy between levels of mRNA and protein expression.

  6. Role of XIAP in the malignant phenotype of transitional cell cancer (TCC) and therapeutic activity of XIAP antisense oligonucleotides against multidrug-resistant TCC in vitro.

    Science.gov (United States)

    Bilim, Vladimir; Kasahara, Takashi; Hara, Noboru; Takahashi, Kota; Tomita, Yoshihiko

    2003-01-01

    XIAP directly inhibits executor caspases, making it the most downstream antiapoptotic molecule. Here, we examined the expression and function of XIAP in normal urothelium and TCC. We also examined the therapeutic effect of xiap AS PODN on the cell cycle and apoptosis of multidrug-resistant T24 bladder cancer cells. XIAP was moderately expressed in normal transitional epithelium with prominent expression on the superficial layer cells. Seventy-nine of 108 (73.15%) tumor samples were positive for XIAP protein, but XIAP positivity was not correlated with tumor stage or grade. Moreover, 4 bladder cancer cell lines (SCaBER, HT1376, T24 and RT4) expressed similar levels of XIAP. xiap AS PODN dose-dependently reduced the XIAP protein level and induced apoptosis, leading to decreased cell viability by 87%. Combined administration with doxorubicin resulted in marked cytotoxicity due to escalation of apoptosis. Overexpression of XIAP in T24 cells resulted in a modest but statistically significant (p TCC, and endogenous XIAP levels are sufficient to protect cells from apoptosis. Our results suggest that XIAP may play an important role early in human TCC carcinogenesis. xiap AS may be a candidate for use as a cancer therapy for overcoming drug resistance in highly malignant TCC.

  7. 反义治疗与白血病靶基因研究进展%Advanced studies on antisense oligonucleotide treatment and target-gene of leukemia

    Institute of Scientific and Technical Information of China (English)

    李文瑜; 张洹

    2000-01-01

    @@ 反义技术是根据碱基互补原理,利用与目标靶DNA或RNA互补的短链片断封闭基因表达.反义技术用于抗白血病的理论基础,是用反义核酸中止原癌基因或癌基因的表达,使白血病细胞分化或凋亡,达到治疗的目的.其特点是,特异性强,对正常细胞无明显影响.反义核酸能在核酸水平上抗白血病,优于在蛋白水平的作用.基本内容包括:反义RNA、反义DNA、核酶(ribozyme)和三股螺旋DNA(DNA-Triplex).主要通过下列作用之一或联合作用抑制靶基因表达:1.与双链DNA形成三链结构,使DNA转录受阻.2.结合靶mRNA,形成双链结构,激活核酶,降解靶mRNA或使靶mRNA翻译终止.3.使细胞表达核酶,降解特定基因片段.4.阻挡mRNA前体由核向胞浆转运或成熟,间接影响基因表达.急慢性白血病反义治疗的靶基因包括融合基因、点突变基因、正常基因、以及扩增基因.随着人类基因组计划的进行,新的基因会越来越多,基因靶点会越来越多,为反义技术带来广阔的前景.现就上述基因进行综述.

  8. 33. The Study of Mechanism By Which The Telomerase Template Phosphorothioate Antisense Oligonucleotide(TPAO) Inhibites The Growth of Tumor Cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@The length of telomere in cells is related to the regulation of life span. The activation of telomerase is required for the maintain of telemere. In the pass several years the studies revealed that the activation of telomerase was associated with initiation and progression of tumorigenesis. There was evident that telomerase inhibitors had the inhibitory effect on tumor cells. The regulation of telo-merase activation was probably associated with cyclins. There was evident that telomerase

  9. Small molecule aptamer assays based on fluorescence anisotropy signal-enhancer oligonucleotides.

    Science.gov (United States)

    Perrier, Sandrine; Bouilloud, Prisca; De Oliveira Coelho, Gisella; Henry, Mickael; Peyrin, Eric

    2016-08-15

    Herein, we design novel fluorescence anisotropy (FA) aptamer sensing platforms dedicated to small molecule detection. The assay strategy relied on enhanced fluctuations of segmental motion dynamics of the aptamer tracer mediated by an unlabelled, partially complementary oligonucleotide. The signal-enhancer oligonucleotide (SEO) essentially served as a free probe fraction revealer. By targeting specific regions of the signalling functional nucleic acid, the SEO binding to the unbound aptamer triggered perturbations of both the internal DNA flexibility and the localized dye environment upon the free probe to duplex structure transition. This potentiating effect determined increased FA variations between the duplex and target bound states of the aptameric probe. FA assay responses were obtained with both pre-structured (adenosine) and unstructured (tyrosinamide) aptamers and with dyes of different photochemical properties (fluorescein and texas red). The multiplexed analysis ability was further demonstrated through the simultaneous multicolour detection of the two small targets. The FA method appears to be especially simple, sensitive and widely applicable. PMID:27085946

  10. Short Oligonucleotides Aligned in Stretched Humid Matrix: Secondary DNA Structure in Poly(vinyl alcohol) Environment

    KAUST Repository

    Hanczyc, Piotr

    2012-04-24

    We report that short, synthetic, double- as well as single-stranded DNA can be aligned in stretched humid poly(vinyl alcohol) (PVA) matrix, and the secondary structure (nucleobase orientation) can be characterized with linear dichroism (LD) spectroscopy. Oligonucleotides of lengths varying between 10 (3.4 nm) and 60 bases (20.4 nm) were investigated with respect to structural properties in the gel-like polymer environment. The DNA conformation as a function of relative humidity reveals a strong dependence of helical structure of DNA on PVA hydration level, results of relevance for nanotechnical studies of DNA-based supramolecular systems. Also, the PVA gel could provide possibilities to test models for nucleic acid interactions and distribution in cell contexts, including structural stability of genetic material in the cell and PVA-packaging for gene delivery. A method by which duplex oligonucleotides, with sequences designed to provide specific binding sites, become amenable to polarized-light spectroscopy opens up new possibilities for studying structure in DNA complexes with small adduct molecules as well as proteins. © 2012 American Chemical Society.

  11. I. A comparative study of ribo-, deoxyribo-, and hybrid oligonucleotide helices by nuclear magnetic resonance. II. Optical studies of ethidium binding to oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Pardi, A.

    1980-11-01

    The conformations and the helix-to-coil transitions in the following oligonucleotides: (I) a DNA duplex dCT/sub 5/G + dCA/sub 5/G; (II) an RNA duplex rCU/sub 5/G + rCA/sub 5/G; (III) a DNA-RNA hybrid duplex dCT/sub 5/G + rCA/sub 5/G; and (IV) a DNA-RNA hybrid triplex rCU/sub 5/G + dCA/sub 5/G were studied. The first three mixtures all form stable double helical structures at 5/sup 0/C, whereas IV forms a triple strand with a ratio of 2:1 rCU/sub 5/G:dCA/sub 5/G. The chemical shifts of the imino protons in the double strands indicate that I, II, and III have different conformations in solution. This implies a significant change in helical parameters. The chemical shift and sugar pucker data are consistent with helix I having B form geometry, whereas II and III have A (or A') geometry. The chemical shifts of the base protons in system I had transition midpoints of 28 to 30/sup 0/C indicating an all-or-none transition. The exchange lifetimes of the imino protons on helix I were a factor of two longer, for the interior A.T base pairs, than those on helix III. This reflects the greater stability of the DNA helix compared to the hybrid helix. The two terminal C.G base pairs in helix I were also found to have much different exchange rates, indicative of a sequence dependence for these exchange rates. The thermodynamic properties of ethidium binding to several oligonucleotides were investigated. The order of the stability for the 2:1 oligonucleotide:ethidium complexes was found to be rCpG > dCpG > rCpUpG approx. = rUpA > rGpUpG + rCpC. These complexes present models for a possible mechanism for frameshift mutagenesis by ethidium. A large positive induced circular dichroism (CD) has been observed for ethidium upon intercalation into nucleic acids. (ERB)

  12. BTEB2 antisense RNA inhibits intimal hyperplasia in a rat carotid balloon injury model

    Institute of Scientific and Technical Information of China (English)

    LI De; HE Guo-xiang; TANG Bing; TANG Bo

    2006-01-01

    Objective: To investigate the effects of basic transcriptional element binding protein-2(BTEB2) antisense RNA on vascular smooth muscle cells (VSMCs) proliferation and the neointimal formation after carotid balloon injury in rats. Methods: The cultured VSMCs were transfected with an adenoviral vector containing BTEB2 antisense gene, Ad ASBTEB2. Effects of BTEB2 antisense RNA on the expression of BTEB2 were investigated by Western blot analysis. The cell cycle was analyzed using flow cytometry. Ad ASBTEB2, control adenoviral vector Ad. LacZ or PBS was transduced into the rat carotid artery after balloon injury. The expression of BTEB2 at 7, 14, and 21 d after gene transfer was detected by immunohistochemistry and neointima-to-media (I/M) area ratio at these time points was calculated. Results: The cell cycle was arrested in G0/G1 phase and the expression of BETB2 was downregulated after transfection with Ad ASBTEB2. Ad ASBTEB2 treatment reduced I/M area ratios on day 7, 14, and 21 after injury by 45%, 50% and 53% respectively, whereas the Ad LacZ treatment did not significantly alter these ratios compared with control group. Conclusion: BTEB2 antisense RNA mediated by adenoviral vector inhibits proliferation of VSMCs and significantly reduces neointimal hyperplasia in the rat carotid balloon injury model. BTEB2 antisense RNA is a potential therapeutic approach to preventing neointimal formation after balloon injury.

  13. Induction of apoptosis and inhibition of proliferation in Hep-2 by antisense survivin RNA in vitro

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To study induction of apoptosis and inhibition of proliferation in Hep-2 by antisense survivin RNA. Methods: Antisense survivin RNA expression vector was constructed and then was transfected to human laryngeal carcinoma cell line Hep-2 by lipofectamine. HpEGFP/survivin cells (transfected with the combinant of antisense survivin RNA) were obstained by using G418. The levels of survivin protein before and after transfection were determined by Western-blot. Proliferation activity was measured by MTT assay. The experiment of colony formation in soft agar was carried out for assessing ability of proliferation of Hep-2 cell. Apoptosis was assessed by flow cytometry and acrdine orange(AO).Results:After antisense survivin RNA plasmids were transfected, the level of survivin protein was inhibited in Hep-2. ComPared with control, proliferation of HpEGFP/survivin cells were suppressed significantly. The experiment of colony formation in soft agar showed the ability of colony formation decreased in HpEGFP/survivin cells compared to control (P<0.05). Apoptosis rate increased about 1.81 folds compared with control. Conclusion: The antisense survivin RNA can partly inhibit the level of survivin protein expression in Hep-2 and can induce apoptosis and inhibit the proliferation of Hep-2 by down-regulating the expression of endogenous survivin in vitro.

  14. Expression of an Antisense BcMF3 Affects Microsporogenesis and Pollen Tube Growth in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    LIU Le-cheng; CAO Jia-shu; YU Xiao-lin; XIANG Xun; FEI Yong-jun

    2006-01-01

    In an effort to provide some information relevant to the molecular mechanism of genic male sterility in plants, BcMF3 gene that encodes a pectin methylesterase was isolated from the fertile B line of Chinese cabbage-pak-choi (Brassica rapa ssp.chinensis, syn. B. campestris ssp. chinensis). In the present paper, a 455-bp antisense cDNA fragment of BcMF3 was introduced to binary vector pBI121, and then was mobilized into Agrobacterium tumefaciens strain LBA4404. The A.tumefaciens harboring the BcMF3 antisense fragment was transformed to Arabidopsis thaliana by floral dip. Scanning electronic microscopy examination demonstrated that 47.8% of BcMF3 antisense pollen grains exhibited abnormal shape,which might lead to decreased germination of pollens, suggesting that the product of BcMF3 gene plays an important role during microsporogenesis. The evidence on burst of 45.7% of BcMF3 antisense pollen tubes in vitro and a majority of BcMF3 antisense pollens restricted within the stigmatic tissue revealed that BcMF3 is involved in aiding the growth of pollen tubes. The results suggest that BcMF3 acts at both stages of microsporogensis and pollen tube growth.

  15. PU.1 antisense lncRNA against its mRNA translation promotes adipogenesis in porcine preadipocytes.

    Science.gov (United States)

    Wei, N; Wang, Y; Xu, R-X; Wang, G-Q; Xiong, Y; Yu, T-Y; Yang, G-S; Pang, W-J

    2015-04-01

    Antisense long non-coding RNAs (AS lncRNAs) play important roles in refined regulation of animal gene expression. However, their functions and molecular mechanisms for domestic animal adipogenesis are largely unknown. Here, we found a novel AS lncRNA transcribed from the porcine PU.1 gene (also known as SPI1) by strand-specific RT-PCR. Results showed that PU.1 AS lncRNA was expressed and generally lower than the level of PU.1 mRNA in porcine subcutaneous adipose, heart, liver, spleen, lympha, skeletal muscle and kidney tissues. We further found that the levels of PU.1 mRNA and PU.1 protein were significantly lower in subcutaneous and intermuscular adipose than in mesenteric and greater omentum adipose, whereas the levels of PU.1 AS lncRNA showed no difference in porcine adipose tissues from four different parts of the body. During porcine adipogenesis, levels of PU.1 mRNA increased at day 2 and then gradually decreased. Meanwhile, PU.1 AS lncRNA exhibited an expression trend similar to PU.1 mRNA but sharply decreased after day 2. Interestingly, PU.1 protein level rose during differentiation. In addition, at day 6 after differentiation, knockdown of endogenous PU.1 promoted adipogenesis, whereas knockdown of endogenous PU.1 AS lncRNA had the opposite effect. Moreover, peroxisome proliferator-activated receptor gamma (PPARG) and fatty acid synthase (FASN) were significantly upregulated in the PU.1 shRNA treatment group (P PU.1 AS shRNA treatment group (P PU.1 mRNA/PU.1 AS lncRNA duplex was detected by an endogenous ribonuclease protection assay combined with RT-PCR. Based on the above results, we suggest that PU.1 AS lncRNA (vs. its mRNA translation) promotes adipogenesis through the formation of a sense-antisense RNA duplex with PU.1 mRNA.

  16. Biophysical and RNA Interference Inhibitory Properties of Oligonucleotides Carrying Tetrathiafulvalene Groups at Terminal Positions

    Directory of Open Access Journals (Sweden)

    Sónia Pérez-Rentero

    2013-01-01

    Full Text Available Oligonucleotide conjugates carrying a single functionalized tetrathiafulvalene (TTF unit linked through a threoninol molecule to the 3′ or 5′ ends were synthesized together with their complementary oligonucleotides carrying a TTF, pyrene, or pentafluorophenyl group. TTF-oligonucleotide conjugates formed duplexes with higher thermal stability than the corresponding unmodified oligonucleotides and pyrene- and pentafluorophenyl-modified oligonucleotides. TTF-modified oligonucleotides are able to bind to citrate-stabilized gold nanoparticles (AuNPs and produce stable gold AuNPs functionalized with oligonucleotides. Finally, TTF-oligoribonucleotides have been synthesized to produce siRNA duplexes carrying TTF units. The presence of the TTF molecule is compatible with the RNA interference mechanism for gene inhibition.

  17. A novel modification of real-time AS-qPCR by using locked nucleic acid-modified oligonucleotide probe as wild type allele amplification blockers for quantitative detection of the JAK2 V617F mutation%评价AS-LNA-qPCR法检测JAK2 V617F突变率的临床应用价值

    Institute of Scientific and Technical Information of China (English)

    邵冬华; 梁国威; 何美琳; 曹清芸

    2013-01-01

    Objective To develop a novel real-time PCR for sensitively quantitative detection of JAK2 V617F allele burden in peripheral blood.Methods Based on the real-time allele-specific PCR (AS-qPCR),the locked nucleic acid (LNA)-modified oligonucleotide probe was used for selectively blocking amplification of wild-type alleles in AS-qPCR,and then a novel AS-LNA-qPCR method was established.The percentages of sample JAK2 V617F alleles were directly calculated by its threshold cycle (Ct) values according to the standard curve which generated by JAK2 V617F alleles with its Ct values.We validated intra-and inter-assay variability for quantifying JAK2 V617F.We also assayed 623 apparent healthy donors by our method to validate its clinical application value.Results The quantitative lower limit of this method for JAK2 V617F was 0.01%,and the intra-and inter-assay average variability for quantifying percentage of JAK2 V617F in total DNA was 6.3% and 8.6%,respectively.Nineteen JAK2 V617F-positive individuals were identified using AS-LNA-qPCR in blood of 623 apparently healthy donors,and the range of percentages of JAK2 V617F alleles were 0.01%-5.49%.Conclusion The AS-LNA-qPCR with highly sensitive and reproducible quantification of JAK2 V617F mutant burden can be used clinically for diagnosis as well as evaluation of disease prognosis and efficacy of therapy in patients with myeloproliferative neoplasms.%目的 建立一种定量检测外周血细胞酪氨酸激酶2(JAK2)基因V617F突变率的等位基因特异性实时荧光定量PCR(AS-qPCR)方法.方法 在AS-qPCR基础上,引入1条锁核酸(LNA)修饰的寡核苷酸探针,用以选择性抑制AS-qPCR中突变引物对野生等位基因的非特异性扩增,定量检测JAK2 V617F突变率,称之为AS-LNA-qPCR法.通过AS-LNA-qPCR法测定样本的循环阈值(Ct值),根据AS-LNA-qPCR法检测不同JAK2 V617F突变率标准品的Ct值,绘制标准曲线,根据标准曲线直接获得检测样本中JAK2 V617F突变率.

  18. Effects of CIITA antisense RNA on the expression of HLA class Ⅱ molecules

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To study the effect of the major histocompatibility complex class Ⅱ (MHCⅡ) transactivator (CIITA) antisense RNA on the expression of the human leukemia (HLA) class Ⅱ molecules, 5′ end cDNA sequence of CIITA gene was cloned, and antisense RNA expression vector pcDNA-Ⅱ was constructed. HeLa cells transfected with pcDNA-Ⅱ and pcDNA3 were induced by IFN-g for 3 d. The expression of HLA class Ⅱ molecules on HeLa/pcDNA-Ⅱ cells was significantly decreased, while it has no effect on the expression of HLA class Ⅰ molecules. This result suggests that the CIITA antisense RNA can inhibit the expression of HLA class Ⅱ molecules in HeLa cells. It also implies a promising approach to generate immune tolerance in graft transplantation.

  19. In vivo alteration of the keratin 17 gene in hair follicles by oligonucleotide-directed gene targeting.

    Science.gov (United States)

    Fan, W; Yoon, K

    2003-12-01

    Using intradermal injection of a chimeric RNA-DNA oligonucleotide (RDO) or a single-stranded oligonucleotide (ssODN) into murine skin, we attempted to make a dominant mutation (R94p) in the conserve alpha-helical domain of keratin 17 (K17), the same mutation found in pachyononychia congenichia type 2 (PC-2) patients with phenotypes ranging from twisted hair and multiple pilosebaceous cysts. Both K17A-RDO and -ssODN contained a single base mismatch (CGC to CCC) to alter the normal K17 sequence to cause an amino acid substitution (R94P). The complexes consisting of oligonucleotides and cationic liposomes were injected to C57B1/6 murine skin at 2 and 5 day after birth. Histological examination of skin biopsies at postnatal day 8 from several mice showed consistent twisted hair shafts or broken hair follicles at the sebaceous gland level and occasional rupture of the hair bulb or epidermal cyst-like changes. In the injected area, the number of full anagen hair follicles decrease by 50%. Injection of the control oligonucleotide, identical to K17A-RDO but containing no mismatch to the normal sequence, did not result in any detectable abnormality. The frequency of gene alteration was lower than 3%, according to the restriction fragment length polymorphism (RFLP) analysis of the genomic DNA isolated by dissection of hair follicles from slides. Although intradermal injection of K17A-RDO or K17-ssODN caused a dominant mutation in K17 affecting hair growth and morphology, these phenotypic changes were transient either due to the compensation of K17 by other keratins or the replacement of the mutated cells by normal surrounding cells during hair growth.

  20. A Simple Three-Step Method for Design and Affinity Testing of New Antisense Peptides: An Example of Erythropoietin

    Directory of Open Access Journals (Sweden)

    Nikola Štambuk

    2014-05-01

    Full Text Available Antisense peptide technology is a valuable tool for deriving new biologically active molecules and performing peptide–receptor modulation. It is based on the fact that peptides specified by the complementary (antisense nucleotide sequences often bind to each other with a higher specificity and efficacy. We tested the validity of this concept on the example of human erythropoietin, a well-characterized and pharmacologically relevant hematopoietic growth factor. The purpose of the work was to present and test simple and efficient three-step procedure for the design of an antisense peptide targeting receptor-binding site of human erythropoietin. Firstly, we selected the carboxyl-terminal receptor binding region of the molecule (epitope as a template for the antisense peptide modeling; Secondly, we designed an antisense peptide using mRNA transcription of the epitope sequence in the 3'→5' direction and computational screening of potential paratope structures with BLAST; Thirdly, we evaluated sense–antisense (epitope–paratope peptide binding and affinity by means of fluorescence spectroscopy and microscale thermophoresis. Both methods showed similar Kd values of 850 and 816 µM, respectively. The advantages of the methods were: fast screening with a small quantity of the sample needed, and measurements done within the range of physicochemical parameters resembling physiological conditions. Antisense peptides targeting specific erythropoietin region(s could be used for the development of new immunochemical methods. Selected antisense peptides with optimal affinity are potential lead compounds for the development of novel diagnostic substances, biopharmaceuticals and vaccines.

  1. Palladium-Catalyzed Modification of Unprotected Nucleosides, Nucleotides, and Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Kevin H. Shaughnessy

    2015-05-01

    Full Text Available Synthetic modification of nucleoside structures provides access to molecules of interest as pharmaceuticals, biochemical probes, and models to study diseases. Covalent modification of the purine and pyrimidine bases is an important strategy for the synthesis of these adducts. Palladium-catalyzed cross-coupling is a powerful method to attach groups to the base heterocycles through the formation of new carbon-carbon and carbon-heteroatom bonds. In this review, approaches to palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides are reviewed. Polar reaction media, such as water or polar aprotic solvents, allow reactions to be performed directly on the hydrophilic nucleosides and nucleotides without the need to use protecting groups. Homogeneous aqueous-phase coupling reactions catalyzed by palladium complexes of water-soluble ligands provide a general approach to the synthesis of modified nucleosides, nucleotides, and oligonucleotides.

  2. One-oligonucleotide method for constructing vectors for RNA interference

    Institute of Scientific and Technical Information of China (English)

    Carlos Fabian FLORES-JASSO; Ines VELAZQUEZ-QUESADA; Carlos LANDA-SOLIS; Andres A GUTIERREZ; Luis VACA

    2005-01-01

    Aim: To develop an easy, fast, automated, and inexpensive method for constructing short-hairpin-RNA cassettes for RNAi studies. Methods: Using single oligonucleotides, a variety of DNA cassettes for RNAi vectors were constructed in only few minutes in an automated manner. The cassettes, targeting the eGFP,were cloned into plasmids driven by RNA polymerase Ⅲ promoter H 1. Then, the plasmids were transfected into HeLa cells that were later infected with a recombinant adenovirus encoding the eGFP gene. The level of eGFP fluorescence was evaluated by confocal imaging and flow cytometry. Results: The plasmids constructed with the DNA cassettes made by the one-oligonucleotide method inhibited eGFP with different potencies, ranging from 55% to 75%. Conclusion: By using the method reported here, it is possible to simultaneously construct hundreds of different DNA cassettes for RNAi experiments in an inexpensive, automated way. This method will facilitate functional genomics studies on mammalian cells.

  3. Fluorescence quenching of TMR by guanosine in oligonucleotides

    Institute of Scientific and Technical Information of China (English)

    QU Peng; CHEN XuDong; ZHOU XiaoXue; LI Xun; ZHAO XinSheng

    2009-01-01

    Nucleotide-specific fluorescence quenching in fluorescently labeled DNA has many applications in biotechnology. We have studied the inter- and intra-molecular quenching of tetramethylrhodamine (TMR) by nucleotides to better understand their quenching mechanism and influencing factors. In agreement with previous work, dGMP can effectively quench TMR, while the quenching of TMR by other nucleotides is negligible. The Stern-Volmer plot between TMR and dGMP delivers a bimolecular quenching constant of Ks= 52.3 M~(-1). The fluorescence of TMR in labeled oligonucleotides decreases efficiently through photoinduced electron transfer by guanosine. The quenching rate constant between TMR and guanosine was measured using fluorescence correlation spectroscopy (FCS). In addition, our data show that the steric hindrance by bases around guanosine has significant effect on the G-quenching. The availability of these data should be useful in designing fluorescent oligonucleotides and understanding the G-quenching process.

  4. Fluorescence quenching of TMR by guanosine in oligonucleotides

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Nucleotide-specific fluorescence quenching in fluorescently labeled DNA has many applications in biotechnology. We have studied the inter-and intra-molecular quenching of tetramethylrhodamine (TMR) by nucleotides to better understand their quenching mechanism and influencing factors. In agreement with previous work, dGMP can effectively quench TMR, while the quenching of TMR by other nucleotides is negligible. The Stern-Volmer plot between TMR and dGMP delivers a bimolecular quenching constant of Ks=52.3 M-1. The fluorescence of TMR in labeled oligonucleotides decreases efficiently through photoinduced electron transfer by guanosine. The quenching rate constant between TMR and guanosine was measured using fluorescence correlation spectroscopy (FCS). In addition, our data show that the steric hindrance by bases around guanosine has significant effect on the G-quenching. The availability of these data should be useful in designing fluorescent oligonucleotides and understanding the G-quenching process.

  5. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array

    Directory of Open Access Journals (Sweden)

    Settles Matthew L

    2009-05-01

    Full Text Available Abstract Background Natural antisense transcripts (NATs are transcripts of the opposite DNA strand to the sense-strand either at the same locus (cis-encoded or a different locus (trans-encoded. They can affect gene expression at multiple stages including transcription, RNA processing and transport, and translation. NATs give rise to sense-antisense transcript pairs and the number of these identified has escalated greatly with the availability of DNA sequencing resources and public databases. Traditionally, NATs were identified by the alignment of full-length cDNAs or expressed sequence tags to genome sequences, but an alternative method for large-scale detection of sense-antisense transcript pairs involves the use of microarrays. In this study we developed a novel protocol to assay sense- and antisense-strand transcription on the 55 K Affymetrix GeneChip Wheat Genome Array, which is a 3' in vitro transcription (3'IVT expression array. We selected five different tissue types for assay to enable maximum discovery, and used the 'Chinese Spring' wheat genotype because most of the wheat GeneChip probe sequences were based on its genomic sequence. This study is the first report of using a 3'IVT expression array to discover the expression of natural sense-antisense transcript pairs, and may be considered as proof-of-concept. Results By using alternative target preparation schemes, both the sense- and antisense-strand derived transcripts were labeled and hybridized to the Wheat GeneChip. Quality assurance verified that successful hybridization did occur in the antisense-strand assay. A stringent threshold for positive hybridization was applied, which resulted in the identification of 110 sense-antisense transcript pairs, as well as 80 potentially antisense-specific transcripts. Strand-specific RT-PCR validated the microarray observations, and showed that antisense transcription is likely to be tissue specific. For the annotated sense-antisense

  6. Inhibiting effect of antisense hTRT on telomerase activity of human liver cancer cell line SMMC-7721

    Institute of Scientific and Technical Information of China (English)

    牟娇; 李晓冬; 杨庆; 贾凤岐; 卫立辛; 郭亚军; 吴孟超

    2003-01-01

    Objective: To induce changes in biological character of human liver cancer cell line SMMC-7721 by blocking the expression of telomerase genes hTRT and to explore its value in cancer gene therapy. Methods: The vehicle for eukaryotic expression of antisense hTRT was constructed and then transfected into SMMC-7721 cells. The effects of antisense hTRT gene on telomerase activity, cancer cell growth and malignant phenotypes were analyzed. Results: The obtained transfectants that could express antisense hTRT gene stably showed marked decrease in telomerase activity; the shortening of telomere was obvious; cells presented contact growth inhibition; in nude mice transplantation, the rate of tumor induction dramatically decreased. Conclusion: Antisense hTRT gene expression can significantly inhibit telomerase activity of cancer cells and decrease malignant phenotypes in vitro and in vivo. Therefore, as a telomerase inhibitor, antisense hTRT gene may be a new pathway for cancer therapy.

  7. Combination Adenovirus-Mediated HSV-tk/GCV and Antisense IGF-1 Gene Therapy for Rat Glioma

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To investigate the effects of combination adenovirus-mediated HSV-tk/GCV system and antisense IGF-1 gene therapy for rat glioma and analyze the mechanism.Methods Using the recombinant adenovirus vector,GCV killing effeciency after combined gene transfer of HSV-tk and antisense IGF-1 was observed in vitro.Rat glioma was treated with HSV-tk/GCV and antisense IGF-1 and the survival rate of rats was observed.Results C6 cells transfected with tk and antisense IGF-1 gene were more sensitive to GCV than that transfected with tk gene alone.The survival of the combination gene therapy group was prolonged significantly and large amounts of CD+4,CD+8 lymphocytes were detected in the tumor tissues.Conclusion Antisense IGF-1 gene may enhance the tumor-killing effects of HSV-tk/GCV.

  8. Intragenic pausing and anti-sense transcription within the murine c-myc locus.

    OpenAIRE

    Nepveu, A; Marcu, K B

    1986-01-01

    We present a detailed analysis of strand-specific transcription in different regions of the murine c-myc locus. In normal and transformed cell lines, RNA polymerase II directed transcription occurs in the sense and anti-sense direction. Three noncontiguous regions show a high level of transcription in the anti-sense orientation: upstream of the first exon, within the first intron and in the 3' part of the gene (intron 2 and exon 3). In a cell line carrying a c-myc amplification (54c12), anti-...

  9. Inhibition of human immunodeficiency virus type 1 multiplication by antisense and sense RNA expression.

    OpenAIRE

    Joshi, S; Van Brunschot, A; Asad, S.; van der Elst, I; Read, S. E.; Bernstein, A

    1991-01-01

    Human immunodeficiency virus type 1 (HIV-1) primarily infects CD4+ lymphocytes and macrophages and causes AIDS in humans. Retroviral vectors allowing neomycin phosphotransferase (npt) gene expression were engineered to express 5' sequences of HIV-1 RNA in the antisense or sense orientation and used to transform the human CD4+ lymphocyte-derived MT4 cell line. Cells expressing antisense or sense RNA to the HIV-1 tat mRNA leader sequence, as part of the 3' untranslated region of the npt mRNA, r...

  10. Use of electrophoretic mobility to determine the secondary structure of a small antisense RNA.

    OpenAIRE

    Jacques, J P; Susskind, M M

    1991-01-01

    Natural antisense RNAs have stem-loop (hairpin) secondary structures that are important for their function. The sar antisense RNA of phage P22 is unusual: the 3' half of the molecule forms an extensive stem-loop, but potential structures for the 5' half are not predicted to be thermodynamically stable. We devised a novel method to determine the secondary structure of sar RNA by examining the electrophoretic mobility on non-denaturing gels of numerous sar mutants. The results show that the wil...

  11. Antisense silencing of the creA gene in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Bautista, L. F.; Aleksenko, Alexei Y.; Hentzer, Morten;

    2000-01-01

    Antisense expression of a portion of the gene encoding the major carbon catabolite repressor CREA in Aspergillus nidulans resulted in a substantial increase in the levels of glucose-repressible enzymes, both endogenous and heterologous, in the presence of glucose. The derepression effect was appr......Antisense expression of a portion of the gene encoding the major carbon catabolite repressor CREA in Aspergillus nidulans resulted in a substantial increase in the levels of glucose-repressible enzymes, both endogenous and heterologous, in the presence of glucose. The derepression effect...

  12. Construction of neuron specific vector of human antisense noggin gene expression

    Institute of Scientific and Technical Information of China (English)

    Shengnian Zhou; Chengshan Li; Xiansen Wei; Liqing Liu; Zhengda Zhang

    2010-01-01

    The noggin gene is present in the central nervous system in embryonic and postnatal mammals,and plays an important role in maintaining nervous system development and physiological function.A 0.76-kb sequence of human noggin gene was cloned by polymerase chain reaction with the digestion site of Hind Ⅲ and Xba l on the 5' end.The cloned fragment was reversely inserted into pCS2+[Tα1]-GFP plasmid,an neural cell-specific antisense eukaryotic expression vector.The plasmid expresses antisense for human noggin specifically in neurons,which may facilitate understanding of the physiological function of noggin.

  13. On the rapid deprotection of synthetic oligonucleotides and analogs.

    OpenAIRE

    Polushin, N N; Morocho, A M; Chen, B. C.; Cohen, J. S.

    1994-01-01

    The efficiency of oligodeoxynucleotide deprotection is greatly enhanced using a combination of: (a) ethanolamine, and especially a mixture of hydrazine, ethanolamine and methanol, in place of the usual aqueous ammonia; (b) tert-butylphenoxyacetyl amino protecting groups, and (c) oxalyl link between the first nucleotide and the polymeric support. The extent of base modification, particularly of C, is shown to be extremely low, and the quality of deprotected oligonucleotides is as high as in th...

  14. Integrated Microfluidic Isolation of Aptamers Using Electrophoretic Oligonucleotide Manipulation

    OpenAIRE

    Jinho Kim; Olsen, Timothy R.; Jing Zhu; Hilton, John P.; Kyung-Ae Yang; Renjun Pei; Stojanovic, Milan N.; Qiao Lin

    2016-01-01

    We present a microfluidic approach to integrated isolation of DNA aptamers via systematic evolution of ligands by exponential enrichment (SELEX). The approach employs a microbead-based protocol for the processes of affinity selection and amplification of target-binding oligonucleotides, and an electrophoretic DNA manipulation scheme for the coupling of these processes, which are required to occur in different buffers. This achieves the full microfluidic integration of SELEX, thereby enabling ...

  15. Molecular Selection, Modification and Development of Therapeutic Oligonucleotide Aptamers

    OpenAIRE

    Yuanyuan Yu; Chao Liang; Quanxia Lv; Defang Li; Xuegong Xu; Baoqin Liu; Aiping Lu; Ge Zhang

    2016-01-01

    Monoclonal antibodies are the dominant agents used in inhibition of biological target molecules for disease therapeutics, but there are concerns of immunogenicity, production, cost and stability. Oligonucleotide aptamers have comparable affinity and specificity to targets with monoclonal antibodies whilst they have minimal immunogenicity, high production, low cost and high stability, thus are promising inhibitors to rival antibodies for disease therapy. In this review, we will compare the det...

  16. Oligonucleotide-mediated gene editing of Apolipoprotein A-I.

    OpenAIRE

    Disterer, P

    2008-01-01

    Apolipoprotein A-I (ApoA-I) is the major protein constituent of high density lipoprotein (HDL) and controls reverse cholesterol transport, an important process in preventing atherosclerosis. A natural point mutation, ApoA-lMiiano (ApoA-Im) enhances the atheroprotective potential of HDL. Here, I attempt to introduce this specific modification into the genome of mammalian cells using the gene therapy strategy of oligonucleotide-mediated gene editing. I showed successful APOA-I gene editing in r...

  17. Repair of DNA lesions associated with triplex-forming oligonucleotides

    OpenAIRE

    Chin, Joanna Y; Glazer, Peter M.

    2009-01-01

    Triplex-forming oligonucleotides (TFOs) are gene targeting tools that can bind in the major groove of duplex DNA in a sequence-specific manner. When bound to DNA, TFOs can inhibit gene expression, can position DNA-reactive agents to specific locations in the genome, or can induce targeted mutagenesis and recombination. There is evidence that third strand binding, alone or with an associated cross-link, is recognized and metabolized by DNA repair factors, particularly the nucleotide excision r...

  18. Oligonucleotide-based strategies to combat polyglutamine diseases

    OpenAIRE

    Fiszer, Agnieszka; Krzyzosiak, Wlodzimierz J.

    2014-01-01

    Considerable advances have been recently made in understanding the molecular aspects of pathogenesis and in developing therapeutic approaches for polyglutamine (polyQ) diseases. Studies on pathogenic mechanisms have extended our knowledge of mutant protein toxicity, confirmed the toxicity of mutant transcript and identified other toxic RNA and protein entities. One very promising therapeutic strategy is targeting the causative gene expression with oligonucleotide (ON) based tools. This straig...

  19. Thermoplastic polymers surfaces for Dip-Pen Nanolithography of oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Suriano, Raffaella [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Biella, Serena, E-mail: serena.biella@polimi.it [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Cesura, Federico; Levi, Marinella; Turri, Stefano [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-05-15

    Different thermoplastic polymers were spin-coated to prepare smooth surfaces for the direct deposition of end-group modified oligonucleotides by Dip-Pen Nanolithography. A study of the diffusion process was done in order to investigate the dependence of calibration coefficient and quality of deposited features on environmental parameters (temperature, relative humidity) and ink's molecular weight and functionality. The optimization of the process parameters led to the realization of high quality and density nanoarrays on plastics.

  20. Long range clustering of oligonucleotides containing the CG signal

    OpenAIRE

    Katsaloulis, P.; T. Theoharis; A. Provata

    2009-01-01

    Abstract The distance distributions between successive occurrences of the same oligonucleotides in chromosomal DNA are studied, in different classes of higher eucaryotic organisms. A two-parameter modeling is undertaken and applied on the distance distribution of quintuplets (sequences of size five bps) and hexaplets (sequences of size six bps); the first parameter k refers to the short range exponential decay of the distributions, whereas the second parameter m refers to the power...

  1. Hybridization-based aptamer labeling using complementary oligonucleotide platform for PET and optical imaging.

    Science.gov (United States)

    Park, Jun Young; Lee, Tae Sup; Song, In Ho; Cho, Ye Lim; Chae, Ju Ri; Yun, Mijin; Kang, Hyungu; Lee, Jung Hwan; Lim, Jong Hoon; Cho, Won Gil; Kang, Won Jun

    2016-09-01

    Aptamers are promising next-generation ligands used in molecular imaging and theragnosis. Aptamers are synthetic nucleic acids that can be held together with complementary sequences by base-pair hybridization. In this study, the complementary oligonucleotide (cODN) hybridization-based aptamer conjugation platform was developed to use aptamers as the molecular imaging agent. The cODN was pre-labeled with fluorescent dye or radioisotope and hybridized with a matched sequence containing aptamers in aqueous conditions. The cODN platform-hybridized aptamers exhibited good serum stability and specific binding affinity towards target cancer cells both in vitro and in vivo. These results suggest that the newly designed aptamer conjugation platform offers great potential for the versatile application of aptamers as molecular imaging agents. PMID:27258484

  2. MODEST: a web-based design tool for oligonucleotide-mediated genome engineering and recombineering

    DEFF Research Database (Denmark)

    Bonde, Mads; Klausen, Michael S.; Anderson, Mads Valdemar;

    2014-01-01

    , which confers the corresponding genetic change, is performed manually. To address these challenges, we have developed the MAGE Oligo Design Tool (MODEST). This web-based tool allows designing of MAGE oligos for (i) tuning translation rates by modifying the ribosomal binding site, (ii) generating...... as combinatorial cell libraries. Manual design of oligonucleotides for these approaches can be tedious, time-consuming, and may not be practical for larger projects targeting many genomic sites. At present, the change from a desired phenotype (e.g. altered expression of a specific protein) to a designed MAGE oligo...... translational gene knockouts and (iii) introducing other coding or non-coding mutations, including amino acid substitutions, insertions, deletions and point mutations. The tool automatically designs oligos based on desired genotypic or phenotypic changes defined by the user, which can be used for high...

  3. Gene expression profiling in peanut using high density oligonucleotide microarrays

    Directory of Open Access Journals (Sweden)

    Burow Mark

    2009-06-01

    Full Text Available Abstract Background Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently has a significant number of ESTs been released into the public domain. Utilization of these ESTs for oligonucleotide microarrays provides a means to investigate large-scale transcript responses to a variety of developmental and environmental signals, ultimately improving our understanding of plant biology. Results We have developed a high-density oligonucleotide microarray for peanut using 49,205 publicly available ESTs and tested the utility of this array for expression profiling in a variety of peanut tissues. To identify putatively tissue-specific genes and demonstrate the utility of this array for expression profiling in a variety of peanut tissues, we compared transcript levels in pod, peg, leaf, stem, and root tissues. Results from this experiment showed 108 putatively pod-specific/abundant genes, as well as transcripts whose expression was low or undetected in pod compared to peg, leaf, stem, or root. The transcripts significantly over-represented in pod include genes responsible for seed storage proteins and desiccation (e.g., late-embryogenesis abundant proteins, aquaporins, legumin B, oil production, and cellular defense. Additionally, almost half of the pod-abundant genes represent unknown genes allowing for the possibility of associating putative function to these previously uncharacterized genes. Conclusion The peanut oligonucleotide array represents the majority of publicly available peanut ESTs and can be used as a tool for expression profiling studies in diverse tissues.

  4. Characterization of self-assembled DNA concatemers from synthetic oligonucleotides

    Directory of Open Access Journals (Sweden)

    Lu Sun

    2014-08-01

    Full Text Available Studies of DNA–ligand interaction on a single molecule level provide opportunities to understand individual behavior of molecules. Construction of DNA molecules with repetitive copies of the same segments of sequences linked in series could be helpful for enhancing the interaction possibility for sequence-specific binding ligand to DNA. Here we report on the use of synthetic oligonucleotides to self-assembly into duplex DNA concatemeric molecules. Two strands of synthetic oligonucleotides used here were designed with 50-mer in length and the sequences are semi-complimentary so to hybridize spontaneously into concatemers of double stranded DNA. In order to optimize the length of the concatemers the oligonucleotides were incubated at different oligomer concentrations, ionic strengths and temperatures for different durations. Increasing the salt concentration to 200 mM NaCl was found to be the major optimizing factor because at this enhanced ionic strength the concatemers formed most quickly and the other parameters had no detectable effect. The size and shape of formed DNA concatemers were studied by gel electrophoresis in agarose, polyacrylamide gels and by AFM. Our results show that linear DNA constructs up to several hundred base pairs were formed and could be separated from a substantial fraction of non-linear constructs.

  5. Rapid bacterial identification using evanescent-waveguide oligonucleotide microarray classification.

    Science.gov (United States)

    Francois, Patrice; Charbonnier, Yvan; Jacquet, Jean; Utinger, Dominic; Bento, Manuela; Lew, Daniel; Kresbach, Gerhard M; Ehrat, Markus; Schlegel, Werner; Schrenzel, Jacques

    2006-06-01

    Bacterial identification relies primarily on culture-based methodologies and requires 48-72 h to deliver results. We developed and used i) a bioinformatics strategy to select oligonucleotide signature probes, ii) a rapid procedure for RNA labelling and hybridization, iii) an evanescent-waveguide oligoarray with exquisite signal/noise performance, and iv) informatics methods for microarray data analysis. Unique 19-mer signature oligonucleotides were selected in the 5'-end of 16s rDNA genes of human pathogenic bacteria. Oligonucleotides spotted onto a Ta(2)O(5)-coated microarray surface were incubated with chemically labelled total bacterial RNA. Rapid hybridization and stringent washings were performed before scanning and analyzing the slide. In the present paper, the eight most abundant bacterial pathogens representing >54% of positive blood cultures were selected. Hierarchical clustering analysis of hybridization data revealed characteristic patterns, even for closely related species. We then evaluated artificial intelligence-based approaches that outperformed conventional threshold-based identification schemes on cognate probes. At this stage, the complete procedure applied to spiked blood cultures was completed in less than 6 h. In conclusion, when coupled to optimal signal detection strategy, microarrays provide bacterial identification within a few hours post-sampling, allowing targeted antimicrobial prescription. PMID:16216356

  6. Differentiation of regions with atypical oligonucleotide composition in bacterial genomes

    Directory of Open Access Journals (Sweden)

    Reva Oleg N

    2005-10-01

    Full Text Available Abstract Background Complete sequencing of bacterial genomes has become a common technique of present day microbiology. Thereafter, data mining in the complete sequence is an essential step. New in silico methods are needed that rapidly identify the major features of genome organization and facilitate the prediction of the functional class of ORFs. We tested the usefulness of local oligonucleotide usage (OU patterns to recognize and differentiate types of atypical oligonucleotide composition in DNA sequences of bacterial genomes. Results A total of 163 bacterial genomes of eubacteria and archaea published in the NCBI database were analyzed. Local OU patterns exhibit substantial intrachromosomal variation in bacteria. Loci with alternative OU patterns were parts of horizontally acquired gene islands or ancient regions such as genes for ribosomal proteins and RNAs. OU statistical parameters, such as local pattern deviation (D, pattern skew (PS and OU variance (OUV enabled the detection and visualization of gene islands of different functional classes. Conclusion A set of approaches has been designed for the statistical analysis of nucleotide sequences of bacterial genomes. These methods are useful for the visualization and differentiation of regions with atypical oligonucleotide composition prior to or accompanying gene annotation.

  7. The zebrafish progranulin gene family and antisense transcripts

    Directory of Open Access Journals (Sweden)

    Baranowski David

    2005-11-01

    Full Text Available Abstract Background Progranulin is an epithelial tissue growth factor (also known as proepithelin, acrogranin and PC-cell-derived growth factor that has been implicated in development, wound healing and in the progression of many cancers. The single mammalian progranulin gene encodes a glycoprotein precursor consisting of seven and one half tandemly repeated non-identical copies of the cystine-rich granulin motif. A genome-wide duplication event hypothesized to have occurred at the base of the teleost radiation predicts that mammalian progranulin may be represented by two co-orthologues in zebrafish. Results The cDNAs encoding two zebrafish granulin precursors, progranulins-A and -B, were characterized and found to contain 10 and 9 copies of the granulin motif respectively. The cDNAs and genes encoding the two forms of granulin, progranulins-1 and -2, were also cloned and sequenced. Both latter peptides were found to be encoded by precursors with a simplified architecture consisting of one and one half copies of the granulin motif. A cDNA encoding a chimeric progranulin which likely arises through the mechanism of trans-splicing between grn1 and grn2 was also characterized. A non-coding RNA gene with antisense complementarity to both grn1 and grn2 was identified which may have functional implications with respect to gene dosage, as well as in restricting the formation of the chimeric form of progranulin. Chromosomal localization of the four progranulin (grn genes reveals syntenic conservation for grna only, suggesting that it is the true orthologue of mammalian grn. RT-PCR and whole-mount in situ hybridization analysis of zebrafish grns during development reveals that combined expression of grna and grnb, but not grn1 and grn2, recapitulate many of the expression patterns observed for the murine counterpart. This includes maternal deposition, widespread central nervous system distribution and specific localization within the epithelial

  8. 冬凌草甲素和survivin反义核苷酸对前列腺癌细胞作用的研究%Effects of survivin antisense oligodeoxynecleotides and Oridonin on PC-3 cells

    Institute of Scientific and Technical Information of China (English)

    李进; 杨罗艳; 吴洪涛

    2014-01-01

    Objective To explore the synergistic effects of survivin antisense oligonucleotides combined with Oridonin on growth, apoptosis, and the expression of survivin of PC-3 cells. Methods Human prostate carcinoma cells PC-3 on logarithmic growth phase were used in this study. The cell vitality was determined by MTT assay. The combination index (CI) was calculated using Pharmaconamics CalcuSynsoftware. The apoptotic rate was examined by flow cytometer (FCM). The expression of survivin was detected by Western Blot and Real-time Fluorescent Quantitation-PCR. Results After transfection with antisense Survivin RNAi, the proliferation of PC-3 cells was inhibited markedly. An obvious apoptosis was found in the transfected PC-3 cells. The inhibitory effect of combined administration of survivin antisense and Oridonin on cell proliferation was much stronger than that of the single way (P<0.01). It showed that there was a synergistic effect (Fa<0.80). Western Blot and RT-PCR assays demonstrated that survivin antisense and Oridonin all inhibited the expression of survivin(P <0.01). Conclusion Combined survivin antisense and Oridonin significantly inhibits cell proliferation, induces cell apoptosis and down-regulates survivin expression in PC-3 cells, indicating that survivin antisense and Oridonin have a synergistic effect on PC-3 cells.%目的:探讨冬凌草甲素联合survivin反义核苷酸(反义链)对前列腺癌PC-3细胞株增殖和凋亡以及survivin mRNA和蛋白的影响。方法常规培养PC-3细胞,用四甲基偶氮唑盐法(MTT法)检测survivin反义链联合冬凌草甲素对PC-3细胞增殖的影响;流式细胞仪(FCM)检测PC-3细胞凋亡率;以CalcuSyn药效学软件计算联合指数(CI)评价survivin反义链联合凌草甲素对PC-3细胞的联合效应,并通过荧光定量PCR和Western blot方法检测PC-3细胞survivin基因和蛋白表达变化。结果 survivin反义链转染PC-3细胞后,可以显著抑制PC-3

  9. The seeds of Lotus japonicus lines transformed with sense, antisense, and sense/antisense galactomannan galactosyltransferase constructs have structurally altered galactomannans in their endosperm cell walls.

    Science.gov (United States)

    Edwards, Mary E; Choo, Tze-Siang; Dickson, Cathryn A; Scott, Catherine; Gidley, Michael J; Reid, J S Grant

    2004-03-01

    Galactomannan biosynthesis in legume seed endosperms involves two Golgi membrane-bound glycosyltransferases, mannan synthase and galactomannan galactosyltransferase (GMGT). GMGT specificity is an important factor regulating the distribution and amount of (1-->6)-alpha-galactose (Gal) substitution of the (1-->4)-beta-linked mannan backbone. The model legume Lotus japonicus is shown now to have endospermic seeds with endosperm cell walls that contain a high-Gal galactomannan (mannose [Man]/Gal = 1.2-1.3). Galactomannan biosynthesis in developing L. japonicus endosperms has been mapped, and a cDNA encoding a functional GMGT has been obtained from L. japonicus endosperms during galactomannan deposition. L. japonicus has been transformed with sense, antisense, and sense/antisense ("hairpin loop") constructs of the GMGT cDNA. Some of the sense, antisense, and sense/antisense transgenic lines exhibited galactomannans with altered (higher) Man/Gal values in their (T(1) generation) seeds, at frequencies that were consistent with posttranscriptional silencing of GMGT. For T(1) generation individuals, transgene inheritance was correlated with galactomannan composition and amount in the endosperm. All the azygous individuals had unchanged galactomannans, whereas those that had inherited a GMGT transgene exhibited a range of Man/Gal values, up to about 6 in some lines. For Man/Gal values up to 4, the results were consistent with lowered Gal substitution of a constant amount of mannan backbone. Further lowering of Gal substitution was accompanied by a slight decrease in the amount of mannan backbone. Microsomal membranes prepared from the developing T(2) generation endosperms of transgenic lines showed reduced GMGT activity relative to mannan synthase. The results demonstrate structural modification of a plant cell wall polysaccharide by designed regulation of a Golgi-bound glycosyltransferase.

  10. Nucleic Acid Backbone Structure Variations: Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    Nielsen, Peter E.

    2010-01-01

    Synthetic analogues and mimics of the natural genetic material deoxyribonucleic acid (DNA) are potential gene therapeutic (antisense or antigene) drugs. One of these mimics, peptide nucleic acids (PNAs), are chemically closer to peptides and proteins than to DNA, but nonetheless have retained many...... of the structural properties of DNA. These molecules have found applications as probes in genetic diagnostics and are also being developed into antisense (RNA (ribonucleic acid) interference) gene therapeutic drugs, targeting selected genes through sequence-specific recognition of (messenger or micro......)RNA and in the future also antigene applications targeting the double-stranded DNA of the genes themselves leading to gene silencing or guiding specific gene repair. Finally, the special chemical and structural properties of PNA suggest that these or similar molecules might have played a role in the prebiotic origin...

  11. Development of Antisense Therapeutic and Imaging Agents to Detect and Suppress Inducible Nitric Oxide Synthase (iNOS) Expression in Acute Lung Injury (ALI)

    Science.gov (United States)

    Shen, Yuefei

    This dissertation focuses on the development and investigation of antisense imaging and therapeutic agents, combined with nanotechnology, to detect and suppress inducible nitric oxide synthase (iNOS) expression for the diagnosis and treatment of acute lung injury (ALI). To achieve this goal, several efforts were made. The first effort was the identification and characterization of high binding affinity antisense peptide nucleic acids (PNAs) and shell-crosslinked knedel-like nanoparticle (SCK)-PNA conjugates to the iNOS mRNA. Antisense binding sites on the iNOS mRNA were first mapped by a procedure for rapidly generating a library of antisense accessible sites on native mRNAs (MASL) which involves reverse transcription of whole cell mRNA extracts with a random oligodeoxynucleotide primer followed by mRNA-specific PCR. Antisense PNAs against the antisense accessible sites were accordingly synthesized and characterized. The second effort was the investigation of cationic shell crosslinked knedel-like nanoparticle (cSCK)-mediated siRNA delivery to suppress iNOS expression for the treatment of ALI. siRNA with its unique gene-specific properties could serve as a promising therapeutic agent, however success in this area has been challenged by a lack of efficient biocompatible transfection agents. cSCK with its nanometer size and positive charge previously showed efficient cellular delivery of phosphorothioate ODNs (oligodeoxynucleotides), plasmid DNA and PNA. Herein, cSCK showed good siRNA binding and facilitated efficient siRNA transfection in HeLa, a mouse macrophage cell line and other human cell lines. cSCK led to greater silencing efficiency than Lipofectamine 2000 in HeLa cells as determined by the viability following transfection with cytotoxic and non-cytotoxic siRNAs, as well in 293T and HEK cells, and was comparable in BEAS-2B and MCF10a cells. The third effort was the preparation of an iNOS imaging probe through electrostatic complexation between a radiolabeled

  12. An in vivo transcriptome data set of natural antisense transcripts from Plasmodium falciparum clinical isolates

    Directory of Open Access Journals (Sweden)

    Amit Kumar Subudhi

    2014-12-01

    Full Text Available Antisense transcription is pervasive among biological systems and one of the products of antisense transcription is natural antisense transcripts (NATs. Emerging evidences suggest that they are key regulators of gene expression. With the discovery of NATs in Plasmodium falciparum, it has been suggested that these might also be playing regulatory roles in this parasite. However, all the reports describing the diversity of NATs have come from parasites in culture condition except for a recent study published by us. In order to explore the in vivo diversity of NATs in P. falciparum clinical isolates, we performed a whole genome expression profiling using a strand-specific 244 K microarray that contains probes for both sense and antisense transcripts. In this report, we describe the experimental procedure and analysis thereof of the microarray data published recently in Gene Expression Omnibus (GEO under accession number GSE44921. This published data provide a wealth of information about the prevalence of NATs in P. falciparum clinical isolates from patients with diverse malaria related disease conditions. Supplementary information about the description and interpretation of the data can be found in a recent publication by Subudhi et al. in Experimental Parasitology (2014.

  13. Improving the nutritional quality of the barley and wheat grain storage proteins by antisense technology

    DEFF Research Database (Denmark)

    Sikdar, Md. Shafiqul Islam; Lange, Mette; Aaslo, Per;

    2011-01-01

    gliadins) are also available from Germany and UK. We have grown them under different N regimes (high, medium and low N) in semi-field conditions. Previously five different antisense C-hordein lines of barley have been characterized in our laboratory. The analyses revealed that the lysine, threonine...

  14. Effect of C-myc Antisense Oligodeoxynucleotides on Hypoxia-induced Proliferation of Pulmonary Vascular Pericytes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To study the effect of c-myc antisense oligodeoxynucleotides (ODNs) on proliferation of pulmonary vascular pericytes (PC) induced by hypoxia, cell culture, dot hybridization using probe of digoxigenin-11-dUTP-labeled cDNA,3H-thymidine incorporation, immunocytochemical technique and image analysis methods were used to observe the effect of c-myc antisense ODNs on expression of c-myc gene and proliferating cell nuclear antigen (PCNA), and 3H-thymidine incorporation of PC induced by hypoxia. The results showed that hypoxia could significantly enhance the expression of c-myc and PCNA (P<0.01), and elevate 3H-thymidine incorporation of PC (P<0.01), but antisense ODNs could significantly inhibit the expression of c-myc and PCNA (P<0.05), and 3H-thymidine incorporation of PC (P<0.01). It was suggested that hypoxia could promote the proliferation of PC by up-regulating the expression of c-myc gene, but c-myc antisense ODNs could inhibit hypoxia-induced proliferation of PC by downregulating the expression of c-myc gene.

  15. Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry (Fragaria ananassa)

    NARCIS (Netherlands)

    Lunkenbein, S.; Coiner, H.; Vos, de C.H.; Schaart, J.G.; Boone, M.J.; Krens, F.A.; Schwab, W.

    2006-01-01

    An octaploid (Fragaria × ananassa cv. Calypso) genotype of strawberry was transformed with an antisense chalcone synthase (CHS) gene construct using a ripening related CHS cDNA from Fragaria × ananassa cv. Elsanta under the control of the constitutive CaMV 35S promoter via Agrobacterium tumefaciens.

  16. Inhibition of lipoxygenase in lentil protoplasts by expression of antisense RNA

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Maccarrone, M.; Hilbers, M.P.; Finazzi Agrò, A.

    1995-01-01

    A number of plasmids were constructed containing chimeric genes consisting of fragments of antisense-oriented lentil lipoxygenase cDNA. The different constructs were tested for their ability to lower lipoxygenase activity in lentil protoplasts. Plasmids containing a full length lentil lipoxygenase c

  17. Antisense to the glucocorticoid receptor in hippocampal dentate gyrus reduces immobility in forced swim test

    NARCIS (Netherlands)

    Korte, S.M.; de Kloet, E.R.; Buwalda, B; Bouman, S.D.; Bohus, B

    1996-01-01

    Immobility time of rats in the forced swim test was reduced after bilateral infusion of an 18-mer antisense phosphorothioate oligodeoxynucleotide targeted to the glucocorticoid receptor mRNA into the dentate gyrus of the hippocampus. Vehicle-, sense- and scrambled sequence-treated animals spent sign

  18. Regulation of Polyphosphate Kinase Production by Antisense RNA in Pseudomonas fluorescens Pf0-1

    OpenAIRE

    Silby, Mark W.; Julie S Nicoll; Levy, Stuart B.

    2012-01-01

    Pseudomonas spp. adapt rapidly to environmental fluctuations. Loss or overproduction of polyphosphate reduces the fitness of Pseudomonas fluorescens Pf0-1, indicating the importance of the fine-tuning of polyphosphate production. An antisense RNA was investigated and shown to regulate the polyphosphate kinase gene (ppk) by a posttranscriptional mechanism reducing ppk transcript abundance.

  19. Effects of recombinant epidermal growth factor receptor antisense adenovirus combined with irradiation on breast cancer cells

    International Nuclear Information System (INIS)

    Objective: To investigate the effects of a recombinant antisense adenovirus for epidermal growth factor receptor (EGFR) combined with irradiation on breast cancer cells. Methods: Human EGFR cDNA fragment was subcloned in the opposite orientation to the cytomegaloviral promoter and inserted into a E1/E3-deleted type 5 adenoviral vector to obtain AdE5 construct which expresses EGFR antisense RNA. Combined with γ-ray irradiation, its effects on clonogenicity and cell cycle phase distribution were studied in a human breast cancer line MDA-MB-23. Results: EGFR protein expression was dramatically inhibited in MDA-MB-231 cells after AdE5 infection. The post-irradiation clonogenicity was reduced by AdE5 in a viral and irradiation dose-dependent manner. Further cytometric analysis showed that AdE5 infection at a MOI of 300 pfu/cell induced a cell cycle progression from radio-resistant G0 + G1 phases to radiosensitive G2 + M phases, resulting in a synergistic effect after combination of these two treatments. Conclusions: The transduction of EGFR antisense RNA by adenoviral vector is effective for antisense strategy targeting EGFR, and increases the cell-killing effect of ionizing radiation on breast cancer cells.(authors)

  20. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore

    Science.gov (United States)

    Cao, Chan; Ying, Yi-Lun; Hu, Zheng-Li; Liao, Dong-Fang; Tian, He; Long, Yi-Tao

    2016-08-01

    Protein nanopores offer an inexpensive, label-free method of analysing single oligonucleotides. The sensitivity of the approach is largely determined by the characteristics of the pore-forming protein employed, and typically relies on nanopores that have been chemically modified or incorporate molecular motors. Effective, high-resolution discrimination of oligonucleotides using wild-type biological nanopores remains difficult to achieve. Here, we show that a wild-type aerolysin nanopore can resolve individual short oligonucleotides that are 2 to 10 bases long. The sensing capabilities are attributed to the geometry of aerolysin and the electrostatic interactions between the nanopore and the oligonucleotides. We also show that the wild-type aerolysin nanopores can distinguish individual oligonucleotides from mixtures and can monitor the stepwise cleavage of oligonucleotides by exonuclease I.

  1. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore.

    Science.gov (United States)

    Cao, Chan; Ying, Yi-Lun; Hu, Zheng-Li; Liao, Dong-Fang; Tian, He; Long, Yi-Tao

    2016-08-01

    Protein nanopores offer an inexpensive, label-free method of analysing single oligonucleotides. The sensitivity of the approach is largely determined by the characteristics of the pore-forming protein employed, and typically relies on nanopores that have been chemically modified or incorporate molecular motors. Effective, high-resolution discrimination of oligonucleotides using wild-type biological nanopores remains difficult to achieve. Here, we show that a wild-type aerolysin nanopore can resolve individual short oligonucleotides that are 2 to 10 bases long. The sensing capabilities are attributed to the geometry of aerolysin and the electrostatic interactions between the nanopore and the oligonucleotides. We also show that the wild-type aerolysin nanopores can distinguish individual oligonucleotides from mixtures and can monitor the stepwise cleavage of oligonucleotides by exonuclease I. PMID:27111839

  2. Statistical Algorithms for Long DNA Sequences: Oligonucleotide Distributions and Homogeneity Maps

    Directory of Open Access Journals (Sweden)

    P. Katsaloulis

    2005-01-01

    Full Text Available The statistical properties of oligonucleotide appearances within long DNA sequences often reveal useful characteristics of the corresponding DNA areas. Two algorithms to statistically analyze oligonucleotide appearances within long DNA sequences in genome banks are presented. The first algorithm determines statistical indices for arbitrary length oligonucleotides within arbitrary length DNA sequences. The critical exponent μ of the distance distribution between consecutive occurrences of the same oligonucleotide is calculated and its value is shown to characterize the functionality of the oligonucleotide. The second algorithm searches for areas with variable homogeneity, based on the density of oligonucleotides. The two algorithms have been applied to representative eucaryotes (the animal Mus musculusand the plant Arabidopsis thaliana and interesting results were obtained, confirmed by biological observations. All programs are open source and publicly available on our web site.

  3. Effect of TGF-β1 antisense oligodeoxynucleotide on renal function in chronic renal failure rats

    Institute of Scientific and Technical Information of China (English)

    Law Chung HIONG; Kiew Lik VOON; Nor Azizan ABDULLAH; Munavvar A SATTAR; Nazarina AbduRAHMAN; Abdul Hye KHAN; Edward James JOHNS

    2008-01-01

    Aim:The aim of the present study was to investigate the effectiveness of trans-forming growth factor (TGF)-β1 antisense oligodeoxynucleotides (ODN) in ame-liorating deteriorated kidney function in rats with puromycin-induced chronic renal failure (CRF). Methods:Saline, puromycin, puromycin+TGF-β1 antisense ODN or puromycin+scrambled ODN were administered to unilaterally nephrecto-mized rats. Renal hemodynamic and excretory measurements were taken in the anaesthetized rats that had undergone surgical procedure. Results:It was ob-served that in the CRF rats, there was a marked reduction in the renal blood flow (RBF), glomerular filtration rate (GFR), severe proteinuria, and almost 6-fold in-creased fractional excretion of sodium (FE Na+) as compared to that in the control rats (all P<0.05). It was further observed that in the CRF rats, the treatment with TGF-β1 antisense, but not scrambled ODN, markedly attenuated the reduction of RBF, GFR, and proteinuria and markedly prevented the increase of the FE Na+ (all P<0.05). In addition, the renal hypertrophy in the CRF group (P<0.05 vs non-renal failure control) was markedly attenuated after treatment with TGF-1 antisense ODN (P<0.05). Focal segmental glomerulosclerosis was evident only in the un-treated and scrambled ODN-treated CRF groups. An interesting observation of this study was that in the CRF rats, although there was marked attenuating and preventive effects of the TGF-β1 antisense ODN on the deteriorated renal functions, the antisense treatment did not cause any marked change in the renal expression of TGF-β1 at the protein level. Conclusion:Collectively, the data obtained sug-gests that TGF-β1 antisense ODN possesses beneficial effects in puromycin-induced chronic renal failure and that the deterioration in morphology and im-paired renal function in this pathological state is in part dependent upon the action of TGF-β1 within the kidney.

  4. Hemopoiesis-stimulating activity of immobilized oligonucleotides and hyaluronidase during cytostatic-induced myelosuppression.

    Science.gov (United States)

    Dygai, A M; Skurikhin, E G; Pershina, O V; Zhdanov, V V; Khmelevskaya, A M; Andreeva, T V; Poponina, A M; Zjuzkov, G N; Udut, E V; Khrichkova, T Ju; Simanina, E V; Miroshnichenko, L A; Stavrova, L A; Tchaikovsky, A S; Markova, T S; Gurto, R V; Brjushinina, O S; Slepichev, V A

    2011-03-01

    The hemopoiesis-stimulating effect of combined treatment with immobilized oligonucleotides and hyaluronidase preparations was studied during cytostatic-induced myelosuppression caused by cyclophosphamide administration. Immobilized hyaluronidase was shown to increase the efficiency of correction of changes in the erythroid and granulocytic hemopoietic stems with immobilized oligonucleotides. This potentiation of the effect of immobilized oligonucleotides by immobilized hyaluronidase was related to an increase in functional activity of committed hemopoietic precursors.

  5. Coupling Strategies for the Synthesis of Peptide-Oligonucleotide Conjugates for Patterned Synthetic Biomineralization

    OpenAIRE

    Joshua D. Carter; LaBean, Thomas H.

    2011-01-01

    This work describes preparation strategies for peptide-oligonucleotide conjugates that combine the self-assembling behavior of DNA oligonucleotides with the molecular recognition capabilities of peptides. The syntheses include a solution-phase fragment coupling reaction and a solid-phase fragment coupling strategy where the oligonucleotide has been immobilized on DEAE Sepharose. The yield of four coupling reagents is evaluated, two reagents in water, EDC (1-ethyl-3-(3-dimethylaminopropyl) car...

  6. Oligonucleotide-directed mutagenesis by microscale 'shot-gun' gene synthesis.

    OpenAIRE

    Grundström, T; Zenke, W M; Wintzerith, M; Matthes, H W; Staub, A; Chambon, P

    1985-01-01

    We describe a rapid and efficient microscale method for in vitro site-directed mutagenesis by gene synthesis. Mutants are constructed by "shot-gun ligation" of overlapping synthetic oligonucleotides yielding double stranded synthetic DNA of more than 120 nucleotides in length. The terminal oligonucleotides of the DNA segment to be synthesized are designed to create sticky ends complementary to unique restriction sites of a polylinker present in an M13 vector. The oligonucleotides are hybridiz...

  7. Recruitment of transcription factors to the target site by triplex-forming oligonucleotides.

    OpenAIRE

    Svinarchuk, F; Nagibneva, I; Cherny, D; Ait-Si-Ali, S; Pritchard, L.L.; Robin, P.; Malvy, C; Harel-Bellan, A; Chern, D

    1997-01-01

    Triplex-forming oligonucleotides (TFOs) are generally designed to inhibit transcription or DNA replication but can be used for more diverse purposes. Here we have designed a hairpin-TFO able to recruit transcription factors to a target DNA. The designed oligonucleotide contains a triplex-forming sequence, linked through a nucleotide loop to a double-stranded hairpin including the SRE enhancer of the c-fos gene promoter. We show here that this oligonucleotide can specifically recognise its DNA...

  8. Cationic oligonucleotides can mediate specific inhibition of gene expression in Xenopus oocytes.

    OpenAIRE

    Bailey, C P; Dagle, J M; Weeks, D L

    1998-01-01

    Base-specific hydrogen bonding between an oligonucleotide and the purines in the major groove of a DNA duplex provide an approach to selective inhibition of gene expression. Oligonucleotide-mediated triplex formation in vivo may be enhanced by a number of different chemical modifications. We have previously described an in vitro analysis of triplex formation using oligonucleotides containing internucleoside phosphate linkages modified with the cation N , N -diethyl-ethylenediamine (DEED). Whe...

  9. TmPrime: fast, flexible oligonucleotide design software for gene synthesis

    OpenAIRE

    Bode, Marcus; Khor, Samuel; Ye, Hongye; Li, Mo-Huang; Ying, Jackie Y.

    2009-01-01

    Herein we present TmPrime, a computer program to design oligonucleotide sets for gene assembly by both ligase chain reaction (LCR) and polymerase chain reaction (PCR). TmPrime offers much flexibility with no constraints on the gene and oligonucleotide lengths. The program divides the long input DNA sequence based on the input desired melting temperature, and dynamically optimizes the length of oligonucleotides to achieve homologous melting temperatures. The output reports the melting temperat...

  10. Effects of a plasmid expressing antisense tissue inhibitor of metalloproteinase-1 on liver fibrosis in rats

    Institute of Scientific and Technical Information of China (English)

    JIANG Wei; WANG Ji-yao; YANG Chang-qing; LIU Wen-bin; WANG Yi-qing; HE Bo-ming

    2005-01-01

    Background No efficient therapy for liver fibrosis has been available. This study was aimed to provide evidence that the introduction of a plasmid expressing antisense tissue inhibitor of metalloproteinase-1 (TIMP-1) into a rat model of immunologically induced liver fibrosis can result in the increased activity of interstitial collagenase, thus enhancing the degradation of collagen.Methods Real-time nested polymerase chain reaction (RT-Nested-PCR) and gene recombination techniques were used to construct a rat antisense TIMP-1 recombinant plasmid that can be expressed in eukaryotic cells. Both the recombinant plasmid and an empty vector (pcDNA3) were encapsulated with glycosyl-poly-L-lysine and injected into rats suffering from pig serum-induced liver fibrosis. The expression of exogenous transfected plasmid was assessed by Northern blot, RT-PCR, and Western blot. Hepatic interstitial collagenase activity was detected using fluorescinisothiocyanate (FITC)-labeled type Ⅰ collagen. In addition to hepatic hydroxyproline content, hepatic collagen types Ⅰ and Ⅲ were detected by immunohistochemical staining, and the stages of liver fibrosis by Van Gieson staining.Results Exogenous antisense TIMP-1 was successfully expressed in vivo and could block the gene and protein expression of TIMP-1. Active and latent hepatic interstitial collagenase activities were elevated (P<0.01), hepatic hydroxyproline content and the accumulation of collagen types Ⅰ and Ⅲ were lowered, and liver fibrosis was alleviated in the antisense TIMP-1 group (P<0.01) as compared with the model group. Conclusion The results demonstrate that antisense TIMP-1 recombinant plasmids have some inhibitory effect on liver fibrosis.

  11. Antisense EGFR sequence enhances apoptosis in a human hepatoma cell line BEL—7404

    Institute of Scientific and Technical Information of China (English)

    FUTAO; HELIU; 等

    1996-01-01

    Effects of antisense epidermal growth factor receptor (EGFR) sequence on apoptotic cell death were examined in a human hepatoma cell line BEL-7404 cells.In the cells of JX-1,a sub clone of BEL-7404 stably transfected with antisense EGFR vector (Cell Research,3:75,1993),an enhanced rate(9.5%) of spontaneous apoptosis was detected by flow cytometry,whereas the rates of spontaneous apoptosis in JX-0 cells,a sub-clone of BEL-7404 transfected by control vector,and the parent BEL-7404 transfected by control vector,and the parent BEL-7404 transfected by control vector,and the parent BEL-7404 cells were almost equal and about 1.7%.Serum-starvation for 72h increased the rate of apoptosis of JX-lcells up to 33.7%,while JX-0 and BEL-7404 cells,under the same condition,produced less than 5% of apoptotic cells.Observation with electron microscope demonstrated that condensation and fragmentation of chromatin and formation of apoptotic bodies often occurred in JX-1 cells,especially during serumstarvation.These results,combined with the data of DNA fragmentation Elisa test,suggested that antisense EGFR sequence enhances apoptosis in the human hepatoma cells.Comparison of intracellular Ca2+ level and the responsiveness of JX-1 cells to the induced action of EGF and tharpsigargin (TG) treatment with that of control JX-0 cells indicated that antisense egfr might interrupt the EGF/EGFR sigaling pathway resulting in the decreass of intracellular Ca2+ pool content as well as the responsiveness of these cells to the extracellular signals.These findings suggest that antisense EGFR either directly or indirectly regulates Ca2+ storage in endoplasmic reticulum,thereby enhances apoptosis in the human hepatoma cells.

  12. Targeting of an Interrupted Polypurine:Polypyrimidine Sequence in Mammalian Cells by a Triplex-Forming Oligonucleotide Containing a Novel Base Analogue†

    OpenAIRE

    Semenyuk, A.; Darian, E.; Liu, J; Majumdar, A; Cuenoud, B; Miller, P S; MacKerell, A.D.; Seidman, M M

    2010-01-01

    The DNA triple helix consists of a third strand of nucleic acid lying in the major groove of an intact DNA duplex. The most stable triplexes form on polypurine:polypyrimidine sequences, and pyrimidine interruptions in the purine strand are destabilizing. Sequence stringency is imparted by specific Hoogsteen hydrogen bonds between third strand bases and the purine bases in the duplex. Appropriate base and sugar modifications of triple helix-forming oligonucleotides (TFOs) confer chromosome tar...

  13. Efficient down-regulation of PKC-α gene expression in A549 lung cancer cells mediated by antisense oligodeoxynucleotides in dendrosomes.

    Science.gov (United States)

    Movassaghian, Sara; Moghimi, Hamid R; Shirazi, Farshad H; Koshkaryev, Alexander; Trivedi, Malav S; Torchilin, Vladimir P

    2013-01-30

    The completion of human genome project has increased our knowledge of the molecular mechanisms of many diseases, including cancer, thus providing new opportunities for gene therapy. Antisense oligodeoxynucleotides (AsODN) possess great potential as sequence-specific therapeutic agents, which in contrast to classic treatments provide more efficient and target-specific approach to modulate disease-related genes. To be therapeutically effective, sufficient concentrations of intact AsODN must bypass membrane barriers and access the site of action. In this study, a dendrosome delivery strategy was designed to improve the encapsulation of AsODN in non-cationic liposomes to target PKC-α in lung cancer cells in vitro. Subcellular trafficking of fluorescently labeled AsODN was visualized using confocal microscopy. Uptake and expression of mRNA and target protein after AsODN delivery was measured by flow cytometry, qRT-PCR and Western blot analysis, respectively. Dendrosomes showed favorable physicochemical parameters: high encapsulation efficiency and uptake in serum-containing medium with no apparent cytotoxicity. AsODN encapsulated in dendrosome efficiently and specifically suppress the target gene at both mRNA and protein levels. Additional in vivo studies on the application of dendrosome as a delivery system for nucleic acid molecules may lead to improvement of this technology and facilitate the development of therapeutic antisense techniques. PMID:23262426

  14. Antisense oligodeoxynucleotide inhibition as a potent diagnostic tool for gene function in plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer; Sun, Chuanxin; Ghebramedhin, Haile; Hoglund, Anna-Stina; Jansson, Christer

    2008-01-15

    Antisense oligodeoxynucleotide (ODN) inhibition emerges as an effective means for probing gene function in plant cells. Employing this method we have established the importance of the SUSIBA2 transcription factor for regulation of starch synthesis in barley endosperm, and arrived at a model for the role of the SUSIBAs in sugar signaling and source-sink commutation during cereal endosperm development. In this addendum we provide additional data demonstrating the suitability of the antisense ODN technology in studies on starch branching enzyme activities in barley leaves. We also comment on the mechanism for ODN uptake in plant cells. Antisense ODNs are short (12-25 nt-long) stretches of single-stranded ODNs that hybridize to the cognate mRNA in a sequence-specific manner, thereby inhibiting gene expression. They are naturally occurring in both prokaryotes and eukaryotes where they partake in gene regulation and defense against viral infection. The mechanisms for antisense ODN inhibition are not fully understood but it is generally considered that the ODN either sterically interferes with translation or promotes transcript degradation by RNase H activation. The earliest indication of the usefulness of antisense ODN technology for the purposes of molecular biology and medical therapy was the demonstration in 1978 that synthetic ODNs complementary to Raos sarcoma virus could inhibit virus replication in tissue cultures of chick embryo fibroblasts. Since then the antisense ODN technology has been widely used in animal sciences and as an important emerging therapeutic approach in clinical medicine. However, antisense ODN inhibition has been an under-exploited strategy for plant tissues, although the prospects for plant cells in suspension cultures to take up single-stranded ODNs was reported over a decade ago. In 2001, two reports from Malho and coworker demonstrated the use of cationic-complexed antisense ODNs to suppress expression of genes encoding pollen

  15. Human Immunodeficiency Virus-Type 1 LTR DNA contains an intrinsic gene producing antisense RNA and protein products

    Directory of Open Access Journals (Sweden)

    Hsiao Chiu-Bin

    2006-11-01

    Full Text Available Abstract Background While viruses have long been shown to capitalize on their limited genomic size by utilizing both strands of DNA or complementary DNA/RNA intermediates to code for viral proteins, it has been assumed that human retroviruses have all their major proteins translated only from the plus or sense strand of RNA, despite their requirement for a dsDNA proviral intermediate. Several studies, however, have suggested the presence of antisense transcription for both HIV-1 and HTLV-1. More recently an antisense transcript responsible for the HTLV-1 bZIP factor (HBZ protein has been described. In this study we investigated the possibility of an antisense gene contained within the human immunodeficiency virus type 1 (HIV-1 long terminal repeat (LTR. Results Inspection of published sequences revealed a potential transcription initiator element (INR situated downstream of, and in reverse orientation to, the usual HIV-1 promoter and transcription start site. This antisense initiator (HIVaINR suggested the possibility of an antisense gene responsible for RNA and protein production. We show that antisense transcripts are generated, in vitro and in vivo, originating from the TAR DNA of the HIV-1 LTR. To test the possibility that protein(s could be translated from this novel HIV-1 antisense RNA, recombinant HIV antisense gene-FLAG vectors were designed. Recombinant protein(s were produced and isolated utilizing carboxy-terminal FLAG epitope (DYKDDDDK sequences. In addition, affinity-purified antisera to an internal peptide derived from the HIV antisense protein (HAP sequences identified HAPs from HIV+ human peripheral blood lymphocytes. Conclusion HIV-1 contains an antisense gene in the U3-R regions of the LTR responsible for both an antisense RNA transcript and proteins. This antisense transcript has tremendous potential for intrinsic RNA regulation because of its overlap with the beginning of all HIV-1 sense RNA transcripts by 25 nucleotides. The

  16. Oligonucleotide microarray for subtyping of influenza A viruses

    Science.gov (United States)

    Klotchenko, S. A.; Vasin, A. V.; Sandybaev, N. T.; Plotnikova, M. A.; Chervyakova, O. V.; Smirnova, E. A.; Kushnareva, E. V.; Strochkov, V. M.; Taylakova, E. T.; Egorov, V. V.; Koshemetov, J. K.; Kiselev, O. I.; Sansyzbay, A. R.

    2012-02-01

    Influenza is one of the most widespread respiratory viral diseases, infecting humans, horses, pigs, poultry and some other animal populations. Influenza A viruses (IAV) are classified into subtypes on the basis of the surface hemagglutinin (H1 to H16) and neuraminidase (N1 to N9) glycoproteins. The correct determination of IAV subtype is necessary for clinical and epidemiological studies. In this article we propose an oligonucleotide microarray for subtyping of IAV using universal one-step multisegment RT-PCR fluorescent labeling of viral gene segments. It showed to be an advanced approach for fast detection and identification of IAV.

  17. Chemically modified oligonucleotides with efficient RNase H response

    DEFF Research Database (Denmark)

    Vester, Birte; Boel, Anne Marie; Lobedanz, Sune;

    2008-01-01

    Ten different chemically modified nucleosides were incorporated into short DNA strands (chimeric oligonucleotides ON3-ON12 and ON15-ON24) and then tested for their capacity to mediate RNAse H cleavage of the complementary RNA strand. The modifications were placed at two central positions directly...... in the RNase H cleaving region. The RNA strand of duplexes with ON3, ON5 and ON12 were cleaved more efficiently than the RNA strand of the DNA:RNA control duplex. There seems to be no correlation between the thermal stability between the duplexes and RNase H cleavage....

  18. Repair of DNA lesions associated with triplex-forming oligonucleotides.

    Science.gov (United States)

    Chin, Joanna Y; Glazer, Peter M

    2009-04-01

    Triplex-forming oligonucleotides (TFOs) are gene targeting tools that can bind in the major groove of duplex DNA in a sequence-specific manner. When bound to DNA, TFOs can inhibit gene expression, can position DNA-reactive agents to specific locations in the genome, or can induce targeted mutagenesis and recombination. There is evidence that third strand binding, alone or with an associated cross-link, is recognized and metabolized by DNA repair factors, particularly the nucleotide excision repair pathway. This review examines the evidence for DNA repair of triplex-associated lesions. PMID:19072762

  19. Oligonucleotide microarray for subtyping of influenza A viruses

    International Nuclear Information System (INIS)

    Influenza is one of the most widespread respiratory viral diseases, infecting humans, horses, pigs, poultry and some other animal populations. Influenza A viruses (IAV) are classified into subtypes on the basis of the surface hemagglutinin (H1 to H16) and neuraminidase (N1 to N9) glycoproteins. The correct determination of IAV subtype is necessary for clinical and epidemiological studies. In this article we propose an oligonucleotide microarray for subtyping of IAV using universal one-step multisegment RT-PCR fluorescent labeling of viral gene segments. It showed to be an advanced approach for fast detection and identification of IAV.

  20. PCR amplification on microarrays of gel immobilized oligonucleotides

    Science.gov (United States)

    Strizhkov, Boris; Tillib, Sergei; Mikhailovich, Vladimir; Mirzabekov, Andrei

    2003-11-04

    The invention relates two general methods for performing PCR amplification, combined with the detection and analysis of the PCR products on a microchip. In the first method, the amplification occurs both outside and within a plurality of gel pads on a microchip, with at least one oligonucleotide primer immobilized in a gel pad. In the second method, PCR amplification also takes place within gel pads on a microchip, but the pads are surrounded by a hydrophobic liquid such as that which separates the individual gel pads into environments which resemble micro-miniaturized test tubes.