WorldWideScience

Sample records for acetyl coa synthase

  1. In vitro synthesis of polyhydroxyalkanoates using thermostable acetyl-CoA synthetase, CoA transferase, and PHA synthase from thermotorelant bacteria.

    Science.gov (United States)

    Tajima, Kenji; Han, Xuerong; Hashimoto, Yoshiki; Satoh, Yasuharu; Satoh, Toshifumi; Taguchi, Seiichi

    2016-12-01

    Thermostable enzymes are required for the rapid and sustainable production of polyhydroxyalkanoate (PHA) in vitro. The in vitro synthesis of PHA using the engineered thermostable synthase PhaC1SG(STQK) has been reported; however, the non-thermostable enzymes acetyl-CoA synthetase (ACS) and CoA transferase (CT) from mesophilic strains were used as monomer-supplying enzymes in this system. In the present study, acs and ct were cloned from the thermophilic bacteria Pelotomaculum thermopropionicum JCM10971 and Thermus thermophilus JCM10941 to construct an in vitro PHA synthesis system using only thermostable enzymes. ACS from P. thermopropionicum (ACSPt) and CT from T. thermophilus (CTTt) were confirmed to have high thermostability, and their optimal temperatures were around 60°C and 75°C, respectively. The in vitro PHA synthesis was successfully performed by ACSPt, CTTt, PhaC1SG(STQK), and poly(3-hydroxybutyrate) [P(3HB)] was synthesized at 45°C. Furthermore, the yields of P(3HB) and P(lactate-co-3HB) at 37°C were 1.4-fold higher than those of the in vitro synthesis system with non-thermostable ACS and CT from mesophilic strains. Overall, the thermostable ACS and CT were demonstrated to be useful for the efficient in vitro PHA synthesis at relatively high temperatures. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production

    DEFF Research Database (Denmark)

    Shimazu, Tadahiro; Hirschey, Matthew D; Hua, Lan

    2010-01-01

    The mitochondrial sirtuin SIRT3 regulates metabolic homeostasis during fasting and calorie restriction. We identified mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 (HMGCS2) as an acetylated protein and a possible target of SIRT3 in a proteomics survey in hepatic mitochondria from Sirt3(...... changes of HMGCS2 near the active site. Mice lacking SIRT3 show decreased β-hydroxybutyrate levels during fasting. Our findings show SIRT3 regulates ketone body production during fasting and provide molecular insight into how protein acetylation can regulate enzymatic activity....

  3. Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation.

    Science.gov (United States)

    Dusi, Sabrina; Valletta, Lorella; Haack, Tobias B; Tsuchiya, Yugo; Venco, Paola; Pasqualato, Sebastiano; Goffrini, Paola; Tigano, Marco; Demchenko, Nikita; Wieland, Thomas; Schwarzmayr, Thomas; Strom, Tim M; Invernizzi, Federica; Garavaglia, Barbara; Gregory, Allison; Sanford, Lynn; Hamada, Jeffrey; Bettencourt, Conceição; Houlden, Henry; Chiapparini, Luisa; Zorzi, Giovanna; Kurian, Manju A; Nardocci, Nardo; Prokisch, Holger; Hayflick, Susan; Gout, Ivan; Tiranti, Valeria

    2014-01-02

    Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders with progressive extrapyramidal signs and neurological deterioration, characterized by iron accumulation in the basal ganglia. Exome sequencing revealed the presence of recessive missense mutations in COASY, encoding coenzyme A (CoA) synthase in one NBIA-affected subject. A second unrelated individual carrying mutations in COASY was identified by Sanger sequence analysis. CoA synthase is a bifunctional enzyme catalyzing the final steps of CoA biosynthesis by coupling phosphopantetheine with ATP to form dephospho-CoA and its subsequent phosphorylation to generate CoA. We demonstrate alterations in RNA and protein expression levels of CoA synthase, as well as CoA amount, in fibroblasts derived from the two clinical cases and in yeast. This is the second inborn error of coenzyme A biosynthesis to be implicated in NBIA.

  4. Acetyl CoA Carboxylase 2 Is Dispensable for CD8+ T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Jang Eun Lee

    Full Text Available Differentiation of T cells is closely associated with dynamic changes in nutrient and energy metabolism. However, the extent to which specific metabolic pathways and molecular components are determinative of CD8+ T cell fate remains unclear. It has been previously established in various tissues that acetyl CoA carboxylase 2 (ACC2 regulates fatty acid oxidation (FAO by inhibiting carnitine palmitoyltransferase 1 (CPT1, a rate-limiting enzyme of FAO in mitochondria. Here, we explore the cell-intrinsic role of ACC2 in T cell immunity in response to infections. We report here that ACC2 deficiency results in a marginal increase of cellular FAO in CD8+ T cells, but does not appear to influence antigen-specific effector and memory CD8+ T cell responses during infection with listeria or lymphocytic choriomeningitis virus. These results suggest that ACC2 is dispensable for CD8+ T cell responses.

  5. Correlation of ATP Citrate Lyase and Acetyl CoA Levels with Trichothecene Production in Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Naoko Sakamoto

    2013-11-01

    Full Text Available The correlation of ATP citrate lyase (ACL and acetyl CoA levels with trichothecene production in Fusarium graminearum was investigated using an inhibitor (precocene II and an enhancer (cobalt chloride of trichothecene production by changing carbon sources in liquid medium. When precocene II (30 µM was added to inhibit trichothecene production in a trichothecene high-production medium containing sucrose, ACL expression was reduced and ACL mRNA level as well as acetyl CoA amount in the fungal cells were reduced to the levels observed in a trichothecene trace-production medium containing glucose or fructose. The ACL mRNA level was greatly increased by addition of cobalt chloride in the trichothecene high-production medium, but not in the trichothecene trace-production medium. Levels were reduced to those level in the trichothecene trace-production medium by addition of precocene II (300 µM together with cobalt chloride. These results suggest that ACL expression is activated in the presence of sucrose and that acetyl CoA produced by the increased ALC level may be used for trichothecene production in the fungus. These findings also suggest that sucrose is important for the action of cobalt chloride in activating trichothecene production and that precocene II may affect a step down-stream of the target of cobalt chloride.

  6. Correlation of ATP citrate lyase and acetyl CoA levels with trichothecene production in Fusarium graminearum.

    Science.gov (United States)

    Sakamoto, Naoko; Tsuyuki, Rie; Yoshinari, Tomoya; Usuma, Jermnak; Furukawa, Tomohiro; Nagasawa, Hiromichi; Sakuda, Shohei

    2013-11-21

    The correlation of ATP citrate lyase (ACL) and acetyl CoA levels with trichothecene production in Fusarium graminearum was investigated using an inhibitor (precocene II) and an enhancer (cobalt chloride) of trichothecene production by changing carbon sources in liquid medium. When precocene II (30 µM) was added to inhibit trichothecene production in a trichothecene high-production medium containing sucrose, ACL expression was reduced and ACL mRNA level as well as acetyl CoA amount in the fungal cells were reduced to the levels observed in a trichothecene trace-production medium containing glucose or fructose. The ACL mRNA level was greatly increased by addition of cobalt chloride in the trichothecene high-production medium, but not in the trichothecene trace-production medium. Levels were reduced to those level in the trichothecene trace-production medium by addition of precocene II (300 µM) together with cobalt chloride. These results suggest that ACL expression is activated in the presence of sucrose and that acetyl CoA produced by the increased ALC level may be used for trichothecene production in the fungus. These findings also suggest that sucrose is important for the action of cobalt chloride in activating trichothecene production and that precocene II may affect a step down-stream of the target of cobalt chloride.

  7. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes.

    Science.gov (United States)

    Perry, Rachel J; Camporez, João-Paulo G; Kursawe, Romy; Titchenell, Paul M; Zhang, Dongyan; Perry, Curtis J; Jurczak, Michael J; Abudukadier, Abulizi; Han, Myoung Sook; Zhang, Xian-Man; Ruan, Hai-Bin; Yang, Xiaoyong; Caprio, Sonia; Kaech, Susan M; Sul, Hei Sook; Birnbaum, Morris J; Davis, Roger J; Cline, Gary W; Petersen, Kitt Falk; Shulman, Gerald I

    2015-02-12

    Impaired insulin-mediated suppression of hepatic glucose production (HGP) plays a major role in the pathogenesis of type 2 diabetes (T2D), yet the molecular mechanism by which this occurs remains unknown. Using a novel in vivo metabolomics approach, we show that the major mechanism by which insulin suppresses HGP is through reductions in hepatic acetyl CoA by suppression of lipolysis in white adipose tissue (WAT) leading to reductions in pyruvate carboxylase flux. This mechanism was confirmed in mice and rats with genetic ablation of insulin signaling and mice lacking adipose triglyceride lipase. Insulin's ability to suppress hepatic acetyl CoA, PC activity, and lipolysis was lost in high-fat-fed rats, a phenomenon reversible by IL-6 neutralization and inducible by IL-6 infusion. Taken together, these data identify WAT-derived hepatic acetyl CoA as the main regulator of HGP by insulin and link it to inflammation-induced hepatic insulin resistance associated with obesity and T2D. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Synthesis of O-[{sup 11}C]acetyl CoA, O-[{sup 11}C]acetyl-L-carnitine, and L-[{sup 11}C]carnitine labelled in specific positions, applied in PET studies on rhesus monkey

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Gunilla B.; Watanabe, Yasuyoshi; Valind, Sven; Kuratsune, Hirohiko; Laangstroem, Bengt

    1997-07-01

    The syntheses of L-carnitine, O-acetyl CoA, and O-acetyl-L-carnitine labelled with {sup 11}C at the 1- or 2-position of the acetyl group or the N-methyl position of carnitine, using the enzymes acetyl CoA synthetase and carnitine acetyltransferase, are described. With a total synthesis time of 45 min, O-[1-{sup 11}C]acetyl CoA and O-[2-{sup 11}C]acetyl CoA was obtained in 60-70% decay-corrected radiochemical yield, and O-[1-{sup 11}C]acetyl-L-carnitine and O-[2-{sup 11}C]acetyl-L-carnitine in 70-80% yield, based on [1-{sup 11}C]acetate or [2-{sup 11}C]acetate, respectively. By an N-methylation reaction with [{sup 11}C]methyl iodide, L-[methyl-{sup 11}C]carnitine was obtained within 30 min, and O-acetyl-L-[methyl-{sup 11}C]carnitine within 40 min, giving a decay-corrected radiochemical yield of 60% and 40-50%, respectively, based on [{sup 11}C]methyl iodide. Initial data of the kinetics of the different {sup 11}C-labelled L-carnitine and acetyl-L-carnitines in renal cortex of anaesthetized monkey (Macaca mulatta) are presented.

  9. Generation of poly-β-hydroxybutyrate from acetate in higher plants: Detection of acetoacetyl CoA reductase- and PHB synthase- activities in rice.

    Science.gov (United States)

    Tsuda, Hirohisa; Shiraki, Mari; Inoue, Eri; Saito, Terumi

    2016-08-20

    It has been reported that Poly-β-hydroxybutyrate (PHB) is generated from acetate in the rice root. However, no information is available about the biosynthetic pathway of PHB from acetate in plant cells. In the bacterium Ralstonia eutropha H16 (R. eutropha), PHB is synthesized from acetyl CoA by the consecutive reaction of three enzymes: β-ketothiolase (EC: 2.3.1.9), acetoacetyl CoA reductase (EC: 1.1.1.36) and PHB synthase (EC: 2.3.1.-). Thus, in this study, we examined whether the above three enzymatic activities were also detected in rice seedlings. The results clearly showed that the activities of the above three enzymes were all detected in rice. In particular, the PHB synthase activity was detected specifically in the sonicated particulate fractions (2000g 10min precipitate (ppt) and the 8000g 30min ppt) of rice roots and leaves. In addition to these enzyme activities, several new experimental results were obtained on PHB synthesis in higher plants: (a) (14)C-PHB generated from 2-(14)C-acetate was mainly localized in the 2000g 10min ppt and the 8000g 30min ppt of rice root. (b) Addition of acetate (0.1-10mM) to culture medium of rice seedlings did not increase the content of PHB in the rice root or leaf. (c) In addition to C3 plants, PHB was generated from acetate in a C4 plant (corn) and in a CAM plant (Bryophyllum pinnatum). d) Washing with ethylenediaminetetraacetic acid (EDTA) strongly suggested that the PHB synthesized from acetate was of plant origin and was not bacterial contamination.

  10. Biotin augments acetyl CoA carboxylase 2 gene expression in the hypothalamus, leading to the suppression of food intake in mice.

    Science.gov (United States)

    Sone, Hideyuki; Kamiyama, Shin; Higuchi, Mutsumi; Fujino, Kaho; Kubo, Shizuka; Miyazawa, Masami; Shirato, Saya; Hiroi, Yuka; Shiozawa, Kota

    2016-07-29

    It is known that biotin prevents the development of diabetes by increasing the functions of pancreatic beta-cells and improving insulin sensitivity in the periphery. However, its anti-obesity effects such as anorectic effects remain to be clarified. Acetyl CoA carboxylase (ACC), a biotin-dependent enzyme, has two isoforms (ACC1 and ACC2) and serves to catalyze the reaction of acetyl CoA to malonyl CoA. In the hypothalamus, ACC2 increases the production of malonyl CoA, which acts as a satiety signal. In this study, we investigated whether biotin increases the gene expression of ACC2 in the hypothalamus and suppresses food intake in mice administered excessive biotin. Food intake was significantly decreased by biotin, but plasma regulators of appetite, including glucose, ghrelin, and leptin, were not affected. On the other hand, biotin notably accumulated in the hypothalamus and enhanced ACC2 gene expression there, but it did not change the gene expression of ACC1, malonyl CoA decarboxylase (a malonyl CoA-degrading enzyme), and AMP-activated protein kinase α-2 (an ACC-inhibitory enzyme). These findings strongly suggest that biotin potentiates the suppression of appetite by upregulating ACC2 gene expression in the hypothalamus. This effect of biotin may contribute to the prevention of diabetes by biotin treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The conversion of nickel-bound CO into an acetyl thioester: organometallic chemistry relevant to the acetyl coenzyme A synthase active site.

    Science.gov (United States)

    Horn, Bettina; Limberg, Christian; Herwig, Christian; Mebs, Stefan

    2011-12-23

    When three become one: Within one nickel-based model system, the three reactants CO, MeI, and PhSH have been assembled to yield an acetyl thioester. The reactivity is of relevance for the functioning of the acetyl coenzyme A synthase active site and provides insights into possible binding sequences.

  12. Genetic Construction of Truncated and Chimeric Metalloproteins Derived from the Alpha Subunit of Acetyl-CoA Synthase from Clostridium thermoaceticum

    Energy Technology Data Exchange (ETDEWEB)

    Huay-Keng Loke; Xiangshi Tan; Paul A. Lindahl

    2002-06-28

    In this study, a genetics-based method is used to truncate acetyl-coenzyme A synthase from Clostridium thermoaceticum (ACS), an alpha2beta2 tetrameric 310 kda bifunctional enzyme. ACS catalyzes the reversible reduction of CO2 to CO and the synthesis of acetyl-CoA from CO (or CO2 in the presence of low-potential reductants), CoA, and a methyl group bound to a corrinoid-iron sulfur protein (CoFeSP). ACS contains 7 metal-sulfur clusters of 4 different types called A, B, C, and D. The B, C, and D clusters are located in the 72 kda beta subunit while the A-cluster, a Ni-X-Fe4S4 cluster that serves as the active site for acetyl-CoA synthase activity, is located in the 82 kda alpha subunit. The extent to which the essential properties of the cluster, including catalytic, redox, spectroscopic, and substrate-binding properties, were retained as ACS was progressively truncated was determined. Acetyl-CoA synthase catalytic activity remained when the entire alpha subunit was removed, as long as CO, rather than CO2 and a low-potential reductant, was used as a substrate. Truncating an {approx} 30 kda region from the N-terminus of the alpha subunit yielded a 49 kda protein that lacked catalytic activity but exhibited A-cluster-like spectroscopic, redox, and CO binding properties. Further truncation afforded a 23 kda protein that lacked recognizable A-cluster properties except for UV-vis spectra typical of [Fe4S4]2+ clusters. Two chimeric proteins were constructed by fusing the gene encoding a ferredoxin from Chromatium vinosum to genes encoding the 49 kda and 82 kda fragments of the alpha subunit. The chimeric proteins exhibited EPR signals that were not the simple sum of the signals from the separate proteins, suggesting magnetic interactions between clusters. This study highlights the potential for using genetics to simplify the study of complex multi-centered metalloenzymes and to generate new complex metalloenzymes with interesting properties.

  13. Genetic Construction of Truncated and Chimeric Metalloproteins Derived from the Alpha Subunit of Acetyl-CoA Synthase from Clostridium thermoaceticum

    Energy Technology Data Exchange (ETDEWEB)

    Huay-Keng Loke; Xiangshi Tan; Paul A. Lindahl

    2002-06-28

    In this study, a genetics-based method is used to truncate acetyl-coenzyme A synthase from Clostridium thermoaceticum (ACS), an alpha2beta2 tetrameric 310 kda bifunctional enzyme. ACS catalyzes the reversible reduction of CO2 to CO and the synthesis of acetyl-CoA from CO (or CO2 in the presence of low-potential reductants), CoA, and a methyl group bound to a corrinoid-iron sulfur protein (CoFeSP). ACS contains 7 metal-sulfur clusters of 4 different types called A, B, C, and D. The B, C, and D clusters are located in the 72 kda beta subunit while the A-cluster, a Ni-X-Fe4S4 cluster that serves as the active site for acetyl-CoA synthase activity, is located in the 82 kda alpha subunit. The extent to which the essential properties of the cluster, including catalytic, redox, spectroscopic, and substrate-binding properties, were retained as ACS was progressively truncated was determined. Acetyl-CoA synthase catalytic activity remained when the entire alpha subunit was removed, as long as CO, rather than CO2 and a low-potential reductant, was used as a substrate. Truncating an {approx} 30 kda region from the N-terminus of the alpha subunit yielded a 49 kda protein that lacked catalytic activity but exhibited A-cluster-like spectroscopic, redox, and CO binding properties. Further truncation afforded a 23 kda protein that lacked recognizable A-cluster properties except for UV-vis spectra typical of [Fe4S4]2+ clusters. Two chimeric proteins were constructed by fusing the gene encoding a ferredoxin from Chromatium vinosum to genes encoding the 49 kda and 82 kda fragments of the alpha subunit. The chimeric proteins exhibited EPR signals that were not the simple sum of the signals from the separate proteins, suggesting magnetic interactions between clusters. This study highlights the potential for using genetics to simplify the study of complex multi-centered metalloenzymes and to generate new complex metalloenzymes with interesting properties.

  14. Reduction and Methyl Transfer Kinetics of the Alpha Subunit from Acetyl-Coenzyme A Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Xiangshi Tan; Christopher Sewell; Qingwu Yang; Paul A. Lindahl

    2003-01-15

    OAK-B135 Stopped-flow was used to evaluate the methylation and reduction kinetics of the isolated alpha subunit of acetyl-Coenzyme A synthase from Moorella thermoacetica. This catalytically active subunit contains a novel Ni-X-Fe4S4 cluster and a putative unidentified n =2 redox site called D. The D-site must be reduced for a methyl group to transfer from a corrinoid-iron-sulfur protein, a key step in the catalytic synthesis of acetyl-CoA. The Fe4S4 component of this cluster is also redox active, raising the possibility that it is the D-site or a portion thereof. Results presented demonstrate that the D-site reduces far faster than the Fe4S4 component, effectively eliminating this possibility. Rather, this component may alter catalytically important properties of the Ni center. The D-site is reduced through a pathway that probably does not involve the Fe4S4 component of this active-site cluster.

  15. COAs: Behind the Masks.

    Science.gov (United States)

    Birke, Szifra

    1993-01-01

    Provides information on alcoholism and codependency to help teachers identify and respond to children of alcoholics (COAs). Discusses characteristics of alcoholic homes and problems encountered by children and adult COAs. Examines survival "masks" of COAs, including hero, rebel, adjustor, clown, and caretaker. Lists organizational,…

  16. COAs: Behind the Masks.

    Science.gov (United States)

    Birke, Szifra

    1993-01-01

    Provides information on alcoholism and codependency to help teachers identify and respond to children of alcoholics (COAs). Discusses characteristics of alcoholic homes and problems encountered by children and adult COAs. Examines survival "masks" of COAs, including hero, rebel, adjustor, clown, and caretaker. Lists organizational,…

  17. Study on the Efficacy of Some Current Herbicides for Control of Resistant and Susceptible Canarygrass (Phalaris spp. Biotypes to Acetyl CoA Carboxylase (ACCase Inhibitors

    Directory of Open Access Journals (Sweden)

    e Zand

    2011-02-01

    Full Text Available Abstract Two separate greenhouse experiments were conducted in the greenhouse facilities of the Iranian Plant Protection Research Institute, Tehran, to study the efficacy of some herbicides to control of resistant and susceptible P. minor and P. paradoxa biotypes. In each experiment, resistant and susceptible biotypes were treated separately by 19 herbicide treatments. Treatments included 10 ACCase inhibitors, 6 Acetolactate Synthase (ALS inhibitors, prosulfocarb, flamprop-M-isopropyl, isoproturon plus diflufenican and a non-sprayed control. To evaluate the effects of treatments, different characteristics including percent damage based on EWRC scores at 15 and 30 days after spraying, percentage of survived plants after spraying relative to before spraying, and percentage of dry weight and wet weight of individual plants relative to control were studied. Results showed that the susceptible biotypes of P. minor were best controlled by clodinafop propargyl and pinoxaden at 450 ml/ha while pinoxaden at 450 ml/ha and cycloxydim were best options for control of the resistant biotype. Among ALS inhibitors, iodosulfuron plus mesosulfuron could control susceptible and resistant biotypes of P. minor very effectively and semi-satisfactory, respectively. Iodosulfuron plus mesosulfuron and sulfosulfuron plus metsulfuron could remarkably reduce the wet weight of individual plants compared to control so that the plants were not damaging any more. Among other herbicides, isoproturon plus diflufenican could control the susceptible and resistant biotypes semi-satisfactory and very effectively, respectively. Keywords: Herbicide resistance, ACCase inhibitors, ALS inhibitors

  18. Human mitochondrial HMG CoA synthase: Liver cDNA and partial genomic cloning, chromosome mapping to 1p12-p13, and possible role in vertebrate evolution

    Energy Technology Data Exchange (ETDEWEB)

    Boukaftane, Y.; Robert, M.F.; Mitchell, G.A. [Hopital Sainte-Justine, Montreal (Canada)] [and others

    1994-10-01

    Mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase (mHS) is the first enzyme of ketogenesis, whereas the cytoplasmic HS isozyme (cHS) mediates an early step in cholersterol synthesis. We here report the sequence of human and mouse liver mHS cDNAs, the sequence of an HS-like cDNA from Caenorhabditis elegans, the structure of a partial human mHS genomic clone, and the mapping of the human mHS gene to chromosome 1p12-p13. the nucleotide sequence of the human mHS cDNA encodes a mature mHS peptide of 471 residues, with a mean amino acid identity of 66.5% with cHS from mammals and chicken. Comparative analysis of all known mHS and cHS protein and DNA sequences shows a high degree of conservation near the N-terminus that decreases progressively toward the C-terminus and suggests that the two isozymes arose from a common ancestor gene 400-900 million years ago. Comparison of the gene structure of mHS and cHS is also consistant with a recent duplication event. We hypothesize that the physiologic result of the HS gene duplication was the appearance of HS within the mitochondria around the time of emergence of early vertebrates, which linked preexisting pathways of beta oxidation and leucine catabolism and created the HMG CoA pathway of ketogenesis, thus providing a lipid-derived energy source for the vertebrate brain. 56 refs., 4 figs., 2 tabs.

  19. Potential involvement of N-terminal acetylation in the quantitative regulation of the ε subunit of chloroplast ATP synthase under drought stress.

    Science.gov (United States)

    Hoshiyasu, Saki; Kohzuma, Kaori; Yoshida, Kazuo; Fujiwara, Masayuki; Fukao, Yoichiro; Yokota, Akiho; Akashi, Kinya

    2013-01-01

    In plants, modulation of photosynthetic energy conversion in varying environments is often accompanied by adjustment of the abundance of photosynthetic components. In wild watermelon (Citrullus lanatus L.), proteome analysis revealed that the ε subunit of chloroplast ATP synthase occurs as two distinct isoforms with largely-different isoelectric points, although encoded by a single gene. Mass spectrometry (MS) analysis of the ε isoforms indicated that the structural difference between the ε isoforms lies in the presence or absence of an acetyl group at the N-terminus. The protein level of the non-acetylated ε isoform preferentially decreased in drought, whereas the abundance of the acetylated ε isoform was unchanged. Moreover, metalloprotease activity that decomposed the ε subunit was detected in a leaf extract from drought-stressed plants. Furthermore, in vitro assay suggested that the non-acetylated ε subunit was more susceptible to degradation by metalloaminopeptidase. We propose a model in which quantitative regulation of the ε subunit involves N-terminal acetylation and stress-induced proteases.

  20. From arylamine N-acetyltransferase to folate-dependent acetyl CoA hydrolase: impact of folic acid on the activity of (HUMAN)NAT1 and its homologue (MOUSE)NAT2.

    Science.gov (United States)

    Laurieri, Nicola; Dairou, Julien; Egleton, James E; Stanley, Lesley A; Russell, Angela J; Dupret, Jean-Marie; Sim, Edith; Rodrigues-Lima, Fernando

    2014-01-01

    Acetyl Coenzyme A-dependent N-, O- and N,O-acetylation of aromatic amines and hydrazines by arylamine N-acetyltransferases is well characterised. Here, we describe experiments demonstrating that human arylamine N-acetyltransferase Type 1 and its murine homologue (Type 2) can also catalyse the direct hydrolysis of acetyl Coenzyme A in the presence of folate. This folate-dependent activity is exclusive to these two isoforms; no acetyl Coenzyme A hydrolysis was found when murine arylamine N-acetyltransferase Type 1 or recombinant bacterial arylamine N-acetyltransferases were incubated with folate. Proton nuclear magnetic resonance spectroscopy allowed chemical modifications occurring during the catalytic reaction to be analysed in real time, revealing that the disappearance of acetyl CH3 from acetyl Coenzyme A occurred concomitantly with the appearance of a CH3 peak corresponding to that of free acetate and suggesting that folate is not acetylated during the reaction. We propose that folate is a cofactor for this reaction and suggest it as an endogenous function of this widespread enzyme. Furthermore, in silico docking of folate within the active site of human arylamine N-acetyltransferase Type 1 suggests that folate may bind at the enzyme's active site, and facilitate acetyl Coenzyme A hydrolysis. The evidence presented in this paper adds to our growing understanding of the endogenous roles of human arylamine N-acetyltransferase Type 1 and its mouse homologue and expands the catalytic repertoire of these enzymes, demonstrating that they are by no means just xenobiotic metabolising enzymes but probably also play an important role in cellular metabolism. These data, together with the characterisation of a naphthoquinone inhibitor of folate-dependent acetyl Coenzyme A hydrolysis by human arylamine N-acetyltransferase Type 1/murine arylamine N-acetyltransferase Type 2, open up a range of future avenues of exploration, both for elucidating the developmental role of these

  1. From arylamine N-acetyltransferase to folate-dependent acetyl CoA hydrolase: impact of folic acid on the activity of (HUMANNAT1 and its homologue (MOUSENAT2.

    Directory of Open Access Journals (Sweden)

    Nicola Laurieri

    Full Text Available Acetyl Coenzyme A-dependent N-, O- and N,O-acetylation of aromatic amines and hydrazines by arylamine N-acetyltransferases is well characterised. Here, we describe experiments demonstrating that human arylamine N-acetyltransferase Type 1 and its murine homologue (Type 2 can also catalyse the direct hydrolysis of acetyl Coenzyme A in the presence of folate. This folate-dependent activity is exclusive to these two isoforms; no acetyl Coenzyme A hydrolysis was found when murine arylamine N-acetyltransferase Type 1 or recombinant bacterial arylamine N-acetyltransferases were incubated with folate. Proton nuclear magnetic resonance spectroscopy allowed chemical modifications occurring during the catalytic reaction to be analysed in real time, revealing that the disappearance of acetyl CH3 from acetyl Coenzyme A occurred concomitantly with the appearance of a CH3 peak corresponding to that of free acetate and suggesting that folate is not acetylated during the reaction. We propose that folate is a cofactor for this reaction and suggest it as an endogenous function of this widespread enzyme. Furthermore, in silico docking of folate within the active site of human arylamine N-acetyltransferase Type 1 suggests that folate may bind at the enzyme's active site, and facilitate acetyl Coenzyme A hydrolysis. The evidence presented in this paper adds to our growing understanding of the endogenous roles of human arylamine N-acetyltransferase Type 1 and its mouse homologue and expands the catalytic repertoire of these enzymes, demonstrating that they are by no means just xenobiotic metabolising enzymes but probably also play an important role in cellular metabolism. These data, together with the characterisation of a naphthoquinone inhibitor of folate-dependent acetyl Coenzyme A hydrolysis by human arylamine N-acetyltransferase Type 1/murine arylamine N-acetyltransferase Type 2, open up a range of future avenues of exploration, both for elucidating the

  2. Identification and preliminary characterization of acsF, a Putative Ni-insertase used in the biosynthesis of acetyl-CoA synthase from Clostridium thermoaceticum

    Energy Technology Data Exchange (ETDEWEB)

    Huay-Keng Loke; Paul A. Lindahl

    2003-01-01

    OAK-B135 The acsABCDE genes in the Clostridium thermoaceticum genome are used for autotrophic acetyl-CoA synthesis using the Wood/Ljungdahl pathway. A 2.8 kb region between acsC and acsD was cloned and sequenced. Two open reading frames, orf7 ({approx} 1.9 kb) and acsF ({approx} 0.7 kb) were identified. orf7 appears to encode an Fe-S protein, in that it contains 5 conserved cysteine residues, 3 of which are present in a motif (CXXXXXCXXC) commonly used to coordinate Fe-S clusters. However, Orf7 is probably not involved in autotrophic acetyl-CoA synthesis, as homologous genes are present in organisms that do not utilize this pathway and are absent in many that do. In contrast, acsF is probably involved in this pathway. Sequence alignment of AcsF and 11 homologs reveals a number of conserved regions, including a P-loop that binds nucleoside triphosphates and catalyzes their hydrolysis. One homolog is CooC, an ATPase/GTPase that inserts Ni into a precursor form of the C-cluster of the carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum. Purified AcsF lacked Ni and Fe, and slowly catalyzed the hydrolysis of ATP. Such similarities to CooC suggest that AcsF may function to insert Ni into a Ni-deficient form of the bifunctional acetyl-CoA synthase/CODH from C. thermoaceticum (ACSCt). However, this could not be established, as expression of acsF did not effect activation of recombinant AcsAB expressed in E. coli. Also, E. coli cells defective in hypB retained the ability to synthesize active recombinant AcsAB. Rather, the concentration of extracellular Ni2+ ions was critical to activation.

  3. Modeling, molecular docking, probing catalytic binding mode of acetyl-CoA malate synthase G in Brucella melitensis 16M.

    Science.gov (United States)

    Adi, Pradeepkiran Jangampalli; Yellapu, Nanda Kumar; Matcha, Bhaskar

    2016-12-01

    There are enormous evidences and previous reports standpoint that the enzyme of glyoxylate pathway malate synthase G (MSG) is a potential virulence factor in several pathogenic organisms, including Brucella melitensis 16M. Where the lack of crystal structures for best candidate proteins like MSG of B. melitensis 16M creates big lacuna to understand the molecular pathogenesis of brucellosis. In the present study, we have constructed a 3-D structure of MSG of Brucella melitensis 16M in MODELLER with the help of crystal structure of Mycobacterium tuberculosis malate synthase (PDB ID: 2GQ3) as template. The stereo chemical quality of the restrained model was evaluated by SAVES server; remarkably we identified the catalytic functional core domain located at 4(th) cleft with conserved catalytic amino acids, start at ILE 59 to VAL 586 manifest the function of the protein. Furthermore, virtual screening and docking results reveals that best leadmolecules binds at the core domain pocket of MSG catalytic residues and these ligand leads could be the best prospective inhibitors to treat brucellosis.

  4. Analysis of acyl CoA ester intermediates of the mevalonate pathway in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Seker, Tamay; Møller, Kasper; Nielsen, Jens

    2005-01-01

    The mevalonate pathway plays an important role in providing the cell with a number of essential precursors for the synthesis of biomass constituents. With respect to their chemical structure, the metabolites of this pathway can be divided into two groups: acyl esters [acetoacetyl CoA, acetyl Co...

  5. Inhibition of lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression by 4-[(2'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate from Moringa oleifera.

    Science.gov (United States)

    Park, Eun-Jung; Cheenpracha, Sarot; Chang, Leng Chee; Kondratyuk, Tamara P; Pezzuto, John M

    2011-01-01

    Moringa oleifera Lamarck is commonly consumed for nutritional or medicinal properties. We recently reported the isolation and structure elucidation of novel bioactive phenolic glycosides, including 4-[(2'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate (RBITC), which was found to suppress inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in lipopolysaccharide-stimulated RAW 264.7 mouse macrophage cells. Inhibitors of proteins such as cyclooxygenase-2 (COX-2) and iNOS are potential antiinflammatory and cancer chemopreventive agents. The inhibitory activity of RBITC on NO production (IC(50) = 0.96 ± 0.23 μM) was greater than that mediated by other well-known isothiocyanates such as sulforaphane (IC(50) = 2.86 ± 0.39 μM) and benzyl isothiocyanate (IC(50) = 2.08 ± 0.28 μM). RBITC inhibited expression of COX-2 and iNOS at both the protein and mRNA levels. Major upstream signaling pathways involved mitogen-activated protein kinases and nuclear factor-κB (NF-κB). RBITC inhibited phosphorylation of extracellular signal-regulated kinase and stress-activated protein kinase, as well as ubiquitin-dependent degradation of inhibitor κBα (IκBα). In accordance with IκBα degradation, nuclear accumulation of NF-κB and subsequent binding to NF-κB cis-acting element was attenuated by treatment with RBITC. These data suggest RBITC should be included in the dietary armamentarium of isothiocyanates potentially capable of mediating antiinflammatory or cancer chemopreventive activity.

  6. Representing COA with Probabilistic Ontologies

    Science.gov (United States)

    2011-06-01

    Situation   Assesment   Mission   Analysis   Decision   COA   Analysis   Execution   Outcomes    Updates   semi-automated planning of...planning process occurs to define which missions to accomplish totally or partially given the existing guidance and available resources . In general...handle all the resources available of many different organizations under its operational control. Each planning level (i.e., operational or tactical

  7. Fatty Acid Synthase and Acetyl-CoA Carboxylase Are Expressed in Nodal Metastatic Melanoma But Not in Benign Intracapsular Nodal Nevi.

    Science.gov (United States)

    Saab, Jad; Santos-Zabala, Maria Laureana; Loda, Massimo; Stack, Edward C; Hollmann, Travis J

    2017-06-13

    Melanoma is a potentially lethal form of skin cancer for which the current standard therapy is complete surgical removal of the primary tumor followed by sentinel lymph node biopsy when indicated. Histologic identification of metastatic melanoma in a sentinel node has significant prognostic and therapeutic implications, routinely guiding further surgical management with regional lymphadenectomy. While melanocytes in a lymph node can be identified by routine histopathologic and immunohistochemical examination, the distinction between nodal nevus cells and melanoma can be morphologically problematic. Previous studies have shown that malignant melanoma can over-express metabolic genes such as fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC). This immunohistochemical study aims to compare the utility of FASN and ACC in differentiating sentinel lymph nodes with metastatic melanomas from those with benign nodal nevi in patients with cutaneous melanoma. Using antibodies against FASN and ACC, 13 sentinel lymph nodes from 13 patients with metastatic melanoma and 14 lymph nodes harboring benign intracapsular nevi from 14 patients with cutaneous malignant melanoma were examined. A diagnosis of nodal melanoma was based on cytologic atypia and histologic comparison with the primary melanoma. All nodal nevi were intracapsular and not trabecular. Immunohistochemistry for Melan-A, S100, human melanoma black 45 (HMB45), FASN, and ACC were performed. The percentage of melanocytes staining with HMB45, FASN, and ACC was determined and graded in 25% increments; staining intensity was graded as weak, moderate, or strong. All metastatic melanomas tested had at least 25% tumor cell staining for both FASN and ACC. Greater than 75% of the tumor cells stained with FAS in 7/13 cases and for ACC in 5/12 cases. Intensity of staining was variable; strong staining for FASN and ACC was observed in 69% and 50% of metastatic melanoma, respectively. HMB45 was negative in 40% of nodal

  8. Acetate/acetyl-CoA metabolism associated with cancer fatty acid synthesis: overview and application.

    Science.gov (United States)

    Yoshii, Yukie; Furukawa, Takako; Saga, Tsuneo; Fujibayashi, Yasuhisa

    2015-01-28

    Understanding cancer-specific metabolism is important for identifying novel targets for cancer diagnosis and therapy. Induced acetate/acetyl CoA metabolism is a notable feature that is related to fatty acid synthesis supporting tumor growth. In this review, we focused on the recent findings related to cancer acetate/acetyl CoA metabolism. We also introduce [1-¹¹C]acetate positron emission tomography (PET), which is a useful tool to visualize up-regulation of acetate/acetyl CoA metabolism in cancer, and discuss the utility of [1-¹¹C]acetate PET in cancer diagnosis and its application to personalized medicine.

  9. Malonyl CoA control of fatty acid oxidation in the ischemic heart.

    Science.gov (United States)

    Dyck, Jason R B; Lopaschuk, Gary D

    2002-09-01

    Abnormally high rates of fatty acid metabolism is an important contributor to the severity of ischemic heart disease. During and following myocardial ischemia a number of alterations in fatty acid oxidation occur that result in an excessive amount of fatty acids being used as a fuel source by the heart. This contributes to a decrease in cardiac efficiency both during and following the ischemic episode. Central to the regulation of fatty acid oxidation in the heart is malonyl CoA, which is a potent endogenous inhibitor of mitochondrial fatty acid uptake. The levels of malonyl CoA are regulated both by its synthesis by acetyl CoA carboxylase (ACC) and its degradation by malonyl CoA decarboxylase (MCD). ACC is in turn controlled by AMP-activated protein kinase (AMPK), which acts as a fuel gauge in the heart. The control of these enzymes are altered during ischemia, such that malonyl CoA levels in the heart decrease, resulting in an increased relative contribution of fatty acids to oxidative metabolism. Activation of AMPK during and following ischemia appears to be centrally involved in this decrease in malonyl CoA. Clinical evidence is now accumulating that show that inhibition of fatty acid oxidation is an effective approach to treating ischemic heart disease. As a result, modulation of fatty acid oxidation by targeting the enzymes controlling malonyl CoA may be a novel approach to treating angina pectoris and acute myocardial infarction. This paper will discuss some of the molecular changes that occur in fatty acid oxidation in the ischemic heart and will include a discussion of the important role of malonyl CoA in this process.

  10. Characterization of a bifunctional glyoxylate cycle enzyme, malate synthase/isocitrate lyase, of Euglena gracilis.

    Science.gov (United States)

    Nakazawa, Masami; Nishimura, Masaaki; Inoue, Kengo; Ueda, Mitsuhiro; Inui, Hiroshi; Nakano, Yoshihisa; Miyatake, Kazutaka

    2011-01-01

    The glyoxylate cycle is a modified form of the tricarboxylic acid cycle, which enables organisms to synthesize carbohydrates from C2 compounds. In the protozoan Euglena gracilis, the key enzyme activities of the glyoxylate cycle, isocitrate lyase (ICL) and malate synthase (MS), are conferred by a single bifunctional protein named glyoxylate cycle enzyme (Euglena gracilis glyoxylate cycle enzyme [EgGCE]). We analyzed the enzymatic properties of recombinant EgGCE to determine the functions of its different domains. The 62-kDa N-terminal domain of EgGCE was sufficient to provide the MS activity as expected from an analysis of the deduced amino acid sequence. In contrast, expression of the 67-kDa C-terminal domain of EgGCE failed to yield ICL activity even though this domain was structurally similar to ICL family enzymes. Analyses of truncation mutants suggested that the N-terminal residues of EgGCE are critical for both the ICL and MS activities. The ICL activity of EgGCE increased in the presence of micro-molar concentrations of acetyl-coenzyme A (CoA). Acetyl-CoA also increased the activity in a mutant type EgGCE with a mutation at the acetyl-CoA binding site in the MS domain of EgGCE. This suggests that acetyl-CoA regulates the ICL reaction by binding to a site other than the catalytic center of the MS reaction.

  11. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO2 and Oxidation of CO by Clostridium acetobutylicum.

    Science.gov (United States)

    Carlson, Ellinor D; Papoutsakis, Eleftherios T

    2017-08-15

    With recent advances in synthetic biology, CO2 could be utilized as a carbon feedstock by native or engineered organisms, assuming the availability of electrons. Two key enzymes used in autotrophic CO2 fixation are the CO dehydrogenase (CODH) and acetyl coenzyme A (acetyl-CoA) synthase (ACS), which form a bifunctional heterotetrameric complex. The CODH/ACS complex can reversibly catalyze CO2 to CO, effectively enabling a biological water-gas shift reaction at ambient temperatures and pressures. The CODH/ACS complex is part of the Wood-Ljungdahl pathway (WLP) used by acetogens to fix CO2, and it has been well characterized in native hosts. So far, only a few recombinant CODH/ACS complexes have been expressed in heterologous hosts, none of which demonstrated in vivo CO2 reduction. Here, functional expression of the Clostridium carboxidivorans CODH/ACS complex is demonstrated in the solventogen Clostridium acetobutylicum, which was engineered to express CODH alone or together with the ACS. Both strains exhibited CO2 reduction and CO oxidation activities. The CODH reactions were interrogated using isotopic labeling, thus verifying that CO was a direct product of CO2 reduction, and vice versa. CODH apparently uses a native C. acetobutylicum ferredoxin as an electron carrier for CO2 reduction. Heterologous CODH activity depended on actively growing cells and required the addition of nickel, which is inserted into CODH without the need to express the native Ni insertase protein. Increasing CO concentrations in the gas phase inhibited CODH activity and altered the metabolite profile of the CODH-expressing cells. This work provides the foundation for engineering a complete and functional WLP in nonnative host organisms.IMPORTANCE Functional expression of CO dehydrogenase (CODH) from Clostridium carboxidivorans was demonstrated in C. acetobutylicum, which is natively incapable of CO2 fixation. The expression of CODH, alone or together with the C. carboxidivorans acetyl

  12. The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching.

    Science.gov (United States)

    Yang, Li; Vaitheesvaran, Bhavapriya; Hartil, Kirsten; Robinson, Alan J; Hoopmann, Michael R; Eng, Jimmy K; Kurland, Irwin J; Bruce, James E

    2011-09-02

    The elucidation of extra-nuclear lysine acetylation has been of growing interest, as the cosubstrate for acetylation, acetyl CoA, is at a key metabolic intersection. Our hypothesis was that mitochondrial and cytoplasmic protein acetylation may be part of a fasted/re-fed feedback control system for the regulation of the metabolic network in fuel switching, where acetyl CoA would be provided by fatty acid oxidation, or glycolysis, respectively. To test this, we characterized the mitochondrial and cytoplasmic acetylome in various organs that have a high metabolic rate relative to their mass, and/or switch fuels, under fasted and re-fed conditions (brain, kidney, liver, skeletal muscle, heart muscle, white and brown adipose tissues). Using immunoprecipitation, coupled with LC-MS/MS label free quantification, we show there is a dramatic variation in global quantitative profiles of acetylated proteins from different organs. In total, 733 acetylated peptides from 337 proteins were identified and quantified, out of which 31 acetylated peptides from the metabolic proteins that may play organ-specific roles were analyzed in detail. Results suggest that fasted/re-fed acetylation changes coordinated by organ-specific (de)acetylases in insulin-sensitive versus -insensitive organs may underlie fuel use and switching. Characterization of the tissue-specific acetylome should increase understanding of metabolic conditions wherein normal fuel switching is disrupted, such as in Type II diabetes.

  13. Acetyl group coordinated progression through the catalytic cycle of an arylalkylamine N-acetyltransferase.

    Science.gov (United States)

    Aboalroub, Adam A; Bachman, Ashleigh B; Zhang, Ziming; Keramisanou, Dimitra; Merkler, David J; Gelis, Ioannis

    2017-01-01

    The transfer of an acetyl group from acetyl-CoA to an acceptor amine is a ubiquitous biochemical transformation catalyzed by Gcn5-related N-acetyltransferases (GNATs). Although it is established that the reaction proceeds through a sequential ordered mechanism, the role of the acetyl group in driving the ordered formation of binary and ternary complexes remains elusive. Herein, we show that CoA and acetyl-CoA alter the conformation of the substrate binding site of an arylalkylamine N-acetyltransferase (AANAT) to facilitate interaction with acceptor substrates. However, it is the presence of the acetyl group within the catalytic funnel that triggers high affinity binding. Acetyl group occupancy is relayed through a conserved salt bridge between the P-loop and the acceptor binding site, and is manifested as differential dynamics in the CoA and acetyl-CoA-bound states. The capacity of the acetyl group carried by an acceptor to promote its tight binding even in the absence of CoA, but also its mutually exclusive position to the acetyl group of acetyl-CoA underscore its importance in coordinating the progression of the catalytic cycle.

  14. The binuclear nickel center in the A-cluster of acetyl-CoA synthase (ACS) and two biomimetic dinickel complexes studied by X-ray absorption and emission spectroscopy

    Science.gov (United States)

    Schrapers, P.; Mebs, S.; Ilina, Y.; Warner, D. S.; Wörmann, C.; Schuth, N.; Kositzki, R.; Dau, H.; Limberg, C.; Dobbek, H.; Haumann, M.

    2016-05-01

    Acetyl-CoA synthase (ACS) is involved in the bacterial carbon oxide conversion pathway. The binuclear nickel sites in ACS enzyme and two biomimetic synthetic compounds containing a Ni(II)Ni(II) unit (1 and 2) were compared using XAS/XES. EXAFS analysis of ACS proteins revealed similar Ni-N/O/S bond lengths and Ni-Ni/Fe distances as in the crystal structure in oxidized ACS, but elongated Ni-ligand bonds in reduced ACS, suggesting more reduced nickel species. The XANES spectra of ACS and the dinickel complexes showed overall similar shapes, but less resolved pre-edge and edge features in ACS, attributed to more distorted square-planar nickel sites in particular in reduced ACS. DFT calculation of pre-edge absorption and Kβ2,5 emission features reproduced the experimental spectra of the synthetic complexes, was sensitive even to the small geometry differences in 1 and 2, and indicated low-spin Ni(II) sites. Comparison of nickel sites in proteins and biomimetic compounds is valuable for deducing structural and electronic differences in response to ligation and redox changes.

  15. Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses.

    Science.gov (United States)

    Kalamaki, Mary S; Alexandrou, Dimitris; Lazari, Diamanto; Merkouropoulos, Georgios; Fotopoulos, Vasileios; Pateraki, Irene; Aggelis, Alexandros; Carrillo-López, Armando; Rubio-Cabetas, Maria J; Kanellis, Angelos K

    2009-01-01

    A single copy of the N-acetyl-L-glutamate synthase gene (SlNAGS1) has been isolated from tomato. The deduced amino acid sequence consists of 604 amino acids and shows a high level of similarity to the predicted Arabidopsis NAGS1 and NAGS2 proteins. Furthermore, the N-terminus ArgB domain and the C-terminus ArgA domain found in SlNAGS1 are similar to the structural arrangements that have been reported for other predicted NAGS proteins. SlNAGS1 was expressed at high levels in all aerial organs, and at basic levels in seeds, whereas it was not detected at all in roots. SlNAGS1 transcript accumulation was noticed transiently in tomato fruit at the red-fruit stage. In addition, an increase of SlNAGS1 transcripts was detected in mature green tomato fruit within the first hour of exposure to low oxygen concentrations. Transgenic Arabidopsis plants have been generated expressing the SlNAGS1 gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Three homozygous transgenic lines expressing the transgene (lines 1-7, 3-8, and 6-5) were evaluated further. All three transgenic lines showed a significant accumulation of ornithine in the leaves with line 3-8 exhibiting the highest concentration. The same lines demonstrated higher germination ability compared to wild-type (WT) plants when subjected to 250 mM NaCl. Similarly, mature plants of all three transgenic lines displayed a higher tolerance to salt and drought stress compared to WT plants. Under most experimental conditions, transgenic line 3-8 performed best, while the responses obtained from lines 1-7 and 6-5 depended on the applied stimulus. To our knowledge, this is the first plant NAGS gene to be isolated, characterized, and genetically modified.

  16. CoaSim Guile Manual — Using the Guile-based CoaSim Simulator

    DEFF Research Database (Denmark)

    Mailund, T

    2006-01-01

    CoaSim is a tool for simulating the coalescent process with recombination and geneconversion, under either constant population size or exponential population growth. It effectively constructs the ancestral recombination graph for a given number of chromosomes and uses this to simulate samples...

  17. Getting Started with CoaSim — An Introduction to the Simulator CoaSim

    DEFF Research Database (Denmark)

    Mailund, T

    2005-01-01

    CoaSim is a tool for simulating the coalescent process with recombination and geneconversion, under either constant population size or exponential population growth. It effectively constructs the ancestral recombination graph for a given number of chromosomes and uses this to simulate samples...

  18. CoaSim Guile Manual — Using the Guile-based CoaSim Simulator

    DEFF Research Database (Denmark)

    Mailund, T

    2006-01-01

    CoaSim is a tool for simulating the coalescent process with recombination and geneconversion, under either constant population size or exponential population growth. It effectively constructs the ancestral recombination graph for a given number of chromosomes and uses this to simulate samples of ...... of SNP and micro-satellite haplotypes or genotypes....

  19. Getting Started with CoaSim — An Introduction to the Simulator CoaSim

    DEFF Research Database (Denmark)

    Mailund, T

    2005-01-01

    CoaSim is a tool for simulating the coalescent process with recombination and geneconversion, under either constant population size or exponential population growth. It effectively constructs the ancestral recombination graph for a given number of chromosomes and uses this to simulate samples of ...... of SNP and micro-satellite haplotypes or genotypes....

  20. Crystal structures of human HMG-CoA synthase isoforms provide insights into inherited ketogenesis disorders and inhibitor design.

    Science.gov (United States)

    Shafqat, Naeem; Turnbull, Andrew; Zschocke, Johannes; Oppermann, Udo; Yue, Wyatt W

    2010-05-14

    3-Hydroxy-3-methylglutaryl coenzyme A (CoA) synthase (HMGCS) catalyzes the condensation of acetyl-CoA and acetoacetyl-CoA into 3-hydroxy-3-methylglutaryl CoA. It is ubiquitous across the phylogenetic tree and is broadly classified into three classes. The prokaryotic isoform is essential in Gram-positive bacteria for isoprenoid synthesis via the mevalonate pathway. The eukaryotic cytosolic isoform also participates in the mevalonate pathway but its end product is cholesterol. Mammals also contain a mitochondrial isoform; its deficiency results in an inherited disorder of ketone body formation. Here, we report high-resolution crystal structures of the human cytosolic (hHMGCS1) and mitochondrial (hHMGCS2) isoforms in binary product complexes. Our data represent the first structures solved for human HMGCS and the mitochondrial isoform, allowing for the first time structural comparison among the three isoforms. This serves as a starting point for the development of isoform-specific inhibitors that have potential cholesterol-reducing and antibiotic applications. In addition, missense mutations that cause mitochondrial HMGCS deficiency have been mapped onto the hHMGCS2 structure to rationalize the structural basis for the disease pathology.

  1. Synthesis of acetyl coenzyme A by carbon monoxide dehydrogenase complex from acetate-grown Methanosarcina thermophila.

    OpenAIRE

    Abbanat, D R; Ferry, J G

    1990-01-01

    The carbon monoxide dehydrogenase (CODH) complex from Methanosarcina thermophila catalyzed the synthesis of acetyl coenzyme A (acetyl-CoA) from CH3I, CO, and coenzyme A (CoA) at a rate of 65 nmol/min/mg at 55 degrees C. The reaction ended after 5 min with the synthesis of 52 nmol of acetyl-CoA per nmol of CODH complex. The optimum temperature for acetyl-CoA synthesis in the assay was between 55 and 60 degrees C; the rate of synthesis at 55 degrees C was not significantly different between pHs...

  2. Broad substrate specificity of phosphotransbutyrylase from Listeria monocytogenes: A potential participant in an alternative pathway for provision of acyl CoA precursors for fatty acid biosynthesis.

    Science.gov (United States)

    Sirobhushanam, Sirisha; Galva, Charitha; Sen, Suranjana; Wilkinson, Brian J; Gatto, Craig

    2016-09-01

    Listeria monocytogenes, the causative organism of the serious food-borne disease listeriosis, has a membrane abundant in branched-chain fatty acids (BCFAs). BCFAs are normally biosynthesized from branched-chain amino acids via the activity of branched chain α-keto acid dehydrogenase (Bkd), and disruption of this pathway results in reduced BCFA content in the membrane. Short branched-chain carboxylic acids (BCCAs) added as media supplements result in incorporation of BCFAs arising from the supplemented BCCAs in the membrane of L. monocytogenes bkd mutant MOR401. High concentrations of the supplements also effect similar changes in the membrane of the wild type organism with intact bkd. Such carboxylic acids clearly act as fatty acid precursors, and there must be an alternative pathway resulting in the formation of their CoA thioester derivatives. Candidates for this are the enzymes phosphotransbutyrylase (Ptb) and butyrate kinase (Buk), the products of the first two genes of the bkd operon. Ptb from L. monocytogenes exhibited broad substrate specificity, a strong preference for branched-chain substrates, a lack of activity with acetyl CoA and hexanoyl CoA, and strict chain length preference (C3-C5). Ptb catalysis involved ternary complex formation. Additionally, Ptb could utilize unnatural branched-chain substrates such as 2-ethylbutyryl CoA, albeit with lower efficiency, consistent with a potential involvement of this enzyme in the conversion of the carboxylic acid additives into CoA primers for BCFA biosynthesis. Published by Elsevier B.V.

  3. Detailed characterization of the substrate specificity of mouse wax synthase.

    Science.gov (United States)

    Miklaszewska, Magdalena; Kawiński, Adam; Banaś, Antoni

    2013-01-01

    Wax synthases are membrane-associated enzymes catalysing the esterification reaction between fatty acyl-CoA and a long chain fatty alcohol. In living organisms, wax esters function as storage materials or provide protection against harmful environmental influences. In industry, they are used as ingredients for the production of lubricants, pharmaceuticals, and cosmetics. Currently the biological sources of wax esters are limited to jojoba oil. In order to establish a large-scale production of desired wax esters in transgenic high-yielding oilseed plants, enzymes involved in wax esters synthesis from different biological resources should be characterized in detail taking into consideration their substrate specificity. Therefore, this study aims at determining the substrate specificity of one of such enzymes -- the mouse wax synthase. The gene encoding this enzyme was expressed heterologously in Saccharomyces cerevisiae. In the in vitro assays (using microsomal fraction from transgenic yeast), we evaluated the preferences of mouse wax synthase towards a set of combinations of 11 acyl-CoAs with 17 fatty alcohols. The highest activity was observed for 14:0-CoA, 12:0-CoA, and 16:0-CoA in combination with medium chain alcohols (up to 5.2, 3.4, and 3.3 nmol wax esters/min/mg microsomal protein, respectively). Unsaturated alcohols longer than 18°C were better utilized by the enzyme in comparison to the saturated ones. Combinations of all tested alcohols with 20:0-CoA, 22:1-CoA, or Ric-CoA were poorly utilized by the enzyme, and conjugated acyl-CoAs were not utilized at all. Apart from the wax synthase activity, mouse wax synthase also exhibited a very low acyl-CoA:diacylglycerol acyltransferase activity. However, it displayed neither acyl-CoA:monoacylglycerol acyltransferase, nor acyl-CoA:sterol acyltransferase activity.

  4. Inhibitors of polyhydroxyalkanoate (PHA) synthases: synthesis, molecular docking, and implications.

    Science.gov (United States)

    Zhang, Wei; Chen, Chao; Cao, Ruikai; Maurmann, Leila; Li, Ping

    2015-01-01

    Polyhydroxyalkanoate (PHA) synthases (PhaCs) catalyze the formation of biodegradable PHAs that are considered to be ideal alternatives to non-biodegradable synthetic plastics. However, study of PhaCs has been challenging because the rate of PHA chain elongation is much faster than that of initiation. This difficulty, along with lack of a crystal structure, has become the main hurdle to understanding and engineering PhaCs for economical PHA production. Here we report the synthesis of two carbadethia CoA analogues--sT-CH2-CoA (26 a) and sTet-CH2-CoA (26 b)--as well as sT-aldehyde (saturated trimer aldehyde, 29), as new PhaC inhibitors. Study of these analogues with PhaECAv revealed that 26 a/b and 29 are competitive and mixed inhibitors, respectively. Both the CoA moiety and extension of PHA chain will increase binding affinity; this is consistent with our docking study. Estimation of the Kic values of 26 a and 26 b predicts that a CoA analogue incorporating an octameric hydroxybutanoate (HB) chain might facilitate the formation of a kinetically well-behaved synthase.

  5. A mycothiol synthase mutant of Mycobacterium smegmatis produces novel thiols and has an altered thiol redox status.

    Science.gov (United States)

    Newton, Gerald L; Ta, Philong; Fahey, Robert C

    2005-11-01

    Mycobacteria and other actinomycetes do not produce glutathione but make mycothiol (MSH; AcCys-GlcN-Ins) that has functions similar to those of glutathione and is essential for growth of Mycobacterium tuberculosis. Mycothiol synthase (MshD) catalyzes N acetylation of Cys-GlcN-Ins to produce MSH in Mycobacterium smegmatis mc2155, and Cys-GlcN-Ins is maintained at a low level. The mycothiol synthase mutant, the mshD::Tn5 mutant, produces high levels of Cys-GlcN-Ins along with two novel thiols, N-formyl-Cys-GlcN-Ins and N-succinyl-Cys-GlcN-Ins, and a small amount of MSH. The nonenzymatic reaction of acyl-coenzyme A (CoA) with Cys-GlcN-Ins to produce acyl-Cys-GlcN-Ins is a facile reaction under physiologic conditions, with succinyl-CoA being an order of magnitude more reactive than acetyl-CoA. The uncatalyzed reaction rates are adequate to account for the observed production of N-succinyl-Cys-GlcN-Ins and MSH under physiologic conditions. It was shown that the N-acyl-Cys-GlcN-Ins compounds are maintained in a substantially reduced state in the mutant but that Cys-GlcN-Ins exists in disulfide forms at 5 to 40% at different stages of growth. MSH was able to facilitate reduction of N-succinyl-Cys-GlcN-Ins disulfide through thiol-disulfide exchange, but N-formyl-Cys-GlcN-Ins was ineffective. The oxidized state of Cys-GlcN-Ins in cells appears to result from a high susceptibility to autoxidation and a low capacity of the cell to reduce its disulfide forms. The mutant exhibited no enhanced sensitivity to hydrogen peroxide, tert-butyl hydroperoxide, or cumene hydroperoxide relative to the parent strain, suggesting that the most abundant thiol, N-formyl-Cys-GlcN-Ins, functions as a substitute for MSH.

  6. Cystathionine beta-synthase deficiency causes fat loss in mice.

    Directory of Open Access Journals (Sweden)

    Sapna Gupta

    Full Text Available Cystathionine beta synthase (CBS is the rate-limiting enzyme responsible for the de novo synthesis of cysteine. Patients with CBS deficiency have greatly elevated plasma total homocysteine (tHcy, decreased levels of plasma total cysteine (tCys, and often a marfanoid appearance characterized by thinness and low body-mass index (BMI. Here, we characterize the growth and body mass characteristics of CBS deficient TgI278T Cbs(-/- mice and show that these animals have significantly decreased fat mass and tCys compared to heterozygous sibling mice. The decrease in fat mass is accompanied by a 34% decrease in liver glutathione (GSH along with a significant decrease in liver mRNA and protein for the critical fat biosynthesizing enzyme Stearoyl CoA desaturase-1 (Scd-1. Because plasma tCys has been positively associated with fat mass in humans, we tested the hypothesis that decreased tCys in TgI278T Cbs(-/- mice was the cause of the lean phenotype by placing the animals on water supplemented with N-acetyl cysteine (NAC from birth to 240 days of age. Although NAC treatment in TgI278T Cbs(-/- mice caused significant increase in serum tCys and liver GSH, there was no increase in body fat content or in liver Scd-1 levels. Our results show that lack of CBS activity causes loss of fat mass, and that this effect appears to be independent of low serum tCys.

  7. Global Hawk Pacific (GloPac) COA and Mission Coordination

    Science.gov (United States)

    Dillon, Mark; Hall, Philip

    2010-01-01

    This slide presentation reviews the science objectives of the Global Hawk unmanned aircraft system (UAS) in the Pacific region, shows examp le flight tracks, the satellite under-flight requirement, the flight planning, and the agencies coordination of the airspace required for the Certificate of Authorization (COA).

  8. Molecular cloning and differential expressions of two cDNA encoding Type III polyketide synthase in different tissues of Curcuma longa L.

    Science.gov (United States)

    Resmi, M S; Soniya, E V

    2012-01-10

    Type III polyketide synthase family of enzymes play an important role in the biosynthesis of flavonoids and a variety of plant polyphenols by condensing multiple acetyl units derived from malonyl Co-A to thioester linked starter molecules covalently bound in the PKS active site. Turmeric (Curucma longa L.) through diverse metabolic pathways produces a large number of metabolites, of which curcuminoids had gained much attention due to its immense pharmaceutical value. Recent identification of multiple curcuminoid synthases from turmeric lead us to look for additional Type III PKS from this plant. The current study describes the occurrence of a multigene family of Type III PKS enzymes in C. longa by RT-PCR based genomic screening. We have also isolated two new Type III PKS, ClPKS9 and ClPKS10 using homology based RT-PCR and data mining. The comparative sequence and phylogenetic analysis revealed that the two PKSs belong to different groups with only 56% sequence similarity at their amino acid level. ClPKS9 shows all possible sequence requirements for a typical chalcone synthase whereas ClPKS10 shows promising variation at amino acid level and high similarity to reported curcuminoid synthases. ClPKS9 and ClPKS10 exhibited distinct tissue specific expression pattern in C. longa with the ClPKS9 transcript abundant in shoot and rhizome than leaves whereas ClPKS10 transcript was found to be high in leaf and very low in rhizome and root. Therefore it was concluded that ClPKS9 and ClPKS10 may have divergent function in planta, with possible role in typical chalcone forming reaction and curcuminoid scaffold biosynthetic pathway respectively.

  9. COA based robust output feedback UPFC controller design

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)

    2010-12-15

    In this paper, a novel method for the design of output feedback controller for unified power flow controller (UPFC) using chaotic optimization algorithm (COA) is developed. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from the local optimum, is a promising tool for the engineering applications. The selection of the output feedback gains for the UPFC controllers is converted to an optimization problem with the time domain-based objective function which is solved by a COA based on Lozi map. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization problem introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. To ensure the robustness of the proposed stabilizers, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller for damping low frequency oscillations is tested and demonstrated through non-linear time-domain simulation and some performance indices studies. The results analysis reveals that the designed COA based output feedback UPFC damping controller has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems.

  10. Effect of (L-Carnitine) on acetyl-L-carnitine production by heart mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Bieber, L.L.; Lilly, K.; Lysiak, W.

    1986-05-01

    The authors recently reported a large efflux of acetyl-L-carnitine from rat heart mitochondria during state 3 respiration with pyruvate as substrate both in the presence and absence of malate. In this series of experiments, the effect of the concentration of L-carnitine on the efflux of acetyl-L-carnitine and on the production of /sup 14/CO/sub 2/ from 2-/sup 14/C-pyruvate was determined. Maximum acetylcarnitine production (approximately 25 n moles/min/mg protein) was obtained at 3-5 mM L-carnitine in the absence of added malate. /sup 14/CO/sub 2/ production decreased as the concentration of L-carnitine increased; it plateaued at 3-5 mM L-carnitine. These data indicate carnitine can stimulate flux of pyruvate through pyruvate dehydrogenase and can reduce flux of acetyl CoA through the Krebs cycle by acting as an acceptor of the acetyl moieties of acetyl CoA generated by pyruvate dehydrogenase.

  11. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: effects of CoA transferase.

    Science.gov (United States)

    Yu, Le; Zhao, Jingbo; Xu, Mengmeng; Dong, Jie; Varghese, Saju; Yu, Mingrui; Tang, I-Ching; Yang, Shang-Tian

    2015-06-01

    The overexpression of CoA transferase (ctfAB), which catalyzes the reaction: acetate/butyrate + acetoacetyl-CoA → acetyl/butyryl-CoA + acetoacetate, was studied for its effects on acid reassimilation and butanol biosynthesis in Clostridium tyrobutyricum (Δack, adhE2). The plasmid pMTL007 was used to co-express adhE2 and ctfAB from Clostridium acetobutylicum ATCC 824. In addition, the sol operon containing ctfAB, adc (acetoacetate decarboxylase), and ald (aldehyde dehydrogenase) was also cloned from Clostridium beijerinckii NCIMB 8052 and expressed in C. tyrobutyricum (Δack, adhE2). Mutants expressing these genes were evaluated for their ability to produce butanol from glucose in batch fermentations at pH 5.0 and 6.0. Compared to C. tyrobutyricum (Δack, adhE2) without expressing ctfAB, all mutants with ctfAB overexpression produced more butanol, with butanol yield increased to 0.22 - 0.26 g/g (vs. 0.10 - 0.13 g/g) and productivity to 0.35 g/l h (vs. 0.13 g/l h) because of the reduced acetate and butyrate production. The expression of ctfAB also resulted in acetone production from acetoacetate through a non-enzymatic decarboxylation.

  12. Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development.

    Science.gov (United States)

    Jin, Huanan; Song, Zhihong; Nikolau, Basil J

    2012-06-01

    Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT-encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T-DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viable and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl CoA precursor required for the cytosol-localized, mevalonate-derived isoprenoid biosynthetic pathway.

  13. Pseudouridine synthases.

    Science.gov (United States)

    Hamma, Tomoko; Ferré-D'Amaré, Adrian R

    2006-11-01

    Pseudouridine synthases are the enzymes responsible for the most abundant posttranscriptional modification of cellular RNAs. These enzymes catalyze the site-specific isomerization of uridine residues that are already part of an RNA chain, and appear to employ both sequence and structural information to achieve site specificity. Crystallographic analyses have demonstrated that all pseudouridine synthases share a common core fold and active site structure and that this core is modified by peripheral domains, accessory proteins, and guide RNAs to give rise to remarkable substrate versatility.

  14. Properties of peroxisomal and mitochondrial citrate synthase from Agave americana.

    Science.gov (United States)

    Segovia, J L; Zafra, M F; Alejandre, M J; García-Peregrín, E

    1982-09-01

    Adenine nucleotides were tested as effectors of peroxisomal and mitochondrial citrate synthase from Agave americana leaves in the presence of different concentrations of acetyl-CoA and oxalacetate substrates. ATP inhibited both enzyme activities but with a different inhibition profile. 1.0-7.5 mM ADP did not inhibit the peroxisomal citrate synthase in the presence of high substrate concentrations, while the mitochondrial enzyme was strongly inhibited by 1.0 mM ADP in the same conditions. Likewise, a different pattern was obtained with AMP on both peroxisomal and mitochondrial activities. The rate of citrate formation as function of acetyl-CoA and oxalacetate concentration was also studied in both fractions. Maximal velocity was highest in the peroxisomal fraction, whether acetyl-CoA or oxalacetate were the variable substrates. These differences indicate that peroxisomal and mitochondrial citrate synthases seem to be two different isoenzymes.

  15. Aminoacyl-coenzyme A synthesis catalyzed by a CoA ligase from Penicillium chrysogenum

    NARCIS (Netherlands)

    Koetsier, Martijn J.; Jekel, Peter A.; Wijma, Hein J.; Bovenberg, Roel A. L.; Janssen, Dick B.

    2011-01-01

    Coenzyme A ligases play an important role in metabolism by catalyzing the activation of carboxylic acids. In this study we describe the synthesis of aminoacyl-coenzyme As (CoAs) catalyzed by a CoA ligase from Penicillium chrysogenum. The enzyme accepted medium-chain length fatty acids as the best

  16. Benzalacetone Synthase

    Directory of Open Access Journals (Sweden)

    Ikuro eAbe

    2012-03-01

    Full Text Available Benzalacetone synthase, from the medicinal plant Rheum palmatum (Polygonaceae (RpBAS, is a plant-specific chalcone synthase (CHS superfamily of type III polyketide synthase (PKS. RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site "gatekeeper" Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.

  17. Acetyl Coenzyme A Acetyltransferase of Rhizobium sp. (Cicer) Strain CC 1192.

    Science.gov (United States)

    Kim, S A; Copeland, L

    1997-09-01

    To investigate why Rhizobium sp. (Cicer) strain CC 1192 cells accumulate poly-R-3-hydroxybutyrate in the free-living state but not as bacteroids in nodules on chickpea (Cicer arietinum L.) plants, we have examined the kinetic properties of acetyl coenzyme A (acetyl-CoA) acetyltransferase (also known as acetoacetyl-CoA thiolase and 3-ketothiolase [EC 2.3.1.9]) from both types of cells. The enzyme had a native molecular mass of 180 (plusmn) 4 kDa, and the subunit molecular mass was 44 (plusmn) 1 kDa. The seven amino acids from the N terminus were Lys-Ala-Ser-Ile-Val-Ile-Ala. Thiolysis and condensation activity of the enzyme from free-living CC 1192 cells were optimal at pHs 7.8 and 8.1, respectively. The relationship between substrate concentrations and initial velocity for the thiolysis reaction were hyperbolic and gave K(infm) values for acetoacetyl-CoA and CoA of 42 and 56 (mu)M, respectively. The maximum velocity in the condensation direction was approximately 10% of that of the thiolysis reaction. With highly purified preparations of the enzyme, a value of approximately 1 mM was determined for the apparent K(infm) for acetyl-CoA. However, with partially purified enzyme preparations or when N-ethylmaleimide was included in reaction mixtures the apparent K(infm) for acetyl-CoA was close to 0.3 mM. In the condensation direction, CoA was a potent linear competitive inhibitor with an inhibition constant of 11 (mu)M. The much higher affinity of the enzyme for the product CoA than the substrate acetyl-CoA could have significance in view of metabolic differences between bacteroid and free-living cells of CC 1192. We propose that in free-living CC 1192 cells, the acetyl-CoA/CoA ratio reaches a value that allows condensation activity of acetyl-CoA acetyltransferase, but that in CC 1192 bacteroids, the ratio is poised so that the formation of acetoacetyl-CoA is not favored.

  18. Final report on the safety assessment of acetyl triethyl citrate, acetyl tributyl citrate, acetyl trihexyl citrate, and acetyl trioctyl citrate.

    Science.gov (United States)

    Johnson, Wilbur

    2002-01-01

    Acetyl Triethyl Citrate, Acetyl Tributyl Citrate, Acetyl Trihexyl Citrate, and Acetyl Trioctyl Citrate all function as plasticizers in cosmetics. Additionally, the Trihexyl and Trioctyl forms are described as skin-conditioning agents-emollients, although there are currently no reported uses of Acetyl Trihexyl Citrate or Acetyl Trioctyl Citrate. Acetyl Triethyl Citrate and Acetyl Tributyl Citrate are used in nail products at concentrations up to 7%. Recognizing that there are no reported uses of Acetyl Trihexyl or Trioctyl Citrate, if they were to be used in the future, their concentration of use is expected to be no higher than that reported for Acetyl Triethyl and Tributyl Citrate. These ingredients were sufficiently similar in structure that safety test data on one were considered applicable to all. Approximately 99% of orally administered Acetyl Tributyl Citrate is excreted-intermediate metabolites include acetyl citrate, monobutyl citrate, acetyl monobutyl citrate, dibutyl citrate, and acetyl dibutyl citrate. In acute, short-term, subchronic, and chronic feeding studies, these ingredients were relatively nontoxic. Differences from controls were either not statistically significant or not related to any organ toxicity. Ocular exposures produced moderate reactions that cleared by 48 hours after instillation. Dermal application was not toxic in rabbits. In a guinea pig maximization test, Acetyl Triethyl Citrate was a sensitizer whereas Acetyl Tributyl Citrate was not. Limited clinical testing of Acetyl Triethyl Citrate and Acetyl Tributyl Citrate was negative for both skin irritation and sensitization. These clinical data were considered more relevant than the guinea pig maximization data, suggesting to the Cosmetic Ingredient Review Expert Panel that none of these ingredients would be a sensitizer. Physiologic effects noted with intravenous delivery of Acetyl Triethyl Citrate or Acetyl Tributyl Citrate include dose-related decreases in blood pressure and

  19. Biochemical characterization and substrate specificity of jojoba fatty acyl-CoA reductase and jojoba wax synthase.

    Science.gov (United States)

    Miklaszewska, Magdalena; Banaś, Antoni

    2016-08-01

    Wax esters are used in industry for production of lubricants, pharmaceuticals and cosmetics. The only natural source of wax esters is jojoba oil. A much wider variety of industrial wax esters-containing oils can be generated through genetic engineering. Biotechnological production of tailor-made wax esters requires, however, a detailed substrate specificity of fatty acyl-CoA reductases (FAR) and wax synthases (WS), the two enzymes involved in wax esters synthesis. In this study we have successfully characterized the substrate specificity of jojoba FAR and jojoba WS. The genes encoding both enzymes were expressed heterologously in Saccharomyces cerevisiae and the activity of tested enzymes was confirmed by in vivo studies and in vitro assays using microsomal preparations from transgenic yeast. Jojoba FAR exhibited the highest in vitro activity toward 18:0-CoA followed by 20:1-CoA and 22:1-CoA. The activity toward other 11 tested acyl-CoAs was low or undetectable as with 18:2-CoA and 18:3-CoA. In assays characterizing jojoba WS combinations of 17 fatty alcohols with 14 acyl-CoAs were tested. The enzyme displayed the highest activity toward 14:0-CoA and 16:0-CoA in combination with C16-C20 alcohols as well as toward C18 acyl-CoAs in combination with C12-C16 alcohols. 20:1-CoA was efficiently utilized in combination with most of the tested alcohols.

  20. Underlying resistance mechanisms in the Cynosurus echinatus biotype to acetyl CoA carboxylase-inhibiting herbicides

    Directory of Open Access Journals (Sweden)

    Pablo eFernández

    2016-04-01

    Full Text Available Hedgehog dogtail (Cynosurus echinatus is an annual grass, native to Europe, but also widely distributed in North and South America, South Africa and Australia. Two hedgehog dogtail biotypes, one diclofop-methyl (DM-resistant and one DM-susceptible were studied in detail for experimental dose-response resistance mechanisms. Herbicide rates that inhibited shoot growth by 50% (GR50 were determined for DM, being the resistance factor (GR50R/GR50S of 43.81. When amitrole (Cyt. P450 inhibitor was applied before treatment with DM, the R biotype growth was significantly inhibited (GR50 of 1019.9 g ai ha-1 compared with the GR50 (1484.6 g ai ha-1 found for the R biotype without pretreatment with amitrole. However, GR50 values for S biotype do not vary with or without amitrole pretreatment. Dose-response experiments carried out to evaluate cross-resistance, showed resistance to aryloxyphenoxypropionate (APP, cyclohexanodione (CHD and phenylpyrazoline (PPZ inhibiting herbicides. Both R and S biotypes had a similar 14C-DM uptake and translocation. The herbicide was poorly distributed among leaves, the rest of the shoot and roots with unappreciable acropetal and/or basipetal DM translocation at 96 HAT. The metabolism of 14C-DM, D-acid and D-conjugate metabolites were identified by thin-layer chromatography. The results showed that DM resistance in C. echinatus is likely due to enhanced herbicide metabolism, involving Cyt. P450 as was demonstrated by indirect assays (amitrole pretreatment. The ACCase in vitro assays showed that the target site was very sensitive to APP, CHD and PPZ herbicides in the C. echinatus S biotype, while the R biotype was insensitive to the previously mentioned herbicides. DNA sequencing studies confirmed that C. echinatus cross-resistance to ACCase inhibitors has been conferred by specific ACCase double point mutations Ile-2041-Asn and Cys-2088-Arg.

  1. Mosaic Conservation Opportunity Areas - Conservativel Model (ECO_RES.COA_MOSAIC66)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The COA_Mosaic66 layer designates areas with potential for forest/grassland mosaic conservation. These are areas of natural or semi-natural forest/grassland land...

  2. Mosaic Conservation Opportunity Areas - Liberal Model (ECO_RES.COA_MOSAIC33)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The COA_Mosaic33 layer designates areas with potential for forest/grassland mosaic conservation. These are areas of natural or semi-natural forest/grassland mosaic...

  3. Mutations in COA6 cause cytochrome c oxidase deficiency and neonatal hypertrophic cardiomyopathy.

    Science.gov (United States)

    Baertling, Fabian; A M van den Brand, Mariel; Hertecant, Jozef L; Al-Shamsi, Aisha; P van den Heuvel, Lambert; Distelmaier, Felix; Mayatepek, Ertan; Smeitink, Jan A; Nijtmans, Leo G J; Rodenburg, Richard J T

    2015-01-01

    COA6/C1ORF31 is involved in cytochrome c oxidase (complex IV) biogenesis. We present a new pathogenic COA6 variant detected in a patient with neonatal hypertrophic cardiomyopathy and isolated complex IV deficiency. For the first time, clinical details about a COA6-deficient patient are given and patient fibroblasts are functionally characterized: COA6 protein is undetectable and steady-state levels of complex IV and several of its subunits are reduced. The monomeric COX1 assembly intermediate accumulates. Using pulse-chase experiments, we demonstrate an increased turnover of mitochondrial encoded complex IV subunits. Although monomeric complex IV is decreased in patient fibroblasts, the CI/CIII2 /CIVn -supercomplexes remain unaffected. Copper supplementation shows a partial rescue of complex IV deficiency in patient fibroblasts. We conclude that COA6 is required for complex IV subunit stability. Furthermore, the proposed role in the copper delivery pathway to complex IV subunits is substantiated and a therapeutic lead for COA6-deficient patients is provided.

  4. 3-Hydroxy-3-methylglutaryl CoA lyase (HL): Mouse and human HL gene (HMGCL) cloning and detection of large gene deletions in two unrelated HL-deficient patients

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.P.; Robert, M.F.; Mitchell, G.A. [Hopital Sainte-Justine, Quebec (Canada)] [and others

    1996-04-01

    3-hydroxy-3-methylglutaryl CoA lyase (HL, EC 4.1.3.4) catalyzes the cleavage of 3-hydroxy-3-methylglutaryl CoA to acetoacetic acid and acetyl CoA, the final reaction of both ketogenesis and leucine catabolism. Autosomal-recessive HL deficiency in humans results in episodes of hypoketotic hypoglycemia and coma. Using a mouse HL cDNA as a probe, we isolated a clone containing the full-length mouse HL gene that spans about 15 kb of mouse chromosome 4 and contains nine exons. The promoter region of the mouse HL gene contains elements characteristic of a housekeeping gene: a CpG island containing multiple Sp1 binding sites surrounds exon 1, and neither a TATA nor a CAAT box are present. We identified multiple transcription start sites in the mouse HL gene, 35 to 9 bases upstream of the translation start codon. We also isolated two human HL genomic clones that include HL exons 2 to 9 within 18 kb. The mouse and human HL genes (HGMW-approved symbol HMGCL) are highly homologous, with identical locations of intron-exon junctions. By genomic Southern blot analysis and exonic PCR, was found 2 of 33 HL-deficient probands to be homozygous for large deletions in the HL gene. 26 refs., 4 figs., 2 tabs.

  5. Structural and docking studies of Leucaena leucocephala Cinnamoyl CoA reductase.

    Science.gov (United States)

    Prasad, Nirmal K; Vindal, Vaibhav; Kumar, Vikash; Kabra, Ashish; Phogat, Navneet; Kumar, Manoj

    2011-03-01

    Lignin, a major constituent of plant call wall, is a phenolic heteropolymer. It plays a major role in the development of plants and their defense mechanism against pathogens. Therefore Lignin biosynthesis is one of the critical metabolic pathways. In lignin biosynthesis, the Cinnamoyl CoA reductase is a key enzyme which catalyzes the first step in the pathway. Cinnamoyl CoA reductase provides the substrates which represent the main transitional molecules of lignin biosynthesis pathway, exhibits a high in vitro kinetic preference for feruloyl CoA. In present study, the three-dimensional model of cinnamoyl CoA reductase was constructed based on the crystal structure of Grape Dihydroflavonol 4-Reductase. Furthermore, the docking studies were performed to understand the substrate interactions to the active site of CCR. It showed that residues ARG51, ASN52, ASP54 and ASN58 were involved in substrate binding. We also suggest that residue ARG51 in CCR is the determinant residue in competitive inhibition of other substrates. This structural and docking information have prospective implications to understand the mechanism of CCR enzymatic reaction with feruloyl CoA, however the approach will be applicable in prediction of substrates and engineering 3D structures of other enzymes as well.

  6. Effect of elevated total CoA levels on metabolic pathways in cultured hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, C.A.; Smith, C.M.

    1987-05-01

    Livers from fasted rats have 30% higher total CoA levels than fed rats. To determine whether this increase of total CoA influences metabolism, the rates of gluconeogenesis, fatty acid oxidation and ketogenesis were measured in hepatocytes with cyanamide (CYM) or pantothenate (PA) deficient medium used to vary total CoA levels independently of hormonal status. Primary cultures of rat hepatocytes were incubated 14 hrs with Bt/sub 2/ cAMP, dexamethasone + theophylline in PA deficient medium or with CYM (500 ..mu..M) + PA, rinsed and preincubated 0.5 hr to remove the CYM. Hepatocytes treated with CYM had total CoA levels 10-24% higher than PA deficient cells and lower rates of glucose production from lactate + pyruvate (L/P) or from alanine (0.23 +/- 0.05 and 0.089 +/- 0.02 ..mu..m/mg protein, respectively in CYM treated cells compared to 0.33 +/- 0.06 and 0.130 +/- 0.006 in PA deficient cells). This decrease was not due to CYM per se, as the direct addition of CYM stimulated glucose production from L/P. CYM treated cells with 15-40% higher total CoA and 30% higher fatty acyl-CoA levels had the same rates of (/sup 14/C)-palmitate oxidation as PA deficient cells. However, rates of ketogenesis were lower in CYM treated cells (163 +/- 11 nm/mg compared to 217 +/- 14 nm/mg protein). These results suggest that physiological alterations of hepatic total CoA levels are not necessary for fasting rates of gluconeogenesis, fatty acid oxidation and ketogenesis.

  7. CoaSim: A Flexible Environment for Simulating Genetic Data under Coalescent Models

    DEFF Research Database (Denmark)

    Mailund; Schierup, Mikkel Heide; Pedersen, Christian Nørgaard Storm

    2005-01-01

    get insight into these. Results We have created the CoaSim application as a flexible environment for Monte various types of genetic data under equilibrium and non-equilibrium coalescent variety of applications. Interaction with the tool is through the Guile version scripting language. Scheme scripts...... for many standard and advanced applications these can easily be modified by the user for a much wider range of applications. interface with less functionality and flexibility is also included. It is primarily exploratory and educational tool. Conclusions CoaSim is a powerful tool because of its flexibility...

  8. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Weinert, Brian Tate; Iesmantavicius, Vytautas; Moustafa, Tarek

    2014-01-01

    Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation...... acetylation stoichiometry and found that the vast majority of mitochondrial and cytoplasmic acetylation had a very low stoichiometry. However, mitochondrial acetylation occurred at a significantly higher basal level than cytoplasmic acetylation, consistent with the distinct acetylation dynamics and higher...... acetyl-CoA concentration in mitochondria. High stoichiometry acetylation occurred mostly on histones, proteins present in histone acetyltransferase and deacetylase complexes, and on transcription factors. These data show that a majority of acetylation occurs at very low levels in exponentially growing...

  9. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae.

    Science.gov (United States)

    Weinert, Brian T; Iesmantavicius, Vytautas; Moustafa, Tarek; Schölz, Christian; Wagner, Sebastian A; Magnes, Christoph; Zechner, Rudolf; Choudhary, Chunaram

    2014-01-01

    Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation accumulated in growth-arrested cells in a manner that depended on acetyl-CoA generation in distinct subcellular compartments. Mitochondrial acetylation levels correlated with acetyl-CoA concentration in vivo and acetyl-CoA acetylated lysine residues nonenzymatically in vitro. We developed a method to estimate acetylation stoichiometry and found that the vast majority of mitochondrial and cytoplasmic acetylation had a very low stoichiometry. However, mitochondrial acetylation occurred at a significantly higher basal level than cytoplasmic acetylation, consistent with the distinct acetylation dynamics and higher acetyl-CoA concentration in mitochondria. High stoichiometry acetylation occurred mostly on histones, proteins present in histone acetyltransferase and deacetylase complexes, and on transcription factors. These data show that a majority of acetylation occurs at very low levels in exponentially growing yeast and is uniformly affected by exposure to acetyl-CoA.

  10. SHORT COMMUNICATION ACETYLATION AND OXYGENATION ...

    African Journals Online (AJOL)

    a

    mild conditions and in processes that are environmentally benign. ... All the products were characterized by a comparison of their spectral and .... In conclusion, an eco-friendly, clean, and cheap heterogeneous catalytic acetylation and.

  11. Spectroscopic Classification of SN 2017coa as a Type Ia Supernova

    Science.gov (United States)

    Xiang, Danfeng; Rui, Liming; Wang, Xiaofeng; Tan, Hanjie; Li, Wenxiong; Zhang, Tianmeng; Xu, Zhijian; Yang, Zesheng; Song, Hao; Mo, Jun; Wang, Yuanhao; Zhou, Ziheng; Meng, Xianmin; Qian, Shenban; Jia, Junjun; Zhou, Xu; Zhang, Jujia

    2017-04-01

    We obtained an optical spectrum (range 360-840 nm) of SN 2017coa,discovered by Tsinghua-NAOC Transient Survey (TNTS), on UT Mar.31.49 2017 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).

  12. Kinetic properties and inhibition of Trypanosoma cruzi 3-hydroxy-3-methylglutaryl CoA reductase

    DEFF Research Database (Denmark)

    Hurtado-Guerrrero, Ramón; Pena Diaz, Javier; Montalvetti, Andrea;

    2002-01-01

    A detailed kinetic analysis of the recombinant soluble enzyme 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) from Trypanosoma cruzi has been performed. The enzyme catalyzes the normal anabolic reaction and the reductant is NADPH. It also catalyzes the oxidation of mevalonate but at a lower propo...

  13. Biochemistry: Acetohydroxyacid Synthase

    Directory of Open Access Journals (Sweden)

    Pham Ngoc Chien

    2010-02-01

    Full Text Available Acetohydroxyacid synthase (AHAS, EC 2.2.1.6; formerly known as acetolactate synthase, ALS is a thiamin-and FAD-dependent enzyme which catalyses the first common step in the biosynthesis of the branched-chain amino acids (BCAA isoleucine, leucine and valine. The enzyme is inhibited by several commercial herbicides and has been studied over the last 20 to 30 years. A short introductory note about acetohydroxyacid synthase has been provided.

  14. Domain analysis of 3 Keto Acyl-CoA synthase for structural variations in Vitis vinifera and Oryza brachyantha using comparative modelling.

    Science.gov (United States)

    Sagar, Mamta; Pandey, Neetesh; Qamar, Naseha; Singh, Brijendra; Shukla, Akanksha

    2015-03-01

    The long chain fatty acids incorporated into plant lipids are derived from the iterative addition of C2 units which is provided by malonyl-CoA to an acyl-CoA after interactions with 3-ketoacyl-CoA synthase (KCS), found in several plants. This study provides functional characterization of three 3 ketoacyl CoA synthase like proteins in Vitis vinifera (one) and Oryza brachyantha (two proteins). Sequence analysis reveals that protein of Oryza brachyantha shows 96% similarity to a hypothetical protein in Sorghum bicolor; total 11 homologs were predicted in Sorghum bicolor. Conserved domain prediction confirm the presence of FAE1/Type III polyketide synthase-like protein, Thiolase-like, subgroup; Thiolase-like and 3-Oxoacyl-ACP synthase III, C-terminal and chalcone synthase like domain but very long chain 3-keto acyl CoA domain is absent. All three proteins were found to have Chalcone and stilbene synthases C terminal domain which is similar to domain of thiolase and β keto acyl synthase. Its N terminal domain is absent in J3M9Z7 protein of Oryza brachyantha and F6HH63 protein of Vitis vinifera. Differences in N-terminal domain is responsible for distinguish activity. The J3MF16 protein of Oryza brachyantha contains N terminal domain and C terminal domain and characterized using annotation of these domains. Domains Gcs (streptomyces coelicolor) and Chalcone-stilbene synthases (KAS) in 2-pyrone synthase (Gerbera hybrid) and chalcone synthase 2 (Medicago sativa) were found to be present in three proteins. This similarity points toward anthocyanin biosynthetic process. Similarity to chalcone synthase 2 reveals its possible role in Naringenine and Chalcone synthase like activity. In 3 keto acyl CoA synthase of Oryza brachyantha. Active site residues C-240, H-407, N-447 are present in J3MF16 protein that are common in these three protein at different positions. Structural variations among dimer interface, product binding site, malonyl-CoA binding sites, were predicted in

  15. Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure.

    Science.gov (United States)

    Fukushima, Arata; Lopaschuk, Gary D

    2016-12-01

    Alterations in cardiac energy metabolism are an important contributor to the cardiac pathology associated with obesity, diabetes, and heart failure. High rates of fatty acid β-oxidation with cardiac insulin resistance represent a cardiac metabolic hallmark of diabetes and obesity, while a marginal decrease in fatty acid oxidation and a prominent decrease in insulin-stimulated glucose oxidation are commonly seen in the early stages of heart failure. Alterations in post-translational control of energy metabolic processes have recently been identified as an important contributor to these metabolic changes. In particular, lysine acetylation of non-histone proteins, which controls a diverse family of mitochondrial metabolic pathways, contributes to the cardiac energy derangements seen in obesity, diabetes, and heart failure. Lysine acetylation is controlled both via acetyltransferases and deacetylases (sirtuins), as well as by non-enzymatic lysine acetylation due to increased acetyl CoA pool size or dysregulated nicotinamide adenine dinucleotide (NAD(+)) metabolism (which stimulates sirtuin activity). One of the important mitochondrial acetylation targets are the fatty acid β-oxidation enzymes, which contributes to alterations in cardiac substrate preference during the course of obesity, diabetes, and heart failure, and can ultimately lead to cardiac dysfunction in these disease states. This review will summarize the role of lysine acetylation and its regulatory control in the context of mitochondrial fatty acid β-oxidation. The functional contribution of cardiac protein lysine acetylation to the shift in cardiac energy substrate preference that occurs in obesity, diabetes, and especially in the early stages of heart failure will also be reviewed. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.

  16. Pyrophosphate-Dependent ATP Formation from Acetyl Coenzyme A in Syntrophus aciditrophicus, a New Twist on ATP Formation

    Directory of Open Access Journals (Sweden)

    Kimberly L. James

    2016-08-01

    Full Text Available Syntrophus aciditrophicus is a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation by S. aciditrophicus. However, the absence of homologs for phosphate acetyltransferase and acetate kinase in the genome of S. aciditrophicus leaves it unclear as to how ATP is formed, as most fermentative bacteria rely on these two enzymes to synthesize ATP from acetyl coenzyme A (CoA and phosphate. Here, we combine transcriptomic, proteomic, metabolite, and enzymatic approaches to show that S. aciditrophicus uses AMP-forming, acetyl-CoA synthetase (Acs1 for ATP synthesis from acetyl-CoA. acs1 mRNA and Acs1 were abundant in transcriptomes and proteomes, respectively, of S. aciditrophicus grown in pure culture and coculture. Cell extracts of S. aciditrophicus had low or undetectable acetate kinase and phosphate acetyltransferase activities but had high acetyl-CoA synthetase activity under all growth conditions tested. Both Acs1 purified from S. aciditrophicus and recombinantly produced Acs1 catalyzed ATP and acetate formation from acetyl-CoA, AMP, and pyrophosphate. High pyrophosphate levels and a high AMP-to-ATP ratio (5.9 ± 1.4 in S. aciditrophicus cells support the operation of Acs1 in the acetate-forming direction. Thus, S. aciditrophicus has a unique approach to conserve energy involving pyrophosphate, AMP, acetyl-CoA, and an AMP-forming, acetyl-CoA synthetase.

  17. Association between the enterotoxin production and presence of Coa, Nuc genes among Staphylococcus aureus isolated from various sources, in Shiraz

    OpenAIRE

    Moghassem Hamidi, R; Hosseinzadeh, S; Shekarforoush, S. S.; Poormontaseri, M; Derakhshandeh, A

    2015-01-01

    The present study was aimed to identify the frequency of coagulase (Coa) and thermonuclease (Nuc) genes and Staphylococcal enterotoxin A (Sea) production among Staphylococcus aureus isolated from various sources in Shiraz. Moreover, the correlation between the Sea gene and coagulase and thermonuclease enzymes is also considered. A total of 100 S. aureus were isolated from various sources including 40 humans, 30 animals and 30 food samples by the routine biochemical tests. The frequency of Coa...

  18. Strategy Planning Visualization Tool (SPVT) for the Air Operations Center (AOC) Volume I: SPVT Summary and COA Sketch

    Science.gov (United States)

    2009-12-01

    achieve the Joint Commander’s desired effects. COA Sketch supports COA analysis and comparison by     22 offering a collection of intelligent forms...Services Gateway Initiative ( OSGi ) compliant plug-in infrastructure based upon the Eclipse RCP. IOPC-X client components included the following...software needs to be written to allow dynamic update – this capability is provided by the workbench and the OSGi framework. 3.7.2 EXTERNAL INTERFACES

  19. The oxidation of dicarboxylic acid CoA esters via peroxisomal fatty acyl-CoA oxidase.

    Science.gov (United States)

    Poosch, M S; Yamazaki, R K

    1989-12-18

    Evidence supporting a common peroxisomal beta-oxidation pathway for the coenzyme A thioesters of medium-chain-length dicarboxylic acids (DCn-CoA) and monocarboxylic acids (MCn-CoA) has been obtained. Using the mono-CoA esters of dodecanedioic acid (DC12-CoA) and lauroyl-CoA (MC12-CoA) as substrates, parallel inductions of activities and parallel increases in specific activities during purification of peroxisomal fatty acyl-CoA oxidase (EC 1.3.99.3) from rat liver after di(2-ethylhexyl)phthalate treatment were seen. The purified enzyme was used for antiserum production in rabbits; antiserum specificity was verified by immunoblot analysis. Coincident losses of oxidase activities with MC12-CoA and DC12-CoA were found in immunotitration experiments with rat liver homogenates, supporting the hypothesis that peroxisomal fatty acyl-CoA oxidase is solely responsible for the oxidation of medium-chain length dicarboxylic acid substrates. Kinetic studies with purified enzyme using the mono-CoA esters of sebacic (DC10-CoA), suberic (DC8-CoA), and adipic (DC6-CoA) acids along with DC12-CoA revealed substrate inhibition. Although these substrates exhibited similar calculated Vmax values, with decreasing chain length, the combination of increasing Km values and decreasing substrate inhibition constant (Ki) caused the maximum obtainable velocity to decrease. These studies offer an explanation for the previously observed limit of the ability of peroxisomes to chain-shorten dicarboxylates and increased urinary excretion of adipic acid when peroxisomal oxidation of dicarboxylic acids is enhanced.

  20. Metabolic biology of 3-methylglutaconic acid-uria: a new perspective.

    Science.gov (United States)

    Su, Betty; Ryan, Robert O

    2014-05-01

    Over the past 25 years a growing number of distinct syndromes/mutations associated with compromised mitochondrial function have been identified that share a common feature: urinary excretion of 3-methylglutaconic acid (3MGA). In the leucine degradation pathway, carboxylation of 3-methylcrotonyl CoA leads to formation of 3-methylglutaconyl CoA while 3-methylglutaconyl CoA hydratase converts this metabolite to 3-hydroxy-3-methylglutaryl CoA (HMG CoA). In "primary" 3MGA-uria, mutations in the hydratase are directly responsible for the accumulation of 3MGA. On the other hand, in all "secondary" 3MGA-urias, no defect in leucine catabolism exists and the metabolic origin of 3MGA is unknown. Herein, a path to 3MGA from mitochondrial acetyl CoA is proposed. The pathway is initiated when syndrome-associated mutations/DNA deletions result in decreased Krebs cycle flux. When this occurs, acetoacetyl CoA thiolase condenses two acetyl CoA into acetoacetyl CoA plus CoASH. Subsequently, HMG CoA synthase 2 converts acetoacetyl CoA and acetyl CoA to HMG CoA. Under syndrome-specific metabolic conditions, 3-methylglutaconyl CoA hydratase converts HMG CoA into 3-methylglutaconyl CoA in a reverse reaction of the leucine degradation pathway. This metabolite fails to proceed further up the leucine degradation pathway owing to the kinetic properties of 3-methylcrotonyl CoA carboxylase. Instead, hydrolysis of the CoA moiety of 3-methylglutaconyl CoA generates 3MGA, which appears in urine. If experimentally confirmed, this pathway provides an explanation for the occurrence of 3MGA in multiple disorders associated with compromised mitochondrial function.

  1. Cooperation between COA6 and SCO2 in COX2 maturation during cytochrome c oxidase assembly links two mitochondrial cardiomyopathies.

    Science.gov (United States)

    Pacheu-Grau, David; Bareth, Bettina; Dudek, Jan; Juris, Lisa; Vögtle, F-Nora; Wissel, Mirjam; Leary, Scot C; Dennerlein, Sven; Rehling, Peter; Deckers, Markus

    2015-06-02

    Three mitochondria-encoded subunits form the catalytic core of cytochrome c oxidase, the terminal enzyme of the respiratory chain. COX1 and COX2 contain heme and copper redox centers, which are integrated during assembly of the enzyme. Defects in this process lead to an enzyme deficiency and manifest as mitochondrial disorders in humans. Here we demonstrate that COA6 is specifically required for COX2 biogenesis. Absence of COA6 leads to fast turnover of newly synthesized COX2 and a concomitant reduction in cytochrome c oxidase levels. COA6 interacts transiently with the copper-containing catalytic domain of newly synthesized COX2. Interestingly, similar to the copper metallochaperone SCO2, loss of COA6 causes cardiomyopathy in humans. We show that COA6 and SCO2 interact and that corresponding pathogenic mutations in each protein affect complex formation. Our analyses define COA6 as a constituent of the mitochondrial copper relay system, linking defects in COX2 metallation to cardiac cytochrome c oxidase deficiency.

  2. Acetyl-Phosphate Is a Critical Determinant of Lysine Acetylation in E. coli

    DEFF Research Database (Denmark)

    Weinert, Brian T; Iesmantavicius, Vytautas; Wagner, Sebastian A

    2013-01-01

    Lysine acetylation is a frequently occurring posttranslational modification in bacteria; however, little is known about its origin and regulation. Using the model bacterium Escherichia coli (E. coli), we found that most acetylation occurred at a low level and accumulated in growth-arrested cells...... acetylate lysine residues in vitro and that AcP levels are correlated with acetylation levels in vivo, suggesting that AcP may acetylate proteins nonenzymatically in cells. These results uncover a critical role for AcP in bacterial acetylation and indicate that most acetylation in E. coli occurs at a low...

  3. Swelling of acetylated wood in organic liquids

    CERN Document Server

    Obataya, E; Obataya, Eiichi; Gril, Joseph

    2005-01-01

    To investigate the affinity of acetylated wood for organic liquids, Yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. The acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and/or very slowly. On the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. Consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. The effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. The easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups.

  4. Flow properties of acetylated chickpea protein dispersions.

    Science.gov (United States)

    Liu, Li H; Hung, Tran V

    2010-06-01

    Chickpea protein concentrate was acetylated with acetic anhydride at 5 levels. Acetylated chickpea protein (ACP) dispersions at 3 levels (6%, 45%, and 49%) were chosen for this flow property study. Effects of protein concentration, temperature, concentrations of salt addition and particularly, degree of acetylation on these properties were examined. Compared with native chickpea proteins, the ACP dispersions exhibited a strong shear thinning behavior. Within measured temperature range (15 to 55 degrees C), the apparent viscosities of native chickpea protein dispersions were temperature independent; those of ACP dispersions were thermally affected. The flow index (n), consistency coefficient (m), apparent yield stress, and apparent viscosities of ACP dispersions increased progressively up to 45% acetylation but decreased at 49% acetylation level. Conformational studies by gel filtration suggested that chickpea proteins were associated or polymerized at up to 45% acetylation but the associated subunits gradually dissociated to smaller units at higher levels (49%) of acetylation.

  5. A Chemo-Enzymatic Road Map to the Synthesis of CoA Esters

    Directory of Open Access Journals (Sweden)

    Dominik M. Peter

    2016-04-01

    Full Text Available Coenzyme A (CoA is a ubiquitous cofactor present in every known organism. The thioesters of CoA are core intermediates in many metabolic processes, such as the citric acid cycle, fatty acid biosynthesis and secondary metabolism, including polyketide biosynthesis. Synthesis of CoA-thioesters is vital for the study of CoA-dependent enzymes and pathways, but also as standards for metabolomics studies. In this work we systematically tested five chemo-enzymatic methods for the synthesis of the three most abundant acyl-CoA thioester classes in biology; saturated acyl-CoAs, α,β-unsaturated acyl-CoAs (i.e., enoyl-CoA derivatives, and α-carboxylated acyl-CoAs (i.e., malonyl-CoA derivatives. Additionally we report on the substrate promiscuity of three newly described acyl-CoA dehydrogenases that allow the simple conversion of acyl-CoAs into enoyl-CoAs. With these five methods, we synthesized 26 different CoA-thioesters with a yield of 40% or higher. The CoA esters produced range from short- to long-chain, include branched and α,β-unsaturated representatives as well as other functional groups. Based on our results we provide a general guideline to the optimal synthesis method of a given CoA-thioester in respect to its functional group(s and the commercial availability of the precursor molecule. The proposed synthetic routes can be performed in small scale and do not require special chemical equipment, making them convenient also for biological laboratories.

  6. Radioisotopic assays of CoASH and carnitine and their acetylated forms in human skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Cederblad, G.; Carlin, J.I.; Constantin-Teodosiu, D.; Harper, P.; Hultman, E. (Karolinska Institute, Huddinge Hospital (Sweden))

    1990-03-01

    Radioisotopic assays for the determination of acetyl-CoA, CoASH, and acetylcarnitine have been modified for application to the amount of human muscle tissue that can be obtained by needle biopsy. In the last step common to all three methods, acetyl-CoA is condensed with (14C)oxaloacetate by citrate synthase to give (14C)-citrate. For determination of CoASH, CoASH is reacted with acetylphosphate in a reaction catalyzed by phosphotransacetylase to yield acetyl-CoA. In the assay for acetylcarnitine, acetylcarnitine is reacted with CoASH in a reaction catalyzed by carnitine acetyltransferase to form acetyl-CoA. Inclusion of new simple steps in the acetylcarnitine assay and conditions affecting the reliability of all three methods are also described. Acetylcarnitine and free carnitine levels in human rectus abdominis muscle were 3.0 +/- 1.5 (SD) and 13.5 +/- 4.0 mumol/g dry wt, respectively. Values for acetyl-CoA and CoASH were about 500-fold lower, 6.7 +/- 1.8 and 21 +/- 8.9 nmol/g dry wt, respectively. A strong correlation between acetylcarnitine (y) and short-chain acylcarnitine (x), determined as the difference between total and free carnitine, was found in biopsies from the vastus lateralis muscle obtained during intense muscular effort, y = 1.0x + 0.5; r = 0.976.

  7. Very long-chain acyl CoA dehydrogenase deficiency which was accepted as infanticide.

    Science.gov (United States)

    Eminoglu, Tuba F; Tumer, Leyla; Okur, Ilyas; Ezgu, Fatih S; Biberoglu, Gursel; Hasanoglu, Alev

    2011-07-15

    Very-long-chain acyl-coenzyme A (CoA) dehydrogenase deficiency (VLCADD) (OMIM #201475) is an autosomal recessive disorder of fatty acid oxidation. Major phenotypic expressions are hypoketotic hypoglycemia, hepatomegaly, cardiomyopathy, myopathy, rhabdomyolysis, elevated creatinine kinase, and lipid infiltration of liver and muscle. At the same time, it is a rare cause of Sudden Infant Death Syndrome (SIDS) or unexplained death in the neonatal period [1-4]. We report a patient with VLCADD whose parents were investigated for infanticide because her three previous siblings had suddenly died after normal deliveries.

  8. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions.

    Science.gov (United States)

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas; Zechner, Rudolf; Choudhary, Chunaram

    2015-11-03

    Acetylation is frequently detected on mitochondrial enzymes, and the sirtuin deacetylase SIRT3 is thought to regulate metabolism by deacetylating mitochondrial proteins. However, the stoichiometry of acetylation has not been studied and is important for understanding whether SIRT3 regulates or suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue of fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation sites, and greater sensitivity of SIRT3-targeted sites to chemical acetylation in vitro and fasting-induced acetylation in vivo, suggest a nonenzymatic mechanism of acetylation. Our data indicate that most mitochondrial acetylation occurs as a low-level nonenzymatic protein lesion and that SIRT3 functions as a protein repair factor that removes acetylation lesions from lysine residues.

  9. Occurrence of naturally acetylated lignin units.

    Science.gov (United States)

    Del Río, José C; Marques, Gisela; Rencoret, Jorge; Martínez, Angel T; Gutiérrez, Ana

    2007-07-11

    This work examines the occurrence of native acetylated lignin in a large set of vascular plants, including both angiosperms and gymnosperms, by a modification of the so-called Derivatization Followed by Reductive Cleavage (DFRC) method. Acetylated lignin units were found in the milled wood lignins of all angiosperms selected for this study, including mono- and eudicotyledons, but were absent in the gymnosperms analyzed. In some plants (e.g., abaca, sisal, kenaf, or hornbeam), lignin acetylation occurred at a very high extent, exceeding 45% of the uncondensed (alkyl-aryl ether linked) syringyl lignin units. Acetylation was observed exclusively at the gamma-carbon of the lignin side chain and predominantly on syringyl units, although a predominance of acetylated guaiacyl over syringyl units was observed in some plants. In all cases, acetylation appears to occur at the monomer stage, and sinapyl and coniferyl acetates seem to behave as real lignin monomers participating in lignification.

  10. CoaSim: A flexible environment for simulating genetic data under coalescent models

    Directory of Open Access Journals (Sweden)

    Pedersen Christian NS

    2005-10-01

    Full Text Available Abstract Background Coalescent simulations are playing a large role in interpreting large scale intra-specific sequence or polymorphism surveys and for planning and evaluating association studies. Coalescent simulations of data sets under different models can be compared to the actual data to test the importance of different evolutionary factors and thus get insight into these. Results We have created the CoaSim application as a flexible environment for Monte Carlo simulation of various types of genetic data under equilibrium and non-equilibrium coalescent processes for a variety of applications. Interaction with the tool is through the Guile version of the Scheme scripting language. Scheme scripts for many standard and advanced applications are provided and these can easily be modified by the user for a much wider range of applications. A graphical user interface with less functionality and flexibility is also included. It is primarily intended as an exploratory and educational tool Conclusion CoaSim is a powerful tool because of its flexibility and ease of use. This is illustrated through very varied uses of the application, e.g. evaluation of association mapping methods, parametric bootstrapping, and design and choice of markers for specific questions

  11. Insulin signaling regulates fatty acid catabolism at the level of CoA activation.

    Directory of Open Access Journals (Sweden)

    Xiaojun Xu

    2012-01-01

    Full Text Available The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS. We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis.

  12. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions

    DEFF Research Database (Denmark)

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas

    2015-01-01

    Acetylation is frequently detected on mitochondrial enzymes, and the sirtuin deacetylase SIRT3 is thought to regulate metabolism by deacetylating mitochondrial proteins. However, the stoichiometry of acetylation has not been studied and is important for understanding whether SIRT3 regulates...... or suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue...... of fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation...

  13. Acetylation of woody lignocellulose: significance and regulation

    Directory of Open Access Journals (Sweden)

    Prashant Mohan-Anupama Pawar

    2013-05-01

    Full Text Available Non-cellulosic cell wall polysaccharides constitute approximately one quarter of usable biomass for human exploitation. In contrast to cellulose, these components are usually substituted by O-acetyl groups, which affect their properties and interactions with other polymers, thus affecting their solubility and extractability. However, details of these interactions are still largely obscure. Moreover, polysaccharide hydrolysis to constituent monosaccharides, is hampered by the presence of O-acetyl groups, necessitating either enzymatic (esterase or chemical de-acetylation, increasing the costs and chemical consumption. Reduction of polysaccharide acetyl content in planta is a way to modify lignocellulose towards improved saccharification. In this review we: 1 summarize literature on lignocellulose acetylation in different tree species, 2 present data and current hypotheses concerning the role of O-acetylation in determining woody lignocellulose properties, 3 describe plant proteins involved in lignocellulose O-acetylation, 4 give examples of microbial enzymes capable to de-acetylate lignocellulose, and 5 discuss prospects for exploiting these enzymes in planta to modify xylan acetylation.

  14. Acetylation of Chinese bamboo flour and thermoplasticity

    Institute of Scientific and Technical Information of China (English)

    LI Xue-fang; CHEN Qin-hui; LIN Jin-huo; ZHUO Dong-xian; WU Xiu-ling

    2008-01-01

    Chinese bamboo flour was chemically modified by acetylation with acetic anhydride by using trichloroacetic acid as an activation agent and the optimized condition for acetylation of bamboo flour was determined as the trichloroacetic acid amount 6.0 g per 1.5-g bamboo flour, ultrasosonication duration 40 min and the reaction time 1 h at 65℃. The composition, microstructure and thermal behavior of acetylated bamboo flour were preliminarily characterized by FT-IR, DSC and SEM etc. The acetylated bamboo flour can be molded into sheets at 130℃ and 10 MPa, indicating the modified bamboo flour possesses thermalplastic performance.

  15. Acetylation regulates Jun protein turnover in Drosophila.

    Science.gov (United States)

    Zhang, Daoyong; Suganuma, Tamaki; Workman, Jerry L

    2013-11-01

    C-Jun is a major transcription factor belonging to the activating protein 1 (AP-1) family. Phosphorylation has been shown to be critical for c-Jun activation and stability. Here, we report that Jra, the Drosophila Jun protein, is acetylated in vivo. We demonstrate that the acetylation of Jra leads to its rapid degradation in response to osmotic stress. Intriguingly, we also found that Jra phosphorylation antagonized its acetylation, indicating the opposite roles of acetylation and phosphorylation in Jra degradation process under osmotic stress. Our results provide new insights into how c-Jun proteins are precisely regulated by the interplay of different posttranslational modifications.

  16. Association between the enterotoxin production and presence of Coa, Nuc genes among Staphylococcus aureus isolated from various sources, in Shiraz.

    Science.gov (United States)

    Moghassem Hamidi, R; Hosseinzadeh, S; Shekarforoush, S S; Poormontaseri, M; Derakhshandeh, A

    2015-01-01

    The present study was aimed to identify the frequency of coagulase (Coa) and thermonuclease (Nuc) genes and Staphylococcal enterotoxin A (Sea) production among Staphylococcus aureus isolated from various sources in Shiraz. Moreover, the correlation between the Sea gene and coagulase and thermonuclease enzymes is also considered. A total of 100 S. aureus were isolated from various sources including 40 humans, 30 animals and 30 food samples by the routine biochemical tests. The frequency of Coa, Nuc and Sea genes was evaluated by PCR assay. Correlation among those genes was finally evaluated by statistical analysis. The PCR results showed that the prevalence of Coa, Nuc and Sea genes was 91%, 100% and 14%, respectively. The evaluation of the enterotoxin production indicated that 78.6% of the Sea gene was expressed. The presence of enterotoxin A was not necessarily correlated to the production of toxin. As a final conclusion to detect the enterotoxigenic strains, both genotypic and phenotypic methods are highly recommended.

  17. A key role of PGC-1α transcriptional coactivator in production of VEGF by a novel angiogenic agent COA-Cl in cultured human fibroblasts.

    Science.gov (United States)

    Igarashi, Junsuke; Okamoto, Ryuji; Yamashita, Tetsuo; Hashimoto, Takeshi; Karita, Sakiko; Nakai, Kozo; Kubota, Yasuo; Takata, Maki; Yamaguchi, Fuminori; Tokuda, Masaaki; Sakakibara, Norikazu; Tsukamoto, Ikuko; Konishi, Ryoji; Hirano, Katsuya

    2016-03-01

    We previously demonstrated a potent angiogenic effect of a newly developed adenosine-like agent namedCOA-Cl.COA-Cl exerted tube forming activity in human umbilical vein endothelial cells in the presence of normal human dermal fibroblasts (NHDF). We therefore explored whether and howCOA-Cl modulates gene expression and protein secretion ofVEGF, a master regulator of angiogenesis, inNHDFRT-PCRandELISArevealed thatCOA-Cl upregulatedVEGF mRNAexpression and protein secretion inNHDFHIF1α(hypoxia-inducible factor 1α), a transcription factor, andPGC-1α(peroxisome proliferator-activated receptor-γcoactivator-1α), a transcriptional coactivator, are known to positively regulate theVEGFgene. Immunoblot andRT-PCRanalyses revealed thatCOA-Cl markedly upregulated the expression ofPGC-1αprotein andmRNACOA-Cl had no effect on the expression ofHIF1αprotein andmRNAin both hypoxia and normoxia. SilencingPGC-1αgene, but notHIF1αgene, by small interferingRNAattenuated the ability ofCOA-Cl to promoteVEGFsecretion. When an N-terminal fragment ofPGC-1αwas cotransfected with its partner transcription factorERRα(estrogen-related receptor-α) inCOS-7 cells,COA-Cl upregulated the expression of the endogenousVEGF mRNA However,COA-Cl had no effect on the expression ofVEGF, whenHIF1αwas transfected.COA-Cl inducesVEGFgene expression and protein secretion in fibroblasts. The transcriptional coactivatorPGC-1α, in concert withERRα, plays a key role in theCOA-Cl-inducedVEGFproduction.COA-Cl-induced activation ofPGC-1α-ERRα-VEGFpathway has a potential as a novel means for therapeutic angiogenesis.

  18. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  19. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wildung, Mark Raymond (Colfax, WA); Burke, Charles Cullen (Moscow, ID); Gershenzon, Jonathan (Jena, DE)

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  20. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole

    2002-01-01

    unclear whether callose synthases can also produce cellulose and whether plant cellulose synthases may also produce beta-1,3-glucans. We describe here an Arabidopsis gene, AtGsl5, encoding a plasma membrane-localized protein homologous to yeast beta-1,3-glucan synthase whose expression partially......Beta-1,3-glucan polymers are major structural components of fungal cell walls, while cellulosic beta-1,4-glucan is the predominant polysaccharide in plant cell walls. Plant beta-1,3-glucan, called callose, is produced in pollen and in response to pathogen attack and wounding, but it has been...... in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...

  1. A Case of Dilated Cardiomyopathy Associated with 3-Hydroxy-3-Methylglutaryl-Coenzyme A (HMG CoA Lyase Deficiency

    Directory of Open Access Journals (Sweden)

    Alexander A. C. Leung

    2009-01-01

    Full Text Available 3-hydroxy-3-methylglutaryl-coenzyme A (HMG CoA lyase deficiency is an inborn error of metabolism characterized by impairment of ketogenesis and leucine catabolism resulting in an organic acidopathy. In 1994, a case of dilated cardiomyopathy and fatal arrhythmia was reported in a 7-month-old infant. We report a case of dilated cardiomyopathy in association with HMG CoA lyase deficiency in a 23-year-old man with the acute presentation of heart failure. To our knowledge, this is the first case reported in an adult.

  2. Controlling Citrate Synthase Expression by CRISPR/Cas9 Genome Editing for n-Butanol Production in Escherichia coli

    DEFF Research Database (Denmark)

    Heo, Min-Ji; Jung, Hwi-Min; Um, Jaeyong

    2017-01-01

    engineered E. coli, resulting in 0.82 g/L butanol production. To increase butanol production, carbon flux from acetyl-CoA to citric acid cycle should be redirected to acetoacetyl-CoA. For this purpose, the 5′-untranslated region sequence of gltA encoding citrate synthase was designed using an expression...

  3. Molecular cloning and expression profile of ß-ketoacyl-acp synthase gene from tung tree (Vernicia fordii Hemsl.)

    Science.gov (United States)

    Tung tree (Vernicia fordii) is an important woody oil tree. Tung tree seeds contain 50-60% oil with approximately 80 mole a-eleostearic acid (9cis, 11trans, 13trans octadecatrienoic acid). Fatty acid synthesis is catalyzed by the concerted action of acetyl-CoA carboxylase and fatty acid synthase, a ...

  4. Investigation of acetyl migrations in furanosides

    Directory of Open Access Journals (Sweden)

    Migaud ME

    2006-07-01

    Full Text Available Abstract Standard reaction conditions for the desilylation of acetylated furanoside (riboside, arabinoside and xyloside derivatives facilitate acyl migration. Conditions which favour intramolecular and intermolecular mechanisms have been identified with intermolecular transesterifications taking place under mild basic conditions when intramolecular orthoester formations are disfavoured. In acetyl ribosides, acyl migration could be prevented when desilylation was catalysed by cerium ammonium nitrate.

  5. Analysis of acetylated wood by electron microscopy

    NARCIS (Netherlands)

    Sander, C.; Beckers, E.P.J.; Militz, H.; Veenendaal, van W.

    2003-01-01

    The properties of acetylated solid wood were investigated earlier, in particular the anti-shrink efficiency and the resistance against decay. This study focuses on the possible changes and damage to the wood structure due to an acetylation process leading to weight per cent gains of up to 20%. Elect

  6. The Acetylation of Starch by Reactive Extrusion

    NARCIS (Netherlands)

    Graaf, Robbert A. de; Broekroelofs, Annet; Janssen, Léon P.B.M.

    1998-01-01

    Potato starch has been acetylated in a counter rotating twin screw extruder using vinylacetate and sodium hydroxide. The desired starch acetylation reaction is accompanied by an undesired parallel base catalysed hydrolysis reaction of vinylacetate and a consecutive hydrolysis reaction of the acetyla

  7. Enhanced acetyl-CoA production is associated with increased triglyceride accumulation in the green alga Chlorella desiccata.

    Science.gov (United States)

    Avidan, Omri; Brandis, Alexander; Rogachev, Ilana; Pick, Uri

    2015-07-01

    Triglycerides (TAGs) from microalgae can be utilized as food supplements and for biodiesel production, but little is known about the regulation of their biosynthesis. This work aimed to test the relationship between acetyl-CoA (Ac-CoA) levels and TAG biosynthesis in green algae under nitrogen deprivation. A novel, highly sensitive liquid chromatography mass spectrometry (LC-MS/MS) technique enabled us to determine the levels of Ac-CoA, malonyl-CoA, and unacetylated (free) CoA in green microalgae. A comparative study of three algal species that differ in TAG accumulation levels shows that during N starvation, Ac-CoA levels rapidly rise, preceding TAG accumulation in all tested species. The levels of Ac-CoA in the high TAG accumulator Chlorella desiccata exceed the levels in the moderate TAG accumulators Dunaliella tertiolecta and Chlamydomonas reinhardtii. Similarly, malonyl-CoA and free CoA levels also increase, but to lower extents. Calculated cellular concentrations of Ac-CoA are far lower than reported K mAc-CoA values of plastidic Ac-CoA carboxylase (ptACCase) in plants. Transcript level analysis of plastidic pyruvate dehydrogenase (ptPDH), the major chloroplastic Ac-CoA producer, revealed rapid induction in parallel with Ac-CoA accumulation in C. desiccata, but not in D. tertiolecta or C. reinhardtii. It is proposed that the capacity to accumulate high TAG levels in green algae critically depends on their ability to divert carbon flow towards Ac-CoA. This requires elevation of the chloroplastic CoA pool level and enhancement of Ac-CoA biosynthesis. These conclusions may have important implications for future genetic manipulation to enhance TAG biosynthesis in green algae.

  8. SPOTing Acetyl-Lysine Dependent Interactions

    Directory of Open Access Journals (Sweden)

    Sarah Picaud

    2015-08-01

    Full Text Available Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation.

  9. Histone Acetylation in Fungal Pathogens of Plants

    Directory of Open Access Journals (Sweden)

    Junhyun Jeon

    2014-03-01

    Full Text Available Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed.

  10. Structure of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase in complex with the feedback inhibitor CoA reveals only one active-site conformation

    Energy Technology Data Exchange (ETDEWEB)

    Wubben, T.; Mesecar, A.D. (Purdue); (UIC)

    2014-10-02

    Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine to form dephosphocoenzyme A (dPCoA). To complement recent biochemical and structural studies on Mycobacterium tuberculosis PPAT (MtPPAT) and to provide further insight into the feedback regulation of MtPPAT by CoA, the X-ray crystal structure of the MtPPAT enzyme in complex with CoA was determined to 2.11 {angstrom} resolution. Unlike previous X-ray crystal structures of PPAT-CoA complexes from other bacteria, which showed two distinct CoA conformations bound to the active site, only one conformation of CoA is observed in the MtPPAT-CoA complex.

  11. N-acetylglutamate synthase deficiency and the treatment of hyperammonemic encephalopathy.

    Science.gov (United States)

    Elpeleg, Orly; Shaag, Avraham; Ben-Shalom, Efrat; Schmid, Tal; Bachmann, Claude

    2002-12-01

    Carbamylphosphate synthase is the first enzymatic reaction of the urea cycle. Its activator, N-acetylglutamate, is synthesized from acetyl-CoA and glutamate in a reaction catalyzed by N-acetylglutamate synthase (NAGS). We have identified the putative human NAGS gene and report the first mutation in this gene in a family with carbamylglutamate responsive hyperammonemia and normal activity of the urea cycle enzymes. Mutation analysis has a higher diagnostic specificity than the enzymatic assay in NAGS deficiency. A therapeutic trial with carbamylglutamate is recommended whenever hyperammonemia without an organic aciduria, increased orotate excretion, or diagnostic amino acidemia/uria is detected.

  12. Metalloproteins/metalloenzymes for the synthesis of acetyl-CoA in the Wood-Ljungdahl pathway

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper focuses on the group of metalloproteins/metalloenzymes in the acetyl-coenzyme A synthesis pathway of anaerobic microbes called Wood-Ljungdahl pathway,including formate dehydrogenase (FDH),corrinoid iron sulfur protein (CoFeSP),acetyl-CoA synthase (ACS) and CO dehydrogenase (CODH). FDH,a key metalloenzyme involved in the conversion of carbon dioxide to methyltetrahydrofolate,catalyzes the reversible oxidation of formate to carbon dioxide. CoFeSP,as a methyl group transformer,accepts the methyl group from CH3-H4 folate and then transfers it to ACS. CODH reversibly catalyzes the reduction of CO2 to CO and ACS functions for acetyl-coenzyme A synthesis through condensation of the methyl group,CO and coenzyme A,to finish the whole pathway. This paper introduces the structure,function and reaction mechanisms of these enzymes.

  13. Hybrid polyketide synthases

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  14. Modeling human Coenzyme A synthase mutation in yeast reveals altered mitochondrial function, lipid content and iron metabolism

    Directory of Open Access Journals (Sweden)

    Camilla Ceccatelli Berti

    2015-04-01

    Full Text Available Mutations in nuclear genes associated with defective coenzyme A biosynthesis have been identified as responsible for some forms of neurodegeneration with brain iron accumulation (NBIA, namely PKAN and CoPAN. PKAN are defined by mutations in PANK2, encoding the pantothenate kinase 2 enzyme, that account for about 50% of cases of NBIA, whereas mutations in CoA synthase COASY have been recently reported as the second inborn error of CoA synthesis leading to CoPAN. As reported previously, yeast cells expressing the pathogenic mutation exhibited a temperature-sensitive growth defect in the absence of pantothenate and a reduced CoA content. Additional characterization revealed decreased oxygen consumption, reduced activities of mitochondrial respiratory complexes, higher iron content, increased sensitivity to oxidative stress and reduced amount of lipid droplets, thus partially recapitulating the phenotypes found in patients and establishing yeast as a potential model to clarify the pathogenesis underlying PKAN and CoPAN diseases.

  15. Toxicity of Carboxylic Acid-Containing Drugs: The Role of Acyl Migration and CoA Conjugation Investigated.

    Science.gov (United States)

    Lassila, Toni; Hokkanen, Juho; Aatsinki, Sanna-Mari; Mattila, Sampo; Turpeinen, Miia; Tolonen, Ari

    2015-12-21

    Many carboxylic acid-containing drugs are associated with idiosyncratic drug toxicity (IDT), which may be caused by reactive acyl glucuronide metabolites. The rate of acyl migration has been earlier suggested as a predictor of acyl glucuronide reactivity. Additionally, acyl Coenzyme A (CoA) conjugates are known to be reactive. Here, 13 drugs with a carboxylic acid moiety were incubated with human liver microsomes to produce acyl glucuronide conjugates for the determination of acyl glucuronide half-lives by acyl migration and with HepaRG cells to monitor the formation of acyl CoA conjugates, their further conjugate metabolites, and trans-acylation products with glutathione. Additionally, in vitro cytotoxicity and mitochondrial toxicity experiments were performed with HepaRG cells to compare the predictability of toxicity. Clearly, longer acyl glucuronide half-lives were observed for safe drugs compared to drugs that can cause IDT. Correlation between half-lives and toxicity classification increased when "relative half-lives," taking into account the formation of isomeric AG-forms due to acyl migration and eliminating the effect of hydrolysis, were used instead of plain disappearance of the initial 1-O-β-AG-form. Correlation was improved further when a daily dose of the drug was taken into account. CoA and related conjugates were detected primarily for the drugs that have the capability to cause IDT, although some exceptions to this were observed. Cytotoxicity and mitochondrial toxicity did not correlate to drug safety. On the basis of the results, the short relative half-life of the acyl glucuronide (high acyl migration rate), high daily dose and detection of acyl CoA conjugates, or further metabolites derived from acyl CoA together seem to indicate that carboxylic acid-containing drugs have a higher probability to cause drug-induced liver injury (DILI).

  16. Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in E. coli.

    Directory of Open Access Journals (Sweden)

    Jianming Yang

    Full Text Available The depleting petroleum reserve, increasingly severe energy crisis, and global climate change are reigniting enthusiasm for seeking sustainable technologies to replace petroleum as a source of fuel and chemicals. In this paper, the efficiency of the MVA pathway on isoprene production has been improved as follows: firstly, in order to increase MVA production, the source of the "upper pathway" which contains HMG-CoA synthase, acetyl-CoA acetyltransferase and HMG-CoA reductase to covert acetyl-CoA into MVA has been changed from Saccharomyces cerevisiae to Enterococcus faecalis; secondly, to further enhance the production of MVA and isoprene, a alanine 110 of the mvaS gene has been mutated to a glycine. The final genetic strain YJM25 containing the optimized MVA pathway and isoprene synthase from Populus alba can accumulate isoprene up to 6.3 g/L after 40 h of fed-batch cultivation.

  17. Acetylation modulates the STAT signaling code.

    Science.gov (United States)

    Wieczorek, Martin; Ginter, Torsten; Brand, Peter; Heinzel, Thorsten; Krämer, Oliver H

    2012-12-01

    A fascinating question of modern biology is how a limited number of signaling pathways generate biological diversity and crosstalk phenomena in vivo. Well-defined posttranslational modification patterns dictate the functions and interactions of proteins. The signal transducers and activators of transcription (STATs) are physiologically important cytokine-induced transcription factors. They are targeted by a multitude of posttranslational modifications that control and modulate signaling responses and gene expression. Beyond phosphorylation of serine and tyrosine residues, lysine acetylation has recently emerged as a critical modification regulating STAT functions. Interestingly, acetylation can determine STAT signaling codes by various molecular mechanisms, including the modulation of other posttranslational modifications. Here, we provide an overview on the acetylation of STATs and how this protein modification shapes cellular cytokine responses. We summarize recent advances in understanding the impact of STAT acetylation on cell growth, apoptosis, innate immunity, inflammation, and tumorigenesis. Furthermore, we discuss how STAT acetylation can be targeted by small molecules and we consider the possibility that additional molecules controlling STAT signaling are regulated by acetylation. Our review also summarizes evolutionary aspects and we show similarities between the acetylation-dependent control of STATs and other important molecules. We propose the concept that, similar to the 'histone code', distinct posttranslational modifications and their crosstalk orchestrate the functions and interactions of STAT proteins.

  18. LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B Encode Hydroxyalkyl α-Pyrone Synthases Required for Pollen Development and Sporopollenin Biosynthesis in Arabidopsis thaliana[C][W][OA

    Science.gov (United States)

    Kim, Sung Soo; Grienenberger, Etienne; Lallemand, Benjamin; Colpitts, Che C.; Kim, Sun Young; Souza, Clarice de Azevedo; Geoffroy, Pierrette; Heintz, Dimitri; Krahn, Daniel; Kaiser, Markus; Kombrink, Erich; Heitz, Thierry; Suh, Dae-Yeon; Legrand, Michel; Douglas, Carl J.

    2010-01-01

    Plant type III polyketide synthases (PKSs) catalyze the condensation of malonyl-CoA units with various CoA ester starter molecules to generate a diverse array of natural products. The fatty acyl-CoA esters synthesized by Arabidopsis thaliana ACYL-COA SYNTHETASE5 (ACOS5) are key intermediates in the biosynthesis of sporopollenin, the major constituent of exine in the outer pollen wall. By coexpression analysis, we identified two Arabidopsis PKS genes, POLYKETIDE SYNTHASE A (PKSA) and PKSB (also known as LAP6 and LAP5, respectively) that are tightly coexpressed with ACOS5. Recombinant PKSA and PKSB proteins generated tri-and tetraketide α-pyrone compounds in vitro from a broad range of potential ACOS5-generated fatty acyl-CoA starter substrates by condensation with malonyl-CoA. Furthermore, substrate preference profile and kinetic analyses strongly suggested that in planta substrates for both enzymes are midchain- and ω-hydroxylated fatty acyl-CoAs (e.g., 12-hydroxyoctadecanoyl-CoA and 16-hydroxyhexadecanoyl-CoA), which are the products of sequential actions of anther-specific fatty acid hydroxylases and acyl-CoA synthetase. PKSA and PKSB are specifically and transiently expressed in tapetal cells during microspore development in Arabidopsis anthers. Mutants compromised in expression of the PKS genes displayed pollen exine layer defects, and a double pksa pksb mutant was completely male sterile, with no apparent exine. These results show that hydroxylated α-pyrone polyketide compounds generated by the sequential action of ACOS5 and PKSA/B are potential and previously unknown sporopollenin precursors. PMID:21193570

  19. Biochemical and Structural Characterization of Germicidin Synthase: Analysis of a Type III Polyketide Synthase That Employs Acyl-ACP as a Starter Unit Donor

    Energy Technology Data Exchange (ETDEWEB)

    Chemler, Joseph A.; Buchholz, Tonia J.; Geders, Todd W.; Akey, David L.; Rath, Christopher M.; Chlipala, George E.; Smith, Janet L.; Sherman, David H. (Michigan)

    2012-08-10

    Germicidin synthase (Gcs) from Streptomyces coelicolor is a type III polyketide synthase (PKS) with broad substrate flexibility for acyl groups linked through a thioester bond to either coenzyme A (CoA) or acyl carrier protein (ACP). Germicidin synthesis was reconstituted in vitro by coupling Gcs with fatty acid biosynthesis. Since Gcs has broad substrate flexibility, we directly compared the kinetic properties of Gcs with both acyl-ACP and acyl-CoA. The catalytic efficiency of Gcs for acyl-ACP was 10-fold higher than for acyl-CoA, suggesting a strong preference toward carrier protein starter unit transfer. The 2.9 {angstrom} germicidin synthase crystal structure revealed canonical type III PKS architecture along with an unusual helical bundle of unknown function that appears to extend the dimerization interface. A pair of arginine residues adjacent to the active site affect catalytic activity but not ACP binding. This investigation provides new and surprising information about the interactions between type III PKSs and ACPs that will facilitate the construction of engineered systems for production of novel polyketides.

  20. Effects of Glucose and Vitamin C Inhabitation on Activities of Acetyl-CoA Carboxylase,Fatty Acid Synthase and Carnitine Palmitoyltransferases Ⅰduring Embryo Development of Carassius auratus gibelio%葡萄糖、维生素 C浸泡对普安银鲫胚胎发育中乙酰辅酶 A羧化酶、脂肪酸合成酶及肉毒碱棕榈酰转移酶Ⅰ活性的影响

    Institute of Scientific and Technical Information of China (English)

    蒋左玉; 姚俊杰; 安苗; 熊铧龙; 朱忠胜

    2014-01-01

    In order to study the changes of activities of acetyl-CoA carboxylase ( ACC ) , fatty acid synthase ( FAS) , and carnitine palmitoyltransferaseⅠ ( CPTⅠ) , and the effects of glucose and vitamin C inhabitation on them during embryo development of Carassius auratus gibelio ( C. auratus) , glucose solution and vitamin C solutions with different concentrations were used for hatching. The concentrations of glucose were 0, 5, 10, 15 and 20 g/L, respectively, and the concentrations of vitamin C were 0, 20, 25, 30 and 35 mg/L, respec-tively. Membrane break time and hatching rate were recorded to decide the optimal concentrations of glucose and vitamin C. Solutions without addition ( control group) and with optimal concentrations of glucose ( glucose group) or vitamin C ( vitamin C group) were used for hatching, and the characteristics of changes of ACC, FAS and CPTⅠactivities were analyzed during embryo development. The results showed as follows:1) mem-brane break time was the shortest, and hatching rate was the highest when the concentrations of glucose and vi-tamin C were 15 g/d and 30 mg/L, respectively. 2) The specific activity and total activity of ACC, FAS and CPTⅠ showed increasing tends during embryo development of C. auratus. 3) The specific activities and total activities of ACC and FAS in glucose group were significantly higher than those in control group at mid-gas-trul, crystal appear and prehatching stages ( P<0.05) , and the specific activity an total activity of CPTⅠ was significantly higher than that in control group at crystal appear and prehatching stages ( P<0.05) . 4) The total activities of ASS and FAS in vitamin C group were significantly higher than those in control group ( P<0.05) . In conclusion, the inhabitation in solutions with appropriate concentrations of glucose ( 15 g/L) and vitamin C ( 30 mg/L) can promote synthesis and secretion of ACC, FAS and CPTⅠ during embryo development of C. auratus, and form new metabolic levels to

  1. Efficient acetylation of primary amines and amino acids in environmentally benign brine solution using acetyl chloride

    Indian Academy of Sciences (India)

    Kaushik Basu; Suchandra Chakraborty; Achintya Kumar Sarkar; Chandan Saha

    2013-05-01

    Acetyl chloride is one of the most commonly available and cheap acylating agent but its high reactivity and concomitant instability in water precludes its use to carry out acetylation in aqueous medium. The present methodology illustrates the efficient acetylation of primary amines and amino acids in brine solution by means of acetyl chloride under weakly basic condition in the presence of sodium acetate and/or triethyl amine followed by trituration with aqueous saturated bicarbonate solution. This effort represents the first efficient use of this most reactive but cheap acetylating agent to acetylate amines in excellent yields in aqueous medium. This is a potentially useful green chemical transformation where reaction takes place in environment-friendly brine solution leading to easy work-up and isolation of the amide derivatives. Mechanistic rationale of this methodology is also important.

  2. Model simulations of cooking organic aerosol (COA) over the UK using estimates of emissions based on measurements at two sites in London

    Science.gov (United States)

    Ots, Riinu; Vieno, Massimo; Allan, James D.; Reis, Stefan; Nemitz, Eiko; Young, Dominique E.; Coe, Hugh; Di Marco, Chiara; Detournay, Anais; Mackenzie, Ian A.; Green, David C.; Heal, Mathew R.

    2016-11-01

    Cooking organic aerosol (COA) is currently not included in European emission inventories. However, recent positive matrix factorization (PMF) analyses of aerosol mass spectrometer (AMS) measurements have suggested important contributions of COA in several European cities. In this study, emissions of COA were estimated for the UK, based on hourly AMS measurements of COA made at two sites in London (a kerbside site in central London and an urban background site in a residential area close to central London) for the full calendar year of 2012 during the Clean Air for London (ClearfLo) campaign. Iteration of COA emissions estimates and subsequent evaluation and sensitivity experiments were conducted with the EMEP4UK atmospheric chemistry transport modelling system with a horizontal resolution of 5 km × 5 km. The spatial distribution of these emissions was based on workday population density derived from the 2011 census data. The estimated UK annual COA emission was 7.4 Gg per year, which is an almost 10 % addition to the officially reported UK national total anthropogenic emissions of PM2.5 (82 Gg in 2012), corresponding to 320 mg person-1 day-1 on average. Weekday and weekend diurnal variation in COA emissions were also based on the AMS measurements. Modelled concentrations of COA were then independently evaluated against AMS-derived COA measurements from another city and time period (Manchester, January-February 2007), as well as with COA estimated by a chemical mass balance model of measurements for a 2-week period at the Harwell rural site (˜ 80 km west of central London). The modelled annual average contribution of COA to ambient particulate matter (PM) in central London was between 1 and 2 µg m-3 (˜ 20 % of total measured OA1) and between 0.5 and 0.7 µg m-3 in other major cities in England (Manchester, Birmingham, Leeds). It was also shown that cities smaller than London can have a central hotspot of population density of smaller area than the

  3. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer.

    Science.gov (United States)

    Gong, Fade; Chiu, Li-Ya; Miller, Kyle M

    2016-09-01

    Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer.

  4. Intracellular Acetyl Unit Transport in Fungal Carbon Metabolism

    NARCIS (Netherlands)

    Strijbis, K.; Distel, B.

    2010-01-01

    Acetyl coenzyme A (acetyl-CoA) is a central metabolite in carbon and energy metabolism. Because of its amphiphilic nature and bulkiness, acetyl-CoA cannot readily traverse biological membranes. In fungi, two systems for acetyl unit transport have been identified: a shuttle dependent on the carrier c

  5. p53 Acetylation: Regulation and Consequences

    Directory of Open Access Journals (Sweden)

    Sara M. Reed

    2014-12-01

    Full Text Available Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.

  6. p53 Acetylation: Regulation and Consequences

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Sara M. [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Quelle, Dawn E., E-mail: dawn-quelle@uiowa.edu [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States)

    2014-12-23

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.

  7. Biological activity of acetylated phenolic compounds.

    Science.gov (United States)

    Fragopoulou, Elizabeth; Nomikos, Tzortzis; Karantonis, Haralabos C; Apostolakis, Constantinos; Pliakis, Emmanuel; Samiotaki, Martina; Panayotou, George; Antonopoulou, Smaragdi

    2007-01-10

    In recent years an effort has been made to isolate and identify biologically active compounds that are included in the Mediterranean diet. The existence of naturally occurring acetylated phenolics, as well as studies with synthetic ones, provide evidence that acetyl groups could be correlated with their biological activity. Platelet activating factor (PAF) is implicated in atherosclerosis, whereas its inhibitors seem to play a protective role against cardiovascular disease. The aim of this study was to examine the biological activity of resveratrol and tyrosol and their acetylated derivatives as inhibitors of PAF-induced washed rabbit platelet aggregation. Acetylation of resveratrol and tyrosol was performed, and separation was achieved by HPLC. Acetylated derivatives were identified by negative mass spectrometry. The data showed that tyrosol and its monoacetylated derivatives act as PAF inhibitors, whereas diacetylated derivatives induce platelet aggregation. Resveratrol and its mono- and triacetylated derivatives exert similar inhibitory activity, whereas the diacetylated ones are more potent inhibitors. In conclusion, acetylated phenolics exert the same or even higher antithrombotic activity compared to the biological activity of the initial one.

  8. Monoterpene synthases from common sage (Salvia officinalis)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wise, Mitchell Lynn (Pullman, WA); Katahira, Eva Joy (Pullman, WA); Savage, Thomas Jonathan (Christchurch 5, NZ)

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  9. Pasting properties and (chemical) fine structure of acetylated yellow pea starch is affected by acetylation reagent type and granule size

    NARCIS (Netherlands)

    Huang, J.; Schols, H.A.; Jin, Z.; Sulmann, E.; Voragen, A.G.J.

    2007-01-01

    Yellow pea starch was fractionated into small and large size granule fractions and then modified with acetic anhydride and vinyl acetate (acetylation after sieving) or first acetylated in the same way and then fractionated into small and large size fractions (acetylation before sieving). Acetylation

  10. Prenyldiphosphate synthases and gibberellin biosynthesis

    NARCIS (Netherlands)

    van Schie, C.C.N.; Haring, M.A.; Schuurink, R.C.; Bach, T.J.; Rohmer, M.

    2013-01-01

    Gibberellins are derived from the diterpene precursor geranylgeranyl diphophosphate (GGPP). GGPP is converted to ent-kaurene, which contains the basic structure of gibberellins, in the plastids by the combined actions of copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). Generally, ge

  11. Cloning, Expression and Purification of an Acetoacetyl CoA Thiolase from Sunflower Cotyledon

    Directory of Open Access Journals (Sweden)

    James H. Dyer, Anthony Maina, Iris D. Gomez, Melissa Cadet, Silke Oeljeklaus, Anke C. Schiedel

    2009-01-01

    Full Text Available Thiolase I and II coexist as part of the glyoxysomal β-oxidation system in sunflower (Helianthus annuus L. cotyledons, the only system shown to have both forms. The importance of thiolases can be underscored not only by their ubiquity, but also by their involvement in a wide variety of processes in plants, animals and bacteria. Here we describe the cloning, expression and purification of acetoacetyl CoA thiolase (AACT in enzymatically active form. Use of the extensive amount of sequence information from the databases facilitated the efficient generation of the gene-specific primers used in the RACE protocols. The recombinant AACT (1233 bp shares 75% similarity with other plant AACTs. Comparison of specific activity of this recombinant AACT to a previously reported enzyme purified from primary sunflower cotyledon tissue was very similar (263 nkat/mg protein vs 220 nkat/mg protein, respectively. Combining the most pure fractions from the affinity column, the enzyme was purified 88-fold with a 55% yield of the enzymatically active, 47 kDa AACT.

  12. Biotin deficiency in the cat and the effect on hepatic propionyl CoA carboxylase.

    Science.gov (United States)

    Carey, C J; Morris, J G

    1977-02-01

    Biotin deficiency was produced in growing kittens by feeding a diet containing dried, raw egg white. After receiving either an 18.5% egg white diet for 25 weeks, or a 32% egg white diet for 12 weeks, they exhibited dermal lesions characterized by alopecia, scaly dermatitis and achromotrichia, which increased in severity with the deficiency. Females developed accumulations of dried salivary, nasal and lacrymal secretions in the facial region although a male did not. There was a loss of body weight in all cats as the deficiency progressed. Hepatic propionyl CoA carboxylase activities were measured on biopsy samples of liver during biotin deficiency and after biotin supplementation. In the deficient state, activities were 4% and 24% of that following biotin supplementation. Propionyl carboxylase activity in the liver of the cat was comparable to that reported in the rat and chick in the deficient and normal states. Subcutaneous injection of 0.25 mg biotin every other day while continuing to receive the egg white diet caused remission of clinical signs, a body weight gain and increased food intake.

  13. Molecular Modeling and Simulation Studies of Acyl CoA Synthetaseof Mycobacteriumleprae

    Directory of Open Access Journals (Sweden)

    Dhananjay Kumar

    2013-01-01

    Full Text Available Leprosy or Hansen’s disease is caused by an obligate intracellular pathogen i.e. Mycobacterium leprae. Leprosy is a granulomatous disease of peripheral nerves and mucosa of the upper respiratory tract. This infectious disease results in Leprosy reactions that cause irreversible nerve damage and disabilities. The organism requires minimal set of functional genes for its survival. Most of the genes are involved in biosynthetic and metabolic pathways, so the product of these genes can be aimed for the novel drug target. Acyl CoA Synthetase is an enzyme that participates in fatty acid biosynthesis. The activation of fatty acids by Acyl-CoA Synthetase is the need of de novo lipid biosynthesis, fatty acid catabolism and remodeling of biological membranes. Therefore by emphasizing this protein as a drug target can help in the identification of novel drugs to cure leprosy. A well organized research comprising of analogue based drug design and molecular dynamics plays a major role in obtaining the lead molecules. The bacteria have developed resistance against many of the drugs available in the market. Therefore identification of the novel drug target and potent drug can be helpful in better prevention of the disease.

  14. Mutations underlying 3-Hydroxy-3-Methylglutaryl CoA Lyase deficiency in the Saudi population

    Directory of Open Access Journals (Sweden)

    Rashed Mohammed S

    2006-12-01

    Full Text Available Abstract Background 3-Hydroxy-3-Methylglutaric aciduria (3HMG, McKusick: 246450 is an autosomal recessive branched chain organic aciduria caused by deficiency of the enzyme 3-Hydroxy-3-Methylglutaryl CoA lyase (HL, HMGCL, EC 4.1.3.4. HL is encoded by HMGCL gene and many mutations have been reported. 3HMG is commonly observed in Saudi Arabia. Methods We utilized Whole Genome Amplification (WGA, PCR and direct sequencing to identify mutations underlying 3HMG in the Saudi population. Two patients from two unrelated families and thirty-four 3HMG positive dried blood spots (DBS were included. Results We detected the common missense mutation R41Q in 89% of the tested alleles (64 alleles. 2 alleles carried the frame shift mutation F305fs (-2 and the last two alleles had a novel splice site donor IVS6+1G>A mutation which was confirmed by its absence in more than 100 chromosomes from the normal population. All mutations were present in a homozygous state, reflecting extensive consanguinity. The high frequency of R41Q is consistent with a founder effect. Together the three mutations described account for >94% of the pathogenic mutations underlying 3HMG in Saudi Arabia. Conclusion Our study provides the most extensive genotype analysis on 3HMG patients from Saudi Arabia. Our findings have direct implications on rapid molecular diagnosis, prenatal and pre-implantation diagnosis and population based prevention programs directed towards 3HMG.

  15. Conformational transitions of cinnamoyl CoA reductase 1 from Leucaena leucocephala.

    Science.gov (United States)

    Sonawane, Prashant D; Khan, Bashir M; Gaikwad, Sushama M

    2014-03-01

    Conformational transitions of cinnamoyl CoA reductase, a key regulatory enzyme in lignin biosynthesis, from Leucaena leucocephala (Ll-CCRH1) were studied using fluorescence and circular dichroism spectroscopy. The native protein possesses four trp residues exposed on the surface and 66% of helical structure, undergoes rapid structural transitions at and above 45 °C and starts forming aggregates at 55 °C. Ll-CCRH1 was transformed into acid induced (pH 2.0) molten globule like structure, exhibiting altered secondary structure, diminished tertiary structure and exposed hydrophobic residues. The molten globule like structure was examined for the thermal and chemical stability. The altered secondary structure of L1-CCRH1 at pH 2.0 was stable up to 90 °C. Also, in presence of 0.25 M guanidine hydrochloride (GdnHCl), it got transformed into different structure which was stable in the vicinity of 2M GdnHCl (as compared to drastic loss of native structure in 2M GdnHCl) as seen in far UV-CD spectra. The structural transition of Ll-CCRH1 at pH 2.0 followed another transition after readjusting the pH to 8.0, forming a structure with hardly any similarity to that of native protein.

  16. Liberdade e coação no direito de Kant

    Directory of Open Access Journals (Sweden)

    Pinheiro, Celso de Moraes

    2007-01-01

    Full Text Available Kant divide a filosofia moral em duas partes: Ética e Teoria da Justiça. Cada uma é compota de diferentes descrições de deveres e direitos. A ética contém deveres e direitos internos, voluntários e não-coercitivos. A teoria da justiça contém deveres e direitos externos e coercitivos. Os dois tipos de deveres e direitos são definidos em sua relação um com o outro. O que distingue os deveres éticos, ou deveres de virtude, dos deveres jurídicos, é que a compulsão externa para o dever de virtude é baseado na livre coerção própria. Assim, a finalidade deste artigo é pesquisar a noção de dever, e a relação entre dever, liberdade e coação

  17. Mutations in COA3 cause isolated complex IV deficiency associated with neuropathy, exercise intolerance, obesity, and short stature

    DEFF Research Database (Denmark)

    Ostergaard, Elsebet; Weraarpachai, Woranontee; Ravn, Kirstine Johanne Theresia

    2015-01-01

    BACKGROUND: We investigated a subject with an isolated cytochrome c oxidase (COX) deficiency presenting with an unusual phenotype characterised by neuropathy, exercise intolerance, obesity, and short stature. METHODS AND RESULTS: Blue-native polyacrylamide gel electrophoresis (BN-PAGE) analysis...... showed an almost complete lack of COX assembly in subject fibroblasts, consistent with the very low enzymatic activity, and pulse-labelling mitochondrial translation experiments showed a specific decrease in synthesis of the COX1 subunit, the core catalytic subunit that nucleates assembly...... assembly and mitochondrial translation defects, confirming the pathogenicity of the mutations, and resulted in increased steady-state levels of COX1 in control cells, demonstrating a role for COA3 in the stabilisation of this subunit. COA3 exists in an early COX assembly complex that contains COX1...

  18. The development of the 2, 4-dienoyl CoA reductase 1 gene (DECR 1) in pig

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    2,4-dienoyl CoA reductase gene (DECR 1) is mapped on pig 4 q1.2, includes ten exons and nine introns of variable sizethat span 30 kb. DECR 1 gene participates in the β-oxidation pathway, affects the content of intramuscular fatty acid, especially thepercentage of linoleic acid. The expression of DECR 1 gene has important influence on IMF, the pH, and the meat colour of pork,further affects the meat quality.

  19. Genetic diversity of staphylocoagulase genes (coa: insight into the evolution of variable chromosomal virulence factors in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Shinya Watanabe

    Full Text Available BACKGROUND: The production of staphylocoagulase (SC causing the plasma coagulation is one of the important characteristics of Staphylococcus aureus. Although SCs have been classified into 10 serotypes based on the differences in the antigenicity, genetic bases for their diversities and relatedness to chromosome types are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We compared the nucleotide sequences of 105 SC genes (coa, 59 of which were determined in this study. D1 regions, which contain prothrombin-activating and -binding domains and are presumed to be the binding site of each type-specific antiserum, were classified into twelve clusters having more than 90% nucleotide identities, resulting to create two novel SC types, XI and XII, in addition to extant 10 types. Nine of the twelve SC types were further subdivided into subtypes based on the differences of the D2 or the central regions. The phylogenetical relations of the D1 regions did not correlate exactly with either one of agr types and multilocus sequence types (STs. In addition, genetic analysis showed that recombination events have occurred in and around coa. So far tested, STs of 126 S. aureus strains correspond to the combination of SC type and agr type except for the cases of CC1 and CC8, which contained two and three different SC types, respectively. CONCLUSION: The data suggested that the evolution of coa was not monophyletic in the species. Chromosomal recombination had occurred at coa and agr loci, resulting in the carriage of the combinations of allotypically different important virulence determinants in staphylococcal chromosome.

  20. Broad Substrate Specificity of the Loading Didomain of the Lipomycin Polyketide Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Yuzawa, S; Eng, CH; Katz, L; Keasling, JD

    2013-06-04

    LipPks1, a polyketide synthase subunit of the lipomycin synthase, is believed to catalyze the polyketide chain initiation reaction using isobutyryl-CoA as a substrate, followed by an elongation reaction with methylmalonyl-CoA to start the biosynthesis of antibiotic alpha-lipomycin in Streptomyces aureofaciens Tu117. Recombinant LipPks1, containing the thioesterase domain from the 6-deoxyerythronolide B synthase, was produced in Escherichia coli, and its substrate specificity was investigated in vitro. Surprisingly, several different acyl-CoAs, including isobutyryl-CoA, were accepted as the starter substrates, while no product was observed with acetyl-CoA. These results demonstrate the broad substrate specificity of LipPks1 and may be applied to producing new antibiotics.

  1. Biochemical characterization of recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) from Leucaena leucocephala.

    Science.gov (United States)

    Sonawane, Prashant; Vishwakarma, Rishi Kishore; Khan, Bashir M

    2013-07-01

    Recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) protein from Leucaena leucocephala was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Optimum pH for forward and reverse reaction was found to be 6.5 and 7.8 respectively. The enzyme was most stable around pH 6.5 at 25°C for 90 min. The enzyme showed Kcat/Km for feruloyl, caffeoyl, sinapoyl, coumaroyl CoA, coniferaldehyde and sinapaldehyde as 4.6, 2.4, 2.3, 1.7, 1.9 and 1.2 (×10(6) M(-1) s(-1)), respectively, indicating affinity of enzyme for feruloyl CoA over other substrates and preference of reduction reaction over oxidation. Activation energy, Ea for various substrates was found to be in the range of 20-50 kJ/mol. Involvement of probable carboxylate ion, histidine, lysine or tyrosine at the active site of enzyme was predicted by pH activity profile. SAXS studies of protein showed radius 3.04 nm and volume 49.25 nm(3) with oblate ellipsoid shape. Finally, metal ion inhibition studies revealed that Ll-CCRH1 is a metal independent enzyme.

  2. Characterization of three chalcone synthase-like genes from apple (Malus x domestica Borkh.).

    Science.gov (United States)

    Yahyaa, Mosaab; Ali, Samah; Davidovich-Rikanati, Rachel; Ibdah, Muhammad; Shachtier, Alona; Eyal, Yoram; Lewinsohn, Efraim; Ibdah, Mwafaq

    2017-08-01

    Apple (Malus x domestica Brokh.) is a widely cultivated deciduous tree species of significant economic importance. Apple leaves accumulate high levels of flavonoids and dihydrochalcones, and their formation is dependent on enzymes of the chalcone synthase family. Three CHS genes were cloned from apple leaves and expressed in Escherichia coli. The encoded recombinant enzymes were purified and functionally characterized. In-vitro activity assays indicated that MdCHS1, MdCHS2 and MdCHS3 code for proteins exhibiting polyketide synthase activity that accepted either p-dihydrocoumaroyl-CoA, p-coumaroyl-CoA, or cinnamoyl-CoA as starter CoA substrates in the presence of malonyl-CoA, leading to production of phloretin, naringenin chalcone, and pinocembrin chalcone. MdCHS3 coded a chalcone-dihydrochalcone synthase enzyme with narrower substrate specificity than the previous ones. The apparent Km values of MdCHS3 for p-dihydrocoumaryl-CoA and p-coumaryl-CoA were both 5.0 μM. Expression analyses of MdCHS genes varied according to tissue type. MdCHS1, MdCHS2 and MdCHS3 expression levels were associated with the levels of phloretin accumulate in the respective tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. N-acetylglutamate synthase: structure, function and defects.

    Science.gov (United States)

    Caldovic, Ljubica; Ah Mew, Nicholas; Shi, Dashuang; Morizono, Hiroki; Yudkoff, Marc; Tuchman, Mendel

    2010-01-01

    N-acetylglutamate (NAG) is a unique enzyme cofactor, essential for liver ureagenesis in mammals while it is the first committed substrate for de novo arginine biosynthesis in microorganisms and plants. The enzyme that produces NAG from glutamate and CoA, NAG synthase (NAGS), is allosterically inhibited by arginine in microorganisms and plants and activated in mammals. This transition of the allosteric effect occurred when tetrapods moved from sea to land. The first mammalian NAGS gene (from mouse) was cloned in 2002 and revealed significant differences from the NAGS ortholog in microorganisms. Almost all NAGS genes possess a C-terminus transferase domain in which the catalytic activity resides and an N-terminus kinase domain where arginine binds. The three-dimensional structure of NAGS shows two distinctly folded domains. The kinase domain binds arginine while the acetyltransferase domain contains the catalytic site. NAGS deficiency in humans leads to hyperammonemia and can be primary, due to mutations in the NAGS gene or secondary due to other mitochondrial aberrations that interfere with the normal function of the same enzyme. For either condition, N-carbamylglutamate (NCG), a stable functional analog of NAG, was found to either restore or improve the deficient urea-cycle function.

  4. Proteomic analysis of acetylation in thermophilic Geobacillus kaustophilus.

    Science.gov (United States)

    Lee, Dong-Woo; Kim, Dooil; Lee, Yong-Jik; Kim, Jung-Ae; Choi, Ji Young; Kang, Sunghyun; Pan, Jae-Gu

    2013-08-01

    Recent analysis of prokaryotic N(ε)-lysine-acetylated proteins highlights the posttranslational regulation of a broad spectrum of cellular proteins. However, the exact role of acetylation remains unclear due to a lack of acetylated proteome data in prokaryotes. Here, we present the N(ε)-lysine-acetylated proteome of gram-positive thermophilic Geobacillus kaustophilus. Affinity enrichment using acetyl-lysine-specific antibodies followed by LC-MS/MS analysis revealed 253 acetylated peptides representing 114 proteins. These acetylated proteins include not only common orthologs from mesophilic Bacillus counterparts, but also unique G. kaustophilus proteins, indicating that lysine acetylation is pronounced in thermophilic bacteria. These data complement current knowledge of the bacterial acetylproteome and provide an expanded platform for better understanding of the function of acetylation in cellular metabolism.

  5. Beating the acetyl coenzyme A-pathway to the origin of life.

    Science.gov (United States)

    Nitschke, Wolfgang; Russell, Michael J

    2013-07-19

    Attempts to draft plausible scenarios for the origin of life have in the past mainly built upon palaeogeochemical boundary conditions while, as detailed in a companion article in this issue, frequently neglecting to comply with fundamental thermodynamic laws. Even if demands from both palaeogeochemistry and thermodynamics are respected, then a plethora of strongly differing models are still conceivable. Although we have no guarantee that life at its origin necessarily resembled biology in extant organisms, we consider that the only empirical way to deduce how life may have emerged is by taking the stance of assuming continuity of biology from its inception to the present day. Building upon this conviction, we have assessed extant types of energy and carbon metabolism for their appropriateness to conditions probably pertaining in those settings of the Hadean planet that fulfil the thermodynamic requirements for life to come into being. Wood-Ljungdahl (WL) pathways leading to acetyl CoA formation are excellent candidates for such primordial metabolism. Based on a review of our present understanding of the biochemistry and biophysics of acetogenic, methanogenic and methanotrophic pathways and on a phylogenetic analysis of involved enzymes, we propose that a variant of modern methanotrophy is more likely than traditional WL systems to date back to the origin of life. The proposed model furthermore better fits basic thermodynamic demands and palaeogeochemical conditions suggested by recent results from extant alkaline hydrothermal seeps.

  6. Intracellular long-chain acyl CoAs activate TRPV1 channels.

    Directory of Open Access Journals (Sweden)

    Yi Yu

    Full Text Available TRPV1 channels are an important class of membrane proteins that play an integral role in the regulation of intracellular cations such as calcium in many different tissue types. The anionic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2 is a known positive modulator of TRPV1 channels and the negatively charged phosphate groups interact with several basic amino acid residues in the proximal C-terminal TRP domain of the TRPV1 channel. We and other groups have shown that physiological sub-micromolar levels of long-chain acyl CoAs (LC-CoAs, another ubiquitous anionic lipid, can also act as positive modulators of ion channels and exchangers. Therefore, we investigated whether TRPV1 channel activity is similarly regulated by LC-CoAs. Our results show that LC-CoAs are potent activators of the TRPV1 channel and interact with the same PIP2-binding residues in TRPV1. In contrast to PIP2, LC-CoA modulation of TRPV1 is independent of Ca2+i, acting in an acyl side-chain saturation and chain-length dependent manner. Elevation of LC-CoAs in intact Jurkat T-cells leads to significant increases in agonist-induced Ca2+i levels. Our novel findings indicate that LC-CoAs represent a new fundamental mechanism for regulation of TRPV1 channel activity that may play a role in diverse cell types under physiological and pathophysiological conditions that alter fatty acid transport and metabolism such as obesity and diabetes.

  7. 4-coumarate: CoA ligase partitions metabolites for eugenol biosynthesis.

    Science.gov (United States)

    Rastogi, Shubhra; Kumar, Ritesh; Chanotiya, Chandan S; Shanker, Karuna; Gupta, Madan M; Nagegowda, Dinesh A; Shasany, Ajit K

    2013-08-01

    Biosynthesis of eugenol shares its initial steps with that of lignin, involving conversion of hydroxycinnamic acids to their corresponding coenzyme A (CoA) esters by 4-coumarate:CoA ligases (4CLs). In this investigation, a 4CL (OS4CL) was identified from glandular trichome-rich tissue of Ocimum sanctum with high sequence similarity to an isoform (OB4CL_ctg4) from Ocimum basilicum. The levels of OS4CL and OB4CL_ctg4-like transcripts were highest in O. sanctum trichome, followed by leaf, stem and root. The eugenol content in leaf essential oil was positively correlated with the expression of OS4CL in the leaf at different developmental stages. Recombinant OS4CL showed the highest activity with p-coumaric acid, followed by ferulic, caffeic and trans-cinnamic acids. Transient RNA interference (RNAi) suppression of OS4CL in O. sanctum leaves caused a reduction in leaf eugenol content and trichome transcript level, with a considerable increase in endogenous p-coumaric, ferulic, trans-cinnamic and caffeic acids. A significant reduction in the expression levels was observed for OB4CL_ctg4-related transcripts in suppressed trichome compared with transcripts similar to the other four isoforms (OB4CL_ctg1, 2, 3 and 5). Sinapic acid and lignin content were also unaffected in RNAi suppressed leaf samples. Transient expression of OS4CL-green fluorescent protein fusion protein in Arabidopsis protoplasts was associated with the cytosol. These results indicate metabolite channeling of intermediates towards eugenol by a specific 4CL and is the first report demonstrating the involvement of 4CL in creation of virtual compartments through substrate utilization and committing metabolites for eugenol biosynthesis at an early stage of the pathway.

  8. A novel functional site in the PB2 subunit of influenza A virus essential for acetyl-CoA interaction, RNA polymerase activity, and viral replication.

    Science.gov (United States)

    Hatakeyama, Dai; Shoji, Masaki; Yamayoshi, Seiya; Hirota, Takenori; Nagae, Monami; Yanagisawa, Shin; Nakano, Masahiro; Ohmi, Naho; Noda, Takeshi; Kawaoka, Yoshihiro; Kuzuhara, Takashi

    2014-09-05

    The PA, PB1, and PB2 subunits, components of the RNA-dependent RNA polymerase of influenza A virus, are essential for viral transcription and replication. The PB2 subunit binds to the host RNA cap (7-methylguanosine triphosphate (m(7)GTP)) and supports the endonuclease activity of PA to "snatch" the cap from host pre-mRNAs. However, the structure of PB2 is not fully understood, and the functional sites remain unknown. In this study, we describe a novel Val/Arg/Gly (VRG) site in the PB2 cap-binding domain, which is involved in interaction with acetyl-CoA found in eukaryotic histone acetyltransferases (HATs). In vitro experiments revealed that the recombinant PB2 cap-binding domain that includes the VRG site interacts with acetyl-CoA; moreover, it was found that this interaction could be blocked by CoA and various HAT inhibitors. Interestingly, m(7)GTP also inhibited this interaction, suggesting that the same active pocket is capable of interacting with acetyl-CoA and m(7)GTP. To elucidate the importance of the VRG site on PB2 function and viral replication, we constructed a PB2 recombinant protein and recombinant viruses including several patterns of amino acid mutations in the VRG site. Substitutions of the valine and arginine residues or of all 3 residues of the VRG site to alanine significantly reduced the binding ability of PB2 to acetyl-CoA and its RNA polymerase activity. Recombinant viruses containing the same mutations could not be replicated in cultured cells. These results indicate that the PB2 VRG sequence is a functional site that is essential for acetyl-CoA interaction, RNA polymerase activity, and viral replication. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Carbon Monoxide Dehydrogenases and Acetyl-CoA Synthases: Light at the End of the Tunnel?

    Energy Technology Data Exchange (ETDEWEB)

    Paul A. Lindahl

    2002-02-19

    OAK-B135 Metalloenzymes seem to ''come of age'' when their structures are known at atomic resolution, spectroscopic and catalytic properties are basically understood, and genetic expression systems are available. Such foundations allow detailed mechanistic and spectroscopic properties to be probed and correlated to structure. The objective of this article is to summarize what is known about the title group of enzymes, and show that, to a large degree, they have come of age.

  10. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Halavaty, Andrei S. [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Kim, Youngchang [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Minasov, George; Shuvalova, Ludmilla; Dubrovska, Ievgeniia; Winsor, James [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Zhou, Min [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Onopriyenko, Olena; Skarina, Tatiana [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Papazisi, Leka; Kwon, Keehwan; Peterson, Scott N. [Center for Structural Genomics of Infectious Diseases, (United States); J. Craig Venter Institute, Rockville, MD 20850 (United States); Joachimiak, Andrzej [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Savchenko, Alexei [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Anderson, Wayne F., E-mail: wf-anderson@northwestern.edu [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States)

    2012-10-01

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS{sub SA}), Vibrio cholerae (AcpS{sub VC}) and Bacillus anthracis (AcpS{sub BA}) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS{sub BA} is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS{sub BA} may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.

  11. Unchanged acetylation of isoniazid by alcohol intake

    DEFF Research Database (Denmark)

    Wilcke, J T R; Døssing, M; Angelo, H R

    2004-01-01

    SETTING: In 10 healthy subjects, the influence of acute alcohol intake on the pharmacokinetics of isoniazid (INH) was studied. OBJECTIVE: To test the hypothesis that alcohol increases the conversion of INH by acetylation into its metabolite acetylisoniazid. DESIGN: In a crossover design, an oral...

  12. Acetylated flavonol triglycosides from Ammi majus L.

    Science.gov (United States)

    Singab, A N

    1998-12-01

    Two new acetylated flavonol triglycosides: kaempferol and isorhamnetin 3-O-[2"-(4"'-acetylrhamnosyl)-6"-glucosyl] glucosides, were isolated and identified from the aerial parts of Ammi majus L. In addition, three known flavonol glycosides namely; isorhamnetin-3-O-rutinoside, kaempferol-3-O-glucoside and isorhamnetin-3-O-glucoside were detected.

  13. Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana.

    Science.gov (United States)

    Kai, Kosuke; Mizutani, Masaharu; Kawamura, Naohiro; Yamamoto, Ryotaro; Tamai, Michiko; Yamaguchi, Hikaru; Sakata, Kanzo; Shimizu, Bun-ichi

    2008-09-01

    Coumarins are derived via the phenylpropanoid pathway in plants. The 2H-1-benzopyran-2-one core structure of coumarins is formed via the ortho-hydroxylation of cinnamates, trans/cis isomerization of the side chain, and lactonization. Ortho-hydroxylation is a key step in coumarin biosynthesis as a branch point from lignin biosynthesis; however, ortho-hydroxylation of cinnamates is not yet fully understood. In this study, scopoletin biosynthesis was explored using Arabidopsis thaliana, which accumulates scopoletin and its beta-glucopyranoside scopolin in its roots. T-DNA insertion mutants of caffeoyl CoA O-methyltransferase 1 (CCoAOMT1) showed significant reduction in scopoletin and scopolin levels in the roots, and recombinant CCoAOMT1 exhibited 3'-O-methyltransferase activity on caffeoyl CoA to feruloyl CoA. These results suggest that feruloyl CoA is a key precursor in scopoletin biosynthesis. Ortho-hydroxylases of cinnamates were explored in the oxygenase families in A. thaliana, and one of the candidate genes in the Fe(II)- and 2-oxoglutarate-dependent dioxygenase (2OGD) family was designated as F6'H1. T-DNA insertion mutants of F6'H1 showed severe reductions in scopoletin and scopolin levels in the roots. The pattern of F6'H1 expression is consistent with the patterns of scopoletin and scopolin accumulation. The recombinant F6'H1 protein exhibited ortho-hydroxylase activity for feruloyl CoA (K(m) = 36.0 +/- 4.27 microM; k(cat) = 11.0 +/- 0.45 sec(-1)) to form 6'-hydroxyferuloyl CoA, but did not hydroxylate ferulic acid. These results indicate that Fe(II)- and 2-oxoglutarate-dependent dioxygenase is the pivotal enzyme in the ortho-hydroxylation of feruloyl CoA in scopoletin biosynthesis.

  14. Recurrent encephalopathy: NAGS (N-acetylglutamate synthase) deficiency in adults.

    Science.gov (United States)

    Cartagena, A; Prasad, A N; Rupar, C A; Strong, M; Tuchman, M; Ah Mew, N; Prasad, C

    2013-01-01

    N-acetyl-glutamate synthase (NAGS) deficiency is a rare autosomal recessive urea cycle disorder (UCD) that uncommonly presents in adulthood. Adult presentations of UCDs include; confusional episodes, neuropsychiatric symptoms and encephalopathy. To date, there have been no detailed neurological descriptions of an adult onset presentation of NAGS deficiency. In this review we examine the clinical presentation and management of UCDs with an emphasis on NAGS deficiency. An illustrative case is provided. Plasma ammonia levels should be measured in all adult patients with unexplained encephalopathy, as treatment can be potentially life-saving. Availability of N-carbamylglutamate (NCG; carglumic acid) has made protein restriction largely unnecessary in treatment regimens currently employed. Genetic counselling remains an essential component of management of NAGS.

  15. Lipid accumulation is ahead of epithelial-to-mesenchymal transition and therapeutic intervention by acetyl-CoA carboxylase 2 silence in diabetic nephropathy.

    Science.gov (United States)

    Xu, Ying; Huang, Jing; Xin, Wei; Chen, Liyong; Zhao, Xu; Lv, Zhimei; Liu, Yi; Wan, Qiang

    2014-05-01

    The study investigated the relationship between epithelial-to-mesenchymal transition (EMT) and lipotoxicity in diabetic nephropathy as well as the protective effect of acetyl-CoA carboxylase 2 (ACC2) silence. High glucose (30mmol/L) cultured human proximal tubular epithelial cells (HK-2 cells) were used. Triglyceride content, fatty acid β-oxidation rate, malonyl CoA content, and marker proteins of EMT, including E-cadherin (E-cad), α-smooth muscle actin (α-SMA) and transforming grow factor-β (TGF-β), were assessed. Silence of ACC2 was achieved by ACC2-shRNA lentivirus transfection. In cultured human proximal tubular cells, high glucose induced fatty acid deposit before phenotypical and morphological changes of EMT. At 48h, more triglyceride content, more malonyl CoA content and lower fatty acid β-oxidation rate were detected. However, increased expression of TGF-β, accompanied by loss of E-cad and acquisition of α-SMA, was observed at 98h but not at 48h. The silence of ACC2 in HK-2 cells led to restored cell morphology with less lipid deposition and less malonyl-CoA content, which resulted from faster β-oxidation rate. The progress of lipotoxicity participates in the development of diabetic nephropathy in early stage before EMT. The manipulation of lipid metabolism might act as a promising therapeutic intervention for diabetic nephropathy. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Partial genetic characterization of Stearoyl Coa-Desaturase´s structural region in Bubalus bubalis

    Directory of Open Access Journals (Sweden)

    R.B. Thomazine

    2010-02-01

    Full Text Available Conjugated Linoleic Acids (CLAs comprise a family of positional and geometric isomers of linoleic acid. The main form of CLA, cis-9, trans-11-C18:2 show positive effects in cancer prevention and treatment. The major dietary sources of these fatty acids are derived from ruminant animals, in particular dairy products. In these animals, the endogenous synthesis mainly occurs in mammary gland by the action of enzyme Stearoyl CoA Desaturase (SCD. Different levels of expression and activity of SCD in mammary gland can explain partially the variation of CLA levels in fat milk. Considering a great fat concentration in bubaline milk and the benefit of a high and positive correlation between fat milk and CLA production, this study was carried on with the intention of sequencing and characterizing part of the gene that codifies SCD in buffaloes. Genomic DNA was extracted from blood samples of lactating bubaline which begins to the breed Murrah. After the (acho que nao precisa desse the extractions, PCR (Polymerase Chain Reaction reactions were made by using primers Z43D1 and E143F1. The fragments obtained in PCR were cloned into “T” vectors and transformed in competent cells DH10B line. After this, three samples of each fragment were sequenced from 5’ and 3’ extremities using a BigDye kit in an automatic sequencer. Sequences were edited in a consensus of each fragment and were submitted to BLAST-n / NCBI for similarity comparisions among other species. The sequence obtained with Z43D1 primers shows 938 bp enclosing exons 1 and 2 and intron 1. The primers E143F1 show 70 bp corresponding to exon 3 of bubaline SCD gene. Similarities were obtained between 85% and 97% among bubaline sequences and sequences of SCD gene described in human, mouse, rat, swine, bovine, caprine and ovine species. This study has permitted the identification and partial characterization of SCD codifing region in Bubalus bubalis specie.

  17. A multienzyme complex channels substrates and electrons through acetyl-CoA and methane biosynthesis pathways in Methanosarcina.

    Directory of Open Access Journals (Sweden)

    Dillon J Lieber

    Full Text Available Multienzyme complexes catalyze important metabolic reactions in many organisms, but little is known about the complexes involved in biological methane production (methanogenesis. A crosslinking-mass spectrometry (XL-MS strategy was employed to identify proteins associated with coenzyme M-coenzyme B heterodisulfide reductase (Hdr, an essential enzyme in all methane-producing archaea (methanogens. In Methanosarcina acetivorans, Hdr forms a multienzyme complex with acetyl-CoA decarbonylase synthase (ACDS, and F420-dependent methylene-H4MPT reductase (Mer. ACDS is essential for production of acetyl-CoA during growth on methanol, or for methanogenesis from acetate, whereas Mer is essential for methanogenesis from all substrates. Existence of a Hdr:ACDS:Mer complex is consistent with growth phenotypes of ACDS and Mer mutant strains in which the complex samples the redox status of electron carriers and directs carbon flux to acetyl-CoA or methanogenesis. We propose the Hdr:ACDS:Mer complex comprises a special class of multienzyme redox complex which functions as a "biological router" that physically links methanogenesis and acetyl-CoA biosynthesis pathways.

  18. Degradation of aromatics and chloroaromatics by Pseudomonas sp. strain B13: purification and characterization of 3-oxoadipate:succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase.

    Science.gov (United States)

    Kaschabek, Stefan R; Kuhn, Bernd; Müller, Dagmar; Schmidt, Eberhard; Reineke, Walter

    2002-01-01

    The degradation of 3-oxoadipate in Pseudomonas sp. strain B13 was investigated and was shown to proceed through 3-oxoadipyl-coenzyme A (CoA) to give acetyl-CoA and succinyl-CoA. 3-Oxoadipate:succinyl-CoA transferase of strain B13 was purified by heat treatment and chromatography on phenyl-Sepharose, Mono-Q, and Superose 6 gels. Estimation of the native molecular mass gave a value of 115,000 +/- 5,000 Da with a Superose 12 column. Polyacrylamide gel electrophoresis under denaturing conditions resulted in two distinct bands of equal intensities. The subunit A and B values were 32,900 and 27,000 Da. Therefore it can be assumed that the enzyme is a heterotetramer of the type A2B2 with a molecular mass of 120,000 Da. The N-terminal amino acid sequences of both subunits are as follows: subunit A, AELLTLREAVERFVNDGTVALEGFTHLIPT; subunit B, SAYSTNEMMTVAAARRLKNGAVVFV. The pH optimum was 8.4. Km values were 0.4 and 0.2 mM for 3-oxoadipate and succinyl-CoA, respectively. Reversibility of the reaction with succinate was shown. The transferase of strain B13 failed to convert 2-chloro- and 2-methyl-3-oxoadipate. Some activity was observed with 4-methyl-3-oxoadipate. Even 2-oxoadipate and 3-oxoglutarate were shown to function as poor substrates of the transferase. 3-oxoadipyl-CoA thiolase was purified by chromatography on DEAE-Sepharose, blue 3GA, and reactive brown-agarose. Estimation of the native molecular mass gave 162,000 +/- 5,000 Da with a Superose 6 column. The molecular mass of the subunit of the denatured protein, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was 42 kDa. On the basis of these results, 3-oxoadipyl-CoA thiolase should be a tetramer of the type A4. The N-terminal amino acid sequence of 3-oxoadipyl-CoA thiolase was determined to be SREVYI-DAVRTPIGRFG. The pH optimum was 7.8. Km values were 0.15 and 0.01 mM for 3-oxoadipyl-CoA and CoA, respectively. Sequence analysis of the thiolase terminus revealed high percentages of identity

  19. Two New Acetyl Cimicifugosides from the Rhizomes of Cimicifuga Racemosa

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Two new acetyl cimicifugosides were isolated from the rhizomes of Cimicifuga racemosa. Their structures were elucidated as 2'-O-acetyl cimicifugoside H-1 1 and 3'-O-acetyl cimicifugoside H-1 2 by the spectroscopic evidence and chemical methods.

  20. 15-O-Acetyl-3-O-benzoylcharaciol and helioscopinolide A, two diterpenes isolated from Euphorbia helioscopia suppress microglia activation.

    Science.gov (United States)

    Wang, Hao; Liu, Yu; Zhang, Jingling; Xu, Jing; Cui, Chun-Ai; Guo, Yuanqiang; Jin, Da-Qing

    2016-01-26

    Microglia activation plays an important role in the pathogenesis of various neurodegenerative diseases by producing neurotoxic factors. In the present study, we found that two diterpenes isolated from Euphorbia helioscopia, 15-O-Acetyl-3-O-benzoylcharaciol and helioscopinolide A suppressed NO and PGE2 production by inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in lipopolysaccharide (LPS)-stimulated BV2 microglia cells. The diterpenes also inhibited the production of ROS and proinflammatory cytokines including interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α, the mechanism involved the NF-κB but not Akt and mitogen-activated protein kinase (MAPK) pathway. Moreover, the two diterpenes also attenuate microglia activation-mediated neuronal death. These results suggest that 15-O-Acetyl-3-O-benzoylcharaciol and helioscopinolide A may provide potential therapeutic strategy for various neuroinflammatory diseases.

  1. Histone deacetylase 1 reduces NO production in endothelial cells via lysine deacetylation of NO synthase 3

    Science.gov (United States)

    Hyndman, Kelly A.; Ho, Dao H.; Sega, Martiana F.

    2014-01-01

    The lysine acetylation state of nonhistone proteins may be regulated through histone deacetylases (HDACs). Evidence suggests that nitric oxide (NO) synthase 3 (NOS3; endothelial NOS) is posttranslationally lysine acetylated, leading to increased NO production in the endothelium. We tested the hypothesis that NOS3 is lysine acetylated and that upregulated HDAC1-mediated deacetylation leads to reduced NO production in endothelial cells. We determined that NOS3 is basally lysine acetylated in cultured bovine aortic endothelial cells (BAECs). In BAECs, HDAC1 is expressed in the nucleus and cytosol and forms a novel protein-protein interaction with NOS3. Overexpression of HDAC1 in BAECs resulted in a significant reduction in NOS3 lysine acetylation (control = 1.0 ± 0.1 and HDAC1 = 0.59 ± 0.08 arbitrary units, P NOS3 acetylation level, yet increased basal nitrite production (730.6 ± 99.1 pmol·mg−1·h−1) and further exaggerated increases in endothelin-1 stimulated nitrite production (1276.9 ± 288.2 pmol·mg−1·h−1) was observed. Moreover, overexpression or knockdown of HDAC1 resulted in no significant effect on NOS3 protein expression or NOS3 phosphorylation sites T497, S635, or S1179. Thus these data indicate that upregulated HDAC1 decreases NOS3 activity, most likely through direct lysine deacetylation of NOS3. We propose that HDAC1-mediated deacetylation of NOS3 may represent a novel target for endothelial dysfunction. PMID:25015965

  2. Cloning and expressional analyses of a cinnamoyl CoA reductase cDNA from rice seedlings

    Institute of Scientific and Technical Information of China (English)

    BAI Yong; GONG Wei; LIU Tianyun; ZHU Yuxian

    2003-01-01

    Cinnamoyl CoA reductase (CCR: EC 1.2.1.44), the entry-point enzyme of the lignin specific biosynthetic pathway, catalyzes the conversion of cinnamoyl CoA esters to their corresponding cinnamaldehydes. Multiple sequence alignment showed that the deduced polypeptide shared 70% similarity and 30% sequence identity at the amino acid level with defined CCR genes from other plant species and they all contain the common signature sequences thought to be the catalytic site as well as the putative NADP binding domain. Using a conserved OsCCR cDNA fragment as the probe for library screening, we isolated the genomic DNA that covered the whole coding region of OsCCR with total length of 3045 bp including 4 introns and 5 exons. The open reading frame for our OsCCR gene contains 337 amino acids. Northern blot indicated that OsCCR was expressed in different organs with the highest level found in stems. In situ hybridization results showed that OsCCR mRNA was localized mainly along the vascular bundles in stems and leaves, and also in lateral roots that was differentiating from the tillering node. We conclude that the vascular-localized expression of OsCCR gene may suggest its possible involvement in lignin biosynthesis. Cloning and characterization of OsCCR will help to clarify how lignifications in plants are regulated and will provide a physical basis for creating genetically engineered rice plants with optimal lignin contents.

  3. p53 Acetylation: Regulation and Consequences

    OpenAIRE

    2014-01-01

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo ev...

  4. Properties of phosphorylated thymidylate synthase

    DEFF Research Database (Denmark)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr;

    2015-01-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichin......Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat...

  5. Fragrance material review on acetyl carene.

    Science.gov (United States)

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl carene when used as a fragrance ingredient is presented. Acetyl carene is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl carene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013A Toxicologic and dermatologic assessment of alkyl cyclic ketones when used as fragrance ingredients. (submitted for publication).) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. Copyright © 2013. Published by Elsevier Ltd.

  6. Biphenyl synthase, a novel type III polyketide synthase.

    Science.gov (United States)

    Liu, B; Raeth, T; Beuerle, T; Beerhues, L

    2007-05-01

    Biphenyls and dibenzofurans are the phytoalexins of the Maloideae, a subfamily of the economically important Rosaceae. The carbon skeleton of the two classes of antimicrobial secondary metabolites is formed by biphenyl synthase (BIS). A cDNA encoding this key enzyme was cloned from yeast-extract-treated cell cultures of Sorbus aucuparia. BIS is a novel type III polyketide synthase (PKS) that shares about 60% amino acid sequence identity with other members of the enzyme superfamily. Its preferred starter substrate is benzoyl-CoA that undergoes iterative condensation with three molecules of malonyl-CoA to give 3,5-dihydroxybiphenyl via intramolecular aldol condensation. BIS did not accept CoA-linked cinnamic acids such as 4-coumaroyl-CoA. This substrate, however, was the preferential starter molecule for chalcone synthase (CHS) that was also cloned from S. aucuparia cell cultures. While BIS expression was rapidly, strongly and transiently induced by yeast extract treatment, CHS expression was not. In a phylogenetic tree, BIS grouped together closely with benzophenone synthase (BPS) that also uses benzoyl-CoA as starter molecule but cyclizes the common intermediate via intramolecular Claisen condensation. The molecular characterization of BIS thus contributes to the understanding of the functional diversity and evolution of type III PKSs.

  7. Genetics Home Reference: GM3 synthase deficiency

    Science.gov (United States)

    ... Facebook Share on Twitter Your Guide to Understanding Genetic Conditions Search MENU Toggle navigation Home Page Search ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions GM3 synthase deficiency GM3 synthase ...

  8. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.

    Science.gov (United States)

    Herbst, Dominik A; Jakob, Roman P; Zähringer, Franziska; Maier, Timm

    2016-03-24

    Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.

  9. Cross sections for production of the CO(A 1 Pi)-(X 1 Sigma) fourth positive band system and O(3 S) by photodissociation of CO2

    Science.gov (United States)

    Gentieu, E. P.; Mentall, J. E.

    1972-01-01

    The CO(A 1 Pi) cross sections reported here, along with previously determined electron impact results, establish the basis for calculating CO fourth positive system volume emission rates in the Martian dayglow. Calculated volume emission rates in turn determine relative distribution of photon vs. electron impact as mechanisms for producing CO(A 1 Pi) in the Mars atmosphere. The smallness of the O(1304) cross section confirms previous indirect evidence that photodissociative excitation of CO2 is not an important source of O(3 S) in the upper atmosphere of Mars.

  10. Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Manzi, A.E.; Sjoberg, E.R.; Diaz, S.; Varki, A.

    1990-08-05

    We and others previously described the melanoma-associated oncofetal glycosphingolipid antigen 9-O-acetyl-GD3, a disialoganglioside O-acetylated at the 9-position of the outer sialic acid residue. We have now developed methods to examine the biosynthesis and turnover of disialogangliosides in cultured melanoma cells and in Golgi-enriched vesicles from these cells. O-Acetylation was selectively expressed on di- and trisialogangliosides, but not on monosialogangliosides, nor on glycoprotein-bound sialic acids. Double-labeling of cells with (3H)acetate and (14C)glucosamine introduced easily detectable labels into each of the components of the ganglioside molecules. Pulse-chase studies of such doubly labeled molecules indicated that the O-acetyl groups turn over faster than the parent molecule. When Golgi-enriched vesicles from these cells were incubated with (acetyl-3H)acetyl-coenzyme A, the major labeled products were disialogangliosides. (Acetyl-3H)O-acetyl groups were found at both the 7- and the 9-positions, indicating that both 7-O-acetyl GD3 and 9-O-acetyl GD3 were synthesized by the action of O-acetyltransferase(s) on endogenous GD3. Analysis of the metabolically labeled molecules confirmed the existence of both 7- and 9-O-acetylated GD3 in the intact cells. Surprisingly, the major 3H-labeled product of the in vitro labeling reaction was not O-acetyl-GD3, but GD3, with the label exclusively in the sialic acid residues. Fragmentation of the labeled sialic acids by enzymatic and chemical methods showed that the 3H-label was exclusively in (3H)N-acetyl groups. Analyses of the double-labeled sialic acids from intact cells also showed that the 3H-label from (3H)acetate was exclusively in the form of (3H)N-acetyl groups, whereas the 14C-label was at the 4-position.

  11. O-acetylation of Plant Cell Wall Polysaccharides

    Directory of Open Access Journals (Sweden)

    Sascha eGille

    2012-01-01

    Full Text Available Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA and the trichome birefringence-like (TBL proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation.From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of e.g. lignocellulosic based biofuel production.

  12. Global analysis of lysine acetylation suggests the involvement of protein acetylation in diverse biological processes in rice (Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Babi Ramesh Reddy Nallamilli

    Full Text Available Lysine acetylation is a reversible, dynamic protein modification regulated by lysine acetyltransferases and deacetylases. Recent advances in high-throughput proteomics have greatly contributed to the success of global analysis of lysine acetylation. A large number of proteins of diverse biological functions have been shown to be acetylated in several reports in human cells, E.coli, and dicot plants. However, the extent of lysine acetylation in non-histone proteins remains largely unknown in monocots, particularly in the cereal crops. Here we report the mass spectrometric examination of lysine acetylation in rice (Oryza sativa. We identified 60 lysine acetylated sites on 44 proteins of diverse biological functions. Immunoblot studies further validated the presence of a large number of acetylated non-histone proteins. Examination of the amino acid composition revealed substantial amino acid bias around the acetylation sites and the amino acid preference is conserved among different organisms. Gene ontology analysis demonstrates that lysine acetylation occurs in diverse cytoplasmic, chloroplast and mitochondrial proteins in addition to the histone modifications. Our results suggest that lysine acetylation might constitute a regulatory mechanism for many proteins, including both histones and non-histone proteins of diverse biological functions.

  13. Acetyl-CoA carboxylase-a as a novel target for cancer therapy.

    Science.gov (United States)

    Wang, Chun; Rajput, Sandeep; Watabe, Kounosuke; Liao, Duan-Fang; Cao, Deliang

    2010-01-01

    Acetyl-CoA carboxylases (ACC) are rate-limiting enzymes in de novo fatty acid synthesis, catalyzing ATP-dependent carboxylation of acetyl-CoA to form malonyl-CoA. Malonyl-CoA is a critical bi-functional molecule, i.e., a substrate of fatty acid synthase (FAS) for acyl chain elongation (fatty acid synthesis) and an inhibitor of carnitine palmitoyltransferase I (CPT-I) for fatty acid beta-oxidation. Two ACC isoforms have been identified in mammals, i.e. ACC-alpha (ACCA, also termed ACC1) and ACC-beta (ACCB, also designated ACC2). ACC has long been used as a target for the management of metabolic diseases, such as obesity and metabolic syndrome, and various inhibitors have been developed in clinical trials. Recently, ACCA up-regulation has been recognized in multiple human cancers, promoting lipogenesis to meet the need of cancer cells for rapid growth and proliferation. Therefore, ACCA might be effective as a potent target for cancer intervention, and the inhibitors developed for the treatment of metabolic diseases would be potential therapeutic agents for cancer therapy. This review summarizes our recent findings and updates the current understanding of the ACCA with focus on cancer research.

  14. Sphingomyelin synthase SMS2 displays dual activity as ceramide phosphoethanolamine synthase[S

    Science.gov (United States)

    Ternes, Philipp; Brouwers, Jos F. H. M.; van den Dikkenberg, Joep; Holthuis, Joost C. M.

    2009-01-01

    Sphingolipids are vital components of eukaryotic membranes involved in the regulation of cell growth, death, intracellular trafficking, and the barrier function of the plasma membrane (PM). While sphingomyelin (SM) is the major sphingolipid in mammals, previous studies indicate that mammalian cells also produce the SM analog ceramide phosphoethanolamine (CPE). Little is known about the biological role of CPE or the enzyme(s) responsible for CPE biosynthesis. SM production is mediated by the SM synthases SMS1 in the Golgi and SMS2 at the PM, while a closely related enzyme, SMSr, has an unknown biochemical function. We now demonstrate that SMS family members display striking differences in substrate specificity, with SMS1 and SMSr being monofunctional enzymes with SM and CPE synthase activity, respectively, and SMS2 acting as a bifunctional enzyme with both SM and CPE synthase activity. In agreement with the PM residency of SMS2, we show that both SM and CPE synthase activities are enhanced at the surface of SMS2-overexpressing HeLa cells. Our findings reveal an unexpected diversity in substrate specificity among SMS family members that should enable the design of specific inhibitors to target the biological role of each enzyme individually. PMID:19454763

  15. Structural comparison between the open and closed forms of citrate synthase from Thermus thermophilus HB8.

    Science.gov (United States)

    Kanamori, Eiji; Kawaguchi, Shin-Ichi; Kuramitsu, Seiki; Kouyama, Tsutomu; Murakami, Midori

    2015-01-01

    The crystal structures of citrate synthase from the thermophilic eubacteria Thermus thermophilus HB8 (TtCS) were determined for an open form at 1.5 Å resolution and for closed form at 2.3 Å resolution, respectively. In the absence of ligands TtCS in the open form was crystalized into a tetragonal form with a single subunit in the asymmetric unit. TtCS was also co-crystallized with citrate and coenzyme-A to form an orthorhombic crystal with two homodimers in the asymmetric unit. Citrate and CoA are found in the active site situated between the large domain and the small domain in all subunit whereas the complex shows two distinct closed conformations, the fully closed form and partially closed form. Structural comparisons are performed to describe conformational changes associated with binding of products of TtCS. Upon binding of citrate, basic residues in the active site move toward citrate and make a hydrogen bond network in the active site, inducing a large-scale rotation of the small domain relative to the large domain. CoA is sandwiched between the small and large domains and then the cysteamine tail is inserted into the active site with a cooperative rotation around mainchain dihedrals in the hinge region connecting helices M and N. According to this rotation these helices are extended to close the active site completely. The considerable flexibility and structural rearrangements in the hinge region are crucial for an ordered bibi reaction in catalysis for microbial CSs.

  16. Lysine acetylation is a widespread protein modification for diverse proteins in Arabidopsis.

    Science.gov (United States)

    Wu, Xia; Oh, Man-Ho; Schwarz, Eliezer M; Larue, Clayton T; Sivaguru, Mayandi; Imai, Brian S; Yau, Peter M; Ort, Donald R; Huber, Steven C

    2011-04-01

    Lysine acetylation (LysAc), a form of reversible protein posttranslational modification previously known only for histone regulation in plants, is shown to be widespread in Arabidopsis (Arabidopsis thaliana). Sixty-four Lys modification sites were identified on 57 proteins, which operate in a wide variety of pathways/processes and are located in various cellular compartments. A number of photosynthesis-related proteins are among this group of LysAc proteins, including photosystem II (PSII) subunits, light-harvesting chlorophyll a/b-binding proteins (LHCb), Rubisco large and small subunits, and chloroplastic ATP synthase (β-subunit). Using two-dimensional native green/sodium dodecyl sulfate gels, the loosely PSII-bound LHCb was separated from the LHCb that is tightly bound to PSII and shown to have substantially higher level of LysAc, implying that LysAc may play a role in distributing the LHCb complexes. Several potential LysAc sites were identified on eukaryotic elongation factor-1A (eEF-1A) by liquid chromatography/mass spectrometry and using sequence- and modification-specific antibodies the acetylation of Lys-227 and Lys-306 was established. Lys-306 is contained within a predicted calmodulin-binding sequence and acetylation of Lys-306 strongly inhibited the interactions of eEF-1A synthetic peptides with calmodulin recombinant proteins in vitro. These results suggest that LysAc of eEF-1A may directly affect regulatory properties and localization of the protein within the cell. Overall, these findings reveal the possibility that reversible LysAc may be an important and previously unknown regulatory mechanism of a large number of nonhistone proteins affecting a wide range of pathways and processes in Arabidopsis and likely in all plants.

  17. Fragrance material review on acetyl cedrene.

    Science.gov (United States)

    Scognamiglio, J; Letizia, C S; Politano, V T; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl cedrene when used as a fragrance ingredient is presented. Acetyl cedrene is a member of the fragrance structural group Alkyl Cyclic Ketones. The generic formula for this group can be represented as (R1)(R2)CO. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl cedrene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, toxicokinetics, repeated dose, reproductive toxicity, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (2013) (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients. Submitted with this manuscript.) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. Copyright © 2013. Published by Elsevier Ltd.

  18. Characterization of the JWST Pathfinder Mirror Dynamics Using the Center of Curvature Optical Assembly (CoCOA)

    Science.gov (United States)

    Wells, C.; Hadaway, J.; Olczak, G.; Cosentino, J.; Johnston, J.; Whitman, T.; Connolly, M.; Chaney, D.; Knight, J.; Telfer, R.

    2016-01-01

    The JWST (James Webb Space Telescope) Optical Telescope Element (OTE) consists of a 6.6 meter clear aperture, 18-segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at NASA Johnson Space Center using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).

  19. Characterization of the JWST Pathfinder mirror dynamics using the center of curvature optical assembly (CoCOA)

    Science.gov (United States)

    Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal

    2016-07-01

    The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, 18 segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).

  20. Obesity, cancer, and acetyl-CoA metabolism

    OpenAIRE

    Lee, Joyce V.; Shah, Supriya A.; Wellen, Kathryn E.

    2013-01-01

    As rates of obesity soar in the Unites States and around the world, cancer attributed to obesity has emerged as major threat to public health. The link between obesity and cancer can be attributed in part to the state of chronic inflammation that develops in obesity. Acetyl-CoA production and protein acetylation patterns are highly sensitive to metabolic state and are significantly altered in obesity. In this article, we explore the potential role of nutrient-sensitive lysine acetylation in r...

  1. Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption

    Science.gov (United States)

    Objective: The family of acyl-CoA synthetase enzymes (ACSL) activates fatty acids within cells to generate long chain fatty acyl CoA (FACoA). The differing metabolic fates of FACoAs such as incorporation into neutral lipids, phospholipids, and oxidation pathways are differentially regulated by the ...

  2. Predominance of N-acetyl transferase 2 slow acetylator alleles in ...

    African Journals Online (AJOL)

    Student

    acetylator phenotype were the most predominant NAT2 allelic type and individuals with the phenotype were more likely to ... influence individual variation in cancer susceptibility, responses to ... development of bladder (Hein, 2002) and colon cancers ... temperature ≥ 37.5°C) or having a history of fever in the preceding.

  3. Generation of acetyllysine antibodies and affinity enrichment of acetylated peptides.

    Science.gov (United States)

    Guan, Kun-Liang; Yu, Wei; Lin, Yan; Xiong, Yue; Zhao, Shimin

    2010-09-01

    Lysine acetylation has emerged as one of the major post-translational modifications, as indicated by its roles in chromatin remodeling, activation of transcription factors and, most recently, regulation of metabolic enzymes. Identification of acetylation sites in a protein is the first essential step for functional characterization of acetylation in physiological regulation. However, the study of the acetylome is hindered by the lack of suitable physical and biochemical properties of the acetyl group and existence of high-abundance acetylated histones in the cell, and needs a robust method to overcome these problems. Here we present protocols for (i) using chemically acetylated ovalbumin and synthetic acetylated peptide to generate a pan-acetyllysine antibody and a site-specific antibody to Lys288-acetylated argininosuccinate lyase, respectively; (ii) using subcellular fractionation to reduce highly abundant acetylated histones; and (iii) using acetyllysine antibody affinity purification and mass spectrometry to characterize acetylome of human liver tissue. The entire characterization procedure takes ∼2-3 d to complete.

  4. Acetylation of Stat1 modulates NF-κB activity

    Science.gov (United States)

    Krämer, Oliver H.; Baus, Daniela; Knauer, Shirley K.; Stein, Stefan; Jäger, Elke; Stauber, Roland H.; Grez, Manuel; Pfitzner, Edith; Heinzel, Thorsten

    2006-01-01

    Acetylation of signaling molecules can lead to apoptosis or differentiation of carcinoma cells. The molecular mechanisms underlying these processes and the biological role of enzymes mediating the transfer or removal of an acetyl-group are currently under intense investigation. Our study shows that Stat1 is an acetylated protein. Stat1 acetylation depends on the balance between Stat1-associated histone deacetylases (HDACs) and histone acetyltransferases (HATs) such as CBP. Remarkably both inhibitors of HDACs and the cytokine interferon α alter this equilibrium and induce Stat1 acetylation. The analysis of Stat1 mutants reveals Lys 410 and Lys 413 as acetylation sites. Experiments with Stat1 mutants mimicking either constitutively acetylated or nonacetylated states show that only acetylated Stat1 is able to interact with NF-κB p65. As a consequence, p65 DNA binding, nuclear localization, and expression of anti-apoptotic NF-κB target genes decrease. These findings show how the acetylation of Stat1 regulates NF-κB activity and thus ultimately apoptosis. PMID:16481475

  5. Solvent-Free Synthesis of Some1-Acetyl Pyrazoles

    Energy Technology Data Exchange (ETDEWEB)

    Thirunarayanan, Ganesamoorthy [Annamalai Univ., Tamil Nadu (India); Sekar, Krishnamoorthy Guna [National College, Tiruchirappalli (India)

    2013-10-15

    Some N-acetyl pyrazoles including 1-(3-(3,4-dichlorophenyl)-5-(substituted phenyl)-4,5-dihydro-{sup 1}H-pyrazole-1-yl) ethanones have been synthesised by solvent free cyclization cum acetylation of chalcones like substituted styryl 3,4-dichlorophenyl ketones using hydrazine hydrate and acetic anhydride in presence of catalytic amount of fly-ash: H{sub 2}SO{sub 4} catalyst. The yield of these N-acetyl pyrazole derivatives are more than 75%. The synthesised N-acetyl pyrazoline derivatives were characterized by their physical constants and spectral data.

  6. Crystal Structure of the Golgi-Associated Human Nα-Acetyltransferase 60 Reveals the Molecular Determinants for Substrate-Specific Acetylation.

    Science.gov (United States)

    Støve, Svein Isungset; Magin, Robert S; Foyn, Håvard; Haug, Bengt Erik; Marmorstein, Ronen; Arnesen, Thomas

    2016-07-06

    N-Terminal acetylation is a common and important protein modification catalyzed by N-terminal acetyltransferases (NATs). Six human NATs (NatA-NatF) contain one catalytic subunit each, Naa10 to Naa60, respectively. In contrast to the ribosome-associated NatA to NatE, NatF/Naa60 specifically associates with Golgi membranes and acetylates transmembrane proteins. To gain insight into the molecular basis for the function of Naa60, we developed an Naa60 bisubstrate CoA-peptide conjugate inhibitor, determined its X-ray structure when bound to CoA and inhibitor, and carried out biochemical experiments. We show that Naa60 adapts an overall fold similar to that of the catalytic subunits of ribosome-associated NATs, but with the addition of two novel elongated loops that play important roles in substrate-specific binding. One of these loops mediates a dimer to monomer transition upon substrate-specific binding. Naa60 employs a catalytic mechanism most similar to Naa50. Collectively, these data reveal the molecular basis for Naa60-specific acetyltransferase activity with implications for its Golgi-specific functions.

  7. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis

    DEFF Research Database (Denmark)

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double...... differentiation of cell types with secondary cell walls......., triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development...

  8. N-acetylaspartate catabolism determines cytosolic acetyl-CoA levels and histone acetylation in brown adipocytes.

    Science.gov (United States)

    Prokesch, A; Pelzmann, H J; Pessentheiner, A R; Huber, K; Madreiter-Sokolowski, C T; Drougard, A; Schittmayer, M; Kolb, D; Magnes, C; Trausinger, G; Graier, W F; Birner-Gruenberger, R; Pospisilik, J A; Bogner-Strauss, J G

    2016-04-05

    Histone acetylation depends on the abundance of nucleo-cytoplasmic acetyl-CoA. Here, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. N-acetylaspartate (NAA) is a highly abundant brain metabolite catabolized by aspartoacylase yielding aspartate and acetate. The latter can be further used for acetyl-CoA production. Prior to this work, the presence of NAA has not been described in adipocytes. Here, we show that accumulation of NAA decreases the brown adipocyte phenotype. We increased intracellular NAA concentrations in brown adipocytes via media supplementation or knock-down of aspartoacylase and measured reduced lipolysis, thermogenic gene expression, and oxygen consumption. Combinations of approaches to increase intracellular NAA levels showed additive effects on lipolysis and gene repression, nearly abolishing the expression of Ucp1, Cidea, Prdm16, and Ppara. Transcriptome analyses of aspartoacylase knock-down cells indicate deficiencies in acetyl-CoA and lipid metabolism. Concordantly, cytoplasmic acetyl-CoA levels and global histone H3 acetylation were decreased. Further, activating histone marks (H3K27ac and H3K9ac) in promoters/enhancers of brown marker genes showed reduced acetylation status. Taken together, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. Thereby, we mechanistically connect the NAA pathway to the epigenomic regulation of gene expression, modulating the phenotype of brown adipocytes.

  9. Evaluation of synthase and hemisynthase activities of glucosamine-6-phosphate synthase by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Gaucher-Wieczorek, Florence; Guérineau, Vincent; Touboul, David; Thétiot-Laurent, Sophie; Pelissier, Franck; Badet-Denisot, Marie-Ange; Badet, Bernard; Durand, Philippe

    2014-08-01

    Glucosamine-6-phosphate synthase (GlmS, EC 2.6.1.16) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway, leading to the synthesis of uridine-5'-diphospho-N-acetyl-D-glucosamine, the major building block for the edification of peptidoglycan in bacteria, chitin in fungi, and glycoproteins in mammals. This bisubstrate enzyme converts D-fructose-6-phosphate (Fru-6P) and L-glutamine (Gln) into D-glucosamine-6-phosphate (GlcN-6P) and L-glutamate (Glu), respectively. We previously demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) allows determination of the kinetic parameters of the synthase activity. We propose here to refine the experimental protocol to quantify Glu and GlcN-6P, allowing determination of both hemisynthase and synthase parameters from a single assay kinetic experiment, while avoiding interferences encountered in other assays. It is the first time that MALDI-MS is used to survey the activity of a bisubstrate enzyme.

  10. Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment

    Energy Technology Data Exchange (ETDEWEB)

    Funk, C.D.; Funk, L.B.; Kennedy, M.E.; Pong, A.S.; Fitzgerald, G.A. (Vanderbilt Univ., Nashville, TN (United States))

    1991-06-01

    Platelets metabolize arachidonic acid to thromboxane A{sub 2}, a potent platelet aggregator and vasoconstrictor compound. The first step of this transformation is catalyzed by prostaglandin (PG) G/H synthase, a target site for nonsteroidal antiinflammatory drugs. We have isolated the cDNA for both human platelet and human erythroleukemia cell PGG/H synthase using the polymerase chain reaction and conventional screening procedures. The cDNA encoding the full-length protein was expressed in COS-M6 cells. Microsomal fractions from transfected cells produced prostaglandin endoperoxide derived products which were inhibited by indomethacin and aspirin. Mutagenesis of the serine residue at position 529, the putative aspirin acetylation site, to an asparagine reduced cyclooxygenase activity to barely detectable levels, an effect observed previously with the expressed sheep vesicular gland enzyme. Platelet-derived growth factor and phorbol ester differentially regulated the expression of PGG/H synthase mRNA levels in the megakaryocytic/platelet-like HEL cell line. The PGG/H synthase gene was assigned to chromosome 9 by analysis of a human-hamster somatic hybrid DNA panel. The availability of platelet PGG/H synthase cDNA should enhance our understanding of the important structure/function domains of this protein and it gene regulation.

  11. Global analysis of lysine acetylation in strawberry leaves

    Directory of Open Access Journals (Sweden)

    Xianping eFang

    2015-09-01

    Full Text Available Protein lysine acetylation is a reversible and dynamic post-translational modification. It plays an important role in regulating diverse cellular processes including chromatin dynamic, metabolic pathways and transcription in both prokaryotes and eukaryotes. Although studies of lysine acetylome in plants have been reported, the throughput was not high enough, hindering the deep understanding of lysine acetylation in plant physiology and pathology. In this study, taking advantages of anti-acetyllysine-based enrichment and high-sensitive-mass spectrometer, we applied an integrated proteomic approach to comprehensively investigate lysine acetylome in strawberry. In total, we identified 1392 acetylation sites in 684 proteins, representing the largest dataset of acetylome in plants to date. To reveal the functional impacts of lysine acetylation in strawberry, intensive bioinformatic analysis was performed. The results significantly expanded our current understanding of plant acetylome and demonstrated that lysine acetylation is involved in multiple cellular metabolism and cellular processes. More interestingly, nearly 50% of all acetylated proteins identified in this work were localized in chloroplast and the vital role of lysine acetylation in photosynthesis was also revealed. Taken together, this study not only established the most extensive lysine acetylome in plants to date, but also systematically suggests the significant and unique roles of lysine acetylation in plants.

  12. Regulation of autophagy by cytosolic acetyl-coenzyme A

    DEFF Research Database (Denmark)

    Mariño, Guillermo; Pietrocola, Federico; Eisenberg, Tobias

    2014-01-01

    Acetyl-coenzyme A (AcCoA) is a major integrator of the nutritional status at the crossroads of fat, sugar, and protein catabolism. Here we show that nutrient starvation causes rapid depletion of AcCoA. AcCoA depletion entailed the commensurate reduction in the overall acetylation of cytoplasmic...

  13. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Science.gov (United States)

    2010-04-01

    ... that are intended for use solely under medical supervision to meet nutritional requirements in specific medical conditions and these foods comply with the requirements of part 105 of this chapter, the food... Special Dietary and Nutritional Additives § 172.372 N-Acetyl-L-methionine. The food additive N-acetyl-L...

  14. The kinetics of the acetylation of gelatinised potato starch

    NARCIS (Netherlands)

    de Graaf, R.A.; Broekroelofs, G.A.; Janssen, L.P.B.M.; Beenackers, A.A C M

    1995-01-01

    The reaction rates, in the base-catalysed acetylation of gelatinised aqueous starch (4 wt%), by vinylacetate (ViAc), were investigated in a semibatch reactor at temperatures ranging from 20 to 50 degrees C. The desired starch acetylation reaction is accompanied by an undesired parallel base-catalyse

  15. Extracellular 4'-phosphopantetheine is a source for intracellular coenzyme A synthesis.

    Science.gov (United States)

    Srinivasan, Balaji; Baratashvili, Madina; van der Zwaag, Marianne; Kanon, Bart; Colombelli, Cristina; Lambrechts, Roald A; Schaap, Onno; Nollen, Ellen A; Podgoršek, Ajda; Kosec, Gregor; Petković, Hrvoje; Hayflick, Susan; Tiranti, Valeria; Reijngoud, Dirk-Jan; Grzeschik, Nicola A; Sibon, Ody C M

    2015-10-01

    The metabolic cofactor coenzyme A (CoA) gained renewed attention because of its roles in neurodegeneration, protein acetylation, autophagy and signal transduction. The long-standing dogma is that eukaryotic cells obtain CoA exclusively via the uptake of extracellular precursors, especially vitamin B5, which is intracellularly converted through five conserved enzymatic reactions into CoA. This study demonstrates an alternative mechanism that allows cells and organisms to adjust intracellular CoA levels by using exogenous CoA. Here CoA was hydrolyzed extracellularly by ectonucleotide pyrophosphatases to 4'-phosphopantetheine, a biologically stable molecule able to translocate through membranes via passive diffusion. Inside the cell, 4'-phosphopantetheine was enzymatically converted back to CoA by the bifunctional enzyme CoA synthase. Phenotypes induced by intracellular CoA deprivation were reversed when exogenous CoA was provided. Our findings answer long-standing questions in fundamental cell biology and have major implications for the understanding of CoA-related diseases and therapies.

  16. Identification of Staphylococcus aureus, S. intermedius and S. hyicus by PCR amplification of coa and nuc genes Identificação de Staphylococcus aureus, S. intermedius e S. hyicus através de seqüências dos genes coa e nuc

    Directory of Open Access Journals (Sweden)

    Wladimir Padilha da Silva

    2003-11-01

    Full Text Available Sixty-five strains of coagulase positive staphylococci (Staphylococcus aureus, S. intermedius and S. hyicus were identified at species level by PCR amplification of the coa gene, specific for S. aureus, and of the nuc gene, specific for S. intermedius and for S. hyicus.Sessenta e cinco cepas de estafilococos coagulase positiva foram identificadas em nível de espécie, através da amplificação, por PCR, de seqüências do gene coa, específicas para S. aureus, e do gene nuc, específicas para S. intermedius e para S. hyicus.

  17. Acetylated histone H3 increases nucleosome dissociation

    Science.gov (United States)

    Simon, Marek; Manohar, Mridula; Ottesen, Jennifer; Poirier, Michael

    2009-03-01

    Chromatin's basic unit structure is the nucleosome, i.e. genomic DNA wrapped around a particular class of proteins -- histones -- which due to their physical hindrance, block vital biological processes, such as DNA repair, DNA replication, and RNA transcription. Histone post-translational modifications, which are known to exist in vivo, are hypothesized to regulate these biological processes by directly altering DNA-histone interactions and thus nucleosome structure and stability. Using magnetic tweezers technique we studied the acetylation of histone H3 in the dyad region, i.e. at K115 and K122, on reconstituted arrays of nucleosomes under constant external force. Based on the measured increase in the probability of dissociation of modified nucleosomes, we infer that this double modification could facilitate histone chaperone mediated nucleosome disassembly in vivo.

  18. Biochemistry and Crystal Structure of Ectoine Synthase: A Metal-Containing Member of the Cupin Superfamily.

    Directory of Open Access Journals (Sweden)

    Nils Widderich

    Full Text Available Ectoine is a compatible solute and chemical chaperone widely used by members of the Bacteria and a few Archaea to fend-off the detrimental effects of high external osmolarity on cellular physiology and growth. Ectoine synthase (EctC catalyzes the last step in ectoine production and mediates the ring closure of the substrate N-gamma-acetyl-L-2,4-diaminobutyric acid through a water elimination reaction. However, the crystal structure of ectoine synthase is not known and a clear understanding of how its fold contributes to enzyme activity is thus lacking. Using the ectoine synthase from the cold-adapted marine bacterium Sphingopyxis alaskensis (Sa, we report here both a detailed biochemical characterization of the EctC enzyme and the high-resolution crystal structure of its apo-form. Structural analysis classified the (SaEctC protein as a member of the cupin superfamily. EctC forms a dimer with a head-to-tail arrangement, both in solution and in the crystal structure. The interface of the dimer assembly is shaped through backbone-contacts and weak hydrophobic interactions mediated by two beta-sheets within each monomer. We show for the first time that ectoine synthase harbors a catalytically important metal co-factor; metal depletion and reconstitution experiments suggest that EctC is probably an iron-dependent enzyme. We found that EctC not only effectively converts its natural substrate N-gamma-acetyl-L-2,4-diaminobutyric acid into ectoine through a cyclocondensation reaction, but that it can also use the isomer N-alpha-acetyl-L-2,4-diaminobutyric acid as its substrate, albeit with substantially reduced catalytic efficiency. Structure-guided site-directed mutagenesis experiments targeting amino acid residues that are evolutionarily highly conserved among the extended EctC protein family, including those forming the presumptive iron-binding site, were conducted to functionally analyze the properties of the resulting EctC variants. An assessment of

  19. Biochemistry and Crystal Structure of Ectoine Synthase: A Metal-Containing Member of the Cupin Superfamily.

    Science.gov (United States)

    Widderich, Nils; Kobus, Stefanie; Höppner, Astrid; Riclea, Ramona; Seubert, Andreas; Dickschat, Jeroen S; Heider, Johann; Smits, Sander H J; Bremer, Erhard

    2016-01-01

    Ectoine is a compatible solute and chemical chaperone widely used by members of the Bacteria and a few Archaea to fend-off the detrimental effects of high external osmolarity on cellular physiology and growth. Ectoine synthase (EctC) catalyzes the last step in ectoine production and mediates the ring closure of the substrate N-gamma-acetyl-L-2,4-diaminobutyric acid through a water elimination reaction. However, the crystal structure of ectoine synthase is not known and a clear understanding of how its fold contributes to enzyme activity is thus lacking. Using the ectoine synthase from the cold-adapted marine bacterium Sphingopyxis alaskensis (Sa), we report here both a detailed biochemical characterization of the EctC enzyme and the high-resolution crystal structure of its apo-form. Structural analysis classified the (Sa)EctC protein as a member of the cupin superfamily. EctC forms a dimer with a head-to-tail arrangement, both in solution and in the crystal structure. The interface of the dimer assembly is shaped through backbone-contacts and weak hydrophobic interactions mediated by two beta-sheets within each monomer. We show for the first time that ectoine synthase harbors a catalytically important metal co-factor; metal depletion and reconstitution experiments suggest that EctC is probably an iron-dependent enzyme. We found that EctC not only effectively converts its natural substrate N-gamma-acetyl-L-2,4-diaminobutyric acid into ectoine through a cyclocondensation reaction, but that it can also use the isomer N-alpha-acetyl-L-2,4-diaminobutyric acid as its substrate, albeit with substantially reduced catalytic efficiency. Structure-guided site-directed mutagenesis experiments targeting amino acid residues that are evolutionarily highly conserved among the extended EctC protein family, including those forming the presumptive iron-binding site, were conducted to functionally analyze the properties of the resulting EctC variants. An assessment of enzyme activity

  20. The biology of lysine acetylation integrates transcriptional programming and metabolism

    Directory of Open Access Journals (Sweden)

    Mujtaba Shiraz

    2011-03-01

    Full Text Available Abstract The biochemical landscape of lysine acetylation has expanded from a small number of proteins in the nucleus to a multitude of proteins in the cytoplasm. Since the first report confirming acetylation of the tumor suppressor protein p53 by a lysine acetyltransferase (KAT, there has been a surge in the identification of new, non-histone targets of KATs. Added to the known substrates of KATs are metabolic enzymes, cytoskeletal proteins, molecular chaperones, ribosomal proteins and nuclear import factors. Emerging studies demonstrate that no fewer than 2000 proteins in any particular cell type may undergo lysine acetylation. As described in this review, our analyses of cellular acetylated proteins using DAVID 6.7 bioinformatics resources have facilitated organization of acetylated proteins into functional clusters integral to cell signaling, the stress response, proteolysis, apoptosis, metabolism, and neuronal development. In addition, these clusters also depict association of acetylated proteins with human diseases. These findings not only support lysine acetylation as a widespread cellular phenomenon, but also impel questions to clarify the underlying molecular and cellular mechanisms governing target selectivity by KATs. Present challenges are to understand the molecular basis for the overlapping roles of KAT-containing co-activators, to differentiate between global versus dynamic acetylation marks, and to elucidate the physiological roles of acetylated proteins in biochemical pathways. In addition to discussing the cellular 'acetylome', a focus of this work is to present the widespread and dynamic nature of lysine acetylation and highlight the nexus that exists between epigenetic-directed transcriptional regulation and metabolism.

  1. Producing biofuels using polyketide synthases

    Science.gov (United States)

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  2. The elongation of primary cilia via the acetylation of α-tubulin by the treatment with lithium chloride in human fibroblast KD cells.

    Science.gov (United States)

    Nakakura, Takashi; Asano-Hoshino, Anshin; Suzuki, Takeshi; Arisawa, Kenjiro; Tanaka, Hideyuki; Sekino, Yoshihisa; Kiuchi, Yoshiko; Kawai, Kazuhiro; Hagiwara, Haruo

    2015-03-01

    Primary cilium, an organelle found on nearly every cell in the human body, typically serves as the mechanical sensor of the cell. Lithium ion is known to promote the elongation of primary cilia in a variety of cell types, but it is unknown whether lithium is involved in the acetylation of α-tubulin which is essential for the assembly of primary cilia. In order to reveal the relationship between the elongation of primary cilia with lithium and the acetylation of α-tubulin, we first observed the formation and structure of primary cilia in KD cells, a cell line deriving fibroblasts in human labium. Subsequently, by immunohistochemical and western blot analysis we elucidated that the length of primary cilia and acetylation of α-tubulin are regulated by lithium chloride (LiCl) in the medium in a time- and concentration-dependent manner. We next performed the RT-PCR, RNAi-based experiments and biochemical study using an inhibitor of glycogen synthase kinase-3βGSK-3β). We found that LiCl mobilizes the α-tubulin N-acetyltransferase 1 (αTAT1) in the signaling pathway mediating GSK-3β and adenylate cyclase III. In conclusion, our results suggested that LiCl treatments activate αTAT1 by the inhibition of GSK-3β and promote the α-tubulin acetylation, and then elongate the primary cilia.

  3. Determination of the distributions of degrees of acetylation of chitosan.

    Science.gov (United States)

    Thevarajah, Joel Jerushan; Van Leeuwen, Matthew Paul; Cottet, Herve; Castignolles, Patrice; Gaborieau, Marianne

    2017-02-01

    Chitosan is often characterized by its average degree of acetylation. To increase chitosan's use in various industries, a more thorough characterization is necessary as the acetylation of chitosan affects properties such as dissolution and mechanical properties of chitosan films. Despite the poor solubility of chitosan, free solution capillary electrophoresis (CE) allows a robust separation of chitosan by the degree of acetylation. The distribution of degrees of acetylation of various chitosan samples was characterized through their distributions of electrophoretic mobilities. These distributions can be obtained easily and with high precision. The heterogeneity of the chitosan chains in terms of acetylation was characterized through the dispersity of the electrophoretic mobility distributions obtained. The relationship between the number-average degree of acetylation obtained by solid-state NMR spectroscopy and the weight-average electrophoretic mobilities was established. The distribution of degrees of acetylation was determined using capillary electrophoresis in the critical conditions (CE-CC). Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Chitosan Molecular Structure as a Function of N-Acetylation

    Energy Technology Data Exchange (ETDEWEB)

    Franca, Eduardo F.; Freitas, Luiz C.; Lins, Roberto D.

    2011-07-01

    Molecular dynamics simulations have been carried out to characterize the structure and solubility of chitosan nanoparticle-like structures as a function of the deacetylation level (0, 40, 60, and 100%) and the spatial distribution of the N-acetyl groups in the particles. The polysaccharide chains of highly N-deacetylated particles where the N-acetyl groups are uniformly distributed present a high flexibility and preference for the relaxed two-fold helix and five-fold helix motifs. When these groups are confined to a given region of the particle, the chains adopt preferentially a two-fold helix with f and w values close to crystalline chitin. Nanoparticles with up to 40% acetylation are moderately soluble, forming stable aggregates when the N-acetyl groups are unevenly distributed. Systems with 60% or higher N-acetylation levels are insoluble and present similar degrees of swelling regardless the distribution of their N-acetyl groups. Overall particle solvation is highly affected by electrostatic forces resulting from the degree of acetylation. The water mobility and orientation around the polysaccharide chains affects the stability of the intramolecular O3- HO3(n) ... O5(n+ 1) hydrogen bond, which in turn controls particle aggregation.

  5. Histone Acetylation Inhibitors Promote Axon Growth in Adult DRG neurons

    Science.gov (United States)

    Lin, Shen; Nazif, Kutaiba; Smith, Alexander; Baas, Peter W; Smith, George M

    2015-01-01

    Intrinsic mechanisms that guide damaged axons to regenerate following spinal cord injury remain poorly understood. Manipulation of posttranslational modifications of key proteins in mature neurons could re-invigorate growth machinery after injury. One such modification is acetylation, a reversible process controlled by two enzyme families acting in opposition, the Histone Deacetylases (HDACs) and the Histone Acetyl Transferases (HATs). While acetylated histones in the nucleus is associated with upregulation of growth promoting genes, de-acetylated tubulin in the axoplasm is associated with more labile microtubules, conducive to axon growth. In this study we investigated the effects of HAT inhibitors and HDAC inhibitors on cultured adult dorsal root ganglia (DRG) neurons. We found that inhibition of HATs, using Anacardic Acid or CPTH2, improved axon outgrowth, while inhibition of HDACs using TSA or Tubacin, inhibited axon growth. Furthermore, Anacardic Acid increased the number of axons able to cross an inhibitory chondroitin sulfate proteoglycan (CSPG) border. Histone acetylation, but not tubulin acetylation levels, was affected by HAT inhibitors, whereas tubulin acetylation levels were increased in the presence of HDAC inhibitor Tubacin. Although microtubule stabilizing drug taxol did not have an effect on the lengths of DRG axons, nocodazole decreased axon lengths. While the mechanistic basis will require future studies, our data show that inhibitors of HAT can augment axon growth in adult DRG neurons, with the potential of aiding axon growth over inhibitory substrates produced by the glial scar. PMID:25702820

  6. A Turkish Patient With Succinyl-CoA:3-Oxoacid CoA Transferase Deficiency Mimicking Diabetic Ketoacidosis

    Directory of Open Access Journals (Sweden)

    Sahin Erdol MD

    2016-05-01

    Full Text Available Succinyl-CoA:3-oxoacid CoA transferase (SCOT deficiency is an autosomal recessive disorder of ketone body utilization that is clinically characterized with intermittent ketoacidosis crises. We report here the second Turkish case with SCOT deficiency. She experienced 3 ketoacidotic episodes: The first ketoacidotic crisis mimicked diabetic ketoacidosis because of the associated hyperglycemia. Among patients with SCOT deficiency, the blood glucose levels at the first crises were variable, and this case had the highest ever reported blood glucose level. She is a compound heterozygote with 2 novel mutations, c.517A>G (K173E and c.1543A>G (M515V, in exons 5 and 17 of the OXCT1 gene, respectively. In patient’s fibroblasts, SCOT activity was deficient and, by immunoblot analysis, SCOT protein was much reduced. The patient attained normal development and had no permanent ketosis. The accurate diagnosis of SCOT deficiency in this case had a vital impact on the management strategy and outcome.

  7. Inhibition of HMG CoA reductase reveals an unexpected role for cholesterol during PGC migration in the mouse

    Directory of Open Access Journals (Sweden)

    Ewing Andrew G

    2008-12-01

    Full Text Available Abstract Background Primordial germ cells (PGCs are the embryonic precursors of the sperm and eggs. Environmental or genetic defects that alter PGC development can impair fertility or cause formation of germ cell tumors. Results We demonstrate a novel role for cholesterol during germ cell migration in mice. Cholesterol was measured in living tissue dissected from mouse embryos and was found to accumulate within the developing gonads as germ cells migrate to colonize these structures. Cholesterol synthesis was blocked in culture by inhibiting the activity of HMG CoA reductase (HMGCR resulting in germ cell survival and migration defects. These defects were rescued by co-addition of isoprenoids and cholesterol, but neither compound alone was sufficient. In contrast, loss of the last or penultimate enzyme in cholesterol biosynthesis did not alter PGC numbers or position in vivo. However embryos that lack these enzymes do not exhibit cholesterol defects at the stage at which PGCs are migrating. This demonstrates that during gestation, the cholesterol required for PGC migration can be supplied maternally. Conclusion In the mouse, cholesterol is required for PGC survival and motility. It may act cell-autonomously by regulating clustering of growth factor receptors within PGCs or non cell-autonomously by controlling release of growth factors required for PGC guidance and survival.

  8. Feedback regulation of cholesterol synthesis:sterol-accelerated ubiquitination and degradation of HMG CoA reductase

    Institute of Scientific and Technical Information of China (English)

    Russell A DeBose-Boyd

    2008-01-01

    3Hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate,an important intermediate in the synthesis of cholesterol and essential nonsterol isoprenoids.The reductase is subject to an exorbitant amount of feedback control through multiple mechanisms that are mediated by sterol and nonsterol end-products of mevalonate metabolism.Here,Ⅰwill discuss recent advances that shed light on one mechanism for control of reductase,which involves rapid degradation of the enzyme.Accumulation of certain sterols triggers binding of reductase to endoplasmic reticulum (ER) membrane proteins called Insig-1 and Insig-2.Reductase-Insig binding results in recruitment of a membrane-associated ubiquitin ligase called gp78,which initiates ubiquitination of reductase.This ubiquitination is an obligatory reaction for recognition and degradation of reductase from ER membranes by cytosolic 26S proteasomes.Thus,sterol-accelerated degradation of reductase represents an example of how a general cellular process (ER-associated degradation) is used to control an important metabolic pathway (cholesterol synthesis).

  9. Probing the active site of cinnamoyl CoA reductase 1 (Ll-CCRH1) from Leucaena leucocephala.

    Science.gov (United States)

    Sonawane, Prashant; Patel, Krunal; Vishwakarma, Rishi Kishore; Srivastava, Sameer; Singh, Somesh; Gaikwad, Sushama; Khan, Bashir M

    2013-09-01

    Lack of three dimensional crystal structure of cinnamoyl CoA reductase (CCR) limits its detailed active site characterization studies. Putative active site residues involved in the substrate/NADPH binding and catalysis for Leucaena leucocephala CCR (Ll-CCRH1; GenBank: DQ986907) were identified by amino acid sequence alignment and homology modeling. Putative active site residues and proximal H215 were subjected for site directed mutagenesis, and mutated enzymes were expressed, purified and assayed to confirm their functional roles. Mutagenesis of S136, Y170 and K174 showed complete loss of activity, indicating their pivotal roles in catalysis. Mutant S212G exhibited the catalytic efficiencies less than 10% of wild type, showing its indirect involvement in substrate binding or catalysis. R51G, D77G, F30V and I31N double mutants showed significant changes in Km values, specifying their roles in substrate binding. Finally, chemical modification and substrate protection studies corroborated the presence Ser, Tyr, Lys, Arg and carboxylate group at the active site of Ll-CCRH1.

  10. Nonthermal rotational distribution of CO/A 1Pi/ fragments produced by dissociative excitation of CO2 by electron impact. [in Mars atmosphere

    Science.gov (United States)

    Mumma, M. J.; Stone, E. J.; Zipf, E. C.

    1975-01-01

    Measurements were made of the rotational profiles of specific bands of the CO fourth-positive group (4PG). The CO 4PG bands were excited by electron impact dissociative excitation of CO2. The results are applicable to analysis of the Mariner observations of the CO 4PG in the dayglow of Mars. The results indicate that dissociative excitation of CO2 by electron impact leads to CO(A 1Pi) fragments with a rotational distribution that is highly nonthermal. The parent CO2 temperature was about 300 K in the experiment, while the fragment CO(A 1Pi) showed emission band profiles consistent with a rotational temperature greater than about 1500 K. Laboratory measurement of the reduced transmission of the hot bands by thermal CO appears to be the most direct way of determining the column density responsible for the CO(v',0) absorption of Mars.

  11. Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal β-Oxidation of Unsaturated Fatty Acids

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Tian; Wu, Dong; Ding, Wei; Wang, Jiangyun; Shaw, Neil; Liu, Zhi-Jie [Nankai; (Chinese Aca. Sci.)

    2012-10-15

    Peroxisomes play an essential role in maintaining fatty acid homeostasis. Although mitochondria are also known to participate in the catabolism of fatty acids via β-oxidation, differences exist between the peroxisomal and mitochondrial β-oxidation. Only peroxisomes, but not mitochondrion, can shorten very long chain fatty acids. Here, we describe the crystal structure of a ternary complex of peroxisomal 2,4-dienoyl CoA reductases (pDCR) with hexadienoyl CoA and NADP, as a prototype for comparison with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two organelles at the molecular level. Unexpectedly, the structure of pDCR refined to 1.84 Å resolution reveals the absence of the tyrosine-serine pair seen in the active site of mDCR, which together with a lysine and an asparagine have been deemed a hallmark of the SDR family of enzymes. Instead, aspartate hydrogen-bonded to the Cα hydroxyl via a water molecule seems to perturb the water molecule for protonation of the substrate. Our studies provide the first structural evidence for participation of water in the DCR-catalyzed reactions. Biochemical studies and structural analysis suggest that pDCRs can catalyze the shortening of six-carbon-long substrates in vitro. However, the Km values of pDCR for short chain acyl CoAs are at least 6-fold higher than those for substrates with 10 or more aliphatic carbons. Unlike mDCR, hinge movements permit pDCR to process very long chain polyunsaturated fatty acids.

  12. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...

  13. The Metabolic Impact on Histone Acetylation and Transcription in Ageing.

    Science.gov (United States)

    Peleg, Shahaf; Feller, Christian; Ladurner, Andreas G; Imhof, Axel

    2016-08-01

    Loss of cellular homeostasis during aging results in altered tissue functions and leads to a general decline in fitness and, ultimately, death. As animals age, the control of gene expression, which is orchestrated by multiple epigenetic factors, degenerates. In parallel, metabolic activity and mitochondrial protein acetylation levels also change. These two hallmarks of aging are effectively linked through the accumulating evidence that histone acetylation patterns are susceptible to alterations in key metabolites such as acetyl-CoA and NAD(+), allowing chromatin to function as a sensor of cellular metabolism. In this review we discuss experimental data supporting these connections and provide a context for the possible medical and physiological relevance.

  14. Acetylation of pea isolate in a torus microreactor.

    Science.gov (United States)

    Legrand, J; Guéguen, J; Berot, S; Popineau, Y; Nouri, L

    1997-02-20

    Acetylation, which acts on the amino groups of proteins, allows to increase the solubility and the emulsifying properties of pea isolate. Acetylation by acetic anhydride was carried out in a torus microreactor in semibatch and continuous conditions. The mixing characteristics, obtained by a residence time distribution (RTD) method, are the same in batch and continuous processes. The maximum acetylation degree reached by the torus reactor is higher than with the stirred reactor. Torus reactors are more efficient than stirred ones as shown by a conversion efficiency, defined by the quantity of modified lysine groups by consumed acetic anhydride. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 409-414, 1997.

  15. Synthetic biology for engineering acetyl coenzyme a metabolism in yeast

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2014-01-01

    The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting...... chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl...

  16. Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions.

    Science.gov (United States)

    Cetin, Nihat Sami; Tingaut, Philippe; Ozmen, Nilgül; Henry, Nathan; Harper, David; Dadmun, Mark; Sèbe, Gilles

    2009-10-08

    A novel and straightforward method for the surface acetylation of cellulose nanowhiskers by transesterification of vinyl acetate is proposed. The reaction of vinyl acetate with the hydroxyl groups of cellulose nanowhiskers obtained from cotton linters was examined with potassium carbonate as catalyst. Results indicate that during the first stage of the reaction, only the surface of the nanowhiskers was modified, while their dimensions and crystallinity remained unchanged. With increasing reaction time, diffusion mechanisms controlled the rate, leading to nanowhiskers with higher levels of acetylation, smaller dimensions, and lower crystallinity. In THF, a solvent of low polarity, the suspensions from modified nanowhiskers showed improved stability with increased acetylation.

  17. Phosphorylation and Acetylation of Acyl-CoA Synthetase- I

    DEFF Research Database (Denmark)

    Frahm, Jennifer L; Li, Lei O; Grevengoed, Trisha J

    2011-01-01

    Long chain acyl-CoA synthetase 1 (ACSL1) contributes 50 to 90% of total ACSL activity in liver, adipose tissue, and heart and appears to direct the use of long chain fatty acids for energy. Although the functional importance of ACSL1 is becoming clear, little is understood about its post...... and acetylated amino acids by mass spectrometry. We then compared these results to the post-translational modifications observed in vivo in liver and brown adipose tissue after mice were fasted or exposed to a cold environment. We identified universal N-terminal acetylation, 15 acetylated lysines, and 25...

  18. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    Science.gov (United States)

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time.

  19. Genetic dissection of methylcrotonyl CoA carboxylase indicates a complex role for mitochondrial leucine catabolism during seed development and germination.

    Science.gov (United States)

    Ding, Geng; Che, Ping; Ilarslan, Hilal; Wurtele, Eve S; Nikolau, Basil J

    2012-05-01

    3-methylcrotonyl CoA carboxylase (MCCase) is a nuclear-encoded, mitochondrial-localized biotin-containing enzyme. The reaction catalyzed by this enzyme is required for leucine (Leu) catabolism, and it may also play a role in the catabolism of isoprenoids and the mevalonate shunt. In Arabidopsis, two MCCase subunits (the biotinylated MCCA subunit and the non-biotinylated MCCB subunit) are each encoded by single genes (At1g03090 and At4g34030, respectively). A reverse genetic approach was used to assess the physiological role of MCCase in plants. We recovered and characterized T-DNA and transposon-tagged knockout alleles of the MCCA and MCCB genes. Metabolite profiling studies indicate that mutations in either MCCA or MCCB block mitochondrial Leu catabolism, as inferred from the increased accumulation of Leu. Under light deprivation conditions, the hyper-accumulation of Leu, 3-methylcrotonyl CoA and isovaleryl CoA indicates that mitochondrial and peroxisomal Leu catabolism pathways are independently regulated. This biochemical block in mitochondrial Leu catabolism is associated with an impaired reproductive growth phenotype, which includes aberrant flower and silique development and decreased seed germination. The decreased seed germination phenotype is only observed for homozygous mutant seeds collected from a parent plant that is itself homozygous, but not from a parent plant that is heterozygous. These characterizations may shed light on the role of catabolic processes in growth and development, an area of plant biology that is poorly understood.

  20. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

    CERN Document Server

    Foulon, V; Croes, K; Waelkens, E

    1999-01-01

    Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

  1. Biosynthesis of curcuminoids and gingerols in turmeric (Curcuma longa) and ginger (Zingiber officinale): identification of curcuminoid synthase and hydroxycinnamoyl-CoA thioesterases.

    Science.gov (United States)

    Ramirez-Ahumada, Maria del Carmen; Timmermann, Barbara N; Gang, David R

    2006-09-01

    Members of the Zingiberaceae such as turmeric (Curcuma longa L.) and ginger (Zingiber officinale Rosc.) accumulate at high levels in their rhizomes important pharmacologically active metabolites that appear to be derived from the phenylpropanoid pathway. In ginger, these compounds are the gingerols; in turmeric these are the curcuminoids. Despite their importance, little is known about the biosynthesis of these compounds. This investigation describes the identification of enzymes in the biosynthetic pathway leading to the production of these bioactive natural products. Assays for enzymes in the phenylpropanoid pathway identified the corresponding enzyme activities in protein crude extracts from leaf, shoot and rhizome tissues from ginger and turmeric. These enzymes included phenylalanine ammonia lyase, polyketide synthases, p-coumaroyl shikimate transferase, p-coumaroyl quinate transferase, caffeic acid O-methyltransferase, and caffeoyl-CoA O-methyltransferase, which were evaluated because of their potential roles in controlling production of certain classes of gingerols and curcuminoids. All crude extracts possessed activity for all of these enzymes, with the exception of polyketide synthases. The results of polyketide synthase assays showed detectable curcuminoid synthase activity in the extracts from turmeric with the highest activity found in extracts from leaves. However, no gingerol synthase activity could be identified. This result was explained by the identification of thioesterase activities that cleaved phenylpropanoid pathway CoA esters, and which were found to be present at high levels in all tissues, especially in ginger tissues. These activities may shunt phenylpropanoid pathway intermediates away from the production of curcuminoids and gingerols, thereby potentially playing a regulatory role in the biosynthesis of these compounds.

  2. A Novel Class of Plant Type III Polyketide Synthase Involved in Orsellinic Acid Biosynthesis from Rhododendron dauricum

    Science.gov (United States)

    Taura, Futoshi; Iijima, Miu; Yamanaka, Eriko; Takahashi, Hironobu; Kenmoku, Hiromichi; Saeki, Haruna; Morimoto, Satoshi; Asakawa, Yoshinori; Kurosaki, Fumiya; Morita, Hiroyuki

    2016-01-01

    Rhododendron dauricum L. produces daurichromenic acid, the anti-HIV meroterpenoid consisting of sesquiterpene and orsellinic acid (OSA) moieties. To characterize the enzyme responsible for OSA biosynthesis, a cDNA encoding a novel polyketide synthase (PKS), orcinol synthase (ORS), was cloned from young leaves of R. dauricum. The primary structure of ORS shared relatively low identities to those of PKSs from other plants, and the active site of ORS had a unique amino acid composition. The bacterially expressed, recombinant ORS accepted acetyl-CoA as the preferable starter substrate, and produced orcinol as the major reaction product, along with four minor products including OSA. The ORS identified in this study is the first plant PKS that generates acetate-derived aromatic tetraketides, such as orcinol and OSA. Interestingly, OSA production was clearly enhanced in the presence of Cannabis sativa olivetolic acid cyclase, suggesting that the ORS is involved in OSA biosynthesis together with an unidentified cyclase in R. dauricum. PMID:27729920

  3. Towards a functional understanding of protein N-terminal acetylation.

    Directory of Open Access Journals (Sweden)

    Thomas Arnesen

    2011-05-01

    Full Text Available Protein N-terminal acetylation is a major modification of eukaryotic proteins. Its functional implications include regulation of protein-protein interactions and targeting to membranes, as demonstrated by studies of a handful of proteins. Fifty years after its discovery, a potential general function of the N-terminal acetyl group carried by thousands of unique proteins remains enigmatic. However, recent functional data suggest roles for N-terminal acetylation as a degradation signal and as a determining factor for preventing protein targeting to the secretory pathway, thus highlighting N-terminal acetylation as a major determinant for the life and death of proteins. These contributions represent new and intriguing hypotheses that will guide the research in the years to come.

  4. Decay threshold of acetylated rattan (Calamus manan) against soft rot

    Institute of Scientific and Technical Information of China (English)

    Norul Hisham Hamid; Mike Hale

    2013-01-01

    We investigated the resistance of acetylated rattan against soft rot and other soil inhabiting micro-organisms in comparison with wood of beech and Scots pine.Calamus manan of 10 and 13 years old under rubber tree canopy was acetylated to different levels by reaction times (0.25 to 30 hours) and was tested for soft rot decay for 32 weeks.Acetylated rattan at decay protection thresholds of 15.4% and 16.2% weight gain (WG) were fully protected,as shown by both weight loss and strength loss criteria.The static bending properties of untreated rattan decayed by soft rot were significantly lower than for acetylated rattan.

  5. Two Arabidopsis proteins synthesize acetylated xylan in vitro

    National Research Council Canada - National Science Library

    Urbanowicz, Breeanna R; Peña, Maria J; Moniz, Heather A; Moremen, Kelley W; York, William S

    2014-01-01

    .... Phenotypic analysis of these mutants has implicated many proteins in xylan biosynthesis; however, the enzymes directly responsible for elongation and acetylation of the xylan backbone have not been unambiguously identified...

  6. Qualitatively predicting acetylation and methylation areas in DNA sequences.

    Science.gov (United States)

    Pham, Tho Hoan; Tran, Dang Hung; Ho, Tu Bao; Satou, Kenji; Valiente, Gabriel

    2005-01-01

    Eukaryotic genomes are packaged by the wrapping of DNA around histone octamers to form nucleosomes. Nucleosome occupancy, acetylation, and methylation, which have a major impact on all nuclear processes involving DNA, have been recently mapped across the yeast genome using chromatin immunoprecipitation and DNA microarrays. However, this experimental protocol is laborious and expensive. Moreover, experimental methods often produce noisy results. In this paper, we introduce a computational approach to the qualitative prediction of nucleosome occupancy, acetylation, and methylation areas in DNA sequences. Our method uses support vector machines to discriminate between DNA areas with high and low relative occupancy, acetylation, or methylation, and rank k-gram features based on their support for these DNA modifications. Experimental results on the yeast genome reveal genetic area preferences of nucleosome occupancy, acetylation, and methylation that are consistent with previous studies. Supplementary files are available from http://www.jaist.ac.jp/~tran/nucleosome/.

  7. Acetylation of Cavin-1 Promotes Lipolysis in White Adipose Tissue.

    Science.gov (United States)

    Zhou, Shui-Rong; Guo, Liang; Wang, Xu; Liu, Yang; Peng, Wan-Qiu; Liu, Yuan; Wei, Xiang-Bo; Dou, Xin; Ding, Meng; Lei, Qun-Ying; Qian, Shu-Wen; Li, Xi; Tang, Qi-Qun

    2017-08-15

    White adipose tissue (WAT) serves as a reversible energy storage depot in the form of lipids in response to nutritional status. Cavin-1, an essential component in the biogenesis of caveolae, is a positive regulator of lipolysis in adipocytes. However, molecular mechanisms of cavin-1 in the modulation of lipolysis remain poorly understood. Here, we showed that cavin-1 was acetylated at lysines 291, 293, and 298 (3K), which were under nutritional regulation in WAT. We further identified GCN5 as the acetyltransferase and Sirt1 as the deacetylase of cavin-1. Acetylation-mimetic 3Q mutants of cavin-1 augmented fat mobilization in 3T3-L1 adipocytes and zebrafish. Mechanistically, acetylated cavin-1 preferentially interacted with hormone-sensitive lipase and recruited it to the caveolae, thereby promoting lipolysis. Our findings shed light on the essential role of cavin-1 in regulating lipolysis in an acetylation-dependent manner in WAT. Copyright © 2017 American Society for Microbiology.

  8. Nucleosome Dancing at the Tempo of Histone Tail Acetylation

    Directory of Open Access Journals (Sweden)

    Angélique Galvani

    2015-07-01

    Full Text Available The impact of histone acetylation on transcription was revealed over 50 years ago by Allfrey and colleagues. However, it took decades for an understanding of the fine mechanism by which this posttranslational modification affects chromatin structure and promotes transcription. Here, we review breakthroughs linking histone tail acetylation, histone dynamics, and transcription. We also discuss the histone exchange during transcription and highlight the important function of a pool of non-chromatinized histones in chromatin dynamics.

  9. Mechanistic insights into the regulation of metabolic enzymes by acetylation

    Science.gov (United States)

    2012-01-01

    The activity of metabolic enzymes is controlled by three principle levels: the amount of enzyme, the catalytic activity, and the accessibility of substrates. Reversible lysine acetylation is emerging as a major regulatory mechanism in metabolism that is involved in all three levels of controlling metabolic enzymes and is altered frequently in human diseases. Acetylation rivals other common posttranslational modifications in cell regulation not only in the number of substrates it modifies, but also the variety of regulatory mechanisms it facilitates. PMID:22826120

  10. Oil spill sorption using raw and acetylated sugarcane bagasse

    Institute of Scientific and Technical Information of China (English)

    Reza Behnood; Bagher Anvaripour; Nematollah Jaafarzadeh; Masoome Farasati

    2016-01-01

    In the recent decades oil spills in the aquatic environments are one of the major sources of environmental pollutions, which are steadily growing with the increase in oil consumption. Adsorption is a rapid and cost effective processto minimize the environmental impacts of oil spills andcleanup these pollutants. In this work, the crude oil sorption capacity was examined with raw sugarcane bagasse and acetylated sugarcane bagasse. Results show that the acetylated bagasse was significantly more oleophilic than the raw bagasse and acetylation reaction can increase bagasse oil sorption ability by about 90%. The maximum sorption capacities of acetylated bagasse were obtained about 11.3 g and 9.1 g in dry system (crude oil sorption) and oil layer sorption, respectively. The physicochemical characteristics of the sorbents such as composition, water solubility, moisture content and density were measured according to ASTM standard methods. Also Fourier transform infrared spectroscopy (FTIR) of raw and acetylated bagasse was performed to investigate the effect of acetylation on sugarcane bagasse structure.

  11. Acetyl radical generation in cigarette smoke: Quantification and simulations

    Science.gov (United States)

    Hu, Na; Green, Sarah A.

    2014-10-01

    Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high-performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10-150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commercial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass fiber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acetaldehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke.

  12. An acetylation switch controls TDP-43 function and aggregation propensity

    Science.gov (United States)

    Cohen, Todd J.; Hwang, Andrew W.; Restrepo, Clark R.; Yuan, Chao-Xing; Trojanowski, John Q.; Lee, Virginia M.Y.

    2015-01-01

    TDP-43 pathology is a disease hallmark that characterizes amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). Although a critical role for TDP-43 as an RNA-binding protein has emerged, the regulation of TDP-43 function is poorly understood. Here we identify lysine acetylation as a novel post-translational modification controlling TDP-43 function and aggregation. We provide evidence that TDP-43 acetylation impairs RNA-binding and promotes accumulation of insoluble, hyper-phosphorylated TDP-43 species that largely resemble pathological inclusions in ALS and FTLD-TDP. Moreover, biochemical and cell-based assays identify oxidative stress as a signaling cue that promotes acetylated TDP-43 aggregates that are readily engaged by the cellular defense machinery. Importantly, acetylated TDP-43 lesions are found in ALS patient spinal cord, indicating that aberrant TDP-43 acetylation and loss of RNA binding are linked to TDP-43 proteinopathy. Thus, modulating TDP-43 acetylation represents a plausible strategy to fine-tune TDP-43 activity, which could provide new therapeutic avenues for TDP-43 proteinopathies. PMID:25556531

  13. Site-specific acetylation of ISWI by GCN5

    Directory of Open Access Journals (Sweden)

    Chioda Mariacristina

    2007-08-01

    Full Text Available Abstract Background The tight organisation of eukaryotic genomes as chromatin hinders the interaction of many DNA-binding regulators. The local accessibility of DNA is regulated by many chromatin modifying enzymes, among them the nucleosome remodelling factors. These enzymes couple the hydrolysis of ATP to disruption of histone-DNA interactions, which may lead to partial or complete disassembly of nucleosomes or their sliding on DNA. The diversity of nucleosome remodelling factors is reflected by a multitude of ATPase complexes with distinct subunit composition. Results We found further diversification of remodelling factors by posttranslational modification. The histone acetyltransferase GCN5 can acetylate the Drosophila remodelling ATPase ISWI at a single, conserved lysine, K753, in vivo and in vitro. The target sequence is strikingly similar to the N-terminus of histone H3, where the corresponding lysine, H3K14, can also be acetylated by GCN5. The acetylated form of ISWI represents a minor species presumably associated with the nucleosome remodelling factor NURF. Conclusion Acetylation of histone H3 and ISWI by GCN5 is explained by the sequence similarity between the histone and ISWI around the acetylation site. The common motif RKT/SxGx(KacxPR/K differs from the previously suggested GCN5/PCAF recognition motif GKxxP. This raises the possibility of co-regulation of a nucleosome remodelling factor and its nucleosome substrate through acetylation of related epitopes and suggests a direct crosstalk between two distinct nucleosome modification principles.

  14. Mutation analysis of methylmalonyl CoA mutase gene exon 2 in Egyptian families: Identification of 25 novel allelic variants.

    Science.gov (United States)

    Ghoraba, Dina A; Mohammed, Magdy M; Zaki, Osama K

    2015-02-01

    Methylmalonic aciduria (MMA) is an autosomal recessive disorder of methylmalonate and cobalamin (cbl; vitamin B12) metabolism. It is an inborn error of organic acid metabolism which commonly results from a defect in the gene encoding the methylmalonyl-CoA mutase (MCM) apoenzyme. Here we report the results of mutation study of exon 2 of the methylmalonyl CoA mutase (MUT) gene, coding MCM residues from 1 to 128, in ten unrelated Egyptian families affected with methylmalonic aciduria. Patients were presented with a wide-anion gap metabolic acidosis. The diagnosis has established by the measurement of C3 (propionylcarnitine) and C3:C2 (propionylcarnitine/acetylcarnitine) in blood by using liquid chromatography-tandem mass spectrometry (LC/MS-MS) and was confirmed by the detection of an abnormally elevated level of methylmalonic acid in urine by using gas chromatography-mass spectrometry (GC/MS) and isocratic cation exchange high-performance liquid-chromatography (HPLC). Direct sequencing of gDNA of the MUT gene exon 2 has revealed a total of 26 allelic variants: ten of which were intronic, eight were located upstream to the exon 2 coding region, four were novel modifications predicted to affect the splicing region, three were novel mutations within the coding region: c.15G > A (p.K5K), c.165C > A (p.N55K) and c.7del (p.R3EfsX14), as well as the previously reported mutation c.323G > A (p.R108H).

  15. Mutation analysis of methylmalonyl CoA mutase gene exon 2 in Egyptian families: Identification of 25 novel allelic variants

    Directory of Open Access Journals (Sweden)

    Dina A. Ghoraba

    2015-02-01

    Full Text Available Methylmalonic aciduria (MMA is an autosomal recessive disorder of methylmalonate and cobalamin (cbl; vitamin B12 metabolism. It is an inborn error of organic acid metabolism which commonly results from a defect in the gene encoding the methylmalonyl-CoA mutase (MCM apoenzyme. Here we report the results of mutation study of exon 2 of the methylmalonyl CoA mutase (MUT gene, coding MCM residues from 1 to 128, in ten unrelated Egyptian families affected with methylmalonic aciduria. Patients were presented with a wide-anion gap metabolic acidosis. The diagnosis has established by the measurement of C3 (propionylcarnitine and C3:C2 (propionylcarnitine/acetylcarnitine in blood by using liquid chromatography–tandem mass spectrometry (LC/MS–MS and was confirmed by the detection of an abnormally elevated level of methylmalonic acid in urine by using gas chromatography–mass spectrometry (GC/MS and isocratic cation exchange high-performance liquid-chromatography (HPLC. Direct sequencing of gDNA of the MUT gene exon 2 has revealed a total of 26 allelic variants: ten of which were intronic, eight were located upstream to the exon 2 coding region, four were novel modifications predicted to affect the splicing region, three were novel mutations within the coding region: c.15G>A (p.K5K, c.165C>A (p.N55K and c.7del (p.R3EfsX14, as well as the previously reported mutation c.323G>A (p.R108H.

  16. Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1

    DEFF Research Database (Denmark)

    Bai, Bo; Man, Andy W C; Yang, Kangmin;

    2016-01-01

    for the prevention of vascular ageing. Methods and Results-Co-immunoprecipitation assay demonstrated that SIRT1, via its amino-terminus, binds to the DOC domain of HERC2 [HECT and RLD domain containing E3 ubiquitin protein ligase 2], which then ubiquitinates LKB1 in the nuclear compartment of endothelial cells. Site...... association of LKB1 with the positive regulatory elements of TGFβ1 promoter. In mice without endothelial nitric oxide synthase, selective overexpression of human SIRT1 in endothelium prevents hypertension and age-related adverse arterial remodeling. Lentiviral-mediated knockdown of HERC2 abolishes...... the beneficial effects of endothelial SIRT1 on both arterial remodeling and arterial blood pressure control. Conclusion-By downregulating acetylated LKB1 protein via HERC2, SIRT1 fine-tunes the crosstalk between endothelial and vascular smooth muscle cells to prevent adverse arterial remodeling and maintain...

  17. Acetyl Eburicoic Acid from Laetiporus sulphureus var. miniatus Suppresses Inflammation in Murine Macrophage RAW 264.7 Cells.

    Science.gov (United States)

    Saba, Evelyn; Son, Youngmin; Jeon, Bo Ra; Kim, Seong-Eun; Lee, In-Kyoung; Yun, Bong-Sik; Rhee, Man Hee

    2015-06-01

    The basidiomycete Laetiporus sulphureus var. miniatus belongs to the Aphyllophorales, Polyporaceae, and grows on the needleleaf tree. The fruiting bodies of Laetiporus species are known to produce N-methylated tyramine derivatives, polysaccharides, and various lanostane triterpenoids. As part of our ongoing effort to discover biologically active compounds from wood-rotting fungi, an anti-inflammatory triterpene, LSM-H7, has been isolated from the fruiting body of L. sulphureus var. miniatus and identified as acetyl eburicoic acid. LSM-H7 dose-dependently inhibited the NO production in RAW 264.7 cells without any cytotoxicity at the tested concentrations. Furthermore it suppressed the production of proinflammatory cytokines, mainly inducible nitric oxide synthase, cyclooxygenase-2, interleukin (IL)-1β, IL-6 and tumor necrosis factor α, when compared with glyceraldehyde 3-phosphate dehydrogenase. These data suggest that LSM-H7 is a crucial component for the anti-inflammatory activity of L. sulphureus var. miniatus.

  18. An aspartate to glycine change in the carboxyl transferase domain of acetyl CoA carboxylase and non-target-site mechanism(s) confer resistance to ACCase inhibitor herbicides in a Lolium multiflorum population.

    Science.gov (United States)

    Kaundun, Shiv Shankhar

    2010-11-01

    The increasing use of ACCase-inhibiting herbicides has resulted in evolved resistance in key grass weeds infesting cereal cropping systems worldwide. Here, a thorough and systematic approach is proposed to elucidate the basis of resistance to three ACCase herbicides in a Lolium multiflorum Lam. (Italian rye grass) population from the United Kingdom (UK24). Resistance to sethoxydim and pinoxaden was always associated with a dominant D2078G (Alopecurus myosuroides Huds. equivalent) target-site mutation in UK24. Conversely, whole-plant herbicide assays on predetermined ACCase genotypes showed very high levels of resistance to diclofop-methyl for all three wild DD2078 and mutant DG2078 and GG2078 ACCase genotypes from the mixed resistant population UK24. This indicates the presence of other diclofop-methyl-specific resistance mechanism(s) yet to be determined in this population. The D2078G mutation could be detected using an unambiguous DNA-based dCAPS procedure that proved very transferable to A. myosuroides, Avena fatua L., Setaria viridis (L.) Beauv. and Phalaris minor Retz. This study provides further understanding of the molecular basis of resistance to ACCase inhibitor herbicides in a Lolium population and a widely applicable PCR-based method for monitoring the D2078G target-site resistance mutation in five major grass weed species. Copyright © 2010 Society of Chemical Industry.

  19. A Single Amino Acid Substitution Converts Benzophenone Synthase into Phenylpyrone Synthase*

    OpenAIRE

    Klundt, Tim; Bocola, Marco; Lütge, Maren; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2009-01-01

    Benzophenone metabolism provides a number of plant natural products with fascinating chemical structures and intriguing pharmacological activities. Formation of the carbon skeleton of benzophenone derivatives from benzoyl-CoA and three molecules of malonyl-CoA is catalyzed by benzophenone synthase (BPS), a member of the superfamily of type III polyketide synthases. A point mutation in the active site cavity (T135L) transformed BPS into a functional phenylpyrone synthase (PPS). The dramatic ch...

  20. Modification of oil palm wood using acetylation and impregnation process

    Science.gov (United States)

    Subagiyo, Lambang; Rosamah, Enih; Hesim

    2017-03-01

    The purpose of this study is chemical modification by process of acetylation and impregnation of oil palm wood to improve the dimensional stability. Acetylation process aimed at substituting the hydroxyl groups in a timber with an acetyl group. By increasing the acetyl groups in wood is expected to reduce the ability of wood to absorb water vapor which lead to the dimensions of the wood becomes more stable. Studies conducted on oil palm wood (Elaeis guineensis Jacq) by acetylation and impregnation method. The results showed that acetylated and impregnated wood oil palm (E. guineensis Jacq) were changed in their physical properties. Impregnation with coal ashfly provide the greatest response to changes in weight (in wet conditions) and after conditioning (dry) with the average percentage of weight gain of 198.16% and 66.41% respectively. Changes in volume indicates an increase of volume in the wet condition (imbibition) with the coal ashfly treatment gave highest value of 23.04 %, whereas after conditioning (dry) the highest value obtained in the treatment of gum rosin:ethanol with a volume increase of 13:44%. The highest changes of the density with the coal ashfly impregnation in wet condition (imbibition) in value of 142.32% and after conditioning (dry) of 57.87%. The result of reduction in water absorption (RWA) test showed that in the palm oil wood samples most stable by using of gum rosin : ethanol of 0.97%, whereas the increase in oil palm wood dimensional stability (ASE) is the best of 59.42% after acetylation with Acetic Anhydride: Xylene.

  1. The lumazine synthase/riboflavin synthase complex: shapes and functions of a highly variable enzyme system.

    Science.gov (United States)

    Ladenstein, Rudolf; Fischer, Markus; Bacher, Adelbert

    2013-06-01

    The xylene ring of riboflavin (vitamin B2 ) is assembled from two molecules of 3,4-dihydroxy-2-butanone 4-phosphate by a mechanistically complex process that is jointly catalyzed by lumazine synthase and riboflavin synthase. In Bacillaceae, these enzymes form a structurally unique complex comprising an icosahedral shell of 60 lumazine synthase subunits and a core of three riboflavin synthase subunits, whereas many other bacteria have empty lumazine synthase capsids, fungi, Archaea and some eubacteria have pentameric lumazine synthases, and the riboflavin synthases of Archaea are paralogs of lumazine synthase. The structures of the molecular ensembles have been studied in considerable detail by X-ray crystallography, X-ray small-angle scattering and electron microscopy. However, certain mechanistic aspects remain unknown. Surprisingly, the quaternary structure of the icosahedral β subunit capsids undergoes drastic changes, resulting in formation of large, quasi-spherical capsids; this process is modulated by sequence mutations. The occurrence of large shells consisting of 180 or more lumazine synthase subunits has recently generated interest for protein engineering topics, particularly the construction of encapsulation systems.

  2. Simultaneous determination of N(1)-acetyl sulfisoxazole and its metabolites, and relative bioavailability compare to sulfisoxazole in rats.

    Science.gov (United States)

    Kim, Eunyoung; Kang, Wonku

    2016-09-10

    N(1)-acetyl sulfisoxazole (N1AS), a dihydropteroate synthase inhibitor is known to be biotransformed primarily to sulfisoxazole, partly to N(4)-acetyl sulfisoxazole (N4AS), and likely also to diacetyl sulfisoxazole (DAS) and other compounds. Although its clinical use has been limited due to urolithiasis, some countries still use the drug in combination with trimethoprim in cattle. A liquid chromatographic method using ultraviolet detection was developed for the simultaneous determination of four substances for the first time. Four analytes and sulfamethoxazole (IS) were separated on a reversed-phase column with gradient elution of a mobile phase. Because DAS and N1AS in plasma were changed very quickly into N4AS and sulfisoxazole, respectively, and esterase inhibitors (sodium fluoride and eserine) could not prevent the transformation, sulfisoxazole and N4AS were monitored in rat plasma following a single oral administration of N1AS and sulfisoxazole in five rats. The relative bioavailability of N1AS to sulfisoxazole was about two, indicating that a half-dose of N1AS would be equivalent to a dose of sulfisoxazole to achieve the same systemic exposure to sulfisoxazole.

  3. Mammalian N-acetylglutamate synthase.

    Science.gov (United States)

    Morizono, Hiroki; Caldovic, Ljubica; Shi, Dashuang; Tuchman, Mendel

    2004-04-01

    N-Acetylglutamate synthase (NAGS, E.C. 2.3.1.1) is a mitochondrial enzyme that catalyzes the formation of N-acetylglutamate (NAG), an essential allosteric activator of carbamylphosphate synthetase I (CPSI). The mouse and human NAGS genes have been identified based on similarity to regions of NAGS from Neurospora crassa and cloned from liver cDNA libraries. These genes were shown to complement an argA- (NAGS) deficient Escherichia coli strain, and enzymatic activity of the proteins was confirmed by a new stable isotope dilution assay. The deduced amino acid sequence of mammalian NAGS contains a putative mitochondrial-targeting signal at the N-terminus. The mouse NAGS preprotein was overexpressed in insect cells to determine post-translational modifications and two processed proteins with different N-terminal truncations have been identified. Sequence analysis using a hidden Markov model suggests that the vertebrate NAGS protein contains domains with a carbamate kinase fold and an acyl-CoA N-acyltransferase fold, and protein crystallization experiments are currently underway. Inherited NAGS deficiency results in hyperammonemia, presumably due to the loss of CPSI activity. We, and others, have recently identified mutations in families with neonatal and late-onset NAGS deficiency and the identification of the gene has now made carrier testing and prenatal diagnosis feasible. A structural analog of NAG, carbamylglutamate, has been shown to bind and activate CPSI, and several patients have been reported to respond favorably to this drug (Carbaglu).

  4. Terpene synthases from Cannabis sativa.

    Science.gov (United States)

    Booth, Judith K; Page, Jonathan E; Bohlmann, Jörg

    2017-01-01

    Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety 'Finola' revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of 'Finola' resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.

  5. Curcumin-induced Histone Acetylation in Malignant Hematologic Cells

    Institute of Scientific and Technical Information of China (English)

    Junbin HU; Yan WANG; Yan CHEN

    2009-01-01

    This study investigated the inhibitory effects of curcumin on proliferation of hemato-logical malignant cells in vitro and the anti-tumor mechanism at histone acetylation/histone deacety-lation levels.The effects of curcumin and histone deacetylase inhibitor trichostatin A (TSA) on the growth of Raji cells were tested by MTT assay.The expression of acetylated histone-3 (H3) in Raji,HL60 and K562 cells,and peripheral blood mononuclear cells (PBMCs) treated with curcumin or TSA was detected by immunohistochemistry and FACS.The results showed curcumin inhibited pro-liferation of Raji cells significantly in a time- and dose-dependent fashion,while exhibited low toxic-ity in PBMCs.Curcumin induced up-regulation of the expression of acetylated H3 dose-dependently in all malignant cell lines tested.In conclusion,curcumin inhibited proliferation of Raji cells selec-tively,enhanced the level of acetylated H3 in Raji,HL60,and K562 cells,which acted as a histone deacetylase inhibitor like TSA.Furthermore,up-regulation of H3 acetylation may play an important role in regulating the proliferation of Raji cells.

  6. Targeting O-Acetyl-GD2 Ganglioside for Cancer Immunotherapy.

    Science.gov (United States)

    Fleurence, Julien; Fougeray, Sophie; Bahri, Meriem; Cochonneau, Denis; Clémenceau, Béatrice; Paris, François; Heczey, Andras; Birklé, Stéphane

    2017-01-01

    Target selection is a key feature in cancer immunotherapy, a promising field in cancer research. In this respect, gangliosides, a broad family of structurally related glycolipids, were suggested as potential targets for cancer immunotherapy based on their higher abundance in tumors when compared with the matched normal tissues. GD2 is the first ganglioside proven to be an effective target antigen for cancer immunotherapy with the regulatory approval of dinutuximab, a chimeric anti-GD2 therapeutic antibody. Although the therapeutic efficacy of anti-GD2 monoclonal antibodies is well documented, neuropathic pain may limit its application. O-Acetyl-GD2, the O-acetylated-derivative of GD2, has recently received attention as novel antigen to target GD2-positive cancers. The present paper examines the role of O-acetyl-GD2 in tumor biology as well as the available preclinical data of anti-O-acetyl-GD2 monoclonal antibodies. A discussion on the relevance of O-acetyl-GD2 in chimeric antigen receptor T cell therapy development is also included.

  7. Relationship of histone acetylation to DNA topology and transcription.

    Science.gov (United States)

    Krajewski, W A; Luchnik, A N

    1991-12-01

    An autonomously replicating plasmid constructed from bovine papiloma virus (BPV) and pBR322 was stably maintained as a nuclear episome in a mouse cell culture. Addition to a cell culture of sodium butyrate (5 mM) induced an increase in plasmid DNA supercoiling of 3-5 turns, an increase in acetylation of cellular histones, and a decrease in plasmid transcription by 2- to 4-fold. After withdrawal of butyrate, DNA supercoiling began to fluctuate in a wave-like manner with an amplitude of up to 3 turns and a period of 3-4 h. These waves gradually faded by 24 h. The transcription of the plasmid and acetylation of cellular histones also oscillated with the same period. The wave-like alterations were not correlated with the cell cycle, for there was no resumption of DNA replication after butyrate withdrawal for at least 24 h. In vitro chemical acetylation of histones with acetyl adenylate also led to an increase in the superhelical density of plasmid DNA. The parallel changes in transcription, histone acetylation, and DNA supercoiling in vivo may indicate a functional innerconnection. Also, the observed in vivo variation in the level of DNA supercoiling directly indicates the possibility of its natural regulation in eukaryotic cells.

  8. Steady state fluorescence studies of wild type recombinant cinnamoyl CoA reductase (Ll-CCRH1) and its active site mutants.

    Science.gov (United States)

    Sonawane, Prashant; Vishwakarma, Rishi Kishore; Singh, Somesh; Gaikwad, Sushama; Khan, Bashir M

    2014-05-01

    Fluorescence quenching and time resolved fluorescence studies of wild type recombinant cinnamoyl CoA reductase (Ll-CCRH1), a multitryptophan protein from Leucaena leucocephala and 10 different active site mutants were carried out to investigate tryptophan environment. The enzyme showed highest affinity for feruloyl CoA (K(a)  = 3.72 × 10(5) M(-1)) over other CoA esters and cinnamaldehydes, as determined by fluorescence spectroscopy. Quenching of the fluorescence by acrylamide for wild type and active site mutants was collisional with almost 100% of the tryptophan fluorescence accessible under native condition and remained same after denaturation of protein with 6 M GdnHCl. In wild type Ll-CCRH1, the extent of quenching achieved with iodide (f(a) = 1.0) was significantly higher than cesium ions (f(a) = 0.33) suggesting more density of positive charge around surface of trp conformers under native conditions. Denaturation of wild type protein with 6 M GdnHCl led to significant increase in the quenching with cesium (f(a) = 0.54), whereas quenching with iodide ion was decreased (f(a) = 0.78), indicating reorientation of charge density around trp from positive to negative and heterogeneity in trp environment. The Stern-Volmer plots for wild type and mutants Ll-CCRH1 under native and denatured conditions, with cesium ion yielded biphasic quenching profiles. The extent of quenching for cesium and iodide ions under native and denatured conditions observed in active site mutants was significantly different from wild type Ll-CCRH1 under the same conditions. Thus, single substitution type mutations of active site residues showed heterogeneity in tryptophan microenvironment and differential degree of conformation of protein under native or denatured conditions.

  9. N-acetylglutamate synthase deficiency: an insight into the genetics, epidemiology, pathophysiology, and treatment

    Directory of Open Access Journals (Sweden)

    Caldovic L

    2011-08-01

    Full Text Available Nicholas Ah Mew, Ljubica CaldovicCenter for Genetic Medicine Research, Children’s Research Institute, Children’s National Medical Center, Washington DC, USAAbstract: The conversion of ammonia into urea by the human liver requires the coordinated function of the 6 enzymes and 2 transporters of the urea cycle. The initial and rate-limiting enzyme of the urea cycle, carbamylphosphate synthetase 1 (CPS1, requires an allosteric activator, N-acetylglutamate (NAG. The formation of this unique cofactor from glutamate and acetyl Coenzyme-A is catalyzed by N-acetylglutamate synthase (NAGS. An absence of NAG as a consequence of NAGS deficiency may compromise flux through CPS1 and result in hyperammonemia. The NAGS gene encodes a 528-amino acid protein, consisting of a C-terminal catalytic domain, a variable segment, and an N-terminal mitochondrial targeting signal. Only 22 mutations in the NAGS gene have been reported to date, mostly in the catalytic domain. NAGS is primarily expressed in the liver and intestine. However, it is also surprisingly expressed in testis, stomach and spleen, and during early embryonic development at levels not concordant with the expression of other urea cycle enzymes, CPS1, or ornithine transcarbamylase. The purpose of NAGS expression in these tissues, and its significance to NAGS deficiency is as yet unknown. Inherited NAGS deficiency is the rarest of the urea cycle disorders, and we review the currently reported 34 cases. Treatment of NAGS deficiency with N-carbamyglutamate, a stable analog of NAG, can restore deficient urea cycle function and normalize blood ammonia in affected patients.Keywords: urea cycle, urea cycle disorder, N-acetyl-L-glutamate, N-acetylglutamate synthase, hyperammonemia, N-carbamyl-L-glutamate

  10. A phylogenetic approach to the early evolution of autotrophy: the case of the reverse TCA and the reductive acetyl-CoA pathways.

    Science.gov (United States)

    Becerra, Arturo; Rivas, Mario; García-Ferris, Carlos; Lazcano, Antonio; Peretó, Juli

    2014-06-01

    In recent decades, a number of hypotheses on the autotrophic origin of life have been presented. These proposals invoke the emergence of reaction networks leading from CO or CO₂ to the organic molecules required for life. It has also been suggested that the last (universal) common ancestor (LCA or LUCA) of all extant cell lineages was a chemolitho-autotrophic thermophilic anaerobe. The antiquity of some carbon fixation pathways, the phylogenetic basal distribution of some autotrophic organisms, and the catalytic properties of iron-sulfur minerals have been advanced in support of these ideas. Here we critically examine the phylogenetic distribution and evolution of enzymes that are essential for two of the most ancient autotrophic means of metabolism: the reductive tricarboxylic acid (rTCA) cycle and the reductive acetyl-CoA pathway. Phylogenetic analysis of citryl-CoA synthetase and of citryl-CoA lyase, key enzymatic components of the rTCA cycle, and of CO dehydrogenase/acetyl-CoA synthase, a key enzyme in the reductive acetyl-CoA pathway, revealed that all three enzymes have undergone major lateral transfer events and therefore cannot be used as proof of the LCA's metabolic abilities nor as evidence of an autotrophic origin of life. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  11. H4K44 Acetylation Facilitates Chromatin Accessibility during Meiosis.

    Science.gov (United States)

    Hu, Jialei; Donahue, Greg; Dorsey, Jean; Govin, Jérôme; Yuan, Zuofei; Garcia, Benjamin A; Shah, Parisha P; Berger, Shelley L

    2015-12-01

    Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac) occurring on the nucleosomal lateral surface. We show that H4K44 is acetylated at pre-meiosis and meiosis and displays genome-wide enrichment at recombination hotspots in meiosis. Acetylation at H4K44 is required for normal meiotic recombination, normal levels of double-strand breaks (DSBs) during meiosis, and optimal sporulation. Non-modifiable H4K44R results in increased nucleosomal occupancy around DSB hotspots. Our results indicate that H4K44ac functions to facilitate chromatin accessibility favorable for normal DSB formation and meiotic recombination.

  12. Critical aspartic acid residues in pseudouridine synthases.

    Science.gov (United States)

    Ramamurthy, V; Swann, S L; Paulson, J L; Spedaliere, C J; Mueller, E G

    1999-08-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine at particular positions in certain RNA molecules. Genomic data base searches and sequence alignments using the first four identified pseudouridine synthases led Koonin (Koonin, E. V. (1996) Nucleic Acids Res. 24, 2411-2415) and, independently, Santi and co-workers (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762) to group this class of enzyme into four families, which display no statistically significant global sequence similarity to each other. Upon further scrutiny (Huang, H. L., Pookanjanatavip, M., Gu, X. G., and Santi, D. V. (1998) Biochemistry 37, 344-351), the Santi group discovered that a single aspartic acid residue is the only amino acid present in all of the aligned sequences; they then demonstrated that this aspartic acid residue is catalytically essential in one pseudouridine synthase. To test the functional significance of the sequence alignments in light of the global dissimilarity between the pseudouridine synthase families, we changed the aspartic acid residue in representatives of two additional families to both alanine and cysteine: the mutant enzymes are catalytically inactive but retain the ability to bind tRNA substrate. We have also verified that the mutant enzymes do not release uracil from the substrate at a rate significant relative to turnover by the wild-type pseudouridine synthases. Our results clearly show that the aligned aspartic acid residue is critical for the catalytic activity of pseudouridine synthases from two additional families of these enzymes, supporting the predictive power of the sequence alignments and suggesting that the sequence motif containing the aligned aspartic acid residue might be a prerequisite for pseudouridine synthase function.

  13. Activities of enzymes that metabolize platelet-activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) in neutrophils and eosinophils from humans and the effect of a calcium ionophore

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. (Oak Ridge Associated Univ., TN); Malone, B.; Wasserman, S.I.; Fitzgerald, V.; Snyder, F.

    1982-04-29

    Enzymatic systems in human blood cells are described for the activation and inactivation of a biologically active phospholipid (l-alkyl-2-acetyl-sn-glycero-3-phosphocholine) with hypotensive, platelet-aggregating, and inflammatory properties. The results document the presence of alkyldihydroxyacetone-phosphate synthase (forms the O-alkyl linkage in lipids), l-alkyl-2-lyso-sn-glycero-3-phosphocholine:acetyl-CoA acetyltransferase (produces the biologically active molecule), and 1-alkyl-sn-glycero-3-phosphocholine: acetylhydrolase (destroys the biological activity) in human neutrophils and eosinophils. Both the acetyltransferase and acetylhydrolase activities are increased severalfold after treatment of normal neutrophils with ionophore A23187; however, alkyldihydroxyacetone-phosphate synthase activity is not influenced by the ionophore. Eosinophils isolated from patients with eosinophilia have significantly greater activities of all the enzymes studied than the eosinophils isolated from normal individuals. Our results indicate the acetyltransferase responsible for 1-alkyl-2-acetyl-sn-glycero-3-phospho-choline synthesis may serve an important role in human blood cells that release this biologically active phospholipid. Moreover, the acetyltransferase activity was found to be dramatically influenced by calcium flux.

  14. Spectrophotometric determination of some chemotherapeutic agents using acetyl acetone.

    Science.gov (United States)

    Revanasiddappa, H D; Manju, B

    2002-05-01

    Acetyl acetone is introduced as a new coupling agent for the spectrophotometric determination of some chemotherapeutic agents, such as metoclopramide, dapsone, p-aminobenzoic acid, and cisapride in both pure and dosage forms. The method is based on the diazo-coupling reaction of these chemotherapeutic agents with a new coupling agent, acetyl acetone, in an alkaline medium. The optimum reaction conditions and other analytical parameters are evaluated. The influence of the substrates commonly employed as excipients with these chemotherapeutic agents has been studied. The method is simple, rapid, and sensitive. The results obtained compare favorably with those obtained with other reference methods.

  15. Investigation of the acetylation mechanism by GCN5 histone acetyltransferase.

    Directory of Open Access Journals (Sweden)

    Junfeng Jiang

    Full Text Available The histone acetylation of post-translational modification can be highly dynamic and play a crucial role in regulating cellular proliferation, survival, differentiation and motility. Of the enzymes that mediate post-translation modifications, the GCN5 of the histone acetyltransferase (HAT proteins family that add acetyl groups to target lysine residues within histones, has been most extensively studied. According to the mechanism studies of GCN5 related proteins, two key processes, deprotonation and acetylation, must be involved. However, as a fundamental issue, the structure of hGCN5/AcCoA/pH3 remains elusive. Although biological experiments have proved that GCN5 mediates the acetylation process through the sequential mechanism pathway, a dynamic view of the catalytic process and the molecular basis for hGCN5/AcCoA/pH3 are still not available and none of theoretical studies has been reported to other related enzymes in HAT family. To explore the molecular basis for the catalytic mechanism, computational approaches including molecular modeling, molecular dynamic (MD simulation and quantum mechanics/molecular mechanics (QM/MM simulation were carried out. The initial hGCN5/AcCoA/pH3 complex structure was modeled and a reasonable snapshot was extracted from the trajectory of a 20 ns MD simulation, with considering post-MD analysis and reported experimental results. Those residues playing crucial roles in binding affinity and acetylation reaction were comprehensively investigated. It demonstrated Glu80 acted as the general base for deprotonation of Lys171 from H3. Furthermore, the two-dimensional QM/MM potential energy surface was employed to study the sequential pathway acetylation mechanism. Energy barriers of addition-elimination reaction in acetylation obtained from QM/MM calculation indicated the point of the intermediate ternary complex. Our study may provide insights into the detailed mechanism for acetylation reaction of GCN5, and has

  16. Trichoderma reesei CE16 acetyl esterase and its role in enzymatic degradation of acetylated hemicellulose

    DEFF Research Database (Denmark)

    Biely, Peter; Cziszarava, Maria; Agger, Jane W.

    2014-01-01

    prominent target is the 3-O-acetyl group at the non-reducing terminal Xylp residues of linear neutral xylooligosaccharides or on aldouronic acids carrying MeGlcA at the non-reducing terminus. Deacetylation of the non-reducing end sugar may involve migration of acetyl groups to position 4, which also serves...... as substrate of the TrCE16 esterase. Conclusion Concerted action of CtGH10 xylanase, an AcXE and TrCE16 AcE resulted in close to complete deacetylation of neutral xylooligosaccharides, whereas substitution with MeGlcA prevents removal of acetyl groups from only a small fraction of the aldouronic acids...

  17. An investigation into eukaryotic pseudouridine synthases.

    Science.gov (United States)

    King, Ross D; Lu, Chuan

    2014-08-01

    A common post-transcriptional modification of RNA is the conversion of uridine to its isomer pseudouridine. We investigated the biological significance of eukaryotic pseudouridine synthases using the yeast Saccharomyces cerevisiae. We conducted a comprehensive statistical analysis on growth data from automated perturbation (gene deletion) experiments, and used bi-logistic curve analysis to characterise the yeast phenotypes. The deletant strains displayed different alteration in growth properties, including in some cases enhanced growth and/or biphasic growth curves not seen in wild-type strains under matched conditions. These results demonstrate that disrupting pseudouridine synthases can have a significant qualitative effect on growth. We further investigated the significance of post-transcriptional pseudouridine modification through investigation of the scientific literature. We found that (1) In Toxoplasma gondii, a pseudouridine synthase gene is critical in cellular differentiation between the two asexual forms: Tachyzoites and bradyzoites; (2) Mutation of pseudouridine synthase genes has also been implicated in human diseases (mitochondrial myopathy and sideroblastic anemia (MLASA); dyskeratosis congenita). Taken together, these results are consistent with pseudouridine synthases having a Gene Ontology function of "biological regulation".

  18. New lysine-acetylated proteins screened by immunoaffinity and liquid chromatography-mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The lack of selective extraction specific for lysine-acetylated proteins has been a major problem in the field of acetylation biology,though acetylation plays a key role in many biological processes.In this paper,we report for the first time the proteomic screening of lysine-acetylated proteins from a mouse liver tissue,by a new approach of immunoaffinity purification of lysine-acetylated peptides combined with nano-HPLC/MS/MS analysis.We have found 20 lysine-acetylated proteins with 21 lysine-acetylated sites,among which 12 lysine-acetylated proteins and 16 lysine-acetylated sites have never been reported before.Notably,three acetyltransferases harboring in mitochondrion are newly discovered acetyltransferases responsible for the acetylation of nonhistone proteins.We have explored the significant patterns of residue preference by the hierarchical clustering analysis of amino acid residues surrounding acetylation sites,which could be helpful to the prediction of new sites of lysine acetylation.Our findings provide more candidates for studying the important roles played by acetylation in diverse cellular pathways and related human diseases.

  19. Development of a new transformant selection system for Penicillium chrysogenum: isolation and characterization of the P. chrysogenum acetyl-coenzyme A synthetase gene (facA) and its use as a homologous selection marker.

    Science.gov (United States)

    Gouka, R J; van Hartingsveldt, W; Bovenberg, R A; van Zeijl, C M; van den Hondel, C A; van Gorcom, R F

    1993-01-01

    A new transformation system for the filamentous fungus Penicillium chrysogenum is described, based on the use of the homologous acetyl-coenzyme A synthetase (facA) gene as a selection marker. Acetate-non-utilizing (Fac-) strains of P. chrysogenum were obtained by positive selection for spontaneous resistance to fluoroacetate. Among these fac mutants putative facA strains were selected for a loss of acetyl-coenzyme A (CoA) synthetase activity. The facA gene, coding for the enzyme acetyl-CoA synthetase, was isolated from a P. chrysogenum genomic library using synthetic oligonucleotides derived from conserved regions from the corresponding genes of Aspergillus nidulans and Neurospora crassa. Vector pPC2-3, comprising a genomic 6.5 kb PstI fragment, was able to complement P. chrysogenum facA strains with frequencies up to 27 transformants.micrograms-1 DNA. Direct selection of transformants was accomplished using acetate and low amounts (0.001%) of glucose as carbon sources. About 50% of the transformants arose by integration of pPC2-3 DNA at the homologous facA locus and 50% by integration elsewhere in the genome. Determination of the nucleotide sequence of part of the cloned fragment showed the presence of an open reading frame of 2007 nucleotides, interrupted by five putative introns. Comparison of the nucleotide and the amino acid sequence of the facA gene of P. chrysogenum with the facA gene of A. nidulans reveals similarities of 80% and 89%, respectively. The putative introns present in the P. chrysogenum facA gene appear at identical positions as those in the A. nidulans facA gene, but show no significant sequence similarity.

  20. Inducible nitric oxide synthase and guinea-pig ileitis induced by adjuvant

    Directory of Open Access Journals (Sweden)

    N. D. Seago

    1995-01-01

    Full Text Available We sought to establish a model of inflammatory bowel disease by augmenting the activity of the local immune system with Freund's complete adjuvant, and to determine if inducible nitric oxide synthase (iNOS expression and peroxynitrite formation accompanied the inflammatory condition. In anaesthetized guinea-pigs, a loop of distal ileum received intraluminal 50% ethanol followed by Freund's complete adjuvant. Control animals were sham operated. When the animals were killed 7 or 14 days later, loop lavage fluid was examined for nitrite and PGE2 levels; mucosal levels of granulocyte and macrophages were estimated by myeloperoxidase (MPO and N-acetyl-D-glucosaminidase (NAG activity, respectively. Cellular localization if iNOS and peroxynitrite formation were determined by immunohistochemistry with polyclonal antibodies directed against peptide epitopes of mouse iNOS and nitrotyrosine, respectfully. Adjuvant administration resulted in a persistent ileitis, featuring gut thickening, crypt hyperplasia, villus tip swelling and disruption, and cellular infiltration. Lavage levels of PGE2 and nitrite were markedly elevated by adjuvant treatment. Immunoreactive iNOS and nitrotyrosine bordered on detectability in normal animals but were markedly evident with adjuvant treatment at day 7 and particularly day 14. Immunohistochemistry suggested that enteric neurons and epithelia were major sites of iNOS activity and peroxynitrite formation. We conclude that local administration of adjuvant establishes a chronic ileitis. Inducible nitric oxide synthase may contribute to the inflammatory process.

  1. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  2. PREPARATION AND PHYSICOCHEMICAL CHARACTERIZATION OF MODIFIED (ACETYLATED GADUNG (DIOSCOREA HISPIDA DENNST FLOURS

    Directory of Open Access Journals (Sweden)

    ANDRI C. KUMORO

    2014-08-01

    Full Text Available Acetylation is one of methods to alter the physicochemical properties of starch. This work aimed to investigate the effect of reaction time, glacial acetic acid/gadung flour (GAA/GF mass ratio and pH on gadung (Dioscorea hispida dennst flour acetylation at ambient temperature. The acetylation was carried out by reacting gadung flour slurry with GAA under alkaline condition. The results show that degree of substitution and swelling power of the acetylated flours increased with reaction time, while the solubility was not affected by reaction time after 10 minutes acetylation. The GAA/GF mass ratio inversely affected the solubility of acetylated flour, but did not affect the swelling power and degree of substitution. Acetylation changed the structure, morphology and crystallinity of gadung flour starch granules. The swelling power and solubility of all acetylated flours obtained in this work were higher than the native one.

  3. Acetylation mediates Cx43 reduction caused by electrical stimulation

    Science.gov (United States)

    Meraviglia, Viviana; Azzimato, Valerio; Colussi, Claudia; Florio, Maria Cristina; Binda, Anna; Panariti, Alice; Qanud, Khaled; Suffredini, Silvia; Gennaccaro, Laura; Miragoli, Michele; Barbuti, Andrea; Lampe, Paul D.; Gaetano, Carlo; Pramstaller, Peter P.; Capogrossi, Maurizio C.; Recchia, Fabio A.; Pompilio, Giulio; Rivolta, Ilaria; Rossini, Alessandra

    2015-01-01

    Communication between cardiomyocytes depends upon Gap Junctions (GJ). Previous studies have demonstrated that electrical stimulation induces GJ remodeling and modifies histone acetylases (HAT) and deacetylases (HDAC) activities, although these two results have not been linked. The aim of this work was to establish whether electrical stimulation modulates GJ-mediated cardiac cell-cell communication by acetylation-dependent mechanisms. Field stimulation of HL-1 cardiomyocytes at 0.5 Hz for 24 hours significantly reduced Connexin43 (Cx43) expression and cell-cell communication. HDAC activity was down-regulated whereas HAT activity was not modified resulting in increased acetylation of Cx43. Consistent with a post-translational mechanism, we did not observe a reduction in Cx43 mRNA in electrically stimulated cells, while the proteasomal inhibitor MG132 maintained Cx43 expression. Further, the treatment of paced cells with the HAT inhibitor Anacardic Acid maintained both the levels of Cx43 and cell-cell communication. Finally, we observed increased acetylation of Cx43 in the left ventricles of dogs subjected to chronic tachypacing as a model of abnormal ventricular activation. In conclusion, our findings suggest that altered electrical activity can regulate cardiomyocyte communication by influencing the acetylation status of Cx43. PMID:26264759

  4. The potential role of wood acetylation in climate change mitigation

    NARCIS (Netherlands)

    Van der Lugt, P.; Vogtländer, J.G.; Alexander, J.; Bongers, F.; Stebbins, H.

    2014-01-01

    In a carbon footprint assessment, the greenhouse gas emissions during the life cycle of a material can be measured, and compared to alternative products in terms of kg CO2 equivalent. If applied correctly, wood acetylation opens up a range of new innovative applications in which high performance yet

  5. NetAcet: prediction of N-terminal acetylation sites

    DEFF Research Database (Denmark)

    Kiemer, Lars; Bendtsen, Jannick Dyrløv; Blom, Nikolaj

    2005-01-01

    -acetylation for which most examples are known and for which orthologs have been found in several eukaryotes. We obtain correlation coefficients close to 0.7 on yeast data and a sensitivity up to 74% on mammalian data, suggesting that the method is valid for eukaryotic NatA orthologs....

  6. Surface effects in the acetylation of granular potato starch

    NARCIS (Netherlands)

    Steeneken, P.A.M.; Woortman, A.J.J.

    2008-01-01

    The occurrence of surface effects in the acetylation of granular potato starch with acetic anhydride to degrees of substitution 0.04-0.2 was studied by two different approaches. The first approach involved the fractionation of granular starch acetates into five different size classes and analysis of

  7. [N-ACETYL-β-D-GLUCOSAMINIDASE OF VIBRIO CHOLERAE].

    Science.gov (United States)

    Duvanova, O V; Mishankin, B N; Vodopianov, A S; Sorokin, V M

    2016-01-01

    Study N-acetyl-β-D-glucosaminidase (chitobiase) (EC 3.2.1.30) in strains of Vibrio cholerae of O1/non-O1 serogroups of various origin, that is a component of chitinolytic complex taking into account object of isolation and epidemiologic significance of strains. Cultures of V. cholerae O1/non-O1 serogroup strains were obtained from the museum of live culture of Rostov RIPC. Enzymatic activity analysis was carried out in Hitachi F-2500 fluorescent spectrophotometer using FL Solutions licensed software. NCBI databases were used during enzyme characteristics. N-acetyl-β-D-glucosaminidase in Vcholerae O1/non-O1 serogroup strains was detected, purified by column chromatography, studied and characterized by a number of physical-chemical and biological properties. Comparative computer analysis of amino acid sequence of N-acetyl-β-D-glucosaminidases of V. cholerae (VC2217 gene), Serratia marcescens etc. has allowed. to attribute the enzyme from V. cholerae to glycosyl-hydrolases (chitobiases) of family 20 and classify it according to enzyme nomenclature as EC 3.2.1.30. N-acetyl-β-D-glucosaminidase in V. cholerae of O1/non-O1 serogroups of various origin and epidemiologic significance, participating in chitin utilization was studied and characterized for the first time, and its possible role in biology of cholera causative agent was shown.

  8. The potential role of wood acetylation in climate change mitigation

    NARCIS (Netherlands)

    Van der Lugt, P.; Vogtländer, J.G.; Alexander, J.; Bongers, F.; Stebbins, H.

    2014-01-01

    In a carbon footprint assessment, the greenhouse gas emissions during the life cycle of a material can be measured, and compared to alternative products in terms of kg CO2 equivalent. If applied correctly, wood acetylation opens up a range of new innovative applications in which high performance yet

  9. Lysine Ubiquitination and Acetylation of Human Cardiac 20S Proteasomes

    Science.gov (United States)

    Lau, Edward; Choi, Howard JH; Ng, Dominic CM; Meyer, David; Fang, Caiyun; Li, Haomin; Wang, Ding; Zelaya, Ivette M; Yates, John R; Lam, Maggie PY

    2016-01-01

    Purpose Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets poly-ubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations. Experimental design Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-resolution MS to identify ubiquitination and acetylation sites. We developed a library search strategy that may be used to complement database search in identifying PTM in different samples. Results We identified 63 ubiquitinated lysines from intact human cardiac 20S proteasomes. In parallel, 65 acetylated residues were also discovered, 39 of which shared with ubiquitination sites. Conclusion and clinical relevance This is the most comprehensive characterization of cardiac proteasome ubiquitination to-date. There are significant overlaps between the discovered ubiquitination and acetylation sites, permitting potential crosstalk in regulating proteasome functions. The information presented here will aid future therapeutic strategies aimed at regulating the functions of cardiac proteasomes. PMID:24957502

  10. Predicting post-translational lysine acetylation using support vector machines

    DEFF Research Database (Denmark)

    Gnad, Florian; Ren, Shubin; Choudhary, Chunaram

    2010-01-01

    spectrometry to identify 3600 lysine acetylation sites on 1750 human proteins covering most of the previously annotated sites and providing the most comprehensive acetylome so far. This dataset should provide an excellent source to train support vector machines (SVMs) allowing the high accuracy in silico...

  11. Surface effects in the acetylation of granular potato starch

    NARCIS (Netherlands)

    Steeneken, P.A.M.; Woortman, A.J.J.

    2008-01-01

    The occurrence of surface effects in the acetylation of granular potato starch with acetic anhydride to degrees of substitution 0.04-0.2 was studied by two different approaches. The first approach involved the fractionation of granular starch acetates into five different size classes and analysis of

  12. Lysine Acetylation Facilitates Spontaneous DNA Dynamics in the Nucleosome.

    Science.gov (United States)

    Kim, Jongseong; Lee, Jaehyoun; Lee, Tae-Hee

    2015-12-01

    The nucleosome, comprising a histone protein core wrapped around by DNA, is the fundamental packing unit of DNA in cells. Lysine acetylation at the histone core elevates DNA accessibility in the nucleosome, the mechanism of which remains largely unknown. By employing our recently developed hybrid single molecule approach, here we report how the structural dynamics of DNA in the nucleosome is altered upon acetylation at histone H3 lysine 56 (H3K56) that is critical for elevated DNA accessibility. Our results indicate that H3K56 acetylation facilitates the structural dynamics of the DNA at the nucleosome termini that spontaneously and repeatedly open and close on a ms time scale. The results support a molecular mechanism of histone acetylation in catalyzing DNA unpacking whose efficiency is ultimately limited by the spontaneous DNA dynamics at the nucleosome temini. This study provides the first and unique experimental evidence revealing a role of protein chemical modification in directly regulating the kinetic stability of the DNA packing unit.

  13. The Tale of Protein Lysine Acetylation in the Cytoplasm

    Directory of Open Access Journals (Sweden)

    Karin Sadoul

    2011-01-01

    Full Text Available Reversible posttranslational modification of internal lysines in many cellular or viral proteins is now emerging as part of critical signalling processes controlling a variety of cellular functions beyond chromatin and transcription. This paper aims at demonstrating the role of lysine acetylation in the cytoplasm driving and coordinating key events such as cytoskeleton dynamics, intracellular trafficking, vesicle fusion, metabolism, and stress response.

  14. Lysine Acetylation and Deacetylation in Brain Development and Neuropathies

    Directory of Open Access Journals (Sweden)

    Alicia Tapias

    2017-02-01

    Full Text Available Embryonic development is critical for the final functionality and maintenance of the adult brain. Brain development is tightly regulated by intracellular and extracellular signaling. Lysine acetylation and deacetylation are posttranslational modifications that are able to link extracellular signals to intracellular responses. A wealth of evidence indicates that lysine acetylation and deacetylation are critical for brain development and functionality. Indeed, mutations of the enzymes and cofactors responsible for these processes are often associated with neurodevelopmental and psychiatric disorders. Lysine acetylation and deacetylation are involved in all levels of brain development, starting from neuroprogenitor survival and proliferation, cell fate decisions, neuronal maturation, migration, and synaptogenesis, as well as differentiation and maturation of astrocytes and oligodendrocytes, to the establishment of neuronal circuits. Hence, fluctuations in the balance between lysine acetylation and deacetylation contribute to the final shape and performance of the brain. In this review, we summarize the current basic knowledge on the specific roles of lysine acetyltransferase (KAT and lysine deacetylase (KDAC complexes in brain development and the different neurodevelopmental disorders that are associated with dysfunctional lysine (deacetylation machineries.

  15. Stimulation of V(D)J recombination by histone acetylation.

    Science.gov (United States)

    McBlane, F; Boyes, J

    2000-04-20

    V(D)J recombination assembles functional immunoglobulin and T cell receptor genes from individual gene segments [1]. A common recombination mechanism, initiated by the proteins RAG1 and RAG2 at conserved recombination signal sequences (RSSs), operates at all rearranging loci [2] [3]. It has been proposed that the key regulator of the reaction is 'accessibility' of the RSS within chromatin [4]. Recently, the packaging of RSSs into nucleosomes was shown to inhibit initiation of V(D)J recombination [5] [6]. Nevertheless, the tight tissue specificity of regulation cannot be explained by nucleosome-mediated repression alone because a significant fraction of RSSs would be predicted to lie in linker regions between nucleosomes. Therefore, some aspect of the regulation of the recombination reaction must rely on the disruption of higher-order chromatin structure. Here, we report that histone acetylation directly stimulates the recombination reaction in vivo in the correct cell- and stage-specific manner. Neither expression of RAG genes nor activity of RAG proteins was increased by acetylation. Furthermore, histone acetylation failed to overcome nucleosome-mediated repression of RSS recognition and cleavage in vitro. Our data suggest a role for histone acetylation in stimulating recombination in vivo through disruption of higher-order chromatin structures.

  16. Function-structure relationships of acetylated pea starches

    NARCIS (Netherlands)

    Huang, J.

    2006-01-01

    Cowpea, chickpea and yellow pea starches were studied and the results showed that their properties were strongly related to the chemical fine structures of the starches. Furthermore, granular starches were modified using two types of chemical acetylation reagents and then separated into different si

  17. DNA Damage-Induced Acetylation of Lysine 3016 of ATM Activates ATM Kinase Activity▿ †

    OpenAIRE

    Sun, Yingli; Xu, Ye; Roy, Kanaklata; Price, Brendan D.

    2007-01-01

    The ATM protein kinase is essential for cells to repair and survive genotoxic events. The activation of ATM's kinase activity involves acetylation of ATM by the Tip60 histone acetyltransferase. In this study, systematic mutagenesis of lysine residues was used to identify regulatory ATM acetylation sites. The results identify a single acetylation site at lysine 3016, which is located in the highly conserved C-terminal FATC domain adjacent to the kinase domain. Antibodies specific for acetyl-ly...

  18. Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic arabidopsis.

    Science.gov (United States)

    Lardizabal, K D; Metz, J G; Sakamoto, T; Hutton, W C; Pollard, M R; Lassner, M W

    2000-03-01

    Wax synthase (WS, fatty acyl-coenzyme A [coA]: fatty alcohol acyltransferase) catalyzes the final step in the synthesis of linear esters (waxes) that accumulate in seeds of jojoba (Simmondsia chinensis). We have characterized and partially purified this enzyme from developing jojoba embryos. A protein whose presence correlated with WS activity during chromatographic fractionation was identified and a cDNA encoding that protein was cloned. Seed-specific expression of the cDNA in transgenic Arabidopsis conferred high levels of WS activity on developing embryos from those plants. The WS sequence has significant homology with several Arabidopsis open reading frames of unknown function. Wax production in jojoba requires, in addition to WS, a fatty acyl-CoA reductase (FAR) and an efficient fatty acid elongase system that forms the substrates preferred by the FAR. We have expressed the jojoba WS cDNA in Arabidopsis in combination with cDNAs encoding the jojoba FAR and a beta-ketoacyl-CoA synthase (a component of fatty acid elongase) from Lunaria annua. (13)C-Nuclear magnetic resonance analysis of pooled whole seeds from transgenic plants indicated that as many as 49% of the oil molecules in the seeds were waxes. Gas chromatography analysis of transmethylated oil from individual seeds suggested that wax levels may represent up to 70% (by weight) of the oil present in those seeds.

  19. Accommodation of GDP-Linked Sugars in the Active Site of GDP-Perosamine Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Paul D.; Carney, Amanda E.; Holden, Hazel M. (UW)

    2009-01-12

    Perosamine (4-amino-4,6-dideoxy-d-mannose), or its N-acetylated form, is one of several dideoxy sugars found in the O-antigens of such infamous Gram-negative bacteria as Vibrio cholerae O1 and Escherichia coli O157:H7. It is added to the bacterial O-antigen via a nucleotide-linked version, namely GDP-perosamine. Three enzymes are required for the biosynthesis of GDP-perosamine starting from mannose 1-phosphate. The focus of this investigation is GDP-perosamine synthase from Caulobacter crescentus, which catalyzes the final step in GDP-perosamine synthesis, the conversion of GDP-4-keto-6-deoxymannose to GDP-perosamine. The enzyme is PLP-dependent and belongs to the aspartate aminotransferase superfamily. It contains the typically conserved active site lysine residue, which forms a Schiff base with the PLP cofactor. Two crystal structures were determined for this investigation: a site-directed mutant protein (K186A) complexed with GDP-perosamine and the wild-type enzyme complexed with an unnatural ligand, GDP-3-deoxyperosamine. These structures, determined to 1.6 and 1.7 {angstrom} resolution, respectively, revealed the manner in which products, and presumably substrates, are accommodated within the active site pocket of GDP-perosamine synthase. Additional kinetic analyses using both the natural and unnatural substrates revealed that the K{sub m} for the unnatural substrate was unperturbed relative to that of the natural substrate, but the k{sub cat} was lowered by a factor of approximately 200. Taken together, these studies shed light on why GDP-perosamine synthase functions as an aminotransferase whereas another very similar PLP-dependent enzyme, GDP-4-keto-6-deoxy-d-mannose 3-dehydratase or ColD, catalyzes a dehydration reaction using the same substrate.

  20. Chondroitin sulfate synthase-2 is necessary for chain extension of chondroitin sulfate but not critical for skeletal development.

    Directory of Open Access Journals (Sweden)

    Hiroyasu Ogawa

    Full Text Available Chondroitin sulfate (CS is a linear polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and D-glucuronic acid residues, modified with sulfated residues at various positions. Based on its structural diversity in chain length and sulfation patterns, CS provides specific biological functions in cell adhesion, morphogenesis, neural network formation, and cell division. To date, six glycosyltransferases are known to be involved in the biosynthesis of chondroitin saccharide chains, and a hetero-oligomer complex of chondroitin sulfate synthase-1 (CSS1/chondroitin synthase-1 and chondroitin sulfate synthase-2 (CSS2/chondroitin polymerizing factor is known to have the strongest polymerizing activity. Here, we generated and analyzed CSS2(-/- mice. Although they were viable and fertile, exhibiting no overt morphological abnormalities or osteoarthritis, their cartilage contained CS chains with a shorter length and at a similar number to wild type. Further analysis using CSS2(-/- chondrocyte culture systems, together with siRNA of CSS1, revealed the presence of two CS chain species in length, suggesting two steps of CS chain polymerization; i.e., elongation from the linkage region up to Mr ∼10,000, and further extension. There, CSS2 mainly participated in the extension, whereas CSS1 participated in both the extension and the initiation. Our study demonstrates the distinct function of CSS1 and CSS2, providing a clue in the elucidation of the mechanism of CS biosynthesis.

  1. DMPD: Acetylation of MKP-1 and the control of inflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18922786 Acetylation of MKP-1 and the control of inflammation. Chi H, Flavell RA. S...ci Signal. 2008 Oct 14;1(41):pe44. (.png) (.svg) (.html) (.csml) Show Acetylation of MKP-1 and the control of infl...ammation. PubmedID 18922786 Title Acetylation of MKP-1 and the control of inflammation. Authors Chi H,

  2. Comparative Study of Microwave Induced and Conventional Synthesis of Acetylated Sugar Isothiocyanates and Related Thiocarbamides

    Directory of Open Access Journals (Sweden)

    Atul V. Yadgire

    2011-01-01

    Full Text Available The synthesis of several acetylated sugar isothiocyanates have been carried out under microwave irradiation in excellent yields of products by using related bromides and lead thiocyanate in sodium dried xylene. Several acetylated sugar thiocarbamides have been synthesized by the interaction of respective acetylated sugar isothiocyanates with appropriate aryl amines under microwave irradiation.

  3. File list: His.Dig.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.50.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Diges...tive tract http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Dig.50.Pan_lysine_acetylation.AllCell.bed ...

  4. File list: His.Pan.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Pancre...as http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.05.Pan_lysine_acetylation.AllCell.bed ...

  5. File list: His.Unc.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Uncla...ssified http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Unc.10.Pan_lysine_acetylation.AllCell.bed ...

  6. File list: His.Pan.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Pancr...eas http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.20.Pan_lysine_acetylation.AllCell.bed ...

  7. File list: His.Neu.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Neural... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.Pan_lysine_acetylation.AllCell.bed ...

  8. File list: His.Epd.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Epd.05.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Epide...rmis http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Epd.05.Pan_lysine_acetylation.AllCell.bed ...

  9. File list: His.Brs.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Breast... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.20.Pan_lysine_acetylation.AllCell.bed ...

  10. File list: His.Dig.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.05.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Diges...tive tract http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Dig.05.Pan_lysine_acetylation.AllCell.bed ...

  11. File list: His.Prs.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Prosta...te http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Prs.20.Pan_lysine_acetylation.AllCell.bed ...

  12. File list: His.Liv.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Liver ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Liv.50.Pan_lysine_acetylation.AllCell.bed ...

  13. File list: His.Myo.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.20.Pan_lysine_acetylation.AllCell.bed ...

  14. File list: His.ALL.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation All ce...ll types SRX099893,SRX099896 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.ALL.10.Pan_lysine_acetylation.AllCell.bed ...

  15. File list: His.Emb.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Embryo... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Emb.10.Pan_lysine_acetylation.AllCell.bed ...

  16. File list: His.Pan.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Pancr...eas http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.10.Pan_lysine_acetylation.AllCell.bed ...

  17. File list: His.Unc.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Unclas...sified http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Unc.05.Pan_lysine_acetylation.AllCell.bed ...

  18. File list: His.Adp.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Adipo...cyte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.Pan_lysine_acetylation.AllCell.bed ...

  19. File list: His.Neu.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Neura...l http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.10.Pan_lysine_acetylation.AllCell.bed ...

  20. File list: His.Utr.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Uterus... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Utr.20.Pan_lysine_acetylation.AllCell.bed ...

  1. File list: His.ALL.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation All ce...ll types SRX099893,SRX099896 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.ALL.50.Pan_lysine_acetylation.AllCell.bed ...

  2. File list: His.Bld.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.10.Pan_lysine_acetylation.AllCell.bed ...

  3. File list: His.CDV.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Cardi...ovascular http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.20.Pan_lysine_acetylation.AllCell.bed ...

  4. File list: His.Bld.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Blood ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.20.Pan_lysine_acetylation.AllCell.bed ...

  5. File list: His.Bld.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Blood ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.50.Pan_lysine_acetylation.AllCell.bed ...

  6. File list: His.Dig.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Diges...tive tract http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Dig.20.Pan_lysine_acetylation.AllCell.bed ...

  7. File list: His.Oth.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Others... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.10.Pan_lysine_acetylation.AllCell.bed ...

  8. File list: His.Prs.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Prost...ate http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Prs.20.Pan_lysine_acetylation.AllCell.bed ...

  9. File list: His.Epd.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Epd.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Epider...mis http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Epd.20.Pan_lysine_acetylation.AllCell.bed ...

  10. File list: His.Neu.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Neural... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.Pan_lysine_acetylation.AllCell.bed ...

  11. File list: His.Unc.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.05.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Uncla...ssified http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Unc.05.Pan_lysine_acetylation.AllCell.bed ...

  12. File list: His.Brs.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Breas...t http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Brs.20.Pan_lysine_acetylation.AllCell.bed ...

  13. File list: His.Lng.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Lung h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Lng.20.Pan_lysine_acetylation.AllCell.bed ...

  14. File list: His.Kid.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Kid.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Kidney... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Kid.05.Pan_lysine_acetylation.AllCell.bed ...

  15. File list: His.Adp.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Adipo...cyte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.Pan_lysine_acetylation.AllCell.bed ...

  16. File list: His.Oth.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Others... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.20.Pan_lysine_acetylation.AllCell.bed ...

  17. File list: His.Bon.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Bone h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bon.05.Pan_lysine_acetylation.AllCell.bed ...

  18. File list: His.Bld.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Blood ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.10.Pan_lysine_acetylation.AllCell.bed ...

  19. File list: His.Adp.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Adipo...cyte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.Pan_lysine_acetylation.AllCell.bed ...

  20. File list: His.Adp.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Adipoc...yte http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.10.Pan_lysine_acetylation.AllCell.bed ...

  1. File list: His.CDV.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Cardio...vascular http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.CDV.50.Pan_lysine_acetylation.AllCell.bed ...

  2. File list: His.Neu.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Neural... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.Pan_lysine_acetylation.AllCell.bed ...

  3. File list: His.Lng.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Lung h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Lng.50.Pan_lysine_acetylation.AllCell.bed ...

  4. File list: His.PSC.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Plurip...otent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.10.Pan_lysine_acetylation.AllCell.bed ...

  5. File list: His.Plc.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Placen...ta http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Plc.20.Pan_lysine_acetylation.AllCell.bed ...

  6. File list: His.Oth.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Others... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.50.Pan_lysine_acetylation.AllCell.bed ...

  7. File list: His.Oth.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Others... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.05.Pan_lysine_acetylation.AllCell.bed ...

  8. File list: His.Lng.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Lung h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Lng.05.Pan_lysine_acetylation.AllCell.bed ...

  9. File list: His.Prs.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.50.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Prost...ate http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Prs.50.Pan_lysine_acetylation.AllCell.bed ...

  10. File list: His.Myo.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Muscl...e http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Myo.20.Pan_lysine_acetylation.AllCell.bed ...

  11. File list: His.Unc.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Unclas...sified http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Unc.50.Pan_lysine_acetylation.AllCell.bed ...

  12. File list: His.Epd.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Epd.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Epide...rmis http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Epd.20.Pan_lysine_acetylation.AllCell.bed ...

  13. File list: His.Prs.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Prosta...te http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Prs.05.Pan_lysine_acetylation.AllCell.bed ...

  14. File list: His.Bld.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.05.Pan_lysine_acetylation.AllCell.bed ...

  15. File list: His.ALL.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation All ce...ll types SRX099893,SRX099896 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.ALL.05.Pan_lysine_acetylation.AllCell.bed ...

  16. File list: His.Neu.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Neura...l http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.20.Pan_lysine_acetylation.AllCell.bed ...

  17. File list: His.PSC.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Plurip...otent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.20.Pan_lysine_acetylation.AllCell.bed ...

  18. File list: His.Pan.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.05.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Pancr...eas http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.05.Pan_lysine_acetylation.AllCell.bed ...

  19. File list: His.ALL.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation All c...ell types SRX099890 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.ALL.20.Pan_lysine_acetylation.AllCell.bed ...

  20. File list: His.Liv.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Liver ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Liv.20.Pan_lysine_acetylation.AllCell.bed ...

  1. File list: His.Gon.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.50.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Gonad... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Gon.50.Pan_lysine_acetylation.AllCell.bed ...

  2. File list: His.ALL.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation All c...ell types SRX099890 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.ALL.10.Pan_lysine_acetylation.AllCell.bed ...

  3. File list: His.PSC.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Pluri...potent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.50.Pan_lysine_acetylation.AllCell.bed ...

  4. File list: His.Prs.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Prosta...te http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Prs.50.Pan_lysine_acetylation.AllCell.bed ...

  5. File list: His.CDV.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.05.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Cardi...ovascular http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.05.Pan_lysine_acetylation.AllCell.bed ...

  6. File list: His.Gon.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Gonad ...SRX099893,SRX099896 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.10.Pan_lysine_acetylation.AllCell.bed ...

  7. File list: His.Bon.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Bone ...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bon.20.Pan_lysine_acetylation.AllCell.bed ...

  8. File list: His.Dig.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Digest...ive tract http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Dig.10.Pan_lysine_acetylation.AllCell.bed ...

  9. File list: His.Bld.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.20.Pan_lysine_acetylation.AllCell.bed ...

  10. File list: His.Unc.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.50.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Uncla...ssified http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Unc.50.Pan_lysine_acetylation.AllCell.bed ...

  11. File list: His.Utr.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.05.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Uteru...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.05.Pan_lysine_acetylation.AllCell.bed ...

  12. File list: His.Liv.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Liver ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Liv.05.Pan_lysine_acetylation.AllCell.bed ...

  13. File list: His.Lng.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Lung h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Lng.10.Pan_lysine_acetylation.AllCell.bed ...

  14. File list: His.Liv.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Liver ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Liv.10.Pan_lysine_acetylation.AllCell.bed ...

  15. File list: His.Bld.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Blood ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.05.Pan_lysine_acetylation.AllCell.bed ...

  16. File list: His.Epd.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Epd.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Epider...mis http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Epd.10.Pan_lysine_acetylation.AllCell.bed ...

  17. File list: His.Pan.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.50.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Pancr...eas http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.50.Pan_lysine_acetylation.AllCell.bed ...

  18. File list: His.PSC.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Plurip...otent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.50.Pan_lysine_acetylation.AllCell.bed ...

  19. File list: His.Plc.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Placen...ta http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Plc.10.Pan_lysine_acetylation.AllCell.bed ...

  20. File list: His.Plc.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Place...nta http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Plc.10.Pan_lysine_acetylation.AllCell.bed ...

  1. File list: His.Prs.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Prost...ate http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Prs.10.Pan_lysine_acetylation.AllCell.bed ...

  2. File list: His.Bon.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Bone h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bon.50.Pan_lysine_acetylation.AllCell.bed ...

  3. File list: His.Lng.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Lung ...SRX099890 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Lng.20.Pan_lysine_acetylation.AllCell.bed ...

  4. File list: His.Unc.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Unc.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Unclas...sified http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Unc.10.Pan_lysine_acetylation.AllCell.bed ...

  5. File list: His.Utr.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Uteru...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.10.Pan_lysine_acetylation.AllCell.bed ...

  6. File list: His.Adp.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Adipoc...yte http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.20.Pan_lysine_acetylation.AllCell.bed ...

  7. File list: His.Gon.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Gonad ...SRX099893,SRX099896 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.50.Pan_lysine_acetylation.AllCell.bed ...

  8. File list: His.Dig.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Digest...ive tract http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Dig.05.Pan_lysine_acetylation.AllCell.bed ...

  9. File list: His.Dig.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Diges...tive tract http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Dig.10.Pan_lysine_acetylation.AllCell.bed ...

  10. File list: His.Brs.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Breast... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.10.Pan_lysine_acetylation.AllCell.bed ...

  11. File list: His.Myo.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.10.Pan_lysine_acetylation.AllCell.bed ...

  12. File list: His.CDV.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Cardio...vascular http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.CDV.10.Pan_lysine_acetylation.AllCell.bed ...

  13. File list: His.Bon.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bon.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Bone h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bon.20.Pan_lysine_acetylation.AllCell.bed ...

  14. File list: His.Epd.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Epd.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Epider...mis http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Epd.05.Pan_lysine_acetylation.AllCell.bed ...

  15. File list: His.Oth.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Other...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.10.Pan_lysine_acetylation.AllCell.bed ...

  16. Characterization of an acetyl esterase from Myceliophthorathermophila C1 able to deacetylate xanthan

    NARCIS (Netherlands)

    Kool, M.M.; Schols, H.A.; Wagenknecht, M.; Hinz, S.W.A.; Moerschbacher, B.M.; Gruppen, H.

    2014-01-01

    Screening of eight carbohydrate acetyl esterases for their activity towards xanthan resulted in the recogni-tion of one active esterase. AXE3, a CAZy family CE1 acetyl xylan esterase originating from Myceliophthorathermophila C1, removed 31% of all acetyl groups present in xanthan after a 48 h incub

  17. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-Induced Lysine Acetylation of Mitochondrial Proteins

    Directory of Open Access Journals (Sweden)

    Michael N. Davies

    2016-01-01

    Full Text Available Lysine acetylation (AcK, a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis, we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT, an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK.

  18. The tomato terpene synthase gene family

    NARCIS (Netherlands)

    Falara, V.; Akhtar, T.A.; Nguyen, T.T.H.; Spyropoulou, E.A.; Bleeker, P.M.; Schauvinhold, I.; Matsuba, Y.; Bonini, M.E.; Schilmiller, A.L.; Last, R.L.; Schuurink, R.C.; Pichersky, E.

    2011-01-01

    Compounds of the terpenoid class play many roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of Solanum lycopersicum (cultivated tomato) contains 40 terpene synthase (TPS) genes, including 28

  19. Cloning of parsley flavone synthase I.

    Science.gov (United States)

    Martens, S; Forkmann, G; Matern, U; Lukacin, R

    2001-09-01

    A cDNA encoding flavone synthase I was amplified by RT-PCR from leaflets of Petroselinum crispum cv. Italian Giant seedlings and functionally expressed in yeast cells. The identity of the recombinant, 2-oxoglutarate-dependent enzyme was verified in assays converting (2S)-naringenin to apigenin.

  20. Inducible nitric oxide synthase in renal transplantation

    NARCIS (Netherlands)

    Joles, JA; Vos, IH; Grone, HJ; Rabelink, TJ

    2002-01-01

    The importance of the endothelial isoform of nitric oxide synthase (eNOS) has been well established. Endothelium-derived nitric oxide has been shown to be essential for vascular homeostasis and modulation of eNOS has thus become a target in prevention of cardiovascular disease. The role of the induc

  1. Cloning and expression of zebrafish genes encoding the heme synthesis enzymes uroporphyrinogen III synthase (UROS) and protoporphyrinogen oxidase (PPO).

    Science.gov (United States)

    Hanaoka, Ryuki; Dawid, Igor B; Kawahara, Atsuo

    2007-02-01

    Heme is synthesized from glycine and succinyl CoA by eight heme synthesis enzymes. Although genetic defects in any of these enzymes are known to cause severe human blood diseases, their developmental expression in mammals is unknown. In this paper, we report two zebrafish heme synthesis enzymes, uroporphyrinogen III synthase (UROS) and protoporphyrinogen oxidase (PPO) that are well conserved in comparison to their human counterparts. Both UROS and PPO formed pairs of bilateral stripes in the lateral plate mesoderm at the 15-somite stage. At 24 h post-fertilization (hpf), UROS and PPO were predominantly expressed in the intermediate cell mass (ICM) that is the major site of primitive hematopoiesis. The expression of UROS and PPO was drastically suppressed in the bloodless mutants cloche and vlad tepes/gata 1 from 15-somite to 24hpf stages, indicating that both cloche and vlad tepes/gata 1 are required for the induction and maintenance of UROS and PPO expression in the ICM.

  2. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction.

    Science.gov (United States)

    Mizuno, Yuta; Nagano-Shoji, Megumi; Kubo, Shosei; Kawamura, Yumi; Yoshida, Ayako; Kawasaki, Hisashi; Nishiyama, Makoto; Yoshida, Minoru; Kosono, Saori

    2016-02-01

    The bacterium Corynebacterium glutamicum is utilized during industrial fermentation to produce amino acids such as L-glutamate. During L-glutamate fermentation, C. glutamicum changes the flux of central carbon metabolism to favor L-glutamate production, but the molecular mechanisms that explain these flux changes remain largely unknown. Here, we found that the profiles of two major lysine acyl modifications were significantly altered upon glutamate overproduction in C. glutamicum; acetylation decreased, whereas succinylation increased. A label-free semi-quantitative proteomic analysis identified 604 acetylated proteins with 1328 unique acetylation sites and 288 succinylated proteins with 651 unique succinylation sites. Acetylation and succinylation targeted enzymes in central carbon metabolic pathways that are directly related to glutamate production, including the 2-oxoglutarate dehydrogenase complex (ODHC), a key enzyme regulating glutamate overproduction. Structural mapping revealed that several critical lysine residues in the ODHC components were susceptible to acetylation and succinylation. Furthermore, induction of glutamate production was associated with changes in the extent of acetylation and succinylation of lysine, suggesting that these modifications may affect the activity of enzymes involved in glutamate production. Deletion of phosphotransacetylase decreased the extent of protein acetylation in nonproducing condition, suggesting that acetyl phosphate-dependent acetylation is active in C. glutamicum. However, no effect was observed on the profiles of acetylation and succinylation in glutamate-producing condition upon disruption of acetyl phosphate metabolism or deacetylase homologs. It was considered likely that the reduced acetylation in glutamate-producing condition may reflect metabolic states where the flux through acid-producing pathways is very low, and substrates for acetylation do not accumulate in the cell. Succinylation would occur more

  3. Trichinella pseudospiralis vs. T. spiralis thymidylate synthase gene structure and T. pseudospiralis thymidylate synthase retrogene sequence.

    Science.gov (United States)

    Jagielska, Elżbieta; Płucienniczak, Andrzej; Dąbrowska, Magdalena; Dowierciał, Anna; Rode, Wojciech

    2014-04-09

    Thymidylate synthase is a housekeeping gene, designated ancient due to its role in DNA synthesis and ubiquitous phyletic distribution. The genomic sequences were characterized coding for thymidylate synthase in two species of the genus Trichinella, an encapsulating T. spiralis and a non-encapsulating T. pseudospiralis. Based on the sequence of parasitic nematode Trichinella spiralis thymidylate synthase cDNA, PCR techniques were employed. Each of the respective gene structures encompassed 6 exons and 5 introns located in conserved sites. Comparison with the corresponding gene structures of other eukaryotic species revealed lack of common introns that would be shared among selected fungi, nematodes, mammals and plants. The two deduced amino acid sequences were 96% identical. In addition to the thymidylate synthase gene, the intron-less retrocopy, i.e. a processed pseudogene, with sequence identical to the T. spiralis gene coding region, was found to be present within the T. pseudospiralis genome. This pseudogene, instead of the gene, was confirmed by RT-PCR to be expressed in the parasite muscle larvae. Intron load, as well as distribution of exon and intron phases in thymidylate synthase genes from various sources, point against the theory of gene assembly by the primordial exon shuffling and support the theory of evolutionary late intron insertion into spliceosomal genes. Thymidylate synthase pseudogene expressed in T. pseudospiralis muscle larvae is designated a retrogene.

  4. Acetylation of malate dehydrogenase 1 promotes adipogenic differentiation via activating its enzymatic activity.

    Science.gov (United States)

    Kim, Eun Young; Kim, Won Kon; Kang, Hyo Jin; Kim, Jeong-Hoon; Chung, Sang J; Seo, Yeon Soo; Park, Sung Goo; Lee, Sang Chul; Bae, Kwang-Hee

    2012-09-01

    Acetylation is one of the most crucial post-translational modifications that affect protein function. Protein lysine acetylation is catalyzed by acetyltransferases, and acetyl-CoA functions as the source of the acetyl group. Additionally, acetyl-CoA plays critical roles in maintaining the balance between carbohydrate metabolism and fatty acid synthesis. Here, we sought to determine whether lysine acetylation is an important process for adipocyte differentiation. Based on an analysis of the acetylome during adipogenesis, various proteins displaying significant quantitative changes were identified by LC-MS/MS. Of these identified proteins, we focused on malate dehydrogenase 1 (MDH1). The acetylation level of MDH1 was increased up to 6-fold at the late stage of adipogenesis. Moreover, overexpression of MDH1 in 3T3-L1 preadipocytes induced a significant increase in the number of cells undergoing adipogenesis. The introduction of mutations to putative lysine acetylation sites showed a significant loss of the ability of cells to undergo adipogenic differentiation. Furthermore, the acetylation of MDH1 dramatically enhanced its enzymatic activity and subsequently increased the intracellular levels of NADPH. These results clearly suggest that adipogenic differentiation may be regulated by the acetylation of MDH1 and that the acetylation of MDH1 is one of the cross-talk mechanisms between adipogenesis and the intracellular energy level.

  5. Stoichiometry of Site-specific Lysine Acetylation in an Entire Proteome*♦

    Science.gov (United States)

    Baeza, Josue; Dowell, James A.; Smallegan, Michael J.; Fan, Jing; Amador-Noguez, Daniel; Khan, Zia; Denu, John M.

    2014-01-01

    Acetylation of lysine ϵ-amino groups influences many cellular processes and has been mapped to thousands of sites across many organisms. Stoichiometric information of acetylation is essential to accurately interpret biological significance. Here, we developed and employed a novel method for directly quantifying stoichiometry of site-specific acetylation in the entire proteome of Escherichia coli. By coupling isotopic labeling and a novel pairing algorithm, our approach performs an in silico enrichment of acetyl peptides, circumventing the need for immunoenrichment. We investigated the function of the sole NAD+-dependent protein deacetylase, CobB, on both site-specific and global acetylation. We quantified 2206 peptides from 899 proteins and observed a wide distribution of acetyl stoichiometry, ranging from less than 1% up to 98%. Bioinformatic analysis revealed that metabolic enzymes, which either utilize or generate acetyl-CoA, and proteins involved in transcriptional and translational processes displayed the highest degree of acetylation. Loss of CobB led to increased global acetylation at low stoichiometry sites and induced site-specific changes at high stoichiometry sites, and biochemical analysis revealed altered acetyl-CoA metabolism. Thus, this study demonstrates that sirtuin deacetylase deficiency leads to both site-specific and global changes in protein acetylation stoichiometry, affecting central metabolism. PMID:24917678

  6. Generation of Mature Nα-Terminal Acetylated Thymosin α1 by Cleavage of Recombinant Prothymosin α

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2013-01-01

    Full Text Available Nα-terminal acetylation of peptides plays an important biological role but is rarely observed in prokaryotes. Nα-terminal acetylated thymosin α1 (Tα1, a 28-amino-acid peptide, is an immune modifier that has been used in the clinic to treat hepatitis B and C virus (HBV/HCV infections. We previously documented Nα-terminal acetylation of recombinant prothymosin α (ProTα in E. coli. Here we present a method for production of Nα-acetylated Tα1 from recombinant ProTα. The recombinant ProTα was cleaved by human legumain expressed in Pichia pastoris to release Tα1 in vitro. The Nα-acetylated Tα1 peptide was subsequently purified by reverse phase and cation exchange chromatography. Mass spectrometry indicated that the molecular mass of recombinant Nα-acetylated Tα1 was 3108.79 in, which is identical to the mass of Nα-acetylated Tα1 produced by total chemical synthesis. This mass corresponded to the nonacetylated Tα1 mass with a 42 Da increment. The retention time of recombinant Nα-acetylated Tα1 and chemosynthetic Nα-acetylated Tα1 were both 15.4 min in RP-high performance liquid chromatography (HPLC. These data support the use of an E. coli expression system for the production of recombinant human Nα-acetylated Tα1 and also will provide the basis for the preparation of recombinant acetylated peptides in E. coli.

  7. Ubiquitination of Notch1 is regulated by MAML1-mediated p300 acetylation of Notch1

    Energy Technology Data Exchange (ETDEWEB)

    Popko-Scibor, Anita E.; Lindberg, Mikael J.; Hansson, Magnus L.; Holmlund, Teresa [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm (Sweden); Wallberg, Annika E., E-mail: Annika.Wallberg@ki.se [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm (Sweden)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer p300 acetylates conserved lysines within Notch1 C-terminal nuclear localization signal. Black-Right-Pointing-Pointer MAML1 and CSL, components of Notch transcription complex, increase Notch acetylation. Black-Right-Pointing-Pointer MAML1-dependent acetylation of Notch1 by p300 decreases the ubiquitination of Notch1. Black-Right-Pointing-Pointer CDK8 inhibits Notch acetylation and Notch transcription enhanced by p300. -- Abstract: Earlier studies demonstrated the involvement of the p300 histone acetyltransferase in Notch signaling but the precise mechanisms by which p300 might modulate Notch function remains to be investigated. In this study, we show that p300 acetylates Notch1 ICD in cell culture assay and in vitro, and conserved lysines located within the Notch C-terminal nuclear localization signal are essential for Notch acetylation. MAML1 and CSL, which are components of the Notch transcription complex, enhance Notch acetylation and we suggest that MAML1 increases Notch acetylation by potentiating p300 autoacetylation. Furthermore, MAML1-dependent acetylation of Notch1 ICD by p300 decreases the ubiquitination of Notch1 ICD in cellular assays. CDK8 has been shown to target Notch1 for ubiquitination and proteosomal degradation. We show that CDK8 inhibits Notch acetylation and Notch transcription enhanced by p300. Therefore, we speculate that acetylation of Notch1 might be a mechanism to regulate Notch activity by interfering with ubiquitin-dependent pathways.

  8. ACETYLATION INCREASES EWS-FLI1 DNA BINDING AND TRANSCRIPTIONAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Silke eSchlottmann

    2012-09-01

    Full Text Available Ewing Sarcoma (ES is associated with a balanced chromosomal translocation that in most cases leads to the expression of the oncogenic fusion protein and transcription factor EWS-FLI1. EWS-FLI1 has been shown to be crucial for ES cell survival and tumor growth. However, its regulation is still enigmatic. To date, no functionally significant posttranslational modifications of EWS-FLI1 have been shown. Since ES are sensitive to histone deacetylase inhibitors, and these inhibitors are advancing in clinical trials, we sought to identify if EWS-FLI1 is directly acetylated. We convincingly show acetylation of the C-terminal FLI1 (FLI1-CTD domain, which is the DNA binding domain of EWS-FLI1. In vitro acetylation studies showed that acetylated FLI1-CTD has higher DNA binding activity than the non-acetylated protein. Over-expression of PCAF or treatment with histone deacetylase inhibitors (HDI increased the transcriptional activity of EWS-FLI1, when co-expressed in COS7 cells. However, our data that evaluates the acetylation of ful-length EWS-FLI1 remains unclear, despite creating acetylation specific antibodies to four potential acetylation sites. We conclude that EWS-FLI1 may either gain access to chromatin as a result of histone acetylation or undergo regulation by direct acetylation. These data should be considered when patients are treated with HDAC inhibitors. Further investigation of this phenomenon will reveal if this potential acetylation has an impact on tumor response.

  9. Stoichiometry of site-specific lysine acetylation in an entire proteome.

    Science.gov (United States)

    Baeza, Josue; Dowell, James A; Smallegan, Michael J; Fan, Jing; Amador-Noguez, Daniel; Khan, Zia; Denu, John M

    2014-08-01

    Acetylation of lysine ϵ-amino groups influences many cellular processes and has been mapped to thousands of sites across many organisms. Stoichiometric information of acetylation is essential to accurately interpret biological significance. Here, we developed and employed a novel method for directly quantifying stoichiometry of site-specific acetylation in the entire proteome of Escherichia coli. By coupling isotopic labeling and a novel pairing algorithm, our approach performs an in silico enrichment of acetyl peptides, circumventing the need for immunoenrichment. We investigated the function of the sole NAD(+)-dependent protein deacetylase, CobB, on both site-specific and global acetylation. We quantified 2206 peptides from 899 proteins and observed a wide distribution of acetyl stoichiometry, ranging from less than 1% up to 98%. Bioinformatic analysis revealed that metabolic enzymes, which either utilize or generate acetyl-CoA, and proteins involved in transcriptional and translational processes displayed the highest degree of acetylation. Loss of CobB led to increased global acetylation at low stoichiometry sites and induced site-specific changes at high stoichiometry sites, and biochemical analysis revealed altered acetyl-CoA metabolism. Thus, this study demonstrates that sirtuin deacetylase deficiency leads to both site-specific and global changes in protein acetylation stoichiometry, affecting central metabolism.

  10. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...... I NO synthase immunoreactivity and NADPH diaphorase activity. Type III NO synthase immunoreactivity was observed both in the endothelium of larger vessels and of microvessels. The results establish that human skeletal muscle expresses two different constitutive isoforms of NO synthase in different...... endothelium is consistent with a role for NO in the control of blood flow in human skeletal muscle....

  11. Mitochondrial HMG to CoA synthase (mHS): cDNA cloning in human, mouse and C. elegans, mapping to human chromosome 1p12-13 and partial human genomic cloning

    Energy Technology Data Exchange (ETDEWEB)

    Boukaftane, Y.; Robert, M.F.; Mitchell, G.A. [Hopital Sainte-Justine, Montreal, Quebec (Canada)]|[Kingston General Hospital, Ontario (Canada)] [and others

    1994-09-01

    mHS catalyzes the rate-limiting first step of ketogenesis in the liver. A cytoplasmic HS isozyme, encoded by another gene, catalyzes an early step in cholesterol synthesis. Starting from a rat mHS cDNA obtained by RT-PCR from the published rat cDNA sequence, we obtained and sequenced human and mouse cDNAs spanning the entire coding sequence of natural human and mouse mHS, as well as sequencing C. elegans HS-like cDNA. Consensus sequences for 3 mitochondrial and 4 cytoplasmic HSs were created and compared to invertebrate HS sequences. We found high conversation in the active site and at other regions presumably important for HS function. We mapped the mHS locus, HMGCS2 by in situ hybridization to chromosome 1P12-13, in contrast to the human cHS locus (HMGCS1) known to be on chromosome 5p13. Comparative mapping results suggest that these two chromosomal regions may be contiguous in other species, constant with a recent gene duplication event. Furthermore, we have characterized a human genomic mHS subclone containing 4 mHS exons, and found the position of all splice junctions to be identical to that of the hamster cHS gene except for one site in the 3{prime} nontranslated region. We calculate that the mHS and cHS genes were derived from a common ancestor 400-700 Myrs ago, implying that ketogenesis from fat may have become possible around the time of emergence of vertebrates ({approximately}500 Myr ago). Ketogenesis has evolved into an important pathway of energy metabolism, and we predict the mHS deficiency may prove to be responsible for some as yet explained cases of Reye-like syndromes in humans. This hypothesis can now be tested at the molecular level without the necessity of obtaining hepatic tissue.

  12. [Effect of acetylation and oxidation on some properties of breadfruit (Artocarpus altilis) seed starch].

    Science.gov (United States)

    Rincón, Alicia Mariela; Bou Rached, Lizet; Aragoza, Luis E; Padilla, Fanny

    2007-09-01

    Starch extracted from seeds of Artocarpus altilis (Breadfruit) was chemically modified by acetylation and oxidation, and its functional properties were evaluated and compared with these of native starch. Analysis of the chemical composition showed that moisture content was higher for modified starches. Ash, protein, crude fiber and amylose contents were reduced by the modifications, but did not alter the native starch granules' irregularity, oval shape and smooth surface. Acetylation produced changes in water absorption, swelling power and soluble solids, these values were higher for acetylated starch, while values for native and oxidized starches were similar. Both modifications reduced pasting temperature; oxidation reduced maximum peak viscosity but it was increased by acetylation. Hot paste viscosity was reduced by both modifications, whereas cold paste viscosity was lower in the oxidized starch and higher in the acetylated starch. Breakdown was increased by acetylation and reduced with oxidation. Setback value was reduced after acetylation, indicating it could minimize retrogradation of the starch.

  13. Histone acetylation dependent energy landscapes in tri-nucleosome revealed by residue-resolved molecular simulations

    Science.gov (United States)

    Chang, Le; Takada, Shoji

    2016-01-01

    Histone tail acetylation is a key epigenetic marker that tends to open chromatin folding and activate transcription. Despite intensive studies, precise roles of individual lysine acetylation in chromatin folding have only been poorly understood. Here, we revealed structural dynamics of tri-nucleosomes with several histone tail acetylation states and analyzed histone tail interactions with DNA by performing molecular simulations at an unprecedentedly high resolution. We found versatile acetylation-dependent landscapes of tri-nucleosome. The H4 and H2A tail acetylation reduced the contact between the first and third nucleosomes mediated by the histone tails. The H3 tail acetylation reduced its interaction with neighboring linker DNAs resulting in increase of the distance between consecutive nucleosomes. Notably, two copies of the same histone in a single nucleosome have markedly asymmetric interactions with DNAs, suggesting specific pattern of nucleosome docking albeit high inherent flexibility. Estimated transcription factor accessibility was significantly high for the H4 tail acetylated structures. PMID:27698366

  14. Chemical Genetics of Acetyl-CoA Carboxylases

    Directory of Open Access Journals (Sweden)

    Xuyu Zu

    2013-01-01

    Full Text Available Chemical genetic studies on acetyl-CoA carboxylases (ACCs, rate-limiting enzymes in long chain fatty acid biosynthesis, have greatly advanced the understanding of their biochemistry and molecular biology and promoted the use of ACCs as targets for herbicides in agriculture and for development of drugs for diabetes, obesity and cancers. In mammals, ACCs have both biotin carboxylase (BC and carboxyltransferase (CT activity, catalyzing carboxylation of acetyl-CoA to malonyl-CoA. Several classes of small chemicals modulate ACC activity, including cellular metabolites, natural compounds, and chemically synthesized products. This article reviews chemical genetic studies of ACCs and the use of ACCs for targeted therapy of cancers.

  15. Acetylated tubulin is essential for touch sensation in mice.

    Science.gov (United States)

    Morley, Shane J; Qi, Yanmei; Iovino, Loredana; Andolfi, Laura; Guo, Da; Kalebic, Nereo; Castaldi, Laura; Tischer, Christian; Portulano, Carla; Bolasco, Giulia; Shirlekar, Kalyanee; Fusco, Claudia M; Asaro, Antonino; Fermani, Federica; Sundukova, Mayya; Matti, Ulf; Reymond, Luc; De Ninno, Adele; Businaro, Luca; Johnsson, Kai; Lazzarino, Marco; Ries, Jonas; Schwab, Yannick; Hu, Jing; Heppenstall, Paul A

    2016-12-13

    At its most fundamental level, touch sensation requires the translation of mechanical energy into mechanosensitive ion channel opening, thereby generating electro-chemical signals. Our understanding of this process, especially how the cytoskeleton influences it, remains unknown. Here we demonstrate that mice lacking the α-tubulin acetyltransferase Atat1 in sensory neurons display profound deficits in their ability to detect mechanical stimuli. We show that all cutaneous afferent subtypes, including nociceptors have strongly reduced mechanosensitivity upon Atat1 deletion, and that consequently, mice are largely insensitive to mechanical touch and pain. We establish that this broad loss of mechanosensitivity is dependent upon the acetyltransferase activity of Atat1, which when absent leads to a decrease in cellular elasticity. By mimicking α-tubulin acetylation genetically, we show both cellular rigidity and mechanosensitivity can be restored in Atat1 deficient sensory neurons. Hence, our results indicate that by influencing cellular stiffness, α-tubulin acetylation sets the force required for touch.

  16. Snail acetylation by histone acetyltransferase p300 in lung cancer

    OpenAIRE

    Chang, Rui; Zhang, Yinjie; Zhang, Peng; Zhou, Qinghua

    2017-01-01

    Background Epithelial to mesenchymal transition (EMT) is a complex and dynamic molecular event in lung cancer metastasis that has not yet been thoroughly investigated. EMT transcriptional factors, such as Snail, play a central role in regulation of the EMT process. In this study, we sought to identify an association between p300 and Snail in lung cancer, as well as the engagement of p300 in Snail acetylation. Methods We transfected p300 small interfering RNA into lung cancer cells to detect S...

  17. Histone acetylation regulates osteodifferentiation of hDPSCs via DSPP.

    Science.gov (United States)

    Gu, Shensheng; Liang, Jingping; Wang, Jia; Liu, Bin

    2013-06-01

    Dental pulp stem cells (DPSCs) are a unique population of precursor cells isolated from postnatal human dental pulp, with the ability to regenerate a reparative dentin-like complex. We examined the regulation of odontoblast-like differentiation of DPSCs by histone acetylation. Western blot analysis showed that histone H3 acetylation was strongly induced in osteodifferentiation medium. Inhibition of histone acetyltransferase by garcinol reversed osteodifferentiation and mineral formation. Real-time polymerase chain reaction assay indicated that the dentin sialophosphoprotein (DSPP) gene, which is mainly expressed in odontoblasts and preameloblasts in teeth and plays an important role in tooth function, was also down-regulated in garcinol-treated cells. Moreover, lentivirus-mediated knockdown of DSPP in human DPSCs was associated with significant inhibition of mineral formation, but not osteoblast differentiation. In conclusion, the results of this study suggest that DSPP positively affects mineral formation, and that odontoblast-like differentiation and maturation of DPSCs can be regulated by histone acetylation of the DSPP gene.

  18. Histone Acylation beyond Acetylation: Terra Incognita in Chromatin Biology

    Directory of Open Access Journals (Sweden)

    Sophie Rousseaux

    2015-04-01

    Full Text Available Histone acetylation, one of the first and best studied histone post-translational modifications (PTMs, as well as the factors involved in its deposition (writers, binding (readers and removal (erasers, have been shown to act at the heart of regulatory circuits controlling essential cellular functions. The identification of a variety of competing histone lysine-modifying acyl groups including propionyl, butyryl, 2-hydroxyisobutyryl, crotonyl, malonyl, succinyl and glutaryl, raises numerous questions on their functional significance, the molecular systems that manage their establishment, removal and interplay with the well-known acetylation-based mechanisms. Detailed and large-scale investigations of two of these new histone PTMs, crotonylation and 2-hydroxyisobutyrylation, along with histone acetylation, in the context of male genome programming, where stage-specific gene expression programs are switched on and off in turn, have shed light on their functional contribution to the epigenome for the first time. These initial investigations fired many additional questions, which remain to be explored. This review surveys the major results taken from these two new histone acylations and discusses the new biology that is emerging based on the diversity of histone lysine acylations.

  19. Regulation of Histone Acetylation by Autophagy in Parkinson Disease.

    Science.gov (United States)

    Park, Goonho; Tan, Jieqiong; Garcia, Guillermina; Kang, Yunyi; Salvesen, Guy; Zhang, Zhuohua

    2016-02-12

    Parkinson disease (PD) is the most common age-dependent neurodegenerative movement disorder. Accumulated evidence indicates both environmental and genetic factors play important roles in PD pathogenesis, but the potential interaction between environment and genetics in PD etiology remains largely elusive. Here, we report that PD-related neurotoxins induce both expression and acetylation of multiple sites of histones in cultured human cells and mouse midbrain dopaminergic (DA) neurons. Consistently, levels of histone acetylation are markedly higher in midbrain DA neurons of PD patients compared to those of their matched control individuals. Further analysis reveals that multiple histone deacetylases (HDACs) are concurrently decreased in 1-methyl-4-phenylpyridinium (MPP(+))-treated cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse brains, as well as midbrain tissues of human PD patients. Finally, inhibition of histone acetyltransferase (HAT) protects, whereas inhibition of HDAC1 and HDAC2 potentiates, MPP(+)-induced cell death. Pharmacological and genetic inhibition of autophagy suppresses MPP(+)-induced HDACs degradation. The study reveals that PD environmental factors induce HDACs degradation and histone acetylation increase in DA neurons via autophagy and identifies an epigenetic mechanism in PD pathogenesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Selected properties of acetylated adipate of retrograded starch.

    Science.gov (United States)

    Zięba, T; Gryszkin, A; Kapelko, M

    2014-01-01

    Native potato starch (NS) and retrograded starch (R - obtained via freezing and defrosting of a starch paste) were used to prepare starch acetates: NS-A and R-A, and then acetylated distarch adipates: NS-ADA and R-ADA. The chemically-modified preparations produced from retrograded starch (R-A; R-ADA) were characterized by a higher degree of esterification compared to the modified preparations produced under the same conditions from native potato starch (NS-A; NS-ADA). Starch resistance to amylolysis was observed to increase (to 30-40 g/100 g) as a result of starch retrogradation and acetylation. Starch cross-linking had a significant impact on the increased viscosity of the paste in the entire course of pasting characteristics and on the increased values of rheological coefficients determined from the equations describing flow curves. The produced preparation of acetylated retrograded starch cross-linked with adipic acid (R-ADA) may be deemed an RS3/4 preparation to be used as a food thickening agent.

  1. EWSR1 regulates mitosis by dynamically influencing microtubule acetylation.

    Science.gov (United States)

    Wang, Yi-Long; Chen, Hui; Zhan, Yi-Qun; Yin, Rong-Hua; Li, Chang-Yan; Ge, Chang-Hui; Yu, Miao; Yang, Xiao-Ming

    2016-08-17

    EWSR1, participating in transcription and splicing, has been identified as a translocation partner for various transcription factors, resulting in translocation, which in turn plays crucial roles in tumorigenesis. Recent studies have investigated the role of EWSR1 in mitosis. However, the effect of EWSR1 on mitosis is poorly understood. Here, we observed that depletion of EWSR1 resulted in cell cycle arrest in the mitotic phase, mainly due to an increase in the time from nuclear envelope breakdown to metaphase, resulting in a high percentage of unaligned chromosomes and multipolar spindles. We also demonstrated that EWSR1 is a spindle-associated protein that interacts with α-tubulin during mitosis. EWSR1 depletion increased the cold-sensitivity of spindle microtubules, and decreased the rate of spindle assembly. EWSR1 regulated the level of microtubule acetylation in the mitotic spindle; microtubule acetylation was rescued in EWSR1-depleted mitotic cells following suppression of HDAC6 activity by its specific inhibitor or siRNA treatment. In summary, these results suggest that EWSR1 regulates the acetylation of microtubules in a cell cycle-dependent manner through its dynamic location on spindle MTs, and may be a novel regulator for mitosis progress independent of its translocation.

  2. Mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase and carnitine palmitoyltransferase II as potential control sites for ketogenesis during mitochondrion and peroxisome proliferation.

    Science.gov (United States)

    Madsen, L; Garras, A; Asins, G; Serra, D; Hegardt, F G; Berge, R K

    1999-05-01

    3-Thia fatty acids are potent hypolipidemic fatty acid derivatives and mitochondrion and peroxisome proliferators. Administration of 3-thia fatty acids to rats was followed by significantly increased levels of plasma ketone bodies, whereas the levels of plasma non-esterified fatty acids decreased. The hepatic mRNA levels of fatty acid binding protein and formation of acid-soluble products, using both palmitoyl-CoA and palmitoyl-L-carnitine as substrates, were increased. Hepatic mitochondrial carnitine palmitoyltransferase (CPT) -II and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase activities, immunodetectable proteins, and mRNA levels increased in parallel. In contrast, the mitochondrial CPT-I mRNA levels were unchanged and CPT-I enzyme activity was slightly reduced in the liver. The CoA ester of the monocarboxylic 3-thia fatty acid, tetradecylthioacetic acid, which accumulates in the liver after administration, inhibited the CPT-I activity in vitro, but not that of CPT-II. Acetoacetyl-CoA thiolase and HMG-CoA lyase activities involved in ketogenesis were increased, whereas the citrate synthase activity was decreased. The present data suggest that 3-thia fatty acids increase both the transport of fatty acids into the mitochondria and the capacity of the beta-oxidation process. Under these conditions, the regulation of ketogenesis may be shifted to step(s) beyond CPT-I. This opens the possibility that mitochondrial HMG-CoA synthase and CPT-II retain some control of ketone body formation.

  3. A 2-oxoglutarate-dependent dioxygenase from Ruta graveolens L. exhibits p-coumaroyl CoA 2'-hydroxylase activity (C2'H): a missing step in the synthesis of umbelliferone in plants.

    Science.gov (United States)

    Vialart, Guilhem; Hehn, Alain; Olry, Alexandre; Ito, Kyoko; Krieger, Celia; Larbat, Romain; Paris, Cedric; Shimizu, Bun-Ichi; Sugimoto, Yukihiro; Mizutani, Masaharu; Bourgaud, Frederic

    2012-05-01

    Coumarins are important compounds that contribute to the adaptation of plants to biotic or abiotic stresses. Among coumarins, umbelliferone occupies a pivotal position in the plant phenylpropanoid network. Previous studies indicated that umbelliferone is derived from the ortho-hydroxylation of p-coumaric acid by an unknown biochemical step to yield 2,4-dihydroxycinnamic acid, which then undergoes spontaneous lactonization. Based on a recent report of a gene encoding a 2-oxoglutarate-dependent dioxygenase from Arabidopsis thaliana that exhibited feruloyl CoA 6'-hydroxylase activity (Bourgaud et al., 2006), we combined a bioinformatic approach and a cDNA library screen to identify an orthologous ORF (Genbank accession number JF799117) from Ruta graveolens L. This ORF shares 59% amino acid identity with feruloyl CoA 6'-hydroxylase, was functionally expressed in Escherichia coli, and converted feruloyl CoA into scopoletin and p-coumaroyl CoA into umbelliferone with equal activity. Its bi-functionality was further confirmed in planta: transient expression of JF799117 in Nicotiana benthamiana yielded plants with leaves containing high levels of umbelliferone and scopoletin when compared to control plants, which contained barely detectable traces of these compounds. The expression of JF799117 was also tightly correlated to the amount of umbelliferone that was found in UV-elicited R. graveolens leaves. Therefore, JF799117 encodes a p-coumaroyl CoA 2'-hydroxylase in R. graveolens, which represents a previously uncharacterized step in the synthesis of umbelliferone in plants. Psoralen, which is an important furanocoumarin in R. graveolens, was found to be a competitive inhibitor of the enzyme, and it may exert this effect through negative feedback on the enzyme at an upstream position in the pathway.

  4. Cellulose Synthases and Synthesis in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Anne Endler; Staffan Persson

    2011-01-01

    Plant cell walls are complex structures composed of high-molecular-weight polysaccharides,proteins,and lignins. Among the wall polysaccharides,cellulose,a hydrogen-bonded β-1,4-linked glucan microfibril,is the main load-bearing wall component and a key precursor for industrial applications. Cellulose is synthesized by large multi-meric cellulose synthase (CesA) complexes,tracking along cortical microtubules at the plasma membrane. The only known components of these complexes are the cellulose synthase proteins. Recent studies have identified tentative interaction partners for the CesAs and shown that the migratory patterns of the CesA complexes depend on phosphorylation status. These advances may become good platforms for expanding our knowledge about cellulose synthesis in the near future. In addition,our current understanding of cellulose chain polymerization in the context of the CesA complex is discussed.

  5. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. I. Partial purification and characterization of the enzyme from Zea mays

    Science.gov (United States)

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-beta-D-glucose from uridine-5'-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss.

  6. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. I. Partial purification and characterization of the enzyme from Zea mays

    Science.gov (United States)

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-beta-D-glucose from uridine-5'-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss.

  7. Caffeine synthase and related methyltransferases in plants.

    Science.gov (United States)

    Misako, Kato; Kouichi, Mizuno

    2004-05-01

    Caffeine (1,3,7-trimethylxanthine) is a purine alkaloid present in high concentrations in tea and coffee and it is also found in a number of beverages such as coca cola. It is necessary to elucidate the caffeine biosynthetic pathway and to clone the genes related to the production of caffeine not only to determine the metabolism of the purine alkaloid but also to control the content of caffeine in tea and coffee. The available data support the operation of a xanthosine-->7-methylxanthosine-->7-methylxanthine-->theobromine-->caffeine pathway as the major route to caffeine. Since the caffeine biosynthetic pathway contains three S-adenosyl-L-methionine (SAM) dependent methylation steps, N-methyltransferases play important roles. This review focuses on the enzymes and genes involved in the methylation of purine ring. Caffeine synthase, the SAM-dependent methyltransferase involved in the last two steps of caffeine biosynthesis, was originally purified from young tea leaves (Camellia sinensis). The isolated cDNA, termed TCS1, consists of 1,483 base pairs and encodes a protein of 369 amino acids. Subsequently, the homologous genes that encode caffeine biosynthetic enzymes from coffee (Coffea arabica) were isolated. The recombinant proteins are classified into the three types on the basis of their substrate specificity i.e. 7-methylxanthosine synthase, theobromine synthase and caffeine synthase. The predicted amino acid sequences of caffeine biosynthetic enzymes derived from C. arabica exhibit more than 80% homology with those of the clones and but show only 40% homology with TCS1 derived from C. sinensis. In addition, they share 40% homology with the amino acid sequences of salicylic carboxyl methyltransferase, benzoic acid carboxyl methyltransferase and jasmonic acid carboxyl methyltransferase which belong to a family of motif B' methyltransferases which are novel plant methyltransferases with motif B' instead of motif B as the conserved region.

  8. Building-block selectivity of polyketide synthases.

    Science.gov (United States)

    Liou, Grace F; Khosla, Chaitan

    2003-04-01

    For the past decade, polyketide synthases have presented an exciting paradigm for the controlled manipulation of complex natural product structure. These multifunctional enzymes catalyze the biosynthesis of polyketide natural products by stepwise condensation and modification of metabolically derived building blocks. In particular, regioselective modification of polyketide structure is possible by alterations in either intracellular acyl-CoA pools or, more commonly, by manipulation of acyl transferases that act as the primary gatekeepers for building blocks.

  9. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity.

    Science.gov (United States)

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A

    2014-12-26

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1'-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12-0.16 μg h(-1) g(-1) fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate.

  10. PURIFICATION OF L-METHIONINE AND N-ACETYL-D-METHIONINE FROM THE MIXTURE OF ENZYMATICALLY DEACYLATED N-ACETYL-DL-METHIONINE

    Institute of Scientific and Technical Information of China (English)

    YAN Xiaomin; ZHAO Lin; SHAO Jianhui; TAN Xin; SONG Zhengxiao

    2004-01-01

    N-acetyl-D-methionine, NaAc and the remains of N-acetyl-L-methionine dramatically affect the purification of L-methionine when purified from the mixture of enzymatically deacylated N-acetyl-DL-methionine, leading to a low yield conventionally. Here, this paper reports a successful separation and purification of both L-methionine and N-acetyl-D-methionine by an H ion-exchange column. The pH, L-Met concentration and the ratio between the content of sodium cation and the ion-exchange capacity were optimized to obtain the maximum yield. Experimental results indicate that, under the optimized conditions, the yields of L-methionine and N-acetyl-D-methionine can reach as high as 85% and 75%, respectively.

  11. Cell differentiation along multiple pathways accompanied by changes in histone acetylation status.

    Science.gov (United States)

    Legartová, Soňa; Kozubek, Stanislav; Franek, Michal; Zdráhal, Zbyněk; Lochmanová, Gabriela; Martinet, Nadine; Bártová, Eva

    2014-04-01

    Post-translational modification of histones is fundamental to the regulation of basic nuclear processes and subsequent cellular events, including differentiation. In this study, we analyzed acetylated forms of histones H2A, H2B, and H4 during induced differentiation in mouse (mESCs) and human (hESCs) embryonic stem cells and during induced enterocytic differentiation of colon cancer cells in vitro. Endoderm-like differentiation of mESCs induced by retinoic acid and enterocytic differentiation induced by histone deacetylase inhibitor sodium butyrate were accompanied by increased mono-, di-, and tri-acetylation of histone H2B and a pronounced increase in di- and tri-acetylation of histone H4. In enterocytes, mono-acetylation of histone H2A also increased and tetra-acetylation of histone H4 appeared only after induction of this differentiation pathway. During differentiation of hESCs, we observed increased mono-acetylation and decreased tri-acetylation of H2B. Mono-, di-, and tri-acetylation of H4 were reduced, manifested by a significant increase in nonacetylated H4 histones. Levels of acetylated histones increased during induced differentiation in mESCs and during histone deacetylase (HDAC) inhibitor-induced enterocytic differentiation, whereas differentiation of human ESCs was associated with reduced acetylation of histones H2B and H4.

  12. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase.

    Science.gov (United States)

    Bohlmann, J; Steele, C L; Croteau, R

    1997-08-29

    Grand fir (Abies grandis) has been developed as a model system for studying defensive oleoresin formation in conifers in response to insect attack or other injury. The turpentine fraction of the oleoresin is a complex mixture of monoterpene (C10) olefins in which (-)-limonene and (-)-alpha- and (-)-beta-pinene are prominent components; (-)-limonene and (-)-pinene synthase activities are also induced upon stem wounding. A similarity based cloning strategy yielded three new cDNA species from a wounded stem cDNA library that appeared to encode three distinct monoterpene synthases. After expression in Escherichia coli and enzyme assay with geranyl diphosphate as substrate, subsequent analysis of the terpene products by chiral phase gas chromatography and mass spectrometry showed that these sequences encoded a (-)-limonene synthase, a myrcene synthase, and a (-)-pinene synthase that produces both alpha-pinene and beta-pinene. In properties and reaction stereochemistry, the recombinant enzymes resemble the corresponding native monoterpene synthases of wound-induced grand fir stem. The deduced amino acid sequences indicated the limonene synthase to be 637 residues in length (73.5 kDa), the myrcene synthase to be 627 residues in length (72.5 kDa), and the pinene synthase to be 628 residues in length (71.5 kDa); all of these monoterpene synthases appear to be translated as preproteins bearing an amino-terminal plastid targeting sequence. Sequence comparison revealed that these monoterpene synthases from grand fir resemble sesquiterpene (C15) synthases and diterpene (C20) synthases from conifers more closely than other monoterpene synthases from angiosperm species. This similarity between extant monoterpene, sesquiterpene, and diterpene synthases of gymnosperms is surprising since functional diversification of this enzyme class is assumed to have occurred over 300 million years ago. Wound-induced accumulation of transcripts for monoterpene synthases was demonstrated by RNA

  13. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Ke-Mian [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193 (China); Chang, Chia-Chun [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Shen, Qing-Ji [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); Sung, Li-Ying, E-mail: liyingsung@ntu.edu.tw [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, ROC (China); Liu, Ji-Long, E-mail: jilong.liu@dpag.ox.ac.uk [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom)

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  14. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.

    Science.gov (United States)

    Hyatt, David C; Croteau, Rodney

    2005-07-15

    Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.

  15. Biochemical characterization and homology modeling of methylbutenol synthase and implications for understanding hemiterpene synthase evolution in plants.

    Science.gov (United States)

    Gray, Dennis W; Breneman, Steven R; Topper, Lauren A; Sharkey, Thomas D

    2011-06-10

    2-Methyl-3-buten-2-ol (MBO) is a five-carbon alcohol produced and emitted in large quantities by many species of pine native to western North America. MBO is structurally and biosynthetically related to isoprene and can have an important impact on regional atmospheric chemistry. The gene for MBO synthase was identified from Pinus sabiniana, and the protein encoded was functionally characterized. MBO synthase is a bifunctional enzyme that produces both MBO and isoprene in a ratio of ~90:1. Divalent cations are required for activity, whereas monovalent cations are not. MBO production is enhanced by K(+), whereas isoprene production is inhibited by K(+) such that, at physiologically relevant [K(+)], little or no isoprene emission should be detected from MBO-emitting trees. The K(m) of MBO synthase for dimethylallyl diphosphate (20 mm) is comparable with that observed for angiosperm isoprene synthases and 3 orders of magnitude higher than that observed for monoterpene and sesquiterpene synthases. Phylogenetic analysis showed that MBO synthase falls into the TPS-d1 group (gymnosperm monoterpene synthases) and is most closely related to linalool synthase from Picea abies. Structural modeling showed that up to three phenylalanine residues restrict the size of the active site and may be responsible for making this a hemiterpene synthase rather than a monoterpene synthase. One of these residues is homologous to a Phe residue found in the active site of isoprene synthases. The remaining two Phe residues do not have homologs in isoprene synthases but occupy the same space as a second Phe residue that closes off the isoprene synthase active site.

  16. A random sequential mechanism of aminoglycoside acetylation by Mycobacterium tuberculosis Eis protein.

    Directory of Open Access Journals (Sweden)

    Oleg V Tsodikov

    Full Text Available An important cause of bacterial resistance to aminoglycoside antibiotics is the enzymatic acetylation of their amino groups by acetyltransferases, which abolishes their binding to and inhibition of the bacterial ribosome. Enhanced intracellular survival (Eis protein from Mycobacterium tuberculosis (Mt is one of such acetyltransferases, whose upregulation was recently established as a cause of resistance to aminoglycosides in clinical cases of drug-resistant tuberculosis. The mechanism of aminoglycoside acetylation by MtEis is not completely understood. A systematic analysis of steady-state kinetics of acetylation of kanamycin A and neomycin B by Eis as a function of concentrations of these aminoglycosides and the acetyl donor, acetyl coenzyme A, reveals that MtEis employs a random-sequential bisubstrate mechanism of acetylation and yields the values of the kinetic parameters of this mechanism. The implications of these mechanistic properties for the design of inhibitors of Eis and other aminoglycoside acetyltransferases are discussed.

  17. O-acetylated oligosaccharides from pectins of potato tuber cell walls.

    Science.gov (United States)

    Ishii, T

    1997-04-01

    Acetylated trigalacturonides and rhamnogalacturonan I (RG-I)-derived oligosaccharides were isolated from a Driselase digest of potato tuber cell walls by ion-exchange and size-exclusion chromatography. The oligosaccharides were structurally characterized by fast atom bombardment-mass spectroscopy, nuclear magnetic resonance spectroscopy, and glycosyl-linkage composition analysis. One trigalacturonide contained a single acetyl group at O-3 of the reducing galacturonic acid residue. A second trigalacturonide contained two acetyl substituents, which were located on O-3 or O-4 of the nonreducing galacturonic acid residue and O-3 of the reducing galacturonic acid residue. RG-I backbone-derived oligomers had acetyl groups at O-2 of the galacturonic acid residues. Some of these galacturonic acid residues were O-acetylated at both O-2 and O-3 positions. Rhamnosyl residues of RG-I oligomers were not acetylated.

  18. Expression pattern and biochemical properties of zebrafish N-acetylglutamate synthase.

    Directory of Open Access Journals (Sweden)

    Ljubica Caldovic

    Full Text Available The urea cycle converts ammonia, a waste product of protein catabolism, into urea. Because fish dispose ammonia directly into water, the role of the urea cycle in fish remains unknown. Six enzymes, N-acetylglutamate synthase (NAGS, carbamylphosphate synthetase III, ornithine transcarbamylase, argininosuccinate synthase, argininosuccinate lyase and arginase 1, and two membrane transporters, ornithine transporter and aralar, comprise the urea cycle. The genes for all six enzymes and both transporters are present in the zebrafish genome. NAGS (EC 2.3.1.1 catalyzes the formation of N-acetylglutamate from glutamate and acetyl coenzyme A and in zebrafish is partially inhibited by L-arginine. NAGS and other urea cycle genes are highly expressed during the first four days of zebrafish development. Sequence alignment of NAGS proteins from six fish species revealed three regions of sequence conservation: the mitochondrial targeting signal (MTS at the N-terminus, followed by the variable and conserved segments. Removal of the MTS yields mature zebrafish NAGS (zfNAGS-M while removal of the variable segment from zfNAGS-M results in conserved NAGS (zfNAGS-C. Both zfNAGS-M and zfNAGS-C are tetramers in the absence of L-arginine; addition of L-arginine decreased partition coefficients of both proteins. The zfNAGS-C unfolds over a broader temperature range and has higher specific activity than zfNAGS-M. In the presence of L-arginine the apparent Vmax of zfNAGS-M and zfNAGS-C decreased, their Km(app for acetyl coenzyme A increased while the Km(app for glutamate remained unchanged. The expression pattern of NAGS and other urea cycle genes in developing zebrafish suggests that they may have a role in citrulline and/or arginine biosynthesis during the first day of development and in ammonia detoxification thereafter. Biophysical and biochemical properties of zebrafish NAGS suggest that the variable segment may stabilize a tetrameric state of zfNAGS-M and that under

  19. Progressive mitochondrial protein lysine acetylation and heart failure in a model of Friedreich's ataxia cardiomyopathy.

    Science.gov (United States)

    Stram, Amanda R; Wagner, Gregory R; Fogler, Brian D; Pride, P Melanie; Hirschey, Matthew D; Payne, R Mark

    2017-01-01

    The childhood heart disease of Friedreich's Ataxia (FRDA) is characterized by hypertrophy and failure. It is caused by loss of frataxin (FXN), a mitochondrial protein involved in energy homeostasis. FRDA model hearts have increased mitochondrial protein acetylation and impaired sirtuin 3 (SIRT3) deacetylase activity. Protein acetylation is an important regulator of cardiac metabolism and loss of SIRT3 increases susceptibility of the heart to stress-induced cardiac hypertrophy and ischemic injury. The underlying pathophysiology of heart failure in FRDA is unclear. The purpose of this study was to examine in detail the physiologic and acetylation changes of the heart that occur over time in a model of FRDA heart failure. We predicted that increased mitochondrial protein acetylation would be associated with a decrease in heart function in a model of FRDA. A conditional mouse model of FRDA cardiomyopathy with ablation of FXN (FXN KO) in the heart was compared to healthy controls at postnatal days 30, 45 and 65. We evaluated hearts using echocardiography, cardiac catheterization, histology, protein acetylation and expression. Acetylation was temporally progressive and paralleled evolution of heart failure in the FXN KO model. Increased acetylation preceded detectable abnormalities in cardiac function and progressed rapidly with age in the FXN KO mouse. Acetylation was also associated with cardiac fibrosis, mitochondrial damage, impaired fat metabolism, and diastolic and systolic dysfunction leading to heart failure. There was a strong inverse correlation between level of protein acetylation and heart function. These results demonstrate a close relationship between mitochondrial protein acetylation, physiologic dysfunction and metabolic disruption in FRDA hypertrophic cardiomyopathy and suggest that abnormal acetylation contributes to the pathophysiology of heart disease in FRDA. Mitochondrial protein acetylation may represent a therapeutic target for early intervention.

  20. Core promoter acetylation is not required for high transcription from the phosphoenolpyruvate carboxylase promoter in maize

    Directory of Open Access Journals (Sweden)

    Horst Ina

    2009-12-01

    Full Text Available Abstract Background Acetylation of promoter nucleosomes is tightly correlated and mechanistically linked to gene activity. However, transcription is not necessary for promoter acetylation. It seems, therefore, that external and endogenous stimuli control histone acetylation and by this contribute to gene regulation. Photosynthetic genes in plants are excellent models with which to study the connection between stimuli and chromatin modifications because these genes are strongly expressed and regulated by multiple stimuli that are easily manipulated. We have previously shown that acetylation of specific histone lysine residues on the photosynthetic phosphoenolpyruvate carboxylase (Pepc promoter in maize is controlled by light and is independent of other stimuli or gene activity. Acetylation of upstream promoter regions responds to a set of other stimuli which include the nutrient availability of the plant. Here, we have extended these studies by analysing histone acetylation during the diurnal and circadian rhythm of the plant. Results We show that histone acetylation of individual lysine residues is removed from the core promoter before the end of the illumination period which is an indication that light is not the only factor influencing core promoter acetylation. Deacetylation is accompanied by a decrease in gene activity. Pharmacological inhibition of histone deacetylation is not sufficient to prevent transcriptional repression, indicating that deacetylation is not controlling diurnal gene regulation. Variation of the Pepc promoter activity during the day is controlled by the circadian oscillator as it is maintained under constant illumination for at least 3 days. During this period, light-induced changes in histone acetylation are completely removed from the core promoter, although the light stimulus is continuously applied. However, acetylation of most sites on upstream promoter elements follows the circadian rhythm. Conclusion Our results

  1. Autoimmune regulator is acetylated by transcription coactivator CBP/p300

    Energy Technology Data Exchange (ETDEWEB)

    Saare, Mario, E-mail: mario.saare@ut.ee [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, 19th Ravila Str, Tartu (Estonia); Rebane, Ana [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, 19th Ravila Str, Tartu (Estonia); SIAF, Swiss Institute of Allergy and Asthma Research, University of Zuerich, Davos (Switzerland); Rajashekar, Balaji; Vilo, Jaak [BIIT, Bioinformatics, Algorithmics and Data Mining group, Institute of Computer Science, University of Tartu, Tartu (Estonia); Peterson, Paert [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, 19th Ravila Str, Tartu (Estonia)

    2012-08-15

    The Autoimmune Regulator (AIRE) is a regulator of transcription in the thymic medulla, where it controls the expression of a large set of peripheral-tissue specific genes. AIRE interacts with the transcriptional coactivator and acetyltransferase CBP and synergistically cooperates with it in transcriptional activation. Here, we aimed to study a possible role of AIRE acetylation in the modulation of its activity. We found that AIRE is acetylated in tissue culture cells and this acetylation is enhanced by overexpression of CBP and the CBP paralog p300. The acetylated lysines were located within nuclear localization signal and SAND domain. AIRE with mutations that mimicked acetylated K243 and K253 in the SAND domain had reduced transactivation activity and accumulated into fewer and larger nuclear bodies, whereas mutations that mimicked the unacetylated lysines were functionally similar to wild-type AIRE. Analogously to CBP, p300 localized to AIRE-containing nuclear bodies, however, the overexpression of p300 did not enhance the transcriptional activation of AIRE-regulated genes. Further studies showed that overexpression of p300 stabilized the AIRE protein. Interestingly, gene expression profiling revealed that AIRE, with mutations mimicking K243/K253 acetylation in SAND, was able to activate gene expression, although the affected genes were different and the activation level was lower from those regulated by wild-type AIRE. Our results suggest that the AIRE acetylation can influence the selection of AIRE activated genes. -- Highlights: Black-Right-Pointing-Pointer AIRE is acetylated by the acetyltransferases p300 and CBP. Black-Right-Pointing-Pointer Acetylation occurs between CARD and SAND domains and within the SAND domain. Black-Right-Pointing-Pointer Acetylation increases the size of AIRE nuclear dots. Black-Right-Pointing-Pointer Acetylation increases AIRE protein stability. Black-Right-Pointing-Pointer AIRE acetylation mimic regulates a different set of AIRE

  2. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    Science.gov (United States)

    Croteau, Rodney Bruce; Burke, Charles Cullen

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  3. Aspirin acetylates wild type and mutant p53 in colon cancer cells: identification of aspirin acetylated sites on recombinant p53.

    Science.gov (United States)

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D Ramesh; Marimuthu, Srinivasan; Alfonso, Lloyd F; Bhat, G Jayarama

    2016-05-01

    Aspirin's ability to inhibit cell proliferation and induce apoptosis in cancer cell lines is considered to be an important mechanism for its anti-cancer effects. We previously demonstrated that aspirin acetylated the tumor suppressor protein p53 at lysine 382 in MDA-MB-231 human breast cancer cells. Here, we extended these observations to human colon cancer cells, HCT 116 harboring wild type p53, and HT-29 containing mutant p53. We demonstrate that aspirin induced acetylation of p53 in both cell lines in a concentration-dependent manner. Aspirin-acetylated p53 was localized to the nucleus. In both cell lines, aspirin induced p21(CIP1). Aspirin also acetylated recombinant p53 (rp53) in vitro suggesting that it occurs through a non-enzymatic chemical reaction. Mass spectrometry analysis and immunoblotting identified 10 acetylated lysines on rp53, and molecular modeling showed that all lysines targeted by aspirin are surface exposed. Five of these lysines are localized to the DNA-binding domain, four to the nuclear localization signal domain, and one to the C-terminal regulatory domain. Our results suggest that aspirin's anti-cancer effect may involve acetylation and activation of wild type and mutant p53 and induction of target gene expression. This is the first report attempting to characterize p53 acetylation sites targeted by aspirin.

  4. Inhibition of N-acetylneuraminate lyase by N-acetyl-4-oxo-D-neuraminic acid.

    Science.gov (United States)

    Gross, H J; Brossmer, R

    1988-05-09

    We show that the 4-oxo analogue of N-acetyl-D-neuraminic acid strongly inhibits N-acetylneuraminate lyase (NeuAc aldolase, EC 4.1.3.3) from Clostridum perfringens (Ki = 0.025 mM) and Escherichia coli (Ki = 0.15 mM). In each case the inhibition was competitive. N-Acetyl-D-neuraminic acid; N-Acetylneuraminate lyase; N-Acetyl-D-neuraminic acid analog; 5-Acetamido-3,5-dideoxy-beta-D-manno-non-2,4-diulosonic acid; 2-Deoxy-2,3-didehydro-N-acetyl-4-oxo-neuraminic acid; Competitive inhibitor.

  5. Aspirin-mediated acetylation induces structural alteration and aggregation of bovine pancreatic insulin.

    Science.gov (United States)

    Yousefi, Reza; Taheri, Behnaz; Alavi, Parnian; Shahsavani, Mohammad Bagher; Asadi, Zahra; Ghahramani, Maryam; Niazi, Ali; Alavianmehr, Mohammad Mehdi; Moosavi-Movahedi, Ali Akbar

    2016-01-01

    The simple aggregation of insulin under various chemical and physical stresses is still an important challenge for both pharmaceutical production and clinical formulation. In the storage form, this protein is subjected to various chemical modifications which alter its physicochemical and aggregation properties. Aspirin (acetylsalicylic acid) which is the most widely used medicine worldwide has been indicated to acetylate a large number of proteins both in vitro and in vivo. In this study, as insulin treated with aspirin at 37°C, a significant level of acetylation was observed by flourescamine and o-phthalaldehyde assay. Also, different spectroscopic techniques, gel electrophoresis, and microscopic assessment were applied to compare the structural variation and aggregation/fibrillation propensity among acetylated and non-acetylated insulin samples. The results of spectroscopic assessments elucidate that acetylation induces insulin unfolding which is accompanied with the exposure of protein hydrophobic patches, a transition from alpha-helix to beta-sheet and increased propensity of the protein for aggregation. The kinetic studies propose that acetylation increases aggregation rate of insulin under both thermal and chemical stresses. Also, gel electrophoresis and dynamic light scattering experiments suggest that acetylation induces insulin oligomerization. Additionally, the results of Thioflavin T fluorescence study, Congo red absorption assessment, and microscopic analysis suggest that acetylation with aspirin enhances the process of insulin fibrillation. Overall, the increased susceptibility of acetylated insulin for aggregation may reflect the fact that this type of modification has significant structural destabilizing effect which finally makes the protein more vulnerable for pathogenic aggregation/fibrillation.

  6. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns

    DEFF Research Database (Denmark)

    Lundby, Alicia; Hansen, Kasper Lage; Weinert, Brian Tate;

    2012-01-01

    ,541 proteins and provide the data set as a web-based database. We demonstrate that lysine acetylation displays site-specific sequence motifs that diverge between cellular compartments, with a significant fraction of nuclear sites conforming to the consensus motifs G-AcK and AcK-P. Our data set reveals...... that the subcellular acetylation distribution is tissue-type dependent and that acetylation targets tissue-specific pathways involved in fundamental physiological processes. We compare lysine acetylation patterns for rat as well as human skeletal muscle biopsies and demonstrate its general involvement in muscle...

  7. Preparation of radioactive acetyl-l-carnitine by an enzymatic exchange reaction

    Energy Technology Data Exchange (ETDEWEB)

    Emaus, R.; Bieber, L.L.

    1982-01-15

    A rapid method for the preparation of (1-/sup 14/C)acetyl-L-carnitine is described. The method involves exchange of (1-/sup 14/C)acetic acid into a pool of unlabeled acetyl-L-carnitine using the enzymes acetyl-CoA synthetase and carnitine acetyltransferase. After isotopic equilibrium is attained, radioactive acetylcarnitine is separated from the other reaction components by chromatography on Dowex 1 (C1/sup -/) anion exchange resin. One of the procedures used to verify the product (1-/sup 14/C)acetyl-L-carnitine can be used to synthesize (3S)-(5-/sup 14/C)citric acid.

  8. Acetylation of cyclin-dependent kinase 5 is mediated by GCN5

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juhyung; Yun, Nuri; Kim, Chiho [Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749 (Korea, Republic of); Song, Min-Young; Park, Kang-Sik [Department of Physiology and Biomedical Science Institute, Kyung Hee University School of Medicine, Seoul 130-701 (Korea, Republic of); Oh, Young J., E-mail: yjoh@yonsei.ac.kr [Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749 (Korea, Republic of)

    2014-04-25

    Highlights: • Cyclin-dependent kinase 5 (CDK5) is present as an acetylated form. • CDK5 is acetylated by GCN5. • CDK5’s acetylation site is mapped at Lys33. • Its acetylation may affect CDK5’s kinase activity. - Abstract: Cyclin-dependent kinase 5 (CDK5), a member of atypical serine/threonine cyclin-dependent kinase family, plays a crucial role in pathophysiology of neurodegenerative disorders. Its kinase activity and substrate specificity are regulated by several independent pathways including binding with its activator, phosphorylation and S-nitrosylation. In the present study, we report that acetylation of CDK5 comprises an additional posttranslational modification within the cells. Among many candidates, we confirmed that its acetylation is enhanced by GCN5, a member of the GCN5-related N-acetyl-transferase family of histone acetyltransferase. Co-immunoprecipitation assay and fluorescent localization study indicated that GCN5 physically interacts with CDK5 and they are co-localized at the specific nuclear foci. Furthermore, liquid chromatography in conjunction with a mass spectrometry indicated that CDK5 is acetylated at Lys33 residue of ATP binding domain. Considering this lysine site is conserved among a wide range of species and other related cyclin-dependent kinases, therefore, we speculate that acetylation may alter the kinase activity of CDK5 via affecting efficacy of ATP coordination.

  9. Synthesis of Andrographolide Glucopyranoside and Selective Cleavage of O-acetyl Groups in Sugar Moiety

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-Min; LIU Hong-Min

    2008-01-01

    Andrographolide glucopyranosides were synthesized from andrographolide and tetra-O-acetyl-β-D-glucopyranosyl bromide via a Koenigs-Knorr reaction and deacetylation with a moderate deacetylation reagent dibutyltin oxide in methanol for the first time.The structures of the andrographolide derivatives were confirmed by IR, NMR,and HRMS.Deprotection of the acetylated andrographolide glucopyranoside with dibutyltin oxide in methanol selectively removed all acetyl groups of the sugar moiety, whereas the acetyl group of the andrographolide part and the base- or acid-sensitive functional groups were retained.

  10. Functional and evolutionary relationships between terpene synthases from Australian Myrtaceae.

    Science.gov (United States)

    Keszei, Andras; Brubaker, Curt L; Carter, Richard; Köllner, Tobias; Degenhardt, Jörg; Foley, William J

    2010-06-01

    Myrtaceae is one of the chemically most variable and most significant essential oil yielding plant families. Despite an abundance of chemical information, very little work has focussed on the biochemistry of terpene production in these plants. We describe 70 unique partial terpene synthase transcripts and eight full-length cDNA clones from 21 myrtaceous species, and compare phylogenetic relationships and leaf oil composition to reveal clades defined by common function. We provide further support for the correlation between function and phylogenetic relationships by the first functional characterisation of terpene synthases from Myrtaceae: a 1,8-cineole synthase from Eucalyptus sideroxylon and a caryophyllene synthase from Eucalyptusdives.

  11. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages

    OpenAIRE

    Belkheir, Asma K.; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity ...

  12. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    Science.gov (United States)

    Alquézar, Berta; Rodríguez, Ana; de la Peña, Marcos; Peña, Leandro

    2017-01-01

    Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck) genome sequence allowed us to characterize for the first time the terpene synthase (TPS) family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z)-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays. PMID:28883829

  13. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    Directory of Open Access Journals (Sweden)

    Berta Alquézar

    2017-08-01

    Full Text Available Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck genome sequence allowed us to characterize for the first time the terpene synthase (TPS family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays.

  14. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate

    Directory of Open Access Journals (Sweden)

    Clemens Schmeitzl

    2015-08-01

    Full Text Available Deoxynivalenol (DON is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON, 15-acetyl-DON (15-ADON and 3,15-diacetyl-DON (3,15-diADON, and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-β-D-glucoside (D15G and of 15-acetyl-DON-3-sulfate (15-ADON3S as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-β-D-glucoside (15-ADON3G is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-β-D-glucoside (D3G. This study highlights significant differences in the metabolization of DON and its acetylated derivatives.

  15. 3′-O-Acetyl-2′-deoxyuridine

    Directory of Open Access Journals (Sweden)

    Victor N. Nemykin

    2011-01-01

    Full Text Available In the two independent but very similar molecules of the title compound, C11H14N2O6, both nucleobase fragments are nearly planar (both within 0.01 Å while the furanose rings exhibit 2E-endo envelope conformations. In the crystal, the two 3′-O-acetyl-2′-deoxyuridine molecules form a pseudosymmetric dimer of two bases connected via two nearly identical resonance-assisted N—H...O hydrogen bonds. The resulting pair is further connected with neighboring pairs via two similar O—H...O bonds involving the only hydroxyl group of the 2′-deoxyfuranose fragment and the remaining carbonyl oxygen of the nucleobase. These interactions result in the formation of an infinite `double band' along the b axis that can be considered as a self-assembled analogue of a polynucleotide molecule with non-canonical Watson–Crick base pairs. The infinite chains of 3′-O-acetyl-2′-deoxyuridine pairs are additionally held together by C—H...O interactions involving C atoms of the uracyl base and O atoms of carbonyl groups. Only weak C—H...O contacts exist between neighboring chains.

  16. Preparation and characterization of N-benzoyl-O-acetyl-chitosan.

    Science.gov (United States)

    Cai, Jinping; Dang, Qifeng; Liu, Chengsheng; Fan, Bing; Yan, Jingquan; Xu, Yanyan; Li, Jingjing

    2015-01-01

    A novel amphipathic chitosan derivative, N-benzoyl-O-acetyl-chitosan (BACS), was prepared by using the selective partial acylation of chitosan (CS), benzoyl chloride, and acetic acid under high-intensity ultrasound. The chemical structure and physical properties of BACS were characterized by FTIR, (1)H NMR, TGA, and XRD techniques. The degrees of substitution of benzoyl and acetyl for the chitosan derivatives were 0.26 and 1.15, respectively, which were calculated from the peak areas in NMR spectra by using the combined integral methods. The foaming properties of CS and BACS were determined and the results suggested BACS had better foam capacity and stability than those of chitosan. In addition, the antimicrobial activities of CS and BACS were also investigated against two species of bacteria (Escherichia coli and Staphylococcus aureus) and a fungus (Aspergillus niger), the results indicated that the antibacterial and antifungal activities of BACS were much stronger than those of the parent chitosan. These findings suggested that BACS was preferable for use as a food additive with a dual role of both foaming agent and food preservative.

  17. The dynamic organization of fungal acetyl-CoA carboxylase

    Science.gov (United States)

    Hunkeler, Moritz; Stuttfeld, Edward; Hagmann, Anna; Imseng, Stefan; Maier, Timm

    2016-04-01

    Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control.

  18. Impact of a High-fat Diet on Tissue Acyl-CoA and Histone Acetylation Levels.

    Science.gov (United States)

    Carrer, Alessandro; Parris, Joshua L D; Trefely, Sophie; Henry, Ryan A; Montgomery, David C; Torres, AnnMarie; Viola, John M; Kuo, Yin-Ming; Blair, Ian A; Meier, Jordan L; Andrews, Andrew J; Snyder, Nathaniel W; Wellen, Kathryn E

    2017-02-24

    Cellular metabolism dynamically regulates the epigenome via availability of the metabolite substrates of chromatin-modifying enzymes. The impact of diet on the metabolism-epigenome axis is poorly understood but could alter gene expression and influence metabolic health. ATP citrate-lyase produces acetyl-CoA in the nucleus and cytosol and regulates histone acetylation levels in many cell types. Consumption of a high-fat diet (HFD) results in suppression of ATP citrate-lyase levels in tissues such as adipose and liver, but the impact of diet on acetyl-CoA and histone acetylation in these tissues remains unknown. Here we examined the effects of HFD on levels of acyl-CoAs and histone acetylation in mouse white adipose tissue (WAT), liver, and pancreas. We report that mice consuming a HFD have reduced levels of acetyl-CoA and/or acetyl-CoA:CoA ratio in these tissues. In WAT and the pancreas, HFD also impacted the levels of histone acetylation; in particular, histone H3 lysine 23 acetylation was lower in HFD-fed mice. Genetic deletion of Acly in cultured adipocytes also suppressed acetyl-CoA and histone acetylation levels. In the liver, no significant effects on histone acetylation were observed with a HFD despite lower acetyl-CoA levels. Intriguingly, acetylation of several histone lysines correlated with the acetyl-CoA: (iso)butyryl-CoA ratio in liver. Butyryl-CoA and isobutyryl-CoA interacted with the acetyltransferase P300/CBP-associated factor (PCAF) in liver lysates and inhibited its activity in vitro This study thus provides evidence that diet can impact tissue acyl-CoA and histone acetylation levels and that acetyl-CoA abundance correlates with acetylation of specific histone lysines in WAT but not in the liver.

  19. Moonlighting proteins Hal3 and Vhs3 form a heteromeric PPCDC with Ykl088w in yeast CoA biosynthesis.

    Science.gov (United States)

    Ruiz, Amparo; González, Asier; Muñoz, Ivan; Serrano, Raquel; Abrie, J Albert; Strauss, Erick; Ariño, Joaquín

    2009-12-01

    Unlike most other organisms, the essential five-step coenzyme A biosynthetic pathway has not been fully resolved in yeast. Specifically, the genes encoding the phosphopantothenoylcysteine decarboxylase (PPCDC) activity still remain unidentified. Sequence homology analyses suggest three candidates-Ykl088w, Hal3 and Vhs3-as putative PPCDC enzymes in Saccharomyces cerevisiae. Notably, Hal3 and Vhs3 have been characterized as negative regulatory subunits of the Ppz1 protein phosphatase. Here we show that YKL088w does not encode a third Ppz1 regulatory subunit, and that the essential roles of Ykl088w and the Hal3 and Vhs3 pair are complementary, cannot be interchanged and can be attributed to PPCDC-related functions. We demonstrate that while known eukaryotic PPCDCs are homotrimers, the active yeast enzyme is a heterotrimer that consists of Ykl088w and Hal3/Vhs3 monomers that separately provides two essential catalytic residues. Our results unveil Hal3 and Vhs3 as moonlighting proteins involved in both CoA biosynthesis and protein phosphatase regulation.

  20. Study on the 3-hydroxy-3-methyl-glutaryl CoA reductase inhibitory properties of Agaricus bisporus and extraction of bioactive fractions using pressurised solvent technologies.

    Science.gov (United States)

    Gil-Ramírez, Alicia; Clavijo, Cristina; Palanisamy, Marimuthu; Ruiz-Rodríguez, Alejandro; Navarro-Rubio, María; Pérez, Margarita; Marín, Francisco R; Reglero, Guillermo; Soler-Rivas, Cristina

    2013-08-30

    Agaricus bisporus mushrooms were able to lower cholesterol levels in hypercholesterolaemic rats and it was suggested that dietary fibre might inhibit cholesterol absorption. However, A. bisporus extracts were also able to inhibit the 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGCR, the key enzyme in the cholesterol biosynthetic pathway) and this might also contribute to the observed lowering of cholesterol levels in serum. The methanol-water extracts obtained from A. bisporus were able to inhibit up to 60% the HMGCR activity using an in vitro assay. The HMGCR inhibitory capacities depended on cultivation conditions, strains, etc. The potential inhibitors were not statins, they might be β-glucans able to scavenge the substrate and impair the enzymatic reaction. They were present during all mushroom developmental stages and similarly distributed through all the tissues including the parts discarded as a by-product. Accelerated solvent extractions using 1:1 ethanol-water as pressurised solvent (10.7 MPa, 25°C, five cycles of 5 min) were more effective in the extraction of the HMGCiR inhibitor(s) than supercritical fluid extractions (9 MPa, 40°C) using CO2 with 10% ethanol. A mushroom cultivation and two extraction procedures were optimised to obtain fractions from A. bisporus with high HMGCR inhibitory activities to design novel ingredients for hypocholesterolaemic functional foodstuffs. © 2013 Society of Chemical Industry.

  1. Molecular cloning and characterization of Polygalacturonase-Inhibiting Protein and Cinnamoyl-Coa Reductase genes and their association with fruit storage conditions in blueberry (Vaccinium corymbosum)

    KAUST Repository

    Khraiwesh, Basel

    2013-05-13

    Blueberry is a widely grown and easily perishable fruit crop. An efficient post-harvest handling is critical, and for that purpose gene technology methods have been part of ongoing programmes to improve crops with high food values such as blueberry. Here we report the isolation, cloning, characterization and differential expression levels of two cDNAs encoding Polygalacturonase-Inhibitor Protein (PGIP) and Cinnamoyl-Coa Reductase (CCR) from blueberry fruits in relation to various storage conditions. The open reading frame of PGIP and CCR encodes a polypeptide of 329 and 347 amino acids, respectively. To assess changes in the expression of blueberry PGIP and CCR after harvest, a storage trial was initiated. The northern blots hybridization showed a clear differential expression level of PGIP and CCR between freshly harvested and stored fruits as well as between fruits stored under various storage conditions. Although the prospects of exploiting such a strategy for crop improvement are limited, the results provide further insight into the control of the quality over the storage period at the molecular level.

  2. Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl CoA reductase deficiency).

    Science.gov (United States)

    Ralph, John; Kim, Hoon; Lu, Fachuang; Grabber, John H; Leplé, Jean-Charles; Berrio-Sierra, Jimmy; Derikvand, Mohammad Mir; Jouanin, Lise; Boerjan, Wout; Lapierre, Catherine

    2008-01-01

    A molecular marker compound, derived from lignin by the thioacidolysis degradative method, for structures produced when ferulic acid is incorporated into lignin in angiosperms (poplar, Arabidopsis, tobacco), has been structurally identified as 1,2,2-trithioethyl ethylguaiacol [1-(4-hydroxy-3-methoxyphenyl)-1,2,2-tris(ethylthio)ethane]. Its truncated side chain and distinctive oxidation state suggest that it derives from ferulic acid that has undergone bis-8-O-4 (cross) coupling during lignification, as validated by model studies. A diagnostic contour for such structures is found in two-dimensional (13)C-(1)H correlated (HSQC) NMR spectra of lignins isolated from cinnamoyl CoA reductase (CCR)-deficient poplar. As low levels of the marker are also released from normal (i.e. non-transgenic) plants in which ferulic acid may be present during lignification, notably in grasses, the marker is only an indicator for CCR deficiency in general, but is a reliable marker in woody angiosperms such as poplar. Its derivation, together with evidence for 4-O-etherified ferulic acid, strongly implies that ferulic acid is incorporated into angiosperm lignins. Its endwise radical coupling reactions suggest that ferulic acid should be considered an authentic lignin precursor. Moreover, ferulic acid incorporation provides a new mechanism for producing branch points in the polymer. The findings sharply contradict those reported in a recent study on CCR-deficient Arabidopsis.

  3. Effect of various eicosanoid products of arachidonic acid on the acyl CoA: Cholesterol acyl transferase activity in three different mammalian cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Malo, P.El.

    1988-01-01

    Acylcoenzyme A:cholesterol acyltransferase (ACAT) catalyzes cholesterol ester synthesis intracellularly and has been implicated in the development of atherosclerosis. An in vitro assay has been adapted for determining ACAT activity from rat FU5AH hepatoma, Chinese hamster ovary (CHO) and rat thoracic aortic smooth muscle (RSM) cells. Formation of {sup 14}C-labelled cholesteryl oleate at 0 to 60 min {plus minus} cholesterol was determined; in the presence of exogenous cholesterol, ACAT activity was approximately linear and surpassed the plateau observed in ACAT activity without cholesterol. Increasing exogenous cholesterol concentration, the amount of oleoyl CoA or the amount of microsomal protein produced a corresponding increase in ACAT activity, while ester formation was slightly increased by decreasing the ratio of Triton WR-1339 to cholesterol. Both the thromboxane A{sub 2} (TxA{sub 2}) mimic, U-44069, and the inflammatory lipoxygenase product, LTB{sub 4}, decreased optimal in vitro microsomal ACAT activity from RSM, but not form FU5AH, while CHO ACAT activity was suppressed by LTB{sub r} only. PGI{sub 2}, PGE{sub 2} and PGF{sub 2{alpha}} had minimal effects for each cell type.

  4. Abiotic stress induces change in Cinnamoyl CoA Reductase (CCR) protein abundance and lignin deposition in developing seedlings of Leucaena leucocephala.

    Science.gov (United States)

    Srivastava, Sameer; Vishwakarma, Rishi K; Arafat, Yasir Ali; Gupta, Sushim K; Khan, Bashir M

    2015-04-01

    Aboitic stress such as drought and salinity are class of major threats, which plants undergo through their lifetime. Lignin deposition is one of the responses to such abiotic stresses. The gene encoding Cinnamoyl CoA Reductase (CCR) is a key gene for lignin biosynthesis, which has been shown to be over-expressed under stress conditions. In the present study, developing seedlings of Leucaena leucocephala (Vernacular name: Subabul, White popinac) were treated with 1 % mannitol and 200 mM NaCl to mimic drought and salinity stress conditions, respectively. Enzyme linked immunosorbant assay (ELISA) based expression pattern of CCR protein was monitored coupled with Phlorogucinol/HCl activity staining of lignin in transverse sections of developing L. leucocephala seedlings under stress. Our result suggests a differential lignification pattern in developing root and stem under stress conditions. Increase in lignification was observed in mannitol treated stems and corresponding CCR protein accumulation was also higher than control and salt stress treated samples. On the contrary CCR protein was lower in NaCl treated stems and corresponding lignin deposition was also low. Developing root tissue showed a high level of CCR content and lignin deposition than stem samples under all conditions tested. Overall result suggested that lignin accumulation was not affected much in case of developing root however developing stems were significantly affected under drought and salinity stress condition.

  5. Sudden unexpected infant death (SUDI in a newborn due to medium chain acyl CoA dehydrogenase (MCAD deficiency with an unusual severe genotype

    Directory of Open Access Journals (Sweden)

    Lovera Cristina

    2012-10-01

    Full Text Available Abstract Medium chain acyl CoA dehydrogenase deficiency (MCAD is the most common inborn error of fatty acid oxidation. This condition may lead to cellular energy shortage and cause severe clinical events such as hypoketotic hypoglycemia, Reye syndrome and sudden death. MCAD deficiency usually presents around three to six months of life, following catabolic stress as intercurrent infections or prolonged fasting, whilst neonatal-onset of the disease is quite rare. We report the case of an apparently healthy newborn who suddenly died at the third day of life, in which the diagnosis of MCAD deficiency was possible through peri-mortem blood-spot acylcarnitine analysis that showed very high concentrations of octanoylcarnitine. Genetic analysis at the ACADM locus confirmed the biochemical findings by demonstrating the presence in homozygosity of the frame-shift c.244dup1 (p.Trp82LeufsX23 mutation, a severe genotype that may explain the unusual and very early fatal outcome in this newborn. This report confirms that inborn errors of fatty acid oxidation represent one of the genetic causes of sudden unexpected deaths in infancy (SUDI and underlines the importance to include systematically specific metabolic screening in any neonatal unexpected death.

  6. The structure of mollusc larval shells formed in the presence of the chitin synthase inhibitor Nikkomycin Z

    Directory of Open Access Journals (Sweden)

    Weiss Ingrid M

    2007-11-01

    Full Text Available Abstract Background Chitin self-assembly provides a dynamic extracellular biomineralization interface. The insoluble matrix of larval shells of the marine bivalve mollusc Mytilus galloprovincialis consists of chitinous material that is distributed and structured in relation to characteristic shell features. Mollusc shell chitin is synthesized via a complex transmembrane chitin synthase with an intracellular myosin motor domain. Results Enzymatic mollusc chitin synthesis was investigated in vivo by using the small-molecule drug NikkomycinZ, a structural analogue to the sugar donor substrate UDP-N-acetyl-D-glucosamine (UDP-GlcNAc. The impact on mollusc shell formation was analyzed by binocular microscopy, polarized light video microscopy in vivo, and scanning electron microscopy data obtained from shell material formed in the presence of NikkomycinZ. The partial inhibition of chitin synthesis in vivo during larval development by NikkomycinZ (5 μM – 10 μM dramatically alters the structure and thus the functionality of the larval shell at various growth fronts, such as the bivalve hinge and the shell's edges. Conclusion Provided that NikkomycinZ mainly affects chitin synthesis in molluscs, the presented data suggest that the mollusc chitin synthase fulfils an important enzymatic role in the coordinated formation of larval bivalve shells. It can be speculated that chitin synthesis bears the potential to contribute via signal transduction pathways to the implementation of hierarchical patterns into chitin mineral-composites such as prismatic, nacre, and crossed-lamellar shell types.

  7. The conformation of acetylated virginiamycin M1 and virginiamycin M1 in explicit solvents.

    Science.gov (United States)

    Ng, Chai Ann; Zhao, Wen; Dang, Jason; Bergdahl, Mikael; Separovic, Frances; Brownlee, Robert T C; Metzger, Robert P

    2007-05-01

    The three-dimensional structure of acetylated virginiamycin M(1) (acetylated VM1) in chloroform and in a water/acetonitrile mixture (83:17 v/v) have been established through 2D high resolution NMR experiments and molecular dynamics modeling and the results compared with the conformation of the antibiotic VM1 in the same and other solvents. The results indicated that acetylation of the C-14 OH group of VM1 caused it to rotate about 90 degrees from the position it assumed in non-acetylated VM1. The conformation of both VM1 and acetylated VM1 appear to flatten in moving from a nonpolar to polar solvent. However, the acetylated form has a more hydrophobic nature. The acetylated VM1 in chloroform and in water/acetonitrile solution had a similar configuration to that of VM1 bound to 50S ribosomes and to the Vat(D) active sites as previously determined by X-ray crystallography. Docking studies of VM1 to the 50S ribosomal binding site and the Vat(D) gave conformations very similar to those derived from X-ray crystallographic studies. The docking studies with acetylated VM1 suggested the possibility of a hydrogen bond from the acetyl carbonyl group oxygen of acetylated VM1 to the 2' hydroxyl group of ribose of adenosine 2538 at the ribosomal VM1 binding site. No hydrogen bonds between acetylated VM1 and the Vat(D) active sites were found; the loss of this binding interaction partly accounts for the release of the product from the active site.

  8. Evolution and function of phytochelatin synthases.

    Science.gov (United States)

    Clemens, Stephan

    2006-02-01

    Both essential and non-essential transition metal ions can easily be toxic to cells. The physiological range for essential metals between deficiency and toxicity is therefore extremely narrow and a tightly controlled metal homeostasis network to adjust to fluctuations in micronutrient availability is a necessity for all organisms. One protective strategy against metal excess is the expression of high-affinity binding sites to suppress uncontrolled binding of metal ions to physiologically important functional groups. The synthesis of phytochelatins, glutathione-derived metal binding peptides, represents the major detoxification mechanism for cadmium and arsenic in plants and an unknown range of other organisms. A few years ago genes encoding phytochelatin synthases (PCS) were cloned from plants, fungi and nematodes. Since then it has become apparent that PCS genes are far more widespread than ever anticipated. Searches in sequence databases indicate PCS expression in representatives of all eukaryotic kingdoms and the presence of PCS-like proteins in several prokaryotes. The almost ubiquitous presence in the plant kingdom and beyond as well as the constitutive expression of PCS genes and PCS activity in all major plant tissues are still mysterious. It is unclear, how the extremely rare need to cope with an excess of cadmium or arsenic ions could explain the evolution and distribution of PCS genes. Possible answers to this question are discussed. Also, the molecular characterization of phytochelatin synthases and our current knowledge about the enzymology of phytochelatin synthesis are reviewed.

  9. Torque generation mechanism of ATP synthase

    Science.gov (United States)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  10. A reactivity-selectivity study of the Friedel-Crafts acetylation of 3,3'-dimethylbiphenyl and the oxidation of the acetyl derivatives

    DEFF Research Database (Denmark)

    Titinchi, Salam J.J.; Kamounah, Fadhil S.; Abbo, Hanna S.;

    2012-01-01

    converted to the carboxylic acids by hypochlorite oxidation. The relative stabilities of the isomeric products and the corresponding s-complexes were studied by DFT calculations and the data indicated that mono-and diacetylation followed different mechanisms. Conclusions: Friedel-Crafts acetylation of 3...... the less selective diacetylations of the deactivated 4-Ac-3,3'-dmbp are suggested to include the acetyl cation as the electrophile. The DFT data also showed that complexation of intermediates and products with AlCl3 does not seem to be important in determining the mechanism.......Background: Friedel-Crafts acetylation is an important route to aromatic ketones, in research laboratories and in industry. The acetyl derivatives of 3,3'-dimethylbiphenyl (3,3'-dmbp) have applications in the field of liquid crystals and polymers and may be oxidized to the dicarboxylic acids...

  11. Smad Acetylation: A New Level of Regulation in TGF-Beta Signaling

    Science.gov (United States)

    2005-07-01

    20. Gronroos E, HU, Heldin, CH, and Ericsson J, Control of Smad7 Stability by Competition between Acetylation and Ubiquitination. Molecular Cell , 2002...10: p. 483-493. 21. Soutoglou E, KN, and Talianidis I, Acetylation Regulates Transcription Factor Activity at Multiple Levels. Molecular Cell , 2000

  12. Histone Acetylation is Recruited in Consolidation as a Molecular Feature of Stronger Memories

    Science.gov (United States)

    Federman, Noel; Fustinana, Maria Sol; Romano, Arturo

    2009-01-01

    Gene expression is a key process for memory consolidation. Recently, the participation of epigenetic mechanisms like histone acetylation was evidenced in long-term memories. However, until now the training strength required and the persistence of the chromatin acetylation recruited are not well characterized. Here we studied whether histone…

  13. Nε-lysine acetylation of a bacterial transcription factor inhibits Its DNA-binding activity.

    Directory of Open Access Journals (Sweden)

    Sandy Thao

    Full Text Available Evidence suggesting that eukaryotes and archaea use reversible N(ε-lysine (N(ε-Lys acetylation to modulate gene expression has been reported, but evidence for bacterial use of N(ε-Lys acetylation for this purpose is lacking. Here, we report data in support of the notion that bacteria can control gene expression by modulating the acetylation state of transcription factors (TFs. We screened the E. coli proteome for substrates of the bacterial Gcn5-like protein acetyltransferase (Pat. Pat acetylated four TFs, including the RcsB global regulatory protein, which controls cell division, and capsule and flagellum biosynthesis in many bacteria. Pat acetylated residue Lys180 of RcsB, and the NAD(+-dependent Sir2 (sirtuin-like protein deacetylase (CobB deacetylated acetylated RcsB (RcsB(Ac, demonstrating that N(ε-Lys acetylation of RcsB is reversible. Analysis of RcsB(Ac and variant RcsB proteins carrying substitutions at Lys180 provided biochemical and physiological evidence implicating Lys180 as a critical residue for RcsB DNA-binding activity. These findings further the likelihood that reversible N(ε-Lys acetylation of transcription factors is a mode of regulation of gene expression used by all cells.

  14. Lysine acetylation targets protein complexes and co-regulates major cellular functions

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Kumar, Chanchal; Gnad, Florian;

    2009-01-01

    Lysine acetylation is a reversible posttranslational modification of proteins and plays a key role in regulating gene expression. Technological limitations have so far prevented a global analysis of lysine acetylation's cellular roles. We used high-resolution mass spectrometry to identify 3600...

  15. Modulation of Central Carbon Metabolism by Acetylation of Isocitrate Lyase in Mycobacterium tuberculosis

    Science.gov (United States)

    Bi, Jing; Wang, Yihong; Yu, Heguo; Qian, Xiaoyan; Wang, Honghai; Liu, Jun; Zhang, Xuelian

    2017-01-01

    Several enzymes involved in central carbon metabolism such as isocitrate lyase and phosphoenolpyruvate carboxykinase are key determinants of pathogenesis of Mycobacterium tuberculosis (M. tb). In this study, we found that lysine acetylation plays an important role in the modulation of central carbon metabolism in M. tb. Mutant of M. tb defective in sirtuin deacetylase exhibited improved growth in fatty acid-containing media. Global analysis of lysine acetylome of M. tb identified three acetylated lysine residues (K322, K331, and K392) of isocitrate lyase (ICL1). Using a genetically encoding system, we demonstrated that acetylation of K392 increased the enzyme activity of ICL1, whereas acetylation of K322 decreased its activity. Antibodies that specifically recognized acetyllysine at 392 and 322 of ICL1 were used to monitor the levels of ICL1 acetylation in M. tb cultures. The physiological significance of ICL1 acetylation was demonstrated by the observation that M. tb altered the levels of acetylated K392 in response to changes of carbon sources, and that acetylation of K392 affected the abundance of ICL1 protein. Our study has uncovered another regulatory mechanism of ICL1. PMID:28322251

  16. Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors.

    Science.gov (United States)

    Giandomenico, Valeria; Simonsson, Maria; Grönroos, Eva; Ericsson, Johan

    2003-04-01

    Members of the SREBP family of transcription factors control cholesterol and lipid homeostasis and play important roles during adipocyte differentiation. The transcriptional activity of SREBPs is dependent on the coactivators p300 and CBP. We now present evidence that SREBPs are acetylated by the intrinsic acetyltransferase activity of p300 and CBP. In SREBP1a, the acetylated lysine residue resides in the DNA-binding domain of the protein. Coexpression with p300 dramatically increases the expression of both SREBP1a and SREBP2, and this effect is dependent on the acetyltransferase activity of p300, indicating that acetylation of SREBPs regulates their stability. Indeed, acetylation or mutation of the acetylated lysine residue in SREBP1a stabilizes the protein. We demonstrate that the acetylated residue in SREBP1a is also targeted by ubiquitination and that acetylation inhibits this process. Thus, our studies define acetylation-dependent stabilization of transcription factors as a novel mechanism for coactivators to regulate gene expression.

  17. chiral Synthesis of 13-Acetyl-12-hydroxy-podocarpane-8, 11,13-triene-7-one

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An enantioselective synthetic route to (+)-13-acetyl-12-hydroxy-podocarpane-8,11,13-triene-7-one 1a and (-)-13-acetyl-12-hydroxy-podocarpane-8,11,13-triene-7-one 1b was developed from (S)-(-)-a -cyclocitral 8a and (R)-(+)-a -cyclocitral 8b.

  18. A bioinformatics-based overview of protein Lys-Ne-acetylation

    Science.gov (United States)

    Among posttranslational modifications, there are some conceptual similarities between Lys-N'-acetylation and Ser/Thr/Tyr O-phosphorylation. Herein we present a bioinformatics-based overview of reversible protein Lys-acetylation, including some comparisons with reversible protein phosphorylation. T...

  19. Post-translational modification by acetylation regulates the mitochondrial carnitine/acylcarnitine transport protein.

    Science.gov (United States)

    Giangregorio, Nicola; Tonazzi, Annamaria; Console, Lara; Indiveri, Cesare

    2017-02-01

    The carnitine/acylcarnitine transporter (CACT; SLC25A20) mediates an antiport reaction allowing entry of acyl moieties in the form of acylcarnitines into the mitochondrial matrix and exit of free carnitine. The transport function of CACT is crucial for the β-oxidation pathway. In this work, it has been found that CACT is partially acetylated in rat liver mitochondria as demonstrated by anti-acetyl-lys antibody immunostaining. Acetylation was reversed by the deacetylase Sirtuin 3 in the presence of NAD(+). After treatment of the mitochondrial extract with the deacetylase, the CACT activity, assayed in proteoliposomes, increased. The half-saturation constant of the CACT was not influenced, while the V max was increased by deacetylation. Sirtuin 3 was not able to deacetylate the CACT when incubation was performed in intact mitoplasts, indicating that the acetylation sites are located in the mitochondrial matrix. Prediction on the localization of acetylated residues by bioinformatics correlates well with the experimental data. Recombinant CACT treated with acetyl-CoA was partially acetylated by non-enzymatic mechanism with a corresponding decrease of transport activity. The experimental data indicate that acetylation of CACT inhibits its transport activity, and thus may contribute to the regulation of the mitochondrial β-oxidation pathway.

  20. Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to the Yeast Cytosol

    Directory of Open Access Journals (Sweden)

    Harmen M. van Rossum

    2016-05-01

    Full Text Available In many eukaryotes, the carnitine shuttle plays a key role in intracellular transport of acyl moieties. Fatty acid-grown Saccharomyces cerevisiae cells employ this shuttle to translocate acetyl units into their mitochondria. Mechanistically, the carnitine shuttle should be reversible, but previous studies indicate that carnitine shuttle-mediated export of mitochondrial acetyl units to the yeast cytosol does not occur in vivo. This apparent unidirectionality was investigated by constitutively expressing genes encoding carnitine shuttle-related proteins in an engineered S. cerevisiae strain, in which cytosolic acetyl coenzyme A (acetyl-CoA synthesis could be switched off by omitting lipoic acid from growth media. Laboratory evolution of this strain yielded mutants whose growth on glucose, in the absence of lipoic acid, was l-carnitine dependent, indicating that in vivo export of mitochondrial acetyl units to the cytosol occurred via the carnitine shuttle. The mitochondrial pyruvate dehydrogenase complex was identified as the predominant source of acetyl-CoA in the evolved strains. Whole-genome sequencing revealed mutations in genes involved in mitochondrial fatty acid synthesis (MCT1, nuclear-mitochondrial communication (RTG2, and encoding a carnitine acetyltransferase (YAT2. Introduction of these mutations into the nonevolved parental strain enabled l-carnitine-dependent growth on glucose. This study indicates intramitochondrial acetyl-CoA concentration and constitutive expression of carnitine shuttle genes as key factors in enabling in vivo export of mitochondrial acetyl units via the carnitine shuttle.

  1. The Effect of Acetyl-L-Carnitine Administration on Persons with Down Syndrome

    Science.gov (United States)

    Pueschel, Siegfried M.

    2006-01-01

    Since previous investigations reported improvements in cognition of patients with dementia after acetyl-L-carnitine therapy and since there is an increased risk for persons with Down syndrome to develop Alzheimer disease, this study was designed to investigate the effect of acetyl-L-carnitine administration on neurological, intellectual, and…

  2. Location of the O-acetyl substituents on a nonasaccharide repeating unit of sycamore extracellular xyloglucan.

    Science.gov (United States)

    York, W S; Oates, J E; van Halbeek, H; Darvill, A G; Albersheim, P; Tiller, P R; Dell, A

    1988-02-15

    The locations of the O-acetyl substituents on the major nonasaccharide repeating unit of the xyloglucan isolated from sycamore extracellular polysaccharides were determined by a combination of analytical methods, including f.a.b.-m.s. and 1H-n.m.r. spectroscopy. The O-2-linked-beta-D-galactosyl residue of the nonasaccharide was found to be the dominant site of O-acetyl substitution. Both mono-O-acetylated and di-O-acetylated beta-D-galactosyl residues were detected. The degree of O-acetylation of the beta-D-galactosyl residue, was estimated by 1H-n.m.r. spectroscopy to be 55-60% at O-6, 15-20% at O-4, and 20-25% at O-3. 1H-n.m.r. spectroscopy also indicated that approximately 50% of the beta-D-galactosyl residues are mono-O-acetylated, 25-30% are di-O-acetylated, and 20% are not acetylated.

  3. Total levels of hippocampal histone acetylation predict normal variability in mouse behavior.

    Directory of Open Access Journals (Sweden)

    Addie May I Nesbitt

    Full Text Available BACKGROUND: Genetic, pharmacological, and environmental interventions that alter total levels of histone acetylation in specific brain regions can modulate behaviors and treatment responses. Efforts have been made to identify specific genes that are affected by alterations in total histone acetylation and to propose that such gene specific modulation could explain the effects of total histone acetylation levels on behavior - the implication being that under naturalistic conditions variability in histone acetylation occurs primarily around the promoters of specific genes. METHODS/RESULTS: Here we challenge this hypothesis by demonstrating with a novel flow cytometry based technique that normal variability in open field exploration, a hippocampus-related behavior, was associated with total levels of histone acetylation in the hippocampus but not in other brain regions. CONCLUSIONS: Results suggest that modulation of total levels of histone acetylation may play a role in regulating biological processes. We speculate in the discussion that endogenous regulation of total levels of histone acetylation may be a mechanism through which organisms regulate cellular plasticity. Flow cytometry provides a useful approach to measure total levels of histone acetylation at the single cell level. Relating such information to behavioral measures and treatment responses could inform drug delivery strategies to target histone deacetylase inhibitors and other chromatin modulators to places where they may be of benefit while avoiding areas where correction is not needed and could be harmful.

  4. Acetylation of Starch with Vinyl Acetate in Imidazolium Ionic Liquids and Characterization of Acetate Distribution

    Science.gov (United States)

    Starch was acetylated with vinyl acetate in different 1-butyl-3-methylimidazolium (BMIM) salts as solvent in effort to produce starches with different acetylation patterns. Overall degree of substitution was much higher for basic anions such as acetate and dicyanimide (dca) than for neutral anions ...

  5. Crystal structures of a halophilic archaeal malate synthase from Haloferax volcanii and comparisons with isoforms A and G

    Directory of Open Access Journals (Sweden)

    Thomas Geoffrey C

    2011-05-01

    Full Text Available Abstract Background Malate synthase, one of the two enzymes unique to the glyoxylate cycle, is found in all three domains of life, and is crucial to the utilization of two-carbon compounds for net biosynthetic pathways such as gluconeogenesis. In addition to the main isoforms A and G, so named because of their differential expression in E. coli grown on either acetate or glycolate respectively, a third distinct isoform has been identified. These three isoforms differ considerably in size and sequence conservation. The A isoform (MSA comprises ~530 residues, the G isoform (MSG is ~730 residues, and this third isoform (MSH-halophilic is ~430 residues in length. Both isoforms A and G have been structurally characterized in detail, but no structures have been reported for the H isoform which has been found thus far only in members of the halophilic Archaea. Results We have solved the structure of a malate synthase H (MSH isoform member from Haloferax volcanii in complex with glyoxylate at 2.51 Å resolution, and also as a ternary complex with acetyl-coenzyme A and pyruvate at 1.95 Å. Like the A and G isoforms, MSH is based on a β8/α8 (TIM barrel. Unlike previously solved malate synthase structures which are all monomeric, this enzyme is found in the native state as a trimer/hexamer equilibrium. Compared to isoforms A and G, MSH displays deletion of an N-terminal domain and a smaller deletion at the C-terminus. The MSH active site is closely superimposable with those of MSA and MSG, with the ternary complex indicating a nucleophilic attack on pyruvate by the enolate intermediate of acetyl-coenzyme A. Conclusions The reported structures of MSH from Haloferax volcanii allow a detailed analysis and comparison with previously solved structures of isoforms A and G. These structural comparisons provide insight into evolutionary relationships among these isoforms, and also indicate that despite the size and sequence variation, and the truncated C

  6. [Four cases of aldosterone synthase deficiency in childhood].

    Science.gov (United States)

    Collinet, E; Pelissier, P; Richard, O; Gay, C; Pugeat, M; Morel, Y; Stephan, J-L

    2012-11-01

    Neonatal salt-wasting syndromes are rare but potentially serious conditions. Isolated hypoaldosteronism is an autosomal recessive inherited disorder of terminal aldosterone synthesis, leading to selective aldosterone deficiency. Two different biochemical forms of this disease have been described, called aldosterone synthase deficiency or corticosterone methyl oxydase, types I and II. In type I, there is no aldosterone synthase activity and the 18 hydroxycorticosterone (18 OHB) level is low, whereas in type II, a residual activity of aldosterone synthase persists and 18 OHB is overproduced. We report on four patients with isolated hypoaldosteronism. In 2 of them, who were recently diagnosed with aldosterone synthase deficit, we discuss the symptoms and treatment. The 2 other patients are now adults. We discuss the long-term outcome, the quality of adult life, aldosterone synthase deficits, as well as the pathophysiology and molecular analysis.

  7. Inhibition of the Polyamine Synthesis Pathway Is Synthetically Lethal with Loss of Argininosuccinate Synthase 1

    Directory of Open Access Journals (Sweden)

    Matthew Locke

    2016-08-01

    Full Text Available Argininosuccinate synthase 1 (ASS1 is the rate-limiting enzyme for arginine biosynthesis. ASS1 expression is lost in a range of tumor types, including 50% of malignant pleural mesotheliomas. Starving ASS1-deficient cells of arginine with arginine blockers such as ADI-PEG20 can induce selective lethality and has shown great promise in the clinical setting. We have generated a model of ADI-PEG20 resistance in mesothelioma cells. This resistance is mediated through re-expression of ASS1 via demethylation of the ASS1 promoter. Through coordinated transcriptomic and metabolomic profiling, we have shown that ASS1-deficient cells have decreased levels of acetylated polyamine metabolites, together with a compensatory increase in the expression of polyamine biosynthetic enzymes. Upon arginine deprivation, polyamine metabolites are decreased in the ASS1-deficient cells and in plasma isolated from ASS1-deficient mesothelioma patients. We identify a synthetic lethal dependence between ASS1 deficiency and polyamine metabolism, which could potentially be exploited for the treatment of ASS1-negative cancers.

  8. N-acetylglutamate synthase deficiency: an insight into the genetics, epidemiology, pathophysiology, and treatment.

    Science.gov (United States)

    Ah Mew, Nicholas; Caldovic, Ljubica

    2011-01-01

    The conversion of ammonia into urea by the human liver requires the coordinated function of the 6 enzymes and 2 transporters of the urea cycle. The initial and rate-limiting enzyme of the urea cycle, carbamylphosphate synthetase 1 (CPS1), requires an allosteric activator, N-acetylglutamate (NAG). The formation of this unique cofactor from glutamate and acetyl Coenzyme-A is catalyzed by N-acetylglutamate synthase (NAGS). An absence of NAG as a consequence of NAGS deficiency may compromise flux through CPS1 and result in hyperammonemia. The NAGS gene encodes a 528-amino acid protein, consisting of a C-terminal catalytic domain, a variable segment, and an N-terminal mitochondrial targeting signal. Only 22 mutations in the NAGS gene have been reported to date, mostly in the catalytic domain. NAGS is primarily expressed in the liver and intestine. However, it is also surprisingly expressed in testis, stomach and spleen, and during early embryonic development at levels not concordant with the expression of other urea cycle enzymes, CPS1, or ornithine transcarbamylase. The purpose of NAGS expression in these tissues, and its significance to NAGS deficiency is as yet unknown. Inherited NAGS deficiency is the rarest of the urea cycle disorders, and we review the currently reported 34 cases. Treatment of NAGS deficiency with N-carbamyglutamate, a stable analog of NAG, can restore deficient urea cycle function and normalize blood ammonia in affected patients.

  9. Functions of Ceramide Synthase Paralogs YPR114w and YJR116w of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Shamroop K Mallela

    Full Text Available Ceramide is synthesized in yeast by two redundant acyl-CoA dependent synthases, Lag1 and Lac1. In lag1∆ lac1∆ cells, free fatty acids and sphingoid bases are elevated, and ceramides are produced through the redundant alkaline ceramidases Ypc1 and Ydc1, working backwards. Even with all four of these genes deleted, cells are surviving and continue to contain small amounts of complex sphingolipids. Here we show that these residual sphingolipids are not synthesized by YPR114w or YJR116w, proteins of unknown function showing a high degree of homology to Lag1 and Lac1. Indeed, the hextuple lag1∆ lac1∆ ypc1∆ ydc1∆ ypr114w∆ yjr116w∆ mutant still contains ceramides and complex sphingolipids. Yjr116w∆ exhibit an oxygen-dependent hypersensitivity to Cu2+ due to an increased mitochondrial production of reactive oxygen species (ROS and a mitochondrially orchestrated programmed cell death in presence of copper, but also a general copper hypersensitivity that cannot be counteracted by the antioxidant N-acetyl-cysteine (NAC. Myriocin efficiently represses the synthesis of sphingoid bases of ypr114w∆, but not its growth. Both yjr116w∆ and ypr114w∆ have fragmented vacuoles and produce less ROS than wild type, before and after diauxic shift. Ypr114w∆/ypr114w∆ have an increased chronological life span. Thus, Yjr116w and Ypr114w are related, but not functionally redundant.

  10. Functions of Ceramide Synthase Paralogs YPR114w and YJR116w of Saccharomyces cerevisiae.

    Science.gov (United States)

    Mallela, Shamroop K; Almeida, Reinaldo; Ejsing, Christer S; Conzelmann, Andreas

    2016-01-01

    Ceramide is synthesized in yeast by two redundant acyl-CoA dependent synthases, Lag1 and Lac1. In lag1∆ lac1∆ cells, free fatty acids and sphingoid bases are elevated, and ceramides are produced through the redundant alkaline ceramidases Ypc1 and Ydc1, working backwards. Even with all four of these genes deleted, cells are surviving and continue to contain small amounts of complex sphingolipids. Here we show that these residual sphingolipids are not synthesized by YPR114w or YJR116w, proteins of unknown function showing a high degree of homology to Lag1 and Lac1. Indeed, the hextuple lag1∆ lac1∆ ypc1∆ ydc1∆ ypr114w∆ yjr116w∆ mutant still contains ceramides and complex sphingolipids. Yjr116w∆ exhibit an oxygen-dependent hypersensitivity to Cu2+ due to an increased mitochondrial production of reactive oxygen species (ROS) and a mitochondrially orchestrated programmed cell death in presence of copper, but also a general copper hypersensitivity that cannot be counteracted by the antioxidant N-acetyl-cysteine (NAC). Myriocin efficiently represses the synthesis of sphingoid bases of ypr114w∆, but not its growth. Both yjr116w∆ and ypr114w∆ have fragmented vacuoles and produce less ROS than wild type, before and after diauxic shift. Ypr114w∆/ypr114w∆ have an increased chronological life span. Thus, Yjr116w and Ypr114w are related, but not functionally redundant.

  11. Pseudouridines and pseudouridine synthases of the ribosome.

    Science.gov (United States)

    Ofengand, J; Malhotra, A; Remme, J; Gutgsell, N S; Del Campo, M; Jean-Charles, S; Peil, L; Kaya, Y

    2001-01-01

    psi are ubiquitous in ribosomal RNA. Eubacteria, Archaea, and eukaryotes all contain psi, although their number varies widely, with eukaryotes having the most. The small ribosomal subunit can apparently do without psi in some organisms, even though others have as many as 40 or more. Large subunits appear to need at least one psi but can have up to 50-60. psi is made by a set of site-specific enzymes in eubacteria, and in eukaryotes by a single enzyme complexed with auxiliary proteins and specificity-conferring guide RNAs. The mechanism is not known in Archaea, but based on an analysis of the kinds of psi synthases found in sequenced archaeal genomes, it is likely to involve use of guide RNAs. All psi synthases can be classified into one of four related groups, virtually all of which have a conserved aspartate residue in a conserved sequence motif. The aspartate is essential for psi formation in all twelve synthases examined so far. When the need for psi in E. coli was examined, the only synthase whose absence caused a major decrease in growth rate under normal conditions was RluD, the synthase that makes psi 1911, psi 1915, and psi 1917 in the helix 69 end-loop. This growth defect was the result of a major failure in assembly of the large ribosomal subunit. The defect could be prevented by supplying the rluD structural gene in trans, and also by providing a point mutant gene that made a synthase unable to make psi. Therefore, the RluD synthase protein appears to be directly involved in 50S subunit assembly, possibly as an RNA chaperone, and this activity is independent of its ability to form psi. This result is not without precedent. Depletion of PET56, a 2'-O-methyltransferase specific for G2251 (E. coli numbering) in yeast mitochondria virtually blocks 50S subunit assembly and mitochondrial function (Sirum-Connolly et al. 1995), but the methylation activity of the enzyme is not required (T. Mason, pers. comm.). The absence of FtsJ, a heat shock protein that makes

  12. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study

    Directory of Open Access Journals (Sweden)

    Junhe Cui

    2016-01-01

    Full Text Available Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered.

  13. Investigation of acetylated kapok fibers on the sorption of oil in water

    Institute of Scientific and Technical Information of China (English)

    Jintao Wang; Yian Zheng; Aiqin Wang

    2013-01-01

    Kapok fibers have been acetylated for oil spill cleanup in the aqueous environment.The structures of raw and acetylated kapok fiber were characterized using Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM).Without severe damage to the lumen structures,the kapok fibers were successfully acetylated and the resulting fibers exhibited a better oil sorption capacity than raw fibers for diesel and soybean oil.Compared with high viscosity soybean oil,low viscosity diesel shows a better affinity to the surface of acetylated fibers.Sorption kinetics is fitted well by the pseudo second-order model,and the equilibrium data can be described by the Freundlich isotherm model.The results implied that acetylated kapok fiber can be used as the substitute for non-biodegradable oil sorption materials.

  14. Effects of Partially N-acetylated Chitosans to Elicit Resistance Reaction on Brassica napus L.

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-kun; TANG Zhang-lin; CHEN Li; GUO Yi-hong; CHEN Yun-ping; LI Jia-na

    2002-01-01

    The effects to elicit resistance reaction on oilseed rape (Brassica napus L. cv Xinongchangjiao )by four partially N-acetylated chitosan 7B, 8B, 9B and 10B (Degree of acetylation (D. A. ) is 30%, 20%,10%, 0%, respectively) and Glycol chitosan (GC, D.A. is 0%) were investigated and compared. Results showed that chitosan were similar to salicylic acid (SA), and could induce resistance reaction, but the reaction was influenced by the degree of acetylation of chitosan. Fully deacetylated chitosans, 10B and GC, elicited chitinase activity, but partially acetylated chitosan, 7B, 8B and 9B, inhibited chitinase activity. Phenyalanine ammonia-lyase (PAL) was also elicited. Elicitor activity increased with on increasing degree of acetylation, 7B induced highest PAL activity among all chitosans. All chitosans induced peroxidase (POD) in a similar level.After elicited by glycol chitosan, like SA treatment, the seedlings increased disease resistance to Sclerotinia sclerotiorum significantly.

  15. Acetylation dynamics of human nuclear proteins during the ionizing radiation-induced DNA damage response

    DEFF Research Database (Denmark)

    Bennetzen, Martin; Andersen, J.S.; Lasen, D.H.

    2013-01-01

    -dependent posttranslational modifications (PT Ms). To complement our previous analysis of IR-induced temporal dynamics of nuclear phosphoproteome, we now identify a range of human nuclear proteins that are dynamically regulated by acetylation, and predominantly deacetylation, during IR-induced DDR by using mass spectrometry......-based proteomic approaches. Apart from cataloging acetylation sites through SILAC proteomic analyses before IR and at 5 and 60 min after IR exposure of U2OS cells, we report that: (1) key components of the transcriptional machinery, such as EP 300 and CREBBP, are dynamically acetylated; (2) that nuclear...... to assess lysine acetylation status and thereby validate the mass spectrometry data. We thus present evidence that nuclear proteins, including those known to regulate cellular functions via epigenetic modifications of histones, are regulated by (de)acetylation in a timely manner upon cell's exposure...

  16. Acetylation of barnyardgrass starch with acetic anhydride under iodine catalysis.

    Science.gov (United States)

    Bartz, Josiane; Goebel, Jorge Tiago; Giovanaz, Marcos Antônio; Zavareze, Elessandra da Rosa; Schirmer, Manoel Artigas; Dias, Alvaro Renato Guerra

    2015-07-01

    Barnyardgrass (Echinochloa crus-galli) is an invasive plant that is difficult to control and is found in abundance as part of the waste of the paddy industry. In this study, barnyardgrass starch was extracted and studied to obtain a novel starch with potential food and non-food applications. We report some of the physicochemical, functional and morphological properties as well as the effect of modifying this starch with acetic anhydride by catalysis with 1, 5 or 10mM of iodine. The extent of the introduction of acetyl groups increased with increasing iodine levels as catalyst. The shape of the granules remained unaltered, but there were low levels of surface corrosion and the overall relative crystallinity decreased. The pasting temperature, enthalpy and other gelatinisation temperatures were reduced by the modification. There was an increase in the viscosity of the pastes, except for the peak viscosity, which was strongly reduced in 10mM iodine.

  17. MOF Acetyl Transferase Regulates Transcription and Respiration in Mitochondria.

    Science.gov (United States)

    Chatterjee, Aindrila; Seyfferth, Janine; Lucci, Jacopo; Gilsbach, Ralf; Preissl, Sebastian; Böttinger, Lena; Mårtensson, Christoph U; Panhale, Amol; Stehle, Thomas; Kretz, Oliver; Sahyoun, Abdullah H; Avilov, Sergiy; Eimer, Stefan; Hein, Lutz; Pfanner, Nikolaus; Becker, Thomas; Akhtar, Asifa

    2016-10-20

    A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF. Mof conditional knockout has catastrophic consequences for tissues with high-energy consumption, triggering hypertrophic cardiomyopathy and cardiac failure in murine hearts; cardiomyocytes show severe mitochondrial degeneration and deregulation of mitochondrial nutrient metabolism and oxidative phosphorylation pathways. Thus, MOF is a dual-transcriptional regulator of nuclear and mitochondrial genomes connecting epigenetics and metabolism.

  18. Partially acetylated sugarcane bagasse for wicking oil from contaminated wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Chung, S. [Samsung Engineering Co. Ltd., R and D Center, Suwon, Gyeonggi (Korea, Republic of); Suidan, M.T. [University of Cincinnati, School of Energy, Environmental, Biological and Medical Engineering, Cincinnati, OH (United States); Venosa, A.D. [NRMRL, U.S. EPA, Cincinnati, OH (United States)

    2011-12-15

    Sugarcane bagasse was partially acetylated to enhance its oil-wicking ability in saturated environments while holding moisture for hydrocarbon biodegradation. The water sorption capacity of raw bagasse was reduced fourfold after treatment, which indicated considerably increased hydrophobicity but not a limited capability to hold moisture for hydrocarbon biodegradation. Characterization results by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and surface area analyzer suggested that treated bagasse exhibited enhanced hydrophobicity and surface area. Oil wicking test results indicate that treated bagasse is more effective in wicking oil from highly saturated environments than raw bagasse and suggest that application of this material in remediation of oil spills in highly saturated wetlands is promising. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    Directory of Open Access Journals (Sweden)

    Nevzat Selim Gokay

    2016-01-01

    Full Text Available The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg, inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg, or nitric oxide precursor L-arginine (200 mg/kg. After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P=0.044 positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  20. Acetylated Lysozyme as Impurity in Lysozyme Crystals: Constant Distribution Coefficient

    Science.gov (United States)

    Thomas, B. R.; Chernov, A. A.

    2000-01-01

    Hen egg white lysozyme (HEWL) was acetylated to modify molecular charge keeping the molecular size and weight nearly constant. Two derivatives, A and B, more and less acetylated, respectively, were obtained, separated, purified and added to the solution from which crystals of tetragonal HEWL crystals were grown. Amounts of the A or B impurities added were 0.76, 0.38 and 0.1 milligram per millimeter while HEWL concentration were 20, 30 and 40 milligram per milliliter. The crystals grown in 18 experiments for each impurity were dissolved and quantities of A or B additives in these crystals were analyzed by cation exchange high performance liquid chromatography. All the data for each set of 18 samples with the different impurity and regular HEWL concentrations is well described by one distribution coefficient K = 2.15 plus or minus 0.13 for A and K = 3.42 plus or minus 0.25 for B. The observed independence of the distribution coefficient on both the impurity concentration and supersaturation is explained by the dilution model described in this paper. It shows that impurity adsorption and incorporation rate is proportional to the impurity concentration and that the growth rate is proportional to the crystallizing protein in solution. With the kinetic coefficient for crystallization, beta = 5.10(exp -7) centimeters per second, the frequency at which an impurity molecule near the growing interface irreversibly joins a molecular site on the crystal was found to be 3 1 per second, much higher than the average frequency for crystal molecules. For best quality protein crystals it is better to have low microheterogeneous protein impurity concentration and high supers aturation.

  1. Antioxidant activity of N-acetyl-glucosamine based thiazolidine derivative

    Institute of Scientific and Technical Information of China (English)

    Li Chunlei; Yang Yan; Han Baoqin; Liu Wanshun

    2007-01-01

    N-acetyl-glucosamine,the monomer of chitin,was cyclo-condensed with L-cysteine to prepare thiazolidine derivative:2-N-acetyl-glucosamine-thiazolidine-4(R)-carboxylic acid(GlcNAcCys).The stability of GlcNAcCys was evaluated by high performance liquid chromatography(HPLC)measurement.The results showed that GlcNAcCys Was more stable than other TCA derivatives,especially in alkaline condition.The direct in vitro antioxidative properties of GlcNAcCys were investigated by using UV radiation-induced lipid peroxidation(LPO)in mitochondria and nuclei and.OH-induced LPO in red blood cell (RBC)ghosts models.UV radiation caused dose-dependent LPO in both mitochondria and nuclei,this effect Was catalvzed by addition of Fd2+ while prevented by co-incubation with GlcNAcCys.When nuclei and mitochondria Was treated with 100μl,300μl,500μl of GlcNAcCys and co-incubated at 37℃ for 30min,LPO was decreased to 96%,72%,68%in nuclei and 95%,72%,68% in mitochondria when compared to the UV radiation group respectively.Hydroxyl radicals(.OH)generated by Fenton reaction induced LPO in RBC ghosts.Pretreatment of RBC ghosts with GlcNAcCys could induce antioxidant RBC ghosts and inhibit concentration-dependent malondialdehyde(MDA)formation in antioxidant RBC ghosts.Its inhibition percent Was 14%,35%,36%,42%at 10,20,30,40ms/ml respectively.In a conclusion,the data suggest that GlcNAcCys has antioxidant ability and can significantly inhibit lipid peroxidation in biological samples tested in vitro.

  2. Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases.

    Science.gov (United States)

    Adesioye, Fiyinfoluwa A; Makhalanyane, Thulani P; Biely, Peter; Cowan, Don A

    2016-11-01

    Acetyl xylan esterases (AcXEs), also termed xylan deacetylases, are broad specificity Carbohydrate-Active Enzymes (CAZymes) that hydrolyse ester bonds to liberate acetic acid from acetylated hemicellulose (typically polymeric xylan and xylooligosaccharides). They belong to eight families within the Carbohydrate Esterase (CE) class of the CAZy database. AcXE classification is largely based on sequence-dependent phylogenetic relationships, supported in some instances with substrate specificity data. However, some sequence-based predictions of AcXE-encoding gene identity have proved to be functionally incorrect. Such ambiguities can lead to mis-assignment of genes and enzymes during sequence data-mining, reinforcing the necessity for the experimental confirmation of the functional properties of putative AcXE-encoding gene products. Although one-third of all characterized CEs within CAZy families 1-7 and 16 are AcXEs, there is a need to expand the sequence database in order to strengthen the link between AcXE gene sequence and specificity. Currently, most AcXEs are derived from a limited range of (mostly microbial) sources and have been identified via culture-based bioprospecting methods, restricting current knowledge of AcXEs to data from relatively few microbial species. More recently, the successful identification of AcXEs via genome and metagenome mining has emphasised the huge potential of culture-independent bioprospecting strategies. We note, however, that the functional metagenomics approach is still hampered by screening bottlenecks. The most relevant recent reviews of AcXEs have focused primarily on the biochemical and functional properties of these enzymes. In this review, we focus on AcXE phylogeny, classification and the future of metagenomic bioprospecting for novel AcXEs.

  3. Tubulin acetylation promoting potency and absorption efficacy of deacetylase inhibitors

    Science.gov (United States)

    Mangas-Sanjuan, V; Oláh, J; Gonzalez-Alvarez, I; Lehotzky, A; Tőkési, N; Bermejo, M; Ovádi, J

    2015-01-01

    Background and Purpose Histone deacetylase 6 (HDAC6) and silent information regulator 2 (SIRT2) control the dynamics of the microtubule network via their deacetylase activities. Tubulin polymerization promoting protein (TPPP/p25) enhances microtubule acetylation by its direct binding to HDAC6. Our objective was to characterize the multiple interactions of the deacetylases and to establish the inhibitory potency and the pharmacokinetic features of the deacetylase inhibitors, trichostatin A (TSA) and AGK2. Experimental Approach The interactions of deacetylases with tubulin and TPPP/p25 were quantified by elisa using human recombinant proteins. The effect of inhibitors on the tubulin acetylation was established in HeLa cells transfected with pTPPP and CG-4 cells expressing TPPP/p25 endogenously by celisa (elisa on cells), Western blot and immunofluorescence microscopy. The pharmacokinetic features of the inhibitors were evaluated by in situ kinetic modelling of their intestinal transport in rats. Key Results Deacetylases interact with both tubulin and TPPP/p25, notwithstanding piggy-back binding of HDAC6 or SIRT2 to the TPPP/p25-associated tubulin was established. Much higher inhibitory potency for TSA than for AGK2 was detected in both HeLa and CG-4 cells. Pioneer pharmacokinetic studies revealed passive diffusion and diffusion coupled with secretion for TSA and AGK2 respectively. Both inhibitors exhibited greater permeability than some other well-established drugs. Conclusions and Implications TPPP/p25-directed deacetylase inhibition provides mechanisms for the fine control of the dynamics and stability of the microtubule network. Deacetylase inhibitors with chemical structures similar to TSA and AGK2 appear to be excellent candidates for oral drug absorption. PMID:25257800

  4. Identification and functional characterization of N-terminally acetylated proteins in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Sandra Goetze

    2009-11-01

    Full Text Available Protein modifications play a major role for most biological processes in living organisms. Amino-terminal acetylation of proteins is a common modification found throughout the tree of life: the N-terminus of a nascent polypeptide chain becomes co-translationally acetylated, often after the removal of the initiating methionine residue. While the enzymes and protein complexes involved in these processes have been extensively studied, only little is known about the biological function of such N-terminal modification events. To identify common principles of N-terminal acetylation, we analyzed the amino-terminal peptides from proteins extracted from Drosophila Kc167 cells. We detected more than 1,200 mature protein N-termini and could show that N-terminal acetylation occurs in insects with a similar frequency as in humans. As the sole true determinant for N-terminal acetylation we could extract the (XPX rule that indicates the prevention of acetylation under all circumstances. We could show that this rule can be used to genetically engineer a protein to study the biological relevance of the presence or absence of an acetyl group, thereby generating a generic assay to probe the functional importance of N-terminal acetylation. We applied the assay by expressing mutated proteins as transgenes in cell lines and in flies. Here, we present a straightforward strategy to systematically study the functional relevance of N-terminal acetylations in cells and whole organisms. Since the (XPX rule seems to be of general validity in lower as well as higher eukaryotes, we propose that it can be used to study the function of N-terminal acetylation in all species.

  5. An Alternative Approach for Acetylation of Amine Terminated Polyamidoamine (PAMAM Dendrimer

    Directory of Open Access Journals (Sweden)

    Surya Prakash Gautam

    2015-09-01

    Full Text Available Aim: Polyamidoamine (PAMAM dendrimers inherent properties have made it the nanocarrier of choice in the current era of innovation. Dendrimer based products are growing and mushrooming like anything in the current time. Although it suffer from hemolytic toxicity which could be reduced by protecting free amino group. Methods: In the present work alternate acetylated method for PAMAM dendrimers was discussed. 1-Ethyl-3-(3-dimethylaminopropyl carbodiimide Linker was used for acetylation. The acetylated conjugate was evaluated for color reaction, Ultraviolet-visible spectroscopy, Fourier Transform infrared spectroscopy, Differential scanning calorimetric, Nuclear magnetic resonance spectra studies. Results: The PAMAM dendrimers were synthesized using divergent approach and further acetylated. Change in λmax values from 282.0 to 282.5 nm was observed for acetylated dendrimers. Characteristic peak of N-H stretch of primary amine at 3284.16 cm-1 was disappeared due to conversion of primary amine to secondary amine. A new peak of -(CO-NH stretch was obtained at 1640.28 cm-1 (medium which shows attachment of acetic acid surface group. The changes in Endothermic peak from 120.56 to 110.40ºC were observed which shows the PAMAM dendrimers surface modifications The peak of -NH2 at 2.99 ppm was replaced by (-NHCOCH3 at 2.42 ppm further supports the proof of acetylation. Conclusions: The spectral data clearly revealed that this approach for acetylation gives considerable amount of acetylation in less time duration with elimination of organic solvent. This method could be employed for regular acetylation of amine terminated nanocarriers. EDC linker mediated capping of amine groups opened a new avenue for acetylation of amine terminated protein/peptides.

  6. Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway.

    Science.gov (United States)

    Taura, Futoshi; Tanaka, Shinji; Taguchi, Chiho; Fukamizu, Tomohide; Tanaka, Hiroyuki; Shoyama, Yukihiro; Morimoto, Satoshi

    2009-06-18

    Alkylresorcinol moieties of cannabinoids are derived from olivetolic acid (OLA), a polyketide metabolite. However, the polyketide synthase (PKS) responsible for OLA biosynthesis has not been identified. In the present study, a cDNA encoding a novel PKS, olivetol synthase (OLS), was cloned from Cannabis sativa. Recombinant OLS did not produce OLA, but synthesized olivetol, the decarboxylated form of OLA, as the major reaction product. Interestingly, it was also confirmed that the crude enzyme extracts from flowers and rapidly expanding leaves, the cannabinoid-producing tissues of C. sativa, also exhibited olivetol-producing activity, suggesting that the native OLS is functionally expressed in these tissues. The possibility that OLS could be involved in OLA biosynthesis was discussed based on its catalytic properties and expression profile.

  7. A jojoba beta-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants.

    Science.gov (United States)

    Lassner, M W; Lardizabal, K; Metz, J G

    1996-02-01

    beta-Ketoacyl-coenzyme A (CoA) synthase (KCS) catalyzes the condensation of malonyl-CoA with long-chain acyl-CoA. This reaction is the initial step of the microsomal fatty acyl-CoA elongation pathway responsible for formation of very long chain fatty acids (VLCFAs, or fatty acids with chain lengths > 18 carbons). Manipulation of this pathway is significant for agriculture, because it is the basis of conversion of high erucic acid rapeseed into canola. High erucic acid rapeseed oil, used as an industrial feedstock, is rich in VLCFAs, whereas the edible oil extracted from canola is essentially devoid of VLCFAs. Here, we report the cloning of a cDNA from developing jojoba embryos involved in microsomal fatty acid elongation. The jojoba cDNA is homologous to the recently cloned Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene that has been suggested to encode KCS. We characterize the jojoba enzyme and present biochemical data indicating that the jojoba cDNA does indeed encode KCS. Transformation of low erucic acid rapeseed with the jojoba cDNA restored KCS activity to developing embryos and altered the transgenic seed oil composition to contain high levels of VLCFAs. The data reveal the key role KCS plays in determining the chain lengths of fatty acids found in seed oils.

  8. Key enzymes for biosynthesis of neutral lipid storage compounds in prokaryotes: properties, function and occurrence of wax ester synthases/acyl-CoA: diacylglycerol acyltransferases.

    Science.gov (United States)

    Wältermann, Marc; Stöveken, Tim; Steinbüchel, Alexander

    2007-02-01

    Triacylglycerols (TAGs) and wax esters (WEs) are beside polyhydroxyalkanoates (PHAs) important storage lipids in some groups of prokaryotes. Accumulation of these lipids occurs in cells when they are cultivated under conditions of unbalanced growth in the presence of high concentrations of a suitable carbon source, which can be used for fatty acid and storage lipid biosyntheses. The key enzymes, which mediate both WE and TAG formations from long-chain acyl-coenzyme A (CoA) as acyl donor and long-chain fatty alcohols or diacylglycerols as respective acyl acceptors in bacteria, are WE synthases/acyl-CoA:diacylglycerol acyltransferases (WS/DGATs). The WS/DGATs identified so far represent rather unspecific enzymes with broad spectra of possible substrates; this makes them interesting for many biotechnological applications. This review traces the molecular structure and biochemical properties including the probable regions responsible for acyltransferase properties, enzymatic activity and substrate specifities. The phylogenetic relationships based on amino acid sequence similarities of this unique class of enzymes were revealed. Furthermore, recent advances in understanding the physiological functions of WS/DGATs in their natural hosts including pathogenic Mycobacterium tuberculosis were discussed.

  9. Transfer RNA pseudouridine synthases in Saccharomyces cerevisiae.

    Science.gov (United States)

    Samuelsson, T; Olsson, M

    1990-05-25

    A transfer RNA lacking modified nucleosides was produced by transcription in vitro of a cloned gene that encodes a Saccharomyces cerevisiae glycine tRNA. At least three different uridines (in nucleotide positions 13, 32, and 55) of this transcript tRNA are modified to pseudouridine by an extract of S. cerevisiae. Variants of the RNA substrate were also constructed that each had only one of these sites, thus allowing specific monitoring of pseudouridylation at different nucleotide positions. Using such RNAs to assay pseudouridine synthesis, enzymes producing this nucleoside were purified from an extract of S. cerevisiae. The activities corresponding to positions 13, 32, and 55 in the tRNA substrate could all be separated chromatographically, indicating that there is a separate enzyme for each of these sites. The enzyme specific for position 55 (denoted pseudouridine synthase 55) was purified approximately 4000-fold using a combination of DEAE-Sepharose, heparin-Sepharose, and hydroxylapatite.

  10. The nitric oxide synthase of mouse spermatozoa.

    Science.gov (United States)

    Herrero, M B; Goin, J C; Boquet, M; Canteros, M G; Franchi, A M; Perez Martinez, S; Polak, J M; Viggiano, J M; Gimeno, M A

    1997-07-01

    Nitric oxide synthase (NOS) was evidenced in mature mouse spermatozoa by means of biochemical techniques and Western blot. During 120 min of incubation, 10(7) spermatozoa synthesized 7 +/- 2 pmol of L-[14C]citrulline. Besides, L-citrulline formation depended on the incubation time and on the concentration of L-arginine present in the incubation medium. Different concentrations of N(G)-nitro-L-arginine methyl ester (L-NAME) but not aminoguanidine, inhibited L-[14C]citrulline formation. Western-blot analysis of solubilized sperm proteins revealed a unique band of M(r)=140 kDa with the neural, endothelial and inducible NOS antisera tested. These results provide evidence that mature mouse sperm contains a NOS isoform and that spermatozoa have the potential ability to synthesize NO, suggesting a role for endogenous NO on mammalian sperm function.

  11. Endothelial nitric oxide synthase in the microcirculation.

    Science.gov (United States)

    Shu, Xiaohong; Keller, T C Stevenson; Begandt, Daniela; Butcher, Joshua T; Biwer, Lauren; Keller, Alexander S; Columbus, Linda; Isakson, Brant E

    2015-12-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.

  12. Down-regulation of Leucaena leucocephala cinnamoyl CoA reductase (LlCCR) gene induces significant changes in phenotype, soluble phenolic pools and lignin in transgenic tobacco.

    Science.gov (United States)

    Prashant, S; Srilakshmi Sunita, M; Pramod, S; Gupta, Ranadheer K; Anil Kumar, S; Rao Karumanchi, S; Rawal, S K; Kavi Kishor, P B

    2011-12-01

    cDNA and genomic clones of cinnamoyl CoA reductase measuring 1011 and 2992 bp were isolated from a leguminous pulpwood tree Leucaena leucocephala, named as LlCCR. The cDNA exhibited 80-85% homology both at the nucleotide and amino acid levels with other known sequences. The genomic sequence contained five exons and four introns. Sense and antisense constructs of LlCCR were introduced in tobacco plants to up and down-regulate this key enzyme of lignification. The primary transformants showed a good correlation between CCR transcript levels and its activity. Most of the CCR down-regulated lines displayed stunted growth and development, wrinkled leaves and delayed senescence. These lines accumulated unusual phenolics like ferulic and sinapic acids in cell wall. Histochemical staining suggested reduction in aldehyde units and increased syringyl over guaiacyl (S/G) ratio of lignin. Anatomical studies showed thin walled, elongated xylem fibres, collapsed vessels with drastic reduction of secondary xylem. The transmission electron microscopic studies revealed modification of ultrastructure and topochemical distribution of wall polysaccharides and lignin in the xylem fibres. CCR down-regulated lines showed increased thickness of secondary wall layers and poor lignification of S2 and S3 wall layers. The severely down-regulated line AS17 exhibited 24.7% reduction of Klason lignin with an increase of 15% holocellulose content. Contrarily, the CCR up-regulated lines exhibited robust growth, development and significant increase in lignin content. The altered lignin profiles observed in transgenic tobacco lines support a role for CCR down-regulation in improving wood properties of L. leucocephala exclusively used in the pulp and paper industry of India.

  13. A Single Amino Acid Substitution Converts Benzophenone Synthase into Phenylpyrone Synthase*

    Science.gov (United States)

    Klundt, Tim; Bocola, Marco; Lütge, Maren; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2009-01-01

    Benzophenone metabolism provides a number of plant natural products with fascinating chemical structures and intriguing pharmacological activities. Formation of the carbon skeleton of benzophenone derivatives from benzoyl-CoA and three molecules of malonyl-CoA is catalyzed by benzophenone synthase (BPS), a member of the superfamily of type III polyketide synthases. A point mutation in the active site cavity (T135L) transformed BPS into a functional phenylpyrone synthase (PPS). The dramatic change in both substrate and product specificities of BPS was rationalized by homology modeling. The mutation may open a new pocket that accommodates the phenyl moiety of the triketide intermediate but limits polyketide elongation to two reactions, resulting in phenylpyrone formation. 3-Hydroxybenzoyl-CoA is the second best starter molecule for BPS but a poor substrate for PPS. The aryl moiety of the triketide intermediate may be trapped in the new pocket by hydrogen bond formation with the backbone, thereby acting as an inhibitor. PPS is a promising biotechnological tool for manipulating benzoate-primed biosynthetic pathways to produce novel compounds. PMID:19710020

  14. Structure and Function of Fusicoccadiene Synthase, a Hexameric Bifunctional Diterpene Synthase.

    Science.gov (United States)

    Chen, Mengbin; Chou, Wayne K W; Toyomasu, Tomonobu; Cane, David E; Christianson, David W

    2016-04-15

    Fusicoccin A is a diterpene glucoside phytotoxin generated by the fungal pathogen Phomopsis amygdali that causes the plant disease constriction canker, first discovered in New Jersey peach orchards in the 1930s. Fusicoccin A is also an emerging new lead in cancer chemotherapy. The hydrocarbon precursor of fusicoccin A is the tricyclic diterpene fusicoccadiene, which is generated by a bifunctional terpenoid synthase. Here, we report X-ray crystal structures of the individual catalytic domains of fusicoccadiene synthase: the C-terminal domain is a chain elongation enzyme that generates geranylgeranyl diphosphate, and the N-terminal domain catalyzes the cyclization of geranylgeranyl diphosphate to form fusicoccadiene. Crystal structures of each domain complexed with bisphosphonate substrate analogues suggest that three metal ions and three positively charged amino acid side chains trigger substrate ionization in each active site. While in vitro incubations reveal that the cyclase domain can utilize farnesyl diphosphate and geranyl diphosphate as surrogate substrates, these shorter isoprenoid diphosphates are mainly converted into acyclic alcohol or hydrocarbon products. Gel filtration chromatography and analytical ultracentrifugation experiments indicate that full-length fusicoccadiene synthase adopts hexameric quaternary structure, and small-angle X-ray scattering data yield a well-defined molecular envelope illustrating a plausible model for hexamer assembly.

  15. Structure of 1,5-Anhydro-D-Fructose: X-ray Analysis of Crystalline Acetylated Dimeric Forms

    DEFF Research Database (Denmark)

    Lundt, Inge; Andersen, Søren Møller; Marcussen, Jan

    1998-01-01

    Acetylation of 1,5-anhydro-D-fructose under acidic conditions gave two crystalline acetylated dimeric forms, which by X-ray analysis were shown to be diastereomeric spiroketals formed between C-2 and C-2´/C-3´. The structures of the compounds differed only at the configuration at C-2. Acetylation...

  16. File list: His.NoD.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.NoD.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation No des...cription http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.NoD.20.Pan_lysine_acetylation.AllCell.bed ...

  17. File list: His.EmF.05.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.EmF.05.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Embryo...nic fibroblast http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.EmF.05.Pan_lysine_acetylation.AllCell.bed ...

  18. File list: His.EmF.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.EmF.50.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Embryo...nic fibroblast http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.EmF.50.Pan_lysine_acetylation.AllCell.bed ...

  19. 40 CFR 180.1089 - Poly-N-acetyl-D-glucosamine; exemption from the requirement of tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Poly-N-acetyl-D-glucosamine; exemption... FOOD Exemptions From Tolerances § 180.1089 Poly-N-acetyl-D-glucosamine; exemption from the requirement... biochemical nematicide poly-N-acetyl-D-glucosamine on a variety of agricultural crops....

  20. File list: His.NoD.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.NoD.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation No des...cription http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.NoD.10.Pan_lysine_acetylation.AllCell.bed ...