WorldWideScience

Sample records for acetone diluted epoxy

  1. DSC and curing kinetics study of epoxy grouting diluted with furfural -acetone slurry

    Science.gov (United States)

    Yin, H.; Sun, D. W.; Li, B.; Liu, Y. T.; Ran, Q. P.; Liu, J. P.

    2016-07-01

    The use of furfural-acetone slurry as active diluents of Bisphenol-A epoxy resin (DGEBA) groutings has been studied by dynamic and non-isothermal DSC for the first time. Curing kinetics study was investigated by non-isothermal differential scanning calorimetries at different heating rates. Activation enery (Ea) was calculated based on Kissinger and Ozawa Methods, and the results showed that Ea increased from 58.87 to 71.13KJ/mol after the diluents were added. The furfural-acetone epoxy matrix could cure completely at the theoretical curing temperature of 365.8K and the curing time of 139mins, which were determined by the kinetic model parameters.

  2. Preparation and Characterization of Epoxy Resin Cross-Linked with High Wood Pyrolysis Bio-Oil Substitution by Acetone Pretreatment

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2017-03-01

    Full Text Available The use of cost effective solvents may be necessary to store wood pyrolysis bio-oil in order to stabilize and control its viscosity, but this part of the production system has not been explored. Conversely, any rise in viscosity during storage, that would occur without a solvent, will add variance to the production system and render it cost ineffective. The purpose of this study was to modify bio-oil with a common solvent and then react the bio-oil with an epoxy for bonding of wood without any loss in properties. The acetone pretreatment of the bio-oil/epoxy mixture was found to improve the cross-linking potential and substitution rate based on its mechanical, chemical, and thermal properties. Specifically, the bio-oil was blended with epoxy resin at weight ratios ranging from 2:1 to 1:5 and were then cured. A higher bio-oil substitution rate was found to lower the shear bond strength of the bio-oil/epoxy resins. However, when an acetone pretreatment was used, it was possible to replace the bio-oil by as much as 50% while satisfying usage requirements. Extraction of the bio-oil/epoxy mixture with four different solvents demonstrated an improvement in cross-linking after acetone pretreatment. ATR-FTIR analysis confirmed that the polymer achieved a higher cross-linked structure. DSC and TGA curves showed improved thermal stability with the addition of the acetone pretreatment. UV-Vis characterization showed that some functional groups of the bio-oil to epoxy system were unreacted. Finally, when the resin mixture was utilized to bond wood, the acetone pretreatment coupled with precise tuning of the bio-oil:epoxy ratio was an effective method to control cross-linking while ensuring acceptable bond strength.

  3. Acetone and acetaldehyde determination in tomato juice by isotopic dilution

    International Nuclear Information System (INIS)

    Piva, M.-T.; Crouzet, J.

    1977-01-01

    Acetone and acetaldehyde content of tomato juice were determined by isotope dilution techniques. The juice is added to 14 C labelled compounds, carried along by nitrogen at low pressure. The mixture of 2.4 dinitrophenylhydrazones obtained from volatile compounds is separated by thin layer chromatography on silica gel and then on alumina. A determination of radioactivity and concentration of acetone and acetaldehyde 2,4 dinitrophenylhydrazones obtained after separation and elution allow to calculate the content of these two compounds in the initial product with the same sample. This technique could be used for determination of methanol and ethanol after transformation in 3,5 dinitrobenzoates [fr

  4. Protein precipitation of diluted samples in SDS-containing buffer with acetone leads to higher protein recovery and reproducibility in comparison with TCA/acetone approach.

    Science.gov (United States)

    Santa, Cátia; Anjo, Sandra I; Manadas, Bruno

    2016-07-01

    Proteomic approaches are extremely valuable in many fields of research, where mass spectrometry methods have gained an increasing interest, especially because of the ability to perform quantitative analysis. Nonetheless, sample preparation prior to mass spectrometry analysis is of the utmost importance. In this work, two protein precipitation approaches, widely used for cleaning and concentrating protein samples, were tested and compared in very diluted samples solubilized in a strong buffer (containing SDS). The amount of protein recovered after acetone and TCA/acetone precipitation was assessed, as well as the protein identification and relative quantification by SWATH-MS yields were compared with the results from the same sample without precipitation. From this study, it was possible to conclude that in the case of diluted samples in denaturing buffers, the use of cold acetone as precipitation protocol is more favourable than the use of TCA/acetone in terms of reproducibility in protein recovery and number of identified and quantified proteins. Furthermore, the reproducibility in relative quantification of the proteins is even higher in samples precipitated with acetone compared with the original sample. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High performance, freestanding and superthin carbon nanotube/epoxy nanocomposite films.

    Science.gov (United States)

    Li, Jinzhu; Gao, Yun; Ma, Wenjun; Liu, Luqi; Zhang, Zhong; Niu, Zhiqiang; Ren, Yan; Zhang, Xiaoxian; Zeng, Qingshen; Dong, Haibo; Zhao, Duan; Cai, Le; Zhou, Weiya; Xie, Sishen

    2011-09-01

    We develop a facile, effective and filter free infiltration method to fabricate high performance, freestanding and superthin epoxy nanocomposite films with directly synthesized Sing-Walled Carbon Nanotubes (SWNTs) film as reinforcement skeleton. It is found that the thicknesses of the nanocomposite films can be easily controlled in the range of 0.5-3 μm by dripping target amount of acetone diluted epoxy through the skeleton film. The consequent measurements reveal that the mechanical and electrical properties of SWNTs/epoxy nanocomposite films could be tailored in a quite wide range. For examples, the Young's modulus of nanocomposite films can be tuned from 10 to 30 GPa, and the electrical conductivity can be ranged from 1000 S·cm(-1) to be insulated. Moreover, high load transfer efficiency in the nanocomposite films is demonstrated by the measured ultrahigh Raman bands shift rate (-30 ± 5 cm(-1)/% strain) under strain. The high effective modulus is derived as 774 ± 70 GPa for SWNTs inside this nanocomposite film.

  6. Theoretical-experimental study of the solvation enthalpy of acetone in dilute aqueous solution

    International Nuclear Information System (INIS)

    Arroyo, S. Tolosa; Martin, J.A. Sanson; Garcia, A. Hidalgo

    2005-01-01

    The present paper describes molecular dynamics simulations of aqueous solutions at infinite dilution with acetone as solute. Lennard-Jones with electrostatic term (12-6-1 potentials) were employed to describe the solute-solvent interactions. The Morokuma decomposition scheme of ab initio interaction energies at the SCF level and the ESIE charges on the solute atoms were used to reproduce the exchange and Coulomb electrostatic contributions of the solute-water interaction potential. Some extensions, such as including the dispersion component evaluated at MP2 level, were added to the traditional calculation procedures in order to improve the results of the solvation enthalpy. The results obtained with the EX-DIS-ES model were compared with the experimental calorimetry values, the observed agreement being acceptable

  7. Partial substitution of manganese with cerium in SrMnO_3 nano-perovskite catalyst. Effect of the modification on the catalytic combustion of dilute acetone

    International Nuclear Information System (INIS)

    Rezlescu, Nicolae; Rezlescu, Elena; Popa, Paul Dorin; Doroftei, Corneliu; Ignat, Maria

    2016-01-01

    Ultrafine SrMn_1_−_xCe_xO_3 (x = 0, 02) perovskites were prepared by self-combustion method and heat treatment at 1000 °C for 4 h. The structure and surface properties were investigated by X-ray powder diffraction, scanning electron microscopy (SEM), EDX spectroscopy, and BET analysis. The catalyst properties of the perovskite nanopowders were tested in the catalytic combustion of dilute acetone at atmospheric pressure. The results revealed that the partial substitution of Mn by Ce ions (x = 0.2) in perovskite structure of SrMnO_3 had significantly improved catalytic activity of the perovskite. The SrMn_0_._8Ce_0_,_2O_3 perovskite composition can be a good candidate for catalytic combustion of low concentration acetone (1–2‰ in air) at low temperatures. The acetone conversion over this catalyst exceeds 90% at 200 °C, whereas over SrMnO_3 it is only 50%. Compared with SrMnO_3, T_5_0 is decreased by 75 °C and T_9_0 is decreased by 70 °C. The enhancement of the catalytic activity at a Ce doping of 0.2 may be ascribed to smaller crystallite sizes, larger specific surface area and the presence of Ce and Mn cations with variable valence in the perovskite structure. - Highlights: • A non-conventional method was used to make nanostructured perovskite samples. • XRD study confirms perovskite structure and nanosize of crystallites. • EDX analyses confirm homogeneity and purity of the samples. • The catalytic testing was carried out in the flameless combustion of dilute acetone. • SrMn_0_._8Ce_0_._2O_3 perovskite can be a promising catalyst for acetone combustion at low temperature.

  8. Partial substitution of manganese with cerium in SrMnO{sub 3} nano-perovskite catalyst. Effect of the modification on the catalytic combustion of dilute acetone

    Energy Technology Data Exchange (ETDEWEB)

    Rezlescu, Nicolae, E-mail: nicolae.rezlescu@gmail.com [National Institute of Research and Development for Technical Physics, Iasi (Romania); Rezlescu, Elena; Popa, Paul Dorin; Doroftei, Corneliu [National Institute of Research and Development for Technical Physics, Iasi (Romania); Ignat, Maria [“Al. I. Cuza” University, Faculty of Chemistry, Iasi (Romania)

    2016-10-01

    Ultrafine SrMn{sub 1−x}Ce{sub x}O{sub 3} (x = 0, 02) perovskites were prepared by self-combustion method and heat treatment at 1000 °C for 4 h. The structure and surface properties were investigated by X-ray powder diffraction, scanning electron microscopy (SEM), EDX spectroscopy, and BET analysis. The catalyst properties of the perovskite nanopowders were tested in the catalytic combustion of dilute acetone at atmospheric pressure. The results revealed that the partial substitution of Mn by Ce ions (x = 0.2) in perovskite structure of SrMnO{sub 3} had significantly improved catalytic activity of the perovskite. The SrMn{sub 0.8}Ce{sub 0,2}O{sub 3} perovskite composition can be a good candidate for catalytic combustion of low concentration acetone (1–2‰ in air) at low temperatures. The acetone conversion over this catalyst exceeds 90% at 200 °C, whereas over SrMnO{sub 3} it is only 50%. Compared with SrMnO{sub 3}, T{sub 50} is decreased by 75 °C and T{sub 90} is decreased by 70 °C. The enhancement of the catalytic activity at a Ce doping of 0.2 may be ascribed to smaller crystallite sizes, larger specific surface area and the presence of Ce and Mn cations with variable valence in the perovskite structure. - Highlights: • A non-conventional method was used to make nanostructured perovskite samples. • XRD study confirms perovskite structure and nanosize of crystallites. • EDX analyses confirm homogeneity and purity of the samples. • The catalytic testing was carried out in the flameless combustion of dilute acetone. • SrMn{sub 0.8}Ce{sub 0.2}O{sub 3} perovskite can be a promising catalyst for acetone combustion at low temperature.

  9. Application of finite inverse gas chromatography in hypromellose acetate succinate-water-acetone systems.

    Science.gov (United States)

    Chiu, Sheng-Wei; Sturm, Derek R; Moser, Justin D; Danner, Ronald P

    2016-09-30

    A modification of a GC was developed to investigate both infinitely dilute and finite concentrations of solvents in polymers. Thermodynamic properties of hypromellose acetate succinate (HPMCAS-L)-acetone-water systems are important for the optimization of spray-drying processes used in pharmaceutical manufacturing of solid dispersion formulations. These properties, at temperatures below the glass transition temperature, were investigated using capillary column inverse gas chromatography (CCIGC). Water was much less soluble in the HPMCAS-L than acetone. Experiments were also conducted at infinitely dilute concentrations of one of the solvents in HPMCAS-L that was already saturated with the other solvent. Overall the partitioning of the water was not significantly affected by the presence of either water or acetone in the polymer. The acetone partition coefficient decreased as either acetone or water was added to the HPMCAS-L. A representation of the HPMCAS-L structure in terms of UNIFAC groups has been developed. With these groups, the UNIFAC-vdw-FV model did a reasonable job of predicting the phase equilibria in the binary and ternary systems. The Flory-Huggins correlation with fitted interaction parameters represented the data well. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Chemical reactions in the nitrogen-acetone ice induced by cosmic ray analogues: relevance for the Solar system

    Science.gov (United States)

    de Barros, A. L. F.; Andrade, D. P. P.; da Silveira, E. F.; Alcantara, K. F.; Boduch, P.; Rothard, H.

    2018-02-01

    The radiolysis of 10:1 nitrogen:acetone mixture, condensed at 11 K, by 40 MeV 58Ni11 + ions is studied. These results are representative of studies concerning Solar system objects, such as transneptunian objects, exposed to cosmic rays. Bombardment by cosmic rays triggers chemical reactions leading to synthesis of larger molecules. In this work, destruction cross-sections of acetone and nitrogen molecules in solid phase are determined and compared with those for pure acetone. The N2 column density decreases very fast indicating that, under irradiation, nitrogen leaves quickly a porous sample. The most abundant molecular species formed in the radiolysis are C3H6, C2H6, N3, CO, CH4 and CO2. Some N-bearing species are also formed, but with low production yield. Dissolving acetone in nitrogen decreases the formation cross-sections of CH4, CO2 and H2CO, while increases those for CO and C2H6 species. This fact may explain the presence of C2H6 in Pluto's surface where CH4 is not pure, but diluted in an N2 matrix. The formation of more complex molecules, such as HNCO and, possibly, glycine is observed, suggesting the formation of small prebiotic species in objects beyond Neptune from acetone diluted in a N2 matrix irradiated by cosmic rays.

  11. Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment.

    Science.gov (United States)

    Li, Hailong; Xiong, Lian; Chen, Xuefang; Wang, Can; Qi, Gaoxiang; Huang, Chao; Luo, Mutan; Chen, Xinde

    2017-03-01

    This study aims to propose a biorefinery pretreatment technology for the bioconversion of sugarcane bagasse (SB) into biofuels and N-fertilizers. Performance of diluted acid (DA), aqueous ammonia (AA), oxidate ammonolysis (OA) and the combined DA with AA or OA were compared in SB pretreatment by enzymatic hydrolysis, structural characterization and acetone-butanol-ethanol (ABE) fermentation. Results indicated that DA-OA pretreatment improves the digestibility of SB by sufficiently hydrolyzing hemicellulose into fermentable monosaccharides and oxidating lignin into soluble N-fertilizer with high nitrogen content (11.25%) and low C/N ratio (3.39). The enzymatic hydrolysates from DA-OA pretreated SB mainly composed of glucose was more suitable for the production of ABE solvents than the enzymatic hydrolysates from OA pretreated SB containing high ratio of xylose. The fermentation of enzymatic hydrolysates from DA-OA pretreated SB produced 12.12g/L ABE in 120h. These results suggested that SB could be utilized efficient, economic, and environmental by DA-OA pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Nanosilica reinforced epoxy floor coating composites: preparation and thermophysical characterization

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Alavi Nikje

    2012-01-01

    Full Text Available In this study, flooring grade epoxy/nanoSiO2 nanocomposites were prepared by in-situ polymerization method. Nano silica was treated by coupling agent in order to surface treating and introducing of reactive functional groups to achieving adequate bonding between polar inorganic nano particles and epoxy organic polymer. γ-Aminopropyltriethoxysilane (Amino A-100 was used as an effective and commercially available coupling agent and nano silica treated in acetone media. SEM observations of cured samples revealed that the nano silica was completely dispersed into polymer matrix into nanoscale particles. Thermal and physical properties of prepared samples were investigated and data showed improvements in physical and mechanical properties of the flooring samples in comparison with unfilled resin.

  13. Dermatosis profesional por resina epoxi: Presentación de un caso clínico Professional dermatosis for epoxy resin: A clinical case report

    Directory of Open Access Journals (Sweden)

    S Gaviola

    2008-06-01

    Full Text Available Mostramos un caso de dermatosis profesional originado por plásticos (resinas epoxi y la importancia de la detección precoz. Las resinas epoxi son de gran utilización en todo tipo de industrias (artes graficas, construcción, electrónica, componentes de prótesis traumatológicas, prótesis odontológicas, etc. y sus componentes pueden ser causa de dermatitis de contacto irritativa y por sensibilización.We describe a case of professional dermatosis caused by exposition to plastic products (epoxy resin and importance of early detection. The epoxy resins are widely used in all types of industries (graphics arts, construction, electronics, traumathological and odontological prothesis, etc. and their components may be the cause of contact dermatitis and sensitivity. Risk factors at work with epoxy resins are present during the production base resins, hardening agents, plasticizers and dilutants increase the risk of exposition at work. This requires preventive measures and early diagnosis.

  14. Local lymph node assay (LLNA): comparison of different protocols by testing skin-sensitizing epoxy resin system components.

    Science.gov (United States)

    Gamer, Armin O; Nies, Eberhard; Vohr, Hans-Werner

    2008-12-01

    Thirteen epoxy resin system components were tested in the LLNA with regard to their sensitizing potency. Lymph node stimulation was quantified not only by measuring the incorporation of [3H]-thymidine into the ear lymph nodes but also the counts of cells recovered from these organs. Equivalent figures were obtained with both endpoints used for the evaluation of lymph node cell proliferation if the reference stimulation indices were adjusted. When dissolved in acetone, all test substances showed skin-sensitizing potential, mainly on the boundary between "strong" and "moderate" according to common potency evaluation schemes. Replacing acetone with acetone/olive oil (4:1) as a vehicle for four selected test items, resulted in considerably lower estimated concentrations for sensitization induction. The challenges in comparing the results obtained by different LLNA variations are discussed.

  15. Acetone poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002480.htm Acetone poisoning To use the sharing features on this page, please enable JavaScript. Acetone is a chemical used in many household products. ...

  16. Investigation of efficiency of air cleaning from acetone using a segmental construction biofilter

    Directory of Open Access Journals (Sweden)

    Denas Bacevičius

    2015-10-01

    Full Text Available Volatile organic compounds, e. g. acetone, have a direct impact on climate change, decrease of ozone in the air, and on the growth of greenhouse effect. One of the most popular air purifying methods from VOC is a biological air cleaning. Experimental investigations were conducted to determine the efficiency of the new structure of biofilter with polypropylene plates segments. During the investigations the efficiency of segmental construction biofilter of air purification at different initial concentrations of pollutants was determined. Different concentrations of pollutants were estimated during the acetone dilution with water. During the tests the efficiency of biofilter air purification from acetone vapor and its change under different concentrations of vapors was set. Based on test results, the maximum efficiency of biofilter air purification was up to 93%. Studies have shown that increasing the allowable pollutant concentration, the efficiency of air purification unit decreases. Increasing the concentration of supplied acetone vapor into the biofilter from 232 to 701 mg/m3, cleaning efficiency decreased from 92.8 to 82.3%. Since microorganisms fail to oxidize organic compounds, the filter works better at lower initial concentrations of pollutants.

  17. Radar Absorbing Nanocomposites Based MultiLayered Graphene Platelets/Epoxy

    Directory of Open Access Journals (Sweden)

    F. Azizi

    2015-10-01

    Full Text Available Graphene nanostructures were synthesized by Hummer method. 1, 3, 5 and 7 wt% of graphene nanostructures were suspended in certain amount of acetone on a mechanical stirrer and stirred then added to epoxy resin. After 4 hours, solution and Graphene platelets (GPs were prepared. Nanostructures were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM , Fourier transform infrared (FT-IR spectroscopy. The electromagnetic interference shielding was studied by reflection loss (RL. According to the results, the multilayered graphene  3% wt of has a completely smooth surface and its absorption average and maximum are reported as -13.5 dB and -30.3 dB.

  18. Production of acetone and conversion of acetone to acetate in the perfused rat liver

    International Nuclear Information System (INIS)

    Gavino, V.C.; Somma, J.; Philbert, L.; David, F.; Garneau, M.; Belair, J.; Brunengraber, H.

    1987-01-01

    The utilization of millimolar concentrations of [2- 14 C]acetone and the production of acetone from acetoacetate were studied in perfused livers from 48-h starved rats. We devised a procedure for determining, in a perfused liver system, the first-order rate constant for the decarboxylation of acetoacetate (0.29 +/- 0.09 h-1, S.E., n = 8). After perfusion of livers with [2- 14 C]acetone, labeled acetate was isolated from the perfusion medium and characterized as [1- 14 C]acetate. No radioactivity was found in lactate or 3-hydroxybutyrate. After 90 min of perfusion with [2- 14 C]acetone, the specific activity of acetate was 30 +/- 4% (n = 13) of the initial specific activity of acetone. We conclude that, in perfused livers from 2-day starved rats, acetone metabolism occurs for the most part via free acetate

  19. Synthesis of complex compounds in the system [ReOG5]2--thiosemicarbazone acetone-Hg-acetone

    International Nuclear Information System (INIS)

    Amindzhanov, A.A.; Kurbanov, N.M.

    1993-01-01

    Present article is devoted to synthesis of complex compounds in the system [ReOG 5 ] 2- -thiosemicarbazone acetone-Hg-acetone. The literature data on complex compounds of various metals with thiosemicarbazone was summarized. The synthesis of complex compounds in the system [ReOG 5 ] 2- -thiosemicarbazone acetone-Hg-acetone was conducted. The complex compounds of rhenium with methyl ident thiosemicarbazone were synthesized.

  20. Acetone production by methylobacteria.

    Science.gov (United States)

    Thomson, A W; O'Neill, J G; Wilkinson, J F

    1976-09-01

    An accumulation of acetone was observed during the metabolism of ethane and products of ethane oxidation by washed suspensions of Methylosinus trichosporium OB3B. This strain possessed an acetoacetate decarboxylase and 3-hydroxybutyrate dehydrogenase, and a decline in poly-beta-hydroxybutyric acid occurred under the same conditions as acetone formation. A pathway of acetone production from poly-beta-hydroxybutyric acid via 3-hydroxybutyrate and acetoacetate was suggested.

  1. Effect of dilute alkaline pretreatment on the conversion of different parts of corn stalk to fermentable sugars and its application in acetone-butanol-ethanol fermentation.

    Science.gov (United States)

    Cai, Di; Li, Ping; Luo, Zhangfeng; Qin, Peiyong; Chen, Changjing; Wang, Yong; Wang, Zheng; Tan, Tianwei

    2016-07-01

    To investigate the effect of dilute alkaline pretreatment on different parts of biomass, corn stalk was separated into flower, leaf, cob, husk and stem, which were treated by NaOH in range of temperature and chemical loading. The NaOH-pretreated solid was then enzymatic hydrolysis and used as the substrate for batch acetone-butanol-ethanol (ABE) fermentation. The results demonstrated the five parts of corn stalk could be used as potential feedstock separately, with vivid performances in solvents production. Under the optimized conditions towards high product titer, 7.5g/L, 7.6g/L, 9.4g/L, 7g/L and 7.6g/L of butanol was obtained in the fermentation broth of flower, leaf, cob, husk and stem hydrolysate, respectively. Under the optimized conditions towards high product yield, 143.7g/kg, 126.3g/kg, 169.1g/kg, 107.7g/kg and 116.4g/kg of ABE solvent were generated, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements.

    Science.gov (United States)

    Wang, Zhennan; Wang, Chuji

    2013-09-01

    Since the ancient discovery of the 'sweet odor' in human breath gas, pursuits of the breath analysis-based disease diagnostics have never stopped. Actually, the 'smell' of the breath, as one of three key disease diagnostic techniques, has been used in Eastern-Medicine for more than three thousand years. With advancement of measuring technologies in sensitivity and selectivity, more specific breath gas species have been identified and established as a biomarker of a particular disease. Acetone is one of the breath gases and its concentration in exhaled breath can now be determined with high accuracy using various techniques and methods. With the worldwide prevalence of diabetes that is typically diagnosed through blood testing, human desire to achieve non-blood based diabetic diagnostics and monitoring has never been quenched. Questions, such as is breath acetone a biomarker of diabetes and how is the breath acetone related to the blood glucose (BG) level (the golden criterion currently used in clinic for diabetes diagnostic, monitoring, and management), remain to be answered. A majority of current research efforts in breath acetone measurements and its technology developments focus on addressing the first question. The effort to tackle the second question has begun recently. The earliest breath acetone measurement in clearly defined diabetic patients was reported more than 60 years ago. For more than a half-century, as reviewed in this paper, there have been more than 41 independent studies of breath acetone using various techniques and methods, and more than 3211 human subjects, including 1581 healthy people, 242 Type 1 diabetic patients, 384 Type 2 diabetic patients, 174 unspecified diabetic patients, and 830 non-diabetic patients or healthy subjects who are under various physiological conditions, have been used in the studies. The results of the breath acetone measurements collected in this review support that many conditions might cause changes to breath

  3. 21 CFR 172.802 - Acetone peroxides.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetone peroxides. 172.802 Section 172.802 Food and... Multipurpose Additives § 172.802 Acetone peroxides. The food additive acetone peroxides may be safely used in... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide...

  4. Recycling of acetone by distillation

    International Nuclear Information System (INIS)

    Brennan, D.L.; Campbell, B.A.; Phelan, J.E.; Harper, M.

    1992-09-01

    The Resource Conservation Recovery Act (RCRA) identifies spent acetone solvent as a listed hazardous waste. At Fernald, acetone has been spent that has been contaminated with radionuclides and therefore is identified as a mixed hazardous waste. At the time of this publication there is no available approved method of recycling or disposal of radioactively contaminated spent acetone solvent. The Consent Decree with the Ohio EPA and the Consent Agreement with the United States EPA was agreed upon for the long-term compliant storage of hazardous waste materials. The purpose of this project was to demonstrate the feasibility for safely decontaminating spent acetone to background levels of radioactivity for reuse. It was postulated that through heat distillation, radionuclides could be isolated from the spent acetone

  5. Thermo-physical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers

    International Nuclear Information System (INIS)

    Miyagawa, Hiroaki; Rich, Michael J.; Drzal, Lawrence T.

    2006-01-01

    In this study, the thermo-physical properties of epoxy nanocomposites reinforced by fluorinated single wall carbon nanotubes (FSWCNT) and vapor grown carbon fibers (VGCF) were investigated. A sonication technique using a suspension of FSWCNT and VGCF in acetone was utilized to process nanocomposites in anhydride-cured epoxy. The viscoelastic properties of the nanocomposites were measured with dynamic mechanical analysis. The glass transition temperature decreased approximately 30 deg. C with an addition of 0.14 vol.% (0.2 wt.%) FSWCNT. The depression in T g is attributed to non-stoichiometric balance of the epoxy matrix caused by the fluorine on single wall carbon nanotubes. The correct amount of the anhydride curing agent needed to achieve stoichiometry was experimentally determined by DMA measurements. After adjusting the amount of the anhydride curing agent for stoichiometry, the storage modulus of the epoxy at room temperature increased 0.63 GPa with the addition of only 0.21 vol.% (0.30 wt.%) of FSWCNT, a 20% improvement compared with the anhydride-cured neat epoxy. For VGCF, the storage modulus at room temperature increased 0.48 GPa with the addition of only 0.94 vol.% (1.5 wt.%) and then reached a plateau for larger amounts of VGCF. To understand the influence of VGCF on thermo-physical properties, the microstructure of the nanocomposites was interrogated using transmission electron microscopy (TEM). This study discusses the chemical effects of fluorine on matrix properties and the effect of stoichiometric balance on the thermo-physical properties of nanocomposites

  6. 21 CFR 173.210 - Acetone.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice. ...

  7. Viscosities and refractive indices of binary systems acetone+1-propanol, acetone+1,2-propanediol and acetone+1,3-propanediol

    Directory of Open Access Journals (Sweden)

    Živković Emila M.

    2014-01-01

    Full Text Available Viscosities and refractive indices of three binary systems, acetone+1-propanol, acetone+1,2-propanediol and acetone+1,3-propanediol, were measured at eight temperatures (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, 323.15K and at atmospheric pressure. From these data viscosity deviations and deviations in refractive index were calculated and fitted to the Redlich-Kister equation. The viscosity modelling was done by two types of models: predictive UNIFAC-VISCO and ASOG VISCO and correlative Teja-Rice and McAlister equations. The refractive indices of binary mixtures were predicted by various mixing rules and compared with experimental data. [Projekat Ministarstva nauke Republike Srbije, br. 172063

  8. Determination of breath acetone in 149 type 2 diabetic patients using a ringdown breath-acetone analyzer.

    Science.gov (United States)

    Sun, Meixiu; Chen, Zhuying; Gong, Zhiyong; Zhao, Xiaomeng; Jiang, Chenyu; Yuan, Yuan; Wang, Zhennang; Li, Yingxin; Wang, Chuji

    2015-02-01

    Over 90% of diabetic patients have Type 2 diabetes. Although an elevated mean breath acetone concentration has been found to exist in Type 1 diabetes (T1D), information on breath acetone in Type 2 diabetes (T2D) has yet to be obtained. In this study, we first used gas chromatography-mass spectrometry (GC-MS) to validate a ringdown breath-acetone analyzer based on the cavity-ringdown-spectroscopy technique, through comparing breath acetone concentrations in the range 0.5-2.5 ppm measured using both methods. The linear fitting of R = 0.99 suggests that the acetone concentrations obtained using both methods are consistent with a largest standard deviation of ±0.4 ppm in the lowest concentration of the range. Next, 620 breath samples from 149 T2D patients and 42 healthy subjects were collected and tested using the breath analyzer. Four breath samples were taken from each subject under each of four different conditions: fasting, 2 h post-breakfast, 2 h post-lunch, and 2 h post-dinner. Simultaneous blood glucose levels were also measured using a standard diabetic-management blood-glucose meter. For the 149 T2D subjects, their exhaled breath acetone concentrations ranged from 0.1 to 19.8 ppm; four different ranges of breath acetone concentration, 0.1-19.8, 0.1-7.1, 0.1-6.3, and 0.1-9.5 ppm, were obtained for the subjects under the four different conditions, respectively. For the 42 healthy subjects, their breath acetone concentration ranged from 0.1 to 2.6 ppm; four different ranges of breath acetone concentration, 0.3-2.6, 0.1-2.6, 0.1-1.7, and 0.3-1.6 ppm, were obtained for the four different conditions. The mean breath acetone concentration of the 149 T2D subjects was determined to be 1.5 ± 1.5 ppm, which was 1.5 times that of 1.0 ± 0.6 ppm for the 42 healthy subjects. No correlation was found between the breath acetone concentration and the blood glucose level of the T2D subjects and the healthy volunteers. This study using a relatively large number of

  9. Glycolysis of carbon fiber-epoxy unidirectional mat catalysed by sodium hydroxide

    Science.gov (United States)

    Zaini, Mariana Binti Mohd; Badri, Khairiah Haji

    2014-09-01

    This study was conducted to recycle carbon fibre-epoxy (CFRP) composite in woven sheet/ mat form. The CFRP was recycled through glycolysis with polyethlyene glycol (PEG 200) as the solvent. The CFRP was loaded into the solvent at a ratio of 4:1 (w/w). PEG200 was diluted with water to a ratio of 80:20 (v/v). This reaction was catalysed by sodium hydroxide (NaOH) solution with varying concentrations at 1.5, 1.7 and 1.9% (w/v). The glycolysis was conducted at 180-190 °C. The recovered CF (rCF) was analysed using Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) while the degraded solution was analysed using FTIR and the epoxy content was determined. The FTIR spectrum of the rCF exhibited the disappearance of the COC peak belonged to epoxy and supported by the SEM micrographs that showed clear rCF. On the other hand, the analysed filtrate detected the disappearance of oxygen peak element in the EDX spectrum for all rCF samples. This gave an indication that the epoxy resin has been removed from the surface of the carbon fiber.

  10. Glycolysis of carbon fiber-epoxy unidirectional mat catalysed by sodium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Zaini, Mariana Binti Mohd [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Badri, Khairiah Haji [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia and Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43 (Malaysia)

    2014-09-03

    This study was conducted to recycle carbon fibre-epoxy (CFRP) composite in woven sheet/ mat form. The CFRP was recycled through glycolysis with polyethlyene glycol (PEG 200) as the solvent. The CFRP was loaded into the solvent at a ratio of 4:1 (w/w). PEG200 was diluted with water to a ratio of 80:20 (v/v). This reaction was catalysed by sodium hydroxide (NaOH) solution with varying concentrations at 1.5, 1.7 and 1.9% (w/v). The glycolysis was conducted at 180-190 °C. The recovered CF (rCF) was analysed using Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) while the degraded solution was analysed using FTIR and the epoxy content was determined. The FTIR spectrum of the rCF exhibited the disappearance of the COC peak belonged to epoxy and supported by the SEM micrographs that showed clear rCF. On the other hand, the analysed filtrate detected the disappearance of oxygen peak element in the EDX spectrum for all rCF samples. This gave an indication that the epoxy resin has been removed from the surface of the carbon fiber.

  11. Simultaneous determination of methanol, acetaldehyde, acetone, and ethanol in human blood by gas chromatography with flame ionization detection.

    Science.gov (United States)

    Schlatter, J; Chiadmi, F; Gandon, V; Chariot, P

    2014-01-01

    Methanol, acetaldehyde, acetone, and ethanol, which are commonly used as biomarkers of several diseases, in acute intoxications, and forensic settings, can be detected and quantified in biological fluids. Gas chromatography (GC)-mass spectrometry techniques are complex, require highly trained personnel and expensive materials. Gas chromatographic determinations of ethanol, methanol, and acetone have been reported in one study with suboptimal accuracy. Our objective was to improve the assessment of these compounds in human blood using GC with flame ionization detection. An amount of 50 µl of blood was diluted with 300 µl of sterile water, 40 µl of 10% sodium tungstate, and 20 µl of 1% sulphuric acid. After centrifugation, 1 µl of the supernatant was injected into the gas chromatograph. We used a dimethylpolysiloxane capillary column of 30 m × 0.25 mm × 0.25 µm. We observed linear correlations from 7.5 to 240 mg/l for methanol, acetaldehyde, and acetone and from 75 to 2400 mg/l for ethanol. Precision at concentrations 15, 60, and 120 mg/l for methanol, acetaldehyde, and acetone and 150, 600, and 1200 mg/ml for ethanol were 0.8-6.9%. Ranges of accuracy were 94.7-98.9% for methanol, 91.2-97.4% for acetaldehyde, 96.1-98.7% for acetone, and 105.5-111.6% for ethanol. Limits of detection were 0.80 mg/l for methanol, 0.61 mg/l for acetaldehyde, 0.58 mg/l for acetone, and 0.53 mg/l for ethanol. This method is suitable for routine clinical and forensic practices.

  12. Thermo-mechanical characterization of epoxy nanocomposites with different carbon nanotube distributions obtained by solvent aided and direct mixing.

    Directory of Open Access Journals (Sweden)

    M. Zarrelli

    2012-07-01

    Full Text Available Two different routes, namely solvent aided dispersion and direct mixing, were employed to disperse Multi-Walled Carbon Nanotubes (MWNTs into a mono-component epoxy system used as matrix for advanced composites. In the first route, MWCNTs were diluted in three different solvents (acetone, sodium dodecyl sulfate and ethanol and then mixed with the matrix by tip sonication. In the second case, carbonaceous nanoparticles were added directly into the hosting system and dispersion was carried out by using three different techniques (mechanical stirring, magnetic agitation and tip sonication. The effects of the solvents and agitation energy were investigated by optical microscopy at micron level, in order assess the more efficient dispersion procedure for the considered epoxy system. It was demonstrated that parameters associated with direct mixing rather than solvent solubility govern MWCNT dispersion. Optical analysis of the nanocomposite morphology evidenced a very low density of MWCNTs micron sized aggregates in the case of direct mixed tip sonicated samples if compared to those obtained by solution aided dispersion. In addition, nanocomposites obtained by sonication showed the lowest density of MWCNTs micron sized aggregates, also when compared with mechanically and magnetically stirred system. Dynamic Mechanical Analysis (DMA and Thermo-Mechanical Analysis (TMA results confirm the final result that among the considered direct mixing techniques, the direct tip sonication represents the most efficient route for MWCNT dispersion. Moreover, the mixing temperature of the hosting matrix system represents a fundamental feature in enhancing the MWCNT de-bundling and dispersion. Small X-ray Scattering analysis revealed that a nanosized structure of nanotubes is formed in the case of the tip sonicated samples that is heuristically correlated with both the maximum enhancement of mechanical modulus and the maximum reduction of thermal expansion coefficients.

  13. Radiation-induced heterogeneous polymerization of acrylamide in acetone and acetone--water mixtures

    International Nuclear Information System (INIS)

    Wada, T.; Sekiya, H.; Machi, S.

    1975-01-01

    The effects of temperature, dose rate, and monomer concentration on the heterogeneous polymerization of acrylamide in acetone--water mixtures have been studied. Heterogeneous polymerization takes place in mixtures containing less than 60 vol-percent water. The polymerization is steady in acetone and nonsteady in mixtures containing 10 to 50 vol-percent water. The average rate of polymerization is highest in mixtures with about 20 vol-percent water. Polymer molecular weight increases with the increasing water content in the range 0 to 10 vol-percent and does not change in the range of 30 to 70 vol-percent water. For the polymerization in acetone and an acetone-water 60/40 mixture, the activation energies are 2.3 and -1.8 kcal/mole, the dose rate exponents of rate are 0.78 and 0.52, and the monomer concentration exponents of rate are 0.5 and 1.6, respectively. The polymer molecular weight increases with decreasing dose rate, decreasing temperature, and increasing monomer concentration. These results are discussed in connection with the mechanism of heterogeneous polymerization and the solvent effect

  14. Rubrene endoperoxide acetone monosolvate

    Directory of Open Access Journals (Sweden)

    Kiyoaki Shinashi

    2012-04-01

    Full Text Available The title acetone solvate, C42H28O2·C3H6O [systematic name: 1,3,10,12-tetraphenyl-19,20-dioxapentacyclo[10.6.2.02,11.04,9.013,18]icosa-2(11,3,5,7,9,13,15,17-octaene acetone monosolvate], is a photooxygenation product of rubrene (systematic name: 5,6,11,12-tetraphenyltetracene. The molecule bends at the bridgehead atoms, which are linked by the O—O transannular bond, with a dihedral angle of 49.21 (6° between the benzene ring and the naphthalene ring system of the tetracene unit. In the crystal, the rubrene molecules are linked by C—H...O hydrogen bonds into a column along the c axis. The acetone solvent molecules form a dimer around a crystallographic inversion centre through a carbonyl–carbonyl dipolar interaction. A C—H...O hydrogen bond between the rubrene and acetone molecules is also observed.

  15. Acetone-based cellulose solvent.

    Science.gov (United States)

    Kostag, Marc; Liebert, Tim; Heinze, Thomas

    2014-08-01

    Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well-soluble salt triethyloctylammonium chloride (Et3 OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3 OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis of trans-4,5-epoxy-(E)-2-decenal and its deuterated analog used for the development of a sensitive and selective quantification method based on isotope dilution assay with negative chemical ionization.

    Science.gov (United States)

    Lin, J; Fay, L B; Welti, D H; Blank, I

    1999-10-01

    The volatile compound trans-4,5-epoxy-(E)-2-decenal (1) was synthesized in two steps with good overall yields. The newly developed method is based on trans-epoxidation of (E)-2-octenal with alkaline hydrogen peroxide followed by a Wittig-type chain elongation with the ylide formylmethylene triphenylphosphorane. For the synthesis of [4,5-2H2]-trans-4,5-epoxy-(E)-2-decenal (d-1), [2,3-2H2]-(E)-2-octenal was prepared by reduction of 2-octyn-1-ol with lithium aluminum deuteride and subsequent oxidation of [2,3-2H2]-(E)-2-octen-1-ol with manganese oxide. Compound d1 was used as internal standard for the quantification of 1 by isotope dilution assay. Among various mass spectrometry (MS) ionization techniques tested, negative chemical ionization with ammonia as reagent gas gave best results with respect to both sensitivity and selectivity. The detection limit was found to be at about 1 pg of the analyte introduced into the gas chromatography-MS system.

  17. Steel Protective Coating Based on Plasticized Epoxy Acrylate Formulation Cured by Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Ibrahim, M.S.; Said, H.M.; Mohamed, I.M.; Mohamed, H.A.; Kandile, N.G.

    2011-01-01

    Electron beam (EB) was used to cure coatings based on epoxy acrylate oligomer (EA) and different plasticizers such as epoxidized soybean oil, glycerol and castor oil. The effect of irradiation doses (10, 25, 50 kGy) on the curing epoxy acrylate formulations containing plasticizers was studied. In the addition, the effect of the different plasticizers on the end use performance properties of epoxy acrylate coatings such as hardness, bending, adhesion, acid and alkali resistance tests were investigated. It was observed that the incorporation of castor oil in epoxy acrylate, diluted by 1,6 hexandiol diacrylate monomer (HD) with a ratio (EA 70%, HD 20%, castor oil 10%) under the dose 10 kGy improved the physical, chemical and mechanical properties of cured films than the other plasticizers. On the other hand, sunflower free fatty acids were epoxidized in-situ under well established conditions and then was subjected to react with aniline in sealed ampoules under inert atmosphere at 140 degree C. The produced adduct was added at different concentrations to epoxy acrylate coatings under certain EB irradiation dose and then evaluated as corrosion inhibitors for carbon steel surfaces in terms of weight loss measurements and corrosion resistance tests. It was observed that the formula containing 0.4 gm of aniline adduct / 100 gm epoxy acrylate resin gave the best corrosion protection for carbon steel

  18. Epoxy cracking in the epoxy-impregnated superconducting winding: nonuniform dissipation of stress energy in a wire-epoxy matrix model

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Iwasa, Y.

    1985-01-01

    The authors present the epoxy-crack-induced temperature data of copper wires imbedded in wire-epoxy resin composite model at 4.2 K. The experimental results show that the epoxy-crackinduced temperature rise is higher in the copper wires than in the epoxy matrix, indicating that in stress-induced wire-epoxy failure, stress energy stored in the wire-epoxy matrix is preferrentially dissipated in the wire. A plausible mechanism of the nonuniform dissipation is presented

  19. Internal catalysis in imine formation from acetone and acetone-d6 and conformationally constrained derivatives of N,N-dimethyl-1,3-propanediamine

    International Nuclear Information System (INIS)

    Hine, J.; Li, W.S.

    1975-01-01

    The kinetics of the reactions of 3-exo-dimethylaminomethyl-2-endo-norbornanamine (1), cis-2-(dimethylaminomethyl)cyclohexylamine (2), and 3-endo-dimethylaminomethyl-2-endo-norbornanamine (3) with acetone, and of these three diamines, neopentylamine, and 2-endo-norbornanamine with acetone-d 6 to give imines were studied at 35 0 and various pH's by use of hydroxylamine to capture the imines as they are formed. Acetone-d 6 was more reactive than acetone in the reactions with hydroxylamine alone as well as in the reactions with each of the diamines; the average k/sup D//k/sup H/ was 1.2. The rate constants for the monoprotonated diamines were so large relative to those for the unprotonated diamines that reliable values for the latter could not be obtained. The dominant reaction mechanism appears to be a reversible formation of the carbinolamine derived from the tertiary-protonated form of the monoprotonated diamine followed by rate-controlling internal acid-catalyzed formation of the iminium ion. The rate constants are compared with those obtained as a by-product of deuterium exchange studies of reactions of 1, 2, 3, and five other monoprotonated diamines by the same mechanism. The comparisons show that structural features that destabilize conformations in which the two amino groups are far apart may decrease the reactivity by relative stabilization []of a cyclic hydrogen-bonded form of the monoprotonated diamine as well as increasing the reactivity by relative stabilization of the transition state. Freezing the H 2 N--C--C--CH 2 NMe 2 dihedral angle of 1,3-diamines at values near 0, 60, and 120 0 does not give large differences in reactivity. Comparison of the rate constants for reactions of unprotonated neopentylamine and 2-endo-norbornanamine with those obtained previously for amines of the type XCH 2 CH 2 NH 2 gives no evidence for steric hindrance. (auth)

  20. Off-line breath acetone analysis in critical illness.

    Science.gov (United States)

    Sturney, S C; Storer, M K; Shaw, G M; Shaw, D E; Epton, M J

    2013-09-01

    Analysis of breath acetone could be useful in the Intensive Care Unit (ICU) setting to monitor evidence of starvation and metabolic stress. The aims of this study were to examine the relationship between acetone concentrations in breath and blood in critical illness, to explore any changes in breath acetone concentration over time and correlate these with clinical features. Consecutive patients, ventilated on controlled modes in a mixed ICU, with stress hyperglycaemia requiring insulin therapy and/or new pulmonary infiltrates on chest radiograph were recruited. Once daily, triplicate end-tidal breath samples were collected and analysed off-line by selected ion flow tube mass spectrometry (SIFT-MS). Thirty-two patients were recruited (20 males), median age 61.5 years (range 26-85 years). The median breath acetone concentration of all samples was 853 ppb (range 162-11 375 ppb) collected over a median of 3 days (range 1-8). There was a trend towards a reduction in breath acetone concentration over time. Relationships were seen between breath acetone and arterial acetone (rs = 0.64, p acetone concentration over time corresponded to changes in arterial acetone concentration. Some patients remained ketotic despite insulin therapy and normal arterial glucose concentrations. This is the first study to look at breath acetone concentration in ICU patients for up to 8 days. Breath acetone concentration may be used as a surrogate for arterial acetone concentration, which may in future have a role in the modulation of insulin and feeding in critical illness.

  1. Proceedings of the International Symposium on Detonation (6th) Held at Coronado, California on 24-27 August 1976

    Science.gov (United States)

    1976-08-01

    diluted with methyl alcohol dark waves, is that the line of reinitiation is preceeded and also ethylene glycol dinitrate mixed with acetone, by a faint... oxydizing agent in the explo- sive mixtures with fuels, Mixture with plcric-acid or methane itself and its brisance is almost equal to thatwith nitromethane...4). The alcohol is mm dia hole in its center is mounted with a fast- worked into the sample hole with a fine needle; this setting epoxy. The center of

  2. Enhancing acetone biosynthesis and acetone-butanol-ethanol fermentation performance by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous acetate addition.

    Science.gov (United States)

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Ding, Jian; Chen, Rui; Shi, Zhongping

    2016-01-01

    Acetone is the major by-product in ABE fermentations, most researches focused on increasing butanol/acetone ratio by decreasing acetone biosynthesis. However, economics of ABE fermentation industry strongly relies on evaluating acetone as a valuable platform chemical. Therefore, a novel ABE fermentation strategy focusing on bio-acetone production by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae with exogenous acetate addition was proposed. Experimental and theoretical analysis revealed the strategy could, enhance C. acetobutylicum survival oriented amino acids assimilation in the cells; control NADH regeneration rate at moderately lower level to enhance acetone synthesis but without sacrificing butanol production; enhance the utilization ability of C. acetobutylicum on glucose and direct most of extra consumed glucose into acetone/butanol synthesis routes. By implementing the strategy using synthetic or acetate fermentative supernatant, acetone concentrations increased to 8.27-8.55g/L from 5.86g/L of the control, while butanol concentrations also elevated to the higher levels of 13.91-14.23g/L from 11.63g/L simultaneously. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Acetone utilization by sulfate-reducing bacteria: draft genome sequence of Desulfococcus biacutus and a proteomic survey of acetone-inducible proteins.

    Science.gov (United States)

    Gutiérrez Acosta, Olga B; Schleheck, David; Schink, Bernhard

    2014-07-11

    The sulfate-reducing bacterium Desulfococcus biacutus is able to utilize acetone for growth by an inducible degradation pathway that involves a novel activation reaction for acetone with CO as a co-substrate. The mechanism, enzyme(s) and gene(s) involved in this acetone activation reaction are of great interest because they represent a novel and yet undefined type of activation reaction under strictly anoxic conditions. In this study, a draft genome sequence of D. biacutus was established. Sequencing, assembly and annotation resulted in 159 contigs with 5,242,029 base pairs and 4773 predicted genes; 4708 were predicted protein-encoding genes, and 3520 of these had a functional prediction. Proteins and genes were identified that are specifically induced during growth with acetone. A thiamine diphosphate-requiring enzyme appeared to be highly induced during growth with acetone and is probably involved in the activation reaction. Moreover, a coenzyme B12- dependent enzyme and proteins that are involved in redox reactions were also induced during growth with acetone. We present for the first time the genome of a sulfate reducer that is able to grow with acetone. The genome information of this organism represents an important tool for the elucidation of a novel reaction mechanism that is employed by a sulfate reducer in acetone activation.

  4. Portable method of measuring gaseous acetone concentrations.

    Science.gov (United States)

    Worrall, Adam D; Bernstein, Jonathan A; Angelopoulos, Anastasios P

    2013-08-15

    Measurement of acetone in human breath samples has been previously shown to provide significant non-invasive diagnostic insight into the control of a patient's diabetic condition. In patients with diabetes mellitus, the body produces excess amounts of ketones such as acetone, which are then exhaled during respiration. Using various breath analysis methods has allowed for the accurate determination of acetone concentrations in exhaled breath. However, many of these methods require instrumentation and pre-concentration steps not suitable for point-of-care use. We have found that by immobilizing resorcinol reagent into a perfluorosulfonic acid polymer membrane, a controlled organic synthesis reaction occurs with acetone in a dry carrier gas. The immobilized, highly selective product of this reaction (a flavan) is found to produce a visible spectrum color change which could measure acetone concentrations to less than ppm. We here demonstrate how this approach can be used to produce a portable optical sensing device for real-time, non-invasive acetone analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Phage inactivation by triplet acetone

    International Nuclear Information System (INIS)

    Gomes, R.A.

    1985-01-01

    The exposure of lambda phage to triplet acetone is studied. The triplet acetone is obtained from aerobic oxidation of isobutanal catalysed by peroxidase. A decrease of lambda phage ability to infect Escherichia coli is reported, perhaps, partially due to the possible production of lesions in the phage genome. (M.A.C.) [pt

  6. Nitrate-Dependent Degradation of Acetone by Alicycliphilus and Paracoccus Strains and Comparison of Acetone Carboxylase Enzymes ▿

    Science.gov (United States)

    Dullius, Carlos Henrique; Chen, Ching-Yuan; Schink, Bernhard

    2011-01-01

    A novel acetone-degrading, nitrate-reducing bacterium, strain KN Bun08, was isolated from an enrichment culture with butanone and nitrate as the sole sources of carbon and energy. The cells were motile short rods, 0.5 to 1 by 1 to 2 μm in size, which gave Gram-positive staining results in the exponential growth phase and Gram-negative staining results in the stationary-growth phase. Based on 16S rRNA gene sequence analysis, the isolate was assigned to the genus Alicycliphilus. Besides butanone and acetone, the strain used numerous fatty acids as substrates. An ATP-dependent acetone-carboxylating enzyme was enriched from cell extracts of this bacterium and of Alicycliphilus denitrificans K601T by two subsequent DEAE Sepharose column procedures. For comparison, acetone carboxylases were enriched from two additional nitrate-reducing bacterial species, Paracoccus denitrificans and P. pantotrophus. The products of the carboxylase reaction were acetoacetate and AMP rather than ADP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of cell extracts and of the various enzyme preparations revealed bands corresponding to molecular masses of 85, 78, and 20 kDa, suggesting similarities to the acetone carboxylase enzymes described in detail for the aerobic bacterium Xanthobacter autotrophicus strain Py2 (85.3, 78.3, and 19.6 kDa) and the phototrophic bacterium Rhodobacter capsulatus. Protein bands were excised and compared by mass spectrometry with those of acetone carboxylases of aerobic bacteria. The results document the finding that the nitrate-reducing bacteria studied here use acetone-carboxylating enzymes similar to those of aerobic and phototrophic bacteria. PMID:21841031

  7. Fate of acetone in water

    Science.gov (United States)

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.

    1982-01-01

    The physical, chemical, and biological processes that might affect the concentration of acetone in water were investigated in laboratory studies. Processes considered included volatilization, adsorption by sediments, photodecomposition, bacterial degradation, and absorption by algae and molds. It was concluded that volatilization and bacterial degradation were the dominant processes determining the fate of acetone in streams and rivers. ?? 1982.

  8. Quantitative Clinical Diagnostic Analysis of Acetone in Human Blood by HPLC: A Metabolomic Search for Acetone as Indicator

    Directory of Open Access Journals (Sweden)

    Esin Akgul Kalkan

    2016-01-01

    Full Text Available Using high-performance liquid chromatography (HPLC and 2,4-dinitrophenylhydrazine (2,4-DNPH as a derivatizing reagent, an analytical method was developed for the quantitative determination of acetone in human blood. The determination was carried out at 365 nm using an ultraviolet-visible (UV-Vis diode array detector (DAD. For acetone as its 2,4-dinitrophenylhydrazone derivative, a good separation was achieved with a ThermoAcclaim C18 column (15 cm × 4.6 mm × 3 μm at retention time (tR 12.10 min and flowrate of 1 mL min−1 using a (methanol/acetonitrile water elution gradient. The methodology is simple, rapid, sensitive, and of low cost, exhibits good reproducibility, and allows the analysis of acetone in biological fluids. A calibration curve was obtained for acetone using its standard solutions in acetonitrile. Quantitative analysis of acetone in human blood was successfully carried out using this calibration graph. The applied method was validated in parameters of linearity, limit of detection and quantification, accuracy, and precision. We also present acetone as a useful tool for the HPLC-based metabolomic investigation of endogenous metabolism and quantitative clinical diagnostic analysis.

  9. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite.

    Science.gov (United States)

    Hsu, Sheng-Hao; Chen, Rung-Shu; Chang, Yuan-Ling; Chen, Min-Huey; Cheng, Kuo-Chung; Su, Wei-Fang

    2012-11-01

    Low-shrinkage resin-based photocurable liquid crystalline epoxy nanocomposite has been investigated with regard to its application as a dental restoration material. The nanocomposite consists of an organic matrix and an inorganic reinforcing filler. The organic matrix is made of liquid crystalline biphenyl epoxy resin (BP), an epoxy resin consisting of cyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (ECH), the photoinitiator 4-octylphenyl phenyliodonium hexafluoroantimonate and the photosensitizer champhorquinone. The inorganic filler is silica nanoparticles (∼70-100 nm). The nanoparticles were modified by an epoxy silane of γ-glycidoxypropyltrimethoxysilane to be compatible with the organic matrix and to chemically bond with the organic matrix after photo curing. By incorporating the BP liquid crystalline (LC) epoxy resin into conventional ECH epoxy resin, the nanocomposite has improved hardness, flexural modulus, water absorption and coefficient of thermal expansion. Although the incorporation of silica filler may dilute the reinforcing effect of crystalline BP, a high silica filler content (∼42 vol.%) was found to increase the physical and chemical properties of the nanocomposite due to the formation of unique microstructures. The microstructure of nanoparticle embedded layers was observed in the nanocomposite using scanning and transmission electron microscopy. This unique microstructure indicates that the crystalline BP and nanoparticles support each other and result in outstanding mechanical properties. The crystalline BP in the LC epoxy resin-based nanocomposite was partially melted during exothermic photopolymerization, and the resin expanded via an order-to-disorder transition. Thus, the post-gelation shrinkage of the LC epoxy resin-based nanocomposite is greatly reduced, ∼50.6% less than in commercialized methacrylate resin-based composites. This LC epoxy nanocomposite demonstrates good physical and chemical properties and good biocompatibility

  10. Electron beam processed plasticized epoxy coatings for surface protection

    International Nuclear Information System (INIS)

    Ibrahim, Mervat S.; Mohamed, Heba A.; Kandile, Nadia G.; Said, Hossam M.; Mohamed, Issa M.

    2011-01-01

    Highlights: · Coating formulations with EA 70%, HD 20%, and castor oil 10% under 1 Mrad pass -1 irradiation dose showed the best adhesion and passed bending tests. · The prepared EP-SF-An adduct improve anti-corrosion properties of coatings without any significant effect on physical, mechanical and chemical properties of the cured film. The optimum amount of aniline adduct as corrosion inhibitor was found to be 0.4 g for 100 g of coating formulation. · The corrosion inhibition efficiency of the prepared adduct competed the commercial efficiency. - Abstract: Epoxy acrylate oligomer (EA) was plasticized by adding different plasticizers such as epoxidized soybean oil, glycerol and castor oil and cured by electron beam (EB). Different irradiation doses (1, 2.5 and 5 Mrad pass -1 ) were used in the curing process. The effect of both different irradiation doses and plasticizers on the end use performance properties of epoxy acrylate coating namely, pencil hardness, bending test, adhesion test, acid and alkali resistance test were studied. It was observed that incorporation of castor oil in epoxy acrylate diluted by 1,6-hexanediol diacrylate (HD) monomer with a ratio (EA 70%, HD 20%, castor oil 10%) under 1 Mrad pass -1 irradiation dose improved the physical, chemical and mechanical properties of cured films than the other plasticizer. Sunflower free fatty acid was epoxidized in situ under well established conditions. The epoxidized sunflower free fatty acids (ESFA) were subjected to react with aniline in sealed ampoules under inert atmosphere at 140 deg. C. The produced adducts were added at different concentrations to epoxy acrylate coatings under certain EB irradiation dose and then evaluated as corrosion inhibitors for carbon steel surfaces in terms of weight loss measurements and corrosion resistance tests. It was found that, addition of 0.4 g of aniline adduct to 100 g epoxy acrylate formula may give the best corrosion protection for carbon steel and compete the

  11. Electrical conductivity and electromagnetic interference shielding of epoxy nanocomposite foams containing functionalized multi-wall carbon nanotubes

    Science.gov (United States)

    Li, Jiantong; Zhang, Guangcheng; Zhang, Hongming; Fan, Xun; Zhou, Lisheng; Shang, Zhengyang; Shi, Xuetao

    2018-01-01

    Epoxy/functionalized multi-wall carbon nanotube (EP/F-MWCNT) microcellular foams were fabricated through a supercritical CO2 (scCO2) foaming method. MWCNTs with carboxylation treatment were disentangled by using alpha-zirconium phosphate (ZrP) assisting dispersion method and functionalized with sulfanilamide. The F-MWCNTs were redispersed in acetone for mixing with epoxy resins to prepare nanocomposites. It was found that the dispersion of MWCNTs could be improved, thus heterogeneous nucleation effect of F-MWCNTs took place effectively during the foaming process, resulting in the formation of microcellular structure with larger cell density and smaller cell size. The volume conductivity and electromagnetic interference shielding performance of foamed EP/F-MWCNT nanocomposites were studied. When the F-MWCNT addition was 5 wt%, the conductivity of the foamed EP/F-MWCNT nanocomposites was 3.02 × 10-4 S/cm and the EMI shielding effectiveness (SE) reached 20.5 dB, significantly higher than the corresponding results of nanocomposite counterparts, indicating that introducing microcellular structure in EP/F-MWCNT nanocomposites would beneficial to improve their electrical conductivity and electromagnetic interference shielding performance.

  12. Marine Vibrio Species Produce the Volatile Organic Compound Acetone

    OpenAIRE

    Nemecek-Marshall, M.; Wojciechowski, C.; Kuzma, J.; Silver, G. M.; Fall, R.

    1995-01-01

    While screening aerobic, heterotrophic marine bacteria for production of volatile organic compounds, we found that a group of isolates produced substantial amounts of acetone. Acetone production was confirmed by gas chromatography, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The major acetone producers were identified as nonclinical Vibrio species. Acetone production was maximal in the stationary phase of growth and was stimulated by addition of l-leucine...

  13. Multi-wall carbon nanotubes/epoxy resin composites characterization of the starting materials and evaluation of thermal and electrical conductivity

    International Nuclear Information System (INIS)

    Silva, Wellington Marcos da

    2009-01-01

    In this study we investigate the electrical and thermal properties of I) composite materials fabricated with O, I, 0,5 and I wt% of concentric multi-wall carbon nanotubes/epoxy resin (MWNT) dispersed randomly in the resin; 2) MWNT buckypaper/resin composite materials; 3) and neat MWNT buckypaper. Initially, we use the techniques of thermogravimetry, infrared spectroscopy, nuclear magnetic resonance, energy dispersive spectroscopy, x-ray fluorescence, scanning and transmission electron microscopy for a broadening characterization of the starting materials, to evaluate its morphology, purity, chemical composition and structure, in order to optimize the properties of crosslinked resin and, consequently, of the composite systems. Important parameters such as the average molecular mass and the equivalent weight of epoxy resin (DGEBA) were determined by 1 H-NMR analysis and, after that, resin/curing agent relations with Phr 10, 15, 20 and 53,2 were elaborated and investigated by thermogravimetry, the resin/curing agent relation with Phr 10 showed to be the most thermally stable. This stoichiometric relation was used to elaborate the composites. We have evaluated that the effect of adding 10 wt% of the solvent acetone to the epoxy resin preparation does not alter its properties so we have adopted two routes to fabricate the composites. In the first route we used 10 wt% of acetone and, in the second the MWNT were dispersed in the matrix without using the solvent. However, no significant difference was observed for the dispersion of the bundle tubes in both systems. The electrical conductivity of the composites and buckypapers was evaluated by impedance spectroscopy and the thermal conductivity by the flash laser flash method. Only the buckypapers presented high values for electrical conductivity (10 3 S.m -1 ). The composite systems presented values of 10 -3 S.m -1 , only a bit different from the value of the crosslinked resin. For thermal conductivity, the values for the

  14. Measuring breath acetone for monitoring fat loss: Review.

    Science.gov (United States)

    Anderson, Joseph C

    2015-12-01

    Endogenous acetone production is a by-product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. BrAce can range from 1 ppm in healthy non-dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. When biologic factors are controlled, BrAce measurement provides a non-invasive tool for monitoring the rate of fat loss in healthy subjects. © 2015 The Authors Obesity published by Wiley Periodicals, Inc. on behalf of The Obesity Society (TOS).

  15. Comparison studies of surface cleaning methods for PAN-based carbon fibers with acetone, supercritical acetone and subcritical alkali aqueous solutions

    International Nuclear Information System (INIS)

    Meng Linghui; Fan Dapeng; Huang Yudong; Jiang Zaixing; Zhang Chunhua

    2012-01-01

    Highlights: ► Cleaning with supercritical acetone is appropriate to wipe off the oxygenated contaminants. ► Cleaning with supercritical acetone causes smaller damage to bulk strength of carbon fibers. ► Cleaning with subcritical alkali aqueous solution can thoroughly remove silicious contaminants. - Abstract: Four kinds of polyacrylonitrile-based carbon fibers were cleaned by three methods and were characterized by X-ray photoelectron spectroscopy, monofilament tensile strength test and atomic force microscopy (AFM). Experimental results of these tests reveal that the method using supercritical acetone or subcritical potassium hydroxide aqueous solution act as the processing medium shows a better cleaning effect compared to the traditional method, Soxhlet extraction with acetone. The method using supercritical acetone is more appropriate to wipe off the oxygenated contaminants on carbon fibers’ surfaces and causes a relatively smaller damage to the bulk strength of each carbon fiber. As far as treating method using the subcritical alkali aqueous solution, it can thoroughly remove silicious contaminants on the surfaces of treated fibers.

  16. Surface tension anomalies in room temperature ionic liquids-acetone solutions

    Science.gov (United States)

    Abe, Hiroshi; Murata, Keisuke; Kiyokawa, Shota; Yoshimura, Yukihiro

    2018-05-01

    Surface tension anomalies were observed in room temperature ionic liquid (RTIL)-acetone solutions. The RTILs are 1-alkyl-3-methylimidazorium iodide with [Cnmim][I] in a [Cnmim][I]-x mol% acetone. The maximum value of the surface tension appeared at 40 mol% acetone, although density decreased monotonically with an increase in acetone concentration. A small alkyl chain length effect of the Cnmim+ cations was observed in the surface tension. By the Gibbs adsorption isotherm, it was found that I- anion-mediated surface structure became dominant above 40 mol%. In the different [Cnmim][TFSI]-acetone mixtures, normal decay of the surface tension was observed on the acetone concentration scale, where TFSI- is bis(trifluoromethanesulfonyl)imide.

  17. Effective method of fermentation of Riga hydrolyzates of corn cobs and other vegetable waste products for butanol and acetone

    Energy Technology Data Exchange (ETDEWEB)

    Nakhmanovich, B M; Kameneva, L; Kalnina, V

    1963-01-01

    A simplified method is described for the production of butanol and acetone. The acid mixture (H/sub 3/PO/sub 4/, 10 to 20%; H/sub 2/SO/sub 4/, 90 to 80%) used to hydrolyze corn cobs and other vegetable waste products served also to invert the sugar of molasses which was added in 3 parts to 1 part hydrolyzate on the basis of reducing sugar content. The mixture was then diluted and neutralized with NH/sub 4/OH to pH 6.3 to 6.8. In this way a suitable hydrolyzate medium containing the appropriate amounts of mineral salts as well as invert sugar was provided for fermentation by Clostridium butyricum Prazmowsky. Lignin which precipitated during hydrolysis served as a solid phase which helped to accelerate fermentation. Combined yields of butanol, acetone, and small amounts of ethanol amounted to 30 to 38% of the available sugar; approximately 67% consisted of butanol.

  18. Acetone utilization by sulfate-reducing bacteria: draft genome sequence of Desulfococcus biacutus and a proteomic survey of acetone-inducible proteins

    OpenAIRE

    Gutiérrez Acosta, Olga B; Schleheck, David; Schink, Bernhard

    2014-01-01

    Background The sulfate-reducing bacterium Desulfococcus biacutus is able to utilize acetone for growth by an inducible degradation pathway that involves a novel activation reaction for acetone with CO as a co-substrate. The mechanism, enzyme(s) and gene(s) involved in this acetone activation reaction are of great interest because they represent a novel and yet undefined type of activation reaction under strictly anoxic conditions. Results In this study, a draft genome sequence of D. biacutus ...

  19. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is stabilized...

  20. Continuous bio-catalytic conversion of sugar mixture to acetone-butanol-ethanol by immobilized Clostridium acetobutylicum DSM 792.

    Science.gov (United States)

    Survase, Shrikant A; van Heiningen, Adriaan; Granström, Tom

    2012-03-01

    Continuous production of acetone, n-butanol, and ethanol (ABE) was carried out using immobilized cells of Clostridium acetobutylicum DSM 792 using glucose and sugar mixture as a substrate. Among various lignocellulosic materials screened as a support matrix, coconut fibers and wood pulp fibers were found to be promising in batch experiments. With a motive of promoting wood-based bio-refinery concept, wood pulp was used as a cell holding material. Glucose and sugar mixture (glucose, mannose, galactose, arabinose, and xylose) comparable to lignocellulose hydrolysate was used as a substrate for continuous production of ABE. We report the best solvent productivity among wild-type strains using column reactor. The maximum total solvent concentration of 14.32 g L(-1) was obtained at a dilution rate of 0.22 h(-1) with glucose as a substrate compared to 12.64 g L(-1) at 0.5 h(-1) dilution rate with sugar mixture. The maximum solvent productivity (13.66 g L(-1) h(-1)) was obtained at a dilution rate of 1.9 h(-1) with glucose as a substrate whereas solvent productivity (12.14 g L(-1) h(-1)) was obtained at a dilution rate of 1.5 h(-1) with sugar mixture. The immobilized column reactor with wood pulp can become an efficient technology to be integrated with existing pulp mills to convert them into wood-based bio-refineries.

  1. Acetone n-radical cation internal rotation spectrum: The torsional potential surface

    International Nuclear Information System (INIS)

    Shea, Dana A.; Goodman, Lionel; White, Michael G.

    2000-01-01

    The one color REMPI and two color ZEKE-PFI spectra of acetone-d 3 have been recorded. The 3p x Rydberg state of acetone-d 3 lies at 59 362.3 cm-1 and both of the torsional modes are visible in this spectrum. The antigearing Rydberg (a 2 ) mode, v 12 * , has a frequency of 62.5 cm-1, while the previously unobserved gearing (b 1 ) mode, v 17 * , is found at 119.1 cm-1. An ionization potential of 78 299.6 cm-1 for acetone-d 3 has been measured. In acetone-d 3 n-radical cation ground state, the fundamentals of both of the torsional modes have been observed, v 12 + at 51.0 cm-1 and v 17 + at 110.4 cm-1, while the first overtone of v 12 + has been measured at 122.4 cm-1. Deuterium shifts show that v 12 + behaves like a local C 3v rotor, but that v 17 + is canonical. Combining this data with that for acetone-d 0 and aacetone-d 6 has allowed us to fit the observed frequencies to a torsional potential energy surface based on an ab initio C 2v cation ground state geometry. This potential energy surface allows for prediction of the v 17 vibration in acetone-d 0 and acetone-d 6 . The barrier to synchronous rotation is higher in the cation ground state than in the neutral ground state, but significantly lower than in the 3s Rydberg state. The 3p x Rydberg and cation ground state potential energy surfaces are found to be very similar to each other, strongly supporting the contention that the 3p x Rydberg state has C 2v geometry and is a good model for the ion core. The altered 3s Rydberg state potential surface suggests this state has significant valence character. (c) 2000 American Institute of Physics

  2. Proteomic analysis of nitrate-dependent acetone degradation by Alicycliphilus denitrificans strain BC.

    Science.gov (United States)

    Oosterkamp, Margreet J; Boeren, Sjef; Atashgahi, Siavash; Plugge, Caroline M; Schaap, Peter J; Stams, Alfons J M

    2015-06-01

    Alicycliphilus denitrificans strain BC grows anaerobically on acetone with nitrate as electron acceptor. Comparative proteomics of cultures of A. denitrificans strain BC grown on either acetone or acetate with nitrate was performed to study the enzymes involved in the acetone degradation pathway. In the proposed acetone degradation pathway, an acetone carboxylase converts acetone to acetoacetate, an AMP-dependent synthetase/ligase converts acetoacetate to acetoacetyl-CoA, and an acetyl-CoA acetyltransferase cleaves acetoacetyl-CoA to two acetyl-CoA. We also found a putative aldehyde dehydrogenase associated with acetone degradation. This enzyme functioned as a β-hydroxybutyrate dehydrogenase catalyzing the conversion of surplus acetoacetate to β-hydroxybutyrate that may be converted to the energy and carbon storage compound, poly-β-hydroxybutyrate. Accordingly, we confirmed the formation of poly-β-hydroxybutyrate in acetone-grown cells of strain BC. Our findings provide insight in nitrate-dependent acetone degradation that is activated by carboxylation of acetone. This will aid studies of similar pathways found in other microorganisms degrading acetone with nitrate or sulfate as electron acceptor. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Toward Portable Breath Acetone Analysis for Diabetes Detection

    Science.gov (United States)

    Righettoni, Marco; Tricoli, Antonio

    2013-01-01

    Diabetes is a lifelong condition that may cause death and seriously affects the quality of life of a rapidly growing number of individuals. Acetone is a selective breath marker for diabetes that may contribute to the monitoring of related metabolic disorder and thus simplify the management of this illness. Here, the overall performance of Si-doped WO3 nanoparticles made by flame spray pyrolysis as portable acetone detectors is critically reviewed focusing on the requirements for medical diagnostic. The effect of flow rate, chamber volume and acetone dissociation within the measuring chamber are discussed with respect to the calibration of the sensor response. The challenges for the fabrication of portable breath acetone sensors based on chemo-resistive detectors are underlined indicating possible solutions and novel research directions. PMID:21828897

  4. Synthesis of polyoxometalate-loaded epoxy composites

    Science.gov (United States)

    Anderson, Benjamin J

    2014-10-07

    The synthesis of a polyoxometalate-loaded epoxy uses a one-step cure by applying an external stimulus to release the acid from the polyoxometalate and thereby catalyze the cure reaction of the epoxy resin. Such polyoxometalate-loaded epoxy composites afford the cured epoxy unique properties imparted by the intrinsic properties of the polyoxometalate. For example, polyoxometalate-loaded epoxy composites can be used as corrosion resistant epoxy coatings, for encapsulation of electronics with improved dielectric properties, and for structural applications with improved mechanical properties.

  5. Evolution of carbon nanotube dispersion in preparation of epoxy-based composites: From a masterbatch to a nanocomposite

    OpenAIRE

    Aravand, Mohammadali; Lomov, Stepan Vladimirovitch; Verpoest, Ignace; Gorbatikh, Larissa

    2014-01-01

    The state of carbon nanotube (CNT) dispersion in epoxy is likely to change in the process of composite production. In the present work CNT dispersion is characterized at different stages of nanocomposite preparation: in the original masterbatch with high CNT concentration, after masterbatch dilution, in the process of curing and in the final nanocomposite. The evaluation techniques included dynamic rheological analysis of the liquid phases, optical, environmental and charge contrast scanning ...

  6. Acetone in the atmosphere: Distribution, sources, and sinks

    Science.gov (United States)

    Singh, H. B.; O'Hara, D.; Herlth, D.; Sachse, W.; Blake, D. R.; Bradshaw, J. D.; Kanakidou, M.; Crutzen, P. J.

    1994-01-01

    Acetone (CH3COCH3) was found to be the dominant nonmethane organic species present in the atmosphere sampled primarily over eastern Canada (0-6 km, 35 deg-65 deg N) during ABLE3B (July to August 1990). A concentration range of 357 to 2310 ppt (= 10(exp -12) v/v) with a mean value of 1140 +/- 413 ppt was measured. Under extremely clean conditions, generally involving Arctic flows, lowest (background) mixing ratios of 550 +/- 100 ppt were present in much of the troposphere studied. Correlations between atmospheric mixing ratios of acetone and select species such as C2H2, CO, C3H8, C2Cl4 and isoprene provided important clues to its possible sources and to the causes of its atmospheric variability. Biomass burning as a source of acetone has been identified for the first time. By using atmospheric data and three-dimensional photochemical models, a global acetone source of 40-60 Tg (= 10(exp 12) g)/yr is estimated to be present. Secondary formation from the atmospheric oxidation of precursor hydrocarbons (principally propane, isobutane, and isobutene) provides the single largest source (51%). The remainder is attributable to biomass burning (26%), direct biogenic emissions (21%), and primary anthropogenic emissions (3%). Atmospheric removal of acetone is estimated to be due to photolysis (64%), reaction with OH radicals (24%), and deposition (12%). Model calculations also suggest that acetone photolysis contributed significantly to PAN formation (100-200 ppt) in the middle and upper troposphere of the sampled region and may be important globally. While the source-sink equation appears to be roughly balanced, much more atmospheric and source data, especially from the southern hemisphere, are needed to reliably quantify the atmospheric budget of acetone.

  7. Breath acetone as a potential marker in clinical practice.

    Science.gov (United States)

    Ruzsányi, Veronika; Péter Kalapos, Miklós

    2017-06-01

    In recent decades, two facts have changed the opinion of researchers about the function of acetone in humans. Firstly, it has turned out that acetone cannot be regarded as simply a waste product of metabolism, because there are several pathways in which acetone is produced or broken down. Secondly, methods have emerged making possible its detection in exhaled breath, thereby offering an attractive alternative to investigation of blood and urine samples. From a clinical point of view the measurement of breath acetone levels is important, but there are limitations to its wide application. These limitations can be divided into two classes, technical and biological limits. The technical limits include the storage of samples, detection threshold, standardization of clinical settings, and the price of instruments. When considering the biological ranges of acetone, personal factors such as race, age, gender, weight, food consumption, medication, illicit drugs, and even profession/class have to be taken into account to use concentration information for disorders. In some diseases such as diabetes mellitus and lung cancer, as well as in nutrition-related behavior such as starvation and ketogenic diet, breath acetone has been extensively examined. At the same time, there is a lack of investigations in other cases in which ketosis is also evident, such as in alcoholism or an inborn error of metabolism. In summary, the detection of acetone in exhaled breath is a useful and promising tool for diagnosis and it can be used as a marker to follow the effectiveness of treatments in some disorders. However, further endeavors are needed for clarification of the exact distribution of acetone in different body compartments and evaluation of its complex role in humans, especially in those cases in which a ketotic state also occurs.

  8. Maximizing recovery of water-soluble proteins through acetone precipitation.

    Science.gov (United States)

    Crowell, Andrew M J; Wall, Mark J; Doucette, Alan A

    2013-09-24

    Solvent precipitation is commonly used to purify protein samples, as seen with the removal of sodium dodecyl sulfate through acetone precipitation. However, in its current practice, protein loss is believed to be an inevitable consequence of acetone precipitation. We herein provide an in depth characterization of protein recovery through acetone precipitation. In 80% acetone, the precipitation efficiency for six of 10 protein standards was poor (ca. ≤15%). Poor recovery was also observed for proteome extracts, including bacterial and mammalian cells. As shown in this work, increasing the ionic strength of the solution dramatically improves the precipitation efficiency of individual proteins, and proteome mixtures (ca. 80-100% yield). This is obtained by including 1-30 mM NaCl, together with acetone (50-80%) which maximizes protein precipitation efficiency. The amount of salt required to restore the recovery correlates with the amount of protein in the sample, as well as the intrinsic protein charge, and the dielectric strength of the solution. This synergistic approach to protein precipitation in acetone with salt is consistent with a model of ion pairing in organic solvent, and establishes an improved method to recover proteins and proteome mixtures in high yield. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Effects of humus on acetone-butanol fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Kovats, J

    1963-01-01

    Adding 6 to 8 g humus-rich soil dried at 80/sup 0/ to 100 cc sterilized molasses, containing 3.8 sucrose and 0.1% (NH/sub 4/)/sub 2/HPO/sub 4/, inoculated with acetone-butanol fermentative bacteria, increased acetone, butanol, and ethanol yields by 30, 50, and 40%, respectively. The acetone-to-butanol ratio increased from 1.85 to 2.1-2.3 in low and 2.6-2.8 in high sucrose-molasses concentrations. Yields of total organic solvents increased from 25 to 36-8% of the sucrose present. Inorganic salts from ashed humus soils were only 10 to 20% less effective in enhancing fermentation than the whole soil. It is postulated that the fermentation is enhanced by trace elements present in the soil.

  10. Breath acetone concentration; biological variability and the influence of diet

    International Nuclear Information System (INIS)

    Španěl, Patrik; Dryahina, Kseniya; Rejšková, Alžběta; Chippendale, Thomas W E; Smith, David

    2011-01-01

    Previous measurements of acetone concentrations in the exhaled breath of healthy individuals and the small amount of comparable data for individuals suffering from diabetes are briefly reviewed as a prelude to the presentation of new data on the sporadic and wide variations of breath acetone that occur in ostensibly healthy individuals. Data are also presented which show that following a ketogenic diet taken by eight healthy individuals their breath acetone concentrations increased up to five times over the subsequent 6 h. Similarly, the breath acetone increased six and nine times when a low carbohydrate diet was taken by two volunteers and remained high for the several days for which the diet was continued. These new data, together with the previous data, clearly indicate that diet and natural intra-individual biological and diurnal variability result in wide variations in breath acetone concentration. This places an uncertainty in the use of breath acetone alone to monitor blood glucose and glycaemic control, except and unless the individual acts as their own control and is cognizant of the need for dietary control. (note)

  11. Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.

    Science.gov (United States)

    Heider, Johann; Schühle, Karola; Frey, Jasmin; Schink, Bernhard

    2016-01-01

    Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions. © 2016 S. Karger AG, Basel.

  12. Emission of OH* and CO2* during the high-temperature oxidation of acetone in reflected shock waves

    Science.gov (United States)

    Tereza, A. M.; Smirnov, V. N.; Vlasov, P. A.; Shumova, V. V.; Garmash, A. A.

    2018-01-01

    Experimental and kinetic modeling study of the ignition of a stoichiometric mixture of acetone with oxygen diluted by argon was carried out behind reflected shock waves within the temperature range of 1350-1810 K for the total mixture concentration [M 50] ~ 10-5 mol/cm3. Emission signals were recorded simultaneously for three different wavelengths: OH* (λ = 308 nm) and {{{CO}}}2* (λ1 = 365 nm; λ2 = 451 nm). It was revealed that the time it takes to reach the maximum of emission of OH* and {{{CO}}}2* is practically the same over the whole temperature range. At the same time, the emission profiles of {{{CO}}}2* after the maximum was attained, recorded at λ2 = 451 nm, differ noticeably from the profiles recorded at λ1 = 365 nm. For numerical modeling of the emission profiles of OH* and {{{CO}}}2* , the corresponding sets of excitation and quenching reactions available in the literature were used. In the course of our numerical simulations we succeeded in good agreement of our own experimental and simulation results on acetone ignition and the results available in the literature for conditions under consideration.

  13. The effects of inhaled acetone on place conditioning in adolescent rats.

    Science.gov (United States)

    Lee, Dianne E; Pai, Jennifer; Mullapudui, Uma; Alexoff, David L; Ferrieri, Richard; Dewey, Stephen L

    2008-03-01

    Acetone is an ubiquitous ingredient in many household products (e.g., glue solvents, air fresheners, adhesives, nail polish, and paint) that is putatively abused; however, there is little empirical evidence to suggest that acetone alone has any abuse liability. Therefore, we systematically investigated the conditioned response to inhaled acetone in a place conditioning apparatus. Three groups of male, Sprague-Dawley rats were exposed to acetone concentrations of 5000, 10,000 or 20,000 ppm for 1 h in a conditioned place preference apparatus alternating with air for 6 pairing sessions. A place preference test ensued in an acetone-free environment. To test the preference of acetone as a function of pairings sessions, the 10,000 ppm group received an additional 6 pairings and an additional group received 3 pairings. The control group received air in both compartments. Locomotor activity was recorded by infrared photocells during each pairing session. We noted a dose response relationship to acetone at levels 5000-20,000 ppm. However, there was no correlation of place preference as a function of pairing sessions at the 10,000 ppm level. Locomotor activity was markedly decreased in animals on acetone-paired days as compared to air-paired days. The acetone concentrations we tested for these experiments produced a markedly decreased locomotor activity profile that resemble CNS depressants. Furthermore, a dose response relationship was observed at these pharmacologically active concentrations, however, animals did not exhibit a positive place preference.

  14. The effects of inhaled acetone on place conditioning in adolescent rats

    Science.gov (United States)

    Lee, Dianne E.; Pai, Jennifer; Mullapudui, Uma; Alexoff, David L.; Ferrieri, Richard; Dewey, Stephen L.

    2009-01-01

    Introduction Acetone is a ubiquitous ingredient in many household products (e.g., glue solvents, air fresheners, adhesives, nail polish, and paint) that is putatively abused; however, there is little empirical evidence to suggest that acetone alone has any abuse liability. Therefore, we systematically investigated the conditioned response to inhaled acetone in a place conditioning apparatus. Method Three groups of male, Sprague-Dawley rats were exposed to acetone concentrations of 5,000, 10,000 or 20,000 ppm for 1 hour in a conditioned place preference apparatus alternating with air for 6 pairing sessions. A place preference test ensued in an acetone-free environment. To test the preference of acetone as a function of pairings sessions, the 10,000 ppm group received an additional 6 pairings and an additional group received 3 pairings. The control group received air in both compartments. Locomotor activity was recorded by infrared photocells during each pairing session. Results We noted a dose response relationship to acetone at levels 5,000-20,000 ppm. However, there was no correlation of place preference as a function of pairing sessions at the 10,000 ppm level. Locomotor activity was markedly decreased in animals on acetone-paired days as compared to air-paired days. Conclusion The acetone concentrations we tested for these experiments produced a markedly decreased locomotor activity profile that resemble CNS depressants. Furthermore, a dose response relationship was observed at these pharmacologically active concentrations, however, animals did not exhibit a positive place preference. PMID:18096214

  15. Epoxy-based carbon nanotubes reinforced composites

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2011-04-01

    Full Text Available of the three major epoxy resin producers worldwide [May, 1987]. Epoxy resin is most commonly used as a matrix for advanced composites due to their superior thermal, mechanical and electrical properties; dimensional stability and chemical resistance. Epoxy... and modifiers to create products with an almost unlimited range and variety of performance properties [The epoxy book, 2000]. Epoxy resins are widely used as high-grade synthetic resins, for example, in the electronics, aeronautics and astronautic industries...

  16. Interaction of water with epoxy.

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Dana Auburn

    2009-07-01

    The chemistries of reactants, plasticizers, solvents and additives in an epoxy paint are discussed. Polyamide additives may play an important role in the absorption of molecular iodine by epoxy paints. It is recommended that the unsaturation of the polyamide additive in the epoxy cure be determined. Experimental studies of water absorption by epoxy resins are discussed. These studies show that absorption can disrupt hydrogen bonds among segments of the polymers and cause swelling of the polymer. The water absorption increases the diffusion coefficient of water within the polymer. Permanent damage to the polymer can result if water causes hydrolysis of ether linkages. Water desorption studies are recommended to ascertain how water absorption affects epoxy paint.

  17. [Adsorption characteristics of acetone and butanone onto honeycomb ZSM-5 molecular sieve].

    Science.gov (United States)

    Du, Juan; Luan, Zhi-Qiang; Xie, Qiang; Ye, Ping-Wei; Li, Kai; Wang, Xi-Qin

    2013-12-01

    Adsorption capacity of acetone and acetone-butanone mixture onto honeycomb ZSM-5 molecular sieve was measured in this paper, and the influences of relative humidity, initial adsorbate concentration and airflow velocity on the adsorption process were investigated. Besides, adsorption performance parameters were calculated by Wheeler's equation. The results showed that relative humidity had no obvious influence on the acetone adsorption performance, which suggests that this material has good hydrophobic ability; in the low concentration range, the dynamic saturated adsorption capacity of acetone increased with the increase of initial concentration, but in the occasion of high concentration of acetone gas (more than 9 mg x L(-1)), the dynamic saturated adsorption capacity maintained at a certain level and did not vary with the increase of initial concentration; the increase of air flow velocity resulted in significant increase of acetone adsorption rate constant, at the same time the critical layer thickness of the adsorbent bed also increased significantly. In the cases of acetone-butanone mixture, the adsorption capacity of butanone onto ZSM-5 was clearly higher than that of acetone.

  18. Purification and characterization of acetone carboxylase from Xanthobacter strain Py2

    OpenAIRE

    Sluis, Miriam K.; Ensign, Scott A.

    1997-01-01

    Acetone metabolism in the aerobic bacterium Xanthobacter strain Py2 proceeds by a carboxylation reaction forming acetoacetate as the first detectable product. In this study, acetone carboxylase, the enzyme catalyzing this reaction, has been purified to homogeneity and characterized. Acetone carboxylase was comprised of three polypeptides with molecular weights of 85,300, 78,300, and 19,600 arranged in an α2β2γ2 quaternary structure. The carboxylation of acetone was coupled to the hydrolysis o...

  19. trans-Carbonylchloridobis(tri-p-tolylphosphinerhodium(I acetone solvate

    Directory of Open Access Journals (Sweden)

    Brian R. James

    2008-03-01

    Full Text Available The title compound, [RhCl(C21H21P2(CO]·C3H6O, was precipitated in trace yield from a reaction of RhCl(cod(THP with P(p-tol3 in a 1:1 acetone-d6/CD3OD solution under a hydrogen atmosphere [p-tol = p-tolyl, THP = tris(hydroxymethylphosphine, P(CH2OH3, and cod = 1,5-cyclooctadiene]. The complex displays a square-planar geometry around the RhI atom. The complex molecules and the acetone molecules are linked into a chain along the a axis by intermolecular C—H...Cl and C—H...O hydrogen bonds.

  20. Acetone and Water on TiO(110): H/D Exchange

    International Nuclear Information System (INIS)

    Henderson, Michael A.

    2005-01-01

    Isotopic H/D exchange between coadsorbed acetone and water on the TiO(110) surface was examined using temperature programmed desorption (TPD) as a function of coverage and two surface pretreatments (oxidation and reduction). Coadsorbed acetone and water interact repulsively on reduced TiO(110) based on results from the companion paper to this study, with water exerting a greater influence in destabilizing acetone and acetone having only a nominal influence on water. Despite the repulsive interaction between these coadsorbates, about 0.02 ML of a 1 ML d6-acetone on the reduced surface exhibits H/D exchange with coadsorbed water, with the exchange occurring exclusively in the high temperature region of the d?-acetone TPD spectrum at ∼340 K. The effect was confirmed with combinations of d?-acetone and D?O. The extent of exchange decreased on the reduced surface with water coverages above ∼0.3 ML due to the ability of water to displace coadsorbed acetone from first layer sites to the multilayer. In contrast, the extent of exchange increased by a factor of 3 when the surface was pre-oxidized prior to coadsorption. In this case, there was no evidence for the negative influence of high water coverages on the extent of H/D exchange. Comparison of the TPD spectra from the exchange products (either d?- or d?-acetone depending on the coadsorption pairing) suggests that, in addition to the 340 K exchange process seen on the reduced surface, a second exchange process was observed on the oxidized surface at ∼390 K. In both cases (oxidized and reduced), desorption of the H/D exchange products appeared to be reaction limited and to involve the influence of OH/OD groups (or water formed during recombinative desorption of OH/OD groups) instead of molecularly adsorbed water. The 340 K exchange process is assigned to reaction at step sites and the 390 K exchange process is attributed to the influence of oxygen adatoms deposited during surface oxidation. The H/D exchange

  1. Acetone Formation in the Vibrio Family: a New Pathway for Bacterial Leucine Catabolism

    Science.gov (United States)

    Nemecek-Marshall, Michele; Wojciechowski, Cheryl; Wagner, William P.; Fall, Ray

    1999-01-01

    There is current interest in biological sources of acetone, a volatile organic compound that impacts atmospheric chemistry. Here, we determined that leucine-dependent acetone formation is widespread in the Vibrionaceae. Sixteen Vibrio isolates, two Listonella species, and two Photobacterium angustum isolates produced acetone in the presence of l-leucine. Shewanella isolates produced much less acetone. Growth of Vibrio splendidus and P. angustum in a fermentor with controlled aeration revealed that acetone was produced after a lag in late logarithmic or stationary phase of growth, depending on the medium, and was not derived from acetoacetate by nonenzymatic decarboxylation in the medium. l-Leucine, but not d-leucine, was converted to acetone with a stoichiometry of approximately 0.61 mol of acetone per mol of l-leucine. Testing various potential leucine catabolites as precursors of acetone showed that only α-ketoisocaproate was efficiently converted by whole cells to acetone. Acetone production was blocked by a nitrogen atmosphere but not by electron transport inhibitors, suggesting that an oxygen-dependent reaction is required for leucine catabolism. Metabolic labeling with deuterated (isopropyl-d7)-l-leucine revealed that the isopropyl carbons give rise to acetone with full retention of deuterium in each methyl group. These results suggest the operation of a new catabolic pathway for leucine in vibrios that is distinct from the 3-hydroxy-3-methylglutaryl-coenzyme A pathway seen in pseudomonads. PMID:10601206

  2. Apparatus and method for monitoring breath acetone and diabetic diagnostics

    Science.gov (United States)

    Duan, Yixiang [Los Alamos, NM; Cao, Wenqing [Los Alamos, NM

    2008-08-26

    An apparatus and method for monitoring diabetes through breath acetone detection and quantitation employs a microplasma source in combination with a spectrometer. The microplasma source provides sufficient energy to produce excited acetone fragments from the breath gas that emit light. The emitted light is sent to the spectrometer, which generates an emission spectrum that is used to detect and quantify acetone in the breath gas.

  3. Contact allergy to epoxy resin

    DEFF Research Database (Denmark)

    Bangsgaard, Nannie; Thyssen, Jacob Pontoppidan; Menné, Torkil

    2012-01-01

    Background. Epoxy resin monomers are strong skin sensitizers that are widely used in industrial sectors. In Denmark, the law stipulates that workers must undergo a course on safe handling of epoxy resins prior to occupational exposure, but the effectiveness of this initiative is largely unknown...... in an educational programme. Conclusion. The 1% prevalence of epoxy resin contact allergy is equivalent to reports from other countries. The high occurrence of epoxy resin exposure at work, and the limited use of protective measures, indicate that reinforcement of the law is required....

  4. Laser-induced fluorescence imaging of acetone inside evaporating and burning fuel droplets

    Science.gov (United States)

    Shringi, D. S.; Shaw, B. D.; Dwyer, H. A.

    2009-01-01

    Laser-induced fluorescence was used to visualize acetone fields inside individual droplets of pure acetone as well as droplets composed of methanol or 1-propanol initially mixed with acetone. Droplets were supported on a horizontal wire and two vaporization conditions were investigated: (1) slow evaporation in room air and (2) droplet combustion, which leads to substantially faster droplet surface regression rates. Acetone was preferentially gasified, causing its concentration in droplets to drop in time with resultant decreases in acetone fluorescence intensities. Slowly vaporizing droplets did not exhibit large spatial variations of fluorescence within droplets, indicating that these droplets were relatively well mixed. Ignition of droplets led to significant variations in fluorescence intensities within droplets, indicating that these droplets were not well mixed. Ignited droplets composed of mixtures of 1-propanol and acetone showed large time-varying changes in shapes for higher acetone concentrations, suggesting that bubble formation was occurring in these droplets.

  5. An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli.

    Science.gov (United States)

    Yang, Xiaoyan; Yuan, Qianqian; Zheng, Yangyang; Ma, Hongwu; Chen, Tao; Zhao, Xueming

    2016-08-01

    To find new metabolic engineering strategies to improve the yield of acetone in Escherichia coli. Results of flux balance analysis from a modified Escherichia coli genome-scale metabolic network suggested that the introduction of a non-oxidative glycolysis (NOG) pathway would improve the theoretical acetone yield from 1 to 1.5 mol acetone/mol glucose. By inserting the fxpk gene encoding phosphoketolase from Bifidobacterium adolescentis into the genome, we constructed a NOG pathway in E.coli. The resulting strain produced 47 mM acetone from glucose under aerobic conditions in shake-flasks. The yield of acetone was improved from 0.38 to 0.47 mol acetone/mol glucose which is a significant over the parent strain. Guided by computational analysis of metabolic networks, we introduced a NOG pathway into E. coli and increased the yield of acetone, which demonstrates the importance of modeling analysis for the novel metabolic engineering strategies.

  6. Acetone production with metabolically engineered strains of Acetobacterium woodii.

    Science.gov (United States)

    Hoffmeister, Sabrina; Gerdom, Marzena; Bengelsdorf, Frank R; Linder, Sonja; Flüchter, Sebastian; Öztürk, Hatice; Blümke, Wilfried; May, Antje; Fischer, Ralf-Jörg; Bahl, Hubert; Dürre, Peter

    2016-07-01

    Expected depletion of oil and fossil resources urges the development of new alternative routes for the production of bulk chemicals and fuels beyond petroleum resources. In this study, the clostridial acetone pathway was used for the formation of acetone in the acetogenic bacterium Acetobacterium woodii. The acetone production operon (APO) containing the genes thlA (encoding thiolase A), ctfA/ctfB (encoding CoA transferase), and adc (encoding acetoacetate decarboxylase) from Clostridium acetobutylicum were cloned under the control of the thlA promoter into four vectors having different replicons for Gram-positives (pIP404, pBP1, pCB102, and pCD6). Stable replication was observed for all constructs. A. woodii [pJIR_actthlA] achieved the maximal acetone concentration under autotrophic conditions (15.2±3.4mM). Promoter sequences of the genes ackA from A. woodii and pta-ack from C. ljungdahlii were determined by primer extension (PEX) and cloned upstream of the APO. The highest acetone production in recombinant A. woodii cells was achieved using the promoters PthlA and Ppta-ack. Batch fermentations using A. woodii [pMTL84151_actthlA] in a bioreactor revealed that acetate concentration had an effect on the acetone production, due to the high Km value of the CoA transferase. In order to establish consistent acetate concentration within the bioreactor and to increase biomass, a continuous fermentation process for A. woodii was developed. Thus, acetone productivity of the strain A. woodii [pMTL84151_actthlA] was increased from 1.2mgL(-1)h(-1) in bottle fermentation to 26.4mgL(-1)h(-1) in continuous gas fermentation. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. Breath acetone monitoring by portable Si:WO3 gas sensors

    International Nuclear Information System (INIS)

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2012-01-01

    Highlights: ► Portable sensors were developed and tested for monitoring acetone in the human breath. ► Acetone concentrations down to 20 ppb were measured with short response times ( 3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (∼20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques.

  8. Quantitative Clinical Diagnostic Analysis of Acetone in Human Blood by HPLC: A Metabolomic Search for Acetone as Indicator

    OpenAIRE

    Akgul Kalkan, Esin; Sahiner, Mehtap; Ulker Cakir, Dilek; Alpaslan, Duygu; Yilmaz, Selehattin

    2016-01-01

    Using high-performance liquid chromatography (HPLC) and 2,4-dinitrophenylhydrazine (2,4-DNPH) as a derivatizing reagent, an analytical method was developed for the quantitative determination of acetone in human blood. The determination was carried out at 365?nm using an ultraviolet-visible (UV-Vis) diode array detector (DAD). For acetone as its 2,4-dinitrophenylhydrazone derivative, a good separation was achieved with a ThermoAcclaim C18 column (15?cm ? 4.6?mm ? 3??m) at retention time (t R) ...

  9. A cross-sectional study of breath acetone based on diabetic metabolic disorders.

    Science.gov (United States)

    Li, Wenwen; Liu, Yong; Lu, Xiaoyong; Huang, Yanping; Liu, Yu; Cheng, Shouquan; Duan, Yixiang

    2015-02-26

    Breath acetone is a known biomarker for diabetes mellitus in breath analysis. In this work, a cross-sectional study of breath acetone based on clinical metabolic disorders of type 2 diabetes mellitus (T2DM) was carried out. Breath acetone concentrations of 113 T2DM patients and 56 apparently healthy individuals were measured at a single time point. Concentrations varied from 0.22 to 9.41 ppmv (mean 1.75 ppmv) for T2DM, which were significantly higher than those for normal controls (ranged from 0.32 to 1.96 ppmv, mean 0.72 ppmv, p = 0.008). Observations in our work revealed that breath acetone concentrations elevated to different degrees, along with the abnormality of blood glucose, glycated hemoglobin (HbA1c), triglyceride and cholesterol. Breath acetone showed obviously positive correlations with blood ketone and urine ketone. Possible metabolic relations between breath acetone and diabetic disorders were also discussed. This work aimed at giving an overall assessment of breath acetone from the perspective of clinical parameters for type 2 diabetes.

  10. Dilution Confusion: Conventions for Defining a Dilution

    Science.gov (United States)

    Fishel, Laurence A.

    2010-01-01

    Two conventions for preparing dilutions are used in clinical laboratories. The first convention defines an "a:b" dilution as "a" volumes of solution A plus "b" volumes of solution B. The second convention defines an "a:b" dilution as "a" volumes of solution A diluted into a final volume of "b". Use of the incorrect dilution convention could affect…

  11. Wettability of nano-epoxies to UHMWPE fibers.

    Science.gov (United States)

    Neema, S; Salehi-Khojin, A; Zhamu, A; Zhong, W H; Jana, S; Gan, Y X

    2006-07-01

    Ultra high molecular weight polyethylene (UHMWPE) fibers have a unique combination of outstanding mechanical, physical, and chemical properties. However, as reinforcements for manufacturing high performance composite materials, UHMWPE fibers have poor wettability with most polymers. As a result, the interfacial bonding strength between the fibers and polymer matrices is very low. Recently, developing so-called nano-matrices containing reactive graphitic nanofibers (r-GNFs) has been proposed to promote the wetting of such matrices to certain types of fiber reinforcements. In this work, the wettability of UHMWPE fibers with different epoxy matrices including a nano-epoxy, and a pure epoxy was investigated. Systematic experimental work was conducted to determine the viscosity of the epoxies, the contact angle between the epoxies and the fibers. Also obtained are the surface energy of the fibers and the epoxies. The experimental results show that the wettability of the UHMWPE fibers with the nano-epoxy is much better than that of the UHMWPE fibers with the pure epoxy.

  12. Proteomic analysis of nitrate-dependent acetone degradation by Alicycliphilus denitrificans strain BC

    NARCIS (Netherlands)

    Oosterkamp, M.J.; Boeren, S.; Atashgahi, S.; Plugge, C.M.; Schaap, P.J.; Stams, A.J.M.

    2015-01-01

    Alicycliphilus denitrificans strain BC grows anaerobically on acetone with nitrate as electron acceptor. Comparative proteomics of cultures of A. denitrificans strain BC grown on either acetone or acetate with nitrate was performed to study the enzymes involved in the acetone degradation pathway. In

  13. Catalytic function of the mycobacterial binuclear iron monooxygenase in acetone metabolism.

    Science.gov (United States)

    Furuya, Toshiki; Nakao, Tomomi; Kino, Kuniki

    2015-10-01

    Mycobacteria such as Mycobacterium smegmatis strain mc(2)155 and Mycobacterium goodii strain 12523 are able to grow on acetone and use it as a source of carbon and energy. We previously demonstrated by gene deletion analysis that the mimABCD gene cluster, which encodes a binuclear iron monooxygenase, plays an essential role in acetone metabolism in these mycobacteria. In the present study, we determined the catalytic function of MimABCD in acetone metabolism. Whole-cell assays were performed using Escherichia coli cells expressing the MimABCD complex. When the recombinant E. coli cells were incubated with acetone, a product was detected by gas chromatography (GC) analysis. Based on the retention time and the gas chromatography-mass spectrometry (GC-MS) spectrum, the reaction product was identified as acetol (hydroxyacetone). The recombinant E. coli cells produced 1.02 mM of acetol from acetone within 24 h. Furthermore, we demonstrated that MimABCD also was able to convert methylethylketone (2-butanone) to 1-hydroxy-2-butanone. Although it has long been known that microorganisms such as mycobacteria metabolize acetone via acetol, this study provides the first biochemical evidence for the existence of a microbial enzyme that catalyses the conversion of acetone to acetol. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Adsorption and Reaction of Acetone over CeOX(111) Thin Films

    International Nuclear Information System (INIS)

    Mullins, David R.; Senanayake, Sanjaya D.; Gordon, Wesley O.; Overbury, Steven H.

    2009-01-01

    This study reports the interaction of acetone (CH3COCH3), the simplest ketone, with well ordered CeO2(111) thin film surfaces. The fully oxidized CeO2(111) surface shows a weak interaction with acetone with the sole desorption product (TPD) being acetone at 210 K. The chemisorbed molecule binds to the surface as the ?1-acetone species rather than through a bridge-bonded dioxy-configuration. Exposure of a CeO2(111) surface to acetone at 600K removes oxygen as CO and results in the conversion of Ce4+ to Ce3+. Acetone chemisorbs strongly on reduced CeO2-x(111) with molecular acetone desorbing near 500 K. Decomposition also occurs with H2 desorbing between 450 and 600 K and C reacting with O in the ceria to desorb above 650 K. A stable species exists from 200 to 500 K on the reduced surface that has three unique types of C. High resolution C 1s XPS spectra indicate these are Ce-CH2, C-CH3 and C-O species. C k-edge NEXAFS indicates the presence of C(double b ond)C and C(double b ond)O bonds. It is postulated that the intermediate is a carbanion bonded through both O and C atoms to Ce cations.

  15. Delayed fluorescence of meso-tetraphenylporphyrin in acetone and in dimethylsulphoxide

    International Nuclear Information System (INIS)

    Korinek, M.; Klinger, P.; Dedic, R.; Psencik, J.; Svoboda, A.; Hala, J.

    2007-01-01

    Photodynamic therapy is based on photosensitisation of singlet oxygen by porphyrin-like molecules. We have performed a systematic study of delayed fluorescence of tetraphenylporphyrin in acetone (used as a spectroscopic standard) and in dimethylsulphoxide (clinically used solvent) to obtain spectra, kinetics, and quantum yields, including their dependencies on tetraphenylporphyrin concentration. In dimethylsulphoxide the repopulation of excited singlets and subsequent delayed fluorescence is caused by triplet-triplet quenching with rate constant of (2.2±1.0)x10 9 l mol -1 s -1 . However, repopulation of excited singlets in acetone is also caused by singlet oxygen reaction with triplet tetraphenylporphyrin causing monoexponential delayed fluorescence decay with the lifetime 0.3 μs. Due to much lower viscosity of acetone compared to dimethylsulphoxide, triplet-triplet quenching constant in acetone is much higher (1.7±0.7)x10 10 l mol -1 s -1 . The rate constant for the reaction of singlet oxygen with triplet of tetraphenylporphyrin is (2.0±0.8)x10 10 l mol -1 s -1 in acetone

  16. Epoxy-based carbon nanotubes reinforced composites

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2011-04-01

    Full Text Available of the three major epoxy resin producers worldwide [May, 1987]. Epoxy resin is most commonly used as a matrix for advanced composites due to their superior thermal, mechanical and electrical properties; dimensional stability and chemical resistance. Epoxy... are electrical insulators, and the widespread use of the epoxy resins for many high-performance applications is constrained because of their inherent brittleness, delamination and fracture toughness limitations. There were quite a few approaches to enhance...

  17. Characterisation of cellulose films regenerated from acetone/water coagulants.

    Science.gov (United States)

    Geng, Hongjuan; Yuan, Zaiwu; Fan, Qingrui; Dai, Xiaonan; Zhao, Yue; Wang, Zhaojiang; Qin, Menghua

    2014-02-15

    A precooled aqueous solution of 7 wt% NaOH/12 wt% urea was used to dissolve cellulose up to a concentration of 2 wt%, which was then coagulated in an acetone/water mixture to regenerate cellulose film. The volume ratio of acetone to water (φ) had a dominant influence on film dimensional stability, film-forming ability, micromorphology, and mechanical strength. The film regenerated at φ=2.0 showed excellent performance in both dimensional stability and film-forming ability. Compared to that from pure acetone, the cellulose film from the acetone/water mixture with φ=2.0 was more densely interwoven, since the cellulosic fibrils formed during regeneration had pores with smaller average diameter. The alkali capsulated in the film during film formation could be released at quite a slow rate into the surrounding aqueous solution. The regenerated cellulose film with adjustable structure and properties may have potential applications in drug release and ultra filtration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Novel Acetone Metabolism in a Propane-Utilizing Bacterium, Gordonia sp. Strain TY-5▿

    Science.gov (United States)

    Kotani, Tetsuya; Yurimoto, Hiroya; Kato, Nobuo; Sakai, Yasuyoshi

    2007-01-01

    In the propane-utilizing bacterium Gordonia sp. strain TY-5, propane was shown to be oxidized to 2-propanol and then further oxidized to acetone. In this study, the subsequent metabolism of acetone was studied. Acetone-induced proteins were found in extracts of cells induced by acetone, and a gene cluster designated acmAB was cloned on the basis of the N-terminal amino acid sequences of acetone-induced proteins. The acmA and acmB genes encode a Baeyer-Villiger monooxygenase (BVMO) and esterase, respectively. The BVMO encoded by acmA was purified from acetone-induced cells of Gordonia sp. strain TY-5 and characterized. The BVMO exhibited NADPH-dependent oxidation activity for linear ketones (C3 to C10) and cyclic ketones (C4 to C8). Escherichia coli expressing the acmA gene oxidized acetone to methyl acetate, and E. coli expressing the acmB gene hydrolyzed methyl acetate. Northern blot analyses revealed that polycistronic transcription of the acmAB gene cluster was induced by propane, 2-propanol, and acetone. These results indicate that the acmAB gene products play an important role in the metabolism of acetone derived from propane oxidation and clarify the propane metabolism pathway of strain TY-5 (propane → 2-propanol → acetone → methyl acetate → acetic acid + methanol). This paper provides the first evidence for BVMO-dependent acetone metabolism. PMID:17071761

  19. Thermally activated, single component epoxy systems

    KAUST Repository

    Unruh, David A.; Pastine, Stefan J.; Moreton, Jessica C.; Frechet, Jean

    2011-01-01

    A single component epoxy system in which the resin and hardener components found in many two-component epoxies are combined onto the same molecule is described. The single molecule precursor to the epoxy resin contains both multiple epoxide moieties and a diamine held latent by thermally degradable carbamate linkages. These bis-carbamate "single molecule epoxies" have an essentially infinite shelf life and access a significant range in curing temperatures related to the structure of the carbamate linkages used. © 2011 American Chemical Society.

  20. Thermally activated, single component epoxy systems

    KAUST Repository

    Unruh, David A.

    2011-08-23

    A single component epoxy system in which the resin and hardener components found in many two-component epoxies are combined onto the same molecule is described. The single molecule precursor to the epoxy resin contains both multiple epoxide moieties and a diamine held latent by thermally degradable carbamate linkages. These bis-carbamate "single molecule epoxies" have an essentially infinite shelf life and access a significant range in curing temperatures related to the structure of the carbamate linkages used. © 2011 American Chemical Society.

  1. Monitoring the Aggregation of Dansyl Chloride in Acetone through Fluorescence Measurements

    Institute of Scientific and Technical Information of China (English)

    FANG,Yu; YIN,Yi-Qing; 等

    2002-01-01

    The aggregation of dansyl chloride (DNS-Cl) in acetone has been studied in detail by steady-state fluorescence techniques.It has been demonstrated that DNS-Cl is stable in acetone during purification and aggregation study processes.The aggregates are not solvolyzed in acetone,and do not take part n any chemical reactions either.It has been found that DNS-Cl tends to aggregate even when its concentration is much lower than its solubility in acetone.The aggregation is reversible,and both the aggregation and the deaggregation are very slow processes.Introduction of SDS has a positive effect upon the formation and stabilization of the aggregates.

  2. Monitoring the Aggregation of Dansyl Chloride in Acetone through Fluorescence Measurements

    Institute of Scientific and Technical Information of China (English)

    FANG,Yu(房喻); YIN,Yi-Qing(尹艺青); HU,Dao-Dao(胡道道); GAO,Gai-Ling(高改玲)

    2002-01-01

    The aggregation of dansyl chloride (DNS-Cl) in acetone has been studied in detail by steady-state fluorescence techniques. It has been demonstrated that DNS-Cl is stable in acetone during purification and aggregation study processes. The aggregates are not solvolyzed in acetone, and do not take part in any chemical reactions either. It has been found that DNS-Cl tends to aggregate even when its concentration is much lower than its solubility in acetone. The aggregation is reversible, and both the aggregation and the deaggregation are very slow processes.Introduction of SDS has a positive effect upon the formation and stabilization of the aggregates.

  3. Antibacterial Activities and Mechanism of Action of Acetone Extracts from Rabdosia rubescens

    Directory of Open Access Journals (Sweden)

    Li Ping Cheng

    2014-12-01

    Full Text Available The antibacterial activities and mechanism of action of acetone extracts from R. rubescens were reported in this paper. The results showed that 80% acetone extracts had both the highest contents of total phenolics and flavonoids. Acetone extracts showed better antibacterial activities against Gram-positive bacterial strains and there were no inhibitory effects found on tested Gram-negative bacteria. In addition, 80% acetone extracts from R. rubescens had relatively higher antibacterial activities with the lowest values of MIC and MBC at 2.5 mg/mL and 5 mg/mL against B. subtilis. The antibacterial mechanism of 80% acetone extracts against Bacillus subtilis might be described as disrupting cell wall, increasing cell membrane permeability, and finally leading to the leakage of cell constituents

  4. Sensor gas analyzer for acetone determination in expired air

    Science.gov (United States)

    Baranov, Vitaly V.

    2001-05-01

    Diseases and changes in the way of life change the concentration and composition of the expired air. Our adaptable gas analyzer is intended for the selective analysis of expired air and can be adapted for the solution of current diagnostic and analytical tasks by the user (a physician or a patient). Having analyzed the existing trends in the development of noninvasive diagnostics we have chosen the method of noninvasive acetone detection in expired air, where the acetone concentration correlates with blood and urine glucose concentrations. The appearance of acetone in expired air is indicative of disorders that may be caused not only by diabetes but also be wrong diet, incorrect sportsmen training etc. To control the disorders one should know the acetone concentration in the human body. This knowledge allows one to judge upon the state of the patient, choose a correct diet that will not cause damage to the patient's health, determine sportsmen training efficiency and results and solve the artificial pancreas problem. Our device provide highly accurate analysis, rapid diagnostics and authentic acetone quantification in the patient's body at any time aimed at prediction of the patient's state and assessing the efficiency of the therapy used. Clinical implementation of the device will improve the health and save lives of many thousands of diabetes sufferers.

  5. IR spectra and properties of solid acetone, an interstellar and cometary molecule

    Science.gov (United States)

    Hudson, Reggie L.; Gerakines, Perry A.; Ferrante, Robert F.

    2018-03-01

    Mid-infrared spectra of amorphous and crystalline acetone are presented along with measurements of the refractive index and density for both forms of the compound. Infrared band strengths are reported for the first time for amorphous and crystalline acetone, along with IR optical constants. Vapor pressures and a sublimation enthalpy for crystalline acetone also are reported. Positions of 13C-labeled acetone are measured. Band strengths are compared to gas-phase values and to the results of a density-functional calculation. A 73% error in previous work is identified and corrected.

  6. Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 4-methyl-N-butyl-pyridinium bis(trifluoromethylsulfonyl)-imide

    International Nuclear Information System (INIS)

    Domanska, Urszula; Marciniak, Andrzej

    2009-01-01

    The activity coefficients at infinite dilution, γ 13 ∞ for 36 solutes: alkanes, cycloalkanes, alkenes, alkynes, aromatic hydrocarbons, alcohols, thiophene, tetrahydrofuran, ethers, acetone, and water in the ionic liquid 4-methyl-N-butyl-pyridinium bis(trifluoromethylsulfonyl)-imide [bmPY][NTf 2 ] were determined by gas-liquid chromatography at temperatures from 298.15 K to 368.15 K. The partial molar excess enthalpies at infinite dilution values ΔH 1 E,∞ were calculated from the experimental γ 13 ∞ values obtained over the temperature range. The selectivity for different separation problems were calculated from the γ 13 ∞ and compared to the literature values for other ionic liquids, N-methyl-2-pyrrolidinone (NMP) and sulfolane.

  7. Heat transfer performance of a pulsating heat pipe charged with acetone-based mixtures

    Science.gov (United States)

    Wang, Wenqing; Cui, Xiaoyu; Zhu, Yue

    2017-06-01

    Pulsating heat pipes (PHPs) are used as high efficiency heat exchangers, and the selection of working fluids in PHPs has a great impact on the heat transfer performance. This study investigates the thermal resistance characteristics of the PHP charged with acetone-based binary mixtures, where deionized water, methanol and ethanol were added to and mixed with acetone, respectively. The volume mixing ratios were 2:1, 4:1 and 7:1, and the heating power ranged from 10 to 100 W with filling ratios of 45, 55, 62 and 70%. At a low filling ratio (45%), the zeotropic characteristics of the binary mixtures have an influence on the heat transfer performance of the PHP. Adding water, which has a substantially different boiling point compared with that of acetone, can significantly improve the anti-dry-out ability inside the PHP. At a medium filling ratio (55%), the heat transfer performance of the PHP is affected by both phase transition characteristics and physical properties of working fluids. At high heating power, the thermal resistance of the PHP with acetone-water mixture is between that with pure acetone and pure water, whereas the thermal resistance of the PHP with acetone-methanol and acetone-ethanol mixtures at mixing ratios of 2:1 and 4:1 is less than that with the corresponding pure fluids. At high filling ratios (62 and 70%), the heat transfer performance of the PHP is mainly determined by the properties of working fluids that affects the flow resistance. Thus, the PHP with acetone-methanol and acetone-ethanol mixtures that have a lower flow resistance shows better heat transfer performance than that with acetone-water mixture.

  8. Pathological effects of acetone cyanohydrin in swiss rats

    Directory of Open Access Journals (Sweden)

    Marcos Natal Rufino

    Full Text Available ABSTRACT Cassava has been widely used for animal and human nutrition. It has also been demonstrated to have antineoplastic and anthelmintic properties. Toxicity due to cassava consumption has been reported in ruminants and laboratory animals; therefore, this study aimed to investigate the toxic effects of acetone cyanohydrin, a metabolite of linamarin that is present in cassava, in Wistar rats. Six groups of five animals each were used to evaluate the toxic effects of acetone cyanohydrin administered at 25 (G1, 50 (G2, 75 (G3, 100 (G4 and 125 (G5 µmol/kg as a single oral dose. The control group received acidified water (pH 3.5. The animals were monitored after administration of acetone cyanohydrin, and clinical symptoms were recorded. Serum enzyme levels were measured to assess the kidney and liver function. During necropsy, tissue samples were collected for histopathological examination. After administration, some animals in the G2, G4, and G5 groups presented neurological symptoms such as convulsions, involuntary muscle contraction, staggering gait, motor coordination disability, prostration, and mydriasis. All of the animals in the G5 and four animals in the G4 group died seven minutes after the administration of acetone cyanohydrin. Animals in the other groups, particularly in G2, recovered from the acute phase. Biochemical analysis revealed hepatic lesions and liver dysfunction. Histopathology revealed severe lesions in both the liver and brain. In conclusion, acetone cyanohydrin has toxic effects in the liver, lung, and central nervous system in rats; however, at concentrations up to 25 µmol/kg, the animals could survive the acute phase.

  9. Characterization of Epoxy Functionalized Graphite Nanoparticles and the Physical Properties of Epoxy Matrix Nanocomposites

    Science.gov (United States)

    Miller, Sandi G.; Bauer, Jonathan L.; Maryanski, Michael J.; Heimann, Paula J.; Barlow, Jeremy P.; Gosau, Jan-Michael; Allred, Ronald E.

    2010-01-01

    This work presents a novel approach to the functionalization of graphite nanoparticles. The technique provides a mechanism for covalent bonding between the filler and matrix, with minimal disruption to the sp2 hybridization of the pristine graphene sheet. Functionalization proceeded by covalently bonding an epoxy monomer to the surface of expanded graphite, via a coupling agent, such that the epoxy concentration was measured as approximately 4 wt.%. The impact of dispersing this material into an epoxy resin was evaluated with respect to the mechanical properties and electrical conductivity of the graphite-epoxy nanocomposite. At a loading as low as 0.5 wt.%, the electrical conductivity was increased by five orders of magnitude relative to the base resin. The material yield strength was increased by 30% and Young s modulus by 50%. These results were realized without compromise to the resin toughness.

  10. Evidence for an Inducible Nucleotide-Dependent Acetone Carboxylase in Rhodococcus rhodochrous B276

    OpenAIRE

    Clark, Daniel D.; Ensign, Scott A.

    1999-01-01

    The metabolism of acetone was investigated in the actinomycete Rhodococcus rhodochrous (formerly Nocardia corallina) B276. Suspensions of acetone- and isopropanol-grown R. rhodochrous readily metabolized acetone. In contrast, R. rhodochrous cells cultured with glucose as the carbon source lacked the ability to metabolize acetone at the onset of the assay but gained the ability to do so in a time-dependent fashion. Chloramphenicol and rifampin prevented the time-dependent increase in this acti...

  11. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    Science.gov (United States)

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  12. (RS-Efonidipine acetone hemisolvate

    Directory of Open Access Journals (Sweden)

    Yu-Heng Liu

    2016-09-01

    Full Text Available The asymmetric unit of the title compound, C34H38N3O7P·0.5C3H6O {systematic name: (RS-2-[phenyl(phenylmethylamino]ethyl 5-(5,5-dimethyl-2-oxo-1,3-dioxa-2λ5-phosphacyclohex-2-yl-2,6-dimethyl-4-(3-nitrophenyl-1,4-dihydropyridine-3-carboxylate acetone hemisolvate}, contains one R-efonidipine molecule, one S-efonidipine molecule and half of a solvate acetone molecule. In both efonidipine molecules, the six-membered rings of the dioxaphosphinanyl moieties display a chair conformation and the dihydropyridine rings display a flattened boat conformation. In the crystal, N—H...O, C—H...O hydrogen bonds and weak C—H...π interactions link the molecules into a three-dimensional supramolecular structure. A solvent-accessible void of 199 Å3 is found in the structure; the contribution of the heavily disordered solvate molecule was suppressed by use of the SQUEEZE routine in PLATON [Spek (2015. Acta Cryst. C71, 9–18].

  13. Mass Spectrometry of Intact Proteins Reveals +98 u Chemical Artifacts Following Precipitation in Acetone.

    Science.gov (United States)

    Güray, Melda Z; Zheng, Shi; Doucette, Alan A

    2017-02-03

    Protein precipitation in acetone is frequently employed ahead of mass spectrometry for sample preconcentration and purification. Unfortunately, acetone is not chemically inert; mass artifacts have previously been observed on glycine-containing peptides when exposed to acetone under acidic conditions. We herein report a distinct chemical modification occurring at the level of intact proteins when incubated in acetone. This artifact manifests as one or more satellite peaks in the MS spectrum of intact protein, spaced 98 u above the mass of the unmodified protein. Other artifacts (+84, +112 u) also appear upon incubation of proteins or peptides in acetone. The reaction is pH-sensitive, being suppressed when proteins are exposed to acetone under acidic conditions. The +98 u artifact is speculated to originate through an intermediate product of aldol condensation of acetone to form diacetone alcohol and mesityl oxide. A +98 u product could originate from nucleophilic attack on mesityl oxide or through condensation with diacetone alcohol. Given the extent of modification possible upon exposure of proteins to acetone, particularly following overnight solvent exposure or incubation at room temperature, an awareness of the variables influencing this novel modification is valued by proteomics researchers who employ acetone precipitation for protein purification.

  14. Solvent (acetone-butanol: ab) production

    Science.gov (United States)

    This article describes production of butanol [acetone-butanol-ethanol, (also called AB or ABE or solvent)] by fermentation using both traditional and current technologies. AB production from agricultural commodities, such as corn and molasses, was an important historical fermentation. Unfortunately,...

  15. Evolution of carbon nanotube dispersion in preparation of epoxy-based composites: From a masterbatch to a nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Aravand

    2014-08-01

    Full Text Available The state of carbon nanotube (CNT dispersion in epoxy is likely to change in the process of composite production. In the present work CNT dispersion is characterized at different stages of nanocomposite preparation: in the original masterbatch with high CNT concentration, after masterbatch dilution, in the process of curing and in the final nanocomposite. The evaluation techniques included dynamic rheological analysis of the liquid phases, optical, environmental and charge contrast scanning electron microscopy, electrochemical impedance spectroscopy and dynamic mechanical analysis. The evolution of the CNT dispersion was assessed for two CNT/epoxy systems with distinctly different dispersion states induced by different storage time. Strong interactions between CNT clusters were revealed in the masterbatch with a longer storage time. Upon curing CNT clusters in this material formed a network-like structure. This network enhanced the elastic behaviour and specific conductivity of the resulting nanocomposite, leading to a partial electrical percolation after curing.

  16. Human sensory response to acetone/air mixtures.

    Science.gov (United States)

    Salthammer, T; Schulz, N; Stolte, R; Uhde, E

    2016-10-01

    The release of organic compounds from building products may influence the perceived air quality in the indoor environment. Consequently, building products are assessed for chemical emissions and for the acceptability of emitted odors. A procedure for odor evaluations in test chambers is described by the standard ISO 16000-28. A panel of eight or more trained subjects directly determines the perceived intensity Π (unit pi) of an air sample via diffusers. For the training of the panelists, a comparative Π-scale is applied. The panelists can use acetone/air mixtures in a concentration range between 20 mg/m(3) (0 pi) and 320 mg/m(3) (15 pi) as reference. However, the training and calibration procedure itself can substantially contribute to the method uncertainty. This concerns the assumed odor threshold of acetone, the variability of panelist responses, and the analytical determination of acetone concentrations in air with online methods as well as the influence of the diffuser geometry and the airflow profile. © 2015 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  17. On the adsorption/reaction of acetone on pure and sulfate-modified zirconias.

    Science.gov (United States)

    Crocellà, Valentina; Cerrato, Giuseppina; Morterra, Claudio

    2013-08-28

    In situ FTIR spectroscopy was employed to investigate some aspects of the ambient temperature (actually, IR-beam temperature) adsorption of acetone on various pure and sulfate-doped zirconia specimens. Acetone uptake yields, on all examined systems and to a variable extent, different types of specific molecular adsorption, depending on the kind/population of available surface sites: relatively weak H-bonding interaction(s) with surface hydroxyls, medium-strong coordinative interaction with Lewis acidic sites, and strong H-bonding interaction with Brønsted acidic centres. Moreover acetone, readily and abundantly adsorbed in molecular form, is able to undergo the aldol condensation reaction (yielding, as the main reaction product, adsorbed mesityl oxide) only if the adsorbing material possesses some specific surface features. The occurrence/non-occurrence of the acetone self-condensation reaction is discussed, and leads to conclusions concerning the sites that catalyze the condensation reaction that do not agree with either of two conflicting interpretations present in the literature of acetone uptake/reaction on, mainly, zeolitic systems. In particular, what turns out to be actually necessary for the acetone aldol condensation reaction to occur on the examined zirconia systems is the presence of coordinatively unsaturated O(2-) surface sites of basicity sufficient to lead to the extraction of a proton from one of the CH3 groups of adsorbed acetone.

  18. Breath acetone monitoring by portable Si:WO3 gas sensors

    Science.gov (United States)

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2013-01-01

    Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (~20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques. PMID:22790702

  19. Home-made Detection Device for a Mixture of Ethanol and Acetone

    Directory of Open Access Journals (Sweden)

    Sukon Phanichphant

    2007-02-01

    Full Text Available A device for the detection and determination of ethanol and acetone wasconstructed, consisting of a packed column, a chamber with a sensor head, 2 dc powersupplies, a multimeter and a computer. A commercially available TGS 822 detector head(Figaro Company Limited was used as the sensor head. The TGS 822 detector consists of aSnO2 thick film deposited on the surface of an alumina ceramic tube which contains aheating element inside. An analytical column was coupled with the setup to enhance theseparation of ethanol and acetone before they reached the sensor head. Optimum systemconditions for detection of ethanol and acetone were achieved by varying the flow rate of thecarrier gas, voltage of the heating coil (VH, voltage of the circuit sensor (VC, loadresistance of the circuit sensor (RL and the injector port temperature. The flow of the carriergas was 15 mL/min; the circuit conditions were VH = 5.5 V, VC = 20 V, RL = 68 k ; and theinjection port temperature was 150°C. Under these conditions the retention times (tR forethanol and acetone were 1.95 and 0.57 minutes, respectively. Calibration graphs wereobtained for ethanol and acetone over the concentration range of 10 to 160 mg/L. The limitsof detection (LOD for ethanol and acetone were 9.25 mg/L and 4.41 mg/L respectively.

  20. Surface treated fly ash filled modified epoxy composites

    Directory of Open Access Journals (Sweden)

    Uma Dharmalingam

    2015-01-01

    Full Text Available Abstract Fly ash, an inorganic alumino silicate has been used as filler in epoxy matrix, but it reduces the mechanical properties due to its poor dispersion and interfacial bonding with the epoxy matrix. To improve its interfacial bonding with epoxy matrix, surface treatment of fly ash was done using surfactant sodium lauryl sulfate and silane coupling agent glycidoxy propyl trimethoxy silane. An attempt is also made to reduce the particle size of fly ash using high pressure pulverizer. To improve fly ash dispersion in epoxy matrix, the epoxy was modified by mixing with amine containing liquid silicone rubber (ACS. The effect of surface treated fly ash with varying filler loadings from 10 to 40% weight on the mechanical, morphological and thermal properties of modified epoxy composites was investigated. The surface treated fly ash was characterized by particle size analyzer and FTIR spectra. Morphological studies of surface treated fly ash filled modified epoxy composites indicate good dispersion of fillers in the modified epoxy matrix and improves its mechanical properties. Impact strength of the surface treated fly ash filled modified epoxy composites show more improvement than unmodified composites.

  1. Effect of the hardener to epoxy monomer ratio on the water absorption behavior of the DGEBA/TETA epoxy system

    Directory of Open Access Journals (Sweden)

    Ayrton Alef Castanheira Pereira

    2016-02-01

    Full Text Available Abstract The water absorption behavior of the DGEBA/TETA epoxy system was evaluated as a function of the epoxy monomer to amine hardener ratio. Weight gain versus immersion time curves were obtained and the experimental points were fitted using Fickian and Non-Fickian diffusion models. The results obtained showed that for all epoxy monomer to hardener ratios analyzed water diffusion followed non-Fickian behavior. It was possible to correlate the water absorption behavior to the macromolecular structure developed when the epoxy/ hardener ratio was varied. All epoxy/hardener ratios present a two-phase macromolecular structure, composed of regions with high crosslink density and regions with lower crosslinking. Epoxy rich systems have a more open macromolecular structure with a lower fraction of the dense phase than the amine rich systems, which present a more compact two-phase structure.

  2. The application of epoxy resin coating in grounding grid

    Science.gov (United States)

    Hu, Q.; Chen, Z. R.; Xi, L. J.; Wang, X. Y.; Wang, H. F.

    2018-01-01

    Epoxy resin anticorrosion coating is widely used in grounding grid corrosion protection because of its wide range of materials, good antiseptic effect and convenient processing. Based on the latest research progress, four kinds of epoxy anticorrosive coatings are introduced, which are structural modified epoxy coating, inorganic modified epoxy coating, organic modified epoxy coating and polyaniline / epoxy resin composite coating. In this paper, the current research progress of epoxy base coating is analyzed, and prospected the possible development direction of the anti-corrosion coating in the grounding grid, which provides a reference for coating corrosion prevention of grounding materials.

  3. Inhibitory and bactericidal potential of crude acetone extracts of Combretum molle (Combretaceae) on drug-resistant strains of Helicobacter pylori.

    Science.gov (United States)

    Njume, Collise; Afolayan, Anthony J; Samie, Amidou; Ndip, Roland N

    2011-10-01

    Infection with Helicobacter pylori is strongly associated with a number of gastroduodenal pathologies. Antimicrobial resistance to commonly-used drugs has generated a considerable interest in the search for novel therapeutic compounds from medicinal plants. As an ongoing effort of this search, the susceptibility of 32 clinical strains of H. pylori and a reference strain-NCTC 11,638-was evaluated against five solvent extracts of Combretum molle, a plant widely used for the treatment of gastric ulcers and other stomach-related morbidities in South Africa. The extracts were screened for activity by the agar-well diffusion method, and the most active one of them was tested against the same strains by micro-broth dilution and time kill assays. Metronidazole and amoxicillin were included in these experiments as positive control antibiotics. The solvent extracts all demonstrated anti-H. pylori activity with zone diameters of inhibition between 0 and 38 mm. The most potent anti-H. pylori activity was demonstrated by the acetone extract, to which 87.5% of the clinical strains were susceptible. The minimum inhibitory concentration (MIC90) values for this extract ranged from 1.25 to 5.0 mg/mL while those for amoxicillin and metronidazole ranged from 0.001 to 0.94 mg/mL and from 0.004 to 5.0 mg/mL respectively. The acetone extract was highly bactericidal at a concentration of 2.5 and 5.0 mg/mL, with complete elimination of the test organisms in 24 hours. Its inhibitory activity was better than that of metronidazole (pmolle may contain therapeutically-useful compounds against H. pylori, which are mostly concentrated in the acetone extract.

  4. Carbonylation as a key reaction in anaerobic acetone activation by Desulfococcus biacutus.

    Science.gov (United States)

    Gutiérrez Acosta, Olga B; Hardt, Norman; Schink, Bernhard

    2013-10-01

    Acetone is activated by aerobic and nitrate-reducing bacteria via an ATP-dependent carboxylation reaction to form acetoacetate as the first reaction product. In the activation of acetone by sulfate-reducing bacteria, acetoacetate has not been found to be an intermediate. Here, we present evidence of a carbonylation reaction as the initial step in the activation of acetone by the strictly anaerobic sulfate reducer Desulfococcus biacutus. In cell suspension experiments, CO was found to be a far better cosubstrate for acetone activation than CO2. The hypothetical reaction product, acetoacetaldehyde, is extremely reactive and could not be identified as a free intermediate. However, acetoacetaldehyde dinitrophenylhydrazone was detected by mass spectrometry in cell extract experiments as a reaction product of acetone, CO, and dinitrophenylhydrazine. In a similar assay, 2-amino-4-methylpyrimidine was formed as the product of a reaction between acetoacetaldehyde and guanidine. The reaction depended on ATP as a cosubstrate. Moreover, the specific activity of aldehyde dehydrogenase (coenzyme A [CoA] acylating) tested with the putative physiological substrate was found to be 153 ± 36 mU mg(-1) protein, and its activity was specifically induced in extracts of acetone-grown cells. Moreover, acetoacetyl-CoA was detected (by mass spectrometry) after the carbonylation reaction as the subsequent intermediate after acetoacetaldehyde was formed. These results together provide evidence that acetoacetaldehyde is an intermediate in the activation of acetone by sulfate-reducing bacteria.

  5. Contact allergy to epoxy (meth)acrylates.

    Science.gov (United States)

    Aalto-Korte, Kristiina; Jungewelter, Soile; Henriks-Eckerman, Maj-Len; Kuuliala, Outi; Jolanki, Riitta

    2009-07-01

    Contact allergy to epoxy (meth)acrylates, 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]propane (bis-GMA), 2,2-bis[4-(2-hydroxy-3-acryloxypropoxy)phenyl]-propane (bis-GA), 2,2-bis[4-(methacryl-oxyethoxy)phenyl] propane (bis-EMA), 2,2-bis[4-(methacryloxy)phenyl]-propane (bis-MA), and glycidyl methacrylate (GMA) is often manifested together with contact allergy to diglycidyl ether of bisphenol A (DGEBA) epoxy resin. To analyse patterns of concomitant allergic reactions to the five epoxy (meth)acrylates in relation to exposure. We reviewed the 1994-2008 patch test files at the Finnish Institute of Occupational Health (FIOH) for reactions to the five epoxy (meth)acrylates, and examined the patients' medical records for exposure. Twenty-four patients had an allergic reaction to at least one of the studied epoxy (meth)acrylates, but specific exposure was found only in five patients: two bis-GMA allergies from dental products, two bis-GA allergies from UV-curable printing inks, and one bis-GA allergy from an anaerobic glue. Only 25% of the patients were negative to DGEBA epoxy resin. The great majority of allergic patch test reactions to bis-GMA, bis-GA, GMA and bis-EMA were not associated with specific exposure, and cross-allergy to DGEBA epoxy resin remained a probable explanation. However, independent reactions to bis-GA indicated specific exposure. Anaerobic sealants may induce sensitization not only to aliphatic (meth)acrylates but also to aromatic bis-GA.

  6. Design of carbon nanofiber embedded conducting epoxy resin

    International Nuclear Information System (INIS)

    Gantayat, Subhra; Sarkar, Niladri; Rout, Dibyaranjan; Swain, Sarat K.

    2017-01-01

    Acid treated carbon nanofiber (t-CNF) reinforced epoxy nanocomposites were fabricated by hand lay-up method with various wt % of t-CNF loadings. Pristine or unmodified carbon nano fibers (u-CNFs) were made compatible with epoxy matrix by means of mixed acid treatment. Fabricated nanocomposites were characterized with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) study, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Mechanical and thermal properties of the nanocomposites were measured as a function of t-CNF content. Effect of acid treated CNFs on to the mechanical properties of epoxy nanocomposites was justified by comparing the mechanical properties of epoxy/t-CNF and epoxy/u-CNF nanocomposites with same loading level. The electrical conductivity was achieved by epoxy resin with a threshold at 1 wt % of t-CNF. Substantial improvement in thermal, mechanical and electrical properties of the synthesized epoxy/t-CNF nanocomposites may be suitable for fabricating electronic devices. - Highlights: • Epoxy/t-CNF nanocomposites are characterized by XRD, FTIR, SEM, AFM and TEM. • Electrical conductivity was achieved by epoxy with a threshold at 1 wt% of t-CNF. • Tensile strength is enhanced by 40% due to dispersion of t-CNF. • Synthesized nanocomposites are suitable for fabricating electronic devises.

  7. Design of carbon nanofiber embedded conducting epoxy resin

    Energy Technology Data Exchange (ETDEWEB)

    Gantayat, Subhra [Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha (India); School of Applied Sciences, KIIT University, Bhubaneswar 751024, Odisha (India); Sarkar, Niladri [Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha (India); Rout, Dibyaranjan [School of Applied Sciences, KIIT University, Bhubaneswar 751024, Odisha (India); Swain, Sarat K., E-mail: swainsk2@yahoo.co.in [Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha (India)

    2017-01-15

    Acid treated carbon nanofiber (t-CNF) reinforced epoxy nanocomposites were fabricated by hand lay-up method with various wt % of t-CNF loadings. Pristine or unmodified carbon nano fibers (u-CNFs) were made compatible with epoxy matrix by means of mixed acid treatment. Fabricated nanocomposites were characterized with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) study, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Mechanical and thermal properties of the nanocomposites were measured as a function of t-CNF content. Effect of acid treated CNFs on to the mechanical properties of epoxy nanocomposites was justified by comparing the mechanical properties of epoxy/t-CNF and epoxy/u-CNF nanocomposites with same loading level. The electrical conductivity was achieved by epoxy resin with a threshold at 1 wt % of t-CNF. Substantial improvement in thermal, mechanical and electrical properties of the synthesized epoxy/t-CNF nanocomposites may be suitable for fabricating electronic devices. - Highlights: • Epoxy/t-CNF nanocomposites are characterized by XRD, FTIR, SEM, AFM and TEM. • Electrical conductivity was achieved by epoxy with a threshold at 1 wt% of t-CNF. • Tensile strength is enhanced by 40% due to dispersion of t-CNF. • Synthesized nanocomposites are suitable for fabricating electronic devises.

  8. Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone.

    Science.gov (United States)

    Zheng, Ying; Chen, Zhuo; Zheng, Chengbin; Lee, Yong-Ill; Hou, Xiandeng; Wu, Li; Tian, Yunfei

    2016-08-01

    A facile method was developed for determination of trace volatile acetone by coupling a derivatization reaction to surface-enhanced Raman scattering (SERS). With iodide modified Ag nanoparticles (Ag IMNPs) as the SERS substrate, acetone without obvious Raman signal could be converted to SERS-sensitive species via a chemical derivatization reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH). In addition, acetone can be effectively separated from liquid phase with a purge-sampling device and then any serious interference from sample matrices can be significantly reduced. The optimal conditions for the derivatization reaction and the SERS analysis were investigated in detail, and the selectivity and reproducibility of this method were also evaluated. Under the optimal conditions, the limit of detection (LOD) for acetone was 5mgL(-1) or 0.09mM (3σ). The relative standard deviation (RSD) for 80mgL(-1) acetone (n=9) was 1.7%. This method was successfully used for the determination of acetone in artificial urine and human urine samples with spiked recoveries ranging from 92% to 110%. The present method is convenient, sensitive, selective, reliable and suitable for analysis of trace acetone, and it could have a promising clinical application in early diabetes diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Thermo-curable epoxy systems for nanoimprint lithography

    International Nuclear Information System (INIS)

    Wu, Chun-Chang; Hsu, Steve Lien-Chung

    2010-01-01

    In this work, we have used solvent-free thermo-curable epoxy systems for low-pressure and moderate-temperature nanoimprint lithography (NIL). The curing kinetic parameters and conversion of diglycidyl ether of bisphenol A (DGEBA) resin with different ambient-cure 930 and 954 hardeners were studied by the isothermal DSC technique. They are useful for the study of epoxy resins in the imprinting application. The DGEBA/930 and DGEBA/954 epoxy resists can be imprinted to obtain high-density nano- and micro-scale patterns on a flexible indium tin oxide/poly(ethylene terephthalate) (ITO/PET) substrate. The DGEBA/930 epoxy resin is not only suitable for resist material, but also for plastic mold material. Highly dense nanometer patterns can be successfully imprinted using a UV-curable resist from the DGEBA/930 epoxy mold. Using the replicated DGEBA/930 epoxy mold instead of the expensive master can prevent brittle failure of the silicon molds in the NIL

  10. Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 4-methyl-N-butyl-pyridinium bis(trifluoromethylsulfonyl)-imide

    Energy Technology Data Exchange (ETDEWEB)

    Domanska, Urszula [Physical Chemistry Department, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland)], E-mail: ula@ch.pw.edu.pl; Marciniak, Andrzej [Physical Chemistry Department, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland)

    2009-12-15

    The activity coefficients at infinite dilution, {gamma}{sub 13}{sup {infinity}} for 36 solutes: alkanes, cycloalkanes, alkenes, alkynes, aromatic hydrocarbons, alcohols, thiophene, tetrahydrofuran, ethers, acetone, and water in the ionic liquid 4-methyl-N-butyl-pyridinium bis(trifluoromethylsulfonyl)-imide [bmPY][NTf{sub 2}] were determined by gas-liquid chromatography at temperatures from 298.15 K to 368.15 K. The partial molar excess enthalpies at infinite dilution values {delta}H{sub 1}{sup E,{infinity}} were calculated from the experimental {gamma}{sub 13}{sup {infinity}} values obtained over the temperature range. The selectivity for different separation problems were calculated from the {gamma}{sub 13}{sup {infinity}} and compared to the literature values for other ionic liquids, N-methyl-2-pyrrolidinone (NMP) and sulfolane.

  11. Evaluation of acetone vapors toxicity on Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae) eggs.

    Science.gov (United States)

    Pourmirza, Ali Asghr; Nasab, Fershteh Sadeghi; Zadeh, Abas Hossein

    2007-08-01

    The efficacy of acetone vapors against carefully aged eggs of Plodia interpunctella (Hubner) at 17+/-1 and 27+/-1 degrees C at different dosage levels of acetone over various exposure times was determined. Acetone was found to be toxic to Indian meal moth eggs. Considerable variation in the susceptibility of different age groups of eggs was apparent in the fiducial limits of the LD50 values. An inverse relationship between LD50 values and exposure times was observed in age groups of tested eggs. At 27+/-1 degrees C and 24 h exposure period, eggs aged 1-2 day-old were more tolerant to acetone than other age groups, followed by 0-1 day-old, 2-3 day-old and 3-4 day-old eggs. A similar pattern of susceptibility of eggs was observed at 72 h exposure. In all bioassays, eggs exposed to higher dosages of acetone developed at smaller rate. This was significant for the eggs, which were exposed to the highest dosage for 24 h. Increasing the temperature from 17+/-1 to 27+/-1 degrees C greatly increased the efficacy of acetone. At 27+/-1 degrees C eggs of P. interpunctella were killed by less than one-third of the dosage required for control at 17+/-1 degrees C. Acetone achieved 50% mortality with a dosage of 82.76 mg L(-1) in 1-2 day-old eggs at 27+/-1 degrees C. At this temperature hatching was retarded and greatly diminished when eggs aged 1-2 day-old were exposed to 80 mg L(-1) of acetone for the 24 h exposure period. There was no evidence of a hatch delay longer than the time spent under vapors for eggs exposed at 17+/-1 or 27+/-1 degrees C, indicating that some development must have occurred under fumigation.

  12. Weak carbonyl-methyl intermolecular interactions in acetone clusters explored by IR plus VUV spectroscopy

    International Nuclear Information System (INIS)

    Guan, Jiwen; Hu, Yongjun; Xie, Min; Bernstein, Elliot R.

    2012-01-01

    Highlights: ► The carbonyl overtone of acetone clusters is observed by IR-VUV spectroscopy. ► Acetone molecules in the dimer are stacked with an antiparallel way. ► The structure of the acetone trimer and the tetramer are the cyclic structures. ► The carbonyl groups would interact with the methyl groups in acetone clusters. ► These weak interactions are further confirmed by H/D substitution experiment. -- Abstract: Size-selected IR–VUV spectroscopy is employed to detect vibrational characteristics in the region 2850 ∼ 3550 cm −1 of neutral acetone and its clusters (CH 3 COCH 3 ) n (n = 1–4). Features around 3440 cm −1 in the spectra of acetone monomer and its clusters are assigned to the carbonyl stretch (CO) overtone. These features red-shift from 3455 to 3433 cm −1 as the size of the clusters increases from the monomer to the tetramer. Based on calculations, the experimental IR spectra in the C=O overtone region suggest that the dominant structures for the acetone trimer and tetramer should be cyclic in the supersonic expansion sample. This study also suggests that the carbonyl groups interact with the methyl groups in the acetone clusters. These weak interactions are further confirmed by the use of deuterium substitution.

  13. Fatigue life extension of epoxy materials using ultrafast epoxy-SbF5 healing system introduced by manual infiltration

    Directory of Open Access Journals (Sweden)

    X. J. Ye

    2015-03-01

    Full Text Available The present paper is devoted to the verification of the capability of epoxy-SbF5 system as a healing chemistry for rapidly retarding and/or arresting fatigue cracks in epoxy materials at room temperature. Owing to the very fast curing speed of epoxy catalyzed by SbF5, epoxy monomer and the hardener (ethanol solution of SbF5–ethanol complex are successively infiltrated into the fracture plane under cyclic loading during the tension-tension fatigue test. As a result, the mechanisms including hydrodynamic pressure crack tip shielding, polymeric wedge and adhesive bonding of the healing agent are revealed. It is found that the healing agent forms solidified wedge at the crack tip within 20 s after start of polymerization of the epoxy monomer, so that the highest healing effect is offered at the moment. The epoxy-SbF5 system proves to be effective in rapidly obstructing fatigue crack propagation (despite that its cured version has lower fracture toughness than the matrix, and satisfies the requirement of constructing fast self-healing polymeric materials.

  14. Solvents (butanol, acetone, and ethanol)

    Energy Technology Data Exchange (ETDEWEB)

    Yarovenko, V L; Nakhmanovich, B M

    1963-07-17

    The method involves use of carbohydrate containing plant raw-material, e.g., hydrolyzates of corn cob and pulp. The material is subjected to fermentation with acetone-butanol bacteria with addition of starch-industry wastes as source of proteins (gluten and gluten-containing water) and nutrient salts.

  15. Design and Analysis of Drive Shaft using Kevlar/Epoxy and Glass/Epoxy as a Composite Material

    Science.gov (United States)

    Karthikeyan, P.; Gobinath, R.; Kumar, L. Ajith; Jenish, D. Xavier

    2017-05-01

    In automobile industry drive shaft is one of the most important components to transmit power form the engine to rear wheel through the differential gear. Generally steel drive shaft is used in automobile industry, nowadays they are more interested to replace steel drive shaft with that of composite drive shaft. The overall objective of this paper is to analyze the composite drive shaft using to find out the best replacement for conventional steel drive shaft. The uses of advanced composite materials such as Kevlar, Graphite, Carbon and Glass with proper resins ware resulted in remarkable achievements in automobile industry because of its greater specific strength and specific modulus, improved fatigue and corrosion resistances and reduction in energy requirements due to reduction in weight as compared to steel shaft. This paper is to presents, the modeling and analysis of drive shaft using Kevlar/Epoxy and Glass/Epoxy as a composite material and to find best replacement for conventional steel drive shafts with an Kevlar/epoxy or Glass/Epoxy resin composite drive shaft. Modeling is done using CATIA software and Analysis is carried out by using ANSYS 10.0 software for easy understanding. The composite drive shaft reduces the weight by 81.67 % for Kevlar/Epoxy and 72.66% for Glass/Epoxy when compared with conventional steel drive shaft.

  16. Comparison of structural health assessment capabilities in epoxy – carbon black and epoxy – carbon nanotube nanocomposites

    Directory of Open Access Journals (Sweden)

    F. Inam

    2014-01-01

    Full Text Available A novel method for comparing structural health of different types of brittle epoxy nanocomposites filled with carbon nanostructured fillers is presented. Epoxy – 0.2 vol% carbon black (CB and epoxy – 0.2 vol% carbon nanotube (CNT nanocomposite bars were prepared by calendering and thermal curing. Nanocomposite bars were subjected to Vickers diamond indentation to produce sub-surface damage. Electrical conductivities were analysed by 4-point method to estimate the structural damage caused by indentation. For comprehensive comparison, fracture toughness and percolation threshold were analysed as well. Because of the systematically induced indentation damage, a sharp decrease of 89% was observed in the electrical conductivity of epoxy – CNT nanocomposite as compared to 25% in the electrical conductivity of epoxy – CB nanocomposite. CNTs impart superior damage sensing capability in brittle nanocomposite structures, in comparison to CB, due to their high aspect ratio (fibrous nature and high electrical conductivity.

  17. Fermentation and genomic analysis of acetone-uncoupled butanol production by Clostridium tetanomorphum.

    Science.gov (United States)

    Gong, Fuyu; Bao, Guanhui; Zhao, Chunhua; Zhang, Yanping; Li, Yin; Dong, Hongjun

    2016-02-01

    In typical acetone-butanol-ethanol (ABE) fermentation, acetone is the main by-product (50 % of butanol mass) of butanol production, resulting in a low yield of butanol. It is known that some Clostridium tetanomorphum strains are able to produce butanol without acetone in nature. Here, we described that C. tetanomorphum strain DSM665 can produce 4.16 g/L butanol and 4.98 g/L ethanol at pH 6.0, and 9.81 g/L butanol and 1.01 g/L ethanol when adding 1 mM methyl viologen. Butyrate and acetate could be reassimilated and no acetone was produced. Further analysis indicated that the activity of the acetate/butyrate:acetoacetyl-CoA transferase responsible for acetone production is lost in C. tetanomorphum DSM665. The genome of C. tetanomorphum DSM665 was sequenced and deposited in DDBJ, EMBL, and GenBank under the accession no. APJS00000000. Sequence analysis indicated that there are no typical genes (ctfA/B and adc) that are typically parts of an acetone synthesis pathway in C. tetanomorphum DSM665. This work provides new insights in the mechanism of clostridial butanol production and should prove useful for the design of a high-butanol-producing strain.

  18. Fracture behavior of α-zirconium phosphate-based epoxy nanocomposites

    International Nuclear Information System (INIS)

    Sue, H.-J.; Gam, K.T.; Bestaoui, N.; Clearfield, A.; Miyamoto, M.; Miyatake, N.

    2004-01-01

    The fracture behaviors of α-zirconium phosphate (α-ZrP) based epoxy nanocomposites, with and without core-shell rubber (CSR) toughening, were investigated. The state of exfoliation and dispersion of α-ZrP nanofiller in epoxy were characterized using X-ray scattering and various microscopy tools. The level of enhancement in storage moduli of epoxy nanocomposite against neat epoxy is found to depend on the state of exfoliation of α-ZrP as well as the damping characteristics of the epoxy matrix. The fracture process in epoxy nanocomposite is dominated by preferred crack propagation along the weak intercalated α-ZrP interfaces, and the presence of α-ZrP does not alter the fracture toughness of the epoxy matrix. However, the toughening using CSR can significantly improve the fracture toughness of the nanocomposite. The fracture mechanisms responsible for such a toughening effect in CSR-toughened epoxy nanocomposite are rubber particle cavitation, followed by shear banding of epoxy matrix. The ductility and toughenability of epoxy do not appear to be affected by the incorporation of α-ZrP. Approaches for producing toughened high performance polymer nanocomposites are discussed

  19. An isotope dependent study of acetone in its lowest excited triplet state

    International Nuclear Information System (INIS)

    Gehrtz, M.; Brauchle, C.; Voitlaender, J.

    1984-01-01

    The lowest excited triplet state T 1 of acetone-h 6 and acetone-d 6 was investigated with a pulsed dye laser equipped ODMR spectrometer. Acetone is found to be bent in T 1 and the out-of-plane distortion angle is estimated to be approx.= 38 0 . The observed zero-field splitting (ZFS) is surprisingly small. Both the spin-spin and the spin-orbit (SO) contribution to the ZFS are evaluated. The SO tensor contribution is calculated from a correlation between the deuterium effects on the ZFS parameters and the population rates. The sub-level selective kinetics of the acetone T 1 is largely determined by the mixing of the x- and z-level characteristics owing to magnetic axis rotation caused by the excited state out-of-plane distortion. Considerable deuterium effects are observed on the kinetic data and on the microwave transition frequencies. In all cases the spin-specific isotope effects (due to the promoting modes) and the global effects (due to the Franck-Condon factors) are specified. For the population rates and the SO contribution to ZFS, the inverse global isotope effects (deuterium factor > 1) was found for the first time. Based on the isotope dependence of the rates, the mechanisms of (vibrationally induced) SO coupling in acetone are discussed. It is concluded that non-adiabatic contributions have to be taken into account for the smallest population rate only, but that otherwise the adiabatic SO coupling mechanisms by far dominates in the acetone photophysics. (author)

  20. Environmental Degradation and Durability of Epoxy-Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Raman P. Singh

    2010-01-01

    Full Text Available This experimental investigation reports on the durability of epoxy-clay nanocomposites upon exposure to multiple environments. Nanocomposites are fabricated by mixing the clay particles using various combinations of mechanical mixing, high-shear dispersion, and ultrasonication. Clay morphology is characterized using X-ray diffraction and transmission electron microscopy. Specimens of both neat epoxy and the epoxy-clay nanocomposite are subjected to two environmental conditions: combined UV radiation and condensation on 3-hour repeat cycle and constant temperature-humidity, for a total exposure duration of 4770 hours. The presence of nanoscale clay inhibits moisture uptake, as demonstrated by exposure to constant temperature-humidity. Nonetheless, both materials lose mass under exposure to combined UV radiation and condensation due to the erosion of epoxy by a synergistic process. Surprisingly, the epoxy-clay specimens exhibit greater mass loss, as compared to neat epoxy. Mechanical testing shows that either environment does not significant affect the flexure modulus of either material. On the other hand, both materials undergo degradation in flexural strength when exposed to either environment. However, the epoxy-clay nanocomposite retains 37% more flexure strength than the neat epoxy after 4072 hours of exposure.

  1. Environmental Degradation and Durability of Epoxy-Clay Nanocomposites

    International Nuclear Information System (INIS)

    Singh, R.P.; Zunjarrao, S.C.; Pandey, G.; Khait, M.; Korach, C.S.

    2010-01-01

    This experimental investigation reports on the durability of epoxy-clay nanocomposites upon exposure to multiple environments. Nanocomposites are fabricated by mixing the clay particles using various combinations of mechanical mixing, high-shear dispersion, and ultrasonication. Clay morphology is characterized using X-ray diffraction and transmission electron microscopy. Specimens of both neat epoxy and the epoxy-clay nanocomposite are subjected to two environmental conditions: combined UV radiation and condensation on 3-hour repeat cycle and constant temperature-humidity, for a total exposure duration of 4770 hours. The presence of nanoscale clay inhibits moisture uptake, as demonstrated by exposure to constant temperature-humidity. Nonetheless, both materials lose mass under exposure to combined UV radiation and condensation due to the erosion of epoxy by a synergistic process. Surprisingly, the epoxy-clay specimens exhibit greater mass loss, as compared to neat epoxy. Mechanical testing shows that either environment does not significant affect the flexure modulus of either material. On the other hand, both materials undergo degradation in flexural strength when exposed to either environment. However, the epoxy-clay nanocomposite retains 37% more flexure strength than the neat epoxy after 4072 hours of exposure.

  2. Fate of acetone in an outdoor model stream in southern Mississippi, U.S.A.

    Science.gov (United States)

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.; Tai, D.Y.

    1988-01-01

    The fate of acetone in water was investigated in an outdoor model stream located in southern Mississippi, U.S.A. Acetone was injected continuously for 32 days resulting in small milligram-perliter concentrations in the stream. Rhodamine-WT dye was injected at the beginning and at the end of the study to determine the time-of-travel and dispersion characteristics of the stream. A 12-h injection of t-butyl alcohol (TBA) was used to determine the volatilization characteristics of the stream. Volatilization controlled the acetone concentration in the stream. Significant bacterial degradation of acetone did not occur, contrary to expectations based on previous laboratory studies. Attempts to induce degradation of the acetone by injecting glucose and a nutrient solution containing bacteria acclimated to acetone were unsuccessful. Possible explanations for the lack of bacterial degradation included a nitrate limitation and a limited residence time in the stream system. ?? 1988.

  3. Occupational exposure to epoxy resins

    NARCIS (Netherlands)

    Terwoert, J.; Kersting, K.

    2014-01-01

    Products based on epoxy resins as a binder have become popular in various settings, among which the construction industry and in windmill blade production, as a result of their excellent technical properties. However, due to the same properties epoxy products are a notorious cause of allergic skin

  4. Comparison of structural health assessment capabilities in epoxy – carbon black and epoxy – carbon nanotube nanocomposites

    OpenAIRE

    F. Inam; B. R. Bhat; N. Luhyna; T. Vo

    2014-01-01

    A novel method for comparing structural health of different types of brittle epoxy nanocomposites filled with carbon nanostructured fillers is presented. Epoxy – 0.2 vol% carbon black (CB) and epoxy – 0.2 vol% carbon nanotube (CNT) nanocomposite bars were prepared by calendering and thermal curing. Nanocomposite bars were subjected to Vickers diamond indentation to produce sub-surface damage. Electrical conductivities were analysed by 4-point method to estimate the structural damage caused by...

  5. Performance of Cr-doped ZnO for acetone sensing

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hardan, N.H., E-mail: naif_imen@ukm.my [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Abdullah, M.J.; Aziz, A. Abdul [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2013-04-01

    Zinc oxide (ZnO) doped with chromium (Cr) was synthesized by reactive co-sputtering for gas sensing applications. The effect of varying the contents of Cr (from 1 to 4 at%) on the ZnO gas sensor response was studied. X-ray diffraction analysis reveals the high orientation of c-axis of the prepared films. The optimum operating temperature of the undoped ZnO was 400 °C and shifted to 300 °C for the Cr-doped ZnO under the acetone vapour. The 1% Cr doping ZnO gas sensor was most sensitive for the acetone vapour. The ability of the 1% Cr-doped ZnO to produce repeatable results under different acetone vapour concentrations was tested. The timing properties of the doped Cr ZnO gas sensor were 70 and 95 s for the rise and recovery time respectively.

  6. Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers.

    Science.gov (United States)

    Zhao, Shou; Abu-Omar, Mahdi M

    2015-07-13

    Biobased epoxy nanocomposites were synthesized based on 2-methoxy-4-propylphenol (dihydroeugenol, DHE), a molecule that has been obtained from the lignin component of biomass. To increase the content of hydroxyl groups, DHE was o-demethylated using aqueous HBr to yield propylcatechol (DHEO), which was subsequently glycidylated to epoxy monomer. Optimal conditions in terms of yield and epoxy equivalent weight were found to be 60 °C with equal NaOH/phenolic hydroxyl molar ratio. The structural evolution from DHE to cured epoxy was followed by (1)H NMR and Fourier transform infrared spectroscopy. The nano-montmorillonite modified DHEO epoxy exhibited improved storage modulus and thermal stability as determined from dynamic mechanical analysis and thermogravimetric analysis. This study widens the synthesis routes of biobased epoxy thermosets from lignin-based molecules.

  7. Selective bio-oxidation of propane to acetone using methane-oxidizing Methylomonas sp. DH-1.

    Science.gov (United States)

    Hur, Dong Hoon; Nguyen, Thu Thi; Kim, Donghyuk; Lee, Eun Yeol

    2017-07-01

    Propane is the major component of liquefied petroleum gas (LPG). Nowadays, the use of LPG is decreasing, and thus utilization of propane as a chemical feedstock is in need of development. An efficient biological conversion of propane to acetone using a methanotrophic whole cell as the biocatalyst was proposed and investigated. A bio-oxidation pathway of propane to acetone in Methylomonas sp. DH-1 was analyzed by gene expression profiling via RNA sequencing. Propane was oxidized to 2-propanol by particulate methane monooxygenase and subsequently to acetone by methanol dehydrogenases. Methylomonas sp. DH-1 was deficient in acetone-converting enzymes and thus accumulated acetone in the absence of any enzyme inhibition. The maximum accumulation, average productivity and specific productivity of acetone were 16.62 mM, 0.678 mM/h and 0.141 mmol/g cell/h, respectively, under the optimized conditions. Our study demonstrates a novel method for the bioconversion of propane to acetone using methanotrophs under mild reaction condition.

  8. Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites

    Science.gov (United States)

    Fasanella, Nicholas; Sundararaghavan, Veera

    2015-09-01

    Molecular dynamics simulations are performed to compute thermomechanical properties of cured epoxy resins reinforced with pristine and covalently functionalized carbon nanotubes. A DGEBA-DDS epoxy network was built using the ‘dendrimer’ growth approach where 75% of available epoxy sites were cross-linked. The epoxy model is verified through comparisons to experiments, and simulations are performed on nanotube reinforced cross-linked epoxy matrix using the CVFF force field in LAMMPS. Full stiffness matrices and linear coefficient of thermal expansion vectors are obtained for the nanocomposite. Large increases in stiffness and large decreases in thermal expansion were seen along the direction of the nanotube for both nanocomposite systems when compared to neat epoxy. The direction transverse to nanotube saw a 40% increase in stiffness due to covalent functionalization over neat epoxy at 1 K whereas the pristine nanotube system only saw a 7% increase due to van der Waals effects. The functionalized SWNT/epoxy nanocomposite showed an additional 42% decrease in thermal expansion along the nanotube direction when compared to the pristine SWNT/epoxy nanocomposite. The stiffness matrices are rotated over every possible orientation to simulate the effects of an isotropic system of randomly oriented nanotubes in the epoxy. The randomly oriented covalently functionalized SWNT/Epoxy nanocomposites showed substantial improvements over the plain epoxy in terms of higher stiffness (200% increase) and lower thermal expansion (32% reduction). Through MD simulations, we develop means to build simulation cells, perform annealing to reach correct densities, compute thermomechanical properties and compare with experiments.

  9. Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites

    International Nuclear Information System (INIS)

    Fasanella, Nicholas; Sundararaghavan, Veera

    2015-01-01

    Molecular dynamics simulations are performed to compute thermomechanical properties of cured epoxy resins reinforced with pristine and covalently functionalized carbon nanotubes. A DGEBA-DDS epoxy network was built using the ‘dendrimer’ growth approach where 75% of available epoxy sites were cross-linked. The epoxy model is verified through comparisons to experiments, and simulations are performed on nanotube reinforced cross-linked epoxy matrix using the CVFF force field in LAMMPS. Full stiffness matrices and linear coefficient of thermal expansion vectors are obtained for the nanocomposite. Large increases in stiffness and large decreases in thermal expansion were seen along the direction of the nanotube for both nanocomposite systems when compared to neat epoxy. The direction transverse to nanotube saw a 40% increase in stiffness due to covalent functionalization over neat epoxy at 1 K whereas the pristine nanotube system only saw a 7% increase due to van der Waals effects. The functionalized SWNT/epoxy nanocomposite showed an additional 42% decrease in thermal expansion along the nanotube direction when compared to the pristine SWNT/epoxy nanocomposite. The stiffness matrices are rotated over every possible orientation to simulate the effects of an isotropic system of randomly oriented nanotubes in the epoxy. The randomly oriented covalently functionalized SWNT/Epoxy nanocomposites showed substantial improvements over the plain epoxy in terms of higher stiffness (200% increase) and lower thermal expansion (32% reduction). Through MD simulations, we develop means to build simulation cells, perform annealing to reach correct densities, compute thermomechanical properties and compare with experiments. (paper)

  10. Multiphoton ionization and fragmentation study of acetone using 308 nm laser radiation

    Science.gov (United States)

    Liu Houxiang, Li Shutao, Han Jingcheng, Zhu Rong, Guan Yifu, Wu Cunkai

    1988-10-01

    Multiphoton ionization and fragmentation (MPI-F) of acetone molecules using 308 nm laser radiation was studied by using a molecular beam and quadrupole mass spectrometer. The ion peaks of acetone molecule appear at m/e=15 and 43, corresponding to the two fragments CH3+ and CH3CO+. It is considered that these two ions are, respectively, formed by direct (2+1) and 2-photon ionization of methyl and acetyl radicals, generated by photodissociation of acetone molecule.

  11. Efficient acetone-butanol-ethanol production by Clostridium beijerinckii from sugar beet pulp.

    Science.gov (United States)

    Bellido, Carolina; Infante, Celia; Coca, Mónica; González-Benito, Gerardo; Lucas, Susana; García-Cubero, María Teresa

    2015-08-01

    Sugar beet pulp (SBP) has been investigated as a promising feedstock for ABE fermentation by Clostridium beijerinckii. Although lignin content in SBP is low, a pretreatment is needed to enhance enzymatic hydrolysis and fermentation yields. Autohydrolysis at pH 4 has been selected as the best pretreatment for SBP in terms of sugars release and acetone and butanol production. The best overall sugars release yields from raw SBP ranged from 66.2% to 70.6% for this pretreatment. The highest ABE yield achieved was 0.4g/g (5.1g/L of acetone and 6.6g/L butanol) and 143.2g ABE/kg SBP (62.3g acetone and 80.9g butanol) were obtained when pretreated SBP was enzymatically hydrolyzed at 7.5% (w/w) solid loading. Higher solid loadings (10%) offered higher acetone and butanol titers (5.8g/L of acetone and 7.8g/L butanol). All the experiments were carried out under not-controlling pH conditions reaching about 5.3 in the final samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. An analysis of human response to the irritancy of acetone vapors

    NARCIS (Netherlands)

    Arts, J.H.E.; Mojet, J.; Gemert, L.J. van; Emmen, H.H.; Lammers, J.H.C.M.; Marquart, J.; Woutersen, R.A.; Feron, V.J.

    2002-01-01

    Studies on the irritative effects of acetone vapor in humans and experimental animals have revealed large differences in the lowest acetone concentration found to be irritative to the respiratory tract and eyes. This has brought on much confusion in the process of setting occupational exposure

  13. Toughening Mechanisms in Silica-Filled Epoxy Nanocomposites

    Science.gov (United States)

    Patel, Binay S.

    Epoxies are widely used as underfill resins throughout the microelectronics industry to mechanically couple and protect various components of flip-chip assemblies. Generally rigid materials largely surround underfill resins. Improving the mechanical and thermal properties of epoxy resins to better match those of their rigid counterparts can help extend the service lifetime of flip-chip assemblies. Recently, researchers have demonstrated that silica nanoparticles are effective toughening agents for lightly-crosslinked epoxies. Improvements in the fracture toughness of silica-filled epoxy nanocomposites have primarily been attributed to two toughening mechanisms: particle debonding with subsequent void growth and matrix shear banding. Various attempts have been made to model the contribution of these toughening mechanisms to the overall fracture energy observed in silica-filled epoxy nanocomposites. However, disparities still exist between experimental and modeled fracture energy results. In this dissertation, the thermal, rheological and mechanical behavior of eight different types of silica-filled epoxy nanocomposites was investigated. Each nanocomposite consisted of up to 10 vol% of silica nanoparticles with particle sizes ranging from 20 nm to 200 nm, with a variety of surface treatments and particle structures. Fractographical analysis was conducted with new experimental approaches in order to accurately identify morphological evidence for each proposed toughening mechanism. Overall, three major insights into the fracture behavior of real world silica-filled epoxy nanocomposites were established. First, microcracking was observed as an essential toughening mechanism in silica-filled epoxy nanocomposites. Microcracking was observed on the surface and subsurface of fractured samples in each type of silica-filled epoxy nanocomposite. The additional toughening contribution of microcracking to overall fracture energy yielded excellent agreement between experimental

  14. [Removal of high-abundance proteins in plasma of the obese by improved TCA/acetone precipitation method].

    Science.gov (United States)

    Wang, Jun; Feng, Liru; Yu, Wei; Xu, Jian; Yang, Hui; Liu, Xiaoli

    2013-09-01

    To develop an improved trichloroacetic acid (TCA)/acetone precipitation method for removal of high-abundance proteins in plasma of the obese. Volumes of TCA/acetone solution (1, 3, 4, 5, 6, 8, 10 and 20 times of the sample) and concentrations of TCA (10%, 30%, 50%, 60%, 70% TCA/acetone solution) have been investigated to optimize the conditions of sample preparation. SDS-PAGE were used to separate and tested proteins in the supernatant and sediment. The best concentration of the TCA/acetone solution was first determined by SDS-PAGE. The protein in precipitation from 10% TCA/acetone solution processing and the new determined concentration TCA/acetone solution processing were verified by 2-D-SDS-PAGE. And then the digested products of the protein in precipitation and supernatant by trypsin were analyzed by nano HPLC-Chip-MS/MS to verify which is the best concentration to process the plasma. The best volume of TCA/acetone is four times to sample, which less or more TCA/acetone would reduce the removal efficiency of high-abundance proteins. The concentration of TCA in acetone solution should be 60%, which may remove more high-abundance proteins in plasma than 10%, 30%, 50% TCA in acetone solution. If the TCA concentration is more than 60%, the reproducibility will be much poorer due to fast precipitation of proteins. The results of mass identification showed that human plasma prepared with 60% TCA/acetone (4 times sample volume) could be verified more low-abundance proteins than 10%. The most desirable conditions for removal of high-abundance proteins in plasma is 60% TCA/acetone (4 times sample volume), especially for the plasma of obesity.

  15. Measurement of natural carbon isotopic composition of acetone in human urine.

    Science.gov (United States)

    Yamada, Keita; Ohishi, Kazuki; Gilbert, Alexis; Akasaka, Mai; Yoshida, Naohiro; Yoshimura, Ryoko

    2016-02-01

    The natural carbon isotopic composition of acetone in urine was measured in healthy subjects using gas chromatography-combustion-isotope ratio mass spectrometry combined with headspace solid-phase microextraction (HS-SPME-GC-C-IRMS). Before applying the technique to a urine sample, we optimized the measurement conditions of HS-SPME-GC-C-IRMS using aqueous solutions of commercial acetone reagents. The optimization enabled us to determine the carbon isotopic compositions within ±0.2 ‰ of precision and ±0.3‰ of error using 0.05 or 0.2 mL of aqueous solutions with acetone concentrations of 0.3-121 mg/L. For several days, we monitored the carbon isotopic compositions and concentrations of acetone in urine from three subjects who lived a daily life with no restrictions. We also monitored one subject for 3 days including a fasting period of 24 h. These results suggest that changes in the availability of glucose in the liver are reflected in changes in the carbon isotopic compositions of urine acetone. Results demonstrate that carbon isotopic measurement of metabolites in human biological samples at natural abundance levels has great potential as a tool for detecting metabolic changes caused by changes in physiological states and disease.

  16. Mechanical properties of graphene oxide (GO/epoxy composites

    Directory of Open Access Journals (Sweden)

    Shivan Ismael Abdullah

    2015-08-01

    Full Text Available In this study, the effects of graphene oxide (GO on composites based on epoxy resin were analyzed. Different contents of GO (1.5–6 vol.% were added to epoxy resin. The GO/epoxy composite was prepared using the casting method and was prepared under room temperature. Mechanical tests’ results such as tensile test, impact test and hardness test show enhancements of the mechanical properties of the GO/epoxy composite. The experimental results clearly show an improvement in the Young’s modulus, tensile strength and hardness. The impact strength was seen to decrease, pointing to brittleness increase of the GO/epoxy composite. A microstructure analysis using Scanning Electron Microscopy (SEM and X-ray diffraction (XRD analysis was also performed, which showed how GO impeded the propagation of cracks in the composite. From the SEM images we observed the interface between the GO and the epoxy composite. As can be seen from this research, the GO/epoxy composites can be used for a large number of applications. The results of this research are a strong evidence for GO/epoxy composites being a potential candidate for use in a variety of industrial applications, especially for automobile parts, aircraft components, and electronic parts such as supercapacitors, transistors, etc.

  17. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management.

    Science.gov (United States)

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-07-30

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no "best-practice method" for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T2D subjects, and healthy subjects. The results

  18. Experimental results of acetone hydrogenation on a heat exchanger type reactor for solar chemical heat pump; Solar chemical heat pump ni okeru acetone suisoka hanno netsu kaishu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, T; Doi, T; Tanaka, T; Ando, Y [Electrotechnical Laboratory, Tsukuba (Japan); Miyahara, R; Kamoshida, J [Shibaura Institute of Technology, Tokyo (Japan)

    1996-10-27

    With the purpose of converting solar heat energy to industrial heat energy, an experiment of acetone hydrogenation was carried out using a heat exchanger type reactor that recovers heat generated by acetone hydrogenation, an exothermic reaction, and supplies it to an outside load. In the experiment, a pellet-like activated carbon-supported ruthenium catalyst was used for the acetone hydrogenation with hydrogen and acetone supplied to the catalyst layer at a space velocity of 400-1,200 or so. In the external pipe of the double-pipe type reactor, a heating medium oil was circulated in parallel with the flow of the reactant, with the heat of reaction recovered that was generated from the acetone hydrogenation. In this experiment, an 1wt%Ru/C catalyst and a 5wt%Ru/C catalyst were used so as to examine the effects of variation in the space velocity. As a result, from the viewpoint of recovering the heat of reaction, it was found desirable to increase the reaction speed by raising catalytic density and also to supply the reactant downstream inside the reaction pipe by increasing the space velocity. 1 ref., 6 figs., 1 tab.

  19. Study of physical and sound absorbing property of epoxy blended coir dust biocomposite

    Science.gov (United States)

    Nath, G.; Mishra, S. P.

    2016-09-01

    Reinforcement biocomposite has gained more attention recently due to its low cost, abundantly availability, low density, specific properties, easy method of separation, enhanced energy recovery, CO2 neutrality, biodegradability and recyclable in nature. As a waste product of coconut fruit, the coconut coir dust (CCD) obtained from the coconut husk. The biocomposite material prepared from the CCD modified with the proper blended solution with the help of ultrasonic technique. The study of adiabatic compressibility of acetone / water (70/30) worth its blending property for bleaching of CCD. The biocomposite material of CCD was prepared with epoxy resin. The different physical properties such as sound absorption coefficient, thermal conductivity and electrical conductivity were measured. The morphological study of biocomposite and measurement of sound absorption coefficient shows good evidence of sound absorbing characteristics of biocomposite of CCD. The sound absorption property of composite material shows a significant result where as the thermal conductivity and electrical conductivity executes a weak result. Thus biocomposite of CCD can acts as a good sound absorber and band conductor of heat and electric current.

  20. Diagnosis by acetone for deterioration of breathing transformers containing an adsorbent in the insulating oil; Acetone ni yoru kyuchakuzai iri kaihogata hen`atsuki no keinen rekkado shindan

    Energy Technology Data Exchange (ETDEWEB)

    Awata, M.; Mizuno, K.; Ueda, T. [Chubu Electric Power Co. Ltd., Nagoya (Japan); Ota, N.; Ishii, T.; Tsukioka, H.

    1997-04-20

    The high-precision diagnosis for deterioration of a breathing transformer containing an adsorbent was investigated. An adsorbent (activated alumina) may be contained in oil to eliminate the deterioration product in insulating oil or the moisture. In this case, the deterioration component furfural in insulating paper is adsorbed. The concentration in furfural oil cannot be thus used for deterioration diagnosis. Acetone and furan with good relation between the adsorption characteristics for activated alumina and the insulating paper deterioration in an accelerated deterioration test can be effectively used as a new deterioration index component of insulating paper. The disassembly survey showed that acetone is valid as the index component of deterioration diagnosis. Furan is not detected in a breathing transformer, but effective in diaphragm-type and nitrogen-sealed transformers. The adsorption of acetone by activated alumina requires no correction for the change in oil temperature at about 10{degree}C. The solubility of acetone for insulating oil is 60 times at 20{degree}C as high as CO2, and the discharge rate from a breather is little (1/25). Therefore, acetone is much more excellent than CO2 as the precision of a deterioration index. 21 refs., 15 figs., 4 tabs.

  1. Ligands Exchange Process on Gold Nanoparticles in Acetone Solution

    Science.gov (United States)

    Hu, C. L.; Mu, Y. Y.; Bian, Z. C.; Luo, Z. H.; Luo, K.; Huang, A. Z.

    2018-05-01

    The ligands exchange process on gold nanoparticles (GNPs) was proceeded by using hydrophobic group (PPh3) and hydrophilic group (THPO) in acetone solution. The FTIR and XPS results demonstrated that part of THPO was replaced by PPh3 which was dissolved in polar solution (acetone); the results were in accordance with the electrochemical analysis where the differential capacity decreased with increasing exchange time. After 12 h, the exchange process terminated and the final ratio of PPh3 and THPO was about 1.4: 1. This ratio remained unchanged although the PPh3 and THPO modified GNPs re-dispersed in the PPh3 acetone solution demonstrating the stable adsorption of both ligands after exchanging for 12 h. The TEM images showed that the gold nanoparticles were self-assembled from scattered to arranged morphology due to the existence of hydrophilic and hydrophobic ligands and led to Janus gold nanoparticles.

  2. Acetaminophen and acetone sensing capabilities of nickel ferrite nanostructures

    Science.gov (United States)

    Mondal, Shrabani; Kumari, Manisha; Madhuri, Rashmi; Sharma, Prashant K.

    2017-07-01

    Present work elucidates the gas sensing and electrochemical sensing capabilities of sol-gel-derived nickel ferrite (NF) nanostructures based on the electrical and electrochemical properties. In current work, the choices of target species (acetone and acetaminophen) are strictly governed by their practical utility and concerning the safety measures. Acetone, the target analyte for gas sensing measurement is a common chemical used in varieties of application as well as provides an indirect way to monitor diabetes. The gas sensing experiments were performed within a homemade sensing chamber designed by our group. Acetone gas sensor (NF pellet sensor) response was monitored by tracking the change in resistance both in the presence and absence of acetone. At optimum operating temperature 300 °C, NF pellet sensor exhibits selective response for acetone in the presence of other common interfering gases like ethanol, benzene, and toluene. The electrochemical sensor fabricated to determine acetaminophen is prepared by coating NF onto the surface of pre-treated/cleaned pencil graphite electrode (NF-PGE). The common name of target analyte acetaminophen is paracetamol (PC), which is widespread worldwide as a well-known pain killer. Overdose of PC can cause renal failure even fatal diseases in children and demand accurate monitoring. Under optimal conditions NF-PGE shows a detection limit as low as 0.106 μM with selective detection ability towards acetaminophen in the presence of ascorbic acid (AA), which co-exists in our body. Use of cheap and abundant PGE instead of other electrodes (gold/Pt/glassy carbon electrode) can effectively reduce the cost barrier of such sensors. The obtained results elucidate an ample appeal of NF-sensors in real analytical applications viz. in environmental monitoring, pharmaceutical industry, drug detection, and health monitoring.

  3. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath.

    Science.gov (United States)

    Ye, Ming; Chien, Po-Jen; Toma, Koji; Arakawa, Takahiro; Mitsubayashi, Kohji

    2015-11-15

    Several volatile organic compounds (VOCs) are released from human breath or skin. Like chemical substances in blood or urine, some of these vapors can provide valuable information regarding the state of the human body. A highly sensitive acetone biochemical gas sensor (bio-sniffer) was developed and used to measure exhaled breath acetone concentration, and assess lipid metabolism based on breath acetone analysis. A fiber-optic biochemical gas sensing system was constructed by attaching a flow-cell with nicotinamide adenine dinucleotide (NADH)-dependent secondary alcohol dehydrogenase (S-ADH) immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode with peak emission of 335 nm as an excitation light source. NADH is consumed by the enzymatic reaction of S-ADH, and the consumption is proportional to the concentration of acetone vapor. Phosphate buffer which contained NADH was circulated into the flow-cell to rinse products and the excessive substrates from the optode. The change of fluorescent emitted from NADH is analyzed by the PMT. Hence, fluorescence intensity decreased as the acetone concentration increased. The relationship between fluorescence intensity and acetone concentration was identified from 20 ppb to 5300 ppb. This interval included the concentration of acetone vapor in the breath of healthy people and those suffering from disorders of carbohydrate metabolism. Finally, the acetone bio-sniffer was used to measure breath acetone during an exercise stress test on an ergometer after a period of fasting. The concentration of acetone in breath was shown to significantly increase after exercise. This biosensor allows rapid, highly sensitive and selective measurement of lipid metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Epoxy resin systems for FGD units

    International Nuclear Information System (INIS)

    Brytus, V.; Puglisi, J.S.

    1984-01-01

    This paper discusses ongoing research work which is directed towards epoxy resins and curing agents which are designed to withstand aggressive environments. This work includes not only a chemical description of the materials involved, but the application testing necessary to verify the usefulness of these systems. It demonstrates that new high performance epoxy systems are superior to those which traditionally come to mind when one thinks epoxy. Finally, it discusses the results of testing designed specifically to screen candidates for use in FGD units

  5. Catalytic Hydrogenation of Acetone to Isopropanol: An Environmentally Benign Approach

    Directory of Open Access Journals (Sweden)

    Ateeq Rahman

    2011-01-01

    Full Text Available The catalytic hydrogenation of acetone is an important area of catalytic process to produce fine chemicals. Hydrogenation of acetone has important applications for heat pumps, fuel cells or in fulfilling the sizeable demand for the production of 2-propanol. Catalytic vapour phase hydrogenation of acetone has gained attention over the decades with variety of homogeneous catalysts notably Iridium, Rh, Ru complexes and heterogeneous catalysts comprising of Raney Nickel, Raney Sponge, Ni/Al2O3, Ni/SiO2, or Co-Al2O3, Pd, Rh, Ru, Re, or Fe/Al2O3 supported on SiO2 or MgO and even CoMgAl, NiMg Al layered double hydroxide, Cu metal, CuO, Cu2O. Nano catalysts are developed for actone reduction Ni maleate, cobalt oxide prepared in organic solvents. Author present a review on acetone hydrogenation under different conditions with various homogeneous and heterogeneous catalysts studied so far in literature and new strategies to develop economic and environmentally benign approach. ©2010 BCREC UNDIP. All rights reserved(Received: 16th June 2010, Revised: 18th October 2010; Accepted: 25th October 2010[How to Cite:Ateeq Rahman. (2010. Catalytic Hydrogenation of Acetone to Isopropanol: An Environmentally Benign Approach. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 113-126. doi:10.9767/bcrec.5.2.798.113-126][DOI: http://dx.doi.org/10.9767/bcrec.5.2.798.113-126 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/798

  6. Enhancement of mechanical properties of epoxy/graphene nanocomposite

    Science.gov (United States)

    Berhanuddin, N. I. C.; Zaman, I.; Rozlan, S. A. M.; Karim, M. A. A.; Manshoor, B.; Khalid, A.; Chan, S. W.; Meng, Q.

    2017-10-01

    Graphene is a novel class of nanofillers possessing outstanding characteristics including most compatible with most polymers, high absolute strength, high aspect ratio and cost effectiveness. In this study, graphene was used to reinforce epoxy as a matrix, to enhance its mechanical properties. Two types of epoxy composite were developed which are epoxy/graphene nanocomposite and epoxy/modified graphene nanocomposite. The fabrication of graphene was going through thermal expansion and sonication process. Chemical modification was only done for modified graphene where 4,4’-Methylene diphenyl diisocyanate (MDI) is used. The mechanical properties of both nanocomposite, such as Young’s modulus and maximum stress were investigated. Three weight percentage were used for this study which are 0.5 wt%, 1.0 wt% and 1.5 wt%. At 0.5 wt%, modified and unmodified shows the highest value compared to neat epoxy, where the value were 8 GPa, 6 GPa and 0.675 GPa, respectively. For maximum stress, neat epoxy showed the best result compared to both nanocomposite due to the changes of material properties when adding the filler into the matrix. Therefore, both nanocomposite increase the mechanical properties of the epoxy, however modification surface of graphene gives better improvement.

  7. Adhesion between coating layers based on epoxy and silicone

    DEFF Research Database (Denmark)

    Svendsen, Jacob R.; Kontogeorgis, Georgios; Kiil, Søren

    2007-01-01

    The adhesion between a silicon tie-coat and epoxy primers, used in marine coating systems, has been studied in this work. Six epoxy coatings (with varying chain lengths of the epoxy resins), some of which have shown problems with adhesion to the tie-coat during service life, have been considered....... The experimental investigation includes measurements of the surface tension of the tie-coat and the critical surface tensions of the epoxies, topographic investigation of the surfaces of cured epoxy coatings via atomic force microscopy (AFM), and pull-off tests for investigating the strength of adhesion...... to the silicon/epoxy systems. Calculations for determining the roughness factor of the six epoxy coatings (based on the AFM topographies) and the theoretical work of adhesion have been carried out. The coating surfaces are also characterized based on the van Oss-Good theory. Previous studies on the modulus...

  8. Breath acetone to monitor life style interventions in field conditions: an exploratory study.

    Science.gov (United States)

    Samudrala, Devasena; Lammers, Gerwen; Mandon, Julien; Blanchet, Lionel; Schreuder, Tim H A; Hopman, Maria T; Harren, Frans J M; Tappy, Luc; Cristescu, Simona M

    2014-04-01

    To assess whether breath acetone concentration can be used to monitor the effects of a prolonged physical activity on whole body lipolysis and hepatic ketogenesis in field conditions. Twenty-three non-diabetic, 11 type 1 diabetic, and 17 type 2 diabetic subjects provided breath and blood samples for this study. Samples were collected during the International Four Days Marches, in the Netherlands. For each participant, breath acetone concentration was measured using proton transfer reaction ion trap mass spectrometry, before and after a 30-50 km walk on four consecutive days. Blood non-esterified free fatty acid (NEFA), beta-hydroxybutyrate (BOHB), and glucose concentrations were measured after walking. Breath acetone concentration was significantly higher after than before walking, and was positively correlated with blood NEFA and BOHB concentrations. The effect of walking on breath acetone concentration was repeatedly observed on all four consecutive days. Breath acetone concentrations were higher in type 1 diabetic subjects and lower in type 2 diabetic subjects than in control subjects. Breath acetone can be used to monitor hepatic ketogenesis during walking under field conditions. It may, therefore, provide real-time information on fat burning, which may be of use for monitoring the lifestyle interventions. Copyright © 2014 The Obesity Society.

  9. Self-Diffusion and Heteroassociation in an Acetone-Chloroform Mixture at 298 K

    Science.gov (United States)

    Golubev, V. A.; Gurina, D. L.; Kumeev, R. S.

    2018-01-01

    The self-diffusion coefficients of acetone and chloroform in a binary acetone-chloroform mixture at 298 K are determined via pulsed field gradient NMR spectroscopy. It is estimated that the hydrodynamic radii of the mixture's components, calculated using the Stokes-Einstein equation, grow as the concentrations of the components fall. It is shown that such behavior of hydrodynamic radii is due to acetone-chloroform heteroassociation. The hydrodynamic radii of monomers and heteroassociates in a 1: 1 ratio are determined along with the constant of heteroassociation, using the proposed model of an associated solution.

  10. Modification of (DGEBA epoxy resin with maleated depolymerised natural rubber

    Directory of Open Access Journals (Sweden)

    2008-04-01

    Full Text Available In this work, diglycidyl ether of bisphenol A (DEGBA type epoxy resin has been modified with maleated depolymerised natural rubber (MDPR. MDPR was prepared by grafting maleic anhydride onto depolymerised natural rubber. MDPR has been characterized by Fourier transform infrared (FT-IR spectroscopy and nuclear magnetic resonance spectroscopy. MDPR was blended with epoxy resin at three different ratios (97/3, 98/2 and 99/1, by keeping the epoxy resin component as the major phase and maleated depolymerised natural rubber component as the minor phase. The reaction between the two blend components took place between the acid/anhydride group in the MDPR and the epoxide group of the epoxy resin. The proposed reaction schemes were supported by the FT-IR spectrum of the uncured Epoxy/MDPR blends. The neat epoxy resin and Epoxy/MDPR blends were cured by methylene dianiline (DDM at 100°C for three hours. Thermal, morphological and mechanical properties of the neat epoxy and the blends were investigated. Free volume studies of the cured, neat epoxy and Epoxy/MDPR blends were correlated with the morphological and mechanical properties of the same systems using Positron Annihilation Lifetime Studies.

  11. Sodium tripolyphosphate cross-linked chitosan based sensor for enhacing sensing properties towards acetone

    Science.gov (United States)

    Nasution, T. I.; Asrosa, R.; Nainggolan, I.; Balyan, M.; Indah, R.; Wahyudi, A.

    2018-02-01

    In this report, sensing properties of sodium tripolyphosphate (TPP) cross-linked chitosan based sensor has been successfully enhanced towards acetone. Chitosan solutions were cross-linked with sodium TPP in variation of 0.1%, 0.5%, 1% and 1.5% w/v, respectively. The sensors were fabricated in film form using an electrochemical deposition method. The sensing properties of the sensors were observed by exposing the pure chitosan and sodium TPP cross-linked chitosan sensors towards acetone concentrations of 5, 10, 50, 100 and 200 ppm. The measurement results revealed that the maximum response in output voltage value of pure chitosan sensor was 0.35 V while sodium TPP crosslinked chitosan sensors were above 0.35 V towards 5 ppm acetone concentration. When the sensors were exposed towards acetone concentration of 200 ppm, the maximum response of pure chitosan was 0.45 V while sodium TPP crosslinked chitosan sensors were above 0.45 V. Amongst the variation of sodium TPP, the maximum response of 1% sodium TPP was the highest since the maximum response was 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration, respectively. While the maximum responses of other sodium TPP concentrations were under 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration. Moreover, 1% sodium TPP cross-linked chitosan based sensor showed good reproducibility and outstanding lifetime. Therefore, 1% sodium TPP cross-linked chitosan based sensor has exhibited remarkable sensing properties as a novel acetone sensor.

  12. Interactions of ionic liquids and acetone: thermodynamic properties, quantum-chemical calculations, and NMR analysis.

    Science.gov (United States)

    Ruiz, Elia; Ferro, Victor R; Palomar, Jose; Ortega, Juan; Rodriguez, Juan Jose

    2013-06-20

    The interactions between ionic liquids (ILs) and acetone have been studied to obtain a further understanding of the behavior of their mixtures, which generally give place to an exothermic process, mutual miscibility, and negative deviation of Raoult's law. COSMO-RS was used as a suitable computational method to systematically analyze the excess enthalpy of IL-acetone systems (>300), in terms of the intermolecular interactions contributing to the mixture behavior. Spectroscopic and COSMO-RS results indicated that acetone, as a polar compound with strong hydrogen bond acceptor character, in most cases, establishes favorable hydrogen bonding with ILs. This interaction is strengthened by the presence of an acidic cation and an anion with dispersed charge and non-HB acceptor character in the IL. COSMO-RS predictions indicated that gas-liquid and vapor-liquid equilibrium data for IL-acetone systems can be finely tuned by the IL selection, that is, acting on the intermolecular interactions between the molecular and ionic species in the liquid phase. NMR measurements for IL-acetone mixtures at different concentrations were also carried out. Quantum-chemical calculations by using molecular clusters of acetone and IL species were finally performed. These results provided additional evidence of the main role played by hydrogen bonding in the behavior of systems containing ILs and HB acceptor compounds, such as acetone.

  13. Action of ionizing radiation on epoxy resins

    Energy Technology Data Exchange (ETDEWEB)

    Van de Voorde, M. E.

    1970-12-01

    The resistance of classical and experimental epoxy resins to irradiation was studied. The resistance to irradiation of epoxy resins of diverse compositions as well as the development of resins having a radioresistance that approaches that of certain ceramics are discussed. Sources of irradiation and the techniques of dosimetry used are described. The structures of certain epoxy resins and of hardeners are given. The preparation of these resins and their physical properties is described. The effects of radiation on epoxy resins, as well as conditions of irradiation, and suggested mechanisms for degradation of the irradiated resins are discussed. The relationship between chemical structure of the resins and their physical properties is evaluated. (115 references) (JCB)

  14. Flexural Properties of Activated Carbon Filled Epoxy Nano composites

    International Nuclear Information System (INIS)

    Khalil, H.P.S.A.; Khalil, H.P.S.A.; Alothman, O.Y.; Paridah, M.T.; Zainudin, E.S.

    2014-01-01

    Activated carbon (AC) filled epoxy nano composites obtained by mixing the desired amount of nano AC viz., bamboo stem, oil palm empty fruit bunch, and coconut shell from agricultural biomass with the epoxy resin. Flexural properties of activated carbons filled epoxy nano composites with 1 %, and 5 % filler loading were measured. In terms of flexural strength and modulus, a significant increment was observed with addition of 1 % vol and 5 % vol nano-activated carbon as compared to neat epoxy. The effect of activated carbon treated by two chemical agents (potassium hydroxide and phosphoric acid) on the flexural properties of epoxy nano composites were also investigated. Flexural strength of activated carbon-bamboo stem, activated carbon-oil palm, and activated carbon-coconut shell reinforced epoxy nano composites showed almost same value in case of 5 % potassium hydroxide activated carbon. Flexural strength of potassium hydroxide activated carbon-based epoxy nano composites was higher than phosphoric acid activated carbon. The flexural toughness of both the potassium hydroxide and phosphoric acid activated carbon reinforced composites range between 0.79 - 0.92 J. It attributed that developed activated carbon filled epoxy nano composites can be used in different applications. (author)

  15. Self-Associating Behavior of Acetone in Liquid Krypton.

    Science.gov (United States)

    De Beuckeleer, Liene I; Herrebout, Wouter A

    2016-02-18

    Acetone molecules are inclined to self-associate through dipole-dipole interactions because of their large dipole moment. Infrared spectroscopy of compounds dissolved in liquid noble gases supported by high level ab initio calculations allows investigating the self-associating behavior and determining the thermodynamical properties. In this study, infrared spectra of various concentrations of acetone dissolved in liquid krypton are recorded at constant temperature. Overlapping monomer and dimer spectra are separated by analyzing the obtained data sets with numerical methods based on least-squares fitting. Although acetone is known to self-associate, only a few spectral features have been presented in literature before. In this study, the application of new numerical approaches succeeds in resolving overlapping spectra and allows observing isolated acetone dimer absorption bands for the complete mid infrared spectrum. By use of data sets of spectra recorded at temperatures between 134 and 142 K, the experimental standard dimerization enthalpy was determined to be -10.8 kJ mol(-1). MP2/aug-cc-pVDZ calculations predicted a stacked and planar dimer geometry of which the stacked geometry is more stable. Combining MP2 energies and single point corrections involving CCSD(T) calculations and complete basis set extrapolations based on the MP2/aug-cc-pVDZ equilibrium geometry lead to complexation energy of -28.4 kJ mol(-1) for the stacked geometry and -15.1 kJ mol(-1) for the planar geometry. The corresponding values for the complexation enthalpies in solution, obtained by combining these values with corrections for thermal and solvent influences are -13.7 and -5.8 kJ mol(-1).

  16. Conditioned Place Preference to Acetone Inhalation and the Effects on Locomotor Behavior and 18FDG Uptake

    Energy Technology Data Exchange (ETDEWEB)

    Pai, J.C.; Dewey, S.L.; Schiffer, W.; Lee, D.

    2006-01-01

    Acetone is a component in many inhalants that have been widely abused. While other solvents have addictive potential, such as toluene, it is unclear whether acetone alone contains addictive properties. The locomotor, relative glucose metabolism and abusive effects of acetone inhalation were studied in animals using the conditioned place preference (CPP) paradigm and [18F]2-fluorodeoxy-D-glucose (18FDG) imaging. The CPP apparatus contains two distinct conditioning chambers and a middle adaptation chamber, each lined with photocells to monitor locomotor activity. Adolescent Sprague-Dawley rats (n=16; 90-110 g) were paired with acetone in least preferred conditioning chamber, determined on the pretest day. The animals were exposed to a 10,000 ppm dose for an hour, alternating days with air. A CPP test was conducted after the 3rd, 6th and 12th pairing. In these same animals, the relative glucose metabolism effects were determined using positron emission tomography (PET) imaging with 18FDG. Following the 3rd pairing, there was a significant aversion to the acetone paired chamber (190.9 ± 13.7 sec and 241.7 ± 16.9 sec, acetone and air, respectively). After the 6th pairing, there was no significant preference observed with equal time spent in each chamber (222 ± 21 sec and 207 ± 20 sec, acetone and air-paired, respectively). A similar trend was observed after the 12th pairing (213 ± 21 sec and 221 ± 22 sec, acetone and air-paired, respectively). Locomotor analysis indicated a significant decrease (p<0.05) from air pairings to acetone pairings on the first and sixth pairings. The observed locomotor activity was characteristic of central nervous system (CNS) depressants, without showing clear abusive effects in this CPP model. In these studies, acetone vapors were not as reinforcing as other solvents, shown by overall lack of preference for the acetone paired side of the chamber. PET imaging indicated a regionally specific distribution of 18FDG uptake following

  17. Purification and Characterization of the Acetone Carboxylase of Cupriavidus metallidurans Strain CH34

    Science.gov (United States)

    Rosier, Caroline; Leys, Natalie; Henoumont, Céline; Mergeay, Max

    2012-01-01

    Acetone carboxylase (Acx) is a key enzyme involved in the biodegradation of acetone by bacteria. Except for the Helicobacteraceae family, genome analyses revealed that bacteria that possess an Acx, such as Cupriavidus metallidurans strain CH34, are associated with soil. The Acx of CH34 forms the heterohexameric complex α2β2γ2 and can carboxylate only acetone and 2-butanone in an ATP-dependent reaction to acetoacetate and 3-keto-2-methylbutyrate, respectively. PMID:22492439

  18. Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites

    Science.gov (United States)

    Fasanella, Nicholas A.; Sundararaghavan, Veera

    2016-05-01

    The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.

  19. Halloysite reinforced epoxy composites with improved mechanical properties

    Directory of Open Access Journals (Sweden)

    Saif Muhammad Jawwad

    2016-03-01

    Full Text Available Halloysite nanotubes (HNTs reinforced epoxy composites with improved mechanical properties were prepared. The prepared HNTs reinforced epoxy composites demonstrated improved mechanical properties especially the fracture toughness and flexural strength. The flexural modulus of nanocomposite with 6% mHNTs loading was 11.8% higher than that of neat epoxy resin. In addition, the nanocomposites showed improved dimensional stability. The prepared halloysite reinforced epoxy composites were characterized by thermal gravimetric analysis (TGA. The improved properties are attributed to the unique characteristics of HNTs, uniform dispersion of reinforcement and interfacial coupling.

  20. Shape memory polymers from benzoxazine-modified epoxy

    International Nuclear Information System (INIS)

    Rimdusit, Sarawut; Lohwerathama, Montha; Dueramae, Isala; Hemvichian, Kasinee; Kasemsiri, Pornnapa

    2013-01-01

    Novel shape memory polymers (SMPs) were prepared from benzoxazine-modified epoxy resin. Specimens consisting of aromatic epoxy (E), aliphatic epoxy (N), Jeffamine D230 (D) and BA-a benzoxazine monomer (B) were evaluated. The mole ratio of D/B was used as a mixed curing agent for an epoxy system with a fixed E/N. The effects of BA-a content on the thermal, mechanical and shape memory properties of epoxy-based shape memory polymers (SMPs) were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), flexural test and shape recovery test. The results revealed that the obtained SMPs exhibited a higher flexural strength and flexural modulus than those of the unmodified epoxy-based SMP at room temperature and at 20 ° C above glass transition temperature (T g ). The presence of 1 mol BA-a as a curing agent provided the specimen with the highest T g , i.e. about 72 ° C higher than that of epoxy-based SMP cured by Jeffamine D230. All SMP samples needed only a few minutes to fully recover to their original shape. The samples exhibited high shape fixity (98–99%) and shape recovery ratio (90–100%). In addition, the recovery stress values increased with increasing BA-a mole ratio from 20 to 38 kPa, when BA-a up to 1 mol ratio was added. All of the SMP samples exhibited only minimum change in their flexural strength at the end of a 100 recovery cycles test. (paper)

  1. A fully integrated standalone portable cavity ringdown breath acetone analyzer

    Science.gov (United States)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  2. A fully integrated standalone portable cavity ringdown breath acetone analyzer.

    Science.gov (United States)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  3. Change of Exhaled Acetone Concentration in a Diabetic Patient with Acute Decompensated Heart Failure.

    Science.gov (United States)

    Yokokawa, Tetsuro; Ichijo, Yasuhiro; Houtsuki, Yu; Matsumoto, Yoshiyuki; Oikawa, Masayoshi; Yoshihisa, Akiomi; Sugimoto, Koichi; Nakazato, Kazuhiko; Suzuki, Hitoshi; Saitoh, Shu-Ichi; Shimouchi, Akito; Takeishi, Yasuchika

    2017-10-21

    In heart failure patients, exhaled acetone concentration, a noninvasive biomarker, is increased according to heart failure severity. Moreover, exhaled acetone concentration is also known to be affected by diabetes mellitus. However, there have been no reports on exhaled acetone concentration in heart failure patients with diabetes mellitus. A 77-year old man was admitted to our hospital with acute decompensated heart failure and atrioventricular block. He had controlled diabetes mellitus under insulin treatment with hemoglobin A1c of 6.5%. He underwent treatment of diuretics and permanent pacemaker implantation. His condition improved and he was discharged at Day 12. Due to the heart failure improvement, his levels of exhaled acetone concentration decreased from 1.623 ppm at admission to 0.664 ppm at discharge. This is the first report to reveal a change of exhaled acetone concentration in a diabetic patient with acute decompensated heart failure.

  4. Chromatographic assessment of two hybrid monoliths prepared via epoxy-amine ring-opening polymerization and methacrylate-based free radical polymerization using methacrylate epoxy cyclosiloxane as functional monomer.

    Science.gov (United States)

    Wang, Hongwei; Ou, Junjie; Lin, Hui; Liu, Zhongshan; Huang, Guang; Dong, Jing; Zou, Hanfa

    2014-11-07

    Two kinds of hybrid monolithic columns were prepared by using methacrylate epoxy cyclosiloxane (epoxy-MA) as functional monomer, containing three epoxy moieties and one methacrylate group. One column was in situ fabricated by ring-opening polymerization of epoxy-MA and 1,10-diaminodecane (DAD) using a porogenic system consisting of isopropanol (IPA), H2O and ethanol at 65°C for 12h. The other was prepared by free radical polymerization of epoxy-MA and ethylene dimethacrylate (EDMA) using 1-propanol and 1,4-butanediol as the porogenic solvents at 60°C for 12h. Two hybrid monoliths were investigated on the morphology and chromatographic assessment. Although two kinds of monolithic columns were prepared with epoxy-MA, their morphologies looked rather different. It could be found that the epoxy-MA-DAD monolith possessed higher column efficiencies (25,000-34,000plates/m) for the separation of alkylbenzenes than the epoxy-MA-EDMA monolith (12,000-13,000plates/m) in reversed-phase nano-liquid chromatography (nano-LC). Depending on the remaining epoxy or methacrylate groups on the surface of two pristine monoliths, the epoxy-MA-EDMA monolith could be easily modified with 1-octadecylamine (ODA) via ring-opening reaction, while the epoxy-MA-DAD monolith could be modified with stearyl methacrylate (SMA) via free radical reaction. The chromatographic performance for the separation of alkylbenzenes on SMA-modified epoxy-MA-DAD monolith was remarkably improved (42,000-54,000 plates/m) when compared with that on pristine epoxy-MA-DAD monolith, while it was not obviously enhanced on ODA-modified epoxy-MA-EDMA monolith when compared with that on pristine epoxy-MA-EDMA monolith. The enhancement of the column efficiency of epoxy-MA-DAD monolith after modification might be ascribed to the decreased mass-transfer resistence. The two kinds of hybrid monoliths were also applied for separations of six phenols and seven basic compounds in nano-LC. Copyright © 2014 Elsevier B.V. All

  5. Sensing behavior of acetone vapors on TiO_2 nanostructures — application of density functional theory

    Directory of Open Access Journals (Sweden)

    V. Nagarajan

    2017-12-01

    Full Text Available The electronic properties of TiO_2 nanostructure are explored using density functional theory. The adsorption properties of acetone on TiO_2 nanostructure are studied in terms of adsorption energy, average energy gap variation and Mulliken charge transfer. The density of states spectrum and the band structure clearly reveals the adsorption of acetone on TiO_2 nanostructures. The variation in the energy gap and changes in the density of charge are observed upon adsorption of acetone on n-type TiO_2 base material. The results of DOS spectrum reveal that the transfer of electrons takes place between acetone vapor and TiO_2 base material. The findings show that the adsorption property of acetone is more favorable on TiO_2 nanostructure. Suitable adsorption sites of acetone on TiO_2 nanostructure are identified at atomistic level. From the results, it is confirmed that TiO_2 nanostructure can be efficiently utilized as a sensing element for the detection of acetone vapor in a mixed environment.

  6. (Ternary liquid + liquid) equilibria for (water + acetone + α-pinene, or β-pinene, or limonene) mixtures

    International Nuclear Information System (INIS)

    Li Xiaoli; Tamura, Kazuhiro

    2010-01-01

    (Ternary liquid + liquid) equilibria (tie-lines) of (water + acetone + α-pinene) at T = (288.15, 298.15, and 308.15) K and (water + acetone + β-pinene, or limonene) at T = 298.15 K have been measured. The experimental (ternary liquid + liquid) equilibrium data have been correlated successfully by the original UNIQUAC and modified UNIQUAC models. The modified UNIQUAC model reproduced accurately the experimental results for the (water + acetone + α-pinene) system at all the temperatures but fairly agreed with the experimental data for the (water + acetone + β-pinene, or limonene) systems.

  7. Characterization and Curing Kinetics of Epoxy/Silica Nano-Hybrids

    Science.gov (United States)

    Yang, Cheng-Fu; Wang, Li-Fen; Wu, Song-Mao; Su, Chean-Cheng

    2015-01-01

    The sol-gel technique was used to prepare epoxy/silica nano-hybrids. The thermal characteristics, curing kinetics and structure of epoxy/silica nano-hybrids were studied using differential scanning calorimetry (DSC), 29Si nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM). To improve the compatibility between the organic and inorganic phases, a coupling agent was used to modify the diglycidyl ether of bisphenol A (DGEBA) epoxy. The sol-gel technique enables the silica to be successfully incorporated into the network of the hybrids, increasing the thermal stability and improving the mechanical properties of the prepared epoxy/silica nano-hybrids. An autocatalytic mechanism of the epoxy/SiO2 nanocomposites was observed. The low reaction rate of epoxy in the nanocomposites is caused by the steric hindrance in the network of hybrids that arises from the consuming of epoxide group in the network of hybrids by the silica. In the nanocomposites, the nano-scale silica particles had an average size of approximately 35 nm, and the particles were well dispersed in the epoxy matrix, according to the TEM images. PMID:28793616

  8. A two-stage combined trickle bed reactor/biofilter for treatment of styrene/acetone vapor mixtures.

    Science.gov (United States)

    Vanek, Tomas; Halecky, Martin; Paca, Jan; Zapotocky, Lubos; Gelbicova, Tereza; Vadkertiova, Renata; Kozliak, Evguenii; Jones, Kim

    2015-01-01

    Performance of a two-stage biofiltration system was investigated for removal of styrene-acetone mixtures. High steady-state acetone loadings (above C(in)(Ac) = 0.5 g.m(-3) corresponding to the loadings > 34.5 g.m(-3).h(-1)) resulted in a significant inhibition of the system's performance in both acetone and styrene removal. This inhibition was shown to result from the acetone accumulation within the upstream trickle-bed bioreactor (TBR) circulating mineral medium, which was observed by direct chromatographic measurements. Placing a biofilter (BF) downstream to this TBR overcomes the inhibition as long as the biofilter has a sufficient bed height. A different kind of inhibition of styrene biodegradation was observed within the biofilter at very high acetone loadings (above C(in)(Ac) = 1.1 g.m(-3) or 76 g.m(-3).h(-1) loading). In addition to steady-state measurements, dynamic tests confirmed that the reactor overloading can be readily overcome, once the accumulated acetone in the TBR fluids is degraded. No sizable metabolite accumulation in the medium was observed for either TBR or BF. Analyses of the biodegradation activities of microbial isolates from the biofilm corroborated the trends observed for the two-stage biofiltration system, particularly the occurrence of an inhibition threshold by excess acetone.

  9. High-performance fiber/epoxy composite pressure vessels

    Science.gov (United States)

    Chiao, T. T.; Hamstad, M. A.; Jessop, E. S.; Toland, R. H.

    1978-01-01

    Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended.

  10. Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate

    International Nuclear Information System (INIS)

    Domanska, Urszula; Krolikowska, Marta; Acree, William E.; Baker, Gary A.

    2011-01-01

    Research highlights: → Measurements of activity coefficients at infinite dilution using GLC. → 36 organic solvents and water in the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate, [EMIM][TCB]. → Possible entrainer for different separation processes. → The partial molar excess thermodynamic functions at infinite dilution were calculated. - Abstract: The activity coefficients at infinite dilution, γ 13 ∞ , for 36 solutes, including alkanes, cycloalkanes, alkenes, alkynes, aromatic hydrocarbons, alcohols, thiophene, tetrahydrofuran, ethers, acetone, and water, in the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate, [EMIM][TCB], were determined by gas-liquid chromatography at temperatures from 298.15 K to 358.15 K. These values are compared to those previously published for selected solutes in the same ionic liquid. The values of the partial molar excess Gibbs free energy ΔG 1 E,∞ , enthalpy ΔH 1 E,∞ , and entropy ΔS 1 E,∞ at infinite dilution were calculated from the experimental γ 13 ∞ values obtained over the temperature range. Three gas-liquid partition coefficients, K L were calculated for all solutes and the Abraham solvation parameter model is discussed. The values of the selectivity for different separation problems were calculated from γ 13 ∞ and compared to literature values for N-methyl-2-pyrrolidinone (NMP), sulfolane, 1-decyl-3-methylimidazolium tetracyanoborate, [DMIM][TCB], and additional ionic liquids.

  11. Viscoelastic properties of graphene-based epoxy resins

    Science.gov (United States)

    Nobile, Maria Rossella; Fierro, Annalisa; Rosolia, Salvatore; Raimondo, Marialuigia; Lafdi, Khalid; Guadagno, Liberata

    2015-12-01

    In this paper the viscoelastic properties of an epoxy resin filled with graphene-based nanoparticles have been investigated in the liquid state, before curing, by means of a rotational rheometer equipped with a parallel plate geometry. Exfoliated graphite was prepared using traditional acid intercalation followed by a sudden treatment at high temperature (900°C). The percentage of exfoliated graphite was found to be 56%. The epoxy matrix was prepared by mixing a tetrafunctional precursor with a reactive diluent which produces a significant decrease in the viscosity of the epoxy precursor so that the dispersion step of nanofillers in the matrix can easily occur. The hardener agent, the 4,4-diaminodiphenyl sulfone (DDS), was added at a stoichiometric concentration with respect to all the epoxy rings. The inclusion of the partially exfoliated graphite (pEG) in the formulated epoxy mixture significantly modifies the rheological behaviour of the mixture itself. The epoxy mixture, indeed, shows a Newtonian behaviour while, at 3 wt % pEG content, the complex viscosity of the nanocomposite clearly shows a shear thinning behaviour with η* values much higher at the lower frequencies. The increase in complex viscosity with the increasing of the partially exfoliated graphite content was mostly caused by a dramatic increase in the storage modulus. All the graphene-based epoxy mixtures were cured by a two-stage curing cycles: a first isothermal stage was carried out at the lower temperature of 125°C for 1 hour while the second isothermal stage was performed at the higher temperature of 200°C for 3 hours. The mechanical properties of the cured nanocomposites show high values in the storage modulus and glass transition temperature.

  12. Skin barrier disruption by acetone: observations in a hairless mouse skin model

    NARCIS (Netherlands)

    Rissmann, R.; Oudshoorn, M.H.M.; Hennink, W.E.; Ponec, M.; Bouwstra, J.A.

    2009-01-01

    To disrupt the barrier function of the skin, different in vivo methods have been established, e.g., by acetone wiping or tape-stripping. In this study, the acetone-induced barrier disruption of hairless mice was investigated in order to establish a reliable model to study beneficial, long-term

  13. Epoxy Nanocomposites Containing Zeolitic Imidazolate Framework-8.

    Science.gov (United States)

    Liu, Cong; Mullins, Michael; Hawkins, Spencer; Kotaki, Masaya; Sue, Hung-Jue

    2018-01-10

    Zeolitic imidazole framework-8 (ZIF-8) is utilized as a functional filler and a curing agent in the preparation of epoxy nanocomposites. The imidazole group on the surface of the ZIF-8 initiates epoxy curing, resulting in covalent bonding between the ZIF-8 crystals and epoxy matrix. A substantial reduction in dielectric constant and increase in tensile modulus were observed. The implication of the present study for utilization of metal-organic framework to improve physical and mechanical properties of polymeric matrixes is discussed.

  14. Effect of acetone accumulation on structure and dynamics of lipid membranes studied by molecular dynamics simulations.

    Science.gov (United States)

    Posokhov, Yevgen O; Kyrychenko, Alexander

    2013-10-01

    The modulation of the properties and function of cell membranes by small volatile substances is important for many biomedical applications. Despite available experimental results, molecular mechanisms of action of inhalants and organic solvents, such as acetone, on lipid membranes remain not well understood. To gain a better understanding of how acetone interacts with membranes, we have performed a series of molecular dynamics (MD) simulations of a POPC bilayer in aqueous solution in the presence of acetone, whose concentration was varied from 2.8 to 11.2 mol%. The MD simulations of passive distribution of acetone between a bulk water phase and a lipid bilayer show that acetone favors partitioning into the water-free region of the bilayer, located near the carbonyl groups of the phospholipids and at the beginning of the hydrocarbon core of the lipid membrane. Using MD umbrella sampling, we found that the permeability barrier of ~0.5 kcal/mol exists for acetone partitioning into the membrane. In addition, a Gibbs free energy profile of the acetone penetration across a bilayer demonstrates a favorable potential energy well of -3.6 kcal/mol, located at 15-16Å from the bilayer center. The analysis of the structural and dynamics properties of the model membrane revealed that the POPC bilayer can tolerate the presence of acetone in the concentration range of 2.8-5.6 mol%. The accumulation of the higher acetone concentration of 11.2 mol% results, however, in drastic disordering of phospholipid packing and the increase in the membrane fluidity. The acetone molecules push the lipid heads apart and, hence, act as spacers in the headgroup region. This effect leads to the increase in the average headgroup area per molecule. In addition, the acyl tail region of the membrane also becomes less dense. We suggest, therefore, that the molecular mechanism of acetone action on the phospholipid bilayer has many common features with the effects of short chain alcohols, DMSO, and

  15. Plasma Treated Multi-Walled Carbon Nanotubes (MWCNTs for Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Jie Lian

    2011-12-01

    Full Text Available Plasma nanocoating of allylamine were deposited on the surfaces of multi-walled carbon nanotubes (MWCNTs to provide desirable functionalities and thus to tailor the surface characteristics of MWCNTs for improved dispersion and interfacial adhesion in epoxy matrices. Plasma nanocoated MWCNTs were characterized using scanning electron microscopy (SEM, high-resolution transmission electron microscopy (HR-TEM, surface contact angle, and pH change measurements. Mechanical testing results showed that epoxy reinforced with 1.0 wt % plasma coated MWCNTs increased the tensile strength by 54% as compared with the pure epoxy control, while epoxy reinforced with untreated MWCNTs have lower tensile strength than the pure epoxy control. Optical and electron microscopic images show enhanced dispersion of plasma coated MWCNTs in epoxy compared to untreated MWCNTs. Plasma nanocoatings from allylamine on MWCNTs could significantly enhance their dispersion and interfacial adhesion in epoxy matrices. Simulation results based on the shear-lag model derived from micromechanics also confirmed that plasma nanocoating on MWCNTs significantly improved the epoxy/fillers interface bonding and as a result the increased composite strength.

  16. Development of AlN/Epoxy Composites with Enhanced Thermal Conductivity

    Science.gov (United States)

    Xu, Yonggang; Yang, Chi; Li, Jun; Zhang, Hailong; Hu, Song; Wang, Shiwei

    2017-01-01

    AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy composites demonstrate much higher thermal conductivity, up to 19.0 W/(m·K), compared with those by the traditional particles filling method, because of continuous thermal channels formed by the walls and struts of AlN porous ceramics. This study demonstrates a potential route to manufacture epoxy-based composites with extremely high thermal conductivity. PMID:29258277

  17. Development of AlN/Epoxy Composites with Enhanced Thermal Conductivity.

    Science.gov (United States)

    Xu, Yonggang; Yang, Chi; Li, Jun; Mao, Xiaojian; Zhang, Hailong; Hu, Song; Wang, Shiwei

    2017-12-18

    AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy composites demonstrate much higher thermal conductivity, up to 19.0 W/(m·K), compared with those by the traditional particles filling method, because of continuous thermal channels formed by the walls and struts of AlN porous ceramics. This study demonstrates a potential route to manufacture epoxy-based composites with extremely high thermal conductivity.

  18. Combustion synthesized hierarchically porous WO{sub 3} for selective acetone sensing

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chengjun; Liu, Xu; Guan, Hongtao; Chen, Gang; Xiao, Xuechun [Department of Materials Science and Engineering, Yunnan University, 650091, Kunming (China); Djerdj, Igor [Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb (Croatia); Wang, Yude, E-mail: ydwang@ynu.edu.cn [Department of Materials Science and Engineering, Yunnan University, 650091, Kunming (China); Yunnan Province Key Lab of Mico-Nano Materials and Technology, Yunnan University, 650091, Kunming (China)

    2016-12-01

    An easy, inexpensive combustion route was designed to synthesize hierarchically porous WO{sub 3}. The tungsten source was fresh peroxiotungstic acid by dissolving tungsten powder into hydrogen peroxide. To promote the combustion reaction, a combined fuel of both glycine and hydrazine hydrate was used. The microstructure was well-connected pores comprised of subunit nanoparticles. Upon exposing towards acetone gas, the porous WO{sub 3} based sensor exhibits high gas response, rapid response and recovery, and good selectivity in the range of 5–1000 ppm under working temperature of 300 °C. This excellent sensing performance was plausibly attributed to the porous morphology, which hence provides more active sites for the gas molecules' reaction. - Graphical abstract: Hierarchically porous WO{sub 3} synthesized by combustion process exhibits high gas response, rapid response and recovery, and excellent selectivity for acetone, making it to be promising candidates for practical detectors for acetone. - Highlights: • Hierarchically porous WO{sub 3} synthesized by combustion process. • Hierarchically porous WO{sub 3} exhibits high gas response and excellent selectivity for acetone. • The excellent sensing property was plausibly attributed to the porous morphology.

  19. Gadolinium-, Calcium-, copper- and zirc complexes with riboflavin in acetone and acetonitrile

    International Nuclear Information System (INIS)

    Lugina, L.N.; Romanenko, V.I.; Davidenko, N.K.

    1983-01-01

    Using the methods of solubility and spectrophotometry, stability copstants Of complexes RFMSSUp(n+) (RF=riboflavin, Mnsup(n+)=Cdsup(3+), Ca 2+ , Cu 2+ and Zn 2+ ) in acetone and acetonitrile against the background of 1 mol/l LiClO 4 x3H 2 O have been determined. It was found that stability of copper and zinc complexes with riboflavin in acetone is higher than in acetonitrile, whereas the stability of gadolinium and calcium complexes, on the contrary, is higher in acetonitrile than in acetone. It is shown that the character of the absorption spectrum change of riboflavin in complexing with metal ions depends on the nature of coordinating cation

  20. Radiation processing of carbon fiber-acrylated epoxy composites

    International Nuclear Information System (INIS)

    Singh, A.; Saunders, C.B.

    1992-01-01

    Advanced composites, specifically carbon fiber reinforced epoxies, are being used for a variety of demanding structural applications, primarily because of their high strength-to-weight and stiffness-to-weight ratios, corrosion resistance, and damage tolerance characteristics. For these composites the key advantages of using electron beam (EB), rather than thermal curing, are curing at ambient temperature, reduced curing times for individual components, improved resin stability, fewer volatiles, and better control of the profile of energy absorption. Epoxy compounds do, however, have to be modified to make them EB curable. The electron beam penetration limit, a function of beam energy, product density, and the thickness of any container required, must also be examined when considering EB processing. Research is being conducted to develop EB-curable carbon fiber-acrylated epoxy composites. The tensile properties of these laminates are comparable to those of thermally cured epoxy laminates. Research is continuing to develop suitable resin formulations and coupling agents to optimize the mechanical properties of EB-cured carbon fiber laminates. In this chapter the EB curing of epoxies, processing considerations, and typical properties of EB-cured carbon fiber-acrylated epoxy laminates are discussed. (orig.)

  1. Determination of residual acetone and acetone related impurities in drug product intermediates prepared as Spray Dried Dispersions (SDD) using gas chromatography with headspace autosampling (GCHS).

    Science.gov (United States)

    Quirk, Emma; Doggett, Adrian; Bretnall, Alison

    2014-08-05

    Spray Dried Dispersions (SDD) are uniform mixtures of a specific ratio of amorphous active pharmaceutical ingredient (API) and polymer prepared via a spray drying process. Volatile solvents are employed during spray drying to facilitate the formation of the SDD material. Following manufacture, analytical methodology is required to determine residual levels of the spray drying solvent and its associated impurities. Due to the high level of polymer in the SDD samples, direct liquid injection with Gas Chromatography (GC) is not a viable option for analysis. This work describes the development and validation of an analytical approach to determine residual levels of acetone and acetone related impurities, mesityl oxide (MO) and diacetone alcohol (DAA), in drug product intermediates prepared as SDDs using GC with headspace (HS) autosampling. The method development for these analytes presented a number of analytical challenges which had to be overcome before the levels of the volatiles of interest could be accurately quantified. GCHS could be used after two critical factors were implemented; (1) calculation and application of conversion factors to 'correct' for the reactions occurring between acetone, MO and DAA during generation of the headspace volume for analysis, and the addition of an equivalent amount of polymer into all reference solutions used for quantitation to ensure comparability between the headspace volumes generated for both samples and external standards. This work describes the method development and optimisation of the standard preparation, the headspace autosampler operating parameters and the chromatographic conditions, together with a summary of the validation of the methodology. The approach has been demonstrated to be robust and suitable to accurately determine levels of acetone, MO and DAA in SDD materials over the linear concentration range 0.008-0.4μL/mL, with minimum quantitation limits of 20ppm for acetone and MO, and 80ppm for DAA. Copyright

  2. Oscillatory bromate-oxalic acid-Ce-acetone-sulfuric acid reaction, in CSTR

    International Nuclear Information System (INIS)

    Pereira, Janaina A.M.; Faria, Roberto B.

    2004-01-01

    Periodic oscillations were observed for the first time, in a CSTR, in the system bromate-oxalic acid-Ce(IV)-acetone-sulfuric acid, in a CSTR. A reaction between Ce(IV) and acetone, until now not described in the literature and occurring before the addition of the reagents to the reactor, was identified as a decisive factor for the appearing of the regular oscillations. (author)

  3. Thermal-mechanical properties of a graphitic-nanofibers reinforced epoxy.

    Science.gov (United States)

    Salehi-Khojin, Amin; Jana, Soumen; Zhong, Wei-Hong

    2007-03-01

    We previously developed a series of reactive graphitic nanofibers (r-GNFs) reinforced epoxy (nano-epoxy) as composite matrices, which have shown good wetting and adhesion properties with continuous fiber. In this work, the thermal-mechanical properties of the nano-epoxy system containing EponTM Resin 828 and Epi-cure Curing Agent W were characterized. Results from three-point bending tests showed that the flexural strength and flexural modulus of this system with 0.30 wt% of reactive nanofibers were increased by 16%, and 21% respectively, over pure epoxy. Fracture toughness increased by ca. 40% for specimens with 0.50 wt% of r-GNFs. By dynamic mechanical analysis (DMA) test, specimens with 0.30 wt% of r-GNFs showed a significant increase in storage modulus E' (by ca. 122%) and loss modulus E" (by ca. 111%) with respect to that of pure epoxy. Also thermo-dilatometry analysis (TDA) was used to measure dimensional change of specimens as a function of temperature, and then, coefficients of thermal expansion (CTE) before and after glass transition temperature (Tg) were obtained. Results implied that nano-epoxy materials had good dimensional stability and reduced CTE values when compared to those of pure epoxy.

  4. Green Preparation of Epoxy/Graphene Oxide Nanocomposites Using a Glycidylamine Epoxy Resin as the Surface Modifier and Phase Transfer Agent of Graphene Oxide.

    Science.gov (United States)

    Tang, Xinlei; Zhou, Yang; Peng, Mao

    2016-01-27

    In studies of epoxy/graphene oxide (GO) nanocomposites, organic solvents are commonly used to disperse GO, and vigorous mechanical processes and complicated modification of GO are usually required, increasing the cost and hindering the development and application of epoxy nanocomposites. Here, we report a green, facile, and efficient method of preparing epoxy/GO nanocomposites. When triglycidyl para-aminophenol (TGPAP), a commercially available glycidyl amine epoxy resin with one tertiary amine group per molecule, is used as both the surface modifier and phase transfer agent of GO, GO can be directly and rapidly transferred from water to diglycidyl ether of bisphenol A and other types of epoxy resins by manual stirring under ambient conditions, whereas GO cannot be transferred to these epoxy resins in the absence of TGPAP. The interaction between TGPAP and GO and the effect of the TGPAP content on the dispersion of GO in the epoxy matrix were investigated systematically. Superior dispersion and exfoliation of GO nanosheets and remarkably improved mechanical properties, including tensile and flexural properties, toughness, storage modulus, and microhardness, of the epoxy/GO nanocomposites with a suitable amount of TGPAP were demonstrated. This method is organic-solvent-free and technically feasible for large-scale preparation of high-performance nanocomposites; it opens up new opportunities for exploiting the unique properties of graphene or even other nanofillers for a wide range of applications.

  5. Kinetic features of cadmium electrodeposition in iodide water-acetone electrolytes

    International Nuclear Information System (INIS)

    Kuznetsov, V.V.; Skibina, L.M.; Khalikov, R.R.

    2006-01-01

    Based on the data of chronopotentiometric, galvanostatic, potentiodynamic, and impedance measurements, the composition of aqueous acetone electrolyte is studied for its effect on the rate of cadmium(II) electroreduction in iodide media. The adsorption of I - ions on the cadmium cathode surface is shown to depend on the interaction mechanism between the components of water-acetone mixtures. During a competitive adsorption of anions and organic solvent molecules, this affects the mechanism and the rate of electrodeposition and also the coating quality [ru

  6. Performance of epoxy-nanocomposite under corrosive environment

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available Nanocomposite materials consisting of polymeric matrix materials and natural or synthetic layered minerals like clay are currently an expanding field of study because these new materials often exhibit a wide range of improved properties over their unmodified starting polymers. Epoxy/organoclay nanocomposites have been prepared by intercalating epoxy into the organoclay via direct mixing process. The clay exfoliation was monitored by X-ray diffraction (XRD and transmission electron microscopy (TEM. Water diffusion and sulfuric acid corrosion resistance of epoxy-based nanocomposites were evaluated. Diffusion was studied through epoxy samples containing up to 6 phr (parts per hundred resin of an organically treated montmorillonite. The diffusion of the environmental solution was measured by noting the increase in weight of the samples as a function of immersion time in these solutions at 80°C. The effect of the degree of exfoliation of the organoclay on water barrier and corrosion resistance was specifically studied. The data have been compared to those obtained from the neat epoxy resin to evaluate the diffusion properties of the nanocomposites. The flexural strength of the epoxy/organoclay nanocomposites samples made was examined to compare their mechanical performance under corrosive conditions as a function of immersion time and temperature. It was found, that the organoclay was mainly intercalated with some exfoliation and that addition of the organoclay yields better flexural strength retention under immersion into sulfuric acid.

  7. In-situ Elevated Temperature Mechanical Performance of MWCNT/epoxy Nanocomposite

    Directory of Open Access Journals (Sweden)

    Bhanu Pratap Singh

    2017-03-01

    Full Text Available The present investigation has been focused on the effects of multi-walled carbon nanotube (MWCNT addition on the mechanical performance of epoxy under different in-service elevated temperature environments. Room temperature flexural test results revealed that addition of 0.1 wt. % MWCNT into epoxy resin resulted in modulus and strength enhancement of 21 % and 9 % respectively. With increase in service temperature, significant decrement in both modulus and strength was noticed for both materials (neat epoxy and MWCNT/epoxy nanocomposite, but the rate of degradation was found to be quite drastic for the nanocomposite. At 90 °C temperature, the CNT/epoxy nanocomposite exhibited inferior modulus and strength, which are 41 % and 59 % lower than neat epoxy respectively. The variation trend in elastic modulus with temperature obtained from both flexural testing and DMA for both these materials was also analyzed. It was found that addition of 0.1 % CNT in the epoxy reduced the glass transition temperature by about 16°C.

  8. Thermodynamic analysis of acetone sensing in Pd/AlGaN/GaN heterostructure Schottky diodes at low temperatures

    International Nuclear Information System (INIS)

    Das, Subhashis; Majumdar, Shubhankar; Kumar, Rahul; Ghosh, Saptarsi; Biswas, Dhrubes

    2016-01-01

    An AlGaN/GaN heterostructure based metal–semiconductor–metal symmetrically bi-directional Schottky diode sensor structure has been employed to investigate acetone sensing and to analyze thermodynamics of acetone adsorption at low temperatures. The AlGaN/GaN heterostructure has been grown by plasma-assisted molecular beam epitaxy on Si (111). Schottky diode parameters at different temperatures and acetone concentrations have been extracted from I–V characteristics. Sensitivity and change in Schottky barrier height have been studied. Optimum operating temperature has been established. Coverage of acetone adsorption sites at the AlGaN surface and the effective equilibrium rate constant of acetone adsorption have been explored to determine the endothermic nature of acetone adsorption enthalpy.

  9. (Liquid + liquid) equilibria for (water + 1-propanol or acetone + β-citronellol) at different temperatures

    International Nuclear Information System (INIS)

    Li, Hengde; Han, Yongtao; Huang, Cheng; Yang, Chufen

    2015-01-01

    Graphical abstract: (Liquid + liquid) equilibrium data for systems composed of β-citronellol and aqueous 1-propanol or acetone are presented. Distribution ratios of 1-propanol and acetone in the mixtures are examined. The effect of the temperature on the ternary (liquid + liquid) equilibria is evaluated and discussed. - Highlights: • Ternary (liquid + liquid) equilibria containing β-citronellol are presented. • Distribution ratios of 1-propanol and acetone in the mixtures are examined. • The effect on the temperature of the systems is evaluated and discussed. - Abstract: On this paper, experimental (liquid + liquid) equilibrium (LLE) results are presented for systems composed of β-citronellol and aqueous 1-propanol or acetone. To evaluate the phase separation properties of β-citronellol in aqueous mixtures, LLE values for the ternary systems (water + 1-propanol + β-citronellol) and (water + acetone + β-citronellol) were determined with a tie-line method at T = (283.15, 298.15, and 313.15 ± 0.02) K and atmospheric pressure. The reliability of the experimental tie-lines was verified by the Hand and Bachman equations. Ternary phase diagrams, distribution ratios of 1-propanol and acetone in the mixtures are shown. The effect of the temperature on the ternary (liquid + liquid) equilibria was examined and discussed. The experimental LLE values were satisfactorily correlated by extended UNIQUAC and modified UNIQUAC models

  10. Photodissociation of the acetone cation at 355 nm using the velocity imaging technique

    Science.gov (United States)

    Jackson, William M.; Xu, Dadong

    2000-09-01

    Photodissociation of acetone cations, CH3COCH3+, at 355 nm has been studied by means of the ion velocity imaging technique. Acetone cations are produced via direct photoionization of a supersonic beam of acetone at 118 nm generated by frequency tripling the 355 nm laser. Only the acetyl cation, CH3CO+, could be detected as a dissociation product in the time-of-flight mass spectrometer. The acetyl ion signal depends upon the fifth power of the 355 nm laser energy, while the acetone ion signal depends upon the third power. This suggests that the fragment ion is produced via two-photon absorption of 355 nm photons by the acetone cation. The total translational energy distribution and angular distribution of acetyl cation were derived from the 2D images of CH3CO+ for the reaction CH3COCH3++2hν355nm→CH3CO++CH3*. The translational energy distribution suggests that methyl radicals are produced in two electronically excited states, the Rydberg 3s 1 2A1' and the valence 1 2A″ states. The anisotropy parameter β shows that the Rydberg state is formed via a perpendicular excitation and the valence state via a parallel transition.

  11. Prediction of brittle fracture of epoxy-aluminum flanging

    Directory of Open Access Journals (Sweden)

    Korbel J.

    2010-07-01

    Full Text Available This paper presents a fracture mechanical approach for estimation of critical bending load of different types of aluminum-epoxy flanging and comparison with experimental measurements. For this purpose, several designs of the flanges were investigated. The flanges were glued to the epoxy bars and adhesive-epoxy interface was considered as a bi-material notch. Prediction of the failure is based on generalized stress intensity factor and generalized fracture toughness.

  12. Accelerated thermal aging of rubber modified epoxy encapsulants

    International Nuclear Information System (INIS)

    Sayre, J.A.

    1979-01-01

    A program is outlined to enable prediction of physical properties of rubber modified epoxy encapsulants over the life time of the extended life neutron generators. Preliminary results show that the chief aging phenomenon occurring is increased crosslink density of the epoxy matrix. No changes in the rubber phase have been detected. The effect of increased epoxy crosslink density has been higher volume resistivity at 66 0 C, increased tensile strength, and decreased ultimate elongation

  13. Poly aniline Nano fiber as Modified Cladding for Optical Fiber Sensor to Detect Acetone Vapor

    International Nuclear Information System (INIS)

    Akhiruddin maddu; Ahmad aminuddin; Setyanto Tri Wahyudi; Hamdani Zain

    2008-01-01

    In this research, we used poly aniline nano fiber as modified cladding material for a fiber optic sensor system to detect the acetone vapor. The sensor was designed based on variation of evanescent field absorption on the core-modified cladding interface when exposed with varied acetone vapor. Poly aniline nano fiber synthesized by interfacial polymerization was coated onto the un-cladded core and acts as sensing element. Response of the fiber optic sensor was investigated by measuring the transmission light intensity via fiber optic sensor system while exposed with acetone vapor. Based on the sensor response curve, it is obtained a very fast response time of 30 s and recovery time of 10 s. The fiber optic sensor also exhibits a good reversibility and repeatability. Sensitivity of the sensor to variation of acetone vapor pressure was obtained 1.25 %/mmHg, that means the transmission intensity of the sensor changes 1.25 % for acetone vapor change of 1 mmHg. (author)

  14. Thermoset epoxy polymers from renewable resources

    Science.gov (United States)

    East, Anthony [Madison, NJ; Jaffe, Michael [Maplewood, NJ; Zhang, Yi [Harrison, NJ; Catalani, Luiz H [Carapicuiba, BR

    2009-11-17

    Novel thermoset epoxy polymers using the bisglycidyl ethers of anhydrosugars, such as isosorbide, isomannide, and isoidide, are disclosed. The bisglycidyl ethers are useful as substitutes for bisphenol A in the manufacture of thermoset epoxy ethers. The anhydrosugars are derived from renewable sources and the bisglycidyl ethers are not xenoestrogenic and the thermoset curing agents are likewise derived form renewable resources.

  15. Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites

    International Nuclear Information System (INIS)

    Sarathi, R.; Sahu, R.K.; Rajeshkumar, P.

    2007-01-01

    In the present work, the electrical, mechanical and thermal properties of epoxy nanocomposite materials were studied. The electrical insulation characteristics were analyzed through short time breakdown voltage test, accelerated electrical ageing test, and by tracking test. The breakdown voltage increases with increase in nano-clay content up to 5 wt%, under AC and DC voltages. The volume resistivity, permittivity and tan(δ) of the epoxy nanocomposites were measured. The Weibull studies indicate that addition of nanoclay upto 5 wt% enhances the characteristic life of epoxy nanocomposite insulation material. The tracking test results indicate that the tracking time is high with epoxy nanocomposites as compared to pure epoxy. Ageing studies were carried out to understand the surface characteristic variation through contact angle measurement. The hydrophobicity of the insulating material was analysed through contact angle measurement. The diffusion coefficients of the material with different percentage of clay in epoxy nanocomposites were calculated. The exfoliation characteristics in epoxy nanocomposites were analyzed through wide angle X-ray diffraction (WAXD) studies. The thermal behaviour of the epoxy nanocomposites was analyzed by carrying out thermo gravimetric-differential thermal analysis (TG-DTA) studies. Heat deflection temperature of the material was measured to understand the stability of the material for intermittent temperature variation. The dynamic mechanical analysis (DMA) results indicated that storage modulus of the material increases with small amount of clay in epoxy resin. The activation energy of the material was calculated from the DMA results

  16. Modeling and mechanical performance of carbon nanotube/epoxy resin composites

    International Nuclear Information System (INIS)

    Srivastava, Vijay Kumar

    2012-01-01

    Highlights: ► The MWCNT fillers are uniformly dispersed in the epoxy resin, which improved the mechanical properties of epoxy resin. ► Modified Halpin–Tsai model is useful to calculate the Young’s modulus of MWCNT/epoxy resin composite. ► The experimental moduli are within the variation of 27% with the theoretical values. -- Abstract: The effect of multi-walled carbon nanotube (MWCNT) addition on mechanical properties of epoxy resin was investigated to obtain the tensile strength, compressive strength and Young’s modulus from load versus displacement graphs. The result shows that the tensile strength, compressive strength and Young’s modulus of epoxy resin were increased with the addition of MWCNT fillers. The significant improvements in tensile strength, compressive strength and Young’s modulus were obtained due to the excellent dispersion of MWCNT fillers in the epoxy resin. The dispersion of MWCNT fillers in epoxy resin was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Also, Halpin–Tsai model was modified by considering the average diameter of internal/external of multi-walled nanotube and orientation factor (α) to calculate the Young’s modulus of multi-walled carbon nanotubes (MWCNTs)/epoxy resin composite. There was a good correlation between the experimentally obtained Young’s modulus and modified Halpin–Tsai model.

  17. Y-Doped ZnO Nanorods by Hydrothermal Method and Their Acetone Gas Sensitivity

    Directory of Open Access Journals (Sweden)

    Peng Yu

    2013-01-01

    Full Text Available Pure and yttrium- (Y- doped (1 at%, 3 at%, and 7 at% ZnO nanorods were synthesized using a hydrothermal process. The crystallography and microstructure of the synthesized samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray spectroscopy (EDX. Comparing with pure ZnO nanorods, Y-doped ZnO exhibited improved acetone sensing properties. The response of 1 at% Y-doped ZnO nanorods to 100 ppm acetone is larger than that of pure ZnO nanorods. The response and recovery times of 1 at% Y-doped ZnO nanorods to 100 ppm acetone are about 30 s and 90 s, respectively. The gas sensor based on Y-doped ZnO nanorods showed good selectivity to acetone in the interfere gases of ammonia, benzene, formaldehyde, toluene, and methanol. The formation mechanism of the ZnO nanorods was briefly analyzed.

  18. Upper Bound for Neutron Emission from Sonoluminescing Bubbles in Deuterated Acetone

    International Nuclear Information System (INIS)

    Camara, C. G.; Putterman, S. J.; Hopkins, S. D.; Suslick, K. S.

    2007-01-01

    An experimental search for nuclear fusion inside imploding bubbles of degassed deuterated acetone at 0 degree sign C driven by a 15 atm sound field and seeded with a neutron generator reveals an upper bound that is a factor of 10 000 less than the signal reported by Taleyarkhan et al. The strength of our upper bound is limited by the weakness of sonoluminescence, which we ascribe to the relatively high vapor pressure of acetone

  19. Damages induced in lambda phage DNA by enzyme-generated triplet acetone

    International Nuclear Information System (INIS)

    Menck, C.F.; Cabral Neto, J.B.; Gomes, R.A.; Faljoni-Alario, A.

    1985-01-01

    Exposure of lambda phage to triplet acetone, generated during the aerobic oxidation of isobutanal by peroxidase, leads to genome lesions. The majority of these lesions are detected as DNA single-strand breaks only in alkaline conditions, so true breaks were not observed. Also, no sites sensitive to UV-endonuclease from Micrococcus luteus were found in DNA from treated phage. The participation of triplet acetone in the generation of such DNA damage is discussed. (Author) [pt

  20. The failure mode of natural silk epoxy triggered composite tubes

    International Nuclear Information System (INIS)

    Eshkour, R A; Ariffin, A K; Zulkifli, R; Sulong, A B; Azhari, C H

    2012-01-01

    In this study the quasi static compression test over natural silk epoxy triggered composite tubes has been carried out, the natural silk epoxy composite tubes consist of 24 layer of woven natural silk as reinforcement and thermoset epoxy resin as matrix which both of them i e natural silk and epoxy have excellent mechanical properties More over the natural silk have better moisture resistance in comparison with other natural reinforcements, the length of tubes are 50, 80 and 120 mm The natural silk epoxy composite tubes are associated with an external trigger which includes 4 steel pieces welded on downside flat plate fixture The hand lay up fabrication method has been used to make the natural silk epoxy composite tubes Instron universal testing machine with 250 KN load capacity has been employed to accomplish this investigation The failure modes of natural silk epoxy triggered composite tubes has been investigated by representative photographs which has been taken by a high resolution camera(12 2 Mp) during the quasi static compression test, from the photographs is observed the failure modes is progressive local buckling

  1. Fracture behaviour of a self-healing microcapsule-loaded epoxy system

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available The effect of temperature on the fracture behaviour of a microcapsule-loaded epoxy matrix was investigated. Microencapsulated epoxy and mercaptan-derivative healing agents were incorporated into an epoxy matrix to produce a polymer composite capable of self-healing. Maximum fracture loads were measured using the double-torsion method. Thermal aging at 55 and 110°C for 17 hours [hrs] was applied to heal the pre-cracked samples. The addition of microcapsules appeared to increase significantly the load carrying capacity of the epoxy after healing. Once healed, the composites achieved as much as 93–171% of its virgin maximum fracture load at 18, 55 and 110°C. The fracture behavior of the microcapsule- loaded epoxy matrix was influenced by the healing temperature. The high self-healing efficiency may be attributed to the result of the subsurface micro-crack pinning or deviation, and to a stronger microencapsulated epoxy and mercaptanderivative binder than that of the bulk epoxy. The results show that the healing temperature has a significant effect on recovery of load transferring capability after fracture.

  2. Epoxy/α-alumina nanocomposite with high electrical insulation performance

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2017-10-01

    Full Text Available An experimental study was conducted to improve the electrical insulation of epoxy resin. The effects of boehmite, γ-alumina and α-alumina nanoparticles on the volume resistivity, dielectric strength and glass transition temperature of epoxy nanocomposites were investigated. The results showed that α-alumina nanoparticles displayed obvious advantages in enhancing electrical insulation performance of epoxy nanocomposites, compared to boehmite and γ-alumina nanoparticles. The direct current volume resistivity and breakdown strength of epoxy nanocomposite with 2.0 wt% α-alumina nanoparticles was improved to 2.2 × 1018 Ω cm and 76.1 kV mm−1 respectively. And these improved values of electrical insulation properties are much higher than these of epoxy nanocomposites reported in previous studies. The main reason of these improvements may be that the epoxy/α-alumina interaction zone was enhanced by crosslink. Keywords: Nanocomposite, Epoxy resin, Insulation, α-alumina

  3. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    Science.gov (United States)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  4. Pyrolysis and liquefaction of acetone and mixed acetone/ tetralin swelled Mukah Balingian Malaysian sub-bituminous coal-The effect on coal conversion and oil yield

    International Nuclear Information System (INIS)

    Mohd Pauzi Abdullah; Mohd Azlan Mohd Ishak; Khudzir Ismail

    2008-01-01

    The effect of swelling on Mukah Balingian (MB) Malaysian sub-bituminous coal macrostructure was observed by pyrolysing the swelled coal via thermogravimetry under nitrogen at ambient pressure. The DTG curves of the pyrolyzed swelled coal samples show the presence of evolution peaks at temperature ranging from 235 - 295 degree Celsius that are due to releasing of light molecular weight hydrocarbons. These peaks, however, were not present in the untreated coal, indicating some changes in the coal macrostructure has occurred in the swelled coal samples. The global pyrolysis kinetics for coal that follows the first-order decomposition reaction was used to evaluate the activation energy of the pyrolyzed untreated and swelled coal samples. The results thus far have shown that the activation energy for the acetone and mixed acetone/ tetralin-swelled coal samples exhibit lower values than untreated coal, indicating less energy is required during the pyrolysis process due to the weakening of the coal-coal macromolecular interaction network. Moreover, liquefaction on the swelled coal samples that was carried out at temperatures ranging from 360 to 450 degree Celsius at 4 MPa of nitrogen pressure showed the enhancement of the coal conversion and oil yield at temperature of 420 degree Celsius, with retrogressive reaction started to dominate at higher temperature as indicated by decreased and increased in oil yield and high molecular weight pre-asphaltene, respectively. These observations suggest that the solvent swelling pre-treatment using acetone and mixed acetone/ tetralin can improve the coal conversion and oil yields at less severe liquefaction condition. (author)

  5. Positron lifetime study of electron-irradiated epoxy resins

    International Nuclear Information System (INIS)

    Suevegh, K.; Vertes, A.; Wojnarovits, L.; Foeldiak, G.; Liszkai, L.; Kajcsos, Zs.

    1990-01-01

    Two bisphenol-A type epoxy resins were irradiated by electron beam and studied afterwards by positron lifetime spectroscopy. An interesting result is that despite of the considerable amount of free-radicals, no inhibition of positronium formation was observed in the two epoxies. Nevertheless, several serious differences were detected between the studied polymers. The results suggest that the radiation-resistant properties of epoxies depend strongly on the amount of the curing agent. (author) 8 refs.; 2 figs

  6. Mobility and molecular ions of dimethyl methyl phosphonate, methyl salicylate and acetone

    Science.gov (United States)

    Nowak, D. M.

    1983-06-01

    The mobilities of positive and negative reactant ions are reported for (H2O)nH(+); (H2O)2O2 and (H2O)2CO3(-) ion clusters. The formation of positive DMMP monomer and dimer is reported, and equilbria molecular reactions are reported. Acetone is reported as forming a dimer at 81 ppb with a reduced mobility (K sub o) of 1.82, Methyl salicylate is shown to form a protonated and hydrated positive monomer. Mixtures of DMMP and methyl salicylate with acetone showed a substantial change in DMMP ion clustering and little or no change in the methyl salicylate mobility spectra. Negative ions were not observed for DMMP, methyl salicylate, acetone and the mixtures under the conditions reported.

  7. Ultratrace Measurement of Acetone from Skin Using Zeolite: Toward Development of a Wearable Monitor of Fat Metabolism.

    Science.gov (United States)

    Yamada, Yuki; Hiyama, Satoshi; Toyooka, Tsuguyoshi; Takeuchi, Shoji; Itabashi, Keiji; Okubo, Tatsuya; Tabata, Hitoshi

    2015-08-04

    Analysis of gases emitted from human skin and contained in human breath has received increasing attention in recent years for noninvasive clinical diagnoses and health checkups. Acetone emitted from human skin (skin acetone) should be a good indicator of fat metabolism, which is associated with diet and exercise. However, skin acetone is an analytically challenging target because it is emitted in very low concentrations. In the present study, zeolite was investigated for concentrating skin acetone for subsequent semiconductor-based analysis. The adsorption and desorption characteristics of five zeolites with different structures and those hydrophobicities were compared. A hydrophobic zeolite with relatively large pores (approximately 1.6 times larger than the acetone molecule diameter) was the best concentrator of skin acetone among the zeolites tested. The concentrator developed using zeolite was applied in a semiconductor-based gas sensor in a simulated mobile environment where the closed space was frequently collapsed to reflect the twisting and elastic movement of skin that would be encountered in a wearable device. These results could be used to develop a wearable analyzer for skin acetone, which would be a powerful tool for preventing and alleviating lifestyle-related diseases.

  8. Experimental design applied optimization of a state in epoxy clay dispersion; Planejamento de experimentos aplicado a otimizacao do estado de dispersao de argilas em epoxi

    Energy Technology Data Exchange (ETDEWEB)

    Paz, Juliana D' Avila; Bertholdi, Jonas; Folgueras, Marilena Valadares; Pezin, Sergio Henrique; Coelho, Luiz Antonio Ferreira, E-mail: julianadpaz@yahoo.com.b [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Centro de Ciencias Tecnologicas

    2010-07-01

    This paper presents some analysis showed that the exfoliation / intercalation of a montmorillonite clay in epoxy resin such as viscosity, X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetry (TG). Increasing the viscosity of epoxy resin diglycidyl ether bisphenol A with the addition of clay associated with the sonification system at the time of dispersion is a good indication of exfoliation. The X-ray diffraction already cured composite shows a decrease of crystallinity of clay and EDS microanalysis of SEM, non-uniform dispersion of clay in epoxy resin. Thermal analysis TG composite clay / epoxy shows an increase in thermal stability relative to pure epoxy. (author)

  9. Biofiltration of mixtures of gas-phase styrene and acetone with the fungus Sporothrix variecibatus

    International Nuclear Information System (INIS)

    Rene, Eldon R.; Spackova, Radka; Veiga, Maria C.; Kennes, Christian

    2010-01-01

    The biodegradation performance of a biofilter, inoculated with the fungus Sporothrix variecibatus, to treat gas-phase styrene and acetone mixtures under steady-state and transient conditions was evaluated. Experiments were carried out by varying the gas-flow rates (0.05-0.4 m 3 h -1 ), leading to empty bed residence times as low as 17.1 s, and by changing the concentrations of gas-phase styrene (0.01-6.3 g m -3 ) and acetone (0.01-8.9 g m -3 ). The total elimination capacities were as high as 360 g m -3 h -1 , with nearly 97.5% removal of styrene and 75.6% for acetone. The biodegradation of acetone was inhibited by the presence of styrene, while styrene removal was affected only slightly by the presence of acetone. During transient-state experiments, increasing the overall pollutant load by almost 3-fold, i.e., from 220 to 600 g m -3 h -1 , resulted in a sudden drop of removal efficiency (>90-70%), but still high elimination capacities were maintained. Periodic microscopic observations revealed that the originally inoculated Sporothrix sp. remained present in the reactor and actively dominant in the biofilm.

  10. Study of the exhaled acetone in type 1 diabetes using quantum cascade laser spectroscopy.

    Science.gov (United States)

    Reyes-Reyes, Adonis; Horsten, Roland C; Urbach, H Paul; Bhattacharya, Nandini

    2015-01-06

    The acetone concentration exhaled in the breath of three type 1 diabetes patients (two minors and one adult) and one healthy volunteer is studied using a quantum cascade laser-based spectroscopic system. Using the acetone signature between 1150 and 1250 cm(-1) and a multiline fitting method, the concentration variations on the order of parts per billion by volume were measured. Blood glucose and ketone concentrations in blood measurements were performed simultaneously to study their relation with acetone in exhaled breath. We focus on personalized studies to better understand the role of acetone in diabetes. For each volunteer, we performed a series of measurements over a period of time, including overnight fastings of 11 ± 1 h and during ketosis-hyperglycemia events for the minors. Our results highlight the importance of performing personalized studies because the response of the minors to the presence of ketosis was consistent but unique for each individual. Also, our results emphasize the need for performing more studies with T1D minors, because the acetone concentration in the breath of the minors differs, with respect to those reported in the literature, which are based on adults.

  11. Bio-Based Aromatic Epoxy Monomers for Thermoset Materials

    Directory of Open Access Journals (Sweden)

    Feifei Ng

    2017-01-01

    Full Text Available The synthesis of polymers from renewable resources is a burning issue that is actively investigated. Polyepoxide networks constitute a major class of thermosetting polymers and are extensively used as coatings, electronic materials, adhesives. Owing to their outstanding mechanical and electrical properties, chemical resistance, adhesion, and minimal shrinkage after curing, they are used in structural applications as well. Most of these thermosets are industrially manufactured from bisphenol A (BPA, a substance that was initially synthesized as a chemical estrogen. The awareness on BPA toxicity combined with the limited availability and volatile cost of fossil resources and the non-recyclability of thermosets implies necessary changes in the field of epoxy networks. Thus, substitution of BPA has witnessed an increasing number of studies both from the academic and industrial sides. This review proposes to give an overview of the reported aromatic multifunctional epoxide building blocks synthesized from biomass or from molecules that could be obtained from transformed biomass. After a reminder of the main glycidylation routes and mechanisms and the recent knowledge on BPA toxicity and legal issues, this review will provide a brief description of the main natural sources of aromatic molecules. The different epoxy prepolymers will then be organized from simple, mono-aromatic di-epoxy, to mono-aromatic poly-epoxy, to di-aromatic di-epoxy compounds, and finally to derivatives possessing numerous aromatic rings and epoxy groups.

  12. Solvents (butanol, acetone, and ethanol). [USSR Patent

    Energy Technology Data Exchange (ETDEWEB)

    Yarovenko, V L; Nakhmanovich, B M

    1963-07-17

    The method involves use of carbohydrate-containing plant raw-material, e.g. hydrolyzates of corn cob and pulp. The material is subjected to fermentation with acetone-butanol bacteria with addition of starch-industry wastes as source of proteins (gluten and gluten-containing water) and nutrient salts.

  13. Thermal conductivity and Kapitza resistance of cyanate ester epoxy mix and tri-functional epoxy electrical insulations at superfluid helium temperature

    CERN Document Server

    Pietrowicz, S; Jones, S; Canfer, S; Baudouy, B

    2012-01-01

    In the framework of the European Union FP7 project EuCARD, two composite insulation systems made of cyanate ester epoxy mix and tri-functional epoxy (TGPAP-DETDA) with S-glass fiber have been thermally tested as possible candidates to be the electrical insulation of 13 T Nb$_{3}$Sn high field magnets under development for this program. Since it is expected to be operated in pressurized superfluid helium at 1.9 K and 1 atm, the thermal conductivity and the Kapitza resistance are the most important input parameters for the thermal design of this type of magnet and have been determined in this study. For determining these thermal properties, three sheets of each material with different thicknesses varying from 245 μm to 598 μm have been tested in steady-state condition in the temperature range of 1.6 K - 2.0 K. The thermal conductivity for the tri-functional epoxy (TGPAP-DETDA) epoxy resin insulation is found to be k=[(34.2±5.5).T-(16.4±8.2)]×10-3 Wm-1K-1 and for the cyanate ester epoxy k=[(26.8±4.8).T- (9...

  14. Effects of aspect ratio and concentration on rheology of epoxy suspensions containing model plate-like nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    White, K. L.; Takahara, A. [International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Hawkins, S.; Sue, H.-J., E-mail: hjsue@tamu.edu [Department of Materials Science and Engineering, Texas A& M University, College Station, Texas 77843 (United States); Miyamoto, M. [Kaneka US Materials Research Center, Kaneka America Holdings, Inc., College Station, Texas 77843 (United States)

    2015-12-15

    Hexagonal 2-dimensional α-zirconium phosphate crystals were prepared with lateral diameters ranging from 110 nm to 1.5 μm to investigate the effect of particle size on suspension rheology. The nanoplatelets were exfoliated to individual sheets with monodisperse thickness and dispersed in a Newtonian epoxy fluid. The steady shear response of dilute and semi-dilute suspensions was measured and compared to expressions obtained from theory for infinitely dilute suspensions. For suspensions containing the smaller nanoplatelets, aspect ratio ∼160, the low shear rate viscosity and transition to shear thinning behavior were well described by theory for loadings up to 0.5 vol. %. The agreement was improved by assuming a moderate polydispersity in lateral diameter, ∼30%–50%, which is consistent with experimental observation. For the higher aspect ratio nanoplatelets, good agreement between theory and experiment was observed only at high shear rates. At lower shear rate, theory consistently over-predicted viscosity, which was attributed to a progressive shift to non-isotropic initial conditions with increasing particle size. The results suggest that at a fixed Peclet number, there is an increasing tendency for the nanoplatelets to form transient, local stacks as particle size increases. The largest particles, aspect ratio ∼2200, showed unusual shear thinning and thickening behaviors that were attributed to particle flexibility. The findings demonstrate the surprising utility of theory for infinitely dilute suspensions to interpret, and in some cases quantitatively describe, the non-Newtonian viscosity of real suspensions containing high aspect ratio plate-like particles. A simple framework is proposed to interpret deviations from ideal behavior based on the local and collective behavior of the suspended nanoplatelets.

  15. Magnetism in graphene oxide induced by epoxy groups

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongwook, E-mail: dongwookleedl324@gmail.com [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Division of Physics and Applied Physics, Nanyang Technological University, Singapore 637371 (Singapore); Seo, Jiwon, E-mail: jiwonseo@yonsei.ac.kr [Department of Physics and IPAP, Yonsei University, Seoul 120-749 (Korea, Republic of); School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Zhu, Xi; Su, Haibin [Division of Materials Science, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Cole, Jacqueline M. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Argonne National Laboratory, 9700S Cass Avenue, Argonne, Illinois 60439 (United States)

    2015-04-27

    We have engineered magnetism in graphene oxide. Our approach transforms graphene into a magnetic insulator while maintaining graphene's structure. Fourier transform infrared spectroscopy spectra reveal that graphene oxide has various chemical groups (including epoxy, ketone, hydroxyl, and C-O groups) on its surface. Destroying the epoxy group with heat treatment or chemical treatment diminishes magnetism in the material. Local density approximation calculation results well reproduce the magnetic moments obtained from experiments, and these results indicate that the unpaired spin induced by the presence of epoxy groups is the origin of the magnetism. The calculation results also explain the magnetic properties, which are generated by the interaction between separated magnetic regions and domains. Our results demonstrate tunable magnetism in graphene oxide based on controlling the epoxy group with heat or chemical treatment.

  16. Profiling and relative quantification of phosphatidylethanolamine based on acetone stable isotope derivatization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang [Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (China); Hubei Key Laboratory of Lipid Chemistry and Nutrition (China); Wei, Fang, E-mail: willasa@163.com [Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (China); Hubei Key Laboratory of Lipid Chemistry and Nutrition (China); Xu, Ji-qu; Lv, Xin; Dong, Xu-yan [Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (China); Hubei Key Laboratory of Lipid Chemistry and Nutrition (China); Han, Xianlin [Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827 (United States); College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053 (China); Quek, Siew-young [School of Chemical Science, The University of Auckland, Auckland 1142 (New Zealand); Huang, Feng-hong [Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (China); Hubei Key Laboratory of Lipid Chemistry and Nutrition (China); Chen, Hong, E-mail: chenhong@oilcrops.cn [Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (China); Hubei Key Laboratory of Lipid Chemistry and Nutrition (China)

    2016-01-01

    Phosphatidylethanolamine (PE) is considered to be one of the pivotal lipids for normal cellular function as well as disease initiation and progression. In this study, a simple, efficient, reliable, and inexpensive method for the qualitative analysis and relative quantification of PE, based on acetone stable isotope derivatization combined with double neutral loss scan-shotgun electrospray ionization tandem-quadrupole mass spectrometry analysis (ASID-DNLS-Shotgun ESI-MS/MS), was developed. The ASID method led to alkylation of the primary amino groups of PE with an isopropyl moiety. The use of acetone (d{sub 0}-acetone) and deuterium-labeled acetone (d{sub 6}-acetone) introduced a 6 Da mass shift that was ideally suited for relative quantitative analysis, and enhanced sensitivity for mass analysis. The DNLS model was introduced to simultaneously analyze the differential derivatized PEs by shotgun ESI-MS/MS with high selectivity and accuracy. The reaction specificity, labeling efficiency, and linearity of the ASID method were thoroughly evaluated in this study. Its excellent applicability was validated by qualitative and relative quantitative analysis of PE species presented in liver samples from rats fed different diets. Using the ASID-DNLS-Shotgun ESI-MS/MS method, 45 PE species from rat livers have been identified and quantified in an efficient manner. The level of total PEs tended to decrease in the livers of rats on high fat diets compared with controls. The levels of PE 32:1, 34:3, 34:2, 36:3, 36:2, 42:10, plasmalogen PE 36:1 and lyso PE 22:6 were significantly reduced, while levels of PE 36:1 and lyso PE 16:0 increased. - Highlights: • A novel isotope reagent acetone was explored for the derivatization of PEs. • The labeling reaction was carried out under mild conditions with high specificity. • Enhanced detection sensitivity of PEs was achieved after derivatization. • The ASID-DNLS-Shotgun MS/MS method was used to relative quantification of PEs.

  17. Free energy of mixing of acetone and methanol: a computer simulation investigation.

    Science.gov (United States)

    Idrissi, Abdenacer; Polok, Kamil; Barj, Mohammed; Marekha, Bogdan; Kiselev, Mikhail; Jedlovszky, Pál

    2013-12-19

    The change of the Helmholtz free energy, internal energy, and entropy accompanying the mixing of acetone and methanol is calculated in the entire composition range by the method of thermodynamic integration using three different potential model combinations of the two compounds. In the first system, both molecules are described by the OPLS, and in the second system, both molecules are described by the original TraPPE force field, whereas in the third system a modified version of the TraPPE potential is used for acetone in combination with the original TraPPE model of methanol. The results reveal that, in contrast with the acetone-water system, all of these three model combinations are able to reproduce the full miscibility of acetone and methanol, although the thermodynamic driving force of this mixing is very small. It is also seen, in accordance with the finding of former structural analyses, that the mixing of the two components is driven by the entropy term corresponding to the ideal mixing, which is large enough to overcompensate the effect of the energy increase and entropy loss due to the interaction of the unlike components in the mixtures. Among the three model combinations, the use of the original TraPPE model of methanol and modified TraPPE model of acetone turns out to be clearly the best in this respect, as it is able to reproduce the experimental free energy, internal energy, and entropy of mixing values within 0.15 kJ/mol, 0.2 kJ/mol, and 1 J/(mol K), respectively, in the entire composition range. The success of this model combination originates from the fact that the use of the modified TraPPE model of acetone instead of the original one in these mixtures improves the reproduction of the entropy of mixing, while it retains the ability of the original model of excellently reproducing the internal energy of mixing.

  18. The characteristics of epoxy resin cured by {gamma}-ray and E-beam

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Y.C. E-mail: ycnho@kaeri.re.kr; Kang, Phil Hyun; Park, Jong Seok

    2004-10-01

    Epoxy resins are widely used as high-performance thermosetting resins for many industrial applications. In this study, the effect of an electron beam (E-beam) and {gamma}-ray irradiation on the curing of epoxy resins was investigated. Diglycidyl ether of bisphenol-A(DGEBA), diglycidyl ether of bisphenol-F(DGEBF) as epoxy resins, triarylsulfonium hexafluoroantimonate(TASHFA), and triarylsulfonium hexafluorophosphate(TASHFP) as initiators were used in this study. The chemical and mechanical characteristics of irradiated epoxy resins were compared after curing of E-beam and {gamma}-ray irradiation up to 50 kGy in N{sub 2} and air atmosphere. We ascertained the effect of oxygen on the radiation curing of epoxy resin. The thermal properties of cured epoxy were investigated using DMA and TGA. Mechanical properties such as flexural strength were measured. The chemical structures of cured epoxy were characterized by FT-NIR. The gel fraction and the stress at yield of epoxy resins irradiated by E-beam and {gamma}-ray in N{sub 2} atmosphere were also compared with those of epoxy resins irradiated by E-beam and {gamma}-ray in air.

  19. Brief Communication: Comparison of formol-acetone concentration ...

    African Journals Online (AJOL)

    Background: Formol-ether concentration technique is taken as a gold standard method to detect most intestinal parasites; however, because of its low safety and hazardous impact a need for better technique has a paramount importance. Objective: To evaluate a formol- acetone concentration method in comparison with the ...

  20. Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath.

    Science.gov (United States)

    Yang, Ting; Gao, Dong-Xue; Yu, Yong-Liang; Chen, Ming-Li; Wang, Jian-Hua

    2016-01-01

    Acetone is a predominant volatile organic compound (VOC) in the exhaled breath and a promising biomarker for diabetes and ketoacidosis. A non-thermal micro-plasma generated in a planar dielectric barrier discharge (DBD) is used as a radiation source for the excitation of gaseous acetone followed by its quantification with optical emission spectrometry (OES). Gaseous acetone can be directly sampled, while liquid acetone is evaporated by heated tungsten coil and then introduced into the DBD micro-plasma by a helium carrier flow for performing optical emission and detection at a 519 nm emission line. In the present study, the exhaled breath is collected and transferred into aqueous medium for sampling. With a sampling volume of 7 μL in a micro-drop, a linear range of 40-1600 mg L(-1) is obtained along with a detection limit of 44 ng and a precision of 5.7% RSD. The present system is successfully applied to the determination of breath acetone for both diabetic patients and healthy volunteers. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Corrosion Protection of Steel by Epoxy-Organoclay Nanocomposite Coatings

    OpenAIRE

    Domna Merachtsaki; Panagiotis Xidas; Panagiotis Giannakoudakis; Konstantinos Triantafyllidis; Panagiotis Spathis

    2017-01-01

    The purpose of the present work was to study the corrosion behavior of steel coated with epoxy-(organo) clay nanocomposite films. The investigation was carried out using salt spray exposures, optical and scanning electron microscopy examination, open circuit potential, and electrochemical impedance measurements. The mechanical, thermomechanical, and barrier properties of pristine glassy epoxy polymer and epoxy-clay nanocomposites were examined. The degree of intercalation/exfoliation of clay ...

  2. Involvement of an ATP-dependent carboxylase in a CO2-dependent pathway of acetone metabolism by Xanthobacter strain Py2.

    OpenAIRE

    Sluis, M K; Small, F J; Allen, J R; Ensign, S A

    1996-01-01

    The metabolism of acetone by the aerobic bacterium Xanthobacter strain Py2 was investigated. Cell suspensions of Xanthobacter strain Py2 grown with propylene or glucose as carbon sources were unable to metabolize acetone. The addition of acetone to cultures grown with propylene or glucose resulted in a time-dependent increase in acetone-degrading activity. The degradation of acetone by these cultures was prevented by the addition of rifampin and chloramphenicol, demonstrating that new protein...

  3. Acetone production using silicon nanoparticles and catalyst compositions

    KAUST Repository

    Chaieb, Saharoui; Demellawi, Jehad El; Al-Talla, Zeyad

    2015-01-01

    Embodiments of the present disclosure provide for a catalytic reaction to produce acetone, a catalyst that include a mixture of silicon particles (e.g., about 1 to 20 nm in diameter) and a solvent, and the like.

  4. Acetone production using silicon nanoparticles and catalyst compositions

    KAUST Repository

    Chaieb, Sahraoui

    2015-12-10

    Embodiments of the present disclosure provide for a catalytic reaction to produce acetone, a catalyst that include a mixture of silicon particles (e.g., about 1 to 20 nm in diameter) and a solvent, and the like.

  5. Relationship of O2 Photodesorption in Photooxidation of Acetone on TiO2

    International Nuclear Information System (INIS)

    Henderson, Michael A.

    2008-01-01

    Organic photooxidation on TiO2 invariably involves the coexistence of organic species with oxygen on the surface at the same time. In the case of acetone and oxygen, both species exhibit their own interesting photochemistry on TiO2, but interdependences between the two are not understood. In this study, a rutile TiO2(110) surface possessing 7% surface oxygen vacancy sites is used as a model surface to probe the relationship between O2 photodesorption and acetone photodecomposition. Temperature programmed desorption (TPD) and photon stimulated desorption (PSD) measurements indicate that coadsorbed oxygen is essential to acetone photodecomposition on this surface, however the form of oxygen (molecular and dissociative) is not known. The first steps in acetone photodecomposition on TiO2(110) involve thermal activation with oxygen to form an acetone diolate ((CH3)2COO) species followed by photochemical decomposition to adsorbed acetate (CH3COO) and an ejected CH3 radical that is detected in PSD. Depending on the surface conditions, O2 PSD is also observed during the latter process. However, the time scales for the two PSD events (CH3 and O2) are quite different, with the former occurring at ∼10 times faster than the latter. By varying the preheating conditions or performing pre-irradiation on an O2 exposed surface, it becomes clear that the two PSD events are uncorrelated. That is, the O2 species responsible for O2 PSD is not a significant participant in the photochemistry of acetone on TiO2(110) and likely originates from a minority form of O2 on the surface. The CH3 and O2 PSD events do not appear to be in competition with each other suggesting either that ample charge carriers exist under the experimental conditions employed or that different charge carriers or excitation mechanisms are involved

  6. Effects of Nanofillers on the Thermo-Mechanical Properties and Chemical Resistivity of Epoxy Nanocomposites.

    Science.gov (United States)

    Atchudan, Raji; Pandurangan, Arumugam; Joo, Jin

    2015-06-01

    MWCNTs was synthesized using Ni-Cr/MgO by CVD method and were purified. The purified MWCNT was used as a filler material for the fabrication of epoxy nanocomposites. The epoxy nanocomposites with different amount (wt% = 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0) of nanofillers (CB, SiO2 and MWCNTs) were prepared by casting method. The effects of nanofillers on the properties of neat epoxy matrix were well studied. The thermal properties of nanocomposites were studied using DSC, TGA and flame retardant, and also the mechanical properties such as tensile strength, flexural strength, compressive strength, impact strength, determination of hardness and chemical resistance were studied extensively. Based on the experiment's results, 2 wt% MWCNTs loading in epoxy resin showed the highest improvement in tensile strength, as compared to neat epoxy and to other epoxy systems (CB/epoxy, SiO2/epoxy). Improvements in tensile strength, glass transition temperature and decomposition temperature were observed by the addition of MWCNTs. The mechanical properties of the epoxy nanocomposites were improved due to the interfacial bonding between the MWCNTs and epoxy resin. Strain hardening behavior was higher for MWCNT/epoxy nanocomposites compared with CB/epoxy and SiO2/epoxy nanocomposites. The investigation of thermal and mechanical properties reveals that the incorporation of MWCNTs into the epoxy nanocomposites increases its thermal stability to a great extent. Discrete increase of glass transition temperature of nanocomposites is linearly dependent on MWCNTs content. Due to strong interfacial bonding between MWCNTs and epoxy resin, the chemical resistivity of MWCNT/epoxy nanocomposites is superior to neat epoxy and other epoxy systems.

  7. Silane coupling agent for attaching fusion-bonded epoxy to steel.

    Science.gov (United States)

    Tchoquessi Diodjo, Madeleine R; Belec, Lénaïk; Aragon, Emmanuel; Joliff, Yoann; Lanarde, Lise; Perrin, François-Xavier

    2013-07-24

    We describe the possibility of using γ-aminopropyltriethoxysilane (γ-APS) to increase the durability of epoxy powder coating/steel joints. The curing temperature of epoxy powder coatings is frequently above 200 °C, which is seen so far as a major limitation for the use of the heat-sensitive aminosilane coupling agent. Despite this limitation, we demonstrate that aminosilane is a competitive alternative to traditional chromate conversion to enhance the durability of epoxy powder coatings/steel joints. Fourier-transform reflection-absorption infrared spectroscopy (FT-RAIRS), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) were used to identify the silane deposition conditions that influence the adhesion of epoxy powder coatings on steel. We show that AFM analysis provides highly sensitive measurements of mechanical property development and, as such, the degree of condensation of the silane. The joint durability in water at 60 °C was lower when the pH of the γ-APS solution was controlled at 4.6 using formic acid, rather than that at natural pH (10.6). At the curing temperature of 220 °C, oxidation of the carbon adjacent to the amine headgroup of γ-APS gives amide species by a pseudofirst-order kinetics. However, a few amino functionalities remain to react with oxirane groups of epoxy resin and, thus, strengthen the epoxy/silane interphase. The formation of ammonium formate in the acidic silane inhibits the reaction between silane and epoxy, which consequently decreases the epoxy/silane interphase cohesion. We find that the nanoroughness of silane deposits increases with the cure temperature which is beneficial to the wet stability of the epoxy/steel joints, due to increased mechanical interlocking.

  8. Processing of beet-sugar molasses in the acetone-butyl alcohol industry

    Energy Technology Data Exchange (ETDEWEB)

    Zalesskaya, M I; Logotkin, I S; Marfina, A M; Gus' kova, N P; Chekasina, E V

    1958-01-01

    Possibility of partial replacement of flour by beet-sugar molasses (I) in acetone-BuOH fermentation was investigated on a commercial scale. Detailed regimes of experiments carried out in two trials were given. Yields of fermentation (kg/1000 kg starch of mash) were: 125.3, 214.4, and 31.5 of acetone, BuOH and EtOH, respectively, for pure flour-mash; 123.3, 215.3, and 28.7 of acetone, BuOH, and EtOH, respectively, at 10% flour replaced by I; 127.8, 205.9, and 51.8, respectively, at 50% flour replaced by I; and 120.17, 216.48, and 42.3, respectively, at 62% flour replaced by I. Inoculum, grown in the seed-mash containing flour only, was not mixed with fermentor-mash until the stage of acid production by the inoculum was reached. During the fermentation of mashes in which 62% flour was replaced by I, a slight foaming was observed.

  9. Acetone-Linked Peptides: A Convergent Approach for Peptide Macrocyclization and Labeling.

    Science.gov (United States)

    Assem, Naila; Ferreira, David J; Wolan, Dennis W; Dawson, Philip E

    2015-07-20

    Macrocyclization is a broadly applied approach for overcoming the intrinsically disordered nature of linear peptides. Herein, it is shown that dichloroacetone (DCA) enhances helical secondary structures when introduced between peptide nucleophiles, such as thiols, to yield an acetone-linked bridge (ACE). Aside from stabilizing helical structures, the ketone moiety embedded in the linker can be modified with diverse molecular tags by oxime ligation. Insights into the structure of the tether were obtained through co-crystallization of a constrained S-peptide in complex with RNAse S. The scope of the acetone-linked peptides was further explored through the generation of N-terminus to side chain macrocycles and a new approach for generating fused macrocycles (bicycles). Together, these studies suggest that acetone linking is generally applicable to peptide macrocycles with a specific utility in the synthesis of stabilized helices that incorporate functional tags. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The Marangoni convection induced by acetone desorption from the falling soap film

    Science.gov (United States)

    Sha, Yong; Li, Zhangyun; Wang, Yongyi; Huang, Jiali

    2012-05-01

    By means of the falling soap film tunnel and the Schlieren optical method, the Marangoni convection were observed directly in the immediate interfacial neighborhood during the desorption process of acetone from the falling soap film. Moreover, the hydraulic characteristics of the falling soap film tunnel, the acetone concentration, the surface tension of the soap liquid and the mass transfer has been investigated in details through the experimental or theoretical method.

  11. Biofiltration of mixtures of gas-phase styrene and acetone with the fungus Sporothrix variecibatus

    Energy Technology Data Exchange (ETDEWEB)

    Rene, Eldon R.; Spackova, Radka; Veiga, Maria C. [University of La Coruna, Dpt. of Chemical Engineering, Campus da Zapateira, Rua da Fraga, 10, 15008 La Coruna (Spain); Kennes, Christian, E-mail: kennes@udc.es [University of La Coruna, Dpt. of Chemical Engineering, Campus da Zapateira, Rua da Fraga, 10, 15008 La Coruna (Spain)

    2010-12-15

    The biodegradation performance of a biofilter, inoculated with the fungus Sporothrix variecibatus, to treat gas-phase styrene and acetone mixtures under steady-state and transient conditions was evaluated. Experiments were carried out by varying the gas-flow rates (0.05-0.4 m{sup 3} h{sup -1}), leading to empty bed residence times as low as 17.1 s, and by changing the concentrations of gas-phase styrene (0.01-6.3 g m{sup -3}) and acetone (0.01-8.9 g m{sup -3}). The total elimination capacities were as high as 360 g m{sup -3} h{sup -1}, with nearly 97.5% removal of styrene and 75.6% for acetone. The biodegradation of acetone was inhibited by the presence of styrene, while styrene removal was affected only slightly by the presence of acetone. During transient-state experiments, increasing the overall pollutant load by almost 3-fold, i.e., from 220 to 600 g m{sup -3} h{sup -1}, resulted in a sudden drop of removal efficiency (>90-70%), but still high elimination capacities were maintained. Periodic microscopic observations revealed that the originally inoculated Sporothrix sp. remained present in the reactor and actively dominant in the biofilm.

  12. Epoxy Nanocomposites filled with Carbon Nanoparticles.

    Science.gov (United States)

    Martin-Gallego, M; Yuste-Sanchez, V; Sanchez-Hidalgo, R; Verdejo, R; Lopez-Manchado, M A

    2018-01-10

    Over the past decades, the development of high performance lightweight polymer nanocomposites and, in particular, of epoxy nanocomposites has become one the greatest challenges in material science. The ultimate goal of epoxy nanocomposites is to extrapolate the exceptional intrinsic properties of the nanoparticles to the bulk matrix. However, in spite of the efforts, this objective is still to be attained at commercially attractive scales. Key aspects to achieve this are ultimately the full understanding of network structure, the dispersion degree of the nanoparticles, the interfacial adhesion at the phase boundaries and the control of the localization and orientation of the nanoparticles in the epoxy system. In this Personal Account, we critically discuss the state of the art and evaluate the strategies to overcome these barriers. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Mechanical Reinforcement of Epoxy Composites with Carbon Fibers and HDPE

    Science.gov (United States)

    He, R.; Chang, Q.; Huang, X.; Li, J.

    2018-01-01

    Silanized carbon fibers (CFs) and a high-density polyethylene with amino terminal groups (HDPE) were introduced into epoxy resins to fabricate high-performance composites. A. mechanical characterization of the composites was performed to investigate the effect of CFs in cured epoxy/HDPE systems. The composites revealed a noticeable improvement in the tensile strength, elongation at break, flexural strength, and impact strength in comparison with those of neat epoxy and cured epoxy/HDPE systems. SEM micrographs showed that the toughening effect could be explained by yield deformations, phase separation, and microcracking.

  14. Acetone-butyl alcohol fermentation of the cornstalk hydrolyzates prepared by the method of Riga

    Energy Technology Data Exchange (ETDEWEB)

    Nakhmanovich, N A; Shcheblykina, N A; Kalnina, V; Pelsis, D

    1960-01-01

    The possibility of use of waste instead of food products in the acetone-butyl alcohol fermentation was investigated. Crushed cornstalks hydrolyzed by the method of Riga were inverted at varying conditions. The hydrolyzate containing about 50% of reducing substances (RS), based on dry weight of cornstalks, was neutralized to pH 6.3-6.5, diluted with water to the final concentration 5.0-5.1% of RS filtered, and the filtrate sterilized. The resulting liquor (I) was mixed with the wheat meal mash containing 5% of sugar (starch calculated as glucose) and fermented. The utilization of I depended upon the regime of inversion; the optimal being 20 minutes at 115/sup 0/, hydrocoefficient 1:4. In this case the use of 40% of mash sugar in form of I did not impair the yield of fermentation. The use of corn instead of wheat meal decreased the yield of butanol and increased that of ethanol. The fermentation of the mixture of I (final concentration 3% RS) and corn gluten (final concentration 2%), mineral salts added, gave higher yields than did the fermentation of the wheat meal mash.

  15. Functionalizing CNTs for Making Epoxy/CNT Composites

    Science.gov (United States)

    Chen, Jian; Rajagopal, Ramasubramaniam

    2009-01-01

    Functionalization of carbon nanotubes (CNTs) with linear molecular side chains of polyphenylene ether (PPE) has been shown to be effective in solubilizing the CNTs in the solvent components of solutions that are cast to make epoxy/CNT composite films. (In the absence of solubilization, the CNTs tend to clump together instead of becoming dispersed in solution as needed to impart, to the films, the desired CNT properties of electrical conductivity and mechanical strength.) Because the PPE functionalizes the CNTs in a noncovalent manner, the functionalization does not damage the CNTs. The functionalization can also be exploited to improve the interactions between CNTs and epoxy matrices to enhance the properties of the resulting composite films. In addition to the CNTs, solvent, epoxy resin, epoxy hardener, and PPE, a properly formulated solution also includes a small amount of polycarbonate, which serves to fill voids that, if allowed to remain, would degrade the performance of the film. To form the film, the solution is drop-cast or spin-cast, then the solvent is allowed to evaporate.

  16. Decryptification of Acid Phosphatase in Arthrospores of Geotrichum Species Treated with Dimethyl Sulfoxide and Acetone

    Science.gov (United States)

    Cotter, David A.; Martel, Anita J.; MacDonald, Paul

    1975-01-01

    Decryptification of acid phosphatase in Geotrichum sp. arthrospores was accomplished using acetone or dimethyl sulfoxide treatment. Both dimethyl sulfoxide and acetone irreversibly destroyed the integrity of the spore membranes without solubilizing acid phosphatase. PMID:1167386

  17. Preparation and Performance of Amphiphilic Random Copolymer Noncovalently Modified MWCNTs/Epoxy Composite

    Directory of Open Access Journals (Sweden)

    MA Qiang

    2016-09-01

    Full Text Available An amphiphilic random copolymer of polyglycidyl methacrylate-co-N-vinyl carbazole P(GMA-co-NVC was synthesized by free radical polymerization and was used to noncovalently modify multi-walled carbon nanotubes (MWCNTs. The obtained P(GMA-co-NVC/MWCNTs was mixed with epoxy resin and used to reinforce epoxy resin. Polymer modified carbon nanotubes/epoxy resin composites were prepared by a casting molding method. Tensile test, electrical resistivity test and differential scanning calorimeter(DSC analysis were used to study the effect of polymer modified carbon nanotubes on the mechanical, electrical, and thermal properties of epoxy resin. The results show that the epoxy composite reinforced with P(GMA-co-NVC/MWCNTs shows a remarkable enhancement in both tensile strength and elongation at break compared to either the pure epoxy or the pristine MWCNTs/epoxy composites. In addition, the electrical conductivity of epoxy is significantly improved and the volume resistivity decreases from 1014Ω·m to 106Ω·m with 0.25% mass fraction loading of P(GMA-co-NVC/MWCNTs. Moreover, glass transition temperature of the epoxy composite also increases from 144℃ to 149℃.

  18. Profiling and relative quantification of phosphatidylethanolamine based on acetone stable isotope derivatization.

    Science.gov (United States)

    Wang, Xiang; Wei, Fang; Xu, Ji-Qu; Lv, Xin; Dong, Xu-Yan; Han, Xianlin; Quek, Siew-Young; Huang, Feng-Hong; Chen, Hong

    2016-01-01

    Phosphatidylethanolamine (PE) is considered to be one of the pivotal lipids for normal cellular function as well as disease initiation and progression. In this study, a simple, efficient, reliable, and inexpensive method for the qualitative analysis and relative quantification of PE, based on acetone stable isotope derivatization combined with double neutral loss scan-shotgun electrospray ionization tandem-quadrupole mass spectrometry analysis (ASID-DNLS-Shotgun ESI-MS/MS), was developed. The ASID method led to alkylation of the primary amino groups of PE with an isopropyl moiety. The use of acetone (d0-acetone) and deuterium-labeled acetone (d6-acetone) introduced a 6 Da mass shift that was ideally suited for relative quantitative analysis, and enhanced sensitivity for mass analysis. The DNLS model was introduced to simultaneously analyze the differential derivatized PEs by shotgun ESI-MS/MS with high selectivity and accuracy. The reaction specificity, labeling efficiency, and linearity of the ASID method were thoroughly evaluated in this study. Its excellent applicability was validated by qualitative and relative quantitative analysis of PE species presented in liver samples from rats fed different diets. Using the ASID-DNLS-Shotgun ESI-MS/MS method, 45 PE species from rat livers have been identified and quantified in an efficient manner. The level of total PEs tended to decrease in the livers of rats on high fat diets compared with controls. The levels of PE 32:1, 34:3, 34:2, 36:3, 36:2, 42:10, plasmalogen PE 36:1 and lyso PE 22:6 were significantly reduced, while levels of PE 36:1 and lyso PE 16:0 increased. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Improvement of the cold flow characteristics of biodiesel containing dissolved polymer wastes using acetone

    Directory of Open Access Journals (Sweden)

    Pouya Mohammadi

    2014-03-01

    Full Text Available Due to the fast fossil fuel depletion and at the same time global warming phenomenon anticipated for the next coming years, the necessity of developing alternative fuels e.g. biofuels (i.e. bioethanol, biodiesel, biogas and etc. has turned into an important concern. Recently, the application of the bio-solvency properties of biodiesel for recycling waste polymers has been highlighted. However, the impact of polymer dissolution on cold flow characteristics of biodiesel was never investigated. The present study was set to explore the impact of different solvents in stabilizing biodiesel-polymer solution. Among them, acetone was proved to be the best fuel stabilizer. Subsequently, cold flow characteristic i.e. cloud point, of the biodiesel-polymer-acetone fuel was found to have improved (decreased due to the inclusion of acetone. Finally, flash point analysis of the fuel blends containing acetone was done to ensured high safety of the fuel blend by dramatically increasing the flash point values of biodiesel-polymer fuel blends.

  20. Multiscale Modeling of Carbon Nanotube-Epoxy Nanocomposites

    Science.gov (United States)

    Fasanella, Nicholas A.

    Epoxy-composites are widely used in the aerospace industry. In order to improve upon stiffness and thermal conductivity; carbon nanotube additives to epoxies are being explored. This dissertation presents multiscale modeling techniques to study the engineering properties of single walled carbon nanotube (SWNT)-epoxy nanocomposites, consisting of pristine and covalently functionalized systems. Using Molecular Dynamics (MD), thermomechanical properties were calculated for a representative polymer unit cell. Finite Element (FE) and orientation distribution function (ODF) based methods were used in a multiscale framework to obtain macroscale properties. An epoxy network was built using the dendrimer growth approach. The epoxy model was verified by matching the experimental glass transition temperature, density, and dilatation. MD, via the constant valence force field (CVFF), was used to explore the mechanical and dilatometric effects of adding pristine and functionalized SWNTs to epoxy. Full stiffness matrices and linear coefficient of thermal expansion vectors were obtained. The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for the various nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. To obtain continuum-scale elastic properties from the MD data, multiscale modeling was considered to give better control over the volume fraction of nanotubes, and investigate the effects of nanotube alignment. Two methods were considered; an FE based method, and an ODF based method. The FE method probabilistically assigned elastic properties of elements from the MD lattice results based on the desired volume fraction and alignment of the nanotubes. For the ODF method, a distribution function was generated based on the desired amount of nanotube alignment

  1. Lidar/DIAL detection of acetone at 3.3 μm by a tunable OPO laser system

    Science.gov (United States)

    Puiu, A.; Fiorani, L.; Rosa, O.; Borelli, R.; Pistilli, M.; Palucci, A.

    2014-08-01

    In this paper we report, for the first time to our knowledge, on lidar/DIAL detection of acetone vapors at 3.3 μm by means of an optical parametric tunable laser system. After a preliminary spectroscopic study in an absorption cell, the feasibility of a differential absorption (DIAL) lidar for the detection of acetone vapors has been investigated in the laboratory, simulating the experimental conditions of a field campaign. Having in mind measurements in a real scenario, a study of possible atmospheric intereferents has been performed, looking for all known compounds that share acetone IR absorption in the spectral band selected for its detection. Possible interfering species from urban and industrial atmospheres were investigated and limits of acetone detection in both environments were identified. This study confirmed that a lidar system can detect a low concentration of acetone at considerable distances.

  2. Cure monitoring of epoxy resin by using fiber bragg grating sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Hyuk [KEPCO, Naju (Korea, Republic of); Kim, Dae Hyun [Dept. of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2016-06-15

    In several industrial fields, epoxy resin is widely used as an adhesive for co-curing and manufacturing various structures. Controlling the manufacturing process is required for ensuring robust bonding performance and the stability of the structures. A fiber optic sensor is suitable for the cure monitoring of epoxy resin owing to the thready shape of the sensor. In this paper, a fiber Bragg grating (FBG) sensor was applied for the cure monitoring of epoxy resin. Based on the experimental results, it was demonstrated that the FBG sensor can monitor the status of epoxy resin curing by measuring the strain caused by volume shrinkage and considering the compensation of temperature. In addition, two types of epoxy resin were used for the cure-monitoring; moreover, when compared to each other, it was found that the two types of epoxy had different cure-processes in terms of the change of strain during the curing. Therefore, the study proved that the FBG sensor is very profitable for the cure-monitoring of epoxy resin.

  3. Rapid microwave processing of epoxy nanocomposites using carbon nanotubes

    OpenAIRE

    Luhyna, Nataliia; Inam, Fawad; Winnington, Ian

    2013-01-01

    Microwave processing is one of the rapid processing techniques for manufacturing nanocomposites. There is very little work focussing on the addition of CNTs for shortening the curing time of epoxy nanocomposites. Using microwave energy, the effect of CNT addition on the curing of epoxy nanocomposites was researched in this work. Differential scanning calorimetry (DSC) was used to determine the degree of cure for epoxy and nanocomposite samples. CNT addition significantly reduced the duration ...

  4. Structural and electrical properties of functionalized multiwalled carbon nanotube/epoxy composite

    International Nuclear Information System (INIS)

    Gantayat, S.; Rout, D.; Swain, S. K.

    2016-01-01

    The effect of the functionalization of multiwalled carbon nanotube on the structure and electrical properties of composites was investigated. Samples based on epoxy resin with different weight percentage of MWCNTs were prepared and characterized. The interaction between MWCNT & epoxy resin was noticed by Fourier transform infrared spectroscopy (FTIR). The structure of functionalized multiwalled carbon nanotube (f-MWCNT) reinforced epoxy composite was studied by field emission scanning electron microscope (FESEM). The dispersion of f-MWCNT in epoxy resin was evidenced by high resolution transmission electron microscope (HRTEM). Electrical properties of epoxy/f-MWCNT nanocomposites were measured & the result indicated that the conductivity increased with increasing concentration of f-MWCNTs.

  5. Experimental design applied optimization of a state in epoxy clay dispersion

    International Nuclear Information System (INIS)

    Paz, Juliana D'Avila; Bertholdi, Jonas; Folgueras, Marilena Valadares; Pezin, Sergio Henrique; Coelho, Luiz Antonio Ferreira

    2010-01-01

    This paper presents some analysis showed that the exfoliation / intercalation of a montmorillonite clay in epoxy resin such as viscosity, X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetry (TG). Increasing the viscosity of epoxy resin diglycidyl ether bisphenol A with the addition of clay associated with the sonification system at the time of dispersion is a good indication of exfoliation. The X-ray diffraction already cured composite shows a decrease of crystallinity of clay and EDS microanalysis of SEM, non-uniform dispersion of clay in epoxy resin. Thermal analysis TG composite clay / epoxy shows an increase in thermal stability relative to pure epoxy. (author)

  6. Determinants of epoxy allergy in the construction industry: a case-control study.

    Science.gov (United States)

    Spee, Ton; Timmerman, Johan G; Rühl, Reinhold; Kersting, Klaus; Heederik, Dick J J; Smit, Lidwien A M

    2016-05-01

    Workers exposed to epoxy products are at risk of developing allergic contact dermatitis. To compare workers throughout the German construction industry with and without skin allergy to epoxy resins, hardeners, and/or reactive diluents, and to investigate which determinants are related to the development of epoxy allergy. A questionnaire was completed by 179 epoxy allergy cases, and 151 epoxy workers as controls. Crude and adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by the use of backwards stepwise logistic regression analysis. A multiple imputation approach was used to deal with missing data. Epoxy allergy was associated with an unusually high level of exposure to epoxy products [OR 2.13 (95%CI: 1.01-4.51)], wearing short sleeves or short trousers [OR 2.38 (95%CI: 1.03-5.52)], and not always using the correct type of gloves [OR 2.12 (95%CI: 1.12-4.01)]. A monotonic increasing risk was found with increasing exposure hours per week [OR 1.72 (95%CI: 1.39-2.14)]. Not using skin cream was inversely associated with epoxy allergy [OR 0.22 (95%CI: 0.08-0.59)]. Years working with epoxy products were inversely associated with epoxy allergy [OR 0.41 (95%CI: 0.27-0.61) per 10-year increase], suggesting a healthy worker survivor effect. Occupational epoxy allergy may be prevented by improving occupational hygiene behaviour and personal protection. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Application of Raman Spectroscopy for the Detection of Acetone Dissolved in Transformer Oil

    Science.gov (United States)

    Gu, Z.; Chen, W.; Du, L.; Shi, H.; Wan, F.

    2018-05-01

    The CLRS detection characteristics of acetone dissolved in transformer oil were analyzed. Raman spectral peak at 780 cm-1 was used as the characteristic spectral peak for qualitative and quantitative analyses. The effect of the detection depth and the temperature was investigated in order to obtain good Raman signals. The optimal detection depth and temperature were set as 3 mm and room temperature. A quantitative model relation between concentration and the Raman peak intensity ratio I 780/I 893 was constructed via the least-squares method. The results demonstrated that CLRS can quantitatively detect the concentration of acetone in transformer oil and CLRS has potential as a useful alternative for accelerating the in-situ analysis of the concentration of acetone in transformer oil.

  8. Application of Raman Spectroscopy for the Detection of Acetone Dissolved in Transformer Oil

    Science.gov (United States)

    Gu, Z.; Chen, W.; Du, L.; Shi, H.; Wan, F.

    2018-05-01

    The CLRS detection characteristics of acetone dissolved in transformer oil were analyzed. Raman spectral peak at 780 cm-1 was used as the characteristic spectral peak for qualitative and quantitative analyses. The effect of the detection depth and the temperature was investigated in order to obtain good Raman signals. The optimal detection depth and temperature were set as 3 mm and room temperature. A quantitative model relation between concentration and the Raman peak intensity ratio I 780/ I 893 was constructed via the least-squares method. The results demonstrated that CLRS can quantitatively detect the concentration of acetone in transformer oil and CLRS has potential as a useful alternative for accelerating the in-situ analysis of the concentration of acetone in transformer oil.

  9. Molecular Modeling of Aerospace Polymer Matrices Including Carbon Nanotube-Enhanced Epoxy

    Science.gov (United States)

    Radue, Matthew S.

    Carbon fiber (CF) composites are increasingly replacing metals used in major structural parts of aircraft, spacecraft, and automobiles. The current limitations of carbon fiber composites are addressed through computational material design by modeling the salient aerospace matrix materials. Molecular Dynamics (MD) models of epoxies with and without carbon nanotube (CNT) reinforcement and models of pure bismaleimides (BMIs) were developed to elucidate structure-property relationships for improved selection and tailoring of matrices. The influence of monomer functionality on the mechanical properties of epoxies is studied using the Reax Force Field (ReaxFF). From deformation simulations, the Young's modulus, yield point, and Poisson's ratio are calculated and analyzed. The results demonstrate an increase in stiffness and yield strength with increasing resin functionality. Comparison between the network structures of distinct epoxies is further advanced by the Monomeric Degree Index (MDI). Experimental validation demonstrates the MD results correctly predict the relationship in Young's moduli for all epoxies modeled. Therefore, the ReaxFF is confirmed to be a useful tool for studying the mechanical behavior of epoxies. While epoxies have been well-studied using MD, there has been no concerted effort to model cured BMI polymers due to the complexity of the network-forming reactions. A novel, adaptable crosslinking framework is developed for implementing 5 distinct cure reactions of Matrimid-5292 (a BMI resin) and investigating the network structure using MD simulations. The influence of different cure reactions and extent of curing are analyzed on the several thermo-mechanical properties such as mass density, glass transition temperature, coefficient of thermal expansion, elastic moduli, and thermal conductivity. The developed crosslinked models correctly predict experimentally observed trends for various properties. Finally, the epoxies modeled (di-, tri-, and tetra

  10. Epoxy modified bitumen : Chemical hardening and its interpretation

    NARCIS (Netherlands)

    Apostolidis, P.; Pipintakos, G.; van de Ven, M.F.C.; Liu, X.; Erkens, Sandra; Scarpas, Athanasios

    2018-01-01

    Epoxy modified bitumen (EMB) is a promising technology for long lasting paving materials ensuring higher resistance to rutting, oxygen- and moisture-induced damage. In this paper, an analysis of the chemical reactions that take place during the chemical hardening process (curing) of epoxy modified

  11. Thermomechanical Behavior of High Performance Epoxy/Organoclay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Artur Soares Cavalcanti Leal

    2014-01-01

    Full Text Available Nanocomposites of epoxy resin containing bentonite clay were fabricated to evaluate the thermomechanical behavior during heating. The epoxy resin system studied was prepared using bifunctional diglycidyl ether of bisphenol A (DGEBA, crosslinking agent diaminodiphenylsulfone (DDS, and diethylenetriamine (DETA. The purified bentonite organoclay (APOC was used in all experiments. The formation of nanocomposite was confirmed by X-ray diffraction analysis. Specimens of the fabricated nanocomposites were characterized by dynamic mechanical analysis (DMA. According to the DMA results a significant increase in glass transition temperature and storage modulus was evidenced when 1 phr of clay is added to epoxy resin.

  12. Generalized morphea/eosinophilic fasciitis overlap after epoxy exposure

    Directory of Open Access Journals (Sweden)

    Warren H. Chan, MS

    2018-03-01

    Full Text Available Generalized morphea is associated with epoxy resin vapors and is characterized by the development of lesions shortly after exposure. Morphea presenting along with eosinophilic fasciitis (EF, or morphea/EF overlap, is rare and an indicator of poor prognosis and resistance to treatment. Here we present a case of generalized morphea/EF overlap linked to epoxy exposure. Our patient received multiple therapies—ultraviolet A1 phototherapy, prednisone, methotrexate, azathioprine, mycophenolate mofetil, cyclophosphamide, cyclosporine, and rituximab—none of which led to a significant response. The refractory nature of this disease warrants vigilance in its association with epoxy exposure.

  13. Optical acetone vapor sensors based on chiral nematic liquid crystals and reactive chiral dopants

    NARCIS (Netherlands)

    Cachelin, P.; Green, J.P.; Peijs, T.; Heeney, M.; Bastiaansen, C.W.M.

    2016-01-01

    Accurate monitoring of exposure to organic vapors, such as acetone, is an important part of maintaining a safe working environment and adhering to long- and short-term exposure limits. Here, a novel acetone vapor detection system is described based on the use of a reactive chiral dopant in a nematic

  14. Biodegradation of airborne acetone/styrene mixtures in a bubble column reactor.

    Science.gov (United States)

    Vanek, T; Silva, A; Halecky, M; Paca, J; Ruzickova, I; Kozliak, E; Jones, K

    2017-07-29

    The ability of a bubble column reactor (BCR) to biodegrade a mixture of styrene and acetone vapors was evaluated to determine the factors limiting the process efficiency, with a particular emphasis on the presence of degradation intermediates and oxygen levels. The results obtained under varied loadings and ratios were matched with the dissolved oxygen levels and kinetics of oxygen mass transfer, which was assessed by determination of k L a coefficients. A 1.5-L laboratory-scale BCR was operated under a constant air flow of 1.0 L.min -1 , using a defined mixed microbial population as a biocatalyst. Maximum values of elimination capacities/maximum overall specific degradation rates of 75.5 gC.m -3 .h -1 /0.197 gC.gdw -1 .h -1 , 66.0 gC.m -3 .h -1 /0.059 gC.gdw -1 .h -1 , and 45.8 gC.m -3 .h -1 /0.027 gC.gdw -1 .h -1 were observed for styrene/acetone 2:1, styrene-rich and acetone-rich mixtures, respectively, indicating significant substrate interactions and rate limitation by biological factors. The BCR removed both acetone and styrene near-quantitatively up to a relatively high organic load of 50 g.m -3 .h -1 . From this point, the removal efficiencies declined under increasing loading rates, accompanied by a significant drop in the dissolved oxygen concentration, showing a process transition to oxygen-limited conditions. However, the relatively efficient pollutant removal from air continued, due to significant oxygen mass transfer, up to a threshold loading rate when the accumulation of acetone and degradation intermediates in the aqueous medium became significant. These observations demonstrate that oxygen availability is the limiting factor for efficient pollutant degradation and that accumulation of intermediates may serve as an indicator of oxygen limitation. Microbial (activated sludge) analyses revealed the presence of amoebae and active nematodes that were not affected by variations in operational conditions.

  15. Fabrication and characterization of TiO2-epoxy nanocomposite

    International Nuclear Information System (INIS)

    Chatterjee, Amit; Islam, Muhammad S.

    2008-01-01

    A systematic study has been conducted to investigate the matrix properties by introducing nanosize TiO 2 (5-40 nm, 0.5-2% by weight) fillers into an epoxy resin. Ultrasonic mixing process, via sonic cavitations, was employed to disperse the particles into the resin system. The thermal, mechanical, morphology and the viscoelastic properties of the nanocomposite and the neat resin were measured with TGA, DMA, TEM and Instron. The nano-particles are dispersed evenly throughout the entire volume of the resin. The nanofiller infusion improves the thermal, mechanical and viscoelastic properties of the epoxy resin. The nanocomposite shows increase in storage modulus, glass transition temperature, tensile modulus, flexural modulus and short beam shear strength from neat epoxy resin. The mechanical performance and thermal stability of the epoxy nanocomposites are depending on with the dispersion state of the TiO 2 in the epoxy matrix and are correlated with loading (0.0015-0.006% by volume). In addition, the nanocomposite shows enhanced flexural strength. Several reasons to explain these effects in terms of reinforcing mechanisms were discussed

  16. Physical, structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Saba, N., E-mail: naheedchem@gmail.com [Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products(INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Paridah, M.T. [Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products(INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Abdan, K. [Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang Selangor (Malaysia); Ibrahim, N.A. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2016-12-01

    The present research study deals with the fabrication of kenaf/epoxy hybrid nanocomposites by the incorporation of oil palm nano filler, montmorillonite (MMT) and organically modified montmorillonite (OMMT) at 3% loading, through hand lay-up technique. Effect of adding different nano fillers on the physical (density), structural [X-ray diffraction (XRD)] and thermomechanical analysis (TMA) of kenaf/epoxy composites were carried out. Density results revealed that the incorporation of nano filler in the kenaf/epoxy composites increases the density which in turn increases the hardness of the hybrid nanocomposites. XRD analysis confirmed the presence of nano fillers in the structure of their respective fabricated hybrid nanocomposites. All hybrid nanocomposites displayed lower coefficient of thermal expansion (CTE) with respect to kenaf/epoxy composites. Overall results predicted that the properties improvement in nano OPEFB/kenaf/epoxy was quite comparable to MMT/kenaf/epoxy but relatively lesser to OMMT/kenaf/epoxy hybrid nanocomposites and higher with respect to kenaf/epoxy composites. The improvement ascribed due to improved interfacial bonding or cross linking between kenaf fibers and epoxy matrix by addition of nano filler. - Highlights: • Nano OPEFB/kenaf/epoxy hybrid nanocomposites were fabricated by hand lay-up. • Effect of nano OPEFB on density & structure of kenaf/epoxy were investigated. • Thermal expansion coefficients of kenaf/epoxy and hybrid nanocomposites evaluated. • Comparative studies were made with MMT and OMMT kenaf/epoxy hybrid nanocomposites.

  17. Physical, structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites

    International Nuclear Information System (INIS)

    Saba, N.; Paridah, M.T.; Abdan, K.; Ibrahim, N.A.

    2016-01-01

    The present research study deals with the fabrication of kenaf/epoxy hybrid nanocomposites by the incorporation of oil palm nano filler, montmorillonite (MMT) and organically modified montmorillonite (OMMT) at 3% loading, through hand lay-up technique. Effect of adding different nano fillers on the physical (density), structural [X-ray diffraction (XRD)] and thermomechanical analysis (TMA) of kenaf/epoxy composites were carried out. Density results revealed that the incorporation of nano filler in the kenaf/epoxy composites increases the density which in turn increases the hardness of the hybrid nanocomposites. XRD analysis confirmed the presence of nano fillers in the structure of their respective fabricated hybrid nanocomposites. All hybrid nanocomposites displayed lower coefficient of thermal expansion (CTE) with respect to kenaf/epoxy composites. Overall results predicted that the properties improvement in nano OPEFB/kenaf/epoxy was quite comparable to MMT/kenaf/epoxy but relatively lesser to OMMT/kenaf/epoxy hybrid nanocomposites and higher with respect to kenaf/epoxy composites. The improvement ascribed due to improved interfacial bonding or cross linking between kenaf fibers and epoxy matrix by addition of nano filler. - Highlights: • Nano OPEFB/kenaf/epoxy hybrid nanocomposites were fabricated by hand lay-up. • Effect of nano OPEFB on density & structure of kenaf/epoxy were investigated. • Thermal expansion coefficients of kenaf/epoxy and hybrid nanocomposites evaluated. • Comparative studies were made with MMT and OMMT kenaf/epoxy hybrid nanocomposites.

  18. Enhanced thermal and mechanical properties of epoxy composites by mixing thermotropic liquid crystalline epoxy grafted graphene oxide

    Directory of Open Access Journals (Sweden)

    B. Qi

    2014-07-01

    Full Text Available Graphene oxide (GO sheets were chemically grafted with thermotropic liquid crystalline epoxy (TLCP. Then we fabricated composites using TLCP-g-GO as reinforcing filler. The mechanical properties and thermal properties of composites were systematically investigated. It is found that the thermal and mechanical properties of the composites are enhanced effectively by the addition of fillers. For instance, the composites containing 1.0 wt% of TLCP-g-GO present impact strength of 51.43 kJ/m2, the tensile strength of composites increase from 55.43 to 80.85 MPa, the flexural modulus of the composites increase by more than 48%. Furthermore, the incorporation of fillers is effective to improve the glass transition temperature and thermal stability of the composites. Therefore, the presence of the TLCP-g-GO in the epoxy matrix could make epoxy not only stronger but also tougher.

  19. Predicting the mechanical behaviour of Kevlar/epoxy and carbon/epoxy filament-wound tubes

    Science.gov (United States)

    Cazeneuve, C.; Joguet, P.; Maile, J. C.; Oytana, C.

    1992-11-01

    The axial, hoop and shear moduli and failure conditions of carbon/epoxy and Kevlar/epoxy filament-wound tubes have been determined through respective applications of internal pressure, tension and torsion. The introduction in the laminated plate theory of a gradual reduction in individual moduli makes it possible to overcome the limitations of the theory and enables accurate predictions to be made of the linear and non-linear stress/strain curves of 90 deg +/- 0/90 deg tubes. The existence of a dominant layer in the failure of the multilayered tubes has been shown experimentally. When associated with a failure criterion applied to the dominant layer, the new model permits the prediction of tube failure. Agreement between calculated and experimental data is better than 5 percent.

  20. Optical emission behavior and radiation resistance of epoxy resins

    International Nuclear Information System (INIS)

    Kawanishi, Shunichi; Udagawa, Akira; Hagiwara, Miyuki

    1987-11-01

    To make clear a mechanism of radiation resistance of epoxy resin systems, a role of energy trapping site induced in bisphenol A type epoxy resins cured with 4 kinds of aromatic amines (Φ N ) was studied in comparison with the case of aliphatic amine curing system through a measurement of optical emission. In the system of the epoxy resin cured with DETA, the optical emission from an excited state of bisphenol A unit of epoxy resin and a charge transfer complex was observed. On the other hand, the optical emission from Φ N was observed in the aromatic amine curing system. Their excitation spectrum consists of peaks of absorption spectrum of BA and those of Φ N , showing that the excited state of Φ N is formed through the excitation of both BA and Φ N . Therefore, the excited energy of BA transfers to the excited state of Φ N . Emission intensity of Φ N band was 20 ∼ 100 times as large as that of BA. These results indicate that the radiation energy is effectively released as an optical emission from excited state of Φ N in the epoxy resin when cured with aromatic amine. It can be concluded from the above results that aromatic amine hardeners contribute to enhancement of the radiation resistance of epoxy resin by acting as an energy transfer agent. (author)

  1. Epoxy encapsulant as serendipitous dosimeters during radiological/nuclear events

    Energy Technology Data Exchange (ETDEWEB)

    Barkyoumb, J.H. [Carderock Division, Naval Surface Warfare Center, 9500 MacArthur Blvd., West Bethesda, MD 20817-5700 (United States)], E-mail: jhbarky@earthlink.net; Mathur, V.K. [Carderock Division, Naval Surface Warfare Center, 9500 MacArthur Blvd., West Bethesda, MD 20817-5700 (United States)

    2008-02-15

    The radiation response of a smart chip (embedded integrated circuit) module has been reported earlier using the technique of optically stimulated luminescence (OSL). It was found that a smart chip module could be used to evaluate the personnel exposure in the accident dosimetry range. Through subsequent experiments, the radiation sensitivity of the chip module was traced to the epoxy encapsulant provided to protect the chip from the environment and physical damage and that the radiation sensitivity of the epoxy is due to the silica used as the 'filler' for controlling the thixotropic properties of the epoxy used for 'glob top' or 'dam-and-fill' encapsulation. It is desirable to retain the ability to use the smart chip as an accident dosimeter without requiring a modification of standard manufacturing process for which an infrastructure already exists to avoid additional costs. For this reason, we have investigated commercially available filled and unfilled epoxies both as received from the manufacturer and compared their response with epoxies to which commercial fillers are added. In this work we investigate the OSL response of various epoxies commonly used for potting of electronic circuits with and without various filler materials for their potential to be used as a casualty dosimeter in the exposure range of 0.5-10 Gy.

  2. Role of Acetone in the Formation of Highly Dispersed Cationic Polystyrene Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ernawati Lusi

    2017-03-01

    Full Text Available A modified emulsion polymerisation synthesis route for preparing highly dispersed cationic polystyrene (PS nanoparticles is reported. The combined use of 2,2′-azobis[2-(2-imidazolin- 2-ylpropane] di-hydrochloride (VA-044 as the initiator and acetone/water as the solvent medium afforded successful synthesis of cationic PS particles as small as 31 nm in diameter. A formation mechanism for the preparation of PS nanoparticles was proposed, whereby the occurrence of rapid acetone diffusion caused spontaneous rupture of emulsion droplets into smaller droplets. Additionally, acetone helped to reduce the surface tension and increase the solubility of styrene, thus inhibiting aggregation and coagulation among the particles. In contrast, VA-044 initiator could effectively regulate the stability of the PS nanoparticles including both the surface charge and size. Other reaction parameters i.e. VA-044 concentration and reaction time were examined to establish the optimum polymerisation conditions.

  3. Co-production of acetone and ethanol with molar ratio control enables production of improved gasoline or jet fuel blends.

    Science.gov (United States)

    Baer, Zachary C; Bormann, Sebastian; Sreekumar, Sanil; Grippo, Adam; Toste, F Dean; Blanch, Harvey W; Clark, Douglas S

    2016-10-01

    The fermentation of simple sugars to ethanol has been the most successful biofuel process to displace fossil fuel consumption worldwide thus far. However, the physical properties of ethanol and automotive components limit its application in most cases to 10-15 vol% blends with conventional gasoline. Fermentative co-production of ethanol and acetone coupled with a catalytic alkylation reaction could enable the production of gasoline blendstocks enriched in higher-chain oxygenates. Here we demonstrate a synthetic pathway for the production of acetone through the mevalonate precursor hydroxymethylglutaryl-CoA. Expression of this pathway in various strains of Escherichia coli resulted in the co-production of acetone and ethanol. Metabolic engineering and control of the environmental conditions for microbial growth resulted in controllable acetone and ethanol production with ethanol:acetone molar ratios ranging from 0.7:1 to 10.0:1. Specifically, use of gluconic acid as a substrate increased production of acetone and balanced the redox state of the system, predictively reducing the molar ethanol:acetone ratio. Increases in ethanol production and the molar ethanol:acetone ratio were achieved by co-expression of the aldehyde/alcohol dehydrogenase (AdhE) from E. coli MG1655 and by co-expression of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (AdhB) from Z. mobilis. Controlling the fermentation aeration rate and pH in a bioreactor raised the acetone titer to 5.1 g L(-1) , similar to that obtained with wild-type Clostridium acetobutylicum. Optimizing the metabolic pathway, the selection of host strain, and the physiological conditions employed for host growth together improved acetone titers over 35-fold (0.14-5.1 g/L). Finally, chemical catalysis was used to upgrade the co-produced ethanol and acetone at both low and high molar ratios to higher-chain oxygenates for gasoline and jet fuel applications. Biotechnol. Bioeng. 2016;113: 2079-2087. © 2016 Wiley

  4. Measurements of acetone yields from the OH-initiated oxidation of terpenes by proton-transfer-reaction mass spectrometry

    International Nuclear Information System (INIS)

    Wisthaler, A.; Lindinger, W.; Jensen, N.R.; Winterhalter, R.; Hjorth, J.

    2002-01-01

    Biogenic VOCs (Volatile Organic Compounds) are known to be emitted in large quantities from vegetation exceeding largely global emissions of anthropogenic VOCs. Monoterpenes (C 10 H 16 ) are important constituents of biogenic VOC emissions. The atmospheric oxidation of Monoterpenes appears to be a potentially relevant source of acetone in the atmosphere. Acetone is present as a significant trace gas in the whole troposphere and influences in particular the atmospheric chemistry in the upper troposphere by substantially contributing to the formation of HO x radicals and peroxyacetyl nitrate (PAN). Acetone is formed promptly, following attack by the OH-radical on the terpene, via a series of highly unstable radical intermediates, but it is also formed slowly via the degradation of stable non-radical intermediates such as pinonaldehyde and nopinone. In order to investigate the relative importance of these processes, the OH-initiated oxidation of α-pinene and β-pinene was investigated in a chamber study, where the concentrations of monoterpenes, acetone, pinonaldehyde and nopinone were monitored by proton-transfer-reaction mass spectrometry (PTR-MS). It was found that significant amounts of acetone are formed directly, whenα-pinene and β-pinene are oxidized by the OH radical, but also secondary chemistry (degradation of primary reaction products) gives a significant contribution to the formation of acetone from monoterpenes. It can be concluded that atmospheric oxidation of monoterpenes contributes a significant fraction to the global acetone source strength. (nevyjel)

  5. Evaluation of epoxy resin for cryogenic use by positron annihilation method. Change of characteristics of epoxy resin with cross-linking density and positron lifetime

    International Nuclear Information System (INIS)

    Nishijima, Shigehiro; Honda, Yoshihide; Okada, Toichi; Kobayashi, Yoshinori; Namba, Shingo.

    1994-01-01

    The positron annihilation method has been applied to evaluate unoccupied space in epoxy aiming at the design of the molecular structure for cryogenic use. To confirm the model in which molecular free space is needed in the epoxy for cryogenic use, the molecular weight between cross-linkings in epoxy was changed. The increase of molecular weight between cross-linkings brought an increase of fracture toughness even at liquid helium temperature and the model was found to be confirmed. The increase of molecular weight between cross-linkings was also found to decrease the 3rd lifetime of positrons. It suggested that the epoxy main chains were folded and this was confirmed by the molecular mechanical calculation. (author)

  6. Thermal conductivity of pillared graphene-epoxy nanocomposites using molecular dynamics

    Science.gov (United States)

    Lakshmanan, A.; Srivastava, S.; Ramazani, A.; Sundararaghavan, V.

    2018-04-01

    Thermal conductivity in a pillared graphene-epoxy nanocomposite (PGEN) is studied using equilibrium molecular dynamics simulations. PGEN is a proposed material for advanced thermal management applications because it combines high in-plane conductivity of graphene with high axial conductivity of a nanotube to significantly enhance the overall conductivity of the epoxy matrix material. Anisotropic conductivity of PGEN has been compared with that of pristine and functionalized carbon nanotube-epoxy nanocomposites, showcasing the advantages of the unique hierarchical structure of PGEN. Compared to pure carbon allotropes, embedding the epoxy matrix also promotes a weaker dependence of conductivity on thermal variations. These features make this an attractive material for thermal management applications.

  7. Thermoset Blends of an Epoxy Resin and Polydicyclopentadiene

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, Brian J.; Le, Kim Mai; Krishnamoorti, Ramanan; Robertson, Megan L.

    2016-12-13

    The mechanical properties of two chemically distinct and complementary thermoset polymers were manipulated through development of thermoset blends. The thermoset blend system was composed of an anhydride-cured diglycidyl ether of bisphenol A (DGEBA)-based epoxy resin, contributing high tensile strength and modulus, and polydicyclopentadiene (PDCPD), which has a higher toughness and impact strength as compared to other thermoset polymers. Ultra-small-angle and small-angle X-ray scattering analysis explored the morphology of concurrently cured thermoset blends, revealing a macroscopically phase separated system with a surface fractal structure across blended systems of varying composition. The epoxy resin rich and PDCPD rich phases exhibited distinct glass transitions (Tg’s): the Tg observed at higher temperature was associated with the epoxy resin rich phase and was largely unaffected by the presence of PDCPD, whereas the PDCPD rich phase Tg systematically decreased with increasing epoxy resin content due to inhibition of dicyclopentadiene ring-opening metathesis polymerization. The mechanical properties of these phase-separated blends were in reasonable agreement with predictions by the rule of mixtures for the blend tensile strength, modulus, and fracture toughness. Scanning electron microscopy analysis of the tensile and fracture specimen fracture surfaces showed an increase in energy dissipation mechanisms, such as crazing, shear banding, and surface roughness, as the fraction of the more ductile component, PDPCD, increased. These results present a facile method to tune the mechanical properties of a toughened thermoset network, in which the high modulus and tensile strength of the epoxy resin can be largely retained at high epoxy resin content in the blend, while increasing the fracture toughness.

  8. Radical Scavenging by Acetone: A New Perspective to Understand Laccase/ABTS Inactivation and to Recover Redox Mediator.

    Science.gov (United States)

    Liu, Hao; Zhou, Pandeng; Wu, Xing; Sun, Jianliang; Chen, Shicheng

    2015-11-04

    The biosynthetic utilization of laccase/mediator system is problematic because the use of organic cosolvent causes significant inhibition of laccase activity. This work explored how the organic cosolvent impacts on the laccase catalytic capacity towards 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in aqueous solution. Effects of acetone on the kinetic constants of laccase were determined and the results showed Km and Vmax varied exponentially with increasing acetone content. Acetone as well as some other cosolvents could transform ABTS radicals into its reductive form. The content of acetone in media significantly affected the radical scavenging rates. Up to 95% of the oxidized ABTS was successfully recovered in 80% (v/v) acetone in 60 min. This allows ABTS recycles at least six times with 70%-75% of active radicals recovered after each cycle. This solvent-based recovery strategy may help improve the economic feasibility of laccase/ABTS system in biosynthesis.

  9. Self-healing woven glass fabric/epoxy composites with the healant consisting of micro-encapsulated epoxy and latent curing agent

    International Nuclear Information System (INIS)

    Yin Tao; Zhou Lin; Rong Minzhi; Zhang Mingqiu

    2008-01-01

    This paper reports a study of self-healing woven glass fabric reinforced epoxy composites. The healing agent was a two-component one synthesized in the authors' laboratory, which consisted of epoxy-loaded urea-formaldehyde microcapsules as the polymerizable binder and CuBr 2 (2-methylimidazole) 4 (CuBr 2 (2-MeIm) 4 ) as the latent hardener. Both the microcapsules and the matching catalyst were pre-embedded and pre-dissolved in the composites' matrix, respectively. When the microcapsules are split by propagating cracks, the uncured epoxy can be released into the damaged areas and then consolidated under the catalysis of CuBr 2 (2-MeIm) 4 that was homogeneously distributed in the composites' matrix on a molecular scale. As a result, the cracked faces can be bonded together. The influence of the content of the self-healing agent on the composites' tensile properties, interlaminar fracture toughness and healing efficiency was evaluated. It was found that a healing efficiency over 70% relative to the fracture toughness of virgin composites was obtained in the case of 30 wt% epoxy-loaded microcapsules and 2 wt% latent hardener

  10. Solute-solvent complex switching dynamics of chloroform between acetone and dimethylsulfoxide-two-dimensional IR chemical exchange spectroscopy.

    Science.gov (United States)

    Kwak, Kyungwon; Rosenfeld, Daniel E; Chung, Jean K; Fayer, Michael D

    2008-11-06

    Hydrogen bonds formed between C-H and various hydrogen bond acceptors play important roles in the structure of proteins and organic crystals, and the mechanisms of C-H bond cleavage reactions. Chloroform, a C-H hydrogen bond donor, can form weak hydrogen-bonded complexes with acetone and with dimethylsulfoxide (DMSO). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO, both types of hydrogen-bonded complexes exist. The two complexes, chloroform-acetone and chloroform-DMSO, are in equilibrium, and they rapidly interconvert by chloroform exchanging hydrogen bond acceptors. This fast hydrogen bond acceptor substitution reaction is probed using ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy. Deuterated chloroform is used in the experiments, and the 2D-IR spectrum of the C-D stretching mode is measured. The chemical exchange of the chloroform hydrogen bonding partners is tracked by observing the time-dependent growth of off-diagonal peaks in the 2D-IR spectra. The measured substitution rate is 1/30 ps for an acetone molecule to replace a DMSO molecule in a chloroform-DMSO complex and 1/45 ps for a DMSO molecule to replace an acetone molecule in a chloroform-acetone complex. Free chloroform exists in the mixed solvent, and it acts as a reactive intermediate in the substitution reaction, analogous to a SN1 type reaction. From the measured rates and the equilibrium concentrations of acetone and DMSO, the dissociation rates for the chloroform-DMSO and chloroform-acetone complexes are found to be 1/24 ps and 1/5.5 ps, respectively. The difference between the measured rate for the complete substitution reaction and the rate for complex dissociation corresponds to the diffusion limited rate. The estimated diffusion limited rate agrees well with the result from a Smoluchowski treatment of diffusive reactions.

  11. The use of acetone to enhance the infiltration of HA nanoparticles into a demineralized dentin collagen matrix.

    Science.gov (United States)

    Besinis, Alexandros; van Noort, Richard; Martin, Nicolas

    2016-03-01

    This study investigates the role of acetone, as a carrier for nano-hydroxyapatite (nano-HA) in solution, to enhance the infiltration of fully demineralized dentin with HA nanoparticles (NPs). Dentin specimens were fully demineralized and subsequently infiltrated with two types of water-based nano-HA solutions (one containing acetone and one without). Characterization of the dentin surfaces and nano-HA particles was performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The surface wettability and infiltration capacity of the nano-HA solutions were quantified by means of contact angle measurements and energy dispersive X-ray spectroscopy (EDS), respectively. Contact angle measurements were taken at baseline and repeated at regular intervals to assess the effect of acetone. The P and Ca levels of infiltrated dentin specimens were measured and compared to sound dentin and non-infiltrated controls. The presence of acetone resulted in an eight-fold decrease in the contact angles of the nano-HA solutions recorded on the surface of demineralized dentin compared to nano-HA solutions without acetone (one-way ANOVA, pacetone. Infiltration of demineralized dentin with the nano-HA solution containing acetone restored the lost mineral content by 50%, whereas the mean mineralization values for P and Ca in dentin treated with the acetone-free nano-HA solution were less than 6%. Acetone was shown to act as a vehicle to enhance the capacity to infiltrate demineralized dentin with HA NPs. The successful infiltration of dentin collagen with HA NPs provides a suitable scaffold, whereby the infiltrated HA NPs have the potential to act as seeds that may initiate heterogenous mineral growth when exposed to an appropriate mineral-rich environment. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Polypyrrole nanoparticles fabricated via Triton X-100 micelles template approach and their acetone gas sensing property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fake; Li, Hang [Department of Clinical Laboratory Medcine, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042 (China); Jiang, Hongmin [26th Research Institute, Chinese Electronics Scientific and Technical Group Company, Chongqing 400060 (China); Zhang, Kejun; Chang, Kai; Jia, Shuangrong; Jiang, Wenbin; Shang, Ya; Lu, Weiping [Department of Clinical Laboratory Medcine, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042 (China); Deng, Shaoli, E-mail: dengsl072@yahoo.com.cn [Department of Clinical Laboratory Medcine, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042 (China); Chen, Ming, E-mail: chenming1971@yahoo.com [Department of Clinical Laboratory Medcine, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042 (China)

    2013-09-01

    Nano-scaled polypyrrole (PPy) particles have been successfully synthesized with the help of Triton X-100 micelles via soft template approach. The polypyrrole nanoparticles have been spin-coated on surface acoustic wave (SAW) transducers to demonstrate their sensing capability toward acetone gas exposure. Field Emission Scanning Electron Microscopes (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy have been utilized to characterize these PPy nanoparticles. The PPy nanoparticles have an average diameter of 95 nm. The responses of the sensors are linearly associated with the acetone concentrations in the range from 5.5 ppm to 80 ppm. In response to 5.5 ppm acetone exposure, the response and recovery time are 9 s and 8.3 s, respectively. SAW sensors coated with PPy nanoparticles were potentially useful to detect acetone.

  13. Polypyrrole nanoparticles fabricated via Triton X-100 micelles template approach and their acetone gas sensing property

    International Nuclear Information System (INIS)

    Li, Fake; Li, Hang; Jiang, Hongmin; Zhang, Kejun; Chang, Kai; Jia, Shuangrong; Jiang, Wenbin; Shang, Ya; Lu, Weiping; Deng, Shaoli; Chen, Ming

    2013-01-01

    Nano-scaled polypyrrole (PPy) particles have been successfully synthesized with the help of Triton X-100 micelles via soft template approach. The polypyrrole nanoparticles have been spin-coated on surface acoustic wave (SAW) transducers to demonstrate their sensing capability toward acetone gas exposure. Field Emission Scanning Electron Microscopes (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy have been utilized to characterize these PPy nanoparticles. The PPy nanoparticles have an average diameter of 95 nm. The responses of the sensors are linearly associated with the acetone concentrations in the range from 5.5 ppm to 80 ppm. In response to 5.5 ppm acetone exposure, the response and recovery time are 9 s and 8.3 s, respectively. SAW sensors coated with PPy nanoparticles were potentially useful to detect acetone.

  14. NASOPHARYNGEAL CONCENTRATIONS IN THE HUMAN VOLUNTEER BREATHING ACETONE

    Science.gov (United States)

    In an effort to examine the absorption of a common chemical into the nasopharyngeal region in humans, a 57 year old male volunteer inhaled uniformly labeled 13C-acetone at 1.4 ppm for 30 min while performing different breathing maneuvers; nose inhale, nose exhale (NINE); mouth ...

  15. An acetone microsensor with a ring oscillator circuit fabricated using the commercial 0.18 μm CMOS process.

    Science.gov (United States)

    Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen

    2014-07-17

    This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm.

  16. Gallium-67 citrate used as a tracer of acetone production routes

    International Nuclear Information System (INIS)

    Mesquita, Carlos Henrique de; Calvo, Wilson A.P.; Aoki, Pedro E.; Silva, Valdir Cosmos da; Haraguchi, Marcio I.; Velo, Alexandre F.; Alvarez, Alexandre G.; Paixão, Leticia B.; Hamada, Margarida M.

    2017-01-01

    In this work the pathway of the chemical product and the kinetics parameters were evaluated in a laboratory plant settled, using 40 GBq of 67 Ga citrate as radiotracer and 18 NaI(Tl) radiation detectors. The AnaComp program was used to estimate the kinetic parameters of the acetone production. The yield of the acetone production was estimated by the percentage ratio between the areas under the curve (AUC) of the curve profiles of the final product compartment divided by the concentration found inside the chemical reactor whose result was 87% yield during the first 30 minutes of reaction. (author)

  17. Gallium-67 citrate used as a tracer of acetone production routes

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Carlos Henrique de; Calvo, Wilson A.P.; Aoki, Pedro E.; Silva, Valdir Cosmos da; Haraguchi, Marcio I.; Velo, Alexandre F.; Alvarez, Alexandre G.; Paixão, Leticia B.; Hamada, Margarida M., E-mail: chmesqui@usp.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    In this work the pathway of the chemical product and the kinetics parameters were evaluated in a laboratory plant settled, using 40 GBq of {sup 67}Ga citrate as radiotracer and 18 NaI(Tl) radiation detectors. The AnaComp program was used to estimate the kinetic parameters of the acetone production. The yield of the acetone production was estimated by the percentage ratio between the areas under the curve (AUC) of the curve profiles of the final product compartment divided by the concentration found inside the chemical reactor whose result was 87% yield during the first 30 minutes of reaction. (author)

  18. Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Yeh, M.-K.; Hsieh, T.-H.; Tai, N.-H.

    2008-01-01

    Carbon nanotubes have better physical and mechanical behavior than the traditional materials. In this study, the multi-walled carbon nanotubes (MWNTs) were added to the epoxy resin as a reinforcement to fabricate MWNTs/epoxy nanocomposites. The pressure and temperature were applied to cure the MWNTs/epoxy compound by hot press method. Mechanical properties such as tensile strength, Young's modulus, and Poisson's ratio were measured. The effect of weight percentages of the MWNTs was investigated. Morphologies of the fracture surface of MWNTs/epoxy nanocomposites were observed by scanning electron microscope

  19. Acetone gas-sensing properties of multiple-networked Pd-decorated Bi_2O_3 nanorod sensors

    International Nuclear Information System (INIS)

    Park, Sung Hoon; Kim, Soo Hyun; Lee, Sang Min; Lee, Chong Mu

    2015-01-01

    This study examined the sensing properties of Bi_2O_3 nanorods decorated with Pd nanoparticles. Pd-decorated β-Bi_2O_3 nanorods were prepared by immersing the Bi_2O_3 nanorods in ethanol/(50 mM)PdCl_2 solution followed by UV irradiation and annealing. The Bi_2O_3 nanorods decorated with Pd nanoparticles showed faster and stronger response to acetone gas than the pristine Bi_2O_3 nanorods. Interestingly, the difference in response time between the Pd-decorated Bi_2O_3 nanorod sensor and pristine Bi_2O_3 nanorod sensor increased with increasing the acetone gas concentration. In contrast, the difference in recovery time between the two nanorod sensors decreased with increasing the acetone gas concentration. This difference can be explained using the chemical mechanism. The underlying mechanism for the enhanced response of the Bi_2O_3 nanorods decorated with Pd nanoparticles to acetone gas is also discussed

  20. Stronger Fire-Resistant Epoxies

    Science.gov (United States)

    Fohlen, George M.; Parker, John A.; Kumar, Devendra

    1988-01-01

    New curing agent improves mechanical properties and works at lower temperature. Use of aminophenoxycyclotriphosphazene curing agents yields stronger, more heat- and fire-resistant epoxy resins. Used with solvent if necessary for coating fabrics or casting films.

  1. Fullerene–epoxy nanocomposites-enhanced mechanical properties at low nanofiller loading

    International Nuclear Information System (INIS)

    Rafiee, Mohammad A.; Yavari, Fazel; Rafiee, Javad; Koratkar, Nikhil

    2011-01-01

    In this study, we characterized the mechanical properties of fullerence (C 60 ) epoxy nanocomposites at various weight fractions of fullerene additives in the epoxy matrix. The mechanical properties measured were the Young’s modulus, ultimate tensile strength, fracture toughness, fracture energy, and the material’s resistance to fatigue crack propagation. All of the above properties of the epoxy polymer were significantly enhanced by the fullerene additives at relatively low nanofiller loading fractions (∼0.1 to 1% of the epoxy matrix weight). By contrast, other forms of nanoparticle fillers such as silica, alumina, and titania nanoparticles require up to an order of magnitude higher weight fraction to achieve comparable enhancement in properties.

  2. Thermal properties of oil palm nano filler/kenaf reinforced epoxy hybrid nanocomposites

    Science.gov (United States)

    Saba, N.; Paridah, M. T.; Abdan, K.; Ibrahim, N. A.

    2016-11-01

    The aim of this research study was to fabricate nano oil palm empty fruit bunch (OPEFB)/kenaf/epoxy hybrid nanocomposites and to make comparative study on the thermal properties of nano OPEFB/kenaf/epoxy hybrid nanocomposites with the montmorillonite (MMT)/kenaf/epoxy hybrid nanocomposites and organically modified MMT (OMMT)/kenaf/epoxy hybrid nanocomposites. Epoxy based kenaf hybrid nanocomposites was prepared by dispersing the nano filler (nano OPEFB filler, MMT, OMMT) at 3% loading through high speed mechanical stirrer followed by hand lay-up technique. Thermal properties of hybrid nanocomposites were analyzed through thermogravimetry analyzer (TGA), and differential scanning calorimetry (DSC). Obtained results specified that addition of nano OPEFB filler improves the thermal stability and char yield of kenaf/epoxy composites. Furthermore, the increase in decomposition temperature by the nano OPEFB filler was quite comparable to the MMT/kenaf/epoxy but relatively less than OMMT/kenaf/epoxy hybrid nanocomposites. We concluded from overall consequences that the nano OPEFB filler can be used as the promising and innovative alternative of existing expensive nano filler, with relatively lesser impact on the environment having marked pronounced impact on the construction, automotive, aerospace, electronics and semiconducting sectors as future industries based on bio-wastes with satisfactory light weight and thermal stability on other side.

  3. Stochastic estimation of acoustic impedance of glass-reinforced epoxy coating 128-134

    Energy Technology Data Exchange (ETDEWEB)

    Kim, No Hyu [School of MechatronicEngineering, Korea University of Technology and Education, Chunan (Korea, Republic of); Nah, Hwan Seon [Structural Engineering Lab., Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2014-04-15

    An epoxy coating applied to the concrete surface of a containment building deteriorates in hazardous environments such as those containing radiation, heat, and moisture. Unlike metals, the epoxy coating on a concrete liner absorbs and discharges moisture during the degradations process, so it has a different density and volume during service. In this study, acoustic impedance was adopted for characterizing the degradation of a glass-reinforced epoxy coating using the acoustic reflection coefficient (reflectance) on a rough epoxy coating. For estimating the acoustic reflectance on a wavy epoxy coating surface, a probabilistic model was developed to represent the multiple irregular reflections of the acoustic wave from the wavy surface on the basis of the simulated annealing technique. A number of epoxy-coated concrete specimens were prepared and exposed to accelerated aging conditions to induce an artificial aging degradation in them. The acoustic impedance of the degraded epoxy coating was estimated successfully by minimizing the error between a waveform calculated from the mathematical model and a waveform measured from the surface of the rough coating.

  4. Stochastic estimation of acoustic impedance of glass-reinforced epoxy coating 128-134

    International Nuclear Information System (INIS)

    Kim, No Hyu; Nah, Hwan Seon

    2014-01-01

    An epoxy coating applied to the concrete surface of a containment building deteriorates in hazardous environments such as those containing radiation, heat, and moisture. Unlike metals, the epoxy coating on a concrete liner absorbs and discharges moisture during the degradations process, so it has a different density and volume during service. In this study, acoustic impedance was adopted for characterizing the degradation of a glass-reinforced epoxy coating using the acoustic reflection coefficient (reflectance) on a rough epoxy coating. For estimating the acoustic reflectance on a wavy epoxy coating surface, a probabilistic model was developed to represent the multiple irregular reflections of the acoustic wave from the wavy surface on the basis of the simulated annealing technique. A number of epoxy-coated concrete specimens were prepared and exposed to accelerated aging conditions to induce an artificial aging degradation in them. The acoustic impedance of the degraded epoxy coating was estimated successfully by minimizing the error between a waveform calculated from the mathematical model and a waveform measured from the surface of the rough coating.

  5. Hansen solubility parameters for a carbon fiber/epoxy composite

    DEFF Research Database (Denmark)

    Launay, Helene; Hansen, Charles M.; Almdal, Kristoffer

    2007-01-01

    In this study, the physical affinity between an epoxy matrix and oxidized, unsized carbon fibers has been evaluated using Hansen solubility (cohesion) parameters (HSP). A strong physical compatibility has been shown, since their respective HSP are close. The use of a glassy carbon substrate...... as a model for unsized carbon fiber has been demonstrated as appropriate for the study of interactions between the materials in composite carbon fiber-epoxy systems. The HSP of glassy carbon are similar to those of carbon fibers and epoxy matrix. (C) 2007 Elsevier Ltd. All rights reserved....

  6. Electrical and Mechanical Properties of 3D-Printed Graphene-Reinforced Epoxy

    Science.gov (United States)

    Compton, Brett G.; Hmeidat, Nadim S.; Pack, Robert C.; Heres, Maximilian F.; Sangoro, Joshua R.

    2018-03-01

    Recent developments in additive manufacturing have demonstrated the potential for thermoset polymer feedstock materials to achieve high strength, stiffness, and functionality through incorporation of structural and functional filler materials. In this work, graphene was investigated as a potential filler material to provide rheological properties necessary for direct-write three-dimensional (3D) printing and electrostatic discharge properties to the printed component. The rheological properties of epoxy/graphene mixtures were characterized, and printable epoxy/graphene inks formulated. Sheet resistance values for printed epoxy/graphene composites ranged from 0.67 × 102 Ω/sq to 8.2 × 103 Ω/sq. The flexural strength of printed epoxy/graphene composites was comparable to that of cast neat epoxy ( 80 MPa), suggesting great potential for these new materials in multifunctional 3D-printed devices.

  7. The solubility of palladium(II) bis-dimethylglyoximate

    International Nuclear Information System (INIS)

    Maghzian, R.

    1978-01-01

    The solubility of palladium(II) bis-dimethylglyoximate in different solutions has been determined. Values obtained for the solubility of the palladium complex are tabulated. The solubility is the lowest in water, ammonium acetate and a 25% acetone-water mixture. It is highest in dilute HCl and acetone but precipitation from aqueous acetone should be satisfactory for most purposes if the acetone content of the solvent is roughly less than 50% by volume. The solubility in dilute HCl reflects the concern by previous workers for losses in precipitation from mineral acid. In general, however, the losses are unlikely to be significant unless the quantity of palladium to be precipitated and weighed is small. (T.G.)

  8. Degradation of modified carbon black/epoxy nanocomposite coatings under ultraviolet exposure

    International Nuclear Information System (INIS)

    Ghasemi-Kahrizsangi, Ahmad; Shariatpanahi, Homeira; Neshati, Jaber; Akbarinezhad, Esmaeil

    2015-01-01

    Graphical abstract: - Highlights: • Degradation behavior of modified Carbon Black (CB) epoxy coating was studied under UV irradiation using based on EIS technique. • By using SDS as a surfactant, nano particles of CB were uniformly dispersed in an epoxy matrix. • ATR-FTIR analysis showed that the CB coatings were degraded less than epoxy coating. • EIS results showed the coating with 2.5 wt% CB nanoparticles had higher corrosion resistance than neat epoxy. - Abstract: Degradation of epoxy coatings with and without Carbon Black (CB) nanoparticles under ultraviolet (UV) radiation were investigated using electrochemical impedance spectroscopy (EIS). Sodium dodecyl sulfate (SDS) was used to obtain a good dispersion of CB nanoparticles in a polymer matrix. TEM analysis proved a uniform dispersion of modified CB nanoparticles in epoxy coating. The coatings were subjected to UV radiation to study the degradation behavior and then immersed in 3.5 wt% NaCl. The results showed that the electrochemical behavior of neat epoxy coating was related to the formation and development of microcracks on the surface. The occurrence of microcracks on the surface of the coatings and consequently the penetration of ionic species reduced by adding CB nanoparticles into the formulation of the coatings. CB nanoparticles decreased degradation of CB coatings by absorbing UV irradiation. The ATR-FTIR results showed that decrease in the intensity of methyl group as main peak in presence of 2.5 wt% CB was lower than neat epoxy. In addition, the reduction in impedance of neat epoxy coating under corrosive environment was larger than CB coatings. The CB coating with 2.5 wt% nanoparticles had the highest impedance to corrosive media after 2000 h UV irradiation and 24 h immersion in 3.5 wt% NaCl.

  9. Degradation of modified carbon black/epoxy nanocomposite coatings under ultraviolet exposure

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi-Kahrizsangi, Ahmad, E-mail: ahmad_usk@yahoo.com [Corrosion Department, Research Institute of Petroleum Industry (RIPI), P.O. Box 18745-4163, Tehran (Iran, Islamic Republic of); Shariatpanahi, Homeira, E-mail: shariatpanahih@ripi.ir [Coating Research Center, Research Institute of Petroleum Industry (RIPI), P.O. Box 18745-4163, Tehran (Iran, Islamic Republic of); Neshati, Jaber [Corrosion Department, Research Institute of Petroleum Industry (RIPI), P.O. Box 18745-4163, Tehran (Iran, Islamic Republic of); Akbarinezhad, Esmaeil [Coating Research Center, Research Institute of Petroleum Industry (RIPI), P.O. Box 18745-4163, Tehran (Iran, Islamic Republic of)

    2015-10-30

    Graphical abstract: - Highlights: • Degradation behavior of modified Carbon Black (CB) epoxy coating was studied under UV irradiation using based on EIS technique. • By using SDS as a surfactant, nano particles of CB were uniformly dispersed in an epoxy matrix. • ATR-FTIR analysis showed that the CB coatings were degraded less than epoxy coating. • EIS results showed the coating with 2.5 wt% CB nanoparticles had higher corrosion resistance than neat epoxy. - Abstract: Degradation of epoxy coatings with and without Carbon Black (CB) nanoparticles under ultraviolet (UV) radiation were investigated using electrochemical impedance spectroscopy (EIS). Sodium dodecyl sulfate (SDS) was used to obtain a good dispersion of CB nanoparticles in a polymer matrix. TEM analysis proved a uniform dispersion of modified CB nanoparticles in epoxy coating. The coatings were subjected to UV radiation to study the degradation behavior and then immersed in 3.5 wt% NaCl. The results showed that the electrochemical behavior of neat epoxy coating was related to the formation and development of microcracks on the surface. The occurrence of microcracks on the surface of the coatings and consequently the penetration of ionic species reduced by adding CB nanoparticles into the formulation of the coatings. CB nanoparticles decreased degradation of CB coatings by absorbing UV irradiation. The ATR-FTIR results showed that decrease in the intensity of methyl group as main peak in presence of 2.5 wt% CB was lower than neat epoxy. In addition, the reduction in impedance of neat epoxy coating under corrosive environment was larger than CB coatings. The CB coating with 2.5 wt% nanoparticles had the highest impedance to corrosive media after 2000 h UV irradiation and 24 h immersion in 3.5 wt% NaCl.

  10. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    Science.gov (United States)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.

  11. Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite

    International Nuclear Information System (INIS)

    Shirkavand Hadavand, Behzad; Mahdavi Javid, Kimya; Gharagozlou, Mehrnaz

    2013-01-01

    Highlights: ► Preparation of epoxy polysulfide nanocomposite. ► Multi-walled carbon nanotubes have been modified and dispersed in epoxy polysulfide matrix. ► Mechanical properties of MWNT/epoxy polysulfide have been studied. - Abstract: In this research, multi-walled carbon nanotubes (MWCNTs) were modified by acid functionalization (H 2 SO 4 :HNO 3 = 1:3 by volume) and then mechanical properties of reinforced epoxy polysulfide resin by the both pure and treated MWNTs have been evaluated. For achieving this goal, different weight percentages of pure and treated MWCNT (0.1–0.3 wt%) were dispersed in the epoxy polysulfide resin separately and then mixed with curing agent. Experimental results have shown significant difference between acid treated and untreated MWCNTs in mechanical properties of epoxy polysulfide nanocomposites. In nanocomposite with 0.1–0.3% acid treated MWCNTs we observed increase of Young’s modulus from 458 to 723 MPa, tensile strength from 5.29 to 8.83 MPa and fracture strain from 0.16% to 0.25%. For understanding the structure and morphology of nanocomposite, the dispersion states were studied using scanning electron microscopy (SEM) and field emission electron microscopy (FESEM). The results showed better dispersion of modified carbon nanotube than unmodified in polymeric matrix

  12. Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes

    International Nuclear Information System (INIS)

    Jin Fanlong; Ma Changjie; Park, Soo-Jin

    2011-01-01

    Highlights: → CNTs were functionalized by acid and amine treatments. → Epoxy resin/CNT composites were prepared. → T g of the composites increased by about 10 deg. C compared to neat epoxy resins. → Toughness of the composites was significantly improved by the addition of functionalized CNTs. - Abstract: Carbon nanotubes (CNTs) were treated by a mixture of acid and functionalized subsequently by amine treatment to improve interfacial interactions and dispersion of CNTs in epoxy matrix. The thermal stabilities and mechanical interfacial properties of epoxy/CNT composites were investigated using several techniques. The dispersion state of CNTs in the epoxy matrix was observed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). As a result, the glass transition temperature of epoxy/CNT composites increased by about 11 deg. C compared to neat epoxy resins. The mechanical interfacial property of the composites was significantly increased by the addition of amine treated CNTs. The SEM and TEM results showed that the separation and uniform dispersion of CNTs in the epoxy matrix.

  13. Kevlar 49/Epoxy COPV Aging Evaluation

    Science.gov (United States)

    Sutter, James K.; Salem, Jonathan L.; Thesken, John C.; Russell, Richard W.; Littell, Justin; Ruggeri, Charles; Leifeste, Mark R.

    2008-01-01

    NASA initiated an effort to determine if the aging of Kevlar 49/Epoxy composite overwrapped pressure vessels (COPV) affected their performance. This study briefly reviews the history and certification of composite pressure vessels employed on NASA Orbiters. Tests to evaluate overwrap tensile strength changes compared 30 year old samples from Orbiter vessels to new Kevlar/Epoxy pressure vessel materials. Other tests include transverse compression and thermal analyses (glass transition and moduli). Results from these tests do not indicate a noticeable effect due to aging of the overwrap materials.

  14. Lidar/DIAL detection of acetone at 3.3 μm by a tunable OPO laser system

    International Nuclear Information System (INIS)

    Puiu, A; Fiorani, L; Borelli, R; Pistilli, M; Palucci, A; Rosa, O

    2014-01-01

    In this paper we report, for the first time to our knowledge, on lidar/DIAL detection of acetone vapors at 3.3 μm by means of an optical parametric tunable laser system. After a preliminary spectroscopic study in an absorption cell, the feasibility of a differential absorption (DIAL) lidar for the detection of acetone vapors has been investigated in the laboratory, simulating the experimental conditions of a field campaign. Having in mind measurements in a real scenario, a study of possible atmospheric intereferents has been performed, looking for all known compounds that share acetone IR absorption in the spectral band selected for its detection. Possible interfering species from urban and industrial atmospheres were investigated and limits of acetone detection in both environments were identified. This study confirmed that a lidar system can detect a low concentration of acetone at considerable distances. (paper)

  15. Fabrication of High Gas Barrier Epoxy Nanocomposites: An Approach Based on Layered Silicate Functionalized by a Compatible and Reactive Modifier of Epoxy-Diamine Adduct

    Directory of Open Access Journals (Sweden)

    Ran Wei

    2018-05-01

    Full Text Available To solve the drawbacks of poor dispersion and weak interface in gas barrier nanocomposites, a novel epoxy-diamine adduct (DDA was synthesized by reacting epoxy monomer DGEBA with curing agent D400 to functionalize montmorillonite (MMT, which could provide complete compatibility and reactivity with a DGEBA/D400 epoxy matrix. Thereafter, sodium type montmorillonite (Na-MMT and organic-MMTs functionalized by DDA and polyether amines were incorporated with epoxy to manufacture nanocomposites. The effects of MMT functionalization on the morphology and gas barrier property of nanocomposites were evaluated. The results showed that DDA was successfully synthesized, terminating with epoxy and amine groups. By simulating the small-angle neutron scattering data with a sandwich structure model, the optimal dispersion/exfoliation of MMT was observed in a DDA-MMT/DGEBA nanocomposite with a mean radius of 751 Å, a layer thickness of 30.8 Å, and only two layers in each tactoid. Moreover, the DDA-MMT/DGEBA nanocomposite exhibited the best N2 barrier properties, which were about five times those of neat epoxy. Based on a modified Nielsen model, it was clarified that this excellent gas barrier property was due to the homogeneously dispersed lamellas with almost exfoliated structures. The improved morphology and barrier property confirmed the superiority of the adduct, which provides a general method for developing gas barrier nanocomposites.

  16. Surface modification of titanium hydride with epoxy resin via microwave-assisted ball milling

    International Nuclear Information System (INIS)

    Ning, Rong; Chen, Ding; Zhang, Qianxia; Bian, Zhibing; Dai, Haixiong; Zhang, Chi

    2014-01-01

    Highlights: • TiH 2 was modified with epoxy resin by microwave-assisted ball milling. • The epoxy ring was opened under the coupling effect of microwave and ball milling. • Microwave-assisted ball milling improved the compatibility of TiH 2 with epoxy. - Abstract: Surface modification of titanium hydride with epoxy resin was carried out via microwave-assisted ball milling and the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermo-gravimetry (TG) and Fourier transform infrared spectroscopy (FT-IR). A sedimentation test was performed to investigate the compatibility of the modified nano titanium hydride with the epoxy resin. The results show that the epoxy resin molecules were grafted on the surface of nano titanium hydride particles during the microwave-assisted ball milling process, which led to the improvement of compatibility between the nanoparticles and epoxy resin. According to the FT-IR, the grafting site was likely to be located around the epoxy group due to the fact that the epoxy ring was opened. However, compared with microwave-assisted ball milling, the conventional ball milling could not realize the surface modification, indicating that the coupling effect of mechanical force and microwave played a key role during the process

  17. An acetone breath analyzer using cavity ringdown spectroscopy: an initial test with human subjects under various situations

    International Nuclear Information System (INIS)

    Wang, Chuji; Surampudi, Anand B

    2008-01-01

    We have developed a portable breath acetone analyzer using cavity ringdown spectroscopy (CRDS). The instrument was initially tested by measuring the absorbance of breath gases at a single wavelength (266 nm) from 32 human subjects under various conditions. A background subtraction method, implemented to obtain absorbance differences, from which an upper limit of breath acetone concentration was obtained, is described. The upper limits of breath acetone concentration in the four Type 1 diabetes (T1D) subjects, tested after a 14 h overnight fast, range from 0.80 to 3.97 parts per million by volume (ppmv), higher than the mean acetone concentration (0.49 ppmv) in non-diabetic healthy breath reported in the literature. The preliminary results show that the instrument can tell distinctive differences between the breath from individuals who are healthy and those with T1D. On-line monitoring of breath gases in healthy people post-exercise, post-meals and post-alcohol-consumption was also conducted. This exploratory study demonstrates the first CRDS-based acetone breath analyzer and its potential application for point-of-care, non-invasive, diabetic monitoring

  18. Epoxy based nanocomposites with fully exfoliated unmodified clay: mechanical and thermal properties.

    Science.gov (United States)

    Li, Binghai; Zhang, Xiaohong; Gao, Jianming; Song, Zhihai; Qi, Guicun; Liu, Yiqun; Qiao, Jinliang

    2010-09-01

    The unmodified clay has been fully exfoliated in epoxy resin with the aid of a novel ultrafine full-vulcanized powdered rubber. Epoxy/rubber/clay nanocomposites with exfoliated morphology have been successfully prepared. The microstructures of the nanocomposites were characterized by means of X-ray diffraction and transmission electron microscopy. It was found that the unmodified clay was fully exfoliated and uniformly dispersed in the resulting nanocomposite. Characterizations of mechanical properties revealed that the impact strength of this special epoxy/rubber/clay nanocomposite increased up 107% over the neat epoxy resin. Thermal analyses showed that thermal stability of the nanocomposite was much better than that of epoxy nanocomposite based on organically modified clay.

  19. BaFe{sub 12}O{sub 19} powder with high magnetization prepared by acetone-aided coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hsuan-Fu, E-mail: hfyu@mail.tku.edu.tw

    2013-09-15

    BaFe{sub 12}O{sub 19} particles with high magnetization were produced using an acetone-aided coprecipitation process. An aqueous solution of iron and barium nitrates, in an Fe{sup 3+}/Ba{sup 2+} molar ratio of 12, was added in a stirred precipitation liquid medium composed of H{sub 2}O, CH{sub 3}(CO)CH{sub 3} and NH{sub 4}OH. After reacting metallic ions with ammonia, the precipitates were formed, centrifugally filtered, freeze dried and calcined. Effects of amount of the acetone in the precipitation liquid medium on the formation of crystalline BaFe{sub 12}O{sub 19} were investigated. The presence of acetone in the precipitation liquid medium can greatly promote formation of the crystalline BaFe{sub 12}O{sub 19} at temperature as low as 650 °C and can enhance magnetization of the derived particles. On the other hand, raising the calcination temperature can effectively accelerate development of crystallite morphology and magnetic characters of the barium hexaferrites. While the barium hexaferrite powder obtained without acetone additions and calcined at 1000 °C had magnetization (measured at 50 kOe; M(50 kOe)) of 63.5 emu/g, remanence magnetization (Mr) of 31.3 emu/g and coercivity (Hc) of 4.7 kOe, the single magnetic domain size BaFe{sub 12}O{sub 19} powder with M(50 kOe) of 70.6 emu/g, Mr of 34.4 emu/g and Hc of 3.7 kOe was produced at 1000 °C, using a precipitation liquid medium of 64 vol% acetone. - Highlights: • BaFe{sub 12}O{sub 19} with high magnetic characters was produced by an acetone-aided coprecipitation. • The effects of acetone addition in the precipitation on the formation of BaFe{sub 12}O{sub 19} were studied. • Acetone presence in the precipitation liquid medium promoted BaFe{sub 12}O{sub 19} formation at ≥650 °C. • BaFe{sub 12}O{sub 19} with M(50 kOe) of 70.6 emu/g, Mr of 34.4 emu/g and Hc of 3.7 kOe was obtained.

  20. Acetone photophysics at 282 nm excitation at elevated pressure and temperature. II: Fluorescence modeling

    Science.gov (United States)

    Hartwig, Jason; Raju, Mandhapati; Sung, Chih-Jen

    2017-07-01

    This is the second in a series of two papers that presents an updated fluorescence model and compares with the new experimental data reported in the first paper, as well as the available literature data, to extend the range of acetone photophysics to elevated pressure and temperature conditions. This work elucidates the complete acetone photophysical model in terms of each and every competing radiative and non-radiative rate. The acetone fluorescence model is then thoroughly examined and optimized based on disparity with recently conducted elevated pressure and temperature photophysical calibration experiments. The current work offers insight into the competition between non-radiative and vibrational energy decay rates at elevated temperature and pressure and proposes a global optimization of model parameters from the photophysical model developed by Thurber (Acetone Laser-Induced Fluorescence for Temperature and Multiparameter Imaging in Gaseous Flows. PhD thesis, Stanford University Mechanical Engineering Department, 1999). The collisional constants of proportionality, which govern vibrational relaxation, are shown to be temperature dependent at elevated pressures. A new oxygen quenching rate is proposed which takes into account collisions with oxygen as well as the oxygen-assisted intersystem crossing component. Additionally, global trends in ketone photophysics are presented and discussed.

  1. Epoxy resin/phosphonium ionic liquid/carbon nanofiller systems: Chemorheology and properties

    Directory of Open Access Journals (Sweden)

    H. Maka

    2014-10-01

    Full Text Available Epoxy nanocomposites with commercial carbon nanotubes (CNT or graphene (GN have been prepared using phosphonium ionic liquid [trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl phosphinate, IL-f]. IL-f served simultaneously as nanofiller dispersing medium and epoxy resin catalytic curing agent. An influence of IL-f/epoxy weight ratio (3, 6 and 9/100, phr, carbon nanofiller type and content on viscosity of epoxy compositions during storage at ambient temperature was evaluated. Curing process was controlled for neat and CNT or GN modified epoxy compositions (0.25-1.0 wt.% load using differential scanning calorimetry and rheometry. Epoxy nanocomposites exhibited slightly increased glass transition temperature values (146 to 149°C whereas tan δ and storage modulus decreased (0.30 to 0.27 and 2087 to 1070 MPa, respectively as compared to reference material. Crosslink density regularly decreased for composites with increasing CNT content (11 094 to 7 020 mol/m3. Electrical volume resistivity of the nanocomposites was improved in case of CNT to 4•101 Ω•m and GN to 2•105 Ω•m (nanofiller content 1 wt.%. Flame retardancy was found for modified epoxy materials with as low GN and phosphorus content as 0.25 and 0.7 wt.%, respectively (increase of limiting oxygen index to 26.5%.

  2. Los cambios de temperatura en los revestimientos epoxi II

    Directory of Open Access Journals (Sweden)

    Fernández Cánovas, M.

    1970-04-01

    Full Text Available This article is the second part of a previous paper published by the author in no. 189 of this magazine. It describes the tests carried out to check the theoretical results published in the earlier article. The tests have consisted in submitting concrete slabs covered with a layer of epoxi mortar to certain thermal conditions, to check the behaviour of the covering in the face of thermal changes. In all the tests, described in detail in the article, the epoxi layer has behaved extremely well, and no bonding failure has been observed, nor failures in the concrete base or in the epoxi layer.Este artículo es la segunda parte de un trabajo publicado por el autor en el número 189 de esta revista, y en él se realiza una descripción de los ensayos prácticos llevados a cabo para complementar el estudio teórico publicado en aquella primera parte. Los ensayos han consistido en someter a placas de hormigón revestidas de una Kipa de mor tero epoxi a determinadas condiciones térmicas, con el fin de poder comprobar el comportamiento del revestimiento frente a los cambios de temperatura. En todos los ensayos realizados y que, con detalle, están descritos en este artículo, el comportamiento de los revestimientos de mortero epoxi ha sido excelente, no habiéndose notado ningún fallo de adherencia, ni roturas en la base de hormigón, ni en la capa de mortero epoxi.

  3. Energy absorption and failure response of silk/epoxy composite square tubes: Experimental

    DEFF Research Database (Denmark)

    Oshkovr, Simin Ataollahi; Taher, Siavash Talebi; A. Eshkoor, Rahim

    2012-01-01

    This paper focuses on natural silk/epoxy composite square tubes energy absorption and failure response. The tested specimens were featured by a material combination of different lengths and same numbers of natural silk/epoxy composite layers in form of reinforced woven fabric in thermosetting epoxy...

  4. Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application

    International Nuclear Information System (INIS)

    Jia, Qianqian; Ji, Huiming; Zhang, Ying; Chen, Yalu; Sun, Xiaohong; Jin, Zhengguo

    2014-01-01

    Highlights: • ZnO spheres fabricated via solvothermal method are with (0 0 2) polar facet exposed. • Response time of ZnO sensor for detecting 100 ppm acetone is as short as 3 s. • R a /R g toward 100 ppm acetone is 33 when operated at 230 °C. • ZnO sensor exhibits good selectivity against other toxic gases and water vapor. • Porous structure and exposure of polar facet contribute to good sensing properties. - Abstract: Hierarchical nanostructured ZnO dandelion-like spheres were synthesized via solvothermal reaction at 200 °C for 4 h. The products were pure hexagonal ZnO with large exposure of (0 0 2) polar facet. Side-heating gas sensor based on hierarchical ZnO spheres was prepared to evaluate the acetone gas sensing properties. The detection limit to acetone for the ZnO sensor is 0.25 ppm. The response (R a /R g ) toward 100 ppm acetone was 33 operated at 230 °C and the response time was as short as 3 s. The sensor exhibited remarkable acetone selectivity with negligible response toward other hazardous gases and water vapor. The high proportion of electron depletion region and oxygen vacancies contributed to high gas response sensitivity. The hollow and porous structure of dandelion-like ZnO spheres facilitated the diffusion of gas molecules, leading to a rapid response speed. The largely exposed (0 0 2) polar facets could adsorb acetone gas molecules easily and efficiently, resulting in a rapid response speed and good selectivity of hierarchical ZnO spheres gas sensor at low operating temperature

  5. Measurements of print-through in graphite fiber epoxy composites

    Science.gov (United States)

    Jaworske, Donald A.; Jeunnette, Timothy T.; Anzic, Judith M.

    1989-01-01

    High-reflectance accurate-contour mirrors are needed for solar dynamic space power systems. Graphite fiber epoxy composites are attractive candidates for such applications owing to their high modulus, near-zero coefficient of thermal expansion, and low mass. However, mirrors prepared from graphite fiber epoxy composite substrates often exhibit print-through, a distortion of the surface, which causes a loss in solar specular reflectance. Efforts to develop mirror substrates without print-through distortion require a means of quantifying print-through. Methods have been developed to quantify the degree of print-through in graphite fiber epoxy composite specimens using surface profilometry.

  6. Molecular analysis of two mouse dilute locus deletion mutations: Spontaneous dilute lethal20J and radiation-induced dilute prenatal lethal Aa2 alleles

    International Nuclear Information System (INIS)

    Strobel, M.C.; Seperack, P.K.; Copeland, N.G.; Jenkins, N.A.

    1990-01-01

    The dilute (d) coat color locus of mouse chromosome 9 has been identified by more than 200 spontaneous and mutagen-induced recessive mutations. With the advent of molecular probes for this locus, the molecular lesion associated with different dilute alleles can be recognized and precisely defined. In this study, two dilute mutations, dilute-lethal20J (dl20J) and dilute prenatal lethal Aa2, have been examined. Using a dilute locus genomic probe in Southern blot analysis, we detected unique restriction fragments in dl20J and Aa2 DNA. Subsequent analysis of these fragments showed that they represented deletion breakpoint fusion fragments. DNA sequence analysis of each mutation-associated deletion breakpoint fusion fragment suggests that both genomic deletions were generated by nonhomologous recombination events. The spontaneous dl20J mutation is caused by an interstitial deletion that removes a single coding exon of the dilute gene. The correlation between this discrete deletion and the expression of all dilute-associated phenotypes in dl20J homozygotes defines the dl20J mutation as a functional null allele of the dilute gene. The radiation-induced Aa2 allele is a multilocus deletion that, by complementation analysis, affects both the dilute locus and the proximal prenatal lethal-3 (pl-3) functional unit. Molecular analysis of the Aa2 deletion breakpoint fusion fragment has provided access to a previously undefined gene proximal to d. Initial characterization of this new gene suggests that it may represent the genetically defined pl-3 functional unit

  7. Void-free epoxy castings for cryogenic insulators and seals

    International Nuclear Information System (INIS)

    Quirk, J.F.

    1983-01-01

    The design of the Westinghouse Magnet for the Oak Ridge National Laboratory's Large Coil Program (LCP) incorporates a main lead bushing which transmits heat-leak loads by conduction to the supercritical helium stream. The bushing, which consists of epoxy resin cast about a copper conductor, must be electrically insulated, vacuum tight and be capable of withstanding the stresses encountered in cryognic service. The seal design of the bushing is especially important; leakage from either the helium system or the external environment into the vacuum will cause the magnet to quench. Additionally, the epoxy-resin casting must resist mechanical loads caused by the weight of leads attached to the bushing and thermal stresses transmitted to the epoxy via the conductor. The epoxy resin is cast about the conductor in such a way as to provide the required vacuum tight seal. The technique by which this is accomplished is reviewed. Equally important is the elimination of voids in the epoxy which will act as stress-concentrating discontinuities during cooling to or warming from 4K. The types of voids that could be expected and their causes are described. The paper reviews techniques employed to eliminate voids within the cast-resin portion of the bushing

  8. Flexural properties of treated and untreated kenaf/epoxy composites

    International Nuclear Information System (INIS)

    Yousif, B.F.; Shalwan, A.; Chin, C.W.; Ming, K.C.

    2012-01-01

    Graphical abstract: Untreated kenaf fibre/epoxy composites. Treated kenaf fibre/epoxy composites. Highlights: ► Treatment of kenaf fibres with 6% NaOH has improved the flexural properties of epoxy composites. ► Interfacial adhesion of the natural fibres is controlled by the microstructure of the fibres. ► Kenaf fibres have a potential to replace glass fibres for flexural applications. -- Abstract: In the current work, flexural properties of unidirectional long kenaf fibre reinforced epoxy (KFRE) composites are studied. The kenaf fibres were prepared into two types as untreated and treated (with 6% NaOH). The failure mechanism and damage features of the materials were categorized with the surface observation by scanning electron microscope (SEM). The results revealed that reinforcement of epoxy with treated kenaf fibres increased the flexural strength of the composite by about 36%, while, untreated fibres introduced 20% improvement. This was mainly due to the high improvement of the chemical treatment (NaOH) on the interfacial adhesion of the fibres and the porosity of the composites which prevented the debonding, detachments or pull out of fibres. For untreated KFRE, the fracture mechanisms were debonding, tearing, detachments and pull out of fibres. The developed composite exhibited superior properties compared to the previous composites based on natural and synthetic fibres.

  9. First discovery of acetone extract from cottonseed oil sludge as a novel antiviral agent against plant viruses.

    Science.gov (United States)

    Zhao, Lei; Feng, Chaohong; Hou, Caiting; Hu, Lingyun; Wang, Qiaochun; Wu, Yunfeng

    2015-01-01

    A novel acetone extract from cottonseed oil sludge was firstly discovered against plant viruses including Tobacco mosaic virus (TMV), Rice stripe virus (RSV) and Southern rice black streaked dwarf virus (SRBSDV). Gossypol and β-sitosterol separated from the acetone extract were tested for their effects on anti-TMV and analysed by nuclear magnetic resonance (NMR) assay. In vivo and field trials in different geographic distributions and different host varieties declared that this extract mixture was more efficient than the commercial agent Ningnanmycin with a broad spectrum of anti-plant-viruses activity. No phytotoxic activity was observed in the treated plants and environmental toxicology showed that this new acetone extract was environmentally friendly, indicating that this acetone extract has potential application in the control of plant virus in the future.

  10. Characterization of epoxy hybrid composites filled with cellulose fibers and nano-SiC

    KAUST Repository

    Alamri, H.

    2012-04-06

    Three different approaches have been applied and investigated to enhance the thermal and mechanical properties of epoxy resin. Epoxy system reinforced with either recycled cellulose fibers (RCF) or nanosilicon carbide (n-SiC) particles as well as with both RCF and n-SiC has been fabricated and investigated. The effect of RCF/n-SiC dispersion on the mechanical and thermal properties of these composites has been characterized. The fracture surface morphology and toughness mechanisms were investigated by scanning electron microscopy. The dispersion of n-SiC particles into epoxy nanocomposites was studied by synchrotron radiation diffraction and transmission electron microscopy. Results indicated that mechanical properties increased as a result of the addition of n-SiC. The presence of RCF layers significantly increased the mechanical properties of RCF/epoxy composites when compared with neat epoxy and its nanocomposites. The influence of the addition of n-SiC to RCF/epoxy composites in mechanical properties was found to be positive in toughness properties. At high temperatures, thermal stability of neat epoxy increased due to the presence of either n-SiC particles or RCF layers. However, the presence of RCF accelerated the thermal degradation of neat epoxy as well as the addition of n-SiC to RCF/epoxy samples increased the rate of the major thermal degradation. © 2012 Wiley Periodicals, Inc.

  11. ORGANIC/INORGANIC HYBRID EPOXY NANOCOMPOSITES BASED ON OCTA(AMINOPHENYL)SILSESQUIOXANE

    Institute of Scientific and Technical Information of China (English)

    Hai-bo Fan; Rong-jie Yang; Xiang-mei Li

    2013-01-01

    Octa(aminophenyl)silsesquioxane (OAPS) was used as the curing agent of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin.A study on comparison of DGEBA/OAPS with DGEBA/4,4'-diaminodiphenyl sulfone (DDS) epoxy resins was achieved.Differential scanning calorimetry was used to investigate the curing reaction and its kinetics,and the glass transition of DGEBA/OAPS.Thermogravimetric analysis was used to investigate thermal decomposition of the two kinds of epoxy resins.The reactions between amino groups and epoxy groups were investigated using Fourier transform infrared spectroscopy.Scanning electron microscopy was used to observe morphology of the two epoxy resins.The results indicated that OAPS had very good compatibility with DGEBA in molecular level,and could form a transparent DGEBA/OAPS resin.The curing reaction of the DGEBA/OAPS prepolymer could occur under low temperatures compared with DGEBA/DDS.The DGEBA/OAPS resin didn't exhibit glass transition,but the DGEBA/DDS did,which meant that the large cage structure of OAPS limited the motion of chains between the cross-linking points.Measurements of the contact angle indicated that the DGEBA/OAPS showed larger angles with water than the DGEBA/DDS resin.Thermogravimetric analysis indicated that the incorporation of OAPS into epoxy system resulted in low mass loss rate and high char yield,but its initial decomposition temperature seemed to be lowered.

  12. [Modification of the pattern of fatty acids of erythrocytes’ membranes due to the acetone intoxication].

    Science.gov (United States)

    Momot, T V; Kushnerova, N F; Rakhmanin, Yu A

    Results of the study of the impact of acetone intoxication on the fatty acids pattern of the general lipids of erythrocytes’ membranes in rats are presented. The inhalation exposure of acetone was carried out in the inoculation chamber with the volume of 100 liters. The chamber was designed for the type of B.A. Kurlyandsky with self-contained system of purification and air regeneration and specified parameters of temperature (20-22С) and air humidity. The flow rate of the air and aerosolized acetone passed through the chamber accounted of 10 liters/min. Concentration of acetone in the chamber was sustained at the level of 206 ± 3,9 mg/m that corresponds to maximum permissible concentration for acetone vapor in the air of a working area. The time of exposure was 6 hours per day for 3 weeks in a monotonous mode, excluding weekend, and was based upon specific parameters of environment simulation in industry. The acetone impact was shown to be accompanied by the gain in the quantity of all kinds of saturated fatty acids and the fall of unsaturated fatty acids in general lipids of erythrocytes ’ membranes in rats and in the structure ofphospholipid fractions. In the content of phosphatydilcholine and phosphatydilethanolamine, as a basic structural phospholipids of biological membranes, there was noted the increase in palmitic and stearic acids. In the range offatty acids of the n-6 family the amount of linoleic and arachidonic acids decreased. In the array of fatty acids of the n-3 family the content of linolenic, eicosapentaenoic and docosahexaenoic acids (n-3 family) declined. Redistribution of fatty acids in the erythrocytes membrane towards to such alteration in quantity as the increasing of saturation and decreasing of the unsaturated fatty acids supposes the change of its physical and chemical properties, permeability, lability and complexity of passing erythrocyte via microcircular channels.

  13. Exit Presentation: Infrared Thermography on Graphite/Epoxy

    Science.gov (United States)

    Comeaux, Kayla

    2010-01-01

    This slide presentation reports on the internship project that was accomplished during the summer of 2010. The objectives of the project were to: (1) Simulate Flash Thermography on Graphite/Epoxy Flat Bottom hole Specimen and thin void specimens, (2) Obtain Flash Thermography data on Graphite/Epoxy flat bottom hole specimens, (3) Compare experimental results with simulation results, Compare Flat Bottom Hole Simulation with Thin Void Simulation to create a graph to determine size of IR Thermography detected defects

  14. Some problems of local production of acetone and butanol

    Energy Technology Data Exchange (ETDEWEB)

    Fang, C; Chang, Y P

    1959-01-01

    Conditions of laboratory and plant cultivation of acetone-butanol fermentation bacteria are considered (effects of pH of the medium, temperature, and starch content in raw material on yield of fermentation products) and also the conditions of isolation of the final products produced.

  15. Realtime 3D stress measurement in curing epoxy packaging

    DEFF Research Database (Denmark)

    Richter, Jacob; Hyldgård, A.; Birkelund, Karen

    2007-01-01

    This paper presents a novel method to characterize stress in microsystem packaging. A circular p-type piezoresistor is implemented on a (001) silicon chip. We use the circular stress sensor to determine the packaging induced stress in a polystyrene tube filled with epoxy. The epoxy curing process...

  16. In vitro antimycobacterial activity of acetone extract of Glycyrrhiza glabra

    Directory of Open Access Journals (Sweden)

    Swapna S. Nair

    2015-08-01

    Full Text Available Context: Glycyrrhiza glabra (licorice has been used since ages as expectorant, antitussive and demulcent. G. glabra has been indicated in Ayurveda as an antimicrobial agent for the treatment of respiratory infections and tuberculosis. Aims: To evaluate the antimycobacterial activity of acetone extract of G. glabra by in vitro techniques. Methods: The anti-tubercular activity of acetone extract of G. glabra, obtained by Soxhlet extraction, was evaluated against Mycobacterium tuberculosis H37Rv (ATCC 27294. The in vitro anti-tubercular activity was determined by Resazurin Microtiter Plate Assay (REMA and colony count method. Further, the anti-tubercular activity of acetone extract of G. glabra was determined in human macrophage U937 cell lines and was compared against that of the standard drugs isoniazid, rifampicin and ethambutol. Results: G. glabra extract showed significant activity against Mycobacterium tuberculosis, when evaluated by REMA/colony count methods and in U937 human macrophage cell lines infected with Mycobacterium tuberculosis H37Rv. The activity of the extract was comparable to those of standard drugs. It was observed that the extract showed time and concentration dependent antimycobacterial activity. Conclusions: The present study reveals that G. glabra extract has promising anti-tubercular activity by preliminary in vitro techniques and in U937 macrophage cell line. Therefore, it has the definite potential to be developed as an affordable, cost-effective drug against tuberculosis.

  17. Enhanced Flexural Strength of Tellurium Nanowires/epoxy Composites with the Reinforcement Effect of Nanowires

    Science.gov (United States)

    Balguri, Praveen Kumar; Harris Samuel, D. G.; Aditya, D. B.; Vijaya Bhaskar, S.; Thumu, Udayabhaskararao

    2018-02-01

    Investigating the mechanical properties of polymer nanocomposite materials has been greatly increased in the last decade. In particular, flexural strength plays a major role in resisting bending and shear loads of a composite material. Here, one dimensional (1D) tellurium nanowires (TeNWs) reinforced epoxy composites have been prepared and the flexural properties of resulted TeNWs/epoxy nanocomposites are studied. The diameter and length of the TeNWs used to make TeNWs/epoxy nanocomposites are 21±2.5 nm and 697±87 nm, respectively. Plain and TeNWs/epoxy nanocomposites are characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). Furthermore, significant enhancement in the flexural strength of TeNWs/epoxy nanocomposite is observed in comparison to plain epoxy composite, i.e. flexural strength is increased by 65% with the addition of very little amount of TeNWs content (0.05 wt.%) to epoxy polymer. Structural details of plain and TeNWs/epoxy at micrometer scale were examined by scanning electron microscopy (SEM). We believe that our results provide a new type of semiconductor nanowires based high strength epoxy polymer nanocomposites.

  18. Hydrate phase equilibria of furan, acetone, 1,4-dioxane, TBAC and TBAF

    International Nuclear Information System (INIS)

    Kamran-Pirzaman, Arash; Pahlavanzadeh, Hassan; Mohammadi, Amir H.

    2013-01-01

    Highlights: • Experimental hydrate dissociation conditions are reported for CO 2 /methane + some water soluble/insoluble hydrate formers. • An isochoric pressure-search method was used to generate the experimental data. • The data are compared with the corresponding literature data in the presence of pure water. • The hydrate promotion effects of acetone, 1,4-dioxane, furan, TBAC and TBAF are discussed. -- Abstract: In this communication, we first report experimental hydrate dissociation pressures for the methane/carbon dioxide + furan/acetone/1,4-dioxane + water and the methane + tetra n-butyl ammonium chloride (TBAC) + water as well as the carbon dioxide + tetra n-butyl ammonium floride (TBAF) + water systems in the temperature ranges of (269.9 to 303.3) K. An isochoric pressure-search method was used to generate the experimental data. The hydrate dissociation data are compared with the corresponding literature data, if exists, and the literature data in the presence of pure water and acceptable agreement is observed. A discussion is made on hydrate promotion effects of acetone, 1,4-dioxane, furan, TBAC and TBAF

  19. Behaviour of Epoxy Silica Nanocomposites Under Static and Creep Loading

    Science.gov (United States)

    Constantinescu, Dan Mihai; Picu, Radu Catalin; Sandu, Marin; Apostol, Dragos Alexandru; Sandu, Adriana; Baciu, Florin

    2017-12-01

    Specific manufacturing technologies were applied for the fabrication of epoxy-based nanocomposites with silica nanoparticles. For dispersing the fillers in the epoxy resin special equipment such as a shear mixer and a high energy sonicator with temperature control were used. Both functionalized and unfunctionalized silica nanoparticles were added in three epoxy resins. The considered filling fraction was in most cases 0.1, 0.3 and 0.5 wt%.. The obtained nanocomposites were subjected to monotonic uniaxial and creep loading at room temperature. The static mechanical properties were not significantly improved regardless the filler percentage and type of epoxy resin. Under creep loading, by increasing the stress level, the nanocomposite with 0.1 wt% silica creeps less than all other materials. Also the creep rate is reduced by adding silica nanofillers.

  20. Synthesis and characterization of polyimide-epoxy hybrid films

    International Nuclear Information System (INIS)

    Butt, M.S.; Akhter, Z.; Siddiqi, H.M.

    2011-01-01

    Composites from polyimide and epoxy-amine were prepared aiming for enhancing its thermal and mechanical properties. Polyimide-epoxy-amine hybrid films were prepared by blending of polyimide and epoxy-amine in different ratios whereas, polyimide was prepared by reacting 1,2-di(p-aminophenyloxy)ethylene with 3,3/sub '/4,4/sub '/-benzophenone tetracarboxylic acid dianhydride. The blend systems with Araldite LY564 (1,4-butanediolediglycidyl ether) (BDDE) and Hardener HY2954 (3,3/sub '/-dimethyl-4,4/sub '/-diamino dicyclohexyl)methane (MACM) were investigated in term of thermal, mechanical and viscoelastic measurements. Thermal stability was determined using thermogravimetric analysis. The effect of the polyimide content on the glass transition temperature (Tg) and thermal stability was observed. Viscoelastic measurements showed that the glass transition temperature shifted with the increase of polyimide content. The composites showed higher thermal stability in comparison with neat epoxy-amine matrix for higher polyimide concentration. The effect of polyimide content on the mechanical properties was also investigated. The tensile measurements of the films showed that with the increase of polyimide content the tensile modulus of the films was increased. (author)

  1. A photoelectron and TPEPICO investigation of the acetone radical cation.

    Science.gov (United States)

    Rennie, Emma E; Boulanger, Anne-Marie; Mayer, Paul M; Holland, David M P; Shaw, David A; Cooper, Louise; Shpinkova, Larisa G

    2006-07-20

    The valence shell photoelectron spectrum, threshold photoelectron spectrum, and threshold photoelectron photoion coincidence (TPEPICO) mass spectra of acetone have been measured using synchrotron radiation. New vibrational progressions have been observed and assigned in the X 2B2 state photoelectron bands of acetone-h6 and acetone-d6, and the influence of resonant autoionization on the threshold electron yield has been investigated. The dissociation thresholds for fragment ions up to 31 eV have been measured and compared to previous values. In addition, kinetic modeling of the threshold region for CH3* and CH4 loss leads to new values of 78 +/- 2 kJ mol(-1) and 75 +/- 2 kJ mol(-1), respectively, for the 0 K activation energies for these two processes. The result for the methyl loss channel is in reasonable agreement with, but slightly lower than, that of 83 +/- 1 kJ mol(-1) derived in a recent TPEPICO study by Fogleman et al. The modeling accounts for both low-energy dissociation channels at two different ion residence times in the mass spectrometer. Moreover, the effects of the ro-vibrational population distribution, the electron transmission efficiency, and the monochromator band-pass are included. The present activation energies yield a Delta(f)H298 for CH3CO+ of 655 +/- 3 kJ mol(-1), which is 4 kJ mol(-1) lower than that reported by Fogleman et al. The present Delta(f)H298 for CH3CO+ can be combined with the Delta(f)H298 for CH2CO (-47.5 +/- 1.6 kJ mol(-1)) and H+ (1530 kJ mol(-1)) to yield a 298 K proton affinity for ketene of 828 +/- 4 kJ mol(-1), in good agreement with the value (825 kJ mol(-1)) calculated at the G2 level of theory. The measured activation energy for CH4 loss leads to a Delta(f)H298 (CH2CO+*) of 873 +/- 3 kJ mol(-1).

  2. Studies on acetone sensing characteristics of ZnO thin film prepared by sol–gel dip coating

    Energy Technology Data Exchange (ETDEWEB)

    Muthukrishnan, Karthika; Vanaraja, Manoj [School of Electrical & Electronics Engineering, SASTRA University, Thanjavur, 613401 (India); Boomadevi, Shanmugam [Department of Physics, National Institute of Technology, Tiruchirappalli, 620015 (India); Karn, Rakesh Kumar [School of Electrical & Electronics Engineering, SASTRA University, Thanjavur, 613401 (India); Singh, Vijay [Department of Chemical Engineering, Konkuk University, Seoul, 143-701 (Korea, Republic of); Singh, Pramod K. [Solar Energy Institute, Ege University, Bornova, 35100, Izmir (Turkey); Material Research Laboratory, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, U. P. (India); Pandiyan, Krishnamoorthy, E-mail: krishpandiyan@ece.sastra.edu [School of Electrical & Electronics Engineering, SASTRA University, Thanjavur, 613401 (India)

    2016-07-15

    Acetone sensing characteristics of Zinc Oxide thin films prepared by dip coating method are discussed in this paper. The sol for dip coating was synthesized using Zinc nitrate hexahydrate (Zn (NO{sub 3}){sub 2}. 6H{sub 2}O) and organic polymer sodium carboxy methyl cellulose (Na-CMC) as a starting material. Crystallinity and crystallite size of the prepared thin film was characterised by X-ray diffraction (XRD). Morphology was studied using field emission scanning electron microscopy (FESEM). The gas sensing characteristics was studied using chemiresistive method, by exposing the film to various concentrations of acetone at room temperature. Further, for comparative study ethanol and acetaldehyde has also been tested. Gas sensing parameters such us response, selectivity, lowest detection limit, response/recovery time of the thin film towards acetone were also reported. - Highlights: • ZnO has successfully synthesized using cheap and ease method. • Detail characterization have carried out and explained. • Sensing behaviour has been studied. • Acetone sensor has been fabricated.

  3. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid.

    Science.gov (United States)

    Kazami, Nao; Sakaguchi, Masayoshi; Mizutani, Daisuke; Masuda, Tatsuhiko; Wakita, Satoshi; Oyama, Fumitaka; Kawakita, Masao; Sugahara, Yasusato

    2015-11-05

    Chitin oligomers are of interest because of their numerous biologically relevant properties. To prepare chitin oligomers containing 4-6 GlcNAc units [(GlcNAc)4-6], α- and β-chitin were hydrolyzed with concentrated hydrochloric acid at 40 °C. The reactant was mixed with acetone to recover the acetone-insoluble material, and (GlcNAc)4-6 was efficiently recovered after subsequent water extraction. Composition analysis using gel permeation chromatography and MALDI-TOF mass spectrometry indicated that (GlcNAc)4-6 could be isolated from the acetone-insoluble material with recoveries of approximately 17% and 21% from the starting α-chitin and β-chitin, respectively. The acetone precipitation method is highly useful for recovering chitin oligomers from the acid hydrolysate of chitin. The changes in the molecular size and higher-order structure of chitin during the course of hydrolysis were also analyzed, and a model that explains the process of oligomer accumulation is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Characterization of Hybrid Epoxy Nanocomposites

    Science.gov (United States)

    Simcha, Shelly; Dotan, Ana; Kenig, Samuel; Dodiuk, Hanna

    2012-01-01

    This study focused on the effect of Multi Wall Carbon Nanotubes (MWCNT) content and its surface treatment on thermo-mechanical properties of epoxy nanocomposites. MWCNTs were surface treated and incorporated into two epoxy systems. MWCNT's surface treatments were based on: (a) Titania coating obtained by sol-gel process and (b) a nonionic surfactant. Thermo-mechanical properties improvement was obtained following incorporation of treated MWCNT. It was noticed that small amounts of titania coated MWCNT (0.05 wt %) led to an increase in the glass transition temperature and stiffness. The best performance was achieved adding 0.3 wt % titania coated MWCNT where an increase of 10 °C in the glass transition temperature and 30% in storage modulus were obtained. PMID:28348313

  5. Hybridizing pines with diluted pollen

    Science.gov (United States)

    Robert Z. Callaham

    1967-01-01

    Diluted pollens would have many uses by the tree breeder. Dilutions would be particularly advantageous in making many controlled pollinations with a limited amount of pollen. They also would be useful in artificial mass pollinations of orchards or single trees. Diluted pollens might help overcome troublesome genetic barriers to crossing. Feasibility o,f using diluted...

  6. Inert Reassessment Document for Acetone - CAS No. 67-64-1

    Science.gov (United States)

    Acetone is a highly volatile chemical that is used as an inert ingredient, a solvent/co-solvent, in a variety of pesticide products (including outdoor yard, garden and turf products, and agricultural crop products).

  7. Acetone and Butanone Metabolism of the Denitrifying Bacterium “Aromatoleum aromaticum” Demonstrates Novel Biochemical Properties of an ATP-Dependent Aliphatic Ketone Carboxylase

    Science.gov (United States)

    Schühle, Karola

    2012-01-01

    The anaerobic and aerobic metabolism of acetone and butanone in the betaproteobacterium “Aromatoleum aromaticum” is initiated by their ATP-dependent carboxylation to acetoacetate and 3-oxopentanoic acid, respectively. Both reactions are catalyzed by the same enzyme, acetone carboxylase, which was purified and characterized. Acetone carboxylase is highly induced under growth on acetone or butanone and accounts for at least 5.5% of total cell protein. The enzyme consists of three subunits of 85, 75, and 20 kDa, respectively, in a (αβγ)2 composition and contains 1 Zn and 2 Fe per heterohexamer but no organic cofactors. Chromatographic analysis of the ATP hydrolysis products indicated that ATP was exclusively cleaved to AMP and 2 Pi. The stoichiometry was determined to be 2 ATP consumed per acetone carboxylated. Purified acetone carboxylase from A. aromaticum catalyzes the carboxylation of acetone and butanone as the only substrates. However, the enzyme shows induced (uncoupled) ATPase activity with many other substrates that were not carboxylated. Acetone carboxylase is a member of a protein family that also contains acetone carboxylases of various other organisms, acetophenone carboxylase of A. aromaticum, and ATP-dependent hydantoinases/oxoprolinases. While the members of this family share several characteristic features, they differ with respect to the products of ATP hydrolysis, subunit composition, and metal content. PMID:22020645

  8. Fate of acetone in an outdoor model stream with a nitrate supplement, southern Mississippi, U.S.A.

    Science.gov (United States)

    Rathbun, R.E.; Stephens, D.W.; Tai, D.Y.

    1991-01-01

    The fate of acetone in an outdoor model stream to which nitrate was added as a nutrient supplement was determined. The stream, in southern Mississippi, U.S.A. was 234 m long. Water was supplied to the stream by an artesian well at about 1.21 s-1, resulting in a mean water velocity of about 0.5 m min-1. Acetone was injected continuously for 26 days resulting in concentrations of 20-40 mg l-1. A nitrate solution was injected for 21 days resulting in an instream concentration of about 1.7 mg l-1 at the upstream end of the stream. Rhodamine-WT dye was used to determine the travel time and dispersion characteristics of the stream, and t-butyl alcohol was used to determine the volatilization characteristics. Volatilization controlled the fate of acetone in the model stream. The lack of substantial bacterial degradation of acetone was contrary to expectations based on the results of laboratory degradation studies using model stream water enriched with nitrate. A possible explanation for the lack of significant degradation in the model stream may be the limited 6-h residence time of the acetone in the stream. ?? 1991.

  9. Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application.

    Science.gov (United States)

    Jia, Qianqian; Ji, Huiming; Zhang, Ying; Chen, Yalu; Sun, Xiaohong; Jin, Zhengguo

    2014-07-15

    Hierarchical nanostructured ZnO dandelion-like spheres were synthesized via solvothermal reaction at 200°C for 4h. The products were pure hexagonal ZnO with large exposure of (002) polar facet. Side-heating gas sensor based on hierarchical ZnO spheres was prepared to evaluate the acetone gas sensing properties. The detection limit to acetone for the ZnO sensor is 0.25ppm. The response (Ra/Rg) toward 100ppm acetone was 33 operated at 230°C and the response time was as short as 3s. The sensor exhibited remarkable acetone selectivity with negligible response toward other hazardous gases and water vapor. The high proportion of electron depletion region and oxygen vacancies contributed to high gas response sensitivity. The hollow and porous structure of dandelion-like ZnO spheres facilitated the diffusion of gas molecules, leading to a rapid response speed. The largely exposed (002) polar facets could adsorb acetone gas molecules easily and efficiently, resulting in a rapid response speed and good selectivity of hierarchical ZnO spheres gas sensor at low operating temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Thermal properties and corrosion resistance of organoclay/epoxy resin film

    Science.gov (United States)

    Baiquni, M.; Soegijono, B.

    2018-03-01

    Hybrid materials organoclay/epoxy resin films were prepared by varying organoclay content in epoxy resin as a matrix. The film were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and thermal conductivity. TGA and FT-IR results confirmed that the melting temperature shifted to a lower point. The thermal conductivity and corrosion resistant generally increase with increasing organoclay content. The changes on these properties may due to cross link between organoclay and epoxy.

  11. Preparation and Various Characteristics of Epoxy/Alumina Nanocomposites

    Science.gov (United States)

    Kozako, Masahiro; Ohki, Yoshimichi; Kohtoh, Masanori; Okabe, Shigemitsu; Tanaka, Toshikatsu

    Epoxy/ alumina nanocomposites were newly prepared by dispersing 3, 5, 7, and 10 weight (wt) % boehmite alumina nanofillers in a bisphenol-A epoxy resin using a special two-stage direct mixing method. It was confirmed by scanning electron microscopy imaging that the nanofillers were homogeneously dispersed in the epoxy matrix. Dielectric, mechanical, and thermal properties were investigated. It was elucidated that nanofillers affects various characteristics of epoxy resins, when they are nanostructrued. Such nano-effects we obtained are summarized as follows. Partial discharge resistance increases as the filler content increases; e.g. 7 wt% nanofiller content creates a 60 % decrease in depth of PD-caused erosion. Weibull analysis shows that short-time electrical treeing breakdown time is prolonged to 265 % by 5 wt% addition of nanofillers. But there was more data scatter in nanocomposites than in pure epoxy. Permittivity tends to increase from 3.7 to 4.0 by 5 wt% nanofiller addition as opposed to what was newly found in the recent past. Glass transition temperature remains unchanged as 109 °C. Mechanical properties such as flexural strength and flexural modulus increase; e.g. flexural strength and flexural modulus are improved by 5 % and 8 % with 5 wt% content, respectively. Excess addition causes a reverse effect. It is concluded from permittivity and glass transition temperature characteristics that interfacial bonding seems to be more or less weak in the nanocomposite specimens prepared this time, even though mechanical strengths increase. There is a possibility that the nanocomposites specimens will be improved in interfacial quality.

  12. Liquid crystalline epoxy nanocomposite material for dental application.

    Science.gov (United States)

    Tai, Yun-Yuan; Hsu, Sheng-Hao; Chen, Rung-Shu; Su, Wei-Fang; Chen, Min-Huey

    2015-01-01

    Novel liquid crystalline epoxy nanocomposites, which exhibit reduced polymerization shrinkage and effectively bond to tooth structures, can be applied in esthetic dentistry, including core and post systems, direct and indirect restorations, and dental brackets. The purposes of this study were to investigate the properties of liquid crystalline epoxy nanocomposites including biocompatibility, microhardness, and frictional forces of bracket-like blocks with different filler contents for further clinical applications. In this study, we evaluated liquid crystalline epoxy nanocomposite materials that exhibited various filler contents, by assessing their cell activity performance using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and their microhardness with or without thermocycling. We also evaluated the frictional force between bracket-like duplicates and commercially available esthetic bracket systems using Instron 5566. The liquid crystalline epoxy nanocomposite materials showed good biocompatibility. The materials having high filler content demonstrated greater microhardness compared with commercially available bracket materials, before and after the thermocycling treatment. Thus, manufacturing processes are important to reduce frictional force experienced by orthodontic brackets. The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment. Copyright © 2014. Published by Elsevier B.V.

  13. The effects of MWNT on thermal conductivity and thermal mechanical properties of epoxy

    Science.gov (United States)

    Ismadi, A. I.; Othman, R. N.

    2017-12-01

    Multiwall nanotube (MWNT) was used as filler in various studies to improve thermal conductivity and mechanical properties of epoxy. Present study varied different weight loading (0, 0.1 %, 0.5 %, 1 %, 1.5 %, 3 % and 5 %) of MWNT in order to observe the effects on the epoxy. Nanocomposite was analyzed by dynamic-mechanical thermal analyser (DMTA) and KD2 pro analyzer. DMTA measured storage modulus (E') and glass transition temperature (Tg) of the nanocomposite. Result showed that Tg value of neat epoxy is higher than all MWNT epoxy nanocomposite. Tg values drop from 81.55 °C (neat epoxy) to 65.03 °C (at 0.1 wt%). This may happen due to the agglomeration of MWNT in the epoxy. However, Tg values increases with the increase of MWNT wt%. Tg values increased from 65.03 °C to 78.53 °C at 1 wt%. Increment of storage modulus (E') at 3 °C (glassy region) was observed as the MWNT loading increases. Maximum value of E' during glassy region was observed to be at 5 wt% with (7.26±0.7) E+08 Pa compared to neat epoxy. On the contrary, there is slight increased and slight decreased with E' values at 100 °C (rubbery region) for all nanocomposite. Since epoxy exhibits low thermal conductivity properties, addition of MWNT has enhanced the properties. Optimum value of thermal conductivity was observed at 3 wt%. The values increased up to 9.03 % compared to neat epoxy. As expected, the result showed decrease value in thermal conductivity at 5 wt% as a result of agglomeration of MWNT in the epoxy.

  14. Energy efficiency of acetone, butanol, and ethanol (ABE) recovery by heat-integrated distillation.

    Science.gov (United States)

    Grisales Diaz, Victor Hugo; Olivar Tost, Gerard

    2018-03-01

    Acetone, butanol, and ethanol (ABE) is an alternative biofuel. However, the energy requirement of ABE recovery by distillation is considered elevated (> 15.2 MJ fuel/Kg-ABE), due to the low concentration of ABE from fermentation broths (between 15 and 30 g/l). In this work, to reduce the energy requirements of ABE recovery, four processes of heat-integrated distillation were proposed. The energy requirements and economic evaluations were performed using the fermentation broths of several biocatalysts. Energy requirements of the processes with four distillation columns and three distillation columns were similar (between 7.7 and 11.7 MJ fuel/kg-ABE). Double-effect system (DED) with four columns was the most economical process (0.12-0.16 $/kg-ABE). ABE recovery from dilute solutions by DED achieved energy requirements between 6.1 and 8.7 MJ fuel/kg-ABE. Vapor compression distillation (VCD) reached the lowest energy consumptions (between 4.7 and 7.3 MJ fuel/kg-ABE). Energy requirements for ABE recovery DED and VCD were lower than that for integrated reactors. The energy requirements of ABE production were between 1.3- and 2.0-fold higher than that for alternative biofuels (ethanol or isobutanol). However, the energy efficiency of ABE production was equivalent than that for ethanol and isobutanol (between 0.71 and 0.76) because of hydrogen production in ABE fermentation.

  15. High Tg and fast curing epoxy-based anisotropic conductive paste for electronic packaging

    Science.gov (United States)

    Keeratitham, Waralee; Somwangthanaroj, Anongnat

    2016-03-01

    Herein, our main objective is to prepare the fast curing epoxy system with high glass transition temperature (Tg) by incorporating the multifunctional epoxy resin into the mixture of diglycidyl ether of bisphenol A (DGEBA) as a major epoxy component and aromatic diamine as a hardener. Furthermore, the curing behavior as well as thermal and thermomechanical properties were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermomechanical analysis (TMA). It was found that Tg obtained from tan δ of DGEBA/aromatic diamine system increased from 100 °C to 205 °C with the presence of 30 percentage by weight of multifunctional epoxy resin. Additionally, the isothermal DSC results showed that the multifunctional epoxy resin can accelerate the curing reaction of DGEBA/aromatic diamine system. Namely, a high degree of curing (˜90%) was achieved after a few minutes of curing at low temperature of 130 °C, owing to a large number of epoxy ring of multifunctional epoxy resin towards the active hydrogen atoms of aromatic diamine.

  16. Non-isothermal cure and exfoliation of tri-functional epoxy-clay nanocomposites

    Directory of Open Access Journals (Sweden)

    F. Shiravand

    2015-08-01

    Full Text Available The non-isothermal cure kinetics of polymer silicate layered nanocomposites based on a tri-functional epoxy resin has been investigated by differential scanning calorimetry. From an analysis of the kinetics as a function of the clay content, it can be concluded that the non-isothermal cure reaction can be considered to consist of four different processes: the reaction of epoxy groups with the diamine curing agent; an intra-gallery homopolymerisation reaction which occurs concurrently with the epoxy-amine reaction; and two extra-gallery homopolymerisation reactions, catalysed by the onium ion of the organically modified clay and by the tertiary amines resulting from the epoxy-amine reaction. The final nanostructure displays a similar quality of exfoliation as that observed for the isothermal cure of the same nanocomposite system. This implies that the intra-gallery reaction, which is responsible for the exfoliation, is not significantly inhibited by the extra-gallery epoxy-amine cross-linking reaction.

  17. Tensile properties of compressed moulded Napier/glass fibre reinforced epoxy composites

    Science.gov (United States)

    Fatinah, T. S.; Majid, M. S. Abdul; Ridzuan, M. J. M.; Hong, T. W.; Amin, N. A. M.; Afendi, M.

    2017-10-01

    This paper describes the experimental investigation of the tensile properties of compressed moulded Napier grass fibres reinforced epoxy composites. The effect of treatment 5% sodium hydroxide (NaOH) concentrated solution and hybridization of Napier with CSM E-glass fibres on tensile properties was also studied. The untreated and treated Napier fibres with 25% fibre loading were fabricated with epoxy resin by a cold press process. 7% fibre loading of CSM glass fibre was hybrid as the skin layer for 18% fibre loading of untreated Napier grass fibre. The tensile tests were conducted using Universal Testing Machine in accordance with ASTM D638. The tensile properties of the untreated Napier/epoxy composites were compared with treated Napier/epoxy and untreated Napier/CSM/epoxy composites. The results demonstrated that the tensile performance of untreated Napier fibre composites was significantly improved by both of the modification; alkali treatment and glass fibre hybridization. Napier grass fibres showed promising potentials to be used as reinforcement in the polymer based composites.

  18. Plant Oil-Derived Epoxy Polymers toward Sustainable Biobased Thermosets.

    Science.gov (United States)

    Wang, Zhongkai; Yuan, Liang; Ganewatta, Mitra S; Lamm, Meghan E; Rahman, Md Anisur; Wang, Jifu; Liu, Shengquan; Tang, Chuanbing

    2017-06-01

    Epoxy polymers (EPs) derived from soybean oil with varied chemical structures are synthesized. These polymers are then cured with anhydrides to yield soybean-oil-derived epoxy thermosets. The curing kinetic, thermal, and mechanical properties are well characterized. Due to the high epoxide functionality per epoxy polymer chain, these thermosets exhibit tensile strength over an order of magnitude higher than a control formulation with epoxidized soybean oil. More importantly, thermosetting materials ranging from soft elastomers to tough thermosets can be obtained simply by using different EPs and/or by controlling feed ratios of EPs to anhydrides. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Metal-Exchanged β Zeolites as Catalysts for the Conversion of Acetone to Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Aurora J. Cruz-Cabeza

    2012-01-01

    Full Text Available Various metal-β zeolites have been synthesized under similar ion-exchange conditions. During the exchange process, the nature and acid strength of the used cations modified the composition and textural properties as well as the Brönsted and Lewis acidity of the final materials. Zeolites exchanged with divalent cations showed a clear decrease of their surface Brönsted acidity and an increase of their Lewis acidity. All materials were active as catalysts for the transformation of acetone into hydrocarbons. Although the protonic zeolite was the most active in the acetone conversion (96.8% conversion, the metal-exchanged zeolites showed varied selectivities towards different products of the reaction. In particular, we found the Cu-β to have a considerable selectivity towards the production of isobutene from acetone (over 31% yield compared to 7.5% of the protonic zeolite. We propose different reactions mechanisms in order to explain the final product distributions.

  20. Shock-Tube Measurement of Acetone Dissociation Using Cavity-Enhanced Absorption Spectroscopy of CO.

    Science.gov (United States)

    Wang, Shengkai; Sun, Kai; Davidson, David F; Jeffries, Jay B; Hanson, Ronald K

    2015-07-16

    A direct measurement for the rate constant of the acetone dissociation reaction (CH3COCH3 = CH3CO + CH3) was conducted behind reflected shock wave, utilizing a sub-ppm sensitivity CO diagnostic achieved by cavity-enhanced absorption spectroscopy (CEAS). The current experiment eliminated the influence from secondary reactions and temperature change by investigating the clean pyrolysis of <20 ppm acetone in argon. For the first time, the acetone dissociation rate constant (k1) was directly measured over 5.5 orders of magnitude with a high degree of accuracy: k1 (1004-1494 K, 1.6 atm) = 4.39 × 10(55) T(-11.394) exp(-52 140K/T) ± 24% s(-1). This result was seen to agree with most previous studies and has bridged the gap between their temperature and pressure conditions. The current work also served as an example demonstration of the potential of using the CEAS technique in shock-tube kinetics studies.

  1. Nitrogen-Containing Functional Groups-Facilitated Acetone Adsorption by ZIF-8-Derived Porous Carbon

    Directory of Open Access Journals (Sweden)

    Liqing Li

    2018-01-01

    Full Text Available Nitrogen-doped porous carbon (ZC is prepared by modification with ammonia for increasing the specific surface area and surface polarity after carbonization of zeolite imidazole framework-8 (ZIF-8. The structure and properties of these ZCs were characterized by Transmission electron microscopy, X-ray diffraction, N2 sorption, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Through static adsorption tests of these carbons, the sample obtained at 600 °C was selected as an excellent adsorbent, which exhibited an excellent acetone capacity of 417.2 mg g−1 (25 °C with a very large surface area and high-level nitrogen doping (13.55%. The microporosity, surface area and N-containing groups of the materials, pyrrolic-N, pyridinic-N, and oxidized-N groups in particular, were found to be the determining factors for acetone adsorption by means of molecular simulation with density functional theory. These findings indicate that N-doped microporous carbon materials are potential promising adsorbents for acetone.

  2. Problems induced by the use of acetone as a solvent to dose chlorpyrifos in a microecosystem

    NARCIS (Netherlands)

    Kersting, K.

    1995-01-01

    Recycling aquatic microecosystems consisting of three subsystems with a total volume of 7.5 L were used to study the effects of the insecticide chlorpyrifos. The poorly soluble chlorpyrifos was dosed dissolved in 0.5 ml of acetone. Acetone was found to be responsible for some of the observed

  3. Chemical changes and tensile and electrical properties of epoxy ...

    African Journals Online (AJOL)

    The properties of epoxy rsesin can be improved by the use of nanofiller such as carbon black (CB), The nanocomposite was synthesized by dispersion via sonication and shear mixing. The morphology, surface chemistry and the structure of CB and the epoxy/CB nanocomposites were investigated using XPS, FTIR, FESEM, ...

  4. Education and Public Outreach for NASA's EPOXI Mission.

    Science.gov (United States)

    McFadden, Lucy-Ann A.; Crow, C. A.; Behne, J.; Brown, R. N.; Counley, J.; Livengood, T. A.; Ristvey, J. D.; Warner, E. M.

    2009-09-01

    NASA's EPOXI mission is reusing the Deep Impact (DI) flyby spacecraft to study comets and extra-solar planets around other stars. During the Extrasolar Planetary Observations and Characterization (EPOCh) phase of the mission extrasolar planets transiting their parent stars were observed to gain further knowledge and understanding of planetary systems. Observations of Earth also allowed for characterization of Earth as an extrasolar planet. A movie of a lunar transit of the Earth created from EPOCh images and links to existing planet finding activities from other NASA missions are available on the EPOXI website. The Deep Impact Extended Investigation (DIXI) continues the Deep Impact theme of investigating comet properties and formation by observing comet Hartley 2 in November 2010. The EPOXI Education and Public Outreach (E/PO) program is both creating new materials and updating and modifying existing Deep Impact materials based on DI mission results. Comparing Comets is a new educational activity under development that will guide students in conducting analyses of comet surface features similar to those the DIXI scientists will perform after observing comet Hartley 2. A new story designed to stimulate student creativity was developed in alignment with national educational standards. EPOXI E/PO also funded Family Science Night (FSN), a program bringing together students, families, and educators for an evening at the National Air and Space Museum in Washington, DC. FSN events include time for families to explore the museum, a presentation by a space scientist, and an astronomy themed IMAX film. Nine events were held during the 2008-2009 school year with a total attendance of 3,145 (attendance since inception reached 44,732). Half of attendance is reserved for schools with high percentages of underrepresented minorities. EPOXI additionally offers a bi-monthly newsletter to keep the public, teachers, and space enthusiasts updated on current mission activities. For more

  5. Aging in CTBN modified epoxy resin stocks

    International Nuclear Information System (INIS)

    Creed, K.E. Jr.

    1979-01-01

    The cause of degradation in the glass transition temperature (T/sub G/) of a partially crystallized polymer was investigated. Sample epoxy resin filled capacitors were cured at 90 0 C for 24 hours, then stored at room atmospheric conditions. These showed typical degradation in T/sub G/ after storage for one month. One set of epoxy resin castings was stored at room atmosphere and another set was stored in a dry box at 0% relative humidity and 27 0 C. The samples at room atmospheric conditions showed typical degradation in T/sub G/, while the T/sub G/ for those stored in the dry box increased. Further tests were then made on epoxy resin castings at various curing temperatures and times at both room atmosphere and 0% humidity. Resulting data indicated that absorption of moisture during storage was the predominant cause of T/sub G/ degradation, with stress relaxation another, though smaller, contributing factor

  6. Spall Strength Measurements in Transparent Epoxy Polymers

    Science.gov (United States)

    Pepper, Jonathan; Rahmat, Meysam; Petel, Oren

    2017-06-01

    Polymer nanocomposites are seeing more frequent use in transparent armour applications. The role of the microstructure on the performance of these materials under dynamic tensile loading conditions is of particular interest. In the present study, a series of plate impact experiments was conducted in order to evaluate the dynamic response of an epoxy (EPON 828) cured with two differed hardeners. The purpose was to compare the role of these hardeners on the dynamic performance of the resulting transparent epoxy. The material response was resolved with a multi-channel photonic Doppler velocimeter. This system was used to determine the shock Hugoniot and dynamic tensile (spall) strength of the materials. The experimental results are presented in reference to spall theory and are evaluated against results predicted by an analytical model of the impacts. While varying the hardener did not change the shock Hugoniot of the epoxy, it did have an effect on the measured spall strengths.

  7. Epoxy-silicate nanocomposites: Cure monitoring and characterization

    International Nuclear Information System (INIS)

    Hussain, Farzana; Chen, Jihua; Hojjati, Mehdi

    2007-01-01

    Epoxy-clay nanocomposites were prepared with organically modified layered clay with varying clay contents (1-8 wt.%). Neat resin and nanocomposite were characterized using different techniques. At first, the effect of nanoclay concentration on the cure behaviour was investigated using an on-line dielectric cure monitoring technique. Differential scanning calorimetry (DSC) was used to verify the dielectric measurement results. Furthermore, mechanical and thermal properties were studied using tensile test and Dynamic Mechanical Analysis (DMA), respectively. Experimental results showed that properties of the epoxy were changed evidently because of the nanoclay loading. The tensile modulus of the nanocomposites increased by 47%, however, no improvement in tensile strength and glass transition temperature (T g ) was observed. Fracture surface of the tensile samples were analyzed by Scanning Electron Microscope (SEM). The nanocomposites structures were characterized with Wide Angle X-Ray Diffraction (WAXD) and Transmission Electron Microscopy (TEM), which revealed the intercalated morphology of clay layers in the epoxy resin systems

  8. Radiation curing of γ-Al2O3 filled epoxy resin

    International Nuclear Information System (INIS)

    Kang, Phil Hyun; Kim, Dong Jin; Nho, Young Chang

    2003-01-01

    Epoxy resins are widely utilized as high performance thermosetting resins for many industrial applications but characterized by a relatively low toughness. Recently, the incorporation with rigid inorganic was suggested to improve the mechanical properties of epoxy resins. In the present work, an attempt has been taken to disperse nano-sized γ- Al 2 O 3 particles into diglycidyl ether of bisphenol-A (DGEBA) epoxy resins for improvement of the mechanical properties. These hybrid epoxy-alumina composites were prepared using by the γ-ray curing technique that was conducted with 100kGy under nitrogen at room temperature. The composites were characterized by determining gel content, UTM (Instron model 4443), SEM, FT-IR studies

  9. Preparations and applications in UV curing coatings of epoxy acrylates containing carboxyl

    International Nuclear Information System (INIS)

    Wu Yu Min

    1999-01-01

    This paper introduces preparations of epoxy acrylates containing carboxyl through the reactions of epoxy acrylates with butanedioic anhydride, pentanedioic anhydride, cis-butenedioic anhydride, phthalic anhydride, tetrabromophthalic anhydride and -tetrahydrophthalic anhydride. These epoxy acrylates containing carboxyl have been applied to UV-curing coatings and their effects on properties of UV-curing coatings have been studied

  10. ANALISIS ARAH DAN PERLAKUAN SERAT TAPIS SERTA RASIO EPOXY HARDENER TERHADAP SIFAT FISIS DAN MEKANIS KOMPOSIT TAPIS/EPOXY

    Directory of Open Access Journals (Sweden)

    Putu Lokantara

    2012-11-01

    Full Text Available Tapis kelapa (Coconut filter as natural fiber, in this time its resources very copius but no longer be exploited and thrown off hand as waste though in fact its used for other material dissimilar inovatif and high economic valuable that is as one of natural fiber alternative to be composite. The objective of this research is to investigate the behavior changing of physical and mechanical properties of composite tapis kelapa as reinforcement and epoxy 7120 with hardener Versamid 140 as matrix. The fiber is treated with the chemical NaOH and KMnO4 with percentage 0.5%, 1%, and 2% in weight, respectively. The ratio of epoxy and hardener is 7:3 and 6:4, and fiber orientation 0o, 45o, dan 90o. For testing of the speciment in tensile test with ASTM standard D3039 and three point bending test with ASTM standard D790. The result of this research obtained that fiber treatment with KMnO4 give the better effect to machine properties compared to NaOH. Variation of percentage 0.5%, 1%, and 2% NaOH and KMnO4 give the effect in fiber surface which higher percentage make the cleaner of surface, decrease of wax contain, and roughness of fiber surface so that stronger of linkage of fiber and matrix and increase of tensile strength, bending strength, and bending modulus of the composite. The highest tensile strength, modulus of elasticity and bending strength are 70.23 MPa, 446.24 GPa and 97.81 MPa respectively reached at composite with ratio epoxy/hardener 7:3; by 2% KMnO4 and fiber orientation 45o. While the highest modulus of elasticity is 385.48 GPa reached at composite with the ratio epoxy/hardener 6:4; 2% KMnO4 and fiber orientation 90o. Keywords: Tensile Strength, bending strength, ratio of epoxy/hardener, NaOH, KMnO4

  11. Epoxy-resin adhesive and method for bonding using such an epoxy resin adhesive

    NARCIS (Netherlands)

    Bhowmik, S.; Poulis, J.A.; Benedictus, R.

    2008-01-01

    The invention relates to an epoxy resin adhesive comprising a dotation of nano-substances, wherein the nano- substances are selected from the group comprising carbon-fibre nanotubes, carbon nano-fibres, silicate nano powders, and wherein the nano-substances are dispersed in the adhesive with a

  12. trans-Carbonylchloridobis[dicyclohexyl(4-isopropylphenylphosphane]rhodium(I acetone monosolvate

    Directory of Open Access Journals (Sweden)

    Sizwe Makhoba

    2011-09-01

    Full Text Available The title rhodium Vaska-type complex, trans-[RhCl{P(C6H112(C6H4-4-C3H72}2(CO], crystallizes with an accompanying acetone solvent molecule. The metal atom shows a distorted square-planar coordination environment with selected important geometrical parameters of Rh—P = 2.3237 (6 and 2.3253 (6 Å, Rh—Cl = 2.3724 (6 Å, Rh—C = 1.802 (2 Å, P—Rh—P = 173.42 (2° and Cl—Rh—C = 179.13 (7°. Effective cone angles for the two P atoms are 165 and 161°, respectively. Both isopropyl groups and the acetone molecule are disordered with occupancy values of 0.523 (5:0.477 (5, 0.554 (8:0.446 (8 and 0.735 (4:0.265 (4, respectively. The crystal packing is stabilized by weak C—H...O and C—H...Cl contacts.

  13. Preparation and Properties of Epoxy Resin-Coated Micro-Sized Ferrosilicon Powder

    OpenAIRE

    Ku,Jiangang; Chen,Huihuang; He,Kui; Yan,Quanxiang

    2016-01-01

    Ferrosilicon powder surface coated with a dense epoxy resin membrane was prepared via coating precipitation methods using silane coupling agents as the modifier and epoxy resin as the coating agent. FTIR, FESEM, MPMS-XL, and TG-DSC were used to analyze the morphology, surface composition, magnetic property and thermostability of ferrosilicon powder before and after the modification and coating. The experimental results indicate that epoxy resin membranes of a certain thickness were successful...

  14. Impact Damage In Carbon/Epoxy And Carbon/PEEK Composites

    Science.gov (United States)

    Nettles, A. T.; Magold, N. J.

    1991-01-01

    Report describes results of drop-weight impact testing of specimens of carbon-fiber/epoxy and carbon-fiber/polyetheretherketone (PEEK) composite materials. Panels made of these materials assembled into lightweight, strong, stiff structures useful in automobiles, aircraft, sporting goods, and many other products. PEEK specimens showed less delamination than epoxy specimens at given impact energy.

  15. Effect of epoxy resin and hardener containing microcapsules on healing efficiency of epoxy adhesive based metal joints

    International Nuclear Information System (INIS)

    Khan, Nazrul Islam; Halder, Sudipta; Goyat, M.S.

    2016-01-01

    Dual component microcapsules of epoxy resin and polyamine hardener with polymethyl methacrylate (PMMA) shell were synthesized using a water-oil-water emulsion solvent evaporation method. The high concentration of sodium dodecyl sulfate (SDS) was used to reduce the thickness of shell wall of dual component microcapsules. The dual microcapsules of 1:1 weight ratio were introduced in the epoxy adhesive to study the healing effect. The morphology, chemical structure and thermal characteristics of the microcapsules were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), respectively. The insertion of dual component microcapsules in epoxy matrix reduced the lap shear strength of adhesive joints, which may be attributed to the generation of stress concentration cites because of micron sized capsules. However, the extension and absorbed failure energy of adhesive joints under uniaxial loading increased with the increase of concentration of dual microcapsules. The viscoelastic nature of the dual microcapsules may be responsible for this enhancement. Significant enhancement in the healing efficiency (90.93%) of the joints was achieved for 10 wt% of dual microcapsules. The crack pinning and crack blunting mechanisms at the vicinity of the crack path adjacent to the microcapsules were found responsible for significant enhancement in the healing efficiency of the adhesive joints. - Highlights: • High SDS concentration was used to control the dual component microcapsules shell wall thickness. • Self-healing performance of dual component microcapsules reinforced epoxy adhesive based single lap joints was studied. • 90.93% of the damage healing was achieved for self-healing adhesive based single lap joints. • Increase in concentration of microcapsules reduces the lap shear properties of the self-healing joints.

  16. Effect of epoxy resin and hardener containing microcapsules on healing efficiency of epoxy adhesive based metal joints

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Nazrul Islam [Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar 788010, Assam (India); Halder, Sudipta, E-mail: shalder@nits.ac.in [Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar 788010, Assam (India); Goyat, M.S. [Department of Physics, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007 (India)

    2016-03-01

    Dual component microcapsules of epoxy resin and polyamine hardener with polymethyl methacrylate (PMMA) shell were synthesized using a water-oil-water emulsion solvent evaporation method. The high concentration of sodium dodecyl sulfate (SDS) was used to reduce the thickness of shell wall of dual component microcapsules. The dual microcapsules of 1:1 weight ratio were introduced in the epoxy adhesive to study the healing effect. The morphology, chemical structure and thermal characteristics of the microcapsules were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), respectively. The insertion of dual component microcapsules in epoxy matrix reduced the lap shear strength of adhesive joints, which may be attributed to the generation of stress concentration cites because of micron sized capsules. However, the extension and absorbed failure energy of adhesive joints under uniaxial loading increased with the increase of concentration of dual microcapsules. The viscoelastic nature of the dual microcapsules may be responsible for this enhancement. Significant enhancement in the healing efficiency (90.93%) of the joints was achieved for 10 wt% of dual microcapsules. The crack pinning and crack blunting mechanisms at the vicinity of the crack path adjacent to the microcapsules were found responsible for significant enhancement in the healing efficiency of the adhesive joints. - Highlights: • High SDS concentration was used to control the dual component microcapsules shell wall thickness. • Self-healing performance of dual component microcapsules reinforced epoxy adhesive based single lap joints was studied. • 90.93% of the damage healing was achieved for self-healing adhesive based single lap joints. • Increase in concentration of microcapsules reduces the lap shear properties of the self-healing joints.

  17. Improvement in electrical, thermal and mechanical properties of epoxy by filling carbon nanotube

    Directory of Open Access Journals (Sweden)

    2008-01-01

    Full Text Available In this study, electrical, thermal and mechanical properties of multi-walled carbon nanotubes (CNTs reinforced Epon 862 epoxy have been evaluated. Firstly, 0.1, 0.2, 0.3, and 0.4 wt% CNT were infused into epoxy through a high intensity ultrasonic liquid processor and then mixed with EpiCure curing agent W using a high speed mechanical agitator. Electric conductivity, dynamic mechanical analysis (DMA, three point bending tests and fracture tests were then performed on unfilled, CNT-filled epoxy to identify the loading effect on the properties of materials. Experimental results show significant improvement in electric conductivity. The resistivity of epoxy decreased from 1014 Ω•m of neat epoxy to 10 Ω•m with 0.4% CNT. The experimental results also indicate that the frequency dependent behavior of CNT/epoxy nanocomposite can be modeled by R-C circuit, permittivity of material increase with increasing of CNT content. DMA studies revealed that filling the carbon nanotube into epoxy can produce a 90% enhancement in storage modulus and a 17°C increase in Tg. Mechanical test results showed that modulus increased with higher CNT loading percentages, but the 0.3 wt% CNT-infusion system showed the maximum strength and fracture toughness enhancement. The decrease in strength and fracture toughness in 0.4% CNT/epoxy was attributed to poor dispersions of nanotubes in the composite.

  18. A study of thermal diffusivity of carbon-epoxy and glass-epoxy composites using the modified pulse method

    Directory of Open Access Journals (Sweden)

    Terpiłowski Janusz

    2014-09-01

    Full Text Available Transient heat transfer is studied and compared in two planeparallel composite walls and one EPIDIAN 53 epoxy resin wall acting as a matrix for both composites. The first of the two walls is made of carbonepoxy composite; the other wall is made of glass-epoxy composite, both with comparable thickness of about 1 mm and the same number of carbon and glass fabric layers (four layers. The study was conducted for temperatures in the range of 20-120 °C. The results of the study of thermal diffusivity which characterizes the material as a heat conductor under transient conditions have a preliminary character. Three series of tests were conducted for each wall. Each series took about 24 h. The results from the three series were approximated using linear functions and were found between (0.7-1.35×10−7m2/s. In the whole range of temperature variation, the thermal diffusivity values for carbon-epoxy composite are from 1.2 to 1.5 times higher than those for the other two materials with nearly the same thermal diffusivity characteristics.

  19. The influence of stiffeners on axial crushing of glass-fabric-reinforced epoxy composite shells

    Directory of Open Access Journals (Sweden)

    A. Vasanthanathan

    2017-01-01

    Full Text Available A generic static and impact experimental procedure has been developed in this work aimed at improving the stability of glass fabric reinforced epoxy shell structures by bonding with axial stiffeners. Crashworthy structures fabricated from composite laminate with stiffeners would offer energy absorption superior to metallic structures under compressive loading situations. An experimental material characterisation of the glass fabric reinforced epoxy composite under uni-axial tension has been carried out in this study. This work provides a numerical simulation procedure to describe the static and dynamic response of unstiffened glass fabric reinforced epoxy composite shell (without stiffeners and stiffened glass fabric reinforced epoxy composite shell (with axial stiffeners under static and impact loading using the Finite Element Method. The finite element calculation for the present study was made with ANSYS®-LS-DYNA® software. Based upon the experimental and numerical investigations, it has been asserted that glass fabric reinforced epoxy shells stiffened with GFRP stiffeners are better than unstiffened glass fabric reinforced epoxy shell and glass fabric reinforced epoxy shell stiffened with aluminium stiffeners. The failure surfaces of the glass fabric reinforced epoxy composite shell structures tested under impact were examined by SEM.

  20. Synthesis and characterization of rubbery epoxy/organoclay hectorite nanocomposites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available The present research investigates the morphology, the mechanical, and the viscoelastic properties of rubbery epoxy/clay nanocomposites synthesized by in situ polymerisation of a prepolymer diglycidyl ether of bisphenol-A crosslinked with an aliphatic diamine based on a polyoxypropylene backbone. The inorganic phase was hectorite, exchanged with octadecylammonium ions in order to give organophilic properties to the phyllosilicate. An ultrasonicator was used to disperse the silicate clay layer into epoxy-amine matrix. The morphology of epoxy-hectorite nanocomposites examined by transmission electron microscopy (TEM showed that mixed delamination or intercalation or microdispersion could occur depending on type of organoclay. Moreover, the mechanical and viscoelastic properties were found to be improved with only the treated hectorite.

  1. Epoxy coatings for anticorrosion challenges: a link between chemistry and performance?

    Energy Technology Data Exchange (ETDEWEB)

    Sauvant-Moynot, Valerie; Schweitzer, Sylvie; Grenier, Jacky; Duval, Sebastien [Institut Francais du Petrole, 1 et 4 avenue Bois Preau, 92450 Rueil-Malmaison (France)

    2004-07-01

    Epoxy coatings have been used extensively for pipeline protection in the oil and gas industries over the past decades. Thank to their outstanding adhesive properties, epoxy resins are classically used for external coating of offshore pipelines although cathodic protection is applied. They provide corrosion protection while being used as neat coating or as primer layer in a three-layer coating. Protection of internal pipelines devoted to gas transport is another application of epoxy coatings. Whatever the case, the choice of the right epoxy formulation should be adapted to the service conditions, namely exposition medium and temperature, in order to provide efficient and sustainable corrosion protection. Epoxy resins constitute a wide family and classical formulations may not fulfill the requirements of today's challenges: as pipelines are require d to operate in more and more difficult conditions, coatings are expected to function in higher temperature conditions; additionally, practical conditions such as temporary injection of methanol make the environmental exposure of the epoxy coating harsher. Therefore, there is a need of a better knowledge of technical performance and limitations of high temperature epoxy resins. This paper examined the influence of the epoxy network architecture on their protection properties and durability while exposed to distilled / sea water at 110 deg. C and to methanol at room temperature. The objective was to investigate the link between resin chemistry and final performance with respect to anticorrosion applications. Five epoxy resin formulations mixed in stoichiometric proportions were cured and post-cured to infinite extent in order to achieve densely cross-linked networks exhibiting controlled and reproducible architectures. Gravimetric and pressurised differential scanning calorimetry (DSC) measurements were performed to evaluate the plasticization effect of both water and methanol on formulations under study. The related

  2. Flame resistant hybrid epoxy composites

    Czech Academy of Sciences Publication Activity Database

    Śliwa, R.; Oleksy, M.; Heneczkowski, M.; Oliwa, R.; Budzik, G.; Kozik, B.; Markowska, O.; Strachota, Adam

    2015-01-01

    Roč. 60, č. 10 (2015), s. 667-670 ISSN 0032-2725 Institutional support: RVO:61389013 Keywords : epoxy resin * quaternary phosphonium salts * modified bentonite Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.718, year: 2015

  3. Characterization and analysis of epoxy/clay nanotubes composites; Cacaterizacao e analise de compositos de epoxi, argila e nanotubos de carbono

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    An DGEBA epoxy matrix was used aiming to achieve a nanocomposite material, through the dispersion of (CNT) via mechanical stirring followed by sonication. In this work the following characterization were performed: mechanical characterization, differential scanning calorimetry (DSC), wide angle X-ray diffraction (WXRD) and scanning electron microscopy (SEM). The addition of CNT and modified clays promoted the increase of modulus of the epoxy matrix, and a synergistic effect between CNT and both clays could be presumed. SEM images of the fracture surface show the difference between the fracture surface area and the presence of clusters among the samples, allowing a correlation with the modulus of elasticity. X-ray diffractograms from 2{Theta} = 5 deg showed no peaks for modified clay samples, however it is possible to affirm that modified clay platelets are forming a less organized structure compared to the structure of the clay as natural in epoxy. (author)

  4. Biological activities of Umbilicaria crustulosa (Ach. frey acetone extract

    Directory of Open Access Journals (Sweden)

    Zlatanović Ivana

    2017-01-01

    Full Text Available This paper reports for the first time the effect of an acetone extract of Umbilicaria crustulosa on the micronucleus distribution of human lymphocytes, and on the cholinesterase activity and antioxidant activity by the cupric ion reducing antioxidant capacity (CUPRAC method. Additionally, the total phenolic compounds (TPC and the antioxidant properties were estimated via DPPH, ABTS and TRP assays. Moreover, the antibacterial activity against two Gram-positive and three Gram-negative bacteria were determined. Acetone extract of U. crustulosa at concentration of 1 and 2 μg mL-1 decreased a frequency of micronuclei (MN by 10.8 and 16.8 %, respectively, acting more or slightly less than the synthetic protector amifostine (AMF, WR-2721, 11.4 %, at concentration of 1 μg mL-1. The tested extract did not inhibit cholinesterase activity nor did it exhibit activity toward the examined bacteria. The extract reduced the concentration of DPPH and ABTS radicals by 88.7 and 96.2 %, respectively. Values for total reducing power (TRP and cupric reducing capacity (CUPRAC were 0.6197±0.0166 μg ascorbic acid equivalents (AAE per mg of dry extract, and 19.7641±1.6546 μg trolox equivalents (TE per mg of dry extract, respectively. The total phenol content was 350.4188 ±14.587 μg gallic acid equivalents (GAE per mg of dry extract. The results of the present study showed that U. crustulosa acetone extract is a promising candidate for in vivo experiments considering its antioxidant activity and protective effect on human lymphocytes. [Projekat Ministarstva nauke Republike Srbije, br. 172047

  5. Novel epoxy activated hydrogels for solving lactose intolerance.

    Science.gov (United States)

    Elnashar, Magdy M M; Hassan, Mohamed E

    2014-01-01

    "Lactose intolerance" is a medical problem for almost 70% of the world population. Milk and dairy products contain 5-10% w/v lactose. Hydrolysis of lactose by immobilized lactase is an industrial solution. In this work, we succeeded to increase the lactase loading capacity to more than 3-fold to 36.3 U/g gel using epoxy activated hydrogels compared to 11 U/g gel using aldehyde activated carrageenan. The hydrogel's mode of interaction was proven by FTIR, DSC, and TGA. The high activity of the epoxy group was regarded to its ability to attach to the enzyme's -SH, -NH, and -OH groups, whereas the aldehyde group could only bind to the enzyme's -NH2 group. The optimum conditions for immobilization such as epoxy chain length and enzyme concentration have been studied. Furthermore, the optimum enzyme conditions were also deliberated and showed better stability for the immobilized enzyme and the Michaelis constants, K m and V max, were doubled. Results revealed also that both free and immobilized enzymes reached their maximum rate of lactose conversion after 2 h, albeit, the aldehyde activated hydrogel could only reach 63% of the free enzyme. In brief, the epoxy activated hydrogels are more efficient in immobilizing more enzymes than the aldehyde activated hydrogel.

  6. Electrically Conductive Epoxy Adhesives

    Directory of Open Access Journals (Sweden)

    Lan Bai

    2011-02-01

    Full Text Available Conductive adhesives are widely used in electronic packaging applications such as die attachment and solderless interconnections, component repair, display interconnections, and heat dissipation. The effects of film thickness as functions of filler volume fraction, conductive filler size, shape, as well as uncured adhesive matrix viscosity on the electrical conduction behavior of epoxy-based adhesives are presented in this work. For this purpose, epoxy-based adhesives were prepared using conductive fillers of different size, shape, and types, including Ni powder, flakes, and filaments, Ag powder, and Cu powder. The filaments were 20 μm in diameter, and 160 or 260 μm in length. HCl and H3PO4 acid solutions were used to etch and remove the surface oxide layers from the fillers. The plane resistance of filled adhesive films was measured using the four-point method. In all cases of conductive filler addition, the planar resistivity levels for the composite adhesive films increased when the film thickness was reduced. The shape of resistivity-thickness curves was negative exponential decaying type and was modeled using a mathematical relation. The relationships between the conductive film resistivities and the filler volume fractions were also derived mathematically based on the experimental data. Thus, the effects of surface treatment of filler particles, the type, size, shape of fillers, and the uncured epoxy viscosity could be included empirically by using these mathematical relations based on the experimental data. By utilizing the relations we proposed to model thickness-dependent and volume fraction-dependent conduction behaviors separately, we were able to describe the combined and coupled volume fraction-film thickness relationship mathematically based on our experimental data.

  7. Theoretical studies of mechanisms of cycloaddition reaction between difluoromethylene carbene and acetone

    Science.gov (United States)

    Lu, Xiu Hui; Yu, Hai Bin; Wu, Wei Rong; Xu, Yue Hua

    Mechanisms of the cycloaddition reaction between singlet difluoromethylene carbene and acetone have been investigated with the second-order Møller-Plesset (MP2)/6-31G* method, including geometry optimization and vibrational analysis. Energies for the involved stationary points on the potential energy surface (PES) are corrected by zero-point energy (ZPE) and CCSD(T)/6-31G* single-point calculations. From the PES obtained with the CCSD(T)//MP2/6-31G* method for the cycloaddition reaction between singlet difluoromethylene carbene and acetone, it can be predicted that path B of reactions 2 and 3 should be two competitive leading channels of the cycloaddition reaction between difluoromethylene carbene and acetone. The former consists of two steps: (i) the two reactants first form a four-membered ring intermediate, INT2, which is a barrier-free exothermic reaction of 97.8 kJ/mol; (ii) the intermediate INT2 isomerizes to a four-membered product P2b via a transition state TS2b with an energy barrier of 24.9 kJ/mol, which results from the methyl group transfer. The latter proceeds in three steps: (i) the two reactants first form an intermediate, INT1c, through a barrier-free exothermic reaction of 199.4 kJ/mol; (ii) the intermediate INT1c further reacts with acetone to form a polycyclic intermediate, INT3, which is also a barrier-free exothermic reaction of 27.4 kJ/mol; and (iii) INT3 isomerizes to a polycyclic product P3 via a transition state TS3 with an energy barrier of 25.8 kJ/mol.

  8. Electroactive polymer gels based on epoxy resin

    Science.gov (United States)

    Samui, A. B.; Jayakumar, S.; Jayalakshmi, C. G.; Pandey, K.; Sivaraman, P.

    2007-04-01

    Five types of epoxy gels have been synthesized from common epoxy resins and hardeners. Fumed silica and nanoclay, respectively, were used as fillers and butyl methacrylate/acrylamide were used as monomer(s) for making interpenetrating polymer networks (IPNs) in three compositions. Swelling study, tensile property evaluation, dynamic mechanical thermal analysis, thermo-gravimetric analysis, scanning electron microscopy and electroactive property evaluation were done. The gels have sufficient mechanical strength and the time taken for bending to 20° was found to be 22 min for forward bias whereas it was just 12 min for reverse bias.

  9. Quantitative Study of Interface/Interphase in Epoxy/Graphene-Based Nanocomposites by Combining STEM and EELS.

    Science.gov (United States)

    Liu, Yu; Hamon, Ann-Lenaig; Haghi-Ashtiani, Paul; Reiss, Thomas; Fan, Benhui; He, Delong; Bai, Jinbo

    2016-12-14

    A quantitative study of the interphase and interface of graphene nanoplatelets (GNPs)/epoxy and graphene oxide (GO)/epoxy was carried out by combining scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). The interphase regions between GNPs and epoxy matrix were clearly identified by the discrepancy of the plasmon peak positions in the low energy-loss spectra due to different valence electron densities. The spectrum acquisitions were carried out along lines across the interface. An interphase thickness of 13 and 12.5 nm was measured for GNPs/epoxy and GO/epoxy, respectively. The density of the GNPs/epoxy interphase was 2.89% higher than that of the epoxy matrix. However, the density of the GO/epoxy interphase was 1.37% lower than that of the epoxy matrix. The interphase layer thickness measured in this work is in good agreement with the transition layer theory, which proposed an area with modulus linearly varying across a finite width. The results provide an insight into the interphase for carbon-based polymer composites that can help to design the functionalization of nanofillers to improve the composite properties.

  10. Detection and sensing mechanism of acetone with modeling using Pd/TiO{sub 2}/Si structure

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, Lallan, E-mail: nisaly06@rediffmail.com; Verma, Ritesh; Singh, Ravi S.

    2012-01-31

    A grided Pd/TiO{sub 2}/Si (Pdtisin) gas sensor is fabricated to detect hydrocarbons such as acetone, ethanol and trichloroethylene. The sensitivity measurements are carried out in various ambient (O{sub 2}, N{sub 2} and Ar) at room temperature which revealed that fabricated structure attains maximal response for acetone in contrast to other vapors examined. The study of ambient-effect on the device shows that it out-performs in oxygen ambient. A catalytic oxidation mechanism for detection of acetone with a model based upon Langmuir law of adsorption and Frenkel-Poole theory of electronic emission for the description of sensing behavior and vindication of experimental results have been proposed.

  11. Graphene oxide foams and their excellent adsorption ability for acetone gas

    International Nuclear Information System (INIS)

    He, Yongqiang; Zhang, Nana; Wu, Fei; Xu, Fangqiang; Liu, Yu; Gao, Jianping

    2013-01-01

    Graphical abstract: - Highlights: • GO and RGO foams were prepared using a simple and green method, unidirectional freeze-drying. • The porous structure of the foams can be adjusted by changing GO concentrations. • GO and RGO foams show good adsorption efficiency for acetone gas. - Abstract: Graphene oxide (GO) and reduced graphene oxide (RGO) foams were prepared using a unidirectional freeze-drying method. These porous carbon materials were characterized by thermal gravimetric analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy and scanning electron microscopy. The adsorption behavior of the two kinds of foams for acetone was studied. The result showed that the saturated adsorption efficiency of the GO foams was over 100%, and was higher than that of RGO foams and other carbon materials

  12. Determination of acetone in saliva by reversed-phase liquid chromatography with fluorescence detection and the monitoring of diabetes mellitus patients with ketoacidosis.

    Science.gov (United States)

    Fujii, Shinya; Maeda, Toshio; Noge, Ichiro; Kitagawa, Yutaka; Todoroki, Kenichiro; Inoue, Koichi; Min, Jun Zhe; Toyo'oka, Toshimasa

    2014-03-20

    In diabetes mellitus (DM) patients with ketoacidosis, ketone bodies, i.e., acetone, acetoacetic acid (AA) and β-hydroxybutyric acid (HA), are increased in the blood and urine. Acetone is also excreted by breathing due to the spontaneous decomposition of AA. Thus, the increase in acetone has been considered as one of the biomarkers for the diagnosis of DM. However, the determination of acetone in one's breath is not recommended because of the sample handling difficulty. We measured acetone in saliva by reversed-phase liquid chromatography (LC) with fluorescence (FL) detection. The proposed method was applied to the determination of acetone in the saliva of healthy volunteers and DM patients with and without ketoacidosis. 3-Pentanone (I.S.) and DBD-H in acetonitrile were added to freshly collected saliva and reacted at room temperature for 20 min in the presence of trifluoroacetic acid. After the reaction, the solution was centrifuged at 10,000 × g and 4 °C for 5 min. The supernatant was separated by reversed-phase LC and the FL detected at 550 nm (excitation at 460 nm). The concentrations of acetone in the DM patients with ketoacidosis were significantly higher than those of the normal subjects and DM patients without ketoacidosis. Furthermore, the total contents of the ketone bodies in the blood correlated with acetone in the saliva of the DM patients. The concentrations of acetone in the saliva of an emergency patient also correlated with the ketone bodies in the blood at each sampling time. The proposed method using LC-FL seems to be useful for the determination of acetone in the saliva of DM patients with ketoacidosis. The method offers a new option for the diagnosis and monitoring of DM patients with ketoacidosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    Science.gov (United States)

    Periolatto, M.; Sangermano, M.; Spena, P. Russo

    2016-05-01

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  14. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    Energy Technology Data Exchange (ETDEWEB)

    Periolatto, M.; Spena, P. Russo [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, Bolzano (Italy); Sangermano, M. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino (Italy)

    2016-05-18

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  15. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    International Nuclear Information System (INIS)

    Periolatto, M.; Spena, P. Russo; Sangermano, M.

    2016-01-01

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  16. Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating.

    Science.gov (United States)

    M El Saeed, Ashraf; Abd El-Fattah, M; Azzam, Ahmed M; Dardir, M M; Bader, Magd M

    2016-08-01

    Cuprous oxide is commonly used as a pigment; paint manufacturers begin to employ cuprous oxide as booster biocides in their formulations, to replace the banned organotins as the principal antifouling compounds. Epoxy coating was reinforced with cuprous oxide nanoparticles (Cu2O NPs). The antibacterial as well as antifungal activity of Cu2O epoxy nanocomposite (Cu2O EN) coating films was investigated. Cu2O NPs were also experimented for antibiofilm and time-kill assay. The thermal stability and the mechanical properties of Cu2O EN coating films were also investigated. The antimicrobial activity results showed slowdown, the growth of organisms on the Cu2O EN coating surface. TGA results showed that incorporating Cu2O NPs into epoxy coating considerably enhanced the thermal stability and increased the char residue. The addition of Cu2O NPs at lower concentration into epoxy coating also led to an improvement in the mechanical resistance such as scratch and abrasion. Cu2O NPs purity was confirmed by XRD. The TEM photograph demonstrated that the synthesized Cu2O NPs were of cubic shape and the average diameter of the crystals was around 25nm. The resulting perfect dispersion of Cu2O NPs in epoxy coating revealed by SEM ensured white particles embedded in the epoxy matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The non-isothermal DSC kinetics of polyethylene tereftalate–epoxy compatible blends

    International Nuclear Information System (INIS)

    Zvetkov, V.L.; Djoumaliisky, S.; Simeonova-Ivanova, E.

    2013-01-01

    Highlights: ► The non-isothermal DSC kinetics of the reaction of DGEBA with DDS, in particular in the presence of phase separating PET, has been studied. ► The specific features in the kinetics of PET formulations in comparison to the pure system have been discussed. ► The fast pre-curing of the epoxy phase allows supposing sub-micro phase separation of PET and efficient toughening of the epoxy matrix. - Abstract: Polyethylene tereftalate has been dissolved in an epoxy resin based on diglycidyl ether of bisphenol-A, DGEBA, and the epoxy component has been cross-linked with the aid of two diamine hardeners. Two series of samples have been tested at the epoxy-amine stoichiometry applying the differential scanning calorimetry, DSC, in scanning mode. One of the series of samples was pre-cured at low temperatures with the aid of an aliphatic diamine hardener near the gel point and post-cured with diaminodiphenyl sulfone, DDS. The other series of samples contained the higher temperature hardener only. Consequently, the experimental data obtained in this study on both systems relate to the non-isothermal curing of DGEBA with DDS. The kinetics has been estimated applying preferably isoconversional (model free) methods. It has been established that the fast pre-curing allows performing a sub-micro phase separation and efficient toughening of the epoxy matrix

  18. The non-isothermal DSC kinetics of polyethylene tereftalate–epoxy compatible blends

    Energy Technology Data Exchange (ETDEWEB)

    Zvetkov, V.L., E-mail: zvetval@yahoo.com [Institute of Mechanics, Bulgarian Academy of Sciences, bl. I, Sofia 1113 (Bulgaria); Djoumaliisky, S.; Simeonova-Ivanova, E. [Institute of Mechanics, Bulgarian Academy of Sciences, bl. I, Sofia 1113 (Bulgaria)

    2013-02-10

    Highlights: ► The non-isothermal DSC kinetics of the reaction of DGEBA with DDS, in particular in the presence of phase separating PET, has been studied. ► The specific features in the kinetics of PET formulations in comparison to the pure system have been discussed. ► The fast pre-curing of the epoxy phase allows supposing sub-micro phase separation of PET and efficient toughening of the epoxy matrix. - Abstract: Polyethylene tereftalate has been dissolved in an epoxy resin based on diglycidyl ether of bisphenol-A, DGEBA, and the epoxy component has been cross-linked with the aid of two diamine hardeners. Two series of samples have been tested at the epoxy-amine stoichiometry applying the differential scanning calorimetry, DSC, in scanning mode. One of the series of samples was pre-cured at low temperatures with the aid of an aliphatic diamine hardener near the gel point and post-cured with diaminodiphenyl sulfone, DDS. The other series of samples contained the higher temperature hardener only. Consequently, the experimental data obtained in this study on both systems relate to the non-isothermal curing of DGEBA with DDS. The kinetics has been estimated applying preferably isoconversional (model free) methods. It has been established that the fast pre-curing allows performing a sub-micro phase separation and efficient toughening of the epoxy matrix.

  19. Colorless triphenylamine-based aliphatic thermoset epoxy for multicolored and near-infrared electrochromic applications.

    Science.gov (United States)

    Chuang, Ya-Wen; Yen, Hung-Ju; Wu, Jia-Hao; Liou, Guey-Sheng

    2014-03-12

    In this study, two novel colorless thermoset epoxy resins with anodically electrochromism were prepared from the thermal curing of two triphenylamine-based diamine monomers, 4,4'-diamino-4″-methoxytriphenylamine (1) and N,N'-bis(4-aminophenyl)-N,N'-di(4-methoxylphenyl)-1,4-phenylenediamine (2) with aliphatic epoxy triglycidyl isocyanurate, respectively. The resulting thermoset epoxy resins showed excellent softening temperature (Ts, 270 and 280 °C) due to the rigid structure and highly crosslinking density. In addition, novel colorless epoxy resin films revealed good reversible electrochemical oxidation and interesting multi-electrochromic behavior with high contrast ratio both in visible and near-infrared regions. The aliphatic thermoset epoxy resins also exhibited high transparency in visible region as colorless and great potential for practical electrochromic applications.

  20. Damage detection and conductivity evolution in carbon nanofiber epoxy via electrical impedance tomography

    International Nuclear Information System (INIS)

    Tallman, T N; Wang, K W; Gungor, S; Bakis, C E

    2014-01-01

    Utilizing electrically conductive nanocomposites for integrated self-sensing and health monitoring is a promising area of structural health monitoring (SHM) research wherein local changes in conductivity coincide with damage. In this research we conduct proof of concept investigations using electrical impedance tomography (EIT) for damage detection by identifying conductivity changes and by imaging conductivity evolution in a carbon nanofiber (CNF) filled epoxy composite. CNF/epoxy is examined because fibrous composites can be manufactured with a CNF/epoxy matrix thereby enabling the entire matrix to become self-sensing. We also study the mechanisms of conductivity evolution in CNF/epoxy through electrical impedance spectroscopy (EIS) testing. The results of these tests indicate that thermal expansion is responsible for conductivity evolution in a CNF/epoxy composite. (paper)

  1. Nanoindentation study of interphases in epoxy/amine thermosetting systems modified with thermoplastics.

    Science.gov (United States)

    Ramos, Jose Angel; Blanco, Miren; Zalakain, Iñaki; Mondragon, Iñaki

    2009-08-15

    The characterization of a mixture of epoxy/amine with different stoichiometric ratios was carried out by means of nanoindentation. The epoxy system was composed by diglycidyl ether of bisphenol-A and 4,4'-methylene bis-(3-chloro 2,6-diethylaniline). Diffusion through interface formed by epoxy/amine system in stoichiometric ratio and several thermoplastic polymers was also analyzed by means of stiffness analysis, as studied by atomic force microscopy (AFM) and coupled nanoindentation tests. Used thermoplastics were an amorphous, atactic polystyrene, and two semicrystalline, syndiotactic polystyrene and poly(phenylene sulfide). Larger range diffusion was obtained in epoxy/amine systems modified with atactic polystyrene while the study of the influence of stoichiometric ratio suggests that the excess of epoxy generated stiffer material. In addition, larger indentation loads resulted in higher apparent stiffness because of the more number of polymer chains that had to re-accommodate owing to the increase in contact area.

  2. A Sub-ppm Acetone Gas Sensor for Diabetes Detection Using 10 nm Thick Ultrathin InN FETs

    Science.gov (United States)

    Kao, Kun-Wei; Hsu, Ming-Che; Chang, Yuh-Hwa; Gwo, Shangjr; Yeh, J. Andrew

    2012-01-01

    An indium nitride (InN) gas sensor of 10 nm in thickness has achieved detection limit of 0.4 ppm acetone. The sensor has a size of 1 mm by 2.5 mm, while its sensing area is 0.25 mm by 2 mm. Detection of such a low acetone concentration in exhaled breath could enable early diagnosis of diabetes for portable physiological applications. The ultrathin InN epilayer extensively enhances sensing sensitivity due to its strong electron accumulation on roughly 5–10 nm deep layers from the surface. Platinum as catalyst can increase output current signals by 2.5-fold (94 vs. 37.5 μA) as well as reduce response time by 8.4-fold (150 vs. 1,260 s) in comparison with bare InN. More, the effect of 3% oxygen consumption due to breath inhalation and exhalation on 2.4 ppm acetone gas detection was investigated, indicating that such an acetone concentration can be analyzed in air. PMID:22969342

  3. A Negative Correlation Between Blood Glucose and Acetone Measured in Healthy and Type 1 Diabetes Mellitus Patient Breath.

    Science.gov (United States)

    Rydosz, Artur

    2015-07-01

    Exhaled acetone analysis has long been recognized as a supplementary tool for diagnosis and monitoring diabetes, especially type 1 diabetes. It is essential, therefore to determine the relationship between exhaled acetone concentration and glucose in blood. Usually, a direct linear correlation between this both compounds has been expected. However, in some cases we can observe a reverse correlation. When blood glucose was increasing, breath acetone declined. The breath analysis as a supplementary tool for diagnosing and monitoring diabetes makes sense only in case of utilization of portable analyzers. This need has created a market for gas sensors. However, commercially available acetone gas sensors are developed for measuring samples at several tens part per million. The exhaled acetone concentration was measured using commercial acetone gas sensor (TGS 822, 823 Figaro, Arlington Heights, IL, USA Inc) with micropreconcentrator in low temperature cofired ceramics. The reference analyzer-mass spectrometry (HPR-20 QIC, Hiden Analytical, Warrington, UK) was used. Twenty-two healthy volunteers with no history of any respiratory disease participated in the research, as did 31 patients diagnosed with type 1 diabetes. Respectively, 3 healthy volunteer and 5 type 1 diabetes mellitus subjects with reverse trend were selected. The linear fitting coefficient various from 0.1139 to 0.9573. Therefore, it is necessary to determine the correlation between blood glucose concentrations and under different conditions, for example, insulin levels, as well as correlate the results with clinical tests, for example, Hb1Ac. It is well known that the concentration of acetone is strongly influenced by diet, insulin treatment, and so on. Therefore, much more complex analysis with long-term measurements are required. Thus, presented results should be regarded as tentative, and validation studies with the analysis of clinical test and in a large number of patients, including control groups

  4. E-Beam-Cured Layered-Silicate and Spherical Silica Epoxy Nanocomposites (Preprint)

    National Research Council Canada - National Science Library

    Chen, Chenggang; Anderson, David P

    2007-01-01

    .... The nanofillers can be two dimensional (layered-silicate) and zero dimensional (spherical silica). Both the spherical silica epoxy nanocomposite and the layered-silicate epoxy nanocomposite can be cured to a high degree of curing...

  5. Electron spectra and mechanism of complexing of uranyl nitrate in water-acetone solutions

    International Nuclear Information System (INIS)

    Zazhogin, A.A.; Zazhogin, A.P.; Komyak, A.I.; Serafimovich, A.I.

    2003-01-01

    Based on the analysis of the luminescence and electronic absorption spectra, the processes of complexing in an aqueous solution of UO 2 (NO 3 ) 2 ·6H 2 O with small additions of acetone have been studied. In a pure aqueous solution, uranyl exists as the complex UO 2 ·5H 2 O. It is shown that the addition of acetone to the solution leads to the displacement of some water molecules out of the first coordination sphere of uranyl and the formation of the uranyl nitrate dihydrate complexes UO 2 (NO 3 ) 2 ·2H 2 O. It has been established that the stability of these complexes is determined by the decrease in the water activity and in the degree of hydration of uranyl and nitrate, which is the result of the local increase in the concentration of acetone molecules (due to their hydrophobicity) in the regions of the solution where uranyl and nitrate ions are found. The experimental facts supported the mechanism proposed are presented. (authors)

  6. Sensitive and selective cataluminescence-based sensor system for acetone and diethyl ether determination.

    Science.gov (United States)

    Wang, Qihui; Li, Bo; Wang, Yuhuai; Shou, Zhouxiang; Shi, Guolong

    2015-05-01

    A three-dimensional hierarchical CdO nanostructure with a novel bio-inspired morphology is reported. The field emission scanning electronic microscopy, transmission electron microscopy and X-ray diffractometer were employed to characterize the as-prepared samples. In gas-sensing measurements, acetone and diethyl ether were employed as target gases to investigate cataluminescence (CTL) sensing properties of the CdO nanostructure. The results show that the as-fabricated CdO nanostructure exhibited outstanding CTL properties such as stable intensity, high signal/noise values, short response and recovery time. The limit of detection of acetone and diethyl ether was ca. 6.5 ppm and 6.7 ppm, respectively, which was below the standard permitted concentrations. Additionally, a principal components analysis method was used to investigate the recognizable ability of the CTL sensor, and it was found that acetone and diethyl ether can be distinguished clearly. The performance of the bio-inspired CdO nanostructure-based sensor system suggested the promising application of the CdO nanostructure as a novel highly efficient CTL sensing material. Copyright © 2014 John Wiley & Sons, Ltd.

  7. UV absorption by cerium oxide nanoparticles/epoxy composite thin films

    International Nuclear Information System (INIS)

    Dao, Ngoc Nhiem; Luu, Minh Dai; Nguyen, Quang Khuyen; Kim, Byung Sun

    2011-01-01

    Cerium oxide (CeO 2 ) nanoparticles have been used to modify properties of an epoxy matrix in order to improve the ultra-violet (UV) absorption property of epoxy thin films. The interdependence of mechanical properties, UV absorption property and the dispersed concentration of CeO 2 nanoparticles was investigated. Results showed that, by increasing the dispersed concentration of CeO 2 nanoparticles up to 3 wt%, tensile modulus increases while two other mechanical properties, namely tensile strength and elongation, decrease. The UV absorption peak and the absorption edges of the studied thin films were observed in the UV-Vis absorption spectra. By incorporating CeO 2 nanoparticles into the epoxy matrix, an absorption peak appears at around 318 nm in UV-Vis spectra with increasing CeO 2 concentration from 0.1 to 1.0 wt%. Scanning electron microscopy (SEM) images revealed that a good dispersion of nanoparticles in the epoxy matrix by an ultrasonic method was achieved

  8. Improvement of Mechanical and Dielectric Properties of Epoxy Resin Using CNTs/ZnO Nanocomposite.

    Science.gov (United States)

    Vu, Pham Gia; Truc, Trinh Anh; Chinh, Nguyen Thuy; Tham, Do Quang; Trung, Tran Huu; Oanh, Vu Ke; Hang, To Thi Xuan; Olivier, Marjorie; Hoang, Thai

    2018-04-01

    In this study, carbon nanotubes (CNTs)/ZnO composites had been prepared using the sol-gel method and then incorporated into an epoxy resin for reinforcement of mechanical and electrical properties. Fourier Transform Infrared (FTIR), X-ray diffraction (XRD) Field Emission Scanning Electron Microscope (FE-SEM) analyses show that the ZnO nanoparticles deposited on CNTs were crystallized in a hexagonal wurtzite structure. Average particle size of ZnO deposited on the CNT was about 8 nm. The mechanical and dielectric properties of epoxy containing CNTs/ZnO were investigated in comparison to epoxy resin and epoxy resin containing only CNT or ZnO nanoparticles. The results indicated that tensile strength and elongation at break of the nanocomposite were substantially improved with the presence of CNTs/ZnO at the equal volume. The DSC analysis associate with the dielectric results shows that the behavior of epoxy/CNTs/ZnO is identical to epoxy/ZnO composite, and the CNTs is essential to the distributed arrangement of ZnO in the epoxy resin.

  9. Measurements of mass-fraction activity coefficient at infinite dilution of aliphatic and aromatic hydrocarbons, thiophene, alcohols, water, ethers, and ketones in hyperbranched polymer, Boltorn H2004, using inverse gas chromatography

    International Nuclear Information System (INIS)

    Domanska, Urszula; Zolek-Tryznowska, Zuzanna

    2010-01-01

    Thermodynamic properties of the hyperbranched polymer, Boltorn H2004 (B-H2004), were investigated by inverse gas chromatography with 42 different solvents: n-alkanes (C 5 -C 10 ), cycloalkanes (C 5 -C 8 ), alkenes (C 5 -C 8 ), alkynes (C 5 -C 8 ), aromatic hydrocarbons (benzene, toluene, ethylbenzene, o-, m-, p-xylene, thiophene), alcohols (C 1 -C 5 ), water, ethers (tetrahydrofuran (THF), methyl-tert-butylether (MTBE), diethyl-, di-n-propyl-, di-n-butyl ether), and ketones (acetone, 2-pentanone, 3-pentanone, 2-hexanone, 3-hexanone, cyclopentanone) at the temperatures from (308.15 to 348.15) K using the inverse gas chromatography (IGC). The density and thermophysical properties of polymer were described. The specific retention volume (V g ), the mass-fraction activity coefficient at infinite dilution (Ω 13 ∞ ), the Flory-Huggins interaction parameter (χ 13 ∞ ), the molar enthalpy of sorption in the polymer (Δ s H), the partial molar excess enthalpy at infinite dilution (ΔH 1 E,∞ ), the molar enthalpy of vaporization to the ideal-gas state for the pure solutes (Δ vap H 0 ), the partial molar Gibbs excess energy at infinite dilution (ΔG 1 E,∞ ), and the solubility parameter of the polymer (δ 3 ), were calculated. The UNIFAC-FV model was used to predict the mass-fraction activity coefficient at infinite dilution for different solutes in the B-H2004 polymer.

  10. Epoxy-based broadband antireflection coating for millimeter-wave optics.

    Science.gov (United States)

    Rosen, Darin; Suzuki, Aritoki; Keating, Brian; Krantz, William; Lee, Adrian T; Quealy, Erin; Richards, Paul L; Siritanasak, Praween; Walker, William

    2013-11-20

    We have developed epoxy-based, broadband antireflection coatings for millimeter-wave astrophysics experiments with cryogenic optics. By using multiple-layer coatings where each layer steps in dielectric constant, we achieved low reflection over a wide bandwidth. We suppressed the reflection from an alumina disk to 10% over fractional bandwidths of 92% and 104% using two-layer and three-layer coatings, respectively. The dielectric constants of epoxies were tuned between 2.06 and 7.44 by mixing three types of epoxy and doping with strontium titanate powder required for the high dielectric mixtures. At 140 K, the band-integrated absorption loss in the coatings was suppressed to less than 1% for the two-layer coating, and below 10% for the three-layer coating.

  11. DEGRADATION OF MAGNET EPOXY AT NSLS X-RAY RING.

    Energy Technology Data Exchange (ETDEWEB)

    HU,J.P.; ZHONG,Z.; HAAS,E.; HULBERT,S.; HUBBARD,R.

    2004-05-24

    Epoxy resin degradation was analyzed for NSLS X-ring magnets after two decades of 2.58-2.8 GeV continuous electron-beam operation, based on results obtained from thermoluminescent dosimeters irradiated along the NSLS ring and epoxy samples irradiated at the beamline target location. A Monte Carlo-based particle transport code, MCNP, was utilized to verify the dose from synchrotron radiation distributed along the axial- and transverse-direction in a ring model, which simulates the geometry of a ring quadrupole magnet and its central vacuum chamber downstream of the bending-magnet photon ports. The actual life expectancy of thoroughly vacuum baked-and-cured epoxy resin was estimated from radiation tests on similar polymeric materials using a radiation source developed for electrical insulation and mechanical structure studies.

  12. Protection of Steel Rebar in Salt-Contaminated Cement Mortar Using Epoxy Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    The Huu Nguyen

    2018-01-01

    Full Text Available Epoxy reinforced with two kinds of nanoparticles dealing with nano-SiO2 and nano-Fe2O3 was coated on steel rebar embedded in a chloride contaminated cement mortar. NaCl was added to the fresh Portland cement paste (at 0.3% and 0.5% by weight of cement to simulate the chloride contamination at the critical level. The effect of incorporating nanoparticles on the corrosion resistance of epoxy-coated steel rebar was investigated by linear potentiodynamic polarization and electrochemical impedance spectroscopy. For the 0.3 wt.% chloride mortars, the electrochemical monitoring of the coated steel rebars during immersion for 56 days in 0.1 M NaOH solutions suggested the beneficial role of nano-Fe2O3 particles in significantly improving the corrosion resistance of the epoxy-coated rebar. After 56 days of immersion, the nano-Fe2O3 reduced the corrosion current of epoxy-coated rebar by a factor of 7.9. When the chloride concentration in the cement mortar was 0.5 wt.%, the incorporation of nanoparticles into the epoxy matrix did not enhance the corrosion resistance of epoxy coating for the rebar. At this critical level, chloride ions initiated rebar corrosion through nanoparticles at the epoxy/rebar interface.

  13. Effect of Thermally Reduced Graphene Oxide on Mechanical Properties of Woven Carbon Fiber/Epoxy Composite

    Directory of Open Access Journals (Sweden)

    Nitai Chandra Adak

    2018-02-01

    Full Text Available Thermally reduced graphene oxide (TRGO was incorporated as a reinforcing filler in the epoxy resin to investigate the effect on the mechanical properties of carbon fiber (CF/epoxy composites. At first, the epoxy matrix was modified by adding different wt % of TRGO from 0.05 to 0.4 wt % followed by the preparation of TRGO/CF/epoxy composites througha vacuum-assisted resin transfer molding process. The prepared TRGO was characterized by using Fourier transform infrared spectroscopy, Raman Spectroscopy and field emission scanning electron microscopy (FE-SEM techniques. It was observed that the wrinkled structure of synthesized TRGO may be helpful to interlock with the epoxy resin and CF.The inter-laminar shear strength, in-plane fracture toughness and impact strength increased by ~67%, 62% and 93% at 0.2 wt % of TRGO loading in the CF/epoxy composites as compared to the CF reinforced epoxy. The mechanical properties of the hybrid composites decreased beyond the 0.2 wt % of TRGO incorporation in the epoxy resin. The fracture surfaces of the hybrid composites were studied by FE-SEM image analysis to investigate the synergistic effect of TRGO in the CF/epoxy composite. This study suggested that TRGO could be used asgood nanofiller to resist the matrix and fiber fracture.

  14. Characterization and analysis of epoxy/clay nanotubes composites

    International Nuclear Information System (INIS)

    Sene, Tarcisio S.; Kock, Thyago; Coelho, Luiz A.F.; Becker, Daniela

    2011-01-01

    An DGEBA epoxy matrix was used aiming to achieve a nanocomposite material, through the dispersion of (CNT) via mechanical stirring followed by sonication. In this work the following characterization were performed: mechanical characterization, differential scanning calorimetry (DSC), wide angle X-ray diffraction (WXRD) and scanning electron microscopy (SEM). The addition of CNT and modified clays promoted the increase of modulus of the epoxy matrix, and a synergistic effect between CNT and both clays could be presumed. SEM images of the fracture surface show the difference between the fracture surface area and the presence of clusters among the samples, allowing a correlation with the modulus of elasticity. X-ray diffractograms from 2Θ = 5 deg showed no peaks for modified clay samples, however it is possible to affirm that modified clay platelets are forming a less organized structure compared to the structure of the clay as natural in epoxy. (author)

  15. Mechanical Properties of Epoxy and Its Carbon Fiber Composites Modified by Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2017-01-01

    Full Text Available Compressive properties are commonly weak parts in structural application of fiber composites. Matrix modification may provide an effective way to improve compressive performance of the composites. In this work, the compressive property of epoxies (usually as matrices of fiber composites modified by different types of nanoparticles was firstly investigated for the following study on the compressive property of carbon fiber reinforced epoxy composites. Carbon fiber/epoxy composites were fabricated by vacuum assisted resin infusion molding (VARIM technique using stitched unidirectional carbon fabrics, with the matrices modified with nanosilica, halloysite, and liquid rubber. Testing results showed that the effect of different particle contents on the compressive property of fiber/epoxy composites was more obvious than that in epoxies. Both the compressive and flexural results showed that rigid nanoparticles (nanosilica and halloysite have evident strengthening effects on the compression and flexural responses of the carbon fiber composite laminates fabricated from fabrics.

  16. Hydrothermal ageing of glass/epoxy composites for wind turbine blades

    NARCIS (Netherlands)

    Rocha, I.B.C.M.; Raijmaekers, S.; Nijssen, R.P.L.; Van der Meer, F.P.

    2015-01-01

    In this work, a glass/epoxy material system commonly applied in wind turbine design was used to evaluate damage processes brought by water ingression during service life. Composite short-beams and neat epoxy beams and dog-bones were conditioned by water immersion at 50º until saturation and tested

  17. Nickel-catalyzed regio- and enantioselective aminolysis of 3,4-epoxy alcohols.

    Science.gov (United States)

    Wang, Chuan; Yamamoto, Hisashi

    2015-04-08

    The first catalytic regio- and enantioselective aminolysis of 3,4-epoxy alcohols has been accomplished. Under the catalysis of Ni(ClO4)2·6H2O, the C4 selective ring opening of various 3,4-epoxy alcohols proceeded in a stereospecific manner with high regioselectivities. Furthermore, with the Ni-BINAM catalytic system the enantioselective ring opening of 3,4-epoxy alcohols furnished various γ-hydroxy-δ-amino alcohols as products with complete regiocontrol and high enantioselectivities (up to 94% ee).

  18. Extraction of Oxytetracycline Hydrochloride in Aqueous Two-phase System of Acetone and Ammonium Sulfate

    International Nuclear Information System (INIS)

    Han, J.

    2013-01-01

    Summary: Aqueous two-phase system (ATPS) is an efficient implement for separation of various substrates, and extracted by an aqueous two-phase system has been successful ly applied in the downstream processing of various biological compounds. In this research, the extraction of oxytetracycline hydrochloride (OTC-HCl) was carried out in an aqueous two-phase system containing acetone and ammonium sulfate solution, which partitioned the antibiotic to the upper phase. The effects of some parameters on the extraction efficiency of OTC-HCl were studied in detail, including temperature, the volume of acetone, the pH value of ammonium sulfate solution, the concentrations of (NH/sub 4/)/sub 2/ SO/sub 4/ and OTC-HCl. The results showed that the volume of acetone, the pH value of ammonium sulfate solution and the concentration of OTC-HCl in feed had significant effects on the extraction efficiency of OTC-HCl, but the effects of temperature on the extraction of OTC-HCl was not obvious. (author)

  19. Extraction of Oxytetracycline Hydrochloride in Aqueous Two-phase System of Acetone and Ammonium Sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Han, J. [Jiangsu Univ., Zhenjiang (China). Dept. of Food and Biological Engineering

    2013-02-15

    Summary: Aqueous two-phase system (ATPS) is an efficient implement for separation of various substrates, and extracted by an aqueous two-phase system has been successful ly applied in the downstream processing of various biological compounds. In this research, the extraction of oxytetracycline hydrochloride (OTC-HCl) was carried out in an aqueous two-phase system containing acetone and ammonium sulfate solution, which partitioned the antibiotic to the upper phase. The effects of some parameters on the extraction efficiency of OTC-HCl were studied in detail, including temperature, the volume of acetone, the pH value of ammonium sulfate solution, the concentrations of (NH/sub 4/)/sub 2/ SO/sub 4/ and OTC-HCl. The results showed that the volume of acetone, the pH value of ammonium sulfate solution and the concentration of OTC-HCl in feed had significant effects on the extraction efficiency of OTC-HCl, but the effects of temperature on the extraction of OTC-HCl was not obvious. (author)

  20. Inhalation developmental toxicology studies: Teratology study of acetone in mice and rats: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mast, T.J.; Evanoff, J.J.; Rommereim, R.L.; Stoney, K.H.; Weigel, R.J.; Westerberg, R.B.

    1988-11-01

    Acetone, an aliphatic ketone, is a ubiquitous industrial solvent and chemical intermediate; consequently, the opportunity for human exposure is high. The potential for acetone to cause developmental toxicity was assessed in Sprague-Dawley rats exposed to 0, 440, 2200, or 11000 ppm, and in Swiss (CD-1) mice exposed to 0, 440, 2200, and 6600 ppm acetone vapors, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and approx.32 positively mated rats or mice. Positively mated mice were exposed on days 6-17 of gestation (dg), and rats on 6-19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. 46 refs., 6 figs., 27 tabs.

  1. Novel Formulations of Phase Change Materials—Epoxy Composites for Thermal Energy Storage

    OpenAIRE

    Maria Elena Arce; Miguel Angel Alvarez Feijoo; Andres Suarez Garcia; Claudia C. Luhrs

    2018-01-01

    This research aimed to evaluate the thermal properties of new formulations of phase change materials (PCMs)-epoxy composites, containing a thickening agent and a thermally conductive phase. The composite specimens produced consisted of composites fabricated using (a) inorganic PCMs (hydrated salts), epoxy resins and aluminum particulates or (b) organic PCM (paraffin), epoxy resins, and copper particles. Differential Scanning Calorimetry (DSC) was used to analyze the thermal behavior of the sa...

  2. Oxidative polymerization of lignins by laccase in water-acetone mixture.

    Science.gov (United States)

    Fiţigău, Ionița Firuța; Peter, Francisc; Boeriu, Carmen Gabriela

    2013-01-01

    The enzymatic oxidative polymerization of five technical lignins with different molecular properties, i.e. Soda Grass/Wheat straw Lignin, Organosolv Hardwood Lignin, Soda Wheat straw Lignin, Alkali pretreated Wheat straw Lignin, and Kraft Softwood was studied. All lignins were previously fractionated by acetone/water 50:50 (v/v) and the laccase-catalyzed polymerization of the low molecular weight fractions (Mw Reactivity of lignin substrates in laccase-catalyzed reactions was determined by monitoring the oxygen consumption. The oxidation reactions in 50% acetone in water mixture proceed with high rate for all tested lignins. Polymerization products were analyzed by size exclusion chromatography, FT-IR, and (31)P-NMR and evidence of important lignin modifications after incubation with laccase. Lignin polymers with higher molecular weight (Mw up to 17500 g/mol) were obtained. The obtained polymers have potential for applications in bioplastics, adhesives and as polymeric dispersants.

  3. Creep behavior of an epoxy resin and an epoxy-based FRP in condition of simultaneous supply of radiation and stress at cryogenic temperatures

    International Nuclear Information System (INIS)

    Nishiura, Tetsuya; Nishijima, Shigehiro; Okada, Toichi

    1995-01-01

    Creep tests of an epoxy resin and an epoxy-based FRP in bending under irradiation condition have been carried out, to investigate the synergistic effects of radiation and stress on mechanical properties of FRP. Simultaneous supply of stress and irradiation on the epoxy resin and the FRP enhanced creep rates in comparison with that supply of the stress on a post-irradiated one did. ESR spectra measurement was also carried out to study the change of molecule of the resin irradiated. Increase of molecular weight between crosslinks was found out to be enhanced by the synergistic effect of radiation and stress. The mechanism of increased damage of FRP induced by the effects of simultaneous stress and irradiation is discussed. (author)

  4. Determination of Young's modulus of epoxy coated polyethylene micro-cantilever using phase-shift shadow moiré method

    Science.gov (United States)

    Lim, J. H.; Ratnam, M. M.; Azid, I. A.; Mutharasu, D.

    2011-11-01

    Young's moduli of various epoxy coated polyethylene terephthalate (PET) micro-cantilevers were determined from the deflection results obtained using the phase-shift shadow moiré (PSSM) method. The filler materials for epoxy coatings were aluminum and graphite powders that were mixed with epoxy at various percentages. Young's moduli were calculated from theory based on the deflection results. The PET micro-cantilever coated with aluminum-epoxy coating showed increasing value of Young's modulus when the ratios of the aluminum-epoxy were increased. The graphite-epoxy coating on the PET micro-cantilever also showed the same trend. The experimental results also show that Young's modulus of the graphite-epoxy coating is higher than aluminum-epoxy coating in comparison at the same mixing ratio.

  5. Preparation, Characterization, and Modeling of Carbon Nanofiber/Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Lan-Hui Sun

    2011-01-01

    Full Text Available There is a lack of systematic investigations on both mechanical and electrical properties of carbon nanofiber (CNF-reinforced epoxy matrix nanocomposites. In this paper, an in-depth study of both static and dynamic mechanical behaviors and electrical properties of CNF/epoxy nanocomposites with various contents of CNFs is provided. A modified Halpin-Tsai equation is used to evaluate the Young's modulus and storage modulus of the nanocomposites. The values of Young's modulus predicted using this method account for the effect of the CNF agglomeration and fit well with those obtained experimentally. The results show that the highest tensile strength is found in the epoxy nanocomposite with a 1.0 wt% CNFs. The alternate-current (AC electrical properties of the CNF/epoxy nanocomposites exhibit a typical insulator-conductor transition. The conductivity increases by four orders of magnitude with the addition of 0.1 wt% (0.058 vol% CNFs and by ten orders of magnitude for nanocomposites with CNF volume fractions higher than 1.0 wt% (0.578 vol%. The percolation threshold (i.e., the critical CNF volume fraction is found to be at 0.057 vol%.

  6. Tailored SWCNT functionalization optimized for compatibility with epoxy matrices

    International Nuclear Information System (INIS)

    Martinez-Rubi, Y; Kingston, C T; Daroszewska, M; Barnes, M; Simard, B; Gonzalez-Dominguez, J M; Ansón-Casaos, A; Martinez, M T; Hubert, P; Cattin, C

    2012-01-01

    We have modified single walled carbon nanotubes (SWCNTs) with well defined matrix-based architectures to improve interface interaction in SWCNT/epoxy composites. The hardener and two pre-synthesized oligomers containing epoxy and hardener moieties were covalently attached to the SWCNT walls by in situ diazonium or carboxylic coupling reactions. In this way, SWCNTs bearing amine or epoxide-terminated fragments of different molecular weights, which resemble the chemical structure of the cured resin, were synthesized. A combination of characterization techniques such as Raman and infrared absorption (FTIR) spectroscopy, elemental analysis and coupled thermogravimetry-FTIR spectroscopy were used to identify both the functional groups and degree of functionalization of SWCNTs synthesized by the laser ablation and arc-discharge methods. Depending on the type of reaction employed for the chemical functionalization and the molecular weight of the attached fragment, it was possible to control the degree of functionalization and the electronic properties of the functionalized SWCNTs. Improved dispersion of SWCNTs in the epoxy matrix was achieved by direct integration without using solvents, as observed from optical microscopy and rheology measurements of the SWCNT/epoxy mixtures. Composite materials using these fillers are expected to exhibit improved properties while preserving the thermosetting architecture. (paper)

  7. AC electrical breakdown phenomena of epoxy/layered silicate nanocomposite in needle-plate electrodes.

    Science.gov (United States)

    Park, Jae-Jun; Lee, Jae-Young

    2013-05-01

    Epoxy/layered silicate nanocomposite for the insulation of heavy electric equipments were prepared by dispersing 1 wt% of a layered silicate into an epoxy matrix with a homogenizing mixer and then AC electrical treeing and breakdown tests were carried out. Wide-angle X-ray diffraction (WAXD) analysis and transmission electron microscopy (TEM) observation showed that nano-sized monolayers were exfoliated from a multilayered silicate in the epoxy matrix. When the nano-sized silicate layers were incorporated into the epoxy matrix, the breakdown rate in needle-plate electrode geometry was 10.6 times lowered than that of the neat epoxy resin under the applied electrical field of 520.9 kV/mm at 30 degrees C, and electrical tree propagated with much more branches in the epoxy/layered silicate nanocomposite. These results showed that well-dispersed nano-sized silicate layers retarded the electrical tree growth rate. The effects of applied voltage and ambient temperature on the tree initiation, growth, and breakdown rate were also studied, and it was found that the breakdown rate was largely increased, as the applied voltage and ambient temperature increased.

  8. Curing behaviors and properties of an extrinsic toughened epoxy/anhydride system and an intrinsic toughened epoxy/anhydride system

    International Nuclear Information System (INIS)

    Fan, Mengjin; Liu, Jialin; Li, Xiangyuan; Cheng, Jue; Zhang, Junying

    2013-01-01

    Highlights: ► Two curing systems (ETRS and ITRS) with similar chemical composite were prepared. ► The curing kinetics of the ETRS and the novel ITRS were comparatively studied. ► Crosslinking density can affect the kinetic schemes of the two curing systems. ► Their mechanical properties and thermal stabilities were also comparatively studied. ► Crosslinking density may play an influential role in mechanical properties. - Abstract: The curing kinetics of an extrinsic toughened epoxy (mixture of diglycidyl ether of bisphenol-A and 1,4-butanediol epoxy resin, DGEBA/DGEBD) and an intrinsic toughened epoxy (ethoxylated bisphenol-A epoxy resin with two oxyethylene units, DGEBAEO-2) using hexahydrophthalic anhydride (HHPA) as curing agent and tris-(dimethylaminomethyl) phenol (DMP-30) as accelerator were comparatively studied by non-isothermal DSC with a model-fitting Málek approach and a model-free advanced isoconversional method of Vyazovkin. The dynamic mechanical properties and thermal stabilities of the cured materials were investigated by DMTA and TGA, respectively. The results showed that Šesták–Berggren model can generally simulate well the reaction rates of these two systems. The activation energy of DGEBA/DGEBD/HHPA/DMP-30 at high fractional conversion changed much higher than that of DGEBAEO-2/HHPA/DMP-30, indicating the increased steric hindrance mainly affected the reaction kinetic scheme of DGEBA/DGEBD/HHPA/DMP-30. The T g and storage moduli of cured DGEBAEO-2/HHPA/DMP-30 were lower than those of cured DGEBA/DGEBD/HHPA/DMP-30 according to DMTA while TGA showed that the thermal stabilities of these two cured systems were similar

  9. Curing behaviors and properties of an extrinsic toughened epoxy/anhydride system and an intrinsic toughened epoxy/anhydride system

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Mengjin; Liu, Jialin; Li, Xiangyuan [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Cheng, Jue, E-mail: chengjue@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Junying, E-mail: zjybuct@gmail.com [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China)

    2013-02-20

    Highlights: ► Two curing systems (ETRS and ITRS) with similar chemical composite were prepared. ► The curing kinetics of the ETRS and the novel ITRS were comparatively studied. ► Crosslinking density can affect the kinetic schemes of the two curing systems. ► Their mechanical properties and thermal stabilities were also comparatively studied. ► Crosslinking density may play an influential role in mechanical properties. - Abstract: The curing kinetics of an extrinsic toughened epoxy (mixture of diglycidyl ether of bisphenol-A and 1,4-butanediol epoxy resin, DGEBA/DGEBD) and an intrinsic toughened epoxy (ethoxylated bisphenol-A epoxy resin with two oxyethylene units, DGEBAEO-2) using hexahydrophthalic anhydride (HHPA) as curing agent and tris-(dimethylaminomethyl) phenol (DMP-30) as accelerator were comparatively studied by non-isothermal DSC with a model-fitting Málek approach and a model-free advanced isoconversional method of Vyazovkin. The dynamic mechanical properties and thermal stabilities of the cured materials were investigated by DMTA and TGA, respectively. The results showed that Šesták–Berggren model can generally simulate well the reaction rates of these two systems. The activation energy of DGEBA/DGEBD/HHPA/DMP-30 at high fractional conversion changed much higher than that of DGEBAEO-2/HHPA/DMP-30, indicating the increased steric hindrance mainly affected the reaction kinetic scheme of DGEBA/DGEBD/HHPA/DMP-30. The T{sub g} and storage moduli of cured DGEBAEO-2/HHPA/DMP-30 were lower than those of cured DGEBA/DGEBD/HHPA/DMP-30 according to DMTA while TGA showed that the thermal stabilities of these two cured systems were similar.

  10. The Effect of Nanoparticles Percentage on Mechanical Behavior of Silica-Epoxy Nanocomposites

    International Nuclear Information System (INIS)

    Islam, M.S.; Masoodi, R.; Rostami, H.

    2013-01-01

    Silica-epoxy nanocomposites are very common among nanocomposites, which makes them very important. Several researchers have studied the effect of nanoparticle’s size, shape, and loading on mechanical behavior of silica-epoxy nanocomposites. This paper reviews the most important research done on the effect of nanoparticle loading on mechanical properties of silica-epoxy nanocomposites. While the main focus is the tensile behavior of nanocomposite, the compressive behavior and flexural behavior were also reviewed. Finally, some of the published experimental data were combined in the graphs, using dimensionless parameters. Later, the best fitted curves were used to derive some empirical formulas for mechanical properties of silica-epoxy nanocomposites as functions of weight or volume fraction of nanoparticles.

  11. Novel Epoxy Activated Hydrogels for Solving Lactose Intolerance

    Directory of Open Access Journals (Sweden)

    Magdy M. M. Elnashar

    2014-01-01

    Full Text Available “Lactose intolerance” is a medical problem for almost 70% of the world population. Milk and dairy products contain 5–10% w/v lactose. Hydrolysis of lactose by immobilized lactase is an industrial solution. In this work, we succeeded to increase the lactase loading capacity to more than 3-fold to 36.3 U/g gel using epoxy activated hydrogels compared to 11 U/g gel using aldehyde activated carrageenan. The hydrogel’s mode of interaction was proven by FTIR, DSC, and TGA. The high activity of the epoxy group was regarded to its ability to attach to the enzyme’s –SH, –NH, and –OH groups, whereas the aldehyde group could only bind to the enzyme’s –NH2 group. The optimum conditions for immobilization such as epoxy chain length and enzyme concentration have been studied. Furthermore, the optimum enzyme conditions were also deliberated and showed better stability for the immobilized enzyme and the Michaelis constants, Km and Vmax, were doubled. Results revealed also that both free and immobilized enzymes reached their maximum rate of lactose conversion after 2 h, albeit, the aldehyde activated hydrogel could only reach 63% of the free enzyme. In brief, the epoxy activated hydrogels are more efficient in immobilizing more enzymes than the aldehyde activated hydrogel.

  12. Synthesis and evaluation of inhaled [11C]butane and intravenously injected [11C]acetone as potential radiotracers for studying inhalant abuse

    International Nuclear Information System (INIS)

    Gerasimov, Madina R.; Ferrieri, Richard A.; Pareto, Deborah; Logan, Jean; Alexoff, David; Ding Yushin

    2005-01-01

    The phenomenon of inhalant abuse is a growing problem in the US and many countries around the world. Yet, relatively little is known about the pharmacokinetic properties of inhalants that underlie their abuse potential. While the synthesis of 11 C-labeled toluene, acetone and butane has been proposed in the literature, none of these compounds has been developed as radiotracers for PET studies. In the present report we extend our previous studies with [ 11 C]toluene to include [ 11 C]acetone and [ 11 C]butane with the goal of comparing the pharmacokinetic profiles of these three volatile abused substances. Both [ 11 C]toluene and [ 11 C]acetone were administered intravenously and [ 11 C]butane was administered via inhalation to anesthesized baboons. Rapid and efficient uptake of radiolabeled toluene and acetone into the brain was followed by fast clearance in the case of toluene and slower kinetics in the case of acetone. [ 11 C]Butane was detected in the blood and brain following inhalation, but the levels of radioactivity in both tissues dropped to half of the maximal values over the period of less than a minute. To our knowledge, this is the first reported study of the in vivo brain pharmacokinetics of labeled acetone and butane in nonhuman primates. These data provide insight into the pharmacokinetic features possibly associated with the abuse liability of toluene, acetone and butane

  13. Interlaminar fracture in woven carbon/epoxy laminates

    Directory of Open Access Journals (Sweden)

    Paulo N.B. Reis

    2014-10-01

    Full Text Available This paper describes an experimental study developed to characterize the mode I and mode II fracture toughness of carbon/epoxy woven composites, using DCB and ENF tests, respectively. The laminates were manufactured using an epoxy resin and twelve woven balanced bi-directional layers of carbon fibres, all of them with the same orientation (0/90º. Significant instantaneous delaminations were observed particularly for the DCB specimen, which were responsible for an oscillatory behaviour of GI versus crack length. The maximum values obtained for GIC and GIIC were 281 and 1800 J/m2, respectively.

  14. Control of pore size in epoxy systems.

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Patricia Sue; Lenhart, Joseph Ludlow (North Dakota State University, Fargo, ND); Lee, Elizabeth (North Dakota State University, Fargo, ND); Kallam, Alekhya (North Dakota State University, Fargo, ND); Majumdar, Partha (North Dakota State University, Fargo, ND); Dirk, Shawn M.; Gubbins, Nathan; Chisholm, Bret J. (North Dakota State University, Fargo, ND); Celina, Mathias C.; Bahr, James (North Dakota State University, Fargo, ND); Klein, Robert J.

    2009-01-01

    Both conventional and combinatorial approaches were used to study the pore formation process in epoxy based polymer systems. Sandia National Laboratories conducted the initial work and collaborated with North Dakota State University (NDSU) using a combinatorial research approach to produce a library of novel monomers and crosslinkers capable of forming porous polymers. The library was screened to determine the physical factors that control porosity, such as porogen loading, polymer-porogen interactions, and polymer crosslink density. We have identified the physical and chemical factors that control the average porosity, pore size, and pore size distribution within epoxy based systems.

  15. Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts

    Directory of Open Access Journals (Sweden)

    X. Q. Liu

    2012-04-01

    Full Text Available In this paper a bio-based epoxy with outstanding thermal and mechanical properties was synthesized using a rosin-based epoxy monomer and a rosin-based curing agent. The chemical structures of rosin based epoxy monomer and curing agent were confirmed by Nuclear Magnetic Resonance (NMR and Fourier Transform Infrared (FT-IR spectra. The flexural mechanical and dynamic mechanical properties as well as thermal stability of the cured epoxy were investigated. The results showed that the cured epoxy exhibited a glass transition temperature (Tg of 164°C and its flexural strength and modulus were as high as 70 and 2200 MPa, respectively. This indicated that a wholly bio-based epoxy resin possessing high performance was successfully obtained.

  16. Wear Behavior of Woven Roving Aramid / Epoxy Composite under Different Conditions

    Directory of Open Access Journals (Sweden)

    Asad A. Khalid

    2012-09-01

    Full Text Available Wear behavior studies of aramid woven roving /epoxy composite has been conducted. Sliding the material against smooth steel counter face under dry and  lubricated with oil conditions has been investigated. Powder of Silicon carbide has been mixed with the epoxy resin and tested also. The powder was mixed in a volumetric fraction of 10% with the epoxy resin. Four Laminates of six layers were fabricated by hand lay up  method. A pin on disc apparatus has been fabricated to conduct the sliding wear tests on specimens of (4 mm   4 mm   12 mm in size have been cut from the four laminates. The effect of sliding condition including dry, lubricated, dry with additives and lubricated with additives have been studied. Wear rate tests have been conducted at different sliding speeds and loads. Results show that the wear characteristics are influenced by the operating conditions and the construction of the composite material used. It was also found that the wear of aramid /epoxy composite onto the steel counter face were significantly reduced by using lubricant and additives but still took place.Keywords: Wear, Composite materials, Woven roving aramid, Epoxy, Additives, Lubricant.

  17. Enhanced sugar production from pretreated barley straw by additive xylanase and surfactants in enzymatic hydrolysis for acetone-butanol-ethanol fermentation.

    Science.gov (United States)

    Yang, Ming; Zhang, Junhua; Kuittinen, Suvi; Vepsäläinen, Jouko; Soininen, Pasi; Keinänen, Markku; Pappinen, Ari

    2015-01-01

    This study aims to improve enzymatic sugar production from dilute sulfuric acid-pretreated barley straw for acetone-butanol-ethanol (ABE) fermentation. The effects of additive xylanase and surfactants (polyethylene glycol [PEG] and Tween) in an enzymatic reaction system on straw hydrolysis yields were investigated. By combined application of 2g/100g dry-matter (DM) xylanase and PEG 4000, the glucose yield was increased from 53.2% to 86.9% and the xylose yield was increased from 36.2% to 70.2%, which were considerably higher than results obtained with xylanase or surfactant alone. The ABE fermentation of enzymatic hydrolysate produced 10.8 g/L ABE, in which 7.9 g/L was butanol. The enhanced sugar production increased the ABE yield from 93.8 to 135.0 g/kg pretreated straw. The combined application of xylanase and surfactants has a large potential to improve sugar production from barley straw pretreated with a mild acid and that the hydrolysate showed good fermentability in ABE production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The thermal properties of a carbon nanotube-enriched epoxy: Thermal conductivity, curing, and degradation kinetics

    KAUST Repository

    Ventura, Isaac Aguilar

    2013-05-31

    Multiwalled carbon nanotube-enriched epoxy polymers were prepared by solvent evaporation based on a commercially available epoxy system and functionalized multiwalled carbon nanotubes (COOH-MWCNTs). Three weight ratio configurations (0.05, 0.5, and 1.0 wt %) of COOH-MWCNTs were considered and compared with neat epoxy and ethanol-treated epoxy to investigate the effects of nano enrichment and processing. Here, the thermal properties of the epoxy polymers, including curing kinetics, thermal conductivity, and degradation kinetics were studied. Introducing the MWCNTs increased the curing activation energy as revealed by differential scanning calorimetry. The final thermal conductivity of the 0.5 and 1.0 wt % MWCNT-enriched epoxy samples measured by laser flash technique increased by up to 15% compared with the neat material. The activation energy of the degradation process, investigated by thermogravimetric analysis, was found to increase with increasing CNT content, suggesting that the addition of MWCNTs improved the thermal stability of the epoxy polymers. © 2013 Wiley Periodicals, Inc.

  19. Effect of electron beam irradiation on thermal and mechanical properties of aluminum based epoxy composites

    Science.gov (United States)

    Visakh, P. M.; Nazarenko, O. B.; Sarath Chandran, C.; Melnikova, T. V.; Nazarenko, S. Yu.; Kim, J.-C.

    2017-07-01

    The epoxy resins are widely used in nuclear and aerospace industries. The certain properties of epoxy resins as well as the resistance to radiation can be improved by the incorporation of different fillers. This study examines the effect of electron beam irradiation on the thermal and mechanical properties of the epoxy composites filled with aluminum nanoparticles at percentage of 0.35 wt%. The epoxy composites were exposed to the irradiation doses of 30, 100 and 300 kGy using electron beam generated by the linear electron accelerator ELU-4. The effects of the doses on thermal and mechanical properties of the aluminum based epoxy composites were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The results revealed that the studied epoxy composites showed good radiation resistance. The thermal and mechanical properties of the aluminum based epoxy composites increased with increasing the irradiation dose up to 100 kGy and decreased with further increasing the dose.

  20. Thermal and Ablative Properties of Ipns and Composites of High Ortho Resole Resin and Difurfurylidene Acetone

    Directory of Open Access Journals (Sweden)

    Tariq S. NAJIM

    2008-12-01

    Full Text Available High ortho resole resin was prepared by condensation of phenol with excess of formaldehyde in the presence of magnesium oxide as catalyst. Reaction of furfuraldehyde with acetone in basic medium led to difurfurylidene acetone (DFA. Their interpenetrating polymer network (IPNS were obtained by the reaction of predetermined quantities of difurfurylidene acetone and high ortho resole using p-toluene sulphonic acid (PTSA as curing agent. The thermal behavior of the resins was studied using thermogravimetry (TG under ambient and nitrogen atmospheres over a temperature range of (25-1000 Cº. It was observed that the IPN of 20% DFA – 80% resole has higher thermal stability than that of resole alone and the decomposition temperature was higher by 80 Cº. This behavior was attributed to highly cross linked structure and thermally stable backbone of ploy difurfurylidene acetone due to formation of ladder structure.Impregnation of chopped fiber glass type (E with the polymeric solutions was used to prepare their composites, and the ablative properties were investigated according to ASTM E-285 –80. It was observed that the IPN of (DFA- resol perform better than the resole composite alone.

  1. Design and analysis of MEMS MWCNT / epoxy strain sensor using ...

    Indian Academy of Sciences (India)

    Gaurav Sapra

    2017-06-20

    Jun 20, 2017 ... In this paper, highly sensitive MEMS-based multi- walled (MWCNT)/epoxy strain sensor has been designed using ... This paper also discusses the process flow for fabricating MWCNT/epoxy thin film ... stone bridge, i.e., connected to the gold metal pad of the sensor. The change in resistance with respect to.

  2. Investigation of hybrid plasma-catalytic removal of acetone over CuO/γ-Al2O3 catalysts using response surface method.

    Science.gov (United States)

    Zhu, Xinbo; Tu, Xin; Mei, Danhua; Zheng, Chenghang; Zhou, Jinsong; Gao, Xiang; Luo, Zhongyang; Ni, Mingjiang; Cen, Kefa

    2016-07-01

    In this work, plasma-catalytic removal of low concentrations of acetone over CuO/γ-Al2O3 catalysts was carried out in a cylindrical dielectric barrier discharge (DBD) reactor. The combination of plasma and the CuO/γ-Al2O3 catalysts significantly enhanced the removal efficiency of acetone compared to the plasma process using the pure γ-Al2O3 support, with the 5.0 wt% CuO/γ-Al2O3 catalyst exhibiting the best acetone removal efficiency of 67.9%. Catalyst characterization was carried out to understand the effect the catalyst properties had on the activity of the CuO/γ-Al2O3 catalysts in the plasma-catalytic reaction. The results indicated that the formation of surface oxygen species on the surface of the catalysts was crucial for the oxidation of acetone in the plasma-catalytic reaction. The effects that various operating parameters (discharge power, flow rate and initial concentration of acetone) and the interactions between these parameters had on the performance of the plasma-catalytic removal of acetone over the 5.0 wt% CuO/γ-Al2O3 catalyst were investigated using central composite design (CCD). The significance of the independent variables and their interactions were evaluated by means of the Analysis of Variance (ANOVA). The results showed that the gas flow rate was the most significant factor affecting the removal efficiency of acetone, whilst the initial concentration of acetone played the most important role in determining the energy efficiency of the plasma-catalytic process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Morphological Study on Room-Temperature-Cured PMMA-Grafted Natural Rubber-Toughened Epoxy/Layered Silicate Nanocomposite

    OpenAIRE

    Yuhana, N. Y.; Ahmad, S.; Kamal, M. R.; Jana, S. C.; Bahri, A. R. Shamsul

    2012-01-01

    A morphological study was conducted on ternary systems containing epoxy, PMMA-grafted natural rubber, and organic chemically modified montmorillonite (Cloisite 30B). Optical microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and wide-angle X-ray diffraction (WAXD) analysis were used. The following four materials were prepared at room temperature: cured unmodified epoxy, cured toughened epoxy, cured unmodified epoxy/Cloisite 3...

  4. Acetone improves the topographical homogeneity of liquid phase exfoliated few-layer black phosphorus flakes.

    Science.gov (United States)

    Gomez Perez, Juan; Konya, Zoltan; Kukovecz, Akos

    2018-06-12

    Liquid phase exfoliation of 2D materials has issues related to the sorption of the solvent, the oxidation of the sample during storage, and the topographical inhomogeneity of the exfoliated material. N-methyl-2-pyrrolidone (NMP), a common solvent for black phosphorus (BP) exfoliation, has additional drawbacks like the formation of by-products during sonication and poor solvent volatility. Here we demonstrate an improvement in the topographical homogeneity (i.e. thickness and lateral dimensions) of NMP-exfoliated BP flakes after resuspension in acetone. The typical size of monolayers and bilayers stabilised in acetone was 99.8±27.4 nm and 159.1±57 nm, respectively. These standard deviations represent a threefold improvement over those of the NMP-exfoliated originals. Phosphorene can also be exfoliated directly in acetone by very long ultrasonication. The product suspension enjoys the same dimensional homogeneity benefits, which confirms that this effect is an intrinsic property of the acetone-BP system. The quality and stability of the exfoliated flakes was checked by XRD, TEM, electron diffraction and Raman spectroscopy. Thermal expansion coefficients of the A1g, B2g and A2g Raman modes were calculated for drop-casted samples as -0.01828 cm-1/K, -0.03056 cm-1/K and -0.03219 cm-1/K, respectively. The flakes withstand 20 minutes in O2 flow at 373 K without lattice distortion. . © 2018 IOP Publishing Ltd.

  5. Ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate, an efficient solvent for extraction of acetone from aqueous solutions

    International Nuclear Information System (INIS)

    Saien, Javad; Badieh, Marjan Mohammadi Sarab; Norouzi, Mahdi; Salehzadeh, Sadegh

    2015-01-01

    Highlights: • The use of HMIMPF_6 as a green ionic was feasible in the extraction of acetone from water. • The binodal curves were determined by cloud point measurement method. • High level separation factor of acetone between the ionic liquid and water were achieved. • The thermodynamic properties of HMIMPF_6 were obtained by the Density Functional Theory calculations. • The NRTL and UNIQUAC models were applied satisfactorily to correlate the equilibrium data. - Abstract: (Liquid + liquid) equilibrium (LLE) of the chemical system of {water + acetone + 1-Hexyl-3-methylimidazolium hexafluorophosphate (HMIMPF_6) ionic liquid} was studied at different temperatures of (293.2, 298.2 and 303.2) K and under atmospheric pressure of 81.5 kPa. The results show that HMIMPF_6 provides the acetone distribution coefficient and separation factor values within (0.8813 to 1.2351) and (3.0 to 54.4), respectively; indicating the high capability of the ionic liquid for extraction of acetone from aqueous solutions. In most cases, acetone solubility in the ionic liquid is higher than in water, especially at higher solute concentrations. Meanwhile, higher separation factor is relevant to the lower temperature due to lower (water + ionic liquid) miscibility. The consistency of tie line data, at each temperature, was examined with Othmer–Tobias correlation. The values were nicely reproduced with the well-known NRTL and UNIQUAC models. Accordingly, the required thermodynamic properties of HMIMPF_6 were obtained by the Density Functional Theory (DFT) calculations, carried out at the M06/6-311++G"∗"∗ level of theory. The root mean square deviations (RMSD) between experimental and model concentration values were 0.0192 and 0.0255, respectively; indicating close agreement of the both models.

  6. Improvement of the piezoelectric properties of glass fiber-reinforced epoxy composites by poling treatment

    International Nuclear Information System (INIS)

    Oh, S M; Hwang, H Y

    2013-01-01

    Recently, a new non-destructive method has been proposed for damage monitoring of glass fiber-reinforced polymer composite materials using the piezoelectric characteristics of a polymeric matrix. Several studies of the piezoelectric properties of unidirectional glass fiber epoxy composites and damage monitoring of double-cantilever beams have supported the claim that the piezoelectric method is feasible and powerful enough to monitor the damage of glass fiber epoxy composites. Generally, conventional piezoelectric materials have higher piezoelectric characteristics through poling treatment. In this work, we investigated the change of the piezoelectric properties of glass fiber-reinforced epoxy composites before and after poling treatment. The piezoelectric constants (d 33 ) of glass fiber-reinforced epoxy composites increased by more than 400%. Also, x-ray diffraction tests revealed that poling treatment changed the degree of crystallinity of the epoxy matrix, and this led to the improvement of the piezoelectric characteristics of glass fiber-reinforced epoxy composites. (paper)

  7. Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone sensing.

    Science.gov (United States)

    Singkammo, Suparat; Wisitsoraat, Anurat; Sriprachuabwong, Chakrit; Tuantranont, Adisorn; Phanichphant, Sukon; Liewhiran, Chaikarn

    2015-02-11

    In this work, flame-spray-made SnO2 nanoparticles are systematically studied by doping with 0.1-2 wt % nickel (Ni) and loading with 0.1-5 wt % electrolytically exfoliated graphene for acetone-sensing applications. The sensing films (∼12-18 μm in thickness) were prepared by a spin-coating technique on Au/Al2O3 substrates and evaluated for acetone-sensing performances at operating temperatures ranging from 150 to 350 °C in dry air. Characterizations by X-ray diffraction, transmission/scanning electron microscopy, Brunauer-Emmett-Teller analysis, X-ray photoelectron spectroscopy and Raman spectroscopy demonstrated that Ni-doped SnO2 nanostructures had a spheriodal morphology with a polycrystalline tetragonal SnO2 phase, and Ni was confirmed to form a solid solution with SnO2 lattice while graphene in the sensing film after annealing and testing still retained its high-quality nonoxidized form. Gas-sensing results showed that SnO2 sensing film with 0.1 wt % Ni-doping concentration exhibited an optimal response of 54.2 and a short response time of ∼13 s toward 200 ppm acetone at an optimal operating temperature of 350 °C. The additional loading of graphene at 5 wt % into 0.1 wt % Ni-doped SnO2 led to a drastic response enhancement to 169.7 with a very short response time of ∼5.4 s at 200 ppm acetone and 350 °C. The superior gas sensing performances of Ni-doped SnO2 nanoparticles loaded with graphene may be attributed to the large specific surface area of the composite structure, specifically the high interaction rate between acetone vapor and graphene-Ni-doped SnO2 nanoparticles interfaces and high electronic conductivity of graphene. Therefore, the 5 wt % graphene loaded 0.1 wt % Ni-doped SnO2 sensor is a promising candidate for fast, sensitive and selective detection of acetone.

  8. UV curing silicon-containing epoxy resin and its glass cloth reinforced composites

    International Nuclear Information System (INIS)

    Yang Guang; Tang Zhuo; Huang Pengcheng

    2007-01-01

    A UV-curable cationic silicon-containing epoxy resin formulation was developed. The gel conversion of the cured resin after 10-min UV irradiation reached 80% in the presence of 5% diaryliodonium salt photoinitiator and 5.5% polyol chain transfer agent by cationic ring-opening polymerization. The glass cloth-reinforced composites were fabricated with the silicon-containing epoxy resin using the wet lay-up technique and UV irradiation. The mechanical properties of the composites were evaluated. Compared with glass cloth reinforced bisphenol A epoxy resin matrix composites, the silicon-containing epoxy resin matrix composites possessed higher tensile strength and interlayer shear strength which was 158.5MPa and 9.9MPa respectively while other mechanical properties such as flexural property and tensile modulus were similar. (authors)

  9. Velocity Measurement of ultrasonic for evaluation of aging epoxy coating in containment structure of nuclear power plant

    International Nuclear Information System (INIS)

    Eun, Gil Soo; Kim, Noh Yu; Nah, Hwan Seon; Song, Young Chol

    2001-01-01

    Relative variation of ultrasonic velocity in aging epoxy coating in nuclear plant is measured for evaluation of the degradation of the epoxy coating. Time delay for ultrasound to travel through the epoxy film due to change of ultrasonic velocity is measured indirectly using ultrasonic interferometry which compares two reflection waves from the same point of coating surface at two different distances. Magnitude of the difference of two waves increases or decreases depending on change of the time of flight of ultrasound in the epoxy film caused by heat damage in the epoxy coating. Based on the transfer functions of the wedge and the epoxy coating in frequency domain, the reflection wave is analyzed and related to the velocity of ultrasound in the epoxy coating. A specially designed conical wedge is adopted to minimize the waviness effect of the surface of the epoxy coating. Epoxy films are fabricated, degraded under the accelerated aging conditions and tested to evaluate the change of ultrasonic velocity in the films. The experimental results show that the method can be applied to evaluate quantitatively the sealing quality of the epoxy coating.

  10. Determination of the two methyl group orientations at vapor/acetone interface with polarization null angle method in SFG vibrational spectroscopy

    Science.gov (United States)

    Chen, Hua; Gan, Wei; Wu, Bao-hua; Wu, Dan; Zhang, Zhen; Wang, Hong-fei

    2005-06-01

    We report a direct measurement of the orientation of the two CH 3 groups of acetone molecule at the vapor/acetone interface. The interfacial acetone molecule is found well-ordered, with one methyl group points away around 14.4° ± 1.9° and another into the bulk liquid around 102.8° ± 1.9° from the interface normal, and thus the C dbnd O group points into the bulk around 135.8° ± 1.9°. These results directly confirmed the highly ordered and even crystal like interfacial structure of the vapor/acetone interface from previous MD simulation. The general formulation and accurate determination of the orientational parameter D can be used to treat interfaces with complex molecular orientations.

  11. Evaluation and Control of Thiol-ene/Thiol-epoxy Hybrid Networks.

    Science.gov (United States)

    Carioscia, Jacquelyn A; Stansbury, Jeffrey W; Bowman, Christopher N

    2007-03-08

    The development of thiol-ene/thiol-epoxy hybrid networks offers the advantage of tailorable polymerization kinetics while producing a highly crosslinked, high T(g) polymer that has significantly reduced shrinkage stress. Stoichiometric mixtures of pentaerythritol tetra(3-mercaptopropionate) (PETMP)/triallyl-1,3,5-triazine-2,4,6-trione (TATATO) (thiol-ene, mixture 1) and PETMP/bisphenol a diglycidyl ether (BADGE) (thiol-epoxy, mixture 2) were prepared and hybrid mixtures of 75/25, 50/50, 25/75, and 10/90 w/w of mixtures 1 and 2 were polymerized using a combination of both radical and anionic initiation. The light exposure timing and the relative initiation conditions of the two types were used to control the order and relative rates of the radical and anionic polymerizations. The 50/50 w/w thiol-ene/thiol-epoxy hybrid material exhibited a final stress of only 0.2 MPa, which is 90 % lower than the stress developed in a control dimethacrylate resin. Kinetic analysis indicates composition affects network development in thiol-ene/thiol-epoxy hybrid networks and produces materials with robust mechanical properties.

  12. Syntheses and characterization of novel P/Si polysilsesquioxanes/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Chiu Yiechan; Liu Fangyi; Ma, C.-C.M.; Chou, I.-C.; Riang Linawati; Chiang, C.-L.; Yang, J.-C.

    2008-01-01

    Phosphorus-containing polysilsesquioxane (PSSQ) was introduced into diglycidyl ether of bisphenol A epoxy (DGEBA) to generate a novel P/Si PSSQ nanocomposite. A series of nanocomposites was fabricated by changing the content of the 2-(diphenylphosphino)ethyltriethoxysilane (DPPETES) monomer or P/Si PSSQ cured with DGEBA epoxy and modified epoxy. The structure, thermal properties and flame-retardancy of the P/Si PSSQ nanocomposites were characterized by FT-IR, solid-state 29 Si NMR, thermogravimetric analysis (TGA) and limited oxygen index (LOI) instruments. The nano-sizes of the particles in P/Si PSSQ were approximately 30-50 nm, and the polarity of nanocomposites might generate the nanophase-separated structure from transmission electron microscopy (TEM). The urethane-like side group of the modified epoxy and the fabrication of oligomers in the curing reaction affected the T d5 values of nanocomposites. TGA and LOI results indicated that the char yield (29 wt%) increased and the nanocomposites were not very flammable (LOI = 30). The hybrid materials also exhibited high thermal stability, good flame-retardance and a lack of phase separation

  13. Toluene metabolism in isolated rat hepatocytes: effects of in vivo pretreatment with acetone and phenobarbital

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Kielland, A.; Ripel, A. (National Inst. of Forensic Toxicology, Oslo (Norway))

    1993-02-01

    Hepatocytes isolated from control, acetone- and phenobarbital-pretreated rats were used to study the metabolic conversion of toluene to benzyl alcohol, benzaldehyde, benzoic acid and hippuric acid at low (<100 [mu]M) and high (100-500 [mu]M) toluene concentrations. The baseline formation rates of toluene metabolites (benzyl alcohol, benzoic acid and hippuric acid) were 2.9[+-]1.7 and 10.0[+-]2.3 nmol/mg cell protein/60 min at low and high toluene concentrations, respectively. In vivo pretreatment of rats with acetone and phenobarbital increased the formation of metabolites: at low toluene concentrations 3- and 5-fold, respectively; at high toluene concentrations no significant increase (acetone) and 8-fold increase (phenobarbital). Apparent inhibition by ethanol, 7 and 60 mM, was most prominent at low toluene concentrations: 63% and 69%, respectively, in control cells; 84% and 91% in acetone-pretreated cells, and 32% (not significant) and 51% in phenobarbital-pretreated cells. Ethanol also caused accumulation of benzyl alcohol. The apparent inhibition by isoniazid was similar to that of ethanol at low toluene concentrations. Control and acetone-pretreated cells were apparently resistant towards metyrapone; the decrease was 49% and 64% in phenobarbital-pretreated cells at low and high toluene concentrations, respectively. In these cells, the decrease in presence of combined ethanol and metyrapone was 95% (low toluene concentrations). 4-Methylpyrazole decreased metabolite formation extensively in all groups. Benzaldehyde was only found in the presence of an aldehyde dehydrogenase inhibitor. Increased ratio benzoic/hippuric acid was observed at high toluene concentrations. These results demonstrate that toluene oxidation may be studied by product formation in isolated hepatocytes. However, the influence of various enzymes in the overall metabolism could not be ascertained due to lack of inhibitor specificity. (orig.).

  14. Mechanical, Thermal, and Electrical Properties of Graphene-Epoxy Nanocomposites—A Review

    Directory of Open Access Journals (Sweden)

    Rasheed Atif

    2016-08-01

    Full Text Available Monolithic epoxy, because of its brittleness, cannot prevent crack propagation and is vulnerable to fracture. However, it is well established that when reinforced—especially by nano-fillers, such as metallic oxides, clays, carbon nanotubes, and other carbonaceous materials—its ability to withstand crack propagation is propitiously improved. Among various nano-fillers, graphene has recently been employed as reinforcement in epoxy to enhance the fracture related properties of the produced epoxy–graphene nanocomposites. In this review, mechanical, thermal, and electrical properties of graphene reinforced epoxy nanocomposites will be correlated with the topographical features, morphology, weight fraction, dispersion state, and surface functionalization of graphene. The factors in which contrasting results were reported in the literature are highlighted, such as the influence of graphene on the mechanical properties of epoxy nanocomposites. Furthermore, the challenges to achieving the desired performance of polymer nanocomposites are also suggested throughout the article.

  15. Seawater infiltration effect on thermal degradation of fiber reinforced epoxy composites

    Science.gov (United States)

    Ibrahim, Mohd Haziq Izzuddin bin; Hassan, Mohamad Zaki bin; Ibrahim, Ikhwan; Rashidi, Ahmad Hadi Mohamed; Nor, Siti Fadzilah M.; Daud, Mohd Yusof Md

    2018-05-01

    Seawater salinity has been associated with the reduction of polymer structure durability. The aim of this study is to investigate the change in thermal degradation of fiber reinforced epoxy composite due to the presence of seawater. Carbon fiber, carbon/kevlar, fiberglass, and jute that reinforced with epoxy resin was laminated through hand-layup technique. Initially, these specimen was sectioned to 5×5 mm dimension, then immersed in seawater and distilled water at room temperature until it has thoroughly saturated. Following, the thermal degradation analysis using Differential Scanning Calorimetry (DSC), the thermic changes due to seawater infiltration was defined. The finding shows that moisture absorption reduces the glass transition temperature (Tg) of fiber reinforced epoxy composite. However, the glass transition temperature (Tg) of seawater infiltrated laminate composite is compareable with distilled water infiltrated laminate composite. The carbon fiber reinfored epoxy has the highest glass transition temperature out of all specimen.

  16. Interfacial Strength and Physical Properties of Functionalized Graphene - Epoxy Nanocomposites

    Science.gov (United States)

    Miller, Sandi G.; Heimann, Paula; Scheiman, Daniel; Adamson, Douglas H.; Aksay, Iihan A.; Prud'homme, Robert K.

    2006-01-01

    The toughness and coefficient of thermal expansion of a series of functionalized graphene sheet - epoxy nanocomposites are investigated. Functionalized graphene sheets are produced by splitting graphite oxide into single graphene sheets through a rapid thermal expansion process. These graphene sheets contain approx. 10% oxygen due to the presence of hydroxide, epoxide, and carboxyl functional groups which assist in chemical bond formation with the epoxy matrix. Intrinsic surface functionality is used to graft alkyl amine chains on the graphene sheets, and the addition of excess hardener insures covalent bonding between the epoxide matrix and graphene sheets. Considerable improvement in the epoxy dimensional stability is obtained. An increase in nanocomposite toughness is observed in some cases.

  17. Working-up sugar-beet molasses in the acetone-butyl alcohol plants in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Logotkin, I S; Zaritskii, I M

    1959-01-01

    The basic setup common to all Polish acetone and butanol plants is the addition of rye or wheat meal to the fermentation. A culture of Clostridium acetobutylicum, after spore formation, is mixed in a special apparatus with the meal, where it is kept for 18 hours at 37/sup 0/ and then treated with molasses; a culture is prepared which is used later in the fermentor. Independently a mixture of meal and molasses is mixed in an autoclave with H/sub 2/O, sterilized, and cooled. The resulting mash is mixed in the fermentor with the culture mentioned, where the fermentation liberates CO/sub 2/ and hydrogen which are recovered. The mixture is then heated, distilled, and rectified, where, in addition to slops, the desired products are obtained. The Polish plants figure that for each long ton of sugar contained in the molasses they recover butyl alcohol 178.0, acetone 83.7, and ethanol 7.3kg, and they use in addition to the molasses and bacilli cultures 58.4 tons of steam and 16 kg of NaOH long ton of the acetone-butyl alcohol mixture recovered.

  18. Mechanical properties of ramie fiber reinforced epoxy lamina composite for socket prosthesis

    Directory of Open Access Journals (Sweden)

    Tresna Soemardi

    2010-10-01

    Full Text Available This paper presents an investigation into the application of natural fiber composite especially ramie fiber reinforced epoxy lamina composite for socket prosthesis. The research focuses on the tensile and shear strength from ramie fiber reinforced epoxy lamina composite which will be applied as alternative material for socket prosthesis. The research based on American Society for Testing Material (ASTM standard D 3039/D 3039M for tensile strength and ASTM D 4255/D 4255M-83 for shear strength. The ramie fiber applied is a fiber continue 100 % Ne14'S with Epoxy Resin Bakelite EPR 174 as matrix and Epoxy Hardener V-140 as hardener. The sample composite test made by hand lay up method. Multiaxial characteristic from ramie fiber reinforced epoxy composite will be compared with ISO standard for plastic/polymer for health application and refers strength of material application at Prosthetics and Orthotics. The analysis was completed with the mode of the failure and the failure criterion observation by using Scanning Electron Microscope (SEM. Based on results of the research could be concluded that ramie fiber reinforced epoxy composite could be developed further as the alternative material for socket prosthesis on Vf 40-50%. Results of the research will be discussed in more detail in this paper.

  19. Occupational contact dermatitis caused by aniline epoxy resins in the aircraft industry.

    Science.gov (United States)

    Pesonen, Maria; Suuronen, Katri; Jolanki, Riitta; Aalto-Korte, Kristiina; Kuuliala, Outi; Henriks-Eckerman, Maj-Len; Valtanen, Ilona; Alanko, Kristiina

    2015-08-01

    Tetraglycidyl-4,4'-methylenedianiline (TGMDA) is an aniline epoxy resin used in, for example, resin systems of pre-impregnated composite materials (prepregs) of the aircraft industry. Allergic contact dermatitis caused by TGMDA in prepregs has been described previously. To report on 9 patients with occupational allergic contact dermatitis caused by TGMDA in epoxy glues used in helicopter assembly. The patients were examined with patch testing at the Finnish Institute of Occupational Health in 2004-2009. The first patient was diagnosed by testing both components of two epoxy glues from the workplace, and was also tested with glue ingredients, including TGMDA. The following patients were tested with the glues and TGMDA. The resin parts of the glues were analysed for their epoxy compounds, including TGMDA. All of the patients had a patch test reaction to one or both of the resin parts of the TGMDA-containing glues. Eight of them had a strong allergic reaction to TGMDA, and one had a doubtful reaction to TGMDA. Two of the patients also had an allergic reaction to triglycidyl-p-aminophenol (TGPAP), another aniline epoxy resin, which was not present in the TGMDA-containing glues. In aircraft industry workers with suspected occupational dermatitis, aniline epoxy resins should be considered and patch tested as possible contact allergens. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Novel Formulations of Phase Change Materials—Epoxy Composites for Thermal Energy Storage

    Science.gov (United States)

    Alvarez Feijoo, Miguel Angel

    2018-01-01

    This research aimed to evaluate the thermal properties of new formulations of phase change materials (PCMs)-epoxy composites, containing a thickening agent and a thermally conductive phase. The composite specimens produced consisted of composites fabricated using (a) inorganic PCMs (hydrated salts), epoxy resins and aluminum particulates or (b) organic PCM (paraffin), epoxy resins, and copper particles. Differential Scanning Calorimetry (DSC) was used to analyze the thermal behavior of the samples, while hardness measurements were used to determine changes in mechanical properties at diverse PCM and conductive phase loading values. The results indicate that the epoxy matrix can act as a container for the PCM phase without hindering the heat-absorbing behavior of the PCMs employed. Organic PCMs presented reversible phase transformations over multiple cycles, an advantage that was lacking in their inorganic counterparts. The enthalpy of the organic PCM-epoxy specimens increased linearly with the PCM content in the matrix. The use of thickening agents prevented phase segregation issues and allowed the fabrication of specimens containing up to 40% PCM, a loading significantly higher than others reported. The conductive phase seemed to improve the heat transfer and the mechanical properties of the composites when present in low percentages (phase combination (PCM + epoxy resin + hardener + thickening agent) presents great potential as a heat-absorbing material at the temperatures employed. PMID:29373538

  1. Synthesis and characterisation of epoxy resins reinforced with carbon nanotubes and nanofibers.

    Science.gov (United States)

    Prolongo, S G; Gude, M R; Ureña, A

    2009-10-01

    Epoxy nanocomposites were fabricated using two kinds of nanofiller, amino-functionalized multi-walled carbon nanotubes (CNTs) and non-treated long carbon nanofibers (CNFs). The non-cured mixtures were analysed through viscosity measurements. The effect of the nanoreinforcement on the curing process was determined by differential scanning calorimetry. Finally, the characterisation of cured nanocomposites was carried out studying their thermo-mechanical and electrical behaviour. At room temperature, the addition of CNTs causes a viscosity increase of epoxy monomer much more marked than the introduction of CNFs due to their higher specific area. It was probed that in that case exists chemical reaction between amino-functionalized CNTs and the oxirane rings of epoxy monomer. The presence of nanoreinforcement induces a decrease of curing reaction rate and modifies the epoxy conversion reached. The glass transition temperature of the nanocomposites decreases with the contents of CNTs and CNFs added, which could be related to plasticization phenomena of the nanoreinforcements. The storage modulus of epoxy resin significantly increases with the addition of CNTs and CNFs. This augment is higher with amino-functionalized CNTs due, between other reasons, to the stronger interaction with the epoxy matrix. The electrical conductivity is greatly increased with the addition of CNTs and CNFs. In fact, the percolation threshold is lower than 0.25 wt% due to the high aspect ratio of the used nanoreinforcements.

  2. Adhesion of epoxy primer to hydrotalcite conversion coated AA2024

    Science.gov (United States)

    Leggat, Robert Benton, III

    Hydrotalcite-based (HT) conversion coatings are being developed as an environmentally benign alternative to chromate conversion coatings (CCC). Accelerated exposure tests were conducted on epoxy primed, HT-modified AA2024 to gauge service performance. HT-based conversion coatings did not perform as well as the CCC when used with an epoxy primer. The current HT chemistries are optimized for stand-alone corrosion protection, however additional research into the primer/HT interactions is necessary before they can be implemented within a coating scheme. The relative contribution of mechanical and physico-chemical interactions in controlling adhesion has been investigated in this study. Practical adhesion tests were used to assess the dry and wet bond strength of epoxy primer on HT coatings using the pull-off tensile strength (POTS) as the figure of merit. The practical adhesion of HT coated samples generally fell between that observed for the CCC and bare AA2024. Laboratory testing was done to assess the physical and chemical properties of HT coatings. Contact angle measurements were performed using powders representative of different HT chemistries to evaluate the dispersive and acid-base character of the surface. The wet POTS correlated with the electrodynamic (dipole + dispersive) parameter of the surface tension. The HT surfaces were found to be predominantly basic. Given the basicity of epoxy, these results indicate that increasing the acidic character of HT coatings may increase the adhesion performance. This was supported by electrokinetic measurements in which the dry POTS was found to increase with decreasing conversion coating iso-electric point. The correlations with the dry and wet state adhesion are interpreted as indicating that dry state adhesion is optimized by minimizing unfavorable polar interactions between the basic epoxy and HT interfaces. Wet state adhesion, where polar interactions are disrupted, is dictated by non-polar bonding. FTIR

  3. Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing.

    Science.gov (United States)

    Chen, Kaijuan; Kuang, Xiao; Li, Vincent; Kang, Guozheng; Qi, H Jerry

    2018-03-07

    3D printing of epoxy-based shape memory polymers with high mechanical strength, excellent thermal stability and chemical resistance is highly desirable for practical applications. However, thermally cured epoxy in general is difficult to print directly. There have been limited numbers of successes in printing epoxy but they suffer from relatively poor mechanical properties. Here, we present an ultraviolet (UV)-assisted 3D printing of thermally cured epoxy composites with high tensile toughness via a two-stage curing approach. The ink containing UV curable resin and epoxy oligomer is used for UV-assisted direct-ink write (DIW)-based 3D printing followed by thermal curing of the part containing the epoxy oligomer. The UV curable resin forms a network by photo polymerization after the 1st stage of UV curing, which can maintain the printed architecture at an elevated temperature. The 2nd stage thermal curing of the epoxy oligomer yields an interpenetrating polymer network (IPN) composite with highly enhanced mechanical properties. It is found that the printed IPN epoxy composites enabled by the two-stage curing show isotropic mechanical properties and high tensile toughness. We demonstrated that the 3D-printed high-toughness epoxy composites show good shape memory properties. This UV-assisted DIW 3D printing via a two-stage curing method can broaden the application of 3D printing to fabricate thermoset materials with enhanced tensile toughness and tunable properties for high-performance and functional applications.

  4. Improving Fracture Toughness of Epoxy Nanocomposites by Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Seyed Reza Akherati Sany

    2017-04-01

    Full Text Available An epoxy resin was modified by silica nanoparticles and cured with an anhydride. The particles with different batches of 12, 20, and 40 nm sizes were each distributed into the epoxy resin ultrasonically. Electron microscopy images showed that the silica particles were well dispersed throughout the resin. Tensile test results showed that Young’s modulus and tensile strength increased with the volume fraction and surface area of the silica particles. The simultaneous use of two average sizes of 20 and 40 nm diameter silica particles still increased these mechanical properties but other combinations of silica particles were unsuccessful. A three-point bending test on each pre-cracked specimen was performed to measure the mode I fracture toughness energy. The fracture energy increased from 283 J/m2 for the unmodified epoxy to about 740 J/m2 for the epoxy with 4.5 wt% of 12 nm diameter silica nanoparticles. The fracture energy of smaller particles was greater because of their higher surface to volume ratio. The fracture energy results showed also that the combined nanoparticles has a synergic effect on the fracture toughness of nanocomposites. Simultaneous use of 10 and 20 nm particles increased the fracture energy to about 770 J/m2. Finally, crack-opening displacement was calculated and found to be in the range of several micrometers which was much larger than the sizes of particles studied. Thus, the toughening mechanisms of crack pinning and crack deflection have a negligible effect on improvement of toughness, nevertheless, the plastic deformation and plastic void growth are dominant mechanisms in epoxy toughening by nanoparticles.

  5. Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles.

    Science.gov (United States)

    Tao, Peng; Viswanath, Anand; Schadler, Linda S; Benicewicz, Brian C; Siegel, Richard W

    2011-09-01

    Visibly highly transparent indium tin oxide (ITO)/epoxy nanocomposites were prepared by dispersing polyglycidyl methacrylate (PGMA) grafted ITO nanoparticles into a commercial epoxy resin. The oleic acid stabilized, highly crystalline, and near monodisperse ITO nanoparticles were synthesized via a nonaqueous synthetic route with multigram batch quantities. An azido-phosphate ligand was synthesized and used to exchange with oleic acid on the ITO surface. The azide terminal group allows for the grafting of epoxy resin compatible PGMA polymer chains via Cu(I) catalyzed alkyne-azide "click" chemistry. Transmission electron microscopy (TEM) observation shows that PGMA grafted ITO particles were homogeneously dispersed within the epoxy matrix. Optical properties of ITO/epoxy nanocomposites with different ITO concentrations were studied with an ultraviolet-visible-near-infrared (UV-vis-NIR) spectrometer. All the ITO/epoxy nanocomposites show more than 90% optical transparency in the visible light range and absorption of UV light from 300 to 400 nm. In the near-infrared region, ITO/epoxy nanocomposites demonstrate low transmittance and the infrared (IR) transmission cutoff wavelength of the composites shifts toward the lower wavelength with increased ITO concentration. The ITO/epoxy nanocomposites were applied onto both glass and plastic substrates as visibly transparent and UV/IR opaque optical coatings.

  6. Immobilization of spent resin with epoxy resin

    International Nuclear Information System (INIS)

    Gultom, O.; Suryanto; Sayogo; Ramdan

    1997-01-01

    immobilization of spent resin using epoxy resin has been conducted. The spent resin was mixtured with epoxy resin in variation of concentration, i.e., 30, 40, 50, 60, 70 weight percent of spent resin. The mixture were pour into the plastic tube, with a diameter of 40 mm and height of 40 mm. The density, compressive strength and leaching rate were respectively measured by quanta chrome, paul weber apparatus and gamma spectrometer. The results showed that the increasing of waste concentration would be decreased the compressive strength, and increased density by immobilized waste. The leaching rate of 137 Cs from waste product was not detected in experiment (author)

  7. High T{sub g} and fast curing epoxy-based anisotropic conductive paste for electronic packaging

    Energy Technology Data Exchange (ETDEWEB)

    Keeratitham, Waralee, E-mail: waralee.ke@student.chula.ac.th; Somwangthanaroj, Anongnat, E-mail: anongnat.s@chula.ac.th [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 (Thailand)

    2016-03-09

    Herein, our main objective is to prepare the fast curing epoxy system with high glass transition temperature (T{sub g}) by incorporating the multifunctional epoxy resin into the mixture of diglycidyl ether of bisphenol A (DGEBA) as a major epoxy component and aromatic diamine as a hardener. Furthermore, the curing behavior as well as thermal and thermomechanical properties were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermomechanical analysis (TMA). It was found that T{sub g} obtained from tan δ of DGEBA/aromatic diamine system increased from 100 °C to 205 °C with the presence of 30 percentage by weight of multifunctional epoxy resin. Additionally, the isothermal DSC results showed that the multifunctional epoxy resin can accelerate the curing reaction of DGEBA/aromatic diamine system. Namely, a high degree of curing (∼90%) was achieved after a few minutes of curing at low temperature of 130 °C, owing to a large number of epoxy ring of multifunctional epoxy resin towards the active hydrogen atoms of aromatic diamine.

  8. Nanocellulose composites with enhanced interfacial compatibility and mechanical properties using a hybrid-toughened epoxy matrix.

    Science.gov (United States)

    Kuo, Pei-Yu; Barros, Luizmar de Assis; Yan, Ning; Sain, Mohini; Qing, Yan; Wu, Yiqiang

    2017-12-01

    Although there is a growing interest in utilizing nanocellulose fibres (NCFs) based composites for achieving a higher sustainability, mechanical performance of these composites is limited due to the poor compatibility between fibre reinforcement and polymer matrices. Here we developed a bio-nanocomposite with an enhanced fibre/resin interface using a hybrid-toughened epoxy. A strong reinforcing effect of NCFs was achieved, demonstrating an increase up to 88% in tensile strength and 298% in tensile modulus as compared to neat petro-based P-epoxy. The toughness of neat P-epoxy was improved by 84% with the addition of 10wt% bio-based E-epoxy monomers, which also mitigated the amount of usage of bisphenol A (BPA). The morphological analyses showed that the hybrid epoxy improved the resin penetration and fibre distribution significantly in the resulting composites. Thus, our findings demonstrated the promise of developing sustainable and high performance epoxy composites combing NCFs with a hybrid petro-based and bio-based epoxy resin system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Evaluation of Carbon Composite Overwrap Pressure Vessels Fabricated Using Ionic Liquid Epoxies

    Data.gov (United States)

    National Aeronautics and Space Administration — In terms of "Innovation" this is a unique epoxy with unique properties, and NASA co-holds the patent. This epoxy is being exclusively formulated for cryogenic use....

  10. Histochemical detection of GM1 ganglioside using cholera toxin-B subunit. Evaluation of critical factors optimal for in situ detection with special emphasis to acetone pre-extraction

    Science.gov (United States)

    Petr, T.; Šmíd, V.; Šmídová, J.; Hůlková, H.; Jirkovská, M.; Elleder, M.; Muchová, L.; Vítek, L.; Šmíd, F.

    2010-01-01

    A comparison of histochemical detection of GM1 ganglioside in cryostat sections using cholera toxin B-subunit after fixation with 4% formaldehyde and dry acetone gave tissue-dependent results. In the liver no pre-treatment showed detectable differences related to GM1 reaction products, while studies in the brain showed the superiority of acetone pre-extraction (followed by formaldehyde), which yielded sharper images compared with the diffuse, blurred staining pattern associated with formaldehyde. Therefore, the aim of our study was to define the optimal conditions for the GM1 detection using cholera toxin B-subunit. Ganglioside extractability with acetone, the ever neglected topic, was tested comparing anhydrous acetone with acetone containing admixture of water. TLC analysis of acetone extractable GM1 ganglioside from liver sections did not exceed 2% of the total GM1 ganglioside content using anhydrous acetone at −20°C, and 4% at room temperature. The loss increased to 30.5% using 9:1 acetone/water. Similarly, photometric analysis of lipid sialic acid, extracted from dried liver homogenates with anhydrous acetone, showed the loss of gangliosides into acetone 3.0±0.3% only. The loss from dried brain homogenate was 9.5±1.1%. Thus, anhydrous conditions (dry tissue samples and anhydrous acetone) are crucial factors for optimal in situ ganglioside detection using acetone pre-treatment. This ensures effective physical fixation, especially in tissues rich in polar lipids (precipitation, prevention of in situ diffusion), and removal of cholesterol, which can act as a hydrophobic blocking barrier. PMID:20558344

  11. Histochemical detection of GM1 ganglioside using cholera toxin-B subunit. Evaluation of critical factors optimal for in situ detection with special emphasis to acetone pre-extraction

    Directory of Open Access Journals (Sweden)

    T. Petr

    2010-05-01

    Full Text Available A comparison of histochemical detection of GM1 ganglioside in cryostat sections using cholera toxin B-subunit after fixation with 4% formaldehyde and dry acetone gave tissue-dependent results. In the liver no pre-treatment showed detectable differences related to GM1 reaction products, while studies in the brain showed the superiority of acetone pre-extraction (followed by formaldehyde, which yielded sharper images compared with the diffuse, blurred staining pattern associated with formaldehyde. Therefore, the aim of our study was to define the optimal conditions for the GM1 detection using cholera toxin B-subunit. Ganglioside extractability with acetone, the ever neglected topic, was tested comparing anhydrous acetone with acetone containing admixture of water. TLC analysis of acetone extractable GM1 ganglioside from liver sections did not exceed 2% of the total GM1 ganglioside content using anhydrous acetone at -20°C, and 4% at room temperature. The loss increased to 30.5% using 9:1 acetone/water. Similarly, photometric analysis of lipid sialic acid, extracted from dried liver homogenates with anhydrous acetone, showed the loss of gangliosides into acetone 3.0±0.3% only. The loss from dried brain homogenate was 9.5±1.1%. Thus, anhydrous conditions (dry tissue samples and anhydrous acetone are crucial factors for optimal in situ ganglioside detection using acetone pre-treatment. This ensures effective physical fixation, especially in tissues rich in polar lipids (precipitation, prevention of in situ diffusion, and removal of cholesterol, which can act as a hydrophobic blocking barrier.

  12. Effect of Montmorillonite Nanogel Composite Fillers on the Protection Performance of Epoxy Coatings on Steel Pipelines.

    Science.gov (United States)

    Atta, Ayman M; El-Saeed, Ashraf M; Al-Lohedan, Hamad A; Wahby, Mohamed

    2017-06-02

    Montmorillonite (MMT) clay mineral is widely used as filler for several organic coatings. Its activity is increased by exfoliation via chemical modification to produce nanomaterials. In the present work, the modification of MMT to form nanogel composites is proposed to increase the dispersion of MMT into epoxy matrices used to fill cracks and holes produced by the curing exotherms of epoxy resins. The dispersion of MMT in epoxy improved both the mechanical and anti-corrosion performance of epoxy coatings in aggressive marine environments. In this respect, the MMT surfaces were chemically modified with different types of 2-acrylamido-2-methyl propane sulfonic acid (AMPS) nanogels using a surfactant-free dispersion polymerization technique. The effect of the chemical structure, nanogel content and the interaction with MMT surfaces on the surface morphology, surface charges and dispersion in the epoxy matrix were investigated for use as nano-filler for epoxy coatings. The modified MMT nanogel epoxy composites showed excellent resistance to mechanical damage and salt spray resistance up to 1000 h. The interaction of MMT nanogel composites with the epoxy matrix and good response of AMPS nanogel to sea water improve their ability to act as self-healing materials for epoxy coatings for steel.

  13. Photocatalytic degradation of acetone and butane on mesoporous titania layers

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Houšková, Vendula; Bakardjieva, Snejana; Murafa, Nataliya

    2010-01-01

    Roč. 34, č. 9 (2010), s. 1999-2005 ISSN 1144-0546 R&D Projects: GA ČR GA203/08/0334 Institutional research plan: CEZ:AV0Z40320502 Keywords : thin-films * gaseous acetone * oxidation * TIO2 Subject RIV: CA - Inorganic Chemistry Impact factor: 2.631, year: 2010

  14. Breath acetone concentration; biological variability and the influence of diet

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Dryahina, Kseniya; Rejšková, A.; Chippendale, T. W. E.; Smith, D.

    2011-01-01

    Roč. 32, č. 8 (2011), N23-N31 ISSN 0967-3334 R&D Projects: GA ČR GP203/09/P172 Institutional research plan: CEZ:AV0Z40400503 Keywords : acetone * breath * ketogenic diet Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.677, year: 2011

  15. Degradation of modified carbon black/epoxy nanocomposite coatings under ultraviolet exposure

    Science.gov (United States)

    Ghasemi-Kahrizsangi, Ahmad; Shariatpanahi, Homeira; Neshati, Jaber; Akbarinezhad, Esmaeil

    2015-10-01

    Degradation of epoxy coatings with and without Carbon Black (CB) nanoparticles under ultraviolet (UV) radiation were investigated using electrochemical impedance spectroscopy (EIS). Sodium dodecyl sulfate (SDS) was used to obtain a good dispersion of CB nanoparticles in a polymer matrix. TEM analysis proved a uniform dispersion of modified CB nanoparticles in epoxy coating. The coatings were subjected to UV radiation to study the degradation behavior and then immersed in 3.5 wt% NaCl. The results showed that the electrochemical behavior of neat epoxy coating was related to the formation and development of microcracks on the surface. The occurrence of microcracks on the surface of the coatings and consequently the penetration of ionic species reduced by adding CB nanoparticles into the formulation of the coatings. CB nanoparticles decreased degradation of CB coatings by absorbing UV irradiation. The ATR-FTIR results showed that decrease in the intensity of methyl group as main peak in presence of 2.5 wt% CB was lower than neat epoxy. In addition, the reduction in impedance of neat epoxy coating under corrosive environment was larger than CB coatings. The CB coating with 2.5 wt% nanoparticles had the highest impedance to corrosive media after 2000 h UV irradiation and 24 h immersion in 3.5 wt% NaCl.

  16. Physical and chemical durability of cement impregnated epoxy resin

    International Nuclear Information System (INIS)

    Suryantoro

    1997-01-01

    Immobilization of simulation radioactive waste contains Cs and Sr with cement impregnated epoxy resin has been done. Low level liquid waste in 30% weight mixed cement homogeneously and then set in its curing time about 28 days. Waste from was impregnated with epoxy resin (Bisphenol-A-diglycidylether) and use Triethylenteramin as catalyst. the sample of cement impregnated epoxy resin 2.5 cm x 2.5 cm in diameter and length was tested by Paul Weber. The compressive strength was obtained of 4.08 kN.cm - 2. The sochxlet apparatus was run on flow rate of 300 ml/hour at 100 o C and during 24 hours. The leaching rate of Cs was round on 5.5 x 10 - 4 g.cm - 2.d - 1 and Sr was 6.1 x 10 - 4 g.cm - 2.d - 1 (author)

  17. Synthesis and Antimicrobial Activity of Long-Chain 3,4-Epoxy-2-alkanones

    OpenAIRE

    Wood, William F.

    2010-01-01

    3,4-Epoxy-2-dodecanone, a major component in the preorbital gland of the African grey duiker (Sylvicapra grimmia), showed antimicrobial activity in preliminary tests. The C11 to C17 homologues of this compound were prepared and their activity against several pathogenic dermal bacteria and fungi was tested. 3,4-Epoxy-2-dodecanone and 3,4-epoxy-2-tridecanone inhibited the growth of Trichophyton mentagrophytes at 25 μg/mL. Moderate inhibition of the growth of the bacteria Propionibacterium acnes...

  18. Elaboration, structural and optical investigations of ZnO/epoxy nanocomposites

    Science.gov (United States)

    Moussa, S.; Namouchi, F.; Guermazi, H.

    2015-07-01

    Hybrid nanocomposites were elaborated by incorporating ZnO nanoparticles into a transparent epoxy polymer matrix, using the direct dispersion method. The effect of the nanoparticles on the structural and optical properties of the polymer matrix was investigated using Fourier transform infrared (FTIR), Raman and UV-Visible spectroscopies. Nanocomposites FTIR spectra showed a variation of band intensities attributed to nanoparticles agglomeration within the polymer. The UV-Visible measurements showed a redshift on the band gap energy of the nanocomposites differently from neat epoxy resin, caused by interactions between ZnO NPs and polymer chains. Raman spectra confirm these interactions and the formation of hydrogen bonds in the nanocomposites. The UV-Visible transmittance spectra revealed that addition of a very low concentration (0.2wt%) of ZnO nanoparticles to a transparent epoxy matrix would maintain high visible-light transparency. The decrease of transmittance with increasing ZnO percentage is due to light scattering which originates from the agglomeration of nanoparticles in the matrix, the mismatch between the refractive index of ZnO and that of the epoxy matrix, and the increase of the surface roughness of the nanocomposite with increasing ZnO addition. Moreover, the UV-vis absorption spectra revealed that adding more than 1wt% ZnO leads to the improvement of the UV shielding properties of the nanocomposites. These results prove that the elaborated ZnO/epoxy nanocomposites can be used as UV shielding materials.

  19. Kinetic Model of Resin-Catalyzed Decomposition of Acetone Cyanohydrin in Organic Solvent

    Institute of Scientific and Technical Information of China (English)

    章亭洲; 杨立荣; 朱自强; 吴坚平

    2003-01-01

    Decomposition of acetone cyanohydrin is the first-step reaction for preparing (S)-α-cyano-3-phenoxybenzyl alcohol (CPBA) by the one-pot method in organic media. Considering the compatibility of biocatalysts with chemical catalysts and the successive operation in the bioreactor, anion exchange resin (D301) was used as catalyst for this reaction. External diffusion limitation was excluded by raising rotational speed to higher than 190r·min-1 in both solvents. Internal diffusion limitation was verified to be insignificant in this reaction system. The effect of acetone cyanohydrin concentration on the reaction was also investigated. An intrinsic kinetic model was proposed when the mass transfer limitation was excluded, and the average deviation of the model is 10.5%.

  20. Regeneration of granular activated carbon saturated with acetone and isopropyl alcohol via a recirculation process under H2O2/UV oxidation.

    Science.gov (United States)

    Horng, Richard S; Tseng, I-Chin

    2008-06-15

    This study examines a water-based system, coupling an adsorber and a photoreactor, for regeneration of granular activated carbon (GAC) saturated with acetone and isopropyl alcohol (IPA). Through water recirculation the regeneration reaction was operated in both intermittent and continuous ultraviolet illumination modes. With a periodic dosage of hydrogen peroxide not only was regeneration efficient but it was also catalyzed by GAC in the adsorber. The concentrations of acetone, solution chemical oxygen demand (COD), pH and organic residues on GAC surfaces were measured during regenerations. Both pH and solution COD were found to correlate with regeneration completion as measured by organic residue on GAC surfaces in four regeneration cycles with acetone. Solution pH decreased to the acidic values and then returned to near its original value when organic residues were 0.085-0.255 mg/g GAC, that is, destruction efficiency of adsorbed acetone on the GAC surface was more than 99%. Likewise, solution COD became low (properties in each of eight cycles: adsorptive capacities were 95+/-7 mg acetone/g GAC and 87+/-3 mg IPA/g GAC, and breakthrough time was 0.86+/-0.05 for acetone and 0.78+/-0.03 h for IPA. An economic assessment of the system showed that the operating cost was about 0.04 USD for treating every gram of acetone in the air.

  1. Radiochemical ageing of epoxy coating for nuclear plants

    International Nuclear Information System (INIS)

    Queiroz, D.P.R.; Fraisse, F.; Fayolle, B.; Kuntz, M.; Verdu, J.

    2010-01-01

    The degradation of an epoxy-amine network exposed to gamma irradiation in oxygen atmosphere has been studied by using a variety of analytical methods, including infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and sol-gel analysis. Results show that the oxidation of epoxy systems grows with the irradiation dose. Hydroperoxides, which are species resulting from oxidation, were identified and quantified by DSC. As indicated by the sol-gel analysis, the mechanism of degradation of chain scission seems to be predominant over crosslinking. The modifications induced by irradiation reflect in a greater capacity of water absorption.

  2. Toxicity study of di(2-ethylhexyl)phthalate (DEHP) in combination with acetone in rats

    DEFF Research Database (Denmark)

    Dalgaard, M.; Østergaard, G.; Lam, Henrik Rye

    2000-01-01

    In two separate studies with exposure duration 9 weeks or 4 weeks, male Wistar rats were dosed with di(2-ethylhexyl)phthalate (DEHP) by gavage and exposed to drinking water with or without acetone (0.5% wt/v in the 9-week study, 1.0% wt/v in the 4-week study). In the 9-week study the doses of DEHP...... were 0, 125, 250, 500 or 1000 mg/kg b.wt. In the 4-week study the doses of DEHP were increased to 1000, 5000 and 10,000 mg/kg b.wt. In the 9-week study, the relative liver weight was increased in the rats exposed to 500 and 1000 mg/kg b.wt. No interaction of DEHP and acetone was observed in any...... of the measured parameters. In the 4-week study DEHP, at the highest dose level, resulted in severe general toxicity. The group exposed to DEHP in combination with acetone was more affected. Male fertility was decreased. Body weight was decreased, and the relative weight of the liver, kidney, heart, brain...

  3. Utilization of ilmenite/epoxy composite for neutrons and gamma rays attenuation

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed Abdo, A. E-mail: attiaabdo11@hotmail.com; El-Sarraf, M.A.; Gaber, F.A

    2003-01-01

    This work deals with the study of ilmenite/epoxy composite as an injecting mortar for cracks developed in biological concrete shields, as well as, neutrons and gamma rays attenuation. Effects of the particle size on the mechanical strengths have been studied for epoxy resin filled with crushed ilmenite with different maximum particle sizes ranging from 32 to 500 {mu}m. Thermal neutrons and gamma rays attenuation in ilmenite/epoxy composites with 75 and 80 wt.% of ilmenite concentration have been investigated. The total mass attenuation coefficients {mu}/{rho} (cm{sup 2} g{sup -1}) of gamma ray for five ilmenite/epoxy composites have been calculated using the XCOM program (version 3.1) at energies from 10 keV to 100 MeV. Also, the total mass attenuation coefficients ({mu}/{rho}) have estimated based on the measured total linear attenuation coefficients ({mu}) and compared with the calculated results where, a reasonable agreement was found.

  4. Sensibilización a bisfenol A y bisfenol F en trabajadores expuestos a resinas epoxi

    Directory of Open Access Journals (Sweden)

    L. Jiménez Bajo

    2008-06-01

    Full Text Available Las aplicaciones de las diferentes resinas epoxi basadas en bisfenol A y F son extensas. Las resinas epoxi basadas en bisfenol F son más nuevas y resistentes que las de bisfenol A, y ambas son causa conocida de dermatitis de contacto alérgica. Se estudian 39 casos de sensibilización a resinas epoxi en los últimos 5 años. Los resultados obtenidos son: prevalencia de sensibilización a resinas epoxi entre los pacientes estudiados del 2%, 27 varones y 8 mujeres, con una edad media de 42.77, un período de medio sensibilización de 23,8 meses. La sensibilización a bisfenol F desde que se incluye para las pruebas del parche en la batería de resinas epoxi es del 100% para los casos sensibilizados a la resina. La localización mayoritaria se dio en las manos, con una relevancia actual del 84%. Se recomendó un cambio de puesto en el trabajo al 46% de estos pacientes. El aumento de la sensibilización encontrada a bisfenol F puede explicarse por una sensibilización concomitante con bisfenol A, una declaración incorrecta de la composición de la resina o una reactividad cruzada de ambos.The applications of epoxy resins based on bisphenol A and F are extensive. Epoxy resins based on bisphenol F are new and more resistant than epoxy resins based on bisphenol A. Both of them cause allergic contact dermatitis. In the last 5 years, we have studied 39 cases of sensitization to epoxy resin. The results of our study were these: the global prevalence of epoxy resin sensitization was 2%, 27 men and 8 women. The mean age was 42.77 years and the sensitization period was 23.8 months. The most frequent localization of the lesions were hands (84% of the patients. Since bisphenol F was included in epoxy resin battery for patch testing, a 100% of positives responses in patients sensitized to epoxy resin have been found. Sensitization to epoxy resins was a cause of change in workplace in 46% of cases in our series. There has been an increase in sensitization of

  5. Hearing loss in workers exposed to epoxy adhesives and noise: a cross-sectional study.

    Science.gov (United States)

    Yang, Hsiao-Yu; Shie, Ruei-Hao; Chen, Pau-Chung

    2016-02-18

    Epoxy adhesives contain organic solvents and are widely used in industry. The hazardous effects of epoxy adhesives remain unclear. The objective of this study was to investigate the risk of hearing loss among workers exposed to epoxy adhesives and noise. Cross-sectional study. For this cross-sectional study, we recruited 182 stone workers who were exposed to both epoxy adhesives and noise, 89 stone workers who were exposed to noise only, and 43 workers from the administrative staff who had not been exposed to adhesives or noise. We obtained demographic data, occupational history and medical history through face-to-face interviews and arranged physical examinations and pure-tone audiometric tests. We also conducted walk-through surveys in the stone industry. A total of 40 representative noise assessments were conducted in 15 workplaces. Air sampling was conducted at 40 workplaces, and volatile organic compounds were analysed using the Environmental Protection Agency (EPA) TO-15 method. The mean sound pressure level was 87.7 dBA (SD 9.9). The prevalence of noise-induced hearing loss was considerably increased in the stone workers exposed to epoxy adhesives (42%) compared with the stone workers who were not exposed to epoxy adhesives (21%) and the administrative staff group (9.3%). A multivariate logistic regression analysis revealed that exposure to epoxy adhesives significantly increased the risk of hearing loss between 2 and 6 kHz after adjusting for age. Significant interactions between epoxy adhesives and noise and hearing impairment were observed at 3, 4 and 6 kHz. Epoxy adhesives exacerbate hearing impairment in noisy environments, with the main impacts occurring in the middle and high frequencies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. α-chymotrypsin in water-acetone and water-dimethyl sulfoxide mixtures: Effect of preferential solvation and hydration.

    Science.gov (United States)

    Sirotkin, Vladimir A; Kuchierskaya, Alexandra A

    2017-10-01

    We investigated water/organic solvent sorption and residual enzyme activity to simultaneously monitor preferential solvation/hydration of protein macromolecules in the entire range of water content at 25°C. We applied this approach to estimate protein destabilization/stabilization due to the preferential interactions of bovine pancreatic α-chymotrypsin with water-acetone (moderate-strength H-bond acceptor) and water-DMSO (strong H-bond acceptor) mixtures. There are three concentration regimes for the dried α-chymotrypsin. α-Chymotrypsin is preferentially hydrated at high water content. The residual enzyme activity values are close to 100%. At intermediate water content, the dehydrated α-chymotrypsin has a higher affinity for acetone/DMSO than for water. Residual enzyme activity is minimal in this concentration range. The acetone/DMSO molecules are preferentially excluded from the protein surface at the lowest water content, resulting in preferential hydration. The residual catalytic activity in the water-poor acetone is ∼80%, compared with that observed after incubation in pure water. This effect is very small for the water-poor DMSO. Two different schemes are operative for the hydrated enzyme. At high and intermediate water content, α-chymotrypsin exhibits preferential hydration. However, at intermediate water content, in contrast to the dried enzyme, the initially hydrated α-chymotrypsin possesses increased preferential hydration parameters. At low water content, no residual enzyme activity was observed. Preferential binding of DMSO/acetone to α-chymotrypsin was detected. Our data clearly demonstrate that the hydrogen bond accepting ability of organic solvents and the protein hydration level constitute key factors in determining the stability of protein-water-organic solvent systems. © 2017 Wiley Periodicals, Inc.

  7. Modification of the Interfacial Interaction between Carbon Fiber and Epoxy with Carbon Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Kejing Yu

    2016-05-01

    Full Text Available The mechanical properties of the hybrid materials and epoxy and carbon fiber (CF composites were improved significantly as compared to the CF composites made from unmodified epoxy. The reasons could be attributed to the strong interfacial interaction between the CF and the epoxy composites for the existence of carbon nanomaterials. The microstructure and dispersion of carbon nanomaterials were characterized by transmission electron microscopy (TEM and optical microscopy (OM. The results showed that the dispersion of the hybrid materials in the polymer was superior to other carbon nanomaterials. The high viscosity and shear stress characterized by a rheometer and the high interfacial friction and damping behavior characterized by dynamic mechanical analysis (DMA indicated that the strong interfacial interaction was greatly improved between fibers and epoxy composites. Remarkably, the tensile tests presented that the CF composites with hybrid materials and epoxy composites have a better reinforcing and toughening effect on CF, which further verified the strong interfacial interaction between epoxy and CF for special structural hybrid materials.

  8. Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor

    Science.gov (United States)

    Xiong, Ya; Zhu, Zongye; Ding, Degong; Lu, Wenbo; Xue, Qingzhong

    2018-06-01

    In the present study, multi-shelled ZnCo2O4 yolk-shell spheres have been successfully prepared by using carbonaceous microspheres as templates. It is found that the multi-shelled ZnCo2O4 yolk-shell spheres based sensor shows optimal sensing performances (response value of 38.2, response/recovery time of 19 s/71 s) toward 500 ppm acetone at 200 °C. In addition, this sensor exhibits a low detection limit of 0.5 ppm acetone (response value of 1.36) and a good selectivity toward hydrogen, methane, ethanol, ammonia and carbon dioxide. Furthermore, it is demonstrated that acetone gas response of multi-shelled ZnCo2O4 yolk-shell spheres is significantly better than that of ZnCo2O4 nanotubes and ZnCo2O4 nanosheets. High acetone response of the multi-shelled ZnCo2O4 yolk-shell spheres is attributed to the enhanced gas accessibility of the multi-shell morphology caused by the small crystalline size and high specific surface area while the short response/recovery time is mainly related to the rapid gas diffusion determined by the highly porous structure. Our work puts forward an exciting opportunity in designing various yolk-shelled structures for multipurpose applications.

  9. Epoxy – the hub for the most versatile polymer with exceptional combination of superlative features

    OpenAIRE

    Inam, Fawad

    2014-01-01

    Epoxy resins and epoxy based materials have experienced significant advancement since their beginning in 1936, when Dr. Castan of Switzerland and Dr. Greenlee of USA succeeded in synthesizing the very first bisphenol-A-based epoxy resins. Whether it is the new carbon fiber composite of Boeing’s Dreamliner or the thin set terrazzo flooring, epoxy has always been the ideal choice because of its superlative properties and unique chemical composition. Belonging to thermoset family, it is certainl...

  10. Effect of Thermally Reduced Graphene Oxide on Mechanical Properties of Woven Carbon Fiber/Epoxy Composite

    OpenAIRE

    Nitai Chandra Adak; Suman Chhetri; Naresh Chandra Murmu; Pranab Samanta; Tapas Kuila

    2018-01-01

    Thermally reduced graphene oxide (TRGO) was incorporated as a reinforcing filler in the epoxy resin to investigate the effect on the mechanical properties of carbon fiber (CF)/epoxy composites. At first, the epoxy matrix was modified by adding different wt % of TRGO from 0.05 to 0.4 wt % followed by the preparation of TRGO/CF/epoxy composites througha vacuum-assisted resin transfer molding process. The prepared TRGO was characterized by using Fourier transform infrared spectroscopy, Raman Spe...

  11. Enhancing Mechanical and Thermal Properties of Epoxy Nanocomposites via Alignment of Magnetized SiC Whiskers.

    Science.gov (United States)

    Townsend, James; Burtovyy, Ruslan; Aprelev, Pavel; Kornev, Konstantin G; Luzinov, Igor

    2017-07-12

    This research is focused on the fabrication and properties of epoxy nanocomposites containing magnetized SiC whiskers (MSiCWs). To this end, we report an original strategy for fabrication of magnetically active SiCWs by decorating the whiskers with magnetic (iron oxide) nanoparticles via polymer-polymer (poly(acrylic acid)/poly(2-vinyl pyridine)) complexation. The obtained whiskers demonstrated a substantial magnetic response in the polymerizing epoxy resin, with application of only a 20 mT (200 G) magnetic field. We also found that the whiskers chemically reacted with the epoxy resin, causing formation of an extended interphase near the boundary of the whiskers. The SiC whiskers oriented with the magnetic field demonstrated positive effects on the behavior of epoxy-based nanocomposites. Namely, the aligned MSiCWs enhanced the thermomechanical properties of the materials significantly above that of the neat epoxy and epoxy nanocomposite, with randomly oriented whiskers.

  12. Thermodynamics and economic feasibility of acetone production from syngas using the thermophilic production host Moorella thermoacetica

    DEFF Research Database (Denmark)

    Redl, Stephanie Maria Anna; Sukumara, Sumesh; Ploeger, Tom

    2017-01-01

    -gas via condensation. Results: In this study we analyzed the production of acetone from syngas with the hypothetical production host derived from Moorella thermoacetica in a bubble column reactor at 60 degrees C with respect to thermodynamic and economic feasibility. We determined the cost of syngas...... production from basic oxygen furnace (BOF) process gas, from natural gas, and from corn stover and identified BOF gas as an economically interesting source for syngas. Taking gasliquid mass transfer limitations into account, we applied a thermodynamics approach to derive the CO to acetone conversion rate...... under the process conditions. We estimated variable costs of production of 389 $/t acetone for a representative production scenario from BOF gas with costs for syngas as the main contributor. In comparison, the variable costs of production from natural gas-and corn stover-derived syngas were determined...

  13. Enhancing the Heat Transfer Efficiency in Graphene-Epoxy Nanocomposites Using a Magnesium Oxide-Graphene Hybrid Structure.

    Science.gov (United States)

    Du, Fei-Peng; Yang, Wen; Zhang, Fang; Tang, Chak-Yin; Liu, Sheng-Peng; Yin, Le; Law, Wing-Cheung

    2015-07-08

    Composite materials, such as organic matrices doped with inorganic fillers, can generate new properties that exhibit multiple functionalities. In this paper, an epoxy-based nanocomposite that has a high thermal conductivity and a low electrical conductivity, which are required for the use of a material as electronic packaging and insulation, was prepared. The performance of the epoxy was improved by incorporating a magnesium oxide-coated graphene (MgO@GR) nanomaterial into the epoxy matrix. We found that the addition of a MgO coating not only improved the dispersion of the graphene in the matrix and the interfacial bonding between the graphene and epoxy but also enhanced the thermal conductivity of the epoxy while preserving the electrical insulation. By adding 7 wt % MgO@GR, the thermal conductivity of the epoxy nanocomposites was enhanced by 76% compared with that of the neat epoxy, and the electrical resistivity was maintained at 8.66 × 10(14) Ω m.

  14. Synthesis and Characterization of Modified Epoxy Resins by Silicic Acid Tetraethyl Ester and Nano-SiO2

    Institute of Scientific and Technical Information of China (English)

    李海燕; 张之圣

    2004-01-01

    A kind of modified epoxy resins was obtained by condensation of epoxy resin with silicic acid tetraethyl ester(TEOS) and nano-SiO2. The reactions were performed with hydrochloric acid as a catalyst at 63 °C.The structure, thermal stability and morphological characteristics of the modified epoxy resins were studied through infrared spectra(FT-IR) analysis, thermogravimetric (TG) analysis and scanning electron microscopy respectively. It has been found from the IR and TG study that modified epoxy resins have greater thermal stability than epoxy resins, and its thermal stability has been improved by the formation of inter-crosslinked network structure. The modified epoxy resins exhibit heterogeneous morphology and heterogeneity increases with more TEOS feeding, which in turn confirms the formation of inter-crosslinked network structure in modified epoxy resins.

  15. Radiation curing of {gamma}-Al{sub 2}O{sub 3} filled epoxy resin

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Kim, Dong Jin; Nho, Young Chang [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    Epoxy resins are widely utilized as high performance thermosetting resins for many industrial applications but characterized by a relatively low toughness. Recently, the incorporation with rigid inorganic was suggested to improve the mechanical properties of epoxy resins. In the present work, an attempt has been taken to disperse nano-sized {gamma}- Al{sub 2}O{sub 3} particles into diglycidyl ether of bisphenol-A (DGEBA) epoxy resins for improvement of the mechanical properties. These hybrid epoxy-alumina composites were prepared using by the {gamma}-ray curing technique that was conducted with 100kGy under nitrogen at room temperature. The composites were characterized by determining gel content, UTM (Instron model 4443), SEM, FT-IR studies.

  16. Tensile Mechanical Property of Oil Palm Empty Fruit Bunch Fiber Reinforced Epoxy Composites

    Science.gov (United States)

    Ghazilan, A. L. Ahmad; Mokhtar, H.; Shaik Dawood, M. S. I.; Aminanda, Y.; Ali, J. S. Mohamed

    2017-03-01

    Natural, short, untreated and randomly oriented oil palm empty fruit bunch fiber reinforced epoxy composites were manufactured using vacuum bagging technique with 20% fiber volume composition. The performance of the composite was evaluated as an alternative to synthetic or conventional reinforced composites. Tensile properties such as tensile strength, modulus of elasticity and Poisson’s ratio were compared to the tensile properties of pure epoxy obtained via tensile tests as per ASTM D 638 specifications using Universal Testing Machine INSTRON 5582. The tensile properties of oil palm empty fruit bunch fiber reinforced epoxy composites were lower compared to plain epoxy structure with the decrement in performances of 38% for modulus of elasticity and 61% for tensile strength.

  17. Mechanical and Thermal Properties of Epoxy Composites Containing Zirconia-Impregnated Halloysite Nanotubes with Different Loadings.

    Science.gov (United States)

    Kim, Suhyun; Kim, Moon Il; Shon, Minyoung; Seo, Bongkuk; Lim, Choongsun

    2018-09-01

    Epoxy resins are widely used in various industrial fields due to their low cost, good workability, heat resistance, and good mechanical strength. However, they suffer from brittleness, an issue that must be addressed for further applications. To solve this problem, additional fillers are needed to improve the mechanical and thermal properties of the resins; zirconia is one such filler. However, it has been reported that aggregation may occur in the epoxy composites as the amount of zirconia increases, preventing enhancement of the mechanical strength of the epoxy composites. Herein, to reduce the aggregation, zirconia was well dispersed on halloysite nanotubes (HNTs), which have high thermal and mechanical strength, by a conventional wet impregnation method. The HNTs were impregnated with zirconia at different loadings using zirconyl chloride octahydrate as a precursor. The mechanical and thermal strengths of the epoxy composites with these fillers were investigated. The zirconia-impregnated HNTs (Zr/HNT) were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and tunneling electron microscopy (TEM). The hardening conditions of the epoxy composites were analyzed by differential scanning calorimetry (DSC). The thermal strength of the epoxy composites was studied by thermomechanical analysis (TMA) and micro-calorimetry and the mechanical strength of the epoxy composites (flexural strength and tensile strength) was studied by using a universal testing machine (UTM). The mechanical and thermal strengths of the epoxy composites with Zr/HNT were improved compared to those of the epoxy composite with HNT, and also increased as the zirconia loading on HNT increased.

  18. Noncovalently Functionalized Tungsten Disulfide Nanosheets for Enhanced Mechanical and Thermal Properties of Epoxy Nanocomposites.

    Science.gov (United States)

    Sahu, Megha; Narashimhan, Lakshmi; Prakash, Om; Raichur, Ashok M

    2017-04-26

    In the present study, noncovalently functionalized tungsten disulfide (WS 2 ) nanosheets were used as a toughening agent for epoxy nanocomposites. WS 2 was modified with branched polyethyleneimine (PEI) to increase the degree of interaction of nanosheets with the epoxy matrix and prevent restacking and agglomeration of the sheets in the epoxy matrix. The functionalization of WS 2 sheets was confirmed through Fourier transform infrared spectroscopy and thermogravimetric analysis. The exfoliation of the bulk WS 2 was confirmed through X-ray diffraction and various microscopic techniques. Epoxy nanocomposites containing up to 1 wt % of WS 2 -PEI nanosheets were fabricated. They showed a remarkable improvement in fracture toughness (K IC ). K IC increased from 0.94 to 1.72 MPa m -1/2 for WS 2 -PEI nanosheet loadings as low as 0.25 wt %. Compressive and flexural properties also showed a significant improvement as incorporation of 0.25 wt % of WS 2 -PEI nanosheets resulted in 43 and 65% increase in the compressive and flexural strengths of epoxy nanocomposites, respectively, compared with neat epoxy. Thermal stability and thermomechanical properties of the WS 2 -PEI-modified epoxy also showed a significant improvement. The simultaneous improvement in the mechanical and thermal properties could be attributed to the good dispersion of WS 2 -PEI nanosheets in the matrix, intrinsic high strength and thermal properties of the nanosheets, and improved interaction of the WS 2 nanosheets with the epoxy matrix owing to the presence of PEI molecules on the surface of the WS 2 nanosheets.

  19. Modified silyl-terminated polyether polymer blends with bisphenol A diglycidyl ether epoxy for adhesive applications

    International Nuclear Information System (INIS)

    Bitenieks, J; Meri, R Merijs; Zicans, J; Berzins, R; Umbraško, J; Rekners, U

    2016-01-01

    Modified silyl-terminated polyether polymer (MS Polymer) was blended with bisphenol A diglycidyl ether (DGEBPA) epoxy at MS Polymer/epoxy ratio from 30/70 to 70/30. MS Polymer/epoxy systems were examined for two-component adhesive formulation with additional fillers. Applicability of the MS Polymer/epoxy system at the ratio of the components 60/40 is demonstrated for the development of adhesive formulation. Rheological analysis of the components A and B shows suitable viscosity values for development of two- component adhesives formulation. Curing dynamics as well as tensile stress-strain properties and Shore A hardness of the chosen adhesive formulation are reasonable for the development of MS Polymer/epoxy type adhesive. (paper)

  20. Analysis of O-Glycopeptides by Acetone Enrichment and Capillary Electrophoresis-Mass Spectrometry.

    Science.gov (United States)

    Mancera-Arteu, Montserrat; Giménez, Estela; Benavente, Fernando; Barbosa, José; Sanz-Nebot, Victòria

    2017-11-03

    Acetone precipitation was evaluated as a rapid, simple, low-cost, and efficient method for the selective purification of O-glycopeptides from enzymatic digests of glycoproteins. Ovalbumin (OVA), human and bovine α 1 -acid glycoprotein (hAGP and bAGP), human apolipoprotein C-III (APO-C3), and recombinant human erythropoietin (rhEPO) were used to obtain enzymatic digests with a broad and varied set of peptides, N-glycopeptides, and O-glycopeptides. After digestion and before capillary electrophoresis mass spectrometry (CE-MS) analysis, the amount of ice-cold acetone added to the digests was optimized to maximize recoveries of O-glycopeptides. Furthermore, the different behavior of peptides, N- and O-glycopeptides was explained by studying with multivariate data analysis methods the influence of several physicochemical parameters and properties related to their composition and structure. Principal component analysis (PCA) and, afterward, partial least-squares discriminant analysis (PLS-DA) were used to identify the most significant variables and their importance to differentiate between peptides, N-glycopeptides and O-glycopeptides, or within these classes. This information was useful to understand precipitation of these compounds after addition of acetone and for the selection of the optimal conditions for purification of specific O-glycopeptide biomarkers. Special attention was paid to O 126 -glycopeptide glycoforms of rhEPO because of their applicability in biopharmaceutical quality control and doping analysis.