WorldWideScience

Sample records for acetals carboxylic acid

  1. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    Science.gov (United States)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  2. Ethylene-enhanced catabolism of [14C]indole-3-acetic acid to indole-3-carboxylic acid in citrus leaf tissues

    International Nuclear Information System (INIS)

    Sagee, O.; Riov, J.; Goren, J.

    1990-01-01

    Exogenous [ 14 C]indole-3-acetic acid (IAA) is conjugated in citrus (Citrus sinensis) leaf tissues to one major substance which has been identified as indole-3-acetylaspartic acid (IAAsp). Ethylene pretreatment enhanced the catabolism of [ 14 C]IAA to indole-3-carboxylic acid (ICA), which accumulated as glucose esters (ICGlu). Increased formation of ICGlu by ethylene was accompanied by a concomitant decrease in IAAsp formation. IAAsp and ICGlu were identified by combined gas chromatography-mass spectrometry. Formation of ICGlu was dependent on the concentration of ethylene and the duration of the ethylene pretreatment. It is suggested that the catabolism of IAA to ICA may be one of the mechanisms by which ethylene endogenous IAA levels

  3. Enhancement of carboxylic acid degradation with sulfate radical generated by persulfate activation.

    Science.gov (United States)

    Criquet, J; Nebout, P; Karpel Vel Leitner, N

    2010-01-01

    The aim of this work was to investigate the generation of sulfate radical for the removal of two carboxylic acids in aqueous solution: acetic and citric acids. From photochemical and radiolytic processes, kinetics of the degradation of these two carboxylic acids was studied as a function of the pH of the solution. It was shown that the maximum of acetic acid degradation occurred at pH 5. Above this pH, competitive reactions with the carbon mineralized inhibit the reaction of with the solute. In the case of citric acid, pH has only a little effect on the kinetic of citric acid degradation. The determination of mineralization yields shows several differences depending on carboxylic acids and pH. The degradation of both carboxylic acids was also studied in the radiolysis process whether with or without persulfate addition. A comparison of the processes of sulfate radical production is presented.

  4. Chemistry and electrochemistry in trifluoroacetic acid. Comparison with acetic acid

    International Nuclear Information System (INIS)

    Petit, Gerard

    1972-01-01

    As the trifluoroacetic acid is, with the acetic acid, one of most often used carboxylic acids as solvent, notably in organic chemistry, this research thesis addresses some relatively simple complexing and redox reactions to highlight the peculiar feature of this acid, and to explain its very much different behaviour with respect to acetic acid. The author develops the notion of acidity level in solvents of low dielectric constant. The second part addresses a specific solvent: BF 3 (CH 3 COOH) 2 . The boron trifluoride strengthens the acidity of acetic acid and modifies its chemical and physical-chemical properties. In the third part, the author compares solvent properties of CF 3 COOH and CH 3 COOH. Noticed differences explain why the trifluoroacetic acid is a more interesting reaction environment than acetic acid for reactions such as electrophilic substitutions or protein solubilisation [fr

  5. Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production

    International Nuclear Information System (INIS)

    Wang, Shurong; Guo, Zuogang; Cai, Qinjie; Guo, Long

    2012-01-01

    Bio-oil must be upgraded to be suitable for use as a high-grade transport fuel. Crude bio-oil has a high content of carboxylic acids which can cause corrosion, and the high oxygen content of these acids also reduces the oil’s heating value. In this paper, acetic acid and propanoic acid were chosen as the model carboxylic acids in bio-oil. Their behavior in the production of liquid hydrocarbons during a catalytic conversion process was investigated in a micro-fixed bed reactor. The liquid organic phase from this catalytic conversion process mainly consisted of liquid hydrocarbons and phenol derivatives. Under the condition of low Liquid Hourly Space Velocity (LHSV), the liquid organic phase from acetic acid cracking had a selectivity of 22% for liquid hydrocarbons and a selectivity of 65% for phenol derivatives. The composition of the organic products changed considerably with the LHSV increasing to 3 h −1 . The selectivity for liquid hydrocarbons increased up to 52% while that for phenol derivatives decreased to 32%. Propanoic acid performed much better in producing liquid hydrocarbons than acetic acid. Its selectivity for liquid hydrocarbons was as high as 80% at LHSV = 3 h −1 . A mechanism for this catalytic conversion process was proposed according to the analysis of the components in the liquid organic phases. The pathways of the main compounds formation in the liquid organic phases were proposed, and the reason why liquid hydrocarbons were more effectively produced when using propanoic acid rather than acetic acid was also successfully explained. In addition, BET and SEM characterization were used to analyze the catalyst coke deposition. -- Graphical abstract: Display Omitted Highlights: ► High content of carboxylic acids in bio-oil causes its corrosiveness. ► Acetic acid and propanoic acid are two dominant acids in bio-oil. ► Liquid hydrocarbons were produced by cracking of these two dominant acids. ► A mechanism model was proposed to explain

  6. SYNTHESIS OF FLAVANONE-6-CARBOXYLIC ACID DERIVATIVES FROM SALICYLIC ACID DERIVATIVE

    Directory of Open Access Journals (Sweden)

    Muhammad Idham Darussalam Mardjan

    2012-02-01

    Full Text Available Synthesis of flavanone-6-carboxylic acid derivatives had been conducted via the route of chalcone. The synthesis was carried out from salicylic acid derivative, i.e. 4-hydroxybenzoic acid, via esterification, Fries rearrangement, Claisen-Schmidt condensation and 1,4-nucleophilic addition reactions. Structure elucidation of products was performed using FT-IR, 1H-NMR, GC-MS and UV-Vis spectrometers. Reaction of 4-hydroxybenzoic acid with methanol catalyzed with sulfuric acid produced methyl 4-hydroxybenzoate in 87% yield. The acid-catalyzed-acetylation of the product using acetic anhydride gave methyl 4-acetoxybenzoate in 75% yield. Furthermore, solvent-free Fries rearrangement of methyl 4-acetoxybenzoate in the presence of AlCl3 produced 3-acetyl-4-hydroxybenzoic acid as the acetophenone derivatives in 67% yield. Then, Claisen-Schmidt condensation of the acetophenone and benzaldehyde derivatives of p-anisaldehyde and veratraldehyde in basic condition gave 2'-hydroxychalcone-5'-carboxylic acid derivatives  in 81 and 71 % yield, respectively. Finally, the ring closure reaction of the chalcone yielded the corresponding flavanone-6-carboxylic acids in 67 and 59% yield, respectively.

  7. Metal extraction by amides of carboxylic acids

    International Nuclear Information System (INIS)

    Skorovarov, D.I.; Chumakova, G.M.; Rusin, L.I.; Ul'anov, V.S.; Sviridova, R.A.; Sviridov, A.L.

    1988-01-01

    Extraction ability of various amides was studied. Data on extraction of rare earths, vanadium, molybdenum, rhenium, uranium, niobium, tantalum by N,N-dibutyl-amides of acetic, nonanic acids and fatly synthetic acids of C 7 -C 9 fractions are presented. Effect of salting-out agents, inorganic acid concentrations on extraction process was studied. Potential ability of using amides of carboxylic acids for extractional concentration of rare earths as well as for recovery and separation of iron, rhenium, vanadium, molybdenum, uranium, niobium, and tantalum was shown

  8. Effects of carboxylic acids on nC60 aggregate formation

    International Nuclear Information System (INIS)

    Chang Xiaojun; Vikesland, Peter J.

    2009-01-01

    The discovery that negatively charged aggregates of C 60 fullerene (nC 60 ) are stable in water has raised concerns regarding the potential environmental and health effects of these aggregates. In this work, we show that nC 60 aggregates produced by extended mixing in the presence of environmentally relevant carboxylic acids (acetic acid, tartaric acid, citric acid) have surface charge and morphologic properties that differ from those produced by extended mixing in water alone. In general, aggregates formed in the presence of these acids have a more negative surface charge and are more homogeneous than those produced in water alone. Carboxylic acid identity, solution pH, and sodium ion concentration, which are all intricately coupled, play an important role in setting the measured surface charge. Comparisons between particle sizes determined by analysis of TEM images and those obtained by dynamic light scattering (DLS) indicate that DLS results require careful evaluation when used to describe nC 60 aggregates. - The effects of carboxylic acids on the formation of nC 60 aggregates are discussed

  9. Formation and High-order Carboxylic Acids (RCOOH) in Interstellar Analogous Ices of Carbon Dioxide (CO2) and Methane(CH4)

    Science.gov (United States)

    Zhu, Cheng; Turner, Andrew M.; Abplanalp, Matthew J.; Kaiser, Ralf I.

    2018-01-01

    This laboratory study simulated the abiotic formation of carboxylic acids (RCOOH) in interstellar analogous ices of carbon dioxide (CO2) and methane (CH4) at 10 K upon exposure to energetic electrons. The chemical processing of the ices and the subsequent warm-up phase were monitored online and in situ, exploiting Fourier Transform Infrared Spectrometry and quadrupole mass spectrometry. Characteristic absorptions of functional groups of carboxylic acids (RCOOH) were observed in the infrared spectra of the irradiated ice. Two proposed reaction mechanisms replicated the kinetic profiles of the carboxylic acids along with the decay profile of the precursors during the irradiation via hydrocarbon formation, followed by carboxylation and/or through acetic acid along with mass growth processes of the alkyl chain. Mass spectra recorded during the warm-up phase demonstrated that these acids are distributed from acetic acid (CH3COOH) up to decanoic acid (C9H19COOH). High-dose irradiation studies (91 ± 14 eV) converted low-molecular-weight acids such as acetic acid (CH3COOH) and propionic acid (C2H5COOH) to higher-molecular-weight carboxylic acids, compared to low-dose irradiation studies (18 ± 3 eV). The traces of the {{{H}}}2{{C}}= {{C}}({OH}{)}2+ (m/z = 60) fragment—a link to linear carboxylic acids—implied that higher-order acids (C n H2n+1COOH, n ≥ 5) are likely branched, which correlates with the recent analysis of the structures of the monocarboxylic acids in the Murchison meteorite.

  10. In situ Recovery of Bio-Based Carboxylic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Eric M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saboe, Patrick [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Manker, Lorenz [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Michener, William E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Peterson, Darren J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brandner, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Deutch, Stephen P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cywar, Robin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kumar, Manish [Pennsylvania State University

    2018-03-16

    The economics of chemical and biological processes is often dominated by the expense of downstream product separations from dilute product streams. Continuous separation techniques, such as in situ product recovery (ISPR), are attractive in that they can concentrate products from a reactor and minimize solvent loss, thereby increasing purity and sustainability of the process. In bioprocesses, ISPR can have an additional advantage of increasing productivity by alleviating product inhibition on the microorganism. In this work, we developed a liquid-liquid extraction (LLE)-based ISPR system integrated with downstream distillation to selectively purify free carboxylic acids, which were selected as exemplary bioproducts due to their ability to be produced at industrially relevant titers and productivities. Equilibrium constants for the extraction of carboxylic acids into a phosphine-oxide based organic phase were experimentally determined. Complete recovery of acids from the extractant and recyclability of the organic phase were demonstrated through multiple extraction-distillation cycles. Using these data, an equilibrium model was developed to predict the acid loading in the organic phase as a function of the extraction equilibrium constant, initial aqueous acid concentration, pH, organic to aqueous volume ratio, and temperature. A distillation process model was then used to predict the energy input required to distill neat acid from an organic phase as a function of the acid loading in the organic phase feed. The heat integrated distillation train can achieve neat recovery of acetic acid with an energy input of 2.6 MJ kg-1 of acetic acid. This LLE-based ISPR system integrated with downstream distillation has an estimated carbon footprint of less than 0.36 kg CO2 per kg of acetic acid, and provides a green approach to enable both new industrial bioprocesses, and process intensification of existing industrial operations by (1) increasing the productivity and titer of

  11. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    Science.gov (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  12. (Liquid + liquid) equilibria measurements for ternary systems (sulfolane + a carboxylic acid + n-heptane) at T = 303.15 K and at 0.1 MPa

    International Nuclear Information System (INIS)

    Cele, N.P.; Bahadur, I.; Redhi, G.G.; Ebenso, E.E.

    2016-01-01

    Highlights: • The (liquid + liquid) equilibrium for (sulfolane + a carboxylic acid + heptane) was measured. • Selectivity values for solvent separation efficiency were calculated. • Separation of carboxylic acids from heptane is feasible by extraction. • Three parameter equations have been fitted to the binodal curve data. • The NRTL and UNIQUAC models were used to correlate the experimental data. - Abstract: In the present work, new (liquid + liquid) equilibrium (LLE) values are reported for ternary systems {sulfolane(1) + acetic acid, or propanoic acid, or butanoic acid, or 2-methylpropanoic acid, or pentanoic acid, or 3-methylbutanoic acid (2) + n-heptane (3)} at T = 303.15 K and at p = 0.1 MPa. The mutual solubility of carboxylic acid in sulfolane is dependent on the length and structure of the alkyl chain of the carboxylic acid; it progressively increases with an increase in the alkyl chain of the carboxylic acid. The single phase homogenous region increases as the alkyl chain of the carboxylic acid increases. The n-heptane is most soluble in the carboxylic acid mixtures with long alkyl chain, that is, (3-methylbutanoic acid + sulfolane) and (pentanoic acid + sulfolane) systems and least soluble in the carboxylic acid with short alkyl chain (acetic acid + sulfolane) system. Carboxylic acid together with many other oxygenates and hydrocarbons are produced by SASOL Company in South Africa using the Fischer–Tropsch process. The details about this process are given in introduction section. The NRTL and UNIQUAC models were used to correlate the experimental tie-lines and to calculate the phase compositions of the ternary systems. It was found that the NRTL model fits the experimental values significantly better than the UNIQUAC model.

  13. Separation and determination of some carboxylic acids by capillary electrophoresis

    International Nuclear Information System (INIS)

    Sladkov, V.; Fourest, B.

    2006-01-01

    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  14. Separation and determination of some carboxylic acids by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Sladkov, V.; Fourest, B

    2006-07-01

    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  15. In Vitro Reactivity of Carboxylic Acid-CoA Thioesters with Glutathione

    DEFF Research Database (Denmark)

    Sidenius, Ulrik; Skonberg, Christian; Olsen, Jørgen

    2004-01-01

    was to investigate whether a correlation could be found between the structure of acyl-CoA thioesters and their reactivities toward the tripeptide, glutathione (ç- Glu-Cys-Gly).  The  acyl-CoA  thioesters  of  eight  carboxylic  acids  (ibuprofen,  clofibric  acid, indomethacin,  fenbufen,  tolmetin,  salicylic  acid......The chemical reactivity of acyl-CoA thioesters toward nucleophiles has been demonstrated in several recent studies. Thus, intracellularly formed acyl-CoAs of xenobiotic carboxylic acids may react covalently with endogenous proteins and potentially lead to adverse effects. The purpose of this study......,  2-phenoxypropionic  acid,  and  (4-chloro-2-methyl-phenoxy)acetic  acid  (MCPA))  were  synthesized,  and  each  acyl-CoA  (0.5  mM)  was incubated with glutathione (5.0 mM) in 0.1 M potassium phosphate (pH 7.4, 37 °C). All of the acyl-CoAs reacted with glutathione to form the respective acyl...

  16. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    Science.gov (United States)

    Vaïtilingom, M.; Charbouillot, T.; Deguillaume, L.; Maisonobe, R.; Parazols, M.; Amato, P.; Sancelme, M.; Delort, A.-M.

    2011-08-01

    The objective of this work was to compare experimentally the contribution of photochemistry vs. microbial activity to the degradation of carboxylic acids present in cloud water. For this, we selected 17 strains representative of the microflora existing in real clouds and worked on two distinct artificial cloud media that reproduce marine and continental cloud chemical composition. Photodegradation experiments with hydrogen peroxide (H2O2) as a source of hydroxyl radicals were performed under the same microcosm conditions using two irradiation systems. Biodegradation and photodegradation rates of acetate, formate, oxalate and succinate were measured on both media at 5 °C and 17 °C and were shown to be on the same order of magnitude (around 10-10-10-11 M s-1). The chemical composition (marine or continental origin) had little influence on photodegradation and biodegradation rates while the temperature shift from 17 °C to 5 °C decreased biodegradation rates of a factor 2 to 5. In order to test other photochemical scenarios, theoretical photodegradation rates were calculated considering hydroxyl (OH) radical concentration values in cloud water estimated by cloud chemistry modelling studies and available reaction rate constants of carboxylic compounds with both hydroxyl and nitrate radicals. Considering high OH concentration ([OH] = 1 × 10-12 M) led to no significant contribution of microbial activity in the destruction of carboxylic acids. On the contrary, for lower OH concentration (at noon, [OH] = 1 × 10-14 M), microorganisms could efficiently compete with photochemistry and in similar contributions than the ones estimated by our experimental approach. Combining these two approaches (experimental and theoretical), our results led to the following conclusions: oxalate was only photodegraded; the photodegradation of formate was usually more efficient than its biodegradation; the biodegradation of acetate and succinate seemed to exceed their photodegradation.

  17. Uranium (IV) carboxylates - I

    Energy Technology Data Exchange (ETDEWEB)

    Satpathy, K C; Patnaik, A K [Sambalpur Univ. (India). Dept. of Chemistry

    1975-11-01

    A few uranium(IV) carboxylates with monochloro and trichloro acetic acid, glycine, malic, citric, adipic, o-toluic, anthranilic and salicylic acids have been prepared by photolytic methods. The I.R. spectra of these compounds are recorded and basing on the spectral data, structure of the compounds have been suggested.

  18. Separation of aliphatic carboxylic acids and benzenecarboxylic acids by ion-exclusion chromatography with various cation-exchange resin columns and sulfuric acid as eluent.

    Science.gov (United States)

    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill

    2003-05-16

    The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.

  19. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  20. CARBOXYLIC ACIDS ELECTROOXIDATION ON SHUNGITE ELECTRODE

    Directory of Open Access Journals (Sweden)

    Oleksandr Davydenko

    2017-03-01

    Full Text Available Purpose: This article discusses the electrochemical method of directional conversion of carboxylic acids, which are the most aggressive hydrocarbons oxidation products back into the corresponding hydrocarbons. Existing methods for the regeneration of waste petroleum oils have significant drawbacks, which include the formation of new hard-reclaimed waste and loss of a significant part of the oil during regeneration. Methods: Electrooxidation processes of carboxylic acid on various electrode materials: platinum, graphite and shungite anodes were studied. Results: Potentiostatic polarization curves with simultaneous measurement of near-electrode solution pH showed differences in the process on these anode materials: dimer yield for Kolbe is decreased under the transition from platinum to shungite. At potentials higher than 2.0 v, carboxylic acid has a higher adsorbability compared to water. Therefore Faraday’s side-process of water oxidation doesn’t almost occur, which contributes to high yield of expected product according to current. Electrolysis of carboxylic acids solutions under controlled potential (2.0 and 2.4 V and chromatographic analysis of the formed products showed that along with the dimeric structures formation for Kolbe reaction, the occurrence of a hydrocarbons mixture takes place, which may be the result of disproportionation of hydrocarbon radicals (alkane and alkene and hydrocarbons of isomeric structure, by further oxidation of the hydrocarbon radical to carbocation and its subsequent transformation into the corresponding saturated and unsaturated isomers. Such statement is not supported by conception of the process of one- and two-electron carboxylic acid oxidation. Discussion: General carboxylic acid oxidation scheme according to one-electron mechanism (dimerization and disproportionation of the radical and two-electron mechanism (formation and carbocation rearrangement is proposed. The formation of hydrocarbons under

  1. Thermodynamic studies on corrosion inhibition of aqueous solutions of amino/carboxylic acids toward copper by EMF measurement

    International Nuclear Information System (INIS)

    Spah, Manjula; Spah, Dal Chand; Deshwal, Balraj; Lee, Seungmoon; Chae, Yoon-Keun; Park, Jin Won

    2009-01-01

    Electromotive force (E) measurements were made on an electrochemical cell [Cu x Hg|CuCl 2 (m) in a solvent S|AgCl-Ag] (where S is a dilute aqueous solution (0.01 m) of amino acid (glycine, alanine, methionine and glutamic acid) or aliphatic carboxylic acid (formic acid, acetic acid, n-butyric acid and glutaric acid)) at 30 deg. C. These measured E values were used to compute the dissociation constants (K 1 and K 2 ) and the degree of dissociation (α 1 and α 2 ) by iterative procedures. The standard cell potential (E o ) and the mean activity coefficient (γ ± ) of CuCl 2 were also determined. The E o data were next used to evaluate the Gibbs energy of transfer (ΔG tr 0 ) of CuCl 2 from water to dilute aqueous solutions of the amino/carboxylic acids. The negative ΔG tr 0 values suggested that these acids act as potential corrosion inhibitors. The magnitudes of ΔG tr 0 values show that the amino acids act as better corrosion inhibitors towards copper than the aliphatic carboxylic acids.

  2. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    Directory of Open Access Journals (Sweden)

    M. Vaïtilingom

    2011-08-01

    Full Text Available The objective of this work was to compare experimentally the contribution of photochemistry vs. microbial activity to the degradation of carboxylic acids present in cloud water. For this, we selected 17 strains representative of the microflora existing in real clouds and worked on two distinct artificial cloud media that reproduce marine and continental cloud chemical composition. Photodegradation experiments with hydrogen peroxide (H2O2 as a source of hydroxyl radicals were performed under the same microcosm conditions using two irradiation systems. Biodegradation and photodegradation rates of acetate, formate, oxalate and succinate were measured on both media at 5 °C and 17 °C and were shown to be on the same order of magnitude (around 10−10–10−11 M s−1. The chemical composition (marine or continental origin had little influence on photodegradation and biodegradation rates while the temperature shift from 17 °C to 5 °C decreased biodegradation rates of a factor 2 to 5.

    In order to test other photochemical scenarios, theoretical photodegradation rates were calculated considering hydroxyl (OH radical concentration values in cloud water estimated by cloud chemistry modelling studies and available reaction rate constants of carboxylic compounds with both hydroxyl and nitrate radicals. Considering high OH concentration ([OH] = 1 × 10−12 M led to no significant contribution of microbial activity in the destruction of carboxylic acids. On the contrary, for lower OH concentration (at noon, [OH] = 1 × 10−14 M, microorganisms could efficiently compete with photochemistry and in similar contributions than the ones estimated by our experimental approach.

    Combining these two approaches (experimental and theoretical, our results led to the following conclusions: oxalate was only photodegraded; the photodegradation of formate was usually more

  3. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Richard L. [Colorado School of Mines, Golden, CO (United States)

    2004-09-01

    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate

  4. Production of carboxylic acid and salt co-products

    Science.gov (United States)

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  5. Pd(II)/Bipyridine-Catalyzed Conjugate Addition of Arylboronic Acids to α,β-Unsaturated Carboxylic Acids. Synthesis of β-Quaternary Carbons Substituted Carboxylic Acids.

    Science.gov (United States)

    Liu, Rui; Yang, Zhenyu; Ni, Yuxin; Song, Kaixuan; Shen, Kai; Lin, Shaohui; Pan, Qinmin

    2017-08-04

    Pd(II)/bipyridine-catalyzed conjugate addition of arylboronic acids to α,β-unsaturated carboxylic acids (including β,β-disubstituted acrylic acids) was developed and optimized, which provided a mild and convenient method for the highly challenging synthesis of β-quaternary carbons substituted carboxylic acids.

  6. Approaches to α-amino acids via rearrangement to electron-deficient nitrogen: Beckmann and Hofmann rearrangements of appropriate carboxyl-protected substrates

    Directory of Open Access Journals (Sweden)

    Sosale Chandrasekhar

    2012-08-01

    Full Text Available The titled approaches were effected with various 2-substituted benzoylacetic acid oximes 3 (Beckmann and 2-substituted malonamic acids 9 (Hofmann, their carboxyl groups being masked as a 2,4,10-trioxaadamantane unit (an orthoacetate. The oxime mesylates have been rearranged with basic Al2O3 in refluxing CHCl3, and the malonamic acids with phenyliodoso acetate and KOH/MeOH. Both routes are characterized by excellent overall yields. Structure confirmation of final products was conducted with X-ray diffraction in selected cases. The final N-benzoyl and N-(methoxycarbonyl products are α-amino acids with both carboxyl and amino protection; hence, they are of great interest in peptide synthesis.

  7. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids.

    Science.gov (United States)

    Naruto, Masayuki; Saito, Susumu

    2015-08-28

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)](+)) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru-H](+), which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources.

  8. ACETIC ACID AND A BUFFER

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent.......The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent....

  9. Kinetics of Oxidation of 3-Benzoylpropionic Acid by N-Bromoacetamide in Aqueous Acetic Acid Medium

    Directory of Open Access Journals (Sweden)

    N. A. Mohamed Farook

    2011-01-01

    Full Text Available The kinetics of oxidation of 3-benzoylpropionic acid (KA with N-bromoacetamide (NBA have been studied potentiometrically in 50:50 (v/v aqueous acetic acid medium at 298 K The reaction was first order each with respect to [KA], [NBA] and [H+]. The main product of the oxidation is the corresponding carboxylic acid. The rate decreases with the addition of acetamide, one of the products of the reaction. Variation in ionic strength of the reaction medium has no significant effect on the rate of oxidation. But the rate of the reaction is enhanced by lowering the dielectric constant of the reaction medium. A mechanism consistent with observed results have been proposed and the related rate law was deduced.

  10. Novel Polymers with Carboxylic Acid Loading

    DEFF Research Database (Denmark)

    Thomsen, Anders Daugaard; Malmström, Eva; Hvilsted, Søren

    2006-01-01

    Click chemistry has been used to prepare a range of novel polymers with pendant carboxylic acid side groups. Four azido carboxylic acids, either mono- or difunctional and aliphatic or aromatic, have been prepared and thoroughly characterized. Extensive model reactions with 1-ethyl-4-hydroxybenzene......, the simplest model for poly(4-hydroxystyrene), and the four azido carboxylic acids have been conducted to establish the proper reaction conditions and provide an analytical frame for the corresponding polymers. Poly(4-hydroxystyrene) moieties in three different polymers—poly(4-hydroxystyrene), poly(4...... the polymers in general exhibit [when poly(4-hydroxystyrene) is a substantial part] significant changes in the glass-transition temperature from the polar poly(4-hydroxystyrene) (120–130 °C) to the much less polar alkyne polymers (46–60 °C). A direct correlation between the nature of the pendant groups...

  11. In vitro assessment of potential intestinal absorption of some phenolic families and carboxylic acids from commercial instant coffee samples.

    Science.gov (United States)

    López-Froilán, R; Ramírez-Moreno, E; Podio, N S; Pérez-Rodríguez, M L; Cámara, M; Baroni, M V; Wunderlin, D A; Sánchez-Mata, M C

    2016-06-15

    Coffee is one of the most consumed beverages in the world, being a source of bioactive compounds as well as flavors. Hydroxycinnamic acids, flavonols, and carboxylic acids have been studied in the samples of instant coffee commercialized in Spain. The studies about contents of food components should be complemented with either in vitro or in vivo bioaccessibility studies to know the amount of food components effectively available for functions in the human body. In this sense, a widely used in vitro model has been applied to assess the potential intestinal absorption of phenolic compounds and organic acids. The contents of hydroxycinnamic acids and flavonols were higher in instant regular coffee samples than in the decaffeinated ones. Bioaccessible phenolic compounds in most analyzed samples account for 20-25% of hydroxycinnamic acids and 17-26% of flavonols. This could mean that a great part of them can remain in the gut, acting as potential in situ antioxidants. Quinic, acetic, pyroglutamic, citric and fumaric acids were identified in commercial instant coffee samples. Succinic acid was found in the coffee blend containing chicory. All carboxylic acids showed a very high bioaccessibility. Particularly, acetic acid and quinic acid were found in higher contents in the samples treated with the in vitro simulation of gastrointestinal processes, compared to the original ones, which can be explained by their cleavage from chlorogenic acid during digestion. This is considered as a positive effect, since quinic acid is considered as an antioxidant inducer.

  12. Ultrasonic-assisted preparation of graphene oxide carboxylic acid polyvinyl alcohol polymer film and studies of thermal stability and surface resistivity.

    Science.gov (United States)

    Li, Yongshen; Li, Jihui; Li, Yuehai; Li, Yali; Song, Yunan; Niu, Shuai; Li, Ning

    2018-01-01

    In this paper, flake graphite, nitric acid and acetic anhydride are used to prepare graphene oxide carboxylic acid (GO-COOH) via an ultrasonic-assisted method, and GO-COOH and polyvinyl alcohol polymer (PVA) are used to synthesize graphene oxide carboxylic acid polyvinyl alcohol polymer (GO-COOPVA) via the ultrasonic-assisted method, and GO-COOPVA is used to manufacture graphene oxide carboxylic acid polyvinyl alcohol polymer film (GO-COOPVA film) via a solidification method, and the structure and morphology of GO-COOH, GO-COOPVA and GO-COOPVA film are characterized, and the thermal stability and surface resistivity are measured in the case of the different amount of GO-COOH. Based on the characterization and measurement, it has been successively confirmed and attested that carboxyl groups implant on 2D lattice of GO to form GO-COOH, and GO-COOH and PVA have the esterification reaction to produce GO-COOPVA, and GO-COOPVA consists of 2D lattice of GO-COOH and the chain of PVA connected in the form of carboxylic ester, and GO-COOPVA film is composed of GO-COOPVA, and the thermal stability of GO-COOPVA film obviously improves in comparison with PVA film, and the surface resistivity of GO-COOPVA film clearly decreases. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Decarboxylative Trifluoromethylation of Aliphatic Carboxylic Acids.

    Science.gov (United States)

    Kautzky, Jacob A; Wang, Tao; Evans, Ryan W; MacMillan, David W C

    2018-05-14

    Herein we disclose an efficient method for the conversion of carboxylic acids to trifluoromethyl groups via the combination of photoredox and copper catalysis. This transformation tolerates a wide range of functionality including heterocycles, olefins, alcohols, and strained ring systems. To demonstrate the broad potential of this new methodology for late-stage functionalization, we successfully converted a diverse array of carboxylic acid-bearing natural products and medicinal agents to the corresponding trifluoromethyl analogues.

  14. Synthesis and physical-chemical properties of 3-benzyl-8-propylxanthinyl-7-acetic acid and its derivatives

    Directory of Open Access Journals (Sweden)

    E. K. Mikhalchenko

    2017-04-01

    Full Text Available Introduction. Heterocyclic compounds play an important role in the metabolic processes of human organism. Structures of vitamins, nucleotides, chromoproteins are based on Nitrogen-containing heterocycles (purine, pyrimidine, thiazole etc. Thus, it was obvious to use these organic substances as basic molecules for synthetic research of biologically active compounds which could be used for treatment of different pathological processes. In their research, some scientist pay special attention to xanthine derivatives that are well-known low toxic natural compounds with wide spectrum of pronounced pharmacological properties (antioxidant, diuretic, antibacterial, anti-inflammatory etc. Insertion of carboxyl group in the structure of xanthine molecule is a prospective ability of its synthetic potential increasing. Aim of our research was the development of method of 3-benzyl-8-propylxanthinyl-7-acetic acid and its derivatives synthesis and studying their physical-chemical properties. Materials and methods. Melting points were determined using capillary method on DMP (M. 1Н NMR-spectra were recorded by Varian Mercury VX-200 device (company «Varian», USA solvent – (DMSO-d6, internal standard – ТМS. Elemental analysis of obtained compounds was produced on device Elementar Vario L cube. Results and discussion. We selected 3-benzyl-8-propyl xanthine as initial compound for our study. By its interaction with chloroacetic acid, chloroacetamide or propyl chloroacetate in DMF in the presence of calculated amount of NaHCO3 we synthesized 3-benzyl-8-propylxanthinyl-7-acetic acid its ester and amide. At the same time we found that obtaining of xanthinyl-7-acetic acid by hydrolysis of its ester produced with higher yield. On the next stage of our research we synthesized a number of water-soluble salts of 3-benzyl-8-propylxanthinyl-7-acetic acid by reaction of acid with different primary and secondary amines. The structures of all obtained compounds were

  15. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, Sascha R.A.; van der Ham, Aloysius G.J.; Schuur, Boelo

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  16. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Science.gov (United States)

    2010-07-01

    ... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali...

  17. 21 CFR 582.1005 - Acetic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is generally...

  18. Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon.

    Science.gov (United States)

    Yousuf, Ahasa; Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2016-10-01

    Amberlite IRA-67 and activated carbon were tested as promising candidates for carboxylic acid recovery by adsorption. Dark fermentation was performed without pH control and without addition of external inoculum at 37°C in batch mode. Lactic, acetic and butyric acids, were obtained, after 7days of fermentation. The maximum acid removal, 74%, from the Amberlite IRA-67 and 63% from activated carbon was obtained from clarified fermentation broth using 200gadsorbent/Lbroth at pH 3.3. The pH has significant effect and pH below the carboxylic acids pKa showed to be beneficial for both the adsorbents. The un-controlled pH fermentation creates acidic environment, aiding in adsorption by eliminating use of chemicals for efficient removal. This study proposes simple and easy valorization of waste to valuable chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. 21 CFR 184.1005 - Acetic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation of...

  20. Synthesis of carboxylic acids, esters, alcohols and ethers containing a tetrahydropyran ring derived from 6-methyl-5-hepten-2-one.

    Science.gov (United States)

    Hanzawa, Yohko; Hashimoto, Kahoko; Kasashima, Yoshio; Takahashi, Yoshiko; Mino, Takashi; Sakamoto, Masami; Fujita, Tsutomu

    2012-01-01

    3-hydroxy acids, 3-hydroxy-3,7-dimethyloct-6-enoic acid (1) and 3-hydroxy-2,2,3,7-tetramethyloct-6-enoic acid (2), were prepared from 6-methyl-5-hepten-2-one, and they were subsequently used to prepare (2,6,6-trimethyltetrahydropyran-2-yl)acetic acid (3) and 2-methyl-2-(2,6,6-trimethyltetrahydropyran-2-yl)propanoic acid (4), respectively, via cyclization with an acidic catalyst such as boron trifluoride diethyl etherate or iodine. The reaction of carboxylic acids 3 and 4 with alcohols, including methanol, ethanol, and 1-propanol, produced the corresponding methyl, ethyl, and propyl esters, which all contained a tetrahydropyran ring. Reduction of carboxylic acids 3 and 4 afforded the corresponding alcohols. Subsequent reactions of these alcohols with several acyl chlorides produced novel esters. The alcohols also reacted with methyl iodide and sodium hydride to provide novel ethers. A one-pot cyclization-esterification of 1 to produce esters containing a tetrahydropyran ring, using iodine as a catalyst, was also investigated.

  1. Carboxylic acid exchangers in analytical chemistry

    International Nuclear Information System (INIS)

    Venkateswarlu, Ch.

    1976-01-01

    The literature on the use of carboxylic acid exchangers in inorganic analytical chemistry is reviewed. It is classified under two heads, based on the ionic form in which the exchanger is employed, viz., the salt form and the acid form. In the salt form, the separations reported in the beginning are mostly carried out in alkaline medium, employing ammonia and its derivatives as complexing agents to hold cations in solution. This was followed by the use of ammonium ion as an eluent from heavy weakly or neutral solutions. There are a few separations reported making use of EDTA as eluent. It appears that separation of some anions from cations can be achieved with greater ease with these exchangers than with sulphonic acid type. Contary to the general belief, carboxylic acid exchangers are used in H + form to achieve some analytical separations of cations of interest. These exchangers exhibit better sorption of some cations in presence of complexing agents containing basic nitrogen as a donor. In fact, a careful study of these exchangers with different matrices might yield really selective exchangers, than the chelating ones known commercially. From the separation cited, carboxylic acid exchangers appear to have greater potentialities in their applications, than what is normally expected. (author)

  2. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    Science.gov (United States)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  3. Facile synthesis of α-hydroxy carboxylic acids from the corresponding α-amino acids

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Padrah, Shahrokh; Strømgaard, Kristian

    2014-01-01

    An effective and improved procedure is developed for the synthesis of α-hydroxy carboxylic acids by treatment of the corresponding protonated α-amino acid with tert-butyl nitrite in 1,4-dioxane-water. The amino moiety must be protonated and located α to a carboxylic acid function in order...

  4. High-level production of C-11-carboxyl-labeled amino acids

    International Nuclear Information System (INIS)

    Washburn, L.C.; Sun, T.T.; Byrd, B.L.; Hayes, R.L.; Butler, T.A.; Callahan, A.P.

    1979-01-01

    Carbon-11-labeled amino acids have significant potential as agents for positron tomographic functional imaging. We have developed a rapid, high-temperature, high-pressure modification of the Buecherer--Strecker amino acid synthesis and found it to be quite general for the production of C-11-carboxyl-labeled neutral amino acids. Production of C-11-carboxyl-labeled DL-tryptophan requires certain modifications in the procedure. Twelve different amino acids have been produced to date by this technique. Synthesis and chromatographic purification require approximately 40 min, and C-11-carboxyl-labeled amino acids have been produced in yields of up to 425 mCi. Two C-11-carboxyl-labeled amino acids are being investigated clinically for tumor scanning and two others for pancreatic imaging. Over 120 batches of the various agents have been produced for clinical use over a three-year period

  5. Synthesis and characterization of carboxylic acid functionalized silicon nanoparticles

    Science.gov (United States)

    Shaner, Ted V.

    Silicon nanoparticles are of great interest in a great number of fields. Silicon nanoparticles show great promise particularly in the field of bioimaging. Carboxylic acid functionalized silicon nanoparticles have the ability to covalently bond to biomolecules through the conjugation of the carboxylic acid to an amine functionalized biomolecule. This thesis explores the synthesis of silicon nanoparticles functionalized by both carboxylic acids and alkenes and their carboxylic acid functionality. Also discussed is the characterization of the silicon nanoparticles by the use of x-ray spectroscopy. Finally, the nature of the Si-H bond that is observed on the surface of the silicon nanoparticles will be investigated using photoassisted exciton mediated hydrosilation reactions. The silicon nanoparticles are synthesized from both carboxylic acids and alkenes. However, the lack of solubility of diacids is a significant barrier to carboxylic acid functionalization by a mixture of monoacids and diacids. A synthesis route to overcome this obstacle is to synthesize silicon nanoparticles with terminal vinyl group. This terminal vinyl group is distal to the surface of the silicon nanoparticle. The conversion of the vinyl group to a carboxylic acid is accomplished by oxidative cleavage using ozonolysis. The carboxylic acid functionalized silicon nanoparticles were then successfully conjugated to amine functionalized DNA strand through an n-hydroxy succinimide ester activation step, which promotes the formation of the amide bond. Conjugation was characterized by TEM and polyacrylamide gel electrophoresis (PAGE). The PAGE results show that the silicon nanoparticle conjugates move slower through the polyacrylamide gel, resulting in a significant separation from the nonconjugated DNA. The silicon nanoparticles were then characterized by the use of x-ray absorption near edge spectroscopy (Xanes) and x-ray photoelectron spectroscopy (XPS) to investigate the bonding and chemical

  6. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    Science.gov (United States)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  7. Rapid Screening of Carboxylic Acids from Waste and Surface Waters by ESI-MS/MS Using Barium Ion Chemistry and On-Line Membrane Sampling

    Science.gov (United States)

    Duncan, Kyle D.; Volmer, Dietrich A.; Gill, Chris G.; Krogh, Erik T.

    2016-03-01

    Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H]-) ions with limited selective fragmentation. However, carboxylates cationized with Ba2+ have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba]+ precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the β and γ positions yield common product ions ([BaH]+ and [BaOH]+). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization.

  8. Rapid Screening of Carboxylic Acids from Waste and Surface Waters by ESI-MS/MS Using Barium Ion Chemistry and On-Line Membrane Sampling.

    Science.gov (United States)

    Duncan, Kyle D; Volmer, Dietrich A; Gill, Chris G; Krogh, Erik T

    2016-03-01

    Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H](-)) ions with limited selective fragmentation. However, carboxylates cationized with Ba(2+) have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba](+) precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the β and γ positions yield common product ions ([BaH](+) and [BaOH](+)). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization.

  9. Complexation of carboxylate on smectite surfaces.

    Science.gov (United States)

    Liu, Xiandong; Lu, Xiancai; Zhang, Yingchun; Zhang, Chi; Wang, Rucheng

    2017-07-19

    We report a first principles molecular dynamics (FPMD) study of carboxylate complexation on clay surfaces. By taking acetate as a model carboxylate, we investigate its inner-sphere complexes adsorbed on clay edges (including (010) and (110) surfaces) and in interlayer space. Simulations show that acetate forms stable monodentate complexes on edge surfaces and a bidentate complex with Ca 2+ in the interlayer region. The free energy calculations indicate that the complexation on edge surfaces is slightly more stable than in interlayer space. By integrating pK a s and desorption free energies of Al coordinated water calculated previously (X. Liu, X. Lu, E. J. Meijer, R. Wang and H. Zhou, Geochim. Cosmochim. Acta, 2012, 81, 56-68; X. Liu, J. Cheng, M. Sprik, X. Lu and R. Wang, Geochim. Cosmochim. Acta, 2014, 140, 410-417), the pH dependence of acetate complexation has been revealed. It shows that acetate forms inner-sphere complexes on (110) in a very limited mildly acidic pH range while it can complex on (010) in the whole common pH range. The results presented in this study form a physical basis for understanding the geochemical processes involving clay-organics interactions.

  10. Antibiofilm Properties of Acetic Acid

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup

    2014-01-01

    Bacterial biofilms are known to be extremely tolerant toward antibiotics and other antimicrobial agents. These biofilms cause the persistence of chronic infections. Since antibiotics rarely resolve these infections, the only effective treatment of chronic infections is surgical removal of the inf......Bacterial biofilms are known to be extremely tolerant toward antibiotics and other antimicrobial agents. These biofilms cause the persistence of chronic infections. Since antibiotics rarely resolve these infections, the only effective treatment of chronic infections is surgical removal...... of the infected implant, tissue, or organ and thereby the biofilm. Acetic acid is known for its antimicrobial effect on bacteria in general, but has never been thoroughly tested for its efficacy against bacterial biofilms. In this article, we describe complete eradication of both Gram-positive and Gram......-negative biofilms using acetic acid both as a liquid and as a dry salt. In addition, we present our clinical experience of acetic acid treatment of chronic wounds. In conclusion, we here present the first comprehensive in vitro and in vivo testing of acetic acid against bacterial biofilms....

  11. Extraction characteristics of trivalent lanthanides and actinides in mixtures of dinonylnaphthalenesulfonic acid and carboxylic acids

    International Nuclear Information System (INIS)

    West, M.H.

    1983-03-01

    Dinonylnaphthalenesulfonic acid (HDNNS) has been shown to be an effective liquid cation exchanger for the extraction of metal ions. This extractant has proven to be successful in the extraction of trivalent lanthanides and actinides in the pH range of 2.0 to 3.0, although it shows little selectivity for individual ions because of its strong acid character. In an effort to improve the selectivity of HDNNS between trivalent lanthanides and actinides, carboxylic acids were added to the organic phase and the effects on the extraction characteristics of HDNNS were investigated. Three carboxylic acids - nonanoic, cyclohexanecarboxylic, and cyclohexanebutyric - were studied with the following metals: Am(III), Cm(III), Ce(III), Eu(III), and Tm(III). The distributions of the metal ions were studied holding the HDNNS concentration constant while varying the carboxylic acid concentrations over a range of 1.0 x 10 -5 M to 1.0 M. Results indicated that the greatest enhancement of the extraction occurred at a carboxylic acid concentration of 1.0 x 10 -2 M with negative effects occurring at 0.5 M and 1.0 M. The effects on the extraction of the trivalent lanthanides and actinides were interpreted in terms of the structural differences of the carboxylic acids, the effect of the carboxylic acids on the HDNNS extraction mechanism, and the ionic properties of the metals studied

  12. Corrosion of stainless steel in alcohol solutions of the simplest carboxylic acids

    International Nuclear Information System (INIS)

    Vigdorovich, V.I.; Korneeva, T.V.; Tsygankova, L.E.

    1975-01-01

    The behaviour of stainless Kh18N10T steel is considered in the methanol and ethanol solutions of formic and acetic acids, respectively. Consideration is given to the effect of the concentration (C) of the acid (0.01-1.00 N), water (0.1-20.0 mass.%) and temperature (room temperature, 40 and 60 deg C). Curves of anodic polarization were plotted. In the course of time in 1.0 and 0.5 N anhydrous methanol solutions of HCOOH at room temperature in the absence of the external anode current one can observe an increase in the electrode potential. Continued reduction of the formic acid concentration results in an improvement on the initial potential (psi) and a practical constancy of psi in time. It is shown that depending on the acid concentration the additions of water are capable of producing both a passivating and an activating effect. It is assumed that the growth in the length of the hydrocarbon radical of carboxylic acid promotes the adsorption displacement of water and alcohols from the metal surface and enhancement of the corrosion rate

  13. Anti-Inflammatory and Antinociceptive Activities of Anthraquinone-2-Carboxylic Acid.

    Science.gov (United States)

    Park, Jae Gwang; Kim, Seung Cheol; Kim, Yun Hwan; Yang, Woo Seok; Kim, Yong; Hong, Sungyoul; Kim, Kyung-Hee; Yoo, Byong Chul; Kim, Shi Hyung; Kim, Jong-Hoon; Cho, Jae Youl

    2016-01-01

    Anthraquinone compounds are one of the abundant polyphenols found in fruits, vegetables, and herbs. However, the in vivo anti-inflammatory activity and molecular mechanisms of anthraquinones have not been fully elucidated. We investigated the activity of anthraquinones using acute inflammatory and nociceptive experimental conditions. Anthraquinone-2-carboxylic acid (9,10-dihydro-9,10-dioxo-2-anthracenecarboxylic acid, AQCA), one of the major anthraquinones identified from Brazilian taheebo, ameliorated various inflammatory and algesic symptoms in EtOH/HCl- and acetylsalicylic acid- (ASA-) induced gastritis, arachidonic acid-induced edema, and acetic acid-induced abdominal writhing without displaying toxic profiles in body and organ weight, gastric irritation, or serum parameters. In addition, AQCA suppressed the expression of inflammatory genes such as cyclooxygenase- (COX-) 2 in stomach tissues and lipopolysaccharide- (LPS-) treated RAW264.7 cells. According to reporter gene assay and immunoblotting analyses, AQCA inhibited activation of the nuclear factor- (NF-) κB and activator protein- (AP-) 1 pathways by suppression of upstream signaling involving interleukin-1 receptor-associated kinase 4 (IRAK1), p38, Src, and spleen tyrosine kinase (Syk). Our data strongly suggest that anthraquinones such as AQCA act as potent anti-inflammatory and antinociceptive components in vivo, thus contributing to the immune regulatory role of fruits and herbs.

  14. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    Energy Technology Data Exchange (ETDEWEB)

    Poole, Loree Joanne [Univ. of California, Berkeley, CA (United States); King, C. Judson [Univ. of California, Berkeley, CA (United States)

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO2 and H2S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The

  15. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    Directory of Open Access Journals (Sweden)

    Ohgi Takahashi

    2015-01-01

    Full Text Available Succinimide formation from aspartic acid (Asp residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe as a model compound, we propose the possibility that acetic acid (AA, which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism.

  16. Acetic acid can catalyze succinimide formation from aspartic acid residues by a concerted bond reorganization mechanism: a computational study.

    Science.gov (United States)

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-12

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism.

  17. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Geng, Peng; Zhang, Liang; Shi, Gui Yang

    2017-05-01

    Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.

  18. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    Science.gov (United States)

    Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

  19. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids.

    Science.gov (United States)

    Sun, Lei; Chen, Dongmei; Wan, Shungang; Yu, Zebin

    2015-12-01

    Biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids at low temperatures was utilized as adsorbent to remove methylene blue (MB) from aqueous solutions. Fourier transform infrared spectroscopy analysis showed that the carboxyl group was introduced on the biochar surface. Adsorption experiment data indicated that eucalyptus saw dust modified with citric acid showed higher MB adsorption efficiency than that modified with tartaric and acetic acids. Pseudo-second-order kinetics was the most suitable model for describing MB adsorption on biochar compared with pseudo-first-order, Elovich, and intraparticle diffusion models. The calculated values of ΔG(0) and ΔH(0) indicated the spontaneous and endothermic nature of the adsorption process. MB adsorption on biochar followed the Langmuir isotherm. The maximum adsorption capacities for eucalyptus saw dust modified with citric, tartaric, and acetic acids were 178.57, 99.01, and 29.94 mg g(-1), respectively, at 35°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Development of an automated modular system for the synthesis of [11C]acetate.

    Science.gov (United States)

    Felicini, Chiara; Någren, Kjell; Berton, Andrea; Pascali, Giancarlo; Salvadori, Piero Alberto

    2010-12-01

    Carboxylation reactions offer a straightforward method for the synthesis of carbon-11 labelled carboxylic acids. Among these, the preparation of carbon-11 (C)-acetate is receiving increasing attention because of diagnostic applications in oncology in addition to its well-established use as a probe for myocardial oxidative metabolism. Although a number of dedicated modules are commercially available, the development of the synthesis on flexible platforms would be beneficial to widen the number of tracers, in particular for preclinical assessment and testing. In this study, the carboxylation reaction was implemented for the synthesis of sodium 1-[C]acetate after the classic route of carboxylation of methylmagnesium chloride by [C]carbon dioxide, followed by the acidic hydrolysis, purification and sterile filtration. This was performed using a commercially available kit of preassembled hardware units and fully compatible components of radiochemistry automation (VarioSystem). The system proved be to highly versatile and inexpensive and allowed a quick translation of the radiochemistry project into a working system even by less experienced personnel, because of predefined interfaces between electronic parts and operating software (preloaded on a laptop and included in the kit). The automatic module proved to be a simple and reliable system for the production of 1-[C]acetate that was prepared in 24 min (total synthesis time) with stable radiochemical yields (20% nondecay corrected) and high radiochemical purity (>97%). The module is used routinely to produce 1-[C]acetate for preclinical studies and is being implemented for the production of the labelled fatty acids.

  1. Chemical rescue of the post-translationally carboxylated lysine mutant of allantoinase and dihydroorotase by metal ions and short-chain carboxylic acids.

    Science.gov (United States)

    Ho, Ya-Yeh; Huang, Yen-Hua; Huang, Cheng-Yang

    2013-04-01

    Bacterial allantoinase (ALLase) and dihydroorotase (DHOase) are members of the cyclic amidohydrolase family. ALLase and DHOase possess similar binuclear metal centers in the active site in which two metals are bridged by a post-translationally carboxylated lysine. In this study, we determined the effects of carboxylated lysine and metal binding on the activities of ALLase and DHOase. Although DHOase is a metalloenzyme, purified DHOase showed high activity without additional metal supplementation in a reaction mixture or bacterial culture. However, unlike DHOase, ALLase had no activity unless some specific metal ions were added to the reaction mixture or culture. Substituting the metal binding sites H59, H61, K146, H186, H242, or D315 with alanine completely abolished the activity of ALLase. However, the K146C, K146D and K146E mutants of ALLase were still active with about 1-6% activity of the wild-type enzyme. These ALLase K146 mutants were found to have 1.4-1.7 mol metal per mole enzyme subunit, which may indicate that they still contained the binuclear metal center in the active site. The activity of the K146A mutant of the ALLase and the K103A mutant of DHOase can be chemically rescued by short-chain carboxylic acids, such as acetic, propionic, and butyric acids, but not by ethanol, propan-1-ol, and imidazole, in the presence of Co2+ or Mn2+ ions. However, the activity was still ~10-fold less than that of wild-type ALLase. Overall, these results indicated that the 20 natural basic amino acid residues were not sufficiently able to play the role of lysine. Accordingly, we proposed that during evolution, the post-translational modification of carboxylated lysine in the cyclic amidohydrolase family was selected for promoting binuclear metal center self-assembly and increasing the nucleophilicity of the hydroxide at the active site for enzyme catalysis. This kind of chemical rescue combined with site-directed mutagenesis may also be used to identify a binuclear metal

  2. Correction: Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones.

    Science.gov (United States)

    Yin, Feng; Garifullina, Ainash; Tanaka, Fujie

    2018-04-25

    Correction for 'Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones' by Feng Yin et al., Org. Biomol. Chem., 2017, 15, 6089-6092.

  3. Study of alkaline-earth element complexes in anhydrous acetic acid

    International Nuclear Information System (INIS)

    Petit, N.

    1968-10-01

    We have studied the complexes of alkaline-earth elements in anhydrous acetic acid. Using glass-electrode potentiometry we have studied the titration of alkaline earth acetates with perchloric acid which is the strongest acid in anhydrous acetic acid. These titrations have shown that the basic strength of these acetates increases as follows: Mg 4 ); the mixed acetate-acid sulfate complex of barium: Ba (OAc)(HSO 4 ); the mixed acetate-chloride of barium: Ba (OAc)(Cl). (author) [fr

  4. Chiral metal-organic frameworks bearing free carboxylic acids for organocatalyst encapsulation.

    Science.gov (United States)

    Liu, Yan; Xi, Xiaobing; Ye, Chengcheng; Gong, Tengfei; Yang, Zhiwei; Cui, Yong

    2014-12-08

    Two chiral carboxylic acid functionalized micro- and mesoporous metal-organic frameworks (MOFs) are constructed by the stepwise assembly of triple-stranded heptametallic helicates with six carboxylic acid groups. The mesoporous MOF with permanent porosity functions as a host for encapsulation of an enantiopure organic amine catalyst by combining carboxylic acids and chiral amines in situ through acid-base interactions. The organocatalyst-loaded framework is shown to be an efficient and recyclable heterogeneous catalyst for the asymmetric direct aldol reactions with significantly enhanced stereoselectivity in relative to the homogeneous organocatalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J

    1975-01-01

    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained by solubil...... by solubilization of the lamellae in phenol/acetic acid/8 M urea. Feeding barley seedlings with [14C]-biotin revealed that the vitamin is not degraded into respiratory substrates by the plant, but is specifically incorporated into biotin carboxyl carrier protein....

  6. Biotechnological applications of acetic acid bacteria.

    Science.gov (United States)

    Raspor, Peter; Goranovic, Dusan

    2008-01-01

    The acetic acid bacteria (AAB) have important roles in food and beverage production, as well as in the bioproduction of industrial chemicals. In recent years, there have been major advances in understanding their taxonomy, molecular biology, and physiology, and in methods for their isolation and identification. AAB are obligate aerobes that oxidize sugars, sugar alcohols, and ethanol with the production of acetic acid as the major end product. This special type of metabolism differentiates them from all other bacteria. Recently, the AAB taxonomy has been strongly rearranged as new techniques using 16S rRNA sequence analysis have been introduced. Currently, the AAB are classified in ten genera in the family Acetobacteriaceae. AAB can not only play a positive role in the production of selected foods and beverages, but they can also spoil other foods and beverages. AAB occur in sugar- and alcohol-enriched environments. The difficulty of cultivation of AAB on semisolid media in the past resulted in poor knowledge of the species present in industrial processes. The first step of acetic acid production is the conversion of ethanol from a carbohydrate carried out by yeasts, and the second step is the oxidation of ethanol to acetic acid carried out by AAB. Vinegar is traditionally the product of acetous fermentation of natural alcoholic substrates. Depending on the substrate, vinegars can be classified as fruit, starch, or spirit substrate vinegars. Although a variety of bacteria can produce acetic acid, mostly members of Acetobacter, Gluconacetobacter, and Gluconobacter are used commercially. Industrial vinegar manufacturing processes fall into three main categories: slow processes, quick processes, and submerged processes. AAB also play an important role in cocoa production, which represents a significant means of income for some countries. Microbial cellulose, produced by AAB, possesses some excellent physical properties and has potential for many applications. Other

  7. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    Science.gov (United States)

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-06

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  8. Quantitative determination of carboxylic acids, amino acids, carbohydrates, ethanol and hydroxymethylfurfural in honey by (1)H NMR.

    Science.gov (United States)

    del Campo, Gloria; Zuriarrain, Juan; Zuriarrain, Andoni; Berregi, Iñaki

    2016-04-01

    A method using (1)H NMR spectroscopy has been developed to quantify simultaneously thirteen analytes in honeys without previous separation or pre-concentration steps. The method has been successfully applied to determine carboxylic acids (acetic, formic, lactic, malic and succinic acids), amino acids (alanine, phenylalanine, proline and tyrosine), carbohydrates (α- and β-glucose and fructose), ethanol and hydroxymethylfurfural in eucalyptus, heather, lavender, orange blossom, thyme and rosemary honeys. Quantification was performed by using the area of the signal of each analyte in the honey spectra, together with external standards. The regression analysis of the signal area against concentration plots, used for the calibration of each analyte, indicates a good linearity over the concentration ranges found in honeys, with correlation coefficients higher than 0.985 for the thirteen quantified analytes. The recovery studies give values over the 93.7-105.4% range with relative standard deviations lower than 7.4%. Good precision, with relative standard deviations over the range of 0.78-5.21% is obtained. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Potentiometric titrations in anhydrous acetic acid

    International Nuclear Information System (INIS)

    Le Port, L.

    1966-03-01

    The method used for studying anhydrous acetic acid is potentiometry with a glass electrode. We have in this way studied the titration of common inorganic acids (HClO 4 - HBr - H 2 SO 4 - HCl - HNO 3 - H 3 PO 4 ) and of some metallic salts. Furthermore we have shown that complex acids are formed between HCl and some metallic chlorides. An analysis of the titration curves for the inorganic acids against pyridinium chloride has made it possible to calculate a certain number of values for the dissociation pK of these acids and of the corresponding pyridinium salts. The titration of metallic perchlorates constitutes a method of studying the stability of acetates; we have thus been able to draw up a classification for some of these acetates. The metallic chlorides studied fall into two groups according to their behaviour in weak or strong acids. The differences have been explained on the basis of the role played by solvolysis. In the third part we have studied the acidic properties of mixtures of HCl with certain metallic chlorides. This work has demonstrated the existence, in certain cases, of acid complexes of the type (HCl) m MCl n . (author) [fr

  10. Mechanistic Insights on C-O and C-C Bond Activation and Hydrogen Insertion during Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei [Cathy

    2016-06-07

    Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevant step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H

  11. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  12. Photodissociation spectroscopy of the Mg+-acetic acid complex

    Science.gov (United States)

    Abate, Yohannes; Kleiber, P. D.

    2006-11-01

    We have studied the structure and photodissociation of Mg+-acetic acid clusters. Ab initio calculations suggest four relatively strongly bound ground state isomers for the [MgC2H4O2]+ complex. These isomers include the cis and trans forms of the Mg+-acetic acid association complex with Mg+ bonded to the carbonyl O atom of acetic acid, the Mg+-acetic acid association complex with Mg+ bonded to the hydroxyl O atom of acetic acid, or to a Mg+-ethenediol association complex. Photodissociation through the Mg+-based 3p←3s absorption bands in the near UV leads to direct (nonreactive) and reactive dissociation products: Mg+, MgOH+, Mg(H2O )+, CH3CO+, and MgCH3+. At low energies the dominant reactive quenching pathway is through dehydration to Mg(H2O)+, but additional reaction channels involving C-H and C-C bond activation are also open at higher energies.

  13. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    Science.gov (United States)

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-08

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. © 2016 American Institute of Chemical Engineers.

  14. Charge-transfer excited state in pyrene-1-carboxylic acids adsorbed on titanium dioxide nanoparticles

    Science.gov (United States)

    Krawczyk, S.; Nawrocka, A.; Zdyb, A.

    2018-06-01

    The electronic structure of excited photosensitizer adsorbed at the surface of a solid is the key factor in the electron transfer processes that underlie the efficiency of dye-sensitized solar cells and photocatalysts. In this work, Stark effect (electroabsorption) spectroscopy has been used to measure the polarizability and dipole moment changes in electronic transitions of pyrene-1-carboxylic (PCA), -acetic (PAA) and -butyric (PBA) acids in ethanol, both free and adsorbed on colloidal TiO2, in glassy ethanol at low temperature. The lack of appreciable increase of dipole moment in the excited state of free and adsorbed PAA and PBA points that two or more single bonds completely prevent the expansion of π-electrons from the aromatic ring towards the carboxylic group, thus excluding the possibility of direct electron injection into TiO2. In free PCA, the pyrene's forbidden S0 → S1 transition has increased intensity, exhibits a long progression in 1400 cm-1 Ag mode and is associated with |Δμ| of 2 D. Adsorption of PCA on TiO2 causes a broadening and red shift of the S0 → S1 absorption band and an increase in dipole moment change on electronic excitation to |Δμ| = 6.5 D. This value increased further to about 15 D when the content of acetic acid in the colloid was changed from 0.2% to 2%, and this effect is ascribed to the surface electric field. The large increase of |Δμ| points that the electric field effect can not only change the energetics of electron transfer from the excited sensitizer into the solid, but can also shift the molecular electronic density, thus directly influencing the electronic coupling factor relevant for electron transfer at the molecule-solid interface.

  15. Adsorption Equilibrium Equation of Carboxylic Acids on Anion-Exchange Resins in Water.

    Science.gov (United States)

    Kanazawa, Nobuhiro; Urano, Kohei; Kokado, Naohiro; Urushigawa, Yoshikuni

    2001-06-01

    The adsorption of propionic acid and benzoic acid on anion-exchange resins was analyzed, and an adsorption equilibrium equation of carboxylic acids was proposed. The adsorption of carboxylic acids on the anion-exchange resins was considered to be the sum of the physical adsorption of the molecule and the ion-exchange adsorption of the ion, which were independent of each other. For the physical adsorption of carboxylic acids, it was conformed to the Freundlich equation. For the ion-exchange adsorption of carboxylate ions, the equilibrium equation corresponded well with the experimental results for wide ranges of concentration and pH. The equation contains a selectivity coefficient S(A)(Cl) for the chloride ion versus the carboxylate ion, which was considered essentially a constant. The influent of the bicarbonate ion from carbon dioxide in air could also be expressed by the additional equilibrium equation with the selectivity coefficient S(HCO(3))(Cl) for the chloride ion versus the bicarbonate ion. Consequently, an adsorption equilibrium equation can estimate the equilibrium adsorption amounts. Even the effect of a coexisting bicarbonate ion is inconsequential when the parameters of the Freundlich isotherm equation and the selectivity coefficients of the carboxylate ion and the bicarbonate ion in each resin are determined in advance. Copyright 2001 Academic Press.

  16. Structural and thermal properties of carboxylic acid functionalized polythiophenes

    Directory of Open Access Journals (Sweden)

    Ariane de França Mescoloto

    2014-01-01

    Full Text Available Polythiophenes functionalized with polar groups at the end of side-chain have emerged as an alternative method to obtain good compatibility between this class of conjugated polymers and electron acceptor compounds. The aim is to prevent phase segregation and to improve the efficiency of the polythiophene technological devices. However, homopolymers synthesized from thiophene rings with high polar groups at the end of the side-chain, such as hydroxyl and carboxylic acid groups, are poorly soluble in common volatile organic solvents. We report on a systematic preparation of copolymers of 3-hexylthiophene (HT and thiophene-3-acetic acid (TAA, using different feed ratios. The chemical structures of the copolymers were confirmed by FTIR and ¹H-NMR. The TAA content in these copolymers were 33, 38 and 54 mol %. HPSEC results did not show any remarkable correlation with TAA contents in the copolymers. In contrast, the thermal analyses showed a decrease in the thermal stability and an increase in rigidity of their backbones, for the copolymers with high amounts of TAA. The solubility and optical property of copolymers were also related to the TAA contents. Thus, the properties of these copolymers can be modulated by a simple control of feed ratio of TAA in the copolymerization.

  17. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    Science.gov (United States)

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  18. Carboxylic acids in crystallization of macromolecules: learning from successful crystallization experiments.

    Science.gov (United States)

    Offermann, Lesa R; He, John Z; Mank, Nicholas J; Booth, William T; Chruszcz, Maksymilian

    2014-03-01

    The production of macromolecular crystals suitable for structural analysis is one of the most important and limiting steps in the structure determination process. Often, preliminary crystallization trials are performed using hundreds of empirically selected conditions. Carboxylic acids and/or their salts are one of the most popular components of these empirically derived crystallization conditions. Our findings indicate that almost 40 % of entries deposited to the Protein Data Bank (PDB) reporting crystallization conditions contain at least one carboxylic acid. In order to analyze the role of carboxylic acids in macromolecular crystallization, a large-scale analysis of the successful crystallization experiments reported to the PDB was performed. The PDB is currently the largest source of crystallization data, however it is not easily searchable. These complications are due to a combination of a free text format, which is used to capture information on the crystallization experiments, and the inconsistent naming of chemicals used in crystallization experiments. Despite these difficulties, our approach allows for the extraction of over 47,000 crystallization conditions from the PDB. Initially, the selected conditions were investigated to determine which carboxylic acids or their salts are most often present in crystallization solutions. From this group, selected sets of crystallization conditions were analyzed in detail, assessing parameters such as concentration, pH, and precipitant used. Our findings will lead to the design of new crystallization screens focused around carboxylic acids.

  19. Influence of carboxyl group formation on ammonia adsorption of NiO-templated nanoporous carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Long-Yue [Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon 402-751 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2012-11-15

    The scope of this work was to control the surface functional groups of nanoporous carbons (NPs) by oxidizing agents (nitric acid and hydrogen peroxide) treatments and to investigate the relation between carboxyl group and ammonia removal efficiency. The NPs were directly prepared from a cation exchange resin by the carbonization of a mixture with Ni acetate at 900 Degree-Sign C. N{sub 2}/-196 Degree-Sign C adsorption, Boehm's titrations, and X-ray photoelectron spectroscopy (XPS) analyzes were employed to confirm the physicochemical properties of NPs. The ammonia removal efficiency was confirmed by temperature programmed desorption (TPD) technique. In the result, the oxygen content of NPs increased after various treatments and the highest content of carboxyl group formation appeared at a 2:3 volume ratio of HNO{sub 3}/H{sub 2}O{sub 2}. It was also found that the oxidation treatment led to an increase in ammonia removal efficiency of NPs, mainly due to an increase of acid oxygen functional groups (such as carboxyl) on NPs surfaces. -- Graphical abstract: The nanoporous carbons were prepared from an exchange resin by the carbonization of a mixture with Ni acetate for ammonia adsorption. Highlights: Black-Right-Pointing-Pointer The carbons were prepared from an exchange resin by the carbonization of a mixture with Ni acetate. Black-Right-Pointing-Pointer The carbon surfaces were modified with HNO{sub 3}/H{sub 2}O{sub 2} solution at different volume radio. Black-Right-Pointing-Pointer The highest content of carboxyl group formation appeared at a 2:3 volume ratio of HNO{sub 3}/H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer The acid oxygen functional groups (such as carboxyl) on carbon surfaces led to an increase in ammonia adsorption.

  20. A relativistic density functional study of uranyl hydrolysis and complexation by carboxylic acids in aqueous solution

    International Nuclear Information System (INIS)

    Ray, Rupashree Shyama

    2009-01-01

    In this work, the complexation of uranium in its most stable oxidation state VI in aqueous solution was studied computationally, within the framework of density functional (DF) theory. The thesis is divided into the following parts: Chapter 2 briefly summarizes the relevant general aspects of actinide chemistry and then focuses on actinide environmental chemistry. Experimental results on hydrolysis, actinide complexation by carboxylic acids, and humic substances are presented to establish a background for the subsequent discussion. Chapter 3 describes the computational method used in this work and the relevant features of the parallel quantum chemistry code PARAGAUSS employed. First, the most relevant basics of the applied density functional approach are presented focusing on relativistic effects. Then, the treatment of solvent effects, essential for an adequate modeling of actinide species in aqueous solution, will be introduced. At the end of this chapter, computational parameters and procedures will be summarized. Chapter 4 presents the computational results including a comparison to available experimental data. In the beginning, the mononuclear hydrolysis product of UO_2"2"+, [UO_2OH]"+, will be discussed. The second part deals with actinide complexation by carboxylate ligands. First of all the coordination number for uranylacetate will be discussed with respect to implications for the complexation of actinides by humic substances followed by the uranyl complexation of aromatic carboxylic acids in comparison to earlier results for aliphatic ones. In the end, the ternary uranyl-hydroxo-acetate are discussed, as models of uranyl humate complexation at ambient condition.

  1. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    Science.gov (United States)

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Biosynthesis of quinoxaline antibiotics: Purification and characterization of the quinoxaline-2-carboxylic acid activating enzyme from Streptomyces triostinicus

    International Nuclear Information System (INIS)

    Glund, K.; Schlumbohm, W.; Bapat, M.; Keller, U.

    1990-01-01

    A quinoxaline-2-carboxylic acid activating enzyme was purified to homogeneity from triostin-producing Streptomyces triostinicus. It could also be purified from quinomycin-producing Streptomyces echinatus. Triostins and quinomycins are peptide lactones that contain quinoxaline-2-carboxylic acid as chromophoric moiety. The enzyme catalyzes the ATP-pyrophosphate exchange reaction dependent on quinoxaline-2-carboxylic acid and the formation of the corresponding adenylate. Besides quinoxaline-2-carboxylic acid, the enzyme also catalyzes the formation of adenylates from quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid. No adenylates were seen from quinoline-3-carboxylic acid, quinoline-4-carboxylic acid, pyridine-2-carboxylic acid, and 2-pyrazinecarboxylic acid. Previous work revealed that quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid became efficiently incorporated into the corresponding quinoxaline antibiotic analogues in vivo. Together with the data described here, this suggests that the enzyme is part of the quinoxaline antibiotics synthesizing enzyme system. The enzyme displays a native molecular weight of 42,000, whereas in its denatured form it is a polypeptide of Mr 52,000-53,000. It resembles in its behavior actinomycin synthetase I, the chromophore activating enzyme involved in actinomycin biosynthesis

  3. Characterization of Lactobacillus salivarius alanine racemase: short-chain carboxylate-activation and the role of A131.

    Science.gov (United States)

    Kobayashi, Jyumpei; Yukimoto, Jotaro; Shimizu, Yasuhiro; Ohmori, Taketo; Suzuki, Hirokazu; Doi, Katsumi; Ohshima, Toshihisa

    2015-01-01

    Many strains of lactic acid bacteria produce high concentrations of d-amino acids. Among them, Lactobacillus salivarius UCC 118 produces d-alanine at a relative concentration much greater than 50 % of the total d, l-alanine (100d/d, l-alanine). We characterized the L. salivarius alanine racemase (ALR) likely responsible for this d-alanine production and found that the enzyme was activated by carboxylates, which is an unique characteristic among ALRs. In addition, alignment of the amino acid sequences of several ALRs revealed that A131 of L. salivarius ALR is likely involved in the activation. To confirm that finding, an L. salivarius ALR variant with an A131K (ALR(A131K)) substitution was prepared, and its properties were compared with those of ALR. The activity of ALR(A131K) was about three times greater than that of ALR. In addition, whereas L. salivarius ALR was strongly activated by low concentrations (e.g., 1 mM) of short chain carboxylates, and was inhibited at higher concentrations (e.g., 10 mM), ALR(A131K) was clearly inhibited at all carboxylate concentrations tested (1-40 mM). Acetate also increased the stability of ALR such that maximum activity was observed at 35 °C and pH 8.0 without acetate, but at 50 °C in the presence of 1 mM acetate. On the other hand, maximum ALR(A131K) activity was observed at 45 °C and around pH 9.0 with or without acetate. It thus appears that A131 mediates the activation and stabilization of L. salivarius ALR by short chain carboxylates.

  4. CARBOXYLIC ACIDS OF HERB OF THYMUS CRETACEUS KLOK. ET SCHOST

    Directory of Open Access Journals (Sweden)

    V. N. Bubenchikova

    2014-01-01

    Full Text Available We have studied carboxylic acids of the herb of Thymus cretaceus Klok. et Schost which is widespread on a territory of some regions (Belgorod, Voronezh. The study was carried out using gas-liquid chromatography at Agilent Technologies 6890 chromatographer with massspectrometric detector 5973 N. Acids concentration was calculated by means of inner standard.We have established that carboxylic acids of Thymus cretaceus are represented by 34 compounds. Palmitic (1779.02 mg/kg, behenic (1084.15 mg/kg, levulinic (986.24 mg/kg and linoleic acids (678.82 mg/kg predominate among fatty acids; citric (9835.14 mg/kg, malonic (447.91 mg/kg and oxalic acids (388.32 mg/kg predominate among organic acids; andferulic acid predominate amongphenolcarbonic acids.

  5. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...

  6. Development of Acetic Acid Removal Technology for the UREX+Process

    International Nuclear Information System (INIS)

    Counce, Robert M.; Watson, Jack S.

    2009-01-01

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstream steps can be avoided. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid

  7. Development of Acetic Acid Removal Technology for the UREX+Process

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Counce; Jack S. Watson

    2009-06-30

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstreatm steps can be avoidec. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid.

  8. Substituted Amides of Pyrazine-2-carboxylic acids: Synthesis and Biological Activity

    Directory of Open Access Journals (Sweden)

    Katarina Kralova

    2002-03-01

    Full Text Available Condensation of 6-chloro-, 5-tert-butyl- or 6-chloro-5-tert-butylpyrazine-2-carboxylic acid chloride with ring substituted anilines yielded a series of amides, which were tested for their in vitro antimycobacterial, antifungal and photosynthesis-inhibiting activities. The highest antituberculotic activity (72% inhibition against Mycobacterium tuberculosis and the highest lipophilicity (log P = 6.85 were shown by the 3,5-bistrifluoromethylphenyl amide of 5-tert-butyl-6-chloropyrazine-2-carboxylic acid (2o. The 3-methylphenyl amides of 6-chloro- and 5-tert-butyl-6-chloro-pyrazine-2-carboxylic acid (2d and 2f exhibited only a poor in vitro antifungal effect (MIC = 31.25-500 μmol·dm-3 against all strains tested, although the latter was the most active antialgal compound (IC50 = 0.063 mmol·dm-3. The most active inhibitor of oxygen evolution rate in spinach chloroplasts was the (3,5-bis-trifluoromethylphenylamide of 6-chloropyrazine-2-carboxylic acid (2m, IC50 = 0.026 mmol·dm-3.

  9. Ru(II)-Catalyzed Oxidative Heck-Type Olefination of Aromatic Carboxylic Acids with Styrenes through Carboxylate-Assisted C-H Bond Activation.

    Science.gov (United States)

    Dana, Suman; Mandal, Anup; Sahoo, Harekrishna; Mallik, Sumitava; Grandhi, Gowri Sankar; Baidya, Mahiuddin

    2018-02-02

    A straightforward synthesis of 2-styrylbenzoic acids from aryl carboxylic acids is disclosed through a carboxylate-assisted coupling under Ru(II) catalysis. This protocol is simple and exhibits broad scope with high tolerance of common organic functional groups, providing good to excellent yields of diverse olefinated products. The efficacy of this protocol has been showcased through sequential syntheses of isochromanone, isocoumarin, and formal synthesis of anacardic acid derivative in good yields.

  10. Recovery of acetic acid from waste streams by extractive distillation.

    Science.gov (United States)

    Demiral, H; Yildirim, M Ercengiz

    2003-01-01

    Wastes have been considered to be a serious worldwide environmental problem in recent years. Because of increasing pollution, these wastes should be treated. However, industrial wastes can contain a number of valuable organic components. Recovery of these components is important economically. Using conventional distillation techniques, the separation of acetic acid and water is both impractical and uneconomical, because it often requires large number of trays and a high reflux ratio. In practice special techniques are used depending on the concentration of acetic acid. Between 30 and 70% (w/w) acetic acid contents, extractive distillation was suggested. Extractive distillation is a multicomponent-rectification method similar in purpose to azeotropic distillation. In extractive distillation, to a binary mixture which is difficult or impossible to separate by ordinary means, a third component termed an entrainer is added which alters the relative volatility of the original constituents, thus permitting the separation. In our department acetic acid is used as a solvent during the obtaining of cobalt(III) acetate from cobalt(II) acetate by an electrochemical method. After the operation, the remaining waste contains acetic acid. In thiswork, acetic acid which has been found in this waste was recovered by extractive distillation. Adiponitrile and sulfolane were used as high boiling solvents and the effects of solvent feed rate/solution feed rate ratio and type were investigated. According to the experimental results, it was seem that the recovery of acetic acid from waste streams is possible by extractive distillation.

  11. The method of quantitative determination of iodine in acetic acid

    International Nuclear Information System (INIS)

    Sukhomlinov, A.B.; Kalinchenko, N.B.

    1988-01-01

    Method for separate determination of J 2 and J - concentrations in acetic acid is suggested. Iodine concentration in acetic acid is determined by measuring potential of iodine-selective electrode first in the initial solution of acetic acid, where molecular iodine dissociation equals 0.5, and then in acetic acid, with alkali (NaOH) addition up to pH > 3, where molecular iodine dissociation equals 1. Determination is conducted in 5x10 -7 -5x10 -6 mol/l concentration range with relative standard deviation not more than 0.1. 1 fig

  12. Needle trap extraction for GC analysis of formic and acetic acids in aqueous solution.

    Science.gov (United States)

    Lee, Xinqing; Huang, Daikuan; Lou, Dawei; Pawliszyn, Janusz

    2012-07-01

    Formic and acetic acids are ubiquitous in the environment, food, and most of the natural products. Extraction of the acids from aqueous solution is required for their isotope analysis by the gas chromatography-isotope ratio mass spectrometry. To this objective, we have previously developed a purge-and-trap technique using the dynamic solid-phase microextraction technology, the NeedlEX. The extraction efficiency, however, remains unexamined. Here, we address this question using the flame ionization detector and isotope ratio mass spectrometer while comparing it with that of the CAR/PDMS fiber. The results show that the NeedlEX is applicable at a wide range of concentration through coordination of purge volume given the minimum amount 3.7 ng and 1.8 ng of formic and acetic, respectively, is extracted. The efficiency of NeedlEX was 6-7 times lower than the fiber at 1000 μg/mL depending on the analyte. It is, however, superior to the latter at 10 μg/mL or less owing to its lower detection limit. The extraction efficiency of both acids is equivalent in molar amount. This is, however, disguised by the different response of the flame ionization detector. The isotope ratio mass spectrometor overcomes this problem but is compromised by relatively large errors. These results are particularly useful for isotopic analysis of carboxylic acids. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A relativistic density functional study of uranyl hydrolysis and complexation by carboxylic acids in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Rupashree Shyama

    2009-02-10

    In this work, the complexation of uranium in its most stable oxidation state VI in aqueous solution was studied computationally, within the framework of density functional (DF) theory. The thesis is divided into the following parts: Chapter 2 briefly summarizes the relevant general aspects of actinide chemistry and then focuses on actinide environmental chemistry. Experimental results on hydrolysis, actinide complexation by carboxylic acids, and humic substances are presented to establish a background for the subsequent discussion. Chapter 3 describes the computational method used in this work and the relevant features of the parallel quantum chemistry code PARAGAUSS employed. First, the most relevant basics of the applied density functional approach are presented focusing on relativistic effects. Then, the treatment of solvent effects, essential for an adequate modeling of actinide species in aqueous solution, will be introduced. At the end of this chapter, computational parameters and procedures will be summarized. Chapter 4 presents the computational results including a comparison to available experimental data. In the beginning, the mononuclear hydrolysis product of UO{sub 2}{sup 2+}, [UO{sub 2}OH]{sup +}, will be discussed. The second part deals with actinide complexation by carboxylate ligands. First of all the coordination number for uranylacetate will be discussed with respect to implications for the complexation of actinides by humic substances followed by the uranyl complexation of aromatic carboxylic acids in comparison to earlier results for aliphatic ones. In the end, the ternary uranyl-hydroxo-acetate are discussed, as models of uranyl humate complexation at ambient condition.

  14. Unimolecular decomposition of formic and acetic acids: A shock tube/laser absorption study

    KAUST Repository

    Elwardany, A.; Nasir, E.F.; Es-sebbar, Et-touhami; Farooq, Aamir

    2014-01-01

    The thermal decomposition of formic acid (HCOOH) and acetic acid (CH3COOH), two carboxylic acids which play an important role in oxygenate combustion chemistry, were investigated behind reflected shock waves using laser absorption. The rate constants of the primary decomposition pathways of these acids:(HCOOH → CO + H2 O (R 1); HCOOH → CO2 + H2 (R 2); CH3 COOH → CH4 + CO2 (R 3); CH3 COOH → CH2 CO + H2 O (R 4)) were measured using simultaneous infrared laser absorption of CO, CO2 and H2O at wavelengths of 4.56, 4.18 and 2.93 microns, respectively. Reaction test conditions covered temperatures from 1230 to 1821 K and pressures from 1.0 to 6.5 atm for dilute mixtures of acids (0.25-0.6%) in argon. The rate constants of dehydration (R1) and decarboxylation (R2) reactions of formic acid were calculated by fitting exponential functions to the measured CO, CO2 and H2O time-history profiles. These two decomposition channels were found to be in the fall-off region and have a branching ratio, k1/k2, of approximately 20 over the range of pressures studied here. The best-fit Arrhenius expressions of the first-order rates of R1 and R2 were found to be:(k1 (1 atm) = 1.03 × 1011 exp (- 25651 / T) s- 1 (± 37 %); k1 (6.5 atm) = 9.12 × 1012 exp (- 30275 / T) s- 1 (± 32 %); k2 (1 atm) = 1.79 × 108 exp (- 21133 / T) s- 1 (± 41 %); k2 (6.5 atm) = 2.73 × 108 exp (- 20074 / T) s- 1 (± 37 %)). The rate constants for acetic acid decomposition were obtained by fitting simulated profiles, using an acetic acid pyrolysis mechanism, to the measured species time-histories. The branching ratio, k4/k3, was found to be approximately 2. The decarboxylation and dehydration reactions of acetic acid appear to be in the falloff region over the tested pressure range:(k3 (1 atm) = 3.18 × 1011 exp (- 28679 / T) s- 1 (± 30 %); k3 (6 atm) = 3.51 × 1012 exp (- 31330 / T) s- 1 (± 26 %); k4 (1 atm) = 7.9 × 1011 exp (- 29056 / T) s- 1 (± 34 %); k4 (6 atm) = 6.34 × 1012 exp (- 31330 / T) s

  15. Unimolecular decomposition of formic and acetic acids: A shock tube/laser absorption study

    KAUST Repository

    Elwardany, A.

    2014-07-16

    The thermal decomposition of formic acid (HCOOH) and acetic acid (CH3COOH), two carboxylic acids which play an important role in oxygenate combustion chemistry, were investigated behind reflected shock waves using laser absorption. The rate constants of the primary decomposition pathways of these acids:(HCOOH → CO + H2 O (R 1); HCOOH → CO2 + H2 (R 2); CH3 COOH → CH4 + CO2 (R 3); CH3 COOH → CH2 CO + H2 O (R 4)) were measured using simultaneous infrared laser absorption of CO, CO2 and H2O at wavelengths of 4.56, 4.18 and 2.93 microns, respectively. Reaction test conditions covered temperatures from 1230 to 1821 K and pressures from 1.0 to 6.5 atm for dilute mixtures of acids (0.25-0.6%) in argon. The rate constants of dehydration (R1) and decarboxylation (R2) reactions of formic acid were calculated by fitting exponential functions to the measured CO, CO2 and H2O time-history profiles. These two decomposition channels were found to be in the fall-off region and have a branching ratio, k1/k2, of approximately 20 over the range of pressures studied here. The best-fit Arrhenius expressions of the first-order rates of R1 and R2 were found to be:(k1 (1 atm) = 1.03 × 1011 exp (- 25651 / T) s- 1 (± 37 %); k1 (6.5 atm) = 9.12 × 1012 exp (- 30275 / T) s- 1 (± 32 %); k2 (1 atm) = 1.79 × 108 exp (- 21133 / T) s- 1 (± 41 %); k2 (6.5 atm) = 2.73 × 108 exp (- 20074 / T) s- 1 (± 37 %)). The rate constants for acetic acid decomposition were obtained by fitting simulated profiles, using an acetic acid pyrolysis mechanism, to the measured species time-histories. The branching ratio, k4/k3, was found to be approximately 2. The decarboxylation and dehydration reactions of acetic acid appear to be in the falloff region over the tested pressure range:(k3 (1 atm) = 3.18 × 1011 exp (- 28679 / T) s- 1 (± 30 %); k3 (6 atm) = 3.51 × 1012 exp (- 31330 / T) s- 1 (± 26 %); k4 (1 atm) = 7.9 × 1011 exp (- 29056 / T) s- 1 (± 34 %); k4 (6 atm) = 6.34 × 1012 exp (- 31330 / T) s

  16. Synthesis and Structural Characterization of 1- and 2-Substituted Indazoles: Ester and Carboxylic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Isabel Bento

    2006-11-01

    Full Text Available A series of indazoles substituted at the N-1 and N-2 positions with ester-containing side chains -(CH2nCO2R of different lengths (n = 0-6, 9, 10 are described.Nucleophilic substitution reactions on halo esters (X(CH2nCO2R by 1H-indazole inalkaline solution lead to mixtures of N-1 and N-2 isomers, in which the N-1 isomerpredominates. Basic hydrolysis of the ester derivatives allowed the synthesis of thecorresponding indazole carboxylic acids. All compounds were fully characterised bymultinuclear NMR and IR spectroscopies, MS spectrometry and elemental analysis; theNMR spectroscopic data were used for structural assignment of the N-1 and N-2 isomers.The molecular structure of indazol-2-yl-acetic acid (5b was determined by X-raydiffraction, which shows a supramolecular architecture involving O2-H...N1intermolecular hydrogen bonds.

  17. Acetic acid sclerotheraphy of renal cysts

    International Nuclear Information System (INIS)

    Hong, Hoon Pyo; Oh, Joo Hyeong; Yoon, Yup; Kong, Keun Young; Kim, Eui Jong; Goo, Jang Sung

    1998-01-01

    Sclerotherapy for renal cysts was performed, using 50% acetic acid as new sclerosing agent. We report the methods and results of this procedure. Fifteen patients underwent sclerotherapy for renal cyst, using 50% acetic acid. Because four patients were lost to follow-up, only 11 of the 15 were included in this study. The renal cysts, including one infected case, were diagnosed by ultrasonograpy (n=3D10) ormagnetic resonance imaging (n=3D1). The patient group consisted of four men and seven women(mean age, 59 years; range, 23-77). At first, the cyst was completely aspirated, and 25 volume% of aspirated volume was replaced with 50% sterile acetic acid through the drainage catheter. During the follwing 20 minutes, the patient changed position, and the acetic acid was then removed from the cyst. Finally, the drainage catheter was removed, after cleaning the cyst with saline. After treatment of infection by antibiotics and catheter drainage for 7 days, sclerotherapy in the infected case followed the same procedure. In order to observe changes in the size of renal cysts and recurrence, all patients were followed up by ultrasound between 2 and 8 months. We defined response to therapy as follows:complete regression as under 5 volume%, partial regression as 5-50 volume% and no response as more than 50 volume% of initial cyst volume. No clinically significant complication occured during the procedures or follow-up periods. All cysts regressed completely during follow-up of 8 months. Complete regression occurred as follows: two cysts at 2 months, seven cysts at 4 months, two cysts at 6 months. Two cysts showed residues at the last follow-up, at 4 and 6 months, respectively. The volume of residual cysts decreased to under 5 volume% of initial volume, however. Completely regressed cysts did not recurr during follow-up. Acetic acid sclerotherapy for renal cysts showed good results, regardless of the dilution of sclerosing agent with residual cyst fluid, and no significant

  18. Effects of culture conditions on acetic acid production by bacteria ...

    African Journals Online (AJOL)

    SARAH

    2015-11-30

    Nov 30, 2015 ... acid under certain culture conditions similar to cocoa fermentation stress. However ... Keywords: Acetic acid bacteria, acetic acid production, Cocoa fermentation, culture conditions ..... American Society Microbiology Press, pp.

  19. Biosynthetic origin of acetic acid using SNIF-NMR

    International Nuclear Information System (INIS)

    Boffo, Elisangela Fabiana; Ferreira, Antonio Gilberto

    2006-01-01

    The main purpose of this work is to describe the use of the technique Site-Specific Natural Isotopic Fractionation of hydrogen (SNIF-NMR), using 2 H and 1 H NMR spectroscopy, to investigate the biosynthetic origin of acetic acid in commercial samples of Brazilian vinegar. This method is based on the deuterium to hydrogen ratio at a specific position (methyl group) of acetic acid obtained by fermentation, through different biosynthetic mechanisms, which result in different isotopic ratios. We measured the isotopic ratio of vinegars obtained through C 3 , C 4 , and CAM biosynthetic mechanisms, blends of C 3 and C 4 (agrins) and synthetic acetic acid. (author)

  20. Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W.

    Science.gov (United States)

    Noh, Myung Hyun; Lim, Hyun Gyu; Woo, Sung Hwa; Song, Jinyi; Jung, Gyoo Yeol

    2018-03-01

    Utilization of abundant and cheap carbon sources can effectively reduce the production cost and enhance the economic feasibility. Acetate is a promising carbon source to achieve cost-effective microbial processes. In this study, we engineered an Escherichia coli strain to produce itaconic acid from acetate. As acetate is known to inhibit cell growth, we initially screened for a strain with a high tolerance to 10 g/L of acetate in the medium, and the W strain was selected as the host. Subsequently, the WC strain was obtained by overexpression of cad (encoding cis-aconitate decarboxylase) using a synthetic promoter and 5' UTR. However, the WC strain produced only 0.13 g/L itaconic acid because of low acetate uptake. To improve the production, the acetate assimilating pathway and glyoxylate shunt pathway were amplified by overexpression of pathway genes as well as its deregulation. The resulting strain, WCIAG4 produced 3.57 g/L itaconic acid (16.1% of theoretical maximum yield) after 88 hr of fermentation with rapid acetate assimilation. These efforts support that acetate can be a potential feedstock for biochemical production with engineered E. coli. © 2017 Wiley Periodicals, Inc.

  1. The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery

    Science.gov (United States)

    Nicholson, John W.; Wilson, Alan

    2004-09-01

    This article describes the history of the reaction converting carboxylic acids to ketones. The reaction has been rediscovered several times, yet has actually been known for centuries. The best known version of the process is the Dakin West reaction (1928), which applies to α-amino acids and also involves the simultaneous conversion of the amine group to amido functionality. Unlike other examples, this particular reaction has attracted a reasonable amount of attention and it appears to be better known than the conversion of simple carboxylic acids to ketones. However, this reaction was described as long ago as 1612, when Beguin published an account of it in his book, Tyrocinium Chymicum . Since then, many chemists have rediscovered the reaction, apparently independently. One of the earliest modern accounts was by W. H. Perkin, Sr., in 1886, who made various simple ketones by refluxing the appropriate carboxylic acids with base. However, this work has been largely ignored, including by his son, W. H. Perkin, Jr., who used a more complicated base-catalyzed ketonization to prepare small ring compounds in the early years of the 20th century. Other articles detailing the application of ketonization to organic acids are discussed, including our own work, which employed the process to crosslink carboxylated polymers for possible technical application in coatings. Despite its relative obscurity, the reaction was used by Woodward et al. in the total synthesis of strychnine, reported in 1963, and this is discussed in detail at the end of the article. See Featured Molecules .

  2. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    International Nuclear Information System (INIS)

    Bahrami, Zohreh; Badiei, Alireza; Ziarani, Ghodsi Mohammadi

    2015-01-01

    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N 2 adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples

  3. Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation.

    Science.gov (United States)

    Andrés-Barrao, Cristina; Saad, Maged M; Chappuis, Marie-Louise; Boffa, Mauro; Perret, Xavier; Ortega Pérez, Ruben; Barja, François

    2012-03-16

    Acetic acid bacteria (AAB) are Gram-negative, strictly aerobic microorganisms that show a unique resistance to ethanol (EtOH) and acetic acid (AcH). Members of the Acetobacter and Gluconacetobacter genera are capable of transforming EtOH into AcH via the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes and are used for the industrial production of vinegar. Several mechanisms have been proposed to explain how AAB resist high concentrations of AcH, such as the assimilation of acetate through the tricarboxylic acid (TCA) cycle, the export of acetate by various transporters and modifications of the outer membrane. However, except for a few acetate-specific proteins, little is known about the global proteome responses to AcH. In this study, we used 2D-DIGE to compare the proteome of Acetobacter pasteurianus LMG 1262(T) when growing in glucose or ethanol and in the presence of acetic acid. Interesting protein spots were selected using the ANOVA p-value of 0.05 as threshold and 1.5-fold as the minimal level of differential expression, and a total of 53 proteins were successfully identified. Additionally, the size of AAB was reduced by approximately 30% in length as a consequence of the acidity. A modification in the membrane polysaccharides was also revealed by PATAg specific staining. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Modification of polysulfone with pendant carboxylic acid functionality ...

    Indian Academy of Sciences (India)

    polysulfone (PSF) by in situ generated chloromethyl radical in presence of stannic chloride in tetrachloroethane and .... vert the nitrile group to carboxylic acid was reported (Reddy ..... PEG molecular weight vs rejection at 35 psi pressure.

  5. Microbial synthesis of a branched-chain ester platform from organic waste carboxylates

    Directory of Open Access Journals (Sweden)

    Donovan S. Layton

    2016-12-01

    Full Text Available Processing of lignocellulosic biomass or organic wastes produces a plethora of chemicals such as short, linear carboxylic acids, known as carboxylates, derived from anaerobic digestion. While these carboxylates have low values and are inhibitory to microbes during fermentation, they can be biologically upgraded to high-value products. In this study, we expanded our general framework for biological upgrading of carboxylates to branched-chain esters by using three highly active alcohol acyltransferases (AATs for alcohol and acyl CoA condensation and modulating the alcohol moiety from ethanol to isobutanol in the modular chassis cell. With this framework, we demonstrated the production of an ester library comprised of 16 out of all 18 potential esters, including acetate, propionate, butanoate, pentanoate, and hexanoate esters, from the 5 linear, saturated C2-C6 carboxylic acids. Among these esters, 5 new branched-chain esters, including isobutyl acetate, isobutyl propionate, isobutyl butyrate, isobutyl pentanoate, and isobutyl hexanoate were synthesized in vivo. During 24 h in situ fermentation and extraction, one of the engineered strains, EcDL208 harnessing the SAAT of Fragaria ananassa produced ~63 mg/L of a mixture of butyl and isobutyl butyrates from glucose and butyrate co-fermentation and ~127 mg/L of a mixture of isobutyl and pentyl pentanoates from glucose and pentanoate co-fermentation, with high specificity. These butyrate and pentanoate esters are potential drop-in liquid fuels. This study provides better understanding of functional roles of AATs for microbial biosynthesis of branched-chain esters and expands the potential use of these esters as drop-in biofuels beyond their conventional flavor, fragrance, and solvent applications. Keywords: Carboxylate platform, Ester platform, Branched-chain ester, Modular cell, Biological upgrading, Organic waste, Lignocellulosic biomass, Isobutyl esters

  6. Carboxylic acid effects on the size and catalytic activity of magnetite nanoparticles.

    Science.gov (United States)

    Hosseini-Monfared, Hassan; Parchegani, Fatemeh; Alavi, Sohaila

    2015-01-01

    Magnetite nanoparticles (Fe3O4-NPs) were successfully synthesized in diethylene glycol in the presence of carboxylic acids. They were characterized using XRD, SEM and FTIR. Carboxylic acid plays a critical role in determining the morphology, particle size and size distribution of the resulting particles. The results show that as-prepared magnetite nanoparticles are monodisperse and highly crystalline. The nanoparticles can be easily dispersed in aqueous media and other polar solvents due to coated by a layer of hydrophilic polyol and carboxylic acid ligands in situ. Easily prepared Fe3O4-NPs have been shown to be an active, recyclable, and highly selective catalyst for the epoxidation of cyclic olefins with aqueous 30% H2O2. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Dimerization of Carboxylic Acids: An Equation of State Approach

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Panayiotou, Costas

    2017-01-01

    The association term of the nonrandom hydrogen bonding theory, which is an equation of state model, is extended to describe the dimerization of carboxylic acids in binary mixtures with inert solvents and in systems of two different acids. Subsequently, the model is applied to describe the excess...

  8. Phosphorescent emissions of phosphine copper(I) complexes bearing 8-hydroxyquinoline carboxylic acid analogue ligands

    Energy Technology Data Exchange (ETDEWEB)

    Małecki, Jan G., E-mail: gmalecki@us.edu.pl [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Łakomska, Iwona, E-mail: iwolak@chem.umk.pl [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Maroń, Anna [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Szala, Marcin [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland); Fandzloch, Marzena [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Nycz, Jacek E., E-mail: jacek.nycz@us.edu.pl [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland)

    2015-05-15

    The pseudotetrahedral complexes of [Cu(PPh{sub 3}){sub 2}(L)], where L=8-hydroxy-2-methylquinoline-7-carboxylic acid (1), 8-hydroxy-2,5-dimethylquinoline-7-carboxylic acid (2) or 5-chloro-8-hydroxy-2-methylquinoline-7-carboxylic acid (3) have been synthesized and structurally characterized by X-ray crystallography. Their properties have been examined through combinations of IR, NMR, electronic absorption spectroscopy and cyclic voltammetry. The complexes exhibit extraordinary photophysical properties. Complex (1) in solid state exhibits an emission quantum yield of 4.67% and an excited life time of 1.88 ms (frozen DCM solution up to 6.7 ms). When dissolved in a coordinating solvent (acetonitrile) the charge transfer emission was quenched on a microsecond scale. - Highlights: • Synthesis of copper(I) complexes with 8-hydroxyquinoline carboxylic acid ligands. • Very long lived phosphorescent copper(I) complexes. • [Cu(PPh{sub 3}){sub 2}(L)] where L=8-hydroxy-2-methylquinoline-7-carboxylic acid luminesce in the solid state exhibits extremely long lifetime on millisecond scale (1.9 ms). • In frozen MeOH:EtOH solution lifetime increases to 7 ms. • Quantum efficiency equal to 4.7%.

  9. 40 CFR 721.2088 - Carboxylic acids, (C6-C9) branched and linear.

    Science.gov (United States)

    2010-07-01

    ... linear. 721.2088 Section 721.2088 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.2088 Carboxylic acids, (C6-C9) branched and linear. (a) Chemical... as carboxylic acids, (C6-C9) branched and linear (PMNs P-93-313, 314, 315, and 316) are subject to...

  10. Measuring the concentration of carboxylic acid groups in torrefied spruce wood.

    Science.gov (United States)

    Khazraie Shoulaifar, Tooran; Demartini, Nikolai; Ivaska, Ari; Fardim, Pedro; Hupa, Mikko

    2012-11-01

    Torrefaction is moderate thermal treatment (∼200-300°C) to improve the energy density, handling and storage properties of biomass fuels. In biomass, carboxylic sites are partially responsible for its hygroscopic. These sites are degraded to varying extents during torrefaction. In this paper, we apply methylene blue sorption and potentiometric titration to measure the concentration of carboxylic acid groups in spruce wood torrefied for 30min at temperatures between 180 and 300°C. The results from both methods were applicable and the values agreed well. A decrease in the equilibrium moisture content at different humidity was also measured for the torrefied wood samples, which is in good agreement with the decrease in carboxylic acid sites. Thus both methods offer a means of directly measuring the decomposition of carboxylic groups in biomass during torrefaction as a valuable parameter in evaluating the extent of torrefaction which provides new information to the chemical changes occurring during torrefaction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Silver-Catalyzed Dehydrogenative Synthesis of Carboxylic Acids from Primary Alcohols

    DEFF Research Database (Denmark)

    Ghalehshahi, Hajar Golshadi; Madsen, Robert

    2017-01-01

    A simple silver-catalyzed protocol has been developed for the acceptorless dehydrogenation of primary alcohols into carboxylic acids and hydrogen gas. The procedure uses 2.5 % Ag2 CO3 and 2.5-3 equiv of KOH in refluxing mesitylene to afford the potassium carboxylate which is then converted...... into the acid with HCl. The reaction can be applied to a variety of benzylic and aliphatic primary alcohols with alkyl and ether substituents, and in some cases halide, olefin, and ester functionalities are also compatible with the reaction conditions. The dehydrogenation is believed to be catalyzed by silver...

  12. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    Energy Technology Data Exchange (ETDEWEB)

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  13. Wet deposition and related atmospheric chemistry in the São Paulo metropolis, Brazil: Part 2—contribution of formic and acetic acids

    Science.gov (United States)

    Fornaro, Adalgiza; Gutz, Ivano G. R.

    Wet-only deposition samples were collected at a site in the urban area of the São Paulo metropolis between February (end of the rainy summer) and October (beginning of spring) 2000, an atypical period due to rainfall 40% below the 30-year average. The majority ions in rainwater were measured by capillary zone electrophoresis with contactless conductivity detection, CZE-CCD, applied for the first time to the organic anions acetate and formate. The volume weight mean (VWM) concentrations of the majority anions NO 3-, SO 42- and Cl - were, respectively, 15.6, 9.5 and 4.7 μmol l -1. The VWM concentration of HCOO -t, (HCOO -+HCOOH) was 17.0 μmol l -1, about twice the 8.9 μmol l -1 of CH 3COO -t. The VWM concentration of free H + was low ( 16.9 μmol l -1), corresponding to pH 4.77. This denotes the relevance of species like ammonia, analyzed as NH4+ ( VWM=27.9 μmol l -1), and calcium carbonate ( VWM=5.3 μmol l -1 Ca2+) as partial neutralizers of the acidity. By hypothetically assuming that H + is the only counterion of the non-sea-salt fraction of the dissociated anions, their contribution to the total potential acidity would decrease in the following order: sulfate (29%), formate (29%), nitrate (26%), acetate (15%) and chloride (1%). The 44% potential participation of the carboxylic acids reveals their importance to the acidity of São Paulo's rainwater during the study period. Direct vehicular emission of lower carboxylic acids and aldehydes (in particular, acetic acid and acetaldehyde) is singularly high in the metropolis due to the extensive use of ethanol and gasohol (containing ˜20% of ethanol) as fuels of the light fleet of 5.5 million cars; in addition, regional atmospheric conditions favor the photochemical formation of the acids, since concentrations of ozone and aldehydes are high and solar irradiation is intense at the 23°34'S latitude. The presence of higher concentrations of HCOOH than CH 3COOH indicates a prevalence of its photochemical production

  14. Aluminium, extractable from soil samples by the acid ammonium acetate soil-testing method

    Directory of Open Access Journals (Sweden)

    Osmo Mäkitie

    1968-05-01

    Full Text Available The extractant, 0.5 M acetic acid –0.5 M ammonium acetate at pH 4.65, which is used in soil-testing, extracts relatively high amounts of aluminium from acid soils. The mean values of acetate-extractable aluminium at pH 4.65, 1.75 meq Al/100 g of soil, and of exchangeable aluminium (M KCI extraction, 0.41 meq Al were obtained from a material of 30 samples of acid soils (Table 2. Several other acetic acid ammonium acetate extractants, from M acetic acid to M ammonium acetate solution were also used for studying the extractability of soil aluminium. The soil-testing extractant can be used for the estimation of the soluble amounts of aluminium in acid soils, however, further studies are needed for a better interpretation of the ammonium acetate extractable (at pH 4.65 aluminium in our soils.

  15. Effectiveness of carboxylic acids from Pichia membranifaciens against coffee rust

    Directory of Open Access Journals (Sweden)

    Rosa Laura Andrade Melchor

    Full Text Available ABSTRACT Coffee rust is a fungal disease that has affected every coffee-producing region in the world. Given that the effectivity of the protectant and systemic fungicides applied routinely to control the spread of the causative agent of the disease (Hemileia vastatrix has gradually diminished, besides are harmful to mammals and ecosystems, the objective of this work was to search for a mixture of harmless natural compounds with the potential to be applied in the field. So, a yeast strain producing a battery of long-chain carboxylic acids (CA with fungicide properties was isolated from soil of coffee crop and identified as Pichia membranifaciens by ITS sequencing. Culture conditions of the yeast were optimized and the CA in the solution were characterized by Gas Chromatography-Mass Spectrometry (GC-MS as ethyl formate (55.5 g L-1, octadecenoic acid (3.5 g L-1, propionic acid (7.2 g L-1, 3-(octadecanoyl-propionic acid (7.2 g L-1 and methyl acetate (8.4 g L-1. Randomized field studies were conducted in three different locations in Chiapas, México. Five treatments were tested including three concentrations of the CA solution (389, 584 and 778 ppm and copper oxychloride (5 000 ppm as conventional control. The initial coffee rust incidence averages varied between sites: Maravillas (3-9%, Santo Domingo (10-16% and Búcaro (16-22%. The treatments of CA solution proved to be effective at slowing down the progress of the rust disease even for the sites where initial incidence was high. Likewise, the CA solution reduced the viability of H. vastatrix spores, as assessed by fluorescence microscopy.

  16. [Physiological response to acetic acid stress of Acetobacter pasteuranus during vinegar fermentation].

    Science.gov (United States)

    Qi, Zhengliang; Yang, Hailin; Xia, Xiaole; Wang, Wu; Leng, Yunwei; Yu, Xiaobin; Quan, Wu

    2014-03-04

    The aim of the study is to propose a dynamic acetic acid resistance mechanism through analysis on response of cellular morphology, physiology and metabolism of A. pasteurianus CICIM B7003 during vinegar fermentation. Vinegar fermentation was carried out in a Frings 9 L acetator by strain B7003 and cultures were sampled at different cellular growth phases. Simultaneously, percentage of capsular polysaccharide versus dry cells weight, ratio of unsaturated fatty acids to saturated fatty acids, transcription of acetic acid resistance genes, activity of alcohol respiratory chain enzymes and ATPase were detected for these samples to assay the responses of bacterial morphology, physiology and metabolism. When acetic acid was existed, no obvious capsular polysaccharide was secreted by cells. As vinegar fermentation proceeding, percentage of capsular polysaccharide versus dry cells weight was reduced from 2.5% to 0.89%. Ratio of unsaturated fatty acids to saturated fatty acids was increased obviously which can improve membrane fluidity. Also transcription level of acetic acid resistance genes was promoted. Interestingly, activity of alcohol respiratory chain and ATPase was not inhibited but promoted obviously with acetic acid accumulation which could provide enough energy for acetic acid resistance mechanism. On the basis of the results obtained from the experiment, A. pasteurianus CICIM B7003 relies mainly on the cooperation of changes of extracellular capsular polysaccharide and membrane fatty acids, activation of acid resistance genes transcription, enhancement of activity of alcohol respiratory chain and rapid energy production to tolerate acidic environment.

  17. Highly Concentrated Acetic Acid Poisoning: 400 Cases Reviewed

    Directory of Open Access Journals (Sweden)

    Konstantin Brusin

    2012-12-01

    Full Text Available Background: Caustic substance ingestion is known for causing a wide array of gastrointestinal and systemic complications. In Russia, ingestion of acetic acid is a major problem which annually affects 11.2 per 100,000 individuals. The objective of this study was to report and analyze main complications and outcomes of patients with 70% concentrated acetic acid poisoning. Methods: This was a retrospective study of patients with acetic acid ingestion who were treated at Sverdlovsk Regional Poisoning Treatment Center during 2006 to 2012. GI mucosal injury of each patient was assessed with endoscopy according to Zargar’s scale. Data analysis was performed to analyze the predictors of stricture formation and mortality. Results: A total of 400 patients with median age of 47 yr were included. GI injury grade I was found in 66 cases (16.5%, IIa in 117 (29.3%, IIb in 120 (30%, IIIa in 27 (16.7% and IIIb in 70 (17.5%. 11% of patients developed strictures and overall mortality rate was 21%. Main complications were hemolysis (55%, renal injury (35%, pneumonia (27% and bleeding during the first 3 days (27%. Predictors of mortality were age 60 to 79 years, grade IIIa and IIIb of GI injury, pneumonia, stages “I”, “F” and “L” of kidney damage according to the RIFLE scale and administration of prednisolone. Predictors of stricture formation were ingestion of over 100 mL of acetic acid and grade IIb and IIIa of GI injury. Conclusion: Highly concentrated acetic acid is still frequently ingested in Russia with a high mortality rate. Patients with higher grades of GI injury, pneumonia, renal injury and higher amount of acid ingested should be more carefully monitored as they are more susceptible to develop fatal consequences.          

  18. Cytotoxic effect of betulinic acid and betulinic acid acetate isolated ...

    African Journals Online (AJOL)

    Cytotoxic effect of betulinic acid and betulinic acid acetate isolated from Melaleuca cajuput on human myeloid leukemia (HL-60) cell line. ... The cytotoxic effect of betulinic acid (BA), isolated from Melaleuca cajuput a Malaysian plant and its four synthetic derivatives were tested for their cytotoxicity in various cell line or ...

  19. Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum

    DEFF Research Database (Denmark)

    Jensen, J B; Egsgaard, H; Van Onckelen, H

    1995-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid. Indoleacetic acid (IAA), 4-chloro-IAA (4-Cl-IAA), and 5-Cl-IAA were metabolized to different extents by strains 61A24 and 110. Metabolites were isolated and analyzed by high-performance liquid chromatogr...

  20. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid

    Directory of Open Access Journals (Sweden)

    Sá-Correia Isabel

    2010-10-01

    Full Text Available Abstract Background Acetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate in industrial biotechnology. Therefore, the better understanding of the molecular mechanisms underlying S. cerevisiae tolerance to acetic acid is essential for the rational selection of optimal fermentation conditions and the engineering of more robust industrial strains to be used in processes in which yeast is explored as cell factory. Results The yeast genes conferring protection against acetic acid were identified in this study at a genome-wide scale, based on the screening of the EUROSCARF haploid mutant collection for susceptibility phenotypes to this weak acid (concentrations in the range 70-110 mM, at pH 4.5. Approximately 650 determinants of tolerance to acetic acid were identified. Clustering of these acetic acid-resistance genes based on their biological function indicated an enrichment of genes involved in transcription, internal pH homeostasis, carbohydrate metabolism, cell wall assembly, biogenesis of mitochondria, ribosome and vacuole, and in the sensing, signalling and uptake of various nutrients in particular iron, potassium, glucose and amino acids. A correlation between increased resistance to acetic acid and the level of potassium in the growth medium was found. The activation of the Snf1p signalling pathway, involved in yeast response to glucose starvation, is demonstrated to occur in response to acetic acid stress but no evidence was obtained supporting the acetic acid-induced inhibition of glucose uptake. Conclusions Approximately 490 of the 650 determinants of tolerance to acetic acid identified in this work are implicated, for the first time, in tolerance to

  1. Additive effects of acetic acid upon hydrothermal reaction of amylopectin

    International Nuclear Information System (INIS)

    Sugano, Motoyuki; Katoh, Harumi; Komatsu, Akihiro; Kobayashi, Hiroshi; Okado, Kohta; Kakuta, Yusuke; Hirano, Katsumi

    2012-01-01

    It is well known that over 0.8 kg kg −1 of starch is consisted of amylopectin (AP). In this study, production of glucose for raw material of ethanol by hydrothermal reaction of AP as one of the model compound of food is discussed. Further, additive effects of acetic acid upon hydrothermal reactions of AP are also investigated. During hydrothermal reaction of AP, production of glucose occurred above 453 K, and the glucose yield increased to 0.48 kg kg −1 at 473 K. Upon hydrothermal reaction of AP at 473 K, prolongation of the holding time was not effective for the increase of the glucose yield. Upon hydrothermal reaction of AP at 473 K for 0 s, the glucose yield increased significantly by addition between 0.26 mol L −1 and 0.52 mol L −1 of acetic acid. However, the glucose yield decreased and the yield of the other constituents increased with the increases of concentration of acetic acid from 0.65 mol L −1 to 3.33 mol L −1 . It was considered that hydrolysis of AP to yield glucose was enhanced due to the increase of the amount of proton derived from acetic acid during hydrothermal reaction with 0.52 mol L −1 of acetic acid. -- Highlights: ► Glucose production by hydrothermal reaction of amylopectin (AP) at 473 K. ► Glucose yield increased to 0.48 kg kg -1 at 473 K. ► Prolongation of holding time was not effective for glucose yield. ► Glucose yield increased significantly by acetic acid (0.26–0.52 mol L-1) addition. ► Hydrolysis of AP to glucose was enhanced due to increase of proton from acetic acid.

  2. Cytotoxic effect of betulinic acid and betulinic acid acetate isolated ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-20

    Sep 20, 2010 ... Betulinic acid acetate (BAAC) was most effective than other betulinic acid derivatives. It had most ... blastoma (Schmidt et al., 1997), malignant brain tumor .... 96 well plate and incubated in 37oC, 5% CO2 and 90% humidity.

  3. Trapping social wasps (Hymenoptera: Vespidae) with acetic acid and saturated short chain alcohols.

    Science.gov (United States)

    Landolt, P J; Smithhisler, C S; Reed, H C; McDonough, L M

    2000-12-01

    Nineteen compounds were evaluated in combination with a solution of acetic acid as baits for trapping the German yellowjacket, Vespula germanica (F.), the western yellowjacket Vespula pensylvanica (Sausssure), and the golden paper wasp Polistes aurifer Saussure. Compounds with three to six carbon chains or branched chains and with a hydroxy functional group were selected for testing based on their similarity to isobutanol. They were compared with isobutanol with acetic acid, which is a known wasp attractant. None of the compounds tested were superior to isobutanol when presented with acetic acid as a lure for these species of wasps. However, traps baited with either the S-(-)- or the racemic mixture of 2-methyl-1-butanol in combination with acetic acid captured similar numbers of both species of yellowjackets, compared with isobutanol with acetic acid. Polistes aurifer responded strongly to the S-(-)-enantiomer and to the racemic mixture of 2-methyl-1-butanol with acetic acid and not to the R-(+)-enantiomer with acetic acid.

  4. Aerobic Oxidation of 5-(Hydroxymethyl)furfural Cyclic Acetal Enables Selective Furan-2,5-dicarboxylic Acid Formation with CeO2 -Supported Gold Catalyst.

    Science.gov (United States)

    Kim, Minjune; Su, Yaqiong; Fukuoka, Atsushi; Hensen, Emiel J M; Nakajima, Kiyotaka

    2018-05-14

    The utilization of 5-(hydroxymethyl)furfural (HMF) for the large-scale production of essential chemicals has been largely limited by the formation of solid humin as a byproduct, which prevents the operation of stepwise batch-type and continuous flow-type processes. The reaction of HMF with 1,3-propanediol produces an HMF acetal derivative that exhibits excellent thermal stability. Aerobic oxidation of the HMF acetal with a CeO 2 -supported Au catalyst and Na 2 CO 3 in water gives a 90-95 % yield of furan 2,5-dicarboxylic acid, an increasingly important commodity chemical for the biorenewables industry, from concentrated solutions (10-20 wt %) without humin formation. The six-membered acetal ring suppresses thermal decomposition and self-polymerization of HMF in concentrated solutions. Kinetic studies supported by DFT calculations identify two crucial steps in the reaction mechanism, that is, the partial hydrolysis of the acetal into 5-formyl-2-furan carboxylic acid involving OH - and Lewis acid sites on CeO 2 , and subsequent oxidative dehydrogenation of the in situ generated hemiacetal involving Au nanoparticles. These results represent a significant advance over the current state of the art, overcoming an inherent limitation of the oxidation of HMF to an important monomer for biopolymer production. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    Science.gov (United States)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  6. Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qiuxia [Institute for Integrated Catalysis, Pacific Northwest; College; Lopez-Ruiz, Juan A. [Institute for Integrated Catalysis, Pacific Northwest; Cooper, Alan R. [Institute for Integrated Catalysis, Pacific Northwest; Wang, Jian-guo [College; Albrecht, Karl O. [Institute for Integrated Catalysis, Pacific Northwest; Mei, Donghai [Institute for Integrated Catalysis, Pacific Northwest

    2017-12-13

    The effect of aqueous phase on the acetic acid ketonization over monoclinic zirconia has been investigated using first-principles based density functional theory (DFT) calculations. To capture the aqueous phase chemistry over the solid zirconia catalyst surface, the aqueous phase is represented by 111 explicit water molecules with a liquid water density of 0.93 g/cm3 and the monoclinic zirconia is modeled by the most stable surface structure . The dynamic nature of aqueous phase/ interface was studied using ab initio molecular dynamics simulation, indicating that nearly half of the surface Zr sites are occupied by either adsorbed water molecules or hydroxyl groups at 550 K. DFT calculations show that the adsorption process of acetic acid from the liquid water phase to the surface is nearly thermodynamically neutral with a Gibbs free energy of -2.3 kJ/mol although the adsorption strength of acetic acid on the surface in aqueous phase is much stronger than in vapor phase. Therefore it is expected that the adsorption of acetic acid will dramatically affects aqueous phase ketonization reactivity over the monoclinic zirconia catalyst. Using the same ketonization mechanism via the β-keto acid intermediate, we have compared acetic acid ketonization to acetone in both vapor and aqueous phases. Our DFT calculation results show although the rate-determining step of the β-keto acid formation via the C-C coupling is not pronouncedly affected, the presence of liquid water molecules will dramatically affect dehydrogenation and hydrogenation steps via proton transfer mechanism. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time and advanced catalyst characterization use was granted by a user proposal at the William R. Wiley

  7. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    Science.gov (United States)

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    NICO

    radiation balance.4,5 Major water-soluble inorganic ions are associated with atmospheric ... molecular weight carboxylic acids in aerosol samples collected from a rural ... include biomass burning, agriculture, livestock and soil dust. Tropical ...

  9. Gas chromatography/isotope ratio mass spectrometry: analysis of methanol, ethanol and acetic acid by direct injection of aqueous alcoholic and acetic acid samples.

    Science.gov (United States)

    Ai, Guomin; Sun, Tong; Dong, Xiuzhu

    2014-08-15

    Methanol, ethanol, and acetic acid are not easily extracted from aqueous samples and are susceptible to isotope fractionation in gas chromatography/isotope ratio mass spectrometry (GC/IRMS) analysis. Developing a direct dilution GC/IRMS method for aqueous samples, by adjusting the sample concentrations in common solvents to be similar to each other and using a fixed GC split ratio, is very convenient and important because any linearity effects caused by amount-dependent isotope fractionation can be avoided. The suitability of acetonitrile and acetone solvents for the GC/IRMS analysis of pure methanol, ethanol and acetic acid, and commercial liquor and vinegar samples was evaluated using n-hexane and water as control solvents. All the solvents including water were separated from the analyte on a HP-INNOWAX column and were diverted away from the combustion interface. The influence of liquor matrix on the ethanol GC/IRMS analyses was evaluated by adding pure ethanol to liquor samples. Acetonitrile and acetone gave similar δ(13) C values for pure ethanol and pure acetic acid to those obtained in water and n-hexane, and also gave similar δ(13) C values of ethanol in liquor and acetic acid in white vinegar to that obtained in water. For methanol analysis, acetonitrile and refined acetone gave similar δ(13) C values to that obtained in water, but n-hexane was not a suitable solvent. In addition, isotopic fractionation caused by solvent and solute interactions was observed. We recommend using acetonitrile for the GC/IRMS analysis of aqueous alcoholic samples, and acetone for the analysis of aqueous acetic acid samples. This direct dilution method can provide high accurate and precise GC/IRMS analysis of the relative changes in δ(13) C values of methanol, ethanol, and acetic acid. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Methanogenesis from acetate by Methanosarcina barkeri: Catalysis of acetate formation from methyl iodide, CO/sub 2/, and H/sub 2/ by the enzyme system involved

    Energy Technology Data Exchange (ETDEWEB)

    Laufer, K; Eikmanns, B; Frimmer, U; Thauer, R K

    1987-04-01

    Cell suspensions of Methanosarcina barkeri grown on acetate catalyze the formation of methane and CO/sub 2/ from acetate as well as an isotopic exchange between the carboxyl group of acetate and CO/sub 2/. Here we report that these cells also mediate the synthesis of acetate from methyl iodide, CO/sub 2/, and reducing equivalents (H/sub 2/ or CO), the methyl group of acetate being derived from methyl iodide and the carboxyl group from CO/sub 2/. Methyl chloride and methyltosylate but not methanol can substitute for methyl iodide in this reaction. Acetate formation from methyl iodide, CO/sub 2/, and reducing equivalents is coupled with the phosphorylation of ADP. Evidence is presented that methyl iodide is incorporated into the methyl group of acetate via a methyl corrinoid intermediate (deduced from inhibition experiments with propyl iodide) and that CO/sub 2/ is assimilated into the carboxyl group via a C/sub 1/ intermediate which does not exchange with free formate or free CO. The effects of protonophores, of the proton-translocating ATPase inhibitor N,N'-dicyclohexylcarbodiimide, and of arsenate on acetate formation are interpreted to indicate that the reduction of CO/sub 2/ to the oxidation level of the carboxyl group of acetate requires the presence of an electrochemical proton potential and that acetyl-CoA or acetyl-phosphate rather than free acetate is the immediate product of the condensation reaction. These results are dicsussed with respect to the mechanism of methanogenesis from acetate.

  11. Insights into the mechanism of acetic acid hydrogenation to ethanol on Cu(111) surface

    International Nuclear Information System (INIS)

    Zhang, Minhua; Yao, Rui; Jiang, Haoxi; Li, Guiming; Chen, Yifei

    2017-01-01

    Highlights: • The scission of C–OH bond of acetic acid is the rate-determined step in acetic acid hydrogenation to ethanol on Cu(111). • Acetic acid adsorption and reaction barrier of C–OH scission of acetic acid are factors related to acetic acid conversion. • Acetaldehyde adsorption and reaction barriers of O–H formation of C_2–oxygenates are factors related to ethanol selectivity. - Abstract: Density functional theory (DFT) calculations were employed to theoretically explain the reaction mechanism of acetic acid hydrogenation to ethanol on Cu catalyst. The activation barriers of key elementary steps and the adsorption configurations of key intermediates involved in acetic acid hydrogenation on Cu(111) surface were investigated. The results indicated that the direct dissociation of acetic acid to acetyl (CH_3COOH → CH_3CO + OH) is the rate-determined step. The activation barrier of acetic acid scission to acetyl and the adsorption energy of acetic acid are two descriptors which could determine the conversion of acetic acid. The descriptors might have effects on the ethanol selectivity including: the adsorption energy of acetaldehyde and the activation barriers for O−H bond formation of C_2-oxygenates (CH_3CO + H → CH_3COH, CH_3CHO + H → CH_3CHOH and CH_3CH_2O + H → CH_3CH_2OH). These proposed descriptors could be used as references to design new Cu-based catalysts that have excellent catalytic performance.

  12. Chemically Transformable Configurations of Mercaptohexadecanoic Acid Self-Assembled Monolayers Adsorbed on Au(111)

    International Nuclear Information System (INIS)

    van Buuren, T; Bostedt, C; Nelson, A J; Terminello, L J; Vance, A L; Fadley, C S; Willey, T M

    2003-01-01

    Carboxyl terminated Self-Assembled Monolayers (SAMs) are commonly used in a variety of applications, with the assumption that the molecules form well ordered monolayers. In this work, NEXAFS verifies well ordered monolayers can be formed using acetic acid in the solvent. Disordered monolayers with unbound molecules present in the result using only ethanol. A stark reorientation occurs upon deprotonation of the endgroup by rinsing in a KOH solution. This reorientation of the endgroup is reversible with tilted over, hydrogen bound carboxyl groups while carboxylate-ion endgroups are upright. C1s photoemission shows that SAMs formed and rinsed with acetic acid in ethanol, the endgroups are protonated, while without, a large fraction of the molecules on the surface are carboxylate terminated

  13. Synthesis of 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives

    International Nuclear Information System (INIS)

    Elhadi, S. A.

    2004-09-01

    Quinolin derivatives are a group of compounds known to possess a wide range of biological activities. The chemistry of quinolines together with their corresponding aldehydes were dealt with in chapter one of this study. Special emphasis was given to the chemistry of benzaldehyde. Twenty five 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives together with their corresponding intermediates were prepared in this work. Basically, the synthetic design of these compounds arise from the appropriate disconnections of the target 2-phenyl and 2,3-diphenyl-quinolin-4-carboxylic acids. The retro synthesis analysis of these compounds reveals pyruvic acid, aromatic amine and benzaldehyde or phenyl pyruvic acid, aromatic amine and benzaldehyde as possible logical precursors for 2-phenyl-and 2,3-diphenyl- quinoline-4-carboxylic acids respectively. The purity and identities of the synthesized compounds were elucidated through chromatographic and spectroscopic techniques. The compounds were heavily subjected to spectroscopic analysis (UV, IR, GC/MS, 1 H-and 13 C- NMR). The appropriate disconnections and the mechanisms of the corresponding reactions were given and discussed in chapter three. The spectral data were interpreted and correlated with the target structures. The prepared 2-phenyl- and 2,3-diphenyl-quinoline-4-carboxylic acid derivatives were screened for their antibacterial activity. The compounds were tested against the standard bacterial organisms B. subtilis, S. aureus, E. coli and P. vulgaris. Some of these compounds were devoid of antibacterial activity against S. aureus and P. vulgaris, while others showed moderate activity. All of the tested compounds showed an activity against B. subtilis and E. coli. 2,3-diphenyl -6-sulphanilamide-quinolin-4-carboxylic acid showed the highest activity against the four standard tested organisms.(Author)

  14. Synthesis of 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Elhadi, S A [Department of Chemistry, Faculty of Education, University of Khartoum, Khartoum (Sudan)

    2004-09-01

    Quinolin derivatives are a group of compounds known to possess a wide range of biological activities. The chemistry of quinolines together with their corresponding aldehydes were dealt with in chapter one of this study. Special emphasis was given to the chemistry of benzaldehyde. Twenty five 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives together with their corresponding intermediates were prepared in this work. Basically, the synthetic design of these compounds arise from the appropriate disconnections of the target 2-phenyl and 2,3-diphenyl-quinolin-4-carboxylic acids. The retro synthesis analysis of these compounds reveals pyruvic acid, aromatic amine and benzaldehyde or phenyl pyruvic acid, aromatic amine and benzaldehyde as possible logical precursors for 2-phenyl-and 2,3-diphenyl- quinoline-4-carboxylic acids respectively. The purity and identities of the synthesized compounds were elucidated through chromatographic and spectroscopic techniques. The compounds were heavily subjected to spectroscopic analysis (UV, IR, GC/MS, {sup 1}H-and {sup 13}C- NMR). The appropriate disconnections and the mechanisms of the corresponding reactions were given and discussed in chapter three. The spectral data were interpreted and correlated with the target structures. The prepared 2-phenyl- and 2,3-diphenyl-quinoline-4-carboxylic acid derivatives were screened for their antibacterial activity. The compounds were tested against the standard bacterial organisms B. subtilis, S. aureus, E. coli and P. vulgaris. Some of these compounds were devoid of antibacterial activity against S. aureus and P. vulgaris, while others showed moderate activity. All of the tested compounds showed an activity against B. subtilis and E. coli. 2,3-diphenyl -6-sulphanilamide-quinolin-4-carboxylic acid showed the highest activity against the four standard tested organisms.(Author)

  15. An experimental study for efficacy of acetic acid as a sclerosing agent

    International Nuclear Information System (INIS)

    Kim, Young Chan; Oh, Ju Hyung; Yoon, Yup; Ko, Young Tae; Choi, Woo Suk; Kim, Eui Jong; Lim, Joo Won

    1997-01-01

    To evaluate the efficacy of acetic acid as a sclerosing agent by observation of histologic change in urinary bladder epithelium after the instillation of acetic acid. Urinary bladder of the rabbit was catheterized with a Foley catheter, and acetic acid of 10%, 20%, 30%, 40% and 50% concentration was instilled for 5 minutes. After evacuation of the acid, the bladder was irrigated three times with normal saline. After two days, gross and histologic examinations of the bladder were performed. A bladder into which 10% acetic acid had been instilled revealed a nearly normal epithelium without denudation. In two cases, 20% acetic acid was instilled;one revealed partial denudation of the epithelium and the other revealed complete denudation. Mild to moderate interstitial edema and vascular congestion of the bladder wall were evident in all cases in which acid at a concentration of 30% or more had been instilled. In all cases in which the concentration of acid was greater than 30%, the epithelium was completely denuded. An acetic acid concentration of 40% or more is sufficient to completely destroy the epithelium of rabbit urinary bladder, and may be effective as a new sclerosing agent in cases of renal or hepatic cyst

  16. Synthesis and bioactivities of Phenazine-1-carboxylic acid derivatives based on the modification of PCA carboxyl group.

    Science.gov (United States)

    Xiong, Zhipeng; Niu, Junfan; Liu, Hao; Xu, Zhihong; Li, Junkai; Wu, Qinglai

    2017-05-01

    Phenazine-1-carboxylic acid (PCA) as a natural product widely exists in microbial metabolites of Pseudomonads and Streptomycetes and has been registered for the fungicide against rice sheath blight in China. To find higher fungicidal activities compounds and study the effects on fungicidal activities after changing the carboxyl group of PCA, we synthesized a series of PCA derivatives by modifying the carboxyl group of PCA and their structures were confirmed by 1 H NMR and HRMS. Most compounds exhibited significant fungicidal activities in vitro. In particular, compound 6 exhibited inhibition effect against Rhizoctonia solani with EC 50 values of 4.35mg/L and compound 3b exhibited effect against Fusarium graminearum with EC 50 values of 8.30mg/L, compared to the positive control PCA with its EC 50 values of 7.88mg/L (Rhizoctonia solani) and 127.28mg/L (Fusarium graminearum), respectively. The results indicated that the carboxyl group of PCA could be modified to be amide group, acylhydrazine group, ester group, methyl, hydroxymethyl, chloromethyl and ether group etc. And appropriate modifications on carboxyl group of PCA were useful to extend the fungicidal scope. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Ion-exclusion chromatography with conductimetric detection of aliphatic carboxylic acids on a weakly acidic cation-exchange resin by elution with benzoic acid-beta-cyclodextrin.

    Science.gov (United States)

    Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Helaleh, Murad I H; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Fritz, James S; Haddad, Paul R

    2003-05-16

    In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression.

  18. Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain

    OpenAIRE

    Morken, Tora Sund; Brekke, Eva Mari Førland; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula

    2014-01-01

    Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity duri...

  19. Insights into the mechanism of acetic acid hydrogenation to ethanol on Cu(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Minhua; Yao, Rui; Jiang, Haoxi; Li, Guiming [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Chen, Yifei, E-mail: yfchen@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2017-08-01

    Highlights: • The scission of C–OH bond of acetic acid is the rate-determined step in acetic acid hydrogenation to ethanol on Cu(111). • Acetic acid adsorption and reaction barrier of C–OH scission of acetic acid are factors related to acetic acid conversion. • Acetaldehyde adsorption and reaction barriers of O–H formation of C{sub 2}–oxygenates are factors related to ethanol selectivity. - Abstract: Density functional theory (DFT) calculations were employed to theoretically explain the reaction mechanism of acetic acid hydrogenation to ethanol on Cu catalyst. The activation barriers of key elementary steps and the adsorption configurations of key intermediates involved in acetic acid hydrogenation on Cu(111) surface were investigated. The results indicated that the direct dissociation of acetic acid to acetyl (CH{sub 3}COOH → CH{sub 3}CO + OH) is the rate-determined step. The activation barrier of acetic acid scission to acetyl and the adsorption energy of acetic acid are two descriptors which could determine the conversion of acetic acid. The descriptors might have effects on the ethanol selectivity including: the adsorption energy of acetaldehyde and the activation barriers for O−H bond formation of C{sub 2}-oxygenates (CH{sub 3}CO + H → CH{sub 3}COH, CH{sub 3}CHO + H → CH{sub 3}CHOH and CH{sub 3}CH{sub 2}O + H → CH{sub 3}CH{sub 2}OH). These proposed descriptors could be used as references to design new Cu-based catalysts that have excellent catalytic performance.

  20. The behaviour of tungsten electrodes in a mixture of acetic acid and acetic anhydride

    International Nuclear Information System (INIS)

    Pastor, T.J.; Vajgand, V.H.

    1976-01-01

    Tungsten electrodes have advantageously been used for potentiometric end-point detection in perchloric acid titration of bases in a mixture of acetic acid and acetic anhydride. They have also given good results in biamperometric detection of the equivalence point in continuous coulometric titration of small quantities of bases and acids in the same solvent. Tungsten electrodes in the presence of quinhydrone behave like platinum electrodes, but in biamperometric end-point determination in the absence of quinhydrone it is better to remove the oxide layer from their surface. Some other factors affecting their behaviour have also been studied. Errors in determination do not exceed +-2% even in titration of very small quantities of substances. (author)

  1. The study of 2-acetylaminotoluene ozonolysis in acetic ACID

    OpenAIRE

    Галстян, Андрій Генрійович

    2014-01-01

    The kinetics and mechanism of ozone reaction with 2-aminotoluene and its acylated derivative in acetic acid were studied in order to determine the possibility of obtaining 2-aminobenzoic acid.It is shown that the 2-aminotoluene ozonolysis reaction in acetic acid solution runs at high speed, and preferably on the free electron pair of the amino group to form mainly resinous compounds; oxidation products by the methyl group of the substrate are not formed under these conditions. The ozone attac...

  2. ON THE FORMATION OF BENZOIC ACID AND HIGHER-ORDER BENZENE CARBOXYLIC ACIDS IN INTERSTELLAR MODEL ICE GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    McMurtry, Brandon M.; Saito, Sean E. J.; Turner, Andrew M.; Chakravarty, Harish K.; Kaiser, Ralf I. [W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-11-10

    With a binary ice mixture of benzene (C{sub 6}H{sub 6}) and carbon dioxide (CO{sub 2}) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta - and para -benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, was proposed utilizing the kinetic fitting of the coupled differential equations.

  3. Kinetic studies on the carboxylation of 6-amino-penicillanic acid to 8-hydroxy-penillic acid

    DEFF Research Database (Denmark)

    Henriksen, Claus Maxel; Holm, SS; Schipper, D.

    1997-01-01

    The carboxylation in aqueous solution of 6-amino-penicillanic acid (6-APA) to 8-hydroxy-penillic acid (8-HPA) was studied at 25 degrees C and pH 6.5. During sparging with either a citrate buffer or a chemically defined cultivation medium containing 6-APA with mixtures of carbon dioxide and air (2.......7-41% (v/v) CO2), the kinetics for conversion of 6-APA was followed by HPLC. In the citrate buffer 6-APA was converted by two competitive reactions each following first order kinetics with respect to the concentration of 6-APA: 1. carboxylation into 8-HPA; and 2. slow conversion into an unknown compound....... Formation of the unknown compound was not observed in the cultivation medium. The carboxylation of 6-APA was also found to be first order with respect to the concentration of dissolved carbon dioxide. The rate constant for formation of 8-HPA did not differ significantly in the cultivation medium compared...

  4. Investigation of acetic acid-catalyzed hydrothermal pretreatment on corn stover

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2010-01-01

    Acetic acid (AA)-catalyzed liquid hot water (LHW) pretreatments on raw corn stover (RCS) were carried out at 195 °C at 15 min with the acetic acid concentrations between 0 and 400 g/kg RCS. After pretreatment, the liquor fractions and water-insoluble solids (WIS) were collected separately...

  5. Effect of acetic acid on wet patterning of copper/molybdenum thin films in phosphoric acid solution

    International Nuclear Information System (INIS)

    Seo, Bo.-Hyun; Lee, Sang-Hyuk; Park, In-Sun; Seo, Jong Hyun; Choe, HeeHwan; Jeon, Jae-Hong; Hong, Munpyo; Lee, Yong Uk; Winkler, Joerg

    2011-01-01

    Copper metallization is a key issue for high performance thin film transistor (TFT) technology. A phosphoric acid based copper etchant is a potentially attractive alternative to the conventional hydrogen peroxide based etchant due to its longer-life expectancy time and higher stability in use. In this paper, it is shown that amount of the acetic acid in the phosphoric based copper etchant plays an important role in controlling the galvanic reaction between the copper and the molybdenum. As the concentration of acetic acid in the phosphoric mixture solution increased from 0 M to 0.4 M, the measured galvanic current density dropped from 32 mA/cm 2 to 26 mA/cm 2 , indicating that the acetic acid induces the lower galvanic reaction between the copper and the molybdenum in the solution. From the XPS analysis, with the addition of the acetic acid, the thickness of the protective MoO 2 passive film covering the molybdenum surface grew and the dissolution rate of the molybdenum thin film decreased. However, the dissolution rate of the copper thin film increased as the concentration of acetic acid in the mixture solution increased.

  6. Effect of acetic acid on wet patterning of copper/molybdenum thin films in phosphoric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Bo.-Hyun; Lee, Sang-Hyuk; Park, In-Sun [Department of Materials Engineering, Korea Aerospace University, Hwajeon, Goyang, Gyonggi-do 412-791 (Korea, Republic of); Seo, Jong Hyun, E-mail: jhseo@kau.ac.kr [Department of Materials Engineering, Korea Aerospace University, Hwajeon, Goyang, Gyonggi-do 412-791 (Korea, Republic of); Choe, HeeHwan; Jeon, Jae-Hong [School of Electronics, Telecommunications and Computer Engineering, Korea Aerospace University, Hwajeon, Goyang, Gyonggi-do 412-791 (Korea, Republic of); Hong, Munpyo [Display and Semiconductor Physics, Korea University (Korea, Republic of); Lee, Yong Uk [PETEC (The Printable Electronics Technology Centre) (United Kingdom); Winkler, Joerg [PLANSEE Metal GmbH, Metallwerk-Plansee-Str. 71A-6600, Reutte (Austria)

    2011-08-01

    Copper metallization is a key issue for high performance thin film transistor (TFT) technology. A phosphoric acid based copper etchant is a potentially attractive alternative to the conventional hydrogen peroxide based etchant due to its longer-life expectancy time and higher stability in use. In this paper, it is shown that amount of the acetic acid in the phosphoric based copper etchant plays an important role in controlling the galvanic reaction between the copper and the molybdenum. As the concentration of acetic acid in the phosphoric mixture solution increased from 0 M to 0.4 M, the measured galvanic current density dropped from 32 mA/cm{sup 2} to 26 mA/cm{sup 2}, indicating that the acetic acid induces the lower galvanic reaction between the copper and the molybdenum in the solution. From the XPS analysis, with the addition of the acetic acid, the thickness of the protective MoO{sub 2} passive film covering the molybdenum surface grew and the dissolution rate of the molybdenum thin film decreased. However, the dissolution rate of the copper thin film increased as the concentration of acetic acid in the mixture solution increased.

  7. Precipitation stripping of neodymium from carboxylate extractant with aqueous oxalic acid solutions

    International Nuclear Information System (INIS)

    Konishi, Yasuhiro; Asai, Satoru; Murai, Tetuya

    1993-01-01

    This paper describes a precipitation stripping method in which neodymium ions are stripped from carboxylate extractant in organic solvent and simultaneously precipitated with aqueous oxalic acid solution. For the single-stage process, a quantitative criterion for precipitating oxalate powders was derived theoretically, and stripping experiments were done under the precipitation conditions. The resultant precipitates were neodymium oxalate, which is completely free from contamination by the carboxylate extractant and the organic solvent. The overall rate of stripping was controlled by the transfer of neodymium carboxylate in the organic solution, indicating that the presence of oxalic acid in the aqueous phase has no effect on the stripping rate. These findings demonstrate the feasibility of combining the conventional stripping and precipitation stages in a solvent extraction process for separation and purification of rare earths

  8. 2-[1-(Methylsulfanylnaphtho[2,1-b]furan-2-yl]acetic acid

    Directory of Open Access Journals (Sweden)

    Uk Lee

    2008-02-01

    Full Text Available The title compound, C15H12O3S, was prepared by alkaline hydrolysis of ethyl 2-{1-(methylsulfanylnaphtho[2,1-b]furan-2-yl}acetate. The crystal structure is stabilized by CH2—H...π interactions between the methyl H atoms of the methylsulfanyl substituent and the central benzene ring of the naphthofuran system, and by inversion-related intermolecular O—H...O hydrogen bonds between the carboxyl groups.

  9. Supramolecular Coordination Assemblies Constructed From Multifunctional Azole-Containing Carboxylic Acids

    Directory of Open Access Journals (Sweden)

    Yuheng Deng

    2010-05-01

    Full Text Available This paper provides a brief review of recent progress in the field of metal coordination polymers assembled from azole-containing carboxylic acids and gives a diagrammatic summary of the diversity of topological structures in the resulting infinite metal-organic coordination networks (MOCNs. Azole-containing carboxylic acids are a favorable kind of multifunctional ligand to construct various metal complexes with isolated complexes and one, two and three dimensional structures, whose isolated complexes are not the focus of this review. An insight into the topology patterns of the infinite coordination polymers is provided. Analyzed topologies are compared with documented topologies and catalogued by the nature of nodes and connectivity pattern. New topologies which are not available from current topology databases are described and demonstrated graphically.

  10. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Nozomi Kawazoe

    2017-06-01

    Full Text Available Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER and unfolded protein response (UPR has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v. Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1Δ and hac1Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid and mild ethanol stress (5% ethanol induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH.

  11. Megasphaera hexanoica sp. nov., a medium-chain carboxylic acid-producing bacterium isolated from a cow rumen.

    Science.gov (United States)

    Jeon, Byoung Seung; Kim, Seil; Sang, Byoung-In

    2017-07-01

    Strain MHT, a strictly anaerobic, Gram-stain-negative, non-spore-forming, spherical coccus or coccoid-shaped microorganism, was isolated from a cow rumen during a screen for hexanoic acid-producing bacteria. The microorganism grew at 30-40 °C and pH 5.5-7.5 and exhibited production of various short- and medium-chain carboxylic acids (acetic acid, butyric acid, pentanoic acid, isobutyric acid, isovaleric acid, hexanoic acid, heptanoic acid and octanoic acid), as well as H2 and CO2 as biogas. Phylogenetic analysis based on 16S rRNA gene sequencing demonstrated that MHT represents a member of the genus Megasphaera, with the closest relatives being Megapsphaera indica NMBHI-10T (94.1 % 16S rRNA sequence similarity), Megasphaera elsdenii DSM 20460T (93.8 %) and Megasphaera paucivorans DSM 16981T (93.8 %). The major cellular fatty acids produced by MHT included C12 : 0, C16 : 0, C18 : 1cis 9, and C18 : 0, and the DNA G+C content of the MHT genome is 51.8 mol%. Together, the distinctive phenotypic and phylogenetic characteristics of MHT indicate that this microorganism represents a novel species of the genus Megasphaera, for which the name Megasphaera hexanoica sp. nov. is herein proposed. The type strain of this species is MHT (=KCCM 43214T=JCM 31403T).

  12. Preparation and reactivity of carboxylic acid-terminated boron-doped diamond electrodes

    International Nuclear Information System (INIS)

    Niedziolka-Joensson, Joanna; Boland, Susan; Leech, Donal; Boukherroub, Rabah; Szunerits, Sabine

    2010-01-01

    The paper reports on the formation of carboxy-terminated boron-doped diamond (BDD) electrodes. The carboxylic acid termination was prepared in a controlled way by reacting photochemically oxidized BDD with succinic anhydride. The resulting interface was readily employed for the linking of an amine-terminated ligand such as an osmium complex bearing an amine terminal group. The interfaces were characterized using X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). Contact angle measurements were used to follow the changes in surface wetting properties due to surface functionalization. The chemical reactivity of the carboxyl-terminated BDD was investigated by covalent coupling of the acid groups to an amine-terminated osmium complex.

  13. A Concise Synthesis and the Antibacterial Activity of 5,6-Dimethoxynaphthalene-2-carboxylic Acid

    OpenAIRE

    GÖKSU, Süleyman; UĞUZ, Metin Tansu

    2014-01-01

    5,6-Dimethoxynaphthalene-2-carboxylic acid was synthesized in 7 steps and with an overall yield of 46%. Bromination of 2-naphthol, and methylation with dimethyl sulfate followed by Friedel-Crafts acylation with AcCl gave 2-acetyl-5-bromo-6-methoxynaphthalene. 2-Acetyl-5-bromo-6-methoxynaphthalene was converted to 5-bromo-6- methoxynaphthalene-2-carboxylic acid by a haloform reaction. The esterification of the acid with methanol, methoxylation with NaOCH3 in the presence of CuI and s...

  14. Biotransformation of fluorophenyl pyridine carboxylic acids by the model fungus Cunninghamella elegans.

    Science.gov (United States)

    Palmer-Brown, William; Dunne, Brian; Ortin, Yannick; Fox, Mark A; Sandford, Graham; Murphy, Cormac D

    2017-09-01

    1. Fluorine plays a key role in the design of new drugs and recent FDA approvals included two fluorinated drugs, tedizolid phosphate and vorapaxar, both of which contain the fluorophenyl pyridyl moiety. 2. To investigate the likely phase-I (oxidative) metabolic fate of this group, various fluorinated phenyl pyridine carboxylic acids were incubated with the fungus Cunninghamella elegans, which is an established model of mammalian drug metabolism. 3.  19 F NMR spectroscopy established the degree of biotransformation, which varied depending on the position of fluorine substitution, and gas chromatography-mass spectrometry (GC-MS) identified alcohols and hydroxylated carboxylic acids as metabolites. The hydroxylated metabolites were further structurally characterised by nuclear magnetic resonance spectroscopy (NMR), which demonstrated that hydroxylation occurred on the 4' position; fluorine in that position blocked the hydroxylation. 4. The fluorophenyl pyridine carboxylic acids were not biotransformed by rat liver microsomes and this was a consequence of inhibitory action, and thus, the fungal model was crucial in obtaining metabolites to establish the mechanism of catabolism.

  15. Endogenous lycopene improves ethanol production under acetic acid stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Pan, Shuo; Jia, Bin; Liu, Hong; Wang, Zhen; Chai, Meng-Zhe; Ding, Ming-Zhu; Zhou, Xiao; Li, Xia; Li, Chun; Li, Bing-Zhi; Yuan, Ying-Jin

    2018-01-01

    Acetic acid, generated from the pretreatment of lignocellulosic biomass, is a significant obstacle for lignocellulosic ethanol production. Reactive oxidative species (ROS)-mediated cell damage is one of important issues caused by acetic acid. It has been reported that decreasing ROS level can improve the acetic acid tolerance of Saccharomyces cerevisiae . Lycopene is known as an antioxidant. In the study, we investigated effects of endogenous lycopene on cell growth and ethanol production of S. cerevisiae in acetic acid media. By accumulating endogenous lycopene during the aerobic fermentation of the seed stage, the intracellular ROS level of strain decreased to 1.4% of that of the control strain during ethanol fermentation. In the ethanol fermentation system containing 100 g/L glucose and 5.5 g/L acetic acid, the lag phase of strain was 24 h shorter than that of control strain. Glucose consumption rate and ethanol titer of yPS002 got to 2.08 g/L/h and 44.25 g/L, respectively, which were 2.6- and 1.3-fold of the control strain. Transcriptional changes of INO1 gene and CTT1 gene confirmed that endogenous lycopene can decrease oxidative stress and improve intracellular environment. Biosynthesis of endogenous lycopene is first associated with enhancing tolerance to acetic acid in S. cerevisiae . We demonstrate that endogenous lycopene can decrease intracellular ROS level caused by acetic acid, thus increasing cell growth and ethanol production. This work innovatively   puts forward a new strategy for second generation bioethanol production during lignocellulosic fermentation.

  16. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by etiolated and green corn tissues

    International Nuclear Information System (INIS)

    Reinecke, D.

    1989-01-01

    Etiolated corn tissues oxidase indole-3-acetic acid (IAA) to oxindole-3-acetic acid (OxIAA). This oxidation results in loss of auxin activity and may plant a role in regulating IAA-stimulated growth. The enzyme has been partially purified and characterized and shown to require O 2 , and a heat-stable lipid-soluble corn factor which can be replaced by linolenic or linoleic acids in the oxidation of IAA. Corn oil was tested as a cofactor in the IAA oxidation reaction. Corn oil stimulated enzyme activity by 30% while trilinolein was inactive. The capacity of green tissue to oxidize IAA was examined by incubating leaf sections from 2 week old light-grown corn seedlings with 14 C-IAA. OxIAA and IAA were separated from other IAA metabolites on a 3 ml anion exchange column. Of the IAA taken up by the sections, 13% was oxidized to OxIAA. This is the first evidence that green tissue of corn may also regulate IAA levels by oxidizing IAA to OxIAA

  17. Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate.

    Science.gov (United States)

    Xie, Rui; Tu, Maobing; Wu, Yonnie; Adhikari, Sushil

    2011-04-01

    5-Hydroxymethylfurfural (HMF) and furfural could be separated by the Aminex HPX-87H column chromatography, however, the separation and quantification of acetic acid and levulinic acid in biomass hydrolysate have been difficult with this method. In present study, the HPLC separation of acetic acid and levulinic acid on Aminex HPX-87H column has been investigated by varying column temperature, flow rate, and sulfuric acid content in the mobile phase. The column temperature was found critical in resolving acetic acid and levulinic acid. The resolution for two acids increased dramatically from 0.42 to 1.86 when the column temperature was lowered from 60 to 30 °C. So did the capacity factors for levulinic acid that was increased from 1.20 to 1.44 as the column temperature dropped. The optimum column temperature for the separation was found at 45 °C. Variation in flow rate and sulfuric acid concentration improved not as much as the column temperature did. Published by Elsevier Ltd.

  18. Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis.

    Science.gov (United States)

    Criquet, Justine; Leitner, Nathalie Karpel Vel

    2009-09-01

    The photolysis of S(2)O(8)(2-) was studied for the removal of acetic acid in aqueous solution and compared with the H(2)O(2)/UV system. The SO(4)(-) radicals generated from the UV irradiation of S(2)O(8)(2-) ions yield a greater mineralization of acetic acid than the ()OH radicals. Acetic acid is oxidized by SO(4)(-) radicals without significant formation of intermediate by-products. Increasing system pH results in the formation of ()OH radicals from SO(4)(-) radicals. Maximum acetic acid degradation occurred at pH 5. The results suggest that above this pH, competitive reactions with the carbon mineralized inhibit the reaction of the solute with SO(4)(-) and also ()OH radicals. Scavenging effects of two naturally occurring ions were tested; in contrast to HCO(3)(-) ions, the presence of Cl(-) ions enhances the efficiency of the S(2)O(8)(2-)/UV process towards the acetate removal. It is attributed to the formation of the Cl() radical and its great reactivity towards acetate.

  19. Cloning of phenazine carboxylic acid genes of Fusarium fujikuroi ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-08

    Mar 8, 2010 ... genetic modification can improve the efficacy of biological control agents (Van Loon, 1998). Bacterial secondary ... WCS358r was modified to produce the antifungal com- pound phenazine-1-carboxylic acid (PCA) ( ..... control of Rhizoctonia solani in tomato. J. Biotechnol. 6: 115-127. Raaijmakers JM ...

  20. Recovery of arabinan in acetic acid-catalyzed hydrothermal pretreatment on corn stover

    DEFF Research Database (Denmark)

    Xu, Jian; Hedegaard, Mette Christina; Thomsen, Anne Belinda

    2009-01-01

    Acetic acid-catalyzed hydrothermal pretreatment was done on corn stover under 195 °C, 15 min with the acetic acid ranging from 5 × 10−3 to 0.2 g g−1 corn stover. After pretreatment, the water-insoluble solids (WISs) and liquors were collected respectively. Arabinan recoveries from both WIS...... and liquors were investigated. The results indicate that there was no detectable arabinan left in the WIS when the acetic acid of 0.1 and 0.2 g g−1 corn stover were used in the pretreatment. The arabinan contents in the other WISs were not more than 10%. However, the arabinan found in the liquors...... was not covering the amount of arabinan released from the raw corn stover. For the arabinan recovery from liquor fractions, the highest of 43.57% was obtained by the pretreatment of acetic acid of 0.01 g g−1 of corn stover and the lowest was only 26.77% when the acetic acid of 0.2 g g−1 corn stover was used...

  1. Free and proteic aminoacids from acetate 14C metabolism in detached leaves of coffee plant

    International Nuclear Information System (INIS)

    Brasil, O.G.; Crocomo, O.J.

    1981-01-01

    The acetate 14 C was studied as the forerunner of proteic and free aminoacids in detached leaves of coffee (coffea arabica L.cv. Mundo Novo). The detached leaves were incubated with acetate -1- 14 C and -2- 14 C during several times (15, 30, 45, 60, 90, 120, 150 and 180 minutes), out of luminosity. The ethanol 80% soluble fraction gave origin to free aminoacid after ion - exchange chromatography. The insoluble fraction through acid hydrolisis furnished proteic aminoacids. The data showed that the acetate molecules contributed for the aminoacids molecules structure, methylic carbon being more incorporated than the carboxylic carbon. (Author) [pt

  2. Synthesis of acetic acid by catalytic oxidation of butenes-2. Synthesis of acetic acid from sec. -butyl alcohol and methyl ethyl ketone in vapor-phase catalytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, T.; Matsuzawa, Y.; Ninagawa, S.

    1977-11-01

    Eleven binary catalysts containing vanadium pentoxide (V/sub 2/O/sub 5/), 17 binary catalysts containing cobalt oxide (Co/sub 3/O/sub 4/), and 18 ternary catalysts containing both V/sub 2/O/sub 5/ and Co/sub 3/O/sub 4/ were screened for the stepwise conversion of sec.-butanol to methyl ethyl ketone (MEK) and acetic acid. Of the binary catalysts, 4:1 Rh/V and Co/V binary oxides gave the best acetic acid yields. With the Co/V catalyst, the selectivity for MEK increased rapidly as the cobalt content of the catalyst increased above 50%, reaching 81% at 226/sup 0/C and 90% conversion on 9:1 Co/V oxide. The 9:1 Co/V catalyst also yielded acetaldehyde from ethanol with 98% selectivity at 210/sup 0/C and acetone from isopropanol with 98% selectivity at 200/sup 0/C, but dehydrated tert.-butanol to isobutene. V/Cr and V/Sb binary oxides were the most effective catalysts for the oxidation of MEK to acetic acid, with 78-88% selectivities at 100% conversion at 260/sup 0/C. Of the ternary oxides tested for the one-step conversion of sec.-butanol to acetic acid, a 6:2:2 Co/V/Al catalyst gave best results, (i.e., 34% selectivity for acetic acid (45% for total acids) at 100% conversion and 68% selectivity (90% for total acids) at 50Vertical Bar3< conversion). Graphs, tables, and 21 references.

  3. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2.

    Science.gov (United States)

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-05-11

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru-Rh bimetallic catalyst using imidazole as the ligand and LiI as the promoter in 1,3-dimethyl-2-imidazolidinone (DMI) solvent. It is confirmed that methanol is hydrocarboxylated into acetic acid by CO2 and H2, which accounts for the outstanding reaction results. The reaction mechanism is proposed based on the control experiments. The strategy opens a new way for acetic acid production and CO2 transformation, and represents a significant progress in synthetic chemistry.

  4. Direct enantioselective conjugate addition of carboxylic acids with chiral lithium amides as traceless auxiliaries.

    Science.gov (United States)

    Lu, Ping; Jackson, Jeffrey J; Eickhoff, John A; Zakarian, Armen

    2015-01-21

    Michael addition is a premier synthetic method for carbon-carbon and carbon-heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B.

  5. Heterocycles [h]-Fused Onto 4-Oxoquinoline-3-Carboxylic Acid, Part VIII [1]. Convenient Synthesis and Antimicrobial Properties of Substituted Hexahydro[1,4]diazepino[2,3-h]quinoline-9-carboxylic acid and Its Tetrahydroquino[7,8-b]benzodiazepine Analog

    Directory of Open Access Journals (Sweden)

    Yusuf M. Al-Hiari

    2008-11-01

    Full Text Available [1,4]Diazepino[2,3-h]quinolone carboxylic acid 3 and its benzo-homolog tetrahydroquino[7,8-b]benzodiazepine-3-carboxylic acid 5 were prepared via PPAcatalyzed thermal lactamization of the respective 8-amino-7-substituted-1,4-dihydroquinoline-3-carboxylic acid derivatives 8, 10. The latter compounds were obtained by reduction of their 8-nitro-7-substituted-1,4-dihydroquinoline-3-carboxylic acid precursors 7, 9 which, in turn, were prepared by reaction of 7-chloro-1-cyclopropyl-6-fluoro-8-nitro-1,4-dihydroquinoline-3-carboxylic acid (6 with each of β-alanine and anthranilic acid. All intermediates and target compounds were characterized using elemental analysis, NMR, IR and MS spectral data. The prepared targets and the intermediates have shown interesting antibacterial activity mainly against Gram positive strains. In particular, compound 8 showed good activity against S. aureus (MIC = 0.39 μg/mL and B. subtilis (MIC = 0.78 μg/mL. Compounds 5a and 9 have also displayed good antifungal activity against C. albicans (MIC = 1.56 μg/mL and 0.78 μg/mL, respectively. None of the compounds tested showed any anticancer activity against solid breast cancer cell line MCF-7 cells or a human breast adenocarcinoma cell line.

  6. An improved synthesis of carbon-14 labelled carboxylic acids from carbon-14 labelled amino acids

    International Nuclear Information System (INIS)

    Ramamurthy, T.V.; Ravi, S.; Viswanathan, K.V.

    1988-01-01

    Various carbon-14 labelled amino acids including the aromatic ones viz., tyrosine, phenylalanine and tryptophan are converted to the corresponding carboxylic acids in high yield (70-90%) on a micromolar scale synthesis by reaction with hydroxyl-amine-O-sulphonic acid and in a short reaction time. The improvement in yield has been achieved by using aqeuous alcohol as solvent in lieu of water alone as the medium of reaction. (author)

  7. Granisetron ameliorates acetic acid-induced colitis in rats.

    Science.gov (United States)

    Fakhfouri, Gohar; Rahimian, Reza; Daneshmand, Ali; Bahremand, Arash; Rasouli, Mohammad Reza; Dehpour, Ahmad Reza; Mehr, Shahram Ejtemaei; Mousavizadeh, Kazem

    2010-04-01

    Inflammatory bowel disease (IBD) is a chronically relapsing inflammation of the gastrointestinal tract, of which the definite etiology remains ambiguous. Considering the adverse effects and incomplete efficacy of currently administered drugs, it is indispensable to explore new candidates with more desirable therapeutic profiles. 5-HT( 3) receptor antagonists have shown analgesic and anti-inflammatory properties in vitro and in vivo. This study aims to investigate granisetron, a 5-HT( 3) receptor antagonist, in acetic acid-induced rat colitis and probable involvement of 5-HT(3) receptors. Colitis was rendered by instillation of 1 mL of 4% acetic acid (vol/vol) and after 1 hour, granisetron (2 mg/kg), dexamethasone (1 mg/kg), meta-chlorophenylbiguanide (mCPBG, 5 mg/kg), a 5-HT( 3) receptor agonist, or granisetron + mCPBG was given intraperitoneally. Twenty-four hours following colitis induction, animals were sacrificed and distal colons were assessed macroscopically, histologically and biochemically (malondialdehyde, myeloperoxidase, tumor necrosis factor-alpha, interleukin-1 beta and interleukin-6). Granisetron or dexamethasone significantly (p granisetron were reversed by concurrent administration of mCPBG. Our data suggests that the salutary effects of granisetron in acetic acid colitis could be mediated by 5-HT(3) receptors.

  8. Rapid and selective derivatizatin method for the nitrogen-sensitive detection of carboxylic acids in biological fluids prior to gas chromatographic analysis

    NARCIS (Netherlands)

    Lingeman, H.; Haan, H.B.P.; Hulshoff, A.

    1984-01-01

    A rapid and selective derivatization procedure is described for the pre-column labelling of carboxylic acids with a nitrogen-containing label. The carboxylic acid function is activated with 2-bromo-1-methylpyridinium iodide and the activated carboxylic acid function reacts with a primary or a

  9. Effect of acetic acid on rice seeds coated with rice husk ash

    Directory of Open Access Journals (Sweden)

    Lizandro Ciciliano Tavares

    2013-06-01

    Full Text Available Flooded rice cultivation promotes anaerobic conditions, favoring the formation of short chain organic acids such as acetic acid, which may be toxic to the crop. The objective of this study was to evaluate the effect of acetic acid on rice seeds coated with rice husk ash. The experiment was arranged in a 2 x 5 x 5 factorial randomized design, with two cultivars (IRGA 424 and BRS Querência, five doses of coating material (0, 2, 3,4 e 5 g kg-1 seed and five concentrations of acetic acid (0, 3, 6, 9 and 12 mM, with 4 replications, totaling 50 treatments. The variables first count of germination, germination, shoot and root length, dry weight of shoots and roots were recorded. The results showed that coating rice seeds with rice husk ash up to 5 g kg-1 seed does not influence the performance of rice seeds of cultivars IRGA 424 and BRS Querência when exposed to concentrations of 12 mM acetic acid. The presence of acetic acid in the substrates used for seed germination reduced the vigor and viability of seeds of cultivars IRGA 424 and BRS Querência, as well as seedling development, affecting mainly the roots of BRS Querência.

  10. Chemo-enzymatic epoxidation of olefins by carboxylic acid esters and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ruesch gen. Klaas, M.; Warwel, S. [Inst. for Biochemistry and Technology of Lipids, H.P. Kaufmanm-Inst., Federal Centre for Cereal, Potato and Lipid Research, Muenster (Germany)

    1998-12-31

    Ethylen and, recently, butadiene can be epoxidized directly with oxygen and for the epoxidation of propylene, the use of heterogeneous transition metals and organic peroxides (Halcon-Process) is the major player. But, beside from those notable exceptions, all other epoxidations, including large ones like the epoxidation of plant oils as PVC-stabilizers (about 200.000 t/year), are carried out with peroxy acids. Because mcpba is far to expensive for most applications, short chain peracids like peracetic acid are used. Being much less stable than mcpba and thus risky handled in large amounts and high concentrations, these peroxy acids were preferably prepared in-situ. However, conventional in-situ formation of peracids has the serious drawback, that a strong acid is necessary to catalyze peroxy acid formation from the carboxylic acid and hydrogen peroxide. The presence of a strong acid in the reaction mixture often results in decreased selectivity because of the formation of undesired by-products by opening of the oxirane ring. Therefore, we propose a new method for epoxidation based on the in-situ preparation of percarboxylic acids from carboxylic acid esters and hydrogen peroxide catalyzed by a commercial, immobilized lipase. (orig.)

  11. Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Zargarian, S. Sh.; Haddadi-Asl, V., E-mail: haddadi@aut.ac.ir; Hematpour, H. [Amirkabir University of Technology, Department of Polymer Engineering and Color Technology (Iran, Islamic Republic of)

    2015-05-15

    Halloysite nanotubes (HNT) (cylindrical shape with external diameter and length in the range of 30–80 nm and 0.2–1 µm, respectively) were functionalized with 3-aminopropyltriethoxysilane (APTES) from hydroxyl groups by a coupling reaction. Subsequently, maleic anhydride was attached to the APTES moieties to yield carboxylic acid-functionalized HNT. Loading and subsequent release of a model drug molecule diphenhydramine hydrochloride (DPH) on modified and unmodified nanotubes were investigated. Morphology of HNT was studied by electron microscopy. Successful attachment of APTES and carboxylic acid groups to halloysite and drug loading were evaluated by Fourier transform infrared spectroscopy. The amount of surface modification and drug adsorption capacity were calculated via thermogravimetric analysis. The ordered crystal structure of loaded drug was evaluated by X-ray diffraction. UV–Visible spectrophotometer was used to study drug release from modified and unmodified samples. Carboxylated halloysite exhibits higher loading capacity and prolonged release of DPH as compared to that of the natural halloysite.

  12. Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride

    International Nuclear Information System (INIS)

    Zargarian, S. Sh.; Haddadi-Asl, V.; Hematpour, H.

    2015-01-01

    Halloysite nanotubes (HNT) (cylindrical shape with external diameter and length in the range of 30–80 nm and 0.2–1 µm, respectively) were functionalized with 3-aminopropyltriethoxysilane (APTES) from hydroxyl groups by a coupling reaction. Subsequently, maleic anhydride was attached to the APTES moieties to yield carboxylic acid-functionalized HNT. Loading and subsequent release of a model drug molecule diphenhydramine hydrochloride (DPH) on modified and unmodified nanotubes were investigated. Morphology of HNT was studied by electron microscopy. Successful attachment of APTES and carboxylic acid groups to halloysite and drug loading were evaluated by Fourier transform infrared spectroscopy. The amount of surface modification and drug adsorption capacity were calculated via thermogravimetric analysis. The ordered crystal structure of loaded drug was evaluated by X-ray diffraction. UV–Visible spectrophotometer was used to study drug release from modified and unmodified samples. Carboxylated halloysite exhibits higher loading capacity and prolonged release of DPH as compared to that of the natural halloysite

  13. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Direct Enantioselective Conjugate Addition of Carboxylic Acids with Chiral Lithium Amides as Traceless Auxiliaries

    Science.gov (United States)

    2016-01-01

    Michael addition is a premier synthetic method for carbon–carbon and carbon–heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B. PMID:25562717

  15. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    Science.gov (United States)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  16. Enhanced detection of amino acids in hydrophilic interaction chromatography electrospray tandem mass spectrometry with carboxylic acids as mobile phase additives.

    Science.gov (United States)

    Yin, Dengyang; Hu, Xunxiu; Liu, Dantong; Du, Wencheng; Wang, Haibo; Guo, Mengzhe; Tang, Daoquan

    2017-06-01

    Liquid chromatography coupled with mass spectrometry technique has been widely used in the analysis of biological targets such as amino acids, peptides, and proteins. In this work, eight common single carboxylic acids or diacids, which contain different pKa have been investigated as the additives to the analysis of amino acids. As the results, carboxylic acid additive can improve the signal intensity of acidity amino acids such as Asp and Glu and the chromatographic separation of basic amino acids such as Arg, His, and Lys. In particular, the diacids have better performance than single acids. The proposed mechanism is that the diacid has hydrogen bond interaction with amino acids to reduce their polarity/amphiprotic characteristics. Besides, oxalic acid has been found having better enhancement than phthalic acid by overall consideration. Therefore, we successfully quantified the 15 amino acids in Sepia bulk pharmaceutical chemical by using oxalic acid as the additive.

  17. Insights into the mechanism of acetic acid hydrogenation to ethanol on Cu(111) surface

    Science.gov (United States)

    Zhang, Minhua; Yao, Rui; Jiang, Haoxi; Li, Guiming; Chen, Yifei

    2017-08-01

    Density functional theory (DFT) calculations were employed to theoretically explain the reaction mechanism of acetic acid hydrogenation to ethanol on Cu catalyst. The activation barriers of key elementary steps and the adsorption configurations of key intermediates involved in acetic acid hydrogenation on Cu(111) surface were investigated. The results indicated that the direct dissociation of acetic acid to acetyl (CH3COOH → CH3CO + OH) is the rate-determined step. The activation barrier of acetic acid scission to acetyl and the adsorption energy of acetic acid are two descriptors which could determine the conversion of acetic acid. The descriptors might have effects on the ethanol selectivity including: the adsorption energy of acetaldehyde and the activation barriers for Osbnd H bond formation of C2-oxygenates (CH3CO + H → CH3COH, CH3CHO + H → CH3CHOH and CH3CH2O + H → CH3CH2OH). These proposed descriptors could be used as references to design new Cu-based catalysts that have excellent catalytic performance.

  18. Dynamically formed hydrous zirconium (IV) oxide-polyelectrolyte membranes. III: Poly(acrylic acid) and substituted poly(acrylic acid) homo, co and terpolymer membranes

    International Nuclear Information System (INIS)

    Van Reenen, A.J.; Sanderson, R.D.

    1989-01-01

    A series of acrylic acid and substituted acrylic acid homo, co and terpolymers was synthesised. These polymers were used as polyelectrolytes in dynamically formed hydrous zirconium (iv) oxide-polyelectrolyte membranes. Substitution of the acrylic acid α-hydrogen was done to increase the number of carboxylic acid groups per monomer unit and to change the acid strength of acrylic acid carboxylic acid group. None of these changes improved the salt rejection of these membranes over that of commercially used poly(acrylic acid). Improvement in rejection was found when a hydrophobic comonomer, vinyl acetate, was used in conjunction with acrylic acid in a copolymer dynamic membrane. 16 refs., 6 figs., 1 tab

  19. Thermal stability of carboxylic acid functionality in coal; Sekitanchu ni sonzaisuru karubokishiruki no netsubunkai kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, Y.; Aida, T. [Kinki University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    Carboxyl in coal was focused in discussing its pyrolytic behavior while tracking change of its absolute amount relative to the heating temperatures. A total of four kinds of coals, consisting of two kinds brown coals, sub-bituminous coal and bituminous coal were used. Change in the absolute amount of carboxyl due to heating varies with coalification degree. Decomposition starts in the bituminous coal from around 300{degree}C, and is rapidly accelerated when 400{degree}C is exceeded. Carboxyls in brown coals exist two to three times as much as those in bituminous and sub-bituminous coals, of which 40% is decomposed at a temperature as low as about 300{degree}C. Their pyrolytic behavior at temperatures higher than 400{degree}C resembles that of the bituminous coal. Carboxyls consist of those easy to decompose and difficult to decompose. Aromatic and aliphatic carboxylic acids with simple structure are stable at temperatures lower than 300{degree}C, and decompose abruptly from about 400{degree}C, hence their behavior resembles that of carboxyls in bituminous and sub-bituminous coals. Structure of low-temperature decomposing carboxyls in brown coals is not known, but it is assumed that humic acid originated from natural materials remains in the structure. 4 refs., 3 figs., 1 tab.

  20. Acute intestinal injury induced by acetic acid and casein: prevention by intraluminal misoprostol

    International Nuclear Information System (INIS)

    Miller, M.J.; Zhang, x.J.; Gu, x.A.; Clark, D.A.

    1991-01-01

    Acute injury was established in anesthetized rabbits by intraluminal administration of acetic acid with and without bovine casein, into loops of distal small intestine. Damage was quantified after 45 minutes by the blood-to-lumen movement of 51 Cr-labeled ethylenediaminetetraacetic acid (EDTA) and fluorescein isothiocyanate-tagged bovine serum albumin as well as luminal fluid histamine levels. The amount of titratable acetic acid used to lower the pH of the treatment solutions to pH 4.0 was increased by the addition of calcium gluconate. Luminal acetic acid caused a 19-fold increase in 51 Cr-EDTA accumulation over saline controls; casein did not modify this effect. In saline controls, loop fluid histamine levels bordered on the limits of detection (1 ng/g) but were elevated 19-fold by acetic acid exposure and markedly increased (118-fold) by the combination of acid and casein. Intraluminal misoprostol (3 or 30 micrograms/mL), administered 30 minutes before acetic acid, significantly attenuated the increase in epithelial permeability (luminal 51 Cr-EDTA, fluorescein isothiocyanate-bovine serum albumin accumulation) and histamine release (P less than 0.05). Diphenhydramine, alone or in combination with cimetidine, and indomethacin (5 mg/kg IV) were not protective. It is concluded that exposure of the epithelium to acetic acid promotes the transepithelial movement of casein leading to enhanced mast cell activation and mucosal injury. Damage to the epithelial barrier can be prevented by misoprostol

  1. Acute intestinal injury induced by acetic acid and casein: prevention by intraluminal misoprostol

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.J.; Zhang, x.J.; Gu, x.A.; Clark, D.A. (Department of Pediatrics, Louisiana State University School of Medicine, New Orleans (USA))

    1991-07-01

    Acute injury was established in anesthetized rabbits by intraluminal administration of acetic acid with and without bovine casein, into loops of distal small intestine. Damage was quantified after 45 minutes by the blood-to-lumen movement of {sup 51}Cr-labeled ethylenediaminetetraacetic acid (EDTA) and fluorescein isothiocyanate-tagged bovine serum albumin as well as luminal fluid histamine levels. The amount of titratable acetic acid used to lower the pH of the treatment solutions to pH 4.0 was increased by the addition of calcium gluconate. Luminal acetic acid caused a 19-fold increase in {sup 51}Cr-EDTA accumulation over saline controls; casein did not modify this effect. In saline controls, loop fluid histamine levels bordered on the limits of detection (1 ng/g) but were elevated 19-fold by acetic acid exposure and markedly increased (118-fold) by the combination of acid and casein. Intraluminal misoprostol (3 or 30 micrograms/mL), administered 30 minutes before acetic acid, significantly attenuated the increase in epithelial permeability (luminal {sup 51}Cr-EDTA, fluorescein isothiocyanate-bovine serum albumin accumulation) and histamine release (P less than 0.05). Diphenhydramine, alone or in combination with cimetidine, and indomethacin (5 mg/kg IV) were not protective. It is concluded that exposure of the epithelium to acetic acid promotes the transepithelial movement of casein leading to enhanced mast cell activation and mucosal injury. Damage to the epithelial barrier can be prevented by misoprostol.

  2. The Genealogical Tree of Ethanol: Gas-phase Formation of Glycolaldehyde, Acetic Acid, and Formic Acid

    Science.gov (United States)

    Skouteris, Dimitrios; Balucani, Nadia; Ceccarelli, Cecilia; Vazart, Fanny; Puzzarini, Cristina; Barone, Vincenzo; Codella, Claudio; Lefloch, Bertrand

    2018-02-01

    Despite the harsh conditions of the interstellar medium, chemistry thrives in it, especially in star-forming regions where several interstellar complex organic molecules (iCOMs) have been detected. Yet, how these species are synthesized is a mystery. The majority of current models claim that this happens on interstellar grain surfaces. Nevertheless, evidence is mounting that neutral gas-phase chemistry plays an important role. In this paper, we propose a new scheme for the gas-phase synthesis of glycolaldehyde, a species with a prebiotic potential and for which no gas-phase formation route was previously known. In the proposed scheme, the ancestor is ethanol and the glycolaldehyde sister species are acetic acid (another iCOM with unknown gas-phase formation routes) and formic acid. For the reactions of the new scheme with no available data, we have performed electronic structure and kinetics calculations deriving rate coefficients and branching ratios. Furthermore, after a careful review of the chemistry literature, we revised the available chemical networks, adding and correcting several reactions related to glycolaldehyde, acetic acid, and formic acid. The new chemical network has been used in an astrochemical model to predict the abundance of glycolaldehyde, acetic acid, and formic acid. The predicted abundance of glycolaldehyde depends on the ethanol abundance in the gas phase and is in excellent agreement with the measured one in hot corinos and shock sites. Our new model overpredicts the abundance of acetic acid and formic acid by about a factor of 10, which might imply a yet incomplete reaction network.

  3. Recovery of Acetic Acid from An Ethanol Fermentation Broth by Liquid-Liquid Extraction (LLE) Using Various Solvents

    International Nuclear Information System (INIS)

    Pham, Thi Thu Huong; Kim, Tae Hyun; Um, Byung Hwan

    2015-01-01

    Liquid-liquid extraction (LLE) using various solvents was studied for recovery of acetic acid from a synthetic ethanol fermentation broth. The microbial fermentation of sugars presented in hydrolyzate gives rise to acetic acid as a byproduct. In order to obtain pure ethanol for use as a biofuel, fermentation broth should be subjected to acetic acid removal step and the recovered acetic acid can be put to industrial use. Herein, batch LLE experiments were carried out at 25°C using a synthetic fermentation broth comprising 20.0 g l -1 acetic acid and 5.0 g l -1 ethanol. Ethyl acetate (EtOAc), tri-n-octylphosphine oxide (TOPO), tri-n-octylamine (TOA), and tri-n-alkylphosphine oxide (TAPO) were utilized as solvents, and the extraction potential of each solvent was evaluated by varying the organic phase-to-aqueous phase ratios as 0.2, 0.5, 1.0, 2.0, and 4.0. The highest acetic acid extraction yield was achieved with TAPO; however, the lowest ethanol-to-acetic acid extraction ratio was obtained using TOPO. In a single-stage batch extraction, 97.0 % and 92.4 % of acetic acid could be extracted using TAPO and TOPO when the ratio of organic-to-aqueous phases is 4:1 respectively. A higher solvent-to-feed ratio resulted in an increase in the ethanol-to-acetic acid ratio, which decreased both acetic acid purity and acetic acid extraction yield.

  4. Kinetic analysis of the reactivity of aliphatic cyclic alcohols and carboxylic acids in the T-for-H exchange reaction

    International Nuclear Information System (INIS)

    Tamura, Kiyoshi; Imaizumi, Hiroshi; Kano, Naoki

    2007-01-01

    In order to quantitatively evaluate the influence of tritium ( 3 He or T) on various functional groups in environment, the hydrogen isotope exchange reaction (T-for-H exchange reaction) between tritium-labeled poly-(vinyl alcohol) and each aliphatic cyclic alcohol (or carboxylic acid) has been dynamically observed in the range of 50 to 90degC. Consequently, the activities of the aliphatic cyclic alcohol and carboxylic acid increased with increasing reaction time. Applying in A''-McKay plot method to the observed data, the rate constants (k) for these materials were obtained. Using the k, the relation between the number of carbon atoms in the ring in each alcohol and the reactivity of the alcohol was quantitatively compared. Then, to clarify the effect of relative atomic charge of O atom (connected with the H atom in the hydroxy (or carboxy) group in the material) on the reactivity of the material, the MOPAC method was used. From both the above-mentioned and the obtained previously, the following nine items were found as to aliphatic cyclic alcohols (and carboxylic acids) in the T-for-H exchange reaction. (1) The reactivity of aliphatic cyclic alcohols (and carboxylic acids) depends on the temperature. (2) The reactivity of the cyclic materials decreases with increasing number of carbon atoms in the ring. (3) The reactivity of the aliphatic cyclic carboxylic acid seems to be smaller than that of aliphatic cyclic alcohol, and be larger than that of aliphatic cyclic amine. (4) For aliphatic cyclic alcohols, correlation exists between k and relative atomic charges of O atom obtained by the MOPAC method, but the tendency for aliphatic cyclic carboxylic acid is not clear. (5) As to having the same number of carbon atoms in each ring, the reactivity of the aliphatic cyclic carboxylic acid including the side chain is smaller than of the aliphatic cyclic carboxylic acid including no side chain. (6) The reactivity of aliphatic cyclic carboxylic acid is larger than that of

  5. Ion exchange properties of carboxylate bagasse

    International Nuclear Information System (INIS)

    Nada, A.M.A.; Hassan, M.L.

    2005-01-01

    Bagasse fibers were chemically modified using three different reactions: esterification using monochloro acetic acid, esterification using succinic anhydride, and oxidation using sodium periodate and sodium chlorite to prepare cation exchanger bearing carboxylic groups. Bagasse was crosslinked using epichlorohydrin before chemical modification to avoid loss of its constituents during the chemical modification. The structure of the prepared derivatives was proved using Fourier transform infrared (FTIR) and chemical methods. The ability of the prepared bagasse cation exchangers to adsorb heavy metal ions (Cu +2 , Ni +2 , Cr +3 , Fe +3 ), on a separate basis or in a mixture of them, at different metal ion concentration was tested. Thermal stability of the different bagasse derivative was studied using thermogravimetric analysis (TGA)

  6. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dron, Julien [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)], E-mail: julien.dron@up.univ-mrs.fr; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)

    2007-12-12

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF{sub 3}/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L{sup -1}. Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.

  7. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry

    International Nuclear Information System (INIS)

    Dron, Julien; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri

    2007-01-01

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF 3 /methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L -1 . Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices

  8. Producing Acetic Acid of Acetobacter pasteurianus by Fermentation Characteristics and Metabolic Flux Analysis.

    Science.gov (United States)

    Wu, Xuefeng; Yao, Hongli; Liu, Qing; Zheng, Zhi; Cao, Lili; Mu, Dongdong; Wang, Hualin; Jiang, Shaotong; Li, Xingjiang

    2018-03-19

    The acetic acid bacterium Acetobacter pasteurianus plays an important role in acetic acid fermentation, which involves oxidation of ethanol to acetic acid through the ethanol respiratory chain under specific conditions. In order to obtain more suitable bacteria for the acetic acid industry, A. pasteurianus JST-S screened in this laboratory was compared with A. pasteurianus CICC 20001, a current industrial strain in China, to determine optimal fermentation parameters under different environmental stresses. The maximum total acid content of A. pasteurianus JST-S was 57.14 ± 1.09 g/L, whereas that of A. pasteurianus CICC 20001 reached 48.24 ± 1.15 g/L in a 15-L stir stank. Metabolic flux analysis was also performed to compare the reaction byproducts. Our findings revealed the potential value of the strain in improvement of industrial vinegar fermentation.

  9. Simultaneous determination of carbohydrates, carboxylic acids, alcohols, and metals in foods by high-performance liquid chromatography inductively coupled plasma atomic emission spectrometry.

    Science.gov (United States)

    Paredes, Eduardo; Maestre, Salvador E; Prats, Soledad; Todolí, José L

    2006-10-01

    The applicability of the HPLC-ICP-AES coupling for the simultaneous determination of carbohydrates, carboxylic acids, alcohols, and metals in a single chromatographic run has been demonstrated in the present work. Five saccharides, glucose, fructose, sucrose, sorbitol, and lactose; five carboxylic acids, citric, tartaric, malic, lactic, and acetic; and three alcohols, glycerol, ethanol, and methanol, have been determined. A H+ cation exchange column has been used to separate these compounds. The chromatograms have been obtained by monitoring the carbon emission signal at 193.09 nm. The results obtained by HPLC-ICP-AES have been compared against those found with conventional detection systems (i.e., refractive index, UV, and photodyode array detectors). The HPLC-ICP-AES method has shown the following features: (i) organic compounds and metals can be simultaneously determined; (ii) the detection method is universal; (iii) for nonvolatile organic compounds, a complete calibration line can be obtained from a single injection; and (iv) it provides absolute limits of detection similar to or lower than those found with conventional detection systems (i.e., on the order of several tens of nanograms of organic compound). The methodology has been validated through the analysis of food samples such as juices, isotonic beverages, wines, and a certified nonfat milk powder sample.

  10. Anhydrous formic acid and acetic anhydride as solvent or additive in nonaqueous titrations.

    Science.gov (United States)

    Buvári-Barcza, A; Tóth, I; Barcza, L

    2005-09-01

    The use and importance of formic acid and acetic anhydride (Ac2O) is increasing in nonaqueous acid-base titrations, but their interaction with the solutes is poorly understood. This paper attempts to clarify the effect of the solvents; NMR and spectrophotometric investigations were done to reveal the interactions between some bases and the mentioned solvents. Anhydrous formic acid is a typical protogenic solvent but both the relative permittivity and acidity are higher than those of acetic acid (mostly used in assays of bases). These differences originate from the different chemical structures: liquid acetic acid contains basically cyclic dimers while formic acid forms linear associates. Ac2O is obviously not an acidic but an aprotic (very slightly protophilic) solvent, which supposedly dissociates slightly into acetyl (CH3CO+) and acetate (AcO-) ions. In fact, some bases react with Ac2O forming an associate: the Ac+ group is bound to the delta- charged atom of the reactant while AcO- is associated with the delta+ group at appropriate distance.

  11. Vaporization of protic ionic liquids derived from organic superbases and short carboxylic acids.

    Science.gov (United States)

    Ribeiro, Filipe M S; Lima, Carlos F R A C; Vaz, Inês C M; Rodrigues, Ana S M C; Sapei, Erlin; Melo, André; Silva, Artur M S; Santos, Luís M N B F

    2017-06-28

    This work presents a comprehensive evaluation of the phase behaviour and cohesive enthalpy of protic ionic liquids (PILs) composed of 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) or 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) organic superbases with short-chain length (acetic, propionic and butyric) carboxylic acids. Glass transition temperatures, T g , and enthalpies of vaporization, ΔH vap , were measured for six [BH][A] (1 : 1) PILs (B = DBN, DBU; A = MeCOO, EtCOO, nPrCOO), revealing more significant changes upon increasing the number of -CH 2 - groups in the base than in the acid. The magnitude of ΔH vap evidences that liquid PILs have a high proportion of ions, although the results also indicate that in DBN PILs the concentration of neutral species is not negligible. In the gas phase, these PILs exist as a distribution of ion pairs and isolated neutral species, with speciation being dependent on the temperature and pressure conditions - at high temperatures and low pressures the separated neutral species dominate. The higher T g and ΔH vap of the DBU PILs are explained by the stronger basicity of DBU (as supported by NMR and computational calculations), which increases the extent of proton exchange and the ionic character of the corresponding PILs, resulting in stronger intermolecular interactions in condensed phases.

  12. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    Atmospheric aerosol samples of PM2.5 and PM10 were collected in April–May 2011 from a rural site in Tanzania and analyzed for water-soluble inorganic ions and low molecular weight carboxylic acids using ion chromatography. PM2.5 and PM10 low-volume samplers with quartz fibre filters were deployed and aerosol ...

  13. Kinetic stability of the dysprosium(3) complex with tetraazaporphine in acetic acid-water and acetic acid-methanol mixtures

    International Nuclear Information System (INIS)

    Khelevina, O.G.; Vojnov, A.A.

    1999-01-01

    Water-soluble dysprosium tetraazaporphine with acetylacetonate-ion as extraligand is synthesized for the first time. Its kinetic stability in acetic acid solutions is investigated. It is shown that the complex is dissociated with formation of free tetraazaporphine. Kinetic parameters of dissociation reaction are determined [ru

  14. Correlation of vapor - liquid equilibrium data for acetic acid - isopropanol - water - isopropyl acetate mixtures

    Directory of Open Access Journals (Sweden)

    B. A. Mandagarán

    2006-03-01

    Full Text Available A correlation procedure for the prediction of vapor - liquid equilibrium of acetic acid - isopropanol - water - isopropyl acetate mixtures has been developed. It is based on the NRTL model for predicting liquid activity coefficients, and on the Hayden-O'Connell second virial coefficients for predicting the vapor phase of systems containing association components. When compared with experimental data the correlation shows a good agreement for binary and ternary data. The correlation also shows good prediction for reactive quaternary data.

  15. Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: Efficient routes to acetic acid and ethyl acetate

    DEFF Research Database (Denmark)

    Jørgensen, Betina; Christiansen, Sofie Egholm; Thomsen, M.L.D.

    2007-01-01

    The aerobic oxidation of aqueous ethanol to produce acetic acid and ethyl acetate was studied using heterogeneous gold catalysts. Comparing the performance of Au/MgAl2O4 and Au/TiO2 showed that these two catalysts exhibited similar performance in the reaction. By proper selection of the reaction...

  16. The investigation of the reactions of some pyrazole-3-carboxylic acids with various diamines and diols

    Directory of Open Access Journals (Sweden)

    Rahmi Kasımoğulları

    2012-06-01

    Full Text Available In this study, some new derivatives were synthesized of 4-benzoyl-1-(3-nitrophenyl-5-phenyl-1H-pyrazole-3-carboxylic acid (1 and 4-(ethoxycarbonyl-1-(3-nitrophenyl-5-phenyl-1H-pyrazole-3-carboxylic acid (2 that they were pyrazole carboxylic acid derivatives. Firstly, 1 and 2 reacted with SOCl2 to transform them into acyl chlorides (3, 4. Then various bis-carboxamide derivatives (5–8 were obtained from the reaction of 3 and 4 with various diamines and also a ;#946;-hydroxy ester (9 derivative was obtained from the reaction of 3 with ethylene glycol. The structures of synthesized compounds were elucidated with using FT-IR, 1H NMR, 13C NMR and elemental analysis methods.

  17. Corn stover lignin is modified differently by acetic acid compared to sulfuric acid

    NARCIS (Netherlands)

    Mouthier, Thibaut; Appeldoorn, Maaike M.; Pel, Herman; Schols, Henk A.; Gruppen, Harry; Kabel, Mirjam A.

    2018-01-01

    In this study, two acid catalysts, acetic acid (HAc) and sulfuric acid (H2SO4), were compared in thermal pretreatments of corn stover, in particular to assess the less understood fate of lignin. HAc-insoluble lignin, analyzed by pyrolysis GC–MS, showed decreasing levels (%) of Cα-oxidized (from 3.7

  18. Decarboxylation of indole-3-acetic acid and inhibition of growth in Avena sativa seedlings by plant-derived photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, T.M. [Dickinson Coll., Carlisle, PA (United States). Dept. of Biology

    1996-12-01

    A number of plant phototoxins, when supplemented with UVA (320-400 nm) radiation, are capable of sensitizing the decomposition of indole-3-acetic acid (IAA), as measured by release of {sup 14}CO{sub 2} from carboxyl-labeled IAA. Alpha-terthienyl ({alpha}T) and harmine caused significant rates of IAA decarboxylation at concentrations as low as 1 nM and were approximately 80% as effective as riboflavin and flavin mononucleotide. Partial inhibition by sodium azide indicates that the {alpha}T-induced decarboxylation of IAA is predominately, but not entirely, a type II reaction mediated by singlet oxygen. Based on changes in UV absorption spectra, it appears that the hormones gibberellic acid, abscisic acid and 6-benzylaminopurine (a cytokinin) are less susceptible to photosensitized decomposition than is IAA. Alpha-terthienyl plus UVA also inhibited elongation growth and reduced endogenous IAA levels in Avena sativa L. coleoptile sections and promoted senescence in intact Avena seedlings. These results confirm the alelopathic potential of plant photosensitizers such as {alpha}T and indicate that the phytohormone IAA may represent an additional target for the action of photosensitizers. (Author).

  19. Molecular Design of a Chiral Brønsted Acid with Two Different Acidic Sites: Regio-, Diastereo-, and Enantioselective Hetero-Diels-Alder Reaction of Azopyridinecarboxylate with Amidodienes Catalyzed by Chiral Carboxylic Acid-Monophosphoric Acid.

    Science.gov (United States)

    Momiyama, Norie; Tabuse, Hideaki; Noda, Hirofumi; Yamanaka, Masahiro; Fujinami, Takeshi; Yamanishi, Katsunori; Izumiseki, Atsuto; Funayama, Kosuke; Egawa, Fuyuki; Okada, Shino; Adachi, Hiroaki; Terada, Masahiro

    2016-09-07

    A chiral Brønsted acid containing two different acidic sites, chiral carboxylic acid-monophosphoric acid 1a, was designed to be a new and effective concept in catalytic asymmetric hetero-Diels-Alder reactions of azopyridinecarboxylate with amidodienes. The multipoint hydrogen-bonding interactions among the carboxylic acid, monophosphoric acid, azopyridinecarboxylate, and amidodiene achieved high catalytic and chiral efficiency, producing substituted 1,2,3,6-tetrahydropyridazines with excellent stereocontrol in a single step. This constitutes the first example of regio-, diastereo-, and enantioselective azo-hetero-Diels-Alder reactions by chiral Brønsted acid catalysis.

  20. Versatile Multicomponent Reaction Macrocycle Synthesis Using α-Isocyano-ω-carboxylic Acids

    NARCIS (Netherlands)

    Liao, George P; Abdelraheem, Eman M M; Neochoritis, Constantinos G; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; McGowan, David C; Dömling, Alexander

    2015-01-01

    The direct macrocycle synthesis of α-isocyano-ω-carboxylic acids via an Ugi multicomponent reaction is introduced. This multicomponent reaction (MCR) protocol differs by being especially short, convergent, and versatile, giving access to 12-22 membered rings.

  1. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2

    OpenAIRE

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-01-01

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru?Rh bimetallic catalyst using imidazole as the ligand and LiI as the promot...

  2. Sorption and Microbial Uptake of Alanine, Glucose and Acetate in Soil

    Science.gov (United States)

    Fischer, H.; Ingwersen, J.; Kuzyakov, Y.

    2009-04-01

    Low molecular weight organic substances (LMWOS), e. g. amino acids, sugars, and carboxylic acids, are C compounds that are most rapidly turned-over in the C cycle of soil. Despite of their importance it is still unknown how sorption to the soil matrix affects their turnover in soil solution. The goals of this study were (1) to describe the dynamics of the fluxes of LMWOS (10 µmol l-1) in various pools (dissolved, adsorbed, decomposed to CO2, incorporated into microbial biomass) and (2) to assess the LMWOS distribution in these pools in dependence of very wide range of concentration (0.01 to 1000 µmol l-1). Representatives of each LMWOS group (glucose for sugars, alanine for amino acids, Na-acetate for carboxylic acids) uniformly labeled with 14C were added to sterilized or non-sterilized soil and analyzed in dif-ferent compartments between 1 min and 5.6 hours after addition. LMWOS were almost completely taken up by microorganisms within the first 30 min. Microbial uptake was much faster than the physicochemical sorption (estimated in sterilized soil), which needed to reach quasi-equilibrium 60 min for alanine and about 400 min for glucose. Only sorption of acetate was instantaneous (>1 min). While for acetate the maximum sorption capacity was reached at 100 µmol l-1 no such maximum was found for glucose and alanine in the studied concentra-tion range. At the concentration of 100 µmol l-1, microbial decomposition after 4.5 h hours was higher for alanine (76.7±1.1%) than acetate (55.2±0.9%) and glucose (28.5±1.5%). On the contrary, incorporation into microbial biomass was higher for glucose (59.8±1.2%) than for acetate (23.4±5.9%) and alanine (5.2±2.8%). Within 10 to 500 µmol l-1 the pathways of the three LMWOS transformation changed: at 500 µmol l-1 alanine and acetate were less mineralized and more incorporated into microbial biomass than at 10 µmol l-1, while glucose incorporation decreased. Consequently, the concentrations of alanine, glucose, and

  3. The effective reaction of 2-chloro-3-formylquinoline and acetic acid ...

    African Journals Online (AJOL)

    formylquinolines in a single step by treating with sodium acetate and acetic acid under microwave irradiation. The structures of the compounds have been established by IR, NMR and mass spectral data. Unexpectedly ...

  4. 75 FR 40736 - Acetic Acid; Exemption from the Requirement of a Tolerance

    Science.gov (United States)

    2010-07-14

    ... an exemption from the requirement of a tolerance for residues of acetic acid, also known as vinegar... a maximum permissible level for residues of acetic acid, also known as vinegar. DATES: This... humans. It is also naturally produced during the fermentation process in a wide range of foods. In plants...

  5. Acetic acid dressings: Finding the Holy Grail for infected wound management

    Directory of Open Access Journals (Sweden)

    Kapil S Agrawal

    2017-01-01

    Full Text Available Background: Wounds have since long, contributed majorly to the health-care burden. Infected long-standing non-healing wounds place many demands on the treating surgeon and are devastating for the patients physically, nutritionally, vocationally, financially, psychologically and socially. Acetic acid has long been included among agents used in the treatment of infected wounds. In this study, we have evaluated the use of acetic acid for topical application in the treatment of infected wounds. Materials and Methods: A total of 100 patients with infected wounds were treated with topical application of 1% acetic acid as dressing material after appropriate cleaning. A specimen of wound swab was collected before first application and further on days 3, 7, 10 and 14. Daily dressings of wounds were done similarly. Minimum inhibitory concentration (MIC of acetic acid against various organisms isolated was determined. Results: The patients treated ranged between 9 and 60 years, with the mean age 33 years. Nearly 70% of patients were male. Aetiologies of wounds: infective 35, diabetic 25, trauma 20, burns 10, venous ulcers 5 and infected graft donor site 5. Various microorganisms isolated include Pseudomonas aeruginosa (40%, Staphylococcus aureus (2%, Acinetobacter (12%, Escherichia Coli (5%, Proteus mirabilis (3%, Klebsiella (18%, methicillin-resistant S. aureus (10%, Streptococcus (2% and Enterococcus (1%, Citrobacter (1%. Few wounds (6% also isolated fungi. About 28%, 64% and 8% of patients isolated no growth on culture after 7, 14 and 21 days, respectively. MIC of all isolated organisms was ≤0.5%. Conclusion: pH of the wound environment plays a pivotal role in wound healing. Acetic acid with concentration of 1% has shown to be efficacious against wide range of bacteria as well as fungi, simultaneously accelerating wound healing. Acetic acid is non-toxic, inexpensive, easily available and efficient topical agent for effective elimination of wound

  6. The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions

    Science.gov (United States)

    Adler, Philipp; Frey, Lasse Jannis; Berger, Antje; Bolten, Christoph Josef; Hansen, Carl Erik

    2014-01-01

    Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present. PMID:24837393

  7. [Conversion of acetic acid to methane by thermophiles

    Energy Technology Data Exchange (ETDEWEB)

    Zinder, S.H.

    1993-01-01

    The primary goal of this project is to obtain a better understanding of thermophilic microorganisms which convert acetic acid to CH[sub 4]. The previous funding period represents a departure from earlier research in this laboratory, which was more physiological and ecological. The present work is centered on the biochemistry of the thermophile Methanothrix sp. strain CALS-1. this organism presents a unique opportunity, with its purity and relatively rapid growth, to do comparative biochemical studies with the other major acetotrophic genus Methanosarcina. We previously found that Methanothrix is capable of using acetate at concentrations 100 fold lower than Methanosarcina. This finding suggests that there are significant differences in the pathways of methanogenesis from acetate in the two genera.

  8. Employing natural reagents from turmeric and lime for acetic acid determination in vinegar sample

    Directory of Open Access Journals (Sweden)

    Sam-ang Supharoek

    2018-04-01

    Full Text Available A simple, rapid and environmentally friendly sequential injection analysis system employing natural extract reagents was developed for the determination of acetic acid following an acid–base reaction in the presence of an indicator. Powdered lime and turmeric were utilized as the natural base and indicator, respectively. Mixing lime and turmeric produced an orange to reddish-brown color solution which absorbed the maximum wavelength at 455 nm, with absorbance decreasing with increasing acetic acid concentration. Influential parameters including lime and turmeric concentrations, reagent and sample aspirated volumes, mixing coil length and dispensing flow rate were investigated and optimized. A standard calibration graph was plotted for 0–5.0 mmol/L acetic acid with r2 = 0.9925. Relative standard deviations (RSD at 2.0 and 4.0 mmol/L acetic acid were less than 3% (n = 7, with limit of detection (LOD and limit of quantification (LOQ at 0.12 and 0.24 mmol/L, respectively. The method was successfully applied to assay acetic acid concentration in cooking vinegar samples. Results achieved were not significantly different from those obtained following a batchwise standard AOAC titration method. Keywords: Acetic acid assay, Natural reagent, Turmeric, Lime, Sequential injection analysis

  9. Facile syntheses of isotope-labeled chiral octahydroindole-2-carboxylic acid and its N-methyl analog

    International Nuclear Information System (INIS)

    Yinsheng Zhang

    2012-01-01

    We have synthesized deuterium and carbon-14 labeled enantiomerically pure octahydroindole-2-carboxylic acid (PD0140417), N-methyl octahydroindole-2-carboxylic acid (PD0348183) and their racemic analogs (PD0108405 and PD0338055). [ring-U- 14 C]PD0140417 was prepared from [ring-U- 14 C]benzoic acid in a seven-step synthesis in 6.2% overall radiochemical yield. [ 14 C]PD0348183 was prepared from [ 14 C]BaCO 3 in a five-step synthesis in 16% radiochemical yield. Additionally, [D]PD0108405 and [D]PD0338055 were synthesized by direct platinum-catalyzed hydrogenation with deuterium gas. (author)

  10. Edge-carboxylated graphene nanoflakes from nitric acid oxidised arc-discharge material

    OpenAIRE

    NICOLOSI, VALERIA

    2010-01-01

    PUBLISHED Graphene nanoflakes (GNFs) with average diameters of 30 nm have been prepared by a single-step oxidation procedure using single-wall carbon nanotube arc-discharge material and nitric acid. The GNFs are predominately single sheets containing a small number of internal defects. The edges are decorated with primarily carboxylic acid groups which allow facile chemical functionalisation and cross-linking of the fragments using multivalent cations

  11. Metal-Catalyzed Intra- and Intermolecular Addition of Carboxylic Acids to Alkynes in Aqueous Media: A Review

    Directory of Open Access Journals (Sweden)

    Javier Francos

    2017-11-01

    Full Text Available The metal-catalyzed addition of carboxylic acids to alkynes is a very effective tool for the synthesis of carboxylate-functionalized olefinic compounds in an atom-economical manner. Thus, a large variety of synthetically useful lactones and enol-esters can be accessed through the intra- or intermolecular versions of this process. In order to reduce the environmental impact of these reactions, considerable efforts have been devoted in recent years to the development of catalytic systems able to operate in aqueous media, which represent a real challenge taking into account the tendency of alkynes to undergo hydration in the presence of transition metals. Despite this, different Pd, Pt, Au, Cu and Ru catalysts capable of promoting the intra- and intermolecular addition of carboxylic acids to alkynes in a selective manner in aqueous environments have appeared in the literature. In this review article, an overview of this chemistry is provided. The synthesis of β-oxo esters by catalytic addition of carboxylic acids to terminal propargylic alcohols in water is also discussed.

  12. Chemical states of p-boronophenylalanine in aqueous carboxylic acids and polyols

    International Nuclear Information System (INIS)

    Kobayashi, Mitsue; Kitaoka, Yoshinori

    1995-01-01

    Chemical states of p-boronophenylalanine were studied by infrared (IR) spectroscopy in aqueous carboxylic acids and in aqueous fructose. For BPA in water, the absorption band due to the B-O stretching of trigonal boron was observed, while that of tetrahedral boron was observed for BPA in aqueous oxalic acid. This means BPA forms a complex of tetrahedral boron with oxalate. It was proved that BPA also formed complexes of tetrahedral boron with citric acid as well as with fructose. No appreciable interaction was detected between BPA and maleic acid. (author)

  13. Synthesis of New Functionalized Indoles Based on Ethyl Indol-2-carboxylate

    Directory of Open Access Journals (Sweden)

    Ahmed T. A. Boraei

    2016-03-01

    Full Text Available Successful alkylations of the nitrogen of ethyl indol-2-carboxylate were carried out using aq. KOH in acetone. The respective N-alkylated acids could be obtained without separating the N-alkylated esters by increasing the amount of KOH and water. The use of NaOMe in methanol led to transesterification instead of the alkylation, while the use of NaOEt led to low yields of the N-alkylated acids. Hydrazinolysis of the ester gave indol-2-carbohydrazide which then was allowed to react with different aromatic aldehydes and ketones in ethanol catalyzed by acetic acid. Indol-2-thiosemicarbazide was used in a heterocyclization reaction to form thiazoles. The new structures were confirmed using NMR, mass spectrometry and X-ray single crystal analysis.

  14. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    Science.gov (United States)

    Xia, Kai; Liang, Xin-le; Li, Yu-dong

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria.

  15. Contribution to the study of 14C-acetate as the precursor of aminoacids in detached leaves of coffee (Coffea arabica cv. Mundo Novo)

    International Nuclear Information System (INIS)

    Brasil, O.G.

    1975-01-01

    Labelled acetates with 14 C were used as the forerunner of aminoacids in leaves of coffee (Coffea arabica cv Mundo Novo). Leaves with the labelled acetates were incubated and released CO 2 was retained in paper discs with hiamine for further radioactivity detection. Separated proteins furnished 13 amino-acids through acid hidrolysis, all of them were identified by bidimensional filter paper chromatography. Through the obtained results it is possible to conclude that acetates are metabolized by the leafs and are related to the processes of leaf synthesis. It was possible to show that an utilization of acetate for energetical production via Krebs cycle was donne. The obtained conclusions show too that methylic carbon was more incorporated than carboxylic carbon [pt

  16. Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent.

    Science.gov (United States)

    Gitipour, Saeid; Ahmadi, Soheil; Madadian, Edris; Ardestani, Mojtaba

    2016-01-01

    In this research, the effect of soil washing in the removal of chromium- and cadmium-contaminated sludge samples collected from Pond 2 of the Tehran Oil Refinery was investigated. These metals are considered as hazardous substances for human health and the environment. The carcinogenicity of chromate dust has been established for a long time. Cadmium is also a potential environmental toxicant. This study was carried out by collecting sludge samples from different locations in Pond 2. Soil washing was conducted to treat the samples. Chemical agents, such as acetic acid, ethylenediaminetetra acetic acid (EDTA) and hydrochloric acid, were used as washing solutions to remove chromium and cadmium from sludge samples. The results of this study indicated that the highest removal efficiencies from the sludge samples were achieved using a 0.3 M HCl solution with 82.69% and 74.47% for chromium and cadmium, respectively. EDTA (0.1 M) in the best condition extracted 66.81% of cadmium and 72.52% of chromium from the sludges. The lowest efficiency values for the samples, however, were achieved using 3 M acetic acid with 41.7% and 46.96% removals for cadmium and chromium, respectively. The analysis of washed sludge indicated that the heavy metals removal decreased in the order of 3 M acetic acid < 0.1 M EDTA<0.3 M HCl, thus hydrochloric acid appears to offer a greater potential as a washing agent in remediating the sludge samples.

  17. Cyclic Acetalization of Furfural on Porous Aluminosilicate Acid Catalysts

    Directory of Open Access Journals (Sweden)

    Hartati Hartati

    2016-12-01

    Full Text Available Porous aluminosilicate materials included microporous and mesoporous ZSM-5, hierarchical aluminosilicates, and mesoporous aluminosilicate were tested for acetalization of furfural (furan-2-carbaldehyde with propylene glycol. The existing synthesis methods for aluminosilicate and ZSM-5 were modified to produce aluminosilicate material with hierarchical porous structure. Catalytic activity in acetalization of furfural by propylene glycol were conducted by refluxed of the mixture of furfural, propylene glycol and catalyst, using toluene as solvent and nitrobenzene as internal standard, at 106 °C for 4 h. The result showed that a combination of two structure directing agents, tetrapropylammonium hydroxide (TPAOH and cetyltrimethylammonium bromide (CTAB and modification of catalytic crystallization produced an active aluminosilicate framework that provides a wide access for a bulky reactants and strong acid sites to catalyze the reaction. The pore structure and the strength of the Brønsted acid sites were crucial for the high conversion of furfural to produce a cyclic acetal.

  18. Additional Nucleophile-Free FeCl3-Catalyzed Green Deprotection of 2,4-Dimethoxyphenylmethyl-Protected Alcohols and Carboxylic Acids.

    Science.gov (United States)

    Sawama, Yoshinari; Masuda, Masahiro; Honda, Akie; Yokoyama, Hiroki; Park, Kwihwan; Yasukawa, Naoki; Monguchi, Yasunari; Sajiki, Hironao

    2016-01-01

    The deprotection of the methoxyphenylmethyl (MPM) ether and ester derivatives can be generally achieved by the combinatorial use of a catalytic Lewis acid and stoichiometric nucleophile. The deprotections of 2,4-dimethoxyphenylmethyl (DMPM)-protected alcohols and carboxylic acids were found to be effectively catalyzed by iron(III) chloride without any additional nucleophile to form the deprotected mother alcohols and carboxylic acids in excellent yields. Since the present deprotection proceeds via the self-assembling mechanism of the 2,4-DMPM protective group itself to give the hardly-soluble resorcinarene derivative as a precipitate, the rigorous purification process by silica-gel column chromatography was unnecessary and the sufficiently-pure alcohols and carboxylic acids were easily obtained in satisfactory yields after simple filtration.

  19. Solvent-Free Esterification of Carboxylic Acids Using Supported Iron Oxide Nanoparticles as an Efficient and Recoverable Catalyst

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2016-07-01

    Full Text Available Supported iron oxide nanoparticles on mesoporous materials (FeNP@SBA-15 have been successfully utilized in the esterification of a variety carboxylic acids including aromatic, aliphatic, and long-chain carboxylic acids under convenient reaction conditions. The supported catalyst could be easily recovered after reaction completion and reused several times without any loss in activity after up to 10 runs.

  20. Synthesis of aminocarbonyl N-acylhydrazones by a three-component reaction of isocyanides, hydrazonoyl chlorides, and carboxylic acids.

    Science.gov (United States)

    Giustiniano, Mariateresa; Meneghetti, Fiorella; Mercalli, Valentina; Varese, Monica; Giustiniano, Francesco; Novellino, Ettore; Tron, Gian Cesare

    2014-10-17

    A novel one-pot multicomponent synthesis of α-aminocarbonyl N-acylhydrazones starting from readily available hydrazonoyl chlorides, isocyanides, and carboxylic acids is reported. The strategy exploits the ability of the carboxylic acid as a third component to suppress all competing reactions between nitrile imines and isocyanides, channeling the course of the reaction toward the formation of this novel class of compounds.

  1. Surface Patterning of Benzene Carboxylic Acids on Graphite: Influence of structure, solvent, and concentration on molecular self-assembly

    Science.gov (United States)

    Florio, Gina; Stiso, Kimberly; Campanelli, Joseph; Dessources, Kimberly; Folkes, Trudi

    2012-02-01

    Scanning tunneling microscopy (STM) was used to investigate the molecular self-assembly of four different benzene carboxylic acid derivatives at the liquid/graphite interface: pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid), trimellitic acid (1,2,4-benzenetricarboxylic acid), trimesic acid (1,3,5-benzenetricarboxylic acid), and 1,3,5-benzenetriacetic acid. A range of two dimensional networks are observed that depend sensitively on the number of carboxylic acids present, the nature of the solvent, and the solution concentration. We will describe our recent efforts to determine (a) the preferential two-dimensional structure(s) for each benzene carboxylic acid at the liquid/graphite interface, (b) the thermodynamic and kinetic factors influencing self-assembly (or lack thereof), (c) the role solvent plays in the assembly, (e) the effect of in situ versus ex situ dilution on surface packing density, and (f) the temporal evolution of the self-assembled monolayer. Results of computational analysis of analog molecules and model monolayer films will also be presented to aid assignment of network structures and to provide a qualitative picture of surface adsorption and network formation.

  2. Organic acids and aldehydes in rainwater in a northwest region of Spain

    Energy Technology Data Exchange (ETDEWEB)

    Pena, R.M.; Garcia, S.; Herrero, C. [Universidad de Santiago de Compostela, Lugo (Spain). Departamento de Quimica Analitica, Nutricion y Bromatologia

    2002-11-01

    During a 1 year period, measurements of carboxylic acids and aldehydes were carried out in rainwater samples collected at nine different sites in NW Spain surrounding a thermal power plant in order to determine concentration levels and sources. In addition, certain major ions (Cl{sup -}, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, Na{sup +}, NH{sub 4}{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}) were also determined. Aldehyde and carboxylic acid concentration patterns and their effects on rainwater composition concerning temporal, seasonal and spatial variations were evaluated. Among carboxylic acids, formic and acetic were predominant (VWA 7.0 and 8.3 {mu}M), while formaldehyde and acroleine were the dominant aldehydes (VWA 0.42 and 1.25 {mu}M). Carboxylic acids were estimated to account for 27.5% of the total free acidity (TFA), whereas sulphuric and nitric acid accounted for 46.2% and 26.2%, respectively. Oxalic acid was demonstrated to be an important contributing compound to the acidification in rainwater representing 7.1% of the TFA. The concentration of aldehydes and carboxylic acids, which originated mainly from biogenic emissions in the area studied, was strongly dependent on the season of the year (growing and non-growing). The ratios of formic to acetic acids are considerably different in the two seasons suggesting that there exist distinct sources in both growing and non-growing seasons. Principal component analysis was applied in order to elucidate the sources of aldehydes and organic acids in rainwater. The prevalence of natural vegetative origins for both of these compounds versus anthropogenic emissions was demonstrated and the importance of the oxidation of aldehydes as a relevant source of organic acids was also established. (author)

  3. The effects of borate minerals on the synthesis of nucleic acid bases, amino acids and biogenic carboxylic acids from formamide.

    Science.gov (United States)

    Saladino, Raffaele; Barontini, Maurizio; Cossetti, Cristina; Di Mauro, Ernesto; Crestini, Claudia

    2011-08-01

    The thermal condensation of formamide in the presence of mineral borates is reported. The products afforded are precursors of nucleic acids, amino acids derivatives and carboxylic acids. The efficiency and the selectivity of the reaction was studied in relation to the elemental composition of the 18 minerals analyzed. The possibility of synthesizing at the same time building blocks of both genetic and metabolic apparatuses, along with the production of amino acids, highlights the interest of the formamide/borate system in prebiotic chemistry.

  4. Electron attachment and electron ionization of acetic acid clusters embedded in helium nanodroplets

    NARCIS (Netherlands)

    da Silva, F. Ferreira; Jaksch, S.; Martins, G.; Dang, H. M.; Dampc, M.; Denifl, S.; Maerk, T. D.; Limao-Vieira, P.; Liu, J.; Yang, S.; Ellis, A. M.; Scheier, P.

    2009-01-01

    The effect of incident electrons on acetic acid clusters is explored for the first time. The acetic acid clusters are formed inside liquid helium nanodroplets and both cationic and anionic products ejected into the gas phase are detected by mass spectrometry. The cation chemistry (induced by

  5. Hepatic Metabolism of Perfluorinated Carboxylic Acids: A Nuclear Magnetic Resonance Investigation in Vivo

    Science.gov (United States)

    1995-01-17

    Reo, C. M. Goecke, L. Narayanan, and B. M. Jarnot. "Effects of Perfluoro-n- octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate on Hepatic...SUBTITLE 7C 5. FUNDING NUMBERS" Hepatic Metabolism of Perfluorinated Carboxylic Acids : A Nuclear Magnetic Resonance Investigation in Vivo G-AFOSR-90-0148 6...octanoic acid (PFOA) and perfluoro-n-decanoic acid (PFDA). These Air Force chemicals belong to a class of CU’. compounds known as peroxisome

  6. Basicity of carboxylic acids: resonance in the cation and substituent effects

    Czech Academy of Sciences Publication Activity Database

    Böhm, S.; Exner, Otto

    2005-01-01

    Roč. 29, - (2005), s. 336-342 ISSN 1144-0546 R&D Projects: GA MŠk(CZ) LN00A032 Institutional research plan: CEZ:AV0Z4055905 Keywords : basicity * carboxylic acids Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.574, year: 2005

  7. Fermentative utilization of glycerol residue for the production of acetic acid

    Science.gov (United States)

    Irvan; Trisakti, B.; Hasibuan, R.; Joli, M.

    2018-02-01

    Glycerol residue, frequently known as pitch, is a waste produced from the downstream product of crude glycerine distillation. With the increasing need of pure glycerine in the world, the glycerol residue produced is also increasing. Glycerol residue is a solid waste at room temperature, highly alkaline (pH > 13), corrosive, and categorized as hazardous and poisonous waste. In this research, acetic acid was produced from glycerol residue through the anaerobic fermentation process by using purple non-sulphur photosynthetic bacteria. The purpose of this study was to find out the influence of concentration change of glycerol residue on time and to find out the possibility of glycerol residue to be utilized as acetic acid. In this research, at first 400 g of glycerol residue was diluted with 200 ml of distilled water to change the glycerine phase, from solid to liquid at room temperature, acidified by using hydrochloric acid until pH 2. The top layer formed was fatty acid and triglycerides that should be removed. Meanwhile, the bottom layer was diluted glycerol residue which was then neutralized with caustic soda. To produce acetic acid, glycerol residue with various concentrations, salt, and purple non-sulphur photosynthetic bacteria were put together into a 100 ml bottle which had been previously sterilized, then incubated for four weeks under the light of 40-watt bulb. The result showed that on the 28th day of fermentation, the produced acetic acid were 0.28, 1.85, and 0.2% (w/w) by using glycerine with the concentration of 0.5, 1.0, and 1.5% (w/w), respectively.

  8. Phosphazene-promoted metal-free ring-opening polymerization of ethylene oxide initiated by carboxylic acid

    KAUST Repository

    Zhao, Junpeng

    2014-03-11

    The effectiveness of carboxylic acid as initiator for the anionic ring-opening polymerization of ethylene oxide was investigated with a strong phosphazene base (t-BuP4) used as promoter. Kinetic study showed an induction period, i.e., transformation of carboxylic acid to hydroxyl ester, followed by slow chain growth together with simultaneous and fast end-group transesterification, which led to poly(ethylene oxide) (PEO) consisting of monoester (monohydroxyl), diester, and dihydroxyl species. An appropriate t-BuP4/acid ratio was proven to be essential to achieve better control over the polymerization and low dispersity of PEO. This work provides important information and enriches the toolbox for macromolecular and biomolecular engineering with protic initiating sites. © 2014 American Chemical Society.

  9. Theoretical prediction of pKa in methanol: testing SM8 and SMD models for carboxylic acids, phenols, and amines.

    Science.gov (United States)

    Miguel, Elizabeth L M; Silva, Poliana L; Pliego, Josefredo R

    2014-05-29

    Methanol is a widely used solvent for chemical reactions and has solvation properties similar to those of water. However, the performance of continuum solvation models in this solvent has not been tested yet. In this report, we have investigated the performance of the SM8 and SMD models for pKa prediction of 26 carboxylic acids, 24 phenols, and 23 amines in methanol. The gas phase contribution was included at the X3LYP/TZVPP+diff//X3LYP/DZV+P(d) level. Using the proton exchange reaction with acetic acid, phenol, and ammonia as reference species leads to RMS error in the range of 1.4 to 3.6 pKa units. This finding suggests that the performance of the continuum models for methanol is similar to that found for aqueous solvent. Application of simple empirical correction through a linear equation leads to accurate pKa prediction, with uncertainty less than 0.8 units with the SM8 method. Testing with the less expensive PBE1PBE/6-311+G** method results in a slight improvement in the results.

  10. SENYAWA ASAM 2- METILESTER-1-H-PIROL-4-KARBOKSILAT DALAM EKSTRAK ETIL ASETAT BUAH SALAK VARIETAS BONGKOK SEBAGAI ANTIOKSIDAN DAN ANTIHYPERURICEMIA [Studies on 2-Methylester-1-H-Pyrolle-4-Carboxylic Acid Compound in Ethylacetate Extract of Snake Fruit Variety Bongkok as Antioxidant and Anthyperuricemic

    Directory of Open Access Journals (Sweden)

    Leni Herliani Afrianti 1*

    2010-06-01

    Full Text Available The aim of the study was to determine the antioxidant and antihyperuricemia activity of ethyl acetate extract of snake fruit (Salacca edulis Reinw. var. Bongkok. The research methods used in this study comprised of three stages. First stage, the isolation processes, consist ed of maceration, fractionation, and purification using several techniques of chromatography. The chemical structures of the isolated compounds were determined based on UV, IR, 1-D NMR, and 2-D NMR spectral data. The ethyl acetate extract of snake fruit var. Bongkok isolated was a new compound 2-methylester-1-H-pyrolle-4- carboxylic acid. In the second stage the antioxidant activity of the extract and the isolated compounds were measured by 1,1 diphenol (DPPH method. The antioxidant activity of the extracts and the isolated compounds were expressed as IC50, The ethyl acetate extracts at concentrations of 0.2, 2, 20, 200, 400, and 2000 µg/mL showed inhibition of 9.67, 4.47, 41.89, 96.06, 82.54, and 90.60 % respectively, with an IC50 of 1.6 µg/mL. Ascorbic acid standards at the same concentration range showed an IC50 of 0.54 µg/mL. Meanwhile, at the same concentrations the 2-methylester-1-H-pyrolle-4-carboxylic acid showed free radical inhibition of 17.48, 21.48, 18.14, 31.87, and 62.34 % respectively, with an IC50 of 3.27 µg/mL. During the third stage, the antihyperuricemic properties of the extracts and the isolated compound were examinated in vitro using inhibition of xanthin oxidase method. The ethyl acetate extracts at concentrations of 0.01, 0.02, 0.2, 2, and 2000 µg/mL showed xanthin oxidase inhibition of 49.24, 49.58, 50.28 and 52.26 % respectively, with an IC50 of 24.75 µg/mL. At the same concentrations, the 2-methylester-1-H-pyrolle-4- carboxylic acid, showed xanthin oxidase inhibition of 27.7, 30.5, 37.3, 50.27 and 50.55 % respectively, with an IC50 of 48.86 µg/mL. Allopurinol as a standard drug showed an IC50 of 0.92 µg/mL.

  11. Acid-Base Behavior of Carboxylic Acid Groups Covalently Attached at the Surface of Polyethylene: The Usefulness of Contact Angle in Following the Ionization of Surface Functionality

    Science.gov (United States)

    1985-08-01

    additional check, we converted granular PE-CO 2H to granular PE-CO 2CH3 by acid -catalyzed esterification. This material had no titrable groups. Upon...Task No. NR-631-840 TECHNICAL REPORT NO. 85-1 Acid -Base Behavior of Carboxylic Acid Groups Covalently Attached at the Surface of Polyethylene: The...34I Acid -Base Behavior K-142 ofCarboxylicAcidGroupsAttached...______________________ 12. PERSIIMAL AUTHOR IS) S.R. Holmes-Farly., R.H. Reamey, T.J

  12. Aminolysis of resin-bound N-nosylaziridine-2-carboxylic acids

    DEFF Research Database (Denmark)

    Olsen, Christian A; Christensen, Caspar; Nielsen, Birgitte

    2006-01-01

    [Structure: see text] Solid-phase synthesis is a rapidly developing area of organic chemistry, of particular importance for medicinal chemistry and chemical biology. Aziridines have previously only rarely been applied in solid-phase synthesis. In the present work, aminolysis of resin-bound, sprin......-loaded N-nitrobenzenesulfonyl-activated aziridine-2-carboxylic acids has been optimized and employed in the synthesis of a number of open-chain and heterocyclic scaffolds, including enantiopure products....

  13. Optimization of polycrystalline platinum catalytic activity opposite to carboxylic acids oxidation

    International Nuclear Information System (INIS)

    Le Naour, C.; Moisy, P.; Blanc, P.; Madic, C.

    1994-01-01

    In electro nuclear industry, in the aim to reduce the quantity of wastes coming from the spent fuels reprocessing, the use of reagents as some carboxylic acids is considered: after use, these reagents are completely decomposed in gaseous products, which can be filtered and released in environment

  14. Use of a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin column and propionic acid as an eluent in ion-exclusion/adsorption chromatography of aliphatic carboxylic acids and ethanol in food samples.

    Science.gov (United States)

    Mori, Masanobu; Hironaga, Takahiro; Kajiwara, Hiroe; Nakatani, Nobutake; Kozaki, Daisuke; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2011-01-01

    We developed an ion-exclusion/adsorption chromatography (IEAC) method employing a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin (PS-WCX) column with propionic acid as the eluent for the simultaneous determination of multivalent aliphatic carboxylic acids and ethanol in food samples. The PS-WCX column well resolved mono-, di-, and trivalent carboxylic acids in the acidic eluent. Propionic acid as the eluent gave a higher signal-to-noise ratio, and enabled sensitive conductimetric detection of analyte acids. We found the optimal separation condition to be the combination of a PS-WCX column and 20-mM propionic acid. Practical applicability of the developed method was confirmed by using a short precolumn with a strongly acidic cation-exchange resin in the H(+)-form connected before the separation column; this was to remove cations from food samples by converting them to hydrogen ions. Consequently, common carboxylic acids and ethanol in beer, wine, and soy sauce were successfully separated by the developed method.

  15. Potentiometric studies on mixed-ligand chelates of uranyl ion with carboxylic acid phenolic acids

    International Nuclear Information System (INIS)

    Bandiwadekar, S.P.; Chavar, A.M.

    1988-01-01

    Mixed ligand complexes of UO 2 2+ with bidentate carboxylic and phenolic acids have been studied potentiometrically at 30 ± 0.1degC and μ=0.2M (NaClO 4 ). 1:1 and 1:2 complexes of UO 2 2+ with phthalic acid (PTHA), maleic acid (MAE), malonic acid (MAL), quinolinic acid (QA), 5-sulphosalicylic acid (5-SSA), salicylic acid (SA), and only 1:1 complexes in the case of mandelic acid (MAD) have been detected. The formation of 1:1:1 mixed ligand complexes has been inferred from simultaneous equilibria in the present study. The values of ΔlogK, Ksub(DAL), Ksub(2LA) or Ksub(2AL) for the ternary complexes have been calculated. The stabilities of mixed ligand complexes depend on the size of the chelate ring and the stabilities of the binary complexes. (author). 15 refs

  16. Low molecular weight organic acids in fogwater in an urban area (Strasbourg, France)

    Energy Technology Data Exchange (ETDEWEB)

    Millet, M.; Wortham, H.; Sanusi, A.; Mirabel, P. [Centre de Geochime de la Surface, Equipe de Physico-Chimie de l`Atmosphere, Strasbourg (France)

    1997-10-27

    This work presents the chemical analysis of low weight carboxylic acids: formate and acetate in two droplet-size categories (2-6 and 5-8 {mu}m) of fogwater collected in Strasbourg (eastern France) between 1991 and 1994. For each sample, the ratio between acetate and formate was calculated, in many cases, this ratio was typically higher than one. This calculation indicates that the origin of acetate and formate can be attributed to automobile exhaust. Maximum contribution of these acids to the total free acidity of fogwater was also checked and the results show that the contribution is very low in regard to the strong mineral acids from anthropogenic origin

  17. Steam Reforming of Acetic Acid over Co-Supported Catalysts: Coupling Ketonization for Greater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Stephen D. [Energy and Environmental; Spies, Kurt A. [Energy and Environmental; Mei, Donghai [Energy and Environmental; Kovarik, Libor [Energy and Environmental; Kutnyakov, Igor [Energy and Environmental; Li, Xiaohong S. [Energy and Environmental; Lebarbier Dagle, Vanessa [Energy and Environmental; Albrecht, Karl O. [Energy and Environmental; Dagle, Robert A. [Energy and Environmental

    2017-09-11

    We report on the markedly improved stability of a novel 2-bed catalytic system, as compared to a conventional 1-bed steam reforming catalyst, for the production of H2 from acetic acid. The 2-bed catalytic system comprises of i) a basic oxide ketonization catalyst for the conversion of acetic acid to acetone, and a ii) Co-based steam reforming catalyst, both catalytic beds placed in sequence within the same unit operation. Steam reforming catalysts are particularly prone to catalytic deactivation when steam reforming acetic acid, used here as a model compound for the aqueous fraction of bio-oil. Catalysts comprising MgAl2O4, ZnO, CeO2, and activated carbon (AC) both with and without Co-addition were evaluated for conversion of acetic acid and acetone, its ketonization product, in the presence of steam. It was found that over the bare oxide support only ketonization activity was observed and coke deposition was minimal. With addition of Co to the oxide support steam reforming activity was facilitated and coke deposition was significantly increased. Acetone steam reforming over the same Co-supported catalysts demonstrated more stable performance and with less coke deposition than with acetic acid feedstock. DFT analysis suggests that over Co surface CHxCOO species are more favorably formed from acetic acid versus acetone. These CHxCOO species are strongly bound to the Co catalyst surface and could explain the higher propensity for coke formation from acetic acid. Based on these findings, in order to enhance stability of the steam reforming catalyst a dual-bed (2-bed) catalyst system was implemented. Comparing the 2-bed and 1-bed (Co-supported catalyst only) systems under otherwise identical reaction conditions the 2-bed demonstrated significantly improved stability and coke deposition was decreased by a factor of 4.

  18. Employing natural reagents from turmeric and lime for acetic acid determination in vinegar sample.

    Science.gov (United States)

    Supharoek, Sam-Ang; Ponhong, Kraingkrai; Siriangkhawut, Watsaka; Grudpan, Kate

    2018-04-01

    A simple, rapid and environmentally friendly sequential injection analysis system employing natural extract reagents was developed for the determination of acetic acid following an acid-base reaction in the presence of an indicator. Powdered lime and turmeric were utilized as the natural base and indicator, respectively. Mixing lime and turmeric produced an orange to reddish-brown color solution which absorbed the maximum wavelength at 455 nm, with absorbance decreasing with increasing acetic acid concentration. Influential parameters including lime and turmeric concentrations, reagent and sample aspirated volumes, mixing coil length and dispensing flow rate were investigated and optimized. A standard calibration graph was plotted for 0-5.0 mmol/L acetic acid with r 2  = 0.9925. Relative standard deviations (RSD) at 2.0 and 4.0 mmol/L acetic acid were less than 3% (n = 7), with limit of detection (LOD) and limit of quantification (LOQ) at 0.12 and 0.24 mmol/L, respectively. The method was successfully applied to assay acetic acid concentration in cooking vinegar samples. Results achieved were not significantly different from those obtained following a batchwise standard AOAC titration method. Copyright © 2017. Published by Elsevier B.V.

  19. Growing and laying performance of Japanese quail fed diet supplemented with different concentrations of acetic acid

    Directory of Open Access Journals (Sweden)

    Youssef A. Attia

    2013-04-01

    Full Text Available In order to evaluate the effect of acetic acid on growing and laying performance of Japanese Quail (JQ, 180 15-day-old JQ were divided into 4 groups. During the growing (15-42 days of age and laying (43-84 days of age periods, the groups fed the same basal diets supplemented with 0, 1.5, 3 and 6% of acetic acid. Each diet was fed to five replicates of 9 JQ (3 males:6 females during the growing period. During the laying period, 128 birds were housed in 32 cages (4 birds per cage, 1 male and 3 females, 8 replicates per treatment. Birds were housed in wire cages (46L×43W×20H cm in an open room. Acetic acid supplementation at 3% in the diets significantly increased the growth and laying rate and the Haugh unit score. The liver percentage significantly decreased with acetic acid at 6%. Acetic acid at 3% significantly increased hemoglobin concentrations at 6 weeks of age and increased weight of day old chicks hatched. Acetic acid affected the immune system as manifested by an excess of cellular reactions in the intestine as well as lymphoid hyperplasia in the spleen tissue. Degenerative changes in the covering epithelium of the intestinal villi were noted at the 6% concentration of acetic acid. Hepatocyte vacuolation and fatty changes were also observed at this concentration of treatment. In conclusion, 3% acetic acid may be used as a feed supplement for JQ during the growing and laying period to improve the productive performance.

  20. ReaxFF molecular dynamics simulation of intermolecular structure formation in acetic acid-water mixtures at elevated temperatures and pressures

    Science.gov (United States)

    Sengul, Mert Y.; Randall, Clive A.; van Duin, Adri C. T.

    2018-04-01

    The intermolecular structure formation in liquid and supercritical acetic acid-water mixtures was investigated using ReaxFF-based molecular dynamics simulations. The microscopic structures of acetic acid-water mixtures with different acetic acid mole fractions (1.0 ≥ xHAc ≥ 0.2) at ambient and critical conditions were examined. The potential energy surface associated with the dissociation of acetic acid molecules was calculated using a metadynamics procedure to optimize the dissociation energy of ReaxFF potential. At ambient conditions, depending on the acetic acid concentration, either acetic acid clusters or water clusters are dominant in the liquid mixture. When acetic acid is dominant (0.4 ≤ xHAc), cyclic dimers and chain structures between acetic acid molecules are present in the mixture. Both structures disappear at increased water content of the mixture. It was found by simulations that the acetic acid molecules released from these dimer and chain structures tend to stay in a dipole-dipole interaction. These structural changes are in agreement with the experimental results. When switched to critical conditions, the long-range interactions (e.g., second or fourth neighbor) disappear and the water-water and acetic acid-acetic acid structural formations become disordered. The simulated radial distribution function for water-water interactions is in agreement with experimental and computational studies. The first neighbor interactions between acetic acid and water molecules are preserved at relatively lower temperatures of the critical region. As higher temperatures are reached in the critical region, these interactions were observed to weaken. These simulations indicate that ReaxFF molecular dynamics simulations are an appropriate tool for studying supercritical water/organic acid mixtures.

  1. Biological roles and therapeutic potential of hydroxy-carboxylic acid receptors

    Directory of Open Access Journals (Sweden)

    Kashan eAhmed

    2011-10-01

    Full Text Available In the recent past, deorphanization studies have described intermediates of energy metabolism to activate G protein-coupled receptors (GPCRs and to thereby regulate metabolic functions. GPR81, GPR109A and GPR109B, formerly known as the nicotinic acid receptor family, are encoded by clustered genes and share a high degree of sequence homology. Recently, hydroxy-carboxylic acids were identified as endogenous ligands of GPR81, GPR109A and GPR109B, and therefore these receptors have been placed into a novel receptor family of hydroxy-carboxylic acid (HCA receptors. The HCA1 receptor (GPR81 is activated by the glycolytic metabolite 2-hydroxy-propionic acid (lactate, the HCA2 receptor is activated by the ketone body 3-hydroxy-butyric acid and the HCA3 receptor (GPR109B is a receptor for the β-oxidation intermediate 3-hydroxy-octanoic acid. While HCA1 and HCA2 receptors are present in most mammalian species, the HCA3 receptor is exclusively found in humans and higher primates. HCA receptors are expressed in adipose tissue and mediate anti-lipolytic effects in adipocytes through Gi-type G-protein-dependent inhibition of adenylyl cyclase. HCA2 and HCA3 inhibit lipolysis during conditions of increased β-oxidation such as prolonged fasting, whereas HCA1 mediates the anti-lipolytic effects of insulin in the fed state. As HCA2 is a receptor for the established anti-dyslipidemic drug nicotinic acid, HCA1 and HCA3 also represent promising drug targets and several synthetic ligands for HCA receptors have been developed. In this article, we will summarize the deorphanization and pharmacological characterization of HCA receptors. Moreover, we will discuss recent progress in elucidating the physiological and pathophysiological role to further evaluate the therapeutic potential of the HCA receptor family for the treatment of metabolic disease.

  2. Comparative analysis of acetic and citric acid on internal milieu of broiler chickens

    Directory of Open Access Journals (Sweden)

    Marcela Capcarova

    2014-02-01

    Full Text Available Normal 0 21 false false false CS JA X-NONE The aim of the present study was to analyse the effect of two organic acids (acetic and citric acid inclusion on serum parameters and the level of antioxidant status of broiler chickens. Some organic acidifiers reduce the growth of many intestinal bacteria, reduce intestinal colonisation and reduce infectious processes, decrease inflammatory processes at the intestinal mucosa, increase villus height and function of secretion, digestion and absorption of nutrients. Broiler chickens hybrid Ross 308 (n=180 were divided into 3 groups: one control (C and two experimental groups (E1, E2. Experimental animals received acetic and citric acid per os in water in single dose 0.25% for 42 days. After 42 days of feeding blood samples were collected (n=10 in each group. Significant decrease of serum triglycerides in citric acid group when compared with the control group was recorded. Acetic acid administration resulted in increased sodium level. Significant increase of albumin content in both experimental groups and increase of bilirubin content in citric group was recorded. Acids administration had no significant effect on other serum and antioxidant parameters. Acetic and citric acid had no harmful influenced on internal milieu of broiler chickens. The research on the field of organic acid will be worthy of further investigation.

  3. Synthesis and HPLC evaluation of carboxylic acid phases on a hydride surface.

    Science.gov (United States)

    Pesek, Joseph J; Matyska, Maria T; Gangakhedkar, Surekha; Siddiq, Rukhsana

    2006-04-01

    Three organic moieties containing carboxylic acid functional groups are attached to a particulate silica surface through silanization/hydrosilation. Two compounds (undecylenic acid and 10-undecynoic acid) have 11 carbon chains and the other is a five-carbon acid (pentenoic acid). Bonding is confirmed through carbon elemental analysis, diffuse reflectance infrared fourier transform spectroscopy, and carbon-13 and silicon-29 CP-MAS NMR spectroscopy. The bonded phases are tested by HPLC using PTH amino acids, nucleic acids, theophylline-related compounds, anilines, benzoic acid compounds, choline, and tobramycin. The latter two compounds are used to investigate the aqueous normal phase properties of the three bonded materials.

  4. Biotransformation of (-)-dihydromyrcenyl acetate using the plant parasitic fungus Glomerella cingulata as a biocatalyst.

    Science.gov (United States)

    Miyazawa, M; Akazawa, S i; Sakai, H; Nankai, H

    2000-10-01

    The microbial transformation of (-)-dihydromyrcenyl acetate was investigated using the plant parasitic fungus Glomerella cingulata. As a result, (-)-dihydromyrcenyl acetate was converted to dihydromyrcenol, 3,7-dihydroxy-3,7-dimethyl-1-octene-7-carboxylate, 3,7-dihydroxy-3,7-dimethyl-1-octene, 3,7-dimethyloctane-1,2, 7-triol-7-carboxylate, and 3,7-dimethyloctane-1,2,7-triol. In addition, microbial transformation of dihydromyrcenol by G. cingulata was carried out. The metabolic pathway of (-)-dihydromyrcenyl acetate is discussed.

  5. On the formation of niacin (vitamin B3) and pyridine carboxylic acids in interstellar model ices

    Energy Technology Data Exchange (ETDEWEB)

    McMurtry, Brandon M.; Turner, Andrew M.; Saito, Sean E.J.; Kaiser, Ralf I. [W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, HI 96822 (United States); Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, HI 96822 (United States)

    2016-06-15

    The formation of pyridine carboxylic acids in interstellar ice grains was simulated by electron exposures of binary pyridine (C{sub 5}H{sub 5}N)-carbon dioxide (CO{sub 2}) ice mixtures at 10 K under contamination-free ultrahigh vacuum conditions. Chemical processing of the pristine ice and subsequent warm-up phase was monitored on line and in situ via Fourier transform infrared spectroscopy to probe for the formation of new radiation induced species. In the infrared spectra of the irradiated ice, bands assigned to nicotinic acid (niacin; vitamin B3; m-C{sub 5}H{sub 4}NCOOH) along with 2,3-, 2,5-, 3,4-, and 3,5-pyridine dicarboxylic acid (C{sub 5}H{sub 3}N(COOH){sub 2}) were unambiguously identified along with the hydroxycarbonyl (HOCO) radical. Our study suggests that the reactive pathway responsible for pyridine carboxylic acids formation involves a HOCO intermediate, which forms through the reaction of suprathermal hydrogen ejected from pyridine with carbon dioxide. The newly formed pyridinyl radical may then undergo radical–radical recombination with a hydroxycarbonyl radical to form a pyridine carboxylic acid.

  6. Effect of acetic acid in recycling water on ethanol production for cassava in an integrated ethanol-methane fermentation process.

    Science.gov (United States)

    Yang, Xinchao; Wang, Ke; Zhang, Jianhua; Tang, Lei; Mao, Zhonggui

    2016-11-01

    Recently, the integrated ethanol-methane fermentation process has been studied to prevent wastewater pollution. However, when the anaerobic digestion reaction runs poorly, acetic acid will accumulate in the recycling water. In this paper, we studied the effect of low concentration of acetic acid (≤25 mM) on ethanol fermentation at different initial pH values (4.2, 5.2 or 6.2). At an initial pH of 4.2, ethanol yields increased by 3.0% and glycerol yields decreased by 33.6% as the acetic acid concentration was increased from 0 to 25 mM. Raising the concentration of acetic acid to 25 mM increased the buffering capacity of the medium without obvious effects on biomass production in the cassava medium. Acetic acid was metabolized by Saccharomyces cerevisiae for the reason that the final concentration of acetic acid was 38.17% lower than initial concentration at pH 5.2 when 25 mM acetic acid was added. These results confirmed that a low concentration of acetic acid in the process stimulated ethanol fermentation. Thus, reducing the acetic acid concentration to a controlled low level is more advantageous than completely removing it.

  7. Measurement of formic acid, acetic acid and hydroxyacetaldehyde, hydrogen peroxide, and methyl peroxide in air by chemical ionization mass spectrometry: airborne method development

    Science.gov (United States)

    Treadaway, Victoria; Heikes, Brian G.; McNeill, Ashley S.; Silwal, Indira K. C.; O'Sullivan, Daniel W.

    2018-04-01

    A chemical ionization mass spectrometry (CIMS) method utilizing a reagent gas mixture of O2, CO2, and CH3I in N2 is described and optimized for quantitative gas-phase measurements of hydrogen peroxide (H2O2), methyl peroxide (CH3OOH), formic acid (HCOOH), and the sum of acetic acid (CH3COOH) and hydroxyacetaldehyde (HOCH2CHO; also known as glycolaldehyde). The instrumentation and methodology were designed for airborne in situ field measurements. The CIMS quantification of formic acid, acetic acid, and hydroxyacetaldehyde used I- cluster formation to produce and detect the ion clusters I-(HCOOH), I-(CH3COOH), and I-(HOCH2CHO), respectively. The CIMS also produced and detected I- clusters with hydrogen peroxide and methyl peroxide, I-(H2O2) and I-(CH3OOH), though the sensitivity was lower than with the O2- (CO2) and O2- ion clusters, respectively. For that reason, while the I- peroxide clusters are presented, the focus is on the organic acids. Acetic acid and hydroxyacetaldehyde were found to yield equivalent CIMS responses. They are exact isobaric compounds and indistinguishable in the CIMS used. Consequently, their combined signal is referred to as the acetic acid equivalent sum. Within the resolution of the quadrupole used in the CIMS (1 m/z), ethanol and 1- and 2-propanol were potential isobaric interferences to the measurement of formic acid and the acetic acid equivalent sum, respectively. The CIMS response to ethanol was 3.3 % that of formic acid and the response to either 1- or 2-propanol was 1 % of the acetic acid response; therefore, the alcohols were not considered to be significant interferences to formic acid or the acetic acid equivalent sum. The multi-reagent ion system was successfully deployed during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) in 2014. The combination of FRAPPÉ and laboratory calibrations allowed for the post-mission quantification of formic acid and the acetic acid equivalent sum observed during the Deep

  8. LIQUID-CHROMATOGRAPHIC ANALYSIS OF CARBOXYLIC-ACIDS USING N-(4-AMINOBUTYL)-N-ETHYLISOLUMINOL AS CHEMILUMINESCENT LABEL - DETERMINATION OF IBUPROFEN IN SALIVA

    NARCIS (Netherlands)

    STEIJGER, OM; LINGEMAN, H; BRINKMAN, UAT; HOLTHUIS, JJM; SMILDE, AK; DOORNBOS, DA

    1993-01-01

    N-(4-Aminobutyl)-N-ethylisoluminol was used for labelling of carboxylic acids. The derivatization reaction was carried out with 1-hydroxybenzotriazole as pre-activator of the carboxylic acid function and N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide as the coupling reagent. Optimum conditions for

  9. Liquid chromatographic analysis of carboxylic acids using N-(4-aminobutyl)-N-ethylisoluminol as chemiluminescent label: determination of ibuprofen in saliva

    NARCIS (Netherlands)

    Steijger, O. M.; Lingeman, H.; Brinkman, U. A.; Holthuis, J. J.; Smilde, A. K.; Doornbos, D. A.

    1993-01-01

    N-(4-Aminobutyl)-N-ethylisoluminol was used for labelling of carboxylic acids. The derivatization reaction was carried out with 1-hydroxybenzotriazole as pre-activator of the carboxylic acid function and N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide as the coupling reagent. Optimum conditions for

  10. Organogel polymers from 10-undecenoic acid and poly(vinyl acetate)

    Science.gov (United States)

    Organogels are used in a variety of high value applications including the removal of toxic solvents from aqueous environments and the time-controlled release of compounds. One of the most promising gelators is a polyvinyl polymer containing medium chain length carboxylic acids. The existing producti...

  11. Kinetics study of thermal decomposition of calcium carboxylate salts

    International Nuclear Information System (INIS)

    Landoll, Michael P.; Holtzapple, Mark T.

    2013-01-01

    The MixAlco™ process ferments lignocellulosic biomass to carboxylate salts that are thermally decomposed into ketones, which are then chemically converted to a wide variety of chemicals and fuels. To perform these decompositions, suitable reaction models are necessary to properly design, scale, and optimize commercial reactors. For three salt types (calcium acetate, and two types of mixed calcium carboxylate salts), activation energy was determined using three isoconversional methods that employed TGA curves at different heating rates. For all three salt types, activation energy varied significantly with conversion. The average activation energy for calcium acetate was 556.75 kJ mol −1 , and the activation energies for the two mixed calcium carboxylate salts were 232.87, and 176.55 kJ mol −1 . In addition, three functions of conversion were employed to see which one best modeled the experimental data. The Sestak–Berggren model provides the best universal fit for all three salt types. -- Highlights: •Calcium carboxylate salts from fermentation broth thermally decompose to ketones. •Activation energy varies with conversion for all three salt types. •Sestak–Berggren model provides best fit overall for all three salt types

  12. Kinetics study of thermal decomposition of sodium carboxylate salts

    International Nuclear Information System (INIS)

    Landoll, Michael P.; Holtzapple, Mark T.

    2012-01-01

    The MixAlco™ process ferments lignocellulosic biomass to carboxylate salts that are thermally decomposed into ketones, which are then chemically converted to a wide variety of chemicals and fuels. To perform these decompositions, suitable reaction models are necessary to properly design, scale, and optimize commercial reactors. For three salt types (sodium acetate, and two types of mixed sodium carboxylate salts), activation energy was determined using three isoconversional methods that employed TGA curves at different heating rates. For all three salt types, activation energy varied significantly with conversion. The average activation energy for sodium acetate was 226.65 kJ/mol, and the activation energies for the two mixed sodium carboxylate salts were 195.61, and 218.18 kJ/mol. In addition, three functions of conversion were employed to see which one best modeled the experimental data. The Sestak-Berggren model fits all three salt types best. -- Highlights: ► Sodium carboxylate salts from fermentation broth thermally decompose to ketones. ► Activation energy varies with conversion for all three salt types. ► Sestak-Berggren model provides best fit for all three salt types.

  13. Guiding principle for crystalline Si photovoltaic modules with high tolerance to acetic acid

    Science.gov (United States)

    Masuda, Atsushi; Hara, Yukiko

    2018-04-01

    A guiding principle for highly reliable crystalline Si photovoltaic modules, especially those with high tolerance to acetic acid generated by hydrolysis reaction between water vapor and an ethylene-vinyl acetate (EVA) encapsulant, is proposed. Degradation behavior evaluated by the damp heat test strongly depends on Ag finger electrodes and also EVA encapsulants. The acetic acid concentration in EVA on the glass side directly determines the degradation behavior. The most important factor for high tolerance is the type of Ag finger electrode materials when using an EVA encapsulant. Photovoltaic modules using newly developed crystalline Si cells with improved Ag finger electrode materials keep their maximum power of 80% of the initial value even after the damp heat test at 85 °C and 85% relative humidity for 10000 h. The pattern of dark regions in electroluminescence images is also discussed on the basis of the dynamics of acetic acid in the modules.

  14. Growth kinetics of racemic heptahelicene-2-carboxylic acid nanowires on calcite (104)

    Czech Academy of Sciences Publication Activity Database

    Einax, M.; Richter, T.; Nimmrich, M.; Rahe, P.; Stará, Irena G.; Starý, Ivo; Kühnle, A.; Maass, P.

    2016-01-01

    Roč. 145, č. 13 (2016), č. článku 134702. ISSN 0021-9606 Institutional support: RVO:61388963 Keywords : heptahelicene-2-carboxylic acid nanowires * nc-AFM * calcite * growth kinetics Subject RIV: CC - Organic Chemistry Impact factor: 2.965, year: 2016

  15. Sol-gel process for preparation of YBa2Cu4O8 from acidic acetates/ammonia/ascorbic acid systems

    International Nuclear Information System (INIS)

    Deptula, A.; Lada, W.; Olczak, T.; Goretta, K.C.

    1997-01-01

    YBa 2 Cu 4 O x sols were prepared by addition of ammonia to acidic acetate solutions of Y 3+ , Ba 2+ , and Cu 2+ . Ascorbic acid was added to part of the sol. The resultant sols were gelled to a shard or a coating by evaporation at 60 C. Addition of ethanol to the sols facilitated formation of gel coatings, fabricated by a dipping technique, on Ag or glass or substrates. At 100 C, gels formed in the presence of ascorbic acid were perfectly amorphous, in contrast to crystalline acetate gels. The quality of coatings prepared from ascorbate gels was superior to that of acetate gel coatings

  16. Reactions and reaction intermediates on iron surfaces--1. Methanol, ethanol, and isopropanol on Fe(100). 2. Hydrocarbons and carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Benziger, J.B.; Madix, R.J.

    1980-09-01

    Temperature-programed desorption and ESCA showed that the alcohols formed alkoxy intermediates on Fe(100) surfaces at room temperature, but that the methoxy and ethoxy species were much more stable than the isopropoxy intermediate. The alkoxy species reacted above 400/sup 0/K by decomposing into carbon monoxide and hydrogen, hydrogenation to alcohol, and scission of C-C and C-O bonds with hydrogenation of the hydrocarbon fragments. Ethylene, acetylene, and cis-2-butene formed stable, unidentified surface species. Methyl chloride formed stable surface methyl groups which decomposed into hydrogen and surface carbide at 475/sup 0/K. Formic and acetic acids yielded stable carboxylate intermediates which decomposed above 490/sup 0/K to hydrogen, carbon monoxide, and carbon dioxide. The studies suggested that the alkoxy surface species may be important intermediates in the Fischer-Tropsch reaction on iron.

  17. Determination of ethanol in acetic acid-containing samples by a biosensor based on immobilized Gluconobacter cells

    Directory of Open Access Journals (Sweden)

    VALENTINA A. KRATASYUK

    2012-11-01

    Full Text Available Reshetilov AN, Kitova AE, Arkhipova AV, Kratasyuk VA, Rai MK. 2012. Determination of ethanol in acetic acid containing samples by a biosensor based on immobilized Gluconobacter cells. Nusantara Bioscience 4: 97-100. A biosensor based on Gluconobacter oxydans VKM B-1280 bacteria was used for detection of ethanol in the presence of acetic acid. It was assumed that this assay could be useful for controlling acetic acid production from ethanol and determining the final stage of the fermentation process. Measurements were made using a Clark electrode-based amperometric biosensor. The effect of pH of the medium on the sensor signal and the analytical parameters of the sensor (detection range, sensitivity were investigated. The residual content of ethanol in acetic acid samples was analyzed. The results of the study are important for monitoring the acetic acid production process, as they represent a method of tracking its stages

  18. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    Science.gov (United States)

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2002-01-01

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  19. Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.

    Science.gov (United States)

    Shimada, T; Morgenroth, E; Tandukar, M; Pavlostathis, S G; Smith, A; Raskin, L; Kilian, R E

    2011-01-01

    The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production

  20. Rhodium-catalyzed regioselective olefination directed by a carboxylic group.

    Science.gov (United States)

    Mochida, Satoshi; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2011-05-06

    The ortho-olefination of benzoic acids can be achieved effectively through rhodium-catalyzed oxidative coupling with alkenes. The carboxylic group is readily removable to allow ortho-olefination/decarboxylation in one pot. α,β-Unsaturated carboxylic acids such as methacrylic acid also undergo the olefination at the β-position. Under the rhodium catalysis, the cine-olefination of heteroarene carboxylic acids such as thiophene-2-carboxylic acid proceeds smoothly accompanied by decarboxylation to selectively produce the corresponding vinylheteroarene derivatives. © 2011 American Chemical Society

  1. Corrosion resistance of aluminum-magnesium alloys in glacial acetic acid

    International Nuclear Information System (INIS)

    Zaitseva, L.V.; Romaniv, V.I.

    1984-01-01

    Vessels for the storage and conveyance of glacial acetic acid are produced from ADO and AD1 aluminum, which are distinguished by corrosion resistance, weldability and workability in the hot and cold conditions but have low tensile strength. Aluminum-magnesium alloys are stronger materials close in corrosion resistance to technical purity aluminum. An investigation was made of the basic alloying components on the corrosion resistance of these alloys in glacial acetic acid. Both the base metal and the weld joints were tested. With an increase in temperature the corrosion rate of all of the tested materials increases by tens of times. The metals with higher magnesium content show more pitting damage. The relationship of the corrosion resistance of the alloys to magnesium content is confirmed by the similar intensity of failure of the joint metal of all of the investigated alloys and by electrochemical investigations. The data shows that AMg3 alloy is close to technically pure ADO aluminum. However, the susceptibility of even this material to local corrosion eliminates the possibility of the use of aluminum-magnesium alloys as reliable constructional materials in glacial acetic acid

  2. [Chloroquine analogues from benzofuro- and benzothieno[3,2-b]-4-pyridone-2-carboxylic acid esters].

    Science.gov (United States)

    Gölitzer, K; Meyer, H; Jomaa, H; Wiesner, J

    2004-08-01

    The amides 7 were synthesized from the annulated methyl 4-pyridone-2-carboxylates 4 via the carboxylic acids 5 and their acid chlorides by reacting with the novaldiamine base 6. The alcohol 8b, obtained from DIBAH reduction of the ester 4b, was transformed to the chloromethyl derivative 9 which reacted with 6 and 18-crown-6 leading to the 2-novaldiaminomethyl-4-pyridone 10. Compound 10 was obtained with higher yield from DIBAH reduction of the amide 7b. The substances 7 and 10 were inactive when tested against the chloroquine resistant Plasmodium falciparum strain Dd2.

  3. Organocatalyzed, Visible-Light Photoredox-Mediated, One-Pot Minisci Reaction Using Carboxylic Acids via N-(Acyloxy)phthalimides.

    Science.gov (United States)

    Sherwood, Trevor C; Li, Ning; Yazdani, Aliza N; Dhar, T G Murali

    2018-03-02

    An improved, one-pot Minisci reaction has been developed using visible light, an organic photocatalyst, and carboxylic acids as radical precursors via the intermediacy of in situ-generated N-(acyloxy)phthalimides. The conditions employed are mild, demonstrate a high degree of functional group tolerance, and do not require a large excess of the carboxylic acid reactant. As a result, this reaction can be applied to drug-like scaffolds and molecules with sensitive functional groups, enabling late-stage functionalization, which is of high interest to medicinal chemistry.

  4. Probiotic and Acetic Acid Effect on Broiler Chickens Performance

    Directory of Open Access Journals (Sweden)

    Martin Král

    2011-05-01

    Full Text Available Probiotics and organic acids are widely accepted as an alternative to in-feed antibiotics in poultry production. We carried the experiment with broiler chickens. In experiment we research effect of probiotic and acetic acids on the performance of broiler chickens. A total number of 200 one day old broiler chickens were distributed to two dietary groups. Broiler chickens in control group were fed with standard feed mixture and experimental group 1% vinegar contained 5% acetic acid used in drinking water and probiotics mixed with feed mixture. Body weight, FCR and GIT pH were recorded. The performance showed no statistically significant increase in body weight (P>0.05 in the weeks 1, 2, 3 and 4 of age. The body weight of broiler chickens was significant increase (P0.05 in weeks 5, and 6 of age. In different segments of the GIT was not statistically significant (P>0.05 difference of pH between the control and experimental groups.

  5. Acetic Acid Detection Threshold in Synthetic Wine Samples of a Portable Electronic Nose

    Directory of Open Access Journals (Sweden)

    Miguel Macías Macías

    2012-12-01

    Full Text Available Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP. To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L.

  6. Effects of acetic acid and lactic acid on physicochemical characteristics of native and cross-linked wheat starches.

    Science.gov (United States)

    Majzoobi, Mahsa; Beparva, Paniz

    2014-03-15

    The effects of two common organic acids; lactic and acetic acids (150 mg/kg) on physicochemical properties of native and cross-linked wheat starches were investigated prior and after gelatinization. These acids caused formation of some cracks and spots on the granules. The intrinsic viscosity of both starches decreased in the presence of the acids particularly after gelatinization. Water solubility increased while water absorption reduced after addition of the acids. The acids caused reduction in gelatinization temperature and enthalpy of gelatinization of both starches. The starch gels became softer, less cohesive, elastic and gummy when acids were added. These changes may indicate the degradation of the starch molecules by the acids. Cross-linked wheat starch was more resistant to the acids. However, both starches became more susceptible to the acids after gelatinization. The effect of lactic acid on physicochemical properties of both starches before and after gelatinization was greater than acetic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Synthesis and evaluation of mutual azo prodrug of 5-aminosalicylic acid linked to 2-phenylbenzoxazole-2-yl-5-acetic acid in ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Jilani JA

    2013-07-01

    Full Text Available Jamal A Jilani,1 Maha Shomaf,2 Karem H Alzoubi3 1Department of Medicinal Chemistry and Pharmacognosy, Jordan University of Science and Technology, Irbid, Jordan; 2Department of Pathology, Jordan University, Amman, Jordan; 3Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan Abstract: In this study, the syntheses of 4-aminophenylbenzoxazol-2-yl-5-acetic acid, (an analogue of a known nonsteroidal anti-inflammatory drug [NSAID] and 5-[4-(benzoxazol-2-yl-5-acetic acidphenylazo]-2-hydroxybenzoic acid (a novel mutual azo prodrug of 5-aminosalicylic acid [5-ASA] are reported. The structures of the synthesized compounds were confirmed using infrared (IR, hydrogen-1 nuclear magnetic resonance (1H NMR, and mass spectrometry (MS spectroscopy. Incubation of the azo compound with rat cecal contents demonstrated the susceptibility of the prepared azo prodrug to bacterial azoreductase enzyme. The azo compound and the 4-aminophenylbenzoxazol-2-yl-5-acetic acid were evaluated for inflammatory bowel diseases, in trinitrobenzenesulfonic acid (TNB-induced colitis in rats. The synthesized diazo compound and the 4-aminophenylbenzoxazol-2-yl-5-acetic acid were found to be as effective as 5-aminosalicylic acid for ulcerative colitis. The results of this work suggest that the 4-aminophenylbenzoxazol-2-yl-5-acetic acid may represent a new lead for treatment of ulcerative colitis. Keywords: benzoxazole acetic acid, azo prodrug, colon drug delivery

  8. Phase equilibrium modelling for mixtures with acetic acid using an association equation of state

    DEFF Research Database (Denmark)

    Muro Sunè, Nuria; Kontogeorgis, Georgios; von Solms, Nicolas

    2008-01-01

    Acetic acid is a very important compound in the chemical industry with applications both as solvent and intermediate in the production of, e.g., polyesters. The design of these processes requires knowledge of the phase equilibria of mixtures containing acetic acid and a wide variety of compounds ...

  9. Changes of sour taste and the composition of carboxylic acids induced in brewed coffee by γ-irradiation on green beans and storage of roast beans

    International Nuclear Information System (INIS)

    Tomoda, Goro; Matsuyama, Jun; Nagano, Akiko; Namatame, Mitsuko; Morita, Yoshiaki.

    1980-01-01

    Brazil santos green coffee beans were irradiated with 60 Co-γ rays at doses of 0, 0.05, 0.5 and 1.5 Mrad respectively and changes of the composition of carboxylic acids in roast beans were analyzed by means of GLC together with those of the organoleptic properties of roast beans during storage by use of the cup testing. The total acid content immediately after roasting was about 6,000 mg/100 g (roast beans) and the composition of carboxylic acids was as follows. Chlorogenic acid: hydroxy-carboxylic acids: mono-carboxylic acid: others = 73 : 18 : 7 : 2. Fresh coffee flavour was influenced markedly especially in acid taste by both irradiation of γ-rays on green beans and storage of roast beans, because of the change of above acids composition. On γ-ray irradiation, the change of the acid composition were more clear than that of stored roast beans. Therefore, the quality of γ-irradiated coffee beans seems to be closely associated with the ratio of hydroxy-carboxylic acids mg/ monocarboxylic acids mg, but little with total acid content. (author)

  10. Primary and secondary kinetic isotope effects in the acid-catalyzed dehydration of 1,1'-diadamantylmethylcarbinol in aqueous acetic acid

    International Nuclear Information System (INIS)

    Lomas, J.S.

    1981-01-01

    The sulfuric acid catalyzed dehydration of 1,1'-diadamantyl-methylcarbinol in anhydrous acetic acid proceeds exclusively to 1,1'-bis(1-adamantyl)ethylene. The secondary deuterium isotope effect of 1.32 found for this reaction shows that carbonium ion formation from the protonated alcohol is rate determining. In the presence of water, however, capture of the carbonium ion competes with deprotonation, introducing a primary isotope effect. Consequently, the overall KIE rises, reaching 3.18 for 80% aqueous acetic acid. Analysis of the KIE for 80 to 100% aqueous acetic acid is consistent with a simple classical mechanism involving reversible formation of the intermediate carbonium ion. The primary isotope effect upon deprotonation is at the most 2.98, indicative of an asymmetric transition state close to the carbonium ion

  11. Clinical study of CT-guided sclerotherapy using 50 percent acetic acid in the treatment of renal cyst

    International Nuclear Information System (INIS)

    Pang Jun; Han Changli; Zhang Zhaofu; Dai Jingru

    2007-01-01

    Objective: To investigate the efficacy of 50% acetic acid as a renal cyst sclerotherapy agent, and with further comparison to that of absolute alcohol. Methods: Eighty five patients with renal cyst were undergone sclerotherapy through spiral CT guidance including 43 cases with absolute alcohol and the others with 50% acetic acid as selerosing agents. All the cysts were aspirated under CT-guidance, beforehand. The selerosising agents were withdrawn from the cysts after a definite period of retention. Results: The disappearance rates of cyst cavity with absolute alcohol and acetic acid were 55.81% and 71.42%, respectively. Complication occurenee rates with absolute alcohol and acetic acid were 16.28% and 4.76%, respectively. The average retention periods of absolute alcohol and acetic acid in cyst were (20±4) minutes, and (10±2)minutes, respectively. Statistical analysis demonstrated that all the data in two groups were significantly different. Conclusion: Using 50% acetic acid as sclerosising agent in treating renal cyst possesses the better effect and less side effect, providing a tendency to replace the traditional therapy. (authors)

  12. Characterization of indole acetic acid endophyte producers in ...

    African Journals Online (AJOL)

    This work contributes to the knowledge of the phytobacteria diversity in aquatic plants, particularly in Lemnaceae species; here the majority of the isolates have been characterized as higher indole acetic acid producers, recommended as candidates for their use as biofertilizers. Key words: Plant growth-promoting bacteria, ...

  13. Development of starch biofilms using different carboxylic acids as plasticizers

    International Nuclear Information System (INIS)

    Cruz, L.C.; Miranda, C.S.; Santos, W.J. dos; Goncalves, A.P.B.; Oliveira, J.C.; Jose, N.M.

    2014-01-01

    Biodegradable films have become a widely exploited issue among scientists because of their positive environmental impact, besides their potential to promote better food conservation and an increase in shelf life. Starch has been studied in this field due to its availability, low cost and biodegradability. However, starch films tend to be brittle and they need addition of a plasticizer to enable their usage. In this work, starch films were synthesized with different carboxylic acids as plasticizers, aiming to observe the effect of the acids chain size in the final films properties. The acids used were: oxalic, succinic and adipic. The materials were produced by casting and characterized by DSC, TG, DRX e FTIR. It was observed that the acids chain size influenced on the thermal and structural properties of the films. (author)

  14. Acetic acid production from marine algae. Progress report No. 2, September 30 to December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J E; Wise, D L

    1978-03-10

    Preliminary results on the production of acetic acid from marine algae by anaerobic fermentation indicates that the rate is quite fast. First order rate constants of 0.77 day/sup -1/ have been observed. This rate constant gives a half-life of less than one day. In other words, with a properly designed product removal system a five day retention time would yield 98% of theoretical conversion. Determination of the theoretical conversion of marine algae to acetic acid is the subject of much experimentation. The production of one acetic acid molecule (or equivalent in higher organic acids) for each three carbon atoms in the substrate has been achieved; but it is possible that with a mixed culture more than one acetic acid molecule may be produced for each three carbons in the substrate.

  15. Mixed ligand lanthanide complexes with dipivaloylmethane and acetic acid

    International Nuclear Information System (INIS)

    Lyu Fehnkhua; Kuz'mina, N.P.; Mazo, G.N.; Martynenko, L.I.

    1995-01-01

    Methods of elemental, X-ray phase, thermal analyses and infrared spectroscopy were used to characterize solid products, formed in MDpm 3 -HAcet-H-hexane systems (M = Pr, Nd, Eu, Gd, Ho, Er, Yb, HDpm -dipivaloylmethane, HAcet - acetic acid). It was established that prepared mixed ligand complexes (MLC) had MDpm 2 Acet composition for all studied rare earths. Differenced in properties of cerium and yttrium rare earths are manifested in processes of MLC thermal dissociation, proceeding at low pressure and 170 deg C. 6 refs., 4 tabs

  16. Phase behavior and micellar properties of carboxylic acid end group modified pluronic surfactants

    NARCIS (Netherlands)

    Custers, J.P.A.; Broeke, van den L.J.P.; Keurentjes, J.T.F.

    2007-01-01

    The micellar behavior of three different carboxylic acid end standing (CAE) surfactants has been characterized using conductometry, differential scanning calorimetry, isothermal titration calorimetry, and dynamic light scattering. The CAE surfactants are modified high molecular weight Pluronic

  17. Amperometric titration of thorium and some lanthanoids in acetic-acid medium using two indicator electrodes

    International Nuclear Information System (INIS)

    Khadeev, V.A.; Gevorgyan, A.M.; Talipov, Sh.T.; Kostylev, V.S.

    1979-01-01

    The votammetric behaviour of nitriletrimethylphosphonic acid (NTMP) in the medium of anhydrous acetic acid with different backgrounds in the anode region of polarization of a platinum microdisk electrode, is studied. The optimal conditions are found for the amperometric titration with two indicator electrodes of thorium and same lanthanides by a NTMP solution in anhydrous acetic medium. The influence of foreign anions and cations on the results of titration by the NTPM solution in anhydrous acetic acid is studied. The selectivity of titration in anhydrous medium is higher than in aqueous

  18. RECOVERY OF CARBOXYLIC ACIDS FROM AQUEOUS SOLUTIONS BY LIQUID-LIQUID EXTRACTION WITH A TRIISOOCTYLAMINE DILUENT SYSTEM

    Directory of Open Access Journals (Sweden)

    G. Malmary

    2001-12-01

    Full Text Available Tertiary alkylamines in solution with organic diluents are attractive extractants for the recovery of carboxylic acids from dilute aqueous phases. The aim of this study was to investigate the mechanism for extraction of organic acids from water by a long-chain aliphatic tertiary amine. In order to attain this objective, we studied the liquid-liquid equilibria between the triisooctylamine + 1-octanol + n-heptane system as solvent and an aqueous solution of an individual carboxylic acid such as citric, lactic and malic acids. The experiments showed that the partition coefficient for a particular organic acid depends on the kind of solute, notably when the acid concentration in the aqueous phase is low. A mathematical model, where both chemical association and physical distribution are taken into consideration, is proposed. The model suggests that the various complexes obtained between amine and organic acids contribute to the distribution of the solute between the coexisting phases in equilibrium.

  19. CT-guided percutaneous acetic acid injection therapy for liver metastasis

    International Nuclear Information System (INIS)

    Yu Tongfu; Wang Dehang; Zhuang Zhenwu; Li Linxun; Shi Haibin

    2002-01-01

    Objective: To evaluate the efficacy of CT-guided percutaneous acetic acid injection (PAI) for liver metastasis. Methods: Thirty-five cases (40 lesions) with liver metastasis were treated with PAI. 4-10 ml of 30% acetic acid with 1 ml contrast media was injected into every lesion. PAI was performed twice a week, and repeated for 2 to 3 weeks. Results: The tumors shrunk in 23 lesions, and remained unchanged in 12 lesions. The efficiency was 87.5%. All cases were followed up for 3 months to 3 years. One year survival rates was 62.9% (22 cases), 2 years 40.0% (14 cases), and 3 years 22.9% (8 cases). Conclusion: PAI was an effective therapy for liver metastasis

  20. Hepatic Metabolism of Perfluorinated Carboxylic Acids and Polychlorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in vito

    Science.gov (United States)

    1994-01-06

    L. Narayanan. and B. M. Jamot. ’Effects of Peulluoro-n- octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate on Hepatic Phosphorus Metabolism in...pathways and examined the impact of perfluorocarboxylic acid exposure. This investigative strategy will delineate the metabolic effices exerted by...Perfluorinated Carboxylic Acids and Polychlorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in Vivo Principal Investigator: Nicholas V. Reo

  1. Radiation-initiated emulsion copolymerization of styrene and carboxylic acid monomers

    International Nuclear Information System (INIS)

    Egusa, S.; Makuuchi, K.

    1982-01-01

    The emulsion copolymerization of styrene and carboxylic acid monomers such as acrylic, methacrylic, and itaconic acids (AAc, MAAc, IAc) was studied by using 60 Co γ-rays as initiator and sodium dodecylsulfate as emulsifier. The polymerization behavior of these acid monomers was followed by simultaneous conductometric and potentiometric titrations for a latex sample taken in polymerization. The polymerization rate of these acid monomers increases in the following order of hydrophobicity: IAc < AAc < MAAc; this suggests that their polymerization sites are mainly the surface and/or subsurface regions of latex particles. The copolymerization rate of styrene and acid monomer increases with an increase in the acid monomer content for AAc and MAAc, whereas for IAc the rate decreases. The particle sizes determined by the stopped-flow method reveal that this variation of copolymerization rate cannot be explained by the number of growing particles and should be attributed to another factor; for instance, the transfer rate of styrene molecules from oil droplets to growing particles

  2. Do carboximide–carboxylic acid combinations form co-crystals? The role of hydroxyl substitution on the formation of co-crystals and eutectics

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2015-05-01

    Full Text Available Carboxylic acids, amides and imides are key organic systems which provide understanding of molecular recognition and binding phenomena important in biological and pharmaceutical settings. In this context, studies of their mutual interactions and compatibility through co-crystallization may pave the way for greater understanding and new applications of their combinations. Extensive co-crystallization studies are available for carboxylic acid/amide combinations, but only a few examples of carboxylic acid/imide co-crystals are currently observed in the literature. The non-formation of co-crystals for carboxylic acid/imide combinations has previously been rationalized, based on steric and computed stability factors. In the light of the growing awareness of eutectic mixtures as an alternative outcome in co-crystallization experiments, the nature of various benzoic acid/cyclic imide combinations is established in this paper. Since an additional functional group can provide sites for new intermolecular interactions and, potentially, promote supramolecular growth into a co-crystal, benzoic acids decorated with one or more hydroxyl groups have been systematically screened for co-crystallization with one unsaturated and two saturated cyclic imides. The facile formation of an abundant number of hydroxybenzoic acid/cyclic carboximide co-crystals is reported, including polymorphic and variable stoichiometry co-crystals. In the cases where co-crystals did not form, the combinations are shown invariably to result in eutectics. The presence or absence and geometric disposition of hydroxyl functionality on benzoic acid is thus found to drive the formation of co-crystals or eutectics for the studied carboxylic acid/imide combinations.

  3. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    Directory of Open Access Journals (Sweden)

    Y. Tan

    2012-01-01

    Full Text Available Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA. Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM–10 mM was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  4. The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii.

    Directory of Open Access Journals (Sweden)

    Fernando Rodrigues

    Full Text Available Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo(13C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2-(13C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C(2, C(3 and C(4. The incorporation of [U-(14C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production.

  5. The effects of solvents and structure on the electronic absorption spectra of the isomeric pyridine carboxylic acid N-oxides

    Directory of Open Access Journals (Sweden)

    Drmanić Saša Ž.

    2013-01-01

    Full Text Available The ultraviolet absorption spectra of the carboxyl group of three isomeric pyridine carboxylic acids N-oxides (picolinic acid N-oxide, nicotinic acid N-oxide and isonicotinic acid N-oxide were determined in fourteen solvents in the wavelength range from 200 to 400 nm. The position of the absorption maxima (λmax of the examined acids showed that the ultraviolet absorption maximum wavelengths of picolinic acid N-oxide are the shortest, and those of isonicotinic acid N-oxide acid are the longest. In order to analyze the solvent effect on the obtained absorption spectra, the ultraviolet absorption frequencies of the electronic transitions in the carboxylic group of the examined acids were correlated using a total solvatochromic equation of the form max = v0 + sπ + aα+ bβ, where υmax is the absorption frequency (1/λmax, p is a measure of the solvent polarity, β represents the scale of solvent hydrogen bond acceptor basicities and α represent the scale of solvent hydrogen bond donor acidities. The correlation of the spectroscopic data was carried out by means of multiple linear regression analysis. The solvent effects on the ultraviolet absorption maximums of the examined acids were discussed.

  6. Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids.

    Science.gov (United States)

    Fu, Ming-Chen; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-07-27

    A boron-based catalyst was found to catalyze the straightforward alkylation of amines with readily available carboxylic acids in the presence of silane as the reducing agent. Various types of primary and secondary amines can be smoothly alkylated with good selectivity and good functional-group compatibility. This metal-free amine alkylation was successfully applied to the synthesis of three commercial medicinal compounds, Butenafine, Cinacalcet. and Piribedil, in a one-pot manner without using any metal catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Defense-Related Isoleucic Acid Differentially Accumulates in Arabidopsis Among Branched-Chain Amino Acid-Related 2-Hydroxy Carboxylic Acids

    Directory of Open Access Journals (Sweden)

    Rafał P. Maksym

    2018-06-01

    Full Text Available The branched-chain amino acid (BCAA related 2-hydroxy carboxylic acid isoleucic acid (ILA enhances salicylic acid-mediated pathogen defense in Arabidopsis thaliana. ILA has been identified in A. thaliana as its glucose conjugate correlated with the activity of the small-molecule glucosyltransferase UGT76B1, which can glucosylate both salicylic acid and ILA in vitro. However, endogenous levels of the ILA aglycon have not yet been determined in planta. To quantify ILA as well as the related leucic acid (LA and valic acid (VA in plant extracts, a sensitive method based on the derivatization of small carboxylic acids by silylation and gas chromatography–mass spectrometric analysis was developed. ILA was present in all species tested including several monocotyledonous and dicotyledonous plants as well as broadleaf and coniferous trees, whereas LA and VA were only detectable in a few species. In A. thaliana both ILA and LA were found. However, their levels varied during plant growth and in root vs. leaves. ILA levels were higher in 2-week-old leaves and decreased in older plants, whereas LA exhibited a reverted accumulation pattern. Roots displayed higher ILA and LA levels compared to leaves. ILA was inversely related to UGT76B1 expression level indicating that UGT76B1 glucosylates ILA in planta. In contrast, LA was not affected by the expression of UGT76B1. To address the relation of both 2-hydroxy acids to plant defense, we studied ILA and LA levels upon infection by Pseudomonas syringae. LA abundance remained unaffected, whereas ILA was reduced. This change suggests an ILA-related attenuation of the salicylic acid response. Collectively, the BCAA-related ILA and LA differentially accumulated in Arabidopsis, supporting a specific role and regulation of the defense-modulating small-molecule ILA among these 2-hydroxy acids. The new sensitive method will pave the way to further unravel their role in plants.

  8. Selenium dioxide catalysed oxidation of acetic acid hydrazide

    Indian Academy of Sciences (India)

    The mechanism of the reaction involves prior complex formation between the catalyst and substrate, hydrazide, followed by its oxidation by diprotonated bromate in a slow step. Acetic acid was found to be the oxidation product. Other kinetic data like effect of solvent polarity and ionic strength on the reaction support the ...

  9. [Effect of acetic acid, furfural and 5-hydroxymethylfurfural on production of 2,3-butanediol by Klebsiella oxytoca].

    Science.gov (United States)

    Wu, Jing; Cheng, Keke; Li, Wenying; Feng, Jie; Zhang, Jian'an

    2013-03-01

    To get the tolerability and consumption of Klebsiella oxytoca on major inhibitors in lignocelluloses hydrolysate, we studied the effect of acetic acid, furfural and 5-hydroxymethylfurfural on production of 2,3-butanediol by Klebsiella oxytoca. The metabolites of furfural and 5-hydroxymethylfurfural were measured. The results show that when acetic acid, furfural and 5-hydroxymethylfurfural was individually added, tolerance threshold for Klebsiella oxytoca was 30 g/L, 4 g/L and 5 g/L, respectively. Acetic acid was likely used as substrate to produce 2,3-butanediol. The yield of 2,3-butanediol increased when acetic acid concentration was lower than 30 g/L. In the fermentation, more than 70% 5-hydroxymethylfurfural was converted to 2,5-furandimethanol. All furfural and the rest of 5-hydroxymethylfurfural were metabolized by Klebsiella oxytoca. It showed that in the detoxification process of 2,3-butanediol production using lignocelluloses hydrolysate, furfural should be given priority to remove and a certain concentration of acetic acid is not need to removal.

  10. Use of technical mixtures of carboxylic acids to the extraction of silver

    International Nuclear Information System (INIS)

    Smulek, W.

    1983-01-01

    The application of technical mixtures of carboxylic acids, obtained from a Polish oil mill, to the extraction of silver, gold, and europium is described. The distribution ratio is given as a function of HNO 3 and H 2 SO 4 concentrations, extractant and metal concentrations, and nature of diluent. (author)

  11. Profile of preoperative fecal organic acids closely predicts the incidence of postoperative infectious complications after major hepatectomy with extrahepatic bile duct resection: Importance of fecal acetic acid plus butyric acid minus lactic acid gap.

    Science.gov (United States)

    Yokoyama, Yukihiro; Mizuno, Takashi; Sugawara, Gen; Asahara, Takashi; Nomoto, Koji; Igami, Tsuyoshi; Ebata, Tomoki; Nagino, Masato

    2017-10-01

    To investigate the association between preoperative fecal organic acid concentrations and the incidence of postoperative infectious complications in patients undergoing major hepatectomy with extrahepatic bile duct resection for biliary malignancies. The fecal samples of 44 patients were collected before undergoing hepatectomy with bile duct resection for biliary malignancies. The concentrations of fecal organic acids, including acetic acid, butyric acid, and lactic acid, and representative fecal bacteria were measured. The perioperative clinical characteristics and the concentrations of fecal organic acids were compared between patients with and without postoperative infectious complications. Among 44 patients, 13 (30%) developed postoperative infectious complications. Patient age and intraoperative bleeding were significantly greater in patients with postoperative infectious complications compared with those without postoperative infectious complications. The concentrations of fecal acetic acid and butyric acid were significantly less, whereas the concentration of fecal lactic acid tended to be greater in the patients with postoperative infectious complications. The calculated gap between the concentrations of fecal acetic acid plus butyric acid minus lactic acid gap was less in the patients with postoperative infectious complications (median 43.5 vs 76.1 μmol/g of feces, P = .011). Multivariate analysis revealed that an acetic acid plus butyric acid minus lactic acid gap acid profile (especially low acetic acid, low butyric acid, and high lactic acid) had a clinically important impact on the incidence of postoperative infectious complications in patients undergoing major hepatectomy with extrahepatic bile duct resection. Copyright © 2017. Published by Elsevier Inc.

  12. Synthesis and spectroscopic exploration of carboxylic acid derivatives of 6-hydroxy-1-keto-1,2,3,4-tetrahydrocarbazole: Hydrogen bond sensitive fluorescent probes

    International Nuclear Information System (INIS)

    Krishna Mitra, Amrit; Ghosh, Sujay; Chakraborty, Suchandra; Basu, Samita; Saha, Chandan

    2013-01-01

    Two new fluorescent carboxylic acid derivatives having 6-hydroxy-1-keto-1,2,3,4-tetrahydrocarbazole moiety, 2-(1-oxo-2,3,4,9-tetrahydro-1H-carbazol-6-yloxy)acetic acid [OTHCA] and 2-(7-methoxy-1-oxo-2,3,4,9-tetrahydro-1H-carbazol-6-yloxy)acetic acid [MOTHCA] were synthesized by Japp–Klingemann reaction followed by Fischer indole cyclization. Extensive spectroscopic investigation has been carried out on the compounds in sixteen different aprotic and protic solvents as well as in binary solvent mixtures using absorption, steady-state and time-resolved fluorescence techniques. Fluorescence maxima of the compounds have shifted consistently to longer wavelength in mediums of higher polarity and hydrogen bonding ability. Dipole moment change of the molecules upon photoexcitation has been calculated using Lippert–Mataga theory of solvatochromic shifts. Kamlet–Taft solvatochromic comparison method has been used to determine the dependence of spectral shifts upon empirical solvent parameters. Formation of intermolecular hydrogen bonding of both OTHCA and MOTHCA with protic solvents has been proved by comparing their spectral responses in toluene–acetonitrile and toluene–methanol solvent mixtures. -- Highlights: • The compounds have similar electronic distribution in ground and excited state. • Emission maxima shift towards red with increase in the E T (30) value of the solvents. • Dipole moment change in the excited state is different in protic and aprotic solvents. • OTHCA and MOTHCA form intermolecular hydrogen bond with protic solvents. • Fluorescence lifetime decays are bi-exponential in long chain alcoholic solvents

  13. Surface display for metabolic engineering of industrially important acetic acid bacteria

    Directory of Open Access Journals (Sweden)

    Marshal Blank

    2018-04-01

    Full Text Available Acetic acid bacteria have unique metabolic characteristics that suit them for a variety of biotechnological applications. They possess an arsenal of membrane-bound dehydrogenases in the periplasmic space that are capable of regiospecific and enantioselective partial oxidations of sugars, alcohols, and polyols. The resulting products are deposited directly into the medium where they are easily recovered for use as pharmaceutical precursors, industrial chemicals, food additives, and consumer products. Expression of extracytoplasmic enzymes to augment the oxidative capabilities of acetic acid bacteria is desired but is challenging due to the already crowded inner membrane. To this end, an original surface display system was developed to express recombinant enzymes at the outer membrane of the model acetic acid bacterium Gluconobacter oxydans. Outer membrane porin F (OprF was used to deliver alkaline phosphatase (PhoA to the cell surface. Constitutive high-strength p264 and moderate-strength p452 promoters were used to direct expression of the surface display system. This system was demonstrated for biocatalysis in whole-cell assays with the p264 promoter having a twofold increase in PhoA activity compared to the p452 promoter. Proteolytic cleavage of PhoA from the cell surface confirmed proper delivery to the outer membrane. Furthermore, a linker library was constructed to optimize surface display. A rigid (EAAAK1 linker led to the greatest improvement, increasing PhoA activity by 69%. This surface display system could be used both to extend the capabilities of acetic acid bacteria in current biotechnological processes, and to broaden the potential of these microbes in the production of value-added products.

  14. Involvement of yeast HSP90 isoforms in response to stress and cell death induced by acetic acid.

    Directory of Open Access Journals (Sweden)

    Alexandra Silva

    Full Text Available Acetic acid-induced apoptosis in yeast is accompanied by an impairment of the general protein synthesis machinery, yet paradoxically also by the up-regulation of the two isoforms of the heat shock protein 90 (HSP90 chaperone family, Hsc82p and Hsp82p. Herein, we show that impairment of cap-dependent translation initiation induced by acetic acid is caused by the phosphorylation and inactivation of eIF2α by Gcn2p kinase. A microarray analysis of polysome-associated mRNAs engaged in translation in acetic acid challenged cells further revealed that HSP90 mRNAs are over-represented in this polysome fraction suggesting preferential translation of HSP90 upon acetic acid treatment. The relevance of HSP90 isoform translation during programmed cell death (PCD was unveiled using genetic and pharmacological abrogation of HSP90, which suggests opposing roles for HSP90 isoforms in cell survival and death. Hsc82p appears to promote survival and its deletion leads to necrotic cell death, while Hsp82p is a pro-death molecule involved in acetic acid-induced apoptosis. Therefore, HSP90 isoforms have distinct roles in the control of cell fate during PCD and their selective translation regulates cellular response to acetic acid stress.

  15. Fatty acid biosynthesis VII. Substrate control of chain-length of products synthesised by rat liver fatty acid synthetase

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Carey, E.M.; Dils, R.

    1970-01-01

    - 1. Gas-liquid and paper chromatography have been used to determine the chain-lengths of fatty acids synthesised by purified rat liver fatty acid synthetase from [1-14C]acetyl-CoA, [1,3-14C2]malonyl-CoA and from [1-14C]acetyl-CoA plus partially purified rat liver acetyl-CoA carboxylase. - 2....... A wide range (C4:0–C18:0) of fatty acids was synthesised and the proportions were modified by substrate concentrations in the same manner as for purified rabbit mammary gland fatty acid synthetase. - 3. The relative amount of radioactivity incorporated from added acetyl-CoA and malonyl-CoA depended...... of long-chain fatty acids was synthesised from carboxylated acetyl-CoA than from added malonyl-CoA. - 5. It is suggested that acetyl-CoA carboxylase may carboxylate acetate bound to fatty acid synthetase....

  16. Techno-economic Analysis for the Thermochemical Conversion of Lignocellulosic Biomass to Ethanol via Acetic Acid Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunhua; Jones, Susanne B.

    2009-04-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). This study performs a techno-economic analysis of the thermo chemical conversion of biomass to ethanol, through methanol and acetic acid, followed by hydrogenation of acetic acid to ethanol. The conversion of syngas to methanol and methanol to acetic acid are well-proven technologies with high conversions and yields. This study was undertaken to determine if this highly selective route to ethanol could provide an already established economically attractive route to ethanol. The feedstock was assumed to be wood chips at 2000 metric ton/day (dry basis). Two types of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. Process models were developed and a cost analysis was performed. The carbon monoxide used for acetic acid synthesis from methanol and the hydrogen used for hydrogenation were assumed to be purchased and not derived from the gasifier. Analysis results show that ethanol selling prices are estimated to be $2.79/gallon and $2.81/gallon for the indirectly-heated gasifier and the directly-heated gasifier systems, respectively (1stQ 2008$, 10% ROI). These costs are above the ethanol market price for during the same time period ($1.50 - $2.50/gal). The co-production of acetic acid greatly improves the process economics as shown in the figure below. Here, 20% of the acetic acid is diverted from ethanol production and assumed to be sold as a co-product at the prevailing market prices ($0.40 - $0.60/lb acetic acid), resulting in competitive ethanol production costs.

  17. Crystallographic and spectroscopic characterization of (R-O-acetylmandelic acid

    Directory of Open Access Journals (Sweden)

    Cady Cirbes

    2016-07-01

    Full Text Available The title compound [systematic name: (R-(−-2-acetoxy-2-phenylacetic acid], C10H10O4, is a resolved chiral ester derivative of mandelic acid. The compound contains an acetate group and a carboxylic acid group, which engage in intermolecular hydrogen bonding, forming chains extending parallel to [001] with a short donor–acceptor hydrogen-bonding distance of 2.676 (2 Å.

  18. Quantification of the xylem-to-phloem transfer of amino acids by use of inulin (14C)carboxylic acid as xylem transfer marker

    International Nuclear Information System (INIS)

    Van Bel, A.J.

    1984-01-01

    Inulin ( 14 C)carboxylic acid and 14 C-labelled amino acid (α-aminoisobutyric acid (aib) and valine) solutions were introduced into the transpiration stream through the cut stem bases of young (4-12 leaves) tomato plants. Inulin carboxylic acid (inu) was translocated exclusively by the xylem, whereas the amino acid distribution resulted from both xylem and phloem import. Comparison of the distribution of inu and aib permitted a quantitative assessment of the xylem-to-phloem transfer in the stem. Of aib, 20.6% traversed from xylem to phloem in a plant with 12 leaves. The phloem import was not evenly distributed over the leaves and varied from 0% (first five leaves) to 95% (top leaf) of the aib import per leaf. Doubling the flow rates in the xylem reduced the aib supply to 25% in the top leaf and 55% in the next leaf, which reflects a reduced xylem-to-phloem transfer. (author)

  19. Hepatic Metabolism of Perfluorinated Carboxylic Acids and Polychlorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in Vivo

    Science.gov (United States)

    1994-01-05

    Goecke, L. Narayanan, and B. M. Jarnot. "Effects of Perfluoro-n- octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate on Hepatic Phosphorus L...Carboxylic Acids and 4Polychiorotrifluoroethylene: A Nuclear Magnetic Resonance G-AFOSR-90-0148 Investigation in Vivo ,IIC 6. AUTHOR(S a Nicholas V. Reo...Maxim um 200 words) This report outlines our research progress regarding toxicological investigations of perifluoro- n-octanoic acid (PFOA) and

  20. Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain.

    Science.gov (United States)

    Morken, Tora Sund; Brekke, Eva; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula

    2014-01-01

    Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity during development, P7 rats received [1,2-(13)C]glucose and were sacrificed 30 min later. Brain extracts were analysed using (1)H- and (13)C-NMR spectroscopy. Numerous differences in metabolism were found between the neonatal and adult brain. The neonatal brain contained lower levels of glutamate, aspartate and N-acetylaspartate but similar levels of GABA and glutamine per mg tissue. Metabolism of [1-(13)C]glucose at the acetyl CoA stage was reduced much more than that of [1,2-(13)C]acetate. The transfer of glutamate from neurons to astrocytes was much lower while transfer of glutamine from astrocytes to glutamatergic neurons was relatively higher. However, transport of glutamine from astrocytes to GABAergic neurons was lower. Using [1,2-(13)C]glucose it could be shown that despite much lower pyruvate carboxylation, relatively more pyruvate from glycolysis was directed towards anaplerosis than pyruvate dehydrogenation in astrocytes. Moreover, the ratio of PPP/glucose-metabolism was higher. These findings indicate that only the part of the glutamate-glutamine cycle that transfers glutamine from astrocytes to neurons is operating in the neonatal brain and that compared to adults, relatively more glucose is prioritised to PPP and pyruvate carboxylation. Our results may have implications for the capacity to protect the neonatal brain against excitotoxicity and oxidative stress.

  1. Acetic acid production from marine algae. Progress report No. 2, September 30--December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Preliminary results on the production of acetic acid from marine algae by anaerobic fermentation indicate that the rate is quite fast. First order rate constants of 0.77 day/sup -1/ were observed. This rate constant gives a half-life of less than one day. In other words, with a properly designed product removal system a five day retention time would yield 98% of theoretical conversion. Determination of the theoretical conversion of marine algae to acetic acid is the subject of much experimentation. The production of one acetic acid molecule (or equivalent in higher organic acids) for each three carbon atoms in the substrate has been achieved; but it is possible that with a mixed culture more than one acetic acid molecule may be produced for each three carbons in the substrate. Work is continuing to improve the yield of acetic acid from marine algae. Marine algae have been found to be rather low in carbon, but the carbon appears to be readily available for fermentation. It, therefore, lends itself to the production of higher value chemicals in relatively expensive equipment, where the rapid conversion rate is particularly cost effective. Fixed packed bed fermenters appear to be desirable for the production of liquid products which are inhibitory to the fermentation from coarse substrates. The inhibitory products may be removed from the fermentation by extraction during recirculation. This technique lends itself to either conventional processing or low capital processing of substrates which require long retention times.

  2. Sustainable hydrogen from bio-oil - Catalytic steam reforming of acetic acid as a model oxygenate

    NARCIS (Netherlands)

    Takanabe, Kazuhiro; Seshan, K.; Lefferts, Leon; Aika, Ken-ichi

    2004-01-01

    Steam reforming of acetic acid as a model oxygenate present in bio-oil over Pt/ZrO2 catalysts has been studied. Pt/ZrO2 catalysts are very active, completely converting acetic acid and give hydrogen yield close to thermodynamic equilibrium. The catalyst deactivated by formation of oligomers, which

  3. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    Directory of Open Access Journals (Sweden)

    Aleksandra Matuszyk

    2016-01-01

    Full Text Available Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa.

  4. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L

    Science.gov (United States)

    Chisnell, J. R.; Bandurski, R. S.

    1988-01-01

    Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.

  5. Transesterification of soybean oil with methanol and acetic acid at lower reaction severity under subcritical conditions

    International Nuclear Information System (INIS)

    Go, Alchris Woo; Sutanto, Sylviana; NguyenThi, Bich Thuyen; Cabatingan, Luis K.; Ismadji, Suryadi; Ju, Yi-Hsu

    2014-01-01

    Highlights: • (trans)Esterification of oils under subcritical conditions. • Acetic acid as catalyst and co-solvent in biodiesel production. • Influence of reactor hydrodynamic (loading and stirring) on FAME yield. • High methyl ester yield can be obtained at less severe reaction conditions. - Abstract: Soybean oil (56–80 g) was reacted with methanol (40–106 mL) to produce fatty acid methyl ester in the presence of 1–6% acetic acid under subcritical condition at 250 °C. Stirring and loading of the reaction system affected the yield and severity of the process. The presence of acetic acid improved the yield of FAME from 32.1% to 89.5% at a methanol to oil molar ratio of 20 mL/g. Acetic acid was found to act strongly as an acid catalyst and to some extent improved the solubility between oil and methanol. Reaction pressure higher than the supercritical pressure of methanol (7.85 MPa) was not required to achieve high FAME yield (89.5–94.8%) in short time (30–60 min)

  6. Enzymatic hydrolysis and fermentability of corn stover pretreated by lactic acid and/or acetic acid

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2009-01-01

    Four different pretreatments with and without addition of low concentration organic acids were carried out on corn stover at 195 °C for 15 min. The highest xylan recovery of 81.08% was obtained after pretreatment without acid catalyst and the lowest of 58.78% after pretreatment with both acetic a...... material was obtained following pretreatment at 195 °C for 15 min with acetic acid employed. The estimated total ethanol production was 241.1 kg/ton raw material by assuming fermentation of both C-6 and C-5, and 0.51 g ethanol/g sugar....... were performed on liquors obtained from all pretreatments and there were no inhibition effect found in any of the liquors. Simultaneous saccharification and fermentation (SSF) of water-insoluble solids (WIS) showed that a high ethanol yield of 88.7% of the theoretical based on glucose in the raw...

  7. Single and combined effects of acetic acid, furfural, and sugars on the growth of the pentose-fermenting yeast Meyerozyma guilliermondii.

    Science.gov (United States)

    Perna, Michelle Dos Santos Cordeiro; Bastos, Reinaldo Gaspar; Ceccato-Antonini, Sandra Regina

    2018-02-01

    The tolerance of the pentose-fermenting yeast Meyerozyma guilliermondii to the inhibitors released after the biomass hydrolysis, such as acetic acid and furfural, was surveyed. We first verified the effects of acetic acid and cell concentrations and initial pH on the growth of a M. guilliermondii strain in a semi-synthetic medium containing acetic acid as the sole carbon source. Second, the single and combined effects of furfural, acetic acid, and sugars (xylose, arabinose, and glucose) on the sugar uptake, cell growth, and ethanol production were also analysed. Growth inhibition occurred in concentrations higher than 10.5 g l -1 acetic acid and initial pH 3.5. The maximum specific growth rate (µ) was 0.023 h -1 and the saturation constant (ks) was 0.75 g l -1 acetic acid. Initial cell concentration also influenced µ. Acetic acid (initial concentration 5 g l -1 ) was co-consumed with sugars even in the presence of 20 mg l -1 furfural without inhibition to the yeast growth. The yeast grew and fermented sugars in a sugar-based medium with acetic acid and furfural in concentrations much higher than those usually found in hemicellulosic hydrolysates.

  8. Pyrazole carboxamides and carboxylic acids as protein kinase inhibitors in aberrant eukaryotic signal transduction

    DEFF Research Database (Denmark)

    Persson, Tobias; Yde, Christina W.; Rasmussen, Jakob Ewald

    2007-01-01

    Densely functionalised pyrazole carboxamides and carboxylic acids were synthesised in an expedient manner through saponification and transamidation, respectively, of ester-functionalised pyrazoles. This synthetic protocol allowed for three diversifying steps in which appendages on the pyrazole...

  9. Synthesis of N-acylurea derivatives from carboxylic acids and N,N ...

    Indian Academy of Sciences (India)

    acid 1 (scheme 1) to the basic nitrogen of the carbodi- imide 2, followed by addition of the carboxylate to form the O-acyl isourea 3. It is known10 that in low dielec- tric constant solvents such as CH2Cl2, formation of 3 occurs instantaneously and, in the absence of a nucle- ophile or a base, it can be stable for many hours.

  10. Acetic acid activates the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes.

    Directory of Open Access Journals (Sweden)

    Xinwei Li

    Full Text Available The effect of acetic acid on hepatic lipid metabolism in ruminants differs significantly from that in monogastric animals. Therefore, the aim of this study was to investigate the regulation mechanism of acetic acid on the hepatic lipid metabolism in dairy cows. The AMP-activated protein kinase (AMPK signaling pathway plays a key role in regulating hepatic lipid metabolism. In vitro, bovine hepatocytes were cultured and treated with different concentrations of sodium acetate (neutralized acetic acid and BML-275 (an AMPKα inhibitor. Acetic acid consumed a large amount of ATP, resulting in an increase in AMPKα phosphorylation. The increase in AMPKα phosphorylation increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α, which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation in bovine hepatocytes. Furthermore, elevated AMPKα phosphorylation reduced the expression and transcriptional activity of the sterol regulatory element-binding protein 1c and the carbohydrate responsive element-binding protein, which reduced the expression of lipogenic genes, thereby decreasing lipid biosynthesis in bovine hepatocytes. In addition, activated AMPKα inhibited the activity of acetyl-CoA carboxylase. Consequently, the triglyceride content in the acetate-treated hepatocytes was significantly decreased. These results indicate that acetic acid activates the AMPKα signaling pathway to increase lipid oxidation and decrease lipid synthesis in bovine hepatocytes, thereby reducing liver fat accumulation in dairy cows.

  11. Determination of carboxyl groups in wood fibers by headspace gas chromatography

    Science.gov (United States)

    X.-S. Chai; Q.X. Hou; J.Y. Zhu; S.-L. Chen; S.F. Wang; L. Lucia

    2003-01-01

    The phase reaction conversion (PRC) headspace gas chromatographic (HSGC) technique was employed to develop a method for the determination of the content of carboxyl groups in wood fibers. Acid treatment of the wood fibers using hydrochloric was applied to convert carboxyl groups to carboxyl acids. Bicarbonate solution is then used to react with carboxyl acids on the...

  12. Determination of 4-Chloroindole-3-Acetic Acid Methyl Ester in Lathyrus Vicia and Pisum by Gas Chromatography - Mass Spectrometry

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen; Egsgaard, Helge; Larsen, Elfinn

    1980-01-01

    4-Chloroindole-3-acetic acid methyl ester was identified unequivocally in Lathyrus latifolius L., Vicia faba L. and Pisum sativum L. by thin layer chromatography, gas chromatography and mass spectrometry. The gas chromatographic system was able to separate underivatized chloroindole-3-acetic acid...... methyl ester isomers. The quantitative determination of 4-chloroindole-3-acetic acid methyl ester in immature seeds of these three species was performed by gas chromatography – mass spectrometry using deuterium labelled 4-chloro-indole-3-acetic acid methyl ester as an internal standard. P. sativum...

  13. Adaptive Response and Tolerance to Acetic Acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: A Physiological Genomics Perspective.

    Science.gov (United States)

    Palma, Margarida; Guerreiro, Joana F; Sá-Correia, Isabel

    2018-01-01

    Acetic acid is an important microbial growth inhibitor in the food industry; it is used as a preservative in foods and beverages and is produced during normal yeast metabolism in biotechnological processes. Acetic acid is also a major inhibitory compound present in lignocellulosic hydrolysates affecting the use of this promising carbon source for sustainable bioprocesses. Although the molecular mechanisms underlying Saccharomyces cerevisiae response and adaptation to acetic acid have been studied for years, only recently they have been examined in more detail in Zygosaccharomyces bailii . However, due to its remarkable tolerance to acetic acid and other weak acids this yeast species is a major threat in the spoilage of acidic foods and beverages and considered as an interesting alternative cell factory in Biotechnology. This review paper emphasizes genome-wide strategies that are providing global insights into the molecular targets, signaling pathways and mechanisms behind S. cerevisiae and Z. bailii tolerance to acetic acid, and extends this information to other weak acids whenever relevant. Such comprehensive perspective and the knowledge gathered in these two yeast species allowed the identification of candidate molecular targets, either for the design of effective strategies to overcome yeast spoilage in acidic foods and beverages, or for the rational genome engineering to construct more robust industrial strains. Examples of successful applications are provided.

  14. Density functional theory study of acetic acid steam reforming on Ni(111)

    Science.gov (United States)

    Ran, Yan-Xiong; Du, Zhen-Yi; Guo, Yun-Peng; Feng, Jie; Li, Wen-Ying

    2017-04-01

    Catalytic steam reforming of bio-oil is a promising process to convert biomass into hydrogen. To shed light on this process, acetic acid is selected as the model compound of the oxygenates in bio-oil, and density functional theory is applied to investigate the mechanism of acetic acid steam reforming on the Ni(111) surface. The most favorable pathway of this process on the Ni(111) surface is suggested as CH3COOH* → CH3COO* → CH3CO* → CH2CO* → CH2* + CO* → CH* → CHOH* → CHO* → CO*, followed by the water gas shift reaction to produce CO2 and H2. CH* species are identified as the major carbon deposition precursor, and the water gas shift reaction is the rate-determining step during the whole acetic acid steam reforming process, as CO* + OH* → cis-COOH* is kinetically restricted with the highest barrier of 1.85 eV. Furthermore, the formation pathways and initial dissociation of important intermediates acetone and acetaldehyde are also investigated.

  15. Ethylene biosynthesis by 1-aminocyclopropane-1-carboxylic acid oxidase: a DFT study.

    Science.gov (United States)

    Bassan, Arianna; Borowski, Tomasz; Schofield, Christopher J; Siegbahn, Per E M

    2006-11-24

    The reaction catalyzed by the plant enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) was investigated by using hybrid density functional theory. ACCO belongs to the non-heme iron(II) enzyme superfamily and carries out the bicarbonate-dependent two-electron oxidation of its substrate ACC (1-aminocyclopropane-1-carboxylic acid) concomitant with the reduction of dioxygen and oxidation of a reducing agent probably ascorbate. The reaction gives ethylene, CO(2), cyanide and two water molecules. A model including the mononuclear iron complex with ACC in the first coordination sphere was used to study the details of O-O bond cleavage and cyclopropane ring opening. Calculations imply that this unusual and complex reaction is triggered by a hydrogen atom abstraction step generating a radical on the amino nitrogen of ACC. Subsequently, cyclopropane ring opening followed by O-O bond heterolysis leads to a very reactive iron(IV)-oxo intermediate, which decomposes to ethylene and cyanoformate with very low energy barriers. The reaction is assisted by bicarbonate located in the second coordination sphere of the metal.

  16. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  17. 1-Azaniumylcyclobutane-1-carboxylate monohydrate

    Directory of Open Access Journals (Sweden)

    Ray J. Butcher

    2014-02-01

    Full Text Available In the title compound, C5H9NO2·H2O, the amino acid is in the usual zwitterionic form involving the α-carboxylate group. The cyclobutane backbone of the amino acid is disordered over two conformations, with occupancies of 0.882 (7 and 0.118 (7. In the crystal, N—H...O and O—H...O hydrogen bonds link the zwitterions [with the water molecule involved as both acceptor (with the NH3+ and donor (through a single carboxylate O from two different aminocyclobutane carboxylate moities], resulting in a two-dimensional layered structure lying parallel to (100.

  18. Difference between Extra- and Intracellular T1 Values of Carboxylic Acids Affects the Quantitative Analysis of Cellular Kinetics by Hyperpolarized NMR

    DEFF Research Database (Denmark)

    Karlsson, Magnus; Jensen, Pernille Rose; Ardenkjær-Larsen, Jan Henrik

    2016-01-01

    on the quantification of intracellular metabolicactivity. It is expected that the significantly shorter T1valueof the carboxylic moieties inside cells is a result of macro-molecular crowding. An artificial cytosol has been preparedand applied to predict the T1of other carboxylic acids. Wedemonstrate the value......Incomplete knowledge of the longitudinal relaxationtime constant (T1) leads to incorrect assumptions in quantita-tive kinetic models of cellular systems, studied by hyper-polarized real-time NMR. Using an assay that measures theintracellular signal of small carboxylic acids in living cells...

  19. Pretreatment and fermentation strategies to overcome the toxicity of acetic acid in hemicellulosic hydrolysates

    DEFF Research Database (Denmark)

    Mussatto, Solange I.

    Acetic acid is one of the most important toxic compounds present in hemicellulosic hydrolysates. In order to overcome this problem, several strategies were studied for both biomass pretreatment and fermentation steps. Biomass deacetylation by mild alkaline pretreatment or using high pressure CO2...... where acetic acid can also be integrated as a valuable final product. For the fermentation step, it is well known that hemicellulosic hydrolysates usually need to be detoxified prior use as fermentation medium in order to improve the performance of the microorganism to convert sugars in the product...... of interest. Although detoxification improves the fermentability of hydrolysates, this additional step adds cost and complexity to the process and generates extra waste products. In this sense, the adaptation of the fermenting microorganism to increased concentrations of acetic acid can be considered...

  20. Efficient Production Process for Food Grade Acetic Acid by Acetobacter aceti in Shake Flask and in Bioreactor Cultures

    Directory of Open Access Journals (Sweden)

    Hassan M. Awad

    2012-01-01

    Full Text Available Acetic acid is one of the important weak acids which had long history in chemical industries. This weak organic acid has been widely used as one of the key intermediate for many chemical, detergent, wood and food industries. The production of this acid is mainly carried out using submerged fermentation system and the standard strain Acetobacter aceti. In the present work, six different media were chosen from the literatures and tested for acetic acid production. The highest acetic acid production was produced in medium composed of glucose, yeast extract and peptone. The composition of this medium was optimized by changing the concentration of medium components. The optimized medium was composed of (g/L: glucose, 100; yeast extract, 12 and peptone 5 and yielded 53 g/L acetic acid in shake flask after 144 h fermentation. Further optimization in the production process was achieved by transferring the process to semi-industrial scale 16-L stirred tank bioreactor and cultivation under controlled pH condition. Under fully aerobic conditions, the production of acetic acid reached maximal concentration of about 76 g/L and 51 g/L for uncontrolled and controlled pH cultures, respectively.

  1. Syntheses, structures, photoluminescence and photocatalysis of 2D layered lanthanide-carboxylates with 2, 2′-dithiodibenzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ling; Zhong, Jie-Cen; Qiu, Xing-Tai; Sun, Yan-Qiong, E-mail: sunyq@fzu.edu.cn; Chen, Yi-Ping

    2017-02-15

    Two series of lanthanide-carboxylates, [Ln(2,2′-dtba)(2,2′-Hdtba)(EtOH)]{sub n} (I:Ln=Eu(1a), Dy(1b)) and [Ln(2,2′-dtba)(2,2′-Hdtba)(4,4′-bpy){sub 0.5}]{sub n} (II:Ln=Eu(2a), Dy(2b), Tb(2c) 2,2′-H{sub 2}dtba=2,2′-dithiodibenzoic acid, 4,4′-bpy=4,4′-bipyridine) have been synthesized under hydrothermal conditions. Interestingly, the H{sub 2}dtba organic ligand was generated by in situ S–S reaction of 2-mercaptobenzoic acid. Compounds I and II possess different 2D layered structures based on similar 1D [Ln(2,2′-dtba)]{sup +} chains. Photoluminescence studies reveal that compounds I and II exhibit strong lanthanide characteristic emission bands. Remarkably, Compounds 1b and 2a both exhibit good photocatalytic activity for degradation of Rhodamine-B (Rh-B) under the simulated sunlight irradiation. - Graphical abstract: Two series of lanthanide-carboxylates have been in situ synthesized under hydrothermal conditions. The lanthanide-carboxylates exhibit strong lanthanide characteristic emission bands and good photocatalytic activity for degradation of Rhodamine-B. - Highlights: • 2D layered lanthanide-carboxylates with 2,2′-dithiodibenzoic acid. • In situ S–S reaction of 2-mercaptobenzoic acid under hydrothermal condition. • The Emission spectra of I and II exhibit the characteristic transition of lanthanide ions. • Compounds 1b and 2a exhibit good photocatalytic activity for degradation of Rhodamine-B.

  2. New trends and applications in carboxylation for isotope chemistry.

    Science.gov (United States)

    Bragg, Ryan A; Sardana, Malvika; Artelsmair, Markus; Elmore, Charles S

    2018-05-08

    Carboxylations are an important method for the incorporation of isotopically labeled 14 CO 2 into molecules. This manuscript will review labeled carboxylations since 2010 and will present a perspective on the potential of recent unlabeled methodology for labeled carboxylations. The perspective portion of the manuscript is broken into 3 major sections based on product type, arylcarboxylic acids, benzylcarboxylic acids, and alkyl carboxylic acids, and each of those sections is further subdivided by substrate. © 2018 AstraZeneca. Journal of Labelled Compounds and Radiopharmaceuticals Published by John Wiley & Sons, Ltd.

  3. Design of co-crystals/salts of some Nitrogenous bases and some derivatives of thiophene carboxylic acids through a combination of hydrogen and halogen bonds.

    Science.gov (United States)

    Jennifer, Samson Jegan; Muthiah, Packianathan Thomas

    2014-01-01

    The utility of N-heterocyclic bases to obtain molecular complexes with carboxylic acids is well studied. Depending on the solid state interaction between the N-heterocyclic base and a carboxylic acid a variety of neutral or ionic synthons are observed. Meanwhile, pyridines and pyrimidines have been frequently chosen in the area of crystal engineering for their multipurpose functionality. HT (hetero trimers) and LHT (linear heterotetramers) are the well known synthons that are formed in the presence of pyrimidines and carboxylic acids. Fourteen crystals involving various substituted thiophene carboxylic acid derivatives and nitrogenous bases were prepared and characterized by using single crystal X-ray diffraction. The 14 crystals can further be divided into two groups [1a-7a], [8b-14b] based on the nature of the nitrogenous base. Carboxylic acid to pyridine proton transfer has occurred in 3 compounds of each group. In addition to the commonly occurring hydrogen bond based pyridine/carboxylic acid and pyrimidine/carboxylic acid synthons which is the reason for assembly of primary motifs, various other interactions like Cl…Cl, Cl…O, C-H…Cl, C-H…S add additional support in organizing these supermolecules into extended architectures. It is also interesting to note that in all the compounds π-π stacking occurs between the pyrimidine-pyrimidine or pyridine-pyridine or acid-acid moieties rather than acid-pyrimidine/pyridine. In all the compounds (1a-14b) either neutral O-H…Npyridyl/pyrimidine or charge-assisted Npyridinium-H…Ocarboxylate hydrogen bonds are present. The HT (hetero trimers) and LHT (linear heterotetramers) are dominant in the crystal structures of the adducts containing N-heterocyclic bases with two proton acceptors (1a-7a). Similar type supramolecular ladders are observed in 5TPC44BIPY (8b), TPC44BIPY (9b), TPC44TMBP (11b). Among the seven compounds [8b-14b] the extended ligands are linear in all except for the TMBP (10b, 11b, 12b). The

  4. Measurement of the isotope ratio of acetic acid in vinegar by HS-SPME-GC-TC/C-IRMS.

    Science.gov (United States)

    Hattori, Ryota; Yamada, Keita; Shibata, Hiroki; Hirano, Satoshi; Tajima, Osamu; Yoshida, Naohiro

    2010-06-23

    Acetic acid is the main ingredient of vinegar, and the worth of vinegar often depends on the fermentation of raw materials. In this study, we have developed a simple and rapid method for discriminating the fermentation of the raw materials of vinegar by measuring the hydrogen and carbon isotope ratio of acetic acid using head space solid-phase microextraction (HS-SPME) combined with gas chromatography-high temperature conversion or combustion-isotope ratio mass spectrometry (GC-TC/C-IRMS). The measurement of acetic acid in vinegar by this method was possible with repeatabilities (1sigma) of +/-5.0 per thousand for hydrogen and +/-0.4 per thousand for carbon, which are sufficient to discriminate the origin of acetic acid. The fermentation of raw materials of several vinegars was evaluated by this method.

  5. Japan Flavour and Fragrance Materials Association's (JFFMA) safety assessment of food-flavouring substances uniquely used in Japan that belong to the class of aliphatic primary alcohols, aldehydes, carboxylic acids, acetals and esters containing additional oxygenated functional groups.

    Science.gov (United States)

    Saito, Kenji; Hasegawa-Baba, Yasuko; Sekiya, Fumiko; Hayashi, Shim-Mo; Mirokuji, Yoshiharu; Okamura, Hiroyuki; Maruyama, Shinpei; Ono, Atsushi; Nakajima, Madoka; Degawa, Masakuni; Ozawa, Shogo; Shibutani, Makoto; Maitani, Tamio

    2017-09-01

    We performed a safety evaluation using the procedure devised by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) of the following four flavouring substances that belong to the class of 'aliphatic primary alcohols, aldehydes, carboxylic acids, acetals, and esters containing additional oxygenated functional groups' and are uniquely used in Japan: butyl butyrylacetate, ethyl 2-hydroxy-4-methylpentanoate, 3-hydroxyhexanoic acid and methyl hydroxyacetate. Although no genotoxicity study data were found in the published literature, none of the four substances had chemical structural alerts predicting genotoxicity. All four substances were categorised as class I by using Cramer's classification. The estimated daily intake of each of the four substances was determined to be 0.007-2.9 μg/person/day by using the maximised survey-derived intake method and based on the annual production data in Japan in 2001, 2005 and 2010, and was determined to be 0.250-600.0 μg/person/day by using the single-portion exposure technique and based on average-use levels in standard portion sizes of flavoured foods. Both of these estimated daily intake ranges were below the threshold of toxicological concern for class I substances, which is 1800 μg/person/day. Although no information from in vitro and in vivo toxicity studies for the four substances was available, these substances were judged to raise no safety concerns at the current levels of intake.

  6. Coproduction of acetic acid and electricity by application of microbial fuel cell technology to vinegar fermentation.

    Science.gov (United States)

    Tanino, Takanori; Nara, Youhei; Tsujiguchi, Takuya; Ohshima, Takayuki

    2013-08-01

    The coproduction of a useful material and electricity via a novel application of microbial fuel cell (MFC) technology to oxidative fermentation was investigated. We focused on vinegar production, i.e., acetic acid fermentation, as an initial and model useful material that can be produced by oxidative fermentation in combination with MFC technology. The coproduction of acetic acid and electricity by applying MFC technology was successfully demonstrated by the simultaneous progress of acetic acid fermentation and electricity generation through a series of repeated batch fermentations. Although the production rate of acetic acid was very small, it increased with the number of repeated batch fermentations that were conducted. We obtained nearly identical (73.1%) or larger (89.9%) acetic acid yields than that typically achieved by aerated fermentation (75.8%). The open-cycle voltages measured before and after fermentation increased with the total fermentation time and reached a maximum value of 0.521 V prior to the third batch fermentation. The maximum current and power densities measured in this study (19.1 μA/cm² and 2.47 μW/cm², respectively) were obtained after the second batch fermentation. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Recovery of carboxylic acids at pH greater than pKa

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Lisa A. [Univ. of California, Berkeley, CA (United States)

    1993-08-01

    Economics of producing carboxylic acids by fermentation is often dominated, not by the fermentation cost, but by the cost of recovering and purifying the acids from dilute aqueous solutions. Experiments were performed to measure uptakes of lactic and succinic acids as functions of pH by basic polymeric sorbents; sorbent regeneration was also tested. Performance at pH > pKa and regenerability depend on sorbent basicity; apparent pKa and monomer pK{sub a} can be used to predict sorbent performance. Two basic amine extractants, Alamine 336 and Amberlite LA-2, in were also studied; they are able to sustain capacity to higher pH in diluents that stabilize the acid-amine complex through H bonding. Secondary amines perform better than tert-amines in diluents that solvate the additional proton. Competitive sulfate and phosphate, an interference in fermentation, are taken up by sorbents more strongly than by extractants. The third step in the proposed fermentation process, the cracking of the trimethylammonium (TMA) carboxylate, was also examined. Because lactic acid is more soluble and tends to self-esterify, simple thermal cracking does not remove all TMA; a more promising approach is to esterify the TMA lactate by reaction with an alcohol.

  8. Recovery and esterification of aqueous carboxylates by using CO

    NARCIS (Netherlands)

    Cabrera-Rodríguez, Carlos I.; Paltrinieri, Laura; Smet, De Louis C.P.M.; Wielen, Van Der Luuk A.M.; Straathof, Adrie J.J.

    2017-01-01

    The recovery of carboxylic acids from fermentation broth is one of the main bottlenecks for the industrial production of bio-based esters. This paper proposes an alternative for the recovery of carboxylates produced by fermentations at pH values above the pKa of the carboxylic acid. In this

  9. Phosphazene-promoted metal-free ring-opening polymerization of ethylene oxide initiated by carboxylic acid

    KAUST Repository

    Zhao, Junpeng; Pahovnik, David; Gnanou, Yves; Hadjichristidis, Nikolaos

    2014-01-01

    The effectiveness of carboxylic acid as initiator for the anionic ring-opening polymerization of ethylene oxide was investigated with a strong phosphazene base (t-BuP4) used as promoter. Kinetic study showed an induction period, i.e., transformation

  10. The protonation state of small carboxylic acids at the water surface from photoelectron spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Ottosson, N.; Wernersson, Erik; Söderström, J.; Pokapanich, W.; Kaufmann, S.; Svensson, S.; Persson, I.; Öhrwall, G.; Björneholm, O.

    2011-01-01

    Roč. 13, č. 26 (2011), s. 12261-12267 ISSN 1463-9076 Institutional research plan: CEZ:AV0Z40550506 Keywords : water surface * carboxylic acids * photoelectron spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.573, year: 2011

  11. Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead.

    Science.gov (United States)

    Niu, Zhixin; Li, Xiaodong; Sun, Lina; Sun, Tieheng

    2013-01-01

    Sunflower (Helianthus annuus L.) has been considered as a good candidate for bioaccumulation of heavy metals. In the present study, sunflower was used to enrich the cadmium and lead in sand culture during 90 days. Biomass, Cd and Pb uptake, three organic acids and pH in cultures were investigated. Results showed that the existence of Cd and Pb showed different interactions on the organic acids exudation. In single Cd treatments, malic and acetic acids in Cd10 showed an incremental tendency with time. In the mixed treatments of Cd and Pb, malic acids increased when 10 and 40 mg x L(-1) Cd were added into Pb50, but acetic acids in Pb50 were inhibited by Cd addition. The Cd10 supplied in Pb10 stimulated the secretion of malic and succinic acids. Moreover, the Cd or Pb uptake in sunflower showed various correlations with pH and some organic acids, which might be due to the fact that the Cd and Pb interfere with the organic acids secretion in rhizosphere of sunflower, and the changes of organic acids altered the form and bioavailability of Cd and Pb in cultures conversely.

  12. Comparative Genomics of Acetobacterpasteurianus Ab3, an Acetic Acid Producing Strain Isolated from Chinese Traditional Rice Vinegar Meiguichu.

    Science.gov (United States)

    Xia, Kai; Li, Yudong; Sun, Jing; Liang, Xinle

    2016-01-01

    Acetobacter pasteurianus, an acetic acid resistant bacterium belonging to alpha-proteobacteria, has been widely used to produce vinegar in the food industry. To understand the mechanism of its high tolerance to acetic acid and robust ability of oxidizing ethanol to acetic acid (> 12%, w/v), we described the 3.1 Mb complete genome sequence (including 0.28 M plasmid sequence) with a G+C content of 52.4% of A. pasteurianus Ab3, which was isolated from the traditional Chinese rice vinegar (Meiguichu) fermentation process. Automatic annotation of the complete genome revealed 2,786 protein-coding genes and 73 RNA genes. The comparative genome analysis among A. pasteurianus strains revealed that A. pasteurianus Ab3 possesses many unique genes potentially involved in acetic acid resistance mechanisms. In particular, two-component systems or toxin-antitoxin systems may be the signal pathway and modulatory network in A. pasteurianus to cope with acid stress. In addition, the large numbers of unique transport systems may also be related to its acid resistance capacity and cell fitness. Our results provide new clues to understanding the underlying mechanisms of acetic acid resistance in Acetobacter species and guiding industrial strain breeding for vinegar fermentation processes.

  13. Omega-3 carboxylic acids monotherapy and combination with statins in the management of dyslipidemia

    Directory of Open Access Journals (Sweden)

    Benes LB

    2016-12-01

    Full Text Available Lane B Benes1, Nikhil S Bassi2, Michael H Davidson1 1Department of Medicine, Section of Cardiology, 2Department of Medicine, University of Chicago, Chicago, IL, USA Abstract: The 2013 American College of Cardiology/American Heart Association guidelines on cholesterol management placed greater emphasis on statin therapy given the well-established benefits in primary and secondary prevention of cardiovascular disease. Residual risk may remain after statin initiation, in part because of triglyceride-rich lipoprotein cholesterol. Several large trials have failed to show benefit with non-statin cholesterol-lowering medications in the reduction of cardiovascular events. Yet, subgroup analyses showed a benefit in those with hypertriglyceridemia and lower high-density lipoprotein cholesterol level, a high-risk pattern of dyslipidemia. This review discusses the benefits of omega-3 carboxylic acids, a recently approved formulation of omega-3 fatty acid with enhanced bioavailability, in the treatment of dyslipidemia both as monotherapy and combination therapy with a statin. Keywords: omega-3 carboxylic acids, non-HDL-C, hypertriglyceridemia, residual risk, statin

  14. Synthesis and Transformations of di-endo-3-Aminobicyclo-[2.2.2]oct-5-ene-2-carboxylic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Márta Palkó

    2011-09-01

    Full Text Available all-endo-3-amino-5-hydroxybicyclo[2.2.2]octane-2-carboxylic acid (13 and all-endo-5-amino-6-(hydroxymethylbicyclo[2.2.2]octan-2-ol (10 were prepared via dihydro-1,3-oxazine or g-lactone intermediates by the stereoselective functionalization of an N-protected derivative of endo-3-aminobicyclo[2.2.2]oct-5-ene-2-carboxylic acid (2. Ring closure of b-amino ester 4 resulted in tricyclic pyrimidinones 15 and 16. The structures, stereochemistry and relative configurations of the synthesized compounds were determined by IR and NMR.

  15. Investigation of ATR-FTIR spectroscopy as an alternative to the Water Leach Free Acidity test for cellulose acetate-based film

    DEFF Research Database (Denmark)

    Johansen, Karin Bonde; Shashoua, Yvonne

    2005-01-01

    Cellulose acetate film loses acetate groups on ageing which results in the formation of damaging acetic acid. Water-Leach Free Acidity Test (WLFAT) is the definitive technique to quantify acidity, but requires 1g film and 26 hours. ATR-FTIR spectroscopy is a non-destructive, rapid technique which...

  16. Polyoxyethylene alkyl ether carboxylic acids: An overview of a neglected class of surfactants with multiresponsive properties.

    Science.gov (United States)

    Chiappisi, Leonardo

    2017-12-01

    In this work, an overview on aqueous solutions of polyoxyethylene alkyl ether carboxylic acids is given. Unique properties arise from the combination of the nonionic, temperature-responsive polyoxyethylene block with the weakly ionic, pH-responsive carboxylic acid termination in a single surfactant headgroup. Accordingly, this class of surfactant finds broad application across very different sectors. Despite their large use on an industrial and a technical scale, the literature lacks a systematic and detailed characterization of their physico-chemical properties which is provided herein. In addition, a comprehensive overview is given of their self-assembly and interfacial behavior, of their use as colloidal building blocks and for large-scale applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Studies on the complexes of uranium(IV), thorium(IV) and lanthanum(III) acetates with p-aminobenzoic acid, m-aminobenzoic acid, benzilic acid and phthalic acid

    International Nuclear Information System (INIS)

    Singh, Mangal; Singh, Ajaib

    1979-01-01

    Complexes of acetates of U(IV), Th(IV) and La(III) with the ligands p-aminobenzoic acid, m-aminobenzoic acid, benzilic acid and phthalic acid have been prepared. Colour and chemical analytical data are recorded. They are characterised on the basis of IR and reflectance spectra and magnetic susceptibility data. (M.G.B.)

  18. Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of "Shanxi aged vinegar", a traditional Chinese vinegar.

    Science.gov (United States)

    Wu, Jia Jia; Ma, Ying Kun; Zhang, Fen Fen; Chen, Fu Sheng

    2012-05-01

    Shanxi aged vinegar is a famous traditional Chinese vinegar made from several kinds of cereal by spontaneous solid-state fermentation techniques. In order to get a comprehensive understanding of culturable microorganism's diversity present in its fermentation, the indigenous microorganisms including 47 yeast isolates, 28 lactic acid bacteria isolates and 58 acetic acid bacteria isolates were recovered in different fermenting time and characterized based on a combination of phenotypic and genotypic approaches including inter-delta/PCR, PCR-RFLP, ERIC/PCR analysis, as well as 16S rRNA and 26S rRNA partial gene sequencing. In the alcoholic fermentation, the dominant yeast species Saccharomyces (S.) cerevisiae (96%) exhibited low phenotypic and genotypic diversity among the isolates, while Lactobacillus (Lb.) fermentum together with Lb. plantarum, Lb. buchneri, Lb. casei, Pediococcus (P.) acidilactici, P. pentosaceus and Weissella confusa were predominated in the bacterial population at the same stage. Acetobacter (A.) pasteurianus showing great variety both in genotypic and phenotypic tests was the dominant species (76%) in the acetic acid fermentation stage, while the other acetic acid bacteria species including A. senegalensis, A. indonesiensis, A. malorum and A. orientalis, as well as Gluconobacter (G.) oxydans were detected at initial point of alcoholic and acetic acid fermentation stage respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Are carboxyl groups the most acidic sites in amino acids? Gas-phase acidities, photoelectron spectra, and computations on tyrosine, p-hydroxybenzoic acid, and their conjugate bases.

    Science.gov (United States)

    Tian, Zhixin; Wang, Xue-Bin; Wang, Lai-Sheng; Kass, Steven R

    2009-01-28

    Deprotonation of tyrosine in the gas phase was found to occur preferentially at the phenolic site, and the conjugate base consists of a 70:30 mixture of phenoxide and carboxylate anions at equilibrium. This result was established by developing a chemical probe for differentiating these two isomers, and the presence of both ions was confirmed by photoelectron spectroscopy. Equilibrium acidity measurements on tyrosine indicated that deltaG(acid)(o) = 332.5 +/- 1.5 kcal mol(-1) and deltaH(acid)(o) = 340.7 +/- 1.5 kcal mol(-1). Photoelectron spectra yielded adiabatic electron detachment energies of 2.70 +/- 0.05 and 3.55 +/- 0.10 eV for the phenoxide and carboxylate anions, respectively. The H/D exchange behavior of deprotonated tyrosine was examined using three different alcohols (CF3CH2OD, C6H5CH2OD, and CH3CH2OD), and incorporation of up to three deuterium atoms was observed. Two pathways are proposed to account for these results, and all of the experimental findings are supplemented with B3LYP/aug-cc-pVDZ and G3B3 calculations. In addition, it was found that electrospray ionization of tyrosine from a 3:1 (v/v) CH3OH/H2O solution using a commercial source produces a deprotonated [M-H]- anion with the gas-phase equilibrium composition rather than the structure of the ion that exists in aqueous media. Electrospray ionization from acetonitrile, however, leads largely to the liquid-phase (carboxylate) structure. A control molecule, p-hydroxybenzoic acid, was found to behave in a similar manner. Thus, the electrospray conditions that are employed for the analysis of a compound can alter the isomeric composition of the resulting anion.

  20. Cervical cancer risk factors and feasibility of visual inspection with acetic acid screening in Sudan

    DEFF Research Database (Denmark)

    Ibrahim, Ahmed; Rasch, Vibeke; Pukkala, Eero

    2011-01-01

    To assess the risk factors of cervical cancer and the feasibility and acceptability of a visual inspection with acetic acid (VIA) screening method in a primary health center in Khartoum, Sudan.......To assess the risk factors of cervical cancer and the feasibility and acceptability of a visual inspection with acetic acid (VIA) screening method in a primary health center in Khartoum, Sudan....

  1. Effects of benzylaminopurine and naphthalene acetic acid on ...

    African Journals Online (AJOL)

    This study was conducted to evaluate the pineapple regeneration and shoot growth as affected by 6- benzylaminopurine (BAP) at 2.0 mg/l and naphthalene acetic acid (NAA) at 0.2 mg/l in vitro. BAP and NAA at the concentration of 2.0 and 0.2 mg/l were used in this study. BAP at 2.0 mg/l significantly affected the production ...

  2. Gamma-irradiation of malic acid in aqueous solutions. [prebiotic significance

    Science.gov (United States)

    Negron-Mendoza, A.; Graff, R. L.; Ponnamperuma, C.

    1980-01-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  3. [14C]-radiolabeling of {[trans-(8β)]-6-methyl-1-(1-methylethyl) ergoline-8-carboxylic acid, 4-methoxycyclohexyl ester (Z)-2-buteneidioate (1:1)}

    International Nuclear Information System (INIS)

    Marzoni, G.; Wheeler, W.J.; Garbrecht, W.L.

    1988-01-01

    The 5HT 2 -receptor antagonist, [ 14 C]-labeled brace[trans-(8β)]-6-methyl-1-(1-methylethyl)ergoline-8-carboxylic acid, 4-methoxycyclohexyl ester (Z)-2-butenedioate (1:1)brace (LY281067) was synthesized from unlabeled 6-methyl-1-(1-methylethyl)ergoline-8-carboxylic acid. The [ 14 C] label was introduced into the carboxyl group attached to the 8 position of the ergoline nucleus. This site is stable to metabolism. The synthesis involves removal of an unlabeled carboxyl group and subsequent reinsertion of a [ 14 C]-labeled carboxyl group into the same position. The radiolabel is not introduced until near the end of the synthesis which allows for ease of handling and scale-up of intermediates. (author)

  4. Vinegar Production from Jabuticaba (Myrciaria jaboticaba) Fruit Using Immobilized Acetic Acid Bacteria.

    Science.gov (United States)

    Dias, Disney Ribeiro; Silva, Monique Suela; Cristina de Souza, Angélica; Magalhăes-Guedes, Karina Teixeira; Ribeiro, Fernanda Severo de Rezende; Schwan, Rosane Freitas

    2016-09-01

    Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba ( Myrciaria jaboticaba ) vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol) and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5% by volume) after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4% and productivity was 0.29 g/(L·h). The vinegar had particularly high concentrations of citric (6.67 g/L), malic (7.02 g/L) and succinic (5.60 g/L) acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters) were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans . To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar.

  5. Vinegar Production from Jabuticaba (Myrciaria jaboticaba Fruit Using Immobilized Acetic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Monique Suela Silva

    2016-01-01

    Full Text Available Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba (Myrciaria jaboticaba vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5 % by volume after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4 % and productivity was 0.29 g/(L·h. The vinegar had particularly high concentrations of citric (6.67 g/L, malic (7.02 g/L and succinic (5.60 g/L acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans. To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar.

  6. Voltammetric Determination of Tumor Biomarkers for Neuroblastoma (Homovanillic Acid, Vanillylmandelic Acid, and 5-Hydroxyindole-3-acetic Acid) at Screen-printed Carbon Electrodes

    Czech Academy of Sciences Publication Activity Database

    Makrlíková, Anna; Ktena, E.; Economou, A.; Fischer, J.; Navrátil, Tomáš; Barek, J.; Vyskočil, V.

    2017-01-01

    Roč. 29, č. 1 (2017), s. 146-153 ISSN 1040-0397 Institutional support: RVO:61388955 Keywords : Homovanillic acid * Vanillylmandelic acid * 5-Hydroxyindole-3-acetic acid Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 2.851, year: 2016

  7. Suprathel-acetic acid matrix versus acticoat and aquacel as an antiseptic dressing: an in vitro study.

    Science.gov (United States)

    Ryssel, Henning; Germann, Günter; Riedel, Katrin; Reichenberger, Matthias; Hellmich, Susanne; Kloeters, Oliver

    2010-10-01

    The treatment of burn wounds is still a challenge regarding the management of antiseptic wound conditioning. Especially, in the United States, silver-containing dressings, such as Acticoat and Aquacel are frequently used. Because silver-containing dressings have well-known drawbacks such as an antimicrobial lack against Pseudomonas aeruginosa, we sought to develop an alternative dressing method. In previous studies, we could demonstrate the excellent antiseptic properties of acetic acid against common burn unit germs, and in another study, the feasibility and suitability of a Suprathel-acetic acid matrix as an antiseptic dressing. This study was designed to test the in vitro antimicrobial effect of a Suprathel-acetic acid matrix versus Acticoat and Aquacel. To cover the typical bacterial spectrum of a burn unit, the following Gram-negative and Gram-positive bacteria strains were tested: Escherichia coli, extended-spectrum beta-lactamase-positive Klebsiella pneumoniae, P. aeruginosa, Acinetobacter baumannii, Enterococcus faecalis, and methicillin-resistant Staphylococcus aureus. The tests showed an excellent bactericidal effect of the Suprathel-acetic acid matrix particularly with problematic Gram-negative bacteria such as Proteus vulgaris, P. aeruginosa, and Acinetobacter baumannii. The efficiency was superior to that of Acicoat and Aquacel. Our results support the notion, that the Suprathel-acetic acid matrix has an excellent bactericidal effect and therefore seems to be suitable as a local antiseptic agent in the treatment of burn wounds.

  8. Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds

    International Nuclear Information System (INIS)

    Bahk, Yeon Kyoung; He, Xu; Gitsis, Emmanouil; Kuo, Yu-Ying; Kim, Nayoung; Wang, Jing

    2015-01-01

    Dispersion of carbon nanotubes has been heavily studied due to its importance for their technical applications, toxic effects, and environmental impacts. Common electrolytes, such as sodium chloride and potassium chloride, promote agglomeration of nanoparticles in aqueous solutions. On the contrary, we discovered that acetic electrolytes enhanced the dispersion of multi-walled carbon nanotubes (MWCNTs) with carboxyl functional group through the strong hydrogen bond, which was confirmed by UV–Vis spectrometry, dispersion observations and aerosolization-quantification method. When concentrations of acetate electrolytes such as ammonium acetate (CH 3 CO 2 NH 4 ) and sodium acetate (CH 3 CO 2 Na) were lower than 0.03 mol per liter, MWCNT suspensions showed better dispersion and had higher mobility in porous media. The effects by the acetic environment are also applicable to other nanoparticles with the carboxyl functional group, which was demonstrated with polystyrene latex particles as an example

  9. The Effect of Acid Pre-Treatment using Acetic Acid and Nitric Acid in The Production of Biogas from Rice Husk during Solid State Anaerobic Digestion (SS-AD)

    Science.gov (United States)

    Nugraha, Winardi Dwi; Syafrudin; Keumala, Cut Fadhila; Matin, Hasfi Hawali Abdul; Budiyono

    2018-02-01

    Pretreatment during biogas production aims to assist in degradation of lignin contained in the rice husk. In this study, pretreatment which is used are acid and biological pretreatment. Acid pretreatment was performed using acetic acid and nitric acid with a variety levels of 3% and 5%. While biological pretreatment as a control variable. Acid pretreatment was conducted by soaking the rice straw for 24 hours with acid variation. The study was conducted using Solid State Anaerobic Digestion (SS-AD) with 21% TS. Biogas production was measured using water displacement method every two days for 60 days at room temperature conditions. The results showed that acid pretreatment gave an effect on the production of biogas yield. The yield of the biogas produced by pretreatment of acetic acid of 5% and 3% was 43.28 and 45.86 ml/gr.TS. While the results without pretreatment biogas yield was 29.51 ml/gr.TS. The results yield biogas produced by pretreatment using nitric acid of 5% and 3% was 12.14 ml/gr.TS and 21.85 ml/gr.TS. Results biogas yield with acetic acid pretreatment was better than the biogas yield results with nitric acid pretreatment.

  10. 1-11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer.

    Science.gov (United States)

    Vāvere, Amy L; Kridel, Steven J; Wheeler, Frances B; Lewis, Jason S

    2008-02-01

    Although it is accepted that the metabolic fate of 1-(11)C-acetate is different in tumors than in myocardial tissue because of different clearance patterns, the exact pathway has not been fully elucidated. For decades, fatty acid synthesis has been quantified in vitro by the incubation of cells with (14)C-acetate. Fatty acid synthase (FAS) has been found to be overexpressed in prostate carcinomas, as well as other cancers, and it is possible that imaging with 1-(11)C-acetate could be a marker for its expression. In vitro and in vivo uptake experiments in prostate tumor models with 1-(11)C-acetate were performed both with and without blocking of fatty acid synthesis with either C75, an inhibitor of FAS, or 5-(tetradecyloxy)-2-furoic acid (TOFA), an inhibitor of acetyl-CoA carboxylase (ACC). FAS levels were measured by Western blot and immunohistochemical techniques for comparison. In vitro studies in 3 different prostate tumor models (PC-3, LNCaP, and 22Rv1) demonstrated blocking of 1-(11)C-acetate accumulation after treatment with both C75 and TOFA. This was further shown in vivo in PC-3 and LNCaP tumor-bearing mice after a single treatment with C75. A positive correlation between 1-(11)C-acetate uptake into the solid tumors and FAS expression levels was found. Extensive involvement of the fatty acid synthesis pathway in 1-(11)C-acetate uptake in prostate tumors was confirmed, leading to a possible marker for FAS expression in vivo by noninvasive PET.

  11. An acridinium sulphonylamide as a new chemiluminescent label for the determination of carboxylic acids in liquid chromatography

    NARCIS (Netherlands)

    Steijger, O.M.; Kamminga, D.A.; Lingeman, H.; Brinkman, U.A.T.

    1998-01-01

    The synthesis of a new acridinium sulphonylamide label for the liquid chromatographic determination of carboxylic acids is described. The label 10-methyl-N-(p-tolyl)-N-(p-iodoacetamidobenzenesulphonyl)-9-acridinium carboxamide iodide is synthesized from 9-acridinecarboxylic acid by a seven-step

  12. Cataluminescence sensor for gaseous acetic acid using a thin film of In2O3

    International Nuclear Information System (INIS)

    Tao, Y.; Cao, X.; Peng, Y.; Liu, Y.; Zhang, R.

    2012-01-01

    We report on a cataluminescence sensor for the determination of gaseous acetic acid. It is based on a 60-nm thick sol-gel film of In 2 O 3 on a ceramic support. SEM, XPS and surface profiling were applied for its characterization. It is found that aluminum ions of the ceramic substrate penetrate into the film and produce a synergetic catalytic effect. The sensor displays high sensitivity and specificity for acetic acid, a low detection limit, a wide linear range and a fast response. No (or only very low) interference was observed by formic acid, ammonia, acrolein, benzene, formaldehyde, ethanol, and acetaldehyde. The sensor was successfully applied to the determination of acetic acid in spiked air samples. We also discuss a conceivable mechanism (based on the reaction products) for the cataluminescence resulting from the oxidation reaction on the surface of the sensor film. (author)

  13. New insights into the mechanisms of acetic acid resistance in Acetobacter pasteurianus using iTRAQ-dependent quantitative proteomic analysis.

    Science.gov (United States)

    Xia, Kai; Zang, Ning; Zhang, Junmei; Zhang, Hong; Li, Yudong; Liu, Ye; Feng, Wei; Liang, Xinle

    2016-12-05

    Acetobacter pasteurianus is the main starter in rice vinegar manufacturing due to its remarkable abilities to resist and produce acetic acid. Although several mechanisms of acetic acid resistance have been proposed and only a few effector proteins have been identified, a comprehensive depiction of the biological processes involved in acetic acid resistance is needed. In this study, iTRAQ-based quantitative proteomic analysis was adopted to investigate the whole proteome of different acidic titers (3.6, 7.1 and 9.3%, w/v) of Acetobacter pasteurianus Ab3 during the vinegar fermentation process. Consequently, 1386 proteins, including 318 differentially expressed proteins (p150 proteins were differentially expressed. Specifically, proteins involved in amino acid metabolic processes and fatty acid biosynthesis were differentially expressed, which may contribute to the acetic acid resistance of Acetobacter. Transcription factors, two component systems and toxin-antitoxin systems were implicated in the modulatory network at multiple levels. In addition, the identification of proteins involved in redox homeostasis, protein metabolism, and the cell envelope suggested that the whole cellular system is mobilized in response to acid stress. These findings provide a differential proteomic profile of acetic acid resistance in Acetobacter pasteurianus and have potential application to highly acidic rice vinegar manufacturing. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Influence of carboxylic acid type on microstructure and magnetic properties of polymeric complex sol–gel driven NiFe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Hessien, M.M. [Materials Science & Engineering Group, Department of Chemistry, Faculty of Science, Taif University (Saudi Arabia); Advanced Materials Dept, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box: 87, Helwan, Cairo (Egypt); Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Materials Science & Engineering Group, Department of Chemistry, Faculty of Science, Taif University (Saudi Arabia); Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia (Egypt); Abd-Elkader, Omar H. [Department of Zoology, Science College, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Electron Microscope and Thin Films Department, National Research Center (NRC), El-Behooth Street, Dokki, Cairo 12622 (Egypt)

    2016-01-15

    Citric, oxalic and tartaric acids were used for synthesis of NiFe{sub 2}O{sub 4} using polymeric complex precursor route. The dry precursor gels were calcined at various temperatures (400–1100 °C) for 2 h. All carboxylic acids produce iron-deficient NiFe{sub 2}O{sub 4} with considerable amount of α-Fe{sub 2}O{sub 3} at 400 °C. Increase in the annealing temperature caused reaction of α-Fe{sub 2}O{sub 3} with iron-deficient ferrite phase. The amount of initially formed α-Fe{sub 2}O{sub 3} is directly correlated with stability constant and inversely correlated with the decomposition temperature of Fe(III) carboxylate precursors. In case of tartaric acid precursor, single phase of the ferrite was obtained at 450 °C. However, in case of oxalic acid and citric acid precursors, single phase ferrite was obtained at 550 °C and 700 °C, respectively. The lattice parameters were increased with increasing annealing temperature and with decreasing the amount of α-Fe{sub 2}O{sub 3}. Maximum saturation magnetization (55 emu/g) was achieved using tartaric acid precursor annealed at 1100 °C. - Highlights: • Citric, oxalic and tartaric acids were used for synthesis of NiFe{sub 2}O{sub 4}. • Carboxylic acid type affects the produced powders. • At low temperatures all carboxylic acids produce iron-deficient NiFe{sub 2}O{sub 4} and α-Fe{sub 2}O{sub 3}. • α-Fe{sub 2}O{sub 3} is correlated with the decomposition of Fe(III) carboxylate precursors.

  15. Mechanisms for formation of organic acids in gas-phase reactions of ozone and hydroxyl radical with dialkenes and unsaturated carbonyls

    Science.gov (United States)

    Chien, Chao-Jung

    2001-07-01

    Carboxylic acids are ubiquitous throughout the troposphere and may contribute significant fractions of the free acidity in some remote areas. One of the important sources of these carboxylic acids is thought to be photochemical transformation of biogenic hydrocarbons such as isoprene. For the work reported here, atmospheric samples from University of North Carolina dual outdoor environmental chamber under simulated urban atmospheric conditions were analyzed for carboxylic acids. Both OH radicals and O3 initiated photooxidation reaction experiments were performed for isoprene, along with its structural analogs, 1,3-butadiene and 2,3-dimethyl-1,3-butadiene, and their primary photooxidation products, methacrolein, acrolein, and methyl vinyl ketone. Among the detected carboxylic acids were formic, acetic, and several multifunctional carboxylic acids, including methacrylic, acrylic, glyoxylic, and glycolic acids. Quantification of most carboxylic acid products was also established. Formation yields of carboxylic acids from the reactions of O3 with studied compounds were determined, and time-concentration series of the reactants and carboxylic acid products were measured to facilitate mechanism formulation. While the reaction mechanisms of Criegee biradicals arising from decomposition of primary ozonides are proposed to account for the observed carboxylic acid products in the ozonolysis of unsaturated hydrocarbons, reactions of peroxy acyl radicals with HO2 and/or other peroxy radicals are thought to be responsible for the formation of carboxylic acids during the OH-initiated reactions in the presence of NOx. In this study, smog chamber simulations have also been performed for selected compounds using Morpho, a photochemical kinetic simulation software package. Explicit photochemical mechanisms with O 3 and OH radicals that lead to formation of carboxylic acids were elaborated and implemented, and the simulation results were compared with those from other chemical

  16. Comparison of cultivable acetic acid bacterial microbiota in organic and conventional apple cider vinegar

    OpenAIRE

    Mori Štornik, Aleksandra; Skok, Barbara; Trček, Janja

    2017-01-01

    Organic apple cider vinegar is produced from apples that go through very restricted treatment in orchard. During the first stage of the process, the sugars from apples are fermented by yeasts to cider. The produced ethanol is used as a substrate by acetic acid bacteria in a second separated bioprocess. In both, the organic and conventional apple cider vinegars the ethanol oxidation to acetic acid is initiated by native microbiota that survived alcohol fermentation. We compared the cultivable ...

  17. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts

    Science.gov (United States)

    Shan, Junjun; Li, Mengwei; Allard, Lawrence F.; Lee, Sungsik; Flytzani-Stephanopoulos, Maria

    2017-11-01

    An efficient and direct method of catalytic conversion of methane to liquid methanol and other oxygenates would be of considerable practical value. However, it remains an unsolved problem in catalysis, as typically it involves expensive or corrosive oxidants or reaction media that are not amenable to commercialization. Although methane can be directly converted to methanol using molecular oxygen under mild conditions in the gas phase, the process is either stoichiometric (and therefore requires a water extraction step) or is too slow and low-yielding to be practical. Methane could, in principle, also be transformed through direct oxidative carbonylation to acetic acid, which is commercially obtained through methane steam reforming, methanol synthesis, and subsequent methanol carbonylation on homogeneous catalysts. However, an effective catalyst for the direct carbonylation of methane to acetic acid, which might enable the economical small-scale utilization of natural gas that is currently flared or stranded, has not yet been reported. Here we show that mononuclear rhodium species, anchored on a zeolite or titanium dioxide support suspended in aqueous solution, catalyse the direct conversion of methane to methanol and acetic acid, using oxygen and carbon monoxide under mild conditions. We find that the two products form through independent pathways, which allows us to tune the conversion: three-hour-long batch-reactor tests conducted at 150 degrees Celsius, using either the zeolite-supported or the titanium-dioxide-supported catalyst, yield around 22,000 micromoles of acetic acid per gram of catalyst, or around 230 micromoles of methanol per gram of catalyst, respectively, with selectivities of 60-100 per cent. We anticipate that these unusually high activities, despite still being too low for commercial application, may guide the development of optimized catalysts and practical processes for the direct conversion of methane to methanol, acetic acid and other useful

  18. Experimental investigation of thermodynamic properties of binary mixture of acetic acid + n-butanol and acetic acid + water at temperature from 293.15 K to 343.15 K

    Science.gov (United States)

    Paul, M. Danish John; Shruthi, N.; Anantharaj, R.

    2018-04-01

    The derived thermodynamic properties like excess molar volume, partial molar volume, excess partial molar volume and apparent volume of binary mixture of acetic acid + n-butanolandacetic acid + water has been investigated using measured density of mixtures at temperatures from 293.15 K to 343.15.

  19. Analysis of some functional properties of acetic acid bacteria ...

    African Journals Online (AJOL)

    SARAH

    2014-03-31

    Mar 31, 2014 ... Acetic acid bacteria in Côte d'Ivoire cocoa fermentation ... Six day heap fermentation on banana leaves was conducted at farm level ... reactions responsible for the final quality of the ... harvested from Agboville (geographic coordinates 5°59' .... Figure 1: Evolution of temperature (A) and pH (B) during cocoa ...

  20. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Science.gov (United States)

    2010-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

  1. Determining aromatic and aliphatic carboxylic acids in biomass-derived oil samples using 2,4-dinitrophenylhydrazine and liquid chromatography-electrospray injection-mass spectrometry/mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Samuel A.; Connatser, Raynella M.; Olarte, Mariefel V.; Keiser, James R.

    2018-01-01

    Converting biomass to a useful fuel commonly incorporates the pyrolysis of the biomass feed stock. The base liquid fraction usually contains high concentrations of ketones, aldehydes and carboxylic acids, of which each can cause detrimental issues related to the storage and upgrading process. Knowing the carbonyl species and the concentration of each will provide value information to the pyrolysis researchers, specifically as that community branches into more targeted end-products such as jet fuel or biogenic-derived oxygenate-containing fuel products. The analysis of aldehydes, ketones and small alkyl carboxylic acids using 2,4-dinitrophenylhydrazine (DNPH) derivation method has been well documented and the method is commonly used the analytical community. By using liquid chromatograph coupled to tandem mass spectrometry, biomass sample analysis can be complete with identification of most carbonyl species. The issue of identifying isobaric ketone and aldehyde compounds can be resolved by utilizing differences in retention time or characteristic fragment ions of ketones and aldehydes. One issue which could not resolved using published methods was identifying aromatic or large non-aromatic carboxylic acids from their corresponding hydroxyl aldehyde or ketone analogs. By modifying the current method for determining carbonyls in biomass samples, carboxylic and hydroxyl-carbonyl can be determined. A careful adjustment of the pH during the extraction procedure and extended heating time of the DNPH solution allowed for the successful derivation of aromatic carboxylic acids. Like other dinitrophenylhydrazones, carboxylic acid derivatives also produce a unique secondary ion pattern, which was useful to distinguish these species from the non-acid analogs.

  2. A Novel Approach in Cinnamic Acid Synthesis: Direct Synthesis of Cinnamic Acids from Aromatic Aldehydes and Aliphatic Carboxylic Acids in the Presence of Boron Tribromide

    Directory of Open Access Journals (Sweden)

    M. Onciu

    2005-02-01

    Full Text Available Cinnamic acids have been prepared in moderate to high yields by a new direct synthesis using aromatic aldehydes and aliphatic carboxylic acids, in the presence of boron tribromide as reagent, 4-dimethylaminopyridine (4-DMAP and pyridine (Py as bases and N-methyl-2-pyrolidinone (NMP as solvent, at reflux (180-190°C for 8-12 hours.

  3. A 9-vinyladenine-based molecularly imprinted polymeric membrane for the efficient recognition of plant hormone 1H-indole-3-acetic acid

    International Nuclear Information System (INIS)

    Chen Changbao; Chen Yanjun; Zhou Jie; Wu Chunhui

    2006-01-01

    9-Vinyladenine was synthesized as a novel functional monomer for molecular imprinting techniques and its structure was established with elemental analysis and 1 H NMR spectroscopy. The binding mechanism between this functional monomer 9-vinyladenine and the plant hormone 1 H-indole-3-acetic acid in acetonitrile was studied with UV-vis spectrophotometry. Based on this study, using 1 H-indole-3-acetic acid as a template molecule, a specific 9-vinyladenine-based molecularly imprinted polymeric membrane was prepared. Then, the resultant polymeric membrane morphologies were visualized with scanning electron microscopy, and the membrane permselectivity for 1 H-indole-3-acetic acid, 1 H-indole-3-butyric acid and kinetin was tested with separate experiments and competitive diffusion experiments. These results showed that the imprinted polymeric membrane prepared with 9-vinyladenine exhibited higher transport selectivity for the template molecule 1 H-indole-3-acetic acid than 1 H-indole-3-butyric acid or kinetin. The membrane prepared with 9-vinyladenine also took on higher permselectivity for 1 H-indole-3-acetic acid in comparison with the imprinted membrane made with methacrylic acid. It is predicted that the 9-vinyladenine-based molecularly imprinted membrane may be applicable to the assay of 1 H-indole-3-acetic acid or for the preparation of a molecularly imprinted polymer sensor for the analysis of 1 H-indole-3-acetic acid in plant samples

  4. Carboxyl group reactivity in actin

    Energy Technology Data Exchange (ETDEWEB)

    Elzinga, M.

    1986-01-01

    While earlier work showed that the carboxyl groups of proteins could be quantitatively coupled to amino groups at pH 4.75 in the presence of EDC and a denaturing agent, the work presented here indicates that under milder conditions the modification of sidechain carboxyls is limited and somewhat specific. Most of the incorporated glycine ethyl ester (GEE) is apparently bound to five carboxyls. The total GEE incorporated was 3 to 4 moles/mole of protein as measured by an increase in Gly upon acid hydrolysis and amino acid analysis, as well as total radioactivity. 3.55 residues were found in peptides, 2.75 bound to residues 1 to 4, and 0.8 bound to Gly-100. 9 refs., 2 figs., 2 tabs.

  5. Carboxyl group reactivity in actin

    International Nuclear Information System (INIS)

    Elzinga, M.

    1986-01-01

    While earlier work showed that the carboxyl groups of proteins could be quantitatively coupled to amino groups at pH 4.75 in the presence of EDC and a denaturing agent, the work presented here indicates that under milder conditions the modification of sidechain carboxyls is limited and somewhat specific. Most of the incorporated glycine ethyl ester (GEE) is apparently bound to five carboxyls. The total GEE incorporated was 3 to 4 moles/mole of protein as measured by an increase in Gly upon acid hydrolysis and amino acid analysis, as well as total radioactivity. 3.55 residues were found in peptides, 2.75 bound to residues 1 to 4, and 0.8 bound to Gly-100. 9 refs., 2 figs., 2 tabs

  6. Sol-gel process for preparing YBa2Cu4O8 precursors from Y, Ba, and Cu acidic acetates/ammonia/ascorbic acid systems

    International Nuclear Information System (INIS)

    Deptula, A.; Lada, W.; Olczak, T.; Goretta, K.C.

    1995-08-01

    Sols were prepared by addition of ammonia to acidic acetate solutions of Y 3+ , Ba 2+ , and Cu 2+ . Ascorbic acid was added to a part of the sol. The resultant sols were gelled to a shard, a film, or microspheres by evaporation at 60 C or by extraction of water from drops of emulsion suspended in 2-ethylhexanol-1. Addition of ethanol to the sols facilitated the formation of gel films, fabricated by a dipping technique, on glass or silver substrates. At 100 C, gels that were formed in the presence of ascorbic acid were perfectly amorphous, in contrast to the crystalline acetate gels. Conversion of the amorphous ascorbate gels to final products was easier than for the acetate gels. The quality of coatings prepared from ascorbate gels was superior to that of acetate gel coatings

  7. Redshift or adduct stabilization -- a computational study of hydrogen bonding in adducts of protonated carboxylic acids

    DEFF Research Database (Denmark)

    Olesen, Solveig Gaarn; Hammerum, Steen

    2009-01-01

    It is generally expected that the hydrogen bond strength in a D-H-A adduct is predicted by the difference between the proton affinities of D and A, measured by the adduct stabilization, and demonstrated by the IR redshift of the D-H bond stretching vibrational frequency. These criteria do...... not always yield consistent predictions, as illustrated by the hydrogen bonds formed by the E and Z OH groups of protonated carboxylic acids. The delta-PA and the stabilization of a series of hydrogen bonded adducts indicate that the E OH group forms the stronger hydrogen bonds, whereas the bond length...... carboxylic acids are different. The OH bond length and IR redshift afford the better measure of hydrogen bond strength....

  8. Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products

    Science.gov (United States)

    Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Theeramunkong, Sewan; Saito, Nagahiro

    2018-01-01

    Chitosan is a polysaccharide that has been extensively studied in the field of biomedicine, especially its water-soluble degraded products called chitooligosaccharides (COS). In this study, COS were produced by the degradation of chitosan hydrogel dispersed in a dilute solution (i.e., 1.55 mM) of various kinds of carboxylic acids using a non-thermal plasma technology called solution plasma (SP). The degradation rates of chitosan were influenced by the type of carboxylic acids, depending on the interaction between chitosan and each carboxylic acid. After SP treatment, the water-soluble degraded products containing COS could be easily separated from the water-insoluble residue of chitosan hydrogel by centrifugation. The production yields of the COS were mostly higher than 55%. Furthermore, the obtained COS products were evaluated for their inhibitory effect as well as their selectivity against human lung cancer cells (H460) and human lung normal cells (MRC-5).

  9. l-2-Nitrimino-1,3-diazepane-4-carboxylic acid

    Directory of Open Access Journals (Sweden)

    Harutyun A. Karapetyan

    2008-05-01

    Full Text Available The cyclic form of l-nitroarginine, C6H10N4O4, crystallizes with two independent molecules in the asymmetric unit. According to the geometrical parameters, similar in both molecules, the structure corresponds to that of l-2-nitrimino-1,3-diazepane-4-carboxylic acid; there are, however, conformational differences between the independent molecules, one of them being close to a twisted chair while the other might be described as a rather flattened boat. All six active H atoms in the two molecules are involved in hydrogen bonds, two of which are intramolecular and four intermolecular, forming an infinite chain of molecules along the b axis.

  10. Quantifying Effect of Lactic, Acetic, and Propionic Acids on Growth of Molds Isolated from Spoiled Bakery Products.

    Science.gov (United States)

    Dagnas, Stéphane; Gauvry, Emilie; Onno, Bernard; Membré, Jeanne-Marie

    2015-09-01

    The combined effect of undissociated lactic acid (0 to 180 mmol/liter), acetic acid (0 to 60 mmol/liter), and propionic acid (0 to 12 mmol/liter) on growth of the molds Aspergillus niger, Penicillium corylophilum, and Eurotium repens was quantified at pH 3.8 and 25°C on malt extract agar acid medium. The impact of these acids on lag time for growth (λ) was quantified through a gamma model based on the MIC. The impact of these acids on radial growth rate (μ) was analyzed statistically through polynomial regression. Concerning λ, propionic acid exhibited a stronger inhibitory effect (MIC of 8 to 20 mmol/liter depending on the mold species) than did acetic acid (MIC of 23 to 72 mmol/liter). The lactic acid effect was null on E. repens and inhibitory on A. niger and P. corylophilum. These results were validated using independent sets of data for the three acids at pH 3.8 but for only acetic and propionic acids at pH 4.5. Concerning μ, the effect of acetic and propionic acids was slightly inhibitory for A. niger and P. corylophilum but was not significant for E. repens. In contrast, lactic acid promoted radial growth of all three molds. The gamma terms developed here for these acids will be incorporated in a predictive model for temperature, water activity, and acid. More generally, results for μ and λ will be used to identify and evaluate solutions for controlling bakery product spoilage.

  11. Perfluorinated carboxylic acids in human breast milk from Spain and estimation of infant's daily intake

    Energy Technology Data Exchange (ETDEWEB)

    Motas Guzmàn, Miguel [Área de Toxicología, Universidad de Murcia, Campus de Espinardo, 30100 Murcia (Spain); Clementini, Chiara [University of Siena, Department of Physical Sciences, Earth and Environment, Via Mattioli, 4, 53100 Siena (Italy); Pérez-Cárceles, Maria Dolores; Jiménez Rejón, Sandra [Department of Legal Medicine, School of Medicine, University of Murcia & Instituto Murciano de Investigacion Biomedica (IMIB), (IMIB-VIRGEN DE LA ARRIXACA), Murcia (Spain); Cascone, Aurora; Martellini, Tania [Department of Chemistry “Ugo Schiff”, via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze (Italy); Guerranti, Cristiana [University of Siena, Department of Physical Sciences, Earth and Environment, Via Mattioli, 4, 53100 Siena (Italy); Bioscience Research Center, Via Aurelia Vecchia 32, 58015 Orbetello, GR (Italy); Cincinelli, Alessandra, E-mail: acincinelli@unifi.it [Department of Chemistry “Ugo Schiff”, via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze (Italy)

    2016-02-15

    Human milk samples were collected from 67 mothers in 2014 at a Primary Care Centre in Murcia (Spain) and analyzed for perfluorinated carboxylic acids (PFCAs). Concentrations measured for perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA) and perfluorododecanoic acid (PFDoDA) ranged from < LOQ (< 10 ng/L) to 397 ng/L with a mean concentration of 66 ± 68 ng/L and a median of 29 ng/L. The presence of these compounds was revealed in 50 samples out of 67 analyzed. Influence of number of pregnancies and food habits on PFCAs concentrations was also investigated. Statistically significant differences in PFCA levels were found when the women were divided into maternal age classes and into the categories primiparae and multiparae. A greater transfer of PFC during breastfeeding by primiparous was evidenced and thus a higher exposure to these contaminants for the first child. Moreover, it was possible to hypothesize that the content of PFCs is in general correlated to the eating habits of donors and, in particular, with the fish consumption. Finally, PFOA daily intakes and risk index (RI) were estimated for the first six months of life and we found that ingestion rates of PFOA did not exceed the tolerable daily intake (TDI) recommended by the European Food Safety Authority (EFSA). - Graphical abstract: Figure SI 1. Concentrations (ng/L) of PFCs recovered in 67 samples of human breast milk. - Highlights: • Perfluorinated carboxylic acids were analyzed in a set of 67 breast milk samples collected from Spanish women. • PFOA appeared as the major contributor to the total perfluorinated carboxylic acids. • PFOA concentrations were significantly higher in milk of primiparous participants. • PFOA daily intake and risk index were estimated for the firsts six month of life.

  12. Perfluorinated carboxylic acids in human breast milk from Spain and estimation of infant's daily intake

    International Nuclear Information System (INIS)

    Motas Guzmàn, Miguel; Clementini, Chiara; Pérez-Cárceles, Maria Dolores; Jiménez Rejón, Sandra; Cascone, Aurora; Martellini, Tania; Guerranti, Cristiana; Cincinelli, Alessandra

    2016-01-01

    Human milk samples were collected from 67 mothers in 2014 at a Primary Care Centre in Murcia (Spain) and analyzed for perfluorinated carboxylic acids (PFCAs). Concentrations measured for perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA) and perfluorododecanoic acid (PFDoDA) ranged from < LOQ (< 10 ng/L) to 397 ng/L with a mean concentration of 66 ± 68 ng/L and a median of 29 ng/L. The presence of these compounds was revealed in 50 samples out of 67 analyzed. Influence of number of pregnancies and food habits on PFCAs concentrations was also investigated. Statistically significant differences in PFCA levels were found when the women were divided into maternal age classes and into the categories primiparae and multiparae. A greater transfer of PFC during breastfeeding by primiparous was evidenced and thus a higher exposure to these contaminants for the first child. Moreover, it was possible to hypothesize that the content of PFCs is in general correlated to the eating habits of donors and, in particular, with the fish consumption. Finally, PFOA daily intakes and risk index (RI) were estimated for the first six months of life and we found that ingestion rates of PFOA did not exceed the tolerable daily intake (TDI) recommended by the European Food Safety Authority (EFSA). - Graphical abstract: Figure SI 1. Concentrations (ng/L) of PFCs recovered in 67 samples of human breast milk. - Highlights: • Perfluorinated carboxylic acids were analyzed in a set of 67 breast milk samples collected from Spanish women. • PFOA appeared as the major contributor to the total perfluorinated carboxylic acids. • PFOA concentrations were significantly higher in milk of primiparous participants. • PFOA daily intake and risk index were estimated for the firsts six month of life.

  13. Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains.

    Science.gov (United States)

    Martani, Francesca; Fossati, Tiziana; Posteri, Riccardo; Signori, Lorenzo; Porro, Danilo; Branduardi, Paola

    2013-09-01

    Biotechnological processes are of increasing significance for industrial production of fine and bulk chemicals, including biofuels. Unfortunately, under operative conditions microorganisms meet multiple stresses, such as non-optimal pH, temperature, oxygenation and osmotic stress. Moreover, they have to face inhibitory compounds released during the pretreatment of lignocellulosic biomasses, which constitute the preferential substrate for second-generation processes. Inhibitors include furan derivatives, phenolic compounds and weak organic acids, among which acetic acid is one of the most abundant and detrimental for cells. They impair cellular metabolism and growth, reducing the productivity of the process: therefore, the development of robust cell factories with improved production rates and resistance is of crucial importance. Here we show that a yeast strain engineered to endogenously produce vitamin C exhibits an increased tolerance compared to the parental strain when exposed to acetic acid at moderately toxic concentrations, measured as viability on plates. Starting from this evidence, we investigated more deeply: (a) the nature and levels of reactive oxygen species (ROS); (b) the activation of enzymes that act directly as detoxifiers of reactive oxygen species, such as superoxide dismutase (SOD) and catalase, in parental and engineered strains during acetic acid stress. The data indicate that the engineered strain can better recover from stress by limiting ROS accumulation, independently from SOD activation. The engineered yeast can be proposed as a model for further investigating direct and indirect mechanism(s) by which an antioxidant can rescue cells from organic acid damage; moreover, these studies will possibly provide additional targets for further strain improvements. Copyright © 2013 John Wiley & Sons, Ltd.

  14. 6-Substituted 3,4-dihydro-naphthalene-2-carboxylic acids: synthesis and structure-activity studies in a novel class of human 5alpha reductase inhibitors.

    Science.gov (United States)

    Baston, Eckhard; Salem, Ola I A; Hartmann, Rolf W

    2002-10-01

    Novel 3,4-dihydro-naphthalene-2-carboxylic acids were synthesized and evaluated for 5alpha reductase inhibitory activity. This enzyme exists in two isoforms and is a pharmacological target for the treatment of benign prostatic hyperplasia, male pattern baldness and acne. In the present study non-steroidal compounds capable of mimicking the transition state of the steroidal substrates were prepared. The synthetic strategy for the preparation of compounds 1-6 consisted of triflation followed by subsequent Heck-type carboxylation or methoxy carbonylation for 6-phenyl-3,4-dihydronaphthalen-2(1H)-one 1c. A Negishi-type coupling reaction between 6-(trifluoro-methanesulfonyloxy)-3,4-dihydro-naphthalene-2-carboxylic acid methyl ester 7b and various aryl bromides led, after further transformations, to 6-substituted 3,4-dihydro-naphthalene-2-carboxylic acids 7-15. In a similar way the corresponding naphthalene-2-carboxylic acids 16 and 17 were obtained. The DU 145 cell line and prostate homogenates served as enzyme sources for the human type 1 and type 2 isozymes, whereas ventral prostate was employed to evaluate rat isozyme inhibitory potency. The most active inhibitors identified in this study were 6-[4-(N,N-dicyclohexylaminocarbonyl)phenyl]-3,4-dihydro-naphthalene-2-carboxylic acid (3) (IC50 = 0.09 microM, rat type 1), 6-[3-(N,N-dicyclohexylaminocarbonyl)phenyl]-3,4-dihydro-naphthalene-2-carboxylic acid (13) (IC50 = 0.75 microM, human type 2; IC50 = 0.81 microM, human type 1) and 6-[4-(N,N-diisopropylamino-carbonyl)phenyl]naphthalene-2-carboxylic acid (16) (IC50 = 0.2 microM, human type 2). The latter compound was shown to deactivate the enzyme in an uncompetitive manner (Ki = 90 nM; Km, Testosterone = 0.8-1.0 microM) similar to the steroidal inhibitor Epristeride. Select inhibitors (13 and 16) were tested in vivo using testosterone propionate-treated, juvenile, orchiectomized SD-rats. None of the compounds was active at a dose of 25 mg/kg. This result might in part be

  15. Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Yeon Kyoung; He, Xu; Gitsis, Emmanouil; Kuo, Yu-Ying [ETH Zurich, Institute of Environmental Engineering (Switzerland); Kim, Nayoung [EMPA, Building Energy Materials and Components (Switzerland); Wang, Jing, E-mail: jing.wang@ifu.baug.ethz.ch [ETH Zurich, Institute of Environmental Engineering (Switzerland)

    2015-10-15

    Dispersion of carbon nanotubes has been heavily studied due to its importance for their technical applications, toxic effects, and environmental impacts. Common electrolytes, such as sodium chloride and potassium chloride, promote agglomeration of nanoparticles in aqueous solutions. On the contrary, we discovered that acetic electrolytes enhanced the dispersion of multi-walled carbon nanotubes (MWCNTs) with carboxyl functional group through the strong hydrogen bond, which was confirmed by UV–Vis spectrometry, dispersion observations and aerosolization-quantification method. When concentrations of acetate electrolytes such as ammonium acetate (CH{sub 3}CO{sub 2}NH{sub 4}) and sodium acetate (CH{sub 3}CO{sub 2}Na) were lower than 0.03 mol per liter, MWCNT suspensions showed better dispersion and had higher mobility in porous media. The effects by the acetic environment are also applicable to other nanoparticles with the carboxyl functional group, which was demonstrated with polystyrene latex particles as an example.

  16. Transformation of acetate carbon into carbohydrate and amino acid metabilites during decomposition in soil

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst; Paul, E. A.

    1971-01-01

    Carbon-14-labelled acetate was added to a heavy clay soil of pH 7.6 to study the transformation of acetate carbon into carbohydrate and amino acid metabolites during decomposition. The acetate was totally metabolized after 6 days of incubation at 25°C when 70% of the labelled carbon had been...... evolved as CO2. Maximum incorporation of trace-C into the various organic fractions was observed after 4 days when 19% of residual, labelled carbon in the soil was located in carbohydrates, 29 % in amino acids and 21 % in the insoluble residue of the soil. The curves showing the amounts of labelled carbon...... days of incubation, 2.2% of the labelled carbon originally added to the soil was located in carbohydrate metabolites, 7% in amino acid metabolites and 5% in the insoluble residue. The carbon in these fractions accounted for 77% of the total, residual, labelled carbon in the soil; 12% in carbohydrates...

  17. Efficacy of Lactic Acid, Lactic Acid-Acetic Acid Blends, and Peracetic Acid To Reduce Salmonella on Chicken Parts under Simulated Commercial Processing Conditions.

    Science.gov (United States)

    Ramirex-Hernandez, Alejandra; Brashears, Mindy M; Sanchez-Plata, Marcos X

    2018-01-01

    The poultry processing industry has been undergoing a series of changes as it modifies processing practices to comply with new performance standards for chicken parts and comminuted poultry products. The regulatory approach encourages the use of intervention strategies to prevent and control foodborne pathogens in poultry products and thus improve food safety and protect human health. The present studies were conducted to evaluate the efficacy of antimicrobial interventions for reducing Salmonella on inoculated chicken parts under simulated commercial processing conditions. Chicken pieces were inoculated by immersion in a five-strain Salmonella cocktail at 6 log CFU/mL and then treated with organic acids and oxidizing agents on a commercial rinsing conveyor belt. The efficacy of spraying with six different treatments (sterile water, lactic acid, acetic acid, buffered lactic acid, acetic acid in combination with lactic acid, and peracetic acid) at two concentrations was evaluated on skin-on and skin-off chicken thighs at three application temperatures. Skinless chicken breasts were used to evaluate the antimicrobial efficacy of lactic acid and peracetic acid. The color stability of treated and untreated chicken parts was assessed after the acid interventions. The lactic acid and buffered lactic acid treatments produced the greatest reductions in Salmonella counts. Significant differences between the control and water treatments were identified for 5.11% lactic acid and 5.85% buffered lactic acid in both skin-on and skin-off chicken thighs. No significant effect of treatment temperature for skin-on chicken thighs was found. Lactic acid and peracetic acid were effective agents for eluting Salmonella cells attached to chicken breasts.

  18. Structures of aspartic acid-96 in the L and N intermediates of bacteriorhodopsin: analysis by Fourier transform infrared spectroscopy

    Science.gov (United States)

    Maeda, A.; Sasaki, J.; Shichida, Y.; Yoshizawa, T.; Chang, M.; Ni, B.; Needleman, R.; Lanyi, J. K.

    1992-01-01

    The light-induced difference Fourier transform infrared spectrum between the L or N intermediate minus light-adapted bacteriorhodopsin (BR) was measured in order to examine the protonated states and the changes in the interactions of carboxylic acids of Asp-96 and Asp-115 in these intermediates. Vibrational bands due to the protonated and unprotonated carboxylic acid were identified by isotope shift and band depletion upon substitution of Asp-96 or -115 by asparagine. While the signal due to the deprotonation of Asp-96 was clearly observed in the N intermediate, this residue remained protonated in L. Asp-115 was partially deprotonated in L. The C = O stretching vibration of protonated Asp-96 of L showed almost no shift upon 2H2O substitution, in contrast to the corresponding band of Asp-96 or Asp-115 of BR, which shifted by 9-12 cm-1 under the same conditions. In the model system of acetic acid in organic solvents, such an absence of the shift of the C = O stretching vibration of the protonated carboxylic acid upon 2H2O substitution was seen only when the O-H of acetic acid is hydrogen-bonded. The non-hydrogen-bonded monomer showed the 2H2O-dependent shift. Thus, the O-H bond of Asp-96 enters into hydrogen bonding upon conversion of BR to L. Its increased hydrogen bonding in L is consistent with the observed downshift of the O-H stretching vibration of the carboxylic acid of Asp-96.

  19. Crystal and molecular structures of sixteen charge-assisted hydrogen bond-mediated diisopropylammonium salts from different carboxylic acids

    Science.gov (United States)

    Lin, Zhihao; Hu, Kaikai; Jin, Shouwen; Ding, Aihua; Wang, Yining; Dong, Lingfeng; Gao, Xingjun; Wang, Daqi

    2017-10-01

    Cocrystallization of the commonly available organic amine, diisopropylamine, with a series of carboxylic acids gave a total of sixteen molecular salts with the compositions: diisopropylaminium 2-methyl-2-phenoxypropanate [(Hdpa)+ · (mpa-), mpa- = 2-methyl-2-phenoxypropanoate] (1), diisopropylaminium 2-methyl-2-(naphthalen-2-yloxy)-propionate [(Hdpa)+ · (npa-), npa- = 2-methyl-2-(naphthalen-2-yloxy)-propionate] (2), diisopropylaminium indole-3-acetate [(Hdpa)+ · (iaa-), iaa- = indole-3-acetate] (3), diisopropylaminium 4-chlorophenoxyacetate [(Hdpa)+ · (cpa-), cpa- = 4-chlorophenoxyacetate] (4), diisopropylaminium 2,4-dichlorophenoxyacetate [(Hdpa)+ · (dcpa-), dcpa- = 2,4-dichlorophenoxyacetate] (5), diisopropylaminium 4-hydroxybenzoate [(Hdpa)+ · (hba-), hba- = 4-hydroxybenzoate] (6), diisopropylaminium 4-aminobenzoate [(Hdpa)+ · (aba-), aba- = 4-aminobenzoate] (7), tetra(diisopropylaminium) tetra(1-hydroxy-2-naphthoate) trihydrate [(Hdpa)44+ · (2-hnpa)44- · 3H2O, 2-hnpa = 1-hydroxy-2-naphthoate] (8), diisopropylaminium 2-hydroxy-3-naphthoate [(Hdpa)+ · (3-hnpa-), 3-hnpa- = 2-hydroxy-3-naphthoate] (9), diisopropylaminium 5-bromosalicylate [(Hdpa)+ · (bsa-), bsa- = 5-bromosalicylate] (10), diisopropylaminium 3,5-dinitrobenzoate [(Hdpa)+ · (dna-), dna- = 3,5-dinitrobenzoate] (11), diisopropylaminium 3,5-dinitrosalicylate [(Hdpa)+ · (3,5-dns-), 3,5-dns- = 3,5-dinitrosalicylate] (12), tetra(diisopropylaminium) bis(m-phthalate) monohydrate [(Hdpa+)4 · (mpta2-)2 · H2O, mpta2- = m-phthalate] (13), bis(diisopropylaminium) dihydrogen 1,2,3,4-butane tetracarboxylate [(Hdpa+)2 · (H2Bta2-), H2Bta2- = dihydrogen 1,2,3,4-butane tetracarboxylate] (14), bis(diisopropylaminium) mucate [(Hdpa+)2 · (muc2-), muc2- = mucate] (15), and diisopropylaminium hydrogen 1,2-phenylenediacetate [(Hdpa) · (Hpda-), Hpda- = hydrogen 1,2-phenylenediacetate] (16). The sixteen salts have been characterised by XRD technique, IR, and elemental analysis, and the melting points of all the

  20. The selective generation of acetic acid directly from synthesis gas

    International Nuclear Information System (INIS)

    Knifton, J.F.

    1986-01-01

    The authors conclude that each of the ruthenium, cobalt and iodide-containing catalyst components have very specific roles to play in the ''melt'' catalyzed conversion of synthesis gas to acetic acid. C 1 -Oxygenate formation is only observed in the presence of ruthenium carbonyls - [Ru(CO) 3 I 3 ] - is here the dominant species - and there is a direct relationship between liquid yield, ΣOAc - productivity and [Ru(CO) 3 I 3 ] - content. Controlled quantities of iodide ensure that initially formed MeOH is rapidly converted to the more reactive methyl iodide. Subsequent cobalt-catalyzed carbonylation to acetic acid may be preparatively attractive (>80% selectivity, good yields) relative to competing syntheses, where the [Co(CO) 4 ] - concentration is maximized that is, where the Co/Ru ratio is >1, the syngas feedstock is rich in CO, and the initial iodide/cobalt ratios are ca. unity. Formation of cobalt-iodide species appears to be a competing, inhibitory step in this catalysis

  1. Kinetics of acetic acid synthesis from ethanol over a Cu/SiO2 catalyst

    DEFF Research Database (Denmark)

    Voss, Bodil; Schjødt, Niels Christian; Grunwaldt, Jan-Dierk

    2011-01-01

    The dehydrogenation of ethanol via acetaldehyde for the synthesis of acetic acid over a Cu based catalyst in a new process is reported. Specifically, we have studied a Cu on SiO2 catalyst which has shown very high selectivity to acetic acid via acetaldehyde compared to competing condensation routes....... In light of this, an observed intrinsic activity difference between whole catalyst pellets and crushed pellets may be explained by the Cu crystal size and growth rate being functions of the catalyst particle size and time....

  2. Copper coordination polymers constructed from thiazole-5-carboxylic acid: Synthesis, crystal structures, and structural transformation

    Energy Technology Data Exchange (ETDEWEB)

    Meundaeng, Natthaya; Rujiwatra, Apinpus [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prior, Timothy J., E-mail: t.prior@hull.ac.uk [Chemistry, University of Hull, Kingston upon Hull HU6 7RX (United Kingdom)

    2017-01-15

    We have successfully prepared crystals of thiazole-5-carboxylic acid (5-Htza) (L) and three new thiazole-5-carboxylate-based Cu{sup 2+} coordination polymers with different dimensionality, namely, 1D [Cu{sub 2}(5-tza){sub 2}(1,10-phenanthroline){sub 2}(NO{sub 3}){sub 2}] (1), 2D [Cu(5-tza){sub 2}(MeOH){sub 2}] (2), and 3D [Cu(5-tza){sub 2}]·H{sub 2}O (3). These have been characterized by single crystal X-ray diffraction and thermogravimetry. Interestingly, the 2D network structure of 2 can directly transform into the 3D framework of 3 upon removal of methanol molecules at room temperature. 2 can also undergo structural transformation to produce the same 2D network present in the known [Cu(5-tza){sub 2}]·1.5H{sub 2}O upon heat treatment for 2 h. This 2D network can adsorb water and convert to 3 upon exposure to air. - Highlights: • Rare examples of coordination polymers of thiazole-5-carboxylic acid were prepared. • Non-covalent interactions play a key role on the assembly of the complexes in solid state. • Structural transformation of a 2D framework to a 3D upon removal of methanol is observed.

  3. HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms.

    Science.gov (United States)

    Cunha, Joana T; Costa, Carlos E; Ferraz, Luís; Romaní, Aloia; Johansson, Björn; Sá-Correia, Isabel; Domingues, Lucília

    2018-04-02

    Acetic acid tolerance and xylose consumption are desirable traits for yeast strains used in industrial biotechnological processes. In this work, overexpression of a weak acid stress transcriptional activator encoded by the gene HAA1 and a phosphoribosyl pyrophosphate synthetase encoded by PRS3 in a recombinant industrial Saccharomyces cerevisiae strain containing a xylose metabolic pathway was evaluated in the presence of acetic acid in xylose- or glucose-containing media. HAA1 or PRS3 overexpression resulted in superior yeast growth and higher sugar consumption capacities in the presence of 4 g/L acetic acid, and a positive synergistic effect resulted from the simultaneous overexpression of both genes. Overexpressing these genes also improved yeast adaptation to a non-detoxified hardwood hydrolysate with a high acetic acid content. Furthermore, the overexpression of HAA1 and/or PRS3 was found to increase the robustness of yeast cell wall when challenged with acetic acid stress, suggesting the involvement of the modulation of the cell wall integrity pathway. This study clearly shows HAA1 and/or, for the first time, PRS3 overexpression to play an important role in the improvement of industrial yeast tolerance towards acetic acid. The results expand the molecular toolbox and add to the current understanding of the mechanisms involved in higher acetic acid tolerance, paving the way for the further development of more efficient industrial processes.

  4. Hepatic Metabolism of Perfluorinated Carboxylic Acids and Polycholorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in Vivo

    Science.gov (United States)

    1993-01-14

    I14JAN93 Annual Technical Report 15DEC91-1ý+JAN9 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Hepatic Metabolism of Perfluorinated Carboxylic Acids and G-FS...13. ABSTRACT (Maximum 200 words) This report describes our studies of the effects of perfluorooctanoic acid (PFOA) and perfluorodecanolc acid (PFDA) on...metabolism. 31 p NMR was used to examine the effects of PFDA. PFOA. and clofibrate (C LOF) in both rats and guinea pigs. A unique effect is revealed in

  5. N-Alkylation Using Sodium Triacetoxyborohydride with Carboxylic Acids as Alkyl Sources.

    Science.gov (United States)

    Tamura, Satoru; Sato, Keigo; Kawano, Tomikazu

    2018-01-01

    A versatile N-alkylation was performed using sodium triacetoxyborohydride and carboxylic acid as an alkyl source. The combination of these reagents furnished products different from those given previously by a similar reaction. Moreover, the mild conditions of our method allowed some functional groups to remain through the reaction, whereas they would react and be converted into other moieties in the similar reductive N-alkylation reported previously. Herein, we provide a new procedure for the preparation of various compounds containing nitrogen atoms.

  6. Developmental Toxicity of (4S-2- (4-hydroxy-3-methoxyphenyl thiazolidine-4-carboxylic acid in Zebrafish ( Danio rerio

    Directory of Open Access Journals (Sweden)

    Cansu Akbulut

    2017-08-01

    Full Text Available ABSTRACT (4S-2-(4-hydroxy-3-methoxyphenylthiazolidine-4-carboxylic acid is new synthesized substance obtained from cysteine and valine. Thiazolidine derivates have important biological responses so scientists work intensively on these compounds in recent years. It is obvious that thiazolidine contained compounds will be used in future in the pharmaceutical industry to treat important diseases. Median lethal concentrations (LC50 for 48 h and 96 h were found as 1.106±0.052 mM and 0.804mM ± 0.102 respectively. According to LC50, exposure doses were determined as control, 0.4 mM, 0.2 mM and 0.1 mM (4S-2-(4-hydroxy-3-methoxyphenylthiazolidine-4-carboxylic acid. Developmental toxicity and apoptotic features on zebrafish development were evaluated in this study. The results of this study indicate that (4S-2-(4-hydroxy-3-methoxyphenylthiazolidine-4-carboxylic acid exposure cause developmental defects like pericardial edema, bent spine, tail malformation, blood accumulation, yolk sac edema but on the other hand concentration-dependent decrease in apoptotic rate. Likewise, concentration-dependent decrease in hatching and increase in mortality of embryos were also detected.

  7. A Precise Method for Processing Data to Determine the Dissociation Constants of Polyhydroxy Carboxylic Acids via Potentiometric Titration.

    Science.gov (United States)

    Huang, Kaixuan; Xu, Yong; Lu, Wen; Yu, Shiyuan

    2017-12-01

    The thermodynamic dissociation constants of xylonic acid and gluconic acid were studied via potentiometric methods, and the results were verified using lactic acid, which has a known pKa value, as a model compound. Solutions of xylonic acid and gluconic acid were titrated with a standard solution of sodium hydroxide. The determined pKa data were processed via the method of derivative plots using computer software, and the accuracy was validated using the Gran method. The dissociation constants associated with the carboxylic acid group of xylonic and gluconic acids were determined to be pKa 1  = 3.56 ± 0.07 and pKa 1  = 3.74 ± 0.06, respectively. Further, the experimental data showed that the second deprotonation constants associated with a hydroxyl group of each of the two acids were pKa 2  = 8.58 ± 0.12 and pKa 2  = 7.06 ± 0.08, respectively. The deprotonation behavior of polyhydroxy carboxylic acids was altered using various ratios with Cu(II) to form complexes in solution, and this led to proposing a hypothesis for further study.

  8. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds

    Czech Academy of Sciences Publication Activity Database

    Hermann, K.; Meinhard, J.; Dobrev, Petre; Linkies, A.; Pešek, Bedřich; Heß, B.; Macháčková, Ivana; Fischer, U.; Leubner-Metzger, G.

    2007-01-01

    Roč. 58, č. 11 (2007), s. 3047-3060 ISSN 0022-0957 Institutional research plan: CEZ:AV0Z50380511 Keywords : abscisic acid (ABA) * ABA 8'-hydroxylase (CYP707A) * 1-aminocyclopropane-1-carboxylic acid ( ACC ) Subject RIV: EF - Botanics Impact factor: 3.917, year: 2007

  9. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome.

    Directory of Open Access Journals (Sweden)

    Edward V LaBelle

    Full Text Available Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (∼ 5. Hydrogen production by biocathodes poised at -600 mV vs. SHE increased >100-fold and acetate production ceased at acidic pH, but ∼ 5-15 mM (catholyte volume/day acetate and >1,000 mM/day hydrogen were attained at pH ∼ 6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV by the Acetobacterium-dominated community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈ 2.6 gallons gasoline equivalent, 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured.

  10. A comprehensive evaluation of the toxicology of cigarette ingredients: aliphatic and aromatic carboxylic acids.

    Science.gov (United States)

    Coggins, Christopher R E; Liu, Jianmin; Merski, Jerome A; Werley, Michael S; Oldham, Michael J

    2011-06-01

    Aromatic and aliphatic carboxylic acids are present in tobacco and tobacco smoke. A battery of tests was used to compare the toxicity of mainstream smoke from experimental cigarettes containing eight aromatic and aliphatic carboxylic acids and the salt of one acid that were added individually at three different levels (lowest and highest target inclusions were 100 and 90,000 ppm, respectively). Mainstream smoke from cigarettes containing each of the test ingredients was evaluated using analytical chemistry and assays to measure in vitro cytotoxicity (neutral red uptake) and Salmonella (five strains) mutagenicity. For four of the compounds (citric, lactic, benzoic acids, and sodium benzoate), 90-day rodent inhalation studies were also performed. Although sporadic statistically significant differences in some experimental cigarette smoke constituents occurred, none resulted in significant changes in mutagenicity or cytotoxicity responses, nor in responses measured in the inhalation studies, except for lactic acid (LA). Inclusion of LA resulted in dose-dependent increase in water and caused a dose-dependent decrease in cytotoxicity. Incorporation of LA into cigarettes resulted in several dose-related reductions in histopathology, which were largely restricted to the nasal passages. Incorporation of LA also ameliorated some of the typical decrease in body weight gain seen in cigarette smoke-exposed rats. Inclusion of these ingredients at exaggerated use levels resulted in sporadic dose-related and treatment effects for some smoke constituents, but no toxicological response was noted in the in vitro and in vivo tests performed.

  11. Co-administration of α-lipoic acid and cyclosporine aggravates colon ulceration of acetic acid-induced ulcerative colitis via facilitation of NO/COX-2/miR-210 cascade

    Energy Technology Data Exchange (ETDEWEB)

    El-Gowelli, Hanan M., E-mail: dr_Hanan_el_gowali@hotmail.com; Saad, Evan I.; Abdel-Galil, Abdel-Galil A.; Ibrahim, Einas R.

    2015-11-01

    In this work, α-lipoic acid and cyclosporine demonstrated significant protection against acetic acid-induced ulcerative colitis in rats. We proposed that α-lipoic acid and cyclosporine co-administration might modulate their individual effects. Induction of ulcerative colitis in rats was performed by intra-rectal acetic acid (5% v/v) administration for 3 consecutive days. Effects of individual or combined used of α-lipoic acid (35 mg/kg ip) or cyclosporine (5 mg/kg sc) for 6 days starting 2 days prior to acetic acid were assessed. Acetic acid caused colon ulceration, bloody diarrhea and weight loss. Histologically, there was mucosal atrophy and inflammatory cells infiltration in submucosa, associated with depletion of colon reduced glutathione, superoxide dismutase and catalase activities and elevated colon malondialdehyde, serum C-reactive protein (C-RP) and tumor necrosis factor-α (TNF-α). Colon gene expression of cyclooxygenase-2 and miR-210 was also elevated. These devastating effects of acetic acid were abolished upon concurrent administration of α-lipoic acid. Alternatively, cyclosporine caused partial protection against acetic acid-induced ulcerative colitis. Cyclosporine did not restore colon reduced glutathione, catalase activity, serum C-RP or TNF-α. Unexpectedly, co-administration of α-lipoic acid and cyclosporine aggravated colon ulceration. Concomitant use of α-lipoic acid and cyclosporine significantly increased nitric oxide production, cyclooxygenase-2 and miR-210 gene expression compared to all other studied groups. The current findings suggest that facilitation of nitric oxide/cyclooxygenase-2/miR-210 cascade constitutes, at least partially, the cellular mechanism by which concurrent use of α-lipoic acid and cyclosporine aggravates colon damage. Collectively, the present work highlights the probable risk of using α-lipoic acid/cyclosporine combination in ulcerative colitis patients. - Highlights: • Lipoic acid is more effective than

  12. Regulation of Auxin Homeostasis and Gradients in Arabidopsis Roots through the Formation of the Indole-3-Acetic Acid Catabolite 2-Oxindole-3-Acetic Acid

    Czech Academy of Sciences Publication Activity Database

    Pěnčík, A.; Simonovik, B.; Petersson, S.V.; Hényková, Eva; Simon, Sibu; Greenham, K.; Zhang, Y.; Kowalczyk, M.; Estelle, M.; Zažímalová, Eva; Novák, Ondřej; Sandberg, G.; Ljung, K.

    2013-01-01

    Roč. 25, č. 10 (2013), s. 3858-3870 ISSN 1040-4651 R&D Projects: GA ČR(CZ) GAP305/11/0797 Institutional research plan: CEZ:AV0Z50380511 Keywords : BOX PROTEIN TIR1 * PLANT DEVELOPMENT * OXINDOLE-3-ACETIC ACID Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.575, year: 2013

  13. Hydrolyses of 2- and 4-fluoro N-heterocycles. 3. Nucleophilic catalysis by buffer bases in the general acid catalyzed hydrolysis of 4-fluoroquinaldine

    International Nuclear Information System (INIS)

    Muscio, O.J. Jr.; Theobald, P.G.; Rutherford, D.R.

    1989-01-01

    Pseudo-first-order rate constants and catalytic rate constants are reported for the buffer-catalyzed hydrolysis of 4-fluoroquinaldine (1) in carboxylic acid and phosphoric acid buffers. The buffer catalysis is consistent with specific acid, general base catalysis. Hydrolyses in 99% 18 O-labeled acetate, indicate that the predominant catalytic mode for the acetic acid/acetate buffer system is nucleophilic catalysis by the acetate anion coupled with specific acid catalysis. The other buffers presumably react in a similar manner. A Broensted-type plot of the catalytic rate constants for hydrolysis of protonated 1 has a slope of 0.57, with formate deviating positively from the line determined by acetate, chloroacetate, monohydrogen phosphate, and water. This Broensted slope is less than that found for hydrolysis of the 2-fluoro-1-methylpyridinium ion, 2, but is still within the range expected for aromatic nucleophilic substitution. Rate constants and 18 O-labeling results for hydrolysis in acetate buffer are also reported for 4-acetoxyquinaldine (3), the proposed intermediate in the acetate-catalyzed hydrolysis of 1. 15 references, 5 figures, 3 tables

  14. Evaluation of sanitizing efficacy of acetic acid on Piper betle leaves and its effect on antioxidant properties.

    Science.gov (United States)

    Singla, Richu; Ganguli, Abhijit; Ghosh, Moushumi; Sohal, Sapna

    2009-01-01

    The sanitizing efficacy of acetic acid and its effect on health beneficial properties of Piper betle leaves were determined. Betel leaves artificially inoculated with Aeromonas, Salmonella and Yersinia were subjected to organic acid (citric acid, acetic acid and lactic acid) treatment. Pathogen populations reduced by 4 log upon individual inoculation and up to 2 log in a mixed cocktail following treatment with 2% acetic acid during storage up to 20 h at 28 degrees C, indicating a residual antimicrobial effect on pathogen during storage. Antioxidant potential ethanolic extracts of both raw and treated P. betle leaves were assayed for free radical scavenging activities against 2,2-diphenyl-1-picryhydrazyl. Polyphenols, flavonoids and the reducing power of treated and untreated P. betle were also compared. No significant (P>0.05) changes were observed in antioxidant status; flavonoids, polyphenols and reducing power of treated betel leaves. Results indicate the feasibility of a simple intervention strategy for inactivating pathogens in edible leaves of P. betle.

  15. NMR 11B, 19F of hydroxofluoroborate solutions in acetic and peracetic acids

    International Nuclear Information System (INIS)

    Shchetinina, G.P.; Brovkina, O.V.; Chernyshov, B.N.

    1985-01-01

    Hydroxofluoroborate solutions in acetic and peracetic acids are studied by the 11 B, 19 F NMR method. The reactions of substitutions of acetate- and peracetate ions for nucleophilic hydroxogroups with the formation of the respective complexes are shown to occur in these solutions, with monodentate coordination of BF 3 CH 3 COO - - and BF 3 CH 3 COOO - - groups being accomplished in this case

  16. Anaerobic treatment of an industrial wastewater containing acetic acid, furfural and sulphite

    Energy Technology Data Exchange (ETDEWEB)

    Brune, G.; Schoberth, S.M.; Sahm, H.

    1982-05-01

    The continuous anaerobic digestion of an acid waste water from a cellulose factory was examined. This special effluent (vapour condensate) arises in the acidic sulphite cooking process: about 1000 cubic meters is produced per day by this factory during concentration of sulphite spent liquor. The vapour condensate (about 20,000 gCOD/cubic meters) contained acetic acid (100-400mM), furfural (up to 30mM) and sulphur acids (up to 40mM). Using carefully planned start-up procedures (running of digesters as pH-auxostats), a high COD reduction (85%) and stable methane production rates could be achieved both at 37 degrees and at 60 degrees. The Ks values for acetate were 5.9mM or 15.9mM respectively. Liquid retention times of 12 to 14 days could be considerably decreased to less than 3 days with organism recycle. The gas yields were 0.35-0.4 cubic meters methane/kg COD converted. The predominant organisms responsible for this conversion were methanogens absorbed into floc-like cell aggregates. (Refs. 25).

  17. Impact of feed withdrawal and addition of acetic acid in drinking ...

    African Journals Online (AJOL)

    ALI GILANI

    2012-11-02

    Nov 2, 2012 ... 1.5, 3, 4.5 or 6% acetic acid added to their drinking water with feed ... contents of birds with acidified water in comparison to the control and feed withdrawal treatments. .... more hygienic evisceration process or lower microbial.

  18. Short Carboxylic Acid–Carboxylate Hydrogen Bonds Can Have Fully Localized Protons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A.

    2017-01-17

    Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15–0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor–acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [O–O> = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O–O distance with increasing H-bond donor pKa. This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid–carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.

  19. Validation of a multi-analyte HPLC-DAD method for determination of uric acid, creatinine, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid and 2-methylhippuric acid in human urine.

    Science.gov (United States)

    Remane, Daniela; Grunwald, Soeren; Hoeke, Henrike; Mueller, Andrea; Roeder, Stefan; von Bergen, Martin; Wissenbach, Dirk K

    2015-08-15

    During the last decades exposure sciences and epidemiological studies attracts more attention to unravel the mechanisms for the development of chronic diseases. According to this an existing HPLC-DAD method for determination of creatinine in urine samples was expended for seven analytes and validated. Creatinine, uric acid, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid, and 2-methylhippuric acid were separated by gradient elution (formate buffer/methanol) using an Eclipse Plus C18 Rapid Resolution column (4.6mm×100mm). No interfering signals were detected in mobile phase. After injection of blank urine samples signals for the endogenous compounds but no interferences were detected. All analytes were linear in the selected calibration range and a non weighted calibration model was chosen. Bias, intra-day and inter-day precision for all analytes were below 20% for quality control (QC) low and below 10% for QC medium and high. The limits of quantification in mobile phase were in line with reported reference values but had to be adjusted in urine for homovanillic acid (45mg/L), niacinamide 58.5(mg/L), and indole-3-acetic acid (63mg/L). Comparison of creatinine data obtained by the existing method with those of the developed method showing differences from -120mg/L to +110mg/L with a mean of differences of 29.0mg/L for 50 authentic urine samples. Analyzing 50 authentic urine samples, uric acid, creatinine, hippuric acid, and 2-methylhippuric acid were detected in (nearly) all samples. However, homovanillic acid was detected in 40%, niacinamide in 4% and indole-3-acetic acid was never detected within the selected samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Identification and characterization of thermotolerant acetic acid bacteria strains isolated from coconut water vinegar in Sri Lanka.

    Science.gov (United States)

    Perumpuli, P A B N; Watanabe, Taisuke; Toyama, Hirohide

    2014-01-01

    From the pellicle formed on top of brewing coconut water vinegar in Sri Lanka, three Acetobacter strains (SL13E-2, SL13E-3, and SL13E-4) that grow at 42 °C and four Gluconobacter strains (SL13-5, SL13-6, SL13-7, and SL13-8) grow at 37 °C were identified as Acetobacter pasteurianus and Gluconobacter frateurii, respectively. Acetic acid production by the isolated Acetobacter strains was examined. All three strains gave 4% acetic acid from 6% initial ethanol at 37 °C, and 2.5% acetic acid from 4% initial ethanol at 40 °C. Compared with the two other strains, SL13E-4 showed both slower growth and slower acetic acid production. As well as the thermotolerant SKU1108 strain, the activities of the alcohol dehydrogenase and the aldehyde dehydrogenase of SL13E-2 and SL13E-4 were more stable than those of the mesophilic strain. The isolated strains were used to produce coconut water vinegar at higher temperatures than typically used for vinegar production.

  1. Use of scandium ionic associates with salicylic- or 2-phenylquinoline-4-carboxylic acid and rhodamine C

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, L.I.; Bel' tyukova, S V; Drobyazko, V N; Poluehktov, N S [AN Ukrainskoj SSR, Kiev. Inst. Obshchej i Neorganicheskoj Khimii; AN Ukrainskoj SSR, Odessa. Inst. Obshchej i Neorganicheskoj Khimii)

    1975-09-01

    With salicylic or 2-phenylquinoline-4-carboxylic acid and rhodamine C scandium forms ion associations whose benzene solutions are capable of luminescence. Optimum conditions for the formation of complexes and the composition of the complex with the ratio of Sc:acid:rhodamine C = 1:2:1 are established. A possibility of luminescence determination of scandium in the presence of rare earths is shown.

  2. Quantum mechanics and molecular dynamics simulations of complexation of alkaline-earth and lanthanide cations by poly-amino-carboxylate ligands

    International Nuclear Information System (INIS)

    Durand, S.

    1999-01-01

    Molecular dynamics (MD) simulations on lanthanide(III) and alkaline-earth(II) complexes with poly-amino-carboxylates (ethylene-diamino-tetra-acetate EDTA 4- , ethylene-diamino-tri-acetate-acetic acid EDTA(H) 3- , tetra-aza-cyclo-dodecane-tetra-acetate DOTA 4- , methylene-imidine-acetate MIDA 2- ) are reported. First, a consistent set of Lennard-Jones parameters for La 3+ , Eu 3+ and Lu 3+ cations has been derived from free energy calculations in aqueous solution. Observed differences in hydration free energies, coordination distances and hydration numbers are reproduced. Then, the solution structures of 1:1 complexes of alkaline-earth and/or lanthanide cations with EDTA 4- , EDTA(H) 3- , DOTA 4- and 1:2 complexes of lanthanide cations with MIDA 2- were studied by MD in water. In addition, free energy calculations were performed to study, for each ligand, the relative thermodynamic stabilities of complexes with Ca 2+ vs Sr 2+ and vs Ba 2+ on the one hand, and with La 3+ vs Eu 3+ and vs Lu 3+ on the other hand. Model does not take into account explicitly polarization and charge transfer. However, the results qualitatively agree with experimental complexation data (structure and selectivities). (author)

  3. A Convenient One-Pot Method for the Synthesis of N-Methoxy-N-methyl Amides from Carboxylic Acids

    International Nuclear Information System (INIS)

    Kim, Joong Gon; Jang, Doo Ok

    2010-01-01

    We have developed a mild and convenient method for one-pot synthesis of Weinreb amides from carboxylic acids. The process is general for the preparation of Weinreb amides from a variety of carboxylic acids. The reaction was also applicable to the preparation of α-amino Weinreb amides and proceeded without deprotection of the N-Fmoc protecting group or racemization of the stereogenic centers. N-Methoxy-N-methyl amides, or Weinreb amides, have been widely used as versatile synthetic intermediates in organic syntheses. These amides serve as excellent acylating agents for organolithium or organomagnesium reagents and as robust aldehyde group equivalents. The utility of Weinreb amides has been extended to the preparation of N-protected amino aldehydes, useful intermediates for many chemoselective transformations in peptide chemistry

  4. Synthesis of δ-aminolevulic acid. Application to the introduction of carbon-14 and of tritium

    International Nuclear Information System (INIS)

    Loheac, J.

    1966-06-01

    Several new syntheses of δ aminolevulic acid (δ A.L.A.) have been studied. 14 C-4 δ - aminolevulic acid has been obtained from 14 C allylacetic carboxylic acid with a yield of 30 per cent with respect to barium carbonate and with a specific activity of 32 mCi/mM. The 14 C-1 or 14 C-2 δ-A.L.A. has been prepared from the 14 C-1 or 14 C-2 acetate with a yield of 55 per cent with respect to the acetate. Finally the tritiated δ-A.L.A. has been obtained for the first time by tritiation of ethyl phthalimidodehydrolevulate. (author) [fr

  5. The mechanism of mediated oxidation of carboxylates with ferrocene as redox catalyst in absence of grafting effects. An experimental and theoretical approach

    International Nuclear Information System (INIS)

    Hernández-Muñoz, Lindsay S.; Galano, Annia; Astudillo-Sánchez, Pablo D.; Abu-Omar, Mahdi M.; González, Felipe J.

    2014-01-01

    Graphical abstract: - Highlights: • The mechanism of mediated oxidation of carboxylates. • Thermodynamics of the mediated Kolbe and Non-Kolbe mechanisms. • The oxidation of acetate and diphenylacetate ions by using ferrocene as redox catalyst. • Simulation and DFT calculations of the mediated oxidation of carboxylates. • Radical and carbocationic pathways in the carboxylate oxidation in acetonitrile. - Abstract: The oxidation of tetrabutylammonium carboxylates by using ferrocene derivatives as redox mediators has been recently used to perform the covalent grafting of carbon surfaces with organic and organometallic groups. Due to the intervention of this surface process, a partial description of the reaction mechanism has only been stated. Therefore, this article concerns about two features of the oxidation of carboxylates mediated by ferrocene. In the first part, it is discussed that in the oxidation of acetate ions by using ferrocene as redox catalyst, the gap between both oxidation potentials is very high, which means that the homogeneous electron transfer between the acetate ion and the electrochemically generated ferrocenium ion is energetically unfavorable. However, by using density functional theory calculations, it has been shown that the whole set of coupled chemical reactions involved either in a Kolbe or Non-Kolbe pathway drive the overall mechanisms towards a thermodynamically favorable situation. In order to avoid the strong covalent grafting process that occurs during the mediated oxidation of acetate ions, the second part of this work deals with the oxidation of tetrabutylammonium diphenylacetate by using ferrocene as a redox mediator in acetonitrile on glassy carbon electrodes. With this carboxylate, no electrode inhibition process occurs and, therefore cyclic voltammetry simulation was done to propose the electrochemical and chemical steps that are present when a carboxylate oxidation is performed in the presence of ferrocene derivatives

  6. Effect of carboxylic acids as compatibilizer agent on mechanical properties of thermoplastic starch and polypropylene blends.

    Science.gov (United States)

    Martins, Andréa Bercini; Santana, Ruth Marlene Campomanes

    2016-01-01

    In this work, polypropylene/thermoplastic starch (PP/TPS) blends were prepared as an alternative material to use in disposable packaging, reducing the negative polymeric environmental impact. Unfortunately, this material displays morphological characteristics typical of immiscible polymer blends and a compatibilizer agent is needed. Three different carboxyl acids: myristic (C14), palmitic (C16) and stearic acids (C18) were used as natural compatibilizer agent (NCA). The effects of NCA on the mechanical, physical, thermal and morphological properties of PP/TPS blends were investigated and compared against PP/TPS with and without PP-grafted maleic anhydride (PPgMA). When compared to PP/TPS, blends with C18, PPgMA and C14 presented an improvement of 25, 22 and 17% in tensile strength at break and of 180, 194 and 259% in elongation at break, respectively. The highest increase, 54%, in the impact strength was achieved with C14 incorporation. Improvements could be seen, through scanning electron microscopy (SEM) images, in the compatibility between the immiscible components by acids incorporation. These results showed that carboxylic acids, specifically C14, could be used as compatibilizer agent and could substitute PPgMA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Secondary deuterium isotope effects in the hydrolysis of some acetals

    International Nuclear Information System (INIS)

    Paterson, R.V.

    Secondary α-deuterium kinetic isotope effects have been determined in the hydrolyses of some acetals. Benzaldehyde dimethyl acetal and 2-phenyl-1,3-dioxolan show isotope effects in agreement with an A1 mechanism. 2-Phenyl-4,4,5,5-tetramethyl-1,3-dioxolan, which has been shown to undergo hydrolysis by an A2 type mechanism, has an isotope effect in agreement with participation by water in the transition state. Hydrolysis of benzylidene norbornanediols, although complicated by isomerisation, has an isotope effect in agreement with an A2 mechanism. Kinetic isotope effects in acetals which have a neighbouring carboxyl group have also been determined. Hydrolysis of 2-carboxybenzaldehyde dimethyl acetal in aqueous and 82% w/w dioxan-water buffers has isotope effects in agreement with a large degree of carbonium ion character in the transition state. Anderson and Capon proposed nucleophilic participation in the hydrolysis of this acetal in 82% dioxan-water. The isotope effect determined in this study is not in agreement with this finding. Hydrolysis of 2-(2'-carboxyphenyl)-4,4,5,5-tetramethyl-1,3-dioxolan shows an isotope effect larger than the corresponding dioxolan without the carboxyl group in agreement with some carbonium ion character in the transition state. A new synthesis of a deuterated aldehyde is described which might be general for aldehydes which will not form benzoins readily. (author)

  8. Stereospecific synthesis of syn-α-oximinoamides by a three-component reaction of isocyanides, syn-chlorooximes, and carboxylic acids.

    Science.gov (United States)

    Pirali, Tracey; Mossetti, Riccardo; Galli, Simona; Tron, Gian Cesare

    2011-07-15

    A stereospecific multicomponent reaction among isocyanides, syn-chlorooximes, and carboxylic acids provides an efficient synthesis of biologically relevant syn-α-oximinoamides. © 2011 American Chemical Society

  9. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    International Nuclear Information System (INIS)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln 2 (phen) 2 (SO 4 ) 3 (H 2 O) 2 ] n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)] n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO 4 2− anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of 5 D 0 → 7 F J (J=0–4) of the Eu(III)

  10. Exhaled breath concentrations of acetic acid vapour in gastro-esophageal reflux disease

    Czech Academy of Sciences Publication Activity Database

    Dryahina, Kseniya; Pospíšilová, Veronika; Sovová, Kristýna; Shestivska, Violetta; Kubišta, Jiří; Spesyvyi, Anatolii; Pehal, F.; Turzíková, J.; Votruba, J.; Španěl, Patrik

    2014-01-01

    Roč. 8, č. 3 (2014), 037109 ISSN 1752-7155 Institutional support: RVO:61388955 Keywords : SIFT-MS * gastro-esophageal reflux * acetic acid Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.631, year: 2014

  11. Aerosol volatility and enthalpy of sublimation of carboxylic acids.

    Science.gov (United States)

    Salo, Kent; Jonsson, Asa M; Andersson, Patrik U; Hallquist, Mattias

    2010-04-08

    The enthalpy of sublimation has been determined for nine carboxylic acids, two cyclic (pinonic and pinic acid) and seven straight-chain dicarboxylic acids (C(4) to C(10)). The enthalpy of sublimation was determined from volatility measurements of nano aerosol particles using a volatility tandem differential mobility analyzer (VTDMA) set-up. Compared to the previous use of a VTDMA, this novel method gives enthalpy of sublimation determined over an extended temperature range (DeltaT approximately 40 K). The determined enthalpy of sublimation for the straight-chain dicarboxylic acids ranged from 96 to 161 kJ mol(-1), and the calculated vapor pressures at 298 K are in the range of 10(-6)-10(-3) Pa. These values indicate that dicarboxylic acids can take part in gas-to-particle partitioning at ambient conditions and may contribute to atmospheric nucleation, even though homogeneous nucleation is unlikely. To obtain consistent results, some experimental complications in producing nanosized crystalline aerosol particles were addressed. It was demonstrated that pinonic acid "used as received" needed a further purification step before being suspended as a nanoparticle aerosol. Furthermore, it was noted from distinct differences in thermal properties that aerosols generated from pimelic acid solutions gave two types of particles. These two types were attributed to crystalline and amorphous configurations, and based on measured thermal properties, the enthalpy of vaporization was 127 kJ mol(-1) and that of sublimation was 161 kJ mol(-1). This paper describes a new method that is complementary to other similar methods and provides an extension of existing experimental data on physical properties of atmospherically relevant compounds.

  12. Influence of indium-tin oxide surface structure on the ordering and coverage of carboxylic acid and thiol monolayers

    International Nuclear Information System (INIS)

    Cerruti, Marta; Rhodes, Crissy; Losego, Mark; Efremenko, Alina; Maria, Jon-Paul; Fischer, Daniel; Franzen, Stefan; Genzer, Jan

    2007-01-01

    This paper analyses the variability of self-assembled monolayers (SAMs) formation on ITO depending on the substrate surface features. In particular, we report on the formation of carboxylic acid- and thiol-based SAMs on two lots of commercially prepared indium-tin oxide (ITO) thin films. Contact angle measurements, electrochemical experiments, and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy showed that the quality of monolayers formed differed substantially between the two ITO batches. Only one of the two ITO substrates was capable of forming well-organized thiol- and carboxylic acid-based SAMs. In order to rationalize these observations, atomic force microscopy and x-ray diffraction analyses were carried out, and SAMs were prepared on ITO substrates fabricated by sputtering in our laboratories. An attempt was made to influence the film microstructure and surface morphology by varying substrate temperatures during ITO deposition. Good-quality thiol and carboxylic acid SAMs were obtained on one of the ITO substrates prepared in-house. While our characterization could not single out conclusively one specific parameter in ITO surface structure that could be responsible for good SAMs formation, we could point out homogeneous surface morphology as a relevant factor for the quality of the SAMs. Evidence was also found for ITO crystallographic orientation to be a parameter influencing SAMs organization

  13. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.

    Science.gov (United States)

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah

    2016-03-01

    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Simultaneous determination of acidic 3,4-dihydroxyphenylalanine metabolites and 5-hydroxyindole-3-acetic acid in urine by high-performance liquid chromatography

    NARCIS (Netherlands)

    Stroomer, A. E.; Overmars, H.; Abeling, N. G.; van Gennip, A. H.

    1990-01-01

    We describe a simple and rapid quantitative method for the simultaneous determination of 3,4-dihydroxyphenylalanine acid metabolites and 5-hydroxyindole-3-acetic acid. After solvent extraction from acidified urine, the acids are analyzed by reversed-phase high-performance liquid chromatography. For

  15. Derivatization of carboxylic acids with 4-APEBA for detection by positive-ion LC-ESI-MS(/MS) applied for the analysis of prostanoids and NSAID in urine

    NARCIS (Netherlands)

    Kretschmer, A.; Giera, M.A.; Wijtmans, M.; de Vries, L.; Lingeman, H.; Irth, H.; Niessen, W.M.A.

    2011-01-01

    In order to develop a generic positive ionization ESI LC-MS method for a variety of interesting substance classes, a new derivatization strategy for carboxylic acids was developed. The carboxylic acid group is labeled with the bromine containing 4-APEBA reagent based on carbodiimide chemistry. The

  16. Nucleogenic radioiodination of O-iodo hippuric acid (O-I H A) VIA molten acetic acid analogs (A A A). Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    El-Shaboury, G; El-Kolaly, M T; El-Watery, A; El-Mohty, A; Raieh, M [Radioisotope Production and Labelled Compounds Department, Hot Laboratories Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    A recent study for nucleogenic radioiodination of O-iodo hippuric acid (O-I H A) in dry-state (i.e. Molten state) with radioiodine in molten acetic acid analogs (AAA) has been investigated. The result investigated has revealed that the molten ammonium acetate (m.p. 114 degree C) fulfills the desired requirements for achieving high and pure radiochemical yield up to 95% within 5 min. at 120 degree C, when used as a molten medium for the no-carrier added isotope - exchange reaction between inactive O-I H A and Lyophilized ethanolic solution of sodium iodide ({sup 131} I{sup -}). On the other hand, the different critical parameters which affects the isotopic - exchange reaction in molten state previously described are discussed to evaluate the chemical principles of the reaction. Also the product obtained is completely free from impurities currently found in commercial radioiodinated - hippuran usually obtained by molten techniques such as glycyl - O - iodihippuric acid (g-OIHA) as well as O-iodobenzonic acid (O-IBA), which are investigated by TIC silica G-60 using the organic phase of the following solvent consists of benzene: acetic acid: water: n.butanol in the ratio of 5:5:2:1 as developing solvent. 2 figs., 2 tabs.

  17. Solid–liquid equilibrium and thermodynamic research of 3-Thiophenecarboxylic acid in (water + acetic acid) binary solvent mixtures

    International Nuclear Information System (INIS)

    Liu, Xiang; Liang, Mengmeng; Hu, Yonghong; Yang, Wenge; Shi, Ying; Yin, Jingjing; Liu, Yan

    2014-01-01

    Highlights: • The solubility was measured in (water + acetic acid) from 283.15 to 338.15 K. • The solubility increased with increasing temperature and water contents. • The modified Apelblat equation was more accurate than the λh equation. - Abstract: In this study, the solubility of 3-thiophenecarboxylic acid was measured in (water + acetic acid) binary solvent mixtures in the temperature ranging from 283.15 to 338.15 K by the analytical stirred-flask method under atmospheric pressure. The experimental data were well-correlated with the modified Apelblat equation and the λh equation. In addition, the calculated solubilities showed good agreement with the experimental results. It was found that the modified Apelblat equation could obtain the better correlation results than the λh equation. The experiment results indicated that the solubility of 3-thiophenecarboxylic acid in the binary solvents increased with increasing temperature, increases with increasing water contents, but the increments with temperature differed from different water contents. In addition, the thermodynamic properties of the solution process, including the Gibbs energy, enthalpy, and entropy were calculated by the van’t Hoff analysis. The experimental data and model parameters would be useful for optimizing the process of purification of 3-thiophenecarboxylic acid in industry

  18. Effect of Post-Harvest Acetic Acid and Plant Essential Oils on Shelf-Life Extension of Tomato Fruits

    International Nuclear Information System (INIS)

    Salem, E.A.; Naweto, M.; Mostafa, M.

    2013-01-01

    In vitro effect of different concentrations of acetic acid on linear growth of Alternaria alternate was studied. The causal agent of tomato black rots in contact and fumigation showed that acetic acid inhibit A. alternata growth at 2 ml/L and on 0.8 ml/L in contact and fumigation, respectively. In vivo effect showed that acetic acid at 6 ml/L reduced severity of infection of tomato fruits from 53.5% to 4.8% after 3 weeks of storage in dipping method but at the strongest fumigation methods, acetic acid inhibit tomato fruits rot at 0.4 ml/L after 3 weeks of storage. In vitro effect of camphore (Eucalyptus globulus Labill), caraway (Carium carvum L.) and peppermint oil (Mentha piperita L.) at different concentrations were tested against Alternaria alternata, since caraway oil is the strongest oil effect on fungal growth followed by peppermint and camphore respectively. Similarly in in vivo caraway oil inhibit tomato fruits rots at 6 ml/L followed by peppermint that inhibited tomato rots at 8 ml / L but camphore reduced tomato rots at 8 ml/L from 40% to 8.1%. Accepted April 2013

  19. Contribution to the analysis of the essential oil of Helichrysum italicum (Roth) G. Don. Determination of ester bonded acids and phenols.

    Science.gov (United States)

    Mastelić, Josip; Politeo, Olivera; Jerković, Igor

    2008-04-07

    The essential oil of Helichrysum italicum (Roth) G. Don (everlasting or Immortelle essential oil) was isolated by hydrodistillation and analysed by GC and GCMS. Forty four compounds were identified. The main components were alpha-pinene(12.8%), 2-methyl-cyclohexyl pentanoate (11.1 %), neryl acetate (10.4%), 1,7-di-epi-alpha-cedrene (6.8%) and other compounds. The oil was fractionated and ester-containing fraction was hydrolysed with KOH/H(2)SO(4). The liberated volatiles were analysed by GC and GC-MS: three phenols and twenty seven volatile carboxylic acids were identified[70% low fatty acids (C(2)-C(5)), 15% C(10)-C(12) acids and 15% other acids]. The main acids were acetic acid (24.3%) propanoic acid (17.2%), 2-methylpropanoic acid (11.4%),dodecanoic acid (8.7%), 2-methylbutanoic acid (8.3%), (Z)-2-methylbutenoic acid(5.1%) and decanoic acid (4.6%). With respect to the identified bonded carboxylic acids,the minimal number of esters in the oil was twenty seven, but their overall quantity was probably larger due to different possible combinations of alcohols with acids to form esters. On the other hand, only six main esters were identified in the oil before fractionation and hydrolysis.

  20. Impact of visual inspection with acetic acid plus cryotherapy “see ...

    African Journals Online (AJOL)

    2016-05-18

    May 18, 2016 ... Objective: The aim of this study is to determine the impact of visual inspection with acetic acid (VIA) plus immediate .... the “see and treat” model, women who test positive to ... or divorced, and the mean parity was 4.3 ± 1.4.

  1. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes

    KAUST Repository

    Zhang, Tao

    2014-01-01

    Catalytic ozonation following non-hydroxyl radical pathway is an important technique not only to degrade refractory carboxylic-containing organic compounds/matter but also to avoid catalyst deactivation caused by metal-carboxylate complexation. It is unknown whether this process is effective for all carboxylates or selective to special molecule structures. In this work, the selectivity was confirmed using O3/(CuO/CeO2) and six distinct ozone-resistant probe carboxylates (i.e., acetate, citrate, malonate, oxalate, pyruvate and succinate). Among these probe compounds, pyruvate, oxalate, and citrate were readily degraded following the rate order of oxalate>citrate>pyruvate, while the degradation of acetate, malonate, and succinate was not promoted. The selectivity was independent on carboxylate group number of the probe compounds and solution pH. Competitive degradation was observed for carboxylate mixtures following the preference order of citrate, oxalate, and finally pyruvate. The competitive degradation was ascribed to competitive adsorption on the catalyst surface. It was revealed that the catalytically degradable compounds formed bidentate chelating or bridging complexes with surface copper sites of the catalyst, i.e., the active sites. The catalytically undegradable carboxylates formed monodentate complexes with surface copper sites or just electrostatically adsorbed on the catalyst surface. The selectivity, relying on the structure of surface metal-carboxylate complex, should be considered in the design of catalytic ozonation process. © 2013 Elsevier B.V.

  2. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei.

    Science.gov (United States)

    Chen, Yang; Bai, Ye; Li, Dongsheng; Wang, Chao; Xu, Ning; Hu, Yong

    2016-01-01

    Acetic acid bacteria (AAB) are important microorganisms in the vinegar industry. However, AAB have to tolerate the presence of ethanol and high temperatures, especially in submerged fermentation (SF), which inhibits AAB growth and acid yield. In this study, seven AAB that are tolerant to temperatures above 40 °C and ethanol concentrations above 10% (v/v) were isolated from Chinese vinegar Pei. All the isolated AAB belong to Acetobacter pasteurianus according to 16S rDNA analysis. Among all AAB, AAB4 produced the highest acid yield under high temperature and ethanol test conditions. At 4% ethanol and 30-40 °C temperatures, AAB4 maintained an alcohol-acid transform ratio of more than 90.5 %. High alcohol-acid transform ratio was still maintained even at higher temperatures, namely, 87.2, 77.1, 14.5 and 2.9% at 41, 42, 43 and 44 °C, respectively. At 30 °C and different initial ethanol concentrations (4-10%), the acid yield by AAB4 increased gradually, although the alcohol-acid transform ratio decreased to some extent. However, 46.5, 8.7 and 0.9% ratios were retained at ethanol concentrations of 11, 12 and 13%, respectively. When compared with AS1.41 (an AAB widely used in China) using a 10 L fermentor, AAB4 produced 42.0 g/L acetic acid at 37 °C with 10% ethanol, whereas AS1.41 almost stopped producing acetic acid. In conclusion, these traits suggest that AAB4 is a valuable strain for vinegar production in SF.

  3. Coordination and structure of Ca(II)-acetate complexes in aqueous solution studied by a combination of Raman and XAFS spectroscopies

    Science.gov (United States)

    Muñoz Noval, Álvaro; Nishio, Daisuke; Kuruma, Takuya; Hayakawa, Shinjiro

    2018-06-01

    The determination of the structure of Ca(II)-acetate in aqueous solution has been addressed by combining Raman and X-ray absorption fine structure spectroscopies. The pH-dependent speciation of the acetate/Ca(II) system has been studied observing modifications in specific Raman bands of the carboxyl group. The current results evidence the Ca(II)-acetate above acetate pKa forms a bidentate complex and presents a coordination 6, in which the Ca-O shell radius decrease of about 0.1 Å with respect the hydrated Ca2+ with coordination 8. The experimental results show the OCO angle of the carboxyl in the complex is close to 124°, being the OCaO angle about 60°.

  4. Acetic acid production from marine algae. Progress report No. 3, January 1, 1978--March 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J.E.; Wise, D.L.

    1978-06-01

    The program for acetic acid production from marine algae has made significant progress in the current quarter. Some of the significant developments during this period are: (1) conversion of the available reducing equivalents in Chondrus crispus to organic acids has been carried to better than 80% completion; (2) thermophilic fermentations produce higher ratios of acetic acid to total acid than is the case for mesophilic fermentations (80% vs. 50%); (3) a membrane extraction process for removing organic acid products has been developed which has potential for commercial use; (4) a large scale fermentation was shown to convert over 50% of the available carbon in five days; (5) a reducing equivalents balance on the large scale fermentation was closed to with 96% of theoretical.

  5. Comparison of Cultivable Acetic Acid Bacterial Microbiota in Organic and Conventional Apple Cider Vinegar

    Directory of Open Access Journals (Sweden)

    Aleksandra Štornik

    2016-01-01

    Full Text Available Organic apple cider vinegar is produced from apples that go through very restricted treatment in orchard. During the first stage of the process, the sugars from apples are fermented by yeasts to cider. The produced ethanol is used as a substrate by acetic acid bacteria in a second separated bioprocess. In both, the organic and conventional apple cider vinegars the ethanol oxidation to acetic acid is initiated by native microbiota that survived alcohol fermentation. We compared the cultivable acetic acid bacterial microbiota in the production of organic and conventional apple cider vinegars from a smoothly running oxidation cycle of a submerged industrial process. In this way we isolated and characterized 96 bacteria from organic and 72 bacteria from conventional apple cider vinegar. Using the restriction analysis of the PCR-amplifi ed 16S-23S rRNA gene ITS regions, we identified four different HaeIII and five different HpaII restriction profiles for bacterial isolates from organic apple cider vinegar. Each type of restriction profile was further analyzed by sequence analysis of the 16S-23S rRNA gene ITS regions, resulting in identification of the following species: Acetobacter pasteurianus (71.90 %, Acetobacter ghanensis (12.50 %, Komagataeibacter oboediens (9.35 % and Komagataeibacter saccharivorans (6.25 %. Using the same analytical approach in conventional apple cider vinegar, we identified only two different HaeIII and two different HpaII restriction profiles of the 16S‒23S rRNA gene ITS regions, which belong to the species Acetobacter pasteurianus (66.70 % and Komagataeibacter oboediens (33.30 %. Yeasts that are able to resist 30 g/L of acetic acid were isolated from the acetic acid production phase and further identified by sequence analysis of the ITS1-5.8S rDNA‒ITS2 region as Candida ethanolica, Pichia membranifaciens and Saccharomycodes ludwigii. This study has shown for the first time that the bacterial microbiota for the

  6. Comparison of Cultivable Acetic Acid Bacterial Microbiota in Organic and Conventional Apple Cider Vinegar.

    Science.gov (United States)

    Štornik, Aleksandra; Skok, Barbara; Trček, Janja

    2016-03-01

    Organic apple cider vinegar is produced from apples that go through very restricted treatment in orchard. During the first stage of the process, the sugars from apples are fermented by yeasts to cider. The produced ethanol is used as a substrate by acetic acid bacteria in a second separated bioprocess. In both, the organic and conventional apple cider vinegars the ethanol oxidation to acetic acid is initiated by native microbiota that survived alcohol fermentation. We compared the cultivable acetic acid bacterial microbiota in the production of organic and conventional apple cider vinegars from a smoothly running oxidation cycle of a submerged industrial process. In this way we isolated and characterized 96 bacteria from organic and 72 bacteria from conventional apple cider vinegar. Using the restriction analysis of the PCR-amplified 16S-23S rRNA gene ITS regions, we identified four different Hae III and five different Hpa II restriction profiles for bacterial isolates from organic apple cider vinegar. Each type of restriction profile was further analyzed by sequence analysis of the 16S-23S rRNA gene ITS regions, resulting in identification of the following species: Acetobacter pasteurianus (71.90%), Acetobacter ghanensis (12.50%), Komagataeibacter oboediens (9.35%) and Komagataeibacter saccharivorans (6.25%). Using the same analytical approach in conventional apple cider vinegar, we identified only two different Hae III and two different Hpa II restriction profiles of the 16S‒23S rRNA gene ITS regions, which belong to the species Acetobacter pasteurianus (66.70%) and Komagataeibacter oboediens (33.30%). Yeasts that are able to resist 30 g/L of acetic acid were isolated from the acetic acid production phase and further identified by sequence analysis of the ITS1-5.8S rDNA‒ITS2 region as Candida ethanolica , Pichia membranifaciens and Saccharomycodes ludwigii . This study has shown for the first time that the bacterial microbiota for the industrial production of

  7. Synthesis and complexation properties towards uranyl cation of carboxylic acid derivatives of p-tert-butyl-calix[6]arene

    International Nuclear Information System (INIS)

    Souane, R.

    2005-03-01

    In the fuel reprocessing plants radioactive metals, and more particularly, uranium in UO 2 2+ form in the various installations, have many varied physico-chemical forms and there is a risk of exposure and internal contamination in the nuclear industry. It is necessary to exert a medical control to ensure the protection of the health of the workers. This medical control is done by dosing uranyl cation in the urine of the exposed people. This work forms part of this context. Indeed, we prepared a ligand able to complex the ion uranyl and which is also to be grafted on a solid support. In the family of calixarenes, the calix[6]arenes functionalized by three or four carboxylic functions were selected like chelating molecules of the ion uranyl. The properties of complexation of these calixarenes were studied by potentiometry in methanol, under these conditions balances of protonation and complexation were determined and the constant partners were obtained using the Hyperquad program. We synthesized tri-carboxylic calix[6]arenes comprising of the groupings nitro (NO 2 ) in para position of phenol in order to see the influence of a substitution in para position on the complexation. We also synthesized calix[6]arenes tetra-carboxylic in order to show the role of an additional carboxylic acid grouping. The potentiometric study determined thermodynamic parameters of protonation and complexation of carboxylic calix[6]arenes. The results of the complexation highlighted which complex UO 2 L corresponding to the ligand para-tert-butyl-calix[6]arene tetra-acid is more stable than that corresponding to the ligand mono-nitro calix[6]arene tri-acid (ΔlogΒ110 = 4.3), and than the effect of the groupings nitro in para position has low influence on the complexation of UO 2 2+ . This makes it possible to consider as possible the grafting of the calix[6]arenes which one knows the behaviour of trapping. To this end we synthesized the ligand 23. (author)

  8. Kinetics of Oxidation of Some Amino Acids by N-Chlorosaccharin in Aqueous Acetic Acid Medium

    Directory of Open Access Journals (Sweden)

    N. A. Mohamed Farook

    2004-01-01

    Full Text Available The kinetics of oxidation of some amino acids namely, glycine, alanine, aspartic acid, arginine, and histidine, (AA by N-chlorosaccharin (NCSA in aqueous acetic acid medium in the presence of perchloric acid have been investigated. The observed rate of oxidation is first order in [AA], [NCSA] and of inverse fractional order in [H+]. The main product of the oxidation is the corresponding aldehyde. The ionic strength on the reaction rate has no significant effect. The effect of changing the dielectric constant of the medium on the rate indicates the reaction to be of dipole-dipole type. Hypochlorous acid has been postulated as the reactive oxidizing species. The reaction constants involved in the mechanism are derived. The activation parameters are computed with respect to slow step of the mechanism.

  9. Development of ethylene direct oxidation process acetic acid new manufacturing method; Echiren jikisanho sakusan shinseizoho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Ken' ichi; Nishino, Hiroshi; Iizuka, Yukio; Suzuki, Toshiro; Sasaki, Koji [Showa Denko Corp., Tokyo (Japan)

    1999-03-05

    Though existing acetic acid manufacturing which made the ethylene to be the starting material was two steps oxidation method of the via acetaldehyde, this study persons developed the new manufacturing method by the ethylenic direct oxyacid. In system of reaction, the following were realized by the development of palladium/heteropolyacid system composite catalyst: High activity and selectivity. In the purification system, the process of becoming, when the water consequentially forms azeotrope for the separation between acetic acid and extracting agent that extracting agent of alkyl acetate was done, that it was used and extracted, was developed. In the equipment material aspect, it is sufficient as a 316 stainless steel unlike other acetic acid manufacturing method. As an equipment scale, it has made to be the optium size for 5-200 thousand t/year, and that the location that it is more small-scale than methanol, carbonylation method and approaches the consumption ground is possible are features. The industrial plant for 100 thousand t/year based on this study carries out business operation in Oita since November, 1997. (translated by NEDO)

  10. Modeling of acetate-type fermentation of sugar-containing wastewater under acidic pH conditions.

    Science.gov (United States)

    Huang, Liang; Pan, Xin-Rong; Wang, Ya-Zhou; Li, Chen-Xuan; Chen, Chang-Bin; Zhao, Quan-Bao; Mu, Yang; Yu, Han-Qing; Li, Wen-Wei

    2018-01-01

    In this study, a kinetic model was developed based on Anaerobic Digestion Model No. 1 to provide insights into the directed production of acetate and methane from sugar-containing wastewater under low pH conditions. The model sufficiently described the dynamics of liquid-phase and gaseous products in an anaerobic membrane bioreactor by comprehensively considering the syntrophic bioconversion steps of sucrose hydrolysis, acidogenesis, acetogenesis and methanogenesis under acidic pH conditions. The modeling results revealed a significant pH-dependency of hydrogenotrophic methanogenesis and ethanol-producing processes that govern the sucrose fermentative pathway through changing the hydrogen yield. The reaction thermodynamics of such acetate-type fermentation were evaluated, and the implications for process optimization by adjusting the hydraulic retention time were discussed. This work sheds light on the acid-stimulated acetate-type fermentation process and may lay a foundation for optimization of resource-oriented processes for treatment of food wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Co-production of furfural and acetic acid from corncob using ZnCl2 through fast pyrolysis in a fluidized bed reactor.

    Science.gov (United States)

    Oh, Seung-Jin; Jung, Su-Hwa; Kim, Joo-Sik

    2013-09-01

    Corncob was pyrolyzed using ZnCl2 in a pyrolysis plant equipped with a fluidized bed reactor to co-produce furfural and acetic acid. The effects of reaction conditions, the ZnCl2 content and contacting method of ZnCl2 with corncob on the yields of furfural and acetic acid were investigated. The pyrolysis was performed within the temperature range between 310 and 410°C, and the bio-oil yield were 30-60 wt% of the product. The furfural yield increased up to 8.2 wt%. The acetic acid yield was maximized with a value of 13.1 wt%. A lower feed rate in the presence of ZnCl2 was advantageous for the production of acetic acid. The fast pyrolysis of a smaller corncob sample mechanically mixed with 20 wt% of ZnCl2 gave rise to a distinct increase in furfural. A high selectivity for furfural and acetic acid in bio-oil would make the pyrolysis of corncob with ZnCl2 very economically attractive. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Sulfur-containing constituents and one 1H-pyrrole-2-carboxylic acid derivative from pineapple [Ananas comosus (L.) Merr.] fruit.

    Science.gov (United States)

    Zheng, Zong-Ping; Ma, Jinyu; Cheng, Ka-Wing; Chao, Jianfei; Zhu, Qin; Chang, Raymond Chuen-Chung; Zhao, Ming; Lin, Zhi-Xiu; Wang, Mingfu

    2010-12-01

    Two sulfur-containing compounds, (S)-2-amino-5-((R)-1-carboxy-2-((E)-3-(4-hydroxy-3-methoxyphenyl)allylthio)ethyl-amino)-5-oxopentanoic acid (1) and (S)-2-amino-5-((R)-1-(carboxymethylamino)-3-((E)-3-(4-hydroxyphenyl)allylthio)-1-oxopropan-2-ylamino)-5-oxopentanoic acid (2), and one 1H-pyrrole-2-carboxylic acid derivative, 6-(3-(1H-pyrrole-2-carbonyloxy)-2-hydroxypropoxy)-3,4,5-trihydroxy-tetrahydro-2H-pyran-2-carboxylic acid (3), together with eighteen known phenolic compounds, were isolated from the fruits of pineapple. Their structures were elucidated by a combination of spectroscopic analyses. Some of these compounds showed inhibitory activities against tyrosinase. The half maximal inhibitory concentration values of compounds 1, 4, 5, 6, 7 are lower than 1 mM. These compounds may contribute to the well-known anti-browning effect of pineapple juice and be potential skin whitening agents in cosmetic applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Proton-conducting membranes based on benzimidazole-containing sulfonated poly(ether ether ketone) compared with their carboxyl acid form

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Wu, Jing; Zhao, Chengji; Zhang, Gang; Zhang, Yang; Shao, Ke; Xu, Dan; Lin, Haidan; Han, Miaomiao; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012 (China)

    2009-10-15

    A series of sulfonated poly(ether ether ketone) containing pendant carboxyl (C-SPEEKs) have been synthesized using a nucleophilic polycondesation reaction. A condensation reaction between 1,2-diaminobenzene and carboxyl resulted in a new series of copolymers containing benzimidazole groups (SPEEK-BIms). The expected structures of the sulfonated copolymers are confirmed by {sup 1}H NMR. The dependence of ion exchange capacity, water uptake, proton conductivity and methanol diffusion coefficient of SPEEK-BIm membranes has been studied and compared with their carboxyl acid form. The results suggest that the introduction of benzimidazole groups may be responsible for many excellent properties of the membranes for fuel cell. It is noticeable that the markedly improved oxidative stability is benefit for the application of membrane. (author)

  14. Acidogenesis driven by hydrogen partial pressure towards bioethanol production through fatty acids reduction

    International Nuclear Information System (INIS)

    Sarkar, Omprakash; Butti, Sai Kishore; Venkata Mohan, S.

    2017-01-01

    H 2 partial pressure drives the reduction of carboxylic acid (short chain fatty acids) formed as primary metabolites in acidogenic fermentation to form bioalcohols. Microbial catalysis under the influence of H 2 partial pressure was evaluated in comparison with a reactor operated at atmospheric pressure under identical conditions. Carboxylic acid reduction gets regulated selectively by the influence of elevated pressures and redox conditions, resulting in the formation of alcohols. The non-equilibrium of the intra and extracellular H 2 ions causes the anaerobic bacteria to alter their pathways as a function of interspecies H 2 transfer. Ethanol production was quantified, as acetic acid was the major carboxylic acid synthesised during acidogenesis. H 2 pressure influenced the electrochemical activity which was reflected in the distinct variation of the electron transfer rates and the catalytic activity of redox mediators (NAD + /NADH, flavoproteins and iron-sulphur clusters). The bioprocess depicted in this communication depicted a non-genetic regulation of product formation, understanding the acidogenic metabolism and alternate route for alcohol production. - Highlights: • H 2 partial pressure in HPR aided in the reduction of carboxylic acids to alcohols. • Production and consumption rate of VFAs were correlating with alcohol formation. • Metabolic shift was evident with bioelectrochical analysis. • NADH/NAD + ratio and H 2 partial pressure coupled in enhanced solventogenesis.

  15. A kinetics study of acetic acid on cobalt leaching of spent LIBs: Shrinking Core Model

    Directory of Open Access Journals (Sweden)

    Setiawan Hendrik

    2018-01-01

    Full Text Available Lithium-ion batteries (LIBs are secondary rechargeable power sources which increasing production also leads to large amount of waste. In order to environmentally friendly reduce the waste, this work aimed to use acetic acid as a substitute leaching agent to leach Co metals which constitutes about 72.39% wt of the battery cathode. The leaching process was done in a three-necked-flask where calcined LIB cathode powder was mixed with acetic acid solution. The variables of the leaching process under investigation were solution pH, concentration of H2O2 in the solution, S/L ratio, temperature and reaction time. Experimental results showed that only temperature significantly influenced the leaching rate of Co. Since the process was exothermic, the maximum recovery decreased as temperature increased. Conventional shrinking core model that considers diffusion and irreversible surface reaction resistances was found not sufficient to predict the kinetics of the Co leaching with acetic acid. A more representative kinetics model that considers a reversible reaction of Co complex formation needs to be further developed.

  16. Mechanical behavior of alumina and alumina-feldspar based ceramics in an acetic acid (4%) environment

    International Nuclear Information System (INIS)

    Stumpf, Aisha S.G.; Bergmann, Carlos P.; Vicenzi, Juliane; Fetter, Rebecca; Mundstock, Karina S.

    2009-01-01

    This study investigates the mechanical properties of alumina-feldspar based ceramics when exposed to an aggressive environment (acetic acid 4%). Alumina ceramics containing different concentrations of feldspar (0%, 1%, 5%, 10%, or 40%) were sintered at either 1300, 1600, or 1700 o C. Flaws (of width 0%, 30%, or 50%) were introduced into the specimens using a saw. Half of these ceramic bodies were exposed to acetic acid. Their flexural strength, K IC , and porosity were measured and the fractured samples were evaluated using scanning electronic- and optical microscopy. It was found that in the ceramic bodies sintered at 1600 o C, feldspar content up to 10% improved flexural strength and K IC, and reduced porosities. Generally, it was found that acetic acid had a weakening effect on the flexural strength of samples sintered at 1700 o C but a beneficial effect on K IC of ceramics sintered at 1600 o C. It was concluded that alumina-based ceramics with feldspar content up to 10% and sintered at higher temperatures would perform better in an aggressive environment similar to oral cavity.

  17. Efficacy Of Trichloro-acetic Acid Peel Alone Versus Combined Topical Magnesium Ascorbyl Phosphate For Epidermal Melasma

    International Nuclear Information System (INIS)

    Murtaza, F.; Noor, S. M.; Bangash, A. R.

    2016-01-01

    Objective: To compare the efficacy in terms of reduction in melasma area and severity index (MASI) score by more than 10 of a combination of 20% trichloro-acetic acid peel plus 5% topical magnesium ascorbyl phosphate versus 20 percent trichloroacetic acid peel alone in the treatment of epidermal melasma. Study Design: Randomized controlled trial. Place and Duration of Study: Department of Dermatology, Lady Reading Hospital (LRH), Peshawar, from May 2012 to May 2013. Methodology: Patients aged 18 - 65 years, with Fitzpatrick skin type III-V were divided into two equal groups having 74 patients each. Detailed history was taken and Wood's lamp examination done to rule out mixed and dermal melasma. Melasma area and severity index (MASI) score was calculated for every patient. Priming was done for all patients with tretinoin cream applied once daily at night for 2 weeks, and to use a broad spectrum sun block cream before sun exposure. Patients in group A were subjected to combined treatment, i.e. trichloro-acetic acid peel 20 percent (weekly) plus magnesium ascorbyl phosphate cream (applied once daily), while patients in group B were subjected to trichloro-acetic acid peel 20 percent (weekly) alone. Treatment was continued for 6 weeks. After completion of treatment, MASI score was recalculated. Proportion of patients with significant MASI score reduction was compared using chi-square test with significance at p < 0.05. Results: Male and female patients were 11 (14.9 percent) and 63 (85.1 percent), respectively in group A, whereas 13 (17.6 percent) and 61 (82.4 percent) in group B. The mean age in group A was 30.28±8.08 years, and 29.36±6.84 years in group B. Significant MASI score reduction in group A was seen in 60 (81.1 percent) patients and in group B 49 (66.2 percent, p= 0.040). Conclusion: Combination of trichloro-acetic acid peel and topical magnesium ascorbyl phosphate cream was significantly more effective than trichloro-acetic acid peel alone in

  18. Lipase catalyzed epoxidation of fatty acid methyl esters derived from unsaturated vegetable oils in absence of carboxylic acid.

    Science.gov (United States)

    Sustaita-Rodríguez, Alejandro; Ramos-Sánchez, Víctor H; Camacho-Dávila, Alejandro A; Zaragoza-Galán, Gerardo; Espinoza-Hicks, José C; Chávez-Flores, David

    2018-04-11

    Nowadays the industrial chemistry reactions rely on green technologies. Enzymes as lipases are increasing its use in diverse chemical processes. Epoxidized fatty acid methyl esters obtained from transesterification of vegetable oils have recently found applications as polymer plasticizer, agrochemical, cosmetics, pharmaceuticals and food additives. In this research article, grapeseed, avocado and olive oils naturally containing high percents of mono and poly unsaturations were used as starting materials for the production of unsaturated fatty acid methyl esters. The effect of lauric acid as an active oxygen carrier was studied on epoxidation reactions where unsaturated fatty acid methyl esters were converted to epoxy fatty acid methyl esters using immobilized Candida antarctica Lipase type B as catalyst and hydrogen peroxide as oxygen donor at mild temperature and pressure conditions. After this study it was confirmed by 1 H NMR, 13 C NMR and GC-MS that the addition of lauric acid to the enzymatic reaction is unnecessary to transform the alkenes in to epoxides. It was found that quantitative conversions were possible in despite of a carboxylic acid absence.

  19. Bienzymatic Acetylcholinesterase and Choline Oxidase Immobilized Biosensor Based on a Phenyl Carboxylic Acid-Grafted Multiwalled Carbon Nanotube

    Directory of Open Access Journals (Sweden)

    So-Ra Lee

    2014-01-01

    Full Text Available Bienzymatic acetylcholinesterase (AChE and choline oxidase (ChOx immobilized biosensor based on a phenyl carboxylic acid-grafted multiwalled carbon nanotube (MWNT modified glass carbon electrode (GCE and carbon-screen printed electrode (SPE was fabricated for acetylcholine detection in human blood samples. Phenyl carboxylic acid-modified MWNT supports were prepared by electrochemical polymerization of 4-carboxyphenyl diazonium salts, which were synthesized by an amine group and sodium nitrite, on the surface of the MWNT-modified GCE and SPE in 0.1 M PBS. The successful fabrication of the AChE-ChOx-immobilized biosensor was confirmed via scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS, electrochemical impedance spectroscopy (EIS, and cyclic voltammetry (CV. The sensing range of the biosensor based on a GCE and SPE was 1.0~10 μM and 10~100 μM, respectively. The interfering effect of 0.1 M L-ascorbic acid, 0.1 M L-cysteine, and 0.1 M uric acid to 0.1 M acetylcholine was 3.00%, 9.00%, and 3.00%, respectively. Acetylcholine in a human blood sample was detected by the AChE-ChOx-immobilized biosensor.

  20. Variable Denticity in Carboxylate Binding to the Uranyl Coordination Complexes

    International Nuclear Information System (INIS)

    Groenewold, G.S.; De Jong, Wibe A.; Oomens, Jos; Van Stipdonk, Michael J.

    2010-01-01

    Tris-carboxylate complexes of the uranyl (UO2)2+ cation with acetate and benzoate were generated using electrospray ionization mass spectrometry, and then isolated in a Fourier transformion cyclotron resonance mass spectrometer. Wavelength-selective infrared multiple photon dissociation (IRMPD) of the tris-acetatouranyl anion resulted in a redox elimination of an acetate radical, which was used to generate an IR spectrum that consisted of six prominent absorption bands. These were interpreted with the aid of density functional theory calculations in terms of symmetric and antisymmetric -CO2 stretches of both the monodentate and bidentate acetate, CH3 bending and umbrella vibrations, and a uranyl O-U-O asymmetric stretch. The comparison of the calculated and measured IR spectra indicated that the tris-acetate complex contained two acetate ligands bound in a bidentate fashion, while the third acetate was monodentate. In similar fashion, the tris-benzoate uranyl anion was formed and photodissociated by loss of a benzoate radical, enabling measurement of the infrared spectrum that was in close agreement with that calculated for a structure containing one monodentate, and two bidentate benzoate ligands.

  1. Spectroelectrochemical study of the adsorption of acetate anions at gold single crystal and thin-film electrodes

    International Nuclear Information System (INIS)

    Berna, Antonio; Delgado, Jose Manuel; Orts, Jose Manuel; Rodes, Antonio; Feliu, Juan Miguel

    2008-01-01

    Acetate adsorption at gold electrodes is studied in perchloric acid solutions by cyclic voltammetry and in-situ infrared spectroscopy. External reflection measurements, performed with gold single crystal electrodes, are combined with Surface Enhanced Infrared Reflection Absorption Spectroscopy experiments under attenuated total reflection conditions (ATR-SEIRAS) carried out with sputtered gold thin-film electrodes. Theoretical harmonic IR frequencies of acetate species adsorbed with different geometries on Au clusters with (1 1 1), (1 0 0) and (1 1 0) orientations have been obtained from B3LYP/LANL2DZ, 6-31 + G* calculations. The theoretical and experimental results confirm that, irrespective of the surface crystallographic orientation, bonding of acetate to the surface involves the two oxygen atoms of the carboxylate group, with the OCO plane perpendicular to the metal surface. DFT calculations reveal also that the total charge of the metal cluster-acetate supermolecule has small effect on the vibrational frequencies of adsorbed acetate species. Both the external and the internal reflection measurements show the co-adsorption of acetate and perchlorate anions. Step-scan measurements carried out with the gold thin-film electrodes have allowed the monitoring of the time-dependent behaviour of perchlorate, acetate and water bands in potential step experiments. Acetate adsorption under those conditions is shown to involve perchlorate desorption and to follow a Langmuir-type kinetics. The step-scan spectra also show the rise and decay of transient water structures with parallel time-dependent shifts of the background intensity in the infrared spectra

  2. Characterisation and application of new carboxylic acid-functionalised ruthenium complexes as dye-sensitisers for solar cells

    DEFF Research Database (Denmark)

    Duprez, Virginie; Biancardo, Matteo; Krebs, Frederik C

    2007-01-01

    A series of ruthenium complexes with and without TiO2, anchoring carboxylic acid groups have been synthesised and characterised using nuclear magnetic resonance (NMR), UV-vis and luminescence. These complexes were adsorbed on thin films of the wide band-gap semiconductor anatase and were tested a...

  3. Stability of the acetic acid-induced bladder irritation model in alpha chloralose-anesthetized female cats.

    Directory of Open Access Journals (Sweden)

    F Aura Kullmann

    Full Text Available Time- and vehicle-related variability of bladder and urethral rhabdosphincter (URS activity as well as cardiorespiratory and blood chemistry values were examined in the acetic acid-induced bladder irritation model in α-chloralose-anesthetized female cats. Additionally, bladder and urethra were evaluated histologically using Mason trichrome and toluidine blue staining. Urodynamic, cardiovascular and respiratory parameters were collected during intravesical saline infusion followed by acetic acid (0.5% to irritate the bladder. One hour after starting acetic acid infusion, a protocol consisting of a cystometrogram, continuous infusion-induced rhythmic voiding contractions, and a 5 min "quiet period" (bladder emptied without infusion was precisely repeated every 30 minutes. Administration of vehicle (saline i.v. occurred 15 minutes after starting each of the first 7 cystometrograms and duloxetine (1mg/kg i.v. after the 8(th. Acetic acid infusion into the bladder increased URS-EMG activity, bladder contraction frequency, and decreased contraction amplitude and capacity, compared to saline. Bladder activity and URS activity stabilized within 1 and 2 hours, respectively. Duloxetine administration significantly decreased bladder contraction frequency and increased URS-EMG activity to levels similar to previous reports. Cardiorespiratory parameters and blood gas levels remained consistent throughout the experiment. The epithelium of the bladder and urethra were greatly damaged and edema and infiltration of neutrophils in the lamina propria of urethra were observed. These data provide an ample evaluation of the health of the animals, stability of voiding function and appropriateness of the model for testing drugs designed to evaluate lower urinary tract as well as cardiovascular and respiratory systems function.

  4. Structure-Activity Relationship Study of Ionotropic Glutamate Receptor Antagonist (2S,3R)-3-(3-Carboxyphenyl)pyrrolidine-2-carboxylic Acid

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, Niels; Storgaard, Morten; Møller, Charlotte

    2015-01-01

    Herein we describe the first structure-activity relationship study of the broad-range iGluR antagonist (2S,3R)-3-(3-carboxyphenyl)pyrrolidine-2-carboxylic acid (1) by exploring the pharmacological effect of substituents in the 4, 4', or 5' positions and the bioisosteric substitution of the distal...... carboxylic acid for a phosphonic acid moiety. Of particular interest is a hydroxyl group in the 4' position 2a which induced a preference in binding affinity for homomeric GluK3 over GluK1 (Ki = 0.87 and 4.8 μM, respectively). Two X-ray structures of ligand binding domains were obtained: 2e in GluA2-LBD...... and 2f in GluK1-LBD, both at 1.9 Å resolution. Compound 2e induces a D1-D2 domain opening in GluA2-LBD of 17.3-18.8° and 2f a domain opening in GluK1-LBD of 17.0-17.5° relative to the structures with glutamate. The pyrrolidine-2-carboxylate moiety of 2e and 2f shows a similar binding mode as kainate...

  5. The effect of pretreatment using sodium hydroxide and acetic acid to biogas production from rice straw waste

    Directory of Open Access Journals (Sweden)

    Budiyono

    2017-01-01

    Full Text Available Rice straw is agricultural waste containing high potency to be treated to biogas. However, the usage of rice straw is still limited due to high lignin content that will cause low biodegradability. The aim of this research was to study the effect of pretreatment using NaOH and acetic acid to biogas production from rice straw. NaOH was varied from 2%w, 4%w, and 6%w; and acetic acid was varied from 0,075 M, 0,15 M dan 0,75 M. The rice straw was cut into 1 cm size and submerged for 30 minutes in NaOH and acetic acid solution. The rice straw then filtered and neutralized before sending to anaerobic digestion process using rumen fluid bacteria. Biogas produced was measured using water displacement method. The result showed that the optimum concentration of NaOH solution was 4%w that resulted in biogas volume of 21,1 ml/gTS. Meanwhile, the optimum concentration of acetic acid pretreatment was 0,075 M that produced biogas volume of 14,5 ml/gTS. These results suggest that pretreatment using NaOH solution is more effective for decreasing the lignin content from rice straw.

  6. Effectiveness of Alkaline Pretreatment and Acetic Acid Hydrolysis on the Characteristics of Collagen from Fish Skin of Snakehead

    Directory of Open Access Journals (Sweden)

    Wulandari

    2015-12-01

    Full Text Available Fish skin is one of marine byproducts potential for alternative source of collagen. This study investigated the effectiveness of alkaline and acetic acid pretreatment on the characteristics of collagen from skin snakehead fish. The concentrations of alkaline pretreatment were 0.05; 0.1; 0.15 and 0.2 M for 2, 4, 6, 8, 10 and 12 hours, acetic acid concentrations were 0.05 M, 0.1 M, 0.15 M and 0.2 M for 1 and 2 hours. The experimental design used for alkaline and acetic acid pretreatment was factorial completely randomized design. The result showed that the concentration of alkaline 0.05 M for 6 hours have significant effect on the elimination of non-collagen protein (p<0.05, whereas for the optimum acetic acid at a concentration 0.1 M for 2 hours significantly different on solubility and swelling. Extraction yields of collagen was 16%, with characteristics of whiteness 66.67%, protein content 96.21%, viscosity 10 cP, Tmax 159.9oC and glass transition temperature 78.55oC. The dominant amino acid composition were glycine (27.11%, proline (13.87% and alanine (12.58%. Functional groups collagen from skin snakehead fish has β-sheet structure which is a characteristic of collagen.

  7. Effectiveness of Alkaline Pretreatment and Acetic Acid Hydrolysis on the Characteristics of Collagen from Fish Skin of Snakehead

    Directory of Open Access Journals (Sweden)

    Wulandari Wulandari

    2015-12-01

    Full Text Available Fish skin is one of marine byproducts potential for alternative source of collagen. This studyinvestigated the effectiveness of alkaline and acetic acid pretreatment on the characteristics ofcollagen from skin snakehead fish. The concentrations of alkaline pretreatment were 0.05; 0.1; 0.15and 0.2 M for 2, 4, 6, 8, 10 and 12 hours, acetic acid concentrations were 0.05 M, 0.1 M, 0.15 M and0.2 M for 1 and 2 hours. The experimental design used for alkaline and acetic acid pretreatmentwas factorial completely randomized design. The result showed that the concentration of alkaline0.05 M for 6 hours have significant effect on the elimination of non-collagen protein (p<0.05,whereas for the optimum acetic acid at a concentration 0.1 M for 2 hours significantly differenton solubility and swelling. Extraction yields of collagen was 16%, with characteristics of whiteness66.67%, protein content 96.21%, viscosity 10 cP, Tmax 159.9oC and glass transition temperature78.55oC. The dominant amino acid composition were glycine (27.11%, proline (13.87% andalanine (12.58%. Functional groups collagen from skin snakehead fish has β-sheet structurewhich is a characteristic of collagen.

  8. Meso-ester and carboxylic acid substituted BODIPYs with far-red and near-infrared emission for bioimaging applications

    KAUST Repository

    Ni, Yong; Zeng, Lintao; Kang, Namyoung; Huang, Kuo-Wei; Wang, Liang; Zeng, Zebing; Chang, Young-Tae; Wu, Jishan

    2014-01-01

    -6) become partially soluble in water, and their absorptions and emissions are located in the far-red or near-infrared region. Three synthetic approaches are attempted to access the meso-carboxylic acid (COOH)-substituted BODIPYs 7 and 8 from the meso

  9. Effects of salinity and ethylenediamine tetra acetic acid (edta) on the ...

    African Journals Online (AJOL)

    In this study, the effects of the combined treatment of salinity and ethylenediamine tetra acetic acid (EDTA) on the germination of tomato seeds in Petri-dishes were compared to sole salinity. The treatments consisted of seven concentrations of sodium chloride (NaCL): 0 (control), 10, 50, 100, 250, 500 and 1000 mM.

  10. Enhanced acetic acid production from manalagi apple (Malus sylvestris mill) by mixed cultures of Saccharomyces cerevisiae and Acetobacter aceti in submerged fermentation

    Science.gov (United States)

    Rosada, K. K.

    2018-05-01

    The production of acetic acid from Manalagi apple was studied using a mixed culture of S. cerevisiae and A. aceti by submerged fermentation technique. Determination of the best conditions for producing acetic acid was performed by stratified optimization with variations that were made on the concentration of the initial sugar addition to the medium (0%, 10%, 20% w/v), the ratio of the number of inocula S. cerevisiae and A. aceti (7:3, 1:1, 3:7), and agitation rate (80 and 160 rpm). All experiments were done by using the initial pH medium of 4.5 and incubated at room temperature (28±2oC) for 14 days. The concentration of reducing sugar, alcohol, acetic acid, and the pH were measured every 48 hours. The efficiency of sugar conversion to acetic acid with the addition of initial sugar 0%, 10%, and20%were 233%, 46.6%, and 6.4% respectively after ten days of incubation. Overall, the result showed that the highest acetic acid was produced from Manalagi apple juice when no sugar was added, using seven parts of S. cerevisiae to three parts of A. aceti and agitation rate of 160 rpm on the tenth day of fermentation. Under these conditions, glucose conversion efficiency to acetic acid increased to 362%.

  11. Mechanism of catalytic action of oxide systems in reactions of aldehyde oxidation to carboxylic acids

    International Nuclear Information System (INIS)

    Andrushkevich, T.V.

    1997-01-01

    Mechanism of selective action of oxide catalysts (on the base of V 2 O 4 , MoO 3 ) of aldehyde oxidation to acids is considered, reaction acrolein oxidation to acrylic acid is taken as an example. Multistage mechanism of the process is established; it involves consequent transformation of coordination-bonded aldehyde into carbonyl-bonded aldehyde and symmetric carboxylate. Principles of active surface construction are formulated, they take into account the activity of stabilization center of concrete intermediate compound and bond energy of oxygen with surface. (author)

  12. Study on the extraction, purification and quantification of jasmonic acid, abscisic acid and indole-3-acetic acid in plants.

    Science.gov (United States)

    Zhang, Feng Juan; Jin, You Ju; Xu, Xing You; Lu, Rong Chun; Chen, Hua Jun

    2008-01-01

    Jasmonic acid (JA), abscisic acid (ABA) and indole-3-acetic acid (IAA) are important plant hormones. Plant hormones are difficult to analyse because they occur in small concentrations and other substances in the plant interfere with their detection. To develop a new, inexpensive procedure for the rapid extraction and purification of IAA, ABA and JA from various plant species. Samples were prepared by extraction of plant tissues with methanol and ethyl acetate. Then the extracts were further purified and enriched with C(18) cartridges. The final extracts were derivatised with diazomethane and then measured by GC-MS. The results of the new methodology were compared with those of the Creelman and Mullet procedure. Sequential elution of the assimilates from the C(18 )cartridges revealed that IAA and ABA eluted in 40% methanol, while JA subsequently eluted in 60% methanol. The new plant hormone extraction and purification procedure produced results that were comparable to those obtained with the Creelman and Mullet's procedure. This new procedure requires only 0.5 g leaf samples to quantify these compounds with high reliability and can simultaneously determine the concentrations of the three plant hormones. A simple, inexpensive method was developed for determining endogenous IAA, ABA and JA concentrations in plant tissue.

  13. Effects of Formic or Acetic Acid on the Storage Quality of Mixed Air-Dried Corn Stover and Cabbage Waste, and Microbial Community Analysis

    Directory of Open Access Journals (Sweden)

    Cong Wang

    2018-01-01

    Full Text Available A mixture of air-dried corn stover and cabbage waste was ensiled to preserve lignocellulosic biomass for use as biofuel. Furthermore, the effects of different fresh mass fractions (0.3 and 0.6 % of formic or acetic acid on the mixed silage quality were evaluated to guarantee its quality. The application of formic or acetic acid prior to mixing the silage led to higher water-soluble carbohydrate fractions than the negative control, indicating that both acids contributed to preservation of water-soluble carbohydrates during storage for 170 days. The dry matter content was also increased after storage from 90 to 170 days. It was found that the content of neutral and acid detergent fibre, cellulose and holocellulose (the sum of cellulose and hemicellulose in mixed silage treated with formic or acetic acid was significantly lower than that obtained in the negative control. The pH and the ratio of ammoniacal nitrogen to total nitrogen in mixed silage treated with acetic acid also significantly decreased. Furthermore, the addition of formic or acetic acid significantly weakened the fermentation intensity of lactic acid, depending on the ratio of lactic to acetic acid, as well as the ratio of lactic acid to total organic acids. The number of bacterial species and their relative abundance shifted during silage mixing, wherein microbial communities at phylum level mainly consisted of Proteobacteria and Firmicutes. The dominant bacteria were also observed to shift from Lactobacillus and Enterobacter in presilage biomass to Lactobacillus and Paralactobacillus. Specifically, Enterobacter disappeared after 130 days of storage. In conclusion, the addition of a low dose of acetic acid to fresh mass (0.3 % could effectively improve the fermentation quality and is conducive to the preservation of the organic components.

  14. Method for the determination of carboxylic acids in industrial effluents using dispersive liquid-liquid microextraction with injection port derivatization gas chromatography-mass spectrometry.

    Science.gov (United States)

    Makoś, Patrycja; Fernandes, Andre; Boczkaj, Grzegorz

    2017-09-29

    The paper presents a new method for the determination of 15 carboxylic acids in samples of postoxidative effluents from the production of petroleum bitumens using ion-pair dispersive liquid-liquid microextraction and gas chromatography coupled to mass spectrometry with injection port derivatization. Several parameters related to the extraction and derivatization efficiency were optimized. Under optimized experimental conditions, the obtained limit of detection and quantification ranged from 0.0069 to 1.12μg/mL and 0.014 to 2.24μg/mL, respectively. The precision (RSD ranged 1.29-6.42%) and recovery (69.43-125.79%) were satisfactory. Nine carboxylic acids at concentrations ranging from 0.10μg/mL to 15.06μg/mL were determined in the raw wastewater and in samples of effluents treated by various oxidation methods. The studies revealed a substantial increase of concentration of benzoic acids, in samples of wastewater after treatment, which confirms the need of carboxylic acids monitoring during industrial effluent treatment processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Syntheses of {gamma}-aminobutyric-1-{sup 14}C and of {alpha}-aminoadipic-6-{sup 14}C acid from methoxy-3 chloropropyl-magnesium and marked carbon dioxide; Syntheses de l'acide {gamma}-aminobutyrique{sup 14}C-1 et de l'acide {alpha}-aminoadipique {sup 14}C-6 a partir de methoxy-3 chloropropylmagnesium et d'anhydride carbonique marque

    Energy Technology Data Exchange (ETDEWEB)

    Liem, Phung Nhu [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires, Departement des radioelements, Service des molecules marquees

    1967-04-01

    Carbonation of {gamma}-methoxypropyl-magnesium chloride by CO{sub 2} gives {gamma}-methoxy-butyric carboxylic-{sup 14}C acid with a yield of about 95 per cent. When the latter is treated successively with anhydrous HBr and with diazomethane, methyl carboxylic {gamma}-bromobutyrate-{sup 14}C is formed. This in turn gives {gamma}-amino-butyric carboxylic-{sup 14}C acid with an overall yield of 66 per cent with respect to Ba{sup 14}CO{sub 3}, when it is condensed with potassium phthalimide and hydrolyzed by acid. By reacting methyl-{gamma}-bromobutyrate-{sup 14}C with the sodium derivative of ethyl cyanacetamido-acetate in ethanol, followed by an acid hydrolysis, {alpha}-aminoadipic-6-{sup 14}C acid is obtained with an overall yield of 46 per cent with respect to Ba{sup 14}CO{sub 3}. (author) [French] La carbonatation du chlorure de {gamma}-methoxypropylmagnesium par {sup 14}CO{sub 2} donne l'acide {gamma}-methoxybutyrique carboxyle {sup 14}C avec un rendement d'environ 95 pour cent. Ce dernier traite successivement par HBr anhydre et par le diazomethane conduit au {gamma}-bromobutyrate de methyle carboxyle {sup 14}C. Celui-ci condense avec le phtalimide de potassium suivi d'une hydrolyse acide fournit l'acide {gamma}-aminobutyrique carboxyle {sup 14}C avec un rendement global de 66 pour cent par rapport a Ba{sup 14}CO{sub 3}. L'action du {gamma}-bromobutyrate de methyle {sup 14}C sur le derive sode du cyanacetamidoacetate d'ethyle dans l'ethanol suivie d'hydrolyse acide donne l'acide {alpha}-aminoadipique {sup 14}C-6 avec un rendement global de 46 pour cent par rapport a Ba{sup 14}CO{sub 3}. (auteur)

  16. Experimental and Theoretical Investigation of Effects of Ethanol and Acetic Acid on Carcinogenic NDMA Formation in Simulated Gastric Fluid.

    Science.gov (United States)

    Zhang, Ou; Zou, Xuan; Li, Qi-Hong; Sun, Zhi; Liu, Yong Dong; Zhong, Ru Gang

    2016-07-07

    N-nitrosodimethylamine (NDMA), as a representative of endogenously formed N-nitroso compounds (NOCs), has become the focus of considerable research interest due to its unusually high carcinogenicity. In this study, effects of ethanol and acetic acid on the formation of NDMA from dimethylamine (DMA) and nitrite in simulated gastric fluid (SGF) were investigated. Experimental results showed that ethanol in the concentrations of 1-8% (v/v) and acetic acid in the concentrations of 0.01-8% (v/v) exhibit inhibitory and promotion effects on the formation of NDMA, respectively. Moreover, they are both in a dose-dependent manner with the largest inhibition/promotion rate reaching ∼70%. Further experimental investigations indicate that ethanol and acetic acid are both able to scavenge nitrite in SGF. It implies that there are interactions of ethanol and acetic acid with nitrite or nitrite-related nitrosating agents rather than DMA. Theoretical calculations confirm the above experimental results and demonstrate that ethanol and acetic acid can both react with nitrite-related nitrosating agents to produce ethyl nitrite (EtONO) and acetyl nitrite (AcONO), respectively. Furthermore, the reactivities of ethyl nitrite, acetyl nitrite, and dinitrogen trioxide reacting with DMA were found in the order of AcONO > N2O3 ≫ EtONO. This is probably the main reason why there are completely different effects of ethanol and acetic acid on NDMA formation. On the basis of the above results, two requirements for a potential inhibitor of NOCs formation in SGF were provided. The results obtained in this study will be helpful in better understanding the inhibition/promotion mechanisms of compounds on NDMA formation in SGF and searching for protective substances to prevent carcinogenic NOCs formation.

  17. Comparative in vitro toxicity assessment of perfluorinated carboxylic acids.

    Science.gov (United States)

    Mahapatra, Cecon T; Damayanti, Nur P; Guffey, Samuel C; Serafin, Jennifer S; Irudayaraj, Joseph; Sepúlveda, Maria S

    2017-06-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are synthetic fluorinated compounds that are highly bioaccumulative and persistent organic pollutants. Perfluorooctanoic acid (PFOA), an eight-carbon chain perfluorinated carboxylic acid, was used heavily for the production of fluoropolymers, but concerns have led to its replacement by shorter carbon chain homologues such as perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA). However, limited toxicity data exist for these substitutes. We evaluated the toxicity of PFOA, PFHxA and PFBA on a zebrafish liver cell line and investigated the effects of exposure on cell metabolism. Gross toxicity after 96 h of exposure was highest for PFOA and PFO - , while PFHxA and PFBA exhibited lower toxicity. Although the structural similarity of these compounds to fatty acids suggests the possibility of interference with the transport and metabolism of lipids, we could not detect any differential expression of peroxisome proliferator-activated receptor (ppar-α, -β and -γ), fabp3 and crot genes after 96 h exposure to up to 10 ppm of the test compounds. However, we observed localized lipid droplet accumulation only in PFBA-exposed cells. To study the effects of these compounds on cell metabolism, we conducted fluorescence lifetime imaging microscopy using naturally fluorescent biomarkers, NADH and FAD. The fluorescence lifetimes of NADH and FAD and the bound/free ratio of each of these coenzymes decreased in a dose- and carbon length-dependent manner, suggesting disruption of cell metabolism. In sum, our study revealed that PFASs with shorter carbon chains are less toxic than PFOA, and that exposure to sublethal dosage of PFOA, PFHxA or PFBA affects cell metabolism. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Visualization of early events in acetic acid denaturation of HIV-1 protease: a molecular dynamics study.

    Directory of Open Access Journals (Sweden)

    Aditi Narendra Borkar

    Full Text Available Protein denaturation plays a crucial role in cellular processes. In this study, denaturation of HIV-1 Protease (PR was investigated by all-atom MD simulations in explicit solvent. The PR dimer and monomer were simulated separately in 9 M acetic acid (9 M AcOH solution and water to study the denaturation process of PR in acetic acid environment. Direct visualization of the denaturation dynamics that is readily available from such simulations has been presented. Our simulations in 9 M AcOH reveal that the PR denaturation begins by separation of dimer into intact monomers and it is only after this separation that the monomer units start denaturing. The denaturation of the monomers is flagged off by the loss of crucial interactions between the α-helix at C-terminal and surrounding β-strands. This causes the structure to transit from the equilibrium dynamics to random non-equilibrating dynamics. Residence time calculations indicate that denaturation occurs via direct interaction of the acetic acid molecules with certain regions of the protein in 9 M AcOH. All these observations have helped to decipher a picture of the early events in acetic acid denaturation of PR and have illustrated that the α-helix and the β-sheet at the C-terminus of a native and functional PR dimer should maintain both the stability and the function of the enzyme and thus present newer targets for blocking PR function.

  19. High fluorescence emission of carboxylic acid functionalized polystyrene/BaTiO{sub 3} nanocomposites and rare earth metal complexes: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X. T.; Showkat, A. M.; Wang, Z.; Lim, K. T., E-mail: ktlim@pknu.ac.kr [Department of Imaging System Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-03-30

    Noble fluorescence nanocomposite compound based on barium titanate nanoparticles (BTO), polystyrene (PSt), and terbium ion (Tb{sup 3+}) was synthesized by a combination of surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, Friedel-Crafts alkylation reaction and coordinate chemistry. Initially, a modification of surface of BTO was conducted by an exchange process with S-benzyl S’-trimethoxysilylpropyltrithiocarbonate to create macro-initiator for polymerization of styrene. Subsequently, aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-COOH) was generated by substitution reaction between 4-(Chloromethyl) benzoic acid and PSt chains. The coordination of the nanohybrids with Tb{sup 3+} ions afforded fluorescent Tb{sup 3+} tagged aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-Tb{sup 3+}) complexes. Structure, morphology, and fluorescence properties of nanohybrid complexes were investigated by respective physical and spectral studies. FT-IR and SEM analyses confirmed the formation of BTO-g-PSt-Tb{sup 3+}nanohybrids. Furthermore, TGA profiles demonstrated the grafting of aryl carboxylic acid functionalized polystyrene on BTO surface. Optical properties of BTO-g-PSt-Tb{sup 3+} complexes were investigated by fluorescence spectroscopy.

  20. Identification of Key Residues for Enzymatic Carboxylate Reduction

    Directory of Open Access Journals (Sweden)

    Holly Stolterfoht

    2018-02-01

    Full Text Available Carboxylate reductases (CARs, E.C. 1.2.1.30 generate aldehydes from their corresponding carboxylic acid with high selectivity. Little is known about the structure of CARs and their catalytically important amino acid residues. The identification of key residues for carboxylate reduction provides a starting point to gain deeper understanding of enzymatic carboxylate reduction. A multiple sequence alignment of CARs with confirmed activity recently identified in our lab and from the literature revealed a fingerprint of conserved amino acids. We studied the function of conserved residues by multiple sequence alignments and mutational replacements of these residues. In this study, single-site alanine variants of Neurospora crassa CAR were investigated to determine the contribution of conserved residues to the function, expressability or stability of the enzyme. The effect of amino acid replacements was investigated by analyzing enzymatic activity of the variants in vivo and in vitro. Supported by molecular modeling, we interpreted that five of these residues are essential for catalytic activity, or substrate and co-substrate binding. We identified amino acid residues having significant impact on CAR activity. Replacement of His 237, Glu 433, Ser 595, Tyr 844, and Lys 848 by Ala abolish CAR activity, indicating their key role in acid reduction. These results may assist in the functional annotation of CAR coding genes in genomic databases. While some other conserved residues decreased activity or had no significant impact, four residues increased the specific activity of NcCAR variants when replaced by alanine. Finally, we showed that NcCAR wild-type and mutants efficiently reduce aliphatic acids.

  1. Towards modelling the vibrational signatures of functionalized surfaces: carboxylic acids on H-Si(111) surfaces

    Science.gov (United States)

    Giresse Tetsassi Feugmo, Conrard; Champagne, Benoît; Caudano, Yves; Cecchet, Francesca; Chabal, Yves J.; Liégeois, Vincent

    2012-03-01

    In this work, we investigate the adsorption process of two carboxylic acids (stearic and undecylenic) on a H-Si(111) surface via the calculation of structural and energy changes as well as the simulation of their IR and Raman spectra. The two molecules adsorb differently at the surface since the stearic acid simply physisorbs while the undecylenic acid undergoes a chemical reaction with the hydrogen atoms of the surface. This difference is observed in the change of geometry during the adsorption. Indeed, the chemisorption of the undecylenic acid has a bigger impact on the structure than the physisorption of the stearic acid. Consistently, the former is also characterized by a larger value of adsorption energy and a smaller value of the tilting angle with respect to the normal plane. For both the IR and Raman signatures, the spectra of both molecules adsorbed at the surface are in a first approximation the superposition of the spectra of the Si cluster and of the carboxylic acid considered individually. The main deviation from this simple observation is the peak of the stretching Si-H (ν(Si-H)) mode, which is split into two peaks upon adsorption. As expected, the splitting is bigger for the chemisorption than the physisorption. The modes corresponding to atomic displacements close to the adsorption site display a frequency upshift by a dozen wavenumbers. One can also see the disappearance of the peaks associated with the C=C double bond when the undecylenic acid chemisorbs at the surface. The Raman and IR spectra are complementary and one can observe here that the most active Raman modes are generally IR inactive. Two exceptions to this are the two ν(Si-H) modes which are active in both spectroscopies. Finally, we compare our simulated spectra with some experimental measurements and we find an overall good agreement.

  2. Towards modelling the vibrational signatures of functionalized surfaces: carboxylic acids on H-Si(111) surfaces

    International Nuclear Information System (INIS)

    Tetsassi Feugmo, Conrard Giresse; Champagne, Benoît; Liégeois, Vincent; Caudano, Yves; Cecchet, Francesca; Chabal, Yves J

    2012-01-01

    In this work, we investigate the adsorption process of two carboxylic acids (stearic and undecylenic) on a H-Si(111) surface via the calculation of structural and energy changes as well as the simulation of their IR and Raman spectra. The two molecules adsorb differently at the surface since the stearic acid simply physisorbs while the undecylenic acid undergoes a chemical reaction with the hydrogen atoms of the surface. This difference is observed in the change of geometry during the adsorption. Indeed, the chemisorption of the undecylenic acid has a bigger impact on the structure than the physisorption of the stearic acid. Consistently, the former is also characterized by a larger value of adsorption energy and a smaller value of the tilting angle with respect to the normal plane. For both the IR and Raman signatures, the spectra of both molecules adsorbed at the surface are in a first approximation the superposition of the spectra of the Si cluster and of the carboxylic acid considered individually. The main deviation from this simple observation is the peak of the stretching Si-H (ν(Si-H)) mode, which is split into two peaks upon adsorption. As expected, the splitting is bigger for the chemisorption than the physisorption. The modes corresponding to atomic displacements close to the adsorption site display a frequency upshift by a dozen wavenumbers. One can also see the disappearance of the peaks associated with the C=C double bond when the undecylenic acid chemisorbs at the surface. The Raman and IR spectra are complementary and one can observe here that the most active Raman modes are generally IR inactive. Two exceptions to this are the two ν(Si-H) modes which are active in both spectroscopies. Finally, we compare our simulated spectra with some experimental measurements and we find an overall good agreement. (paper)

  3. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ishii Jun

    2011-01-01

    Full Text Available Abstract Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. Results In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Conclusions Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering.

  4. Olfactory attraction of Drosophila suzukii by symbiotic acetic acid bacteria

    KAUST Repository

    Mazzetto, Fabio

    2016-03-24

    Some species of acetic acid bacteria (AAB) play relevant roles in the metabolism and physiology of Drosophila spp. and in some cases convey benefits to their hosts. The pest Drosophila suzukii harbors a set of AAB similar to those of other Drosophila species. Here, we investigate the potential to exploit the ability of AAB to produce volatile substances that attract female D. suzukii. Using a two-way olfactometer bioassay, we investigate the preference of D. suzukii for strains of AAB, and using solid-phase microextraction gas chromatography–mass spectrometry we specifically characterize their volatile profiles to identify attractive and non-attractive components produced by strains from the genera Acetobacter, Gluconobacter, and Komagataeibacter. Flies had a preference for one strain of Komagataeibacter and two strains of Gluconobacter. Analyses of the volatile profiles from the preferred Gluconobacter isolates found that acetic acid is distinctively emitted even after 2 days of bacterial growth, confirming the relevance of this volatile in the profile of this isolate for attracting flies. Analyses of the volatile profile from the preferred Komagataeibacter isolate showed that a different volatile in its profile could be responsible for attracting D. suzukii. Moreover, variation in the concentration of butyric acid derivatives found in some strains may influence the preference of D. suzukii. Our results indicate that Gluconobacter and Komagataeibacter strains isolated from D. suzukii have the potential to provide substances that could be exploited to develop sustainable mass-trapping-based control approaches. © 2016 Springer-Verlag Berlin Heidelberg

  5. Olfactory attraction of Drosophila suzukii by symbiotic acetic acid bacteria

    KAUST Repository

    Mazzetto, Fabio; Gonella, Elena; Crotti, Elena; Vacchini, Violetta; Syrpas, Michail; Pontini, Marianna; Mangelinckx, Sven; Daffonchio, Daniele; Alma, Alberto

    2016-01-01

    Some species of acetic acid bacteria (AAB) play relevant roles in the metabolism and physiology of Drosophila spp. and in some cases convey benefits to their hosts. The pest Drosophila suzukii harbors a set of AAB similar to those of other Drosophila species. Here, we investigate the potential to exploit the ability of AAB to produce volatile substances that attract female D. suzukii. Using a two-way olfactometer bioassay, we investigate the preference of D. suzukii for strains of AAB, and using solid-phase microextraction gas chromatography–mass spectrometry we specifically characterize their volatile profiles to identify attractive and non-attractive components produced by strains from the genera Acetobacter, Gluconobacter, and Komagataeibacter. Flies had a preference for one strain of Komagataeibacter and two strains of Gluconobacter. Analyses of the volatile profiles from the preferred Gluconobacter isolates found that acetic acid is distinctively emitted even after 2 days of bacterial growth, confirming the relevance of this volatile in the profile of this isolate for attracting flies. Analyses of the volatile profile from the preferred Komagataeibacter isolate showed that a different volatile in its profile could be responsible for attracting D. suzukii. Moreover, variation in the concentration of butyric acid derivatives found in some strains may influence the preference of D. suzukii. Our results indicate that Gluconobacter and Komagataeibacter strains isolated from D. suzukii have the potential to provide substances that could be exploited to develop sustainable mass-trapping-based control approaches. © 2016 Springer-Verlag Berlin Heidelberg

  6. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid.

    Directory of Open Access Journals (Sweden)

    Pradeep Mishra

    Full Text Available Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S-amide to (S-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH. IaaH is known to catalyse conversion of indole-3-acetamide (IAM to indole-3-acetic acid (IAA, which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To

  7. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid.

    Science.gov (United States)

    Mishra, Pradeep; Kaur, Suneet; Sharma, Amar Nath; Jolly, Ravinder S

    2016-01-01

    Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S)-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R)-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S)-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline)-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S)-amide to (S)-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH). IaaH is known to catalyse conversion of indole-3-acetamide (IAM) to indole-3-acetic acid (IAA), which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To the best of

  8. Various causes behind the desorption hysteresis of carboxylic acids on mudstones.

    Science.gov (United States)

    Rasamimanana, S; Lefèvre, G; Dagnelie, R V H

    2017-02-01

    Adsorption desorption is a key factor for leaching, migration and (bio)degradation of organic pollutants in soils and sediments. Desorption hysteresis of apolar organic compounds is known to be correlated with adsorption/diffusion into soil organic matter. This work focuses on the desorption hysteresis of polar organic compounds on a natural mudstone sample. Acetic, citric and ortho-phthalic acids displayed adsorption-desorption hysteresis on Callovo-Oxfordian mudstone. The non-reversible behaviours resulted from three different mechanisms. Adsorption and desorption kinetics were evaluated using 14C- and 3H-labelled tracers and an isotopic exchange method. The solid-liquid distribution ratio of acetate decreased using a NaN 3 bactericide, indicating a rapid bacterial consumption compared with negligible adsorption. The desorption hysteresis of phthalate was apparent and suppressed by the equilibration of renewal pore water with mudstone. This confirms the significant and reversible adsorption of phthalate. Finally, persistent desorption hysteresis was evidenced for citrate. In this case, a third mechanism should be considered, such as the incorporation of citrate in the solid or a chemical perturbation, leading to strong desorption resilience. The results highlighted the different pathways that polar organic pollutants might encounter in a similar environment. Data on phthalic acid is useful to predict the retarded transport of phthalate esters and amines degradation products in sediments. The behaviour of citric acid is representative of polydentate chelating agents used in ore and remediation industries. The impact of irreversible adsorption on solid/solution partitioning and transport deserves further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Synthesis, characterization and crystal structure of (2RS,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid

    Science.gov (United States)

    Muche, Simon; Müller, Matthias; Hołyńska, Małgorzata

    2018-03-01

    The condensation reaction of ortho-vanillin and L-cysteine leads to formation of a racemic mixture of (2RS,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid and not, as reported in the available literature, to a Schiff base. The racemic mixture was fully characterized by 1D and 2D NMR techniques, ESI-MS and X-ray diffraction. Addition of ZnCl2 led to formation of crystals in form of colorless needles, suitable for X-ray diffraction studies. The measured crystals were identified as the diastereomer (2R,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid 1. The bulk material is racemic. Thiazolidine exists as zwitterion in solid state, as indicated by the crystal structure.

  10. Root-uptake of 14C derived from acetic acid and 14C transfer to rice edible parts

    International Nuclear Information System (INIS)

    Ogiyama, Shinichi; Suzuki, Hiroyuki; Inubushi, Kazuyuki; Takeda, Hiroshi; Uchida, Shigeo

    2010-01-01

    Three types of culture experiments using paddy rice (Oryza sativa L.) were performed to examine root-uptake of 14 C in the form of acetic acid: double pot experiment (hydroponics), wet culture experiment (submerged sand medium), and chamber experiment (hydroponics and submerged sand medium). The 14 C radioactivity in the plant, mediums, and atmospheric carbon dioxide ( 14 CO 2 ) in the chamber were determined, and the distribution of 14 C in the plant was visualized using autoradiography. In the double pot experiment, the shoot of the plant and the lower root which was soaked in the culture solution had 14 C radioactivity, but the upper root which did not have contact with the solution had none. There were also 14 C radioactivity in the grains and roots in the wet culture experiment. Results of the chamber experiment showed that 14 CO 2 gas was released from the culture solution in both types of cultures. Results indicated that the 14 C-acetic acid absorbed by rice plant through its root would be very small. Most of the 14 C-acetic acid was transformed into gaseous forms either in the culture solution or rhizosphere. A relatively longer time would be needed to assimilate 14 C derived from acetic acid to grain parts after it was once absorbed by the shoot through the root. Availability of 14 C for the plant in sand culture was considered to be decreased compared with that for the plant in the hydroponics experiment. It was suggested that rice plant absorbed and assimilated 14 C through the plant roots not because of uptake of 14 C-acetic acid but because of uptake of 14 C in gaseous forms such as 14 CO 2 .

  11. The influence of surface oxygen and hydroxyl groups on the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate on pure Pd(1 0 0): A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanping [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Dong, Xiuqin [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Yu, Yingzhe, E-mail: yzhyu@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Zhang, Minhua, E-mail: mhzhangtj@163.com [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China)

    2016-12-01

    Highlights: • All dehydrogenation reactions in vinyl acetate synthesis on Pd(1 0 0) were studied. • The energy barriers of the transition state of the three reactions were calculated. • The influence of surface Os and OHs on all dehydrogenation actions was discussed. - Abstract: On the basis of a Langmuir–Hinshelwood-type mechanism, the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate (VAH) on pure Pd(1 0 0) with surface oxygen atoms (Os) and hydroxyl groups (OHs) was studied with density functional theory (DFT) method. Our calculation results show that both Os and OHs can consistently reduce the activation energies of dehydrogenation of ethylene, acetic acid and VAH to some degree with only one exception that OHs somehow increase the activation energy of VAH. Based on Langmuir–Hinshelwood mechanism, the three dehydrogenation reactions in presence of surface Os and OHs are almost consistently favored, compared with the corresponding processes on clean Pd(1 0 0) surfaces, and thus a Langmuir–Hinshelwood-type mechanism may not be excluded beforehand when investigating the microscopic performance of the oxygen-assisted vinyl acetate synthesis on Pd(1 0 0) catalysts.

  12. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.

    Science.gov (United States)

    Shui, Zong-Xia; Qin, Han; Wu, Bo; Ruan, Zhi-yong; Wang, Lu-shang; Tan, Fu-Rong; Wang, Jing-Li; Tang, Xiao-Yu; Dai, Li-Chun; Hu, Guo-Quan; He, Ming-Xiong

    2015-07-01

    Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84% theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89%. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering.

  13. Effect of humic acid on the underpotential deposition-stripping voltammetry of copper in acetic acid soil extract solutions at mercaptoacetic acid-modified gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Gregoire; Beni, Valerio; Dillon, Patrick H.; Barry, Thomas; Arrigan, Damien W.M

    2004-05-24

    Electrochemical measurements were undertaken for the investigation of the underpotential deposition-stripping process of copper at bare and modified gold electrodes in 0.11 M acetic acid, the first fraction of the European Union's Bureau Communautaire de References (BCR) sequential extraction procedure for fractionating metals within soils and sediments. Gold electrodes modified with mercaptoacetic acid showed higher sensitivity for the detection of copper than bare gold electrodes, both in the absence and in the presence of humic acid in acetic acid solutions, using the underpotential deposition-stripping voltammetry (UPD-SV) method. In the presence of 50 mg l{sup -1} of humic acid, the mercaptoacetic acid modified electrode proved to be 1.5 times more sensitive than the bare gold electrode. The mercaptoacetic acid monolayer formed on the gold surface provided efficient protection against the adsorption of humic acid onto the gold electrode surface. Variation of the humic acid concentration in the solution showed little effect on the copper stripping signal at the modified electrode. UPD-SV at the modified electrode was applied to the analysis of soil extract samples. Linear correlation of the electrochemical results with atomic spectroscopic results yielded the straight-line equation y ({mu}g l{sup -1}) = 1.10x - 44 (ppb) (R=0.992, n=6), indicating good agreement between the two methods.

  14. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    KAUST Repository

    Zhang, Jizhe

    2014-09-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40, is capable of converting various biomass-derived substrates to formic acid and acetic acid with high selectivity in a water medium and oxygen atmosphere. Under optimized reaction conditions, H4PVMo11O40 gave an exceptionally high yield of formic acid (67.8%) from cellulose, far exceeding the values achieved in previous catalytic systems. Our study demonstrates that heteropoly acids are generally effective catalysts for biomass conversion due to their strong acidities, whereas the composition of metal addenda atoms in the catalysts has crucial influence on the reaction pathway and the product selectivity. © 2013 Elsevier B.V.

  15. Improving the environmental profile of wood panels via co-production of ethanol and acetic acid.

    Science.gov (United States)

    Earles, J Mason; Halog, Anthony; Shaler, Stephen

    2011-11-15

    The oriented strand board (OSB) biorefinery is an emerging technology that could improve the building, transportation, and chemical sectors' environmental profiles. By adding a hot water extraction stage to conventional OSB panel manufacturing, hemicellulose polysaccharides can be extracted from wood strands and converted to renewably sourced ethanol and acetic acid. Replacing fossil-based gasoline and acetic acid has the potential to reduce greenhouse gas (GHG) emissions, among other possible impacts. At the same time, hemicellulose extraction could improve the environmental profile of OSB panels by reducing the level of volatile organic compounds (VOCs) emitted during manufacturing. In this study, the life cycle significance of such GHG, VOC, and other emission reductions was investigated. A process model was developed based on a mix of laboratory and industrial-level mass and energy flow data. Using these data a life cycle assessment (LCA) model was built. Sensitive process parameters were identified and used to develop a target production scenario for the OSB biorefinery. The findings suggest that the OSB biorefinery's deployment could substantially improve human and ecosystem health via reduction of select VOCs compared to conventionally produced OSB, gasoline, and acetic acid. Technological advancements are needed, however, to achieve desirable GHG reductions.

  16. The effect of homogenization pressure and stages on the amounts of Lactic and Acetic acids of probiotic yoghurt

    Directory of Open Access Journals (Sweden)

    R Massoud

    2014-12-01

    Full Text Available Nowadays the use of probiotic products especially yogurt, due to having wonderful and health properties, has become popular in the world. In this study, the effect of homogenization pressure (100, 150 and 200 bars and stage (single and two on the amount of lactic and acetic acids was investigated. Yoghurts were manufactured from low-fat milk treated using high pressure homogenization at 100,150 and 200 bar and at 60°C. The amount of lactic and acetic acids was determined after the days 1, 7, 14 and 21 of storage at 4ºC. The experiments were set up using a completely randomized design. With the increase of pressure and stage of homogenization, the amount of both acids was increased (p<0.01. The greatest amount of lactic and acetic acids during the storage period was observed in the sample homogenized at a pressure of 200 bars and two stages.

  17. Antireflectance coating on shielding window glasses using glacial acetic acid at ambient temperature

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.

    2006-01-01

    High density lead glasses having thickness of several centimeters and large dimensions are used as shielding windows in hot cells. To improve visibility, the reflection of light from its optically polished surfaces needs to be minimized to improve transmission as absorption of light in the thick glasses can not be avoided. Antireflectance coating of a material having low refractive index is required for this purpose. Selective leaching of lead at ambient temperature in glacial acetic acid develops a silica rich leached layer on glass surface. Since silica has low refractive index, the leached layer serves as antireflectance coating. Two optically polished discs of shielding window glasses were leached in glacial acetic acid at ambient temperature for 2, 5 and 10 days and their reflectance and transmittance spectra were taken to find effect of leaching. For transparent glass transmittance could be improved from 78.76% to 85.31% after 10 days leaching. Reflectance from the glass could be decreased from 12.48 to 11.67%. For coloured glass transmittance improved from 87.77% to 88.24% after 5 days leaching while reflectance decreased from 12.28% to 5.6% during same period. Based on data generated, 10 days leaching time is recommended for developing anti reflectance coating on transparent shielding window glass and 5 days for coloured shielding window glass. The procedure can be used for shielding windows of any dimensions by fabrication a PVC tank of slightly high dimensions and filling with acetic acid (author)

  18. Effect of alkali metal ions on the pyrrole and pyridine π-electron systems in pyrrole-2-carboxylate and pyridine-2-carboxylate molecules: FT-IR, FT-Raman, NMR and theoretical studies

    Science.gov (United States)

    Świderski, G.; Wojtulewski, S.; Kalinowska, M.; Świsłocka, R.; Lewandowski, W.

    2011-05-01

    The FT-IR, FT-Raman and 1H and 13C NMR spectra of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium, rubidium and caesium pyrrole-2-carboxylates were recorded, assigned and compared in the Li → Na → K → Rb → Cs salt series. The effect of alkali metal ions on the electronic system of ligands was discussed. The obtained results were compared with previously reported ones for pyridine-2-carboxylic acid and alkali metal pyridine-2-carboxylates. Calculations for pyrrole-2-carboxylic acid and Li, Na, K pyrrole-2-carboxylates in B3LYP/6-311++G ** level and Møller-Plesset method in MP2/6-311++G ** level were made. Bond lengths, angles and dipole moments as well as aromaticity indices (HOMA, EN, GEO, I 6) for the optimized structures of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium pyrrole-2-carboxylates were also calculated. The degree of perturbation of the aromatic system of ligand under the influence of metals in the Li → Cs series was investigated with the use of statistical methods (linear correlation), calculated aromaticity indices and Mulliken, NBO and ChelpG population analysis method. Additionally, the Bader theory (AIM) was applied to setting the characteristic of the bond critical points what confirmed the influence of alkali metals on the pyrrole ring.

  19. Syntheses, crystal structures and fluorescent properties of Cd(II), Hg(II) and Ag(I) coordination polymers constructed from 1H-1,2,4-triazole-1-acetic acid

    International Nuclear Information System (INIS)

    Ding Degang; Xie Lixia; Fan Yaoting; Hou Hongwei; Xu Yan

    2009-01-01

    Three new d 10 coordination polymers, namely [Cd(taa)Cl] n 1, [Hg(taa)Cl] n 2, and [Ag 1.5 (taa)(NO 3 ) 0.5 ] n 3 (taa=1H-1,2,4-triazole-1-acatate anion) have been prepared and characterized by elemental analysis, IR, and single crystal X-ray diffraction. Compound 1 consists of two-dimensional layers constructed by carboxyl-linked helical chains, which are further linked through carboxyl group to generate a unique 3D open framework. Topological analysis reveals that the structure of 1 can be classified as an unprecedented (3,8)-connected network with the Schlaefli symbol (4.5 2 ) 2 (4 2 .5 8 .6 14 .7 3 .8). Compound 2 manifests a doubly interpenetrated decorated α-polonium cubic network with the Schlaefli symbol of (4 10 .6 2 .8 3 ). Compound 3 consists of 2D puckered layers made up of Ag centers and taa - bridges. In addition, all of these compounds are photoluminescent in the solid state with spectra that closely resemble those of the ligand precursor. - Graphical abstract: Three new compounds based on 1H-1,2,4-triazole-1-acetic acid and Cd(II), Hg(II) and Ag(I) salts display luminescent properties and may be potential candidates for luminescent materials.

  20. Determination of the conformation of 2-hydroxy- and 2-aminobenzoic acid dimers using 13C NMR and density functional theory/natural bond order analysis: the central importance of the carboxylic acid carbon.

    Science.gov (United States)

    Burnette, Ronald R; Weinhold, Frank

    2006-07-20

    The 13C chemical shift for the carboxylic acid carbon provides a powerful diagnostic probe to determine the preferred isomeric dimer structures of benzoic acid derivatives undergoing intra- and intermolecular H-bonding in the gas, solution and crystalline phases. We have employed hybrid density functional calculations and natural bond orbital analysis to elucidate the electronic origins of the observed 13C shieldings and their relationship to isomeric stability. We find that delocalizing interactions from the carbonyl oxygen lone pairs (nO) into vicinal carbon-oxygen and carbon-carbon antibonds (sigmaCO*,sigmaCC*) make critical contributions to the 13C shieldings, and these nO --> sigmaCO*, nO --> sigmaCC* interactions are in turn sensitive to the intramolecular interactions that dictate dimer structure and stability. The carboxyl carbon atom can thus serve as a useful detector of subtle structural and conformational features in this pharmacologically important class of carboxylic acid interactions.

  1. Extraction of some acids using aliphatic amines

    International Nuclear Information System (INIS)

    Matutano, L.

    1964-06-01

    Hydrochloric, nitric, sulphuric, perchloric, phosphoric, acetic and formic acids in aqueous solution (0.05 to 10 M) are extracted by amberlite LA2 and trilaurylamine in solution, 5 per cent by volume, in kerosene and xylene respectively. The extraction process consists of: neutralization of the amine salt; a 'molecular extraction', i.e. an extraction using an excess of acid with respect to the stoichiometry of the amine salt. According to the behaviour of the acid during the extraction, three groups may be distinguished: completely dissociated acids, carboxylic acids, phosphoric acid. This classification is also valid for the extraction of the water which occurs simultaneously with that of the acid. An extraction mechanism is put forward for formic acid and the formation constant of its amine salt is calculated. (author) [fr

  2. High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide.

    Science.gov (United States)

    Jourdin, Ludovic; Grieger, Timothy; Monetti, Juliette; Flexer, Victoria; Freguia, Stefano; Lu, Yang; Chen, Jun; Romano, Mark; Wallace, Gordon G; Keller, Jurg

    2015-11-17

    High product specificity and production rate are regarded as key success parameters for large-scale applicability of a (bio)chemical reaction technology. Here, we report a significant performance enhancement in acetate formation from CO2, reaching comparable productivity levels as in industrial fermentation processes (volumetric production rate and product yield). A biocathode current density of -102 ± 1 A m(-2) and an acetic acid production rate of 685 ± 30 (g m(-2) day(-1)) have been achieved in this study. High recoveries of 94 ± 2% of the CO2 supplied as the sole carbon source and 100 ± 4% of electrons into the final product (acetic acid) were achieved after development of a mature biofilm, reaching an elevated product titer of up to 11 g L(-1). This high product specificity is remarkable for mixed microbial cultures, which would make the product downstream processing easier and the technology more attractive. This performance enhancement was enabled through the combination of a well-acclimatized and enriched microbial culture (very fast start-up after culture transfer), coupled with the use of a newly synthesized electrode material, EPD-3D. The throwing power of the electrophoretic deposition technique, a method suitable for large-scale production, was harnessed to form multiwalled carbon nanotube coatings onto reticulated vitreous carbon to generate a hierarchical porous structure.

  3. Determination of perfluoroalkyl carboxylic, sulfonic, and phosphonic acids in food.

    Science.gov (United States)

    Ullah, Shahid; Alsberg, Tomas; Vestergren, Robin; Berger, Urs

    2012-11-01

    A sensitive and accurate method was developed and validated for simultaneous analysis of perfluoroalkyl carboxylic acids, sulfonic acids, and phosphonic acids (PFPAs) at low picograms per gram concentrations in a variety of food matrices. The method employed extraction with acetonitrile/water and cleanup on a mixed-mode co-polymeric sorbent (C8 + quaternary amine) using solid-phase extraction. High-performance liquid chromatographic separation was achieved on a C18 column using a mobile phase gradient containing 5 mM 1-methyl piperidine for optimal chromatographic resolution of PFPAs. A quadrupole time-of-flight high-resolution mass spectrometer operating in negative ion mode was used as detector. Method detection limits were in the range of 0.002 to 0.02 ng g(-1) for all analytes. Sample preparation (extraction and cleanup) recoveries at a spiking level of 0.1 ng g(-1) to a baby food composite were in the range of 59 to 98 %. A strong matrix effect was observed in the analysis of PFPAs in food extracts, which was tentatively assigned to sorption of PFPAs to the injection vial in the solvent-based calibration standard. The method was successfully applied to a range of different food matrices including duplicate diet samples, vegetables, meat, and fish samples.

  4. Determination of the Cyanide Metabolite 2-Aminothiazoline-4-Carboxylic Acid in Urine and Plasma by Gas Chromatography-Mass Spectrometry

    National Research Council Canada - National Science Library

    Logue, Brian A; Kirschten, Nicholas P; Petrikovics, Ilona; Moser, Matthew A; Rockwood, Gary A; Baskin, Steven I

    2005-01-01

    The cyanide metabolite 2-aminothiazoline.4-carboxylic acid (ATCA) is a promising biomarker for cyanide exposure because of its stability and the limitations of direct determination of cyanide and more abundant cyanide metabolites...

  5. Acetic Acid Bacteria as Symbionts of Insects

    KAUST Repository

    Crotti, Elena; Chouaia, Bessem; Alma, Alberto; Favia, Guido; Bandi, Claudio; Bourtzis, Kostas; Daffonchio, Daniele

    2016-01-01

    Acetic acid bacteria (AAB) are being increasingly described as associating with different insect species that rely on sugar-based diets. AAB have been found in several insect orders, among them Diptera, Hemiptera, and Hymenoptera, including several vectors of plant, animal, and human diseases. AAB have been shown to associate with the epithelia of different organs of the host, they are able to move within the insect’s body and to be transmitted horizontally and vertically. Here, we review the ecology of AAB and examine their relationships with different insect models including mosquitoes, leafhoppers, and honey bees. We also discuss the potential use of AAB in symbiont-based control strategies, such as “Trojan-horse” agents, to block the transmission of vector-borne diseases.

  6. Acetic Acid Bacteria as Symbionts of Insects

    KAUST Repository

    Crotti, Elena

    2016-06-14

    Acetic acid bacteria (AAB) are being increasingly described as associating with different insect species that rely on sugar-based diets. AAB have been found in several insect orders, among them Diptera, Hemiptera, and Hymenoptera, including several vectors of plant, animal, and human diseases. AAB have been shown to associate with the epithelia of different organs of the host, they are able to move within the insect’s body and to be transmitted horizontally and vertically. Here, we review the ecology of AAB and examine their relationships with different insect models including mosquitoes, leafhoppers, and honey bees. We also discuss the potential use of AAB in symbiont-based control strategies, such as “Trojan-horse” agents, to block the transmission of vector-borne diseases.

  7. Evolution of the biosynthesis of the branched-chain amino acids

    Science.gov (United States)

    Keefe, Anthony D.; Lazcano, Antonio; Miller, Stanley L.

    1995-01-01

    The origins of the biosynthetic pathways for the branched-chain amino acids cannot be understood in terms of the backwards development of the present acetolactate pathway because it contains unstable intermediates. We propose that the first biosynthesis of the branched-chain amino acids was by the reductive carboxylation of short branched chain fatty acids giving keto acids which were then transaminated. Similar reaction sequences mediated by nonspecific enzymes would produce serine and threomine from the abundant prebiotic compounds glycolic and lactic acids. The aromatic amino acids may also have first been synthesized in this way, e.g. tryptophan from indole acetic acid. The next step would have been the biosynthesis of leucine from alpha-ketoisovalerc acid. The acetolactate pathway developed subsequently. The first version of the Krebs cycle, which was used for amino acid biosynthesis, would have been assembled by making use fo the reductive carboxylation and leucine biosynthesis enzymes, and completed with the development of a single new enzyme, succinate dehydrogenase. This evolutionary scheme suggests that there may be limitations to inferring the origins of metabolism by a simple back extrapolation of current pathways.

  8. Investigation of gel formation and volatilization of acetate acid in magnesium acetate droplets by the optical tweezers.

    Science.gov (United States)

    Lv, Xi-Juan; Wang, Yang; Cai, Chen; Pang, Shu-Feng; Ma, Jia-Bi; Zhang, Yun-Hong

    2018-07-05

    Hygroscopicity and volatility of single magnesium acetate (MgAc 2 ) aerosol particles at various relative humidities (RHs) are studied by a single-beam optical tweezers, and refractive indices (RIs) and morphology are characterized by cavity enhanced Raman spectroscopy. Gel formation and volatilization of acetate acid (HAc) in MgAc 2 droplets are observed. Due to the formation of amorphous gel structure, water transposition in droplets at RH magnesium hydroxide (Mg(OH) 2 ) inclusions are formed in MgAc 2 droplets due to the volatilization of HAc, and whispering gallery modes (WGMs) of MgAc 2 droplets in the Raman spectrum quench after 50,000 s. In sharp contrast, after 86,000 s at RH ≈ 70%, NaAc droplets are in well-mixed liquid states, containing soluble sodium hydroxide (NaOH). At this state, the RI of NaAc droplet is increased, and the quenching of WGMs is not observable. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Application of FIGAERO (Filter Inlet for Gases and AEROsol) coupled to a high resolution time of flight chemical ionization mass spectrometer to field and chamber organic aerosol: Implications for carboxylic acid formation and gas-particle partitioning from monoterpene oxidation

    Science.gov (United States)

    Lopez-Hilfiker, F.; Mohr, C.; Ehn, M.; Rubach, F.; Mentel, T. F.; Kleist, E.; Wildt, J.; Thornton, J. A.

    2013-12-01

    We present measurements of a large suite of gas and particle phase carboxylic acid containing compounds made with a Filter Inlet for Gas and AEROsol (FIGAERO) coupled to a high resolution time of flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. A prototype operated with acetate negative ion proton transfer chemistry was deployed on the Julich Plant Atmosphere Chamber to study a-pinene oxidation, and a modified version was deployed at the SMEAR II forest station in Hyytiälä, Finland and SOAS, in Brent Alabama. We focus here on results from JPAC and Hyytiälä, where we utilized the same ionization method most selective towards carboxylic acids. In all locations, 100's of organic acid compounds were observed in the gas and particles and many of the same composition acids detected in the gas-phase were detected in the particles upon temperature programmed thermal desorption. Particulate organics detected by FIGAERO are highly correlated with organic aerosol mass measured by an AMS, providing additional volatility and molecular level information about collected aerosol. The fraction of a given compound measured in the particle phase follows expected trends with elemental composition, but many compounds would not be well described by an absorptive partitioning model assuming unity activity coefficients. Moreover the detailed structure in the thermal desorption signals reveals a contribution from thermal decomposition of large molecular weight organics and or oligomers with implications for partitioning measurements and model validation

  10. Novel Isoniazid cocrystals with aromatic carboxylic acids: Crystal engineering, spectroscopy and thermochemical investigations

    Science.gov (United States)

    Diniz, Luan F.; Souza, Matheus S.; Carvalho, Paulo S.; da Silva, Cecilia C. P.; D'Vries, Richard F.; Ellena, Javier

    2018-02-01

    Four novel cocrystals of the anti-tuberculosis drug Isoniazid (INH), including two polymorphs, with the aromatic carboxylic acids p-nitrobenzoic (PNBA), p-cyanobenzoic (PCNBA) and p-aminobenzoic (PABA) were rationally designed and synthesized by solvent evaporation. Aiming to explore the possible supramolecular synthons of this API, these cocrystals were fully characterized by X-ray diffraction (SCXRD, PXRD), spectroscopic (FT-IR) and thermal (TGA, DSC, HSM) techniques. The cocrystal formation was found to be mainly driven by the synthons formed by the pyridine and hydrazide moieties. In both INH-PABA polymorphs, the COOH acid groups are H-bonded to pyridine and hydrazide groups giving rise to the acid⋯pyridine and acid⋯hydrazide heterosynthons. In INH-PNBA and INH-PCNBA cocrystals these acid groups are only related to the pyridine moiety. In addition to the structural study, supramolecular and Hirshfeld surface analysis were also performed based on the structural data. The cocrystals were identified from the FT-IR spectra and their thermal behaviors were studied by a combination of DSC, TGA and HSM techniques.

  11. Acid monomer analysis in waterborne polymer systems by targeted labeling of carboxylic acid functionality, followed by pyrolysis - gas chromatography.

    Science.gov (United States)

    Brooijmans, T; Okhuijsen, R; Oerlemans, I; Schoenmakers, P J; Peters, R

    2018-05-14

    Pyrolysis - gas chromatography - (PyGC) is a common method to analyse the composition of natural and synthetic resins. The analysis of acid functionality in, for example, waterborne polyacrylates and polyurethanes polymers has proven to be difficult due to solubility issues, inter- and intramolecular interaction effects, lack of detectability in chromatographic analysis, and lack of thermal stability. Conventional analytical techniques, such as PyGC, cannot be used for the direct detection and identification of acidic monomers, due to thermal rearrangements that take place during pyrolysis. To circumvent this, the carboxylic acid groups are protected prior to thermal treatment by reaction with 2-bromoacetophenone. Reaction conditions are investigated and optimised wrt. conversion measurements. The aproach is applied to waterborne polyacryalates and the results are discussed. This approach enables identification and (semi)quantitative analysis of different acid functionalities in waterborne polymers by PyGC. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Contribution to the Analysis of the Essential Oil of Helichrysum italicum (Roth G. Don. – Determination of Ester Bonded Acids and Phenols

    Directory of Open Access Journals (Sweden)

    Igor Jerković

    2008-04-01

    Full Text Available The essential oil of Helichrysum italicum (Roth G. Don (everlasting orImmortelle essential oil was isolated by hydrodistillation and analysed by GC and GCMS.Forty four compounds were identified. The main components were α-pinene(12.8%, 2-methyl-cyclohexyl pentanoate (11.1 %, neryl acetate (10.4%, 1,7-di-epi-α-cedrene (6.8% and other compounds. The oil was fractionated and ester-containingfraction was hydrolysed with KOH/H2SO4. The liberated volatiles were analysed by GCand GC-MS: three phenols and twenty seven volatile carboxylic acids were identified[70% low fatty acids (C2-C5, 15% C10-C12 acids and 15% other acids]. The main acidswere acetic acid (24.3% propanoic acid (17.2%, 2-methylpropanoic acid (11.4%,dodecanoic acid (8.7%, 2-methylbutanoic acid (8.3%, (Z-2-methylbutenoic acid(5.1% and decanoic acid (4.6%. With respect to the identified bonded carboxylic acids,the minimal number of esters in the oil was twenty seven, but their overall quantity wasprobably larger due to different possible combinations of alcohols with acids to formesters. On the other hand, only six main esters were identified in the oil beforefractionation and hydrolysis.

  13. Surface properties of calcium and magnesium oxide nanopowders grafted with unsaturated carboxylic acids studied with inverse gas chromatography.

    Science.gov (United States)

    Maciejewska, Magdalena; Krzywania-Kaliszewska, Alicja; Zaborski, Marian

    2012-09-28

    Inverse gas chromatography (IGC) was applied at infinite dilution to evaluate the surface properties of calcium and magnesium oxide nanoparticles and the effect of surface grafted unsaturated carboxylic acid on the nanopowder donor-acceptor characteristics. The dispersive components (γ(s)(D)) of the free energy of the nanopowders were determined by Gray's method, whereas their tendency to undergo specific interactions was estimated based on the electron donor-acceptor approach presented by Papirer. The calcium and magnesium oxide nanoparticles exhibited high surface energies (79 mJ/m² and 74 mJ/m², respectively). Modification of nanopowders with unsaturated carboxylic acids decreased their specific adsorption energy. The lowest value of γ(s)(D) was determined for nanopowders grafted with undecylenic acid, approximately 55 mJ/m². The specific interactions were characterised by the molar free energy (ΔG(A)(SP)) and molar enthalpy (ΔH(A)(SP)) of adsorption as well as the donor and acceptor interaction parameters (K(A), K(D)). Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Synthesis and Antiradical/Antioxidant Activities of Caffeic Acid Phenethyl Ester and Its Related Propionic, Acetic, and Benzoic Acid Analoguesc

    Directory of Open Access Journals (Sweden)

    Mohamed Touaibia

    2012-12-01

    Full Text Available Caffeic acid phenethyl ester (CAPE is a bioactive component isolated from propolis. A series of CAPE analogues was synthesized and their antiradical/antioxidant effects analyzed. The effect of the presence of the double bond and of the conjugated system on the antioxidant effect is evaluated with the analogues obtained from 3-(3,4-dihydroxyphenyl propanoic acid. Those obtained from 2-(3,4-dihydroxyphenyl acetic acid and 3,4-dihydroxybenzoic acid allow the evaluation of the effect of the presence of two carbons between the carbonyl and aromatic system.

  15. Membrane fractionation of herring marinade for separation and recovery of fats, proteins, amino acids, salt, acetic acid and water

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Lizarazu, Juncal Martin; Razi Parjikolaei, Behnaz

    2015-01-01

    In the production of marinated herring, nearly one ton of acidic saline marinade is produced per 1.5 tons herring fillet. This spent marinade contains highly valuable compounds such as proteins and amino acids. Membranes are suited to recover these substances. In this work, six membrane stages...... containing sugars, amino acids and smaller peptides and a NF permeate containing salt and acetic acid ready for reuse. 42% of the spent marinade is recovered to substitute fresh water and chemicals. The Waste water amount is reduced 62.5%. Proteins are concentrated 30 times, while amino acids and smaller...

  16. Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

    2011-02-04

    Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

  17. Acetic acid production from marine algae. Progress report No. 1, July 1--September 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J.E.; Augenstein, D.C.; Wise, D.L.

    1977-10-14

    Progress is reported in research designed to develop an economically competitive process for producing acetic acid from biomass for the purpose of sparing petroleum for other uses, to evaluate marine algae as a potential source of biomass, and to document the feasibility of running fermentations in fixed packed bed fermenters. It was demonstrated that marine algae can be fermented to acetic acid. Initial rates of up to 168 meq/1 day were observed. These rates are substantially in excess of the 47 meq/1 day used in the economic projections. Also, when using marine algae as a substrate, acid levels were generated equivalent to the highest reported with other substrates. It was also demonstrated that a 4-foot fixed packet bed fermenter may be operated with marine algae as a substrate at 20 percent solids or 200 meq/1.

  18. An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid.

    Science.gov (United States)

    van Staden, J F; Mashamba, Mulalo G; Stefan, Raluca I

    2002-09-01

    An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid is proposed. A solution of 0.1 mol L(-1) sodium chloride is used as carrier. Titration is achieved by aspirating acetic acid samples between two strong base-zone volumes into a holding coil and by channelling the stack of well-defined zones with flow reversal through a reaction coil to a potentiometric sensor where the peak widths were measured. A linear relationship between peak width and logarithm of the acid concentration was obtained in the range 1-9 g/100 mL. Vinegar samples were analysed without any sample pre-treatment. The method has a relative standard deviation of 0.4% with a sample frequency of 28 samples per hour. The results revealed good agreement between the proposed sequential injection and an automated batch titration method.

  19. Methane reacts with heteropolyacids chemisorbed on silica to produce acetic acid under soft conditions

    KAUST Repository

    Sun, Miao; Abou-Hamad, Edy; Rossini, Aaron J.; Zhang, Jizhe; Lesage, Anne; Zhu, Haibo; Pelletier, Jeremie; Emsley, Lyndon; Caps, Valerie; Basset, Jean-Marie

    2013-01-01

    Selective functionalization of methane at moderate temperature is of crucial economic, environmental, and scientific importance. Here, we report that methane reacts with heteropolyacids (HPAs) chemisorbed on silica to produce acetic acid under soft

  20. Phenazine-1-carboxylic acid influences biofilm development and turnover of rhizobacterial biomass in a soil moisture-dependent manner

    Science.gov (United States)

    Rhizobacterial biofilm development influences terrestrial carbon and nitrogen cycles with ramifications for crop and soil health. Phenazine-1-carboxylic acid (PCA) is a redox-active metabolite produced by rhizobacteria in dryland wheat fields of Washington and Oregon, USA. PCA promotes biofilm dev...