WorldWideScience

Sample records for accurate force production

  1. Attentional Focusing Instructions and Force Production

    Directory of Open Access Journals (Sweden)

    David C Marchant

    2011-01-01

    Full Text Available Research progress assessing the role of attentional focusing instructions on skill acquisition and performance has lead researchers to apply this approach to force production tasks. Initial converging evidence indicates that force production tasks are sensitive to verbal instruction; externally focused instructions (onto movement outcomes, or onto the object force is being exerted against are shown to be more beneficial than internally focused instructions (focusing attention onto the movements being executed. These benefits are observed for maximal and accurate force production, as well as the maintenance of force production in prolonged tasks. A range of mechanisms are identified supporting the proposal that an external focus promotes movement efficiency in line with energy and effort conservation. Future research is required to assess how this developing body of work interacts with the broader understanding of psychological and physiological factors implicated in the effective production, maintenance and limitation of maximal or sub-maximal forces.

  2. Accurate fluid force measurement based on control surface integration

    Science.gov (United States)

    Lentink, David

    2018-01-01

    Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, {{{ {ρ f}} {1 - {ρ f} ( {{ρ b}+{ρ f}} )}.{( {{{{ρ }}b}+{ρ f}} )}}} , depends only on the fluid, {ρ f}, and body, {{ρ }}b, density. Whereas these straightforward solutions work even at the liquid-gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non

  3. Modeling of Non-Gravitational Forces for Precise and Accurate Orbit Determination

    Science.gov (United States)

    Hackel, Stefan; Gisinger, Christoph; Steigenberger, Peter; Balss, Ulrich; Montenbruck, Oliver; Eineder, Michael

    2014-05-01

    Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The precise reconstruction of the satellite's trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency Integrated Geodetic and Occultation Receiver (IGOR) onboard the spacecraft. The increasing demand for precise radar products relies on validation methods, which require precise and accurate orbit products. An analysis of the orbit quality by means of internal and external validation methods on long and short timescales shows systematics, which reflect deficits in the employed force models. Following the proper analysis of this deficits, possible solution strategies are highlighted in the presentation. The employed Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for gravitational and non-gravitational forces. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). The satellite TerraSAR-X flies on a dusk-dawn orbit with an altitude of approximately 510 km above ground. Due to this constellation, the Sun almost constantly illuminates the satellite, which causes strong across-track accelerations on the plane rectangular to the solar rays. The indirect effect of the solar radiation is called Earth Radiation Pressure (ERP). This force depends on the sunlight, which is reflected by the illuminated Earth surface (visible spectra) and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed. The scope of

  4. Accurate van der Waals force field for gas adsorption in porous materials.

    Science.gov (United States)

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Machine learning of accurate energy-conserving molecular force fields

    Science.gov (United States)

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.; Poltavsky, Igor; Schütt, Kristof T.; Müller, Klaus-Robert

    2017-01-01

    Using conservation of energy—a fundamental property of closed classical and quantum mechanical systems—we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol−1 for energies and 1 kcal mol−1 Å̊−1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods. PMID:28508076

  6. High Fidelity Non-Gravitational Force Models for Precise and Accurate Orbit Determination of TerraSAR-X

    Science.gov (United States)

    Hackel, Stefan; Montenbruck, Oliver; Steigenberger, -Peter; Eineder, Michael; Gisinger, Christoph

    Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The increasing demand for precise radar products relies on sophisticated validation methods, which require precise and accurate orbit products. Basically, the precise reconstruction of the satellite’s trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency receiver onboard the spacecraft. The Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for the gravitational and non-gravitational forces. Following a proper analysis of the orbit quality, systematics in the orbit products have been identified, which reflect deficits in the non-gravitational force models. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). Due to the dusk-dawn orbit configuration of TerraSAR-X, the satellite is almost constantly illuminated by the Sun. Therefore, the direct SRP has an effect on the lateral stability of the determined orbit. The indirect effect of the solar radiation principally contributes to the Earth Radiation Pressure (ERP). The resulting force depends on the sunlight, which is reflected by the illuminated Earth surface in the visible, and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed within the presentation. The presentation highlights the influence of non-gravitational force and satellite macro models on the orbit quality of TerraSAR-X.

  7. Effects of oncoming target velocities on rapid force production and accuracy of force production intensity and timing.

    Science.gov (United States)

    Ohta, Yoichi

    2017-12-01

    The present study aimed to clarify the effects of oncoming target velocities on the ability of rapid force production and accuracy and variability of simultaneous control of both force production intensity and timing. Twenty male participants (age: 21.0 ± 1.4 years) performed rapid gripping with a handgrip dynamometer to coincide with the arrival of an oncoming target by using a horizontal electronic trackway. The oncoming target velocities were 4, 8, and 12 m · s -1 , which were randomly produced. The grip force required was 30% of the maximal voluntary contraction. Although the peak force (Pf) and rate of force development (RFD) increased with increasing target velocity, the value of the RFD to Pf ratio was constant across the 3 target velocities. The accuracy of both force production intensity and timing decreased at higher target velocities. Moreover, the intrapersonal variability in temporal parameters was lower in the fast target velocity condition, but constant variability in 3 target velocities was observed in force intensity parameters. These results suggest that oncoming target velocity does not intrinsically affect the ability for rapid force production. However, the oncoming target velocity affects accuracy and variability of force production intensity and timing during rapid force production.

  8. An accurate tangential force-displacement model for granular-flow simulations: Contacting spheres with plastic deformation, force-driven formulation

    International Nuclear Information System (INIS)

    Vu-Quoc, L.; Lesburg, L.; Zhang, X.

    2004-01-01

    An elasto-plastic frictional tangential force-displacement (TFD) model for spheres in contact for accurate and efficient granular-flow simulations is presented in this paper; the present TFD is consistent with the elasto-plastic normal force-displacement (NFD) model presented in [ASME Journal of Applied Mechanics 67 (2) (2000) 363; Proceedings of the Royal Society of London, Series A 455 (1991) (1999) 4013]. The proposed elasto-plastic frictional TFD model is accurate, and is validated against non-linear finite-element analyses involving plastic flows under both loading and unloading conditions. The novelty of the present TFD model lies in (i) the additive decomposition of the elasto-plastic contact area radius into an elastic part and a plastic part, (ii) the correction of the particles' radii at the contact point, and (iii) the correction of the particles' elastic moduli. The correction of the contact-area radius represents an effect of plastic deformation in colliding particles; the correction of the radius of curvature represents a permanent indentation after impact; the correction of the elastic moduli represents a softening of the material due to plastic flow. The construction of both the present elasto-plastic frictional TFD model and its consistent companion, the elasto-plastic NFD model, parallels the formalism of the continuum theory of elasto-plasticity. Both NFD and TFD models form a coherent set of force-displacement (FD) models not available hitherto for granular-flow simulations, and are consistent with the Hertz, Cattaneo, Mindlin, Deresiewicz contact mechanics theory. Together, these FD models will allow for efficient simulations of granular flows (or granular gases) involving a large number of particles

  9. NNLOPS accurate predictions for $W^+W^-$ production arXiv

    CERN Document Server

    Re, Emanuele; Zanderighi, Giulia

    We present novel predictions for the production of $W^+W^-$ pairs in hadron collisions that are next-to-next-to-leading order accurate and consistently matched to a parton shower (NNLOPS). All diagrams that lead to the process $pp\\to e^- \\bar \

  10. An accurate quantification of the flow structure along the acoustic signal cycle in a forced two-phase jet

    Directory of Open Access Journals (Sweden)

    Calvo Bernad Esteban

    2014-03-01

    Full Text Available This paper provides an experimental study of an acoustically forced two-phase air jet generated by a convergent nozzle. The used particles are transparent glass spheres with diameters between 2 and 50 μm (which gives Stokes number of order 1 and the selected forcing frequency (f=400 Hz induces a powerful nearly periodic flow pattern. Measurements were done by a two-colour Phase-Doppler Anemometer. The experimental setup is computer-controlled to provide an accurate control with a high long-term stability. Measurements cover the whole forcing signal cycle. Raw measurements were carefully post-processed to avoid bias induced by the forcing and the instrument setup, as well as obtain right mean values of the dispersed flow. The effect of the forcing and the particle load allows authors to establish the effect of the acoustic forcing and the particle load on the jet.

  11. Production of isometric forces during sustained acceleration.

    Science.gov (United States)

    Sand, D P; Girgenrath, M; Bock, O; Pongratz, H

    2003-06-01

    The operation of high-performance aircraft requires pilots to apply finely graded forces on controls. Since they are often exposed to high levels of acceleration in flight, we investigated to what extent this ability is degraded in such an environment. Twelve healthy non-pilot volunteers were seated in the gondola of a centrifuge and their performance was tested at normal gravity (1 G) and while exposed to sustained forces of 1.5 G and 3 G oriented from head to foot (+Gz). Using an isometric joystick, they attempted to produce force vectors with specific lengths and directions commanded in random order by a visual display. Acceleration had substantial effects on the magnitude of produced force. Compared with 1 G, maximum produced force was about 2 N higher at 1.5 G and about 10 N higher at 3 G. The size of this effect was constant across the different magnitudes, but varied with the direction of the prescribed force. Acceleration degrades control of force production. This finding may indicate that the motor system misinterprets the unusual gravitoinertial environment and/or that proprioceptive feedback is degraded due to increased muscle tone. The production of excessive isometric force could affect the safe operation of high-performance aircraft.

  12. Application of dynamic pseudo fission products and actinides for accurate burnup calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; Leege, P.F.A. de [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Kloosterman, J.L.

    1996-09-01

    The introduction of pseudo fission products for accurate fine-group spectrum calculations during burnup is discussed. The calculation of the density of the pseudo nuclides is done before each spectrum calculation from the actual densities and their cross sections of all nuclides to be lumped into a pseudo fission product. As there are also many actinides formed in the fuel during its life cycle, a pseudo actinide with fission cross section is also introduced. From a realistic burnup calculation it is demonstrated that only a few fission products and actinides need to be included explicitly in a spectrum calculation. All other fission products and actinides can be accurately represented in the pseudo nuclides. (author)

  13. About productive force and labour productivity (questions of the theory and practice

    Directory of Open Access Journals (Sweden)

    Kulik V.I.

    2018-03-01

    Full Text Available the authors consider two intermediaries: the intermediary between the world of the nature and the person – means of work or "fixed capital" of a society as productive force of social activities, and the intermediary inside a society – cost in the form of money without what it is impossible to define labour productivity and structural transformations in a society. The article gives engineering understanding of productive force and productivity of the process equipment by the example of calculation and a choice of the automatic transfer line.

  14. The efficiency of aerodynamic force production in Drosophila.

    Science.gov (United States)

    Lehmann, F O

    2001-12-01

    Total efficiency of aerodynamic force production in insect flight depends on both the efficiency with which flight muscles turn metabolic energy into muscle mechanical power and the efficiency with which this power is converted into aerodynamic flight force by the flapping wings. Total efficiency has been estimated in tethered flying fruit flies Drosophila by modulating their power expenditures in a virtual reality flight simulator while simultaneously measuring stroke kinematics, locomotor performance and metabolic costs. During flight, muscle efficiency increases with increasing flight force production, whereas aerodynamic efficiency of lift production decreases with increasing forces. As a consequence of these opposite trends, total flight efficiency in Drosophila remains approximately constant within the kinematic working range of the flight motor. Total efficiency is broadly independent of different profile power estimates and typically amounts to 2-3%. The animal achieves maximum total efficiency near hovering flight conditions, when the beating wings produce flight forces that are equal to the body weight of the insect. It remains uncertain whether this small advantage in total efficiency during hovering flight was shaped by evolutionary factors or results from functional constraints on both the production of mechanical power by the indirect flight muscles and the unsteady aerodynamic mechanisms in flapping flight.

  15. Estimating product-to-product variations in metal forming using force measurements

    Science.gov (United States)

    Havinga, Jos; van den Boogaard, Ton

    2017-10-01

    The limits of production accuracy of metal forming processes can be stretched by the development of control systems for compensation of product-to-product variations. Such systems require the use of measurements from each semi-finished product. These measurements must be used to estimate the final quality of each product. We propose to predict part of the product-to-product variations in multi-stage forming processes based on force measurements from previous process stages. The reasoning is that final product properties as well as process forces are expected to be correlated since they are both affected by material and process variation. In this study, an approach to construct a moving window process model based on historical data from the process is presented. These regression models can be built and updated in real-time during production. The approach is tested with data from a demonstrator process with cutting, deep drawing and bending stages. It is shown that part of the product-to-product variations in the process can be predicted with the developed process model.

  16. Effect of fatigue on force production and force application technique during repeated sprints.

    Science.gov (United States)

    Morin, Jean-Benoit; Samozino, Pierre; Edouard, Pascal; Tomazin, Katja

    2011-10-13

    We investigated the changes in the technical ability of force application/orientation against the ground vs. the physical capability of total force production after a multiple-set repeated sprints series. Twelve male physical education students familiar with sprint running performed four sets of five 6-s sprints (24s of passive rest between sprints, 3min between sets). Sprints were performed from a standing start on an instrumented treadmill, allowing the computation of vertical (F(V)), net horizontal (F(H)) and total (F(Tot)) ground reaction forces for each step. Furthermore, the ratio of forces was calculated as RF=F(H)F(Tot)(-1), and the index of force application technique (D(RF)) representing the decrement in RF with increase in speed was computed as the slope of the linear RF-speed relationship. Changes between pre- (first two sprints) and post-fatigue (last two sprints) were tested using paired t-tests. Performance decreased significantly (e.g. top speed decreased by 15.7±5.4%; Pmultiple-set repeated sprint series, both the total force production capability and the technical ability to apply force effectively against the ground are altered, the latter to a larger extent than the former. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model.

    Science.gov (United States)

    Kroonblawd, Matthew P; Pietrucci, Fabio; Saitta, Antonino Marco; Goldman, Nir

    2018-04-10

    We demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTB model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol -1 .

  18. Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering

    Science.gov (United States)

    Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel

    2018-06-01

    We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.

  19. The multiple roles of titin in muscle contraction and force production.

    Science.gov (United States)

    Herzog, Walter

    2018-01-20

    Titin is a filamentous protein spanning the half-sarcomere, with spring-like properties in the I-band region. Various structural, signaling, and mechanical functions have been associated with titin, but not all of these are fully elucidated and accepted in the scientific community. Here, I discuss the primary mechanical functions of titin, including its accepted role in passive force production, stabilization of half-sarcomeres and sarcomeres, and its controversial contribution to residual force enhancement, passive force enhancement, energetics, and work production in shortening muscle. Finally, I provide evidence that titin is a molecular spring whose stiffness changes with muscle activation and actin-myosin-based force production, suggesting a novel model of force production that, aside from actin and myosin, includes titin as a "third contractile" filament. Using this three-filament model of sarcomeres, the stability of (half-) sarcomeres, passive force enhancement, residual force enhancement, and the decrease in metabolic energy during and following eccentric contractions can be explained readily.

  20. Morphological characteristics and egg production of forced-moult ...

    African Journals Online (AJOL)

    The forced-moult groups T2 and T3 stopped egg production by 6 days of moult induction and resumed egg production by day 25. T2 and T3 attained a peak egg production of 71% by the second month following resumption of lay. On the other hand, in the T1 egg production progressively decreased with age.

  1. Accurate forced-choice recognition without awareness of memory retrieval

    OpenAIRE

    Voss, Joel L.; Baym, Carol L.; Paller, Ken A.

    2008-01-01

    Recognition confidence and the explicit awareness of memory retrieval commonly accompany accurate responding in recognition tests. Memory performance in recognition tests is widely assumed to measure explicit memory, but the generality of this assumption is questionable. Indeed, whether recognition in nonhumans is always supported by explicit memory is highly controversial. Here we identified circumstances wherein highly accurate recognition was unaccompanied by hallmark features of explicit ...

  2. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields

    Science.gov (United States)

    Lee, M.W.; Meuwly, M.

    2013-01-01

    The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.

  3. Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein conformational equilibria.

    Science.gov (United States)

    Lee, Kuo Hao; Chen, Jianhan

    2017-06-15

    Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non-trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi-scale enhanced sampling technique to re-optimize the generalized-Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and β-hairpin model peptides. Importantly, this force field appears to be free of the over-compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. The new science of sales force productivity.

    Science.gov (United States)

    Ledingham, Dianne; Kovac, Mark; Simon, Heidi Locke

    2006-09-01

    For years, sales managers at many companies have relied on top performers and sheer numbers of sales reps to stay competitive. But while they may have squeaked by on this wing-and-a-prayer technique, their sales teams haven't thrived the way they once did. Today's most successful sales leaders are taking a more scientific approach. Savvy managers are reshaping their tactics in response to changing markets. They are reaching out to new customers in innovative ways. And they are increasing productivity by helping the reps they already have make the most of their skills and resources. Leaders who take a scientific approach to sales force effectiveness have learned to use four levers to boost their reps' productivity in a predictable and manageable way. First, they systematically target their firms' offerings, matching the right products with the right customers. Second, they optimize the automation, tools, and procedures at their disposal, providing reps with the support they need to boost sales.Third, they analyze and manage their reps' performance, measuring both internal processes and results to determine where their teams' strengths and weaknesses are. Fourth, they pay close attention to sales force deployment--how well sales, support, marketing, and delivery resources are matched to customers. These four levers can help sales leaders increase productivity across the board, the authors say, though they have the greatest impact on lower-ranked performers. The overall effect of increasing the average sales per employee can be exponential; it means a company won't have to rely on just a few talented individuals to stay competitive. This is especially important because finding and keeping star salespeople is more difficult than ever. What's more, managers who optimize the sales forces they already have can see returns they never thought possible.

  5. Recent Advances in the Method of Forces: Integrated Force Method of Structural Analysis

    Science.gov (United States)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1998-01-01

    Stress that can be induced in an elastic continuum can be determined directly through the simultaneous application of the equilibrium equations and the compatibility conditions. In the literature, this direct stress formulation is referred to as the integrated force method. This method, which uses forces as the primary unknowns, complements the popular equilibrium-based stiffness method, which considers displacements as the unknowns. The integrated force method produces accurate stress, displacement, and frequency results even for modest finite element models. This version of the force method should be developed as an alternative to the stiffness method because the latter method, which has been researched for the past several decades, may have entered its developmental plateau. Stress plays a primary role in the development of aerospace and other products, and its analysis is difficult. Therefore, it is advisable to use both methods to calculate stress and eliminate errors through comparison. This paper examines the role of the integrated force method in analysis, animation and design.

  6. Charm production and the confining force field

    International Nuclear Information System (INIS)

    Andersson, B.; Bengtsson, H.-U.; Gustafson, G.

    1983-03-01

    We show that charm production at SPS energies can be understood simply from O(α 2 sub (s)) QCD processes when combined with fragmentation of the colour fields stretched by the final state partons. The tension of the confining force field responsible for particle production is found to pull the charmed particles away from the reaction centre, giving rise to a harder x sub (F)-spectrum than would be expected from the bare QCD matrix elements. (Authors)

  7. 76 FR 24025 - Information Collection; Prohibition on Acquisition of Products Produced by Forced or Indentured...

    Science.gov (United States)

    2011-04-29

    ... Acquisition of Products Produced by Forced or Indentured Child Labor AGENCY: Department of Defense (DOD... acquisition of products produced by forced or indentured child labor. DATES: Submit comments on or before..., Prohibition on Acquisition of Products Produced by Forced or Indentured Child Labor, signed by the President...

  8. Interfacial force measurements using atomic force microscopy

    NARCIS (Netherlands)

    Chu, L.

    2018-01-01

    Atomic Force Microscopy (AFM) can not only image the topography of surfaces at atomic resolution, but can also measure accurately the different interaction forces, like repulsive, adhesive and lateral existing between an AFM tip and the sample surface. Based on AFM, various extended techniques have

  9. 76 FR 42709 - Submission for OMB Review; Prohibition on Acquisition of Products Produced by Forced or...

    Science.gov (United States)

    2011-07-19

    ... on Acquisition of Products Produced by Forced or Indentured Child Labor AGENCY: Department of Defense... acquisition of products produced by forced or indentured child labor. DATES: Submit comments on or before... on Acquisition of Products Produced by Forced or Indentured Child Labor, by any of the following...

  10. Bidirectional transfer between joint and individual actions in a task of discrete force production.

    Science.gov (United States)

    Masumoto, Junya; Inui, Nobuyuki

    2017-07-01

    The present study examined bidirectional learning transfer between joint and individual actions involving discrete isometric force production with the right index finger. To examine the effects of practice of joint action on performance of the individual action, participants performed a pre-test (individual condition), practice blocks (joint condition), and a post-test (individual condition) (IJI task). To examine the effects of practice of the individual action on performance during the joint action, the participants performed a pre-test (joint condition), practice blocks (individual condition), and a post-test (joint condition) (JIJ task). Whereas one participant made pressing movements with a target peak force of 10% maximum voluntary contraction (MVC) in the individual condition, two participants produced the target force of the sum of 10% MVC produced by each of them in the joint condition. In both the IJI and JIJ tasks, absolute errors and standard deviations of peak force were smaller post-test than pre-test, indicating bidirectional transfer between individual and joint conditions for force accuracy and variability. Although the negative correlation between forces produced by two participants (complementary force production) became stronger with practice blocks in the IJI task, there was no difference between the pre- and post-tests for the negative correlation in the JIJ task. In the JIJ task, the decrease in force accuracy and variability during the individual action did not facilitate complementary force production during the joint action. This indicates that practice performed by two people is essential for complementary force production in joint action.

  11. Force decay of elastomeric chains - a mechanical design and product comparison study.

    Science.gov (United States)

    Balhoff, David A; Shuldberg, Matthew; Hagan, Joseph L; Ballard, Richard W; Armbruster, Paul C

    2011-03-01

    To evaluate the percentage force decay of elastomeric chain products utilizing three different design mechanisms simulating canine retraction; and to evaluate the percentage force decay of elastomeric chain products from four different companies. In vitro, laboratory study. LSUHSC Dental School, New Orleans, LA, USA. Closed (non-spaced), grey elastomeric chains from four companies were selected for the study. Three acrylic resin jigs were constructed to provide a framework for three simulated space closure mechanisms. The 6-5-3, the chain loop, and the 6-3 were the configuration mechanisms used in the study. An electronic force gauge was used to measure the percentage force decay associated with each elastomeric chain over 28 days at preselected times. There was a significant difference in the mean percentage force decay for the three different mechanisms (P < 0·001). For all four companies, the 6-3 mechanical design had the smallest mean percentage force decay. There was a significant difference in the mean percentage force decay for the different companies (P < 0·001). For all three mechanisms, Ormco had the smallest percentage force decay while Unitek had the highest percentage force decay. The significant difference in the mean percentage force decay for the different mechanisms suggests that the 6-3 design is a more efficient means of closing extraction spaces utilizing elastomeric chains.

  12. Low-q structure of Kr gas at undercritical densities. An accurate SANS determination of triplet forces

    International Nuclear Information System (INIS)

    Guarini, E.; Casanova, G.; Genova Univ.; Bafile, U.; Firenze Univ.; Barocchi, F.; Firenze Univ.

    1999-01-01

    Complete text of publication follows. Besides the promising results of very recent attempts to directly measure the triple-dipole interactions in noble fluids, an alternative method can be applied to get much more accurate experimental information on the long-range triplet contributions from the density behavior of the structure factor S(q) in the low-q region. However this method requires the use of a model for the pair potential and its accuracy critically depends on the agreement between the experimental two-body properties of the fluid and the model assumed. It is shown how this condition is remarkably fulfilled by the results of a SANS measurement in gaseous Kr at densities below 4.3 nm -3 , thus leading to and unprecedented accuracy in the evaluation of triple-dipole forces. (author)

  13. Four new degradation products of doxorubicin: An application of forced degradation study and hyphenated chromatographic techniques

    Directory of Open Access Journals (Sweden)

    Dheeraj Kaushik

    2015-10-01

    Full Text Available Forced degradation study on doxorubicin (DOX was carried out under hydrolytic condition in acidic, alkaline and neutral media at varied temperatures, as well as under peroxide, thermal and photolytic conditions in accordance with International Conference on Harmonization (ICH guidelines Q1(R2. It was found extremely unstable to alkaline hydrolysis even at room temperature, unstable to acid hydrolysis at 80 °C, and to oxidation at room temperature. It degraded to four products (O-I–O-IV in oxidative condition, and to single product (A-I in acid hydrolytic condition. These products were resolved on a C8 (150 mm×4.6 mm, 5 µm column with isocratic elution using mobile phase consisting of HCOONH4 (10 mM, pH 2.5, acetonitrile and methanol (65:15:20, v/v/v. Liquid chromatography–photodiode array (LC–PDA technique was used to ascertain the purity of the products noted in LC–UV chromatogram. For their characterization, a six stage mass fragmentation (MS6 pattern of DOX was outlined through mass spectral studies in positive mode of electrospray ionization (+ESI as well as through accurate mass spectral data of DOX and the products generated through liquid chromatography–time of flight mass spectrometry (LC–MS–TOF on degraded drug solutions. Based on it, O-I–O-IV were characterized as 3-hydroxy-9-desacetyldoxorubicin-9-hydroperoxide, 1-hydroxy-9-desacetyldoxorubicin-9-hydroperoxide, 9-desacetyldoxorubicin-9-hydroperoxide and 9-desacetyldoxorubicin, respectively, whereas A-I was characterized as deglucosaminyl doxorubicin. While A-I was found to be a pharmacopoeial impurity, all oxidative products were found to be new degradation impurities. The mechanisms and pathways of degradation of doxorubicin were outlined and discussed. Keywords: Doxorubicin, TOF, Forced degradation, Liquid chromatography, Degradation product, Mass fragmentation pattern

  14. Bite force and occlusal stress production in hominin evolution.

    Science.gov (United States)

    Eng, Carolyn M; Lieberman, Daniel E; Zink, Katherine D; Peters, Michael A

    2013-08-01

    Maximum bite force affects craniofacial morphology and an organism's ability to break down foods with different material properties. Humans are generally believed to produce low bite forces and spend less time chewing compared with other apes because advances in mechanical and thermal food processing techniques alter food material properties in such a way as to reduce overall masticatory effort. However, when hominins began regularly consuming mechanically processed or cooked diets is not known. Here, we apply a model for estimating maximum bite forces and stresses at the second molar in modern human, nonhuman primate, and hominin skulls that incorporates skeletal data along with species-specific estimates of jaw muscle architecture. The model, which reliably estimates bite forces, shows a significant relationship between second molar bite force and second molar area across species but does not confirm our hypothesis of isometry. Specimens in the genus Homo fall below the regression line describing the relationship between bite force and molar area for nonhuman anthropoids and australopiths. These results suggest that Homo species generate maximum bite forces below those predicted based on scaling among australopiths and nonhuman primates. Because this decline occurred before evidence for cooking, we hypothesize that selection for lower bite force production was likely made possible by an increased reliance on nonthermal food processing. However, given substantial variability among in vivo bite force magnitudes measured in humans, environmental effects, especially variations in food mechanical properties, may also be a factor. The results also suggest that australopiths had ape-like bite force capabilities. Copyright © 2013 Wiley Periodicals, Inc.

  15. A novel three-filament model of force generation in eccentric contraction of skeletal muscles.

    Directory of Open Access Journals (Sweden)

    Gudrun Schappacher-Tilp

    Full Text Available We propose and examine a three filament model of skeletal muscle force generation, thereby extending classical cross-bridge models by involving titin-actin interaction upon active force production. In regions with optimal actin-myosin overlap, the model does not alter energy and force predictions of cross-bridge models for isometric contractions. However, in contrast to cross-bridge models, the three filament model accurately predicts history-dependent force generation in half sarcomeres for eccentric and concentric contractions, and predicts the activation-dependent forces for stretches beyond actin-myosin filament overlap.

  16. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Grutzik, Scott J.; Zehnder, Alan T. [Field of Theoretical and Applied Mechanics, Cornell University, Ithaca, New York 14853 (United States); Gates, Richard S.; Gerbig, Yvonne B.; Smith, Douglas T.; Cook, Robert F. [Nanomechanical Properties Group, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2013-11-15

    There are many atomic force microscopy (AFM) applications that rely on quantifying the force between the AFM cantilever tip and the sample. The AFM does not explicitly measure force, however, so in such cases knowledge of the cantilever stiffness is required. In most cases, the forces of interest are very small, thus compliant cantilevers are used. A number of methods have been developed that are well suited to measuring low stiffness values. However, in some cases a cantilever with much greater stiffness is required. Thus, a direct, traceable method for calibrating very stiff (approximately 200 N/m) cantilevers is presented here. The method uses an instrumented and calibrated nanoindenter to determine the stiffness of a reference cantilever. This reference cantilever is then used to measure the stiffness of a number of AFM test cantilevers. This method is shown to have much smaller uncertainty than previously proposed methods. An example application to fracture testing of nanoscale silicon beam specimens is included.

  17. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers

    International Nuclear Information System (INIS)

    Grutzik, Scott J.; Zehnder, Alan T.; Gates, Richard S.; Gerbig, Yvonne B.; Smith, Douglas T.; Cook, Robert F.

    2013-01-01

    There are many atomic force microscopy (AFM) applications that rely on quantifying the force between the AFM cantilever tip and the sample. The AFM does not explicitly measure force, however, so in such cases knowledge of the cantilever stiffness is required. In most cases, the forces of interest are very small, thus compliant cantilevers are used. A number of methods have been developed that are well suited to measuring low stiffness values. However, in some cases a cantilever with much greater stiffness is required. Thus, a direct, traceable method for calibrating very stiff (approximately 200 N/m) cantilevers is presented here. The method uses an instrumented and calibrated nanoindenter to determine the stiffness of a reference cantilever. This reference cantilever is then used to measure the stiffness of a number of AFM test cantilevers. This method is shown to have much smaller uncertainty than previously proposed methods. An example application to fracture testing of nanoscale silicon beam specimens is included

  18. Factors Affecting Productivity in the United States Naval Construction Force

    National Research Council Canada - National Science Library

    Morton, Darren

    1997-01-01

    By using a craftsman questionnaire, this thesis identifies and ranks the most important factors impairing Petty Officer productivity and morale in the United States Naval Construction Force (Seabees...

  19. The Global Experience of Development of the Theory of Spatial Distribution of Productive Forces

    Directory of Open Access Journals (Sweden)

    Heiman Oleh A.

    2016-01-01

    Full Text Available The publication is aimed at theoretical generalization of the global experience of development of the theory of spatial distribution of productive forces as the basis of regional economy. Considering the evolution of scientific views on the spatial development of territories, taking account of the particularities of the distribution of production, one can allocate and identify several paradigms, which replaced each other, but preserved their connection with the placement of productive forces. Each one of these paradigms or all of them as a whole provide an example of a single historical process associated with the productive forces. Characteristic of a methodology based on the spatiotemporal paradigm is consideration of both time and space factors, which, in substance, take on the qualities of economic categories. Speaking of the use of theoretical developments in the practice of regional development, it should be specified that programs, strategies and other regulations must take into account the linkage between the progressive and the negative trends as well as cyclical nature of economic development, including the global economy, identify the factors that accelerate or retard the passage of every evolutionary spiral, and observe consistency of the productive forces of region with the technological patterns of production.

  20. Discrete sensors distribution for accurate plantar pressure analyses.

    Science.gov (United States)

    Claverie, Laetitia; Ille, Anne; Moretto, Pierre

    2016-12-01

    The aim of this study was to determine the distribution of discrete sensors under the footprint for accurate plantar pressure analyses. For this purpose, two different sensor layouts have been tested and compared, to determine which was the most accurate to monitor plantar pressure with wireless devices in research and/or clinical practice. Ten healthy volunteers participated in the study (age range: 23-58 years). The barycenter of pressures (BoP) determined from the plantar pressure system (W-inshoe®) was compared to the center of pressures (CoP) determined from a force platform (AMTI) in the medial-lateral (ML) and anterior-posterior (AP) directions. Then, the vertical ground reaction force (vGRF) obtained from both W-inshoe® and force platform was compared for both layouts for each subject. The BoP and vGRF determined from the plantar pressure system data showed good correlation (SCC) with those determined from the force platform data, notably for the second sensor organization (ML SCC= 0.95; AP SCC=0.99; vGRF SCC=0.91). The study demonstrates that an adjusted placement of removable sensors is key to accurate plantar pressure analyses. These results are promising for a plantar pressure recording outside clinical or laboratory settings, for long time monitoring, real time feedback or for whatever activity requiring a low-cost system. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Effect of Chamber Wall Proximity on Radiometer Force Production (Preprint)

    National Research Council Canada - National Science Library

    Selden, N. P; Gimelshein, N. E; Gimelshein, S. F; Ketsdever, A. D

    2008-01-01

    ... on a given radiometer configuration in both the free molecule and transitional regimes. The contribution of the chamber walls to both the flowfield structure and radiometric force production were examined for helium, argon, and nitrogen test gases...

  2. Biomechanical force induces the growth factor production in human periodontal ligament-derived cells.

    Science.gov (United States)

    Ichioka, Hiroaki; Yamamoto, Toshiro; Yamamoto, Kenta; Honjo, Ken-Ichi; Adachi, Tetsuya; Oseko, Fumishige; Mazda, Osam; Kanamura, Narisato; Kita, Masakazu

    2016-01-01

    Although many reports have been published on the functional roles of periodontal ligament (PDL) cells, the mechanisms involved in the maintenance and homeostasis of PDL have not been determined. We investigated the effects of biomechanical force on growth factor production, phosphorylation of MAPKs, and intracellular transduction pathways for growth factor production in human periodontal ligament (hPDL) cells using MAPK inhibitors. hPDL cells were exposed to mechanical force (6 MPa) using a hydrostatic pressure apparatus. The levels of growth factor mRNA and protein were examined by real-time RT-PCR and ELISA. The phosphorylation of MAPKs was measured using BD™ CBA Flex Set. In addition, MAPKs inhibitors were used to identify specific signal transduction pathways. Application of biomechanical force (equivalent to occlusal force) increased the synthesis of VEGF-A, FGF-2, and NGF. The application of biomechanical force increased the expression levels of phosphorylated ERK and p38, but not of JNK. Furthermore, the levels of VEGF-A and NGF expression were suppressed by ERK or p38 inhibitor. The growth factors induced by biomechanical force may play a role in the mechanisms of homeostasis of PDL.

  3. Spectral Longwave Cloud Radiative Forcing as Observed by AIRS

    Science.gov (United States)

    Blaisdell, John M.; Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2016-01-01

    AIRS V6 products contain the spectral contributions to Outgoing Longwave Radiation (OLR), clear-sky OLR (OLR(sub CLR)), and Longwave Cloud Radiative Forcing (LWCRF) in 16 bands from 100 cm(exp -1) to 3260 cm(exp -1). We show climatologies of selected spectrally resolved AIRS V6 products over the period of September 2002 through August 2016. Spectrally resolved LWCRF can better describe the response of the Earth system to cloud and cloud feedback processes. The spectral LWCRF enables us to estimate the fraction of each contributing factor to cloud forcing, i.e.: surface temperature, mid to upper tropospheric water vapor, and tropospheric temperature. This presentation also compares the spatial characteristics of LWCRF from AIRS, CERES_EBAF Edition-2.8, and MERRA-2. AIRS and CERES LWCRF products show good agreement. The OLR bias between AIRS and CERES is very close to that of OLR(sub CLR). This implies that both AIRS and CERES OLR products accurately account for the effect of clouds on OLR.

  4. Portfolio theory of optimal isometric force production: Variability predictions and nonequilibrium fluctuation dissipation theorem

    Science.gov (United States)

    Frank, T. D.; Patanarapeelert, K.; Beek, P. J.

    2008-05-01

    We derive a fundamental relationship between the mean and the variability of isometric force. The relationship arises from an optimal collection of active motor units such that the force variability assumes a minimum (optimal isometric force). The relationship is shown to be independent of the explicit motor unit properties and of the dynamical features of isometric force production. A constant coefficient of variation in the asymptotic regime and a nonequilibrium fluctuation-dissipation theorem for optimal isometric force are predicted.

  5. Portfolio theory of optimal isometric force production: Variability predictions and nonequilibrium fluctuation-dissipation theorem

    International Nuclear Information System (INIS)

    Frank, T.D.; Patanarapeelert, K.; Beek, P.J.

    2008-01-01

    We derive a fundamental relationship between the mean and the variability of isometric force. The relationship arises from an optimal collection of active motor units such that the force variability assumes a minimum (optimal isometric force). The relationship is shown to be independent of the explicit motor unit properties and of the dynamical features of isometric force production. A constant coefficient of variation in the asymptotic regime and a nonequilibrium fluctuation-dissipation theorem for optimal isometric force are predicted

  6. PROCEDURES FOR ACCURATE PRODUCTION OF COLOR IMAGES FROM SATELLITE OR AIRCRAFT MULTISPECTRAL DIGITAL DATA.

    Science.gov (United States)

    Duval, Joseph S.

    1985-01-01

    Because the display and interpretation of satellite and aircraft remote-sensing data make extensive use of color film products, accurate reproduction of the color images is important. To achieve accurate color reproduction, the exposure and chemical processing of the film must be monitored and controlled. By using a combination of sensitometry, densitometry, and transfer functions that control film response curves, all of the different steps in the making of film images can be monitored and controlled. Because a sensitometer produces a calibrated exposure, the resulting step wedge can be used to monitor the chemical processing of the film. Step wedges put on film by image recording machines provide a means of monitoring the film exposure and color balance of the machines.

  7. Feedforward signal prediction for accurate motion systems using digital filters

    NARCIS (Netherlands)

    Butler, H.

    2012-01-01

    A positioning system that needs to accurately track a reference can benefit greatly from using feedforward. When using a force actuator, the feedforward needs to generate a force proportional to the reference acceleration, which can be measured by means of an accelerometer or can be created by

  8. Inverse Magnus force in free molecular flow

    Science.gov (United States)

    Herczynski, A.; Weidman, P.

    2003-11-01

    The sidewise force on a spinning sphere translating in a rarified gas is calculated assuming that the flow can be treated as a stream of free molecules. This approach was first introduced by Newton in his investigation of the drag force. While it is not fruitful at subsonic flows in normal conditions, it gives remarkably accurate results at hypersonic speeds. Here it is applied to the high Knudsen number flow over spinning spheres, cylinders, cubes and more generally any spinning parallelepiped. In all cases, the force is in the opposite direction to that of the classical Magnus effect in continuum flow. The simple calculation for a sphere reproduces the isothermal result obtained recently by Borg, et al. (Phys. Fluids, 15, 2003) using Maxwellian distribution functions. For any parallelepiped, including the cube, just like for the sphere and the cylinder, the force is shown to be steady. In each of these, the magnitude of the inverse Magnus force is proprtional to the product of the angular speed, translational speed, and the mas of the gas displaced by the object.

  9. Accurate costs of blood transfusion: a microcosting of administering blood products in the United Kingdom National Health Service.

    Science.gov (United States)

    Stokes, Elizabeth A; Wordsworth, Sarah; Staves, Julie; Mundy, Nicola; Skelly, Jane; Radford, Kelly; Stanworth, Simon J

    2018-04-01

    In an environment of limited health care resources, it is crucial for health care systems which provide blood transfusion to have accurate and comprehensive information on the costs of transfusion, incorporating not only the costs of blood products, but also their administration. Unfortunately, in many countries accurate costs for administering blood are not available. Our study aimed to generate comprehensive estimates of the costs of administering transfusions for the UK National Health Service. A detailed microcosting study was used to cost two key inputs into transfusion: transfusion laboratory and nursing inputs. For each input, data collection forms were developed to capture staff time, equipment, and consumables associated with each step in the transfusion process. Costing results were combined with costs of blood product wastage to calculate the cost per unit transfused, separately for different blood products. Data were collected in 2014/15 British pounds and converted to US dollars. A total of 438 data collection forms were completed by 74 staff. The cost of administering blood was $71 (£49) per unit for red blood cells, $84 (£58) for platelets, $55 (£38) for fresh-frozen plasma, and $72 (£49) for cryoprecipitate. Blood administration costs add substantially to the costs of the blood products themselves. These are frequently incurred costs; applying estimates to the blood components supplied to UK hospitals in 2015, the annual cost of blood administration, excluding blood products, exceeds $175 (£120) million. These results provide more accurate estimates of the total costs of transfusion than those previously available. © 2018 AABB.

  10. A system for accurate on-line measurement of total gas consumption or production rates in microbioreactors

    NARCIS (Netherlands)

    van Leeuwen, Michiel; Heijnen, Joseph J.; Gardeniers, Johannes G.E.; Oudshoorn, Arthur; Noorman, Henk; Visser, Jan; van der Wielen, Luuk A.M.; van Gulik, Walter M.

    2009-01-01

    A system has been developed, based on pressure controlled gas pumping, for accurate measurement of total gas consumption or production rates in the nmol/min range, applicable for on-line monitoring of bioconversions in microbioreactors. The system was validated by carrying out a bioconversion with

  11. Product Evaluation Task Force Phase Two report for CAGR graphite

    International Nuclear Information System (INIS)

    Francis, A.J.; Davies, A.

    1991-01-01

    It has been proposed that all Intermediate Level Wastes arising at Sellafield should be encapsulated prior to ultimate disposal. The Product Evaluation Task Force (PETF) was set up to investigate possible encapsulants and to produce an adequate data base to justify the preferred matrices. This report details the work carried out under Phase 2 of the Product Evaluation Task Force programme, on CAGR graphite. Three possible types of encapsulants for CAGR graphites:-Inorganic cements, Polymer cements and Polymers are evaluated using the Kepner Tregoe decision analysis technique. This technique provides a methodology for scoring and ranking alternative options and evaluating any risks associated with an option. The analysis shows that for all four stages of waste management operations ie Storage, Transport, handling and emplacement, Disposal and Process, cement matrices are considerably superior to other potential matrices. A matrix, consisting of three parts Blast Furnace Slag (BFS) to one part Ordinary Portland Cement (OPC) is recommended as the preferred matrix for Phase 3 studies on CAGR graphite. (author)

  12. Decomposition principles applied to the dynamic production and work-force scheduling problem

    NARCIS (Netherlands)

    Aardal, K.I.; Ari, A.

    1987-01-01

    One of the most important problems in the production and inventory planning field, is the scheduling of production and work force in a dynamic environment. Although this problem can be formulated as a linear program, it is often quite difficult to solve directly, due to its large scale. Instead, it

  13. Relationship Between Force Production During Isometric Squats and Knee Flexion Angles During Landing.

    Science.gov (United States)

    Fisher, Harry; Stephenson, Mitchell L; Graves, Kyle K; Hinshaw, Taylour J; Smith, Derek T; Zhu, Qin; Wilson, Margaret A; Dai, Boyi

    2016-06-01

    Decreased knee flexion angles during landing are associated with increased anterior cruciate ligament loading. The underlying mechanisms associated with decreased self-selected knee flexion angles during landing are still unclear. The purpose of this study was to establish the relationship between the peak force production at various knee flexion angles (35, 55, 70, and 90°) during isometric squats and the actual knee flexion angles that occur during landing in both men and women. A total of 18 men and 18 women recreational/collegiate athletes performed 4 isometric squats at various knee flexion angles while vertical ground reaction forces were recorded. Participants also performed a jump-landing-jump task while lower extremity kinematics were collected. For women, significant correlations were found between the peak force production at 55 and 70° of knee flexion during isometric squats and the knee flexion angle at initial contact of landing. There were also significant correlations between the peak force production at 55, 70, and 90° of knee flexion during isometric squats and the peak knee flexion angle during landing. These correlations tended to be stronger during isometric squats at greater knee flexion compared with smaller knee flexion. No significant correlations were found for men. Posture-specific strength may play an important role in determining self-selected knee flexion angles during landing for women.

  14. Force reconstruction from tapping mode force microscopy experiments

    International Nuclear Information System (INIS)

    Payam, Amir F; Martin-Jimenez, Daniel; Garcia, Ricardo

    2015-01-01

    Fast, accurate, and robust nanomechanical measurements are intensely studied in materials science, applied physics, and molecular biology. Amplitude modulation force microscopy (tapping mode) is the most established nanoscale characterization technique of surfaces for air and liquid environments. However, its quantitative capabilities lag behind its high spatial resolution and robustness. We develop a general method to transform the observables into quantitative force measurements. The force reconstruction algorithm has been deduced on the assumption that the observables (amplitude and phase shift) are slowly varying functions of the tip–surface separation. The accuracy and applicability of the method is validated by numerical simulations and experiments. The method is valid for liquid and air environments, small and large free amplitudes, compliant and rigid materials, and conservative and non-conservative forces. (paper)

  15. Effect of External Loading on Force and Power Production During Plyometric Push-ups.

    Science.gov (United States)

    Hinshaw, Taylour J; Stephenson, Mitchell L; Sha, Zhanxin; Dai, Boyi

    2018-04-01

    Hinshaw, TJ, Stephenson, ML, Sha, Z, and Dai, B. Effect of external loading on force and power production during plyometric push-ups. J Strength Cond Res 32(4): 1099-1108, 2018-One common exercise to train upper-body strength and power is the push-up. Training at the loads that would produce the greatest power is an effective way to increase peak power. The purpose of the current study was to quantify the changes in peak force, peak power, and peak velocity among a modified plyometric push-up and plyometric push-ups with or without external loading in physically active young adults. Eighteen male and 17 female participants completed 4 push-ups: (a) modified plyometric push-up on the knees, (b) plyometric push-up without external loading, (c) plyometric push-up with an external load of 5% of body weight, and (d) plyometric push-up with an external load of 10% of body weight. Two force platforms were set up to collect vertical ground reaction forces at the hands and feet. The modified plyometric push-up demonstrated the lowest force, power, and velocity (5.4≥ Cohen's dz ≥1.2). Peak force and force at peak velocity increased (3.8≥ Cohen's dz ≥0.3) and peak velocity and velocity at peak power decreased (1.4≥ Cohen's dz ≥0.8) for the push-up without external loading compared with the 2 push-ups with external loading. No significant differences were observed for peak power among the push-ups with or without external loading (0.4≥ Cohen's dz ≥0.1). Although peak power is similar with or without external loading, push-ups without external loading may be more beneficial for a quick movement, and push-ups with external loading may be more beneficial for a greater force production.

  16. Accurate thickness measurement of graphene

    International Nuclear Information System (INIS)

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-01-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1–1.3 nm to 0.1–0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials. (paper)

  17. Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope

    DEFF Research Database (Denmark)

    Jensen, Carsten P.

    Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope......Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope...

  18. Identification of Forced Degradation Products of Itopride by LC-PDA and LC-MS.

    Science.gov (United States)

    Joshi, Payal; Bhoir, Suvarna; Bhagwat, A M; Vishwanath, K; Jadhav, R K

    2011-05-01

    Degradation products of itopride formed under different forced conditions have been identified using LC-PDA and LC-MS techniques. Itopride was subjected to forced degradation under the conditions of hydrolysis, photolysis, oxidation, dry and wet heat, in accordance with the International Conference on Harmonization. The stress solutions were chromatographed on reversed phase C18 (250×4.6 mm, 5 μm) column with a mobile phase methanol:water (55:45, v/v) at a detection wavelength of 215 nm. Itopride degraded in acid, alkali and oxidative stress conditions. The stability indicating method was developed and validated. The degradation pathway of the drug to products II-VIII is proposed.

  19. Experimental studies of the magnetized friction force

    International Nuclear Information System (INIS)

    Fedotov, A. V.; Litvinenko, V. N.; Gaalnander, B.; Lofnes, T.; Ziemann, V.; Sidorin, A.; Smirnov, A.

    2006-01-01

    High-energy electron cooling, presently considered as an essential tool for several applications in high-energy and nuclear physics, requires an accurate description of the friction force which ions experience by passing through an electron beam. Present low-energy electron coolers can be used for a detailed study of the friction force. In addition, parameters of a low-energy cooler can be chosen in a manner to reproduce regimes expected in future high-energy operation. Here, we report a set of dedicated experiments in CELSIUS aimed at a detailed study of the magnetized friction force. Some results of the accurate comparison of experimental data with the friction force formulas are presented

  20. Force illusions and drifts observed during muscle vibration.

    Science.gov (United States)

    Reschechtko, Sasha; Cuadra, Cristian; Latash, Mark L

    2018-01-01

    We explored predictions of a scheme that views position and force perception as a result of measuring proprioceptive signals within a reference frame set by ongoing efferent process. In particular, this hypothesis predicts force illusions caused by muscle vibration and mediated via changes in both afferent and efferent components of kinesthesia. Healthy subjects performed accurate steady force production tasks by pressing with the four fingers of one hand (the task hand) on individual force sensors with and without visual feedback. At various times during the trials, subjects matched the perceived force using the other hand. High-frequency vibration was applied to one or both of the forearms (over the hand and finger extensors). Without visual feedback, subjects showed a drop in the task hand force, which was significantly smaller under the vibration of that forearm. Force production by the matching hand was consistently higher than that of the task hand. Vibrating one of the forearms affected the matching hand in a manner consistent with the perception of higher magnitude of force produced by the vibrated hand. The findings were consistent between the dominant and nondominant hands. The effects of vibration on both force drift and force mismatching suggest that vibration led to shifts in both signals from proprioceptors and the efferent component of perception, the referent coordinate and/or coactivation command. The observations fit the hypothesis on combined perception of kinematic-kinetic variables with little specificity of different groups of peripheral receptors that all contribute to perception of forces and coordinates. NEW & NOTEWORTHY We show that vibration of hand/finger extensors produces consistent errors in finger force perception. Without visual feedback, finger force drifted to lower values without a drift in the matching force produced by the other hand; hand extensor vibration led to smaller finger force drift. The findings fit the scheme with

  1. A fast algorithm for determining bounds and accurate approximate p-values of the rank product statistic for replicate experiments.

    Science.gov (United States)

    Heskes, Tom; Eisinga, Rob; Breitling, Rainer

    2014-11-21

    The rank product method is a powerful statistical technique for identifying differentially expressed molecules in replicated experiments. A critical issue in molecule selection is accurate calculation of the p-value of the rank product statistic to adequately address multiple testing. Both exact calculation and permutation and gamma approximations have been proposed to determine molecule-level significance. These current approaches have serious drawbacks as they are either computationally burdensome or provide inaccurate estimates in the tail of the p-value distribution. We derive strict lower and upper bounds to the exact p-value along with an accurate approximation that can be used to assess the significance of the rank product statistic in a computationally fast manner. The bounds and the proposed approximation are shown to provide far better accuracy over existing approximate methods in determining tail probabilities, with the slightly conservative upper bound protecting against false positives. We illustrate the proposed method in the context of a recently published analysis on transcriptomic profiling performed in blood. We provide a method to determine upper bounds and accurate approximate p-values of the rank product statistic. The proposed algorithm provides an order of magnitude increase in throughput as compared with current approaches and offers the opportunity to explore new application domains with even larger multiple testing issue. The R code is published in one of the Additional files and is available at http://www.ru.nl/publish/pages/726696/rankprodbounds.zip .

  2. The Effects of Input-Enhanced Instruction on Iranian EFL Learners' Production of Appropriate and Accurate Suggestions

    Science.gov (United States)

    Ghavamnia, M.; Eslami-Rasekh, A.; Vahid Dastjerdi, H.

    2018-01-01

    This study investigates the relative effectiveness of four types of input-enhanced instruction on the development of Iranian EFL learners' production of pragmatically appropriate and grammatically accurate suggestions. Over a 16-week course, input delivered through video clips was enhanced differently in four intact classes: (1) metapragmatic…

  3. Effects of Jaw Clenching and Jaw Alignment Mouthpiece Use on Force Production During Vertical Jump and Isometric Clean Pull.

    Science.gov (United States)

    Allen, Charles R; Fu, Yang-Chieh; Cazas-Moreno, Vanessa; Valliant, Melinda W; Gdovin, Jacob R; Williams, Charles C; Garner, John C

    2018-01-01

    Allen, CR, Fu, Y-C, Cazas-Moreno, V, Valliant, MW, Gdovin, JR, Williams, CC, and Garner, JC. Effects of jaw clenching and jaw alignment mouthpiece use on force production during vertical jump and isometric clean pull. J Strength Cond Res 32(1): 237-243, 2018-This study examined the effects of jaw clenching, a self-adapted, jaw-repositioning mouthpiece on force production during maximum countermovement vertical jump and maximum isometric midthigh clean pull assessments in an attempt to determine any ergogenic effect attributable to clenching, jaw-repositioning mouthpiece use, or the combination of both. Thirty-six male subjects performed vertical jump and isometric clean pull assessments from a force platform under various mouthpiece and clench conditions. A 3 × 2 (mouthpiece × clench) repeated-measures analysis of variance was conducted to analyze each of the following force production variables for both assessments: peak force, normalized peak force, and rate of force development. In addition, jump height was analyzed for the vertical jump. Results revealed improvements in peak force (F1,35 = 15.84, p ≤ 0.001, (Equation is included in full-text article.)= 0.31), normalized peak force (F1,35 = 16.28, p ≤ 0.001, (Equation is included in full-text article.)= 0.32), and rate of force development (F1,35 = 12.89, p = 0.001, (Equation is included in full-text article.)= 0.27) during the isometric clean pull assessment when participants maximally clenched their jaw, regardless of mouthpiece condition. There were no statistically significant differences in jump height, peak force, normalized peak force, or rate of force development during the vertical jump for any treatment condition. This study supports previous research demonstrating that the implementation of remote voluntary contractions such as jaw clenching can lead to concurrent activation potentiation and a resulting ergogenic effect during activities involving and requiring high-force production.

  4. Explosive force production during isometric squats correlates with athletic performance in rugby union players.

    Science.gov (United States)

    Tillin, Neale Anthony; Pain, Matthew Thomas Gerard; Folland, Jonathan

    2013-01-01

    This study investigated the association between explosive force production during isometric squats and athletic performance (sprint time and countermovement jump height). Sprint time (5 and 20 m) and jump height were recorded in 18 male elite-standard varsity rugby union players. Participants also completed a series of maximal- and explosive-isometric squats to measure maximal force and explosive force at 50-ms intervals up to 250 ms from force onset. Sprint performance was related to early phase (≤100 ms) explosive force normalised to maximal force (5 m, r = -0.63, P = 0.005; and 20 m, r = -0.54, P = 0.020), but jump height was related to later phase (>100 ms) absolute explosive force (0.51 squats (33-67%; 0.001 squats was associated with athletic performance. Specifically, sprint performance was most strongly related to the proportion of maximal force achieved in the initial phase of explosive-isometric squats, whilst jump height was most strongly related to absolute force in the later phase of the explosive-isometric squats.

  5. Force and Directional Force Modulation Effects on Accuracy and Variability in Low-Level Pinch Force Tracking.

    Science.gov (United States)

    Park, Sangsoo; Spirduso, Waneen; Eakin, Tim; Abraham, Lawrence

    2018-01-01

    The authors investigated how varying the required low-level forces and the direction of force change affect accuracy and variability of force production in a cyclic isometric pinch force tracking task. Eighteen healthy right-handed adult volunteers performed the tracking task over 3 different force ranges. Root mean square error and coefficient of variation were higher at lower force levels and during minimum reversals compared with maximum reversals. Overall, the thumb showed greater root mean square error and coefficient of variation scores than did the index finger during maximum reversals, but not during minimum reversals. The observed impaired performance during minimum reversals might originate from history-dependent mechanisms of force production and highly coupled 2-digit performance.

  6. Quality of handwriting: Intervention based on the variation of finger force production

    Directory of Open Access Journals (Sweden)

    Adriano Percival Calvo

    2014-09-01

    Full Text Available Difficulties in the production of proficient handwriting can be detected early in childhood. From the control point of view, non-proficient handwriting can be explained by the difficulty in adequately activating motor synergies that give support to this motor skill. Therefore, imposing different demand on the control to the motor synergies of the fingers can generate improvement in the quality of handwriting. The goal of the present study was to verify the effects of an intervention program for children with handwriting difficulties, composed of manipulative and pre-calligraphic activities that stimulate finger motor synergies through different force production demands. Thirty-four children between 7 and 12 years of age participated in the present study. Handwriting quality was evaluated through the Minnesota Handwriting Assessment. Only the experimental group (n=18 was submitted to the intervention program developed throughout 27 sessions of 30 minutes each. The results indicate that the intervention program based on the variability of force production had a positive effect on the quality of handwriting,mainly in terms of the size of letters.

  7. Reduced muscle fiber force production and disrupted myofibril architecture in patients with chronic rotator cuff tears.

    Science.gov (United States)

    Mendias, Christopher L; Roche, Stuart M; Harning, Julie A; Davis, Max E; Lynch, Evan B; Sibilsky Enselman, Elizabeth R; Jacobson, Jon A; Claflin, Dennis R; Calve, Sarah; Bedi, Asheesh

    2015-01-01

    A persistent atrophy of muscle fibers and an accumulation of fat, collectively referred to as fatty degeneration, commonly occur in patients with chronic rotator cuff tears. The etiology of fatty degeneration and function of the residual rotator cuff musculature have not been well characterized in humans. We hypothesized that muscles from patients with chronic rotator cuff tears have reduced muscle fiber force production, disordered myofibrils, and an accumulation of fat vacuoles. The contractility of muscle fibers from biopsy specimens of supraspinatus muscles of 13 patients with chronic full-thickness posterosuperior rotator cuff tears was measured and compared with data from healthy vastus lateralis muscle fibers. Correlations between muscle fiber contractility, American Shoulder and Elbow Surgeons (ASES) scores, and tear size were analyzed. Histology and electron microscopy were also performed. Torn supraspinatus muscles had a 30% reduction in maximum isometric force production and a 29% reduction in normalized force compared with controls. Normalized supraspinatus fiber force positively correlated with ASES score and negatively correlated with tear size. Disordered sarcomeres were noted, along with an accumulation of lipid-laden macrophages in the extracellular matrix surrounding supraspinatus muscle fibers. Patients with chronic supraspinatus tears have significant reductions in muscle fiber force production. Force production also correlates with ASES scores and tear size. The structural and functional muscle dysfunction of the residual muscle fibers is independent of the additional area taken up by fibrotic tissue. This work may help establish future therapies to restore muscle function after the repair of chronically torn rotator cuff muscles. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  8. Ethanol production by immobilized cells with forced substrate supply

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, Y.; Nishizawa, Y.; Nagai, S.

    1984-01-01

    Ethanol fermentation by a forced substrate supply into an immobilized cell layer was carried out to increase the ethanol production rate and to eliminate the diffusion dependency of substrate supply in an ordinary immobilized cell reaction. Saccharomyces cerevisiae IFO 2347 was immobilized in a mixture of k-carrageenan, locust bean gum, and celite (2: 0.5: 40 wt/vol %). A glucose minimal medium was fed into the immobilized cell layer (5 to 22 mm in thickness) at retention times between 0.6 and 2.8 h under pressure. The stable ethanol fermentation could be maintained for more than 3 weeks with an ethanol yield of 0.48 g ethanol/g glucose and ethanol productivity of 63 g.(l gel)/sup -1/.h/sup -1/ at a retention time of 1.5 h. The yeast cells were well distributed through the gel layer with a vertical gradient, and an average cell density was ca. 8.0 X 10/sup 9/ cells/ml gel, 4-fold higher than that of ordinary immobilized cells. A small filter press reactor was constructed to examine the applicability of ethanol fermentation with this forced substrate supply. The operation could be continued for a month at a retention time of 2 h yielding 96 g/l of ethanol from 200 g/l of glucose. 6 references, 5 figures, 3 tables.

  9. Radial force distribution changes associated with tangential force production in cylindrical grasping, and the importance of anatomical registration.

    Science.gov (United States)

    Pataky, Todd C; Slota, Gregory P; Latash, Mark L; Zatsiorsky, Vladimir M

    2012-01-10

    Radial force (F(r)) distributions describe grip force coordination about a cylindrical object. Recent studies have employed only explicit F(r) tasks, and have not normalized for anatomical variance when considering F(r) distributions. The goals of the present study were (i) to explore F(r) during tangential force production tasks, and (ii) to examine the extent to which anatomical registration (i.e. spatial normalization of anatomically analogous structures) could improve signal detectability in F(r) data. Twelve subjects grasped a vertically oriented cylindrical handle (diameter=6 cm) and matched target upward tangential forces of 10, 20, and 30 N. F(r) data were measured using a flexible pressure mat with an angular resolution of 4.8°, and were registered using piecewise-linear interpolation between five manually identified points-of-interest. Results indicate that F(r) was primarily limited to three contact regions: the distal thumb, the distal fingers, and the fingers' metatacarpal heads, and that, while increases in tangential force caused significant increases in F(r) for these regions, they did not significantly affect the F(r) distribution across the hand. Registration was found to substantially reduce between-subject variability, as indicated by both accentuated F(r) trends, and amplification of the test statistic. These results imply that, while subjects focus F(r) primarily on three anatomical regions during cylindrical grasp, inter-subject anatomical differences introduce a variability that, if not corrected for via registration, may compromise one's ability to draw anatomically relevant conclusions from grasping force data. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Cheap but accurate calculation of chemical reaction rate constants from ab initio data, via system-specific, black-box force fields.

    Science.gov (United States)

    Steffen, Julien; Hartke, Bernd

    2017-10-28

    Building on the recently published quantum-mechanically derived force field (QMDFF) and its empirical valence bond extension, EVB-QMDFF, it is now possible to generate a reliable potential energy surface for any given elementary reaction step in an essentially black box manner. This requires a limited and pre-defined set of reference data near the reaction path and generates an accurate approximation of the reference potential energy surface, on and off the reaction path. This intermediate representation can be used to generate reaction rate data, with far better accuracy and reliability than with traditional approaches based on transition state theory (TST) or variational extensions thereof (VTST), even if those include sophisticated tunneling corrections. However, the additional expense at the reference level remains very modest. We demonstrate all this for three arbitrarily chosen example reactions.

  11. ESI-MSn and LC-ESI-MS studies to characterize forced degradation products of bosentan and a validated stability-indicating LC-UV method.

    Science.gov (United States)

    Bansal, Gulshan; Singh, Ranjit; Saini, Balraj; Bansal, Yogita

    2013-01-01

    The present study reports the characterization of forced degradation products of bosentan and a validated stability-indicating HPLC method for the stability testing of bosentan tablets. The forced degradation was carried out under the conditions of hydrolysis, oxidation, dry heat and photolysis. The drug was found unstable in acid, alkali and oxidative media whereas stable to the hydrolysis in water, to dry heat and to photolysis. In total, six degradation products were formed in all conditions which were resolved in a single run on a C-18 column with gradient elution using ammonium acetate buffer (pH 4.5, 5.0mM), methanol and acetonitrile. Structures of all the degradation products were characterized through +ESI-MS(n) and LC-ESI-MS spectral data of bosentan as well as LC-ESI-MS spectral data of the products. The products II-VI were characterized as 6-amino-[2,2']bipyrimidinyl-4,5-diol, 6-amino-5-(2-methoxyphenoxy)-[2,2']-bipyrimidinyl-4-ol, 2-[6-amino-5-(2-methoxyphenoxy)-[2,2']-bipyrimidinyl-4-yloxy]-ethanol, 4-tert-butyl-N-[6-(1-methoxyethoxy)-5-(2-methoxyphenoxy)-[2,2']-bipyrimidinyl-4-yl]-benzenesulfonamide and 4-tert-butyl-N-[6-hydroxy-5-(2-methoxyphenoxy)-[2,2']bipyrimidinyl-4-yl]-benzenesulfonamide, respectively. The peak of the product I was found to be due to two secondary degradation products which co-eluted and were characterized as β-hydroxyethyl p-tert-butylphenylsulfonate (Ia) and 2-[2-(2-hydroxyethoxy)-phenoxy]-ethanol (Ib). These products were formed due to hydrolysis of sulfonamide and alkylaryl ether and the diaryl ether linkages as well as dehydration of the primary alcohol group. The most probable degradation mechanisms were proposed. The HPLC method was found to be stability-indicating, linear (2-100 μg ml(-1)), accurate, precise, sensitive, specific, rugged and robust for quantitation of the drug. The method was applied to the stability testing of the commercially available bosentan tablets successfully. Copyright © 2012 Elsevier B.V. All

  12. DelPhiForce web server: electrostatic forces and energy calculations and visualization.

    Science.gov (United States)

    Li, Lin; Jia, Zhe; Peng, Yunhui; Chakravorty, Arghya; Sun, Lexuan; Alexov, Emil

    2017-11-15

    Electrostatic force is an essential component of the total force acting between atoms and macromolecules. Therefore, accurate calculations of electrostatic forces are crucial for revealing the mechanisms of many biological processes. We developed a DelPhiForce web server to calculate and visualize the electrostatic forces at molecular level. DelPhiForce web server enables modeling of electrostatic forces on individual atoms, residues, domains and molecules, and generates an output that can be visualized by VMD software. Here we demonstrate the usage of the server for various biological problems including protein-cofactor, domain-domain, protein-protein, protein-DNA and protein-RNA interactions. The DelPhiForce web server is available at: http://compbio.clemson.edu/delphi-force. delphi@clemson.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  13. Embryo mechanics: balancing force production with elastic resistance during morphogenesis.

    Science.gov (United States)

    Davidson, Lance A

    2011-01-01

    Morphogenesis requires the spatial and temporal control of embryo mechanics, including force production and mechanical resistance to those forces, to coordinate tissue deformation and large-scale movements. Thus, biomechanical processes play a key role in directly shaping the embryo. Additional roles for embryo mechanics during development may include the patterning of positional information and to provide feedback to ensure the success of morphogenetic movements in shaping the larval body and organs. To understand the multiple roles of mechanics during development requires familiarity with engineering principles of the mechanics of structures, the viscoelastic properties of biomaterials, and the integration of force and stress within embryonic structures as morphogenesis progresses. In this chapter, we review the basic engineering principles of biomechanics as they relate to morphogenesis, introduce methods for quantifying embryo mechanics and the limitations of these methods, and outline a formalism for investigating the role of embryo mechanics in birth defects. We encourage the nascent field of embryo mechanics to adopt standard engineering terms and test methods so that studies of diverse organisms can be compared and universal biomechanical principles can be revealed. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Identification of Forced Degradation Products of Itopride by LC-PDA and LC-MS

    OpenAIRE

    Joshi, Payal; Bhoir, Suvarna; Bhagwat, A. M.; Vishwanath, K.; Jadhav, R. K.

    2011-01-01

    Degradation products of itopride formed under different forced conditions have been identified using LC-PDA and LC-MS techniques. Itopride was subjected to forced degradation under the conditions of hydrolysis, photolysis, oxidation, dry and wet heat, in accordance with the International Conference on Harmonization. The stress solutions were chromatographed on reversed phase C18 (250×4.6 mm, 5 μm) column with a mobile phase methanol:water (55:45, v/v) at a detection wavelength of 215 nm. Itop...

  15. Production bias: A proposed modification of the driving force for void swelling under cascade damage conditions

    International Nuclear Information System (INIS)

    Woo, C.H.; Garner, F.A.

    1991-11-01

    A new concept of point-defect production as the main driving force for void swelling under cascade damage conditions is proposed. This concept takes into account the recombination and formation of immobile clusters and loops of vacancies and interstitials in the cascade region. The life times of the clusters and loops due to desolution are strong functions of the temperature, as well as their vacancy and interstitial nature. The resulting biased production of free point defects from the internal sources is shown to be a strong driving force for void swelling. The characteristics of void swelling due to production bias are described and compared with experimental results. We conclude that the production bias concept provides a good description of void swelling under cascade damage conditions

  16. Production bias: A proposed modification of the driving force for void swelling under cascade damage conditions

    International Nuclear Information System (INIS)

    Woo, C.H.; Singh, B.N.; Garner, F.A.

    1992-01-01

    A new concept of point defect production as the main driving force for void swelling under cascade damage conditions is proposed. This concept takes into account the recombination and formation of immobile clusters and loops of vacancies and interstitials in the cascade region. The lifetimes of the clusters and loops due to desolution are strong functions of the temperature, as well as their vacancy and interstitial nature. The resulting biased production of free point defects from the internal sources is shown to be a strong driving force for void swelling. The characteristics of void swelling due to production bias are described and compared with experimental results. We conclude that the production bias concept provides a good description of void swelling under cascade damage conditions. (orig.)

  17. In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.

    Science.gov (United States)

    Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers

    2015-03-06

    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing.

  18. How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing

    International Nuclear Information System (INIS)

    Bahlman, Joseph W; Swartz, Sharon M; Breuer, Kenneth S

    2014-01-01

    Bats display a wide variety of behaviors that require different amounts of aerodynamic force. To control and modulate aerodynamic force, bats change wing kinematics, which, in turn, may change the power required for wing motion. There are many kinematic mechanisms that bats, and other flapping animals, can use to increase aerodynamic force, e.g. increasing wingbeat frequency or amplitude. However, we do not know if there is a difference in energetic cost between these different kinematic mechanisms. To assess the relationship between mechanical power input and aerodynamic force output across different isolated kinematic parameters, we programmed a robotic bat wing to flap over a range of kinematic parameters and measured aerodynamic force and mechanical power. We systematically varied five kinematic parameters: wingbeat frequency, wingbeat amplitude, stroke plane angle, downstroke ratio, and wing folding. Kinematic values were based on observed values from free flying Cynopterus brachyotis, the species on which the robot was based. We describe how lift, thrust, and power change with increases in each kinematic variable. We compare the power costs associated with generating additional force through the four kinematic mechanisms controlled at the shoulder, and show that all four mechanisms require approximately the same power to generate a given force. This result suggests that no single parameter offers an energetic advantage over the others. Finally, we show that retracting the wing during upstroke reduces power requirements for flapping and increases net lift production, but decreases net thrust production. These results compare well with studies performed on C. brachyotis, offering insight into natural flight kinematics. (paper)

  19. Mechanisms of force production during linear accelerations in bluegill sunfish Lepomis macrochirus

    Science.gov (United States)

    Tytell, Eric D.; Wise, Tyler N.; Boden, Alexandra L.; Sanders, Erin K.; Schwalbe, Margot A. B.

    2016-11-01

    In nature, fish rarely swim steadily. Although unsteady behaviors are common, we know little about how fish change their swimming kinematics for routine accelerations, and how these changes affect the fluid dynamic forces and the wake produced. To study force production during acceleration, particle image velocimetry was used to quantify the wake of bluegill sunfish Lepomis macrochirus and to estimate the pressure field during linear accelerations and steady swimming. We separated "steady" and "unsteady" trials and quantified the forward acceleration using inertial measurement units. Compared to steady sequences, unsteady sequences had larger accelerations and higher body amplitudes. The wake consisted of single vortices shed during each tail movement (a '2S' wake). The structure did not change during acceleration, but the circulation of the vortices increased, resulting in larger forces. A fish swimming unsteadily produced significantly more force than the same fish swimming steadily, even when the accelerations were the same. This increase is likely due to increased added mass during unsteady swimming, as a result of the larger body amplitude. Pressure estimates suggest that the increase in force is correlated with more low pressure regions on the anterior body. This work was supported by ARO W911NF-14-1-0494 and NSF RCN-PLS 1062052.

  20. Capillary force between wetted nanometric contacts and its application to atomic force microscopy.

    Science.gov (United States)

    Crassous, Jérôme; Ciccotti, Matteo; Charlaix, Elisabeth

    2011-04-05

    We extend to the case of perfect wetting the exact calculation of Orr et al. (J. Fluid. Mech. 1975, 67, 723) for a pendular ring connecting two dry surfaces. We derive an approximate analytical expression for the capillary force between two highly curved surfaces covered by a wetting liquid film. The domain of validity of this expression is assessed and extended by a custom-made numerical simulation based on the full exact mathematical description. In the case of attractive liquid-solid van der Waals interactions, the capillary force increases monotonically with decreasing vapor pressure up to several times its saturation value. This accurate description of the capillary force makes it possible to estimate the adhesion force between wet nanoparticles; it can also be used to quantitatively interpret pull-off forces measured by atomic force microscopy.

  1. Exploiting impedance shaping approaches to overcome force overshoots in delicate interaction tasks

    Directory of Open Access Journals (Sweden)

    Loris Roveda

    2016-09-01

    Full Text Available The aim of the presented article is to overcome the force overshoot issue in impedance based force tracking applications. Nowadays, light-weight manipulators are involved in high-accurate force control applications (such as polishing tasks, where the force overshoot issue is critical (i.e. damaging the component causing a production waste, exploiting the impedance control. Two main force tracking impedance control approaches are described in literature: (a set-point deformation and (b variable stiffness approaches. However, no contributions are directly related to the force overshoot issue. The presented article extends both such methodologies to analytically achieve the force overshoots avoidance in interaction tasks based on the on-line estimation of the interacting environment stiffness (available through an EKF. Both the proposed control algorithms allow to achieve a linear closed-loop dynamics for the coupled robot-environment system. Therefore, control gains can be analytically on-line calculated to achieve an over-damped closed-loop dynamics of the controlled coupled system. Control strategies have been validated in experiments, involving a KUKA LWR 4+. A probing task has been performed, representative of many industrial tasks (e.g. assembly tasks, in which a main force task direction is defined.

  2. Accurate measurement of Atomic Force Microscope cantilever deflection excluding tip-surface contact with application to force calibration

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Ashley D.; Blanch, Adam J.; Quinton, Jamie S.; Gibson, Christopher T., E-mail: christopher.gibson@flinders.edu.au

    2013-08-15

    calibrate the cantilever spring constant using the thermal noise method, allowing complete force calibration to be accurately performed without tip-sample contact. - Highlights: • A technique for determining AFM cantilever sensitivity is developed and tested. • The error on the method is between 2–5% and does not require tip surface contact. • The method is simple to implement and can be applied to any type of cantilever. • The current method can be used to determine the spring constant of the cantilever.

  3. Large urban projects and social actors : Forces supporting and opposing the production

    NARCIS (Netherlands)

    Cuenya, B.E.

    2006-01-01

    This research studies, by means of the analysis of a paradigmatic large urban project in Buenos Aires, the production process of a large urban project furthered by the State and directed to create a new centrality. The analysis is focused on the forces supporting and opposition the project that were

  4. Knowledge of Repetitions Range Affects Force Production in Trained Females

    Directory of Open Access Journals (Sweden)

    Israel Halperin, Saied J. Aboodarda, Fabien A. Basset, David G. Behm

    2014-12-01

    Full Text Available Most studies have examined pacing strategies with cyclical activities (running and cycling. It has been demonstrated that males employ different pacing strategies during repeated maximal voluntary contractions (MVCs dependent upon a known endpoint. Since different fatiguing mechanisms have been identified between the genders, it is not known if females use comparable pacing strategies. The purpose of this study was to examine if informing female subjects regarding the number of MVCs to perform would affect force and electromyography (EMG. Twenty well-trained females completed 3 fatiguing protocols in a randomized order. In the control condition participants were informed they would perform twelve MVCs and then actually completed twelve. In the unknown condition they were not told how many MVCs to perform but were stopped after twelve. In the deception condition they were initially informed to perform 6 MVCs, but after the 6th MVC they were asked to perform a few more MVCs and were stopped after twelve. During the first 6 MVCs, forces in the deception condition were greater compared to the unknown (p = 0.021, ES = 0.65, 5% and control (p = 0.022, ES = 0.42, 3% conditions. No differences were found between conditions in the last 6 MVCs. A main effect for repetitions showed force deficits during the first 6 MVCs (p = 0.000, ES = 1.81, 13% and last 6 MVCs (p = 0.05, ES = 0.34, 3%. No differences were found between conditions in biceps and triceps EMG. However, EMG decreased during the first 6 MVCs for biceps (p = 0.001, ES = 1.0, 14% and triceps (p = 0.001, ES = 0.76, 14% across conditions. No differences were found in the last 6 MVCs. The anticipation of performing fewer MVCs led to increased force, whereas no endpoint led to decreased force production.

  5. AFM lateral force calibration for an integrated probe using a calibration grating

    International Nuclear Information System (INIS)

    Wang, Huabin; Gee, Michelle L.

    2014-01-01

    Atomic force microscopy (AFM) friction measurements on hard and soft materials remain a challenge due to the difficulties associated with accurately calibrating the cantilever for lateral force measurement. One of the most widely accepted lateral force calibration methods is the wedge method. This method is often used in a simplified format but in so doing sacrifices accuracy. In the present work, we have further developed the wedge method to provide a lateral force calibration method for integrated AFM probes that is easy to use without compromising accuracy and reliability. Raw friction calibration data are collected from a single scan image by continuous ramping of the set point as the facets of a standard grating are scanned. These data are analysed to yield an accurate lateral force conversion/calibration factor that is not influenced by adhesion forces or load deviation. By demonstrating this new calibration method, we illustrate its reliability, speed and ease of execution. This method makes accessible reliable boundary lubrication studies on adhesive and heterogeneous surfaces that require spatial resolution of frictional forces. - Highlights: • We develop a simple and accurate method for lateral force calibration in AFM friction measurements. • We detail the basis of the method and illustrate how to use it and its reliability with example data. • Our method is easy, accurate and accounts for the affects of adhesion on friction measurements. • The method is applicable to integrated probes, as opposed to colloidal probes. • This allows accurate AFM friction measurements on spatially heterogeneous and adhesive surfaces

  6. A simple nodal force distribution method in refined finite element meshes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jai Hak [Chungbuk National University, Chungju (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2017-05-15

    In finite element analyses, mesh refinement is frequently performed to obtain accurate stress or strain values or to accurately define the geometry. After mesh refinement, equivalent nodal forces should be calculated at the nodes in the refined mesh. If field variables and material properties are available at the integration points in each element, then the accurate equivalent nodal forces can be calculated using an adequate numerical integration. However, in certain circumstances, equivalent nodal forces cannot be calculated because field variable data are not available. In this study, a very simple nodal force distribution method was proposed. Nodal forces of the original finite element mesh are distributed to the nodes of refined meshes to satisfy the equilibrium conditions. The effect of element size should also be considered in determining the magnitude of the distributing nodal forces. A program was developed based on the proposed method, and several example problems were solved to verify the accuracy and effectiveness of the proposed method. From the results, accurate stress field can be recognized to be obtained from refined meshes using the proposed nodal force distribution method. In example problems, the difference between the obtained maximum stress and target stress value was less than 6 % in models with 8-node hexahedral elements and less than 1 % in models with 20-node hexahedral elements or 10-node tetrahedral elements.

  7. Design and performance of a high-resolution frictional force microscope with quantitative three-dimensional force sensitivity

    International Nuclear Information System (INIS)

    Dienwiebel, M.; Kuyper, E. de; Crama, L.; Frenken, J.W.M.; Heimberg, J.A.; Spaanderman, D.-J.; Glatra van Loon, D.; Zijlstra, T.; Drift, E. van der

    2005-01-01

    In this article, the construction and initial tests of a frictional force microscope are described. The instrument makes use of a microfabricated cantilever that allows one to independently measure the lateral forces in X and Y directions as well as the normal force. We use four fiber-optic interferometers to detect the motion of the sensor in three dimensions. The properties of our cantilevers allow easy and accurate normal and lateral force calibration, making it possible to measure the lateral force on a fully quantitative basis. First experiments on highly oriented pyrolytic graphite demonstrate that the microscope is capable of measuring lateral forces with a resolution down to 15 pN

  8. [Nitrous oxide production by the German Armed Forces in the 20th century : History of medicine and pharmacy in the Armed Forces].

    Science.gov (United States)

    Kronabel, D B J

    2010-03-01

    The nitrous oxide production unit of the German Armed Forces was a worldwide unique facility which was only employed in the former main medical depot at Euskirchen (nitrous oxide: medical gas which is now obsolete). The last unit was phased out in 2002 and brought to the main medical depot at Blankenburg. Unfortunately the unit is now no longer in the depot and seems to have disappeared. This article describes the nitrous oxide production process and the use of the production unit which was designed by the Socsil company of Switzerland.

  9. Fitts’ Law in the Control of Isometric Grip Force With Naturalistic Targets

    Directory of Open Access Journals (Sweden)

    Zachary C. Thumser

    2018-04-01

    Full Text Available Fitts’ law models the relationship between amplitude, precision, and speed of rapid movements. It is widely used to quantify performance in pointing tasks, study human-computer interaction, and generally to understand perceptual-motor information processes, including research to model performance in isometric force production tasks. Applying Fitts’ law to an isometric grip force task would allow for quantifying grasp performance in rehabilitative medicine and may aid research on prosthetic control and design. We examined whether Fitts’ law would hold when participants attempted to accurately produce their intended force output while grasping a manipulandum when presented with images of various everyday objects (we termed this the implicit task. Although our main interest was the implicit task, to benchmark it and establish validity, we examined performance against a more standard visual feedback condition via a digital force-feedback meter on a video monitor (explicit task. Next, we progressed from visual force feedback with force meter targets to the same targets without visual force feedback (operating largely on feedforward control with tactile feedback. This provided an opportunity to see if Fitts’ law would hold without vision, and allowed us to progress toward the more naturalistic implicit task (which does not include visual feedback. Finally, we changed the nature of the targets from requiring explicit force values presented as arrows on a force-feedback meter (explicit targets to the more naturalistic and intuitive target forces implied by images of objects (implicit targets. With visual force feedback the relation between task difficulty and the time to produce the target grip force was predicted by Fitts’ law (average r2 = 0.82. Without vision, average grip force scaled accurately although force variability was insensitive to the target presented. In contrast, images of everyday objects generated more reliable grip forces

  10. Fitts' Law in the Control of Isometric Grip Force With Naturalistic Targets.

    Science.gov (United States)

    Thumser, Zachary C; Slifkin, Andrew B; Beckler, Dylan T; Marasco, Paul D

    2018-01-01

    Fitts' law models the relationship between amplitude, precision, and speed of rapid movements. It is widely used to quantify performance in pointing tasks, study human-computer interaction, and generally to understand perceptual-motor information processes, including research to model performance in isometric force production tasks. Applying Fitts' law to an isometric grip force task would allow for quantifying grasp performance in rehabilitative medicine and may aid research on prosthetic control and design. We examined whether Fitts' law would hold when participants attempted to accurately produce their intended force output while grasping a manipulandum when presented with images of various everyday objects (we termed this the implicit task). Although our main interest was the implicit task, to benchmark it and establish validity, we examined performance against a more standard visual feedback condition via a digital force-feedback meter on a video monitor (explicit task). Next, we progressed from visual force feedback with force meter targets to the same targets without visual force feedback (operating largely on feedforward control with tactile feedback). This provided an opportunity to see if Fitts' law would hold without vision, and allowed us to progress toward the more naturalistic implicit task (which does not include visual feedback). Finally, we changed the nature of the targets from requiring explicit force values presented as arrows on a force-feedback meter (explicit targets) to the more naturalistic and intuitive target forces implied by images of objects (implicit targets). With visual force feedback the relation between task difficulty and the time to produce the target grip force was predicted by Fitts' law (average r 2 = 0.82). Without vision, average grip force scaled accurately although force variability was insensitive to the target presented. In contrast, images of everyday objects generated more reliable grip forces without the visualized

  11. Cutting force measurement of electrical jigsaw by strain gauges

    International Nuclear Information System (INIS)

    Kazup, L; Varadine Szarka, A

    2016-01-01

    This paper describes a measuring method based on strain gauges for accurate specification of electric jigsaw's cutting force. The goal of the measurement is to provide an overall perspective about generated forces in a jigsaw's gearbox during a cutting period. The lifetime of the tool is affected by these forces primarily. This analysis is part of the research and development project aiming to develop a special linear magnetic brake for realizing automatic lifetime tests of electric jigsaws or similar handheld tools. The accurate specification of cutting force facilitates to define realistic test cycles during the automatic lifetime test. The accuracy and precision resulted by the well described cutting force characteristic and the possibility of automation provide new dimension for lifetime testing of the handheld tools with alternating movement. (paper)

  12. Product Evaluation Task Force Phase Two report for BWR/PWR dissolver wastes

    International Nuclear Information System (INIS)

    Francis, A.J.

    1990-01-01

    It has been proposed that all Intermediate Level Wastes arising at Sellafield should be encapsulated prior to ultimate disposal. The Product Evaluation Task Force (PETF) was set up to investigate possible encapsulants and to produce an adequate data base to justify the preferred matrices. This report details the work carried out, under Phase 2 of the Product Evaluation Task Force programme, on BWR/PWR Dissolver Wastes. Three possible types of encapsulants for BWR/PWR Dissolver Wastes:- Inorganic cements, Polymer cements and Polymers are evaluated using the Kepner Tregoe decision analysis technique. This technique provides a methodology for scoring and ranking alternative options and evaluating any risks associated with an option. The analysis shows that for all four stages of waste management operations ie Storage, Transport, handling and emplacement, Disposal and Process, cement matrices are considerably superior to other potential matrices. A matrix, consisting of three parts Blast Furnace Slag (BFS) to one part Ordinary Portland Cement (OPC), is recommended for Phase 3 studies on BWR/PWR Dissolver Wastes. (author)

  13. Product Evaluation Task Force Phase Two report for MEB crud/filter aid

    International Nuclear Information System (INIS)

    Francis, A.J.

    1991-01-01

    It has been proposed that all Intermediate Level Wastes arising at Sellafield should be encapsulated prior to ultimate disposal. The Product Evaluation Task Force (PETF) was set up to investigate possible encapsulants and to produce an adequate data base to justify the preferred matrices. This report details the work carried out, under Phase 2 of the Product Evaluation Task Force programme, on MEB Crud/Filter Aid. Three possible types of encapsulants for MEB Crud/Filter Aid:- Inorganic cements, Polymer cements, and Polymers are evaluated using the Kepner Tregoe decision and analysis technique. This technique provides a methodology for scoring and ranking alternative options and evaluating any risks associated with an option. The analysis shows that for all four stages of waste management operations, ie Storage, Transport, handling and emplacement, Disposal and, Process, cement matrices are considerably superior to other potential matrices. A matrix, consisting of nine parts Blast Furnace Slag (BFS) to one part Ordinary Portland Cement (OPC) is recommended as the preferred matrix for Phase 3 studies on MEB/Filter Aid. (author)

  14. Looking hard at the electroweak force

    International Nuclear Information System (INIS)

    Baur, Ulrich; Errede, Steven; Mueller, Thomas

    1995-01-01

    While recent experiments have beautifully confirmed many of the predictions of the electroweak unification of electromagnetism and the weak nuclear force, some direct consequences of the electroweak symmetry involve special properties of the three force carriers - the electrically charged W and neutral Z carrying the weak force and the photon of electromagnetism. These special properties have yet to be measured accurately. In the electroweak picture these force carriers (vector bosons) can interact with each other. These properties are 'non-abelian' - they are dependent on the order in which they are applied. [Most operations can be applied in any order, for example simple arithmetic: 6x(3+2) = (6x3)+(6x2). These are 'abelian'. An example of a non-abelian operator is the logarithm: log(x+y) does not equal log(x) + log(y).] Summarizing the current theoretical and experimental understanding of these self-interactions, and discussing the prospects of measuring them in future experiments, was the purpose of the ''International Symposium on Vector Boson Self-Interactions'' held earlier this year at UCLA, the first meeting entirely devoted to this topic. Progress in measuring the selfcouplings of vector bosons has been fueled recently by the CDF and DO Collaborations at Fermilab's protonantiproton collider. Using data from vector boson pair production, these studies are extracting information on the WW-photon, WWZ and ZZphoton interactions, as well as the magnetic and electric quadrupole moments of the W boson. At UCLA, Hiro Aihara (Berkeley) and Theresa Fuess (Argonne) summarized the CDF and DO results from the 1992-93 run. Information on potential ZZ-gamma interactions can also be gained from single photon production at CERN's LEP electronpositron collider, as detailed by Peter Maettig (Bonn), and from rare B meson decays, reviewed by Steve Playfer (Syracuse)

  15. Multigrid time-accurate integration of Navier-Stokes equations

    Science.gov (United States)

    Arnone, Andrea; Liou, Meng-Sing; Povinelli, Louis A.

    1993-01-01

    Efficient acceleration techniques typical of explicit steady-state solvers are extended to time-accurate calculations. Stability restrictions are greatly reduced by means of a fully implicit time discretization. A four-stage Runge-Kutta scheme with local time stepping, residual smoothing, and multigridding is used instead of traditional time-expensive factorizations. Some applications to natural and forced unsteady viscous flows show the capability of the procedure.

  16. An improved method for calculation of interface pressure force in PLIC-VOF methods

    International Nuclear Information System (INIS)

    Sefollahi, M.; Shirani, E.

    2004-08-01

    Conventional methods for the modeling of surface tension force in Piecewise Linear Interface Calculation-Volume of Fluid (PLIC-VOF) methods, such as Continuum Surface Force (CSF), Continuum Surface Stress (CSS) and also Meier's method, convert the surface tension force into a body force. Not only do they include the force in the interfacial cells but also in the neighboring cells. Thus they produce spurious currents. Also the pressure jump, due to the surface tension, is not calculated accurately in these methods. In this paper a more accurate method for the application of interface force in the computational modeling of free surfaces and interfaces which use PLIC-VOF methods is developed. This method is based on the evaluation of the surface tension force only in the interfacial cells and not the neighboring cells. Also the normal and the interface surface area needed for the calculation of the surface tension force is calculated more accurately. The present method is applied to a two-dimensional motionless drop of liquid and a bubble of gas as well as a non-circular two-dimensional drop, which oscillates due to the surface tension force, in an initially stagnant fluid with no gravity force. The results are compared with the results of the cases when CSF, CSS and Meier's methods are used. It is shown that the present method calculates pressure jump at the interface more accurately and produces less spurious currents comparing to CSS an CSF models. (author)

  17. Reproducible Molecularly Imprinted Piezoelectric Sensor for Accurate and Sensitive Detection of Ractopamine in Swine and Feed Products

    Directory of Open Access Journals (Sweden)

    Mingfei Pan

    2018-06-01

    Full Text Available This paper describes the development of a reproducible molecularly imprinted piezoelectric sensor for the accurate and sensitive detection of ractopamine (RAC in swine and feed products. The synthesized molecularly imprinted polymer (MIP was directly immobilized on the surface of a quartz crystal microbalance (QCM Au chip as the recognition element. The experimental parameters in the fabrication, measurement and regeneration process were evaluated in detail to produce an MIP-based piezoelectric sensor with high sensing capability. The developed piezoelectric sensor was verified to perform favorably in the RAC analysis of swine and feed products, with acceptable accuracy (recovery: 75.9–93.3%, precision [relative standard deviation (n = 3: 2.3–6.4%], and sensitivity [limit of detection: 0.46 ng g−1 (swine and 0.38 ng g−1 (feed]. This portable MIP-based chip for the piezoelectric sensing of RAC could be reused for at least 30 cycles and easily stored for a long time. These results demonstrated that the developed MIP-based piezoelectric sensor presents an accurate, sensitive and cost-effective method for the quantitative detection of RAC in complex samples. This research offers a promising strategy for the development of novel effective devices used for use in food safety analysis.

  18. How Accurately Can the Google Web Speech API Recognize and Transcribe Japanese L2 English Learners' Oral Production?

    Science.gov (United States)

    Ashwell, Tim; Elam, Jesse R.

    2017-01-01

    The ultimate aim of our research project was to use the Google Web Speech API to automate scoring of elicited imitation (EI) tests. However, in order to achieve this goal, we had to take a number of preparatory steps. We needed to assess how accurate this speech recognition tool is in recognizing native speakers' production of the test items; we…

  19. Two sensory channels mediate perception of fingertip force.

    Science.gov (United States)

    Brothers, Trevor; Hollins, Mark

    2014-01-01

    In two experiments we examined the ability of humans to exert forces accurately with the fingertips, and to perceive those forces. In experiment 1 participants used visual feedback to apply a range of fingertip forces with the distal pad of the thumb. Participants made magnitude discriminations regarding these forces, and their just noticeable differences were calculated at a series of standards by means of a two-interval, forced-choice tracking paradigm. As the standard increased, participants demonstrated a relative improvement in force discrimination; and the presence of a possible inflection point, at approximately 400 g, suggested that two sensory channels may contribute to performance. If this is the case, the operative channel at low forces is almost certainly the slowly adapting type I (SA-I) channel, while another mechanoreceptor class, the SA-II nail unit, is a plausible mediator of the more accurate performance seen at high force levels. To test this two-channel hypothesis in experiment 2, we hydrated participants' thumbnails in order to reduce nail rigidity and thus prevent stimulation of underlying SA-II mechanoreceptors. This technique was found to reduce sensory accuracy in a force-matching task at high forces (1000 g) while leaving low force matching (100 g) unimpaired. Taken together, these results suggest that two sensory channels mediate the perception of fingertip forces in humans: one channel predominating at low forces (below approximately 400 g) and another responsible for perceiving high forces which is likely mediated by the SA-II nail unit.

  20. From Wardens Air Force to Boyds Air Force

    Science.gov (United States)

    2016-04-01

    changing events.8 In this respect, armed forces can be viewed more accurately as perpetually evolving ecosystems than the unresponsive closed...teams operating “relatively autonomously to pursue entrepreneurial activities,”10 another way of saying they take the initiative. This concept is...fostered the exact type of “ entrepreneurial activity” Boyd portended based on trust, initiative, and a free flow of information. In many respects, the

  1. Continuous theta-burst stimulation to primary motor cortex reveals asymmetric compensation for sensory attenuation in bimanual repetitive force production.

    Science.gov (United States)

    Therrien, Amanda S; Lyons, James; Balasubramaniam, Ramesh

    2013-08-01

    Studies of fingertip force production have shown that self-produced forces are perceived as weaker than externally generated forces. This is due to mechanisms of sensory reafference where the comparison between predicted and actual sensory feedback results in attenuated perceptions of self-generated forces. Without an external reference to calibrate attenuated performance judgments, a compensatory overproduction of force is exhibited. It remains unclear whether the force overproduction seen in the absence of visual reference stimuli differs when forces are produced bimanually. We studied performance of two versions of a bimanual sequential force production task compared with each hand performing the task unimanually. When the task goal was shared, force series produced by each hand in bimanual conditions were found to be uncorrelated. When the bimanual task required each hand to reach a target force level, we found asymmetries in the degree of force overproduction between the hands following visual feedback removal. Unilateral continuous theta-burst stimulation of the left primary motor cortex yielded a selective reduction of force overproduction in the hand contralateral to stimulation by disrupting sensory reafference processes. While variability was lower in bimanual trials when the task goal was shared, this influence of hand condition disappeared when the target force level was to be reached by each hand simultaneously. Our findings strengthen the notion that force control in bimanual action is less tightly coupled than other mechanisms of bimanual motor control and show that this effector specificity may be extended to the processing and compensation for mechanisms of sensory reafference.

  2. Examining effective factors on human forces' productivity in bureau of naval operations

    Directory of Open Access Journals (Sweden)

    Younes Bahadori

    2015-01-01

    Full Text Available This research aims at examining effective factors on improvement of human forces' productivity and determining degree of influence and importance of each group among factors including workshop equipment and arrangement in organization, system of control and supervision on employees, degree of employees training, occupational value of employees and at last, administrating meritocracy system on improvement of human forces' productivity. Statistical population is composed of bureau of naval operations' employees in oil terminals' company in Khark, Iran. Statistical population has been 230, among which 135 people were determined as statistical sample size using Cochran formula. Survey instrument in this research has been questionnaire, according to which employees' ideas about effective factors on employees' productivity were evaluated. These questionnaires completed by people among statistical sample contain 16 close questions which were set up according to Likert 5-grade scale and were distributed as 135 numbers that after returning questionnaire, statistical analysis and data processing were accomplished. Analysis was performed in 2 descriptive and inferential statistics levels. Results of data analysis show that: A 5-fold factors under review “workshop equipment and arrangement of organization, system of control and supervision on employees, degree of employees training, occupational value of employees and administrating meritocracy related to human resources by management” have had effects on improvement of employees' productivity as average. B degree of employees training and then occupational value of employees and administrating meritocracy system have had the most influence, and workshop equipment and arrangement of organization and system of control and supervision on employees have had the least influence.

  3. Surface roughness and cutting force estimation in the CNC turning using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Mohammad Ramezani

    2015-04-01

    Full Text Available Surface roughness and cutting forces are considered as important factors to determine machinability rate and the quality of product. A number of factors like cutting speed, feed rate, depth of cutting and tool noise radius influence the surface roughness and cutting forces in turning process. In this paper, an Artificial Neural Network (ANN model was used to forecast surface roughness and cutting forces with related inputs, including cutting speed, feed rate, depth of cut and tool noise radius. The machined surface roughness and cutting force parameters related to input parameters are the outputs of the ANN model. In this work, 24 samples of experimental data were used to train the network. Moreover, eight other experimental tests were implemented to test the network. The study concludes that ANN was a reliable and accurate method for predicting machining parameters in CNC turning operation.

  4. Preface: Special Topic: From Quantum Mechanics to Force Fields

    Science.gov (United States)

    Piquemal, Jean-Philip; Jordan, Kenneth D.

    2017-10-01

    This Special Topic issue entitled "From Quantum Mechanics to Force Fields" is dedicated to the ongoing efforts of the theoretical chemistry community to develop a new generation of accurate force fields based on data from high-level electronic structure calculations and to develop faster electronic structure methods for testing and designing force fields as well as for carrying out simulations. This issue includes a collection of 35 original research articles that illustrate recent theoretical advances in the field. It provides a timely snapshot of recent developments in the generation of approaches to enable more accurate molecular simulations of processes important in chemistry, physics, biophysics, and materials science.

  5. Electromagnetic analysis of transient disruption forces on the ITER shield modules

    International Nuclear Information System (INIS)

    Kotulski, J.D.; Coats, R.S.; Pasik, M.F.

    2007-01-01

    There are potential abnormal operating environments where the disruption of the plasma currents inside a tokamak induce eddy currents in the shield modules. These currents interact with the large magnetic fields to produce forces in the modules which could potentially cause mechanical failure in the modules and vacuum vessel. For this reason the design and qualification of the ITER shield modules requires appropriate high-fidelity electromagnetic simulations that capture the physics of these situations. These simulations need to include an accurate representation of the disruption currents as well as an accurate electromagnetic model of the shield modules. The purpose of this presentation is to describe the electromagnetic analysis that has been completed using the OPERA-3D product to characterize the forces on the shield modules allocated to the US. We first describe the electromagnetic model of the system which consists of the disruption currents and the shield modules attached to the vacuum vessel. The disruption currents are represented in OPERA-3D using superposition of a large number of solenoids with independent time variation to account for the spatial and temporal variation of the plasma current and position. In addition, the simplified electromagnetic model of the shield modules will be described and discussed. Once the modeling has been described the simulation results are presented. The force computation are also presented and the results discussed. These forces are then used by a mechanical analysis program to compute stresses and torques on a module during the disruption of the plasma currents. (orig.)

  6. Lactate and force production in skeletal muscle

    DEFF Research Database (Denmark)

    Kristensen, Michael; Albertsen, Janni; Rentsch, Maria

    2005-01-01

    Lactic acid accumulation is generally believed to be involved in muscle fatigue. However, one study reported that in rat soleus muscle (in vitro), with force depressed by high external K+ concentrations a subsequent incubation with lactic acid restores force and thereby protects against fatigue...

  7. Comparison of TOPEX/Poseidon Sea Level and Linear Model Results forced by Various Wind Products for the Tropical Pacific

    Science.gov (United States)

    Hackert, Eric C.; Busalacchi, Antonio J.

    1997-01-01

    The goal of this paper is to compare TOPEX/Posaidon (T/P) sea level with sea level results from linear ocean model experiments forced by several different wind products for the tropical Pacific. During the period of this study (October 1992 - October 1995), available wind products include satellite winds from the ERS-1 scatterometer product of [HALP 97] and the passive microwave analysis of SSMI winds produced using the variational analysis method (VAM) of [ATLA 91]. In addition, atmospheric GCM winds from the NCEP reanalysis [KALN 96], ECMWF analysis [ECMW94], and the Goddard EOS-1 (GEOS-1) reanalysis experiment [SCHU 93] are available for comparison. The observed ship wind analysis of FSU [STRI 92] is also included in this study. The linear model of [CANE 84] is used as a transfer function to test the quality of each of these wind products for the tropical Pacific. The various wind products are judged by comparing the wind-forced model sea level results against the T/P sea level anomalies. Correlation and RMS difference maps show how well each wind product does in reproducing the T/P sea level signal. These results are summarized in a table showing area average correlations and RMS differences. The large-scale low-frequency temporal signal is reproduced by all of the wind products, However, significant differences exist in both amplitude and phase on regional scales. In general, the model results forced by satellite winds do a better job reproducing the T/P signal (i.e. have a higher average correlation and lower RMS difference) than the results forced by atmospheric model winds.

  8. Mechanical design and force calibration of dual-axis micromechanical probe for friction force microscopy

    International Nuclear Information System (INIS)

    Fukuzawa, Kenji; Terada, Satoshi; Shikida, Mitsuhiro; Amakawa, Hiroaki; Zhang, Hedong; Mitsuya, Yasunaga

    2007-01-01

    A dual-axis micromechanical probe that combines a double cantilever and torsion beams is presented. This probe can reduce the mechanical cross-talk between the lateral and vertical force detections. In addition, dual-axis forces can be detected by measuring the dual-axis displacement of the probe end using the optical lever-based method used in conventional friction force microscopes (FFMs). In this paper, the mechanical design of the probe, the details of the fabrication method, FFM performance, and calibration of the friction force are discussed. The mechanical design and the microfabrication method for probes that can provide a force resolution of the order of 1 nN without mechanical cross-talk are presented. Calibration of the lateral force signal is possible by using the relationship between the lateral force and the piezodisplacement at the onset of the probe scanning. The micromechanical probe enables simultaneous and independent detection of atomic and friction forces. This leads to accurate investigation of nanotribological phenomena and visualization of the distribution of the friction properties, which helps the identification of the material properties

  9. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    International Nuclear Information System (INIS)

    Xu Da; Liu Xuesong; Fang Kun; Fang Hongyuan

    2010-01-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  10. Sprint Acceleration Mechanics: The Major Role of Hamstrings in Horizontal Force Production

    Science.gov (United States)

    Morin, Jean-Benoît; Gimenez, Philippe; Edouard, Pascal; Arnal, Pierrick; Jiménez-Reyes, Pedro; Samozino, Pierre; Brughelli, Matt; Mendiguchia, Jurdan

    2015-01-01

    Recent literature supports the importance of horizontal ground reaction force (GRF) production for sprint acceleration performance. Modeling and clinical studies have shown that the hip extensors are very likely contributors to sprint acceleration performance. We experimentally tested the role of the hip extensors in horizontal GRF production during short, maximal, treadmill sprint accelerations. Torque capabilities of the knee and hip extensors and flexors were assessed using an isokinetic dynamometer in 14 males familiar with sprint running. Then, during 6-s sprints on an instrumented motorized treadmill, horizontal and vertical GRF were synchronized with electromyographic (EMG) activity of the vastus lateralis, rectus femoris, biceps femoris, and gluteus maximus averaged over the first half of support, entire support, entire swing and end-of-swing phases. No significant correlations were found between isokinetic or EMG variables and horizontal GRF. Multiple linear regression analysis showed a significant relationship (P = 0.024) between horizontal GRF and the combination of biceps femoris EMG activity during the end of the swing and the knee flexors eccentric peak torque. In conclusion, subjects who produced the greatest amount of horizontal force were both able to highly activate their hamstring muscles just before ground contact and present high eccentric hamstring peak torque capability. PMID:26733889

  11. Sprint acceleration mechanics: the major role of hamstrings in horizontal force production

    Directory of Open Access Journals (Sweden)

    Jean-Benoit eMORIN

    2015-12-01

    Full Text Available Recent literature supports the importance of horizontal ground reaction force (GRF production for sprint acceleration performance. Modeling and clinical studies have shown that the hip extensors are very likely contributors to sprint acceleration performance. We experimentally tested the role of the hip extensors in horizontal GRF production during short, maximal, treadmill sprint accelerations. Torque capabilities of the knee and hip extensors and flexors were assessed using an isokinetic dynamometer in 14 males familiar with sprint running. Then, during 6-s sprints on an instrumented motorized treadmill, horizontal and vertical GRF were synchronized with electromyographic (EMG activity of the vastus lateralis, rectus femoris, biceps femoris and gluteus maximus averaged over the first half of support, entire support, entire swing and end-of-swing phases. No significant correlations were found between isokinetic or EMG variables and horizontal GRF. Multiple linear regression analysis showed a significant relationship (P = 0.024 between horizontal GRF and the combination of biceps femoris EMG activity during the end of the swing and the knee flexors eccentric peak torque. In conclusion, subjects who produced the greatest amount of horizontal force were both able to highly activate their hamstring muscles just before ground contact and present high eccentric hamstring peak torque capability.

  12. Polarization effects in molecular mechanical force fields

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, Piotr [Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92120 (United States); Dupradeau, Francois-Yves [UMR CNRS 6219-Faculte de Pharmacie, Universite de Picardie Jules Verne, 1 rue des Louvels, F-80037 Amiens (France); Duan, Yong [Genome Center and Department of Applied Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Wang Junmei, E-mail: pcieplak@burnham.or [Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Boulevard, ND9.136, Dallas, TX 75390-9050 (United States)

    2009-08-19

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component-polarization energy-and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. (topical review)

  13. Can Measured Synergy Excitations Accurately Construct Unmeasured Muscle Excitations?

    Science.gov (United States)

    Bianco, Nicholas A; Patten, Carolynn; Fregly, Benjamin J

    2018-01-01

    Accurate prediction of muscle and joint contact forces during human movement could improve treatment planning for disorders such as osteoarthritis, stroke, Parkinson's disease, and cerebral palsy. Recent studies suggest that muscle synergies, a low-dimensional representation of a large set of muscle electromyographic (EMG) signals (henceforth called "muscle excitations"), may reduce the redundancy of muscle excitation solutions predicted by optimization methods. This study explores the feasibility of using muscle synergy information extracted from eight muscle EMG signals (henceforth called "included" muscle excitations) to accurately construct muscle excitations from up to 16 additional EMG signals (henceforth called "excluded" muscle excitations). Using treadmill walking data collected at multiple speeds from two subjects (one healthy, one poststroke), we performed muscle synergy analysis on all possible subsets of eight included muscle excitations and evaluated how well the calculated time-varying synergy excitations could construct the remaining excluded muscle excitations (henceforth called "synergy extrapolation"). We found that some, but not all, eight-muscle subsets yielded synergy excitations that achieved >90% extrapolation variance accounted for (VAF). Using the top 10% of subsets, we developed muscle selection heuristics to identify included muscle combinations whose synergy excitations achieved high extrapolation accuracy. For 3, 4, and 5 synergies, these heuristics yielded extrapolation VAF values approximately 5% lower than corresponding reconstruction VAF values for each associated eight-muscle subset. These results suggest that synergy excitations obtained from experimentally measured muscle excitations can accurately construct unmeasured muscle excitations, which could help limit muscle excitations predicted by muscle force optimizations.

  14. A Remote Controlled Robotic Arm That Reads Barcodes and Handles Products

    Directory of Open Access Journals (Sweden)

    Zhi-Ying Chen

    2018-03-01

    Full Text Available In this study, a 6-axis robotic arm, which was controlled by an embedded Raspberry Pi with onboard WiFi, was developed and fabricated. A mobile application (APP, designed for the purpose, was used to operate and monitor a robotic arm by means of a WiFi connection. A computer vision was used to read common one-dimensional barcode (EAN code for the handling and identification of products such as milk tea drinks, sodas and biscuits. The gripper on the end of the arm could sense the clamping force and allowed real-time control of the amount of force used to hold and handle the products. The packages were all made of different material and this control allowed them to be handled without danger of damage or deformation. The maximum handling torque used was ~1.08 Nm and the mechanical design allowed the force of the gripper to be uniformly applied to the sensor to ensure accurate measurement of the force.

  15. The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields.

    Science.gov (United States)

    Leib, Raz; Karniel, Amir; Nisky, Ilana

    2015-05-01

    During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain. Copyright © 2015 the American Physiological Society.

  16. Force-deflection analysis of offset indentations on pressurised pipes

    International Nuclear Information System (INIS)

    Hyde, T.H.; Luo, R.; Becker, A.A.

    2007-01-01

    The indenter force vs. deflection characteristics of pressurised pipes with long offset indentations under plane strain conditions have been investigated using finite element (FE) and analytical methods with four experimental tests performed on aluminium rings. Two different materials and five different geometries were used to investigate their effects on the elastic-plastic behaviour. A comparison of the experimental, FE and the analytical results indicates that the analytical formulation developed in this paper, for predicting the force-deflection curves for pressurised pipes with offset indenters, is reasonably accurate. Also, all of the analyses presented in this paper indicate that by using a representative flow stress, which is defined as the average of the yield and ultimate tensile stresses, the analytical method can accurately predict the force-deflection curves

  17. Surface forces studied with colloidal probe atomic force microscopy

    NARCIS (Netherlands)

    Giesbers, M.

    2001-01-01

    Forces between surfaces are a determining factor for the performance of natural as well as synthetic colloidal systems, and play a crucial role in industrial production processes. Measuring these forces is a scientific and experimental challenge and over the years several techniques have

  18. Vortexlet models of flapping flexible wings show tuning for force production and control

    International Nuclear Information System (INIS)

    Mountcastle, A M; Daniel, T L

    2010-01-01

    Insect wings are compliant structures that experience deformations during flight. Such deformations have recently been shown to substantially affect induced flows, with appreciable consequences to flight forces. However, there are open questions related to the aerodynamic mechanisms underlying the performance benefits of wing deformation, as well as the extent to which such deformations are determined by the boundary conditions governing wing actuation together with mechanical properties of the wing itself. Here we explore aerodynamic performance parameters of compliant wings under periodic oscillations, subject to changes in phase between wing elevation and pitch, and magnitude and spatial pattern of wing flexural stiffness. We use a combination of computational structural mechanics models and a 2D computational fluid dynamics approach to ask how aerodynamic force production and control potential are affected by pitch/elevation phase and variations in wing flexural stiffness. Our results show that lift and thrust forces are highly sensitive to flexural stiffness distributions, with performance optima that lie in different phase regions. These results suggest a control strategy for both flying animals and engineering applications of micro-air vehicles.

  19. A Practical Framework Toward Prediction of Breaking Force and Disintegration of Tablet Formulations Using Machine Learning Tools.

    Science.gov (United States)

    Akseli, Ilgaz; Xie, Jingjin; Schultz, Leon; Ladyzhynsky, Nadia; Bramante, Tommasina; He, Xiaorong; Deanne, Rich; Horspool, Keith R; Schwabe, Robert

    2017-01-01

    Enabling the paradigm of quality by design requires the ability to quantitatively correlate material properties and process variables to measureable product performance attributes. Conventional, quality-by-test methods for determining tablet breaking force and disintegration time usually involve destructive tests, which consume significant amount of time and labor and provide limited information. Recent advances in material characterization, statistical analysis, and machine learning have provided multiple tools that have the potential to develop nondestructive, fast, and accurate approaches in drug product development. In this work, a methodology to predict the breaking force and disintegration time of tablet formulations using nondestructive ultrasonics and machine learning tools was developed. The input variables to the model include intrinsic properties of formulation and extrinsic process variables influencing the tablet during manufacturing. The model has been applied to predict breaking force and disintegration time using small quantities of active pharmaceutical ingredient and prototype formulation designs. The novel approach presented is a step forward toward rational design of a robust drug product based on insight into the performance of common materials during formulation and process development. It may also help expedite drug product development timeline and reduce active pharmaceutical ingredient usage while improving efficiency of the overall process. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Accurate SERS detection of malachite green in aquatic products on basis of graphene wrapped flexible sensor.

    Science.gov (United States)

    Ouyang, Lei; Yao, Ling; Zhou, Taohong; Zhu, Lihua

    2018-10-16

    Malachite Green (MG) is a banned pesticide for aquaculture products. As a required inspection item, its fast and accurate determination before the products' accessing market is very important. Surface enhanced Raman scattering (SERS) is a promising tool for MG sensing, but it requires the overcoming of several problems such as fairly poor sensitivity and reproducibility, especially laser induced chemical conversion and photo-bleaching during SERS observation. By using a graphene wrapped Ag array based flexible membrane sensor, a modified SERS strategy was proposed for the sensitive and accurate detection of MG. The graphene layer functioned as an inert protector for impeding chemical transferring of the bioproduct Leucomalachite Green (LMG) to MG during the SERS detection, and as a heat transmitter for preventing laser induced photo-bleaching, which enables the separate detection of MG and LMG in fish extracts. The combination of the Ag array and the graphene cover also produced plentiful densely and uniformly distributed hot spots, leading to analytical enhancement factor up to 3.9 × 10 8 and excellent reproducibility (relative standard deviation low to 5.8% for 70 runs). The proposed method was easily used for MG detection with limit of detection (LOD) as low as 2.7 × 10 -11  mol L -1 . The flexibility of the sensor enable it have a merit for in-field fast detection of MG residues on the scale of a living fish through a surface extraction and paste transferring manner. The developed strategy was successfully applied in the analysis of real samples, showing good prospects for both the fast inspection and quantitative detection of MG. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Rolling Force Prediction in Heavy Plate Rolling Based on Uniform Differential Neural Network

    Directory of Open Access Journals (Sweden)

    Fei Zhang

    2016-01-01

    Full Text Available Accurate prediction of the rolling force is critical to assuring the quality of the final product in steel manufacturing. Exit thickness of plate for each pass is calculated from roll gap, mill spring, and predicted roll force. Ideal pass scheduling is dependent on a precise prediction of the roll force in each pass. This paper will introduce a concept that allows obtaining the material model parameters directly from the rolling process on an industrial scale by the uniform differential neural network. On the basis of the characteristics that the uniform distribution can fully characterize the solution space and enhance the diversity of the population, uniformity research on differential evolution operator is made to get improved crossover with uniform distribution. When its original function is transferred with a transfer function, the uniform differential evolution algorithms can quickly solve complex optimization problems. Neural network structure and weights threshold are optimized by uniform differential evolution algorithm, and a uniform differential neural network is formed to improve rolling force prediction accuracy in process control system.

  2. Accurate radiotherapy positioning system investigation based on video

    International Nuclear Information System (INIS)

    Tao Shengxiang; Wu Yican

    2006-01-01

    This paper introduces the newest research production on patient positioning method in accurate radiotherapy brought by Accurate Radiotherapy Treating System (ARTS) research team of Institute of Plasma Physics of Chinese Academy of Sciences, such as the positioning system based on binocular vision, the position-measuring system based on contour matching and the breath gate controlling system for positioning. Their basic principle, the application occasion and the prospects are briefly depicted. (authors)

  3. Comparative analysis of methods for determining bite force in the spiny dogfish Squalus acanthias.

    Science.gov (United States)

    Huber, Daniel Robert; Motta, Philip Jay

    2004-01-01

    Many studies have identified relationships between the forces generated by the cranial musculature during feeding and cranial design. Particularly important to understanding the diversity of cranial form amongst vertebrates is knowledge of the generated magnitudes of bite force because of its use as a measure of ecological performance. In order to determine an accurate morphological proxy for bite force in elasmobranchs, theoretical force generation by the quadratomandibularis muscle of the spiny dogfish Squalus acanthias was modeled using a variety of morphological techniques, and lever-ratio analyses were used to determine resultant bite forces. These measures were compared to in vivo bite force measurements obtained with a pressure transducer during tetanic stimulation experiments of the quadratomandibularis. Although no differences were found between the theoretical and in vivo bite forces measured, modeling analyses indicate that the quadratomandibularis muscle should be divided into its constituent divisions and digital images of the cross-sections of these divisions should be used to estimate cross-sectional area when calculating theoretical force production. From all analyses the maximum bite force measured was 19.57 N. This relatively low magnitude of bite force is discussed with respect to the ecomorphology of the feeding mechanism of S. acanthias to demonstrate the interdependence of morphology, ecology, and behavior in organismal design. Copyright 2004 Wiley-Liss, Inc.

  4. Accurate x-ray spectroscopy

    International Nuclear Information System (INIS)

    Deslattes, R.D.

    1987-01-01

    Heavy ion accelerators are the most flexible and readily accessible sources of highly charged ions. These having only one or two remaining electrons have spectra whose accurate measurement is of considerable theoretical significance. Certain features of ion production by accelerators tend to limit the accuracy which can be realized in measurement of these spectra. This report aims to provide background about spectroscopic limitations and discuss how accelerator operations may be selected to permit attaining intrinsically limited data

  5. Precision Force Control for an Electro-Hydraulic Press Machine

    Directory of Open Access Journals (Sweden)

    Hong-Ming Chen

    2014-08-01

    Full Text Available This thesis is primarily intended to design a PC-based control system to control the force of an electro-hydraulic servo press system for implementing precision force control. The main feature is to develop a composite control by using the relief valve and the flow servo valve. Using feedback from a force sensor, a fuzzy controller was designed with LabVIEW software as the system control core for achieving a precision force control for the hydraulic cylinder on its travel and output. The weakness of hydraulic systems is that hydraulic oil is compressible and prone to leaking, and its characteristics can vary with oil temperature, thus making it difficult for a general linear controller to achieve accurate control. Therefore, a fuzzy controller was designed with LabVIEW along with a NI-PCI_6221 interface card and a load cell to control the servo valve flow and the relief valve to control the pressure source. The testing results indicate that accurate force control output of an electro-hydraulic servo press system can be obtained.

  6. Are current atomistic force fields accurate enough to study proteins in crowded environments?

    Directory of Open Access Journals (Sweden)

    Drazen Petrov

    2014-05-01

    Full Text Available The high concentration of macromolecules in the crowded cellular interior influences different thermodynamic and kinetic properties of proteins, including their structural stabilities, intermolecular binding affinities and enzymatic rates. Moreover, various structural biology methods, such as NMR or different spectroscopies, typically involve samples with relatively high protein concentration. Due to large sampling requirements, however, the accuracy of classical molecular dynamics (MD simulations in capturing protein behavior at high concentration still remains largely untested. Here, we use explicit-solvent MD simulations and a total of 6.4 µs of simulated time to study wild-type (folded and oxidatively damaged (unfolded forms of villin headpiece at 6 mM and 9.2 mM protein concentration. We first perform an exhaustive set of simulations with multiple protein molecules in the simulation box using GROMOS 45a3 and 54a7 force fields together with different types of electrostatics treatment and solution ionic strengths. Surprisingly, the two villin headpiece variants exhibit similar aggregation behavior, despite the fact that their estimated aggregation propensities markedly differ. Importantly, regardless of the simulation protocol applied, wild-type villin headpiece consistently aggregates even under conditions at which it is experimentally known to be soluble. We demonstrate that aggregation is accompanied by a large decrease in the total potential energy, with not only hydrophobic, but also polar residues and backbone contributing substantially. The same effect is directly observed for two other major atomistic force fields (AMBER99SB-ILDN and CHARMM22-CMAP as well as indirectly shown for additional two (AMBER94, OPLS-AAL, and is possibly due to a general overestimation of the potential energy of protein-protein interactions at the expense of water-water and water-protein interactions. Overall, our results suggest that current MD force fields

  7. Digital design and fabrication of simulation model for measuring orthodontic force.

    Science.gov (United States)

    Liu, Yun-Feng; Zhang, Peng-Yuan; Zhang, Qiao-Fang; Zhang, Jian-Xing; Chen, Jie

    2014-01-01

    Three dimensional (3D) forces are the key factors for determining movement of teeth during orthodontic treatment. Designing precise forces and torques on tooth before treatment can result accurate tooth movements, but it is too difficult to realize. In orthodontic biomechanical systems, the periodontal tissues, including bones, teeth, and periodontal ligaments (PDL), are affected by braces, and measuring the forces applied on the teeth by braces should be based on a simulated model composed of these three types of tissues. This study explores the design and fabrication of a simulated oral model for 3D orthodontic force measurements. Based on medical image processing, tissue reconstruction, 3D printing, and PDL simulation and testing, a model for measuring force was designed and fabricated, which can potentially be used for force prediction, design of treatment plans, and precise clinical operation. The experiment illustrated that bi-component silicones with 2:8 ratios had similar mechanical properties to PDL, and with a positioning guide, the teeth were assembled in the mandible sockets accurately, and so a customized oral model for 3D orthodontic force measurement was created.

  8. Comparative Effects of Different Balance-Training-Progression Styles on Postural Control and Ankle Force Production: A Randomized Controlled Trial.

    Science.gov (United States)

    Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik

    2016-02-01

    Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training-progression styles. To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Randomized controlled trial. Research laboratory. A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P .05) for any of the outcome measures. A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults.

  9. Theoretical analysis of steady state operating forces in control valves

    Directory of Open Access Journals (Sweden)

    Basavaraj Hubballi

    2018-01-01

    Full Text Available The controlling components, such as valves are used to regulate controlled fluid power. It is not always possible to calculate valve forces accurately, and with some types of valves even the existence of certain types of forces cannot be predicted with certainty. In many cases, however, the analysis can be made fairly completely and accurately. The assumption of steady state conditions is valid for the valve alone, but transient effects in the rest of the system may be large. These effects are particularly important with regard to the instability of valves, where the system may react on the valve in such a way as to make it squeal or oscillate, sometimes with large amplitude. The origin of the steady state flow force understood from a brief qualitative explanation. The following paper will summarize much of what is known about valve forces in the spool type controlling element.

  10. Effects of age and content of augmented feedback on learning an isometric force-production task

    NARCIS (Netherlands)

    van Dijk, Henk; Mulder, Theo; Hermens, Hermie J.

    2007-01-01

    This study addressed the interaction between age and the informational content of feedback on learning an isometric force-production task. Healthy men and women (30 young adults: 20 to 35 years; 30 older adults: 55 to 70 years) were randomly assigned to a certain type of feedback: knowledge of

  11. Force-Time Entropy of Isometric Impulse.

    Science.gov (United States)

    Hsieh, Tsung-Yu; Newell, Karl M

    2016-01-01

    The relation between force and temporal variability in discrete impulse production has been viewed as independent (R. A. Schmidt, H. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979 ) or dependent on the rate of force (L. G. Carlton & K. M. Newell, 1993 ). Two experiments in an isometric single finger force task investigated the joint force-time entropy with (a) fixed time to peak force and different percentages of force level and (b) fixed percentage of force level and different times to peak force. The results showed that the peak force variability increased either with the increment of force level or through a shorter time to peak force that also reduced timing error variability. The peak force entropy and entropy of time to peak force increased on the respective dimension as the parameter conditions approached either maximum force or a minimum rate of force production. The findings show that force error and timing error are dependent but complementary when considered in the same framework with the joint force-time entropy at a minimum in the middle parameter range of discrete impulse.

  12. A new united atom force field for adsorption of alkenes in zeolites

    NARCIS (Netherlands)

    Liu, B.; Smit, B.; Rey, F.; Valencia, S.; Calero, S.

    2008-01-01

    A new united atom force field was developed that accurately describes the adsorption properties of linear alkenes in zeolites. The force field was specifically designed for use in the inhomogeneous system and therefore a truncated and shifted potential was used. With the determined force field, we

  13. NNLOPS accurate associated HZ production with NLO decay ${\\rm{H}} \\to b\\bar{b}$ arXiv

    CERN Document Server

    Astill, William; Re, Emanuele; Zanderighi, Giulia

    We present a next-to-next-to-leading order (NNLO) accurate description of associated HZ production, followed by the Higgs boson decay into a pair of $b$-quarks treated at next-to-leading order (NLO), consistently matched to a parton shower (PS). The matching is achieved by performing reweighting of the $\\texttt{HZJ-MiNLO}$ events, using multi-dimensional distributions that are fully-differential in the HZ Born kinematics, to the NNLO results obtained by using the $\\texttt{MCFM-8.0}$ fixed-order calculation. Additionally we include the $gg\\to\\rm{HZ}$ contribution to the discussed process that appears at the $\\mathcal{O}(\\alpha_s^2)$. We present phenomenological results obtained for 13 TeV hadronic collisions.

  14. Shear forces in the contact patch of a braked-racing tyre

    Science.gov (United States)

    Gruber, Patrick; Sharp, Robin S.

    2012-12-01

    This article identifies tyre modelling features that are fundamental to the accurate simulation of the shear forces in the contact patch of a steady-rolling, slipping and cambered racing tyre. The features investigated include contact patch shape, contact pressure distribution, carcass flexibility, rolling radius (RR) variations and friction coefficient. Using a previously described physical tyre model of modular nature, validated for static conditions, the influence of each feature on the shear forces generated is examined under different running conditions, including normal loads of 1500, 3000 and 4500 N, camber angles of 0° and-3°, and longitudinal slip ratios from 0 to-20%. Special attention is paid to heavy braking, in which context the aligning moment is of great interest in terms of its connection with the limit-handling feel. The results of the simulations reveal that true representations of the contact patch shape, carcass flexibility and lateral RR variation are essential for an accurate prediction of the distribution and the magnitude of the shear forces generated at the tread-road interface of the cambered tyre. Independent of the camber angle, the contact pressure distribution primarily influences the shear force distribution and the slip characteristics around the peak longitudinal force. At low brake-slip ratios, the friction coefficient affects the shear forces in terms of their distribution, while, at medium to high-slip ratios, the force magnitude is significantly affected. On the one hand, these findings help in the creation of efficient yet accurate tyre models. On the other hand, the research results allow improved understanding of how individual tyre components affect the generation of shear forces in the contact patch of a rolling and slipping tyre.

  15. NUMERICAL STUDIES OF THE FRICTION FORCE FOR THE RHIC ELECTRON COOLER

    International Nuclear Information System (INIS)

    FEDOTOV, A.V.; BEN-ZVI, I.; LITVINENKO, V.

    2005-01-01

    Accurate calculation of electron cooling times requires an accurate description of the dynamical friction force. The proposed RHIC cooler will require ∼55 MeV electrons, which must be obtained from an RF linac, leading to very high transverse electron temperatures. A strong solenoid will be used to magnetize the electrons and suppress the transverse temperature, but the achievable magnetized cooling logarithm will not be large. In this paper, we explore the magnetized friction force for parameters of the RHIC cooler, using the VORPAL code [l]. VORPAL can simulate dynamical friction and diffusion coefficients directly from first principles [2]. Various aspects of the fiction force are addressed for the problem of high-energy electron cooling in the RHIC regime

  16. Effect of contact stiffness on wedge calibration of lateral force in atomic force microscopy

    International Nuclear Information System (INIS)

    Wang Fei; Zhao Xuezeng

    2007-01-01

    Quantitative friction measurement of nanomaterials in atomic force microscope requires accurate calibration method for lateral force. The effect of contact stiffness on lateral force calibration of atomic force microscope is discussed in detail and an improved calibration method is presented. The calibration factor derived from the original method increased with the applied normal load, which indicates that separate calibration should be required for every given applied normal load to keep the accuracy of friction measurement. We improve the original method by introducing the contact factor, which is derived from the contact stiffness between the tip and the sample, to the calculation of calibration factors. The improved method makes the calculation of calibration factors under different applied normal loads possible without repeating the calibration procedure. Comparative experiments on a silicon wafer have been done by both the two methods to validate the method in this article

  17. Importance of anisotropy in detachment rates for force production and cargo transport by a team of motor proteins.

    Science.gov (United States)

    Takshak, Anjneya; Kunwar, Ambarish

    2016-05-01

    Many cellular processes are driven by collective forces generated by a team consisting of multiple molecular motor proteins. One aspect that has received less attention is the detachment rate of molecular motors under mechanical force/load. While detachment rate of kinesin motors measured under backward force increases rapidly for forces beyond stall-force; this scenario is just reversed for non-yeast dynein motors where detachment rate from microtubule decreases, exhibiting a catch-bond type behavior. It has been shown recently that yeast dynein responds anisotropically to applied load, i.e. detachment rates are different under forward and backward pulling. Here, we use computational modeling to show that these anisotropic detachment rates might help yeast dynein motors to improve their collective force generation in the absence of catch-bond behavior. We further show that the travel distance of cargos would be longer if detachment rates are anisotropic. Our results suggest that anisotropic detachment rates could be an alternative strategy for motors to improve the transport properties and force production by the team. © 2016 The Protein Society.

  18. Air Force Policy for Advanced Education: Production of Human Capital or Cheap Signals?

    Science.gov (United States)

    2011-01-01

    is not prima facie evidence that all on-base and distance-learning graduate programs offered to military members are devoid of any production of...then becomes whether or not most officers engaged in vol­ untary off- duty education programs do so to augment their promotion opportunities or to...their capability to perform the duties of the next rank. However, members of the board do not have information such as IQ, Air Force Officer Qualifying

  19. Evaluation of methods to assess push/pull forces in a construction task

    NARCIS (Netherlands)

    Hoozemans, M J; Van Der Beek, Allard J.; Frings-Dresena, M H; Van der Molen, Henk F.

    2001-01-01

    The objective of the present study was to determine the validity of methods to assess push/pull forces exerted in a construction task. Forces assessed using a hand-held digital force gauge were compared to those obtained using a highly accurate measuring frame. No significant differences were found

  20. The effect of coracoacromial ligament excision and acromioplasty on the amount of rotator cuff force production necessary to restore intact glenohumeral biomechanics.

    Science.gov (United States)

    Budoff, Jeffrey E; Lin, Cheng-Li; Hong, Chih-Kai; Chiang, Florence L; Su, Wei-Ren

    2016-06-01

    Coracoacromial ligament (CAL) excision and acromioplasty increase superior and anterosuperior glenohumeral translation. It is unknown how much of an increase in rotator cuff force production is required to re-establish intact glenohumeral biomechanics after these surgical procedures. We hypothesized that, after CAL excision and acromioplasty, an increase in rotator cuff force production would not be necessary to reproduce the anterosuperior and superior translations of the intact specimens. Nine cadaveric shoulders were subjected to loading in the superior and anterosuperior directions in the intact state after CAL excision, acromioplasty, and recording of the translations. The rotator cuff force was then increased to normalize glenohumeral biomechanics. After CAL excision at 150 and 200 N of loading, an increase in the rotator cuff force by 25% decreased anterosuperior translation to the point where there was no significant difference from the intact specimen's translation. After acromioplasty (and CAL excision) at 150 and 200 N, an increase in the rotator cuff force of 25% and 30%, respectively, decreased superior translation to the point where there was no significant difference from the intact specimen's translation. At 150 to 200 N of loading, CAL excision and acromioplasty increase the rotator cuff force required to maintain normal glenohumeral biomechanics by 25% to 30%. After a subacromial decompression, the rotator cuff has an increased force production requirement to maintain baseline glenohumeral mechanics. Under many circumstances, in vivo force requirements may be even greater after surgical attenuation of the coracoacromial arch. Basic Science Study; Biomechanics. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  1. Reliable and Accurate Release of Micro-Sized Objects with a Gripper that Uses the Capillary-Force Method

    Directory of Open Access Journals (Sweden)

    Suzana Uran

    2017-06-01

    Full Text Available There have been recent developments in grippers that are based on capillary force and condensed water droplets. These are used for manipulating micro-sized objects. Recently, one-finger grippers have been produced that are able to reliably grip using the capillary force. To release objects, either the van der Waals, gravitational or inertial-forces method is used. This article presents methods for reliably gripping and releasing micro-objects using the capillary force. The moisture from the surrounding air is condensed into a thin layer of water on the contact surfaces of the objects. From the thin layer of water, a water meniscus between the micro-sized object, the gripper and the releasing surface is created. Consequently, the water meniscus between the object and the releasing surface produces a high enough capillary force to release the micro-sized object from the tip of the one-finger gripper. In this case, either polystyrene, glass beads with diameters between 5–60 µm, or irregularly shaped dust particles of similar sizes were used. 3D structures made up of micro-sized objects could be constructed using this method. This method is reliable for releasing during assembly and also for gripping, when the objects are removed from the top of the 3D structure—the so-called “disassembling gripping” process. The accuracy of the release was lower than 0.5 µm.

  2. Multi-objective optimization of surface roughness, cutting forces, productivity and Power consumption when turning of Inconel 718

    Directory of Open Access Journals (Sweden)

    Hamid Tebassi

    2016-01-01

    Full Text Available Nickel based super alloys are excellent for several applications and mainly in structural components submitted to high temperatures owing to their high strength to weight ratio, good corrosion resistance and metallurgical stability such as in cases of jet engine and gas turbine components. The current work presents the experimental investigations of the cutting parameters effects (cutting speed, depth of cut and feed rate on the surface roughness, cutting force components, productivity and power consumption during dry conditions in straight turning using coated carbide tool. The mathematical models for output parameters have been developed using Box-Behnken design with 15 runs and Box-Cox transformation was used for improving normality. The results of the analysis have shown that the surface finish was statistically sensitive to the feed rate and cutting speed with the contribution of 43.58% and 23.85% respectively, while depth of cut had the greatest effect on the evolution of cutting force components with the contribution of 79.87% for feed force, 66.92% for radial force and 66.26% for tangential force. Multi-objective optimization procedure allowed minimizing roughness Ra, cutting forces and power consumption and maximizing material removal rate using desirability approach.

  3. Chin force in violin playing.

    Science.gov (United States)

    Obata, Satoshi; Kinoshita, Hiroshi

    2012-06-01

    Force generated between the left mandible of violinists and the chinrest of the violin was examined using a force-sensing chinrest developed in this study. A strain-gauge force sensor was built, and it was fixed between the violin's top plate and a chin cup. Fifteen professional/amateur violinists held the violin statically, played musical scales with different sound properties and sounding techniques, as well as an excerpt from a Max Bruch concerto. Peak and mean forces were evaluated for each task. In a separate experiment, lateral movement of the lower teeth due to different levels of voluntary chin force exertion was measured. Static holding forces observed were 15 and 22 N with and without the help of the left hand, respectively. Peak force increased from 16 N at soft dynamics to 20 N at strong dynamics during scales. The force further increased to 29 N with the use of vibrato technique and 35 N during shifts. Tempo and hand position did not affect the force. Playing a Bruch concerto induced a mean peak force of 52 N, ranging from 31 to 82 N among the violinists. The developed force-sensing chinrest could accurately record the generated chin force. Typical chin force to stabilize the violin during ordinary musical performance was less than 30 N, but it could momentarily exceed 50 N when technically demanding musical pieces were performed. The lateral shift of the mandible was fairly small (<0.4 mm) even with high chin-force exertion, possibly due to clenching of the molars.

  4. Comparative Effects of Different Balance-Training–Progression Styles on Postural Control and Ankle Force Production: A Randomized Controlled Trial

    Science.gov (United States)

    Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik

    2016-01-01

    Context:  Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training–progression styles. Objective:  To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Design:  Randomized controlled trial. Setting:  Research laboratory. Patients or Other Participants:  A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). Intervention(s):  All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Main Outcome Measure(s):  Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Results:  Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P .05) for any of the outcome measures. Conclusions:  A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in

  5. The Pharmaceutical Capping Process-Correlation between Residual Seal Force, Torque Moment, and Flip-off Removal Force.

    Science.gov (United States)

    Mathaes, Roman; Mahler, Hanns-Christian; Vorgrimler, Lothar; Steinberg, Henrik; Dreher, Sascha; Roggo, Yves; Nieto, Alejandra; Brown, Helen; Roehl, Holger; Adler, Michael; Luemkemann, Joerg; Huwyler, Joerg; Lam, Philippe; Stauch, Oliver; Mohl, Silke; Streubel, Alexander

    2016-01-01

    The majority of parenteral drug products are manufactured in glass vials with an elastomeric rubber stopper and a crimp cap. The vial sealing process is a critical process step during fill-and-finish operations, as it defines the seal quality of the final product. Different critical capping process parameters can affect rubber stopper defects, rubber stopper compression, container closure integrity, and also crimp cap quality. A sufficiently high force to remove the flip-off button prior to usage is required to ensure quality of the drug product unit by the flip-off button during storage, transportation, and until opening and use. Therefore, the final product is 100% visually inspected for lose or defective crimp caps, which is subjective as well as time- and labor-intensive. In this study, we sealed several container closure system configurations with different capping equipment settings (with corresponding residual seal force values) to investigate the torque moment required to turn the crimp cap. A correlation between torque moment and residual seal force has been established. The torque moment was found to be influenced by several parameters, including diameter of the vial head, type of rubber stopper (serum or lyophilized) and type of crimp cap (West(®) or Datwyler(®)). In addition, we measured the force required to remove the flip-off button of a sealed container closure system. The capping process had no influence on measured forces; however, it was possible to detect partially crimped vials. In conclusion, a controlled capping process with a defined target residual seal force range leads to a tight crimp cap on a sealed container closure system and can ensure product quality. The majority of parenteral drug products are manufactured in a glass vials with an elastomeric rubber stopper and a crimp cap. The vial sealing process is a critical process step during fill-and-finish operations, as it defines the seal quality of the final product. An adequate force

  6. Verifying Air Force Weather Passive Satellite Derived Cloud Analysis Products

    Science.gov (United States)

    Nobis, T. E.

    2017-12-01

    Air Force Weather (AFW) has developed an hourly World-Wide Merged Cloud Analysis (WWMCA) using imager data from 16 geostationary and polar-orbiting satellites. The analysis product contains information on cloud fraction, height, type and various optical properties including optical depth and integrated water path. All of these products are derived using a suite of algorithms which rely exclusively on passively sensed data from short, mid and long wave imager data. The system integrates satellites with a wide-range of capabilities, from the relatively simple two-channel OLS imager to the 16 channel ABI/AHI to create a seamless global analysis in real time. Over the last couple of years, AFW has started utilizing independent verification data from active sensed cloud measurements to better understand the performance limitations of the WWMCA. Sources utilized include space based lidars (CALIPSO, CATS) and radar (CloudSat) as well as ground based lidars from the Department of Energy ARM sites and several European cloud radars. This work will present findings from our efforts to compare active and passive sensed cloud information including comparison techniques/limitations as well as performance of the passive derived cloud information against the active.

  7. Social forces and tobacco in society.

    Science.gov (United States)

    Eriksen, M P

    1999-01-01

    The continued widespread use of tobacco is one of the greatest paradoxes of the 20th century. The cigarette was introduced to society early in this century, received a broad public acceptance in response to massive marketing and distribution efforts, and survives--or, more accurately, thrives--in a complex and controversial social, medical, and legal environment. Today, over 50 million Americans continue to use tobacco regularly, despite the fact that it is almost universally known that use of the product as intended is likely to result in ultimate death and disability for one out of two regular users. The latest statistics tell us that over 400,000 Americans die each year, accounting for over 5 million years of lost life, $50 billion in medical expenditures, and another $50 billion in indirect costs. We estimate that 10 million Americans have died from smoking since the first Surgeon General's Report in 1964, and another 25 million Americans alive today will ultimately die, including 5 million children, as a result of a fundamentally adolescent decision. Clearly, a unique mix of social and political forces have combined to result in a deadly and addicting product being sold and marketed like candy, resulting in 90% of users acknowledging the addictive nature of the product, 70% of whom would like to quit and wish they had never started. But despite near-universal knowledge of the harm and addictive nature of the product and widespread public support for changes in the status quo, the status quo has not changed. Despite a consistent belief that tobacco should be treated commensurate with the harm that it causes, changes in public policy have been surprisingly recalcitrant. This introduction briefly examines the social, cultural, economic, and public policy forces that have contributed to maintaining the status quo for nearly 100 years, the barriers to meaningful change, and the research needs that could result in profound improvements in public health.

  8. Increasing the productivity of glycopeptides analysis by using higher-energy collision dissociation-accurate mass-product-dependent electron transfer dissociation.

    Science.gov (United States)

    Saba, Julian; Dutta, Sucharita; Hemenway, Eric; Viner, Rosa

    2012-01-01

    Currently, glycans are attracting attention from the scientific community as potential biomarkers or as posttranslational modifications (PTMs) of therapeutic proteins. However, structural characterization of glycoproteins and glycopeptides remains analytically challenging. Here, we report on the implementation of a novel acquisition strategy termed higher-energy collision dissociation-accurate mass-product-dependent electron transfer dissociation (HCD-PD-ETD) on a hybrid linear ion trap-orbitrap mass spectrometer. This acquisition strategy uses the complementary fragmentations of ETD and HCD for glycopeptides analysis in an intelligent fashion. Furthermore, the approach minimizes user input for optimizing instrumental parameters and enables straightforward detection of glycopeptides. ETD spectra are only acquired when glycan oxonium ions from MS/MS HCD are detected. The advantage of this approach is that it streamlines data analysis and improves dynamic range and duty cycle. Here, we present the benefits of HCD-PD-ETD relative to the traditional alternating HCD/ETD for a trainer set containing twelve-protein mixture with two glycoproteins: human serotransferrin, ovalbumin and contaminations of two other: bovine alpha 1 acid glycoprotein (bAGP) and bovine fetuin.

  9. Optical forces, torques, and force densities calculated at a microscopic level using a self-consistent hydrodynamics method

    Science.gov (United States)

    Ding, Kun; Chan, C. T.

    2018-04-01

    The calculation of optical force density distribution inside a material is challenging at the nanoscale, where quantum and nonlocal effects emerge and macroscopic parameters such as permittivity become ill-defined. We demonstrate that the microscopic optical force density of nanoplasmonic systems can be defined and calculated using the microscopic fields generated using a self-consistent hydrodynamics model that includes quantum, nonlocal, and retardation effects. We demonstrate this technique by calculating the microscopic optical force density distributions and the optical binding force induced by external light on nanoplasmonic dimers. This approach works even in the limit when the nanoparticles are close enough to each other so that electron tunneling occurs, a regime in which classical electromagnetic approach fails completely. We discover that an uneven distribution of optical force density can lead to a light-induced spinning torque acting on individual particles. The hydrodynamics method offers us an accurate and efficient approach to study optomechanical behavior for plasmonic systems at the nanoscale.

  10. A canonical approach to forces in molecules

    Energy Technology Data Exchange (ETDEWEB)

    Walton, Jay R. [Department of Mathematics, Texas A& M University, College Station, TX 77843-3368 (United States); Rivera-Rivera, Luis A., E-mail: rivera@chem.tamu.edu [Department of Chemistry, Texas A& M University, College Station, TX 77843-3255 (United States); Lucchese, Robert R.; Bevan, John W. [Department of Chemistry, Texas A& M University, College Station, TX 77843-3255 (United States)

    2016-08-02

    Highlights: • Derivation of canonical representation of molecular force. • Correlation of derivations with accurate results from Born–Oppenheimer potentials. • Extension of methodology to Mg{sub 2}, benzene dimer, and water dimer. - Abstract: In previous studies, we introduced a generalized formulation for canonical transformations and spectra to investigate the concept of canonical potentials strictly within the Born–Oppenheimer approximation. Data for the most accurate available ground electronic state pairwise intramolecular potentials in H{sub 2}{sup +}, H{sub 2}, HeH{sup +}, and LiH were used to rigorously establish such conclusions. Now, a canonical transformation is derived for the molecular force, F(R), with H{sub 2}{sup +} as molecular reference. These transformations are demonstrated to be inherently canonical to high accuracy but distinctly different from those corresponding to the respective potentials of H{sub 2}, HeH{sup +}, and LiH. In this paper, we establish the canonical nature of the molecular force which is key to fundamental generalization of canonical approaches to molecular bonding. As further examples Mg{sub 2}, benzene dimer and to water dimer are also considered within the radial limit as applications of the current methodology.

  11. Adaptive increase in force variance during fatigue in tasks with low redundancy.

    Science.gov (United States)

    Singh, Tarkeshwar; S K M, Varadhan; Zatsiorsky, Vladimir M; Latash, Mark L

    2010-11-26

    We tested a hypothesis that fatigue of an element (a finger) leads to an adaptive neural strategy that involves an increase in force variability in the other finger(s) and an increase in co-variation of commands to fingers to keep total force variability relatively unchanged. We tested this hypothesis using a system with small redundancy (two fingers) and a marginally redundant system (with an additional constraint related to the total moment of force produced by the fingers, unstable condition). The subjects performed isometric accurate rhythmic force production tasks by the index (I) finger and two fingers (I and middle, M) pressing together before and after a fatiguing exercise by the I finger. Fatigue led to a large increase in force variance in the I-finger task and a smaller increase in the IM-task. We quantified two components of variance in the space of hypothetical commands to fingers, finger modes. Under both stable and unstable conditions, there was a large increase in the variance component that did not affect total force and a much smaller increase in the component that did. This resulted in an increase in an index of the force-stabilizing synergy. These results indicate that marginal redundancy is sufficient to allow the central nervous system to use adaptive increase in variability to shield important variables from effects of fatigue. We offer an interpretation of these results based on a recent development of the equilibrium-point hypothesis known as the referent configuration hypothesis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Ice forces on marine structures. Volume 2, discussion

    Energy Technology Data Exchange (ETDEWEB)

    Marcellus, R W; Morrison, T B; Allyn, N F.B.; Croasdale, K R; Iyer, H S; Tseng, J

    1988-01-01

    A comprehensive state-of-the-art review is provided of the current methodologies in use for estimating the impact of ice forces on various kinds of marine structures: vertical sided or sloping stationary structures, floating structures, and artificial islands. Introductory chapters present ice statistics from selected Canadian marine regions, the failure modes and mechanical properties of ice, and general principles of ice/structure interactions. The methods for calculating ice loads are basically alternative methods for predicting the behavior of ice under different loading conditions; as such, none of the models have been successful in predicting the behavior of ice under all loading conditions. Currently the only reliable method for accurately predicting ice forces on marine structures is to use large-scale empirical data for ice of the same state as that predicted for design. Extrapolation from ice behavioral data at a smaller scale or ice of a different state is generally required. In comparison to current uncertainties, reasonably accurate estimates of upper bound static ice forces can be made, and a design approach using this upper bound force is appropriate for very massive rigid structures and in designing for overall global stability. The periodicity of ice forces also needs to be considered in terms of dynamic amplification of structure deformation, potential liquefaction of soils, and fatigue life. In certain cases, the deflection of the structure can change the ice failure process and therefore change the level and nature of the ice force. 221 refs., 171 figs., 19 tabs.

  13. Interactive forces between lignin and cellulase as determined by atomic force microscopy

    OpenAIRE

    Qin, Chengrong; Clarke, Kimberley; Li, Kecheng

    2014-01-01

    Background Lignin is a complex polymer which inhibits the enzymatic conversion of cellulose to glucose in lignocellulose biomass for biofuel production. Cellulase enzymes irreversibly bind to lignin, deactivating the enzyme and lowering the overall activity of the hydrolyzing reaction solution. Within this study, atomic force microscopy (AFM) is used to compare the adhesion forces between cellulase and lignin with the forces between cellulase and cellulose, and to study the moiety groups invo...

  14. Accurate treatment of nanoelectronics through improved description of van der Waals Interactions

    DEFF Research Database (Denmark)

    Kelkkanen, Kari André

    , or even as broken. The hexamer experience of the criteria and effects of vdW forces can be used in interpretation of results of molecular dynamics (MD) simulations of ambient water, where vdW forces qualitatively result in liquid water with fewer, more distorted HBs. This is interesting...... and relevance of van der Waals (vdW) forces in molecular surface adsorption and water through density- functional theory (DFT), using the exchange-correlation functional vdW-DF [Dion et al., Phys. Rev. Lett. 92, 246401 (2004)] and developments based on it. Results are first computed for adsorption with vd...... functionals. DFT calculations are performed for water dimer and hexamer, and for liquid water. Calculations on four low-energetic isomers of the water hexamer show that the vdW-DF accurately determines the energetic trend on these small clusters. How- ever, the dissociation-energy values with the vd...

  15. Effects of Mach Numbers on Side Force, Yawing Moment and Surface Pressure

    Science.gov (United States)

    Sohail, Muhammad Amjad; Muhammad, Zaka; Husain, Mukkarum; Younis, Muhammad Yamin

    2011-09-01

    In this research, CFD simulations are performed for air vehicle configuration to compute the side force effect and yawing moment coefficients variations at high angle of attack and Mach numbers. As the angle of attack is increased then lift and drag are increased for cylinder body configurations. But when roll angle is given to body then side force component is also appeared on the body which causes lateral forces on the body and yawing moment is also produced. Now due to advancement of CFD methods we are able to calculate these forces and moment even at supersonic and hypersonic speed. In this study modern CFD techniques are used to simulate the hypersonic flow to calculate the side force effects and yawing moment coefficient. Static pressure variations along the circumferential and along the length of the body are also calculated. The pressure coefficient and center of pressure may be accurately predicted and calculated. When roll angle and yaw angle is given to body then these forces becomes very high and cause the instability of the missile body with fin configurations. So it is very demanding and serious problem to accurately predict and simulate these forces for the stability of supersonic vehicles.

  16. Modeling unsteady forces and pressures on a rapidly pitching airfoil

    Science.gov (United States)

    Schiavone, Nicole K.; Dawson, Scott T. M.; Rowley, Clarence W.; Williams, David R.

    2014-11-01

    This work develops models to quantify and understand the unsteady aerodynamic forces arising from rapid pitching motion of a NACA0012 airfoil at a Reynolds number of 50 000. The system identification procedure applies a generalized DMD-type algorithm to time-resolved wind tunnel measurements of the lift and drag forces, as well as the pressure at six locations on the suction surface of the airfoil. Models are identified for 5-degree pitch-up and pitch-down maneuvers within the overall range of 0-20 degrees. The identified models can accurately capture the effects of flow separation and leading-edge vortex formation and convection. We demonstrate that switching between different linear models can give accurate prediction of the nonlinear behavior that is present in high-amplitude maneuvers. The models are accurate for a wide-range of motions, including pitch-and-hold, sinusoidal, and pseudo-random pitching maneuvers. Providing the models access to a subset of the measured data channels can allow for improved estimates of the remaining states via the use of a Kalman filter, suggesting that the modeling framework could be useful for aerodynamic control applications. This work was supported by the Air Force Office of Scientific Research, under Award No. FA9550-12-1-0075.

  17. Control of cooling processes with forced-air aimed at efficiency energetic and the cooling time of horticultural products

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Joao Carlos Teles Ribeiro da; Mederos, Barbara Janet Teruel [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola

    2008-07-01

    The application of cooling technologies for the conservation of horticultural products is one of the stages the Cold Chain. In Brazil particularly, as a country with tropical climate with average high temperature almost all year, the application of these technologies is very important because the shelf-life of fresh horticultural products, with quality that the market demands, is directly related to temperature. In particular, the systems of forced air cooling operate according to the flow of air predetermined in the project according to the quantity of product to cool. When actual conditions differ from considerations of the project, as to the quantity of product, a situation very common in agricultural properties and packing houses, the fan will continue providing the nominal flow rate, causing alteration of the cost-benefit relation of process. This project aims at the development of a micro-processing equipment (output current of 4 to 20 mA) to control the rotational speed of the motor of the fan systems, air forced through an inverter of frequency. The objective is development of a Man-Machine Interface, based on an algorithm, which, through the introduction of mass product data and the automatic acquisition of data from temperature of the product and the camera, is calculated the cooling time. The rotation of the engine fan will be amended automatically, to maintain air flow with a proper cost-benefit, in connection with the reduction of cooling time, energy consumption, for the increasing the shelf life of products. (author)

  18. Product Evaluation Task Force Phase Two report for centrifuge cake

    International Nuclear Information System (INIS)

    Francis, A.J.; Davies, A.

    1990-01-01

    It has been proposed that all Intermediate Level Wastes arising at Sellafield should be encapsulated prior to ultimate disposal. The Product Evaluation Task Force (PETF) was set up to investigate possible encapsulants and to produce and adequate data base to justify the preferred matrices. Three possible types of encapsulants for Centrifuge Cake;- Inorganic cements, Polymer cements, and Polymers, are evaluated using the Kepner Tregoe decision analysis technique. This technique provides a methodology for scoring and ranking alternative options and evaluating any risks associated with an option. The analysis shows that for all four stages of waste management operations ie. Storage Transport, handling and emplacement Disposal, and Process, cement matrices are considerably superior to other potential matrices. A matrix, consisting of nine parts Blast Furnace Slag (BFS) to one part Ordinary Portland Cement (OPC) is recommended as the preferred matrix for Phase 3 studies on Centrifuge Cake. (author)

  19. Ergonomics strategies and actions for achieving productive use of an ageing work-force.

    Science.gov (United States)

    Kumashiro, M

    2000-07-01

    In this report, a basic ERGOMA (Ergonomics in Industrial Management) strategy is proposed as a policy for corporate production and employment in countries where ageing populations and reduced birth rates are imminent, and a strategy related to this is proposed. Specifically, as a strategy at the company level, the results of survey studies aimed at the development of methods for determining job capacity, to enable effective use of the labour of ageing workers, were summarized. A number of the insights gained here are steps in the development of a foundational methodology for practical use, and in actual practice a number of these insights must be subjected to measurements. However, the theory and newly developed methodology described here are thought to represent significant changes from the approaches to job capacity diagnosis and assessment published in the past and from the stance towards utilization of an ageing work-force. The author is confident that this represents new progress in one of the ergonomics approach to dealing with the working environment of ageing workers and an ageing work-force in general.

  20. Foresight begins with FMEA. Delivering accurate risk assessments.

    Science.gov (United States)

    Passey, R D

    1999-03-01

    If sufficient factors are taken into account and two- or three-stage analysis is employed, failure mode and effect analysis represents an excellent technique for delivering accurate risk assessments for products and processes, and for relating them to legal liability. This article describes a format that facilitates easy interpretation.

  1. Fast and accurate algorithm for repeated optical trapping simulations on arbitrarily shaped particles based on boundary element method

    International Nuclear Information System (INIS)

    Xu, Kai-Jiang; Pan, Xiao-Min; Li, Ren-Xian; Sheng, Xin-Qing

    2017-01-01

    In optical trapping applications, the optical force should be investigated within a wide range of parameter space in terms of beam configuration to reach the desirable performance. A simple but reliable way of conducting the related investigation is to evaluate optical forces corresponding to all possible beam configurations. Although the optical force exerted on arbitrarily shaped particles can be well predicted by boundary element method (BEM), such investigation is time costing because it involves many repetitions of expensive computation, where the forces are calculated from the equivalent surface currents. An algorithm is proposed to alleviate the difficulty by exploiting our previously developed skeletonization framework. The proposed algorithm succeeds in reducing the number of repetitions. Since the number of skeleton beams is always much less than that of beams in question, the computation can be very efficient. The proposed algorithm is accurate because the skeletonization is accuracy controllable. - Highlights: • A fast and accurate algorithm is proposed in terms of boundary element method to reduce the number of repetitions of computing the optical forces from the equivalent currents. • The algorithm is accuracy controllable because the accuracy of the associated rank-revealing process is well-controlled. • The accelerate rate can reach over one thousand because the number of skeleton beams can be very small. • The algorithm can be applied to other methods, e.g., FE-BI.

  2. Construction of an accurate quartic force field by using generalised least-squares fitting and experimental design

    International Nuclear Information System (INIS)

    Carbonniere, Philippe; Begue, Didier; Dargelos, Alain; Pouchan, Claude

    2004-01-01

    In this work we present an attractive least-squares fitting procedure which allows for the calculation of a quartic force field by jointly using energy, gradient, and Hessian data, obtained from electronic wave function calculations on a suitably chosen grid of points. We use the experimental design to select the grid points: a 'simplex-sum' of Box and Behnken grid was chosen for its efficiency and accuracy. We illustrate the numerical implementations of the method by using the energy and gradient data for H 2 O and H 2 CO. The B3LYP/cc-pVTZ quartic force field performed from 11 and 44 simplex-sum configurations shows excellent agreement in comparison to the classical 44 and 168 energy calculations

  3. Accurate Numerical Simulations Of Chemical Phenomena Involved in Energy Production and Storage with MADNESS and MPQC: ALCF-2 Early Science Program Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Vzquez-Mayagoitia, Alvaro [Argonne National Lab. (ANL), Argonne, IL (United States); Hammond, Jeff R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-09-16

    In order to solve the electronic structure of large molecular systems on petascale computers using MADNESS, a numerical tool kit, are required fast and accurate implementations for linear algebra. MADNESS uses multiresolution analysis and low separation rank which translates high dimensional functions in tensor products using Legendre polynomial. The multiple tensor products make to the singular value decomposition and matrix multiplication the most intense operations in MADNESS. This work discusses the interfacing of Eigen3 as a C++ substitute of LAPACK and introduces Elemental for the diagonalization of large matrices. Furthermore, the present paper shows the performance these libraries on Blue Gene/ Q.

  4. Forced degradation studies of lansoprazole using LC-ESI HRMS and 1 H-NMR experiments: in vitro toxicity evaluation of major degradation products.

    Science.gov (United States)

    Shankar, G; Borkar, R M; Suresh, U; Guntuku, L; Naidu, V G M; Nagesh, N; Srinivas, R

    2017-07-01

    Regulatory agencies from all over the world have set up stringent guidelines with regard to drug degradation products due to their toxic effects or carcinogenicity. Lansoprazole, a proton-pump inhibitor, was subjected to forced degradation studies as per ICH guidelines Q1A (R2). The drug was found to degrade under acidic, basic, neutral hydrolysis and oxidative stress conditions, whereas it was found to be stable under thermal and photolytic conditions. The chromatographic separation of the drug and its degradation products were achieved on a Hiber Purospher, C18 (250 × 4.6 mm, 5 μ) column using 10 mM ammonium acetate and acetonitrile as a mobile phase in a gradient elution mode at a flow rate of 1.0 ml/min. The eight degradation products (DP1-8) were identified and characterized by UPLC/ESI/HRMS with in-source CID experiments combined with accurate mass measurements. DP-1, DP-2 and DP-3 were formed in acidic, DP-4 in basic, DP-5 in neutral and DP-1, DP-6, DP-7 and DP-8 were in oxidation stress condition Among eight degradation products, five were hitherto unknown degradation products. In addition, one of the major degradation products, DP-2, was isolated by using semi preparative HPLC and other two, DP-6 and DP-7 were synthesized. The cytotoxic effect of these degradation products (DP-2, DP-6 and DP-7) were tested on normal human cells such as HEK 293 (embryonic kidney cells) and RWPE-1(normal prostate epithelial cells) by MTT assay. From the results of cytotoxicity, it was found that lansoprazole as well as its degradation products (DP-2, DP-6 and DP-7) were nontoxic up to 50-μM concentrations, and the latter showed slightly higher cytotoxicity when compared with that of lansoprazole. DNA binding studies using spectroscopic techniques indicate that DP-2, DP-6 and DP-7 molecules interact with ctDNA and may bind to its surface. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Validity of the Myotest® in measuring force and power production in the squat and bench press.

    Science.gov (United States)

    Comstock, Brett A; Solomon-Hill, Glenn; Flanagan, Shawn D; Earp, Jacob E; Luk, Hui-Ying; Dobbins, Kathryn A; Dunn-Lewis, Courtenay; Fragala, Maren S; Ho, Jen-Yu; Hatfield, Disa L; Vingren, Jakob L; Denegar, Craig R; Volek, Jeff S; Kupchak, Brian R; Maresh, Carl M; Kraemer, William J

    2011-08-01

    The purpose of this study was to verify the concurrent validity of a bar-mounted Myotest® instrument in measuring the force and power production in the squat and bench press exercises when compared to the gold standard of a computerized linear transducer and force platform system. Fifty-four men (bench press: 39-171 kg; squat: 75-221 kg) and 43 women (bench press: 18-80 kg; squat: 30-115 kg) (age range 18-30 years) performed a 1 repetition maximum (1RM) strength test in bench press and squat exercises. Power testing consisted of the jump squat and the bench throw at 30% of each subject's 1RM. During each measurement, both the Myotest® instrument and the Celesco linear transducer of the directly interfaced BMS system (Ballistic Measurement System [BMS] Innervations Inc, Fitness Technology force plate, Skye, South Australia, Australia) were mounted to the weight bar. A strong, positive correlation (r) between the Myotest and BMS systems and a high correlation of determination (R2) was demonstrated for bench throw force (r = 0.95, p bench throw power (r = 0.96, p < 0.05) (R2 = 0.93); squat jump force (r = 0.98, p < 0.05) (R2 = 0.97); and squat jump power (r = 0.91, p < 0.05) (R2 = 0.82). In conclusion, when fixed on the bar in the vertical axis, the Myotest is a valid field instrument for measuring force and power in commonly used exercise movements.

  6. 9 CFR 442.3 - Scale requirements for accurate weights, repairs, adjustments, and replacements after inspection.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Scale requirements for accurate... PROCEDURES AND REQUIREMENTS FOR ACCURATE WEIGHTS § 442.3 Scale requirements for accurate weights, repairs, adjustments, and replacements after inspection. (a) All scales used to determine the net weight of meat and...

  7. Numerical Studies of the Friction Force for the RHIC Electron Cooler

    CERN Document Server

    Fedotov, Alexei V; Ben-Zvi, Ilan; Bruhwiler, David L; Busby, Richard; Litvinenko, Vladimir N; Schoessow, Paul

    2005-01-01

    Accurate calculation of electron cooling times requires an accurate description of the dynamical friction force. The proposed RHIC cooler will require ~55 MeV electrons, which must be obtained from an RF linac, leading to very high transverse electron temperatures. A strong solenoid will be used to magnetize the electrons and suppress the transverse temperature, but the achievable magnetized cooling logarithm will not be large. Available formulas for magnetized dynamical friction are derived in the logarithmic approximation, which is questionable in this regime. In this paper, we explore the magnetized friction force for parameters of the RHIC cooler, using the VORPAL code.* VORPAL can simulate dynamical friction and diffusion coefficients directly from first principles.** Various aspects of the friction force, such as dependence on magnetic field, scaling with ion charge number and others, are addressed for the problem of high-energy electron cooling in the RHIC regime.

  8. Origins of hydrodynamic forces on centrifugal pump impellers

    Science.gov (United States)

    Adkins, Douglas R.; Brennen, Christopher E.

    1987-01-01

    Hydrodynamic interactions that occur between a centrifugal pump impeller and volute are experimentally and theoretically investigated. The theoretical analysis considers the inability of the blades to perfectly guide the flow through the impeller, and also includes a quasi-one dimensional treatment of the flow in the volute. The disturbance at the impeller discharge and the resulting forces are determined by the theoretical model. The model is then extended to obtain the hydrodynamic force perturbations that are caused by the impeller whirling eccentrically in the volute. Under many operating conditions, these force perturbations were found to be destablizing. Comparisons are made between the theoretical model and the experimental measurements of pressure distributions and radial forces on the impeller. The theoretical model yields fairly accurate predictions of the radial forces caused by the flow through the impeller. However, it was found that the pressure acting on the front shroud of the impeller has a substantial effect on the destablizing hydrodynamic forces.

  9. Investigation of a cuboidal permanent magnet’s force exerted on a robotic capsule

    Directory of Open Access Journals (Sweden)

    Yang W

    2014-08-01

    Full Text Available Wan’an Yang,1 Chengbing Tang,2 Fengqing Qin1 1School of Computer and Information Engineering, Yibin University, Yibin, 2CNPC Chuanqing Geophysical Prospecting Company Research Center Computer Department, Chengdu, Sichuan, People’s Republic of China Abstract: To control and drive a robotic capsule accurately from outside a patient’s body, we present a schema in which the capsule enclosing the imaging device, circuits, batteries, etc is looped by a permanent magnet ring that acts as an actuator. A cuboidal permanent magnet situated outside the patient's body attracts or pushes the magnet ring from different directions to make the capsule move or rotate. A mathematic model of attractive or repulsive force that the cuboidal magnet exerts on the magnet ring is presented for accurate calculation of force. The experiments showed that the measuring force was in agreement with the theoretical one, and the relations between the dimensions of the cuboidal magnet and force are useful to produce a cuboidal magnet with optimal shape to get appropriate force. Keywords: control and drive, robotic capsule, permanent magnet ring, optimal dimension, force model

  10. Accurate alpha sticking fractions from improved calculations relevant for muon catalyzed fusion

    International Nuclear Information System (INIS)

    Szalewicz, K.

    1990-05-01

    Recent experiments have shown that under proper conditions a single muon may catalyze almost two hundred fusions in its lifetime. This process proceeds through formation of muonic molecular ions. Properties of these ions are central to the understanding of the phenomenon. Our work included the most accurate calculations of the energy levels and Coulombic sticking fractions for tdμ and other muonic molecular ions, calculations of Auger transition rates, calculations of corrections to the energy levels due to interactions with the most molecule, and calculation of the reactivation of muons from α particles. The majority of our effort has been devoted to the theory and computation of the influence of the strong nuclear forces on fusion rates and sticking fractions. We have calculated fusion rates for tdμ including the effects of nuclear forces on the molecular wave functions. We have also shown that these results can be reproduced to almost four digit accuracy by using a very simple quasifactorizable expression which does not require modifications of the molecular wave functions. Our sticking fractions are more accurate than any other theoretical values. We have used a more sophisticated theory than any other work and our numerical calculations have converged to at least three significant digits

  11. Distinguishing ferritin from apoferritin using magnetic force microscopy

    International Nuclear Information System (INIS)

    Nocera, Tanya M; Zeng, Yuzhi; Agarwal, Gunjan

    2014-01-01

    Estimating the amount of iron-replete ferritin versus iron-deficient apoferritin proteins is important in biomedical and nanotechnology applications. This work introduces a simple and novel approach to quantify ferritin by using magnetic force microscopy (MFM). We demonstrate how high magnetic moment probes enhance the magnitude of MFM signal, thus enabling accurate quantitative estimation of ferritin content in ferritin/apoferritin mixtures in vitro. We envisage MFM could be adapted to accurately determine ferritin content in protein mixtures or in small aliquots of clinical samples. (fast track communication)

  12. Distinguishing ferritin from apoferritin using magnetic force microscopy

    Science.gov (United States)

    Nocera, Tanya M.; Zeng, Yuzhi; Agarwal, Gunjan

    2014-11-01

    Estimating the amount of iron-replete ferritin versus iron-deficient apoferritin proteins is important in biomedical and nanotechnology applications. This work introduces a simple and novel approach to quantify ferritin by using magnetic force microscopy (MFM). We demonstrate how high magnetic moment probes enhance the magnitude of MFM signal, thus enabling accurate quantitative estimation of ferritin content in ferritin/apoferritin mixtures in vitro. We envisage MFM could be adapted to accurately determine ferritin content in protein mixtures or in small aliquots of clinical samples.

  13. Control of thumb force using surface functional electrical stimulation and muscle load sharing

    Science.gov (United States)

    2013-01-01

    Background Stroke survivors often have difficulties in manipulating objects with their affected hand. Thumb control plays an important role in object manipulation. Surface functional electrical stimulation (FES) can assist movement. We aim to control the 2D thumb force by predicting the sum of individual muscle forces, described by a sigmoidal muscle recruitment curve and a single force direction. Methods Five able bodied subjects and five stroke subjects were strapped in a custom built setup. The forces perpendicular to the thumb in response to FES applied to three thumb muscles were measured. We evaluated the feasibility of using recruitment curve based force vector maps in predicting output forces. In addition, we developed a closed loop force controller. Load sharing between the three muscles was used to solve the redundancy problem having three actuators to control forces in two dimensions. The thumb force was controlled towards target forces of 0.5 N and 1.0 N in multiple directions within the individual’s thumb work space. Hereby, the possibilities to use these force vector maps and the load sharing approach in feed forward and feedback force control were explored. Results The force vector prediction of the obtained model had small RMS errors with respect to the actual measured force vectors (0.22±0.17 N for the healthy subjects; 0.17±0.13 N for the stroke subjects). The stroke subjects showed a limited work range due to limited force production of the individual muscles. Performance of feed forward control without feedback, was better in healthy subjects than in stroke subjects. However, when feedback control was added performances were similar between the two groups. Feedback force control lead, especially for the stroke subjects, to a reduction in stationary errors, which improved performance. Conclusions Thumb muscle responses to FES can be described by a single force direction and a sigmoidal recruitment curve. Force in desired direction can be

  14. Improvement in thrust force estimation of solenoid valve considering minor hysteresis loop

    Directory of Open Access Journals (Sweden)

    Myung-Hwan Yoon

    2017-05-01

    Full Text Available Solenoid valve is a very important hydraulic actuator for an automatic transmission in terms of shift quality. The same form of pressure for the clutch and the input current are required for an ideal control. However, the gap between a pressure and a current can occur which brings a delay in a transmission and a decrease in quality. This problem is caused by hysteresis phenomenon. As the ascending or descending magnetic field is applied to the solenoid, different thrust forces are generated. This paper suggests the calculation method of the thrust force considering the hysteresis phenomenon and consequently the accurate force can be obtained. Such hysteresis occurs in ferromagnetic materials, however the hysteresis phenomenon includes a minor hysteresis loop which begins with an initial magnetization curve and is generated by DC biased field density. As the core of the solenoid is ferromagnetic material, an accurate thrust force is obtained by applying the minor hysteresis loop compared to the force calculated by considering only the initial magnetization curve. An analytical background and the detailed explanation of measuring the minor hysteresis loop are presented. Furthermore experimental results and finite element analysis results are compared for the verification.

  15. An Accurate and Dynamic Computer Graphics Muscle Model

    Science.gov (United States)

    Levine, David Asher

    1997-01-01

    A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.

  16. UN-ECE task force: 'by-product utilization from stationary installations'

    International Nuclear Information System (INIS)

    Hackl, A. E.; Zehetner, G.

    1996-09-01

    The task force has concluded as followed: Major sources of by-products considered in this report from stationary installations are large scale firing installations, waste incineration, upgrading processes and utilization in iron and steel, aluminium and copper industry, and the pulp and paper industry. The share of each sector source to the total amount of by-products generated differs significantly in the participating countries. State of the art processes as described in the report take account of the need for integrated pollution prevention and control. In particular the requirements set out in the Convention on Long Range Transboundary Air Pollution can still be satisfied when applying these state of the art processes. The report shows that a number of techniques for avoidance, reduction and/or utilization of by-products are in commercial operation in the branches discussed. They can therefore be considered to be best available. For some special by-products technical processes for the treatment are still in development and are not yet state-of-the-art. The implementation of the already proven techniques varies considerably in the different ECE-countries. This is mainly due to the following circumstances: differences in the design and stringency of legal regulations, availability of landfilling sites, costs of disposal, differences in industrial structure. Problems with by-product utilization originate mainly from: a) from a loss of international competitiveness of the respective industrial sector, if the reduction of the amount of by-products or their utilization leads to higher costs than conventional processes; b) from quality standards for materials which are inadequate for secondary raw materials thus creating acceptance problems of these materials. C) In some cases incineration and/or thermal recycling processes generate PCDD/F. quantities produces may be capable of reduction by means of process modification. If, however PCDD/F is released to the

  17. Factors Affecting Aerosol Radiative Forcing from Both Production-based and Consumption-based View

    Science.gov (United States)

    Wang, J.; Lin, J.; Ni, R.

    2017-12-01

    Aerosol radiative forcing (RF) is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. This problem becomes more complicated when taking into account the role of international trade, which means reallocated aerosol RF due to separation of regions producing goods and emissions and regions consuming those goods. Here we analyze major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA) and black carbon (BC), extending the work of Lin et al. (2016, Nature Geoscience). We contrast five factors determining production-based (RFp, due to a region's production of goods) and consumption-based (RFc, due to a region's consumption) forcing by 11 major regions, including population size, per capita output, emission intensity (emission per output), chemical efficiency (mass per unit emission) and radiative efficiency (RF per unit mass). Comparing across the 11 regions, East Asia produces the strongest RFp and RFc of SIOA and BC and the second largest RFp and RFc of POA primarily due to its high emission intensity. Although Middle East and North Africa has low emissions, its RFp is strengthened by its largest chemical efficiency for POA and BC and second largest chemical efficiency for SIOA. However, RFp of South-East Asia and Pacific is greatly weakened by its lowest chemical efficiency. Economic trade means that net importers (Western Europe, North America and Pacific OECD) have higher RFc than RFp by 50-100%. And such forcing difference is mainly due to the high emission intensity of the exporters supplying these regions. For North America, SIOA's RFc is 50% stronger than RFp, for that emission intensity of SIOA is 5.2 times in East Asia and 2.5 times in Latin America and Caribbean compared with that in North America, and the chemical efficiency in the top four exporters are

  18. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics

    Science.gov (United States)

    Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.

    2015-01-01

    Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery. PMID:26181208

  19. FASTSIM2: a second-order accurate frictional rolling contact algorithm

    Science.gov (United States)

    Vollebregt, E. A. H.; Wilders, P.

    2011-01-01

    In this paper we consider the frictional (tangential) steady rolling contact problem. We confine ourselves to the simplified theory, instead of using full elastostatic theory, in order to be able to compute results fast, as needed for on-line application in vehicle system dynamics simulation packages. The FASTSIM algorithm is the leading technology in this field and is employed in all dominant railway vehicle system dynamics packages (VSD) in the world. The main contribution of this paper is a new version "FASTSIM2" of the FASTSIM algorithm, which is second-order accurate. This is relevant for VSD, because with the new algorithm 16 times less grid points are required for sufficiently accurate computations of the contact forces. The approach is based on new insights in the characteristics of the rolling contact problem when using the simplified theory, and on taking precise care of the contact conditions in the numerical integration scheme employed.

  20. Climate Forcing Datasets for Agricultural Modeling: Merged Products for Gap-Filling and Historical Climate Series Estimation

    Science.gov (United States)

    Ruane, Alex C.; Goldberg, Richard; Chryssanthacopoulos, James

    2014-01-01

    The AgMERRA and AgCFSR climate forcing datasets provide daily, high-resolution, continuous, meteorological series over the 1980-2010 period designed for applications examining the agricultural impacts of climate variability and climate change. These datasets combine daily resolution data from retrospective analyses (the Modern-Era Retrospective Analysis for Research and Applications, MERRA, and the Climate Forecast System Reanalysis, CFSR) with in situ and remotely-sensed observational datasets for temperature, precipitation, and solar radiation, leading to substantial reductions in bias in comparison to a network of 2324 agricultural-region stations from the Hadley Integrated Surface Dataset (HadISD). Results compare favorably against the original reanalyses as well as the leading climate forcing datasets (Princeton, WFD, WFD-EI, and GRASP), and AgMERRA distinguishes itself with substantially improved representation of daily precipitation distributions and extreme events owing to its use of the MERRA-Land dataset. These datasets also peg relative humidity to the maximum temperature time of day, allowing for more accurate representation of the diurnal cycle of near-surface moisture in agricultural models. AgMERRA and AgCFSR enable a number of ongoing investigations in the Agricultural Model Intercomparison and Improvement Project (AgMIP) and related research networks, and may be used to fill gaps in historical observations as well as a basis for the generation of future climate scenarios.

  1. 78 FR 72714 - Child Labor, Forced Labor, and Forced or Indentured Child Labor in the Production of Goods in...

    Science.gov (United States)

    2013-12-03

    ... DEPARTMENT OF LABOR Child Labor, Forced Labor, and Forced or Indentured Child Labor in the... Child Labor AGENCY: The Bureau of International Labor Affairs, United States Department of Labor. ACTION..., 2013, regarding child labor and forced labor in foreign countries. Relevant information will be used by...

  2. Stern potential and Debye length measurements in dilute ionic solutions with electrostatic force microscopy.

    Science.gov (United States)

    Kumar, Bharat; Crittenden, Scott R

    2013-11-01

    We demonstrate the ability to measure Stern potential and Debye length in dilute ionic solution with atomic force microscopy. We develop an analytic expression for the second harmonic force component of the capacitive force in an ionic solution from the linearized Poisson-Boltzmann equation. This allows us to calibrate the AFM tip potential and, further, obtain the Stern potential of sample surfaces. In addition, the measured capacitive force is independent of van der Waals and double layer forces, thus providing a more accurate measure of Debye length.

  3. The analysis of cable forces based on natural frequency

    Science.gov (United States)

    Suangga, Made; Hidayat, Irpan; Juliastuti; Bontan, Darwin Julius

    2017-12-01

    A cable is a flexible structural member that is effective at resisting tensile forces. Cables are used in a variety of structures that employ their unique characteristics to create efficient design tension members. The condition of the cable forces in the cable supported structure is an important indication of judging whether the structure is in good condition. Several methods have been developed to measure on site cable forces. Vibration technique using correlation between natural frequency and cable forces is a simple method to determine in situ cable forces, however the method need accurate information on the boundary condition, cable mass, and cable length. The natural frequency of the cable is determined using FFT (Fast Fourier Transform) Technique to the acceleration record of the cable. Based on the natural frequency obtained, the cable forces then can be determine by analytical or by finite element program. This research is focus on the vibration techniques to determine the cable forces, to understand the physical parameter effect of the cable and also modelling techniques to the natural frequency and cable forces.

  4. Force Modulator System

    Energy Technology Data Exchange (ETDEWEB)

    Redmond Clark

    2009-04-30

    Many metal parts manufacturers use large metal presses to shape sheet metal into finished products like car body parts, jet wing and fuselage surfaces, etc. These metal presses take sheet metal and - with enormous force - reshape the metal into a fully formed part in a manner of seconds. Although highly efficient, the forces involved in forming metal parts also damage the press itself, limit the metals used in part production, slow press operations and, when not properly controlled, cause the manufacture of large volumes of defective metal parts. To date, the metal-forming industry has not been able to develop a metal-holding technology that allows full control of press forces during the part forming process. This is of particular importance in the automotive lightweighting efforts under way in the US automotive manufacturing marketplace. Metalforming Controls Technology Inc. (MC2) has developed a patented press control system called the Force Modulator that has the ability to control these press forces, allowing a breakthrough in stamping process control. The technology includes a series of hydraulic cylinders that provide controlled tonnage at all points in the forming process. At the same time, the unique cylinder design allows for the generation of very high levels of clamping forces (very high tonnages) in very small spaces; a requirement for forming medium and large panels out of HSS and AHSS. Successful production application of these systems testing at multiple stamping operations - including Ford and Chrysler - has validated the capabilities and economic benefits of the system. Although this technology has been adopted in a number of stamping operations, one of the primary barriers to faster adoption and application of this technology in HSS projects is system cost. The cost issue has surfaced because the systems currently in use are built for each individual die as a custom application, thus driving higher tooling costs. This project proposed to better

  5. Rotator cuff tear reduces muscle fiber specific force production and induces macrophage accumulation and autophagy.

    Science.gov (United States)

    Gumucio, Jonathan P; Davis, Max E; Bradley, Joshua R; Stafford, Patrick L; Schiffman, Corey J; Lynch, Evan B; Claflin, Dennis R; Bedi, Asheesh; Mendias, Christopher L

    2012-12-01

    Full-thickness tears to the rotator cuff can cause severe pain and disability. Untreated tears progress in size and are associated with muscle atrophy and an infiltration of fat to the area, a condition known as "fatty degeneration." To improve the treatment of rotator cuff tears, a greater understanding of the changes in the contractile properties of muscle fibers and the molecular regulation of fatty degeneration is essential. Using a rat model of rotator cuff injury, we measured the force generating capacity of individual muscle fibers and determined changes in muscle fiber type distribution that develop after a full thickness rotator cuff tear. We also measured the expression of mRNA and miRNA transcripts involved in muscle atrophy, lipid accumulation, and matrix synthesis. We hypothesized that a decrease in specific force of rotator cuff muscle fibers, an accumulation of type IIb fibers, and an upregulation in fibrogenic, adipogenic, and inflammatory gene expression occur in torn rotator cuff muscles. Thirty days following rotator cuff tear, we observed a reduction in muscle fiber force production, an induction of fibrogenic, adipogenic, and autophagocytic mRNA and miRNA molecules, and a dramatic accumulation of macrophages in areas of fat accumulation. Copyright © 2012 Orthopaedic Research Society.

  6. The mechanisms underlying corrosion product formation and deposition in nuclear power plant circuits through the action of galvanic and thermal electromotive forces

    International Nuclear Information System (INIS)

    Brusakov, V.P.; Sedov, V.M.; Khitrov, Yu.A.; Brusov, K.N.; Razmashkin, N.V.; Versin, V.V.; Rybalchenko, I.L.

    1983-01-01

    From a theoretical standpoint, the processes of formation of corrosion products in nuclear power plant circuits, deposition of corrosion products on the circuit surfaces, formation of an equilibrium concentration of corrosion products in the coolant, and distribution of radionuclides resulting from corrosion in different parts of the circuit are considered. It is shown that the main driving forces for the mass-transfer processes in the circuits are the thermal and galvanic electromotive forces (EMF) of the microcouples. On the basis of the theoretical concepts developed the authors have obtained analytical dependences for calculating the individual stages of the process of corrosion product transfer in the circuits. The mechanisms underlying the processes which occur as a result of thermal and galvanic EMFs are considered, together with the factors influencing these processes. The results of verification of the dependences by computational methods are given and they are compared with operational data from nuclear and conventional thermal power plants and with experimental data. (author)

  7. Recording the dynamic endocytosis of single gold nanoparticles by AFM-based force tracing.

    Science.gov (United States)

    Ding, Bohua; Tian, Yongmei; Pan, Yangang; Shan, Yuping; Cai, Mingjun; Xu, Haijiao; Sun, Yingchun; Wang, Hongda

    2015-05-07

    We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly.

  8. An analytical model to predict the volume of sand during drilling and production

    Directory of Open Access Journals (Sweden)

    Raoof Gholami

    2016-08-01

    Full Text Available Sand production is an undesired phenomenon occurring in unconsolidated formations due to shear failure and hydrodynamic forces. There have been many approaches developed to predict sand production and prevent it by changing drilling or production strategies. However, assumptions involved in these approaches have limited their applications to very specific scenarios. In this paper, an elliptical model based on the borehole shape is presented to predict the volume of sand produced during the drilling and depletion stages of oil and gas reservoirs. A shape factor parameter is introduced to estimate the changes in the geometry of the borehole as a result of shear failure. A carbonate reservoir from the south of Iran with a solid production history is used to show the application of the developed methodology. Deriving mathematical equations for determination of the shape factor based on different failure criteria indicate that the effect of the intermediate principal stress should be taken into account to achieve an accurate result. However, it should be noticed that the methodology presented can only be used when geomechanical parameters are accurately estimated prior to the production stage when using wells and field data.

  9. Finite element modeling and experimentation of bone drilling forces

    International Nuclear Information System (INIS)

    Lughmani, W A; Bouazza-Marouf, K; Ashcroft, I

    2013-01-01

    Bone drilling is an essential part of many orthopaedic surgery procedures, including those for internal fixation and for attaching prosthetics. Estimation and control of bone drilling forces are critical to prevent drill breakthrough, excessive heat generation, and mechanical damage to the bone. This paper presents a 3D finite element (FE) model for prediction of thrust forces experienced during bone drilling. The model incorporates the dynamic characteristics involved in the process along with the accurate geometrical considerations. The average critical thrust forces and torques obtained using FE analysis, for set of machining parameters are found to be in good agreement with the experimental results

  10. Quantitative measurements of shear displacement using atomic force microscopy

    International Nuclear Information System (INIS)

    Wang, Wenbo; Wu, Weida; Sun, Ying; Zhao, Yonggang

    2016-01-01

    We report a method to quantitatively measure local shear deformation with high sensitivity using atomic force microscopy. The key point is to simultaneously detect both torsional and buckling motions of atomic force microscopy (AFM) cantilevers induced by the lateral piezoelectric response of the sample. This requires the quantitative calibration of torsional and buckling response of AFM. This method is validated by measuring the angular dependence of the in-plane piezoelectric response of a piece of piezoelectric α-quartz. The accurate determination of the amplitude and orientation of the in-plane piezoelectric response, without rotation, would greatly enhance the efficiency of lateral piezoelectric force microscopy.

  11. Atomic force microscope image contrast mechanisms on supported lipid bilayers.

    Science.gov (United States)

    Schneider, J; Dufrêne, Y F; Barger, W R; Lee, G U

    2000-08-01

    This work presents a methodology to measure and quantitatively interpret force curves on supported lipid bilayers in water. We then use this method to correlate topographic imaging contrast in atomic force microscopy (AFM) images of phase-separated Langmuir-Blodgett bilayers with imaging load. Force curves collected on pure monolayers of both distearoylphosphatidylethanolamine (DSPE) and monogalactosylethanolamine (MGDG) and dioleoylethanolamine (DOPE) deposited at similar surface pressures onto a monolayer of DSPE show an abrupt breakthrough event at a repeatable, material-dependent force. The breakthrough force for DSPE and MGDG is sizable, whereas the breakthrough force for DOPE is too small to measure accurately. Contact-mode AFM images on 1:1 mixed monolayers of DSPE/DOPE and MGDG/DOPE have a high topographic contrast at loads between the breakthrough force of each phase, and a low topographic contrast at loads above the breakthrough force of both phases. Frictional contrast is inverted and magnified at loads above the breakthrough force of both phases. These results emphasize the important role that surface forces and mechanics can play in imaging multicomponent biomembranes with AFM.

  12. DOUBLE SHEAR DESIGN TO REDUCED STAMPING FORCE

    Directory of Open Access Journals (Sweden)

    Rudi Kurniawan Arief

    2017-12-01

    Full Text Available Ideally processing of part using stamping machine using only 70-80 % of available force to keep machine in good shape for a long periods. But in some certain case the force may equal to or exceed the available maximum force so the company must sent the process to another outsource company. A case found in a metal stamping company where a final product consist of 3 parts to assembly with one part exceeded the force of available machine. This part can only process in a 1000 tons machine while this company only have 2 of this machine with full workload. Sending this parts outsource will induce delivery problems because other parts are processed, assembled and paint inhouse, this also need additional transportation cost and extra supervision to ensure the quality and delivery schedule. The only exit action of this problem is by reducing the force tonnage. This paper using punch inclining method to reduce the force. The incline punch will distributed the force along the inclined surface that reduce stamping force as well. Inclined surface of punch also cause another major problems that the product becoming curved after process. This problems solved with additional flattening process that add more process cost but better than to outsource the process. Chisel type of inclining punch tip was choosen to avoid worst deformation of product. This paper will give the scientific recomendation to the company.

  13. Harmonic force field for nitro compounds.

    Science.gov (United States)

    Bellido, Edson P; Seminario, Jorge M

    2012-06-01

    Molecular simulations leading to sensors for the detection of explosive compounds require force field parameters that can reproduce the mechanical and vibrational properties of energetic materials. We developed precise harmonic force fields for alanine polypeptides and glycine oligopeptides using the FUERZA procedure that uses the Hessian tensor (obtained from ab initio calculations) to calculate precise parameters. In this work, we used the same procedure to calculate generalized force field parameters of several nitro compounds. We found a linear relationship between force constant and bond distance. The average angle in the nitro compounds was 116°, excluding the 90° angle of the carbon atoms in the octanitrocubane. The calculated parameters permitted the accurate molecular modeling of nitro compounds containing many functional groups. Results were acceptable when compared with others obtained using methods that are specific for one type of molecule, and much better than others obtained using methods that are too general (these ignore the chemical effects of surrounding atoms on the bonding and therefore the bond strength, which affects the mechanical and vibrational properties of the whole molecule).

  14. Stern potential and Debye length measurements in dilute ionic solutions with electrostatic force microscopy

    International Nuclear Information System (INIS)

    Kumar, Bharat; Crittenden, Scott R

    2013-01-01

    We demonstrate the ability to measure Stern potential and Debye length in dilute ionic solution with atomic force microscopy. We develop an analytic expression for the second harmonic force component of the capacitive force in an ionic solution from the linearized Poisson–Boltzmann equation. This allows us to calibrate the AFM tip potential and, further, obtain the Stern potential of sample surfaces. In addition, the measured capacitive force is independent of van der Waals and double layer forces, thus providing a more accurate measure of Debye length. (paper)

  15. Simultaneous Force Regression and Movement Classification of Fingers via Surface EMG within a Unified Bayesian Framework.

    Science.gov (United States)

    Baldacchino, Tara; Jacobs, William R; Anderson, Sean R; Worden, Keith; Rowson, Jennifer

    2018-01-01

    This contribution presents a novel methodology for myolectric-based control using surface electromyographic (sEMG) signals recorded during finger movements. A multivariate Bayesian mixture of experts (MoE) model is introduced which provides a powerful method for modeling force regression at the fingertips, while also performing finger movement classification as a by-product of the modeling algorithm. Bayesian inference of the model allows uncertainties to be naturally incorporated into the model structure. This method is tested using data from the publicly released NinaPro database which consists of sEMG recordings for 6 degree-of-freedom force activations for 40 intact subjects. The results demonstrate that the MoE model achieves similar performance compared to the benchmark set by the authors of NinaPro for finger force regression. Additionally, inherent to the Bayesian framework is the inclusion of uncertainty in the model parameters, naturally providing confidence bounds on the force regression predictions. Furthermore, the integrated clustering step allows a detailed investigation into classification of the finger movements, without incurring any extra computational effort. Subsequently, a systematic approach to assessing the importance of the number of electrodes needed for accurate control is performed via sensitivity analysis techniques. A slight degradation in regression performance is observed for a reduced number of electrodes, while classification performance is unaffected.

  16. Biodegradable Piezoelectric Force Sensor.

    Science.gov (United States)

    Curry, Eli J; Ke, Kai; Chorsi, Meysam T; Wrobel, Kinga S; Miller, Albert N; Patel, Avi; Kim, Insoo; Feng, Jianlin; Yue, Lixia; Wu, Qian; Kuo, Chia-Ling; Lo, Kevin W-H; Laurencin, Cato T; Ilies, Horea; Purohit, Prashant K; Nguyen, Thanh D

    2018-01-30

    Measuring vital physiological pressures is important for monitoring health status, preventing the buildup of dangerous internal forces in impaired organs, and enabling novel approaches of using mechanical stimulation for tissue regeneration. Pressure sensors are often required to be implanted and directly integrated with native soft biological systems. Therefore, the devices should be flexible and at the same time biodegradable to avoid invasive removal surgery that can damage directly interfaced tissues. Despite recent achievements in degradable electronic devices, there is still a tremendous need to develop a force sensor which only relies on safe medical materials and requires no complex fabrication process to provide accurate information on important biophysiological forces. Here, we present a strategy for material processing, electromechanical analysis, device fabrication, and assessment of a piezoelectric Poly-l-lactide (PLLA) polymer to create a biodegradable, biocompatible piezoelectric force sensor, which only employs medical materials used commonly in Food and Drug Administration-approved implants, for the monitoring of biological forces. We show the sensor can precisely measure pressures in a wide range of 0-18 kPa and sustain a reliable performance for a period of 4 d in an aqueous environment. We also demonstrate this PLLA piezoelectric sensor can be implanted inside the abdominal cavity of a mouse to monitor the pressure of diaphragmatic contraction. This piezoelectric sensor offers an appealing alternative to present biodegradable electronic devices for the monitoring of intraorgan pressures. The sensor can be integrated with tissues and organs, forming self-sensing bionic systems to enable many exciting applications in regenerative medicine, drug delivery, and medical devices.

  17. Accurate density-functional calculations on large systems: Fullerenes and magnetic clusters

    International Nuclear Information System (INIS)

    Dunlap, B.I.

    1996-01-01

    Efforts to accurately compute all-electron density-functional energies for large molecules and clusters using Gaussian basis sets will be reviewed. The foundation of this effort, variational fitting, will be described and followed by three applications of the method. The first application concerns fullerenes. When first discovered, C 60 is quite unstable relative to the higher fullerenes. In addition, to raising questions about the relative abundance of the various fullerenes, this work conflicted with the then state-of-the art density-funcitonal calculations on crystalline graphite. Now high accuracy molecular and band structure calculations are in fairly good agreement. Second, we have used these methods to design transition metal clusters having the highest magnetic moment by maximizing the symmetry-required degeneracy of the one-electron orbitals. Most recently, we have developed accurate, variational generalized-gradient approximation (GGA) forces for use in geometry optimization of clusters and in molecular-dynamics simulations of friction. The GGA optimized geometries of a number of large clusters will be given

  18. Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination

    International Nuclear Information System (INIS)

    Waag, Wladislaw; Sauer, Dirk Uwe

    2013-01-01

    Highlights: • New adaptive approach for the EMF estimation. • The EMF is estimated by observing the voltage change after the current interruption. • The approach enables an accurate SoC and capacity determination. • Real-time capable algorithm. - Abstract: The online estimation of battery states and parameters is one of the challenging tasks when battery is used as a part of the pure electric or hybrid energy system. For the determination of the available energy stored in the battery, the knowledge of the present state-of-charge (SOC) and capacity of the battery is required. For SOC and capacity determination often the estimation of the battery electromotive force (EMF) is employed. The electromotive force can be measured as an open circuit voltage (OCV) of the battery when a significant time has elapsed since the current interruption. This time may take up to some hours for lithium-ion batteries and is needed to eliminate the influence of the diffusion overvoltages. This paper proposes a new approach to estimate the EMF by considering the OCV relaxation process within only some first minutes after the current interruption. The approach is based on an online fitting of an OCV relaxation model to the measured OCV relaxation curve. This model is based on an equivalent circuit consisting of a voltage source (represents the EMF) in series with the parallel connection of the resistance and a constant phase element (CPE). Based on this fitting the model parameters are determined and the EMF is estimated. The application of this method is exemplarily demonstrated for the state-of-charge and capacity estimation of the lithium-ion battery in an electrical vehicle. In the presented example the battery capacity is determined with the maximal inaccuracy of 2% using the EMF estimated at two different levels of state-of-charge. The real-time capability of the proposed algorithm is proven by its implementation on a low-cost 16-bit microcontroller (Infineon XC2287)

  19. Sparse regularization for force identification using dictionaries

    Science.gov (United States)

    Qiao, Baijie; Zhang, Xingwu; Wang, Chenxi; Zhang, Hang; Chen, Xuefeng

    2016-04-01

    The classical function expansion method based on minimizing l2-norm of the response residual employs various basis functions to represent the unknown force. Its difficulty lies in determining the optimum number of basis functions. Considering the sparsity of force in the time domain or in other basis space, we develop a general sparse regularization method based on minimizing l1-norm of the coefficient vector of basis functions. The number of basis functions is adaptively determined by minimizing the number of nonzero components in the coefficient vector during the sparse regularization process. First, according to the profile of the unknown force, the dictionary composed of basis functions is determined. Second, a sparsity convex optimization model for force identification is constructed. Third, given the transfer function and the operational response, Sparse reconstruction by separable approximation (SpaRSA) is developed to solve the sparse regularization problem of force identification. Finally, experiments including identification of impact and harmonic forces are conducted on a cantilever thin plate structure to illustrate the effectiveness and applicability of SpaRSA. Besides the Dirac dictionary, other three sparse dictionaries including Db6 wavelets, Sym4 wavelets and cubic B-spline functions can also accurately identify both the single and double impact forces from highly noisy responses in a sparse representation frame. The discrete cosine functions can also successfully reconstruct the harmonic forces including the sinusoidal, square and triangular forces. Conversely, the traditional Tikhonov regularization method with the L-curve criterion fails to identify both the impact and harmonic forces in these cases.

  20. A Vision-Based Approach for Estimating Contact Forces: Applications to Robot-Assisted Surgery

    Directory of Open Access Journals (Sweden)

    C. W. Kennedy

    2005-01-01

    Full Text Available The primary goal of this paper is to provide force feedback to the user using vision-based techniques. The approach presented in this paper can be used to provide force feedback to the surgeon for robot-assisted procedures. As proof of concept, we have developed a linear elastic finite element model (FEM of a rubber membrane whereby the nodal displacements of the membrane points are measured using vision. These nodal displacements are the input into our finite element model. In the first experiment, we track the deformation of the membrane in real-time through stereovision and compare it with the actual deformation computed through forward kinematics of the robot arm. On the basis of accurate deformation estimation through vision, we test the physical model of a membrane developed through finite element techniques. The FEM model accurately reflects the interaction forces on the user console when the interaction forces of the robot arm with the membrane are compared with those experienced by the surgeon on the console through the force feedback device. In the second experiment, the PHANToM haptic interface device is used to control the Mitsubishi PA-10 robot arm and interact with the membrane in real-time. Image data obtained through vision of the deformation of the membrane is used as the displacement input for the FEM model to compute the local interaction forces which are then displayed on the user console for providing force feedback and hence closing the loop.

  1. Manipulation and soldering of carbon nanotubes using atomic force microscope

    International Nuclear Information System (INIS)

    Kashiwase, Yuta; Ikeda, Takayuki; Oya, Takahide; Ogino, Toshio

    2008-01-01

    Manipulation of carbon nanotubes (CNTs) by an atomic force microscope (AFM) and soldering of CNTs using Fe oxide nanoparticles are described. We succeeded to separate a CNT bundle into two CNTs or CNT bundles, to move the separated CNT to a desirable position, and to bind it to another bundle. For the accurate manipulation, load of the AFM cantilever and frequency of the scan were carefully selected. We soldered two CNTs using an Fe oxide nanoparticle prepared from a ferritin molecule. The adhesion forces between the soldered CNTs were examined by an AFM and it was found that the CNTs were bound, though the binding force was not strong

  2. Radiative flux and forcing parameterization error in aerosol-free clear skies.

    Science.gov (United States)

    Pincus, Robert; Mlawer, Eli J; Oreopoulos, Lazaros; Ackerman, Andrew S; Baek, Sunghye; Brath, Manfred; Buehler, Stefan A; Cady-Pereira, Karen E; Cole, Jason N S; Dufresne, Jean-Louis; Kelley, Maxwell; Li, Jiangnan; Manners, James; Paynter, David J; Roehrig, Romain; Sekiguchi, Miho; Schwarzkopf, Daniel M

    2015-07-16

    Radiation parameterizations in GCMs are more accurate than their predecessorsErrors in estimates of 4 ×CO 2 forcing are large, especially for solar radiationErrors depend on atmospheric state, so global mean error is unknown.

  3. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    International Nuclear Information System (INIS)

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; Lilienfeld, O. Anatole von; Müller, Klaus-Robert; Tkatchenko, Alexandre

    2015-01-01

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the 'holy grail' of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies

  4. High resolution, large deformation 3D traction force microscopy.

    Directory of Open Access Journals (Sweden)

    Jennet Toyjanova

    Full Text Available Traction Force Microscopy (TFM is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D imaging and traction force analysis (3D TFM have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients.

  5. JCZS: An Intermolecular Potential Database for Performing Accurate Detonation and Expansion Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Baer, M.R.; Hobbs, M.L.; McGee, B.C.

    1998-11-03

    Exponential-13,6 (EXP-13,6) potential pammeters for 750 gases composed of 48 elements were determined and assembled in a database, referred to as the JCZS database, for use with the Jacobs Cowperthwaite Zwisler equation of state (JCZ3-EOS)~l) The EXP- 13,6 force constants were obtained by using literature values of Lennard-Jones (LJ) potential functions, by using corresponding states (CS) theory, by matching pure liquid shock Hugoniot data, and by using molecular volume to determine the approach radii with the well depth estimated from high-pressure isen- tropes. The JCZS database was used to accurately predict detonation velocity, pressure, and temperature for 50 dif- 3 Accurate predictions were also ferent explosives with initial densities ranging from 0.25 glcm3 to 1.97 g/cm . obtained for pure liquid shock Hugoniots, static properties of nitrogen, and gas detonations at high initial pressures.

  6. Isolation and characterization of a degradation product in leflunomide and a validated selective stability-indicating HPLC–UV method for their quantification

    Directory of Open Access Journals (Sweden)

    Balraj Saini

    2015-06-01

    Full Text Available Leflunomide (LLM is subjected to forced degradation under conditions of hydrolysis, oxidation, dry heat, and photolysis as recommended by International Conference on Harmonization guideline Q1A(R2. In total, four degradation products (I–IV were formed under different conditions. Products I, II and IV were formed in alkaline hydrolytic, acidic hydrolytic and alkaline photolytic conditions. LLM and all degradation products were optimally resolved by gradient elution over a C18 column. The major degradation product (IV formed in hydrolytic alkaline conditions was isolated through column chromatography. Based on its 1H NMR, IR and mass spectral data, it was characterized as a British Pharmacopoeial impurity B. The HPLC method was found to be linear, accurate, precise, sensitive, specific, rugged and robust for quantification of LLM as well as product IV. Finally, the method was applied to stability testing of the commercially available LLM tablets. Keywords: Leflunomide, Characterization, Forced degradation, Degradation product, HPLC–UV

  7. Classical Wigner method with an effective quantum force: application to reaction rates.

    Science.gov (United States)

    Poulsen, Jens Aage; Li, Huaqing; Nyman, Gunnar

    2009-07-14

    We construct an effective "quantum force" to be used in the classical molecular dynamics part of the classical Wigner method when determining correlation functions. The quantum force is obtained by estimating the most important short time separation of the Feynman paths that enter into the expression for the correlation function. The evaluation of the force is then as easy as classical potential energy evaluations. The ideas are tested on three reaction rate problems. The resulting transmission coefficients are in much better agreement with accurate results than transmission coefficients from the ordinary classical Wigner method.

  8. The accurate particle tracer code

    Science.gov (United States)

    Wang, Yulei; Liu, Jian; Qin, Hong; Yu, Zhi; Yao, Yicun

    2017-11-01

    The Accurate Particle Tracer (APT) code is designed for systematic large-scale applications of geometric algorithms for particle dynamical simulations. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and nonlinear problems. To provide a flexible and convenient I/O interface, the libraries of Lua and Hdf5 are used. Following a three-step procedure, users can efficiently extend the libraries of electromagnetic configurations, external non-electromagnetic forces, particle pushers, and initialization approaches by use of the extendible module. APT has been used in simulations of key physical problems, such as runaway electrons in tokamaks and energetic particles in Van Allen belt. As an important realization, the APT-SW version has been successfully distributed on the world's fastest computer, the Sunway TaihuLight supercomputer, by supporting master-slave architecture of Sunway many-core processors. Based on large-scale simulations of a runaway beam under parameters of the ITER tokamak, it is revealed that the magnetic ripple field can disperse the pitch-angle distribution significantly and improve the confinement of energetic runaway beam on the same time.

  9. Transition States from Empirical Force Fields

    DEFF Research Database (Denmark)

    Jensen, Frank; Norrby, Per-Ola

    2003-01-01

    This is an overview of the use of empirical force fields in the study of reaction mechanisms. EVB-type methods (including RFF and MCMM) produce full reaction surfaces by mixing, in the simplest case, known force fields describing reactants and products. The SEAM method instead locates approximate...

  10. 48 CFR 22.1503 - Procedures for acquiring end products on the List of Products Requiring Contractor Certification...

    Science.gov (United States)

    2010-10-01

    ... end products on the List of Products Requiring Contractor Certification as to Forced or Indentured... products on the List of Products Requiring Contractor Certification as to Forced or Indentured Child Labor... contracting officer must check the List of Products Requiring Contractor Certification as to Forced or...

  11. Concurrent use of magnetic bearings for rotor support and force sensing for the nondestructive evaluation of manufacturing processes

    Science.gov (United States)

    Kasarda, Mary; Imlach, Joseph; Balaji, P. A.; Marshall, Jeremy T.

    2000-06-01

    Active magnetic bearings are a proven technology in turbomachinery applications and they offer considerable promise for improving the performance of manufacturing processes. The Active Magnetic Bearing (AMB) is a feedback mechanism that supports a spinning shaft by levitating it in a magnetic field. AMBs have significantly higher surface speed capability than rolling element bearings and they eliminate the potential for product contamination by eliminating the requirement for bearing lubrication. In addition, one of the most promising capabilities for manufacturing applications is the ability of the AMB to act concurrently as both a support bearing and non-invasive force sensor. The feedback nature of the AMB allows for its use as a load cell to continuously measure shaft forces necessary for levitation based on information about the magnetic flux density in the air gaps. This measurement capability may be exploited to improve the process control of such products as textile fibers and photographic films where changes in shaft loads may indicate changes in product quality. This paper discusses the operation of AMBs and their potential benefits in manufacturing equipment along with results from research addressing accurate AMB force sensing performance in field applications. Specifically, results from the development of enhanced AMB measurement algorithms to better account for magnetic fringing and leakage effects to improve the accuracy of this technique are presented. Results from the development of a new on-line calibration procedure for robust in-situ calibration of AMBs in a field application such as a manufacturing plant scenario are also presented including results of Magnetic Finite Element Analysis (MFEA) verification of the procedure.

  12. Force-Field Prediction of Materials Properties in Metal-Organic Frameworks

    Science.gov (United States)

    2016-01-01

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can be observed when looking at properties sensitive to framework vibrational modes. This observation is more pronounced upon the introduction of framework charges. PMID:28008758

  13. Quantitative characterization of crosstalk effects for friction force microscopy with scan-by-probe SPMs

    International Nuclear Information System (INIS)

    Prunici, Pavel; Hess, Peter

    2008-01-01

    If the photodetector and cantilever of an atomic force microscope (AFM) are not properly adjusted, crosstalk effects will appear. These effects disturb measurements of the absolute vertical and horizontal cantilever deflections, which are involved in friction force microscopy (FFM). A straightforward procedure is proposed to study quantitatively crosstalk effects observed in scan-by-probe SPMs. The advantage of this simple, fast, and accurate procedure is that no hardware change or upgrade is needed. The results indicate that crosstalk effects depend not only on the alignment of the detector but also on the cantilever properties, position, and detection conditions. The measurements may provide information on the origin of the crosstalk effect. After determination of its magnitude, simple correction formulas can be applied to correct the crosstalk effects and then the single-load wedge method, using a commercially available grating, can be employed for accurate calibration of the lateral force

  14. Quantitative characterization of crosstalk effects for friction force microscopy with scan-by-probe SPMs

    Energy Technology Data Exchange (ETDEWEB)

    Prunici, Pavel [Institute of Physical Chemistry, University of Heidelberg, D-69120 Heidelberg (Germany); Hess, Peter [Institute of Physical Chemistry, University of Heidelberg, D-69120 Heidelberg (Germany)], E-mail: peter.hess@urz.uni-heidelberg.de

    2008-06-15

    If the photodetector and cantilever of an atomic force microscope (AFM) are not properly adjusted, crosstalk effects will appear. These effects disturb measurements of the absolute vertical and horizontal cantilever deflections, which are involved in friction force microscopy (FFM). A straightforward procedure is proposed to study quantitatively crosstalk effects observed in scan-by-probe SPMs. The advantage of this simple, fast, and accurate procedure is that no hardware change or upgrade is needed. The results indicate that crosstalk effects depend not only on the alignment of the detector but also on the cantilever properties, position, and detection conditions. The measurements may provide information on the origin of the crosstalk effect. After determination of its magnitude, simple correction formulas can be applied to correct the crosstalk effects and then the single-load wedge method, using a commercially available grating, can be employed for accurate calibration of the lateral force.

  15. In Vitro Methodologies to Evaluate the Effects of Hair Care Products on Hair Fiber

    Directory of Open Access Journals (Sweden)

    Robson Miranda da Gama

    2017-01-01

    Full Text Available Consumers use different hair care products to change the physical appearance of their hair, such as shampoos, conditioners, hair dye and hair straighteners. They expect cosmetics products to be available in the market to meet their needs in a broad and effective manner. Evaluating efficacy of hair care products in vitro involves the use of highly accurate equipment. This review aims to discuss in vitro methodologies used to evaluate the effects of hair care products on hair fiber, which can be assessed by various methods, such as Scanning Electron Microscopy, Transmission Electron Microscopy, Atomic Force Microscopy, Optical Coherence Tomography, Infrared Spectroscopy, Raman Spectroscopy, Protein Loss, Electrophoresis, color and brightness, thermal analysis and measuring mechanical resistance to combing and elasticity. The methodology used to test hair fibers must be selected according to the property being evaluated, such as sensory characteristics, determination of brightness, resistance to rupture, elasticity and integrity of hair strain and cortex, among others. If equipment is appropriate and accurate, reproducibility and ease of employment of the analytical methodology will be possible. Normally, the data set must be discussed in order to obtain conclusive answers to the test.

  16. Measurements of dispersion forces between colloidal latex particles with the atomic force microscope and comparison with Lifshitz theory

    Energy Technology Data Exchange (ETDEWEB)

    Elzbieciak-Wodka, Magdalena; Ruiz-Cabello, F. Javier Montes; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal, E-mail: michal.borkovec@unige.ch [Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30, Quai Ernest-Ansermet, 1205 Geneva (Switzerland); Popescu, Mihail N. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2014-03-14

    Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10{sup −21} J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.

  17. MD1405: Demonstration of forced dynamic aperture measurements at injection

    CERN Document Server

    Carlier, Felix Simon; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department

    2017-01-01

    Accurate measurements of dynamic aperture become more important for the LHC as it advances into increasingly nonlinear regimes of operations, as well as for the High Luminosity LHC where machine nonlinearities will have a significantly larger impact. Direct dynamic aperture measurements at top energy in the LHC are challenging, and conventional single kick methods are not viable. Dynamic aperture measurements under forced oscillation of AC dipoles have been proposed as s possible alternative observable. A first demonstration of forced DA measurements at injections energy is presented.

  18. Estimating product-to-product variations in metal forming using force measurements

    NARCIS (Netherlands)

    Havinga, Gosse Tjipke; Van Den Boogaard, Ton

    2017-01-01

    The limits of production accuracy of metal forming processes can be stretched by the development of control systems for compensation of product-to-product variations. Such systems require the use of measurements from each semi-finished product. These measurements must be used to estimate the final

  19. Accurate determination of process variables in a solid-state fermentation system

    NARCIS (Netherlands)

    Smits, J.P.; Rinzema, A.; Tramper, J.; Schlösser, E.E.; Knol, W.

    1996-01-01

    The solid-state fermentation (SSF) method described enabled accurate determination of variables related to biological activity. Growth, respiratory activity and production of carboxymethyl-cellulose-hydrolysing enzyme (CMC-ase) activity by Trichoderma reesei QM9414 on wheat bran was used as a model

  20. Myoelectric hand prosthesis force control through servo motor current feedback.

    Science.gov (United States)

    Sono, Tálita Saemi Payossim; Menegaldo, Luciano Luporini

    2009-10-01

    This paper presents the prehension force closed-loop control design of a mechanical finger commanded by electromyographic signal (EMG) from a patient's arm. The control scheme was implemented and tested in a mechanical finger prototype with three degrees of freedom and one actuator, driven by arm muscles EMG of normal volunteers. Real-time indirect estimation of prehension force was assessed by measuring the DC servo motor actuator current. A model of the plant comprising finger, motor, and grasped object was proposed. Model parameters were identified experimentally and a classical feedback phase-lead compensator was designed. The controlled mechanical finger was able to provide a more accurate prehension force modulation of a compliant object when compared to open-loop control.

  1. Dual-joint modeling for estimation of total knee replacement contact forces during locomotion.

    Science.gov (United States)

    Hast, Michael W; Piazza, Stephen J

    2013-02-01

    Model-based estimation of in vivo contact forces arising between components of a total knee replacement is challenging because such forces depend upon accurate modeling of muscles, tendons, ligaments, contact, and multibody dynamics. Here we describe an approach to solving this problem with results that are tested by comparison to knee loads measured in vivo for a single subject and made available through the Grand Challenge Competition to Predict in vivo Tibiofemoral Loads. The approach makes use of a "dual-joint" paradigm in which the knee joint is alternately represented by (1) a ball-joint knee for inverse dynamic computation of required muscle controls and (2) a 12 degree-of-freedom (DOF) knee with elastic foundation contact at the tibiofemoral and patellofemoral articulations for forward dynamic integration. Measured external forces and kinematics were applied as a feedback controller and static optimization attempted to track measured knee flexion angles and electromyographic (EMG) activity. The resulting simulations showed excellent tracking of knee flexion (average RMS error of 2.53 deg) and EMG (muscle activations within ±10% envelopes of normalized measured EMG signals). Simulated tibiofemoral contact forces agreed qualitatively with measured contact forces, but their RMS errors were approximately 25% of the peak measured values. These results demonstrate the potential of a dual-joint modeling approach to predict joint contact forces from kinesiological data measured in the motion laboratory. It is anticipated that errors in the estimation of contact force will be reduced as more accurate subject-specific models of muscles and other soft tissues are developed.

  2. Unveiling aerosol-cloud interactions - Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate

    Science.gov (United States)

    Christensen, Matthew W.; Neubauer, David; Poulsen, Caroline A.; Thomas, Gareth E.; McGarragh, Gregory R.; Povey, Adam C.; Proud, Simon R.; Grainger, Roy G.

    2017-11-01

    Increased concentrations of aerosol can enhance the albedo of warm low-level cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3-D radiative transfer) clouds. To screen for this contamination we have developed a new cloud-aerosol pairing algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS), show a marked reduction in the strength of the intrinsic aerosol indirect radiative forcing when selecting aerosol pairs that are located farther away from the clouds (-0.28±0.26 W m-2) compared to those including pairs that are within 15 km of the nearest cloud (-0.49±0.18 W m-2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol-loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to the inclusion of retrieval artefacts in the aerosol located near clouds.

  3. Moving force identification based on redundant concatenated dictionary and weighted l1-norm regularization

    Science.gov (United States)

    Pan, Chu-Dong; Yu, Ling; Liu, Huan-Lin; Chen, Ze-Peng; Luo, Wen-Feng

    2018-01-01

    Moving force identification (MFI) is an important inverse problem in the field of bridge structural health monitoring (SHM). Reasonable signal structures of moving forces are rarely considered in the existing MFI methods. Interaction forces are complex because they contain both slowly-varying harmonic and impact signals due to bridge vibration and bumps on a bridge deck, respectively. Therefore, the interaction forces are usually hard to be expressed completely and sparsely by using a single basis function set. Based on the redundant concatenated dictionary and weighted l1-norm regularization method, a hybrid method is proposed for MFI in this study. The redundant dictionary consists of both trigonometric functions and rectangular functions used for matching the harmonic and impact signal features of unknown moving forces. The weighted l1-norm regularization method is introduced for formulation of MFI equation, so that the signal features of moving forces can be accurately extracted. The fast iterative shrinkage-thresholding algorithm (FISTA) is used for solving the MFI problem. The optimal regularization parameter is appropriately chosen by the Bayesian information criterion (BIC) method. In order to assess the accuracy and the feasibility of the proposed method, a simply-supported beam bridge subjected to a moving force is taken as an example for numerical simulations. Finally, a series of experimental studies on MFI of a steel beam are performed in laboratory. Both numerical and experimental results show that the proposed method can accurately identify the moving forces with a strong robustness, and it has a better performance than the Tikhonov regularization method. Some related issues are discussed as well.

  4. Bilateral movements increase sustained extensor force in the paretic arm.

    Science.gov (United States)

    Kang, Nyeonju; Cauraugh, James H

    2018-04-01

    Muscle weakness in the extensors poststroke is a common motor impairment. Unfortunately, research is unclear on whether bilateral movements increase extensor force production in the paretic arm. This study investigated sustained force production while stroke individuals maximally extended their wrist and fingers on their paretic arm. Specifically, we determined isometric force production in three conditions: (a) unilateral paretic arm, (b) unilateral nonparetic arm, and (c) bilateral (both arms executing the same movement simultaneously). Seventeen chronic stroke patients produced isometric sustained force by executing wrist and fingers extension in unilateral and bilateral contraction conditions. Mean force, force variability (coefficient of variation), and signal-to-noise ratio were calculated for each contraction condition. Analysis of two-way (Arm × Type of Condition: 2 × 2; Paretic or Nonparetic Arm × Unilateral or Bilateral Conditions) within-subjects ANOVAs revealed that the bilateral condition increased sustained force in the paretic arm, but reduced sustained force in the nonparetic arm. Further, although the paretic arm exhibited more force variability and less signal-to-noise ratio than the nonparetic arm during a unilateral condition, there were no differences when participants simultaneously executed isometric contractions with both arms. Our unique findings indicate that bilateral contractions transiently increased extensor force in the paretic arm. Implications for Rehabilitation Bilateral movements increased isometric wrsit extensor force in paretic arms and redcued force in nonparetic arms versus unilateral movements. Both paretic and nonparetic arms produced similar force variability and signal-to-noise ratio during bilateral movements. Increased sustained force in the paretic arm during the bilateral condition indicates that rehabilitation protocols based on bilateral movements may be beneficial for functional recovery.

  5. The Use of Rapid Review Methods for the U.S. Preventive Services Task Force.

    Science.gov (United States)

    Patnode, Carrie D; Eder, Michelle L; Walsh, Emily S; Viswanathan, Meera; Lin, Jennifer S

    2018-01-01

    Rapid review products are intended to synthesize available evidence in a timely fashion while still meeting the needs of healthcare decision makers. Various methods and products have been applied for rapid evidence syntheses, but no single approach has been uniformly adopted. Methods to gain efficiency and compress the review time period include focusing on a narrow clinical topic and key questions; limiting the literature search; performing single (versus dual) screening of abstracts and full-text articles for relevance; and limiting the analysis and synthesis. In order to maintain the scientific integrity, including transparency, of rapid evidence syntheses, it is imperative that procedures used to streamline standard systematic review methods are prespecified, based on sound review principles and empiric evidence when possible, and provide the end user with an accurate and comprehensive synthesis. The collection of clinical preventive service recommendations maintained by the U.S. Preventive Services Task Force, along with its commitment to rigorous methods development, provide a unique opportunity to refine, implement, and evaluate rapid evidence synthesis methods and add to an emerging evidence base on rapid review methods. This paper summarizes the U.S. Preventive Services Task Force's use of rapid review methodology, its criteria for selecting topics for rapid evidence syntheses, and proposed methods to streamline the review process. Copyright © 2018 American Journal of Preventive Medicine. All rights reserved.

  6. Effects of vibration training on force production in female basketball players.

    Science.gov (United States)

    Fernandez-Rio, Javier; Terrados, Nicolas; Fernandez-Garcia, Benjamin; Suman, Oscar E

    2010-05-01

    The goal of this research project was to investigate the long-term effects of whole-body vibration (WBV) training on force production. Thirty-one female basketball players were randomly distributed in an experimental group: VG (vibration) and a control group: CG (no vibration). Both groups participated in the same training program; however, the experimental group (VG) performed a set of exercises on a vibration platform (Power Plate) at 30- to 35-Hz frequency and 4 mm amplitude, whereas the CG performed the same exercises at 0 Hz. Muscle performance of the legs was tested on a contact-time platform (Ergojump, Finland) through several tests: squat jump (SJ), countermovement jump (CMJ), and 15-second maximal performance jump; squat leg power (knee extension) was also evaluated using an Ergopower machine (Bosco, Italy). After 14 weeks, there was a significant increase (p training has no additive or discernible effect on the strength development of female basketball players after several weeks of use, suggesting that the application of this technology has no advantages over traditional strength training methods.

  7. Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices.

    Science.gov (United States)

    Jeong, Jenny; Frohberg, Nicholas J; Zhou, Enlu; Sulchek, Todd; Qiu, Peng

    2018-01-01

    Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.

  8. Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices.

    Directory of Open Access Journals (Sweden)

    Jenny Jeong

    Full Text Available Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.

  9. Hybrid Force and Position Control Strategy of Robonaut Performing Object Transfer Task

    Directory of Open Access Journals (Sweden)

    Chen Gang

    2018-01-01

    Full Text Available This paper proposes a coordinated hybrid force/position control strategy of robonaut performing object transfer operation. Firstly, the constraint relationships between robonaut and object are presented. Base on them, the unified dynamic model of the robonaut and object is established to design the hybrid force/position control method. The movement, the internal force and the external constraint force of the object are considered as the control targets of the control system. Finally, a MATLAB simulation of the robonaut performing object transfer task verifies the correctness and effectiveness of the proposed method. The results show that all the targets can be control accurately by using the method proposed in this paper. The presented control method can control both internal and external forces while maintaining control accuracy, which is a common control strategy.

  10. Force estimation from ensembles of Golgi tendon organs

    Science.gov (United States)

    Mileusnic, M. P.; Loeb, G. E.

    2009-06-01

    Golgi tendon organs (GTOs) located in the skeletal muscles provide the central nervous system with information about muscle tension. The ensemble firing of all GTO receptors in the muscle has been hypothesized to represent a reliable measure of the whole muscle force but the precision and accuracy of that information are largely unknown because it is impossible to record activity simultaneously from all GTOs in a muscle. In this study, we combined a new mathematical model of force sampling and transduction in individual GTOs with various models of motor unit (MU) organization and recruitment simulating various normal, pathological and neural prosthetic conditions. Our study suggests that in the intact muscle the ensemble GTO activity accurately encodes force information according to a nonlinear, monotonic relationship that has its steepest slope for low force levels and tends to saturate at the highest force levels. The relationship between the aggregate GTO activity and whole muscle tension under some pathological conditions is similar to one seen in the intact muscle during rapidly modulated, phasic excitation of the motor pool (typical for many natural movements) but quite different when the muscle is activated slowly or held at a given force level. Substantial deviations were also observed during simulated functional electrical stimulation.

  11. IR technology for enhanced force protection by AIM

    Science.gov (United States)

    Breiter, R.; Ihle, T.; Rode, W.; Wendler, J.; Rühlich, I.; Haiml, M.; Ziegler, J.

    2008-04-01

    In all recent missions our forces are faced with various types of asymmetric threads like snipers, IEDs, RPGs or MANPADS. 2 nd and 3 rd Gen IR technology is a backbone of modern force protection by providing situational awareness and accurate target engagement at day/night. 3 rd Gen sensors are developed for thread warning capabilities by use of spectral or spatial information. The progress on a dual-color IR module is discussed in a separate paper [1]. A 1024x256 SWIR array with flexure bearing compressor and pulse tube cold finger provides > 50,000h lifetime for space or airborne hyperspectral imaging in pushbroom geometry with 256 spectral channels for improved change detection and remote sensing of IEDs or chemical agents. Similar concepts are pursued in the LWIR with either spectroscopic imaging or a system of LWIR FPA combined with a cooled tunable Laser to do spectroscopy with stimulated absorption of specific wavelengths. AIM introduced the RangIR sight to match the requirements of sniper teams, AGLs and weapon stations, extending the outstanding optronic performance of the fielded HuntIR with position data of a target by a laser range finder (LRF), a 3 axis digital magnetic compass (DMC) and a ballistic computer for accurate engagement of remote targets. A version with flexure bearing cooler with >30,000h life time is being developed for continuous operation in e.g. gunfire detection systems. This paper gives an overview of AIM's technologies for enhanced force protection.

  12. Natural forcings on a transformed territory overshoot thresholds of primary productivity in the Guadalquivir estuary

    Science.gov (United States)

    Ruiz, J.; Macías, D.; Navarro, G.

    2017-09-01

    A three year-long quasi continuum sampling dataset on the Guadalquivir estuary water quality was used to assess the role of light availability on its biological production. We found that inorganic nutrients within the estuary are very high (with mean values for inorganic nitrogen and phosphorous of 285 and 2.4 μM respectively) while phytoplankton biomass remains low most of the time (with a mean value of 2.6 mg/m3). A strong relationship between phytoplankton biomass and water turbidity was found indicating that, indeed, light availability is the major constraint of primary production in this system. Most of the time this limitation of primary production is not associated to enhanced turbidity connected to fresh water inputs. Instead, our data indicate that, independently of freshwater inputs, the photosynthesis is restricted by tidal forcings enhancing turbidity in an estuary that has been highly modified. Our results match with classical theories on the functioning of well-mixed, estuarine ecosystems as well as with recent modeling exercises. We also discuss the potential impacts of this particular characteristic of some estuarine systems for their management and regulatory control.

  13. Thermodynamic forces in coarse-grained simulations

    Science.gov (United States)

    Noid, William

    Atomically detailed molecular dynamics simulations have profoundly advanced our understanding of the structure and interactions in soft condensed phases. Nevertheless, despite dramatic advances in the methodology and resources for simulating atomically detailed models, low-resolution coarse-grained (CG) models play a central and rapidly growing role in science. CG models not only empower researchers to investigate phenomena beyond the scope of atomically detailed simulations, but also to precisely tailor models for specific phenomena. However, in contrast to atomically detailed simulations, which evolve on a potential energy surface, CG simulations should evolve on a free energy surface. Therefore, the forces in CG models should reflect the thermodynamic information that has been eliminated from the CG configuration space. As a consequence of these thermodynamic forces, CG models often demonstrate limited transferability and, moreover, rarely provide an accurate description of both structural and thermodynamic properties. In this talk, I will present a framework that clarifies the origin and impact of these thermodynamic forces. Additionally, I will present computational methods for quantifying these forces and incorporating their effects into CG MD simulations. As time allows, I will demonstrate applications of this framework for liquids, polymers, and interfaces. We gratefully acknowledge the support of the National Science Foundation via CHE 1565631.

  14. Thermal imbalance force modelling for a GPS satellite using the finite element method

    Science.gov (United States)

    Vigue, Yvonne; Schutz, Bob E.

    1991-01-01

    Methods of analyzing the perturbation due to thermal radiation and determining its effects on the orbits of GPS satellites are presented, with emphasis on the FEM technique to calculate satellite solar panel temperatures which are used to determine the magnitude and direction of the thermal imbalance force. Although this force may not be responsible for all of the force mismodeling, conditions may work in combination with the thermal imbalance force to produce such accelerations on the order of 1.e-9 m/sq s. If submeter accurate orbits and centimeter-level accuracy for geophysical applications are desired, a time-dependent model of the thermal imbalance force should be used, especially when satellites are eclipsing, where the observed errors are larger than for satellites in noneclipsing orbits.

  15. The influence of lower leg configurations on muscle force variability.

    Science.gov (United States)

    Ofori, Edward; Shim, Jaeho; Sosnoff, Jacob J

    2018-04-11

    The maintenance of steady contractions is required in many daily tasks. However, there is little understanding of how various lower limb configurations influence the ability to maintain force. The purpose of the current investigation was to examine the influence of joint angle on various lower-limb constant force contractions. Nineteen adults performed knee extension, knee flexion, and ankle plantarflexion isometric force contractions to 11 target forces, ranging from 2 to 95% maximal voluntary contraction (MVC) at 2 angles. Force variability was quantified with mean force, standard deviation, and the coefficient of variation of force output. Non-linearities in force output were quantified with approximate entropy. Curve fitting analyses were performed on each set of data from each individual across contractions to further examine whether joint angle interacts with global functions of lower-limb force variability. Joint angle had significant effects on the model parameters used to describe the force-variability function for each muscle contraction (p force output were more explained by force level in smaller angle conditions relative to the larger angle conditions (p force production. Biomechanical factors, such as joint angle, along with neurophysiological factors should be considered together in the discussion of the dynamics of constant force production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Analysis of Electromagnetic Attractive Force : Examination by Magnetic Circuit, Finite Element Method and Experiment

    OpenAIRE

    薮野, 浩司; 大和田, 竜太郎; 青島, 伸治; Hiroshi, YABUNO; Ryotaro, OOWADA; Nobuharu, AOSHIMA; 筑波大学; 筑波大学院; 筑波大学

    1998-01-01

    This paper presents the limitation of the magnetic circuit method. The force between magnetic bodies can be approximated accurately by the magnetic circuit method. Therefore this method has been used widely for the estimation of magnetic force. However this method is limited by the magnetic leakage and can be not used in the case when the gap between the magnetic bodies is wide. It is very important to clarify the limitation of the magnetic circuit method. In this research, the force of an el...

  17. Analyzing Forces on Amusement Park Rides with Mobile Devices

    Science.gov (United States)

    Vieyra, Rebecca E.; Vieyra, Chrystian

    2014-01-01

    Mobile device accelerometers are a simple and easy way for students to collect accurate and detailed data on an amusement park ride. The resulting data can be graphed to assist in the creation of force diagrams to help students explain their physical sensations while on the ride. This type of activity can help students overcome some of the…

  18. The precise and accurate production of millimetric water droplets using a superhydrophobic generating apparatus

    Science.gov (United States)

    Wood, Michael J.; Aristizabal, Felipe; Coady, Matthew; Nielson, Kent; Ragogna, Paul J.; Kietzig, Anne-Marie

    2018-02-01

    The production of millimetric liquid droplets has importance in a wide range of applications both in the laboratory and industrially. As such, much effort has been put forth to devise methods to generate these droplets on command in a manner which results in high diameter accuracy and precision, well-defined trajectories followed by successive droplets and low oscillations in droplet shape throughout their descents. None of the currently employed methods of millimetric droplet generation described in the literature adequately addresses all of these desired droplet characteristics. The reported methods invariably involve the cohesive separation of the desired volume of liquid from the bulk supply in the same step that separates the single droplet from the solid generator. We have devised a droplet generation device which separates the desired volume of liquid within a tee-apparatus in a step prior to the generation of the droplet which has yielded both high accuracy and precision of the diameters of the final droplets produced. Further, we have engineered a generating tip with extreme antiwetting properties which has resulted in reduced adhesion forces between the liquid droplet and the solid tip. This has yielded the ability to produce droplets of low mass without necessitating different diameter generating tips or the addition of surfactants to the liquid, well-defined droplet trajectories, and low oscillations in droplet volume. The trajectories and oscillations of the droplets produced have been assessed and presented quantitatively in a manner that has been lacking in the current literature.

  19. Techniques of Force and Pressure Measurement in the Small Joints of the Wrist.

    Science.gov (United States)

    Schreck, Michael J; Kelly, Meghan; Canham, Colin D; Elfar, John C

    2018-01-01

    The alteration of forces across joints can result in instability and subsequent disability. Previous methods of force measurements such as pressure-sensitive films, load cells, and pressure-sensing transducers have been utilized to estimate biomechanical forces across joints and more recent studies have utilized a nondestructive method that allows for assessment of joint forces under ligamentous restraints. A comprehensive review of the literature was performed to explore the numerous biomechanical methods utilized to estimate intra-articular forces. Methods of biomechanical force measurements in joints are reviewed. Methods such as pressure-sensitive films, load cells, and pressure-sensing transducers require significant intra-articular disruption and thus may result in inaccurate measurements, especially in small joints such as those within the wrist and hand. Non-destructive methods of joint force measurements either utilizing distraction-based joint reaction force methods or finite element analysis may offer a more accurate assessment; however, given their recent inception, further studies are needed to improve and validate their use.

  20. User's Manual for FOMOCO Utilities-Force and Moment Computation Tools for Overset Grids

    Science.gov (United States)

    Chan, William M.; Buning, Pieter G.

    1996-01-01

    In the numerical computations of flows around complex configurations, accurate calculations of force and moment coefficients for aerodynamic surfaces are required. When overset grid methods are used, the surfaces on which force and moment coefficients are sought typically consist of a collection of overlapping surface grids. Direct integration of flow quantities on the overlapping grids would result in the overlapped regions being counted more than once. The FOMOCO Utilities is a software package for computing flow coefficients (force, moment, and mass flow rate) on a collection of overset surfaces with accurate accounting of the overlapped zones. FOMOCO Utilities can be used in stand-alone mode or in conjunction with the Chimera overset grid compressible Navier-Stokes flow solver OVERFLOW. The software package consists of two modules corresponding to a two-step procedure: (1) hybrid surface grid generation (MIXSUR module), and (2) flow quantities integration (OVERINT module). Instructions on how to use this software package are described in this user's manual. Equations used in the flow coefficients calculation are given in Appendix A.

  1. Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression.

    Science.gov (United States)

    Rao, Chen; Ikeda, Teruaki; Nakata, Toshiyuki; Liu, Hao

    2017-07-04

    Owls are widely known for silent flight, achieving remarkably low noise gliding and flapping flights owing to their unique wing morphologies, which are normally characterized by leading-edge serrations, trailing-edge fringes and velvet-like surfaces. How these morphological features affect aerodynamic force production and sound suppression or noise reduction, however, is still not well known. Here we address an integrated study of owl-inspired single feather wing models with and without leading-edge serrations by combining large-eddy simulations (LES) with particle-image velocimetry (PIV) and force measurements in a low-speed wind tunnel. With velocity and pressure spectra analysis, we demonstrate that leading-edge serrations can passively control the laminar-turbulent transition over the upper wing surface, i.e. the suction surface at all angles of attack (0°    15° where owl wings often reach in flight. Our results indicate that the owl-inspired leading-edge serrations may be a useful device for aero-acoustic control in biomimetic rotor designs for wind turbines, aircrafts, multi-rotor drones as well as other fluid machinery.

  2. Implications of confining force field structures in hard hadronic processes

    International Nuclear Information System (INIS)

    Bengtsson, H.-U.

    1983-04-01

    This thesis is centered on the study of confining force field structures in hard scattering processes. Perturbative QCD provides the means of calculating any process on the parton level, but to be able accurately to describe the actual outcome of an event, one still needs a phenomenological model for how quarks and gluons transform into observable hadrons. One such model is based on the assumption that the particles are produced by the confining fields stretched between the partons. The actual particle distributions will then depend on the topology of the confining fields. We have developed a Monte Carlo program to simulate complete events in hard scattering, and we use this to study the properties of the confining field in different trigger situations. We further look at the amount of hard processes that can be expected in experiments that trigger on transverse energy sum (calorimeter experiments). Finally, we investigate charm production within our model. (author)

  3. Sideways fall-induced impact force and its effect on hip fracture risk: a review.

    Science.gov (United States)

    Nasiri Sarvi, M; Luo, Y

    2017-10-01

    Osteoporotic hip fracture, mostly induced in falls among the elderly, is a major health burden over the world. The impact force applied to the hip is an important factor in determining the risk of hip fracture. However, biomechanical researches have yielded conflicting conclusions about whether the fall-induced impact force can be accurately predicted by the available models. It also has been debated whether or not the effect of impact force has been considered appropriately in hip fracture risk assessment tools. This study aimed to provide a state-of-the-art review of the available methods for predicting the impact force, investigate their strengths/limitations, and suggest further improvements in modeling of human body falling. We divided the effective parameters on impact force to two categories: (1) the parameters that can be determined subject-specifically and (2) the parameters that may significantly vary from fall to fall for an individual and cannot be considered subject-specifically. The parameters in the first category can be investigated in human body fall experiments. Video capture of real-life falls was reported as a valuable method to investigate the parameters in the second category that significantly affect the impact force and cannot be determined in human body fall experiments. The analysis of the gathered data revealed that there is a need to develop modified biomechanical models for more accurate prediction of the impact force and appropriately adopt them in hip fracture risk assessment tools in order to achieve a better precision in identifying high-risk patients. Graphical abstract Impact force to the hip induced in sideways falls is affected by many parameters and may remarkably vary from subject to subject.

  4. Entropic elasticity in the generation of muscle Force - A theoretical model

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2002-01-01

    A novel simplified structural model of sarcomeric force production in striate muscle is presented. Using some simple assumptions regarding the distribution of myosin spring lengths at different sliding velocities it is possible to derive a very simple expression showing the main components...... of the experimentally observed force-velocity relationship of muscle: nonlinearity during contraction (Hill, 1938), maximal force production during stretching equal to two times the isometric force (Katz, 1939), yielding at high stretching velocity, slightly concave force-extension relationship during sudden length......-bridges are explored [linear, power function and worm-like chain (WLC) model based], and it is shown that the best results are obtained if the individual myosin-spring forces are modelled using a WLC model, thus hinting that entropic elasticity could be the main source of force in myosin undergoing the conformational...

  5. Control of finger forces during fast, slow and moderate rotational hand movements.

    Science.gov (United States)

    Kazemi, Hamed; Kearney, Robert E; Milner, Theodore E

    2014-01-01

    The goal of this study was to investigate the effect of speed on patterns of grip forces during twisting movement involving forearm supination against a torsional load (combined elastic and inertial load). For slow and moderate speed rotations, the grip force increased linearly with load torque. However, for fast rotations in which the contribution of the inertia to load torque was significantly greater than slower movements, the grip force-load torque relationship could be segmented into two phases: a linear ascending phase corresponding to the acceleration part of the movement followed by a plateau during deceleration. That is, during the acceleration phase, the grip force accurately tracked the combined elastic and inertial load. However, the coupling between grip force and load torque was not consistent during the deceleration phase of the movement. In addition, as speed increased, both the position and the force profiles became smoother. No differences in the baseline grip force, safety margin to secure the grasp during hold phase or the overall change in grip force were observed across different speeds.

  6. Simultaneous measurement of dynamic force and spatial thin film thickness between deformable and solid surfaces by integrated thin liquid film force apparatus.

    Science.gov (United States)

    Zhang, Xurui; Tchoukov, Plamen; Manica, Rogerio; Wang, Louxiang; Liu, Qingxia; Xu, Zhenghe

    2016-11-09

    Interactions involving deformable surfaces reveal a number of distinguishing physicochemical characteristics that do not exist in interactions between rigid solid surfaces. A unique fully custom-designed instrument, referred to as integrated thin liquid film force apparatus (ITLFFA), was developed to study the interactions between one deformable and one solid surface in liquid. Incorporating a bimorph force sensor with interferometry, this device allows for the simultaneous measurement of the time-dependent interaction force and the corresponding spatiotemporal film thickness of the intervening liquid film. The ITLFFA possesses the specific feature of conducting measurement under a wide range of hydrodynamic conditions, with a displacement velocity of deformable surfaces ranging from 2 μm s -1 to 50 mm s -1 . Equipped with a high speed camera, the results of a bubble interacting with hydrophilic and partially hydrophobic surfaces in aqueous solutions indicated that ITLFFA can provide information on interaction forces and thin liquid film drainage dynamics not only in a stable film but also in films of the quick rupture process. The weak interaction force was extracted from a measured film profile. Because of its well-characterized experimental conditions, ITLFFA permits the accurate and quantitative comparison/validation between measured and calculated interaction forces and temporal film profiles.

  7. Using infrared spectroscopy and satellite data to accurately monitor remote volcanoes and map their eruptive products

    Science.gov (United States)

    Ramsey, M. S.

    2011-12-01

    The ability to detect the onset of new activity at a remote volcano commonly relies on high temporal resolution thermal infrared (TIR) satellite-based observations. These observations from sensors such as AVHRR and MODIS are being used in innovative ways to produce trends of activity, which are critical for hazard response planning and scientific modeling. Such data are excellent for detection of new thermal features, volcanic plumes, and tracking changes over the hour time scale, for example. For some remote volcanoes, the lack of ground-based monitoring typically means that these sensors provide the first and only confirmation of renewed activity. However, what is lacking is the context of the higher spatial scale, which provides the volcanologist with meter-scale information on specific temperatures and changes in the composition and texture of the eruptive products. For the past eleven years, the joint US-Japanese ASTER instrument has been acquiring image-based data of volcanic eruptions around the world, including in the remote northern Pacific region. There have been more ASTER observations of Kamchatka volcanoes than any other location on the globe due mainly to an operational program put into place in 2004. Automated hot spot alarms from AVHRR data trigger ASTER acquisitions using the instrument's "rapid response" mode. Specifically for Kamchatka, this program has resulted in more than 700 additional ASTER images of the most thermally-active volcanoes (e.g., Shiveluch, Kliuchevskoi, Karymsky, Bezymianny). The scientific results from this program at these volcanoes will be highlighted. These results were strengthened by several field seasons used to map new products, collect samples for laboratory-based spectroscopy, and acquire TIR camera data. The fusion of ground, laboratory and space-based spectroscopy provided the most accurate interpretation of the eruptions and laid the ground work for future VSWIR/TIR sensors such as HyspIRI, which are a critically

  8. Simulating Storm Surge Impacts with a Coupled Atmosphere-Inundation Model with Varying Meteorological Forcing

    Directory of Open Access Journals (Sweden)

    Alexandra N. Ramos Valle

    2018-04-01

    Full Text Available Storm surge events have the potential to cause devastating damage to coastal communities. The magnitude of their impacts highlights the need for increased accuracy and real-time forecasting and predictability of storm surge. In this study, we assess two meteorological forcing configurations to hindcast the storm surge of Hurricane Sandy, and ultimately support the improvement of storm surge forecasts. The Weather Research and Forecasting (WRF model is coupled to the ADvanced CIRCulation Model (ADCIRC to determine water elevations. We perform four coupled simulations and compare storm surge estimates resulting from the use of a parametric vortex model and a full-physics atmospheric model. One simulation is forced with track-based meteorological data calculated from WRF, while three simulations are forced with the full wind and pressure field outputs from WRF simulations of varying resolutions. Experiments were compared to an ADCIRC simulation forced by National Hurricane Center best track data, as well as to station observations. Our results indicated that given accurate meteorological best track data, a parametric vortex model can accurately forecast maximum water elevations, improving upon the use of a full-physics coupled atmospheric-surge model. In the absence of a best track, atmospheric forcing in the form of full wind and pressure field from a high-resolution atmospheric model simulation prove reliable for storm surge forecasting.

  9. Application of Stochastic Sensitivity Analysis to Integrated Force Method

    Directory of Open Access Journals (Sweden)

    X. F. Wei

    2012-01-01

    Full Text Available As a new formulation in structural analysis, Integrated Force Method has been successfully applied to many structures for civil, mechanical, and aerospace engineering due to the accurate estimate of forces in computation. Right now, it is being further extended to the probabilistic domain. For the assessment of uncertainty effect in system optimization and identification, the probabilistic sensitivity analysis of IFM was further investigated in this study. A set of stochastic sensitivity analysis formulation of Integrated Force Method was developed using the perturbation method. Numerical examples are presented to illustrate its application. Its efficiency and accuracy were also substantiated with direct Monte Carlo simulations and the reliability-based sensitivity method. The numerical algorithm was shown to be readily adaptable to the existing program since the models of stochastic finite element and stochastic design sensitivity are almost identical.

  10. What's Happening to American Labor Force and Productivity Measurements? Proceedings of a Conference Sponsored by the National Council on Employment Policy (Washington, D.C., June 17, 1982).

    Science.gov (United States)

    Upjohn (W.E.) Inst. for Employment Research, Kalamazoo, MI.

    This volume contains four papers presented at a 1982 conference sponsored by the National Council on Employment Policy. It begins with a brief policy statement warning that labor force and productivity data systems face deterioration because of budget cuts that have forced a decline in the quality and quantity of the published information and…

  11. Heterogeneous Deformable Modeling of Bio-Tissues and Haptic Force Rendering for Bio-Object Modeling

    Science.gov (United States)

    Lin, Shiyong; Lee, Yuan-Shin; Narayan, Roger J.

    This paper presents a novel technique for modeling soft biological tissues as well as the development of an innovative interface for bio-manufacturing and medical applications. Heterogeneous deformable models may be used to represent the actual internal structures of deformable biological objects, which possess multiple components and nonuniform material properties. Both heterogeneous deformable object modeling and accurate haptic rendering can greatly enhance the realism and fidelity of virtual reality environments. In this paper, a tri-ray node snapping algorithm is proposed to generate a volumetric heterogeneous deformable model from a set of object interface surfaces between different materials. A constrained local static integration method is presented for simulating deformation and accurate force feedback based on the material properties of a heterogeneous structure. Biological soft tissue modeling is used as an example to demonstrate the proposed techniques. By integrating the heterogeneous deformable model into a virtual environment, users can both observe different materials inside a deformable object as well as interact with it by touching the deformable object using a haptic device. The presented techniques can be used for surgical simulation, bio-product design, bio-manufacturing, and medical applications.

  12. Determination of impurities and degradation products from veterinary medicinal products by HPLC method

    Directory of Open Access Journals (Sweden)

    Elena Gabriela Oltean

    2014-06-01

    Full Text Available The organic or inorganic impurities in the veterinary medicinal product can derive from starting materials, manufacturing process, incomplete purification, inappropriate storage. The acceptable levels of impurities in pharmaceuticals are estimated by comparison with standard solutions, according to the appropriate monographs. Forced degradation studies determine the stability of the method of dosage for the active compounds and for the entire finished product under excessive accelerated degradation conditions. They also provide information on degradation pathways and selectivity of analytical methods applied. The information provided by the degradation studies on the active compound and finished pharmaceutical product should demonstrate the specificity of the analytical method regarding impurities. Forced degradation studies should demonstrate that the impurities and degradation products generated do not interfere with the active compound. The current forced degradation methods consist of acid hydrolysis, basic hydrolysis, oxidation, exposure of the medicinal product to temperature and light. HPLC methods are an integral analytical instrument for the analysis of the medicinal product. The HPLC method should be able to separate, detect and quantify various specific degradation products that can appear after manufacture or storage of the medicinal product, as well as new elements appearing after synthesis. FDA and ICH guidelines recommend the enclosure of the results, including the chromatograms specific to the forced degradation-subjected medicinal product, in the documentation for marketing authorization. Using HPLC methods in forced degradation studies on medicinal products provides relevant information on the method of determination for the formulation of the medicinal product, synthesis product, packaging methods and storage.

  13. An efficient implicit direct forcing immersed boundary method for incompressible flows

    International Nuclear Information System (INIS)

    Cai, S-G; Ouahsine, A; Smaoui, H; Favier, J; Hoarau, Y

    2015-01-01

    A novel efficient implicit direct forcing immersed boundary method for incompressible flows with complex boundaries is presented. In the previous work [1], the calculation is performed on the Cartesian grid regardless of the immersed object, with a fictitious force evaluated on the Lagrangian points to mimic the presence of the physical boundaries. However the explicit direct forcing method [1] fails to accurately impose the non-slip boundary condition on the immersed interface. In the present work, the calculation is based on the implicit treatment of the artificial force while in an effective way of system iteration. The accuracy is also improved by solving the Navier-Stokes equation with the rotational incremental pressure- correction projection method of Guermond and Shen [2]. Numerical simulations performed with the proposed method are in good agreement with those in the literature

  14. Accurate and precise determination of small quantity uranium by means of automatic potentiometric titration

    International Nuclear Information System (INIS)

    Liu Quanwei; Luo Zhongyan; Zhu Haiqiao; Wu Jizong

    2007-01-01

    For high radioactivity level of dissolved solution of spent fuel and the solution of uranium product, radioactive hazard must be considered and reduced as low as possible during accurate determination of uranium. In this work automatic potentiometric titration was applied and the sample only 10 mg of uranium contained was taken in order to reduce the harm of analyzer suffered from the radioactivity. RSD<0.06%, at the same time the result can be corrected for more reliable and accurate measurement. The determination method can effectively reduce the harm of analyzer suffered from the radioactivity, and meets the requirement of reliable accurate measurement of uranium. (authors)

  15. Quantitative study of FORC diagrams in thermally corrected Stoner– Wohlfarth nanoparticles systems

    International Nuclear Information System (INIS)

    De Biasi, E.; Curiale, J.; Zysler, R.D.

    2016-01-01

    The use of FORC diagrams is becoming increasingly popular among researchers devoted to magnetism and magnetic materials. However, a thorough interpretation of this kind of diagrams, in order to achieve quantitative information, requires an appropriate model of the studied system. For that reason most of the FORC studies are used for a qualitative analysis. In magnetic systems thermal fluctuations 'blur' the signatures of the anisotropy, volume and particle interactions distributions, therefore thermal effects in nanoparticles systems conspire against a proper interpretation and analysis of these diagrams. Motivated by this fact, we have quantitatively studied the degree of accuracy of the information extracted from FORC diagrams for the special case of single-domain thermal corrected Stoner– Wohlfarth (easy axes along the external field orientation) nanoparticles systems. In this work, the starting point is an analytical model that describes the behavior of a magnetic nanoparticles system as a function of field, anisotropy, temperature and measurement time. In order to study the quantitative degree of accuracy of our model, we built FORC diagrams for different archetypical cases of magnetic nanoparticles. Our results show that from the quantitative information obtained from the diagrams, under the hypotheses of the proposed model, is possible to recover the features of the original system with accuracy above 95%. This accuracy is improved at low temperatures and also it is possible to access to the anisotropy distribution directly from the FORC coercive field profile. Indeed, our simulations predict that the volume distribution plays a secondary role being the mean value and its deviation the only important parameters. Therefore it is possible to obtain an accurate result for the inversion and interaction fields despite the features of the volume distribution. - Highlights: • Quantify the degree of accuracy of the information obtained using the FORC diagrams.

  16. Jobs and the resource curse in the sun: The effects of oil production on female labor force participation in California counties from 1980-2010

    Science.gov (United States)

    Zavala, Gabriel

    This study aims to evaluate the relationship between oil income and the female labor force participation rate in California for the years of 1980, 1990, 2000 and 2010 using panel linear regression models. This study also aims to visualize the spatial patterns of both variables in California through Hot Spot analysis at the county level for the same years. The regression found no sign of a relationship between oil income and female labor force participation rate but did find evidence of a positive relationship between two income control variables and the female labor force participation rate. The hot spot analysis also found that female labor force participation cold spots are not spatially correlated with oil production hot spots. These findings contribute new methodologies at a finer scale to the very nuanced discussion of the resource curse in the United States.

  17. Force-controlled patch clamp of beating cardiac cells.

    Science.gov (United States)

    Ossola, Dario; Amarouch, Mohamed-Yassine; Behr, Pascal; Vörös, János; Abriel, Hugues; Zambelli, Tomaso

    2015-03-11

    From its invention in the 1970s, the patch clamp technique is the gold standard in electrophysiology research and drug screening because it is the only tool enabling accurate investigation of voltage-gated ion channels, which are responsible for action potentials. Because of its key role in drug screening, innovation efforts are being made to reduce its complexity toward more automated systems. While some of these new approaches are being adopted in pharmaceutical companies, conventional patch-clamp remains unmatched in fundamental research due to its versatility. Here, we merged the patch clamp and atomic force microscope (AFM) techniques, thus equipping the patch-clamp with the sensitive AFM force control. This was possible using the FluidFM, a force-controlled nanopipette based on microchanneled AFM cantilevers. First, the compatibility of the system with patch-clamp electronics and its ability to record the activity of voltage-gated ion channels in whole-cell configuration was demonstrated with sodium (NaV1.5) channels. Second, we showed the feasibility of simultaneous recording of membrane current and force development during contraction of isolated cardiomyocytes. Force feedback allowed for a gentle and stable contact between AFM tip and cell membrane enabling serial patch clamping and injection without apparent cell damage.

  18. Fast force actuators for LSST primary/tertiary mirror

    Science.gov (United States)

    Hileman, Edward; Warner, Michael; Wiecha, Oliver

    2010-07-01

    The very short slew times and resulting high inertial loads imposed upon the Large Synoptic Survey Telescope (LSST) create new challenges to the primary mirror support actuators. Traditionally large borosilicate mirrors are supported by pneumatic systems, which is also the case for the LSST. These force based actuators bear the weight of the mirror and provide active figure correction, but do not define the mirror position. A set of six locating actuators (hardpoints) arranged in a hexapod fashion serve to locate the mirror. The stringent dynamic requirements demand that the force actuators must be able to counteract in real time for dynamic forces on the hardpoints during slewing to prevent excessive hardpoint loads. The support actuators must also maintain the prescribed forces accurately during tracking to maintain acceptable mirror figure. To meet these requirements, candidate pneumatic cylinders incorporating force feedback control and high speed servo valves are being tested using custom instrumentation with automatic data recording. Comparative charts are produced showing details of friction, hysteresis cycles, operating bandwidth, and temperature dependency. Extremely low power actuator controllers are being developed to avoid heat dissipation in critical portions of the mirror and also to allow for increased control capabilities at the actuator level, thus improving safety, performance, and the flexibility of the support system.

  19. Observers for vehicle tyre/road forces estimation: experimental validation

    Science.gov (United States)

    Doumiati, M.; Victorino, A.; Lechner, D.; Baffet, G.; Charara, A.

    2010-11-01

    The motion of a vehicle is governed by the forces generated between the tyres and the road. Knowledge of these vehicle dynamic variables is important for vehicle control systems that aim to enhance vehicle stability and passenger safety. This study introduces a new estimation process for tyre/road forces. It presents many benefits over the existing state-of-art works, within the dynamic estimation framework. One of these major contributions consists of discussing in detail the vertical and lateral tyre forces at each tyre. The proposed method is based on the dynamic response of a vehicle instrumented with potentially integrated sensors. The estimation process is separated into two principal blocks. The role of the first block is to estimate vertical tyre forces, whereas in the second block two observers are proposed and compared for the estimation of lateral tyre/road forces. The different observers are based on a prediction/estimation Kalman filter. The performance of this concept is tested and compared with real experimental data using a laboratory car. Experimental results show that the proposed approach is a promising technique to provide accurate estimation. Thus, it can be considered as a practical low-cost solution for calculating vertical and lateral tyre/road forces.

  20. Software for Correcting the Dynamic Error of Force Transducers

    Directory of Open Access Journals (Sweden)

    Naoki Miyashita

    2014-07-01

    Full Text Available Software which corrects the dynamic error of force transducers in impact force measurements using their own output signal has been developed. The software corrects the output waveform of the transducers using the output waveform itself, estimates its uncertainty and displays the results. In the experiment, the dynamic error of three transducers of the same model are evaluated using the Levitation Mass Method (LMM, in which the impact forces applied to the transducers are accurately determined as the inertial force of the moving part of the aerostatic linear bearing. The parameters for correcting the dynamic error are determined from the results of one set of impact measurements of one transducer. Then, the validity of the obtained parameters is evaluated using the results of the other sets of measurements of all the three transducers. The uncertainties in the uncorrected force and those in the corrected force are also estimated. If manufacturers determine the correction parameters for each model using the proposed method, and provide the software with the parameters corresponding to each model, then users can obtain the waveform corrected against dynamic error and its uncertainty. The present status and the future prospects of the developed software are discussed in this paper.

  1. Challenges of Enterprise Wide AM for Air Force Sustainment

    Science.gov (United States)

    2016-12-01

    processes for AM across the Air Force enterprise. The opportunity for cost-effective readiness is important, and using a value chain approach that takes...December 2016 Naguy is chief of the Air Force Life Cycle Management Center’s Product Support Engineering Division at Wright Patterson Air Force Base in...produc- tion that can address many current Air Force supply chain challenges. It also can reduce weight through lightweight design while potentially

  2. Nuclear forces and quark degrees of freedom

    International Nuclear Information System (INIS)

    Lacombe, M.; Loiseau, B.; Vinh Mau, R.; Demetriou, P.; Pantis, C.

    1999-01-01

    Attempts to derive the NN forces from the quark and gluon degrees of freedom have been made so far in the framework of the nonrelativistic quark-cluster model (QCM). The justification of such a model is based on the remarkable success in describing the static properties of single hadrons. In the earlier calculations, the NN s-wave phase shifts obtained with the QCM show that the model produces repulsive NN forces at short distances, which constitutes a success for the model, but fails to provide the intermediate range attraction indispensable for binding nucleons in nuclei. This drawback is amended within the context of these models, at the expense of introducing by hand intermediate-range attraction through meson-exchange potentials between quarks or/and between nucleons (quark clusters). This procedure improves the results for the phase shifts and it is often concluded that the QCM provides a good description of the short-range (SR) part of the NN potential. In our opinion, the above procedure does not provide a rigorous test of the validity of the quark-cluster model. In order to get a clear-cut conclusion one should consider the QCM in association with an accurate and well founded model for the long-medium-range (LR+MR) forces. For these reason we study a NN interaction model which satisfies this requirement. In this model, the LR+MR parts are given by the Paris NN potential and the SR part by the QCM. The quality of the model is then tested by confronting directly its predictions with data on observables rather then, as it is usually done, with phase shifts. We compute all the observables for pp and np scattering at energies below the pion production threshold for different QCM versions corresponding to different qq interactions. The results are then compared with the existing world set data. Preliminary results show that the agreement with experiment is not good. (authors)

  3. Analysis of sitting forces on stationary chairs for daily activities.

    Science.gov (United States)

    Hu, Lingling; Tackett, Bob; Tor, Onder; Zhang, Jilei

    2016-04-01

    No literature related to the study of sitting forces on chairs sat on by people who weighed over 136 kg was found. The Business Institutional Furniture Manufactures Association needs force data for development of performance test standards to test chairs for users who weigh up to 181 kg. 20 participants who weighed from 136 to 186 kg completed 6 tasks on an instrumented chair in the sequence of sitting down, remaining seated and rising. Effects of sitting motion, armrest use and seat cushion thickness on vertical sitting forces and centre-of-force were investigated. Results indicated hard sitting down yielded the highest sitting force of 213% in terms of participants' body weights. Armrest use affected sitting forces of normal sitting down, but not of rising and hard sitting down. Cushion thickness affected sitting forces of normal and hard sitting down and shifting, but not of rising, static seating or stretching backward situations. Practitioner Summary: Results of the sitting force and centre-of-force data obtained for this research can help furniture manufacturers develop new product performance test standards for creating reliable engineering design and manufacturing quality and durable products to meet a niche market need.

  4. Resonant forcing of multidimensional chaotic map dynamics.

    Science.gov (United States)

    Foster, Glenn; Hübler, Alfred W; Dahmen, Karin

    2007-03-01

    We study resonances of chaotic map dynamics. We use the calculus of variations to determine the additive forcing function that induces the largest response. We find that resonant forcing functions complement the separation of nearby trajectories, in that the product of the displacement of nearby trajectories and the resonant forcing is a conserved quantity. As a consequence, the resonant function will have the same periodicity as the displacement dynamics, and if the displacement dynamics is irregular, then the resonant forcing function will be irregular as well. Furthermore, we show that resonant forcing functions of chaotic systems decrease exponentially, where the rate equals the negative of the largest Lyapunov exponent of the unperturbed system. We compare the response to optimal forcing with random forcing and find that the optimal forcing is particularly effective if the largest Lyapunov exponent is significantly larger than the other Lyapunov exponents. However, if the largest Lyapunov exponent is much larger than unity, then the optimal forcing decreases rapidly and is only as effective as a single-push forcing.

  5. Influence of permittivity on gradient force exerted on Mie spheres.

    Science.gov (United States)

    Chen, Jun; Li, Kaikai; Li, Xiao

    2018-04-01

    In optical trapping, whether a particle could be stably trapped into the focus region greatly depends on the strength of the gradient force. Individual theoretical study on gradient force exerted on a Mie particle is rare because the mathematical separation of the gradient force and the scattering force in the Mie regime is difficult. Based on the recent forces separation work by Du et al. [Sci. Rep.7, 18042 (2017)SRCEC32045-232210.1038/s41598-017-17874-1], we investigate the influence of permittivity (an important macroscopic physical quantity) on the gradient force exerted on a Mie particle by cooperating numerical calculation using fast Fourier transform and analytical analysis using multipole expansion. It is revealed that gradient forces exerted on small spheres are mainly determined by the electric dipole moment except for certain permittivity with which the real part of polarizability of the electric dipole approaches zero, and gradient forces exerted on larger spheres are complex because of the superposition of the multipole moments. The classification of permittivity corresponding to different varying tendencies of gradient forces exerted on small spheres or larger Mie particles are illustrated. Absorption of particles favors the trapping of small spheres by gradient force, while it is bad for the trapping of larger particles. Moreover, the absolute values of the maximal gradient forces exerted on larger Mie particles decline greatly versus the varied imaginary part of permittivity. This work provides elaborate investigation on the different varying tendencies of gradient forces versus permittivity, which favors more accurate and free optical trapping.

  6. Accurate Gas Phase Formation Enthalpies of Alloys and Refractories Decomposition Products

    KAUST Repository

    Minenkov, Yury

    2017-01-17

    Accurate gas phase formation enthalpies, ΔHf, of metal oxides and halides are critical for the prediction of the stability of high temperature materials used in the aerospace and nuclear industries. Unfortunately, the experimental ΔHf values of these compounds in the most used databases, such as the NIST-JANAF database, are often reported with large inaccuracy, while some other ΔHf values clearly differ from the value predicted by CCSD(T) methods. To address this point, in this work we systematically predicted the ΔHf values of a series of these compounds having a group 4, 6, or 14 metal. The ΔHf values in question were derived within a composite Feller-Dixon-Peterson (FDP) scheme based protocol that combines the DLPNO-CCSD(T) enthalpy of ad hoc designed reactions and the experimental ΔHf values of few reference complexes. In agreement with other theoretical studies, we predict the ΔHf values for TiOCl2, TiOF2, GeF2, and SnF4 to be significantly different from the values tabulated in NIST-JANAF and other sources, which suggests that the tabulated experimental values are inaccurate. Similarly, the predicted ΔHf values for HfCl2, HfBr2, HfI2, MoOF4, MoCl6, WOF4, WOCl4, GeO2, SnO2, PbBr4, PbI4, and PbO2 also clearly differ from the tabulated experimental values, again suggesting large inaccuracy in the experimental values. In the case when largely different experimental values are available, we point to the value that is in better agreement with our results. We expect the ΔHf values reported in this work to be quite accurate, and thus, they might be used in thermodynamic calculations, because the effects from core correlation, relativistic effects, and basis set incompleteness were included in the DLPNO-CCSD(T) calculations. T1 and T2 values were thoroughly monitored as indicators of the quality of the reference Hartree-Fock orbitals (T1) and potential multireference character of the systems (T2).

  7. Cryogenic forced convection refrigerating system

    International Nuclear Information System (INIS)

    Klee, D.J.

    1988-01-01

    This patent describes the method of refrigerating products by contact with a refrigerating gas which comprises introducing product into a refrigeration zone, contacting the product with the refrigerating gas for a sufficient time to refrigerate it to the appropriate extent and removing the refrigerated product. The improvement for producing the refrigeration gas from a liquid cryogen such that essentially all of the liquid cryogen is fully vaporized before contacting the product comprises: (a) introducing the liquid cryogen, selected from the group consisting of liquid air and liquid nitrogen, at elevated pressure into an ejector as the motive fluid to accelerate a portion of a warm refrigerating gas through the ejector while mixing the cryogen and gas to effect complete vaporization of the liquid cryogen and substantial cooling of the portion of the refrigerating gas resulting in a cold discharge gas which is above the liquefaction temperature of the cryogen; (b) introducing the cold discharge gas into a forced circulation pathway of refrigerating gas and producing a cold refrigerating gas which contacts and refrigerates product and is then at least partially recirculated; (c) sensing the temperature of the refrigerating gas in the forced circulation pathway and controlling the introduction of liquid cryogen with regard to the sensed temperature to maintain the temperature of the discharge gas above the liquefacton temperature of the cryogen utilized

  8. Building machine learning force fields for nanoclusters

    Science.gov (United States)

    Zeni, Claudio; Rossi, Kevin; Glielmo, Aldo; Fekete, Ádám; Gaston, Nicola; Baletto, Francesca; De Vita, Alessandro

    2018-06-01

    We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal nanoclusters by analyzing the performance of 2-body, 3-body, and many-body kernel functions on a set of 19-atom Ni cluster structures. We find that 2-body GP kernels fail to provide faithful force estimates, despite succeeding in bulk Ni systems. However, both 3- and many-body kernels predict forces within an ˜0.1 eV/Å average error even for small training datasets and achieve high accuracy even on out-of-sample, high temperature structures. While training and testing on the same structure always provide satisfactory accuracy, cross-testing on dissimilar structures leads to higher prediction errors, posing an extrapolation problem. This can be cured using heterogeneous training on databases that contain more than one structure, which results in a good trade-off between versatility and overall accuracy. Starting from a 3-body kernel trained this way, we build an efficient non-parametric 3-body force field that allows accurate prediction of structural properties at finite temperatures, following a newly developed scheme [A. Glielmo et al., Phys. Rev. B 95, 214302 (2017)]. We use this to assess the thermal stability of Ni19 nanoclusters at a fractional cost of full ab initio calculations.

  9. Force reconstruction for the slapdown test of a nuclear transportation cask

    International Nuclear Information System (INIS)

    Bateman, V.I.; Carne, T.G.; Gregory, D.L.; Attaway, S.W.; Yoshimura, H.R.

    1989-01-01

    Two force reconstruction techniques were used to evaluate the slapdown response of a 1/3 scale model solid steel, spent fuel cask dropped 30 ft onto an unyielding target. The two techniques are: the sum of weighted acceleration technique (SWAT) and the deconvolution technique (DECON). A brief description and the calibration of the techniques as applied to the cask are presented. For the slapdown test, both techniques yielded very similar resultant forces and provided more accurate definition of the force-time history for the cask than is available from conventional data reduction methods. An applied moment, a measurement previously unobtainable from conventional cask accelerometer data reduction techniques, was determined with SWAT. The angular velocity calculated with SWAT was verified with photometric measurements. 9 refs., 22 figs

  10. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    Energy Technology Data Exchange (ETDEWEB)

    Treweek, Benjamin C., E-mail: btreweek@utexas.edu; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P.O. Box 8029, Austin, TX 78713-8029 (United States)

    2015-10-28

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  11. New Distributed Multipole Methods for Accurate Electrostatics for Large-Scale Biomolecular Simultations

    Science.gov (United States)

    Sagui, Celeste

    2006-03-01

    An accurate and numerically efficient treatment of electrostatics is essential for biomolecular simulations, as this stabilizes much of the delicate 3-d structure associated with biomolecules. Currently, force fields such as AMBER and CHARMM assign ``partial charges'' to every atom in a simulation in order to model the interatomic electrostatic forces, so that the calculation of the electrostatics rapidly becomes the computational bottleneck in large-scale simulations. There are two main issues associated with the current treatment of classical electrostatics: (i) how does one eliminate the artifacts associated with the point-charges (e.g., the underdetermined nature of the current RESP fitting procedure for large, flexible molecules) used in the force fields in a physically meaningful way? (ii) how does one efficiently simulate the very costly long-range electrostatic interactions? Recently, we have dealt with both of these challenges as follows. In order to improve the description of the molecular electrostatic potentials (MEPs), a new distributed multipole analysis based on localized functions -- Wannier, Boys, and Edminston-Ruedenberg -- was introduced, which allows for a first principles calculation of the partial charges and multipoles. Through a suitable generalization of the particle mesh Ewald (PME) and multigrid method, one can treat electrostatic multipoles all the way to hexadecapoles all without prohibitive extra costs. The importance of these methods for large-scale simulations will be discussed, and examplified by simulations from polarizable DNA models.

  12. Force estimation from OCT volumes using 3D CNNs.

    Science.gov (United States)

    Gessert, Nils; Beringhoff, Jens; Otte, Christoph; Schlaefer, Alexander

    2018-05-04

    Estimating the interaction forces of instruments and tissue is of interest, particularly to provide haptic feedback during robot-assisted minimally invasive interventions. Different approaches based on external and integrated force sensors have been proposed. These are hampered by friction, sensor size, and sterilizability. We investigate a novel approach to estimate the force vector directly from optical coherence tomography image volumes. We introduce a novel Siamese 3D CNN architecture. The network takes an undeformed reference volume and a deformed sample volume as an input and outputs the three components of the force vector. We employ a deep residual architecture with bottlenecks for increased efficiency. We compare the Siamese approach to methods using difference volumes and two-dimensional projections. Data were generated using a robotic setup to obtain ground-truth force vectors for silicon tissue phantoms as well as porcine tissue. Our method achieves a mean average error of [Formula: see text] when estimating the force vector. Our novel Siamese 3D CNN architecture outperforms single-path methods that achieve a mean average error of [Formula: see text]. Moreover, the use of volume data leads to significantly higher performance compared to processing only surface information which achieves a mean average error of [Formula: see text]. Based on the tissue dataset, our methods shows good generalization in between different subjects. We propose a novel image-based force estimation method using optical coherence tomography. We illustrate that capturing the deformation of subsurface structures substantially improves force estimation. Our approach can provide accurate force estimates in surgical setups when using intraoperative optical coherence tomography.

  13. Systematic Parameterization of Lignin for the CHARMM Force Field

    Energy Technology Data Exchange (ETDEWEB)

    Vermaas, Joshua; Petridis, Loukas; Beckham, Gregg; Crowley, Michael

    2017-07-06

    Plant cell walls have three primary components, cellulose, hemicellulose, and lignin, the latter of which is a recalcitrant, aromatic heteropolymer that provides structure to plants, water and nutrient transport through plant tissues, and a highly effective defense against pathogens. Overcoming the recalcitrance of lignin is key to effective biomass deconstruction, which would in turn enable the use of biomass as a feedstock for industrial processes. Our understanding of lignin structure in the plant cell wall is hampered by the limitations of the available lignin forcefields, which currently only account for a single linkage between lignins and lack explicit parameterization for emerging lignin structures both from natural variants and engineered lignin structures. Since polymerization of lignin occurs via radical intermediates, multiple C-O and C-C linkages have been isolated , and the current force field only represents a small subset of lignin the diverse lignin structures found in plants. In order to take into account the wide range of lignin polymerization chemistries, monomers and dimer combinations of C-, H-, G-, and S-lignins as well as with hydroxycinnamic acid linkages were subjected to extensive quantum mechanical calculations to establish target data from which to build a complete molecular mechanics force field tuned specifically for diverse lignins. This was carried out in a GPU-accelerated global optimization process, whereby all molecules were parameterized simultaneously using the same internal parameter set. By parameterizing lignin specifically, we are able to more accurately represent the interactions and conformations of lignin monomers and dimers relative to a general force field. This new force field will enables computational researchers to study the effects of different linkages on the structure of lignin, as well as construct more accurate plant cell wall models based on observed statistical distributions of lignin that differ between

  14. The Impact of Model and Rainfall Forcing Errors on Characterizing Soil Moisture Uncertainty in Land Surface Modeling

    Science.gov (United States)

    Maggioni, V.; Anagnostou, E. N.; Reichle, R. H.

    2013-01-01

    The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.

  15. Predicting muscle forces of individuals with hemiparesis following stroke

    Directory of Open Access Journals (Sweden)

    Maladen Ryan

    2008-02-01

    Full Text Available Abstract Background Functional electrical stimulation (FES has been used to improve function in individuals with hemiparesis following stroke. An ideal functional electrical stimulation (FES system needs an accurate mathematical model capable of designing subject and task-specific stimulation patterns. Such a model was previously developed in our laboratory and shown to predict the isometric forces produced by the quadriceps femoris muscles of able-bodied individuals and individuals with spinal cord injury in response to a wide range of clinically relevant stimulation frequencies and patterns. The aim of this study was to test our isometric muscle force model on the quadriceps femoris, ankle dorsiflexor, and ankle plantar-flexor muscles of individuals with post-stroke hemiparesis. Methods Subjects were seated on a force dynamometer and isometric forces were measured in response to a range of stimulation frequencies (10 to 80-Hz and 3 different patterns. Subject-specific model parameter values were obtained by fitting the measured force responses from 2 stimulation trains. The model parameters thus obtained were then used to obtain predicted forces for a range of frequencies and patterns. Predicted and measured forces were compared using intra-class correlation coefficients, r2 values, and model error relative to the physiological error (variability of measured forces. Results Results showed excellent agreement between measured and predicted force-time responses (r2 >0.80, peak forces (ICCs>0.84, and force-time integrals (ICCs>0.82 for the quadriceps, dorsiflexor, and plantar-fexor muscles. The model error was within or below the +95% confidence interval of the physiological error for >88% comparisons between measured and predicted forces. Conclusion Our results show that the model has potential to be incorporated as a feed-forward controller for predicting subject-specific stimulation patterns during FES.

  16. Portfolio theory of optimal isometric force production: Variability predictions and nonequilibrium fluctuation-dissipation theorem

    NARCIS (Netherlands)

    Frank, T.D.; Patanarapeelert, K.; Beek, P.J.

    2008-01-01

    We derive a fundamental relationship between the mean and the variability of isometric force. The relationship arises from an optimal collection of active motor units such that the force variability assumes a minimum (optimal isometric force). The relationship is shown to be independent of the

  17. Incubating Isolated Mouse EDL Muscles with Creatine Improves Force Production and Twitch Kinetics in Fatigue Due to Reduction in Ionic Strength

    Science.gov (United States)

    Head, Stewart I.; Greenaway, Bronwen; Chan, Stephen

    2011-01-01

    Background Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. Methods and Results The extensor digitorum longus muscle from mice aged 12–14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i) before fatigue; (ii) immediately after a fatigue protocol; and (iii) after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. Conclusion Acute creatine application improves force production in isolated fast-twitch EDL muscle, and these improvements are particularly apparent when the muscle is fatigued. One likely mechanism for this improvement is an increase in Ca2+ sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation. PMID:21850234

  18. Incubating isolated mouse EDL muscles with creatine improves force production and twitch kinetics in fatigue due to reduction in ionic strength.

    Directory of Open Access Journals (Sweden)

    Stewart I Head

    Full Text Available BACKGROUND: Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. METHODS AND RESULTS: The extensor digitorum longus muscle from mice aged 12-14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i before fatigue; (ii immediately after a fatigue protocol; and (iii after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. CONCLUSION: Acute creatine application improves force production in isolated fast-twitch EDL muscle, and these improvements are particularly apparent when the muscle is fatigued. One likely mechanism for this improvement is an increase in Ca(2+ sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation.

  19. Enhanced Particle Swarm Optimization Algorithm: Efficient Training of ReaxFF Reactive Force Fields.

    Science.gov (United States)

    Furman, David; Carmeli, Benny; Zeiri, Yehuda; Kosloff, Ronnie

    2018-05-04

    Particle swarm optimization is a powerful metaheuristic population-based global optimization algorithm. However, when applied to non-separable objective functions its performance on multimodal landscapes is significantly degraded. Here we show that a significant improvement in the search quality and efficiency on multimodal functions can be achieved by enhancing the basic rotation-invariant particle swarm optimization algorithm with isotropic Gaussian mutation operators. The new algorithm demonstrates a superior performance across several nonlinear, multimodal benchmark functions compared to the rotation-invariant Particle Swam Optimization (PSO) algorithm and the well-established simulated annealing and sequential one-parameter parabolic interpolation methods. A search for the optimal set of parameters for the dispersion interaction model in ReaxFF-lg reactive force field is carried out with respect to accurate DFT-TS calculations. The resulting optimized force field accurately describes the equations of state of several high-energy molecular crystals where such interactions are of crucial importance. The improved algorithm also presents a better performance compared to a Genetic Algorithm optimization method in the optimization of a ReaxFF-lg correction model parameters. The computational framework is implemented in a standalone C++ code that allows a straightforward development of ReaxFF reactive force fields.

  20. One-Channel Surface Electromyography Decomposition for Muscle Force Estimation

    Directory of Open Access Journals (Sweden)

    Wentao Sun

    2018-05-01

    Full Text Available Estimating muscle force by surface electromyography (sEMG is a non-invasive and flexible way to diagnose biomechanical diseases and control assistive devices such as prosthetic hands. To estimate muscle force using sEMG, a supervised method is commonly adopted. This requires simultaneous recording of sEMG signals and muscle force measured by additional devices to tune the variables involved. However, recording the muscle force of the lost limb of an amputee is challenging, and the supervised method has limitations in this regard. Although the unsupervised method does not require muscle force recording, it suffers from low accuracy due to a lack of reference data. To achieve accurate and easy estimation of muscle force by the unsupervised method, we propose a decomposition of one-channel sEMG signals into constituent motor unit action potentials (MUAPs in two steps: (1 learning an orthogonal basis of sEMG signals through reconstruction independent component analysis; (2 extracting spike-like MUAPs from the basis vectors. Nine healthy subjects were recruited to evaluate the accuracy of the proposed approach in estimating muscle force of the biceps brachii. The results demonstrated that the proposed approach based on decomposed MUAPs explains more than 80% of the muscle force variability recorded at an arbitrary force level, while the conventional amplitude-based approach explains only 62.3% of this variability. With the proposed approach, we were also able to achieve grip force control of a prosthetic hand, which is one of the most important clinical applications of the unsupervised method. Experiments on two trans-radial amputees indicated that the proposed approach improves the performance of the prosthetic hand in grasping everyday objects.

  1. Fluid flow in gas condensate reservoirs. The interplay of forces and their relative strengths

    Energy Technology Data Exchange (ETDEWEB)

    Ursin, Jann-Rune [Stavanger University College, Department of Petroleum Engineering, PO Box 8002, Stavanger, 4068 (Norway)

    2004-02-01

    Natural production from gas condensate reservoirs is characterized by gas condensation and liquid dropout in the reservoir, first in the near wellbore volume, then as a cylindrical shaped region, dynamically developing into the reservoir volume. The effects of liquid condensation are reduced productivity and loss of production. Successful forecast of well productivity and reservoir production depends on detailed understanding of the effect of various forces acting on fluid flow in time and space. The production form gas condensate reservoirs is thus indirectly related to the interplay of fundamental forces, such as the viscosity, the capillary, the gravitational and the inertial force and their relative strengths, demonstrated by various dimensionless numbers. Dimensionless numbers are defined and calculated for all pressure and space coordinates in a test reservoir. Various regions are identified where certain forces are more important than others. Based on reservoir pressure development, liquid condensation and the numerical representation of dimensionless numbers, a conceptual understanding of a varying reservoir permeability has been reached.The material balance, the reservoir fluid flow and the wellbore flow calculations are performed on a cylindrical reservoir model. The ratios between fundamental forces are calculated and dimensionless numbers defined. The interplay of forces, demonstrated by these numbers, are calculated as function of radial dimension and reservoir pressure.

  2. Propellant Slosh Force and Mass Measurement

    Directory of Open Access Journals (Sweden)

    Andrew Hunt

    2018-01-01

    Full Text Available We have used electrical capacitance tomography (ECT to instrument a demonstration tank containing kerosene and have successfully demonstrated that ECT can, in real time, (i measure propellant mass to better than 1% of total in a range of gravity fields, (ii image propellant distribution, and (iii accurately track propellant centre of mass (CoM. We have shown that the ability to track CoM enables the determination of slosh forces, and we argue that this will result in disruptive changes in a propellant tank design and use in a spacecraft. Ground testing together with real-time slosh force data will allow an improved tank design to minimize and mitigate slosh forces, while at the same time keeping the tank mass to a minimum. Fully instrumented Smart Tanks will be able to provide force vector inputs to a spacecraft inertial navigation system; this in turn will (i eliminate or reduce navigational errors, (ii reduce wait time for uncertain slosh settling, since actual slosh forces will be known, and (iii simplify slosh control hardware, hence reducing overall mass. ECT may be well suited to space borne liquid measurement applications. Measurements are independent of and unaffected by orientation or levels of g. The electronics and sensor arrays can be low in mass, and critically, the technique does not dissipate heat into the propellant, which makes it intrinsically safe and suitable for cryogenic liquids. Because of the limitations of operating in earth-bound gravity, it has not been possible to check the exact numerical accuracy of the slosh force acting on the vessel. We are therefore in the process of undertaking a further project to (i build a prototype integrated “Smart Tank for Space”, (ii undertake slosh tests in zero or microgravity, (iii develop the system for commercial ground testing, and (iv qualify ECT for use in space.

  3. Designing an experiment to measure cellular interaction forces

    Science.gov (United States)

    McAlinden, Niall; Glass, David G.; Millington, Owain R.; Wright, Amanda J.

    2013-09-01

    Optical trapping is a powerful tool in Life Science research and is becoming common place in many microscopy laboratories and facilities. The force applied by the laser beam on the trapped object can be accurately determined allowing any external forces acting on the trapped object to be deduced. We aim to design a series of experiments that use an optical trap to measure and quantify the interaction force between immune cells. In order to cause minimum perturbation to the sample we plan to directly trap T cells and remove the need to introduce exogenous beads to the sample. This poses a series of challenges and raises questions that need to be answered in order to design a set of effect end-point experiments. A typical cell is large compared to the beads normally trapped and highly non-uniform - can we reliably trap such objects and prevent them from rolling and re-orientating? In this paper we show how a spatial light modulator can produce a triple-spot trap, as opposed to a single-spot trap, giving complete control over the object's orientation and preventing it from rolling due, for example, to Brownian motion. To use an optical trap as a force transducer to measure an external force you must first have a reliably calibrated system. The optical trapping force is typically measured using either the theory of equipartition and observing the Brownian motion of the trapped object or using an escape force method, e.g. the viscous drag force method. In this paper we examine the relationship between force and displacement, as well as measuring the maximum displacement from equilibrium position before an object falls out of the trap, hence determining the conditions under which the different calibration methods should be applied.

  4. Forest farming of shiitake mushrooms: aspects of forced fruiting.

    Science.gov (United States)

    Bruhn, J N; Mihail, J D

    2009-12-01

    Three outdoor shiitake (Lentinula edodes (Berk.) Pegler) cultivation experiments were established during 2002-2004 at the University of Missouri Horticulture and Agroforestry Research Center, in central Missouri. Over three complete years following a year of spawn run, we examined shiitake mushroom production in response to the temperature of forcing water, inoculum strain, substrate host species and physical orientation of the log during fruiting. Forcing compressed the period of most productive fruiting to the two years following spawn run. Further, chilled forcing water, 10-12 degrees C, significantly enhanced yield, particularly when ambient air temperatures were favorable for the selected mushroom strain. The temperature of water available for force-fruiting shiitake logs depends on geographic location (latitude) and source (i.e., farm pond vs. spring or well water). Prospective growers should be aware of this effect when designing their management and business plans.

  5. Forewings match the formation of leading-edge vortices and dominate aerodynamic force production in revolving insect wings.

    Science.gov (United States)

    Chen, Di; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Liu, Hao

    2017-10-20

    In many flying insects, forewings and hindwings are coupled mechanically to achieve flapping flight synchronously while being driven by action of the forewings. How the forewings and hindwings as well as their morphologies contribute to aerodynamic force production and flight control remains unclear yet. Here we demonstrate that the forewings can produce most of the aerodynamic forces even with the hindwings removed through a computational fluid dynamic study of three revolving insect wing models, which are identical to the wing morphologies and Reynolds numbers of hawkmoth (Manduca sexta), bumblebee (Bombus ignitus) and fruitfly (Drosophila melanogaster). We find that the forewing morphologies match the formation of leading-edge vortices (LEV) and are responsible for generating sufficient lift forces at the mean angles of attack and the Reynolds numbers where the three representative insects fly. The LEV formation and pressure loading keep almost unchanged with the hindwing removed, and even lead to some improvement in power factor and aerodynamic efficiency. Moreover, our results indicate that the size and strength of the LEVs can be well quantified with introduction of a conical LEV angle, which varies remarkably with angles of attack and Reynolds numbers but within the forewing region while showing less sensitivity to the wing morphologies. This implies that the forewing morphology very likely plays a dominant role in achieving low-Reynolds number aerodynamic performance in natural flyers as well as in revolving and/or flapping micro air vehicles. © 2017 IOP Publishing Ltd.

  6. Forces, surface finish and friction characteristics in surface engineered single- and multiple-point cutting edges

    International Nuclear Information System (INIS)

    Sarwar, M.; Gillibrand, D.; Bradbury, S.R.

    1991-01-01

    Advanced surface engineering technologies (physical and chemical vapour deposition) have been successfully applied to high speed steel and carbide cutting tools, and the potential benefits in terms of both performance and longer tool life, are now well established. Although major achievements have been reported by many manufacturers and users, there are a number of applications where surface engineering has been unsuccessful. Considerable attention has been given to the film characteristics and the variables associated with its properties; however, very little attention has been directed towards the benefits to the tool user. In order to apply surface engineering technology effectively to cutting tools, the coater needs to have accurate information relating to cutting conditions, i.e. cutting forces, stress and temperature etc. The present paper describes results obtained with single- and multiple-point cutting tools with examples of failures, which should help the surface coater to appreciate the significance of the cutting conditions, and in particular the magnitude of the forces and stresses present during cutting processes. These results will assist the development of a systems approach to cutting tool technology and surface engineering with a view to developing an improved product. (orig.)

  7. Importance of accurate measurements in nutrition research: dietary flavonoids as a case study

    Science.gov (United States)

    Accurate measurements of the secondary metabolites in natural products and plant foods are critical to establishing diet/health relationships. There are as many as 50,000 secondary metabolites which may influence human health. Their structural and chemical diversity present a challenge to analytic...

  8. Estimation of excitation forces for wave energy converters control using pressure measurements

    Science.gov (United States)

    Abdelkhalik, O.; Zou, S.; Robinett, R.; Bacelli, G.; Wilson, D.

    2017-08-01

    Most control algorithms of wave energy converters require prediction of wave elevation or excitation force for a short future horizon, to compute the control in an optimal sense. This paper presents an approach that requires the estimation of the excitation force and its derivatives at present time with no need for prediction. An extended Kalman filter is implemented to estimate the excitation force. The measurements in this approach are selected to be the pressures at discrete points on the buoy surface, in addition to the buoy heave position. The pressures on the buoy surface are more directly related to the excitation force on the buoy as opposed to wave elevation in front of the buoy. These pressure measurements are also more accurate and easier to obtain. A singular arc control is implemented to compute the steady-state control using the estimated excitation force. The estimated excitation force is expressed in the Laplace domain and substituted in the control, before the latter is transformed to the time domain. Numerical simulations are presented for a Bretschneider wave case study.

  9. Optical properties of gold films and the Casimir force

    International Nuclear Information System (INIS)

    Svetovoy, V. B.; Zwol, P. J. van; Palasantzas, G.; De Hosson, J. Th. M.

    2008-01-01

    Precise optical properties of metals are very important for accurate prediction of the Casimir force acting between two metallic plates. Therefore we measured ellipsometrically the optical responses of Au films in a wide range of wavelengths from 0.14 to 33 μm. The films at various thicknesses were deposited at different conditions on silicon or mica substrates. Considerable variation of the frequency dependent dielectric function from sample to sample was found. Detailed analysis of the dielectric functions was performed to check the Kramers-Kronig consistency, and extract the Drude parameters of the films. It was found that the plasma frequency varies in the range from 6.8 to 8.4 eV. It is suggested that this variation is related with the film density. X-ray reflectivity measurements support qualitatively this conclusion. The Casimir force is evaluated for the dielectric functions corresponding to our samples, and for that typically used in the precise prediction of the force. The force for our films was found to be 5%-14% smaller at a distance of 100 nm between the plates. Noise in the optical data is responsible for the force variation within 1%. It is concluded that prediction of the Casimir force between metals with a precision better than 10% must be based on the material optical response measured from visible to mid-infrared range

  10. Imaging surface nanobubbles at graphite–water interfaces with different atomic force microscopy modes

    International Nuclear Information System (INIS)

    Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh

    2013-01-01

    We have imaged nanobubbles on highly ordered pyrolytic graphite (HOPG) surfaces in pure water with different atomic force microscopy (AFM) modes, including the frequency-modulation, the tapping, and the PeakForce techniques. We have compared the performance of these modes in obtaining the surface profiles of nanobubbles. The frequency-modulation mode yields a larger height value than the other two modes and can provide more accurate measurement of the surface profiles of nanobubbles. Imaging with PeakForce mode shows that a nanobubble appears smaller and shorter with increasing peak force and disappears above a certain peak force, but the size returns to the original value when the peak force is reduced. This indicates that imaging with high peak forces does not cause gas removal from the nanobubbles. Based on the presented findings and previous AFM observations, the existing models for nanobubbles are reviewed and discussed. The model of gas aggregate inside nanobubbles provides a better explanation for the puzzles of the high stability and the contact angle of surface nanobubbles. (paper)

  11. Timing at peak force may be the hidden target controlled in continuation and synchronization tapping.

    Science.gov (United States)

    Du, Yue; Clark, Jane E; Whitall, Jill

    2017-05-01

    Timing control, such as producing movements at a given rate or synchronizing movements to an external event, has been studied through a finger-tapping task where timing is measured at the initial contact between finger and tapping surface or the point when a key is pressed. However, the point of peak force is after the time registered at the tapping surface and thus is a less obvious but still an important event during finger tapping. Here, we compared the time at initial contact with the time at peak force as participants tapped their finger on a force sensor at a given rate after the metronome was turned off (continuation task) or in synchrony with the metronome (sensorimotor synchronization task). We found that, in the continuation task, timing was comparably accurate between initial contact and peak force. These two timing events also exhibited similar trial-by-trial statistical dependence (i.e., lag-one autocorrelation). However, the central clock variability was lower at the peak force than the initial contact. In the synchronization task, timing control at peak force appeared to be less variable and more accurate than that at initial contact. In addition to lower central clock variability, the mean SE magnitude at peak force (SEP) was around zero while SE at initial contact (SEC) was negative. Although SEC and SEP demonstrated the same trial-by-trial statistical dependence, we found that participants adjusted the time of tapping to correct SEP, but not SEC, toward zero. These results suggest that timing at peak force is a meaningful target of timing control, particularly in synchronization tapping. This result may explain the fact that SE at initial contact is typically negative as widely observed in the preexisting literature.

  12. Approximate Method of Calculating Forces on Rudder During Ship Sailing on a Shipping Route

    Directory of Open Access Journals (Sweden)

    K. Zelazny

    2014-09-01

    Full Text Available Service speed of a ship in real weather conditions is a basic design parameter. Forecasting of this speed at preliminary design stage is made difficult by the lack of simple but at the same accurate models of forces acting upon a ship sailing on a preset shipping route. The article presents a model for calculating forces and moment on plane rudder, useful for forecasting of ship service speed at preliminary stages of ship design.

  13. Detent Force Calculations of a PMLSM Using the Finite Element Method

    Science.gov (United States)

    Remy, Ghislain; Krebs, Guillaume; Tounzi, Abdelmounaïm; Barre, Pierre-Jean

    This paper presents a Finite Element Analysis of a Permanent Magnet Linear Synchronous Motor. The aim is to obtain an accurate estimation of the detent force without oversize computation. First, some usual techniques dedicated to the calculation of the forces in electromagnetic devices, such as the Virtual Work Method and the Maxwell Stress Tensor, are described. Some keypoints of the meshing method using a commercial FEM software are presented and used in order to improve the thrust computations. After that, the topology and features of the studied motor are described to highlight specific problems of the modelling process. In the 2D FEM case, new meshing techniques are proposed, according to the force calculations. The FEM results obtained from the different methods are analysed and compared with the experimental ones. Second, using FEM results, a study of the independence of the cogging and the end-effect forces is presented. Particularly, an original approach is suggested in order to compute the cogging force only, using the same mesh for each motion step. Then, the PMLSM geometry is adapted to calculate the end-effect forces only.

  14. 48 CFR 622.1503 - Procedures for acquiring end products on the List of Products Requiring Contractor Certification...

    Science.gov (United States)

    2010-10-01

    ... end products on the List of Products Requiring Contractor Certification as to Forced or Indentured... List of Products Requiring Contractor Certification as to Forced or Indentured Child Labor. (e) The... manufacture an end product furnished pursuant to a contract awarded subject to the certification required in...

  15. Production of Accurate Skeletal Models of Domestic Animals Using Three-Dimensional Scanning and Printing Technology

    Science.gov (United States)

    Li, Fangzheng; Liu, Chunying; Song, Xuexiong; Huan, Yanjun; Gao, Shansong; Jiang, Zhongling

    2018-01-01

    Access to adequate anatomical specimens can be an important aspect in learning the anatomy of domestic animals. In this study, the authors utilized a structured light scanner and fused deposition modeling (FDM) printer to produce highly accurate animal skeletal models. First, various components of the bovine skeleton, including the femur, the…

  16. VEDA: a web-based virtual environment for dynamic atomic force microscopy.

    Science.gov (United States)

    Melcher, John; Hu, Shuiqing; Raman, Arvind

    2008-06-01

    We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.

  17. Continuous micro-feeding of fine cohesive powders actuated by pulse inertia force and acoustic radiation force in ultrasonic standing wave field.

    Science.gov (United States)

    Wang, Hongcheng; Wu, Liqun; Zhang, Ting; Chen, Rangrang; Zhang, Linan

    2018-07-10

    Stable continuous micro-feeding of fine cohesive powders has recently gained importance in many fields. However, it remains a great challenge in practice because of the powder aggregate caused by interparticle cohesive forces in small capillaries. This paper describes a novel method of feeding fine cohesive powder actuated by a pulse inertia force and acoustic radiation force simultaneously in an ultrasonic standing wave field using a tapered glass nozzle. Nozzles with different outlet diameters are fabricated using glass via a heating process. A pulse inertia force is excited to drive powder movement to the outlet section of the nozzle in a consolidated columnar rod mode. An acoustic radiation force is generated to suspend the particles and make the rod break into large quantities of small agglomerates which impact each other randomly. So the aggregation phenomenon in the fluidization of cohesive powders can be eliminated. The suspended powder is discharged continuously from the nozzle orifice owing to the self-gravities and collisions between the inner particles. The micro-feeding rates can be controlled accurately and the minimum values for RespitoseSV003 and Granulac230 are 0.4 mg/s and 0.5 mg/s respectively. The relative standard deviations of all data points are below 0.12, which is considerably smaller than those of existing vibration feeders with small capillaries. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Logarithmic superposition of force response with rapid length changes in relaxed porcine airway smooth muscle.

    Science.gov (United States)

    Ijpma, G; Al-Jumaily, A M; Cairns, S P; Sieck, G C

    2010-12-01

    We present a systematic quantitative analysis of power-law force relaxation and investigate logarithmic superposition of force response in relaxed porcine airway smooth muscle (ASM) strips in vitro. The term logarithmic superposition describes linear superposition on a logarithmic scale, which is equivalent to multiplication on a linear scale. Additionally, we examine whether the dynamic response of contracted and relaxed muscles is dominated by cross-bridge cycling or passive dynamics. The study shows the following main findings. For relaxed ASM, the force response to length steps of varying amplitude (0.25-4% of reference length, both lengthening and shortening) are well-fitted with power-law functions over several decades of time (10⁻² to 10³ s), and the force response after consecutive length changes is more accurately fitted assuming logarithmic superposition rather than linear superposition. Furthermore, for sinusoidal length oscillations in contracted and relaxed muscles, increasing the oscillation amplitude induces greater hysteresivity and asymmetry of force-length relationships, whereas increasing the frequency dampens hysteresivity but increases asymmetry. We conclude that logarithmic superposition is an important feature of relaxed ASM, which may facilitate a more accurate prediction of force responses in the continuous dynamic environment of the respiratory system. In addition, the single power-function response to length changes shows that the dynamics of cross-bridge cycling can be ignored in relaxed muscle. The similarity in response between relaxed and contracted states implies that the investigated passive dynamics play an important role in both states and should be taken into account.

  19. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation

    Science.gov (United States)

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-01

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ˜ cs-0.5 as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  20. Relationships between sensory evaluations of beef tenderness, shear force measurements and consumer characteristics.

    Science.gov (United States)

    Van Wezemael, Lynn; De Smet, Stefaan; Ueland, Øydis; Verbeke, Wim

    2014-07-01

    The supply of tender beef is an important challenge for the beef industry. Knowledge about the profile of consumers who are more optimistic or more accurate in their tenderness evaluations is important for product development and beef marketing purposes. Central location tests of beef steaks were performed in Norway and Belgium (n=218). Instrumental and sensorial tenderness of three muscles from Belgian Blue and Norwegian Red cattle was reported. Consumers who are optimistically evaluating tenderness were found to be more often male, less food neophobic, more positive towards beef healthiness, and showed fewer concerns about beef safety. No clear profile emerged for consumers who assessed tenderness similar to shear force measurements, which suggests that tenderness is mainly evaluated subjectively. The results imply a window of opportunities in tenderness improvements, and allow targeting a market segment which is less critical towards beef tenderness. © 2013 Elsevier Ltd. All rights reserved.

  1. Comparison of Forced-Alignment Speech Recognition and Humans for Generating Reference VAD

    DEFF Research Database (Denmark)

    Kraljevski, Ivan; Tan, Zheng-Hua; Paola Bissiri, Maria

    2015-01-01

    This present paper aims to answer the question whether forced-alignment speech recognition can be used as an alternative to humans in generating reference Voice Activity Detection (VAD) transcriptions. An investigation of the level of agreement between automatic/manual VAD transcriptions and the ......This present paper aims to answer the question whether forced-alignment speech recognition can be used as an alternative to humans in generating reference Voice Activity Detection (VAD) transcriptions. An investigation of the level of agreement between automatic/manual VAD transcriptions...... and the reference ones produced by a human expert was carried out. Thereafter, statistical analysis was employed on the automatically produced and the collected manual transcriptions. Experimental results confirmed that forced-alignment speech recognition can provide accurate and consistent VAD labels....

  2. POST-LAUNCHING MONITORING ACTIVITIES FOR NEW TRANSACTIONAL BANKING PRODUCTS ADDRESSED TO SMES (CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    Giuca Simona-Mihaela

    2014-07-01

    Full Text Available The current paper has the aim to provide guidelines for post-launching monitoring activities and steps related to new transactional banking products addressed to SMEs. While the pre-launching activities have the purpose of accurately defining the objectives, assumptions and estimations, the purpose of the post-launching plan is to identify: if the final objectives of a product launching have been met, on one hand, to analyze results in the sense of identifying an efficient action plan in order to overcome the lack of results (if case, but most important, to identify opportunities for optimizing the products and for communicating properly the value proposition. This paper also presents schemes for monitoring the results from a business case and for motivating the sales force, as an essential step in increasing the sales. Therefore, alternatives of incentive campaigns are presented, as sustainable campaigns with to purpose to achieve an expected success rate. As an additional support guideline for the sales force, some scenarios and post-sales actions are presented, together with an example of portfolio analysis considering potential per client. Considering the methods and details presented in the current paper, one can identify the importance and find out how to monitor the results after launching a new transactional product addressed to SMEs, can understand and design an incentive scheme and also define actions to be taken in order to increase revenues from a newly launched transactional product.

  3. Neural control of muscle force: indications from a simulation model

    Science.gov (United States)

    Luca, Carlo J. De

    2013-01-01

    We developed a model to investigate the influence of the muscle force twitch on the simulated firing behavior of motoneurons and muscle force production during voluntary isometric contractions. The input consists of an excitatory signal common to all the motor units in the pool of a muscle, consistent with the “common drive” property. Motor units respond with a hierarchically structured firing behavior wherein at any time and force, firing rates are inversely proportional to recruitment threshold, as described by the “onion skin” property. Time- and force-dependent changes in muscle force production are introduced by varying the motor unit force twitches as a function of time or by varying the number of active motor units. A force feedback adjusts the input excitation, maintaining the simulated force at a target level. The simulations replicate motor unit behavior characteristics similar to those reported in previous empirical studies of sustained contractions: 1) the initial decrease and subsequent increase of firing rates, 2) the derecruitment and recruitment of motor units throughout sustained contractions, and 3) the continual increase in the force fluctuation caused by the progressive recruitment of larger motor units. The model cautions the use of motor unit behavior at recruitment and derecruitment without consideration of changes in the muscle force generation capacity. It describes an alternative mechanism for the reserve capacity of motor units to generate extraordinary force. It supports the hypothesis that the control of motoneurons remains invariant during force-varying and sustained isometric contractions. PMID:23236008

  4. CAST: a new program package for the accurate characterization of large and flexible molecular systems.

    Science.gov (United States)

    Grebner, Christoph; Becker, Johannes; Weber, Daniel; Bellinger, Daniel; Tafipolski, Maxim; Brückner, Charlotte; Engels, Bernd

    2014-09-15

    The presented program package, Conformational Analysis and Search Tool (CAST) allows the accurate treatment of large and flexible (macro) molecular systems. For the determination of thermally accessible minima CAST offers the newly developed TabuSearch algorithm, but algorithms such as Monte Carlo (MC), MC with minimization, and molecular dynamics are implemented as well. For the determination of reaction paths, CAST provides the PathOpt, the Nudge Elastic band, and the umbrella sampling approach. Access to free energies is possible through the free energy perturbation approach. Along with a number of standard force fields, a newly developed symmetry-adapted perturbation theory-based force field is included. Semiempirical computations are possible through DFTB+ and MOPAC interfaces. For calculations based on density functional theory, a Message Passing Interface (MPI) interface to the Graphics Processing Unit (GPU)-accelerated TeraChem program is available. The program is available on request. Copyright © 2014 Wiley Periodicals, Inc.

  5. Quantum mechanical methods for calculation of force constants

    International Nuclear Information System (INIS)

    Mullally, D.J.

    1985-01-01

    The focus of this thesis is upon the calculation of force constants; i.e., the second derivatives of the potential energy with respect to nuclear displacements. This information is useful for the calculation of molecular vibrational modes and frequencies. In addition, it may be used for the location and characterization of equilibrium and transition state geometries. The methods presented may also be applied to the calculation of electric polarizabilities and infrared and Raman vibrational intensities. Two approaches to this problem are studied and evaluated: finite difference methods and analytical techniques. The most suitable method depends on the type and level of theory used to calculate the electronic wave function. Double point displacement finite differencing is often required for accurate calculation of the force constant matrix. These calculations require energy and gradient calculations on both sides of the geometry of interest. In order to speed up these calculations, a novel method is presented that uses geometry dependent information about the wavefunction. A detailed derivation for the analytical evaluation of force constants with a complete active space multiconfiguration self consistent field wave function is presented

  6. Identification and Modeling of Electrohydraulic Force Control of the Material Test System (MTS)

    International Nuclear Information System (INIS)

    Ruan, J; Pei, X; Zhu, F M

    2006-01-01

    In the heavy-duty material test device, an electrohydraulic force servo system is usually utilized to load the tested samples. The signal from the pressure sensor is compared with the instruction and the difference between them is then fed to a digital servo valve to form a closed loop control to the target force. The performance of the electrohydraulic force servo system is not only closely related to how accurate to feed the flow rate to the hydraulic cylinder, but also the stiffness of the system which is dominated by the compressibility of oil. Thus the clarification of the characteristic parameters becomes the key of the solution to optimal force control. To identify the electrohydraulic force servo system various step signals are input to excite the dynamic response of the system. From the relationship between the step magnitude and the force response, the system model and the key control parameters are determined. The electrohydraulic force servo system is identified as a first order system with time constant varied with the pressure. Based on the identification of the system optimal control parameters are finally obtained and force rate error is reduced to 0.2% from original 3%

  7. Accurate Quantum Wave Packet Study of the Deep Well D+ + HD Reaction: Product Ro-vibrational State-Resolved Integral and Differential Cross Sections.

    Science.gov (United States)

    He, Haixiang; Zhu, Weimin; Su, Wenli; Dong, Lihui; Li, Bin

    2018-03-08

    The H + + H 2 reaction and its isotopic variants as the simplest triatomic ion-molecule reactive system have been attracting much interests, however there are few studies on the titled reaction at state-to-state level until recent years. In this work, accurate state-to-state quantum dynamics studies of the titled reaction have been carried out by a reactant Jacobi coordinate-based time-dependent wave packet approach on diabatic potential energy surfaces constructed by Kamisaka et al. Product ro-vibrational state-resolved information has been calculated for collision energies up to 0.2 eV with maximal total angular momentum J = 40. The necessity of including all K-component for accounting the Coriolis coupling for the reaction has been illuminated. Competitions between the two product channels, (D + + HD' → D' + + HD and D + + HD' → H + + DD') were investigated. Total integral cross sections suggest that resonances enhance the reactivity of channel D + + HD'→ H + + DD', however, resonances depress the reactivity of the another channel D + + HD' → D' + + HD. The structures of the differential cross sections are complicated and depend strongly on collision energies of the two channels and also on the product rotational states. All of the product ro-vibrational state-resolved differential cross sections for this reaction do not exhibit rigorous backward-forward symmetry which may indicate that the lifetimes of the intermediate resonance complexes should not be that long. The dynamical observables of this deuterated isotopic reaction are quite different from the reaction of H + + H 2 → H 2 + H + reported previously.

  8. An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery.

    Science.gov (United States)

    Liu, H; Puangmali, P; Zbyszewski, D; Elhage, O; Dasgupta, P; Dai, J S; Seneviratne, L; Althoefer, K

    2010-01-01

    This paper presents a novel wheeled probe for the purpose of aiding a surgeon in soft tissue abnormality identification during minimally invasive surgery (MIS), compensating the loss of haptic feedback commonly associated with MIS. Initially, a prototype for validating the concept was developed. The wheeled probe consists of an indentation depth sensor employing an optic fibre sensing scheme and a force/torque sensor. The two sensors work in unison, allowing the wheeled probe to measure the tool-tissue interaction force and the rolling indentation depth concurrently. The indentation depth sensor was developed and initially tested on a homogenous silicone phantom representing a good model for a soft tissue organ; the results show that the sensor can accurately measure the indentation depths occurring while performing rolling indentation, and has good repeatability. To validate the ability of the wheeled probe to identify abnormalities located in the tissue, the device was tested on a silicone phantom containing embedded hard nodules. The experimental data demonstrate that recording the tissue reaction force as well as rolling indentation depth signals during rolling indentation, the wheeled probe can rapidly identify the distribution of tissue stiffness and cause the embedded hard nodules to be accurately located.

  9. Integrated pressure-force-kinematics measuring system for the characterisation of plantar foot loading during locomotion.

    Science.gov (United States)

    Giacomozzi, C; Macellari, V; Leardini, A; Benedetti, M G

    2000-03-01

    Plantar pressure, ground reaction force and body-segment kinematics measurements are largely used in gait analysis to characterise normal and abnormal function of the human foot. The combination of all these data together provides a more exhaustive, detailed and accurate view of foot loading during activities than traditional measurement systems alone do. A prototype system is presented that integrates a pressure platform, a force platform and a 3D anatomical tracking system to acquire combined information about foot function and loading. A stereophotogrammetric system and an anatomically based protocol for foot segment kinematics is included in a previously devised piezo-dynamometric system that combines pressure and force measurements. Experimental validation tests are carried out to check for both spatial and time synchronisation. Misalignment of the three systems is found to be within 6.0, 5.0 and 1.5 mm for the stereophotogrammetric system, force platform and pressure platform, respectively. The combination of position and pressure data allows for a more accurate selection of plantar foot subareas on the footprint. Measurements are also taken on five healthy volunteers during level walking to verify the feasibility of the overall experimental protocol. Four main subareas are defined and identified, and the relevant vertical and shear force data are computed. The integrated system is effective when there is a need for loading measurements in specific plantar foot subareas. This is attractive both in clinical assessment and in biomechanics research.

  10. Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning

    Science.gov (United States)

    García Plaza, E.; Núñez López, P. J.

    2018-01-01

    On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.

  11. Simple Criteria to Determine the Set of Key Parameters of the DRPE Method by a Brute-force Attack

    Science.gov (United States)

    Nalegaev, S. S.; Petrov, N. V.

    Known techniques of breaking Double Random Phase Encoding (DRPE), which bypass the resource-intensive brute-force method, require at least two conditions: the attacker knows the encryption algorithm; there is an access to the pairs of source and encoded images. Our numerical results show that for the accurate recovery by numerical brute-force attack, someone needs only some a priori information about the source images, which can be quite general. From the results of our numerical experiments with optical data encryption DRPE with digital holography, we have proposed four simple criteria for guaranteed and accurate data recovery. These criteria can be applied, if the grayscale, binary (including QR-codes) or color images are used as a source.

  12. A stiffly accurate integrator for elastodynamic problems

    KAUST Repository

    Michels, Dominik L.

    2017-07-21

    We present a new integration algorithm for the accurate and efficient solution of stiff elastodynamic problems governed by the second-order ordinary differential equations of structural mechanics. Current methods have the shortcoming that their performance is highly dependent on the numerical stiffness of the underlying system that often leads to unrealistic behavior or a significant loss of efficiency. To overcome these limitations, we present a new integration method which is based on a mathematical reformulation of the underlying differential equations, an exponential treatment of the full nonlinear forcing operator as opposed to more standard partially implicit or exponential approaches, and the utilization of the concept of stiff accuracy which ensures that the efficiency of the simulations is significantly less sensitive to increased stiffness. As a consequence, we are able to tremendously accelerate the simulation of stiff systems compared to established integrators and significantly increase the overall accuracy. The advantageous behavior of this approach is demonstrated on a broad spectrum of complex examples like deformable bodies, textiles, bristles, and human hair. Our easily parallelizable integrator enables more complex and realistic models to be explored in visual computing without compromising efficiency.

  13. Noninvasive determination of optical lever sensitivity in atomic force microscopy

    International Nuclear Information System (INIS)

    Higgins, M.J.; Proksch, R.; Sader, J.E.; Polcik, M.; Mc Endoo, S.; Cleveland, J.P.; Jarvis, S.P.

    2006-01-01

    Atomic force microscopes typically require knowledge of the cantilever spring constant and optical lever sensitivity in order to accurately determine the force from the cantilever deflection. In this study, we investigate a technique to calibrate the optical lever sensitivity of rectangular cantilevers that does not require contact to be made with a surface. This noncontact approach utilizes the method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] to calibrate the spring constant of the cantilever in combination with the equipartition theorem [J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993)] to determine the optical lever sensitivity. A comparison is presented between sensitivity values obtained from conventional static mode force curves and those derived using this noncontact approach for a range of different cantilevers in air and liquid. These measurements indicate that the method offers a quick, alternative approach for the calibration of the optical lever sensitivity

  14. Noninvasive determination of optical lever sensitivity in atomic force microscopy

    Science.gov (United States)

    Higgins, M. J.; Proksch, R.; Sader, J. E.; Polcik, M.; Mc Endoo, S.; Cleveland, J. P.; Jarvis, S. P.

    2006-01-01

    Atomic force microscopes typically require knowledge of the cantilever spring constant and optical lever sensitivity in order to accurately determine the force from the cantilever deflection. In this study, we investigate a technique to calibrate the optical lever sensitivity of rectangular cantilevers that does not require contact to be made with a surface. This noncontact approach utilizes the method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] to calibrate the spring constant of the cantilever in combination with the equipartition theorem [J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993)] to determine the optical lever sensitivity. A comparison is presented between sensitivity values obtained from conventional static mode force curves and those derived using this noncontact approach for a range of different cantilevers in air and liquid. These measurements indicate that the method offers a quick, alternative approach for the calibration of the optical lever sensitivity.

  15. Wind Forcing of the Pacific Ocean Using Scatterometer Wind Data

    Science.gov (United States)

    Kelly, Kathryn A.

    1999-01-01

    The long-term objective of this research was an understanding of the wind-forced ocean circulation, particularly for the Pacific Ocean. To determine the ocean's response to the winds, we first needed to generate accurate maps of wind stress. For the ocean's response to wind stress we examined the sea surface height (SSH) both from altimeters and from numerical models for the Pacific Ocean.

  16. Variability of a "force signature" during windmill softball pitching and relationship between discrete force variables and pitch velocity.

    Science.gov (United States)

    Nimphius, Sophia; McGuigan, Michael R; Suchomel, Timothy J; Newton, Robert U

    2016-06-01

    This study assessed reliability of discrete ground reaction force (GRF) variables over multiple pitching trials, investigated the relationships between discrete GRF variables and pitch velocity (PV) and assessed the variability of the "force signature" or continuous force-time curve during the pitching motion of windmill softball pitchers. Intraclass correlation coefficient (ICC) for all discrete variables was high (0.86-0.99) while the coefficient of variance (CV) was low (1.4-5.2%). Two discrete variables were significantly correlated to PV; second vertical peak force (r(5)=0.81, p=0.03) and time between peak forces (r(5)=-0.79; p=0.03). High ICCs and low CVs support the reliability of discrete GRF and PV variables over multiple trials and significant correlations indicate there is a relationship between the ability to produce force and the timing of this force production with PV. The mean of all pitchers' curve-average standard deviation of their continuous force-time curves demonstrated low variability (CV=4.4%) indicating a repeatable and identifiable "force signature" pattern during this motion. As such, the continuous force-time curve in addition to discrete GRF variables should be examined in future research as a potential method to monitor or explain changes in pitching performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Evaluation of Force Degradation Pattern of Elastomeric Ligatures and Elastomeric Separators in Active Tieback State

    Directory of Open Access Journals (Sweden)

    Amir Mohammadi

    2015-12-01

    Full Text Available Background and aims. The purpose of this study was to evaluate initial force and force decay of commercially available elastomeric ligatures and elastomeric separators in active tieback state in a simulated oral environment. Materials and methods. A total of 288 elastomeric ligatures and elastomeric separators from three manufacturers (Dentaurum, RMO, 3M Unitek were stretched to 100% and 150% of their original inner diameter. Force levels were measured initially and at 3-minute, 24-hour, and 1-, 2-, 3- and 4-week intervals. Data were analyzed by univariate analysis of variance and a post hoc Tukey test. Results. The means of initial forces of elastomeric ligatures and separators from three above-mentioned companies, when stretched to 100% of their inner diameters, were 199, 305 and 284 g, and 330, 416, 330 g; when they were stretched to 150% of their inner diameters the values were 286, 422 and 375 g, and 433, 540 and 504 g, respectively. In active tieback state, 11‒18% of the initial force of the specimens was lost within the first 3 minutes and 29‒63% of the force decay occurred in the first 24 hours; then force decay rate decreased. 62‒81% of the initial force was lost in 4 weeks. Although force decay pattern was identical in all the products, the initial force and force decay of Dentaurum elastomeric products were less than the similar products of other companies (P<0.05. Under the same conditions, the force of elastomeric separators was greater than elastomeric ligatures of the same company. Conclusion. Regarding the force pattern of elastomeric ligatures and separators and optimal force for tooth movement, many of these products can be selected for applying orthodontic forces in active tieback state.

  18. Comparisons Between Experimental and Semi-theoretical Cutting Forces of CCS Disc Cutters

    Science.gov (United States)

    Xia, Yimin; Guo, Ben; Tan, Qing; Zhang, Xuhui; Lan, Hao; Ji, Zhiyong

    2018-05-01

    This paper focuses on comparisons between the experimental and semi-theoretical forces of CCS disc cutters acting on different rocks. The experimental forces obtained from LCM tests were used to evaluate the prediction accuracy of a semi-theoretical CSM model. The results show that the CSM model reliably predicts the normal forces acting on red sandstone and granite, but underestimates the normal forces acting on marble. Some additional LCM test data from the literature were collected to further explore the ability of the CSM model to predict the normal forces acting on rocks of different strengths. The CSM model underestimates the normal forces acting on soft rocks, semi-hard rocks and hard rocks by approximately 38, 38 and 10%, respectively, but very accurately predicts those acting on very hard and extremely hard rocks. A calibration factor is introduced to modify the normal forces estimated by the CSM model. The overall trend of the calibration factor is characterized by an exponential decrease with increasing rock uniaxial compressive strength. The mean fitting ratios between the normal forces estimated by the modified CSM model and the experimental normal forces acting on soft rocks, semi-hard rocks and hard rocks are 1.076, 0.879 and 1.013, respectively. The results indicate that the prediction accuracy and the reliability of the CSM model have been improved.

  19. Influence of lubrication forces in direct numerical simulations of particle-laden flows

    Science.gov (United States)

    Maitri, Rohit; Peters, Frank; Padding, Johan; Kuipers, Hans

    2016-11-01

    Accurate numerical representation of particle-laden flows is important for fundamental understanding and optimizing the complex processes such as proppant transport in fracking. Liquid-solid flows are fundamentally different from gas-solid flows because of lower density ratios (solid to fluid) and non-negligible lubrication forces. In this interface resolved model, fluid-solid coupling is achieved by incorporating the no-slip boundary condition implicitly at particle's surfaces by means of an efficient second order ghost-cell immersed boundary method. A fixed Eulerian grid is used for solving the Navier-Stokes equations and the particle-particle interactions are implemented using the soft sphere collision and sub-grid scale lubrication model. Due to the range of influence of lubrication force on a smaller scale than the grid size, it is important to implement the lubrication model accurately. In this work, different implementations of the lubrication model on particle dynamics are studied for various flow conditions. The effect of a particle surface roughness on lubrication force and the particle transport is also investigated. This study is aimed at developing a validated methodology to incorporate lubrication models in direct numerical simulation of particle laden flows. This research is supported from Grant 13CSER014 of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).

  20. Forced Retirement from Professional Rugby Union is Associated with Symptoms of Distress.

    Science.gov (United States)

    Brown, James Craig; Kerkhoffs, Gino; Lambert, Mike I; Gouttebarge, Vincent

    2017-07-01

    Rugby has a higher injury burden than other popular sports, such as football. Athletes who are forced to retire as a result of injury are associated with poor mental health. With its high injury burden, professional rugby players might be at risk of mental health conditions associated with injury-related forced retirement. This study aimed to compare mental health between former professional rugby players who were and weren't forced to retire. A questionnaire including the 4DSQ (distress), GHQ-12 (anxiety/depression), PROMIS short-form (sleep disturbance) and AUDIT-C (alcohol misuse) was completed by retired professional players from Ireland, France and South Africa. The questionnaire asked players whether or not they were forced to retire, as well as the reason for retirement. Players forced to retire were more than twice as likely to report symptoms of distress in comparison to those that retired voluntarily (odds ratio: 2.1, 95% confidence interval: 1.2-3.6, prugby players that were forced to retire may require support structures and longitudinal monitoring. Future studies should begin monitoring players during their careers to accurately assess the effect of retirement on mental health. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Snow driven Radiative Forcing in High Latitude Areas of Disturbance Using Higher Resolution Albedo Products from Landsat and Sentinel-2

    Science.gov (United States)

    Erb, A.; Li, Z.; Schaaf, C.; Wang, Z.; Rogers, B. M.

    2017-12-01

    Land surface albedo plays an important role in the surface energy budget and radiative forcing by determining the proportion of absorbed incoming solar radiation available to drive photosynthesis and surface heating. In Arctic regions, albedo is particularly sensitive to land cover and land use change (LCLUC) and modeling efforts have shown it to be the primary driver of effective radiative forcing from the biogeophysical effects of LCLUC. In boreal forests, the effects of these changes are complicated during snow covered periods when newly exposed, highly reflective snow can serve as the primary driver of radiative forcing. In Arctic biomes disturbance scars from fire, pest and harvest can remain in the landscape for long periods of time. As such, understanding the magnitude and persistence of these disturbances, especially in the shoulder seasons, is critical. The Landsat and Sentinel-2 Albedo Products couple 30m and 20m surface reflectances with concurrent 500m BRDF Products from the MODerate resolution Imaging Spectroradiometer (MODIS). The 12 bit radiometric fidelity of Sentinel-2 and Landsat-8 allow for the inclusion of high-quality, unsaturated albedo calculations over snow covered surfaces at scales more compatible with fragmented landscapes. Recent work on the early spring albedo of fire scars has illustrated significant post-fire spatial heterogeneity of burn severity at the landscape scale and highlights the need for a finer spatial resolution albedo record. The increased temporal resolution provided by multiple satellite instruments also allows for a better understanding of albedo dynamics during the dynamic shoulder seasons and in historically difficult high latitude locations where persistent cloud cover limits high quality retrievals. Here we present how changes in the early spring albedo of recent boreal forest disturbance in Alaska and central Canada affects landscape-scale radiative forcing. We take advantage of the long historical Landsat record

  2. A Kirkwood-Buff derived force field for alkaline earth halide salts

    Science.gov (United States)

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E.

    2018-06-01

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX2), where M = Mg2+, Ca2+, Sr2+, Ba2+ and X = Cl-, Br-, I-, which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  3. Evidence of the no-slip boundary condition of water flow between hydrophilic surfaces using atomic force microscopy.

    Science.gov (United States)

    Maali, Abdelhamid; Wang, Yuliang; Bhushan, Bharat

    2009-10-20

    In this study we present measurements of the hydrodynamic force exerted on a glass sphere glued to an atomic force microscopy (AFM) cantilever approaching a mica surface in water. A large sphere was used to reduce the impact of the cantilever beam on the measurement. An AFM cantilever with large stiffness was used to accurately determine the actual contact position between the sphere and the sample surface. The measured hydrodynamic force with different approach velocities is in good agreement with the Taylor force calculated in the lubrication theory with the no-slip boundary conditions, which verifies that there is no boundary slip on the glass and mica surfaces. Moreover, a detailed procedure of how to subtract the electrostatic double-layer force is presented.

  4. Nanopuller-open data acquisition platform for AFM force spectroscopy experiments

    International Nuclear Information System (INIS)

    Pawlak, Konrad; Strzelecki, Janusz

    2016-01-01

    Atomic Force Microscope (AFM) is a widely used tool in force spectroscopy studies. Presently, this instrument is accessible from numerous vendors, albeit commercial solutions are expensive and almost always hardware and software closed. Approaches for open setups were published, as with modern low cost and readily available piezoelectric actuators, data acquisition interfaces and optoelectronic components building such force spectroscopy AFM is relatively easy. However, suitable software to control such laboratory made instrument was not released. Developing it in the lab requires significant time and effort. Our Nanopuller software described in this paper is intended to eliminate this obstacle. With only minimum adjustments this program can be used to control and acquire data with any suitable National Instruments universal digital/analog interface and piezoelectric actuator analog controller, giving significant freedom and flexibility in designing force spectroscopy experiment. Since the full code, written in a graphical LabVIEW environment is available, our Nanopuller can be easily customized. In this paper we describe the program and test its performance in controlling different setups. Successful and accurate force curve acquisition for standard samples (single molecules of I27O reference titin polyprotein and DNA as well as red blood cells) is shown. - Highlights: • We created open data acquisition software for performing Atomic Force Microscopy force measurements with custom laboratory made setups. • The software allows large flexibility in atomic force microscope design with minimum adjustment necessary. • The software is written in LabVIEW, allowing easy customization. • We successfully tested the program on two different hardware configurations by stretching single macromolecules and indenting cells.

  5. Nanopuller-open data acquisition platform for AFM force spectroscopy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, Konrad; Strzelecki, Janusz

    2016-05-15

    Atomic Force Microscope (AFM) is a widely used tool in force spectroscopy studies. Presently, this instrument is accessible from numerous vendors, albeit commercial solutions are expensive and almost always hardware and software closed. Approaches for open setups were published, as with modern low cost and readily available piezoelectric actuators, data acquisition interfaces and optoelectronic components building such force spectroscopy AFM is relatively easy. However, suitable software to control such laboratory made instrument was not released. Developing it in the lab requires significant time and effort. Our Nanopuller software described in this paper is intended to eliminate this obstacle. With only minimum adjustments this program can be used to control and acquire data with any suitable National Instruments universal digital/analog interface and piezoelectric actuator analog controller, giving significant freedom and flexibility in designing force spectroscopy experiment. Since the full code, written in a graphical LabVIEW environment is available, our Nanopuller can be easily customized. In this paper we describe the program and test its performance in controlling different setups. Successful and accurate force curve acquisition for standard samples (single molecules of I27O reference titin polyprotein and DNA as well as red blood cells) is shown. - Highlights: • We created open data acquisition software for performing Atomic Force Microscopy force measurements with custom laboratory made setups. • The software allows large flexibility in atomic force microscope design with minimum adjustment necessary. • The software is written in LabVIEW, allowing easy customization. • We successfully tested the program on two different hardware configurations by stretching single macromolecules and indenting cells.

  6. MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields

    Science.gov (United States)

    Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.

    2011-01-01

    We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689

  7. Running with horizontal pulling forces: the benefits of towing.

    Science.gov (United States)

    Grabowski, Alena M; Kram, Rodger

    2008-10-01

    Towing, or running with a horizontal pulling force, is a common technique used by adventure racing teams. During an adventure race, the slowest person on a team determines the team's overall performance. To improve overall performance, a faster runner tows a slower runner with an elastic cord attached to their waists. Our purpose was to create and validate a model that predicts the optimal towing force needed by two runners to achieve their best overall performance. We modeled the effects of towing forces between two runners that differ in solo 10-km performance time and/or body mass. We calculated the overall time that could be saved with towing for running distances of 10, 20, and 42.2-km based on equations from previous research. Then, we empirically tested our 10-km model on 15 runners. Towing improved overall running performance considerably and our model accurately predicted this performance improvement. For example, if two runners (a 70 kg runner with a 35 min solo 10-km time and a 70-kg runner with a 50-min solo 10-km time) maintain an optimal towing force throughout a 10-km race, they can improve overall performance by 15%, saving almost 8 min. Ultimately, the race performance time and body mass of each runner determine the optimal towing force.

  8. An accurate real-time model of maglev planar motor based on compound Simpson numerical integration

    Science.gov (United States)

    Kou, Baoquan; Xing, Feng; Zhang, Lu; Zhou, Yiheng; Liu, Jiaqi

    2017-05-01

    To realize the high-speed and precise control of the maglev planar motor, a more accurate real-time electromagnetic model, which considers the influence of the coil corners, is proposed in this paper. Three coordinate systems for the stator, mover and corner coil are established. The coil is divided into two segments, the straight coil segment and the corner coil segment, in order to obtain a complete electromagnetic model. When only take the first harmonic of the flux density distribution of a Halbach magnet array into account, the integration method can be carried out towards the two segments according to Lorenz force law. The force and torque analysis formula of the straight coil segment can be derived directly from Newton-Leibniz formula, however, this is not applicable to the corner coil segment. Therefore, Compound Simpson numerical integration method is proposed in this paper to solve the corner segment. With the validation of simulation and experiment, the proposed model has high accuracy and can realize practical application easily.

  9. Effect of the ion force on the hydrolysis constants and of the solubility product of Europium

    International Nuclear Information System (INIS)

    Jimenez R, M.; Ramirez G, J.J.; Solache R, M.; Rojas H, A.

    2003-01-01

    A study on the behavior of the first hydrolysis constant β Eu,H l-0 and the constant of the solubility product Kps of the europium in front of the changes of the ion force: 0. 02 M, 0.1 M, 0.7M, 2M, 3M and 4M of sodium perchlorate, at 303 K. Experimentally the potentiometry and also radioactivity measures its were used. The specific interaction of ions theory (SIT) of Bronsted-Guggenheim-Scatchard allows the extrapolation of the values to infinite dilution and the results were: log β Eu,H l-0 = -7 36 and log K sp l-0 = -24. 68. A discussion of the group of results with the data of the literature is presented. (Author)

  10. Towards accurate emergency response behavior

    International Nuclear Information System (INIS)

    Sargent, T.O.

    1981-01-01

    Nuclear reactor operator emergency response behavior has persisted as a training problem through lack of information. The industry needs an accurate definition of operator behavior in adverse stress conditions, and training methods which will produce the desired behavior. Newly assembled information from fifty years of research into human behavior in both high and low stress provides a more accurate definition of appropriate operator response, and supports training methods which will produce the needed control room behavior. The research indicates that operator response in emergencies is divided into two modes, conditioned behavior and knowledge based behavior. Methods which assure accurate conditioned behavior, and provide for the recovery of knowledge based behavior, are described in detail

  11. An ergonomic modular foot platform for isometric force/torque measurements in poststroke functional assessment: A pilot study

    OpenAIRE

    Stefano Mazzoleni, PhD; Jo Van Vaerenbergh, PhD; Emma Stokes, PhD; Gábor Fazekas, MD, PhD; Paolo Dario, PhD; Eugenio Guglielmelli, PhD

    2012-01-01

    The main goal of this article is to present the design, technical development, and preliminary validation of an innovative mechatronic device for force/torque measurements taken from the human foot using pilot data. The device, formed by a mobile platform equipped with two six-axis force/torque sensors, was used to perform accurate quantitative measurements during isometric exercises, aimed at performing functional assessment tests in poststroke patients undergoing a rehabilitation treatment....

  12. A scalable platform for biomechanical studies of tissue cutting forces

    International Nuclear Information System (INIS)

    Valdastri, P; Tognarelli, S; Menciassi, A; Dario, P

    2009-01-01

    This paper presents a novel and scalable experimental platform for biomechanical analysis of tissue cutting that exploits a triaxial force-sensitive scalpel and a high resolution vision system. Real-time measurements of cutting forces can be used simultaneously with accurate visual information in order to extract important biomechanical clues in real time that would aid the surgeon during minimally invasive intervention in preserving healthy tissues. Furthermore, the in vivo data gathered can be used for modeling the viscoelastic behavior of soft tissues, which is an important issue in surgical simulator development. Thanks to a modular approach, this platform can be scaled down, thus enabling in vivo real-time robotic applications. Several cutting experiments were conducted with soft porcine tissues (lung, liver and kidney) chosen as ideal candidates for biopsy procedures. The cutting force curves show repeated self-similar units of localized loading followed by unloading. With regards to tissue properties, the depth of cut plays a significant role in the magnitude of the cutting force acting on the blade. Image processing techniques and dedicated algorithms were used to outline the surface of the tissues and estimate the time variation of the depth of cut. The depth of cut was finally used to obtain the normalized cutting force, thus allowing comparative biomechanical analysis

  13. Optimal Cluster Mill Pass Scheduling With an Accurate and Rapid New Strip Crown Model

    International Nuclear Information System (INIS)

    Malik, Arif S.; Grandhi, Ramana V.; Zipf, Mark E.

    2007-01-01

    Besides the requirement to roll coiled sheet at high levels of productivity, the optimal pass scheduling of cluster-type reversing cold mills presents the added challenge of assigning mill parameters that facilitate the best possible strip flatness. The pressures of intense global competition, and the requirements for increasingly thinner, higher quality specialty sheet products that are more difficult to roll, continue to force metal producers to commission innovative flatness-control technologies. This means that during the on-line computerized set-up of rolling mills, the mathematical model should not only determine the minimum total number of passes and maximum rolling speed, it should simultaneously optimize the pass-schedule so that desired flatness is assured, either by manual or automated means. In many cases today, however, on-line prediction of strip crown and corresponding flatness for the complex cluster-type rolling mills is typically addressed either by trial and error, by approximate deflection models for equivalent vertical roll-stacks, or by non-physical pattern recognition style models. The abundance of the aforementioned methods is largely due to the complexity of cluster-type mill configurations and the lack of deflection models with sufficient accuracy and speed for on-line use. Without adequate assignment of the pass-schedule set-up parameters, it may be difficult or impossible to achieve the required strip flatness. In this paper, we demonstrate optimization of cluster mill pass-schedules using a new accurate and rapid strip crown model. This pass-schedule optimization includes computations of the predicted strip thickness profile to validate mathematical constraints. In contrast to many of the existing methods for on-line prediction of strip crown and flatness on cluster mills, the demonstrated method requires minimal prior tuning and no extensive training with collected mill data. To rapidly and accurately solve the multi-contact problem

  14. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description.

    Science.gov (United States)

    Bauer, Sebastian; Mathias, Gerald; Tavan, Paul

    2014-03-14

    We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ε(r) is close to one everywhere inside the protein. The Gaussian widths σ(i) of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σ(i). A summarizing discussion highlights the achievements of the new theory and of its approximate solution particularly by

  15. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Sebastian; Mathias, Gerald; Tavan, Paul, E-mail: paul.tavan@physik.uni-muenchen.de [Lehrstuhl für BioMolekulare Optik, Ludwig–Maximilians Universität München, Oettingenstr. 67, 80538 München (Germany)

    2014-03-14

    We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ε(r) is close to one everywhere inside the protein. The Gaussian widths σ{sub i} of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σ{sub i}. A summarizing discussion highlights the achievements of the new theory and of its approximate solution

  16. Pediatric patient-reported outcome instruments for research to support medical product labeling: report of the ISPOR PRO good research practices for the assessment of children and adolescents task force.

    Science.gov (United States)

    Matza, Louis S; Patrick, Donald L; Riley, Anne W; Alexander, John J; Rajmil, Luis; Pleil, Andreas M; Bullinger, Monika

    2013-06-01

    Patient-reported outcome (PRO) instruments for children and adolescents are often included in clinical trials with the intention of collecting data to support claims in a medical product label. The purpose of the current task force report is to recommend good practices for pediatric PRO research that is conducted to inform regulatory decision making and support claims made in medical product labeling. The recommendations are based on the consensus of an interdisciplinary group of researchers who were assembled for a task force associated with the International Society for Pharmacoeconomics and Outcomes Research (ISPOR). In those areas in which supporting evidence is limited or in which general principles may not apply to every situation, this task force report identifies factors to consider when making decisions about the design and use of pediatric PRO instruments, while highlighting issues that require further research. Five good research practices are discussed: 1) Consider developmental differences and determine age-based criteria for PRO administration: Four age groups are discussed on the basis of previous research (<5 years old, 5-7 years, 8-11 years, and 12-18 years). These age groups are recommended as a starting point when making decisions, but they will not fit all PRO instruments or the developmental stage of every child. Specific age ranges should be determined individually for each population and PRO instrument. 2) Establish content validity of pediatric PRO instruments: This section discusses the advantages of using children as content experts, as well as strategies for concept elicitation and cognitive interviews with children. 3) Determine whether an informant-reported outcome instrument is necessary: The distinction between two types of informant-reported measures (proxy vs. observational) is discussed, and recommendations are provided. 4) Ensure that the instrument is designed and formatted appropriately for the target age group. Factors to

  17. An ab initio approach to free-energy reconstruction using logarithmic mean force dynamics

    International Nuclear Information System (INIS)

    Nakamura, Makoto; Obata, Masao; Morishita, Tetsuya; Oda, Tatsuki

    2014-01-01

    We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields

  18. A practical method for accurate quantification of large fault trees

    International Nuclear Information System (INIS)

    Choi, Jong Soo; Cho, Nam Zin

    2007-01-01

    This paper describes a practical method to accurately quantify top event probability and importance measures from incomplete minimal cut sets (MCS) of a large fault tree. The MCS-based fault tree method is extensively used in probabilistic safety assessments. Several sources of uncertainties exist in MCS-based fault tree analysis. The paper is focused on quantification of the following two sources of uncertainties: (1) the truncation neglecting low-probability cut sets and (2) the approximation in quantifying MCSs. The method proposed in this paper is based on a Monte Carlo simulation technique to estimate probability of the discarded MCSs and the sum of disjoint products (SDP) approach complemented by the correction factor approach (CFA). The method provides capability to accurately quantify the two uncertainties and estimate the top event probability and importance measures of large coherent fault trees. The proposed fault tree quantification method has been implemented in the CUTREE code package and is tested on the two example fault trees

  19. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Labuda, Aleksander; Proksch, Roger [Asylum Research an Oxford Instruments Company, Santa Barbara, California 93117 (United States)

    2015-06-22

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  20. Perception-production relations in later development of American English rhotics.

    Directory of Open Access Journals (Sweden)

    Tara McAllister Byun

    Full Text Available It is known that some adult listeners have more sharply defined perceptual categories than others, and listeners with more precise auditory targets are also more precise in their production of contrasts. There is additionally evidence that children who have not yet mastered production of a contrast show diminished performance on perceptual measures of the same contrast. To date, however, few studies have investigated developmental perception-production relations using the fine-grained measures typical of adult studies. Existing evidence suggests that perception and production can be closely connected in development, but this relationship may break down as perception and articulation mature at different rates. This study evaluated perception and production of the English /r-w/ contrast in 40 typically-developing children aged 9-14. Perceptual sensitivity was measured with a logistic function fitted over responses in a forced-choice identification task using two synthetic 10-step continua from rake to wake. Participants also produced rhotic and non-rhotic words. Across participants, there was a significant correlation between perceptual acuity and rhoticity in production, although this effect was only observed for one of two continua tested. These results provide preliminary evidence compatible with the hypothesis that children with a more refined auditory target for a sound also produce that sound more accurately.

  1. Towards Accurate Application Characterization for Exascale (APEX)

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Simon David [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Sandia National Laboratories has been engaged in hardware and software codesign activities for a number of years, indeed, it might be argued that prototyping of clusters as far back as the CPLANT machines and many large capability resources including ASCI Red and RedStorm were examples of codesigned solutions. As the research supporting our codesign activities has moved closer to investigating on-node runtime behavior a nature hunger has grown for detailed analysis of both hardware and algorithm performance from the perspective of low-level operations. The Application Characterization for Exascale (APEX) LDRD was a project concieved of addressing some of these concerns. Primarily the research was to intended to focus on generating accurate and reproducible low-level performance metrics using tools that could scale to production-class code bases. Along side this research was an advocacy and analysis role associated with evaluating tools for production use, working with leading industry vendors to develop and refine solutions required by our code teams and to directly engage with production code developers to form a context for the application analysis and a bridge to the research community within Sandia. On each of these accounts significant progress has been made, particularly, as this report will cover, in the low-level analysis of operations for important classes of algorithms. This report summarizes the development of a collection of tools under the APEX research program and leaves to other SAND and L2 milestone reports the description of codesign progress with Sandia’s production users/developers.

  2. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on muscle force production in people with spinal cord injury (SCI).

    Science.gov (United States)

    Bochkezanian, Vanesa; Newton, Robert U; Trajano, Gabriel S; Vieira, Amilton; Pulverenti, Timothy S; Blazevich, Anthony J

    2018-02-13

    Neuromuscular electrical stimulation (NMES) is commonly used in skeletal muscles in people with spinal cord injury (SCI) with the aim of increasing muscle recruitment and thus muscle force production. NMES has been conventionally used in clinical practice as functional electrical stimulation (FES), using low levels of evoked force that cannot optimally stimulate muscular strength and mass improvements, and thus trigger musculoskeletal changes in paralysed muscles. The use of high intensity intermittent NMES training using wide-pulse width and moderate-intensity as a strength training tool could be a promising method to increase muscle force production in people with SCI. However, this type of protocol has not been clinically adopted because it may generate rapid muscle fatigue and thus prevent the performance of repeated high-intensity muscular contractions in paralysed muscles. Moreover, superimposing patellar tendon vibration onto the wide-pulse width NMES has been shown to elicit further increases in impulse or, at least, reduce the rate of fatigue in repeated contractions in able-bodied populations, but there is a lack of evidence to support this argument in people with SCI. Nine people with SCI received two NMES protocols with and without superimposing patellar tendon vibration on different days (i.e. STIM and STIM+vib), which consisted of repeated 30 Hz trains of 58 wide-pulse width (1000 μs) symmetric biphasic pulses (0.033-s inter-pulse interval; 2 s stimulation train; 2-s inter-train interval) being delivered to the dominant quadriceps femoris. Starting torque was 20% of maximal doublet-twitch torque and stimulations continued until torque declined to 50% of the starting torque. Total knee extensor impulse was calculated as the primary outcome variable. Total knee extensor impulse increased in four subjects when patellar tendon vibration was imposed (59.2 ± 15.8%) but decreased in five subjects (- 31.3 ± 25.7%). However, there were no

  3. Force feedback delay affects perception of stiffness but not action, and the effect depends on the hand used but not on the handedness.

    Science.gov (United States)

    Leib, Raz; Rubin, Inbar; Nisky, Ilana

    2018-05-16

    Interaction with an object often requires the estimation of its mechanical properties. We examined whether the hand that is used to interact with the object and their handedness affected people's estimation of these properties using stiffness estimation as a test case. We recorded participants' responses on a stiffness discrimination of a virtual elastic force field and the grip force applied on the robotic device during the interaction. In half of the trials, the robotic device delayed the participants' force feedback. Consistent with previous studies, delayed force feedback biased the perceived stiffness of the force field. Interestingly, in both left-handed and right-handed participants, for the delayed force field, there was even less perceived stiffness when participants used their left hand than their right hand. This result supports the idea that haptic processing is affected by laterality in the brain, not by handedness. Consistent with previous studies, participants adjusted their applied grip force according to the correct size and timing of the load force regardless of the hand that was used, the handedness, or the delay. This suggests that in all these conditions, participants were able to form an accurate internal representation of the anticipated trajectory of the load force (size and timing) and that this representation was used for accurate control of grip force independently of the perceptual bias. Thus, these results provide additional evidence for the dissociation between action and perception in the processing of delayed information.

  4. The Alexandria library, a quantum-chemical database of molecular properties for force field development.

    Science.gov (United States)

    Ghahremanpour, Mohammad M; van Maaren, Paul J; van der Spoel, David

    2018-04-10

    Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.

  5. The Alexandria library, a quantum-chemical database of molecular properties for force field development

    Science.gov (United States)

    Ghahremanpour, Mohammad M.; van Maaren, Paul J.; van der Spoel, David

    2018-04-01

    Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.

  6. An experiment to measure accurately the lifetime of the $D^{0}, D^{\\pm}, F^{\\pm}, \\Lambda_{c}$-charm particles and to study their hadronic production and decay properties

    CERN Multimedia

    2002-01-01

    We propose to use the EHS with the hydrogen bubble chamber HOLEBC equipped with classical optics to accumulate statistics of several hundred fully reconstructed $D^{0}$ and $D^{\\pm}$ and several tens of $F^{\\pm}$ and $\\Lambda_{c}$ decays produced by 360 GeV/c $\\pi^{-}$ and 360 GeV/c proton beams. The main aim of the experiment is to determine accurately the lifetime of these particles. Interesting information will also be obtained on branching ratios, decay modes and hadronic production mechanisms.

  7. Spectrally accurate contour dynamics

    International Nuclear Information System (INIS)

    Van Buskirk, R.D.; Marcus, P.S.

    1994-01-01

    We present an exponentially accurate boundary integral method for calculation the equilibria and dynamics of piece-wise constant distributions of potential vorticity. The method represents contours of potential vorticity as a spectral sum and solves the Biot-Savart equation for the velocity by spectrally evaluating a desingularized contour integral. We use the technique in both an initial-value code and a newton continuation method. Our methods are tested by comparing the numerical solutions with known analytic results, and it is shown that for the same amount of computational work our spectral methods are more accurate than other contour dynamics methods currently in use

  8. Comparative analysis of internal friction and natural frequency measured by free decay and forced vibration

    International Nuclear Information System (INIS)

    Wang, Y. Z.; Ding, X. D.; Xiong, X. M.; Zhang, J. X.

    2007-01-01

    Relations between various values of the internal friction (tgδ, Q -1 , Q -1* , and Λ/π) measured by free decay and forced vibration are analyzed systemically based on a fundamental mechanical model in this paper. Additionally, relations between various natural frequencies, such as vibration frequency of free decay ω FD , displacement-resonant frequency of forced vibration ω d , and velocity-resonant frequency of forced vibration ω 0 are calculated. Moreover, measurement of natural frequencies of a copper specimen of 99.9% purity has been made to demonstrate the relation between the measured natural frequencies of the system by forced vibration and free decay. These results are of importance for not only more accurate measurement of the elastic modulus of materials but also the data conversion between different internal friction measurements

  9. Study on real-time force feedback for a master-slave interventional surgical robotic system.

    Science.gov (United States)

    Guo, Shuxiang; Wang, Yuan; Xiao, Nan; Li, Youxiang; Jiang, Yuhua

    2018-04-13

    In robot-assisted catheterization, haptic feedback is important, but is currently lacking. In addition, conventional interventional surgical robotic systems typically employ a master-slave architecture with an open-loop force feedback, which results in inaccurate control. We develop herein a novel real-time master-slave (RTMS) interventional surgical robotic system with a closed-loop force feedback that allows a surgeon to sense the true force during remote operation, provide adequate haptic feedback, and improve control accuracy in robot-assisted catheterization. As part of this system, we also design a unique master control handle that measures the true force felt by a surgeon, providing the basis for the closed-loop control of the entire system. We use theoretical and empirical methods to demonstrate that the proposed RTMS system provides a surgeon (using the master control handle) with a more accurate and realistic force sensation, which subsequently improves the precision of the master-slave manipulation. The experimental results show a substantial increase in the control accuracy of the force feedback and an increase in operational efficiency during surgery.

  10. Specific force of the vastus lateralis in adults with achondroplasia.

    Science.gov (United States)

    Sims, David T; Onambélé-Pearson, Gladys L; Burden, Adrian; Payton, Carl; Morse, Christopher I

    2018-03-01

    Achondroplasia is a clinical condition defined by shorter stature and disproportionate limb length. Force production in able-bodied individuals (controls) is proportional to muscle size, but given the disproportionate nature of achondroplasia, normalizing to anatomical cross-sectional area (ACSA) is inappropriate. The aim of this study was to assess specific force of the vastus lateralis (VL) in 10 adults with achondroplasia (22 ± 3 yr) and 18 sex-matched controls (22 ± 2 yr). Isometric torque (iMVCτ) of the dominant knee extensors (KE) and in vivo measures of VL muscle architecture, volume, activation, and patella tendon moment arm were used to calculate VL physiological CSA (PCSA), fascicle force, and specific force in both groups. Achondroplasic muscle volume was 53% smaller than controls (284 ± 36 vs. 604 ± 102 cm 3 , P 0.05), but coactivation of bicep femoris of achondroplasic subjects was 70% more than controls (43 ± 20 vs. 13 ± 5%, P force (702 ± 235 vs. 1704 ± 303 N, P force than control subjects (17 ± 6 vs. 24 ± 6 N⋅cm -2 , P = 0.012). The smaller VL specific force in achondroplasia may be attributed to infiltration of fat and connective tissue, rather than to any difference in myofilament function. NEW & NOTEWORTHY The novel observation of this study was the measurement of normalized force production in a group of individuals with disproportionate limb length-to-torso ratios.

  11. A radial distribution function-based open boundary force model for multi-centered molecules

    KAUST Repository

    Neumann, Philipp

    2014-06-01

    We derive an expression for radial distribution function (RDF)-based open boundary forcing for molecules with multiple interaction sites. Due to the high-dimensionality of the molecule configuration space and missing rotational invariance, a computationally cheap, 1D approximation of the arising integral expressions as in the single-centered case is not possible anymore. We propose a simple, yet accurate model invoking standard molecule- and site-based RDFs to approximate the respective integral equation. The new open boundary force model is validated for ethane in different scenarios and shows very good agreement with data from periodic simulations. © World Scientific Publishing Company.

  12. Force-controlled adjustment of car body fixtures

    OpenAIRE

    Keller, Carsten

    2014-01-01

    Production technology in modern car body assembling is affected by highly automated and complex facilities. However, in mounting car body assemblies adjustments are always necessary to react on quality instabilities of the input parts. Today these adjustments are made according to experience and with a high content of manual operation. This paper describes an innovative method that detects part deformations in a force sensitive way following the works of Dr. Muck, who developed a force sensit...

  13. Project Portfolio Management: An Investigation of One Air Force Product Center

    National Research Council Canada - National Science Library

    Edmunds, Bryan D

    2005-01-01

    .... This research focuses on the portfolio management (project selection and resource allocation) part of the CTRRP. The purpose of this research effort was to investigate the use of portfolio management within the Air Force...

  14. Robust Clamping Force Control of an Electro-Mechanical Brake System for Application to Commercial City Buses

    Directory of Open Access Journals (Sweden)

    Sangjune Eum

    2017-02-01

    Full Text Available This paper proposes a sensor-less robust force control method for improving the control performance of an electro-mechanical brake (EMB which is applicable to commercial city buses. The EMB generates the accurate clamping force commanded by a driver through an independent motor control at each wheel instead of using existing mechanical components. In general, an EMB undergoes parameter variation and a backdrivability problem. For this reason, the cascade control strategy (e.g., force-position cascade control structure is proposed and the disturbance observer is employed to enhance control robustness against model variations. Additionally, this paper proposed the clamping force estimation method for a sensor-less control, i.e., the clamping force observer (CFO. Finally, in order to confirm the performance and effectiveness of a proposed robust control method, several experiments are performed and analyzed.

  15. Characterization of photo-transformation products of the antibiotic drug Ciprofloxacin with liquid chromatography-tandem mass spectrometry in combination with accurate mass determination using an LTQ-Orbitrap.

    Science.gov (United States)

    Haddad, Tarek; Kümmerer, Klaus

    2014-11-01

    The presence of pharmaceuticals, especially antibiotics, in the aquatic environment is of growing concern. Several studies have been carried out on the occurrence and environmental risk of these compounds. Ciprofloxacin (CIP), a broad-spectrum anti-microbial second-generation fluoroquinolone, is widely used in human and veterinary medicine. In this work, photo-degradation of CIP in aqueous solution using UV and xenon lamps was studied. The transformation products (TPs), created from CIP, were initially analyzed by an ion trap in the MS, MS/MS and MS(3) modes. These data were used to clarify the structures of the degradation products. Furthermore, the proposed products were confirmed by accurate mass measurement and empirical formula calculation for the molecular ions of TPs using LTQ-Orbitrap XL mass spectrometer. The degree of mineralization, the abundance of detected TPs and degradation pathways were determined. Eleven TPs were detected in the present study. TP1, which was never detected before, was structurally characterized in this work. All TPs still retained the core quinolone structure, which is responsible for the biological activity. As mineralization of CIP and its transformation products did not happen, the formation of stable TPs can be expected in waste water treatment and in surface water with further follow-up problems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Reactive Force Field for Liquid Hydrazoic Acid with Applications to Detonation Chemistry

    Science.gov (United States)

    Furman, David; Dubnikova, Faina; van Duin, Adri; Zeiri, Yehuda; Kosloff, Ronnie

    The development of a reactive force field (ReaxFF formalism) for Hydrazoic acid (HN3), a highly sensitive liquid energetic material, is reported. The force field accurately reproduces results of density functional theory (DFT) calculations. The quality and performance of the force field are examined by detailed comparison with DFT calculations related to uni, bi and trimolecular thermal decomposition routes. Reactive molecular dynamics (RMD) simulations are performed to reveal the initial chemical events governing the detonation chemistry of liquid HN3. The outcome of these simulations compares very well with recent results of tight-binding DFT molecular dynamics and thermodynamic calculations. Based on our RMD simulations, predictions were made for the activation energies and volumes in a broad range of temperatures and initial material compressions. Work Supported by The Center of Excellence for Explosives Detection, Mitigation and Response, Department of Homeland Security.

  17. Task Force report

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The International Task Force on Prevention of Nuclear Terrorism was formed in 1985 under the auspices of the Nuclear Control Institute. This report is a consensus report of the 26 task force members - all members not necessarily agreeing on every point and all wordings, but in each case a substantial majority did agree. First, the report defines the threat, then establishes the priorities. Short-term recommendations are presented on: (1) protecting nuclear weapons; (2) protecting nuclear materials; (3) protecting nuclear facilities; (4) intelligence programs; (5) civil liberties concerns; (6) controlling nuclear transfers; (7) US - Soviet cooperation; (8) arms control initiatives; (9) convention of physical protection of nuclear material; (10) role of emergency management programs; and (11) role of the media. Brief long-term recommendations are included on (1) international measures, and (2) emerging nuclear technologies. An Appendix, Production of Nuclear Materials Usable in Weapons is presented for further consideration (without recommendations)

  18. Effect of static deformation and external forces on the oscillations of levitated droplets

    Science.gov (United States)

    Suryanarayana, P. V. R.; Bayazitoglu, Y.

    1991-01-01

    The oscillations of an aspherical droplet subjected to different external forces are considered. For an arbitrary shape deformation, it is shown that the frequency spectrum splits into (2l - 1) peaks for a mode l oscillation, and the splitting of the frequency spectrum is calculated for mode 2, 3, and 4 oscillations. The deformation is then treated as a consequence of a general external force, and the frequency split is obtained in terms of the external force parameters. Droplets levitated by acoustic, electromagnetic, and combined acoustic-electromagnetic forces are considered in particular, and it is shown that the effects of asphericity adequately explain the splitting of the frequency spectrum observed commonly in experiments. The interpretation of spectra with regard to accurate surface tension measurement using the oscillations of levitated droplets is discussed, and the results applied to some previous experimental results. It is shown that the accuracy of surface tension measurements can improve if the asphericity caused by the levitating force, and the resulting frequency split, are taken into account.

  19. Bilateral deficit in explosive force production is not caused by changes in agonist neural drive.

    Directory of Open Access Journals (Sweden)

    Matthew W Buckthorpe

    Full Text Available Bilateral deficit (BLD describes the phenomenon of a reduction in performance during synchronous bilateral (BL movements when compared to the sum of identical unilateral (UL movements. Despite a large body of research investigating BLD of maximal voluntary force (MVF there exist a paucity of research examining the BLD for explosive strength. Therefore, this study investigated the BLD in voluntary and electrically-evoked explosive isometric contractions of the knee extensors and assessed agonist and antagonist neuromuscular activation and measurement artefacts as potential mechanisms. Thirteen healthy untrained males performed a series of maximum and explosive voluntary contractions bilaterally (BL and unilaterally (UL. UL and BL evoked twitch and octet contractions were also elicited. Two separate load cells were used to measure MVF and explosive force at 50, 100 and 150 ms after force onset. Surface EMG amplitude was measured from three superficial agonists and an antagonist. Rate of force development (RFD and EMG were reported over consecutive 50 ms periods (0-50, 50-100 and 100-150 ms. Performance during UL contractions was compared to combined BL performance to measure BLD. Single limb performance during the BL contractions was assessed and potential measurement artefacts, including synchronisation of force onset from the two limbs, controlled for. MVF showed no BLD (P = 0.551, but there was a BLD for explosive force at 100 ms (11.2%, P = 0.007. There was a BLD in RFD 50-100 ms (14.9%, P = 0.004, but not for the other periods. Interestingly, there was a BLD in evoked force measures (6.3-9.0%, P<0.001. There was no difference in agonist or antagonist EMG for any condition (P≥0.233. Measurement artefacts contributed minimally to the observed BLD. The BLD in volitional explosive force found here could not be explained by measurement issues, or agonist and antagonist neuromuscular activation. The BLD in voluntary and evoked explosive force

  20. Corrected direct force balance method for atomic force microscopy lateral force calibration

    International Nuclear Information System (INIS)

    Asay, David B.; Hsiao, Erik; Kim, Seong H.

    2009-01-01

    This paper reports corrections and improvements of the previously reported direct force balance method (DFBM) developed for lateral calibration of atomic force microscopy. The DFBM method employs the lateral force signal obtained during a force-distance measurement on a sloped surface and relates this signal to the applied load and the slope of the surface to determine the lateral calibration factor. In the original publication [Rev. Sci. Instrum. 77, 043903 (2006)], the tip-substrate contact was assumed to be pinned at the point of contact, i.e., no slip along the slope. In control experiments, the tip was found to slide along the slope during force-distance curve measurement. This paper presents the correct force balance for lateral force calibration.

  1. Invited Article: VEDA: A web-based virtual environment for dynamic atomic force microscopy

    Science.gov (United States)

    Melcher, John; Hu, Shuiqing; Raman, Arvind

    2008-06-01

    We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.

  2. ASSESSMENT OF GRIP FORCE CONTROL IN PATIENTS WITH MUSCULAR DYSTROPHY

    Directory of Open Access Journals (Sweden)

    Gregorij Kurillo

    2004-12-01

    Full Text Available Background. The majority of hand functionality tests are based on qualitative assessment which largely depends on the experience of the therapist. Computer-assisted methods can provide more objective and accurate measurements of the grip force and other parameters related to grasping.Methods. We analysed the grip force control in 12 patients with muscular dystrophy using the tracking system developed. The system consists of a grip-measuring device with endobjects assessing the force applied in different grips. The device was used as input to a tracking task where the patient applied the grip force according to the visual feedback from the computer screen. Each patient performed two tasks which consisted of tracking a ramp and sinus target.Results. We analysed the maximal grip force as assessed in the ramp task and the tracking accuracy of the sinus task. The results are compared among five different grips (cylindrical, lateral, palmar, pinch and spherical grip, applied with dominant and non-dominant hand. The results show no significant difference in tracking accuracy between the dominant and non-dominant hand.Conclusions. The results obtained in tracking the ramp target showed that the method could be used for the assessment of the muscle fatigue, providing quantitative information on muscle capacity. The results of the sinus-tracking task showed that the method can evaluate the grip force control in different types of grips, providing information on hand dexterity, muscle activation patterns or tremor.

  3. Sparse deconvolution for the large-scale ill-posed inverse problem of impact force reconstruction

    Science.gov (United States)

    Qiao, Baijie; Zhang, Xingwu; Gao, Jiawei; Liu, Ruonan; Chen, Xuefeng

    2017-01-01

    Most previous regularization methods for solving the inverse problem of force reconstruction are to minimize the l2-norm of the desired force. However, these traditional regularization methods such as Tikhonov regularization and truncated singular value decomposition, commonly fail to solve the large-scale ill-posed inverse problem in moderate computational cost. In this paper, taking into account the sparse characteristic of impact force, the idea of sparse deconvolution is first introduced to the field of impact force reconstruction and a general sparse deconvolution model of impact force is constructed. Second, a novel impact force reconstruction method based on the primal-dual interior point method (PDIPM) is proposed to solve such a large-scale sparse deconvolution model, where minimizing the l2-norm is replaced by minimizing the l1-norm. Meanwhile, the preconditioned conjugate gradient algorithm is used to compute the search direction of PDIPM with high computational efficiency. Finally, two experiments including the small-scale or medium-scale single impact force reconstruction and the relatively large-scale consecutive impact force reconstruction are conducted on a composite wind turbine blade and a shell structure to illustrate the advantage of PDIPM. Compared with Tikhonov regularization, PDIPM is more efficient, accurate and robust whether in the single impact force reconstruction or in the consecutive impact force reconstruction.

  4. MTS-MD of Biomolecules Steered with 3D-RISM-KH Mean Solvation Forces Accelerated with Generalized Solvation Force Extrapolation.

    Science.gov (United States)

    Omelyan, Igor; Kovalenko, Andriy

    2015-04-14

    We developed a generalized solvation force extrapolation (GSFE) approach to speed up multiple time step molecular dynamics (MTS-MD) of biomolecules steered with mean solvation forces obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model with the Kovalenko-Hirata closure). GSFE is based on a set of techniques including the non-Eckart-like transformation of coordinate space separately for each solute atom, extension of the force-coordinate pair basis set followed by selection of the best subset, balancing the normal equations by modified least-squares minimization of deviations, and incremental increase of outer time step in motion integration. Mean solvation forces acting on the biomolecule atoms in conformations at successive inner time steps are extrapolated using a relatively small number of best (closest) solute atomic coordinates and corresponding mean solvation forces obtained at previous outer time steps by converging the 3D-RISM-KH integral equations. The MTS-MD evolution steered with GSFE of 3D-RISM-KH mean solvation forces is efficiently stabilized with our optimized isokinetic Nosé-Hoover chain (OIN) thermostat. We validated the hybrid MTS-MD/OIN/GSFE/3D-RISM-KH integrator on solvated organic and biomolecules of different stiffness and complexity: asphaltene dimer in toluene solvent, hydrated alanine dipeptide, miniprotein 1L2Y, and protein G. The GSFE accuracy and the OIN efficiency allowed us to enlarge outer time steps up to huge values of 1-4 ps while accurately reproducing conformational properties. Quasidynamics steered with 3D-RISM-KH mean solvation forces achieves time scale compression of conformational changes coupled with solvent exchange, resulting in further significant acceleration of protein conformational sampling with respect to real time dynamics. Overall, this provided a 50- to 1000-fold effective speedup of conformational sampling for these systems, compared to conventional MD

  5. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory.

    Science.gov (United States)

    Heinen, Jurn; Burtch, Nicholas C; Walton, Krista S; Fonseca Guerra, Célia; Dubbeldam, David

    2016-12-12

    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor-acceptor interactions. Using a density-function-theory-based energy decomposition scheme, we develop a physically justifiable classical force field that incorporates the missing orbital interactions using an appropriate functional form. Our first-principles derived force field shows greatly improved quantitative agreement with the inflection points, initial uptake, saturation capacity, and enthalpies of adsorption obtained from our in-house adsorption experiments. While IAST fails to make accurate predictions, our improved force field model is able to correctly predict the multicomponent behavior. Our approach is also transferable to other OMS structures, allowing the accurate study of their separation performances for olefins/paraffins and further mixtures involving complex donor-acceptor interactions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Error analysis and assessment of unsteady forces acting on a flapping wing micro air vehicle: free flight versus wind-tunnel experimental methods.

    Science.gov (United States)

    Caetano, J V; Percin, M; van Oudheusden, B W; Remes, B; de Wagter, C; de Croon, G C H E; de Visser, C C

    2015-08-20

    An accurate knowledge of the unsteady aerodynamic forces acting on a bio-inspired, flapping-wing micro air vehicle (FWMAV) is crucial in the design development and optimization cycle. Two different types of experimental approaches are often used: determination of forces from position data obtained from external optical tracking during free flight, or direct measurements of forces by attaching the FWMAV to a force transducer in a wind-tunnel. This study compares the quality of the forces obtained from both methods as applied to a 17.4 gram FWMAV capable of controlled flight. A comprehensive analysis of various error sources is performed. The effects of different factors, e.g., measurement errors, error propagation, numerical differentiation, filtering frequency selection, and structural eigenmode interference, are assessed. For the forces obtained from free flight experiments it is shown that a data acquisition frequency below 200 Hz and an accuracy in the position measurements lower than ± 0.2 mm may considerably hinder determination of the unsteady forces. In general, the force component parallel to the fuselage determined by the two methods compares well for identical flight conditions; however, a significant difference was observed for the forces along the stroke plane of the wings. This was found to originate from the restrictions applied by the clamp to the dynamic oscillations observed in free flight and from the structural resonance of the clamped FWMAV structure, which generates loads that cannot be distinguished from the external forces. Furthermore, the clamping position was found to have a pronounced influence on the eigenmodes of the structure, and this effect should be taken into account for accurate force measurements.

  7. The cost of leg forces in bipedal locomotion: a simple optimization study.

    Directory of Open Access Journals (Sweden)

    John R Rebula

    Full Text Available Simple optimization models show that bipedal locomotion may largely be governed by the mechanical work performed by the legs, minimization of which can automatically discover walking and running gaits. Work minimization can reproduce broad aspects of human ground reaction forces, such as a double-peaked profile for walking and a single peak for running, but the predicted peaks are unrealistically high and impulsive compared to the much smoother forces produced by humans. The smoothness might be explained better by a cost for the force rather than work produced by the legs, but it is unclear what features of force might be most relevant. We therefore tested a generalized force cost that can penalize force amplitude or its n-th time derivative, raised to the p-th power (or p-norm, across a variety of combinations for n and p. A simple model shows that this generalized force cost only produces smoother, human-like forces if it penalizes the rate rather than amplitude of force production, and only in combination with a work cost. Such a combined objective reproduces the characteristic profiles of human walking (R² = 0.96 and running (R² = 0.92, more so than minimization of either work or force amplitude alone (R² = -0.79 and R² = 0.22, respectively, for walking. Humans might find it preferable to avoid rapid force production, which may be mechanically and physiologically costly.

  8. Fingerprint-Inspired Flexible Tactile Sensor for Accurately Discerning Surface Texture.

    Science.gov (United States)

    Cao, Yudong; Li, Tie; Gu, Yang; Luo, Hui; Wang, Shuqi; Zhang, Ting

    2018-04-01

    Inspired by the epidermal-dermal and outer microstructures of the human fingerprint, a novel flexible sensor device is designed to improve haptic perception and surface texture recognition, which is consisted of single-walled carbon nanotubes, polyethylene, and polydimethylsiloxane with interlocked and outer micropyramid arrays. The sensor shows high pressure sensitivity (-3.26 kPa -1 in the pressure range of 0-300 Pa), and it can detect the shear force changes induced by the dynamic interaction between the outer micropyramid structure on the sensor and the tested material surface, and the minimum dimension of the microstripe that can be discerned is as low as 15 µm × 15 µm (interval × width). To demonstrate the texture discrimination capability, the sensors are tested for accurately discerning various surface textures, such as the textures of different fabrics, Braille characters, the inverted pyramid patterns, which will have great potential in robot skins and haptic perception, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Treatment of the pairing force by cranked HFB. A model of back-bending

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, R A [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1976-10-05

    The degenerate pairing force model, with a one-body angular momentum operator defined, is treated with the cranked HFB formalism. It is shown in detail that this treatment is accurate for all properties of states near the yrast line to order of the reciprocal of the degeneracy factor. The relevance to back-bending nuclear high-spin states is discussed.

  10. 赛博作战力量的核心能力及其建设要素初探%Discussion on Core Competencies and Construction Elements of Cyberwarfare Forces

    Institute of Scientific and Technical Information of China (English)

    张军奇; 柯宏发; 祝冀鲁

    2016-01-01

    赛博作战力量的能力建设是赛博弱国应对赛博空间安全威胁的基本方法和根本途径;从生产力和生产关系的角度分析赛博作战力量的构成与建设规律,基于赛博作战需求提出赛博作战力量必须具备侦察、指挥控制、攻击、精确摧毁、防御等5种核心能力,根据其构成提出赛博作战力量必须具备赛博装备、体制编制、赛博人才、演练训练、综合保障等五种建设要素,为合理划分赛博作战力量建设的内容和类别提供理论依据。%The fundamental way for disadvantaged countries to deal with security threats of cyberspace is to strengthen competence construction of cyberwarfare forces.Firstly,from the view of productive forces and productive relations,the composition and constructive principles of cyberwarfare forces were analyzed. Then,based on the analysis of cyberwarfare requirements,five core competencies,i.e.reconnaissance, command and control,attack,accurate destruction,defense,were considered to be necessary for cyber-warfare forces.Finally,based on the analysis of cyberwarfare composition,five construction elements,i. e.cyber equipment,system and organization,cyber personnel,maneuvers and training,comprehensive insurances were considered to be necessary for cyberwarfare forces.It’s theoretically helpful for dividing and classifying construction contents of cyberwarfare forces.

  11. Analysis of coolability of the control rods of a Savannah River Site production reactor with loss of normal forced convection cooling

    International Nuclear Information System (INIS)

    Easterling, T.C.; Hightower, N.T.; Smith, D.C.; Amos, C.N.

    1992-01-01

    An analytical study of the coolability of the control rods in the Savannah River Site (SRS) K-Production Reactor under conditions of loss of normal forced convection cooling has been performed. The study was performed as part of the overall safety analysis of the reactor supporting its restart. The analysis addresses the buoyancy-driven flow over the control rods that occurs when forced cooling is lost, and the limit of critical heat flux that sets the acceptance criteria for the study. The objective of the study is to demonstrate that the control rods will remain cooled at powers representative of those anticipated for restart of the reactor. The study accomplishes this objective with a very tractable simplified analysis for the modest restart power. In addition, a best-estimate calculation is performed, and the results are compared to results from sub-scale scoping experiments. 5 refs

  12. Synoptic events force biological productivity in Patagonian fjord ecosystems

    Science.gov (United States)

    Daneri, Giovanni

    2016-04-01

    The annual cycle of primary productivity of the Patagonian fjords has, to date, been described as a two phase system consisting of a short non productive winter phase (during June and July) and a productive phase extending from late winter (August) to autumn (May). Low levels of primary production, phytoplankton biomass and high concentrations of surface nutrients have been described as characterizing winter conditions while pulsed productivity events typifies the productivity pattern during the extended productive season. Pulsed productivity events characterize coastal waters where inorganic nutrients in surface layers are replenished following periods of intensive utilization by autotrophs. Freshwater input in Patagonian fjords in southern Chile (41-55°S) results in one of the largest estuarine regions worldwide. Here strong haline water column stratification prevents nutrient mixing to the surface layers thus potentially shutting off algal production. Our working hypothesis considered that in order to reconcile the observed pulsed productivity pattern, periodic breaking (associated to surface nutrient replenishment) and re-establishment of estuarine conditions (associated to water column stratification) would be required. Up to now however our understanding of the physical processes that control water column conditions in the Patagonian fjord area has been extremely limited. Here we present evidence linking the passage of synoptic low pressure fronts to pulsed productivity events in the Patagonian fjord area. These front controls and influence local processes of interaction between the fjord and the atmosphere generating a rapid water column response. In the specific case of the Puyuhuapi fjord we have been able to show that such synoptic fronts induce surface flow reversal and water column mixing. Phytoplankton blooming occurs after the passage of the synoptic front once calmer conditions prevail and estuarine conditions are re established. The occurrence of

  13. Reliability of force-velocity relationships during deadlift high pull.

    Science.gov (United States)

    Lu, Wei; Boyas, Sébastien; Jubeau, Marc; Rahmani, Abderrahmane

    2017-11-13

    This study aimed to evaluate the within- and between-session reliability of force, velocity and power performances and to assess the force-velocity relationship during the deadlift high pull (DHP). Nine participants performed two identical sessions of DHP with loads ranging from 30 to 70% of body mass. The force was measured by a force plate under the participants' feet. The velocity of the 'body + lifted mass' system was calculated by integrating the acceleration and the power was calculated as the product of force and velocity. The force-velocity relationships were obtained from linear regression of both mean and peak values of force and velocity. The within- and between-session reliability was evaluated by using coefficients of variation (CV) and intraclass correlation coefficients (ICC). Results showed that DHP force-velocity relationships were significantly linear (R² > 0.90, p  0.94), mean and peak velocities showed a good agreement (CV reliable and can therefore be utilised as a tool to characterise individuals' muscular profiles.

  14. The effect of swinging the arms on muscle activation and production of leg force during ski skating at different skiing speeds.

    Science.gov (United States)

    Göpfert, Caroline; Lindinger, Stefan J; Ohtonen, Olli; Rapp, Walter; Müller, Erich; Linnamo, Vesa

    2016-06-01

    The study investigated the effects of arm swing during leg push-off in V2-alternate/G4 skating on neuromuscular activation and force production by the leg muscles. Nine skilled cross-country skiers performed V2-alternate skating without poles at moderate, high, and maximal speeds, both with free (SWING) and restricted arm swing (NOSWING). Maximal speed was 5% greater in SWING (P<0.01), while neuromuscular activation and produced forces did not differ between techniques. At both moderate and high speed the maximal (2% and 5%, respectively) and average (both 5%) vertical force and associated impulse (10% and 14%) were greater with SWING (all P<0.05). At high speed range of motion and angular velocity of knee flexion were 24% greater with SWING (both P<0.05), while average EMG of m. biceps femoris was 31% lower (all P<0.05) in SWING. In a similar manner, the average EMG of m. vastus medialis and m. biceps femoris were lower (17% and 32%, P<0.05) during the following knee extension. Thus, swinging the arms while performing V2-alternate can enhance both maximal speed and skiing economy at moderate and, in particularly, high speeds. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Origins of the Non-DLVO Force between Glass Surfaces in Aqueous Solution.

    Science.gov (United States)

    Adler, Joshua J.; Rabinovich, Yakov I.; Moudgil, Brij M.

    2001-05-15

    Direct measurement of surface forces has revealed that silica surfaces seem to have a short-range repulsion that is not accounted for in classical DLVO theory. The two leading hypotheses for the origin of the non-DLVO force are (i) structuring of water at the silica interface or (ii) water penetration into the surface resulting in a gel layer. In this article, the interaction of silica surfaces will be reviewed from the perspective of the non-DLVO force origin. In an attempt to more accurately describe the behavior of silica and glass surfaces, alternative models of how surfaces with gel layers should interact are proposed. It is suggested that a lessened van der Waals attraction originating from a thin gel layer may explain both the additional stability and the coagulation behavior of silica. It is important to understand the mechanisms underlying the existence of the non-DLVO force which is likely to have a major influence on the adsorption of polymers and surfactants used to modify the silica surface for practical applications in the ceramic, mineral, and microelectronic industries. Copyright 2001 Academic Press.

  16. Accurate Evaluation of Quantum Integrals

    Science.gov (United States)

    Galant, D. C.; Goorvitch, D.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schrodinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  17. The Limitations Of Market Forces As Principal Co-Ordinator Of ...

    African Journals Online (AJOL)

    Economics the world over assume in their economic theories that the market forces are the major means of allocating resources in any economy. They generally, assume that production and consumption decisions, as well as methods of allocation of commodities are done better by the forces of demand and supply in the ...

  18. Comparative study of wall-force models for the simulation of bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Rzehak, Roland, E-mail: r.rzehak@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, POB 510119, D-01314 Dresden (Germany); Krepper, Eckhard, E-mail: E.Krepper@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, POB 510119, D-01314 Dresden (Germany); Lifante, Conxita, E-mail: Conxita.Lifante@ansys.com [ANSYS Germany GmbH, Staudenfeldweg 12, 83624 Otterfing (Germany)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Comparison of common models for the wall force with an experimental database. Black-Right-Pointing-Pointer Identification of suitable closure for bubbly flow. Black-Right-Pointing-Pointer Enables prediction of location and height of wall peak in void fraction profiles. - Abstract: Accurate numerical prediction of void-fraction profiles in bubbly multiphase-flow relies on suitable closure models for the momentum exchange between liquid and gas phases. We here consider forces acting on the bubbles in the vicinity of a wall. A number of different models for this so-called wall-force have been proposed in the literature and are implemented in widely used CFD-codes. Simulations using a selection of these models are compared with a set of experimental data on bubbly air-water flow in round pipes of different diameter. Based on the results, recommendations on suitable closures are given.

  19. Radiative forcing calculations for CH3Cl

    International Nuclear Information System (INIS)

    Grossman, A.S.; Grant, K.E.; Wuebbles, D.J.

    1994-06-01

    Methyl chloride, CH 3 Cl, is the major natural source of chlorine to the stratosphere. The production of CH 3 Cl is dominated by biological sources from the oceans and biomass burning. Production has a seasonal cycle which couples with the short lifetime of tropospheric CH 3 Cl to produce nonuniform global mixing. As an absorber of infrared radiation, CH 3 Cl is of interest for its potential affect on the tropospheric energy balance as well as for its chemical interactions. In this study, we estimate the radiative forcing and global warming potential (GWP) of CH 3 Cl. Our calculations use an infrared radiative transfer model based on the correlated k-distribution algorithm for band absorption. Global and annual average vertical profiles of temperature and trace gas concentration were assumed. The effects of clouds are modeled using three layers of global and annual average cloud optical properties. A radiative forcing value of 0.0053 W/m 2 ppbv was obtained for CH 3 Cl and is approximately linear in the background abundance. This value is about 2 percent of the forcing of CFC-11 and about 300 times the forcing of CO 2 , on a per molecule basis. The radiative forcing calculation for CH 3 Cl is used to estimate the global warming potential (GWP) of CH 3 Cl. The results give GWPs for CH 3 Cl of the order of 25 at a time of 20 years(CO 2 = 1). This result indicates that CH 3 Cl has the potential to be a major greenhouse gas if significant human related emissions were introduced into the atmosphere

  20. An accurate real-time model of maglev planar motor based on compound Simpson numerical integration

    Directory of Open Access Journals (Sweden)

    Baoquan Kou

    2017-05-01

    Full Text Available To realize the high-speed and precise control of the maglev planar motor, a more accurate real-time electromagnetic model, which considers the influence of the coil corners, is proposed in this paper. Three coordinate systems for the stator, mover and corner coil are established. The coil is divided into two segments, the straight coil segment and the corner coil segment, in order to obtain a complete electromagnetic model. When only take the first harmonic of the flux density distribution of a Halbach magnet array into account, the integration method can be carried out towards the two segments according to Lorenz force law. The force and torque analysis formula of the straight coil segment can be derived directly from Newton-Leibniz formula, however, this is not applicable to the corner coil segment. Therefore, Compound Simpson numerical integration method is proposed in this paper to solve the corner segment. With the validation of simulation and experiment, the proposed model has high accuracy and can realize practical application easily.

  1. Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics

    Science.gov (United States)

    Güntürkün, Ulaş

    2010-07-01

    This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.

  2. Investigation of Calibrating Force Transducer Using Sinusoidal Force

    International Nuclear Information System (INIS)

    Zhang Li; Wang Yu; Zhang Lizhe

    2010-01-01

    Sinusoidal force calibration method was studied several years before at Physikalisch-Technische Bundesanstalt (PTB). A similar dynamic force calibration system is developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses electro-dynamic shakers to generate dynamic force in the range from 1 N to 20 kN, and heterodyne laser interferometers are used for acceleration measurement. The force transducer to be calibrated is mounted on the shaker, and a mass block is screwed on the top of force transducer, the sinusoidal forces realized by accelerated load masses are traceable to acceleration and mass according to the force definition. The methods of determining Spatial-dependent acceleration on mass block and measuring the end mass of force transducer in dynamic force calibration are discussed in this paper.

  3. A Study of the Effect of the Fringe Fields on the Electrostatic Force in Vertical Comb Drives

    Directory of Open Access Journals (Sweden)

    Else Gallagher

    2014-10-01

    Full Text Available The equation that describes the relationship between the applied voltage and the resulting electrostatic force within comb drives is often used to assist in choosing the dimensions for their design. This paper re-examines how some of these dimensions—particularly the cross-sectional dimensions of the comb teeth—affect this relationship in vertical comb drives. The electrostatic forces in several vertical comb drives fabricated for this study were measured and compared to predictions made with four different mathematical models in order to explore the amount of complexity required within a model to accurately predict the electrostatic forces in the comb drives.

  4. Anterior cruciate ligament tear induces a sustained loss of muscle fiber force production.

    Science.gov (United States)

    Gumucio, Jonathan P; Sugg, Kristoffer B; Enselman, Elizabeth R Sibilsky; Konja, Alexis C; Eckhardt, Logan R; Bedi, Asheesh; Mendias, Christopher L

    2018-01-18

    Patients with anterior cruciate ligament (ACL) tears have persistent quadriceps strength deficits that are thought to be due to altered neurophysiological function. Our goal was to determine the changes in muscle fiber contractility independent of the ability of motor neurons to activate fibers. We obtained quadriceps biopsies of patients undergoing ACL reconstruction, and additional biopsies 1, 2, and 6 months after surgery. Muscles fiber contractility was assessed in vitro, along with whole muscle strength testing. Compared with controls, patients had a 30% reduction in normalized muscle fiber force at the time of surgery. One month later, the force deficit was 41%, and at 6 months the deficit was 23%. Whole muscle strength testing demonstrated similar trends. While neurophysiological dysfunction contributes to whole muscle weakness, there is also a reduction in the force generating capacity of individual muscle cells independent of alpha motor neuron activation. Muscle Nerve, 2018. © 2018 Wiley Periodicals, Inc.

  5. Study of Adhesion Interaction Using Atomic Force Microscopy

    Science.gov (United States)

    Grybos, J.; Pyka-Fosciak, G.; Lebed, K.; Lekka, M.; Stachura, Z.; Styczeñ, J.

    2003-05-01

    An atomic force microscope is a useful tool to study the interaction forces at molecular level. In particular the atomic force microscope can measure an unbinding force needed to separate the two single molecule complexes. Recent studies have shown that such unbinding force depends linearly on the logarithm of the applied loading rate, defined as a product of scanning velocity and the spring constant characterizing the investigated system (cantilever vs. surface). This dependence can be used to study the energy landscape shape of a molecular complex by the estimation of energy barrier locations and the related dissociation rates. In the present work the complex consisting of ethylene(di)aminetetraacetic acid and the bovine serum albumin was measured. The dependence between the unbinding force and the logarithm of the loading rate was linear. Using the Bell model describing the dissociation of the above molecules caused by the action of the external bond breaking force, two parameters were estimated: the dissociation rate and the position of the energy barrier needed to overcome during a transition from a bound to unbound state. The obtained results are similar to those obtained for a typical ligand--receptor interaction.

  6. Laboratory versus industrial cutting force sensor in tool condition monitoring system

    International Nuclear Information System (INIS)

    Szwajka, K

    2005-01-01

    Research works concerning the utilisation of cutting force measures in tool condition monitoring usually present results and deliberations based on laboratory sensors. These sensors are too fragile to be used in industrial practice. Industrial sensors employed on the factory floor are less accurate, and this must be taken into account when creating a tool condition monitoring strategy. Another drawback of most of these works is that constant cutting parameters are used for the entire tool life. This does not reflect industrial practice where the same tool is used at different feeds and depths of cut in sequential passes. This paper presents a comparison of signals originating from laboratory and industrial cutting force sensors. The usability of the sensor output was studied during a laboratory simulation of industrial cutting conditions. Instead of building mathematical models for the correlation between tool wear and cutting force, an FFBP artificial neural network was used to find which combination of input data would provide an acceptable estimation of tool wear. The results obtained proved that cross talk between channels has an important influence on cutting force measurements, however this input configuration can be used for a tool condition monitoring system

  7. Physical Limitations of Empirical Field Models: Force Balance and Plasma Pressure

    International Nuclear Information System (INIS)

    Sorin Zaharia; Cheng, C.Z.

    2002-01-01

    In this paper, we study whether the magnetic field of the T96 empirical model can be in force balance with an isotropic plasma pressure distribution. Using the field of T96, we obtain values for the pressure P by solving a Poisson-type equation (gradient) 2 P = (gradient) · (J x B) in the equatorial plane, and 1-D profiles on the Sun-Earth axis by integrating (gradient)P = J x B. We work in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials. Our results lead to the conclusion that the T96 model field cannot be in equilibrium with an isotropic pressure. We also analyze in detail the computation of Birkeland currents using the Vasyliunas relation and the T96 field, which yields unphysical results, again indicating the lack of force balance in the empirical model. The underlying reason for the force imbalance is likely the fact that the derivatives of the least-square fitted model B are not accurate predictions of the actual magnetospheric field derivatives. Finally, we discuss a possible solution to the problem of lack of force balance in empirical field models

  8. Axial and Radial Forces of Cross-Bridges Depend on Lattice Spacing

    Science.gov (United States)

    Williams, C. David; Regnier, Michael; Daniel, Thomas L.

    2010-01-01

    Nearly all mechanochemical models of the cross-bridge treat myosin as a simple linear spring arranged parallel to the contractile filaments. These single-spring models cannot account for the radial force that muscle generates (orthogonal to the long axis of the myofilaments) or the effects of changes in filament lattice spacing. We describe a more complex myosin cross-bridge model that uses multiple springs to replicate myosin's force-generating power stroke and account for the effects of lattice spacing and radial force. The four springs which comprise this model (the 4sXB) correspond to the mechanically relevant portions of myosin's structure. As occurs in vivo, the 4sXB's state-transition kinetics and force-production dynamics vary with lattice spacing. Additionally, we describe a simpler two-spring cross-bridge (2sXB) model which produces results similar to those of the 4sXB model. Unlike the 4sXB model, the 2sXB model requires no iterative techniques, making it more computationally efficient. The rate at which both multi-spring cross-bridges bind and generate force decreases as lattice spacing grows. The axial force generated by each cross-bridge as it undergoes a power stroke increases as lattice spacing grows. The radial force that a cross-bridge produces as it undergoes a power stroke varies from expansive to compressive as lattice spacing increases. Importantly, these results mirror those for intact, contracting muscle force production. PMID:21152002

  9. Approaching system equilibrium with accurate or not accurate feedback information in a two-route system

    Science.gov (United States)

    Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi

    2015-02-01

    With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.

  10. Efficient forced vibration reanalysis method for rotating electric machines

    Science.gov (United States)

    Saito, Akira; Suzuki, Hiromitsu; Kuroishi, Masakatsu; Nakai, Hideo

    2015-01-01

    Rotating electric machines are subject to forced vibration by magnetic force excitation with wide-band frequency spectrum that are dependent on the operating conditions. Therefore, when designing the electric machines, it is inevitable to compute the vibration response of the machines at various operating conditions efficiently and accurately. This paper presents an efficient frequency-domain vibration analysis method for the electric machines. The method enables the efficient re-analysis of the vibration response of electric machines at various operating conditions without the necessity to re-compute the harmonic response by finite element analyses. Theoretical background of the proposed method is provided, which is based on the modal reduction of the magnetic force excitation by a set of amplitude-modulated standing-waves. The method is applied to the forced response vibration of the interior permanent magnet motor at a fixed operating condition. The results computed by the proposed method agree very well with those computed by the conventional harmonic response analysis by the FEA. The proposed method is then applied to the spin-up test condition to demonstrate its applicability to various operating conditions. It is observed that the proposed method can successfully be applied to the spin-up test conditions, and the measured dominant frequency peaks in the frequency response can be well captured by the proposed approach.

  11. Rapid parameterization of small molecules using the Force Field Toolkit.

    Science.gov (United States)

    Mayne, Christopher G; Saam, Jan; Schulten, Klaus; Tajkhorshid, Emad; Gumbart, James C

    2013-12-15

    The inability to rapidly generate accurate and robust parameters for novel chemical matter continues to severely limit the application of molecular dynamics simulations to many biological systems of interest, especially in fields such as drug discovery. Although the release of generalized versions of common classical force fields, for example, General Amber Force Field and CHARMM General Force Field, have posited guidelines for parameterization of small molecules, many technical challenges remain that have hampered their wide-scale extension. The Force Field Toolkit (ffTK), described herein, minimizes common barriers to ligand parameterization through algorithm and method development, automation of tedious and error-prone tasks, and graphical user interface design. Distributed as a VMD plugin, ffTK facilitates the traversal of a clear and organized workflow resulting in a complete set of CHARMM-compatible parameters. A variety of tools are provided to generate quantum mechanical target data, setup multidimensional optimization routines, and analyze parameter performance. Parameters developed for a small test set of molecules using ffTK were comparable to existing CGenFF parameters in their ability to reproduce experimentally measured values for pure-solvent properties (<15% error from experiment) and free energy of solvation (±0.5 kcal/mol from experiment). Copyright © 2013 Wiley Periodicals, Inc.

  12. Memory-guided force control in healthy younger and older adults.

    Science.gov (United States)

    Neely, Kristina A; Samimy, Shaadee; Blouch, Samantha L; Wang, Peiyuan; Chennavasin, Amanda; Diaz, Michele T; Dennis, Nancy A

    2017-08-01

    Successful performance of a memory-guided motor task requires participants to store and then recall an accurate representation of the motor goal. Further, participants must monitor motor output to make adjustments in the absence of visual feedback. The goal of this study was to examine memory-guided grip force in healthy younger and older adults and compare it to performance on behavioral tasks of working memory. Previous work demonstrates that healthy adults decrease force output as a function of time when visual feedback is not available. We hypothesized that older adults would decrease force output at a faster rate than younger adults, due to age-related deficits in working memory. Two groups of participants, younger adults (YA: N = 32, mean age 21.5 years) and older adults (OA: N = 33, mean age 69.3 years), completed four 20-s trials of isometric force with their index finger and thumb, equal to 25% of their maximum voluntary contraction. In the full-vision condition, visual feedback was available for the duration of the trial. In the no vision condition, visual feedback was removed for the last 12 s of each trial. Participants were asked to maintain constant force output in the absence of visual feedback. Participants also completed tasks of word recall and recognition and visuospatial working memory. Counter to our predictions, when visual feedback was removed, younger adults decreased force at a faster rate compared to older adults and the rate of decay was not associated with behavioral performance on tests of working memory.

  13. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    Science.gov (United States)

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-05

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  14. New analysis procedure for fast and reliable size measurement of nanoparticles from atomic force microscopy images

    International Nuclear Information System (INIS)

    Boyd, Robert D.; Cuenat, Alexandre

    2011-01-01

    Accurate size measurement during nanoparticle production is essential for the continuing innovation, quality and safety of nano-enabled products. Size measurement by analysing a number of separate particles individually has particular advantages over ensemble methods. In the latter case nanoparticles have to be well dispersed in a fluid and changes that may occur during analysis, such as agglomeration and degradation, will not be detected which could lead to misleading results. Atomic force microscopy (AFM) allows imaging of particles both in air and liquid, however, the strong interactions between the probe and the particle will cause the broadening of the lateral dimension in the final image. In this paper a new procedure to measure the size of spherical nanoparticles from AFM images via vertical height measurement is described. This procedure will quickly analyse hundred of particles simultaneously and reproduce the measurements obtained from electron microscopy (EM). Nanoparticles samples that were difficult, if not impossible, to analyse with EM were successfully measured using this method. The combination of this procedure with the use of a metrological AFM moves closer to true traceable measurements of nanoparticle dispersions.

  15. Dynamic simulation of knee-joint loading during gait using force-feedback control and surrogate contact modelling.

    Science.gov (United States)

    Walter, Jonathan P; Pandy, Marcus G

    2017-10-01

    The aim of this study was to perform multi-body, muscle-driven, forward-dynamics simulations of human gait using a 6-degree-of-freedom (6-DOF) model of the knee in tandem with a surrogate model of articular contact and force control. A forward-dynamics simulation incorporating position, velocity and contact force-feedback control (FFC) was used to track full-body motion capture data recorded for multiple trials of level walking and stair descent performed by two individuals with instrumented knee implants. Tibiofemoral contact force errors for FFC were compared against those obtained from a standard computed muscle control algorithm (CMC) with a 6-DOF knee contact model (CMC6); CMC with a 1-DOF translating hinge-knee model (CMC1); and static optimization with a 1-DOF translating hinge-knee model (SO). Tibiofemoral joint loads predicted by FFC and CMC6 were comparable for level walking, however FFC produced more accurate results for stair descent. SO yielded reasonable predictions of joint contact loading for level walking but significant differences between model and experiment were observed for stair descent. CMC1 produced the least accurate predictions of tibiofemoral contact loads for both tasks. Our findings suggest that reliable estimates of knee-joint loading may be obtained by incorporating position, velocity and force-feedback control with a multi-DOF model of joint contact in a forward-dynamics simulation of gait. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Random three-dimensional jammed packings of elastic shells acting as force sensors

    Science.gov (United States)

    Jose, Jissy; van Blaaderen, Alfons; Imhof, Arnout

    2016-06-01

    In a jammed solid of granular particles, the applied stress is in-homogeneously distributed within the packing. A full experimental characterization requires measurement of all the interparticle forces, but so far such measurements are limited to a few systems in two and even fewer in three dimensions. Particles with the topology of (elastic) shells are good local force sensors as relatively large deformations of the shells result from relatively small forces. We recently introduced such fluorescent shells as a model granular system in which force distributions can be determined in three dimensions using confocal microscopy and quantitative image analysis. An interesting aspect about these shells that differentiates them from other soft deformable particles is their buckling behavior at higher compression. This leads to deformations that do not conserve the inner volume of the particle. Here we use this system to accurately measure the contact forces in a three-dimensional packing of shells subjected to a static anisotropic compression and to shear. At small deformations forces are linear, however, for a buckled contact, the restoring force is related to the amount of deformation by a square root law, as follows from the theory of elasticity of shells. Near the unjamming-jamming transition (point J ), we found the probability distribution of the interparticle forces P (f ) to decay nearly exponentially at large forces, with little evidence of long-range force chains in the packings. As the packing density is increased, the tail of the distribution was found to crossover to a Gaussian, in line with other experimental and simulation studies. Under a small shear strain, up to 0.216, applied at an extremely low shear rate, we observed a shear-induced anisotropy in both the pair correlation function and contact force network; however, no appreciable change was seen in the number of contacts per particle.

  17. Force balance in the take-off of a pierid butterfly: relative importance and timing of leg impulsion and aerodynamic forces.

    Science.gov (United States)

    Bimbard, Gaëlle; Kolomenskiy, Dmitry; Bouteleux, Olivier; Casas, Jérôme; Godoy-Diana, Ramiro

    2013-09-15

    Up to now, the take-off stage has remained an elusive phase of insect flight that was relatively poorly explored compared with other maneuvers. An overall assessment of the different mechanisms involved in force production during take-off has never been explored. Focusing on the first downstroke, we have addressed this problem from a force balance perspective in butterflies taking off from the ground. In order to determine whether the sole aerodynamic wing force could explain the observed motion of the insect, we have firstly compared a simple analytical model of the wing force with the acceleration of the insect's center of mass estimated from video tracking of the wing and body motions. Secondly, wing kinematics were also used for numerical simulations of the aerodynamic flow field. Similar wing aerodynamic forces were obtained by the two methods. However, neither are sufficient, nor is the inclusion of the ground effect, to predict faithfully the body acceleration. We have to resort to the leg forces to obtain a model that best fits the data. We show that the median and hind legs display an active extension responsible for the initiation of the upward motion of the insect's body, occurring before the onset of the wing downstroke. We estimate that legs generate, at various times, an upward force that can be much larger than all other forces applied to the insect's body. The relative timing of leg and wing forces explains the large variability of trajectories observed during the maneuvers.

  18. Circuit Design of Surface Acoustic Wave Based Micro Force Sensor

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2014-01-01

    Full Text Available Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established to analyze the frequency, and a peripheral circuit is designed to measure the micro force. The SAW based micro force sensor is tested to show the reasonable design of detection circuit and the stability of frequency and amplitude.

  19. Match your sales force structure to your business life cycle.

    Science.gov (United States)

    Zoltners, Andris A; Sinha, Prabhakant; Lorimer, Sally E

    2006-01-01

    Although companies devote considerable time and money to managing their sales forces, few focus much thought on how the structure of the sales force needs to change over the life cycle of a product or a business. However, the organization and goals of a sales operation have to evolve as businesses start up, grow, mature, and decline if a company wants to keep winning the race for customers. Specifically, firms must consider and alter four factors over time: the differing roles that internal salespeople and external selling partners should play, the size of the sales force, its degree of specialization, and how salespeople apportion their efforts among different customers, products, and activities. These variables are critical because they determine how quickly sales forces respond to market opportunities, they influence sales reps' performance, and they affect companies' revenues, costs, and profitability. In this article, the authors use timeseries data and cases to explain how, at each stage, firms can best tackle the relevant issues and get the most out of their sales forces. During start-up, smart companies focus on how big their sales staff should be and on whether they can depend upon selling partners. In the growth phase, they concentrate on getting the sales force's degree of specialization and size right. When businesses hit maturity, companies should better allocate existing resources and hire more general-purpose salespeople. Finally, as organizations go into decline, wise sales leaders reduce sales force size and use partners to keep the business afloat for as long as possible.

  20. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing

    Science.gov (United States)

    Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen; Goldstein, Allen H.; Guenther, Alex B.; Jimenez, Jose L.; Kuang, Chongai; Laskin, Alexander; Martin, Scot T.; Ng, Nga Lee; Petaja, Tuukka; Pierce, Jeffrey R.; Rasch, Philip J.; Roldin, Pontus; Seinfeld, John H.; Shilling, John; Smith, James N.; Thornton, Joel A.; Volkamer, Rainer; Wang, Jian; Worsnop, Douglas R.; Zaveri, Rahul A.; Zelenyuk, Alla; Zhang, Qi

    2017-06-01

    Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate models typically do not comprehensively include all important processes. This review summarizes some of the important developments during the past decade in understanding SOA formation. We highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.

  1. A Muscle’s Force Depends on the Recruitment Patterns of Its Fibers

    Science.gov (United States)

    Wakeling, James M.; Lee, Sabrina S. M.; Arnold, Allison S.; de Boef Miara, Maria; Biewener, Andrew A.

    2012-01-01

    Biomechanical models of whole muscles commonly used in simulations of musculoskeletal function and movement typically assume that the muscle generates force as a scaled-up muscle fiber. However, muscles are comprised of motor units that have different intrinsic properties and that can be activated at different times. This study tested whether a muscle model comprised of motor units that could be independently activated resulted in more accurate predictions of force than traditional Hill-type models. Forces predicted by the models were evaluated by direct comparison with the muscle forces measured in situ from the gastrocnemii in goats. The muscle was stimulated tetanically at a range of frequencies, muscle fiber strains were measured using sonomicrometry, and the activation patterns of the different types of motor unit were calculated from electromyographic recordings. Activation patterns were input into five different muscle models. Four models were traditional Hill-type models with different intrinsic speeds and fiber-type properties. The fifth model incorporated differential groups of fast and slow motor units. For all goats, muscles and stimulation frequencies the differential model resulted in the best predictions of muscle force. The in situ muscle output was shown to depend on the recruitment of different motor units within the muscle. PMID:22350666

  2. Simultaneous fitting of a potential-energy surface and its corresponding force fields using feedforward neural networks

    Science.gov (United States)

    Pukrittayakamee, A.; Malshe, M.; Hagan, M.; Raff, L. M.; Narulkar, R.; Bukkapatnum, S.; Komanduri, R.

    2009-04-01

    An improved neural network (NN) approach is presented for the simultaneous development of accurate potential-energy hypersurfaces and corresponding force fields that can be utilized to conduct ab initio molecular dynamics and Monte Carlo studies on gas-phase chemical reactions. The method is termed as combined function derivative approximation (CFDA). The novelty of the CFDA method lies in the fact that although the NN has only a single output neuron that represents potential energy, the network is trained in such a way that the derivatives of the NN output match the gradient of the potential-energy hypersurface. Accurate force fields can therefore be computed simply by differentiating the network. Both the computed energies and the gradients are then accurately interpolated using the NN. This approach is superior to having the gradients appear in the output layer of the NN because it greatly simplifies the required architecture of the network. The CFDA permits weighting of function fitting relative to gradient fitting. In every test that we have run on six different systems, CFDA training (without a validation set) has produced smaller out-of-sample testing error than early stopping (with a validation set) or Bayesian regularization (without a validation set). This indicates that CFDA training does a better job of preventing overfitting than the standard methods currently in use. The training data can be obtained using an empirical potential surface or any ab initio method. The accuracy and interpolation power of the method have been tested for the reaction dynamics of H+HBr using an analytical potential. The results show that the present NN training technique produces more accurate fits to both the potential-energy surface as well as the corresponding force fields than the previous methods. The fitting and interpolation accuracy is so high (rms error=1.2 cm-1) that trajectories computed on the NN potential exhibit point-by-point agreement with corresponding

  3. Rigorous force field optimization principles based on statistical distance minimization

    Energy Technology Data Exchange (ETDEWEB)

    Vlcek, Lukas, E-mail: vlcekl1@ornl.gov [Chemical Sciences Division, Geochemistry & Interfacial Sciences Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110 (United States); Joint Institute for Computational Sciences, University of Tennessee, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6173 (United States); Chialvo, Ariel A. [Chemical Sciences Division, Geochemistry & Interfacial Sciences Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110 (United States)

    2015-10-14

    We use the concept of statistical distance to define a measure of distinguishability between a pair of statistical mechanical systems, i.e., a model and its target, and show that its minimization leads to general convergence of the model’s static measurable properties to those of the target. We exploit this feature to define a rigorous basis for the development of accurate and robust effective molecular force fields that are inherently compatible with coarse-grained experimental data. The new model optimization principles and their efficient implementation are illustrated through selected examples, whose outcome demonstrates the higher robustness and predictive accuracy of the approach compared to other currently used methods, such as force matching and relative entropy minimization. We also discuss relations between the newly developed principles and established thermodynamic concepts, which include the Gibbs-Bogoliubov inequality and the thermodynamic length.

  4. Resonant passive–active vibration absorber with integrated force feedback control

    International Nuclear Information System (INIS)

    Høgsberg, Jan; Brodersen, Mark L; Krenk, Steen

    2016-01-01

    A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control with the difference in force between the two passive elements as input. This format allows passive and active contributions to be combined arbitrarily within the hybrid unit, which results in a versatile absorber format with guaranteed closed-loop stability. This is demonstrated for resonant absorbers with inertia realized passively by a mechanical inerter or actively by the integrated force feedback. Accurate calibration formulae are presented for two particular absorber configurations and the performance is subsequently demonstrated with respect to both equal modal damping and effective response reduction. (technical note)

  5. The Effects of Cryotherapy on Knee Joint Position Sense and Force Production Sense in Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Furmanek Mariusz P.

    2018-03-01

    Full Text Available The proprioceptive information received from mechanoreceptors is potentially responsible for controlling the joint position and force differentiation. However, it is unknown whether cryotherapy influences this complex mechanism. Previously reported results are not universally conclusive and sometimes even contradictory. The main objective of this study was to investigate the impact of local cryotherapy on knee joint position sense (JPS and force production sense (FPS. The study group consisted of 55 healthy participants (age: 21 ± 2 years, body height: 171.2 ± 9 cm, body mass: 63.3 ± 12 kg, BMI: 21.5 ± 2.6. Local cooling was achieved with the use of gel-packs cooled to -2 ± 2.5°C and applied simultaneously over the knee joint and the quadriceps femoris muscle for 20 minutes. JPS and FPS were evaluated using the Biodex System 4 Pro apparatus. Repeated measures analysis of variance (ANOVA did not show any statistically significant changes of the JPS and FPS under application of cryotherapy for all analyzed variables: the JPS’s absolute error (p = 0.976, its relative error (p = 0.295, and its variable error (p = 0.489; the FPS’s absolute error (p = 0.688, its relative error (p = 0.193, and its variable error (p = 0.123. The results indicate that local cooling does not affect proprioceptive acuity of the healthy knee joint. They also suggest that local limited cooling before physical activity at low velocity did not present health or injury risk in this particular study group.

  6. The Effects of Cryotherapy on Knee Joint Position Sense and Force Production Sense in Healthy Individuals

    Science.gov (United States)

    Furmanek, Mariusz P.; Słomka, Kajetan J.; Sobiesiak, Andrzej; Rzepko, Marian; Juras, Grzegorz

    2018-01-01

    Abstract The proprioceptive information received from mechanoreceptors is potentially responsible for controlling the joint position and force differentiation. However, it is unknown whether cryotherapy influences this complex mechanism. Previously reported results are not universally conclusive and sometimes even contradictory. The main objective of this study was to investigate the impact of local cryotherapy on knee joint position sense (JPS) and force production sense (FPS). The study group consisted of 55 healthy participants (age: 21 ± 2 years, body height: 171.2 ± 9 cm, body mass: 63.3 ± 12 kg, BMI: 21.5 ± 2.6). Local cooling was achieved with the use of gel-packs cooled to -2 ± 2.5°C and applied simultaneously over the knee joint and the quadriceps femoris muscle for 20 minutes. JPS and FPS were evaluated using the Biodex System 4 Pro apparatus. Repeated measures analysis of variance (ANOVA) did not show any statistically significant changes of the JPS and FPS under application of cryotherapy for all analyzed variables: the JPS’s absolute error (p = 0.976), its relative error (p = 0.295), and its variable error (p = 0.489); the FPS’s absolute error (p = 0.688), its relative error (p = 0.193), and its variable error (p = 0.123). The results indicate that local cooling does not affect proprioceptive acuity of the healthy knee joint. They also suggest that local limited cooling before physical activity at low velocity did not present health or injury risk in this particular study group. PMID:29599858

  7. Chronic clenbuterol treatment compromises force production without directly altering skeletal muscle contractile machinery

    Science.gov (United States)

    Py, G; Ramonatxo, C; Sirvent, P; Sanchez, A M J; Philippe, A G; Douillard, A; Galbès, O; Lionne, C; Bonnieu, A; Chopard, A; Cazorla, O; Lacampagne, A; Candau, R B

    2015-01-01

    Clenbuterol is a β2-adrenergic receptor agonist known to induce skeletal muscle hypertrophy and a slow-to-fast phenotypic shift. The aim of the present study was to test the effects of chronic clenbuterol treatment on contractile efficiency and explore the underlying mechanisms, i.e. the muscle contractile machinery and calcium-handling ability. Forty-three 6-week-old male Wistar rats were randomly allocated to one of six groups that were treated with either subcutaneous equimolar doses of clenbuterol (4 mg kg−1 day−1) or saline solution for 9, 14 or 21 days. In addition to the muscle hypertrophy, although an 89% increase in absolute maximal tetanic force (Po) was noted, specific maximal tetanic force (sPo) was unchanged or even depressed in the slow twitch muscle of the clenbuterol-treated rats (P muscle contraction and relaxation force kinetics indicated that clenbuterol treatment significantly reduced the rate constant of force development and the slow and fast rate constants of relaxation in extensor digitorum longus muscle (P fast rate constant of relaxation in soleus muscle (P fibres (fast twitch fibres) from clenbuterol-treated animals demonstrated decreased amplitude after 14 days (−19%, P < 0.01) and 21 days (−25%, P < 0.01). In conclusion, we showed that chronic clenbuterol treatment reduces contractile efficiency, with altered contraction and relaxation kinetics, but without directly altering the contractile machinery. Lower Ca2+ release during contraction could partially explain these deleterious effects. PMID:25656230

  8. Prediction of dynamic cutting force and regenerative chatter stability in inserted cutters milling

    Science.gov (United States)

    Li, Zhongqun; Liu, Qiang; Yuan, Songmei; Huang, Kaisheng

    2013-05-01

    Currently, the modeling of cutting process mainly focuses on two aspects: one is the setup of the universal cutting force model that can be adapted to a broader cutting condition; the other is the setup of the exact cutting force model that can accurately reflect a true cutting process. However, there is little research on the prediction of chatter stablity in milling. Based on the generalized mathematical model of inserted cutters introduced by ENGIN, an improved geometrical, mechanical and dynamic model for the vast variety of inserted cutters widely used in engineering applications is presented, in which the average directional cutting force coefficients are obtained by means of a numerical approach, thus leading to an analytical determination of stability lobes diagram (SLD) on the axial depth of cut. A new kind of SLD on the radial depth of cut is also created to satisfy the special requirement of inserted cutter milling. The corresponding algorithms used for predicting cutting forces, vibrations, dimensional surface finish and stability lobes in inserted cutter milling under different cutting conditions are put forward. Thereafter, a dynamic simulation module of inserted cutter milling is implemented by using hybrid program of Matlab with Visual Basic. Verification tests are conducted on a vertical machine center for Aluminum alloy LC4 by using two different types of inserted cutters, and the effectiveness of the model and the algorithm is verified by the good agreement of simulation result with that of cutting tests under different cutting conditions. The proposed model can predict the cutting process accurately under a variety of cutting conditions, and a high efficient and chatter-free milling operation can be achieved by a cutting condition optimization in industry applications.

  9. Electromyographic signal and force comparisons during maximal voluntary isometric contraction in water and on dry land.

    Science.gov (United States)

    Pinto, Stephanie Santana; Liedtke, Giane Veiga; Alberton, Cristine Lima; da Silva, Eduardo Marczwski; Cadore, Eduardo Lusa; Kruel, Luiz Fernando Martins

    2010-11-01

    This study was designed to compare surface electromyographic (sEMG) signal and force production during maximal voluntary isometric contractions (MVCs) in water and on dry land. The reproducibility of sEMG and isometric force measurements between water and dry land environments was also assessed. Nine women performed MVC for elbow flexion and extension, hip flexion, and extension against identical fixed resistance in both environments. The sEMG signal from biceps brachii, triceps brachii, rectus femoris, and biceps femoris was recorded with waterproof adhesives placed over each electrode. The sEMG and force production showed no significant difference between water and dry land, except for HEX (p = 0.035). In addition, intraclass correlation coefficient values were significant and ranged from moderate to high (0.66-0.96) for sEMG and force production between environments. These results showed that the environment did not influence the sEMG and force in MVC.

  10. Accurate and emergent applications for high precision light small aerial remote sensing system

    Science.gov (United States)

    Pei, Liu; Yingcheng, Li; Yanli, Xue; Qingwu, Hu; Xiaofeng, Sun

    2014-03-01

    In this paper, we focus on the successful applications of accurate and emergent surveying and mapping for high precision light small aerial remote sensing system. First, the remote sensing system structure and three integrated operation modes will be introduced. It can be combined to three operation modes depending on the application requirements. Second, we describe the preliminary results of a precision validation method for POS direct orientation in 1:500 mapping. Third, it presents two fast response mapping products- regional continuous three-dimensional model and digital surface model, taking the efficiency and accuracy evaluation of the two products as an important point. The precision of both products meets the 1:2 000 topographic map accuracy specifications in Pingdingshan area. In the end, conclusions and future work are summarized.

  11. Accurate and emergent applications for high precision light small aerial remote sensing system

    International Nuclear Information System (INIS)

    Pei, Liu; Yingcheng, Li; Yanli, Xue; Xiaofeng, Sun; Qingwu, Hu

    2014-01-01

    In this paper, we focus on the successful applications of accurate and emergent surveying and mapping for high precision light small aerial remote sensing system. First, the remote sensing system structure and three integrated operation modes will be introduced. It can be combined to three operation modes depending on the application requirements. Second, we describe the preliminary results of a precision validation method for POS direct orientation in 1:500 mapping. Third, it presents two fast response mapping products- regional continuous three-dimensional model and digital surface model, taking the efficiency and accuracy evaluation of the two products as an important point. The precision of both products meets the 1:2 000 topographic map accuracy specifications in Pingdingshan area. In the end, conclusions and future work are summarized

  12. Polyphilic Interactions as Structural Driving Force Investigated by Molecular Dynamics Simulation (Project 7

    Directory of Open Access Journals (Sweden)

    Christopher Peschel

    2017-09-01

    Full Text Available We investigated the effect of fluorinated molecules on dipalmitoylphosphatidylcholine (DPPC bilayers by force-field molecular dynamics simulations. In the first step, we developed all-atom force-field parameters for additive molecules in membranes to enable an accurate description of those systems. On the basis of this force field, we performed extensive simulations of various bilayer systems containing different additives. The additive molecules were chosen to be of different size and shape, and they included small molecules such as perfluorinated alcohols, but also more complex molecules. From these simulations, we investigated the structural and dynamic effects of the additives on the membrane properties, as well as the behavior of the additive molecules themselves. Our results are in good agreement with other theoretical and experimental studies, and they contribute to a microscopic understanding of interactions, which might be used to specifically tune membrane properties by additives in the future.

  13. A balanced ATP driving force module for enhancing photosynthetic biosynthesis of 3-hydroxybutyrate from CO2.

    Science.gov (United States)

    Ku, Jason T; Lan, Ethan I

    2018-03-01

    Using engineered photoautotrophic microorganisms for the direct chemical synthesis from CO 2 is an attractive direction for both sustainability and CO 2 mitigation. However, the behaviors of non-native metabolic pathways may be difficult to control due to the different intracellular contexts between natural and heterologous hosts. While most metabolic engineering efforts focus on strengthening driving forces in pathway design to favor biochemical production in these organisms, excessive driving force may be detrimental to product biosynthesis due to imbalanced cellular intermediate distribution. In this study, an ATP-hydrolysis based driving force module was engineered into cyanobacterium Synechococcus elongatus PCC 7942 to produce 3-hydroxybutyrate (3HB), a valuable chemical feedstock for the synthesis of biodegradable plastics and antibiotics. However, while the ATP driving force module is effective for increasing product formation, uncontrolled accumulation of intermediate metabolites likely led to metabolic imbalance and thus to cell growth inhibition. Therefore, the ATP driving force module was reengineered by providing a reversible outlet for excessive carbon flux. Upon expression of this balanced ATP driving force module with 3HB biosynthesis, engineered strain produced 3HB with a cumulative titer of 1.2 g/L, a significant increase over the initial strain. This result highlighted the importance of pathway reversibility as an effective design strategy for balancing driving force and intermediate accumulation, thereby achieving a self-regulated control for increased net flux towards product biosynthesis. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Validation of Multibody Program to Optimize Simulated Trajectories II Parachute Simulation with Interacting Forces

    Science.gov (United States)

    Raiszadeh, Behzad; Queen, Eric M.; Hotchko, Nathaniel J.

    2009-01-01

    A capability to simulate trajectories of multiple interacting rigid bodies has been developed, tested and validated. This capability uses the Program to Optimize Simulated Trajectories II (POST 2). The standard version of POST 2 allows trajectory simulation of multiple bodies without force interaction. In the current implementation, the force interaction between the parachute and the suspended bodies has been modeled using flexible lines, allowing accurate trajectory simulation of the individual bodies in flight. The POST 2 multibody capability is intended to be general purpose and applicable to any parachute entry trajectory simulation. This research paper explains the motivation for multibody parachute simulation, discusses implementation methods, and presents validation of this capability.

  15. Perspective: Ab initio force field methods derived from quantum mechanics

    Science.gov (United States)

    Xu, Peng; Guidez, Emilie B.; Bertoni, Colleen; Gordon, Mark S.

    2018-03-01

    It is often desirable to accurately and efficiently model the behavior of large molecular systems in the condensed phase (thousands to tens of thousands of atoms) over long time scales (from nanoseconds to milliseconds). In these cases, ab initio methods are difficult due to the increasing computational cost with the number of electrons. A more computationally attractive alternative is to perform the simulations at the atomic level using a parameterized function to model the electronic energy. Many empirical force fields have been developed for this purpose. However, the functions that are used to model interatomic and intermolecular interactions contain many fitted parameters obtained from selected model systems, and such classical force fields cannot properly simulate important electronic effects. Furthermore, while such force fields are computationally affordable, they are not reliable when applied to systems that differ significantly from those used in their parameterization. They also cannot provide the information necessary to analyze the interactions that occur in the system, making the systematic improvement of the functional forms that are used difficult. Ab initio force field methods aim to combine the merits of both types of methods. The ideal ab initio force fields are built on first principles and require no fitted parameters. Ab initio force field methods surveyed in this perspective are based on fragmentation approaches and intermolecular perturbation theory. This perspective summarizes their theoretical foundation, key components in their formulation, and discusses key aspects of these methods such as accuracy and formal computational cost. The ab initio force fields considered here were developed for different targets, and this perspective also aims to provide a balanced presentation of their strengths and shortcomings. Finally, this perspective suggests some future directions for this actively developing area.

  16. A Scheme for Solving the Plane–Plane Challenge in Force Measurements at the Nanoscale

    Directory of Open Access Journals (Sweden)

    Comin Fabio

    2010-01-01

    Full Text Available Abstract Non-contact interaction between two parallel flat surfaces is a central paradigm in sciences. This situation is the starting point for a wealth of different models: the capacitor description in electrostatics, hydrodynamic flow, thermal exchange, the Casimir force, direct contact study, third body confinement such as liquids or films of soft condensed matter. The control of parallelism is so demanding that no versatile single force machine in this geometry has been proposed so far. Using a combination of nanopositioning based on inertial motors, of microcrystal shaping with a focused-ion beam (FIB and of accurate in situ and real-time control of surface parallelism with X-ray diffraction, we propose here a “gedanken” surface-force machine that should enable one to measure interactions between movable surfaces separated by gaps in the micrometer and nanometer ranges.

  17. Subatomic forces

    International Nuclear Information System (INIS)

    Sutton, C.

    1989-01-01

    Inside the atom, particles interact through two forces which are never felt in the everyday world. But they may hold the key to the Universe. These ideas on subatomic forces are discussed with respect to the strong force, the electromagnetic force and the electroweak force. (author)

  18. Exploratory Movement Generates Higher-Order Information That Is Sufficient for Accurate Perception of Scaled Egocentric Distance

    Science.gov (United States)

    Mantel, Bruno; Stoffregen, Thomas A.; Campbell, Alain; Bardy, Benoît G.

    2015-01-01

    Body movement influences the structure of multiple forms of ambient energy, including optics and gravito-inertial force. Some researchers have argued that egocentric distance is derived from inferential integration of visual and non-visual stimulation. We suggest that accurate information about egocentric distance exists in perceptual stimulation as higher-order patterns that extend across optics and inertia. We formalize a pattern that specifies the egocentric distance of a stationary object across higher-order relations between optics and inertia. This higher-order parameter is created by self-generated movement of the perceiver in inertial space relative to the illuminated environment. For this reason, we placed minimal restrictions on the exploratory movements of our participants. We asked whether humans can detect and use the information available in this higher-order pattern. Participants judged whether a virtual object was within reach. We manipulated relations between body movement and the ambient structure of optics and inertia. Judgments were precise and accurate when the higher-order optical-inertial parameter was available. When only optic flow was available, judgments were poor. Our results reveal that participants perceived egocentric distance from the higher-order, optical-inertial consequences of their own exploratory activity. Analysis of participants’ movement trajectories revealed that self-selected movements were complex, and tended to optimize availability of the optical-inertial pattern that specifies egocentric distance. We argue that accurate information about egocentric distance exists in higher-order patterns of ambient energy, that self-generated movement can generate these higher-order patterns, and that these patterns can be detected and used to support perception of egocentric distance that is precise and accurate. PMID:25856410

  19. Toward an accurate description of solid-state properties of superheavy elements

    Directory of Open Access Journals (Sweden)

    Schwerdtfeger Peter

    2016-01-01

    Full Text Available In the last two decades cold and hot fusion experiments lead to the production of new elements for the Periodic Table up to nuclear charge 118. Recent developments in relativistic quantum theory have made it possible to obtain accurate electronic properties for the trans-actinide elements with the aim to predict their potential chemical and physical behaviour. Here we report on first results of solid-state calculations for Og (element 118 to support future atom-at-a-time gas-phase adsorption experiments on surfaces such as gold or quartz.

  20. Accurate calculations of bound rovibrational states for argon trimer

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, Drew; Poirier, Bill [Department of Chemistry and Biochemistry, and Department of Physics, Texas Tech University, Box 41061, Lubbock, Texas 79409-1061 (United States)

    2014-07-21

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar{sub 3}), using the ScalIT suite of parallel codes. The Ar{sub 3} rovibrational energy levels are computed to a very high level of accuracy (10{sup −3} cm{sup −1} or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar{sub 3} are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar{sub 3} is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar{sub 3} may be found in the current literature—and only for the lowest-lying rotational excitations.

  1. Preliminary analysis of force-torque measurements for robot-assisted fracture surgery.

    Science.gov (United States)

    Georgilas, Ioannis; Dagnino, Giulio; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2015-08-01

    Our group at Bristol Robotics Laboratory has been working on a new robotic system for fracture surgery that has been previously reported [1]. The robotic system is being developed for distal femur fractures and features a robot that manipulates the small fracture fragments through small percutaneous incisions and a robot that re-aligns the long bones. The robots controller design relies on accurate and bounded force and position parameters for which we require real surgical data. This paper reports preliminary findings of forces and torques applied during bone and soft tissue manipulation in typical orthopaedic surgery procedures. Using customised orthopaedic surgical tools we have collected data from a range of orthopaedic surgical procedures at Bristol Royal Infirmary, UK. Maximum forces and torques encountered during fracture manipulation which involved proximal femur and soft tissue distraction around it and reduction of neck of femur fractures have been recorded and further analysed in conjunction with accompanying image recordings. Using this data we are establishing a set of technical requirements for creating safe and dynamically stable minimally invasive robot-assisted fracture surgery (RAFS) systems.

  2. Operating force information on-line acquisition of a novel slave manipulator for vascular interventional surgery.

    Science.gov (United States)

    Zhao, Yan; Guo, Shuxiang; Xiao, Nan; Wang, Yuxin; Li, Youxiang; Jiang, Yuhua

    2018-04-02

    Vascular interventional surgery has its advantages compared to traditional operation. Master-slave robotic technology can further improve the operation accuracy, efficiency and safety of this complicated and high risk surgery. However, on-line acquisition of operating force information of catheter and guidewire remains to be a significant obstacle on the path to enhancing robotic surgery safety. Thus, a novel slave manipulator is proposed in this paper to realize on-line sensing of guidewire torsional operating torque and axial operation force during robotic assisted operations. A strain sensor is specially designed to detect the small scale torsional operation torque with low rotational frequency. Additionally, the axial operating force is detected via a load cell, which is incorporated into a sliding mechanism to eliminate the influence of friction. For validation, calibration and performance evaluation experiments are conducted. The results indicate that the proposed operation torque and force detection device is effective. Thus, it can provide the foundation for enabling accurate haptic feedback to the surgeon to improve surgical safety.

  3. Force interaction and 3D pole movement in double poling.

    Science.gov (United States)

    Stöggl, T; Holmberg, H-C

    2011-12-01

    The aim of this study was to analyze double poling using combined kinetic and 3D kinematic analysis at high skiing speeds as regards pole force components, pole angles and pole behavior during the poling and swing phase. The hypothesis was that a horizontal pole force is more predictive for maximal skiing speed (V(max)) than the resultant pole force. Sixteen elite skiers performed a double-poling V(max) test while treadmill roller skiing. Pole forces and 3D kinematics of pole movement at a speed of 30 km/h were analyzed and related to V(max). The duration of the "preparation phase" showed the strongest relationship with V(max) (r=0.87, Pmax) compared with the resultant pole force. Impact force was not related to V(max). At high skiing speeds, skiers should aim to combine high pole forces with appropriate timing of pole forces and appropriate pole and body positions during the swing and poling phase. The emphasis in training should be on the development of specific strength capacities for pole force production and the utilization of these capacities in double-poling training sessions. © 2011 John Wiley & Sons A/S.

  4. Thermodynamic properties for applications in chemical industry via classical force fields.

    Science.gov (United States)

    Guevara-Carrion, Gabriela; Hasse, Hans; Vrabec, Jadran

    2012-01-01

    Thermodynamic properties of fluids are of key importance for the chemical industry. Presently, the fluid property models used in process design and optimization are mostly equations of state or G (E) models, which are parameterized using experimental data. Molecular modeling and simulation based on classical force fields is a promising alternative route, which in many cases reasonably complements the well established methods. This chapter gives an introduction to the state-of-the-art in this field regarding molecular models, simulation methods, and tools. Attention is given to the way modeling and simulation on the scale of molecular force fields interact with other scales, which is mainly by parameter inheritance. Parameters for molecular force fields are determined both bottom-up from quantum chemistry and top-down from experimental data. Commonly used functional forms for describing the intra- and intermolecular interactions are presented. Several approaches for ab initio to empirical force field parameterization are discussed. Some transferable force field families, which are frequently used in chemical engineering applications, are described. Furthermore, some examples of force fields that were parameterized for specific molecules are given. Molecular dynamics and Monte Carlo methods for the calculation of transport properties and vapor-liquid equilibria are introduced. Two case studies are presented. First, using liquid ammonia as an example, the capabilities of semi-empirical force fields, parameterized on the basis of quantum chemical information and experimental data, are discussed with respect to thermodynamic properties that are relevant for the chemical industry. Second, the ability of molecular simulation methods to describe accurately vapor-liquid equilibrium properties of binary mixtures containing CO(2) is shown.

  5. Estimation of longitudinal force, lateral vehicle speed and yaw rate for four-wheel independent driven electric vehicles

    Science.gov (United States)

    Chen, Te; Xu, Xing; Chen, Long; Jiang, Haobing; Cai, Yingfeng; Li, Yong

    2018-02-01

    Accurate estimation of longitudinal force, lateral vehicle speed and yaw rate is of great significance to torque allocation and stability control for four-wheel independent driven electric vehicle (4WID-EVs). A fusion method is proposed to estimate the longitudinal force, lateral vehicle speed and yaw rate for 4WID-EVs. The electric driving wheel model (EDWM) is introduced into the longitudinal force estimation, the longitudinal force observer (LFO) is designed firstly based on the adaptive high-order sliding mode observer (HSMO), and the convergence of LFO is analyzed and proved. Based on the estimated longitudinal force, an estimation strategy is then presented in which the strong tracking filter (STF) is used to estimate lateral vehicle speed and yaw rate simultaneously. Finally, co-simulation via Carsim and Matlab/Simulink is carried out to demonstrate the effectiveness of the proposed method. The performance of LFO in practice is verified by the experiment on chassis dynamometer bench.

  6. Modular Organization of Exploratory Force Development Under Isometric Conditions in the Human Arm.

    Science.gov (United States)

    Roh, Jinsook; Lee, Sang Wook; Wilger, Kevin D

    2018-01-31

    Muscle coordination of isometric force production can be explained by a smaller number of modules. Variability in force output, however, is higher during exploratory/transient force development phases than force maintenance phase, and it is not clear whether the same modular structure underlies both phases. In this study, eight neurologically-intact adults isometrically performed target force matches in 54 directions at hands, and electromyographic (EMG) data from eight muscles were parsed into four sequential phases. Despite the varying degree of motor complexity across phases (significant between-phase differences in EMG-force correlation, angular errors, and between-force correlations), the number/composition of motor modules were found equivalent across phases, suggesting that the CNS systematically modulated activation of the same set of motor modules throughout sequential force development.

  7. Study of even-Z nuclei up to Mg with the Gogny force using AMD

    Energy Technology Data Exchange (ETDEWEB)

    Sugawa, Yoshio; Kimura, Masaaki; Horiuchi, Hisashi [Kyoto Univ. (Japan). Dept. of Physics

    2001-12-01

    Employing the Gogny force as an effective force, we study the ground state properties of light nuclei using antisymmetrized molecular dynamics (AMD). In this study, we are mainly concerned with the binding energies and radii of light even-Z isotopes, namely He, Be, C, O, Ne and Mg. Using a new technique to calculate the density dependent term of the effective force, we have realized fast and accurate calculations. From a comparison with Skyrme SIII results within the same AMD framework, we find that the Gogny and SIII forces well reproduce the experimental binding energies of stable nuclei. The two forces give almost equal radii, except in the case of {sup 7}Be and {sup 9}Be. For both forces, approximate treatment of the center-of-mass kinetic energy causes overestimation of the binding energy compared with the exact treatment. It also causes a decrease of the nuclear deformation compared with the exact treatment. We also carry out an energy variation after the parity projection. With regard to the binding energies and radii, parity-projected calculations do not exhibit a large difference compared to non-projected results, although the density distribution and clustering features are often significantly changed by the parity projection. (author)

  8. Study of even-Z nuclei up to Mg with the Gogny force using AMD

    International Nuclear Information System (INIS)

    Sugawa, Yoshio; Kimura, Masaaki; Horiuchi, Hisashi

    2001-01-01

    Employing the Gogny force as an effective force, we study the ground state properties of light nuclei using antisymmetrized molecular dynamics (AMD). In this study, we are mainly concerned with the binding energies and radii of light even-Z isotopes, namely He, Be, C, O, Ne and Mg. Using a new technique to calculate the density dependent term of the effective force, we have realized fast and accurate calculations. From a comparison with Skyrme SIII results within the same AMD framework, we find that the Gogny and SIII forces well reproduce the experimental binding energies of stable nuclei. The two forces give almost equal radii, except in the case of 7 Be and 9 Be. For both forces, approximate treatment of the center-of-mass kinetic energy causes overestimation of the binding energy compared with the exact treatment. It also causes a decrease of the nuclear deformation compared with the exact treatment. We also carry out an energy variation after the parity projection. With regard to the binding energies and radii, parity-projected calculations do not exhibit a large difference compared to non-projected results, although the density distribution and clustering features are often significantly changed by the parity projection. (author)

  9. Origin and radiative forcing of black carbon aerosol: production and consumption perspectives.

    Science.gov (United States)

    Meng, Jing; Liu, Junfeng; Yi, Kan; Yang, Haozhe; Guan, Dabo; Liu, Zhu; Zhang, Jiachen; Ou, Jiamin; Dorling, Stephen; Mi, Zhifu; Shen, Huizhong; Zhong, Qirui; Tao, Shu

    2018-04-24

    Air pollution, a threat to air quality and human health, has attracted ever-increasing attention in recent years. In addition to having local influence, air pollutants can also travel the globe via atmospheric circulation and international trade. Black carbon (BC), emitted from incomplete combustion, is a unique but representative particulate pollutant. This study tracked down the BC aerosol and its direct radiative forcing to the emission sources and final consumers using the global chemical transport model (MOZART-4), the rapid radiative transfer model for general circulation simulations (RRTM) and a multiregional input-output analysis (MRIO). BC is physically transported (i.e., atmospheric transport) from western to eastern countries in the mid-latitude westerlies, but its magnitude is near an order of magnitude higher if the virtual flow embodied in international trade is considered. The transboundary effects on East and South Asia by other regions increased from about 3% (physical transport only) to 10% when considering both physical and virtual transport. The influence efficiency on East Asia is also large because of the comparatively large emission intensity and emission-intensive exports (e.g., machinery and equipment). The radiative forcing in Africa imposed by consumption from Europe, North America and East Asia (0.01Wm-2) was even larger than the total forcing in North America. Understanding the supply chain and incorporating both atmospheric and virtual transport may improve multilateral cooperation on air pollutant mitigation both domestically and internationally.

  10. Quadriceps force and anterior tibial force occur obviously later than vertical ground reaction force: a simulation study

    OpenAIRE

    Ueno, Ryo; Ishida, Tomoya; Yamanaka, Masanori; Taniguchi, Shohei; Ikuta, Ryohei; Samukawa, Mina; Saito, Hiroshi; Tohyama, Harukazu

    2017-01-01

    Background: Although it is well known that quadriceps force generates anterior tibial force, it has been unclear whether quadriceps force causes great anterior tibial force during the early phase of a landing task. The purpose of the present study was to examine whether the quadriceps force induced great anterior tibial force during the early phase of a landing task. Methods: Fourteen young, healthy, female subjects performed a single-leg landing task. Muscle force and anterior tibial force w...

  11. Force-velocity measurements of a few growing actin filaments.

    Directory of Open Access Journals (Sweden)

    Coraline Brangbour

    2011-04-01

    Full Text Available The polymerization of actin in filaments generates forces that play a pivotal role in many cellular processes. We introduce a novel technique to determine the force-velocity relation when a few independent anchored filaments grow between magnetic colloidal particles. When a magnetic field is applied, the colloidal particles assemble into chains under controlled loading or spacing. As the filaments elongate, the beads separate, allowing the force-velocity curve to be precisely measured. In the widely accepted Brownian ratchet model, the transduced force is associated with the slowing down of the on-rate polymerization. Unexpectedly, in our experiments, filaments are shown to grow at the same rate as when they are free in solution. However, as they elongate, filaments are more confined in the interspace between beads. Higher repulsive forces result from this higher confinement, which is associated with a lower entropy. In this mechanism, the production of force is not controlled by the polymerization rate, but is a consequence of the restriction of filaments' orientational fluctuations at their attachment point.

  12. Density functional for van der Waals forces accounts for hydrogen bond in benchmark set of water hexamers

    DEFF Research Database (Denmark)

    Kelkkanen, Kari André; Lundqvist, Bengt; Nørskov, Jens Kehlet

    2009-01-01

    A recent extensive study has investigated how various exchange-correlation (XC) functionals treat hydrogen bonds in water hexamers and has shown traditional generalized gradient approximation and hybrid functionals used in density-functional (DF) theory to give the wrong dissociation-energy trend...... of low-lying isomers and van der Waals (vdW) dispersion forces to give key contributions to the dissociation energy. The question raised whether functionals that incorporate vdW forces implicitly into the XC functional predict the correct lowest-energy structure for the water hexamer and yield accurate...

  13. Accurate Determination of the Frequency Response Function of Submerged and Confined Structures by Using PZT-Patches†

    Directory of Open Access Journals (Sweden)

    Alexandre Presas

    2017-03-01

    Full Text Available To accurately determine the dynamic response of a structure is of relevant interest in many engineering applications. Particularly, it is of paramount importance to determine the Frequency Response Function (FRF for structures subjected to dynamic loads in order to avoid resonance and fatigue problems that can drastically reduce their useful life. One challenging case is the experimental determination of the FRF of submerged and confined structures, such as hydraulic turbines, which are greatly affected by dynamic problems as reported in many cases in the past. The utilization of classical and calibrated exciters such as instrumented hammers or shakers to determine the FRF in such structures can be very complex due to the confinement of the structure and because their use can disturb the boundary conditions affecting the experimental results. For such cases, Piezoelectric Patches (PZTs, which are very light, thin and small, could be a very good option. Nevertheless, the main drawback of these exciters is that the calibration as dynamic force transducers (relationship voltage/force has not been successfully obtained in the past. Therefore, in this paper, a method to accurately determine the FRF of submerged and confined structures by using PZTs is developed and validated. The method consists of experimentally determining some characteristic parameters that define the FRF, with an uncalibrated PZT exciting the structure. These parameters, which have been experimentally determined, are then introduced in a validated numerical model of the tested structure. In this way, the FRF of the structure can be estimated with good accuracy. With respect to previous studies, where only the natural frequencies and mode shapes were considered, this paper discuss and experimentally proves the best excitation characteristic to obtain also the damping ratios and proposes a procedure to fully determine the FRF. The method proposed here has been validated for the

  14. Accurate Determination of the Frequency Response Function of Submerged and Confined Structures by Using PZT-Patches†.

    Science.gov (United States)

    Presas, Alexandre; Valentin, David; Egusquiza, Eduard; Valero, Carme; Egusquiza, Mònica; Bossio, Matias

    2017-03-22

    To accurately determine the dynamic response of a structure is of relevant interest in many engineering applications. Particularly, it is of paramount importance to determine the Frequency Response Function (FRF) for structures subjected to dynamic loads in order to avoid resonance and fatigue problems that can drastically reduce their useful life. One challenging case is the experimental determination of the FRF of submerged and confined structures, such as hydraulic turbines, which are greatly affected by dynamic problems as reported in many cases in the past. The utilization of classical and calibrated exciters such as instrumented hammers or shakers to determine the FRF in such structures can be very complex due to the confinement of the structure and because their use can disturb the boundary conditions affecting the experimental results. For such cases, Piezoelectric Patches (PZTs), which are very light, thin and small, could be a very good option. Nevertheless, the main drawback of these exciters is that the calibration as dynamic force transducers (relationship voltage/force) has not been successfully obtained in the past. Therefore, in this paper, a method to accurately determine the FRF of submerged and confined structures by using PZTs is developed and validated. The method consists of experimentally determining some characteristic parameters that define the FRF, with an uncalibrated PZT exciting the structure. These parameters, which have been experimentally determined, are then introduced in a validated numerical model of the tested structure. In this way, the FRF of the structure can be estimated with good accuracy. With respect to previous studies, where only the natural frequencies and mode shapes were considered, this paper discuss and experimentally proves the best excitation characteristic to obtain also the damping ratios and proposes a procedure to fully determine the FRF. The method proposed here has been validated for the structure vibrating

  15. Physical Forcing-Driven Productivity and Sediment Flux to the Deep Basin of Northern South China Sea: A Decadal Time Series Study

    Directory of Open Access Journals (Sweden)

    Hon-Kit Lui

    2018-03-01

    Full Text Available Understanding the driving forces of absorption of anthropogenic CO2 by the oceans is critical for a sustainable ocean carbon cycle. Decadal sinking particle flux data collected at 1000 m, 2000 m, and 3500 m at the South East Asia Time Series Study (SEATS Station (18° N, 116° E, which was located in the northern South China Sea (nSCS, show that the fluxes undergo strong seasonal and interannual variability. Changes in the flux data are correlated with the satellite-derived chlorophyll-a concentration, indicating that the mass fluxes of the sinking particles are largely controlled by the export production at or near the SEATS station. The cooling of seawater and the strengthening of wind in winter increase the nutrient inventories in the euphotic zone, thus also increasing export production in the nSCS. This study reveals that the intrusion of low-nutrient seawater from the West Philippine Sea into the nSCS significantly reduces the productivity, and hence the flux, of sinking particles.

  16. Backscattering position detection for photonic force microscopy

    International Nuclear Information System (INIS)

    Volpe, Giovanni; Kozyreff, Gregory; Petrov, Dmitri

    2007-01-01

    An optically trapped particle is an extremely sensitive probe for the measurement of pico- and femto-Newton forces between the particle and its environment in microscopic systems (photonic force microscopy). A typical setup comprises an optical trap, which holds the probe, and a position sensing system, which uses the scattering of a beam illuminating the probe. Usually the position is accurately determined by measuring the deflection of the forward-scattered light transmitted through the probe. However, geometrical constraints may prevent access to this side of the trap, forcing one to make use of the backscattered light instead. A theory is presented together with numerical results that describes the use of the backscattered light for position detection. With a Mie-Debye approach, we compute the total (incident plus scattered) field and follow its evolution as it is collected by the condenser lenses and projected onto the position detectors and the responses of position sensitive detectors and quadrant photodetectors to the displacement of the probe in the optical trap, both in forward and backward configurations. We find out that in the case of backward detection, for both types of detectors the displacement sensitivity can change sign as a function of the probe size and is null for some critical sizes. In addition, we study the influence of the numerical aperture of the detection system, polarization, and the cross talk between position measurements in orthogonal directions. We finally discuss how these features should be taken into account in experimental designs

  17. Interpreting Power-Force-Velocity Profiles for Individualized and Specific Training.

    Science.gov (United States)

    Morin, Jean-Benoît; Samozino, Pierre

    2016-03-01

    Recent studies have brought new insights into the evaluation of power-force-velocity profiles in both ballistic push-offs (eg, jumps) and sprint movements. These are major physical components of performance in many sports, and the methods the authors developed and validated are based on data that are now rather simple to obtain in field conditions (eg, body mass, jump height, sprint times, or velocity). The promising aspect of these approaches is that they allow for more individualized and accurate evaluation, monitoring, and training practices, the success of which is highly dependent on the correct collection, generation, and interpretation of athletes' mechanical outputs. The authors therefore wanted to provide a practical vade mecum to sports practitioners interested in implementing these power-force-velocity-profiling approaches. After providing a summary of theoretical and practical definitions for the main variables, the authors first detail how vertical profiling can be used to manage ballistic push-off performance, with emphasis on the concept of optimal force-velocity profile and the associated force-velocity imbalance. Furthermore, they discuss these same concepts with regard to horizontal profiling in the management of sprinting performance. These sections are illustrated by typical examples from the authors' practice. Finally, they provide a practical and operational synthesis and outline future challenges that will help further develop these approaches.

  18. Force production during squats performed with a rotational resistance device under stable versus unstable conditions.

    Science.gov (United States)

    Moras, Gerard; Vázquez-Guerrero, Jairo

    2015-11-01

    [Purpose] Force production during a squat action on a rotational resistance device (RRD) under stable and unstable conditions. [Subjects and Methods] Twenty-one healthy males were asked to perform six sets of six repetitions of squats on an RRD on either stable or unstable surfaces. The stable and unstable sets were performed on different days. Muscular outputs were obtained from a linear encoder and a strain gauge fixed to a vest. [Results] Overall, the results showed no significant differences for any of the dependent variables across exercise modes. Forcemean outputs were higher in the concentric phase than in the eccentric phase for each condition, but there were no differences in velocity, time or displacement. The forcepeak was similar in the eccentric and concentric phases of movement under both stable and unstable conditions. There were no significant differences in forcemean between sets per condition or between conditions. [Conclusion] These results suggest that performing squats with a RRD achieves similar forcemean and forcepeak under stable and unstable conditions. The forcepeak produced is also similar in concentric and eccentric phases.

  19. Escaping the maze: micro-swimmers using acoustic forces to navigate

    Science.gov (United States)

    Louf, Jean-Francois; Dollet, Benjamin; Stephan, Olivier; Marmottant, Philippe

    2017-11-01

    The goal of this study is to make 3D micro-swimmers containing a bubble that can be stimulated with acoustic waves emitted by a transducer, and whose direction is accurately controlled. By using 3D micro-fabrication techniques, we designed 40x40 μm swimmers with a trapped air bubble. We then applied acoustic vibration to the bubble, which generates a strong steady flow (1-100 mm/s) behind it, an effect referred as acoustic streaming. However, independently from the orientation of the bubble and thus from the flow, the motion of the swimmer is found to be towards the transducer. This suggests that primary Bjerknes forces, i.e. acoustic radiation forces, are involved. Subsequently, using different transducers located at different points, we could be able to navigate the swimmer in a chosen direction. The next step of our study is to use a stationary wave and Bjerknes forces to bring encapsulated objects in a pressure node. Without bubbles, the effect of acoustic streaming on big objects of more than a micrometer is not sufficient to generate motion. However, with the presence of bubbles, our swimmers should be able to move. ERC BUBBLEBOOST.

  20. Accurate atom-mapping computation for biochemical reactions.

    Science.gov (United States)

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.

  1. Incorporating contact angles in the surface tension force with the ACES interface curvature scheme

    Science.gov (United States)

    Owkes, Mark

    2017-11-01

    In simulations of gas-liquid flows interacting with solid boundaries, the contact line dynamics effect the interface motion and flow field through the surface tension force. The surface tension force is directly proportional to the interface curvature and the problem of accurately imposing a contact angle must be incorporated into the interface curvature calculation. Many commonly used algorithms to compute interface curvatures (e.g., height function method) require extrapolating the interface, with defined contact angle, into the solid to allow for the calculation of a curvature near a wall. Extrapolating can be an ill-posed problem, especially in three-dimensions or when multiple contact lines are near each other. We have developed an accurate methodology to compute interface curvatures that allows for contact angles to be easily incorporated while avoiding extrapolation and the associated challenges. The method, known as Adjustable Curvature Evaluation Scale (ACES), leverages a least squares fit of a polynomial to points computed on the volume-of-fluid (VOF) representation of the gas-liquid interface. The method is tested by simulating canonical test cases and then applied to simulate the injection and motion of water droplets in a channel (relevant to PEM fuel cells).

  2. 16 CFR 1211.13 - Inherent force activated secondary door sensors.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Inherent force activated secondary door sensors. 1211.13 Section 1211.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... across the door so that the axis is perpendicular to the plane of the door. See Figure 6 of this part...

  3. Variation along liquid isomorphs of the driving force for crystallization

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Adrjanowicz, Karolina; Niss, Kristine

    2017-01-01

    at a reference temperature. More general analysis allows interpretation of experimental data for molecular liquids such as dimethyl phthalate and indomethacin, and suggests that the isomorph scaling exponent γ in these cases is an increasing function of density, although this cannot be seen in measurements......We investigate the variation of the driving force for crystallization of a supercooled liquid along isomorphs, curves along which structure and dynamics are invariant. The variation is weak, and can be predicted accurately for the Lennard-Jones fluid using a recently developed formalism and data...

  4. Circle diffeomorphisms forced by expanding circle maps

    NARCIS (Netherlands)

    Homburg, A.J.

    2012-01-01

    We discuss the dynamics of skew product maps defined by circle diffeomorphisms forced by expanding circle maps. We construct an open class of such systems that are robustly topologically mixing and for which almost all points in the same fiber converge under iteration. This property follows from the

  5. Determination of Elevator and Rudder Hinge Forces on the Learjet Model 55 Aircraft

    Science.gov (United States)

    Boroughs, R. R.; Padmanabhan, V.

    1983-01-01

    The empennage structure on the Learjet 55 aircraft was quite similar to the empennage structure on earlier Learjet models. However, due to an important structural change in the vertical fin along with the new loads environment on the 50 series aircraft, a structural test was required on the vertical fin, but the horizontal tail was substantiated by a comparative analysis with previous tests. NASTRAN analysis was used to investigate empennage deflections, stress levels, and control surface hinge forces. The hinge force calculations were made with the control surfaces in the deflected as well as undeflected configurations. A skin panel buckling analysis was also performed, and the non-linear effects of buckling were simulated in the NASTRAN model to more accurately define internal loads and stress levels. Comparisons were then made between the Model 55 and the Model 35/36 stresses and internal forces to determine which components were qualified by previous tests. Some of the methods and techniques used in this analysis are described.

  6. Adding Value to Force Diagrams: Representing Relative Force Magnitudes

    Science.gov (United States)

    Wendel, Paul

    2011-05-01

    Nearly all physics instructors recognize the instructional value of force diagrams, and this journal has published several collections of exercises to improve student skill in this area.1-4 Yet some instructors worry that too few students perceive the conceptual and problem-solving utility of force diagrams,4-6 and over recent years a rich variety of approaches has been proposed to add value to force diagrams. Suggestions include strategies for identifying candidate forces,6,7 emphasizing the distinction between "contact" and "noncontact" forces,5,8 and the use of computer-based tutorials.9,10 Instructors have suggested a variety of conventions for constructing force diagrams, including approaches to arrow placement and orientation2,11-13 and proposed notations for locating forces or marking action-reaction force pairs.8,11,14,15

  7. Improving Estimates of Cloud Radiative Forcing over Greenland

    Science.gov (United States)

    Wang, W.; Zender, C. S.

    2014-12-01

    Multiple driving mechanisms conspire to increase melt extent and extreme melt events frequency in the Arctic: changing heat transport, shortwave radiation (SW), and longwave radiation (LW). Cloud Radiative Forcing (CRF) of Greenland's surface is amplified by a dry atmosphere and by albedo feedback, making its contribution to surface melt even more variable in time and space. Unfortunately accurate cloud observations and thus CRF estimates are hindered by Greenland's remoteness, harsh conditions, and low contrast between surface and cloud reflectance. In this study, cloud observations from satellites and reanalyses are ingested into and evaluated within a column radiative transfer model. An improved CRF dataset is obtained by correcting systematic discrepancies derived from sensitivity experiments. First, we compare the surface radiation budgets from the Column Radiation Model (CRM) driven by different cloud datasets, with surface observations from Greenland Climate Network (GC-Net). In clear skies, CRM-estimated surface radiation driven by water vapor profiles from both AIRS and MODIS during May-Sept 2010-2012 are similar, stable, and reliable. For example, although AIRS water vapor path exceeds MODIS by 1.4 kg/m2 on a daily average, the overall absolute difference in downwelling SW is CRM estimates are within 20 W/m2 range of GC-Net downwelling SW. After calibrating CRM in clear skies, the remaining differences between CRM and observed surface radiation are primarily attributable to differences in cloud observations. We estimate CRF using cloud products from MODIS and from MERRA. The SW radiative forcing of thin clouds is mainly controlled by cloud water path (CWP). As CWP increases from near 0 to 200 g/m2, the net surface SW drops from over 100 W/m2 to 30 W/m2 almost linearly, beyond which it becomes relatively insensitive to CWP. The LW is dominated by cloud height. For clouds at all altitudes, the lower the clouds, the greater the LW forcing. By applying

  8. Verifying Operational and Developmental Air Force Weather Cloud Analysis and Forecast Products Using Lidar Data from Department of Energy Atmospheric Radiation Measurement (ARM) Sites

    Science.gov (United States)

    Hildebrand, E. P.

    2017-12-01

    Air Force Weather has developed various cloud analysis and forecast products designed to support global Department of Defense (DoD) missions. A World-Wide Merged Cloud Analysis (WWMCA) and short term Advected Cloud (ADVCLD) forecast is generated hourly using data from 16 geostationary and polar-orbiting satellites. Additionally, WWMCA and Numerical Weather Prediction (NWP) data are used in a statistical long-term (out to five days) cloud forecast model known as the Diagnostic Cloud Forecast (DCF). The WWMCA and ADVCLD are generated on the same polar stereographic 24 km grid for each hemisphere, whereas the DCF is generated on the same grid as its parent NWP model. When verifying the cloud forecast models, the goal is to understand not only the ability to detect cloud, but also the ability to assign it to the correct vertical layer. ADVCLD and DCF forecasts traditionally have been verified using WWMCA data as truth, but this might over-inflate the performance of those models because WWMCA also is a primary input dataset for those models. Because of this, in recent years, a WWMCA Reanalysis product has been developed, but this too is not a fully independent dataset. This year, work has been done to incorporate data from external, independent sources to verify not only the cloud forecast products, but the WWMCA data itself. One such dataset that has been useful for examining the 3-D performance of the cloud analysis and forecast models is Atmospheric Radiation Measurement (ARM) data from various sites around the globe. This presentation will focus on the use of the Department of Energy (DoE) ARM data to verify Air Force Weather cloud analysis and forecast products. Results will be presented to show relative strengths and weaknesses of the analyses and forecasts.

  9. Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform.

    Science.gov (United States)

    Peng, Xiangda; Zhang, Yuebin; Chu, Huiying; Li, Guohui

    2016-03-05

    The free energy calculation library PLUMED has been incorporated into the OpenMM simulation toolkit, with the purpose to perform enhanced sampling MD simulations using the AMOEBA polarizable force field on GPU platform. Two examples, (I) the free energy profile of water pair separation (II) alanine dipeptide dihedral angle free energy surface in explicit solvent, are provided here to demonstrate the accuracy and efficiency of our implementation. The converged free energy profiles could be obtained within an affordable MD simulation time when the AMOEBA polarizable force field is employed. Moreover, the free energy surfaces estimated using the AMOEBA polarizable force field are in agreement with those calculated from experimental data and ab initio methods. Hence, the implementation in this work is reliable and would be utilized to study more complicated biological phenomena in both an accurate and efficient way. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  10. Finite-time adaptive sliding mode force control for electro-hydraulic load simulator based on improved GMS friction model

    Science.gov (United States)

    Kang, Shuo; Yan, Hao; Dong, Lijing; Li, Changchun

    2018-03-01

    This paper addresses the force tracking problem of electro-hydraulic load simulator under the influence of nonlinear friction and uncertain disturbance. A nonlinear system model combined with the improved generalized Maxwell-slip (GMS) friction model is firstly derived to describe the characteristics of load simulator system more accurately. Then, by using particle swarm optimization (PSO) algorithm ​combined with the system hysteresis characteristic analysis, the GMS friction parameters are identified. To compensate for nonlinear friction and uncertain disturbance, a finite-time adaptive sliding mode control method is proposed based on the accurate system model. This controller has the ability to ensure that the system state moves along the nonlinear sliding surface to steady state in a short time as well as good dynamic properties under the influence of parametric uncertainties and disturbance, which further improves the force loading accuracy and rapidity. At the end of this work, simulation and experimental results are employed to demonstrate the effectiveness of the proposed sliding mode control strategy.

  11. Global Ocean Evaporation Increases Since 1960 in Climate Reanalyses: How Accurate Are They?

    Science.gov (United States)

    Robertson, Franklin R.; Roberts, Jason B.; Bosilovich, Michael G.

    2016-01-01

    AGCMs w/ Specified SSTs (AMIPs) GEOS-5, ERA-20CM Ensembles Incorporate best historical estimates of SST, sea ice, radiative forcing Atmospheric "weather noise" is inconsistent with specified SST. Instantaneous Sfc fluxes can be wrong sign (e.g. Indian Ocean Monsoon, high latitude oceans). Averaging over ensemble members helps isolate SST-forced signal. Reduced Observational Reanalyses: NOAA 20CR V2C, ERA-20C, JRA-55C Incorporate observed Sfc Press (20CR), Marine Winds (ERA-20C) and rawinsondes (JRA-55C) to recover much of true synoptic or weather w/o shock of new sat obs. Comprehensive Reanalyses (MERRA-2) Full suite of observational constraints- both conventional and remote sensing. But... substantial uncertainties owing to evolving satellite observing system. Multi-source Statistically Blended OAFlux, LargeYeager Blend reanalysis, satellite, and ocean buoy information. While climatological biases are removed, non-physical trends or variations in components remain. Satellite Retrievals GSSTF3, SeaFlux, HOAPS3... Global coverage. Retrieved near sfc wind speed, & humidity used with SST to drive accurate bulk aerodynamic flux estimates. Satellite inter-calibration, spacecraft pointing variations crucial. Short record ( late 1987-present). In situ Measurements ICOADS, IVAD, Res Cruises VOS and buoys offer direct measurements. Sparse data coverage (esp south of 30S. Changes in measurement techniques (e.g. shipboard anemometer height).

  12. Unknown loads affect force production capacity in early phases of bench press throws.

    Science.gov (United States)

    Hernández Davó, J L; Sabido Solana, R; Sarabia Marínm, J M; Sánchez Martos, Á; Moya Ramón, M

    2015-10-01

    Explosive strength training aims to improve force generation in early phases of movement due to its importance in sport performance. The present study examined the influence of lack of knowledge about the load lifted in explosive parameters during bench press throws. Thirteen healthy young men (22.8±2.0 years) participated in the study. Participants performed bench press throws with three different loads (30, 50 and 70% of 1 repetition maximum) in two different conditions (known and unknown loads). In unknown condition, loads were changed within sets in each repetition and participants did not know the load, whereas in known condition the load did not change within sets and participants had knowledge about the load lifted. Results of repeated-measures ANOVA revealed that unknown conditions involves higher power in the first 30, 50, 100 and 150 ms with the three loads, higher values of ratio of force development in those first instants, and differences in time to reach maximal rate of force development with 50 and 70% of 1 repetition maximum. This study showed that unknown conditions elicit higher values of explosive parameters in early phases of bench press throws, thereby this kind of methodology could be considered in explosive strength training.

  13. Fast Estimation of Strains for Cross-Beams Six-Axis Force/Torque Sensors by Mechanical Modeling

    Directory of Open Access Journals (Sweden)

    Junqing Ma

    2013-05-01

    Full Text Available Strain distributions are crucial criteria of cross-beams six-axis force/torque sensors. The conventional method for calculating the criteria is to utilize Finite Element Analysis (FEA to get numerical solutions. This paper aims to obtain analytical solutions of strains under the effect of external force/torque in each dimension. Genetic mechanical models for cross-beams six-axis force/torque sensors are proposed, in which deformable cross elastic beams and compliant beams are modeled as quasi-static Timoshenko beam. A detailed description of model assumptions, model idealizations, application scope and model establishment is presented. The results are validated by both numerical FEA simulations and calibration experiments, and test results are found to be compatible with each other for a wide range of geometric properties. The proposed analytical solutions are demonstrated to be an accurate estimation algorithm with higher efficiency.

  14. Defining Allowable Physical Property Variations for High Accurate Measurements on Polymer Parts

    DEFF Research Database (Denmark)

    Mohammadi, Ali; Sonne, Mads Rostgaard; Madruga, Daniel González

    2015-01-01

    Measurement conditions and material properties have a significant impact on the dimensions of a part, especially for polymers parts. Temperature variation causes part deformations that increase the uncertainty of the measurement process. Current industrial tolerances of a few micrometres demand...... high accurate measurements in non-controlled ambient. Most of polymer parts are manufactured by injection moulding and their inspection is carried out after stabilization, around 200 hours. The overall goal of this work is to reach ±5μm in uncertainty measurements a polymer products which...

  15. Comparison of radiative forcing impacts of the use of wood, peat, and fossil fuels

    International Nuclear Information System (INIS)

    Savolainen, I.; Hillebrand, K.; Nousiainen, I.; Sinisalo, J.

    1994-01-01

    The present study investigates the greenhouse impacts and the relevant time factors of the use of peat and wood for energy production and compares them with those of fossil fuels. Emissions and sinks of the whole energy production chain and subsequent use of the wood or peat production site are taken into account. The radiative forcing caused by energy production is used as a measure for the greenhouse impact. Economical considerations are not included. Radiative forcing is calculated for carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) emissions. The real emissions of energy production are calculated by subtracting the emissions of non-use from the emissions of energy production. All the emissions are given as a function of time, i.e. their evolution over time is taken into account. At this point the estimates for some emission developments are quite crude and should be considered exemplary. The studied energy production chains can be divided roughly into three groups, if the greenhouse impact caused by continuous energy production of hundred years is considered. In this case forest residues, planted stands and unused merchantable wood cause the least radiative forcing per unit of primary energy generated. Natural gas and peat from cultivated peatland form the middle group. According to the calculations coal and conventional peat cause the greatest greenhouse impact

  16. The relationship of motor unit size, firing rate and force.

    Science.gov (United States)

    Conwit, R A; Stashuk, D; Tracy, B; McHugh, M; Brown, W F; Metter, E J

    1999-07-01

    Using a clinical electromyographic (EMG) protocol, motor units were sampled from the quadriceps femoris during isometric contractions at fixed force levels to examine how average motor unit size and firing rate relate to force generation. Mean firing rates (mFRs) and sizes (mean surface-detected motor unit action potential (mS-MUAP) area) of samples of active motor units were assessed at various force levels in 79 subjects. MS-MUAP size increased linearly with increased force generation, while mFR remained relatively constant up to 30% of a maximal force and increased appreciably only at higher force levels. A relationship was found between muscle force and mS-MUAP area (r2 = 0.67), mFR (r2 = 0.38), and the product of mS-MUAP area and mFR (mS-MUAP x mFR) (r2 = 0.70). The results support the hypothesis that motor units are recruited in an orderly manner during forceful contractions, and that in large muscles only at higher levels of contraction ( > 30% MVC) do mFRs increase appreciably. MS-MUAP and mFR can be assessed using clinical EMG techniques and they may provide a physiological basis for analyzing the role of motor units during muscle force generation.

  17. Importance of Survey Design for Studying the Epidemiology of Emerging Tobacco Product Use Among Youth.

    Science.gov (United States)

    Delnevo, Cristine D; Gundersen, Daniel A; Manderski, Michelle T B; Giovenco, Daniel P; Giovino, Gary A

    2017-08-15

    Accurate surveillance is critical for monitoring the epidemiology of emerging tobacco products in the United States, and survey science suggests that survey response format can impact prevalence estimates. We utilized data from the 2014 New Jersey Youth Tobacco Survey (n = 3,909) to compare estimates of the prevalence of 4 behaviors (ever hookah use, current hookah use, ever e-cigarette use, and current e-cigarette use) among New Jersey high school students, as assessed using "check-all-that-apply" questions, with estimates measured by means of "forced-choice" questions. Measurement discrepancies were apparent for all 4 outcomes, with the forced-choice questions yielding prevalence estimates approximately twice those of the check-all-that-apply questions, and agreement was fair to moderate. The sensitivity of the check-all-that-apply questions, treating the forced-choice format as the "gold standard," ranged from 38.1% (current hookah use) to 58.3% (ever e-cigarette use), indicating substantial false-negative rates. These findings highlight the impact of question response format on prevalence estimates of emerging tobacco products among youth and suggest that estimates generated by means of check-all-that-apply questions may be biased downward. Alternative survey designs should be considered to avoid check-all-that-apply response formats, and researchers should use caution when interpreting tobacco use data obtained from check-all-that-apply formats. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics

    Directory of Open Access Journals (Sweden)

    Cecilia Noecker

    2015-03-01

    Full Text Available Upon infection of a new host, human immunodeficiency virus (HIV replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV. First, we found that the mode of virus production by infected cells (budding vs. bursting has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral

  19. Strength training does not affect the accuracy of force gradation in an isometric force task in young men.

    NARCIS (Netherlands)

    Smits-Engelsman, B.C.M.; Smits, R.; Oomen, J.; Duysens, J.E.J.

    2008-01-01

    The aim of this study is to investigate potential differences in fine motor control between strength trained (ST) and non-strength trained (NT) individuals. By use of an isometric force production task, two groups, 20 ST (mean age 25.6, SD 4.9) and 19 NT (mean age 24.1, SD 2.9) male individuals,

  20. Direct measurements of intermolecular forces by chemical force microscopy

    Science.gov (United States)

    Vezenov, Dmitri Vitalievich

    1999-12-01

    Detailed description of intermolecular forces is key to understanding a wide range of phenomena from molecular recognition to materials failure. The unique features of atomic force microscopy (AFM) to make point contact force measurements with ultra high sensitivity and to generate spatial maps of surface topography and forces have been extended to include measurements between well-defined organic molecular groups. Chemical modification of AFM probes with self-assembled monolayers (SAMs) was used to make them sensitive to specific molecular interactions. This novel chemical force microscopy (CFM) technique was used to probe forces between different molecular groups in a range of environments (vacuum, organic liquids and aqueous solutions); measure surface energetics on a nanometer scale; determine pK values of the surface acid and base groups; measure forces to stretch and unbind a short synthetic DNA duplex and map the spatial distribution of specific functional groups and their ionization state. Studies of adhesion forces demonstrated the important contribution of hydrogen bonding to interactions between simple organic functionalities. The chemical identity of the tip and substrate surfaces as well as the medium had a dramatic effect on adhesion between model monolayers. A direct correlation between surface free energy and adhesion forces was established. The adhesion between epoxy polymer and model mixed SAMs varied with the amount of hydrogen bonding component in the monolayers. A consistent interpretation of CFM measurements in polar solvents was provided by contact mechanics models and intermolecular force components theory. Forces between tips and surfaces functionalized with SAMs terminating in acid or base groups depended on their ionization state. A novel method of force titration was introduced for highly local characterization of the pK's of surface functional groups. The pH-dependent changes in friction forces were exploited to map spatially the

  1. The labor force of the future.

    Science.gov (United States)

    Norwood, J L

    1987-07-01

    In the decades ahead, the US labor force will reflect changes in the industrial structure, with declines in some manufacturing industries and expansion in service industries. The services sector is so diverse that the jobs within it cannot be categorized as either high wage or low wage. The service-producing sector employs 85% of professional specialty workers in the US. In general, information on compensation trends indicates that greater increases in compensation have occurred for workers in service-producing as opposed to goods-producing industries. The increase in service sector jobs has created opportunities for women to enter the labor force and, at present, 5 out of 6 women work in this sector compared to fewer than 2 out of 3 men. Productivity growth rates in the service-producing industries vary substantially and are strongly affected by the business cycle. Central to employment opportunities in the years ahead will be the effect of new technology. To date, the aggregate effect of new technology has been increased employment and higher living standards. Although retraining programs should be in place, the scenario of a huge technology-created labor surplus seems unlikely. In fact, a more likely problem is a shortage of labor resulting from earlier labor force withdrawal and demographic aging of the population. Those in the 25-54-year age group will represent a larger share of the labor force in the years ahead. In addition, blacks are expected to account for 20% of the labor force growth in the next decade. Finally, given increasing labor force participation rates among mothers, employers may have to provide more flexible work schedules, assistance with day care, and more attractive benefits packages.

  2. Factors for a successful sales force during the corporate life cycle

    Directory of Open Access Journals (Sweden)

    Adrian Gelu LUPU

    2009-06-01

    Full Text Available The organisations, like all living organisms, have a lifecycle and undergo very predictable and repetitive patterns of behaviour as they grow and develop. Although companies devote considerable time and money to managing their sales forces, few focus much on how the sale forces needs to change over the life cycle of an organisation. In this article, the authors explain how, at each stage, company can best tackle the relevant issues and get the most out of their sales forces, how to develop the best sales force structures for each of the four stages of the business life cycle. Specifically, companies must alter four factors over time: the roles that the sales force and selling partners play, the size of the sales force, the sales force’s degree of specialization, and how salespeople apportion their efforts among different customers, products and activities.

  3. Variable Thumb Moment Arm Modeling and Thumb-Tip Force Production of a Human-Like Robotic Hand.

    Science.gov (United States)

    Niehues, Taylor D; Deshpande, Ashish D

    2017-10-01

    The anatomically correct testbed (ACT) hand mechanically simulates the musculoskeletal structure of the fingers and thumb of the human hand. In this work, we analyze the muscle moment arms (MAs) and thumb-tip force vectors in the ACT thumb in order to compare the ACT thumb's mechanical structure to the human thumb. Motion data are used to determine joint angle-dependent MA models, and thumb-tip three-dimensional (3D) force vectors are experimentally analyzed when forces are applied to individual muscles. Results are presented for both a nominal ACT thumb model designed to match human MAs and an adjusted model that more closely replicates human-like thumb-tip forces. The results confirm that the ACT thumb is capable of faithfully representing human musculoskeletal structure and muscle functionality. Using the ACT hand as a physical simulation platform allows us to gain a better understanding of the underlying biomechanical and neuromuscular properties of the human hand to ultimately inform the design and control of robotic and prosthetic hands.

  4. Interaction force and motion estimators facilitating impedance control of the upper limb rehabilitation robot.

    Science.gov (United States)

    Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Bengoa, Pablo; Jung, Je Hyung

    2017-07-01

    In order to enhance the performance of rehabilitation robots, it is imperative to know both force and motion caused by the interaction between user and robot. However, common direct measurement of both signals through force and motion sensors not only increases the complexity of the system but also impedes affordability of the system. As an alternative of the direct measurement, in this work, we present new force and motion estimators for the proper control of the upper-limb rehabilitation Universal Haptic Pantograph (UHP) robot. The estimators are based on the kinematic and dynamic model of the UHP and the use of signals measured by means of common low-cost sensors. In order to demonstrate the effectiveness of the estimators, several experimental tests were carried out. The force and impedance control of the UHP was implemented first by directly measuring the interaction force using accurate extra sensors and the robot performance was compared to the case where the proposed estimators replace the direct measured values. The experimental results reveal that the controller based on the estimators has similar performance to that using direct measurement (less than 1 N difference in root mean square error between two cases), indicating that the proposed force and motion estimators can facilitate implementation of interactive controller for the UHP in robotmediated rehabilitation trainings.

  5. Piezo-generated charge mapping revealed through direct piezoelectric force microscopy.

    Science.gov (United States)

    Gomez, A; Gich, M; Carretero-Genevrier, A; Puig, T; Obradors, X

    2017-10-24

    While piezoelectric and ferroelectric materials play a key role in many everyday applications, there are still a number of open questions related to their physics. To enhance our understanding of piezoelectrics and ferroelectrics, nanoscale characterization is essential. Here, we develop an atomic force microscopy based mode that obtains a direct quantitative analysis of the piezoelectric coefficient d 33 . We report nanoscale images of piezogenerated charge in a thick single crystal of periodically poled lithium niobate (PPLN), a bismuth ferrite (BiFO 3 ) thin film, and lead zirconate titanate (PZT) by applying a force and recording the current produced by these materials. The quantification of d 33 coefficients for PPLN (14 ± 3 pC per N) and BFO (43 ± 6 pC per N) is in agreement with the values reported in the literature. Even stronger evidence of the reliability of the method is provided by an equally accurate measurement of the significantly larger d 33 of PZT.

  6. Force control tasks with pure haptic feedback promote short-term focused attention.

    Science.gov (United States)

    Wang, Dangxiao; Zhang, Yuru; Yang, Xiaoxiao; Yang, Gaofeng; Yang, Yi

    2014-01-01

    Focused attention has great impact on our quality of life. Our learning, social skills and even happiness are closely intertwined with our capacity for focused attention. Attention promotion is replete with examples of training-induced increases in attention capability, most of which rely on visual and auditory stimulation. Pure haptic stimulation to increase attention capability is rarely found. We show that accurate force control tasks with pure haptic feedback enhance short-term focused attention. Participants were trained by a force control task in which information from visual and auditory channels was blocked, and only haptic feedback was provided. The trainees were asked to exert a target force within a pre-defined force tolerance for a specific duration. The tolerance was adaptively modified to different levels of difficulty to elicit full participant engagement. Three attention tests showed significant changes in different aspects of focused attention in participants who had been trained as compared with those who had not, thereby illustrating the role of haptic-based sensory-motor tasks in the promotion of short-term focused attention. The findings highlight the potential value of haptic stimuli in brain plasticity and serve as a new tool to extend existing computer games for cognitive enhancement.

  7. StringForce

    DEFF Research Database (Denmark)

    Barendregt, Wolmet; Börjesson, Peter; Eriksson, Eva

    2017-01-01

    In this paper, we present the forced collaborative interaction game StringForce. StringForce is developed for a special education context to support training of collaboration skills, using readily available technologies and avoiding the creation of a "mobile bubble". In order to play String......Force two or four physically collocated tablets are required. These tablets are connected to form one large shared game area. The game can only be played by collaborating. StringForce extends previous work, both technologically and regarding social-emotional training. We believe String......Force to be an interesting demo for the IDC community, as it intertwines several relevant research fields, such as mobile interaction and collaborative gaming in the special education context....

  8. Agricultural Productivity Forecasts for Improved Drought Monitoring

    Science.gov (United States)

    Limaye, Ashutosh; McNider, Richard; Moss, Donald; Alhamdan, Mohammad

    2010-01-01

    Water stresses on agricultural crops during critical phases of crop phenology (such as grain filling) has higher impact on the eventual yield than at other times of crop growth. Therefore farmers are more concerned about water stresses in the context of crop phenology than the meteorological droughts. However the drought estimates currently produced do not account for the crop phenology. US Department of Agriculture (USDA) and National Oceanic and Atmospheric Administration (NOAA) have developed a drought monitoring decision support tool: The U.S. Drought Monitor, which currently uses meteorological droughts to delineate and categorize drought severity. Output from the Drought Monitor is used by the States to make disaster declarations. More importantly, USDA uses the Drought Monitor to make estimates of crop yield to help the commodities market. Accurate estimation of corn yield is especially critical given the recent trend towards diversion of corn to produce ethanol. Ethanol is fast becoming a standard 10% ethanol additive to petroleum products, the largest traded commodity. Thus the impact of large-scale drought will have dramatic impact on the petroleum prices as well as on food prices. USDA's World Agricultural Outlook Board (WAOB) serves as a focal point for economic intelligence and the commodity outlook for U.S. WAOB depends on Drought Monitor and has emphatically stated that accurate and timely data are needed in operational agrometeorological services to generate reliable projections for agricultural decision makers. Thus, improvements in the prediction of drought will reflect in early and accurate assessment of crop yields, which in turn will improve commodity projections. We have developed a drought assessment tool, which accounts for the water stress in the context of crop phenology. The crop modeling component is done using various crop modules within Decision Support System for Agrotechnology Transfer (DSSAT). DSSAT is an agricultural crop

  9. Research on Grinding and Polishing Force Control of Compliant Flange

    Directory of Open Access Journals (Sweden)

    Li Chuang

    2015-01-01

    Full Text Available The automation of the grinding and polishing process is important to improve the production efficiency of the part surfaces. In this paper, a new compliant flange mounted on the end of the industrial robots for the robotic grinding and polishing force control is developed. With regard to the non-linear and time-varying problem of the contact force, the mathematical model of the new force control system was presented and the fuzzy PID control strategy was used to drive the proposed system. Especially, the air spring and electric proportional valve is studied to establish the model. The simulation results show that the selected control strategy has quick response and good robustness, which satisfies the real-time requirements of the grinding and polishing force control in processing.

  10. Force spectroscopy of hepatocytic extracellular matrix components

    Energy Technology Data Exchange (ETDEWEB)

    Yongsunthon, R., E-mail: YongsuntR@Corning.com [Corning Incorporated, SP-FR-01, R1S32D, Corning, NY 14831 (United States); Baker, W.A.; Bryhan, M.D.; Baker, D.E.; Chang, T.; Petzold, O.N.; Walczak, W.J.; Liu, J.; Faris, R.A.; Senaratne, W.; Seeley, L.A.; Youngman, R.E. [Corning Incorporated, SP-FR-01, R1S32D, Corning, NY 14831 (United States)

    2009-07-15

    We present atomic force microscopy and force spectroscopy data of live hepatocytes (HEPG2/C3A liver cell line) grown in Eagle's Minimum Essential Medium, a complex solution of salts and amino acids commonly used for cell culture. Contact-mode imaging and force spectroscopy of this system allowed correlation of cell morphology and extracellular matrix (ECM) properties with substrate properties. Force spectroscopy analysis of cellular 'footprints' indicated that the cells secrete large polymers (e.g., 3.5 {mu}m contour length and estimated MW 1000 kDa) onto their substrate surface. Although definitive identification of the polymers has not yet been achieved, fluorescent-labeled antibody staining has specified the presence of ECM proteins such as collagen and laminin in the cellular footprints. The stretched polymers appear to be much larger than single molecules of known ECM components, such as collagen and heparan sulfate proteoglycan, thus suggesting that the cells create larger entangled, macromolecular structures from smaller components. There is strong evidence which suggests that the composition of the ECM is greatly influenced by the hydrophobicity of the substrate surface, with preferential production and/or adsorption of larger macromolecules on hydrophobic surfaces.

  11. Method to Increase the Coupling Force in a Construction Machine

    Directory of Open Access Journals (Sweden)

    Tsipurskij Il’ja

    2017-01-01

    Full Text Available This paper discusses a possible method to increase the coupling tractive force track-wheel locomotion of construction machines. Sufficient tractive coupling force allows organizing translational displacement of the machine under above-medium load modes during operation of overburden chain excavators, tower cranes and gantry cranes in outdoors environments. A mechanism is examined to convert rotary motion into rectilinear motion using the example of a gear and rail, with kinematic calculations quoted. Analysis of the “force couple” system is proposed to identify free traction forces. Factors are established that influence the machine’s working movements. Equations to calculate tractive forces in track-wheel locomotion are described. A laboratory complex is presented where students of mechanical engineering gain practical skills in mastering the production process of soil excavation and the influence of the coupling tractive force during the machine’s operation. As practical recommendation, the paper describes a device made of a balancing lever, drive cogwheel and tractive chain to implement the required tractive force of the trolley in coupling; this solution’s efficiency is demonstrated for experimental works on hard soils with high coefficient of difficulty.

  12. Contribution of van der Waals forces to the plasticity of magnesium

    International Nuclear Information System (INIS)

    Ding, Zhigang; Liu, Wei; Li, Shuang; Zhang, Dalong; Zhao, Yonghao; Lavernia, Enrique J.; Zhu, Yuntian

    2016-01-01

    The accurate determination of stacking fault energies (SFE) and associated restoring forces is important for understanding plastic deformation, especially the dislocation emission and motion in metals. In this work, we use density-functional theory (DFT) calculations to, systematically study the all-dimension relaxed atomic models of Mg crystal slip, with a special focus on the “subslip modes” in prismatic and pyramidal slip systems. We find that slip systems with large interplanar distances are readily activated, which agrees well with experimental observations. Inclusion of the ubiquitous van der Waals (vdW) interactions results in lower generalized stacking fault energy curves. Remarkably, the unstable SFE value of pyramidal-II system is strongly reduced by up to 69 mJ/m 2 , and the related restoring stress is lowered by 0.74 GPa after taking into account the vdW energy. Our calculations indicate significant effect of vdW forces on the plasticity of Mg. - Graphical abstract: By using density-functional theory calculations, we systematically study the generalized stacking fault energy for pure Mg, and demonstrated pronounced contributions of van der Waals forces to the plasticity of Mg.

  13. Factors that influence ground reaction force profiles during counter movement jumping.

    Science.gov (United States)

    Eagles, Alexander N; Sayers, Mark G; Lovell, Dale I

    2017-05-01

    The purpose of this study was to examine how hip, knee and ankle kinetics and kinematics influence effective impulse production during countermovement jumps. Eighteen semi-professional soccer players (22.8±2.2 years) volunteered to participate in the study. Participants completed three maximal countermovement jumps on two force platforms (1000 Hz) that were linked to a nine camera infrared motion capture system (500 Hz). Kinetic and kinematic data revealed jumpers who fail to achieve uniform ground reaction force curves that result in optimal impulse production during their jump always display hip adduction and or hip internal rotation during the concentric phase of the countermovement jump. The variation of hip adduction and or internal rotation likely represents failed joint transition during the concentric phase of the countermovement jump and appears to account for a non-uniform force trace seen in these jumpers. The findings suggest rehabilitation and conditioning exercises for injury prevention and performance may benefit from targeting frontal and transverse plane movement.

  14. A nondestructive, reproducible method of measuring joint reaction force at the distal radioulnar joint.

    Science.gov (United States)

    Canham, Colin D; Schreck, Michael J; Maqsoodi, Noorullah; Doolittle, Madison; Olles, Mark; Elfar, John C

    2015-06-01

    To develop a nondestructive method of measuring distal radioulnar joint (DRUJ) joint reaction force (JRF) that preserves all periarticular soft tissues and more accurately reflects in vivo conditions. Eight fresh-frozen human cadaveric limbs were obtained. A threaded Steinmann pin was placed in the middle of the lateral side of the distal radius transverse to the DRUJ. A second pin was placed into the middle of the medial side of the distal ulna colinear to the distal radial pin. Specimens were mounted onto a tensile testing machine using a custom fixture. A uniaxial distracting force was applied across the DRUJ while force and displacement were simultaneously measured. Force-displacement curves were generated and a best-fit polynomial was solved to determine JRF. All force-displacement curves demonstrated an initial high slope where relatively large forces were required to distract the joint. This ended with an inflection point followed by a linear area with a low slope, where small increases in force generated larger amounts of distraction. Each sample was measured 3 times and there was high reproducibility between repeated measurements. The average baseline DRUJ JRF was 7.5 N (n = 8). This study describes a reproducible method of measuring DRUJ reaction forces that preserves all periarticular stabilizing structures. This technique of JRF measurement may also be suited for applications in the small joints of the wrist and hand. Changes in JRF can alter native joint mechanics and lead to pathology. Reliable methods of measuring these forces are important for determining how pathology and surgical interventions affect joint biomechanics. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  15. Force-field parameters from the SAFT-γ equation of state for use in coarse-grained molecular simulations.

    Science.gov (United States)

    Müller, Erich A; Jackson, George

    2014-01-01

    A description of fluid systems with molecular-based algebraic equations of state (EoSs) and by direct molecular simulation is common practice in chemical engineering and the physical sciences, but the two approaches are rarely closely coupled. The key for an integrated representation is through a well-defined force field and Hamiltonian at the molecular level. In developing coarse-grained intermolecular potential functions for the fluid state, one typically starts with a detailed, bottom-up quantum-mechanical or atomic-level description and then integrates out the unwanted degrees of freedom using a variety of techniques; an iterative heuristic simulation procedure is then used to refine the parameters of the model. By contrast, with a top-down technique, one can use an accurate EoS to link the macroscopic properties of the fluid and the force-field parameters. We discuss the latest developments in a top-down representation of fluids, with a particular focus on a group-contribution formulation of the statistical associating fluid theory (SAFT-γ). The accurate SAFT-γ EoS is used to estimate the parameters of the Mie force field, which can then be used with confidence in direct molecular simulations to obtain thermodynamic, structural, interfacial, and dynamical properties that are otherwise inaccessible from the EoS. This is exemplified for several prototypical fluids and mixtures, including carbon dioxide, hydrocarbons, perfluorohydrocarbons, and aqueous surfactants.

  16. Sensitivity of Surface Temperature to Oceanic Forcing via q-Flux Green’s Function Experiments. Part I: Linear Response Function

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fukai; Lu, Jian; Garuba, Oluwayemi A.; Leung, Lai-Yung; Luo, Yiyong; Wan, Xiuquan

    2018-05-01

    This paper explores the use of linear response function (LRF) to relate the mean sea surface temperature (SST) response to prescribed ocean heat convergence (q-flux) forcings. Two methods for constructing the LRF based on the fluctuation-dissipation theorem (FDT) and Green’s function (GRF) are examined. A 900-year preindustrial simulation from the Community Earth System Model with a slab ocean (CESM-SOM) is used to estimate the LRF using FDT. For GRF, 106 pairs of CESM-SOM simulations with warm and cold q-flux patches are performed. FDT is found to have skill in estimating the SST response to a q-flux forcing when the local SST response is strong, but it fails in inverse estimation of the q-flux forcing for a given SST pattern. In contrast, GRF is shown to be reasonably accurate in estimating both SST response and q-flux forcing. Possible degradation in FDT may be attributed to insufficient data sampling, significant departures of the SST data from Gaussian, and the non-normality of the constructed operator. The accurately estimated GRF-based LRF is used to (i) generate a global surface temperature sensitivity map that shows the q-flux forcing in higher latitudes to be three to four times more effective than in low latitudes in producing global surface warming; (ii) identify the most excitable SST mode (neutral vector) resembling Interdecadal Pacific Oscillation; and (iii) estimate a time-invariant q-flux forcing needed for maintaining the GHG-induced SST warming pattern. The GRF experiments will be used to construct LRF for other variables to further explore climate sensitivities and feedbacks.

  17. Cryotherapy, Sensation, and Isometric-Force Variability

    Science.gov (United States)

    Denegar, Craig R.; Buckley, William E.; Newell, Karl M.

    2003-01-01

    Objective: To determine the changes in sensation of pressure, 2-point discrimination, and submaximal isometric-force production variability due to cryotherapy. Design and Setting: Sensation was assessed using a 2 × 2 × 2 × 3 repeated-measures factorial design, with treatment (ice immersion or control), limb (right or left), digit (finger or thumb), and sensation test time (baseline, posttreatment, or postisometric-force trials) as independent variables. Dependent variables were changes in sensation of pressure and 2-point discrimination. Isometric-force variability was tested with a 2 × 2 × 3 repeated-measures factorial design. Treatment condition (ice immersion or control), limb (right or left), and percentage (10, 25, or 40) of maximal voluntary isometric contraction (MVIC) were the independent variables. The dependent variables were the precision or variability (the standard deviation of mean isometric force) and the accuracy or targeting error (the root mean square error) of the isometric force for each percentage of MVIC. Subjects: Fifteen volunteer college students (8 men, 7 women; age = 22 ± 3 years; mass = 72 ± 21.9 kg; height = 183.4 ± 11.6 cm). Measurements: We measured sensation in the distal palmar aspect of the index finger and thumb. Sensation of pressure and 2-point discrimination were measured before treatment (baseline), after treatment (15 minutes of ice immersion or control), and at the completion of isometric testing (final). Variability (standard deviation of mean isometric force) of the submaximal isometric finger forces was measured by having the subjects exert a pinching force with the thumb and index finger for 30 seconds. Subjects performed the pinching task at the 3 submaximal levels of MVIC (10%, 25%, and 40%), with the order of trials assigned randomly. The subjects were given a target representing the submaximal percentage of MVIC and visual feedback of the force produced as they pinched the testing device. The force exerted

  18. Atomistic Force Field for Pyridinium-Based Ionic Liquids: Reliable Transport Properties

    DEFF Research Database (Denmark)

    Voroshylova, I. V.; Chaban, V. V.

    2014-01-01

    Reliable force field (FF) is a central issue in successful prediction of physical chemical properties via computer simulations. This work introduces refined FF parameters for six popular ionic liquids (ILs) of the pyridinium family (butylpyridinium tetrafluoroborate, bis(trifluoromethanesulfonyl)......Reliable force field (FF) is a central issue in successful prediction of physical chemical properties via computer simulations. This work introduces refined FF parameters for six popular ionic liquids (ILs) of the pyridinium family (butylpyridinium tetrafluoroborate, bis......(trifluoromethanesulfonyl)imide, dicyanamide, hexafluorophosphate, triflate, chloride). We elaborate a systematic procedure, which allows accounting for specific cationanion interactions in the liquid phase. Once these interactions are described accurately, all experimentally determined transport properties can be reproduced. We prove...... and elevated temperature. The developed atomistic models provide a systematic refinement upon the well-known Canongia LopesPadua (CL&P) FF. Together with the original CL&P parameters the present models foster a computational investigation of ionic liquids....

  19. Dispersion Forces

    CERN Document Server

    Buhmann, Stefan Yoshi

    2012-01-01

    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  20. 75 FR 78755 - Notice of Initial Determination Revising the List of Products Requiring Federal Contractor...

    Science.gov (United States)

    2010-12-16

    ... Products Requiring Federal Contractor Certification as to Forced/Indentured Child Labor Pursuant to... products requiring federal contractor certification as to the use of forced or indentured child labor. To.... 13126 (``Prohibition of Acquisition of Products Produced by Forced or Indentured Child Labor''), in...

  1. Identification of moving vehicle forces on bridge structures via moving average Tikhonov regularization

    Science.gov (United States)

    Pan, Chu-Dong; Yu, Ling; Liu, Huan-Lin

    2017-08-01

    Traffic-induced moving force identification (MFI) is a typical inverse problem in the field of bridge structural health monitoring. Lots of regularization-based methods have been proposed for MFI. However, the MFI accuracy obtained from the existing methods is low when the moving forces enter into and exit a bridge deck due to low sensitivity of structural responses to the forces at these zones. To overcome this shortcoming, a novel moving average Tikhonov regularization method is proposed for MFI by combining with the moving average concepts. Firstly, the bridge-vehicle interaction moving force is assumed as a discrete finite signal with stable average value (DFS-SAV). Secondly, the reasonable signal feature of DFS-SAV is quantified and introduced for improving the penalty function (∣∣x∣∣2 2) defined in the classical Tikhonov regularization. Then, a feasible two-step strategy is proposed for selecting regularization parameter and balance coefficient defined in the improved penalty function. Finally, both numerical simulations on a simply-supported beam and laboratory experiments on a hollow tube beam are performed for assessing the accuracy and the feasibility of the proposed method. The illustrated results show that the moving forces can be accurately identified with a strong robustness. Some related issues, such as selection of moving window length, effect of different penalty functions, and effect of different car speeds, are discussed as well.

  2. Communication: Calculation of interatomic forces and optimization of molecular geometry with auxiliary-field quantum Monte Carlo

    Science.gov (United States)

    Motta, Mario; Zhang, Shiwei

    2018-05-01

    We propose an algorithm for accurate, systematic, and scalable computation of interatomic forces within the auxiliary-field quantum Monte Carlo (AFQMC) method. The algorithm relies on the Hellmann-Feynman theorem and incorporates Pulay corrections in the presence of atomic orbital basis sets. We benchmark the method for small molecules by comparing the computed forces with the derivatives of the AFQMC potential energy surface and by direct comparison with other quantum chemistry methods. We then perform geometry optimizations using the steepest descent algorithm in larger molecules. With realistic basis sets, we obtain equilibrium geometries in agreement, within statistical error bars, with experimental values. The increase in computational cost for computing forces in this approach is only a small prefactor over that of calculating the total energy. This paves the way for a general and efficient approach for geometry optimization and molecular dynamics within AFQMC.

  3. Resolution Enhancement Method Used for Force Sensing Resistor Array

    Directory of Open Access Journals (Sweden)

    Karen Flores De Jesus

    2015-01-01

    Full Text Available Tactile sensors are one of the major devices that enable robotic systems to interact with the surrounding environment. This research aims to propose a mathematical model to describe the behavior of a tactile sensor based on experimental and statistical analyses and moreover to develop a versatile algorithm that can be applied to different tactile sensor arrays to enhance the limited resolution. With the proposed algorithm, the resolution can be increased up to twenty times if multiple measurements are available. To verify if the proposed algorithm can be used for tactile sensor arrays that are used in robotic system, a 16×10 force sensing array (FSR is adopted. The acquired two-dimensional measurements were processed by a resolution enhancement method (REM to enhance the resolution, which can be used to improve the resolution for single image or multiple measurements. As a result, the resolution of the sensor is increased and it can be used as synthetic skin to identify accurate shapes of objects and applied forces.

  4. Final Environmental Assessment for the First Air Force Air Operations Center, First Air Force Headquarters/Air Force Forces Center, and Highway 98 Overpass at Tyndall Air Force Base, Florida

    Science.gov (United States)

    2004-01-01

    no comments regarding the Draft Environmental Assessment for the First Air Force Operations Center, First Air Force Headquarters/Air Force Forces...COUNCIL ] No Comment BAY - BAY COUNTY No Final Comments Received ENVIRONMENTAL POLICY UNIT - OFFICE OF POLICY AND BUDGET, ENVIRONMENTAL POLICY UNIT NO ...CONSERVATION COMMISSION [ NO COMMENT BY BRIAN BARNETT ON 4/12/04. [STATE - FLORIDA DEPARTMENT OF STATE [ No Comment [TRANSPORTATION - FLORIDA DEPARTMENT

  5. Can crop-climate models be accurate and precise? A case study for wheat production in Denmark

    DEFF Research Database (Denmark)

    Montesino San Martin, Manuel; Olesen, Jørgen E.; Porter, John Roy

    2015-01-01

    Crop models, used to make projections of climate change impacts, differ greatly in structural detail. Complexity of model structure has generic effects on uncertainty and error propagation in climate change impact assessments. We applied Bayesian calibration to three distinctly different empirical....... Yields predicted by the mechanistic model were generally more accurate than the empirical models for extrapolated conditions. This trend does not hold for all extrapolations; mechanistic and empirical models responded differently due to their sensitivities to distinct weather features. However, higher...... suitable for generic model ensembles for near-term agricultural impact assessments of climate change....

  6. Increased profitability in cellulose production through more accurate measurement of the moisture content

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    A general report on the project 'Dry Wood' is presented. In this project Noratom-Norcontrol A/S cooperate with the wood-pulp and paper factory Petersen and Soen in the application of Noratom's radiometric moisture gauge and their continuous weighing machine (densimeter) in the continuous measurement of the moisture content of wood chips in cellulose production. Conventional methods give an accuracy of π+ 2% and the objective of this method is an accuracy of π+ 1%. This would have a considerable economic significance. A test unit has been operating in the production line for a year and has attained the objective for short periods. Improved long term stability is the present problem. The system has process outputs which will facilitate future on-line computer process control. (JIW)

  7. Design and verification of a simple 3D dynamic model of speed skating which mimics observed forces and motions.

    Science.gov (United States)

    van der Kruk, E; Veeger, H E J; van der Helm, F C T; Schwab, A L

    2017-11-07

    Advice about the optimal coordination pattern for an individual speed skater, could be addressed by simulation and optimization of a biomechanical speed skating model. But before getting to this optimization approach one needs a model that can reasonably match observed behaviour. Therefore, the objective of this study is to present a verified three dimensional inverse skater model with minimal complexity, which models the speed skating motion on the straights. The model simulates the upper body transverse translation of the skater together with the forces exerted by the skates on the ice. The input of the model is the changing distance between the upper body and the skate, referred to as the leg extension (Euclidean distance in 3D space). Verification shows that the model mimics the observed forces and motions well. The model is most accurate for the position and velocity estimation (respectively 1.2% and 2.9% maximum residuals) and least accurate for the force estimations (underestimation of 4.5-10%). The model can be used to further investigate variables in the skating motion. For this, the input of the model, the leg extension, can be optimized to obtain a maximal forward velocity of the upper body. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. On Gait Analysis Estimation Errors Using Force Sensors on a Smart Rollator

    Directory of Open Access Journals (Sweden)

    Joaquin Ballesteros

    2016-11-01

    Full Text Available Gait analysis can provide valuable information on a person’s condition and rehabilitation progress. Gait is typically captured using external equipment and/or wearable sensors. These tests are largely constrained to specific controlled environments. In addition, gait analysis often requires experts for calibration, operation and/or to place sensors on volunteers. Alternatively, mobility support devices like rollators can be equipped with onboard sensors to monitor gait parameters, while users perform their Activities of Daily Living. Gait analysis in rollators may use odometry and force sensors in the handlebars. However, force based estimation of gait parameters is less accurate than traditional methods, especially when rollators are not properly used. This paper presents an evaluation of force based gait analysis using a smart rollator on different groups of users to determine when this methodology is applicable. In a second stage, the rollator is used in combination with two lab-based gait analysis systems to assess the rollator estimation error. Our results show that: (i there is an inverse relation between the variance in the force difference between handlebars and support on the handlebars—related to the user condition—and the estimation error; and (ii this error is lower than 10% when the variation in the force difference is above 7 N. This lower limit was exceeded by the 95.83% of our challenged volunteers. In conclusion, rollators are useful for gait characterization as long as users really need the device for ambulation.

  9. On Gait Analysis Estimation Errors Using Force Sensors on a Smart Rollator.

    Science.gov (United States)

    Ballesteros, Joaquin; Urdiales, Cristina; Martinez, Antonio B; van Dieën, Jaap H

    2016-11-10

    Gait analysis can provide valuable information on a person's condition and rehabilitation progress. Gait is typically captured using external equipment and/or wearable sensors. These tests are largely constrained to specific controlled environments. In addition, gait analysis often requires experts for calibration, operation and/or to place sensors on volunteers. Alternatively, mobility support devices like rollators can be equipped with onboard sensors to monitor gait parameters, while users perform their Activities of Daily Living. Gait analysis in rollators may use odometry and force sensors in the handlebars. However, force based estimation of gait parameters is less accurate than traditional methods, especially when rollators are not properly used. This paper presents an evaluation of force based gait analysis using a smart rollator on different groups of users to determine when this methodology is applicable. In a second stage, the rollator is used in combination with two lab-based gait analysis systems to assess the rollator estimation error. Our results show that: (i) there is an inverse relation between the variance in the force difference between handlebars and support on the handlebars-related to the user condition-and the estimation error; and (ii) this error is lower than 10% when the variation in the force difference is above 7 N. This lower limit was exceeded by the 95.83% of our challenged volunteers. In conclusion, rollators are useful for gait characterization as long as users really need the device for ambulation.

  10. Targeted inhibition of TGF-β results in an initial improvement but long-term deficit in force production after contraction-induced skeletal muscle injury.

    Science.gov (United States)

    Gumucio, Jonathan P; Flood, Michael D; Phan, Anthony C; Brooks, Susan V; Mendias, Christopher L

    2013-08-15

    Transforming growth factor-β (TGF-β) is a proinflammatory cytokine that regulates the response of many tissues following injury. Previous studies in our lab have shown that treating muscles with TGF-β results in a dramatic accumulation of type I collagen, substantial fiber atrophy, and a marked decrease in force production. Because TGF-β promotes atrophy and fibrosis, our objective was to investigate whether the inhibition of TGF-β after injury would enhance the recovery of muscle following injury. We hypothesized that inhibiting TGF-β after contraction-induced injury would improve the functional recovery of muscles by preventing muscle fiber atrophy and weakness, and by limiting the accumulation of fibrotic scar tissue. To test this hypothesis, we induced an injury using a series of in situ lengthening contractions to extensor digitorum longus muscles of mice treated with either a bioneutralizing antibody against TGF-β or a sham antibody. Compared with controls, muscles from mice receiving TGF-β inhibitor showed a greater recovery in force 3 days and 7 days after injury but had a decrease in force compared with controls at the 21-day time point. The early enhancement in force in the TGF-β inhibitor group was associated with an initial improvement in tissue morphology, but, at 21 days, while the control group was fully recovered, the TGF-β inhibitor group displayed an irregular extracellular matrix and an increase in atrogin-1 gene expression. These results indicate that the inhibition of TGF-β promotes the early recovery of muscle function but is detrimental overall to full muscle recovery following moderate to severe muscle injuries.

  11. Product Context Analysis with Twitter Data

    OpenAIRE

    Sun, Tao

    2016-01-01

    Context. For the product manager, the product context analysis, which aims to align their products to the market needs, is very important. By understanding the market needs, the product manager knows the product context information about the environment the products conceived and the business the products take place. The product context analysis using the product context information helps the product manager find the accurate position of his/her products and support the decision-making of the...

  12. 76 FR 31365 - Notice of Final Determination Revising the List of Products Requiring Federal Contractor...

    Science.gov (United States)

    2011-05-31

    ... List of Products Requiring Federal Contractor Certification as to Forced or Indentured Child Labor... Contractor Certification as to Forced or Indentured Child Labor.'' This notice adds a product, hand-woven... of the List of Products Requiring Federal Contractor Certification as to Forced or Indentured Child...

  13. 75 FR 42164 - Notice of Final Determination Updating the List of Products Requiring Federal Contractor...

    Science.gov (United States)

    2010-07-20

    ... List of Products Requiring Federal Contractor Certification as to Forced or Indentured Child Labor... Guidelines for Maintenance of the List of Products Requiring Federal Contractor Certification as to Forced or.... 13126 (``Prohibition of Acquisition of Products Produced by Forced or Indentured Child Labor''), in...

  14. Experimental Contribution to High Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    DEFF Research Database (Denmark)

    Kjølhede, Klaus; Santos, Ilmar

    2006-01-01

    Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... validation and leads to novel approaches in identifying crucial rotor parameters. This is the main focus of this paper, where an intelligent AMB is being developed with the aim of aiding the accurate identification of damping and stiffness coefficients of active lubricated journal bearings. The main...... of the magnetic forces is conducted using different experimental tests: (a) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor, (b) by measuring the input current and bearing...

  15. Impact of ice particle shape on short-wave radiative forcing: A case study for an arctic ice cloud

    International Nuclear Information System (INIS)

    Kahnert, Michael; Sandvik, Anne Dagrun; Biryulina, Marina; Stamnes, Jakob J.; Stamnes, Knut

    2008-01-01

    We used four different non-spherical particle models to compute optical properties of an arctic ice cloud and to simulate corresponding cloud radiative forcings and fluxes. One important finding is that differences in cloud forcing, downward flux at the surface, and absorbed flux in the atmosphere resulting from the use of the four different ice cloud particle models are comparable to differences in these quantities resulting from changing the surface albedo from 0.4 to 0.8, or by varying the ice water content (IWC) by a factor of 2. These findings show that the use of a suitable non-spherical ice cloud particle model is very important for a realistic assessment of the radiative impact of arctic ice clouds. The differences in radiative broadband fluxes predicted by the four different particle models were found to be caused mainly by differences in the optical depth and the asymmetry parameter. These two parameters were found to have nearly the same impact on the predicted cloud forcing. Computations were performed first by assuming a given vertical profile of the particle number density, then by assuming a given profile of the IWC. In both cases, the differences between the cloud radiative forcings computed with the four different non-spherical particle models were found to be of comparable magnitude. This finding shows that precise knowledge of ice particle number density or particle mass is not sufficient for accurate prediction of ice cloud radiative forcing. It is equally important to employ a non-spherical shape model that accurately reproduces the ice particle's dimension-to-volume ratio and its asymmetry parameter. The hexagonal column/plate model with air-bubble inclusions seems to offer the highest degree of flexibility

  16. EFFECT OF POLARIMETRIC NOISE ON THE ESTIMATION OF TWIST AND MAGNETIC ENERGY OF FORCE-FREE FIELDS

    International Nuclear Information System (INIS)

    Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Gosain, Sanjay; Joshi, Jayant

    2009-01-01

    The force-free parameter α, also known as helicity parameter or twist parameter, bears the same sign as the magnetic helicity under some restrictive conditions. The single global value of α for a whole active region gives the degree of twist per unit axial length. We investigate the effect of polarimetric noise on the calculation of global α value and magnetic energy of an analytical bipole. The analytical bipole has been generated using the force-free field approximation with a known value of constant α and magnetic energy. The magnetic parameters obtained from the analytical bipole are used to generate Stokes profiles from the Unno-Rachkovsky solutions for polarized radiative transfer equations. Then we add random noise of the order of 10 -3 of the continuum intensity (I c ) in these profiles to simulate the real profiles obtained by modern spectropolarimeters such as Hinode (SOT/SP), SVM (USO), ASP, DLSP, POLIS, and SOLIS etc. These noisy profiles are then inverted using a Milne-Eddington inversion code to retrieve the magnetic parameters. Hundred realizations of this process of adding random noise and polarimetric inversion is repeated to study the distribution of error in global α and magnetic energy values. The results show that (1) the sign of α is not influenced by polarimetric noise and very accurate values of global twist can be calculated, and (2) accurate estimation of magnetic energy with uncertainty as low as 0.5% is possible under the force-free condition.

  17. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    International Nuclear Information System (INIS)

    Thompson, A.P.; Swiler, L.P.; Trott, C.R.; Foiles, S.M.; Tucker, G.J.

    2015-01-01

    We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum

  18. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aidan P. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Multiscale Science Dept.; Swiler, Laura P. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Optimization and Uncertainty Quantification Dept.; Trott, Christian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Scalable Algorithms Dept.; Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Materials and Data Science Dept.; Tucker, Garritt J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Materials and Data Science Dept.; Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Science and Engineering

    2015-03-15

    Here, we present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.

  19. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.P., E-mail: athomps@sandia.gov [Multiscale Science Department, Sandia National Laboratories, PO Box 5800, MS 1322, Albuquerque, NM 87185 (United States); Swiler, L.P., E-mail: lpswile@sandia.gov [Optimization and Uncertainty Quantification Department, Sandia National Laboratories, PO Box 5800, MS 1318, Albuquerque, NM 87185 (United States); Trott, C.R., E-mail: crtrott@sandia.gov [Scalable Algorithms Department, Sandia National Laboratories, PO Box 5800, MS 1322, Albuquerque, NM 87185 (United States); Foiles, S.M., E-mail: foiles@sandia.gov [Computational Materials and Data Science Department, Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, NM 87185 (United States); Tucker, G.J., E-mail: gtucker@coe.drexel.edu [Computational Materials and Data Science Department, Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, NM 87185 (United States); Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104 (United States)

    2015-03-15

    We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.

  20. An efficient and accurate framework for calculating lattice thermal conductivity of solids: AFLOW—AAPL Automatic Anharmonic Phonon Library

    Science.gov (United States)

    Plata, Jose J.; Nath, Pinku; Usanmaz, Demet; Carrete, Jesús; Toher, Cormac; de Jong, Maarten; Asta, Mark; Fornari, Marco; Nardelli, Marco Buongiorno; Curtarolo, Stefano

    2017-10-01

    One of the most accurate approaches for calculating lattice thermal conductivity, , is solving the Boltzmann transport equation starting from third-order anharmonic force constants. In addition to the underlying approximations of ab-initio parameterization, two main challenges are associated with this path: high computational costs and lack of automation in the frameworks using this methodology, which affect the discovery rate of novel materials with ad-hoc properties. Here, the Automatic Anharmonic Phonon Library (AAPL) is presented. It efficiently computes interatomic force constants by making effective use of crystal symmetry analysis, it solves the Boltzmann transport equation to obtain , and allows a fully integrated operation with minimum user intervention, a rational addition to the current high-throughput accelerated materials development framework AFLOW. An "experiment vs. theory" study of the approach is shown, comparing accuracy and speed with respect to other available packages, and for materials characterized by strong electron localization and correlation. Combining AAPL with the pseudo-hybrid functional ACBN0 is possible to improve accuracy without increasing computational requirements.