WorldWideScience

Sample records for accumulation mode particles

  1. Chemical composition of nucleation and accumulation mode particles collected in Vienna, Austria

    Science.gov (United States)

    Puxbaum, Hans; Wopenka, Brigitte

    Atmospheric aerosol samples were collected by six-stage low pressure impactors in Vienna downtown. Aerosol particles were deposited on aluminum foils in five size fractions in the size range of 0.04-25 μm AD. The concentration of the components Cl -, Br -, NO 3-, SO 42-, Ca, Cu, Fe, Mg, Pb. Sr, Zn and total C was determined by multi-element analytical methods. A comparison of the relative composition of the size fractions containing nucleation mode and accumulation mode particles showed the components derived from traffic emissions (Pb, Br - and C) to be significantly enriched in the nucleation mode size fraction. On the other hand, each of the components Cl -, SO 42-,Ca, Cu, Fe, Mg and Sr has a similar relative concentration in the nucleation mode and in the accumulation mode size fraction. For all samples collected on days with prevailing westerly winds a strong negative correlation between wind speed and sulfate particle size as well as sulfate concentration was observed.

  2. Temperature-dependent accumulation mode particle and cloud nuclei concentrations from biogenic sources during WACS 2010

    Directory of Open Access Journals (Sweden)

    L. Ahlm

    2012-10-01

    Full Text Available Submicron aerosol particles collected simultaneously at the mountain peak (2182 m a.s.l. and at a forested mid-mountain site (1300 m a.s.l. on Whistler Mountain, British Columbia, Canada, during June and July 2010 were analyzed by Fourier transform infrared (FTIR spectroscopy for quantification of organic functional groups. Positive matrix factorization (PMF was applied to the FTIR spectra. Three PMF factors associated with (1 combustion, (2 biogenics, and (3 vegetative detritus, were identified at both sites. The biogenic factor was correlated with both temperature and several volatile organic compounds (VOCs. The combustion factor dominated the submicron particle mass during the beginning of the campaign when the temperature was lower and advection was from the Vancouver area, but as the temperature started to rise in early July the biogenic factor came to dominate as a result of increased emissions of biogenic VOCs and thereby increased formation of secondary organic aerosol (SOA. On average, the biogenic factor represented 69% and 49% of the submicron organic particle mass at Whistler Peak and at the mid-mountain site, respectively. The lower fraction at the mid-mountain site was a result of more vegetative detritus there, and also higher influence from local combustion sources.

    The biogenic factor was strongly correlated (r ~ 0.9 to number concentration of particles with diameter (Dp> 100 nm, whereas the combustion factor was better correlated to number concentration of particles with Dp < 100 nm (r~ 0.4. The number concentration of cloud condensation nuclei (CCN was correlated (r ~ 0.7 to the biogenic factor for supersaturations (S of 0.2% or higher, which indicates that particle condensational growth from biogenic vapors was an important factor in controlling the CCN concentration for clouds where S≥0.2%. Both the number concentration of particles with

  3. Temperature-dependent accumulation mode particle and cloud nuclei concentrations from biogenic sources during WACS 2010

    Directory of Open Access Journals (Sweden)

    L. Ahlm

    2013-03-01

    Full Text Available Submicron aerosol particles collected simultaneously at the mountain peak (2182 m a.s.l. and at a forested mid-mountain site (1300 m a.s.l. on Whistler Mountain, British Columbia, Canada, during June and July 2010 were analyzed by Fourier transform infrared (FTIR spectroscopy for quantification of organic functional groups. Positive matrix factorization (PMF was applied to the FTIR spectra. Three PMF factors associated with (1 combustion, (2 biogenics, and (3 vegetative detritus were identified at both sites. The biogenic factor was correlated with both temperature and several volatile organic compounds (VOCs. The combustion factor dominated the submicron particle mass during the beginning of the campaign, when the temperature was lower and advection was from the Vancouver area, but as the temperature started to rise in early July, the biogenic factor came to dominate as a result of increased emissions of biogenic VOCs, and thereby increased formation of secondary organic aerosol (SOA. On average, the biogenic factor represented 69% and 49% of the submicron organic particle mass at Whistler Peak and at the mid-mountain site, respectively. The lower fraction at the mid-mountain site was a result of more vegetative detritus there, and also higher influence from local combustion sources. The biogenic factor was strongly correlated (r~0.9 to number concentration of particles with diameter (Dp> 100 nm, whereas the combustion factor was better correlated to number concentration of particles with Dpr~0.4. The number concentration of cloud condensation nuclei (CCN was correlated (r~0.7 to the biogenic factor for supersaturations (S of 0.2% or higher, which indicates that particle condensational growth from biogenic vapors was an important factor in controlling the CCN concentration for clouds where S≥0.2%. Both the number concentration of particles with Dp>100 nm and numbers of CCN for S≥0.2% were correlated to temperature. Considering the biogenic

  4. Size distribution and total number concentration of ultrafine and accumulation mode particles and hospital admissions in children and the elderly in Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Andersen, Zorana Jovanovic; Wåhlin, Peter; Raaschou-Nielsen, O;

    2008-01-01

    Poisson generalised additive model adjusted for overdispersion, season, day of the week, public holidays, school holidays, influenza, pollen and meteorology, with up to 5 days' lagged exposure. RESULTS AND CONCLUSIONS: The adverse health effects of particulate matter on CVD and RD hospital admissions...... that particle volume/mass from long-range transported air pollution is relevant for CVD and RD admissions in the elderly, and possibly particle numbers from traffic sources for paediatric asthma....... in the elderly were mainly mediated by PM(10) and accumulation mode particles with lack of effects for NC(100). For paediatric asthma, accumulation mode particles, NC(100) and nitrogen oxides (mainly from traffic related sources) were relevant, whereas PM(10) appeared to have little effect. Our results suggest...

  5. "DIAGNOSTIC" PULSE FOR SINGLE-PARTICLE-LIKE BEAM POSITION MEASUREMENTS DURING ACCUMULATION/PRODUCTION MODE IN THE LOS ALAMOS PROTON STORAGE RING

    Energy Technology Data Exchange (ETDEWEB)

    Kolski, Jeffrey S. [Los Alamos National Laboratory; Baily, Scott A. [Los Alamos National Laboratory; Bjorklund, Eric A. [Los Alamos National Laboratory; Bolme, Gerald O. [Los Alamos National Laboratory; Hall, Michael J. [Los Alamos National Laboratory; Kwon, Sung I. [Los Alamos National Laboratory; Martinez, Martin P. [Los Alamos National Laboratory; Prokop, Mark S. [Los Alamos National Laboratory; Shelley, Fred E. Jr. [Los Alamos National Laboratory; Torrez, Phillip A. [Los Alamos National Laboratory

    2012-05-14

    Beam position monitors (BPMs) are the primary diagnostic in the Los Alamos Proton Storage Ring (PSR). When injecting one turn, the transversemotion is approximated as a single particle with initial betatron position and angle {rvec x}{sub 0} and {rvec x}'{sub 0}. With single-turn injection, we fit the betatron tune, closed orbit (CO), and injection offset ({rvec x}{sub 0} and {rvec x}'{sub 0} at the injection point) to the turn-by-turn beam position. In production mode, we accumulate multiple turns, the transverse phase space fills after 5 injections (horizontal and vertical fractional betatron tunes {approx}0.2) resulting in no coherent betatron motion, and only the CO may be measured. The injection offset, which determines the accumulated beam size and is very sensitive to steering upstream of the ring, is not measurable in production mode. We describe our approach and ongoing efforts to measure the injection offset during production mode by injecting a 'diagnostic' pulse {approx}50 {micro}s after the accumulated beam is extracted. We also study the effects of increasing the linac RF gate length to accommodate the diagnostic pulse on the production beam position, transverse size, and loss.

  6. Mode resolved density of atmospheric aerosol particles

    Directory of Open Access Journals (Sweden)

    P. Aalto

    2008-09-01

    Full Text Available In this study, we investigate the mode resolved density of ultrafine atmospheric particles measured in boreal forest environment. The method used here enables us to find the distinct density information for each mode in atmospheric fine particle population: the density values for nucleation, Aitken, and accumulation mode particles are presented. The experimental data was gained during 2 May 2005–19 May 2005 at the boreal forest measurement station "SMEAR II" in Hyytiälä, Southern Finland. The density values for accumulation mode varied from 1.1 to 2 g/cm3 (average 1.5 g/cm3 and for Aitken mode from 0.4 to 2 g/cm3 (average 0.97 g/cm3. As an overall trend during the two weeks campaign, the density value of Aitken mode was seen to gradually increase. With the present method, the time dependent behaviour of the particle density can be investigated in the time scale of 10 min. This allows us to follow the density evolution of the nucleation mode particles during the particle growth process following the nucleation burst. The density of nucleation mode particles decreased during the growth process. The density values for 15 nm particles were 1.2–1.5 g/cm3 and for grown 30 nm particles 0.5–1 g/cm3. These values are consistent with the present knowledge that the condensing species are semi-volatile organics, emitted from the boreal forest.

  7. Effects of particle shape, hematite content and semi-external mixing with carbonaceous components on the optical properties of accumulation mode mineral dust

    Directory of Open Access Journals (Sweden)

    S. K. Mishra

    2010-12-01

    Full Text Available The radiative forcing estimation of the polluted mineral dust is limited due to lack of morphological analysis, mixing state with the carbonaceous components and the hematite content in the pure dust. The accumulation mode mineral dust has been found to mix with anthropogenically produced black carbon, organic carbon and brown carbon during long range transport. The above features of the polluted dust are not well accounted in the optical models and lead the uncertainty in the numerical estimation of their radiative impact. The Semi-external mixing being a prominent mixing of dust and carbonaceous components has not been studied in details so for compared to core-shell, internal and external mixing studies. In present study, we consider the pure mineral dust composed of non-metallic components (such as Quartz, Feldspar, Mica and Calcite and metalic component like hematite (Fe2O3. The hematite percentage in the pure mineral dust governs its absorbance. Based on this hematite variation, the hematite fraction in pure mineral dust has been constrained between 0–8%. The morphological and mineralogical characterization of the polluted dust led to consider the three sphere, two sphere and two spheroid model shapes for polluted dust particle system. The pollution gives rise to various light absorbing aerosol components like black carbon, brown carbon and organic carbon (comprising of HUmic-Like Substances, HULIS in the atmosphere. The entire above discussed model shapes have been considered for the mineral dust getting polluted with (1 organic carbon (especially HULIS component (2 Brown carbon and (3 black carbon by making a semi-external mixture with pure mineral dust. The optical properties (like Single Scattering Albedo, SSA; Asymmetry parameter, g and Extinction efficiency, Qext of above model shapes for the polluted dust have been computed using Discrete Dipole Approximation, DDA code. For above

  8. Dynamics of particle accumulation at engineered and natural interfaces

    Science.gov (United States)

    Kim, Sechurl

    2000-08-01

    Investigation of the structure of particle aggregates and their morphology is crucial for understanding particle accumulation phenomena at solid-water interfaces. Engineering applications are often restricted by the lack of exact knowledge of this accumulation phenomenon. Natural processes are also not well understood for this reason. Among the wide spectrum of engineered and natural particle accumulation processes, the following important processes are considered in this study: the permeability and formation of fractal porous aggregates in aqueous systems, the solution structure of a dispersing medium, and the influence of hydrodynamic shear on deformable molecular assemblages. The Stokesian Dynamics technique was applied to particles in a suspension to elucidate the structural evolution and the permeability of aggregates. To reduce the computational effort, a special Stokesian dynamics method for a single moving particle in the geometrical environment was developed, and parallel computation with distributed memory scheme was employed for inverting the grand mobility matrix using a Linux cluster composed of 4 nodes. This technique was capable of generating aggregates with 300 primary particles by the processes of differential settling and turbulent shear. Simulated permeabilities of these particles and of synthetically generated aggregates agree well with values reported in the theoretical and experimental literature. The solution structure of a dispersion of charged solute particles was investigated by Monte Carlo simulation and integral equation theory with hypernetted chain closure. Two properties of the solution (dispersion), namely, osmotic pressure and sedimentation coefficient were obtained from the radial distribution function of the solute particles. Hydrodynamic mobility tensors were used to calculate the sedimentation coefficient, and the important effects of hydrodynamic interaction compared to interparticle interaction were demonstrated. Finally, the

  9. Alpha particle destabilization of the TAE modes

    International Nuclear Information System (INIS)

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped α-particles through the wave-particle resonances. For a poloidal harmonic to satisfy the resonance condition it requires that the α-particle birth speed vα ≥ vA/(2|m-nq|), where vA is the Alfven speed, m is the poloidal mode number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the α-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the slowing-down α-particle and the core Maxwellian electron and ion distributions. Stability criteria in terms of the α-particle beta βα, α-particle pressure gradient parameter (ω*/ωA) (ω* is the α-particle diamagnetic drift frequency), and (vα/vA) parameters are presented for TFTR, CIT, and ITER tokamaks. The volume averaged α-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged α-particle beta threshold is in the order of 10-4 if the continuum damping effect is absent. Typical growth rates of the n = 1 TAE mode can be in the order of 10-2ωA, where ωA = vA/qR. Stability of higher n TAE modes is also studied. Other types of global Alfven waves are stable due to sideband mode continuum damping resulting from toroidal coupling effects. If the Alfven continuum gap does not exist across the whole minor radius, continuum damping exists for some poloidal harmonics. The continuum damping effect is studied by employing both a resistive MHD stability code (NOVA-R) and an analytical matching method, and the results are presented. 1 ref

  10. Geodesic Acoustic Modes Induced by Energetic Particles

    Science.gov (United States)

    Zhou, Tianchun; Berk, Herbert

    2009-11-01

    A global geodesic acoustic mode driven by energetic particles (EGAM) has been observed in JET[1, 2] and DIII D[3, 4]. The mode is to be treated fully kinetically. The descriptions of the background electrons and ions are based on standard high and low bounce frequency expansion respectively with respect to the mode frequency. However, the energetic ions must be treated without any expansion of ratio between their bounce frequency and the mode frequency since they are comparable. Under electrostatic perturbation, we construct a quadratic form for the wave amplitude, from which an integro-differential equation is derived. In the limit where the drift orbit width is small comparison with the mode width, a differential equation for perturbed electrostatic field is obtained. Solution is obtained both analytically and numerically. We find that beam counterinjection enhances the instability of the mode. Landau damping due to thermal species is investigated.

  11. Origin of particle accumulation structures in liquid bridges: Particle-boundary-interactions versus inertia

    Science.gov (United States)

    Muldoon, Frank H.; Kuhlmann, Hendrik C.

    2016-07-01

    The formation of particle-accumulation structures in the flow in a cylindrical liquid bridge driven by the thermocapillary effect is studied with the aim of determining the physical mechanism which forms the structures. The flow is modeled using the incompressible Navier-Stokes and energy equations with the assumption of constant fluid properties except for surface tension, which is assumed to depend linearly on temperature. Different models for the motion of small non-interacting spherical particles at low concentration are employed, taking into account particle inertia due to density differences between fluid and particles and the restricted particle motion near the boundaries of the flow domain. Attention is focused on differences in formation time between particle-accumulation structures arising as a result of inertial effects only, particle-boundary-interaction effects only, and a combination of the two.

  12. Trapped particle destabilization of the internal kink mode

    Energy Technology Data Exchange (ETDEWEB)

    White, R.B.; Chen, L.; Romanelli, F.; Hay, R.

    1984-06-01

    The internal kink mode is destabilized by trapped high energy particles, leading to a new branch of the internal kink dispersion relation with a real frequency near the average trapped particle precession frequency and a growth rate of the same magnitude. This trapped particle branch of the dispersion relation is investigated numerically for a variety of particle distributions. Mode growth rate and frequency are found as a function of plasma ..beta.., density, and trapped particle energy and distribution. The high energy trapped particle sources considered are neutral beam injection, ion cyclotron heating, and fusion alpha particles. Relevance for various plasma heating schemes is discussed.

  13. Transient Simulation of Accumulating Particle Deposition in Pipe Flow

    Science.gov (United States)

    Hewett, James; Sellier, Mathieu

    2015-11-01

    Colloidal particles that deposit in pipe systems can lead to fouling which is an expensive problem in both the geothermal and oil & gas industries. We investigate the gradual accumulation of deposited colloids in pipe flow using numerical simulations. An Euler-Lagrangian approach is employed for modelling the fluid and particle phases. Particle transport to the pipe wall is modelled with Brownian motion and turbulent diffusion. A two-way coupling exists between the fouled material and the pipe flow; the local mass flux of depositing particles is affected by the surrounding fluid in the near-wall region. This coupling is modelled by changing the cells from fluid to solid as the deposited particles exceed each local cell volume. A similar method has been used to model fouling in engine exhaust systems (Paz et al., Heat Transfer Eng., 34(8-9):674-682, 2013). We compare our deposition velocities and deposition profiles with an experiment on silica scaling in turbulent pipe flow (Kokhanenko et al., 19th AFMC, 2014).

  14. Narrow resonances of high mass in particle-anti particle mode

    International Nuclear Information System (INIS)

    A review is given of high mass narrow resonances in the particle--antiparticle mode. Included are a discussion of the particle properties, the detection apparatus at Brookhaven, the first measurements, and the discovery of the new particles

  15. Higher order microfibre modes for dielectric particle trapping and propulsion

    CERN Document Server

    Maimaiti, Aili; Sergides, Marios; Gusachenko, Ivan; Chormaic, Síle Nic

    2014-01-01

    Optical manipulation in the vicinity of optical micro- and nanofibres has shown potential across several fields in recent years, including microparticle control, and cold atom probing and trapping. To date, most work has focussed on propagation of the fundamental mode through the fibre. However, along the maximum mode intensity axis, higher order modes have a longer evanescent field extension and larger field amplitude at the fibre waist compared to the fundamental mode, opening up new possibilities for optical manipulation and particle trapping. In this work, we demonstrate a microfibre/optical tweezers compact system for trapping and propelling dielectric particles based on the excitation of the first group of higher order modes at the fibre waist. Single polystyrene particles were trapped and propelled in the evanescent fields of higher order and fundamental modes near the surface of microfibres. Speed enhancement of particle propulsion was observed for the higher order modes compared to the fundamental mo...

  16. Quasilinear Model for Energetic Particles Interacting with TAE Modes

    Science.gov (United States)

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2010-11-01

    TAE instabilities are thought to be a major source of Energetic Particle transport which could set limits on operational scenarios, especially for burning plasmas, and causes damage to the first wall. The quasilinear model proposed by Berk et al.ootnotetextH. L. Berk et al, Nucl. Fusion, 35:1661, 1995. relies on diffusion mechanisms for particle dynamics to captures the evolution of the energetic particle distribution function and the associated mode amplitude. Using the bump-on-tail as a paradigm, we analyze the dynamics near the resonances for accurate diffusion coefficient representation. We verify the model to get the predicted single mode saturation levels and benchmark the case of multimode overlap against particle codes. Using the TAE mode structures computed by the ideal MHD code NOVA, we generalize this method to relax energetic particles' profiles in the full 3D phase space.

  17. Alpha particle effects on global MHD modes, and alpha particle transport in ignited tokamaks

    International Nuclear Information System (INIS)

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable primarily by the circulating α-particles through wave-particle resonances. To destabilize the TAE modes, the inverse Landau damping associated with the α-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the α-particles and the core electrons and ions, as well as Alfven continuum damping. Stability criteria are presented for TFTR, CIT, and ITER tokamaks in terms of the α-particle beta βα, the α-particle pressure gradient parameter (ω*/ωA), where ω* is the α-particle diamagnetic drift frequency, and the α-particle velocity (vα/vA) parameter. Typically the volume averaged α-particle beta threshold is on the order of 10-4. Rough estimates of the TAE mode saturation level give δBr/B ∼ 10-3 for typical D-T tokamak operations. Significant α-particle losses are found when the amplitude of the global MHD modes is large, on the order of (δBr/B) ≥ 10-4. For (δBr/B) = 5 x 10-4, the α-particle loss time is appreciably shorter than the α-particle slowing-down time. 13 refs., 1 fig

  18. Clogging processes caused by biofilms growth and organic particles accumulation in lab-scale vertical flow constructed wetlands

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lianfang; ZHU Wei; TONG Wei

    2009-01-01

    The accumulation of organic matter in substratum pores is regarded as an important factor causing clogging in the subsurface flow constructed wetlands.In this study,the developing process of clogging separately caused by biofilm growth and organic particles accumulation instead of total organic matter accumulation was investigated in two groups of lab-scale vertical flow constructed wetlands (VFCWs) fed with glucose (dissolved organic matter) and starch (particulate organic matter) influent.Results showed that the growth of biofilms within the substratum pores certainly caused remarkable reduction of effective porosity,especially for the strong organic wastewater,whereas its influence on infiltration rate was negligible.It was implied that the most important contribution of biofilm growth to clogging is accelerating the occurrence of clogging.In comparison with biofilm growth,particles accumulation within pores could rapidly reduce infiltration rate besides effective porosity and the clogging occurred in the upper 0-15 cm layer.With approximately equal amount of accumulated organic matter,the effective porosity of the clogged layer in starch-fed systems was far less than that of glucose-fed systems,which indicated that composition and accumulation mode of the accumulated organic matter played an important role in causing clogging besides the amount.According to the results,some related methods to prevent and recover the clogging phenomenon were suggested.

  19. High frequency single mode traveling wave structure for particle acceleration

    Science.gov (United States)

    Ivanyan, M. I.; Danielyan, V. A.; Grigoryan, B. A.; Grigoryan, A. H.; Tsakanian, A. V.; Tsakanov, V. M.; Vardanyan, A. S.; Zakaryan, S. V.

    2016-09-01

    The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM01 mode in a metallic tube with internally coated low conductive thin layer are examined.

  20. Multi-peak accumulation and coarse modes observed from AERONET retrieved aerosol volume size distribution in Beijing

    Science.gov (United States)

    Zhang, Ying; Li, Zhengqiang; Zhang, Yuhuan; Chen, Yu; Cuesta, Juan; Ma, Yan

    2016-08-01

    We present characteristic peaks of atmospheric columnar aerosol volume size distribution retrieved from the AErosol RObotic NETwork (AERONET) ground-based Sun-sky radiometer observation, and their correlations with aerosol optical properties and meteorological conditions in Beijing over 2013. The results show that the aerosol volume particle size distribution (VPSD) can be decomposed into up to four characteristic peaks, located in accumulation and coarse modes, respectively. The mean center radii of extra peaks in accumulation and coarse modes locate around 0.28 (±0.09) to 0.38 (±0.11) and 1.25 (±0.56) to 1.47 (±0.30) μm, respectively. The multi-peak size distributions are found in different aerosol loading conditions, with the mean aerosol optical depth (440 nm) of 0.58, 0.49, 1.18 and 1.04 for 2-, 3-I/II and 4-peak VPSD types, while the correspondingly mean relative humidity values are 58, 54, 72 and 67 %, respectively. The results also show the significant increase (from 0.25 to 0.40 μm) of the mean extra peak median radius in the accumulation mode for the 3-peak-II cases, which agrees with aerosol hygroscopic growth related to relative humidity and/or cloud or fog processing.

  1. Field measurements of hygroscopic properties and state of mixing of nucleation mode particles

    Directory of Open Access Journals (Sweden)

    M. Väkevä

    2001-12-01

    Full Text Available An Ultrafine Tandem Differential Mobility Analyser (UF-TDMA has been used in several field campaigns over the last few years. The investigations were focused on the origin and properties of nucleation event aerosols, which are observed frequently in various environments. This paper gives a summary of the results of 10 nm and 20 nm particle hygroscopic properties from different measurement sites: an urban site, an urban background site and a forest site in Finland and a coastal site in western Ireland. The data can be classified in four hygroscopic growth classes: hydrofobic, less-hygroscopic, more-hygroscopic and sea-salt. Similar classification has been earlier presented for Aitken and accumulation mode particles. In urban air, the summertime 10 nm particles showed varying less-hygroscopic growth behaviour, while winter time 10 nm and 20 nm particles were externally mixed with two different hygroscopic growth modes. The forest measurements revealed diurnal behaviour of hygroscopic growth, with high growth factors at day time and lower during night. The urban background particles had growth behaviour similar to the urban and forest measurement sites depending on the origin of the observed particles. The coastal measurements were strongly affected by air mass history. Both 10 nm and 20 nm particles were hygroscopic in marine background air. The 10 nm particles produced during clean nucleation burst periods were hydrofobic. Diurnal variation and higher growth factors of 10 nm particles were observed in air affected by other source regions. External mixing was occasionally observed at all the sites, but incidents with more than two growth modes were extremely rare.

  2. Masses of charmed particles, decay modes and lifetimes

    International Nuclear Information System (INIS)

    Basic characteristics of charmed particles obtained up to the middle of 1981 are discussed in the survey. Stated in brief are main predictions of the theory on charmed particles properties. Experimental data on masses, decay modes and lifetimes of D and F mesons as well as charmed baryons are considered. Basic experiments are described. It is pointed out that in the experiments single and pair production events as well as charmed particle decay have been observed. The charmed particles lifetime lies within the limits of 10-12 - 10-13C. The lifetime of D+- mesons is approximately three times longer than the D0 mesons lifetime. The lifetime of F mesons and Λsub(e) baryons is close to D0 mesons lifetime

  3. Nonlinear simulations of particle source effects on edge localized mode

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.; Tang, C. J. [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Chen, S. Y., E-mail: sychen531@163.com [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Wang, Z. H. [Southwestern Institute of Physics, Chengdu 610041 (China)

    2015-12-15

    The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadening of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom.

  4. Nonlinear simulations of particle source effects on edge localized mode

    International Nuclear Information System (INIS)

    The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadening of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom

  5. Impact Of Particle Agglomeration On Accumulation Rates In The Glass Discharge Riser Of HLW Melter

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, WA (United States); Rodriguez, C. A. [Pacific Northwest National Laboratory, Richland, WA (United States); Matyas, J. [Pacific Northwest National Laboratory, Richland, WA (United States); Owen, A. T. [Pacific Northwest National Laboratory, Richland, WA (United States); Jansik, D. P. [Pacific Northwest National Laboratory, Richland, WA (United States); Lang, J. B. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2012-11-12

    The major factor limiting waste loading in continuous high-level radioactive waste (HLW) melters is an accumulation of particles in the glass discharge riser during a frequent and periodic idling of more than 20 days. An excessive accumulation can produce robust layers a few centimeters thick, which may clog the riser, preventing molten glass from being poured into canisters. Since the accumulation rate is driven by the size of particles we investigated with x-ray microtomography, scanning electron microscopy, and image analysis the impact of spinel forming components, noble metals, and alumina on the size, concentration, and spatial distribution of particles, and on the accumulation rate. Increased concentrations of Fe and Ni in the baseline glass resulted in the formation of large agglomerates that grew over the time to an average size of ~185+-155 {mu}m, and produced >3 mm thick layer after 120 h at 850 deg C. The noble metals decreased the particle size, and therefore significantly slowed down the accumulation rate. Addition of alumina resulted in the formation of a network of spinel dendrites which prevented accumulation of particles into compact layers.

  6. Particle simulations of mode conversion between slow mode and fast mode in lower hybrid range of frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Guozhang; Xiang, Nong; Huang, Yueheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Xueyi [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Physics Department, 206 Allison Laboratory, Auburn University, Alabama 36849-5311 (United States); Lin, Yu [Physics Department, 206 Allison Laboratory, Auburn University, Alabama 36849-5311 (United States)

    2016-01-15

    The propagation and mode conversion of lower hybrid waves in an inhomogeneous plasma are investigated by using the nonlinear δf algorithm in a two-dimensional particle-in-cell simulation code based on the gyrokinetic electron and fully kinetic ion (GeFi) scheme [Lin et al., Plasma Phys. Controlled Fusion 47, 657 (2005)]. The characteristics of the simulated waves, such as wavelength, frequency, phase, and group velocities, agree well with the linear theoretical analysis. It is shown that a significant reflection component emerges in the conversion process between the slow mode and the fast mode when the scale length of the density variation is comparable to the local wavelength. The dependences of the reflection coefficient on the scale length of the density variation are compared with the results based on the linear full wave model for cold plasmas. It is indicated that the mode conversion for the waves with a frequency of 2.45 GHz (ω ∼ 3ω{sub LH}, where ω{sub LH} represents the lower hybrid resonance) and within Tokamak relevant amplitudes can be well described in the linear scheme. As the frequency decreases, the modification due to the nonlinear term becomes important. For the low-frequency waves (ω ∼ 1.3ω{sub LH}), the generations of the high harmonic modes and sidebands through nonlinear mode-mode coupling provide new power channels and thus could reduce the reflection significantly.

  7. Particle simulations of mode conversion between slow mode and fast mode in lower hybrid range of frequencies

    Science.gov (United States)

    Jia, Guozhang; Xiang, Nong; Wang, Xueyi; Huang, Yueheng; Lin, Yu

    2016-01-01

    The propagation and mode conversion of lower hybrid waves in an inhomogeneous plasma are investigated by using the nonlinear δf algorithm in a two-dimensional particle-in-cell simulation code based on the gyrokinetic electron and fully kinetic ion (GeFi) scheme [Lin et al., Plasma Phys. Controlled Fusion 47, 657 (2005)]. The characteristics of the simulated waves, such as wavelength, frequency, phase, and group velocities, agree well with the linear theoretical analysis. It is shown that a significant reflection component emerges in the conversion process between the slow mode and the fast mode when the scale length of the density variation is comparable to the local wavelength. The dependences of the reflection coefficient on the scale length of the density variation are compared with the results based on the linear full wave model for cold plasmas. It is indicated that the mode conversion for the waves with a frequency of 2.45 GHz (ω ˜ 3ωLH, where ωLH represents the lower hybrid resonance) and within Tokamak relevant amplitudes can be well described in the linear scheme. As the frequency decreases, the modification due to the nonlinear term becomes important. For the low-frequency waves (ω ˜ 1.3ωLH), the generations of the high harmonic modes and sidebands through nonlinear mode-mode coupling provide new power channels and thus could reduce the reflection significantly.

  8. Hybrid architecture for shallow accumulation mode AlGaAs/GaAs heterostructures with epitaxial gates

    OpenAIRE

    MacLeod, S. J.; See, A. M.; Hamilton, A. R.; Farrer, I.; Ritchie, D A; Ritzmann, J.; Ludwig, A.; Wieck, A. D.

    2015-01-01

    Accumulation mode devices with epitaxially grown gates have excellent electrical stability due to the absence of dopant impurities and surface states. We overcome typical fabrication issues associated with epitaxially gated structures (e.g., gate leakage and high contact resistance) by using separate gates to control the electron densities in the Ohmic and Hall bar regions. This hybrid gate architecture opens up a way to make ultrastable nanoscale devices where the separation between the surf...

  9. Sediment particle size and initial radiocesium accumulation in ponds following the Fukushima DNPP accident.

    Science.gov (United States)

    Yoshimura, Kazuya; Onda, Yuichi; Fukushima, Takehiko

    2014-01-01

    This study used particle size analysis to investigate the initial accumulation and trap efficiency of radiocesium ((137)Cs) in four irrigation ponds, ~4-5 months after the Fukushima Dai-ichi nuclear power plant (DNPP) accident. Trap efficiency, represented by the inventory of (137)Cs in pond sediment to the inventory of radiocesium in soil surrounding the pond (i.e., total (137)Cs inventory), was less than 100% for all but one pond. Trap efficiency decreased as sediment particle size increased, indicating that sediments with a smaller particle size accumulate more (137)Cs. In ponds showing low trap efficiency, fine sediment containing high concentrations of (137)Cs appeared to be removed from the system by hydraulic flushing, leaving behind mostly coarse sediment. The results of this study suggest that sediment particle size can be used to estimate the initial accumulation and trap efficiency of (137)Cs in pond sediment, as well as the amount lost through hydraulic flushing.

  10. New modes of particle accelerations techniques and sources. Formal report

    International Nuclear Information System (INIS)

    This Report includes copies of transparencies and notes from the presentations made at the Symposium on New Modes of Particle Accelerations - Techniques and Sources, August 19-23, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report

  11. New modes of particle accelerations techniques and sources. Formal report

    Energy Technology Data Exchange (ETDEWEB)

    Parsa, Z. [ed.

    1996-12-31

    This Report includes copies of transparencies and notes from the presentations made at the Symposium on New Modes of Particle Accelerations - Techniques and Sources, August 19-23, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report.

  12. Accumulation of particles on the surface of leaves during leaf expansion.

    Science.gov (United States)

    Wang, Lei; Gong, Huili; Liao, Wenbo; Wang, Zhi

    2015-11-01

    Plants can effectively remove airborne particles from ambient air and consequently improve air quality and human health. The accumulation of particles on the leaf surfaces of three plant species with different epicuticular wax ultrastructures, such as thin films, platelets and tubules, was investigated during leaf expansion in Beijing under extremely high particulate matter (PM) concentration. The accumulation of particles on the leaf surfaces after bud break rapidly reached a high amount within 4-7 days. Rainfall occasionally resulted in a considerable increase in the accumulation of particles on the leaf surfaces at a high PM concentration, which resulted from the wet deposition of PM, and balanced the amount of PM on the leaf surfaces over a longer period. The equilibrium value of the particle cover area on the adaxial leaf surface of the three test species in this study was 10%-50% compared with 3%-35% on the abaxial leaf surface. The epicuticular wax ultrastructures contributed significantly to the PM adsorption of the leaves. The capability of these ultrastructures to capture PM decreased in the following order: thin films, platelets and tubules. The ridges (at a scale of 1-2 μm) on the leaf surfaces were more efficient at accumulating PM, particularly PM2.5, compared with the roughness (P-V distance) at a 5-20-μm scale.

  13. Two accumulation modes of marine-origin natural gas in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Hetianhe gas field, Lungudong gas field and Tazhong gas field are marine marine-origin natural gas reservoirs in the craton area in the Tarim Basin. The natural gas is generated from Cambrian source rocks. The simulation experiment indicated that the cracking of the dispersedly dissoluble organic matter remaining in the source rocks is the main origin of marine natural gas. There are two modes to form gas reservoirs, one is the dry gas reservoir such as Hetianhe gas field, in which gas accumulated on the fault belt with violent tectonic movement, the other is condensate gas reservoir formed on the inheriting uplift such as Lunnan and Tazhong gas fields. The hybrid simulation experiment of cracking gas and crude oil indicated that crude oil accumulated on a large scale in those uplift belts at the early stage, and natural gas filled the ancient oil reservoir at the late stage, and the gas reservoirs were formed after the gas mixed with the crude oil.

  14. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    DEFF Research Database (Denmark)

    Vesterdal, Lise K; Danielsen, Pernille H; Folkmann, Janne K;

    2014-01-01

    Exposure to particles has been suggested to generate hepatosteatosis by oxidative stress mechanisms. We investigated lipid accumulation in cultured human hepatocytes (HepG2) and rat liver after exposure to four different carbon-based particles. HepG2 cells were exposed to particles for 3h...... single-walled carbon nanotubes. All four types of particles also generated oxidatively damaged DNA, assessed as formamidopyrimidine DNA glycosylase (FPG) sensitive sites, in HepG2 cells after 3h exposure. The animal model of metabolic syndrome showed increased lipid load in the liver after one oral...... exposure to 6.4mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because...

  15. Dual Mode NOx Sensor: Measuring Both the Accumulated Amount and Instantaneous Level at Low Concentrations

    OpenAIRE

    Visser, Jaco H.; Ralf Moos; David J. Kubinski; Isabella Marr; Gregor Beulertz; Andrea Groß

    2012-01-01

    The accumulating-type (or integrating-type) NOx sensor principle offers two operation modes to measure low levels of NOx: The direct signal gives the total amount dosed over a time interval and its derivative the instantaneous concentration. With a linear sensor response, no baseline drift, and both response times and recovery times in the range of the gas exchange time of the test bench (5 to 7 s), the integrating sensor is well suited to reliably detect low levels of NOx. Experimental resul...

  16. Density dependence of electron mobility in the accumulation mode for fully depleted SOI films

    Energy Technology Data Exchange (ETDEWEB)

    Naumova, O. V., E-mail: naumova@isp.nsc.ru; Zaitseva, E. G.; Fomin, B. I.; Ilnitsky, M. A.; Popov, V. P. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2015-10-15

    The electron mobility µ{sub eff} in the accumulation mode is investigated for undepleted and fully depleted double-gate n{sup +}–n–n{sup +} silicon-on-insulator (SOI) metal–oxide–semiconductor field-effect transistors (MOSFET). To determine the range of possible values of the mobility and the dominant scattering mechanisms in thin-film structures, it is proposed that the field dependence of the mobility µ{sub eff} be replaced with the dependence on the density N{sub e} of induced charge carriers. It is shown that the dependences µ{sub eff}(N{sub e}) can be approximated by the power functions µ{sub eff}(N{sub e}) ∝ N{sub e}{sup -n}, where the exponent n is determined by the chargecarrier scattering mechanism as in the mobility field dependence. The values of the exponent n in the dependences µ{sub eff}(N{sub e}) are determined when the SOI-film mode near one of its surfaces varies from inversion to accumulation. The obtained results are explained from the viewpoint of the electron-density redistribution over the SOI-film thickness and changes in the scattering mechanisms.

  17. Sulphuric acid closure and contribution to nucleation mode particle growth

    Directory of Open Access Journals (Sweden)

    M. Boy

    2005-01-01

    Full Text Available Sulphuric acid concentrations were measured and calculated based on pseudo steady state model with corresponding measurements of CO, NOx, O3, SO2, methane and non-methane hydrocarbon (NMHC concentrations as well as solar spectral irradiance and particle number concentrations with size distributions. The measurements were performed as a part of the EU project QUEST (Quantification of Aerosol Nucleation in the European Boundary layer during an intensive field campaign, which was conducted in Hyytiälä, Finland in March–April 2003. In this paper, the closure between measured and calculated H2SO4 concentrations is investigated. Besides that, also the contribution of sulphuric acid to nucleation mode particle growth rates is studied. Hydroxyl and hydroperoxy radical concentrations were determined using a pseudo steady state box model including photo stationary states. The maximum midday OH concentrations ranged between 4.1×105 to 1.8×106 molecules cm-3 and the corresponding values for HO2 were 1.0×107 to 1.5×108 molecules cm-3. The dominant source term for hydroxyl radicals is the reaction of NO with HO2 (56% and the reaction of CO with OH covers around 41% of the sinks. The sulphuric acid source term is the reaction SO2 with OH and the sink term is condensation of sulphuric acid. The closure between measured and calculated sulphuric acid concentrations is achieved with a high agreement to the measured values. In sensitivity studies, we used different values for the non-methane hydrocarbons, the peroxy radicals and nitrogen dioxide. The best fits between calculated and measured values were found by decreasing the NO2 concentration when it exceeded values of 1.5 ppb and doubling the non-methane hydrocarbon concentrations. The ratio, standard deviation and correlation coefficient between measured and calculated sulphuric acid concentrations are 0.99, 0.412 and 0.645, respectively. The maximum midday sulphuric acid concentrations varied between

  18. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    Energy Technology Data Exchange (ETDEWEB)

    Vesterdal, Lise K.; Danielsen, Pernille H.; Folkmann, Janne K.; Jespersen, Line F.; Aguilar-Pelaez, Karin; Roursgaard, Martin; Loft, Steffen; Møller, Peter, E-mail: pemo@sund.ku.dk

    2014-01-15

    Exposure to particles has been suggested to generate hepatosteatosis by oxidative stress mechanisms. We investigated lipid accumulation in cultured human hepatocytes (HepG2) and rat liver after exposure to four different carbon-based particles. HepG2 cells were exposed to particles for 3 h and subsequently incubated for another 18 h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14 nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid synthesis. There was a concentration-dependent increase in intracellular lipid content after exposure to CB in HepG2 cells, which was only observed after co-exposure to oleic/palmitic acid. Similar results were observed in HepG2 cells after exposure to diesel exhaust particles, fullerenes C{sub 60} or pristine single-walled carbon nanotubes. All four types of particles also generated oxidatively damaged DNA, assessed as formamidopyrimidine DNA glycosylase (FPG) sensitive sites, in HepG2 cells after 3 h exposure. The animal model of metabolic syndrome showed increased lipid load in the liver after one oral exposure to 6.4 mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because there were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes. - Highlights: • Oral exposure to nanosized carbon black was associated with hepatosteatosis in rats. • In vitro studies included carbon black, C{sub 60}, diesel exhaust particles and SWCNTs. • Exposure to particles and free fatty acids increased lipid load in HepG2 cells. • Unaltered

  19. A method for detecting the presence of organic fraction in nucleation mode sized particles

    OpenAIRE

    Vaattovaara, P.; Räsänen, M.; Kühn, T.; Joutsensaari, J.; Laaksonen, a

    2005-01-01

    New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm) and the lower end of Aitken mode particles (d≤50 nm) is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer) method to shed light on the presence of organic fraction in the nucleation mode size class in differ...

  20. Modified lipoprotein-derived lipid particles accumulate in human stenotic aortic valves.

    Science.gov (United States)

    Lehti, Satu; Käkelä, Reijo; Hörkkö, Sohvi; Kummu, Outi; Helske-Suihko, Satu; Kupari, Markku; Werkkala, Kalervo; Kovanen, Petri T; Oörni, Katariina

    2013-01-01

    In aortic stenosis plasma lipoprotein-derived lipids accumulate in aortic valves. Here, we first compared the lipid compositions of stenotic aortic valves and atherosclerotic plaque cores. Both pathological tissues were found to be enriched in cholesteryl linoleate, a marker of extracellularly accumulated lipoproteins. In addition, a large proportion of the phospholipids were found to contain arachidonic acid, the common precursor of a number of proinflammatory lipid mediators. Next, we isolated and characterized extracellular lipid particles from human stenotic and non-stenotic control valves, and compared them to plasma lipoproteins from the same subjects. The extracellular valvular lipid particles were isolated from 15 stenotic and 14 non-stenotic aortic valves. Significantly more apoB-100-containing lipid particles were found in the stenotic than in the non-stenotic valves. The majority of the lipid particles isolated from the non-stenotic valves had sizes (23±6.2 nm in diameter) similar to those of plasma low density lipoprotein (LDL) (22±1.5 nm), while the lipid particles from stenotic valves were not of uniform size, their sizes ranging from 18 to more than 500 nm. The lipid particles showed signs of oxidative modifications, and when compared to isolated plasma LDL particles, the lipid particles isolated from the stenotic valves had a higher sphingomyelin/phosphatidylcholine -ratio, and also higher contents of lysophosphatidylcholine and unesterified cholesterol. The findings of the present study reveal, for the first time, that in stenotic human aortic valves, infiltrated plasma lipoproteins have undergone oxidative and lipolytic modifications, and become fused and aggregated. The generated large lipid particles may contribute to the pathogenesis of human aortic stenosis.

  1. Effect of typhoon on atmospheric aerosol particle pollutants accumulation over Xiamen, China.

    Science.gov (United States)

    Yan, Jinpei; Chen, Liqi; Lin, Qi; Zhao, Shuhui; Zhang, Miming

    2016-09-01

    Great influence of typhoon on air quality has been confirmed, however, rare data especially high time resolved aerosol particle data could be used to establish the behavior of typhoon on air pollution. A single particle aerosol spectrometer (SPAMS) was employed to characterize the particles with particle number count in high time resolution for two typhoons of Soulik (2013) and Soudelor (2015) with similar tracks. Three periods with five events were classified during the whole observation time, including pre - typhoon (event 1 and event 2), typhoon (event 3 and event 4) and post - typhoon (event 5) based on the meteorological parameters and particle pollutant properties. First pollutant group appeared during pre-typhoon (event 2) with high relative contributions of V - Ni rich particles. Pollution from the ship emissions and accumulated by local processes with stagnant meteorological atmosphere dominated the formation of the pollutant group before typhoon. The second pollutant group was present during typhoon (event 3), while typhoon began to change the local wind direction and increase wind speed. Particle number count reached up to the maximum value. High relative contributions of V - Ni rich and dust particles with low value of NO3(-)/SO4(2-) was observed during this period, indicating that the pollutant group was governed by the combined effect of local pollutant emissions and long-term transports. The analysis of this study sheds a deep insight into understand the relationship between the air pollution and typhoon. PMID:27295441

  2. Fission modes in charged-particle induced fission

    Energy Technology Data Exchange (ETDEWEB)

    Matthies, A.; Kotte, R.; Seidel, W.; Stary, F.; Wohlfarth, D. (Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic))

    1990-12-01

    The population of the three fission modes predicted by Brosa's multi-channel fission model for the uranium region was studied in different fissioning systems. They were produced bombarding {sup 232}Th and {sup 238}U targets by light charged particles with energies slightly above the Coulomb barrier. Though the maximum excitation energy of the compound nucleus amounted to about 22 MeV, the influences of various spherical and deformed nuclear shells on the mass and total kinetic energy distributions of fission fragments are still pronounced. The larger variances of the total kinetic energy distributions compared to those of thermal neutron induced fission were explained by temperature dependent fluctuations of the amount and velocity of alteration of the scission point elongation of the fissioning system. From the ratio of these variances the portion of the potential energy dissipated among intrinsic degrees of freedom before scission was deduced for the different fission channels. It was found that the excitation remaining after pre-scission neutron emission is mainly transferred into intrinsic heat and less into pre-scission kinetic energy. (orig.).

  3. Sulphuric acid closure and contribution to nucleation mode particle growth

    Directory of Open Access Journals (Sweden)

    M. Boy

    2004-10-01

    Full Text Available Sulphuric acid concentrations were measured and calculated based on pseudo steady state model with corresponding measurements of CO, NOx, O3, SO2, methane and non-methane hydrocarbon (NMHC concentrations as well as solar spectral irradiance and particle number concentrations with size distributions. The measurements were performed as a part of the EU project QUEST (Quantification of Aerosol Nucleation in the European Boundary layer during an intensive field campaign, which was conducted in Hyytiälä, Finland in March–April 2003. In this paper, the closure between measured and calculated H2SO4 concentrations is investigated. Besides that, also the contribution of sulphuric acid to nucleation mode particle growth rates is studied. Hydroxyl and hydroperoxy radical concentrations were determined using a pseudo steady state box model including photo stationary states. The maximum midday OH concentrations ranged between 4.1×105 to 1.8×106molecules cm−3 and the corresponding values for HO2 were 1.0×107 to 1.5×108molecules cm−3. The dominant source term for hydroxyl radicals is the reaction of NO with HO2 (56% and the reaction of CO with OH covers around 41% of the sinks. The sulphuric acid source term is the reaction SO2 with OH and the sink term is condensation of sulphuric acid. The closure between measured and calculated sulphuric acid concentrations is achieved with a high agreement to the measured values. In sensitivity studies, we used different values for the non-methane hydrocarbons, the peroxy radicals and nitrogen dioxide. The best fits between calculated and measured values were found by decreasing the NO2 concentration when it exceeded values of 1.5 ppb and doubling the non-methane hydrocarbon concentrations. The ratio, standard deviation and correlation coefficient

  4. Improving Calculation Accuracies of Accumulation-Mode Fractions Based on Spectral of Aerosol Optical Depths

    Science.gov (United States)

    Ying, Zhang; Zhengqiang, Li; Yan, Wang

    2014-03-01

    Anthropogenic aerosols are released into the atmosphere, which cause scattering and absorption of incoming solar radiation, thus exerting a direct radiative forcing on the climate system. Anthropogenic Aerosol Optical Depth (AOD) calculations are important in the research of climate changes. Accumulation-Mode Fractions (AMFs) as an anthropogenic aerosol parameter, which are the fractions of AODs between the particulates with diameters smaller than 1μm and total particulates, could be calculated by AOD spectral deconvolution algorithm, and then the anthropogenic AODs are obtained using AMFs. In this study, we present a parameterization method coupled with an AOD spectral deconvolution algorithm to calculate AMFs in Beijing over 2011. All of data are derived from AErosol RObotic NETwork (AERONET) website. The parameterization method is used to improve the accuracies of AMFs compared with constant truncation radius method. We find a good correlation using parameterization method with the square relation coefficient of 0.96, and mean deviation of AMFs is 0.028. The parameterization method could also effectively solve AMF underestimate in winter. It is suggested that the variations of Angstrom indexes in coarse mode have significant impacts on AMF inversions.

  5. Improving Calculation Accuracies of Accumulation-Mode Fractions Based on Spectral of Aerosol Optical Depths

    International Nuclear Information System (INIS)

    Anthropogenic aerosols are released into the atmosphere, which cause scattering and absorption of incoming solar radiation, thus exerting a direct radiative forcing on the climate system. Anthropogenic Aerosol Optical Depth (AOD) calculations are important in the research of climate changes. Accumulation-Mode Fractions (AMFs) as an anthropogenic aerosol parameter, which are the fractions of AODs between the particulates with diameters smaller than 1μm and total particulates, could be calculated by AOD spectral deconvolution algorithm, and then the anthropogenic AODs are obtained using AMFs. In this study, we present a parameterization method coupled with an AOD spectral deconvolution algorithm to calculate AMFs in Beijing over 2011. All of data are derived from AErosol RObotic NETwork (AERONET) website. The parameterization method is used to improve the accuracies of AMFs compared with constant truncation radius method. We find a good correlation using parameterization method with the square relation coefficient of 0.96, and mean deviation of AMFs is 0.028. The parameterization method could also effectively solve AMF underestimate in winter. It is suggested that the variations of Angstrom indexes in coarse mode have significant impacts on AMF inversions

  6. Temporal assessment of nanoparticle accumulation after experimental brain injury: Effect of particle size

    Science.gov (United States)

    Bharadwaj, Vimala N.; Lifshitz, Jonathan; Adelson, P. David; Kodibagkar, Vikram D.; Stabenfeldt, Sarah E.

    2016-01-01

    Nanoparticle (NP) based therapeutic and theranostic agents have been developed for various diseases, yet application to neural disease/injury is restricted by the blood-brain-barrier (BBB). Traumatic brain injury (TBI) results in a host of pathological alterations, including transient breakdown of the BBB, thus opening a window for NP delivery to the injured brain tissue. This study focused on investigating the spatiotemporal accumulation of different sized NPs after TBI. Specifically, animal cohorts sustaining a controlled cortical impact injury received an intravenous injection of PEGylated NP cocktail (20, 40, 100, and 500 nm, each with a unique fluorophore) immediately (0 h), 2 h, 5 h, 12 h, or 23 h after injury. NPs were allowed to circulate for 1 h before perfusion and brain harvest. Confocal microscopy demonstrated peak NP accumulation within the injury penumbra 1 h post-injury. An inverse relationship was found between NP size and their continued accumulation within the penumbra. NP accumulation preferentially occurred in the primary motor and somatosensory areas of the injury penumbra as compared to the parietal association and visual area. Thus, we characterized the accumulation of particles up to 500 nm at different times acutely after injury, indicating the potential of NP-based TBI theranostics in the acute period after injury. PMID:27444615

  7. Acceleration of quasi-particle modes in Bose-Einstein condensates

    OpenAIRE

    Marzlin, Karl-Peter; Zhang, Weiping

    1998-01-01

    We analytically examine the dynamics of quasi-particle modes occuring in a Bose-Einstein condensate which is subject to a weak acceleration. It is shown that the momentum of a quasi-particle mode is squeezed rather than accelerated.

  8. Indoor/outdoor relationships and mass closure of quasi-ultrafine, accumulation and coarse particles in Barcelona schools

    Science.gov (United States)

    Viana, M.; Rivas, I.; Querol, X.; Alastuey, A.; Sunyer, J.; Álvarez-Pedrerol, M.; Bouso, L.; Sioutas, C.

    2014-05-01

    The mass concentration, chemical composition and sources of quasi-ultrafine (quasi-UFP, PM0.25), accumulation (PM0.25-2.5) and coarse mode (PM2.5-10) particles were determined in indoor and outdoor air at 39 schools in Barcelona (Spain). Quasi-UFP mass concentrations measured (25.6 μg m-3 outdoors, 23.4 μg m-3 indoors) are significantly higher than those reported in other studies, and characterised by higher carbonaceous and mineral matter contents and a lower proportion of secondary inorganic ions. Results suggest that quasi-UFPs in Barcelona are affected by local sources in the schools, mainly human activity (e.g. organic material from textiles, etc., contributing 23-46% to total quasi-UFP mass) and playgrounds (in the form of mineral matter, contributing about 9% to the quasi-UFP mass). The particle size distribution patterns of toxicologically relevant metals and major aerosol components was characterised, displaying two modes for most elements and components, and one mode for inorganic salts (ammonium nitrate and sulfate) and elemental carbon (EC). Regarding metals, Ni and Cr were partitioned mainly in quasi-UFPs and could thus be of interest for epidemiological studies, given their high redox properties. Exposure of children to quasi-UFP mass and chemical species was assessed by comparing the concentrations measured at urban background and traffic areas schools. Finally, three main indoor sources across all size fractions were identified by assessing indoor / outdoor ratios (I / O) of PM species used as their tracers: human activity (organic material), cleaning products, paints and plastics (Cl- source), and a metallic mixed source (comprising combinations of Cu, Zn, Co, Cd, Pb, As, V and Cr). Our results support the need to enforce targeted legislation to determine a minimum "safe" distance between major roads and newly built schools to reduce exposure to traffic-derived metals in quasi-UFPs.

  9. Accumulation in liver and spleen of metal particles generated at nonbearing surfaces in hip arthroplasty.

    Science.gov (United States)

    Urban, Robert M; Tomlinson, Michael J; Hall, Deborah J; Jacobs, Joshua J

    2004-12-01

    Systemic migration of metal particles generated at nonbearing surfaces rather than the intended primary bearing was studied in postmortem specimens from 30 patients with total hip arthroplasty. Using light and electron microscopy with x-ray microanalysis, submicrometer metal particles were identified within macrophages in the liver and/or the spleen in 11 of 15 patients with a revised arthroplasty and in 2 of 15 patients with primary hip arthroplasty. The macrophages formed focal aggregates in the organs without apparent toxicity. Fretting at ancillary fixation devices, loose components, and modular connections can generate a substantial volume of debris. These particles are in addition to those generated at the bearing surfaces, further increasing both the local and systemic particulate burdens. While all components can be associated with the distant spread of particles and metal ions, it is the environment of revision arthroplasty that provides the greatest potential for the generation and systemic dissemination of wear debris. The long-term effects of accumulated wear particles in the liver and spleen are unknown. PMID:15578561

  10. Impact of particles on sediment accumulation in a drinking water distribution system.

    Science.gov (United States)

    Vreeburg, J H G; Schippers, D; Verberk, J Q J C; van Dijk, J C

    2008-10-01

    Discolouration of drinking water is one of the main reasons customers complain to their water company. Though corrosion of cast iron is often seen as the main source for this problem, the particles originating from the treatment plant play an important and potentially dominant role in the generation of a discolouration risk in drinking water distribution systems. To investigate this thesis a study was performed in a drinking water distribution system. In two similar isolated network areas the effect of particles on discolouration risk was studied with particle counting, the Resuspension Potential Method (RPM) and assessment of the total accumulated sediment. In the 'Control Area', supplied with normal drinking water, the discolouration risk was regenerated within 1.5 year. In the 'Research Area', supplied with particle-free water, this will take 10-15 years. An obvious remedy for controlling the discolouration risk is to improve the treatment with respect to the short peaks that are caused by particle breakthrough. PMID:18789809

  11. Dual Mode NOx Sensor: Measuring Both the Accumulated Amount and Instantaneous Level at Low Concentrations

    Directory of Open Access Journals (Sweden)

    Jaco H. Visser

    2012-03-01

    Full Text Available The accumulating-type (or integrating-type NOx sensor principle offers two operation modes to measure low levels of NOx: The direct signal gives the total amount dosed over a time interval and its derivative the instantaneous concentration. With a linear sensor response, no baseline drift, and both response times and recovery times in the range of the gas exchange time of the test bench (5 to 7 s, the integrating sensor is well suited to reliably detect low levels of NOx. Experimental results are presented demonstrating the sensor’s integrating properties for the total amount detection and its sensitivity to both NO and to NO2. We also show the correlation between the derivative of the sensor signal and the known gas concentration. The long-term detection of NOx in the sub-ppm range (e.g., for air quality measurements is discussed. Additionally, a self-adaption of the measurement range taking advantage of the temperature dependency of the sensitivity is addressed.

  12. Measurements of undoped accumulation-mode SiGe quantum dot devices

    Science.gov (United States)

    Eng, Kevin; Borselli, Mathew; Holabird, Kevin; Milosavljevic, Ivan; Schmitz, Adele; Deelman, Peter; Huang, Biqin; Sokolich, Marko; Warren, Leslie; Hazard, Thomas; Kiselev, Andrey; Ross, Richard; Gyure, Mark; Hunter, Andrew

    2012-02-01

    We report transport measurements of undoped single-well accumulation-mode SiGe quantum dot devices with an integrated dot charge sensor. The device is designed so that individual forward-biased circular gates have dominant control of dot charge occupancy, and separate intervening gates have dominant control of tunnel rates and exchange coupling. We have demonstrated controlled loading of the first electron in single and double quantum dots. We used magneto-spectroscopy to measure singlet-triplet splittings in our quantum dots: values are typically ˜0.1 meV. Tunnel rates of single electrons to the baths can be controlled from less than 1 Hz to greater than 10 MHz. We are able to control the (0,2) to (1,1) coupling in a double quantum dot from under-coupled (tc Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

  13. Effect of inoculum addition modes and leachate recirculation on anaerobic digestion of solid cattle manure in an accumulation system

    NARCIS (Netherlands)

    El-Mashad, H.M.; Loon, van W.K.P.; Zeeman, G.; Bot, G.P.A.; Lettinga, G.

    2006-01-01

    The effect of both leachate recirculation (at 40 and 50 °C) and the mode of inoculum addition (at 50 °C) on the performance of a non-mixed accumulation (i.e. fed batch) system treating solid cattle wastes was investigated, using laboratory scale reactors at a filling time of 60 days. A relatively hi

  14. Effects of dispersive wave modes on charged particles transport

    CERN Document Server

    Schreiner, Cedric

    2015-01-01

    The transport of charged particles in the heliosphere and the interstellar medium is governed by the interaction of particles and magnetic irregularities. For the transport of protons a rather simple model using a linear Alfv\\'en wave spectrum which follows the Kolmogorov distribution usually yields good results. Even magnetostatic spectra may be used. For the case of electron transport, particles will resonate with the high-k end of the spectrum. Here the magnetic fluctuations do not follow the linear dispersion relation, but the kinetic regime kicks in. We will discuss the interaction of fluctuations of dispersive waves in the kinetic regime using a particle-in-cell code. Especially the scattering of particles following the idea of Lange et al. (2013) and its application to PiC codes will be discussed. The effect of the dispersive regime on the electron transport will be discussed in detail.

  15. Particle transport in JET and TCV H-mode plasmas

    OpenAIRE

    Maslov, Mikhail

    2009-01-01

    Understanding particle transport physics is of great importance for magnetically confined plasma devices and for the development of thermonuclear fusion power for energy production. From the beginnings of fusion research, more than half a century ago, the problem of heat transport in tokamaks attracted the attention of researchers, but the particle transport phenomena were largely neglected until fairly recently. As tokamak physics advanced to its present level, the physics community realized...

  16. Normal modes of prion proteins: from native to infectious particle.

    Science.gov (United States)

    Samson, Abraham O; Levitt, Michael

    2011-03-29

    Prion proteins (PrP) are the infectious agent in transmissible spongiform encephalopathies (i.e., mad cow disease). To be infectious, prion proteins must undergo a conformational change involving a decrease in α-helical content along with an increase in β-strand content. This conformational change was evaluated by means of elastic normal modes. Elastic normal modes show a diminution of two α-helices by one and two residues, as well as an extension of two β-strands by three residues each, which could instigate the conformational change. The conformational change occurs in a region that is compatible with immunological studies, and it is observed more frequently in mutant prions that are prone to conversion than in wild-type prions because of differences in their starting structures, which are amplified through normal modes. These findings are valuable for our comprehension of the conversion mechanism associated with the conformational change in prion proteins. PMID:21338080

  17. Simulation study of high-frequency energetic particle driven geodesic acoustic mode

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao, E-mail: wanghao@nifs.ac.jp; Ido, Takeshi; Osakabe, Masaki [National Institute for Fusion Science, Toki 509-5292 (Japan); Todo, Yasushi [National Institute for Fusion Science, Toki 509-5292 (Japan); The Graduate University for Advanced Studies, Toki 509-5292 (Japan)

    2015-09-15

    High-frequency energetic particle driven geodesic acoustic modes (EGAM) observed in the large helical device plasmas are investigated using a hybrid simulation code for energetic particles and magnetohydrodynamics (MHD). Energetic particle inertia is incorporated in the MHD momentum equation for the simulation where the beam ion density is comparable to the bulk plasma density. Bump-on-tail type beam ion velocity distribution created by slowing down and charge exchange is considered. It is demonstrated that EGAMs have frequencies higher than the geodesic acoustic modes and the dependence on bulk plasma temperature is weak if (1) energetic particle density is comparable to the bulk plasma density and (2) charge exchange time (τ{sub cx}) is sufficiently shorter than the slowing down time (τ{sub s}) to create a bump-on-tail type distribution. The frequency of high-frequency EGAM rises as the energetic particle pressure increases under the condition of high energetic particle pressure. The frequency also increases as the energetic particle pitch angle distribution shifts to higher transit frequency. It is found that there are two kinds of particles resonant with EGAM: (1) trapped particles and (2) passing particles with transit frequency close to the mode frequency. The EGAMs investigated in this work are destabilized primarily by the passing particles whose transit frequencies are close to the EGAM frequency.

  18. New Receiving Mode of Extinction for Determining Particle Size and Density without Convex Lens

    Institute of Scientific and Technical Information of China (English)

    WU Weiliang; CHEN Hanping; CAI Xiaoshu; WANG Naining

    2002-01-01

    In this article a new receiving mode for scattering light by particle is theoretically discussed. Using this receiving mode the convex lens can be omitted during determining the extinction of particle. Therefore the extinction coefficient of sphere particles is redefined by extrapolating the conventional one. In terms of the calculation results of light scattering the definition of near-field extinction coefficient of a swarm particle is depicted. Through the error analysis it is proved that the error coming from the new definition of extinction coefficient is acceptable for engineering application. In addition, a technique for determining the particle size and density is presented in this article and the advantage using this receiving mode is described.

  19. Microstructure of atmospheric particles revealed by TXM and a new mode of influenza virus transmission

    Science.gov (United States)

    Bao, L. M.; Zhang, G. L.; Lei, Q. T.; Li, Y.; Li, X. L.; Hwu, Y. K.; Yi, J. M.

    2015-09-01

    For control of influenza, firstly it is important to find the real virus transmission media. Atmospheric aerosol particles are presumably one of the media. In this study, three typical atmospheric inhaled particles in Shanghai were studied by the synchrotron based transmission X-ray microscopes (TXM). Three dimensional microstructure of the particles reveals that there are many pores contained in, particularly the coal combustion fly particles which may be possible virus carrier. The particles can transport over long distance and cause long-range infections due to its light weight. We suggest a mode which is droplet combining with aerosol mode. By this mode the transmission of global and pandemic influenzas and infection between inland avian far from population and poultry or human living in cities along coast may be explained.

  20. Microstructure of atmospheric particles revealed by TXM and a new mode of influenza virus transmission

    Energy Technology Data Exchange (ETDEWEB)

    Bao, L.M., E-mail: baoliangman@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang, G.L., E-mail: zhangguilin@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Lei, Q.T.; Li, Y.; Li, X.L. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Hwu, Y.K. [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Yi, J.M. [Advanced Photon Source, Argonne National Laboratory, Argonne 60439 (United States)

    2015-09-15

    For control of influenza, firstly it is important to find the real virus transmission media. Atmospheric aerosol particles are presumably one of the media. In this study, three typical atmospheric inhaled particles in Shanghai were studied by the synchrotron based transmission X-ray microscopes (TXM). Three dimensional microstructure of the particles reveals that there are many pores contained in, particularly the coal combustion fly particles which may be possible virus carrier. The particles can transport over long distance and cause long-range infections due to its light weight. We suggest a mode which is droplet combining with aerosol mode. By this mode the transmission of global and pandemic influenzas and infection between inland avian far from population and poultry or human living in cities along coast may be explained.

  1. Microstructure of atmospheric particles revealed by TXM and a new mode of influenza virus transmission

    International Nuclear Information System (INIS)

    For control of influenza, firstly it is important to find the real virus transmission media. Atmospheric aerosol particles are presumably one of the media. In this study, three typical atmospheric inhaled particles in Shanghai were studied by the synchrotron based transmission X-ray microscopes (TXM). Three dimensional microstructure of the particles reveals that there are many pores contained in, particularly the coal combustion fly particles which may be possible virus carrier. The particles can transport over long distance and cause long-range infections due to its light weight. We suggest a mode which is droplet combining with aerosol mode. By this mode the transmission of global and pandemic influenzas and infection between inland avian far from population and poultry or human living in cities along coast may be explained

  2. Effective identification of the three particle modes generated during pulverized coal combustion

    Institute of Scientific and Technical Information of China (English)

    YU DunXi; XU MingHou; YAO Hong; LIU XiaoWei; ZHOU Ke

    2008-01-01

    Based on the mass fraction size distribution of aluminum (AI), an improved method for effectively identifying the modes of particulate matter from pulverized coal combustion is proposed in this study. It is found that the particle size distributions of coal-derived particulate matter actually have three modes, rather than just mere two. The ultrafine mode is mainly generated through the vaporization and condensation processes. The coarse mode is primarily formed by the coalescence of molten minerals, while the newly-found central mode is attributed to the heterogeneous condensation or adsorption of vaporized species on fine residual ash particles. The detailed investigation of the mass fraction size distribution of sulfur (S) further demonstrates the rationality and effectiveness of the mass fraction size distribution of the AI in identifying three particle modes. The results show that not only can the number of particle modes be identified in the mass fraction size distributions of the AI but also can their size boundaries be more accurately defined. This method provides new insights in elucidating particle formation mechanisms and their physico-chemical characteristics.

  3. A method for detecting the presence of organic fraction in nucleation mode sized particles

    Directory of Open Access Journals (Sweden)

    P. Vaattovaara

    2005-06-01

    Full Text Available New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm and the lower end of Aitken mode particles (d≤50 nm is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer method to shed light on the presence of organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.

  4. A method for detecting the presence of organic fraction in nucleation mode sized particles

    Directory of Open Access Journals (Sweden)

    P. Vaattovaara

    2005-01-01

    Full Text Available New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm and the lower end of Aitken mode particles (d≤50 nm is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer method to shed light on the presence of an organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10 nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various oxidized organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.

  5. Particle Based Alloying by Accumulative Roll Bonding in the System Al-Cu

    Directory of Open Access Journals (Sweden)

    Mathias Göken

    2011-11-01

    Full Text Available The formation of alloys by particle reinforcement during accumulative roll bonding (ARB, and subsequent annealing, is introduced on the basis of the binary alloy system Al-Cu, where strength and electrical conductivity are examined in different microstructural states. An ultimate tensile strength (UTS of 430 MPa for Al with 1.4 vol.% Cu was reached after three ARB cycles, which almost equals UTS of the commercially available Al-Cu alloy AA2017A with a similar copper content. Regarding electrical conductivity, the UFG structure had no significant influence. Alloying of aluminum with copper leads to a linear decrease in conductivity of 0.78 µΩ∙cm/at.% following the Nordheim rule. On the copper-rich side, alloying with aluminum leads to a slight strengthening, but drastically reduces conductivity. A linear decrease of electrical conductivity of 1.19 µΩ∙cm/at.% was obtained.

  6. Phytotoxicity, uptake, and accumulation of silver with different particle sizes and chemical forms

    Energy Technology Data Exchange (ETDEWEB)

    Quah, Bryan [Southern Illinois University Carbondale, Department of Civil and Environmental Engineering (United States); Musante, Craig; White, Jason C. [The Connecticut Agricultural Experiment Station, Department of Analytical Chemistry (United States); Ma, Xingmao, E-mail: xma@civil.tamu.edu [Texas A& M University, Zachry Department of Civil Engineering (United States)

    2015-06-15

    The antimicrobial property of silver nanoparticles (AgNPs) makes it one of the most commonly encountered nanomaterials in commercial products. Consequently, its detection in the environment is highly likely and its potential toxicity has been heavily investigated. While it is now generally agreed that AgNP itself exerts unique toxicity to plants in addition to that of dissolved silver ion, the accumulation and fate of different forms of silver in plant tissues are unknown. This study investigates the phytotoxicity, accumulation, and transport of Ag with different physical and chemical characteristics (e.g., ionic, nanoparticles, and bulk) in two agricultural crop species: Glycine max (soybean) and Triticum aestivum (wheat). The results showed that different forms of Ag demonstrated differential toxicity in these two species, with the Ag{sup +} at the same nominal concentration displaying the strongest effect on plant growth. Exposure to 5 mg/L of elemental Ag in different forms all resulted in significant deposition on the root surface but its morphology and distribution patterns varied considerably. The Ag transport efficiency from roots to shoots differed with both Ag type and plant species. Notably, the upward transport of AgNPs (20–50 nm) was considerably more substantial than that of bulk Ag (1–3 µm). Cell fractionation studies confirmed that all types of Ag were internalized, with the plant cell wall as the predominant place for element accumulation. The findings demonstrate that Ag toxicity and in planta fate vary with particle type and that such considerations are likely necessary to adequately assess food safety concerns upon NP exposure.

  7. [Effects of different nitrogen, phosphorous, and potassium fertilization modes on carbon- and nitrogen accumulation and allocation in rice plant].

    Science.gov (United States)

    Feng, Lei; Tong, Cheng-li; Shi, Hui; Wu, Jin-shui; Chen, An-lei; Zhou, Ping

    2011-10-01

    Based on a 20-year field site-specific fertilization experiment in Taoyuan Experimental Station of Agriculture Ecosystems under Chinese Ecosystem Research Network (CERN), this paper studied the effects of different fertilization modes of N, P, and K on the accumulation and allocation of C and N in rice plant. The fertilization mode N-only showed the highest C and N contents (433 g kg(-1) and 18.9 g kg(-1), respectively) in rice grain, whereas the modes balanced fertilization of chemical N, P and K (NPK) and its combination with organic mature recycling (NPKC) showed the highest storage of C and N in rice plant. In treatments NPK and NPKC, the C storage in rice grain and in stem and leaf was 1960 kg hm(-2) and 2015 kg hm(-2), and 2002 kg hm(-2) and 2048 kg hm(-2), and the N storage in rice grain was 80.5 kg hm(-2) and 80.6 kg hm(-2), respectively. Treatment NPK had the highest N storage (59.3 kg hm(-2)) in stem and leaf. Balanced fertilization of chemical N, P, and K combined with organic manure recycling increased the accumulation of C and N in rice plant significantly. Comparing with applying N only, balanced fertilization of chemical N, P, and K was more favorable to the accumulation and allocation of C and N in rice plant during its growth period.

  8. L-Mode and Inter-ELM Divertor Particle and Heat Flux Width Scaling on MAST

    CERN Document Server

    Harrison, J R; Kirk, A

    2013-01-01

    The distribution of particles and power to plasma-facing components is of key importance in the design of next-generation fusion devices. Power and particle decay lengths have been measured in a number of MAST L-mode and H-mode discharges in order to determine their parametric dependencies, by fitting power and particle flux profiles measured by divertor Langmuir probes, to a convolution of an exponential decay and a Gaussian function. In all discharges analysed, it is found that exponential decay lengths mapped to the midplane are mostly dependent on separatrix electron density and plasma current (or parallel connection length). The widths of the convolved Gaussian functions have been used to derive an approximate diffusion coefficient, which is found to vary from 1m2/s to 7m2/s, and is systematically lower in H-mode compared with L-mode.

  9. Commuter exposure to inhalable, thoracic and alveolic particles in various transportation modes in Delhi.

    Science.gov (United States)

    Kumar, Pramod; Gupta, N C

    2016-01-15

    A public health concern is to understand the linkages between specific pollution sources and adverse health impacts. Commuting can be viewed as one of the significant-exposure activity in high-vehicle density areas. This paper investigates the commuter exposure to inhalable, thoracic and alveolic particles in various transportation modes in Delhi, India. Air pollution levels are significantly contributed by automobile exhaust and also in-vehicle exposure can be higher sometime than ambient levels. Motorcycle, auto rickshaw, car and bus were selected to study particles concentration along two routes in Delhi between Kashmere Gate and Dwarka. The bus and auto rickshaw were running on compressed natural gas (CNG) while the car and motorcycle were operated on gasoline fuel. Aerosol spectrometer was employed to measure inhalable, thoracic and alveolic particles during morning and evening rush hours for five weekdays. From the study, we observed that the concentration levels of these particles were greatly influenced by transportation modes. Concentrations of inhalable particles were found higher during morning in auto rickshaw (332.81 ± 90.97 μg/m(3)) while the commuter of bus exhibited higher exposure of thoracic particles (292.23 ± 110.45 μg/m(3)) and car commuters were exposed to maximum concentrations of alveolic particles (222.37 ± 26.56 μg/m(3)). We observed that in evening car commuters experienced maximum concentrations of all sizes of particles among the four commuting modes. Interestingly, motorcycle commuters were exposed to lower levels of inhalable and thoracic particles during morning and evening hours as compared to other modes of transport. The mean values were found greater than the median values for all the modes of transport suggesting that positive skewed distributions are characteristics of naturally occurring phenomenon.

  10. Drive current of accumulation-mode p-channel SOI-based wrap-gated Fin-FETs

    International Nuclear Information System (INIS)

    Comparisons are performed to study the drive current of accumulation-mode (AM) p-channel wrap-gated Fin-FETs. The drive current of the AM p-channel FET is 15%-26% larger than that of the inversion-mode (IM) p-channel FET with the same wrap-gated fin channel, because of the body current component in the AM FET, which becomes less dominative as the gate overdrive becomes larger. The drive currents of the AM p-channel wrap-gated Fin-FETs are 50% larger than those of the AM p-channel planar FETs, which arises from effective conducting surface broadening and volume accumulation in the AM wrap-gated Fin-FETs. The effective conducting surface broadening is due to wrap-gate-induced multi-surface conduction, while the volume accumulation, namely the majority carrier concentration anywhere in the fin cross section exceeding the fin doping density, is due to the coupling of electric fields from different parts of the wrap gate. Moreover, for AM p-channel wrap-gated Fin-FETs, the current in channel along (110) is larger than that in channel along (100), which arises from the surface mobility difference due to different transport directions and surface orientations. That is more obvious as the gate overdrive becomes larger, when the surface current component plays a more dominative role in the total current. (semiconductor devices)

  11. Suppression of scattering for small dielectric particles: an anapole mode and invisibility

    CERN Document Server

    Luk`yanchuk, Boris; Kuznetsov, Arseniy I; Miroshnichenko, Andrey E; Kivshar, Yuri S

    2016-01-01

    We reveal that an isotropic homogeneous subwavelength particle with a high refractive index can produce ultra-weak total scattering due to vanishing contribution of the electric dipole moment. This effect can be explained with the help of the Fano resonance and scattering efficiency associated with the excitation of an anapole mode. The latter is a nonradiative mode emerging from destructive interference of electric and toroidal dipole moments, and it can be employed for a design of highly transparent optical materials.

  12. Airborne measurements of nucleation mode particles I: coastal nucleation and growth rates

    Directory of Open Access Journals (Sweden)

    C. D. O'Dowd

    2007-01-01

    Full Text Available A light aircraft was equipped with a bank of Condensation Particle Counters (CPCs (50% cut from 3–5.4–9.6 nm and a nano-Scanning Mobility Particle Sizer (nSMPS and deployed along the west coast of Ireland, in the vicinity of Mace Head. The objective of the exercise was to provide high resolution micro-physical measurements of the coastal nucleation mode in order to map the spatial extent of new particle production regions and to evaluate the evolution, and associated growth rates of the coastal nucleation-mode aerosol plume. Results indicate that coastal new particle production is occurring over most areas along the land-sea interface with peak concentrations at the coastal plume-head in excess of 106 cm−3. Pseudo-Lagrangian studies of the coastal plume evolution illustrated significant growth of new particles to sizes in excess of 8 nm approximately 10 km downwind of the source region. Close to the plume head (<1 km growth rates can be as high as 123–171 nm h−1, decreasing gradually to 53–72 nm h−1 at 3 km. Further along the plume, at distances up to 10 km, the growth rates are calculated to be 17–32 nm h−1. Growth rates of this magnitude suggest that after a couple of hours, coastal nucleation mode particles can reach significant sizes where they can contribution to the regional aerosol loading.

  13. Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles

    Directory of Open Access Journals (Sweden)

    N. Hiranuma

    2013-09-01

    Full Text Available In this paper, the effect of the morphological modification of aerosol particles with respect to heterogeneous ice nucleation is comprehensively investigated for laboratory-generated hematite particles as a model substrate for atmospheric dust particles. The surface area-scaled ice nucleation efficiencies of monodisperse cubic hematite particles and milled hematite particles were measured with a series of expansion cooling experiments using the Aerosol Interaction and Dynamics in the Atmosphere (AIDA cloud simulation chamber. Complementary off-line characterization of physico-chemical properties of both hematite subsets were also carried out with scanning electron microscopy (SEM, energy dispersive X-ray (EDX spectroscopy, dynamic light scattering (DLS, and an electro-kinetic particle charge detector to further constrain droplet-freezing measurements of hematite particles. Additionally, an empirical parameterization derived from our laboratory measurements was implemented in the single-column version of the Community Atmospheric Model version 5 (CAM5 to investigate the model sensitivity in simulated ice crystal number concentration on different ice nucleation efficiencies. From an experimental perspective, our results show that the immersion mode ice nucleation efficiency of milled hematite particles is almost an order of magnitude higher at −35.2 °C T < −33.5 °C than that of the cubic hematite particles, indicating a substantial effect of morphological irregularities on immersion mode freezing. Our modeling results similarly show that the increased droplet-freezing rates of milled hematite particles lead to about one order magnitude higher ice crystal number in the upper troposphere than cubic hematite particles. Overall, our results suggest that the surface irregularities and associated active sites lead to greater ice activation through droplet-freezing.

  14. Correlations between the fragmentation modes and light charged particles emission in heavy ion collisions

    CERN Document Server

    Zhang, Yingxun; Chen, Jixian; Wang, Ning; Zhao, Kai; Li, Zhuxia

    2015-01-01

    The correlations between the shape of rapidity distribution of the yield of light charged particles and the fragmentation modes in semi-peripheral collisions for $^{70}$Zn+$^{70}$Zn, $^{64}$Zn+$^{64}$Zn and $^{64}$Ni+$^{64}$Ni at the beam energy of 35MeV/nucleon are investigated based on ImQMD05 code. Our studies show there is an interplay between the binary, ternary and multi-fragmentation break-up modes. The binary and ternary break-up modes more prefer to emit light charged particles at middle rapidity and give larger values of $R_{yield}^{mid}$ compared with the multi-fragmentation break-up mode does. The reduced rapidity distribution for the normalized yields of p, d, t, $^3$He, $^4$He and $^6$He and the corresponding values of $R_{yield}^{mid}$ can be used to estimate the probability of multi-fragmentation break-up modes. By comparing to experimental data, our results illustrate that $\\ge$40\\% of the collisions events belong to the multi-fragmentation break-up mode for the reactions we studied.

  15. Correlation between the fragmentation modes and light charged particles emission in heavy ion collisions

    Institute of Scientific and Technical Information of China (English)

    ZHANG YingXun[1; ZHOU ChengShuang[1,2; CHEN JiXian[1,2; WANG Ning[2; ZHAO Kai[1; LI ZhuXia[1

    2015-01-01

    The correlation between the shape of rapidity distribution of the yield of light charged particles and the fragmentation modes in semi-peripheral collisions for 70Zn+70Zn, 64Zn+64Zn and 64Ni+64Ni at the beam energy of 35 MeV/nucleon is investigated based on ImQMD05 code. Our studies show there is an interplay between the binary, ternary and multi-fragmentation break-up modes. The binary and ternary break-up modes more prefer to emit light charged particles at middle rapidity and give larger values of Rmid compared with the multi-fragmentation break-up mode does. The reduced rapidity distribution for the normalized yields of yield p, d, t, 3He, 4He and 6He and the corresponding values ~ Rmid oI yield can be used to estimate the probability of multi-fragmentation break-up modes. By comparing to experimental data, our results illustrate that ~40% of the collisions events belong to the multi- fragmentation break-up mode for the reactions we studied.

  16. Damping of Trapped-Particle Asymmetry Modes in Non-Neutral Plasma Columns

    International Nuclear Information System (INIS)

    Asymmetry modes (m = 1, kz ≠ 0) are diocotron-like modes in finite-length plasma columns in Malmberg-Penning traps. We have investigated the modes with a detailed 3-d particle-in-cell (PIC) drift-kinetic computer simulation. Although PIC simulations do not employ realistic collisions, the simulations in this case reproduce many of the salient features of the data. Particle transport associated with the damping is seen not to be a direct collisional effect, but rather a feature of orbital dynamics associated with transitions from trapped-to-untrapped or untrapped-to-trapped state relative to the inversion plane of the asymmetry. In the simulations we observe a B-1 dependence of the mode frequencies and a B-0.5 dependence of the damping constant for large rigidity. We further observe a steepening of the dependence of the decay constant to B-2 as the rigidity of the plasma falls below about 2.0. We have also used the simulations to investigate the modes at small seed amplitudes and observe linear flattening in the mode frequency as the seed amplitude becomes small. In contrast, the decay constant does not flatten for small seed amplitude

  17. Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles

    Directory of Open Access Journals (Sweden)

    Z. A. Kanji

    2013-04-01

    Full Text Available Ice nucleation in the atmosphere is central to the understanding the microphysical properties of mixed-phase and cirrus clouds. Ambient conditions such as temperature (T and relative humidity (RH, as well as aerosol properties such as chemical composition and mixing state play an important role in predicting ice formation in the troposphere. Previous field studies have reported the absence of sulphate and organic compounds on mineral dust ice crystal residuals sampled at mountain top stations or aircraft based measurements despite the long range transport mineral dust is subjected to. We present laboratory studies of ice nucleation for immersion and deposition mode on ozone aged mineral dust particles for 233 T ns are reported and observed to increase as a function of temperature. We present first results that demonstrate enhancement of the ice nucleation ability of aged mineral dust particles in both the deposition and immersion mode due to ageing. Additionally, these are also the first results to show a suppression of heterogeneous ice nucleation without the condensation of a coating of (inorganic material. In immersion mode, low exposure Ka particles showed enhanced ice activity requiring a median freezing temperature of 1.5 K warmer than that of untreated Ka whereas high exposure ATD particles showed suppressed ice nucleation requiring a median freezing temperature of 3 K colder than that of untreated ATD. In deposition mode, low exposure Ka had ice active fractions of an order of magnitude higher than untreated Ka, where as high exposure ATD had ice active fractions up to a factor of 4 lower than untreated ATD. Based on our results, we present parameterizations in terms of ns(T that can represent ice nucleation of atmospherically aged and non-aged particles for both immersion and deposition mode. We find excellent agreement (to within less than a factor of 2 with field measurements when parameterizations derived from our results are used to

  18. Method of particle energy determination based on measurement of waveguide mode frequencies

    Science.gov (United States)

    Tyukhtin, A. V.

    2012-05-01

    A new method of determination of charged particle energy is developed. This method consists in use of dependency of waveguide mode frequencies on Lorenz factor of particle. For this method it is principal that the particle bunch generates radiation in waveguide and the mode frequencies depend essentially on the Lorenz factor. Three variants of realization of such technique are considered. The first variant consists in use of a thin dielectric layer in a waveguide. The second variant is based on use of a waveguide containing a system of wires coated with a dielectric material. The third version consists in application of a circular waveguide having a grid wall. For all cases analytical solutions of the problems are obtained (in the case of grid waveguide we use the averaged boundary conditions). Some typical results of computations are given. Advantages and disadvantages of different variants are discussed. It is noted that the grid waveguide can be used as well for generation of microwave radiation.

  19. Cancellation of drift kinetic effects between thermal and energetic particles on the resistive wall mode stabilization

    Science.gov (United States)

    Guo, S. C.; Liu, Y. Q.; Xu, X. Y.; Wang, Z. R.

    2016-07-01

    Drift kinetic stabilization of the resistive wall mode (RWM) is computationally investigated using MHD-kinetic hybrid code MARS-K following the non-perturbative approach (Liu et al 2008 Phys. Plasmas 15 112503), for both reversed field pinch (RFP) and tokamak plasmas. Toroidal precessional drift resonance effects from trapped energetic ions (EIs) and various kinetic resonances between the mode and the guiding center drift motions of thermal particles are included into the self-consistent toroidal computations. The results show cancellation effects of the drift kinetic damping on the RWM between the thermal particles and EIs contributions, in both RFP and tokamak plasmas, even though each species alone can provide damping and stabilize RWM instability by respective kinetic resonances. The degree of cancellation generally depends on the EIs equilibrium distribution, the particle birth energy, as well as the toroidal flow speed of the plasma.

  20. Efficiency of the deposition mode ice nucleation on mineral dust particles

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2006-01-01

    Full Text Available The deposition mode ice nucleation efficiency of various dust aerosols was investigated at cirrus cloud temperatures between 196 and 223 K using the aerosol and cloud chamber facility AIDA (Aerosol Interaction and Dynamics in the Atmosphere. Arizona test dust (ATD as a reference material and two dust samples from the Takla Makan desert in Asia (AD1 and the Sahara (SD2 were used for the experiments at simulated cloud conditions. The dust particle sizes were almost lognormally distributed with mode diameters between 0.3 and 0.5 μm and geometric standard deviations between 1.6 and 1.9. Deposition ice nucleation was most efficient on ATD particles with ice-active particle fractions of about 0.6 and 0.8 at an ice saturation ratio SiSiSi. This indicates that deposition ice nucleation on mineral particles may not be treated in the same stochastic sense as homogeneous freezing. The suggested formulation of ice activation spectra may be used to calculate the formation rate of ice crystals in models, if the number concentration of dust particles is known. More experimental work is needed to quantify the variability of the ice activation spectra as function of the temperature and dust particle properties.

  1. Water filtration rate and infiltration/accumulation of low density lipoproteins in 3 different modes of endothelial/smooth muscle cell co-cultures

    Institute of Scientific and Technical Information of China (English)

    DING ZuFeng; FAN YuBo; DENG XiaoYan

    2009-01-01

    Using different endothelial/smooth muscle cell co-culture modes to simulate the intimal structure of blood vessels,the water filtration rate and the infiltration/accumulation of LDL of the cultured cell layers were studied.The three cell culture modes of the study were:(i)The endothelial cell monolayer (EC/O);(ii)endothelial cells directly co-cultured on the smooth muscle cell monolayer (EC-SMC);(iii)endothelial cells and smooth muscle cells cultured on different sides of a MillicelI-CM membrane (EC/SMC).It was found that under the same condition,the water filtration rate was the lowest for the EC/SMC mode and the highest for the EC/φ mode,while the infiltration/accumulation of Dil-LDLs was the lowest in the EC/φ mode and the highest in the EC-SMC mode.It was also found that Dil-LDL infiltration/accumulation in the cultured cell layers increased with the increasing water filtration rate.The results from the in vitro model study therefore suggest that the infiltration/accumulation of the lipids within the arterial wall is positively correlated with concentration polarization of atherogenic lipids,and the integrity of the endothelium plays an important role in the penetration and accumulation of atherogenic lipids in blood vessel walls.

  2. Water filtration rate and infiltration/accumulation of low density lipoproteins in 3 different modes of endothelial/smooth muscle cell co-cultures

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using different endothelial/smooth muscle cell co-culture modes to simulate the intimal structure of blood vessels, the water filtration rate and the infiltration/accumulation of LDL of the cultured cell layers were studied. The three cell culture modes of the study were: (i) The endothelial cell monolayer (EC/Φ); (ii) endothelial cells directly co-cultured on the smooth muscle cell monolayer (EC-SMC); (iii) endothelial cells and smooth muscle cells cultured on different sides of a Millicell-CM membrane (EC/SMC). It was found that under the same condition, the water filtration rate was the lowest for the EC/SMC mode and the highest for the EC/Φ mode, while the infiltration/accumulation of DiI-LDLs was the lowest in the EC/Φ mode and the highest in the EC-SMC mode. It was also found that DiI-LDL infiltration/accumulation in the cultured cell layers increased with the increasing water filtration rate. The results from the in vitro model study therefore suggest that the infiltration/accumulation of the lipids within the arterial wall is positively correlated with concentration polarization of atherogenic lipids, and the integrity of the endothelium plays an important role in the penetration and accumulation of atherogenic lipids in blood vessel walls.

  3. Experimental investigation of the radial structure of energetic particle driven modes

    CERN Document Server

    Horvath, L; Lauber, Ph; Por, G; Gude, A; Igochine, V; Geiger, B; Maraschek, M; Guimarais, L; Nikolaeva, V; Pokol, G I

    2016-01-01

    Alfv\\'en eigenmodes (AEs) and energetic particle modes (EPMs) are often excited by energetic particles (EPs) in tokamak plasmas. One of the main open questions concerning EP driven instabilities is the non-linear evolution of the mode structure. The aim of the present paper is to investigate the properties of beta-induced AEs (BAEs) and EP driven geodesic acoustic modes (EGAMs) observed in the ramp-up phase of off-axis NBI heated ASDEX Upgrade (AUG) discharges. This paper focuses on the changes in the mode structure of BAEs/EGAMs during the non-linear chirping phase. Our investigation has shown that in case of the observed down-chirping BAEs the changes in the radial structure are smaller than the uncertainty of our measurement. This behaviour is most probably the consequence of that BAEs are normal modes, thus their radial structure strongly depends on the background plasma parameters rather than on the EP distribution. In the case of rapidly upward chirping EGAMs the analysis consistently shows shrinkage of...

  4. Optical manipulation of biological particles using LP21 mode in fiber

    International Nuclear Information System (INIS)

    We demonstrate the optical manipulation of biological particles using a low-order LP21 fiber mode. The focused four-lobed LP21 mode distribution was theoretically and experimentally found to be effective in optical tweezer applications, including selective cellular pick-up, pairing, grouping or separation, as well as rotation of cell dimers and clusters. Our proposed theoretical model estimates both the translational dragging force and rotational torque in good accordance with experimental data. With a simple all-fiber configuration, and low peak irradiation to target bioparticles, the proposed LP21 ‘optical chuck’ system has great application potential in biological test systems. (paper)

  5. Enhanced functionality of cantilever based mass sensors using higher modes and functionalized particles

    DEFF Research Database (Denmark)

    Dohn, Søren; Sandberg, Rasmus Kousholt; Svendsen, Winnie Edith;

    2005-01-01

    By positioning a single gold-particle at different locations along the length axis on a cantilever based mass sensor, we have investigated the effect of mass position on the mass responsivity and compared the results to simulations. A significant improvement in quality factor and responsivity...... was achieved by operating the cantilever in the 4th bending mode, thereby increasing the intrinsic sensitivity. It is shown that the use of higher bending modes grants a spatial resolution and thereby enhances the functionality of the cantilever based mass sensor....

  6. Subcapsular sinus macrophages promote NK cell accumulation and activation in response to lymph-borne viral particles.

    OpenAIRE

    Garcia, Z; Lemaitre, F; Van Rooijen, N.; Albert, M. L.; Levy, Y; Schwartz, O.; Bousso, P.

    2012-01-01

    Natural killer (NK) cells become activated during viral infection in response to cytokines or to engagement of NK cell activating receptors. However, the identity of cells sensing viral particles and mediating NK cell activation has not been defined. Here, we show that local administration of a modified vaccinia virus Ankara vaccine in mice results in the accumulation of NK cells in the subcapsular area of the draining lymph node and their activation, a process that is strictly dependent on t...

  7. Hall effects on anomalous heat, particle and helicity transports through tearing-mode turbulence

    International Nuclear Information System (INIS)

    The helicity transport in a current-carrying plasma results in heat and particle transports in the direction opposite to the helicity flux. Tearing-mode turbulence produces helicity flux that is proportional to the gradient of equilibrium parallel current. The helicity flux is a consequence of a fluctuating electric field with a circularly polarized component, which also causes a nonlinear parallel current (primarily an electron flux) and a nonlinear polarization current (primarily an ion flux). Such anomalous heat and particle fluxes are driven by the free-energy associated with the perturbed magnetic field in the tearing-mode turbulence, and are typically directed inward to the plasma. Both fluxes becomes large when the gradient of the equilibrium current is large. 12 refs

  8. Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles

    Directory of Open Access Journals (Sweden)

    Z. A. Kanji

    2013-09-01

    Full Text Available Ice nucleation in the atmosphere is central to the understanding the microphysical properties of mixed-phase and cirrus clouds. Ambient conditions such as temperature (T and relative humidity (RH, as well as aerosol properties such as chemical composition and mixing state play an important role in predicting ice formation in the troposphere. Previous field studies have reported the absence of sulfate and organic compounds on mineral dust ice crystal residuals sampled at mountain top stations or aircraft based measurements despite the long-range transport mineral dust is subjected to. We present laboratory studies of ice nucleation for immersion and deposition mode on ozone aged mineral dust particles for 233 T ns are reported and observed to increase as a function of decreasing temperature. We present first results that demonstrate enhancement of the ice nucleation ability of aged mineral dust particles in both the deposition and immersion mode due to ageing. We also present the first results to show a suppression of heterogeneous ice nucleation activity without the condensation of a coating of (inorganic material. In immersion mode, low ozone exposed Ka particles showed enhanced ice activity requiring a median freezing temperature of 1.5 K warmer than that of untreated Ka, whereas high ozone exposed ATD particles showed suppressed ice nucleation requiring a median freezing temperature of 3 K colder than that of untreated ATD. In deposition mode, low exposure Ka had ice active fractions of an order of magnitude higher than untreated Ka, whereas high ozone exposed ATD had ice active fractions up to a factor of 4 lower than untreated ATD. From our results, we derive and present parameterizations in terms of ns(T that can be used in models to predict ice nuclei concentrations based on available aerosol surface area.

  9. Rapid Frequency Chirps of TAE mode due to Finite Orbit Energetic Particles

    Science.gov (United States)

    Berk, Herb; Wang, Ge

    2013-10-01

    The tip model for the TAE mode in the large aspect ratio limit, conceived by Rosenbluth et al. in the frequency domain, together with an interaction term in the frequency domain based on a map model, has been extended into the time domain. We present the formal basis for the model, starting with the Lagrangian for the particle wave interaction. We shall discuss the formal nonlinear time domain problem and the procedure that needs to obtain solutions in the adiabatic limit.

  10. Observation of Energetic Particle Driven Modes Relevant to Advanced Tokamak Regimes

    Energy Technology Data Exchange (ETDEWEB)

    R. Nazikian; B. Alper; H.L. Berk; D. Borba; C. Boswell; R.V. Budny; K.H. Burrell; C.Z. Cheng; E.J. Doyle; E. Edlund; R.J. Fonck; A. Fukuyama; N.N. Gorelenkov; C.M. Greenfield; D.J. Gupta; M. Ishikawa; R.J. Jayakumar; G.J. Kramer; Y. Kusama; R.J. La Haye; G.R. McKee; W.A. Peebles; S.D. Pinches; M. Porkolab; J. Rapp; T.L. Rhodes; S.E. Sharapov; K. Shinohara; J.A. Snipes; W.M. Solomon; E.J. Strait; M. Takechi; M.A. Van Zeeland; W.P. West; K.L. Wong; S. Wukitch; L. Zeng

    2004-10-21

    Measurements of high-frequency oscillations in JET [Joint European Torus], JT-60U, Alcator C-Mod, DIII-D, and TFTR [Tokamak Fusion Test Reactor] plasmas are contributing to a new understanding of fast ion-driven instabilities relevant to Advanced Tokamak (AT) regimes. A model based on the transition from a cylindrical-like frequency-chirping mode to the Toroidal Alfven Eigenmode (TAE) has successfully encompassed many of the characteristics seen in experiments. In a surprising development, the use of internal density fluctuation diagnostics has revealed many more modes than has been detected on edge magnetic probes. A corollary discovery is the observation of modes excited by fast particles traveling well below the Alfven velocity. These observations open up new opportunities for investigating a ''sea of Alfven Eigenmodes'' in present-scale experiments, and highlight the need for core fluctuation and fast ion measurements in a future burning-plasma experiment.

  11. A quasi-stationary approach to particle concentration and distribution in gear oil for wear mode estimation

    DEFF Research Database (Denmark)

    Henneberg, Morten; Eriksen, René Lynge; Jørgensen, Bent;

    2015-01-01

    that particles less than 14 μm dominate the wear. Hence, it is concluded that abrasion dominate the wear, for the gear in operation, and it is concluded to be in quasi-stationary mode. The distribution of the particles is observed in conjunction with the particle quantity to determine a basis for normal...

  12. Model-Free Adaptive Fuzzy Sliding Mode Controller Optimized by Particle Swarm for Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Amin Jalali

    2013-05-01

    Full Text Available The main purpose of this paper is to design a suitable control scheme that confronts the uncertainties in a robot. Sliding mode controller (SMC is one of the most important and powerful nonlinear robust controllers which has been applied to many non-linear systems. However, this controller has some intrinsic drawbacks, namely, the chattering phenomenon, equivalent dynamic formulation, and sensitivity to the noise. This paper focuses on applying artificial intelligence integrated with the sliding mode control theory. Proposed adaptive fuzzy sliding mode controller optimized by Particle swarm algorithm (AFSMC-PSO is a Mamdani’s error based fuzzy logic controller (FLS with 7 rules integrated with sliding mode framework to provide the adaptation in order to eliminate the high frequency oscillation (chattering and adjust the linear sliding surface slope in presence of many different disturbances and the best coefficients for the sliding surface were found by offline tuning Particle Swarm Optimization (PSO. Utilizing another fuzzy logic controller as an impressive manner to replace it with the equivalent dynamic part is the main goal to make the model free controller which compensate the unknown system dynamics parameters and obtain the desired control performance without exact information about the mathematical formulation of model.

  13. Growth of nucleation mode particles in the summertime Arctic: a case study

    Science.gov (United States)

    Willis, Megan D.; Burkart, Julia; Thomas, Jennie L.; Köllner, Franziska; Schneider, Johannes; Bozem, Heiko; Hoor, Peter M.; Aliabadi, Amir A.; Schulz, Hannes; Herber, Andreas B.; Leaitch, W. Richard; Abbatt, Jonathan P. D.

    2016-06-01

    The summertime Arctic lower troposphere is a relatively pristine background aerosol environment dominated by nucleation and Aitken mode particles. Understanding the mechanisms that control the formation and growth of aerosol is crucial for our ability to predict cloud properties and therefore radiative balance and climate. We present an analysis of an aerosol growth event observed in the Canadian Arctic Archipelago during summer as part of the NETCARE project. Under stable and clean atmospheric conditions, with low inversion heights, carbon monoxide less than 80 ppbv, and black carbon less than 5 ng m-3, we observe growth of small particles, MSA) in particles ˜ 80 nm and larger, where the organics are similar to those previously observed in marine settings. MSA-to-sulfate ratios as high as 0.15 were observed during aerosol growth, suggesting an important marine influence. The organic-rich aerosol contributes significantly to particles active as cloud condensation nuclei (CCN, supersaturation = 0.6 %), which are elevated in concentration during aerosol growth above background levels of ˜ 100 to ˜ 220 cm-3. Results from this case study highlight the potential importance of secondary organic aerosol formation and its role in growing nucleation mode aerosol into CCN-active sizes in this remote marine environment.

  14. On Nonlinear Self-interaction of Geodesic Acoustic Mode Driven By Energetic Particles

    International Nuclear Information System (INIS)

    It is shown that nonlinear self-interaction of energetic particle-driven Geodesic Acoustic Mode does not generate a second harmonic in radial electric field using the fluid model. However, kinetic effects of energetic particles can induce a second harmonic in the radial electric field. A formula for the second order plasma density perturbation is derived. It is shown that a second harmonic of plasma density perturbation is generated by the convective nonlinearity of both thermal plasma and energetic particles. Near the midplane of a tokamak, the second order plasma density perturbation (the sum of second harmonic and zero frequency sideband) is negative on the low field side with its size comparable to the main harmonic at low fluctuation level. These analytic predictions are consistent with the recent experimental observation in DIII-D.

  15. On Nonlinear Self-interaction of Geodesic Acoustic Mode Driven by Energetic Particles

    International Nuclear Information System (INIS)

    It is shown that nonlinear self-interaction of energetic particle-driven Geodesic Acoustic Mode does not generate a second harmonic in radial electric field using the fluid model. However, kinetic effects of energetic particles can induce a second harmonic in the radial electric field. A formula for the second order plasma density perturbation is derived. It is shown that a second harmonic of plasma density perturbation is generated by the convective nonlinearity of both thermal plasma and energetic particles. Near the midplane of a tokamak, the second order plasma density perturbation (the sum of second harmonic and zero frequency sideband) is negative on the low field side with its size comparable to the main harmonic at low fluctuation level. These analytic predictions are consistent with the recent experimental observation in DIII-D.

  16. Investigation of effects of time of measurement and modes of administration on cadmium accumulation in rat liver under some medicinal plants food supplemented diet

    Directory of Open Access Journals (Sweden)

    Chukwuemeka R. Nwokocha

    2014-01-01

    Full Text Available Context and Objectives: Cadmium (Cd toxicity leads to cell and organ damage, we comparatively examined the protection ability of different medicinal plants on Cd liver accumulation following different treatment interventions and modes of administration. Materials and Methods: Rats were fed either 7% w/w Zingiber officinale, 7% w/w Allium Sativum, 10% w/w Lycopersicon esculentum, 5%, w/w Garcinia kola (all in rat chow, while Cd (200 ppm was given in drinking water. Additives were administered together with (mode 1, a week after (mode 2 or a week before metal exposure (mode 3 for a period of six weeks. Cd liver was determined using AAS and compared using analysis of variance (ANOVA. Results: All additives significantly (P <0.5 reduced the accumulation of Cd in the liver. After adjusting for time and mode of administration, mean %protection for week 4 was significantly lower by 14.1% (P=0.02 from that for week 2 but the means did not differ with respect to additive used or mode of administration, no statistically significant interaction between modes of administration and either of additives used or time of administration in their respective relationships to percentage protection from Cd. Conclusion: Additives significantly reduced Cd accumulation through a reduction in absorption and enhancement of metal excretion.

  17. Fluid electron, gyrokinetic ion simulations of linear internal kink and energetic particle modes

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Michael, E-mail: michael.cole@ipp.mpg.de; Mishchenko, Alexey; Könies, Axel; Kleiber, Ralf; Borchardt, Matthias [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany)

    2014-07-15

    The internal kink mode is an important plasma instability responsible for a broad class of undesirable phenomena in tokamaks, including the sawtooth cycle and fishbones. To predict and discover ways to mitigate this behaviour in current and future devices, numerical simulations are necessary. The internal kink mode can be modelled by reduced magnetohydrodynamics (MHD). Fishbone modes are an inherently kinetic and non-linear phenomenon based on the n = 1 Energetic Particle Mode (EPM), and have been studied using hybrid codes that combine a reduced MHD bulk plasma model with a kinetic treatment of fast ions. In this work, linear simulations are presented using a hybrid model which couples a fluid treatment of electrons with a gyrokinetic treatment of both bulk and fast ions. Studies of the internal kink mode in geometry relevant to large tokamak experiments are presented and the effect of gyrokinetic ions is considered. Interaction of the kink with gyrokinetic fast ions is also considered, including the destabilisation of the linear n = 1 EPM underlying the fishbone.

  18. The Appearance of a Radio-Pulsar Magnetosphere from a Vacuum with a Strong Magnetic Field. Accumulation of Particles

    CERN Document Server

    Istomin, Ya N; 10.1134/S1063772910040074

    2010-01-01

    The accumulation of electrons and positrons in the vacuum magnetosphere of a neutron star with a surface magnetic field of B~10^12 G is considered. It is shown that particles created in the magnetosphere or falling into the magnetosphere from outside undergo ultra-relativistic oscillations with a frequency of 10-100 MHz. These oscillations decay due to energy losses to curvature radiation and bremsstrahlung, with their frequencies reaching 1-10 GHz. Simultaneously, the particles undergo regular motion along the force-free surface along closed trajectories. This leads to the gradual accumulation of particles at the force-free surface and the formation of a fully charge-separated plasma layer with a density of the order of the Goldreich-Julian density. The presence of a constant source of electron-positron pairs in the magnetosphere due to the absorption of energetic cosmic gamma-rays leads to the growth of this layer, bringing about a rapid filling of the pulsar magnetosphere with electron-positron plasma if t...

  19. Efficiency of the deposition mode ice nucleation on mineral dust particles

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2006-02-01

    Full Text Available The deposition mode ice nucleation efficiency of various dust aerosols was investigated at cirrus cloud temperatures between 196 K and 223 K using the aerosol chamber facility AIDA (Aerosol Interaction and Dynamics in the Atmosphere. Arizona test dust (ATD as a reference material and two dust samples from the Takla Makan desert in Asia (AD1 and Sahara (SD2 were used for the experiments at simulated cloud conditions. The dust particle sizes were almost lognormally distributed with mode diameters between 0.3 µm and 0.5 µm and geometric standard deviations between 1.6 and 1.9. Deposition ice nucleation was most efficient on ATD particles with ice-active particle fractions of about 0.6 and 0.8 at an ice saturation ratio Si<1.15 and temperatures of 223 K and 209 K, respectively. No significant change of the ice nucleation efficiency was found in up to three subsequent cycles of ice activation and evaporation with the same ATD aerosol. The desert dust samples SD2 and AD1 showed a significantly lower fraction of active deposition nuclei, about 0.25 at 223 K and Si<1.35. For all samples the ice activated aerosol fraction could be approximated by an exponential equation as function of Si. This formulation of ice activation spectra may be used to calculate the formation rate of ice crystals in models, if the number concentration of dust particles is known. More experimental work is needed to quantify the variability of the ice activation spectra as function of the temperature and dust particle properties.

  20. Tumor Accumulation of NIR Fluorescent PEG-PLA Nanoparticles: Impact of Particle Size and Human Xenograft Tumor Model

    DEFF Research Database (Denmark)

    Schädlich, Andreas; Caysa, Henrike; Mueller, Thomas;

    2011-01-01

    parameter for the nanoparticle accumulation in tumor tissues. In the present study the influence of the size of biodegradable nanoparticles was investigated in detail, combining in vivo and ex vivo analysis with comprehensive particle size characterizations. Polyethylene glycol-polyesters poly...... (PCS) revealed narrow size distribution and permitted accurate size evaluations. Furthermore, this study demonstrates the constraints of particle size data only obtained by PCS. By the multispectral analysis of the Maestro in vivo imaging system the in vivo fate of the nanoparticles next......(lactide) block polymers were synthesized and used for the production of three defined, stable, and nontoxic near-infrared (NIR) dye-loaded nanoparticle batches. Size analysis based on asymmetrical field flow field fractionation coupled with multiangle laser light scattering and photon correlation spectroscopy...

  1. A Fault Diagnosis Scheme for Rolling Bearing Based on Particle Swarm Optimization in Variational Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Cancan Yi

    2016-01-01

    Full Text Available Variational mode decomposition (VMD is a new method of signal adaptive decomposition. In the VMD framework, the vibration signal is decomposed into multiple mode components by Wiener filtering in Fourier domain, and the center frequency of each mode component is updated as the center of gravity of the mode’s power spectrum. Therefore, each decomposed mode is compact around a center pulsation and has a limited bandwidth. In view of the situation that the penalty parameter and the number of components affect the decomposition effect in VMD algorithm, a novel method of fault feature extraction based on the combination of VMD and particle swarm optimization (PSO algorithm is proposed. In this paper, the numerical simulation and the measured fault signals of the rolling bearing experiment system are analyzed by the proposed method. The results indicate that the proposed method is much more robust to sampling and noise. Additionally, the proposed method has an advantage over the EMD in complicated signal decomposition and can be utilized as a potential method in extracting the faint fault information of rolling bearings compared with the common method of envelope spectrum analysis.

  2. Nonlinear evolution of two fast-particle-driven modes near the linear stability threshold

    International Nuclear Information System (INIS)

    A system of two coupled integro-differential equations is derived and solved for the non-linear evolution of two waves excited by the resonant interaction with fast ions just above the linear instability threshold. The effects of a resonant particle source and classical relaxation processes represented by the Krook, diffusion, and dynamical friction collision operators are included in the model, which exhibits different nonlinear evolution regimes, mainly depending on the type of relaxation process that restores the unstable distribution function of fast ions. When the Krook collisions or diffusion dominate, the wave amplitude evolution is characterized by modulation and saturation. However, when the dynamical friction dominates, the wave amplitude is in the explosive regime. In addition, it is found that the finite separation in the phase velocities of the two modes weakens the interaction strength between the modes.

  3. Structure of wave-particle resonances and Alfvén mode saturation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Lauber, Ph. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Briguglio, S.; Fusco, V. [C.R. ENEA Frascati - C.P. 65, 00044 Frascati (Italy); Zonca, F. [C.R. ENEA Frascati - C.P. 65, 00044 Frascati (Italy); Institute for Fusion Theory and Simulation and Department of Physics, Zhejiang University Hangzhou 310027 (China)

    2016-01-15

    The dynamics of beta-induced Alfvén eigenmodes driven by anisotropic co-passing or counter-passing fast ions, in a low-shear magnetic equilibrium, is investigated by self-consistent hybrid MHD-particle simulations with the XHMGC code. Though the modes exhibit similar structure and frequency in both cases and the linear growth rate is 10% larger for counter-passing ions than for co-passing ions, the nonlinear saturation amplitude is much larger in co-passing case. Moreover, different scalings for the saturation amplitude with increasing growth rates are observed in the two cases. It is shown that these differences are caused by the different radial dependence of resonance frequencies of co-passing and counter-passing fast ions: flat in the former case, steep in the latter case, so that the resonance width is, respectively, larger (in the former case) or smaller (in the latter case) than the mode width.

  4. Accumulation of heavy particles in N-vortex flow on a disk

    NARCIS (Netherlands)

    IJzermans, R.H.A.; Hagmeijer, R.

    2006-01-01

    The motion of heavy particles in potential vortex flows on the unit disk is investigated theoretically and numerically. Configurations with one vortex and with two vortices are considered. In both cases, each vortex follows a regular path on the disk. In the one-vortex case, it is shown that small,

  5. Mode confinement in photonic quasicrystal point-defect cavities for particle accelerators

    Science.gov (United States)

    Di Gennaro, E.; Savo, S.; Andreone, A.; Galdi, V.; Castaldi, G.; Pierro, V.; Masullo, M. Rosaria

    2008-10-01

    In this letter, we present a study of the confinement properties of point-defect resonators in finite-size photonic-bandgap structures composed of aperiodic arrangements of dielectric rods, with special emphasis on their use for the design of cavities for particle accelerators. Specifically, for representative geometries, we study the properties of the fundamental mode (as a function of the filling fraction, structure size, and losses) via two-dimensional and three-dimensional full-wave numerical simulations, as well as microwave measurements at room temperature. Results indicate that for reduced-size structures, aperiodic geometries exhibit superior confinement properties by comparison with periodic ones.

  6. Mode Confinement in Photonic Quasi-Crystal Point-Defect Cavities for Particle Accelerators

    CERN Document Server

    Di Gennaro, E; Andreone, A; Galdi, V; Castaldi, G; Pierro, V; Masullo, M R

    2008-01-01

    In this Letter, we present a study of the confinement properties of point-defect resonators in finite-size photonic-bandgap structures composed of aperiodic arrangements of dielectric rods, with special emphasis on their use for the design of cavities for particle accelerators. Specifically, for representative geometries, we study the properties of the fundamental mode (as a function of the filling fraction, structure size, and losses) via 2-D and 3-D full-wave numerical simulations, as well as microwave measurements at room temperature. Results indicate that, for reduced-size structures, aperiodic geometries exhibit superior confinement properties by comparison with periodic ones.

  7. High-lying collective and single-particle modes via heavy ions at intermediate energies

    International Nuclear Information System (INIS)

    High-lying excited states, embedded in a substantial continuum are observed in a variety of nuclear reactions induced by intermediate energy hadronic probes. The study of inelastic scattering induced by heavy ion beams at the intermediate energy shows a strong excitation of the low multiple giant resonances. At higher excitation energies (30 to 80 MeV) new structures are present for all the colliding systems. In the stripping channel high-spin single-particle states are selectively populated both at low (0.3 MeV) and intermediate excitation energies (10-20 MeV). The recent empirical data on these high-lying excited structures and on the underlying continuum are presented. The interpretation in terms of new high-lying collective or single-particle modes and/or projectile-like excitations is discussed. (author). 22 refs., 10 figs

  8. An image-intensifier system for the study of rare decay modes of elementary particles

    International Nuclear Information System (INIS)

    Filamentary chamber-image intensifier systems have been developed which yield pictures of charged-particle tracks which are limited in spatial resolution only by the unit filament size, and which exhibit a time-resolution of about one microsecond. This device, used in conjunction with auxiliary particle counters, is well suited to the study of rare decay modes of elementary particles such as, for example, π- and K-mesons. The method employs a filamentary chamber divided into two or more regions. In one of the regions the incident mesons stop and subsequently decay. The other regions are traversed by the decay products. One face of the chamber is viewed by the image-intensifier system afld the opposite face is viewed by photomultiplier tubes, one for each of the separate chamber regions. It is required to trigger the image intensifier systems that a counter telescope, including one of the chamber photomultipliers, indicates that a meson has stopped in the proper region, and also that appropriate delayed coincidences obtain between that stopping event and pulses from the other chamber photomultipliers which indicate the passage of a decay particle. Under these conditions the event is photographed and, in addition, the time sequence of the several counter outputs is available for recording. The system is capable of utilizing a large-incident meson current and accepts decay-product particles over a large solid angle. The counter selection procedure limits the number of photographs necessary to observe a given decay mode and facilitates the extraction of useful data from the photographs that are taken. Such a system, with a two-section chamber 2 in x 2 in, has recently been employed in a measurement of the lifetime of the π+ meson and in a preliminary attempt to observe directly the decay mode, π+ → μ+ + ν + γ. The lifetime measurement was intended mainly to investigate sources of background in this technique in preparation for later experiments, including

  9. Duality of diffusion dynamics in particle motion in soft-mode turbulence

    Science.gov (United States)

    Suzuki, Masaru; Sueto, Hiroshi; Hosokawa, Yusaku; Muramoto, Naoyuki; Narumi, Takayuki; Hidaka, Yoshiki; Kai, Shoichi

    2013-10-01

    Nonthermal Brownian motion is investigated experimentally by injecting a particle into soft-mode turbulence (SMT), in the electroconvection of a nematic liquid crystal. It is clarified that the particle motion can be classified into two phases: fast motion, where particles move with the local convective flow, and slow motion, where they are carried by global slow pattern dynamics. We propose a simplified model to clarify the mechanism of the short-time and asymptotic behavior of diffusion. In our model, the correlation time is estimated as a function of a control parameter ɛ. The scaling of the SMT pattern correlation time, τd˜ɛ-1, is estimated from the particle dynamics, which is consistent with a previous report observed from the Eulerian viewpoint. The origin of the non-Gaussian distribution of the displacement in the short-time regime is also discussed and an analytical curve is introduced that quantitatively agrees with the experimental data. Our results clearly illustrate the characteristics of diffusive motion in SMT, which are considerably different from the conventional Brownian motion.

  10. Multi-mode Alfv\\'enic Fast Particle Transport and Losses: Numerical vs. Experimental Observation

    CERN Document Server

    Schneller, Mirjam; Bilato, Roberto; García-Muñoz, Manuel; Brüdgam, Michael; Günter, Sibylle

    2013-01-01

    In many discharges at ASDEX Upgrade fast particle losses can be observed due to Alfv\\'enic gap modes, Reversed Shear Alfv\\'en Eigenmodes or core-localized Beta Alfv\\'en Eigenmodes. For the first time, simulations of experimental conditions in the ASDEX Upgrade fusion device are performed for different plasma equilibria (particularly for different, also non-monotonic q profiles). The numerical tool is the extended version of the HAGIS code [Pinches'98, Br\\"udgam PhD Thesis, 2010], which also computes the particle motion in the vacuum region between vessel wall in addition to the internal plasma volume. For this work, a consistent fast particle distribution function was implemented to represent the strongly anisotropic fast particle population as generated by ICRH minority heating. Furthermore, HAGIS was extended to use more realistic eigenfunctions, calculated by the gyrokinetic eigenvalue solver LIGKA [Lauber'07]. The main aim of these simulations is to allow fast ion loss measurements to be interpreted with ...

  11. Mapping out spin and particle conductances of a single-mode channel with tunable interactions

    Science.gov (United States)

    Lebrat, Martin; Krinner, Sebastian; Grenier, Charles; Husmann, Dominik; Häusler, Samuel; Nakajima, Shuta; Brantut, Jean-Philippe; Esslinger, Tilman

    2016-05-01

    We study particle and spin transport in a single-mode quantum point contact, shaped by light potentials onto a charge neutral, quantum degenerate gas of 6 Li fermions with tunable interactions. The spin and particle conductances are measured as a function of chemical potential or confinement, covering weak attraction, where quantized conductance is observed, to the strongly interacting superfluid regime. Spin conductance exhibits a broad maximum when varying the chemical potential at moderate interactions, which signals the emergence of superfluidity. In contrast, the particle conductance is unexpectedly enhanced even before the gas is expected to turn into a superfluid: it shows conductance plateaus at non-universal values continuously increasing from 1/h to 4/h, as the interaction strength is increased from weak to intermediate. For strong interactions, the particle conductance plateaus disappear and the spin conductance gets suppressed, confirming the spin-insulating character of a superfluid. Our observations document the breakdown of universal conductance quantization as many-body correlations appear. This anomalous quantization is incompatible with a Fermi liquid description, shedding new light on the nature of the strongly attractive Fermi gas in the normal phase.

  12. Profiling of fine- and coarse-mode particles with LIRIC (LIdar/Radiometer Inversion Code

    Directory of Open Access Journals (Sweden)

    M. R. Perrone

    2014-08-01

    Full Text Available The paper investigates numerical procedures that allow determining the dependence on altitude of aerosol properties from multi wavelength elastic lidar signals. In particular, the potential of the LIdar/Radiometer Inversion Code (LIRIC to retrieve the vertical profiles of fine and coarse-mode particles by combining 3-wavelength lidar measurements and collocated AERONET (AErosol RObotic NETwork sun/sky photometer measurements is investigated. The used lidar signals are at 355, 532 and 1064 nm. Aerosol extinction coefficient (αL, lidar ratio (LRL, and Ångstrom exponent (ÅL profiles from LIRIC are compared with the corresponding profiles (α, LR, and Å retrieved from a Constrained Iterative Inversion (CII procedure to investigate the LIRIC retrieval ability. Then, an aerosol classification framework which relies on the use of a graphical framework and on the combined analysis of the Ångstrom exponent (at the 355 and 1064 nm wavelength pair, Å(355, 1064 and its spectral curvature (ΔÅ = Å(355, 532–Å(532, 1064 is used to investigate the ability of LIRIC to retrieve vertical profiles of fine and coarse-mode particles. The Å-ΔÅ aerosol classification framework allows estimating the dependence on altitude of the aerosol fine modal radius and of the fine mode contribution to the whole aerosol optical thickness, as discussed in Perrone et al. (2014. The application of LIRIC to three different aerosol scenarios dealing with aerosol properties dependent on altitude has revealed that the differences between αL and α vary with the altitude and on average increase with the decrease of the lidar signal wavelength. It has also been found that the differences between ÅL and corresponding Å values vary with the altitude and the wavelength pair. The sensitivity of Ångstrom exponents to the aerosol size distribution which vary with the wavelength pair was responsible for these last results. The aerosol classification framework has revealed that

  13. Anaerobic granule-based biofilms formation reduces propionate accumulation under high H2 partial pressure using conductive carbon felt particles.

    Science.gov (United States)

    Xu, Heng; Wang, Cuiping; Yan, Kun; Wu, Jing; Zuo, Jiane; Wang, Kaijun

    2016-09-01

    Syngas based co-digestion is not only more economically attractive than separate syngas methanation but also able to upgrade biogas and increase overall CH4 amount simultaneously. However, high H2 concentration in the syngas could inhibit syntrophic degradation of propionate, resulting in propionate accumulation and even failure of the co-digestion system. In an attempt to reduce propionate accumulation via enhancing both H2 interspecies transfer (HIT) and direct interspecies electron transfer (DIET) pathways, layered granule-based biofilms induced by conductive carbon felt particles (CCFP) was employed. The results showed that propionate accumulation was effectively reduced with influent COD load up to 7gL(-1)d(-1). Two types of granule-based biofilms, namely biofilm adhered to CCFP (B-CCFP) and granules formed by self-immobilization (B-SI) were formed in the reactor. Clostridium, Syntrophobacter, Methanospirillum were possibly involved in HIT and Clostridium, Geobacter, Anaerolineaceae, Methanosaeta in DIET, both of which might be responsible for the high-rate propionate degradation. PMID:27289059

  14. POWER RECYCLING OF BURST-MODE LASER PULSES FOR LASER PARTICLE INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun [ORNL

    2016-01-01

    A number of laser-particle interaction experiments such as the laser assisted hydrogen ion beam stripping or X-/ -ray generations via inverse-Compton scattering involve light sources operating in a burst mode to match the tem-poral structure of the particle beam. To mitigate the laser power challenge, it is important to make the interaction inside an optical cavity to recycle the laser power. In many cases, conventional cavity locking techniques will not work since the burst normally has a very small duty factor and low repetition rate and it is impossible to gen-erate an effective control signal. This work reports on the development of a doubly-resonant optical cavity scheme and its locking techniques that enables a simultaneous resonance of two laser beams with different spectra and/or temporal structures. We demonstrate that such a cavity can be used to recycle burst-mode ultra-violet laser pulses with arbitrary burst lengths and repetition rates.

  15. Transport of super-thermal particles and their effect on the stability of global modes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Schneller, Mirjam Simone

    2013-08-02

    In thermonuclear plasmas, a population of super-thermal particles generated by external heating methods or fusion reactions can lead to the excitation of global instabilities. The transport processes due to nonlinear wave-particle interactions and the consequential particle losses reduce the plasma heating and the efficiency of the fusion reaction rate. Furthermore, these energetic or fast particles may cause severe damages to the wall of the device. This thesis addresses the resonance mechanisms between these energetic particles and global MHD and kinetic MHD waves, employing the hybrid code HAGIS. A systematic investigation of energetic particles resonant with multiple modes (double-resonance) is presented for the first time. The double-resonant mode coupling is modeled for waves with different frequencies in various overlapping scenarios. It is found that, depending on the radial mode distance, double-resonance is able to significantly enhance, both the growth rates and the saturation amplitudes. Small radial mode distances, however can lead to strong nonlinear mode stabilization of a linear dominant mode. For the first time, simulations of experimental conditions in the ASDEX Upgrade fusion device are performed for different plasma equilibria (particularly for different q profiles). An understanding of fast particle behavior for non-monotonic q profiles is important for the development of advanced fusion scenarios. The numerical tool is the extended version of the HAGIS code, which computes the particle motion in the vacuum region between vessel wall in addition to the internal plasma volume. For this thesis, a consistent fast particle distribution function was implemented, to represent the fast particle population generated by the particular heating method (ICRH). Furthermore, HAGIS was extended to use more realistic eigenfunctions, calculated by the gyrokinetic eigenvalue solver LIGKA. One important aim of these simulations is to allow fast ion loss

  16. Energetic-particle-induced electromagnetic geodesic acoustic mode in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingfeng, E-mail: wanglf@swip.ac.cn; He, Zhixiong; He, Hongda; Shen, Y. [Southwestern Institute of Physics, Chengdu 610041 (China); Dong, J. Q. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Southwestern Institute of Physics, Chengdu 610041 (China)

    2014-07-15

    Energetic-particle-induced kinetic electromagnetic geodesic acoustic modes (EKEGAMs) are numerically studied in low β (=plasma pressure/magnetic pressure) tokamak plasmas. The parallel component of the perturbed vector potential is considered along with the electrostatic potential perturbation. The effects of finite Larmor radius and finite orbit width of the bulk and energetic ions as well as electron parallel dynamics are all taken into account in the dispersion relation. Systematic harmonic and ordering analysis are performed for frequency and growth rate spectra of the EKEGAMs, assuming (kρ{sub i})∼q{sup −3}∼β≪1, where q, k, and ρ{sub i} are the safety factor, radial component of the EKEGAMs wave vector, and the Larmor radius of the ions, respectively. It is found that there exist critical β{sub h}/β{sub i} values, which depend, in particular, on pitch angle of energetic ions and safety factor, for the mode to be driven unstable. The EKEGAMs may also be unstable for pitch angle λ{sub 0}B<0.4 in certain parameter regions. Finite β effect of the bulk ions is shown to have damping effect on the EKEGAMs. Modes with higher radial wave vectors have higher growth rates. The damping from electron dynamics is found decreasing with decrease of the temperature ratio T{sub e}/T{sub i}. The modes are easily to be driven unstable in low safety factor q region and high temperature ratio T{sub h}/T{sub i} region. The harmonic features of the EKEGAMs are discussed as well.

  17. Characterization of satellite based proxies for estimating nucleation mode particles over South Africa

    Directory of Open Access Journals (Sweden)

    A.-M. Sundström

    2014-10-01

    Full Text Available In this work satellite observations from the NASA's A-Train constellation were used to derive the values of primary emission and regional nucleation proxies over South Africa to estimate the potential for new particle formation. As derived in Kulmala et al. (2011, the satellite based proxies consist of source terms (NO2, SO2 and UV-B radiation, and a sink term describing the pre-existing aerosols. The first goal of this work was to study in detail the use of satellite aerosol optical depth (AOD as a substitute to the in situ based condensation sink (CS. One of the major factors affecting the agreement of CS and AOD was the elevated aerosol layers that increased the value of column integrated AOD but not affected the in situ CS. However, when the AOD in the proxy sink was replaced by an estimate from linear bivariate fit between AOD and CS, the agreement with the actual nucleation mode number concentration improved somewhat. The second goal of the work was to estimate how well the satellite based proxies can predict the potential for new particle formation. For each proxy the highest potential for new particle formation were observed over the Highveld industrial area, where the emissions were high but the sink due to pre-existing aerosols was relatively low. Best agreement between the satellite and in situ based proxies were obtained for NO2/AOD and UV-B/AOD2, whereas proxies including SO2 in the source term had lower correlation. Even though the OMI SO2 boundary layer product showed reasonable spatial pattern and detected the major sources over the study area, some of the known minor point sources were not detected. When defining the satellite proxies only for days when new particle formation event was observed, it was seen that for all the satellite based proxies the event day medians were higher than the entire measurement period median.

  18. Global particle simulation of lower hybrid wave propagation and mode conversion in tokamaks

    International Nuclear Information System (INIS)

    Particle-in-cell simulation of lower hybrid (LH) waves in core plasmas is presented with a realistic electron-to-ion mass ratio in toroidal geometry. Due to the fact that LH waves mainly interact with electrons to drive the current, ion dynamic is described by cold fluid equations for simplicity, while electron dynamic is described by drift kinetic equations. This model could be considered as a new method to study LH waves in tokamak plasmas, which has advantages in nonlinear simulations. The mode conversion between slow and fast waves is observed in the simulation when the accessibility condition is not satisfied, which is consistent with the theory. The poloidal spectrum upshift and broadening effects are observed during LH wave propagation in the toroidal geometry

  19. Global particle simulation of lower hybrid wave propagation and mode conversion in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Bao, J., E-mail: baojian@pku.edu.cn [Fusion Simulation Center and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Lin, Z. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Kuley, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Fusion Simulation Center and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China)

    2015-12-10

    Particle-in-cell simulation of lower hybrid (LH) waves in core plasmas is presented with a realistic electron-to-ion mass ratio in toroidal geometry. Due to the fact that LH waves mainly interact with electrons to drive the current, ion dynamic is described by cold fluid equations for simplicity, while electron dynamic is described by drift kinetic equations. This model could be considered as a new method to study LH waves in tokamak plasmas, which has advantages in nonlinear simulations. The mode conversion between slow and fast waves is observed in the simulation when the accessibility condition is not satisfied, which is consistent with the theory. The poloidal spectrum upshift and broadening effects are observed during LH wave propagation in the toroidal geometry.

  20. Global Theories of Geodesic Acoustic Modes: Excitation by Energetic Particles and Drift Wave Turbulences

    International Nuclear Information System (INIS)

    Full text: Excitation of Geodesic Acoustic Modes (GAMs) by both energetic particles (EPs) and drift wave (DW) turbulences taking into account plasma nonuniformities are investigated in this work. The global radial mode structures of EP induced GAM (EGAM) are systematically studied and their properties are found to depend on the nonuniformities of both the GAM continuous spectrum and EP radial profile. For a radially broad EP drive, the eigenmode equation valid for arbitrary EP drift orbit width is derived, and then solved using a Fourier transformation technique. The excited EGAM is shown to strongly couple to the GAM continuous spectrum; resulting in a finite drive threshold in EP density. The cross-scale couplings between micro-, meso- and macro-scales, discussed in this work, are mediated by the EP dynamics and have many interesting similarities with complex behaviors, expected in burning plasmas of fusion interest. The excitation of GAM by DW turbulence accounting for various kinetic dispersiveness and nonuniformities is also investigated, with the paradigm of three-wave resonant parametric decay instability. Considering the scale length of linear DW eigenmode envelope is much smaller than that of particle diamagnetic drift frequency L*, in the linear growth phase, the parametric instability is convective for typical tokamak parameters, when the finite group velocities of GAM and DW sideband are taken into account. This is a case of less practical interest. However, if we look at longer time scales, and finite L* effects are taken into account, the convectively amplified GAM-DW wave-packet pair is reflected at the DW linear turning points, resulting in a quasi-exponentially growing absolute instability. DW turbulence spreading with the excitation of GAM is also investigated, with emphasis on quantitative understanding of the dispersiveness associated with kinetic GAM. (author)

  1. Travel Mode Detection Based on Neural Networks and Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Guangnian Xiao

    2015-08-01

    Full Text Available The collection of massive Global Positioning System (GPS data from travel surveys has increased exponentially worldwide since the 1990s. A number of methods, which range from rule-based to advanced classification approaches, have been applied to detect travel modes from GPS positioning data collected in travel surveys based on GPS-enabled smartphones or dedicated GPS devices. Among these approaches, neural networks (NNs are widely adopted because they can extract subtle information from training data that cannot be directly obtained by human or other analysis techniques. However, traditional NNs, which are generally trained by back-propagation algorithms, are likely to be trapped in local optimum. Therefore, particle swarm optimization (PSO is introduced to train the NNs. The resulting PSO-NNs are employed to distinguish among four travel modes (walk, bike, bus, and car with GPS positioning data collected through a smartphone-based travel survey. As a result, 95.81% of samples are correctly flagged for the training set, while 94.44% are correctly identified for the test set. Results from this study indicate that smartphone-based travel surveys provide an opportunity to supplement traditional travel surveys.

  2. Silica uptake by Spartina – evidence of multiple modes of accumulation from salt marshes around the world

    OpenAIRE

    Joanna C Carey; Fulweiler, Robinson W.

    2014-01-01

    Silicon (Si) plays a critical role in plant functional ecology, protecting plants from multiple environmental stressors. While all terrestrial plants contain some Si, wetland grasses are frequently found to have the highest concentrations, although the mechanisms driving Si accumulation in wetland grasses remain in large part uncertain. For example, active Si accumulation is often assumed to be responsible for elevated Si concentrations found in wetland grasses. However, life stage and differ...

  3. Burst mode with ps- and fs-pulses: Influence on the removal rate, surface quality, and heat accumulation

    Science.gov (United States)

    Neuenschwander, B.; Kramer, Th.; Lauer, B.; Jaeggi, B.

    2015-03-01

    The burst mode for ps and fs pulses for steel and copper is investigated. It is found that the reduction of the energy in a single pulse (in the burst) represents the main factor for the often reported gain in the removal rate using the burst mode e.g. for steel no investigated burst sequence lead to a higher removal rate compared to single pulses at higher repetition rate. But for copper a situation was found where the burst mode leads to a real increase of the removal rate in the range of 20%. Further the burst mode offers the possibility to generate slightly melted flat surfaces with good optical properties in the case of steel. Temperature simulations indicate that the surface state during the burst mode could be responsible for the melting effect or the formation of cavities in clusters which reduces the surface quality.

  4. Reconciliation of coarse mode sea-salt aerosol particle size measurements and parameterizations at a subtropical ocean receptor site

    OpenAIRE

    Reid, J S; B. Brooks; Crahan, K. K.; De Leeuw, G.; E. A. Reid; Anderson, F.D.; D. A. Hegg; T. F. Eck; O'Neill, N.

    2006-01-01

    In August/September of 2001, the R/P FLIP and CIRPAS Twin Otter research aircraft were deployed to the eastern coast of Oahu, Hawaii, as part of the Rough Evaporation Duct (RED) experiment. Goals included the study of the air/sea exchange, turbulence, and sea-salt aerosol particle characteristics at the subtropical marine Pacific site. Here we examine coarse mode particle size distributions. Similar to what has been shown for airborne dust, optical particle counters such as the Forward Scatte...

  5. Higher order mode excitation in eccentric active nano-particles for tailoring of the near-field radiation

    DEFF Research Database (Denmark)

    Thorsen, R. O.; Arslanagic, Samel

    2015-01-01

    We examine the excitation of resonant modes inside eccentrically layered cylindrical active nano-particles. The nano-particle is a three-layer structure comprised of a silica core, a free-space middle layer, and an outer shell of silver. It is shown that a concentric configuration, initially desi...... of the gain constant, is shown to be controlled by the direction of the core displacement. The present eccentric active nano-particles may provide alternative strategies for directive near-field radiation relative to the existing designs....

  6. How to reliably detect molecular clusters and nucleation mode particles with Neutral cluster and Air Ion Spectrometer (NAIS)

    Science.gov (United States)

    Manninen, Hanna E.; Mirme, Sander; Mirme, Aadu; Petäjä, Tuukka; Kulmala, Markku

    2016-08-01

    To understand the very first steps of atmospheric particle formation and growth processes, information on the size where the atmospheric nucleation and cluster activation occurs, is crucially needed. The current understanding of the concentrations and dynamics of charged and neutral clusters and particles is based on theoretical predictions and experimental observations. This paper gives a standard operation procedure (SOP) for Neutral cluster and Air Ion Spectrometer (NAIS) measurements and data processing. With the NAIS data, we have improved the scientific understanding by (1) direct detection of freshly formed atmospheric clusters and particles, (2) linking experimental observations and theoretical framework to understand the formation and growth mechanisms of aerosol particles, and (3) parameterizing formation and growth mechanisms for atmospheric models. The SOP provides tools to harmonize the world-wide measurements of small clusters and nucleation mode particles and to verify consistent results measured by the NAIS users. The work is based on discussions and interactions between the NAIS users and the NAIS manufacturer.

  7. The implicit contribution of slab modes to the perpendicular diffusion coefficient of particles interacting with two-component turbulence

    CERN Document Server

    Shalchi, Andreas

    2016-01-01

    We explore the transport of energetic particles in two-component turbulence in which the stochastic magnetic field is assumed to be a superposition of slab and two-dimensional modes. It is known that in magnetostatic slab turbulence, the motion of particles across the mean magnetic field is subdiffusive. If a two-dimensional component is added, diffusion is recovered. It was also shown before that in two-component turbulence, the slab modes do not explicitly contribute to the perpendicular diffusion coefficient. In the current paper the implicit contribution of slab modes is explored and it is shown that this contribution leads to a reduction of the perpendicular diffusion coefficient. This effect improves the agreement between simulations and analytical theory. Furthermore, the obtained results are relevant for investigations of diffusive shock acceleration.

  8. Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics

    Science.gov (United States)

    Hu, Haoyue; Eberhard, Peter

    2016-10-01

    Process simulations of conduction mode laser welding are performed using the meshless Lagrangian smoothed particle hydrodynamics (SPH) method. The solid phase is modeled based on the governing equations in thermoelasticity. For the liquid phase, surface tension effects are taken into account to simulate the melt flow in the weld pool, including the Marangoni force caused by a temperature-dependent surface tension gradient. A non-isothermal solid-liquid phase transition with the release or absorption of additional energy known as the latent heat of fusion is considered. The major heat transfer through conduction is modeled, whereas heat convection and radiation are neglected. The energy input from the laser beam is modeled as a Gaussian heat source acting on the initial material surface. The developed model is implemented in Pasimodo. Numerical results obtained with the model are presented for laser spot welding and seam welding of aluminum and iron. The change of process parameters like welding speed and laser power, and their effects on weld dimensions are investigated. Furthermore, simulations may be useful to obtain the threshold for deep penetration welding and to assess the overall welding quality. A scalability and performance analysis of the implemented SPH algorithm in Pasimodo is run in a shared memory environment. The analysis reveals the potential of large welding simulations on multi-core machines.

  9. Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles

    Science.gov (United States)

    Bakhti, Saïd; Tishchenko, Alexandre V.; Zambrana-Puyalto, Xavier; Bonod, Nicolas; Dhuey, Scott D.; Schuck, P. James; Cabrini, Stefano; Alayoglu, Selim; Destouches, Nathalie

    2016-09-01

    In this work we theoretically and experimentally analyze the resonant behavior of individual 3 × 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and to interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations.

  10. Variational Symplectic Particle-in-cell Simulation of Nonlinear Mode Conversion from Extraordinary waves to Bernstein Waves

    OpenAIRE

    Xiao, Jianyuan; Liu, Jian; Qin, Hong; Yu, Zhi; Xiang, Nong

    2015-01-01

    In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonli...

  11. Reconciliation of coarse mode sea-salt aerosol particle size measurements and parameterizations at a subtropical ocean receptor site

    Science.gov (United States)

    Reid, Jeffrey S.; Brooks, Barbara; Crahan, Katie K.; Hegg, Dean A.; Eck, Thomas F.; O'Neill, Norm; de Leeuw, Gerrit; Reid, Elizabeth A.; Anderson, Kenneth D.

    2006-01-01

    In August/September of 2001, the R/P FLIP and CIRPAS Twin Otter research aircraft were deployed to the eastern coast of Oahu, Hawaii, as part of the Rough Evaporation Duct (RED) experiment. Goals included the study of the air/sea exchange, turbulence, and sea-salt aerosol particle characteristics at the subtropical marine Pacific site. Here we examine coarse mode particle size distributions. Similar to what has been shown for airborne dust, optical particle counters such as the Forward Scattering Spectrometer Probe (FSSP), Classical Scattering Aerosol Spectrometer Probe (CSASP) and the Cloud Aerosol Spectrometer (CAS) within the Cloud Aerosol and Precipitation Spectrometer (CAPS) instrument systematically overestimate particle size, and consequently volume, for sea salt particles. Ground-based aerodynamic particle sizers (APS) and AERONET inversions yield much more reasonable results. A wing pod mounted APS gave mixed results and may not be appropriate for marine boundary layer studies. Relating our findings to previous studies does much to explain the bulk of the differences in the literature and leads us to conclude that the largest uncertainty facing flux and airborne cloud/aerosol interaction studies is likely due to the instrumentation itself. To our knowledge, there does not exist an in situ aircraft system that adequately measures the ambient volume distribution of coarse mode sea salt particles. Most empirically based sea salt flux parameterizations can trace their heritage to a clearly biased measurement technique. The current "state of the art" in this field prevents any true form of clear sky radiative "closure" for clean marine environments.

  12. Variational symplectic particle-in-cell simulation of nonlinear mode conversion from extraordinary waves to Bernstein waves

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jianyuan; Liu, Jian, E-mail: jliuphy@ustc.edu.cn [Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026 (China); Qin, Hong [Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Yu, Zhi; Xiang, Nong [Theory and Simulation Division, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2015-09-15

    In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and current drive experiments.

  13. Variational symplectic particle-in-cell simulation of nonlinear mode conversion from extraordinary waves to Bernstein waves

    International Nuclear Information System (INIS)

    In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and current drive experiments

  14. Variational Symplectic Particle-in-cell Simulation of Nonlinear Mode Conversion from Extraordinary waves to Bernstein Waves

    CERN Document Server

    Xiao, Jianyuan; Qin, Hong; Yu, Zhi; Xiang, Nong

    2015-01-01

    In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and cur...

  15. What is a particle-conserving Topological Superfluid? The fate of Majorana modes beyond mean-field theory

    Science.gov (United States)

    Ortiz, Gerardo; Cobanera, Emilio

    2016-09-01

    We investigate Majorana modes of number-conserving fermionic superfluids from both basic physics principles, and concrete models perspectives. After reviewing a criterion for establishing topological superfluidity in interacting systems, based on many-body fermionic parity switches, we reveal the emergence of zero-energy modes anticommuting with fermionic parity. Those many-body Majorana modes are constructed as coherent superpositions of states with different number of fermions. While realization of Majorana modes beyond mean field is plausible, we show that the challenge to quantum-control them is compounded by particle-conservation, and more realistic protocols will have to balance engineering needs with astringent constraints coming from superselection rules. Majorana modes in number-conserving systems are the result of a peculiar interplay between quantum statistics, fermionic parity, and an unusual form of spontaneous symmetry breaking. We test these ideas on the Richardson-Gaudin-Kitaev chain, a number-conserving model solvable by way of the algebraic Bethe ansatz, and equivalent in mean field to a long-range Kitaev chain.

  16. On the temporal variation of leaf magnetic parameters: seasonal accumulation of leaf-deposited and leaf-encapsulated particles of a roadside tree crown.

    Science.gov (United States)

    Hofman, Jelle; Wuyts, Karen; Van Wittenberghe, Shari; Samson, Roeland

    2014-09-15

    Understanding the accumulation behaviour of atmospheric particles inside tree leaves is of great importance for the interpretation of biomagnetic monitoring results. In this study, we evaluated the temporal variation of the saturation isothermal remanent magnetisation (SIRM) of leaves of a roadside urban Platanus × acerifolia Willd. tree in Antwerp, Belgium. We hereby examined the seasonal development of the total leaf SIRM signal as well as the leaf-encapsulated fraction of the deposited dust, by washing the leaves before biomagnetic analysis. On average 38% of the leaf SIRM signal was exhibited by the leaf-encapsulated particles. Significant correlations were found between the SIRM and the cumulative daily average atmospheric PM10 and PM2.5 measurements. Moreover, a steady increase of the SIRM throughout the in-leaf season was observed endorsing the applicability of biomagnetic monitoring as a proxy for the time-integrated PM exposure of urban tree leaves. Strongest correlations were obtained for the SIRM of the leaf-encapsulated particles which confirms the dynamic nature of the leaf surface-accumulated particles.

  17. Optimal Switching Table-Based Sliding Mode Control of an Energy Recovery Li-Ion Power Accumulator Battery Pack Testing System

    Directory of Open Access Journals (Sweden)

    Kil To Chong

    2013-10-01

    Full Text Available The main objective of the present work is to apply a sliding mode controller (SMC to medium voltage and high power output energy recovery Li-ion power accumulator battery pack testing systems (ERLPABTSs, which are composed of a three-level neutral-point-clamped (NPC three-phase voltage source inverter (VSI and a two-level buck-boost converter without an isolating transformer. An inner current decoupled control scheme for the aforementioned system is proposed and two sliding mode planes for active and reactive current control are designed based on the control scheme. An optimized switching table for current convergence is used according to the error sign of the equivalent input voltage and feedback voltage. The proposed ERLPABTS could be used to integrate discharging energy into the power grid when performing high accuracy current testing. The active and reactive power references for the grid-connected inverter are determined based on the discharging energy from the DC-DC converter. Simulations and experiments on a laboratory hardware platform using a 175 kW insulated gate bipolar transistor (IGBT-based ERLPABTS have been implemented and verified, and the performance is found satisfactory and superior to conventional ERLPABPTS.

  18. Energy transmission modes based on Tabu search and particle swarm hybrid optimization algorithm

    Institute of Scientific and Technical Information of China (English)

    LI xiang; CUI Ji-feng; QI Jian-xun; YANG Shang-dong

    2007-01-01

    In China, economic centers are far from energy storage bases, so it is significant to select a proper energy transferring mode to improve the efficiency of energy usage, To solve this problem, an optimal allocation model based on energy transfer mode was proposed after objective function for optimizing energy using efficiency Was established, and then, a new Tabu search and power transmission was gained.Based on the above discussion, some proposals were put forward for optimal allocation of energy transfer modes in China. By comparing other three traditional methodsthat are based on regional price differences. freight rates and annual cost witll the proposed method, the result indicates that the economic efficiency of the energy transfer Can be enhanced by 3.14%, 5.78% and 6.01%, respectively.

  19. A test beam set-up for the characterization of the Geiger-mode avalanche photodiode technology for particle tracking

    CERN Document Server

    Vilella, A; Trenado, J; Vila, A; Casanova, R; Vos, M; Garrido, L; Dieguez, A

    2012-01-01

    It is well known that avalanche photodiodes operated in the Geiger mode above the breakdown voltage offer a virtually infinite gain and time accuracy in the picosecond range that can be used for single photon detection. However, their performance in particle detection still remains unexplored. In this contribution, we are going to expose different steps that we have taken in order to prove the efficiency of the Geiger mode avalanche photodiodes in the aforementioned field. In particular, we will present a setup for the characterization of these sensors in a test beam. The expected results of the test beam at DESY and CERN have been simulated with Geant4 and will also be exposed.

  20. Electromagnetic particle simulation of the effect of toroidicity on linear mode conversion and absorption of lower hybrid waves

    Science.gov (United States)

    Bao, J.; Lin, Z.; Kuley, A.; Wang, Z. X.

    2016-06-01

    Effects of toroidicity on linear mode conversion and absorption of lower hybrid (LH) waves in fusion plasmas have been studied using electromagnetic particle simulation. The simulation confirms that the toroidicity induces an upshift of parallel refractive index when LH waves propagate from the tokamak edge toward the core, which affects the radial position for the mode conversion between slow and fast LH waves. Furthermore, moving LH antenna launch position from low field side toward high field side leads to a larger upshift of the parallel refractive index, which helps the slow LH wave penetration into the tokamak core. The broadening of the poloidal spectrum of the wave-packet due to wave diffraction is also verified in the simulation. Both the upshift and broadening effects of the parallel spectrum of the wave-packet modify the parallel phase velocity and thus the linear absorption of LH waves by electron Landau resonance.

  1. Wave-Particle Interaction Analyzer for the Pitch Angle Scattering of Electrons by Whistler-mode Chorus Emissions

    Science.gov (United States)

    Kitahara, M.; Katoh, Y.

    2015-12-01

    Pitch angle scattering of electrons caused by chorus emissions is one of significant wave-particle interactions in the magnetosphere. A number of previous studies treat the pitch angle scattering as a diffusion of distribution function and calculate diffusion coefficients from observed wave spectra. However, in the diffusion model, we cannot evaluate the nonlinearity of the pitch angle scattering, while recent theoretical works and observation results have pointed out the importance of nonlinear effects. A concept of Wave-Particle Interaction Analysis (WPIA) is proposed by Fukuhara et al. (2009). In the frame of the WPIA, we can directly detect wave-particle interactions by calculating the energy exchange between waves and particles. In the present study, in addition to the method to detect the energy exchange, we propose a method to directly detect the pitch angle scattering of resonant particles by calculating G. The G is defined as the accumulation value of a pitch angular component of the Lorentz force acting on each particle. We apply the proposed method to results of the one-dimensional electron hybrid simulation (Katoh and Omura, 2007a, b). By using the wave and particle data obtained at fixed points assumed in the simulation system, we conduct the pseudo-observation in the simulation. In the result of the analysis, we obtain significant values of G for electrons in the kinetic energy and pitch angle ranges satisfying the cyclotron resonance condition. We compare the result of the analysis of G with the temporal variation of both the pitch angle distributions and the wave spectra. While the pitch angle distribution varies by a few percent through interactions, we obtain the statistically significant G. Furthermore, we compare the G with diffusion coefficient D. While the D showed the broadband diffusive scattering, the G values indicated the narrowband strong scattering. We note that in deriving Fokker-Planck equation and diffusion coefficient D, we use the

  2. Nonlinear force dependence on optically bound arrays of micro-particles trapped in the evanescent fields of fundamental and higher order microfibre modes

    CERN Document Server

    Maimaiti, Aili; Truong, Viet Giang; Ritsch, Helmut; Chormaic, Sile Nic

    2016-01-01

    Particles trapped in the evanescent field of an ultrathin optical fibre interact over very long distances via multiple scattering of the fibre-guided fields. In ultrathin fibres that support higher order modes these interactions are stronger and exhibit qualitatively new behaviour due to the coupling of different fibre modes, which have different propagation wave vectors, by the particles. Here, we study one dimensional longitudinal optical binding interactions of chains of 3 {\\mu}m polystyrene spheres under the influence of the evanescent fields of a two-mode microfibre. The observation of long-range interactions, self-ordering and speed variation of particle chains reveals strong optical binding effects between the particles, which can be well modelled by a tritter scattering-matrix approach. The optical forces, optical binding interactions and the velocity of bounded particle chains are calculated using this method. Results show good agreement with finite element numerical simulations. Experimental data an...

  3. Full-f Neoclassical Simulations toward a Predictive Model for H-mode Pedestal Ion Energy, Particle and Momentum Transport

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, D. J. [PPPL; Boedo, J. A. [University of California San Diego; Burrell, K. H. [General Atomics; Chang, C. S. [PPPL; Canik, J. M. [ORNL; deGrassie, J. S. [General Atomics; Gerhardt, S. P. [PPPL; Grierson, B. A. [General Atomics; Groebner, R. J. [General Atomics; Maingi, Rajesh [PPPL; Smith, S. P. [General Atomics

    2014-09-01

    Energy and particle transport rates are decoupled in the H-mode edge since the ion thermal transport rate is primarily set by the neoclassical transport of the deuterium ions in the tail of the thermal energy distribution, while the net particle transport rate is set by anomalous transport of the colder bulk ions. Ion orbit loss drives the energy distributions away from Maxwellian, and describes the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the Ti profile. Non-Maxwellian distributions also drive large intrinsic edge flows, and the interaction of turbulence at the top of the pedestal with the intrinsic edge flow can generate an intrinsic core torque. The primary driver of the radial electric field (Er) in the pedestal and scrapeoff layer (SOL) are kinetic neoclassical effects, such as ion orbit loss of tail ions and parallel electron loss to the divertor. This paper describes the first multi-species kinetic neoclassical transport calculations for ELM-free H-mode pedestal and scrape-off layer on DIII-D using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. This interpretative technique quantifies the role of neoclassical, anomalous and neutral transport to the overall pedestal structure, and consequently illustrates the importance of including kinetic effects self-consistently in transport calculations around transport barriers.

  4. Particle-area dependence of mineral dust in the immersion mode: investigations with freely suspended drops in an acoustic levitator

    Science.gov (United States)

    Diehl, K.; Debertshäuser, M.; Eppers, O.; Schmithüsen, H.; Mitra, S. K.; Borrmann, S.

    2014-05-01

    The heterogeneous freezing temperatures of supercooled drops were measured by using an acoustic levitator. This technique allows to freely suspending single drops in air without electrical charges thereby avoiding any electrical influences which may affect the freezing process. Heterogeneous nucleation caused by several mineral dust particles (montmorillonite, two types of illite) was investigated in the immersion mode. Drops of 1 \\unit{mm} in radius were monitored by a video camera during cooling down to -28 °C to simulate the tropospheric temperature range. The surface temperature of the drops was remotely determined with an infra-red thermometer so that the onset of freezing was indicated. For comparisons, measurements with one particle type were additionally performed in the Mainz vertical wind tunnel with drops of 340 \\unit{{μ}m} radius freely suspended. The data were interpreted regarding the particle surfaces immersed in the drops. Immersion freezing was observed in a temperature range between -13 and -26 °C in dependence of particle type and surface area per drop. The results were evaluated by applying two descriptions of heterogeneous freezing, the stochastic and the singular model.

  5. Nonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes.

    Science.gov (United States)

    Maimaiti, Aili; Holzmann, Daniela; Truong, Viet Giang; Ritsch, Helmut; Nic Chormaic, Síle

    2016-01-01

    Particles trapped in the evanescent field of an ultrathin optical fibre interact over very long distances via multiple scattering of the fibre-guided fields. In ultrathin fibres that support higher order modes, these interactions are stronger and exhibit qualitatively new behaviour due to the coupling of different fibre modes, which have different propagation wave-vectors, by the particles. Here, we study one dimensional longitudinal optical binding interactions of chains of 3 μm polystyrene spheres under the influence of the evanescent fields of a two-mode microfibre. The observation of long-range interactions, self-ordering and speed variation of particle chains reveals strong optical binding effects between the particles that can be modelled well by a tritter scattering-matrix approach. The optical forces, optical binding interactions and the velocity of bounded particle chains are calculated using this method. Results show good agreement with finite element numerical simulations. Experimental data and theoretical analysis show that higher order modes in a microfibre offer a promising method to not only obtain stable, multiple particle trapping or faster particle propulsion speeds, but that they also allow for better control over each individual trapped object in particle ensembles near the microfibre surface. PMID:27451935

  6. Nonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes

    Science.gov (United States)

    Maimaiti, Aili; Holzmann, Daniela; Truong, Viet Giang; Ritsch, Helmut; Nic Chormaic, Síle

    2016-01-01

    Particles trapped in the evanescent field of an ultrathin optical fibre interact over very long distances via multiple scattering of the fibre-guided fields. In ultrathin fibres that support higher order modes, these interactions are stronger and exhibit qualitatively new behaviour due to the coupling of different fibre modes, which have different propagation wave-vectors, by the particles. Here, we study one dimensional longitudinal optical binding interactions of chains of 3 μm polystyrene spheres under the influence of the evanescent fields of a two-mode microfibre. The observation of long-range interactions, self-ordering and speed variation of particle chains reveals strong optical binding effects between the particles that can be modelled well by a tritter scattering-matrix approach. The optical forces, optical binding interactions and the velocity of bounded particle chains are calculated using this method. Results show good agreement with finite element numerical simulations. Experimental data and theoretical analysis show that higher order modes in a microfibre offer a promising method to not only obtain stable, multiple particle trapping or faster particle propulsion speeds, but that they also allow for better control over each individual trapped object in particle ensembles near the microfibre surface. PMID:27451935

  7. A test beam setup for the characterization of the Geiger-mode avalanche photodiode technology for particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Vilella, E., E-mail: evilella@el.ub.es [Department of Electronics, University of Barcelona (UB), C/Marti i Franques 1, 08028 Barcelona (Spain); Alonso, O. [Department of Electronics, University of Barcelona (UB), C/Marti i Franques 1, 08028 Barcelona (Spain); Trenado, J. [Department of Structure and Constituents of Matter, University of Barcelona (UB), C/Marti i Franques 1, 08028 Barcelona (Spain); Vila, A.; Casanova, R. [Department of Electronics, University of Barcelona (UB), C/Marti i Franques 1, 08028 Barcelona (Spain); Vos, M. [Instituto de Fisica Corpuscular (IFIC), C/Catedratico Jose Beltran 2, 46980 Paterna (Spain); Garrido, L. [Department of Structure and Constituents of Matter, University of Barcelona (UB), C/Marti i Franques 1, 08028 Barcelona (Spain); Dieguez, A. [Department of Electronics, University of Barcelona (UB), C/Marti i Franques 1, 08028 Barcelona (Spain)

    2012-12-01

    It is well known that avalanche photodiodes operated in the Geiger mode above the breakdown voltage offer a virtually infinite gain and time accuracy in the picosecond range that can be used for single photon detection. However, their performance in particle detection still remains unexplored. In this contribution, we are going to expose different steps that we have taken in order to prove the efficiency of the Geiger mode avalanche photodiodes in the aforementioned field. In particular, we will present a setup for the characterization of these sensors in a test beam. The expected results of the test beam at DESY and CERN have been simulated with Geant4 and will also be exposed. -- Highlights: Black-Right-Pointing-Pointer A Setup for characterization of the GAPD technology in a test beam is presented. Black-Right-Pointing-Pointer Two test beams at DESY (6 GeV) and CERN (120 GeV) are already planned at current time. Black-Right-Pointing-Pointer A GAPD array has been designed and fabricated to fit the test beam requirements. Black-Right-Pointing-Pointer We have prepared a test beam setup to minimize the particle multiscattering. Black-Right-Pointing-Pointer The Expected results at DESY and CERN have been simulated with Geant4.

  8. Investigation of interplay of single particle and collective modes of excitation in sd shell nuclei

    International Nuclear Information System (INIS)

    Nuclei in the neighborhood of doubly closed 40Ca usually exhibit characteristics of single particle excitations at low energies. However, several nuclei viz., 40Ca and 36Ar in this mass region have also revealed deformed states (even superdeformation) at relatively higher excitation energies. The observed Superdeformed (SD) bands in these α-conjugate nuclei have been explained using complementary descriptions in terms of particle-hole excitations in the shell model, and α-clustering configurations within various cluster models. In 36Ar, 40Ca, the average deformation (β2) of the SD bands generated with (4p-4h) and (8p-8h) excitations in the pf (N=3) shell, are 0.45 and 0.59, respectively. This is similar to the observation in heavier nuclei where the occupation numbers of high-N orbital have been found to characterise SD bands

  9. Multiobjective Design of Turbo Injection Mode for Axial Flux Motor in Plastic Injection Molding Machine by Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Jian-Long Kuo

    2015-01-01

    Full Text Available This paper proposes a turbo injection mode (TIM for an axial flux motor to apply onto injection molding machine. Since the injection molding machine requires different speed and force parameters setting when finishing a complete injection process. The interleaved winding structure in the motor provides two different injection levels to provide enough injection forces. Two wye-wye windings are designed to switch two control modes conveniently. Wye-wye configuration is used to switch two force levels for the motor. When only one set of wye-winding is energized, field weakening function is achieved. Both of the torque and speed increase under field weakening operation. To achieve two control objectives for torque and speed of the motor, fuzzy based multiple performance characteristics index (MPCI with particle swarm optimization (PSO is used to find out the multiobjective optimal design solution. Both of the torque and speed are expected to be maximal at the same time. Three control factors are selected as studied factors: winding diameter, winding type, and air-gap. Experimental results show that both of the torque and speed increase under the optimal condition. This will provide enough large torque and speed to perform the turbo injection mode in injection process for the injection molding machine.

  10. Commuter exposure to particulate matter and particle-bound PAHs in three transportation modes in Beijing, China

    International Nuclear Information System (INIS)

    Exposure to fine and ultrafine particles as well as particulate polycyclic aromatic hydrocarbons (PAHs) by commuters in three transportation modes (walking, subway and bus) were examined in December 2011 in Beijing, China. During the study period, real-time measured median PM2.5 mass concentration (PMC) for walking, riding buses and taking the subway were 26.7, 32.9 and 56.9 μg m−3, respectively, and particle number concentrations (PNC) were 1.1 × 104, 1.0 × 104 and 2.2 × 104 cm−3. Commuters were exposed to higher PNC in air-conditioned buses and aboveground-railway, but higher PMC in underground-subway compared to aboveground-railway. PNC in roadway modes (bus and walking) peaked at noon, but was lower during traffic rush hours, negatively correlated with PMC. Toxic potential of particulate-PAHs estimated based on benzo(a)pyrene toxic equivalents (BaP TEQs) showed that walking pedestrians were subjected to higher BaP TEQs than bus (2.7-fold) and subway (3.6-fold) commuters, though the highest PMC and PNC were observed in subway. - Highlights: • The highest PNC and PM2.5 occurred around noon and late rush hours, respectively. • Higher PM2.5 and PNC, but lower PAHs and BaP TEQ were found in Beijing subway. • Traffic congestion, roadside cooking, and construction evidently enhanced roadway PM. • Ventilation and air-conditioning system impact PM level in bus and subway cabins. - Higher PMC and PNC, but lower particulate PAHs and BaP TEQ were found in Beijing subway. PNC and PMC in on-roadway modes were peaked around noon and late rush hours, respectively

  11. Mott physics and collective modes: An atomic approximation of the four-particle irreducible functional

    Science.gov (United States)

    Ayral, Thomas; Parcollet, Olivier

    2016-08-01

    We discuss a generalization of the dynamical mean field theory (DMFT) for strongly correlated systems close to a Mott transition based on a systematic approximation of the fully irreducible four-point vertex. It is an atomic-limit approximation of a functional of the one- and two-particle Green functions, built with the second Legendre transform of the free energy with respect to the two-particle Green function. This functional is represented diagrammatically by four-particle irreducible (4PI) diagrams. Like the dynamical vertex approximation (D Γ A ), the fully irreducible vertex is computed from a quantum impurity model whose bath is self-consistently determined by solving the parquet equations. However, in contrast with D Γ A and DMFT, the interaction term of the impurity model is also self-consistently determined. The method interpolates between the parquet approximation at weak coupling and the atomic limit, where it is exact. It is applicable to systems with short-range and long-range interactions.

  12. Particle-hole symmetry, many-body localization, and topological edge modes

    Science.gov (United States)

    Vasseur, Romain; Friedman, Aaron J.; Parameswaran, S. A.; Potter, Andrew C.

    2016-04-01

    We study the excited states of interacting fermions in one dimension with particle-hole symmetric disorder (equivalently, random-bond XXZ chains) using a combination of renormalization group methods and exact diagonalization. Absent interactions, the entire many-body spectrum exhibits infinite-randomness quantum critical behavior with highly degenerate excited states. We show that though interactions are an irrelevant perturbation in the ground state, they drastically affect the structure of excited states: Even arbitrarily weak interactions split the degeneracies in favor of thermalization (weak disorder) or spontaneously broken particle-hole symmetry, driving the system into a many-body localized spin glass phase (strong disorder). In both cases, the quantum critical properties of the noninteracting model are destroyed, either by thermal decoherence or spontaneous symmetry breaking. This system then has the interesting and counterintuitive property that edges of the many-body spectrum are less localized than the center of the spectrum. We argue that our results rule out the existence of certain excited state symmetry-protected topological orders.

  13. Analysis of element accumulation in cell wall attached and intracellular particles of snow algae by EELS and ESI.

    Science.gov (United States)

    Lütz-Meindl, Ursula; Lütz, Cornelius

    2006-01-01

    Snow algae frequently occur in alpine and polar permanent snow ecosystems and have developed adaptations to their harsh environment, where extreme temperature regimes high irradiation and low nutrient levels prevail. They live in a unique microhabitat, namely the liquid water between snow crystals. The predominant form appears as 'red snow' and in polar environment also 'green snow' frequently occurs. Light microscopy showed that most cells are densely covered by non-biotic particles of so far unknown composition. As snow normally contains very low amounts of nutrients, introduced mainly airborne like dust and precipitation, the inorganic particles at the surface of the snow algae may be important for their survival. By using electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI), we investigated element distribution in ultrathin sections of snow algae from different polar (Svalbard, 5 m a.s.l., 79 degrees N and maritime Antarctic, King George Island, 10 m a.s.l., 62 degrees S) and alpine habitats (2400-3100 m a.s.l. Tyrol) for the present study. It turned out that the main elements of the cell wall attached particles are Si, Al, Fe and O independently from the origin of the snow algae. Interestingly, the same elements were also found in vacuolar compartments inside the cells. These vacuoles contain electron dense granules or crystals and are frequently found to be connected to the cortical cytoplasm. This finding suggests an uptake mechanism of the respective elements by pinocytosis. Co-transport of toxic aluminium together with silicon may be unavoidable as the inorganic nutrient uptake of the snow algae is limited to the thin water layer between the ice crystals. However, formation of insoluble aluminium silicates may serve as detoxification mechanism. PMID:16376553

  14. Accumulation and transport of microbial-size particles in a pressure protected model burn unit: CFD simulations and experimental evidence

    Directory of Open Access Journals (Sweden)

    Mimoun Maurice

    2011-03-01

    Full Text Available Abstract Background Controlling airborne contamination is of major importance in burn units because of the high susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the infection risk. In particular the required elevated temperatures in the patient room can create thermal convection flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize the design of an intensive care room intended to host severely burned patients, we have relied on a computational fluid dynamic methodology (CFD. Methods The study was carried out in 4 steps: i patient room design, ii CFD simulations of patient room design to model air flows throughout the patient room, adjacent anterooms and the corridor, iii construction of a prototype room and subsequent experimental studies to characterize its performance iv qualitative comparison of the tendencies between CFD prediction and experimental results. The Electricité De France (EDF open-source software Code_Saturne® (http://www.code-saturne.org was used and CFD simulations were conducted with an hexahedral mesh containing about 300 000 computational cells. The computational domain included the treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol particles followed by time-resolved particle counting were conducted in the prototype room for comparison with the CFD observations. Results We found that thermal convection can create contaminated zones near the ceiling of the room, which can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore sizes can be influenced by these thermally induced flows. When the temperature difference between rooms was 7°C, a significant contamination transfer was observed to

  15. Influence of the ambient humidity on the concentration of natural deposition-mode ice-nucleating particles

    Science.gov (United States)

    López, M. L.; Ávila, E. E.

    2016-01-01

    This study reports measurements of deposition-mode ice-nucleating particle (INP) concentrations at ground level during the period July-December 2014 in Córdoba, Argentina. Ambient air was sampled into a cloud chamber where the INP concentration was measured at a temperature of -25 °C and a 15 % supersaturation over ice. Measurements were performed on days with different thermodynamic conditions, including rainy days. The effect of the relative humidity at ground level (RHamb) on the INP concentration was analyzed. The number of INPs activated varied from 1 L-1 at RHamb of 25 % to 30 L-1 at RHamb of 90 %. In general, a linear trend between the INP concentration and the RHamb was found, suggesting that this variability must be related to the effectiveness of the aerosols acting as INPs. From the backward trajectories analysis, it was found that the link between INP concentration and RHamb is independent of the origin of the air masses. The role of biological INPs and nucleation occurring in pores and cavities was discussed as a possible mechanism to explain the increase of the INP concentration during high ambient relative humidity events. This work provides valuable measurements of deposition-mode INP concentrations from the Southern Hemisphere where INP data are sparse so far.

  16. Target particle and heat loads in low-triangularity L-mode plasmas in JET with carbon and beryllium/tungsten walls

    NARCIS (Netherlands)

    Groth, M.; Brezinsek, S.; Belo, P.; Corrigan, G.; Harting, D.; Wiesen, S.; Beurskens, M. N. A.; Brix, M.; Clever, M.; Coenen, J. W.; Eich, T.; Flanagan, J.; Giroud, C.; Huber, A.; Jachmich, S.; Kruezi, U.; Lehnen, M.; Lowry, C.; Maggi, C. F.; Marsen, S.; Meigs, A. G.; Sergienko, G.; Sieglin, B.; Silva, C.; Sirinelli, A.; Stamp, M. F.; van Rooij, G. J.

    2013-01-01

    Divertor radiation profiles, and power and particle fluxes to the target have been measured in attached \\{JET\\} L-mode plasmas with carbon and beryllium/tungsten wall materials. In the beryllium/tungsten configuration, factors of 2–3 higher power loads and peak temperatures at the low field side tar

  17. Electrostatic transport in L-mode scrape-off layer plasmas in the Tore Supra tokamak. I. Particle balance

    International Nuclear Information System (INIS)

    Particle balance is investigated using a Mach probe at the top of the scrape-off layer of circular ohmically heated L-mode plasmas in the Tore Supra tokamak [G. Giruzzi etal., Nucl. Fusion 49, 104010 (2009)]. Contributions from both poloidal EXB flows and ionization sources are found to be small. As a result the local parallel flow is a response of the radial flux distribution between the two strike points of open field lines, and the density profile is determined by the field-line-integrated radial flux. By scanning the poloidal position of the strike point on a secondary limiter situated at the outboard midplane, an indirect poloidal mapping of the radial flux distribution is obtained. The radial flux is centered at the outboard midplane and is relatively well described by a Gaussian distribution of half poloidal width of about 50° at the last closed flux surface, decaying to about 30° in the far scrape-off layer. The turbulent radial flux measured locally with a rake probe shows a reasonable agreement with the poloidal mapping obtained by the Mach probe. It is shown than the radial convective velocity decays along radius at the plasma top but should increase with radius at the outboard midplane.

  18. Electrostatic transport in L-mode scrape-off layer plasmas in the Tore Supra tokamak. I. Particle balance

    Energy Technology Data Exchange (ETDEWEB)

    Fedorczak, N. [Center for Momentum Transport and Flow Organisation, University of California at San Diego, San Diego, California 92093 (United States); Gunn, J. P.; Pascal, J.-Y.; Ghendrih, Ph.; Monier-Garbet, P. [Commissariat a l' Energie Atomique et aux Energies Alternatives, Institut de Recherche pour la Fusion Magnetique Controlee, F-13108 Saint-Paul-Lez-Durance (France); Marandet, Y. [Laboratoire de Physique des Interactions Ioniques et Moleculaires, UMR 6633 Universite de Provence/CNRS, Centre de St. Jerome, F-13397 Marseille, Cedex-20 (France)

    2012-07-15

    Particle balance is investigated using a Mach probe at the top of the scrape-off layer of circular ohmically heated L-mode plasmas in the Tore Supra tokamak [G. Giruzzi etal., Nucl. Fusion 49, 104010 (2009)]. Contributions from both poloidal EXB flows and ionization sources are found to be small. As a result the local parallel flow is a response of the radial flux distribution between the two strike points of open field lines, and the density profile is determined by the field-line-integrated radial flux. By scanning the poloidal position of the strike point on a secondary limiter situated at the outboard midplane, an indirect poloidal mapping of the radial flux distribution is obtained. The radial flux is centered at the outboard midplane and is relatively well described by a Gaussian distribution of half poloidal width of about 50 Degree-Sign at the last closed flux surface, decaying to about 30 Degree-Sign in the far scrape-off layer. The turbulent radial flux measured locally with a rake probe shows a reasonable agreement with the poloidal mapping obtained by the Mach probe. It is shown than the radial convective velocity decays along radius at the plasma top but should increase with radius at the outboard midplane.

  19. Detectors for alpha particles and X-rays operating in ambient air in pulse counting mode or/and with gas amplification

    Science.gov (United States)

    Charpak, G.; Benaben, P.; Breuil, P.; Peskov, V.

    2008-02-01

    Ionization chambers working in ambient air in current detection mode are attractive due to their simplicity and low cost and are widely used in several applications such as smoke detection, dosimetry, therapeutic beam monitoring and so on. The aim of this work was to investigate if gaseous detectors can operate in ambient air in pulse counting mode as well as with gas amplification which potentially offers the highest possible sensitivity in applications like alpha particle detection or high energy X-ray photon or electron detection. To investigate the feasibility of this method two types of open- end gaseous detectors were build and successfully tested. The first one was a single wire or multiwire cylindrical geometry detector operating in pulse mode at a gas gain of one (pulse ionization chamber). This detector was readout by a custom made wide -band charge sensitive amplifier able to deal with slow induced signals generated by slow motion of negative and positive ions. The multiwire detector was able to detect alpha particles with an efficiency close to 22%. The second type of an alpha detector was an innovative GEM-like detector with resistive electrodes operating in air in avalanche mode at high gas gains (up to 104). This detector can also operate in a cascaded mode or being combined with other detectors, for example with MICROMEGAS. This detector was readout by a conventional charge -sensitive amplifier and was able to detect alpha particles with 100% efficiency. This detector could also detect X-ray photons or fast electrons. A detailed comparison between these two detectors is given as well as a comparison with commercially available alpha detectors. The main advantages of gaseous detectors operating in air in a pulse detection mode are their simplicity, low cost and high sensitivity. One of the possible applications of these new detectors is alpha particle background monitors which, due to their low cost can find wide application not only in houses, but

  20. Vertical distribution of trace-element concentrations and occurrence of metallurgical slag particles in accumulated bed sediments of Lake Roosevelt, Washington, September 2002

    Science.gov (United States)

    Cox, S.E.; Bell, P.R.; Lowther, J.S.; Van Metre, P.C.

    2005-01-01

    observed in cores from along the pre-reservoir Columbia River. Particles of slag, which have physical and chemical characteristics of slag discharged to the Columbia River by a lead-zinc smelter upstream of the reservoir at Trail, British Columbia, were found in sediments of Lake Roosevelt. Slag particles are more common in the upstream reaches of the reservoir. The chemical composition of the interior matrix of slag collected from Lake Roosevelt closely approximated the reported elemental concentrations of fresh smelter slag, although evidence of slag weathering was observed. Exfoliation flakes were observed on the surface of weathered slag particles isolated from the core sediments. The concentrations of zinc on the exposed surface of slag grains were smaller than concentrations on interior surfaces. Weathering rinds also were observed in the cross section of weathered slag grains, indicating that the glassy slag material was undergoing hydration and chemical weathering. Trace elements observed in accumulated sediments in the middle and lower reaches of the reservoir are more likely due to the input from liquid effluent discharges compared to slag discharges from the upstream smelter.

  1. Flux and accumulation of sedimentary particles off the continental slope of Pakistan: a comparison of water column and seafloor estimates from the oxygen minimum zone, NE Arabian Sea

    Directory of Open Access Journals (Sweden)

    H. Schulz

    2013-07-01

    Full Text Available Due to the lack of bioturbation, the laminated muds from the oxygen-minimum zone (OMZ off Pakistan provide a unique opportunity to precisely determine the vertical and lateral sediment fluxes in the near shore part of the northeastern Arabian Sea, and to explore the effects of the margin topography and the low oxygen conditions on the accumulation of organic matter and other particles. West of Karachi, in the Hab river area of EPT and WPT (Eastern and Western PAKOMIN Traps, 16 short sediment profiles from water depths between 250 m and 1970 m on a depth transect crossing the OMZ (~ 120 to ~ 1200 m water depth were investigated, and correlated on the basis of a thick, light-gray- to reddish-colored turbidite layer. Varve counting yielded a date for this layer of AD 1905 to 1888. We adopted the young age which agrees with 210Pb- dating, and used this isochronous stratigraphic marker bed to calculate sediment accumulation rates, that we could directly compare with the flux rates from the sediment traps installed within the water column above. All traps in the area show exceptionally high, pulsed winter fluxes of up to 5000 mg m−2 d−1 in this margin environment. The lithic flux at the sea floor is as high as 4000 mg m−2 d−1 , and agrees remarkably well with the bulk winter flux of material. This holds as well for the individual bulk components (organic carbon, calcium carbonate, opal, lithic fraction. However, the high winter flux events (HFE by their extreme mass of remobilized matter terminated the recording in the shallow traps by clogging the funnels. Based on our comparisons, we argue that HFE for the past 5000 yr most likely occurred as regular events within the upper OMZ off Pakistan. Coarse fraction and foraminiferal accumulation rates from sediment surface samples along the Hab transect show distribution patterns that seem to be a function of water depth and distance from the shelf. Some of these sediment fractions show sudden

  2. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. III. Collisionless tearing mode

    International Nuclear Information System (INIS)

    A finite-mass electron fluid model for low frequency electromagnetic fluctuations, particularly the collisionless tearing mode, has been implemented in the gyrokinetic toroidal code. Using this fluid model, linear properties of the collisionless tearing mode have been verified. Simulations verify that the linear growth rate of the single collisionless tearing mode is proportional to De2, where De is the electron skin depth. On the other hand, the growth rate of a double tearing mode is proportional to De in the parameter regime of fusion plasmas

  3. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. III. Collisionless tearing mode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongjian [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Southwestern Institution of Physics, Chengdu 610041 (China); Bao, Jian [Fusion Simulation Center, Peking University, Beijing 100871 (China); Han, Tao; Wang, Jiaqi [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Lin, Zhihong, E-mail: zhihongl@uci.edu [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)

    2016-02-15

    A finite-mass electron fluid model for low frequency electromagnetic fluctuations, particularly the collisionless tearing mode, has been implemented in the gyrokinetic toroidal code. Using this fluid model, linear properties of the collisionless tearing mode have been verified. Simulations verify that the linear growth rate of the single collisionless tearing mode is proportional to D{sub e}{sup 2}, where D{sub e} is the electron skin depth. On the other hand, the growth rate of a double tearing mode is proportional to D{sub e} in the parameter regime of fusion plasmas.

  4. Airborne Coarse Mode Aerosol Measurements with the CAS-DPOL Instrument: Effects of Particle Shape and Refractive Index and Implications for Radiative Transfer Estimate

    Science.gov (United States)

    Sauer, D. N.; Weinzierl, B.; Gasteiger, J.; Spanu, A.; Freudenthaler, V.; Gross, S.

    2015-12-01

    Each year huge amounts of mineral dust are mobilized in deserts and arid regions of the world and transported over large distances forming thick elevated aerosol layers with a substantial fraction of coarse mode particles. Optical properties of mineral dust, including the absorptive refractive index of some components, cause a significant effect on the atmospheric radiative energy balance from optical to infrared wavelengths. The aerosol characteristics, in particular its coarse mode size distribution, are modified during long-range transport by aging and deposition processes. This also affects the aerosol optical properties and therefore the effect on the atmospheric radiative energy budget. In-situ measurements of aerosol microphysical properties are essential to characterize those effects in order to be implemented in global climate models in parametrized form. However, in-situ measurements of airborne coarse mode aerosols such as mineral dust and volcanic ash are challenging and the measurements are usually affected by substantial uncertainties. In this work we use airborne measurements of mineral dust from our optical light-scattering spectrometer CAS-DPOL during SALTRACE 2013 to discuss the analysis of such data. We cover the effects of varying refractive index and particle shapes and develop recommendations for the configuration of the CAS-DPOL for aerosol studies. We also present an inversion method to derive coarse mode size distributions from light-scattering probes for mixtures of non-spherical, absorbing aerosols. The size distributions retrieved from the in-situ measurements are then validated using an independent analysis with a combination of sun-photometer and lidar data. We apply these methods to investigate the Saharan mineral dust particle size distributions measured on both sides of the Atlantic Ocean and discuss the influence of aerosol aging on the atmospheric radiative energy budget. With this example we also assess how the uncertainties

  5. The magnetic particle in a box: Analytic and micromagnetic analysis of probe-localized spin wave modes

    Energy Technology Data Exchange (ETDEWEB)

    Adur, Rohan, E-mail: adur@physics.osu.edu; Du, Chunhui; Manuilov, Sergei A.; Wang, Hailong; Yang, Fengyuan; Pelekhov, Denis V.; Hammel, P. Chris [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-07

    The dipole field from a probe magnet can be used to localize a discrete spectrum of standing spin wave modes in a continuous ferromagnetic thin film without lithographic modification to the film. Obtaining the resonance field for a localized mode is not trivial due to the effect of the confined and inhomogeneous magnetization precession. We compare the results of micromagnetic and analytic methods to find the resonance field of localized modes in a ferromagnetic thin film, and investigate the accuracy of these methods by comparing with a numerical minimization technique that assumes Bessel function modes with pinned boundary conditions. We find that the micromagnetic technique, while computationally more intensive, reveals that the true magnetization profiles of localized modes are similar to Bessel functions with gradually decaying dynamic magnetization at the mode edges. We also find that an analytic solution, which is simple to implement and computationally much faster than other methods, accurately describes the resonance field of localized modes when exchange fields are negligible, and demonstrating the accessibility of localized mode analysis.

  6. Simplified models for the nonlinear evolution of two fast-particle-driven modes near the linear stability threshold

    International Nuclear Information System (INIS)

    An analytical model that is based on purely differential equations of the nonlinear dynamics of two plasma modes driven resonantly by high-energy ions near the instability threshold is presented here. The well-known integro-differential model of Berk and Breizman (BB) extended to the case of two plasma modes is simplified here to a system of two coupled nonlinear differential equations of fifth order. The effects of the Krook, diffusion and dynamical friction (drag) relaxation processes are considered, whereas shifts in frequency and wavenumber between the modes are neglected. In spite of these simplifications the main features of the dynamics of the two plasma modes are retained. The numerical solutions to the model equations show competition between the two modes for survival, oscillations, chaotic regimes and 'blow-up' behavior, similar to the BB model.

  7. Simplified models for the nonlinear evolution of two fast-particle-driven modes near the linear stability threshold

    Energy Technology Data Exchange (ETDEWEB)

    Galant, Grzegorz; Zalesny, Jaroslaw; Berczynski, Pawel; Berczynski, Stefan [West Pomeranian University of Technology, Szczecin (Poland); Lisak, Mietek, E-mail: galant@chalmers.se [Chalmers University of Technology, Goeteborg (Sweden)

    2011-05-01

    An analytical model that is based on purely differential equations of the nonlinear dynamics of two plasma modes driven resonantly by high-energy ions near the instability threshold is presented here. The well-known integro-differential model of Berk and Breizman (BB) extended to the case of two plasma modes is simplified here to a system of two coupled nonlinear differential equations of fifth order. The effects of the Krook, diffusion and dynamical friction (drag) relaxation processes are considered, whereas shifts in frequency and wavenumber between the modes are neglected. In spite of these simplifications the main features of the dynamics of the two plasma modes are retained. The numerical solutions to the model equations show competition between the two modes for survival, oscillations, chaotic regimes and 'blow-up' behavior, similar to the BB model.

  8. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. I. Internal kink mode

    Energy Technology Data Exchange (ETDEWEB)

    McClenaghan, J.; Lin, Z.; Holod, I.; Deng, W.; Wang, Z. [University of California, Irvine, California 92697 (United States)

    2014-12-15

    The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface.

  9. Seasonal Variations of Number Size Distributions and Mass Concentrations of Atmospheric Particles in Beijing

    Institute of Scientific and Technical Information of China (English)

    YU Jianhua; Benjamin GUINOT; YU Tong; WANG Xin; LIU Wenqing

    2005-01-01

    Particle number and mass concentrations were measured in Beijing during the winter and summer periods in 2003, together with some other parameters including black carbon (BC) and meteorological conditions. Particle mass concentrations exhibited low seasonality, and the ratio of PM2.5/PM10 in winter was higher than that in summer. Particle number size distribution (PSD) was characterized by four modes and exhibited low seasonality. BC was well correlated with the number and mass concentrations of accumulation and coarse particles, indicating these size particles are related to anthropogenic activities.Particle mass and number concentrations (except ultra-fine and nucleation particles) followed well the trends of BC concentration for the majority of the day, indicating that most particles were associated with primary emissions. The diurnal number distributions of accumulation and coarse mode particles were characterized by two peaks.

  10. Analysis of Halley comet dust particle composition from the data of the PUMA device in the regime of zero mode

    International Nuclear Information System (INIS)

    Results of measuring element composition of dust particles of the Halley comet by PUMA reflector time-transit mass-spectrometers are presented. The dust element composition is determined by analysis of plasma ionic composition forming during dust particle - target impact. Analysis of obtained material permits to make the following conclusions. The Halley cometary dust particles contain a great amount of light elements. Their presence may be most naturally explained by availability of organic compounds, they may be like compounds detected in carbonaceous chondrites (kerogens, aminoacids). Composition of dust particles in the range of elements from Na to Fe may be explained by availability of silicates and in certain cases of FeS troilite. The main element abundance ratio approximately corresponds to typical for similar formations of solar system. Isotopic ratios of main elements (C, Mg, Si, Cl, Fe) on the average coincide with the ratios of isotope abundances in the solar system

  11. Mode instabilities and dynamic patterns in a colony of self-propelled surfactant particles covering a thin liquid layer

    OpenAIRE

    Pototsky, Andrey; Thiele, Uwe; Stark, Holger

    2016-01-01

    We consider a colony of point-like self-propelled surfactant particles (swimmers) without direct interactions that cover a thin liquid layer on a solid support. Although the particles predominantly swim normal to the free film surface, their motion also has a component parallel to the film surface. The coupled dynamics of the swimmer density and film height profile is captured in a long-wave model allowing for diffusive and convective transport of the swimmers (including rotational diffusion)...

  12. Maximum-likelihood estimates of the frequency and other parameters of signals of laser Doppler measuring systems operating in the one-particle-scattering mode

    International Nuclear Information System (INIS)

    Maximum-likelihood equations are presented for estimates of the Doppler frequency (speed) and other unknown parameters of signals of laser Doppler anemometers and lidars operating in the one-particle-scattering mode. Shot noise was assumed to be the main interfering factor of the problem. The error correlation matrix was calculated and the Rao - Cramer bounds were determined. The results are confirmed by the computer simulation of the Doppler signal and the numerical solution of the maximum-likelihood equations for the Doppler frequency. The obtained estimate is unbiased, and its dispersion coincides with the Rao-Cramer bound. (laser applications and other topics in quantum electronics)

  13. ITER Plasma at Ion Cyclotron Frequency Domain: The Fusion Alpha Particles Diagnostics Based on the Stimulated Raman Scattering of Fast Magnetosonic Wave off High Harmonic Ion Bernstein Modes

    Science.gov (United States)

    Stefan, V. Alexander

    2014-10-01

    A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.

  14. Reconciliation of coarse mode sea-salt aerosol particle size measurements and parameterizations at a subtropical ocean receptor site

    NARCIS (Netherlands)

    Reid, J.S.; Brooks, B.; Crahan, K.K.; Leeuw, G. de; Reid, E.A.; Anderson, F.D.; Hegg, D.A.; Eck, T.F.; O'Neill, N.

    2006-01-01

    In August/September of 2001, the R/P FLIP and CIRPAS Twin Otter research aircraft were deployed to the eastern coast of Oahu, Hawaii, as part of the Rough Evaporation Duct (RED) experiment. Goals included the study of the air/sea exchange, turbulence, and sea-salt aerosol particle characteristics at

  15. The influence of toroidal Alfvén modes on the confinement of fast particles in the Globus-M spherical tokamak

    Science.gov (United States)

    Petrov, Yu. V.; Bakharev, N. N.; Gusev, V. K.; Minaev, V. B.; Kornev, V. A.; Mel'nik, A. D.; Patrov, M. I.; Sakharov, N. V.; Tolstyakov, S. Yu.; Kurskiev, G. S.; Chernyshev, F. V.; Shchegolev, P. B.

    2014-12-01

    Neutral beam injection into the Globus-M spherical tokamak at the early stage of discharge leads to the development of instabilities in a frequency range of 50-200 kHz, which have been identified as toroidal Alfvén eigenmodes (TAEs) [1]. The influence of these modes on the confinement of fast particles has been studied with the aid of a neutral particle analyzer (NPA) and a neutron detector. The isotope effect was studied using hydrogen and deuterium both in the injected beam and in the target plasma. A correlation analysis of signals from magnetic probes showed that the observed modes in most cases contain a single harmonic with toroidal number n = 1. Upon the injection of deuterium into deuterium plasma, the development of TAEs led to a decrease in the neutron flux by 25%, whereas the fluxes of high-energy recharge atoms decreased by 75%. After the injection of hydrogen, a decrease in the flux measured by NPA did not exceed 25%.

  16. A particle-in-cell mode beam dynamics simulation of medium energy beam transport for the SSC-Linac

    Science.gov (United States)

    Xiao, Chen; He, Yuan; Yuan, You-Jin; Lu, Yuan-Rong; Liu, Yong; Wang, Zhi-Jun; Du, Xiao-Nan; Yao, Qing-Gao; Liu, Ge; Xu, Meng-Xin; He, Shou-Bo; Xia, Jia-Wen

    2012-01-01

    A new linear accelerator system, called the SSC-Linac injector, is being designed at HIRFL (the heavy ion research facility of Lanzhou). As part of the SSC-Linac, the medium energy beam transport (MEBT) consists of seven magnetic quadrupoles, a re-buncher and a diagnose box. The total length of this segment is about 1.75 m. The beam dynamics simulation in MEBT has been studied using the TRACK 3D particle-in-cell code, and the simulation result shows that the beam accelerated from the radio frequency quadrupole (RFQ) matches well with the acceptance of the following drift tube linac (DTL) in both the transverse and longitudinal phase spaces, and that most of the particles can be captured by the final sector focusing cyclotron for further acceleration. The longitudinal emittance of the RFQ and the longitudinal acceptance of the DTL was calculated in detail, and a multi-particle beam dynamics simulation from the ion source to the end of the DTL was done to verify the original design.

  17. Ultrafine-Particle Emission Factors as a Function of Vehicle Mode of Operation for LDVs Based on Near-Roadway Monitoring.

    Science.gov (United States)

    Zhai, Wenjuan; Wen, Dongqi; Xiang, Sheng; Hu, Zhice; Noll, Kenneth E

    2016-01-19

    This paper presents ultrafine-particle (UFP) emission factors (EFs) as a function of vehicle mode of operation (free flow and congestion) using (1) concurrent 5 min measurements of UFPs and carbon monoxide (CO) concentration, wind speed and direction, traffic volume and speed near a roadway that is restricted to light-duty vehicles (LDVs) and (2) inverse dispersion model calculations. Short-term measurements are required to characterize the highly variable and rapidly changing UFP concentration generated by vehicles. Under congestion conditions, the UFP vehicle EFs increased from 0.5 × 10(13) to 2 × 10(13) (particles km(-1) vehicle(-1)) when vehicle flow increased from 5500 to 7500 vehicles/h. For free-flow conditions, the EF is constant at 1.5 × 10(13) (particles km(-1) vehicle(-1)). The analysis is based on the assumption that air-quality models adequately describe the dilution process due to both traffic and atmospheric turbulence. The approach used to verify this assumption was to use an emission factor model to determine EFs for CO and then estimate dilution factors using measured CO concentrations. This procedure eliminates the need to rely only on air quality models to generate dilution factors. The EFs are suitable for fleet emissions under real-world traffic conditions. PMID:26674658

  18. Particle surface area dependence of mineral dust in immersion freezing mode: investigations with freely suspended drops in an acoustic levitator and a vertical wind tunnel

    Science.gov (United States)

    Diehl, K.; Debertshäuser, M.; Eppers, O.; Schmithüsen, H.; Mitra, S. K.; Borrmann, S.

    2014-11-01

    The heterogeneous freezing temperatures of supercooled drops were measured using an acoustic levitator. This technique allows one to freely suspend single drops in the air without any wall contact. Heterogeneous nucleation by two types of illite (illite IMt1 and illite NX) and a montmorillonite sample was investigated in the immersion mode. Drops of 1 mm in radius were monitored by a video camera while cooled down to -28 °C to simulate freezing within the tropospheric temperature range. The surface temperature of the drops was contact-free, determined with an infrared thermometer; the onset of freezing was indicated by a sudden increase of the drop surface temperature. For comparison, measurements with one particle type (illite NX) were additionally performed in the Mainz vertical wind tunnel with drops of 340 μm radius freely suspended. Immersion freezing was observed in a temperature range between -13 and -26 °C as a function of particle type and particle surface area immersed in the drops. Isothermal experiments in the wind tunnel indicated that after the cooling stage freezing still proceeds, at least during the investigated time period of 30 s. The results were evaluated by applying two descriptions of heterogeneous freezing, the stochastic and the singular model. Although the wind tunnel results do not support the time-independence of the freezing process both models are applicable for comparing the results from the two experimental techniques.

  19. Airborne Measurements of Coarse Mode Aerosol Composition and Abundance

    Science.gov (United States)

    Froyd, K. D.; Murphy, D. M.; Brock, C. A.; Ziemba, L. D.; Anderson, B. E.; Wilson, J. C.

    2015-12-01

    Coarse aerosol particles impact the earth's radiative balance by direct scattering and absorption of light and by promoting cloud formation. Modeling studies suggest that coarse mode mineral dust and sea salt aerosol are the dominant contributors to aerosol optical depth throughout much of the globe. Lab and field studies indicate that larger aerosol particles tend to be more efficient ice nuclei, and recent airborne measurements confirm the dominant role of mineral dust on cirrus cloud formation. However, our ability to simulate coarse mode particle abundance in large scale models is limited by a lack of validating measurements above the earth's surface. We present airborne measurements of coarse mode aerosol abundance and composition over several mid-latitude, sub-tropical, and tropical regions from the boundary layer to the stratosphere. In the free troposphere the coarse mode constitutes 10-50% of the total particulate mass over a wide range of environments. Above North America mineral dust typically dominates the coarse mode, but biomass burning particles and sea salt also contribute. In remote environments coarse mode aerosol mainly consists of internally mixed sulfate-organic particles. Both continental and marine convection can enhance coarse aerosol mass through direct lofting of primary particles and by secondary accumulation of aerosol material through cloud processing.

  20. Mode instabilities and dynamic patterns in a colony of self-propelled surfactant particles covering a thin liquid layer.

    Science.gov (United States)

    Pototsky, Andrey; Thiele, Uwe; Stark, Holger

    2016-05-01

    We consider a colony of point-like self-propelled surfactant particles (swimmers) without direct interactions that cover a thin liquid layer on a solid support. The particles predominantly swim normal to the free film surface with only a small component parallel to the film surface. The coupled dynamics of the swimmer density and film height profile is captured in a long-wave model allowing for diffusive and convective transport of the swimmers (including rotational diffusion). The dynamics of the film height profile is determined by i) the upward pushing force of the swimmers onto the liquid-gas interface, ii) the solutal Marangoni force due to gradients in the swimmer concentration, and iii) the rotational diffusion of the swimmers together with the in-plane active motion. After reviewing and extending the analysis of the linear stability of the uniform state, we analyse the fully nonlinear dynamic equations and show that point-like swimmers, which only interact via long-wave deformations of the liquid film, self-organise in highly regular (standing, travelling, and modulated waves) and various irregular patterns. PMID:27145959

  1. A particle-in-cell mode beam dynamics simulation of medium energy beam transport for the SSC-Linac

    Institute of Scientific and Technical Information of China (English)

    XIAO Chen; XU Meng-Xin; HE Shou-Bo; XIA Jia-Wen; HE Yuan; YUAN You-Jin; LU Yuan-Rong; LIU Yong; WANG Zhi-Jun; DU Xiao-Nan; YAO Qing-Gao; LIU Ge

    2012-01-01

    A new linear accelerator system,called the SSC-Linac injector,is being designed at HIRFL (the heavy ion research facility of Lanzhou).As part of the SSC-Linac,the medium energy beam transport (MEBT) consists of seven magnetic quadrupoles,a re-buncher and a diagnose box.The total length of this segment is about 1.75 m.The beam dynamics simulation in MEBT has been studied using the TRACK 3D particlein-cell code,and the simulation result shows that the beam accelerated from the radio frequency quadrupole (RFQ) matches well with the acceptance of the following drift tube linac (DTL) in both the transverse and longitudinal phase spaces,and that most of the particles can be captured by the final sector focusing cyclotronfor further acceleration.The longitudinal emittance of the RFQ and the longitudinal acceptance of the DTL was calculated in detail,and a multi-particle beam dynamics simulation from the ion source to the end of the DTL was done to verify the original design.

  2. Particle and energy transport in dedicated ρ*, β and ν* scans in JET ELMy H-modes

    International Nuclear Information System (INIS)

    Studying plasma transport in terms of the non-dimensional parameters (ρ*, β, ν*) is a natural way to separate important physical transport processes. (ρ*, the ion Larmor radius normalised to the plasma minor radius, separates Bohm/gyro-Bohm transport; β, the ratio of plasma pressure to magnetic pressure separates electrostatic and electromagnetic transport; and ν*, the ion collision rate scaled to the ion bounce frequency, describes the effect of collisionality. With this in mind, scans have been performed on JET (MarkIIGB-SRP divertor) with one of ρ*, β, ν* varied whilst the other two remained fixed. Both particle transport, using trace tritium (T) injection, and energy transport have been studied. The ρ* behaviour of energy and trace T transport is found to be consistent with the essentially gyro-Bohm like dependence of the scaling used in the ITER design, IPB98(y,2), although trace T confinement in the outer region (x=0.65-0.85) is Bohm like (D/B0∝ρ*-1.90±0.38). The ν* scans showed energy confinement decreasing with increasing ν* (B0·τE∝ν*-0.35±0.04) more strongly than in IPB98(y,2), with trace T confinement having the opposite trend although the results are more ambiguous. The three β scans show a negligible effect of β on energy confinement (B0·τE∝β*0.04, β*-0.03, β*-0.01), in contrast to IPB98(y,2), which is consistent with electrostatic models. Trace T confinement, however, increases with increasing β (D∝Dg-Bohm·β*-0.34±0.08, D∝DBohm·β*-0.55±0.09) which is inconsistent with IPB98(y,2) and electrostatic models, but is shown to be consistent with a model based on stochastic electromagnetic fields. It remains to describe both particle and energy transport with a unified model. Extrapolation of these results to ITER indicates a moderate increase in energy confinement time for βN=1.8 (2%), but a dramatic improvement for higher βN (e.g. 50% higher for βN=3). The impact on ITER of increased particle confinement at high

  3. Characteristics of particle number and mass emissions during heavy-duty diesel truck parked active DPF regeneration in an ambient air dilution tunnel

    Science.gov (United States)

    Yoon, Seungju; Quiros, David C.; Dwyer, Harry A.; Collins, John F.; Burnitzki, Mark; Chernich, Donald; Herner, Jorn D.

    2015-12-01

    Diesel particle number and mass emissions were measured during parked active regeneration of diesel particulate filters (DPF) in two heavy-duty diesel trucks: one equipped with a DPF and one equipped with a DPF + SCR (selective catalytic reduction), and compliant with the 2007 and 2010 emission standards, respectively. The emission measurements were conducted using an ambient air dilution tunnel. During parked active regeneration, particulate matter (PM) mass emissions measured from a 2007 technology truck were significantly higher than the emissions from a 2010 technology truck. Particle number emissions from both trucks were dominated by nucleation mode particles having a diameter less than 50 nm; nucleation mode particles were orders of magnitude higher than accumulation mode particles having a diameter greater than 50 nm. Accumulation mode particles contributed 77.8 %-95.8 % of the 2007 truck PM mass, but only 7.3 %-28.2 % of the 2010 truck PM mass.

  4. Particle-in-cell mode beam dynamics simulation of the low energy beam transport for the SSC-linac injector

    Institute of Scientific and Technical Information of China (English)

    XIAO Chen; HE Yuan; YUAN You-Jin; YAO Qing-Gao; WANG Zhi-Jun; CHANG Wei; LIU Yong; XIA Jia-Wen

    2011-01-01

    A new SSC-linac system (injector into separated sector cyclotron) is being designed in the HIRFL (heavy ion research facility of Lanzhou). As part of SSC-Linac, the LEBT (low energy beam transport) consists of seven solenoids, four quadrupoles, a bending magnet and an extra multi-harmonic buncher. The total length of this segment is about 7 meters. The beam dynamics in this LEBT has been studied using three-dimensional PIC (particle-in-cell) code BEAMPATH. The simulation results show that the continuous beam from the ion source is first well analyzed by a charge-to-mass selection system, and the beam of the selected charge-to-mass ratio is then efficiently pre-bunched by a multi-harmonic buncher and optimally matched into the RFQ (radio frequency quadrupole) for further acceleration. The principles and effects of the solenoid collimation channel are discussed, and it could limit the beam emittance by changing the aperture size.

  5. Design and Study on Sliding Mode Extremum Seeking Control of the Chaos Embedded Particle Swarm Optimization for Maximum Power Point Tracking in Wind Power Systems

    Directory of Open Access Journals (Sweden)

    Jui-Ho Chen

    2014-03-01

    Full Text Available This paper proposes a sliding mode extremum seeking control (SMESC of chaos embedded particle swarm optimization (CEPSO Algorithm, applied to the design of maximum power point tracking in wind power systems. Its features are that the control parameters in SMESC are optimized by CEPSO, making it unnecessary to change the output power of different wind turbines, the designed in-repetition rate is reduced, and the system control efficiency is increased. The wind power system control is designed by simulation, in comparison with the traditional wind power control method, and the simulated dynamic response obtained by the SMESC algorithm proposed in this paper is better than the traditional hill-climbing search (HCS and extremum seeking control (ESC algorithms in the transient or steady states, validating the advantages and practicability of the method proposed in this paper.

  6. Chronic exposure of tilapia (Oreochromis niloticus) to iron oxide nanoparticles: Effects of particle morphology on accumulation, elimination, hematology and immune responses.

    Science.gov (United States)

    Ates, Mehmet; Demir, Veysel; Arslan, Zikri; Kaya, Hasan; Yılmaz, Sevdan; Camas, Mustafa

    2016-08-01

    Effects of chronic exposure to alpha and gamma iron oxide nanoparticles (α-Fe2O3 and γ-Fe2O3 NPs) were investigated through exposure of tilapia (Oreochromis niloticus) to 0.1, 0.5 and 1.0mg/L (9.2×10(-4), 4.6×10(-3) and 9.2×10(-3)mM) aqueous suspensions for 60days. Fish were then transferred to NP-free freshwater and allowed to eliminate ingested NPs for 30days. The organs, including gills, liver, kidney, intestine, brain, spleen, and muscle tissue of the fish were analyzed to determine the accumulation, physiological distribution and elimination of the Fe2O3 NPs. Largest accumulation occurred in spleen followed by intestine, kidney, liver, gills, brain and muscle tissue. Fish exposed to γ-Fe2O3 NPs possessed significantly higher Fe in all organs. Accumulation in spleen was fast and independent of NP concentration reaching to maximum levels by the end of the first sampling period (30th day). Dissolved Fe levels in water were very negligible ranging at 4-6μg/L for α-Fe2O3 and 17-21μg/L for γ-Fe2O3 NPs (for 1mg/L suspensions). Despite that, Fe levels in gills and brain reflect more dissolved Fe accumulation from metastable γ-Fe2O3 polymorph. Ingested NPs cleared from the organs completely within 30-day elimination period, except the liver and spleen. Liver contained about 31% of α- and 46% of γ-Fe2O3, while spleen retained about 62% of α- and 35% of the γ-polymorph. No significant disturbances were observed in hematological parameters, including hemoglobin, hematocrit, red blood cell and white blood cell counts (p>0.05). Serum glucose (GLU) levels decreased in treatments exposed to 1.0mg/L of γ-Fe2O3 NPs at day 30 (p0.05), but increased significantly within elimination period due to mobilization of ingested NPs from liver and spleen to blood. Though respiratory burst activity was not affected (p>0.05), lysozyme activity (LA) was suppressed suggesting an immunosuppressive effects from both Fe2O3 NPs (pniloticus under chronic exposure.

  7. Chronic exposure of tilapia (Oreochromis niloticus) to iron oxide nanoparticles: Effects of particle morphology on accumulation, elimination, hematology and immune responses.

    Science.gov (United States)

    Ates, Mehmet; Demir, Veysel; Arslan, Zikri; Kaya, Hasan; Yılmaz, Sevdan; Camas, Mustafa

    2016-08-01

    Effects of chronic exposure to alpha and gamma iron oxide nanoparticles (α-Fe2O3 and γ-Fe2O3 NPs) were investigated through exposure of tilapia (Oreochromis niloticus) to 0.1, 0.5 and 1.0mg/L (9.2×10(-4), 4.6×10(-3) and 9.2×10(-3)mM) aqueous suspensions for 60days. Fish were then transferred to NP-free freshwater and allowed to eliminate ingested NPs for 30days. The organs, including gills, liver, kidney, intestine, brain, spleen, and muscle tissue of the fish were analyzed to determine the accumulation, physiological distribution and elimination of the Fe2O3 NPs. Largest accumulation occurred in spleen followed by intestine, kidney, liver, gills, brain and muscle tissue. Fish exposed to γ-Fe2O3 NPs possessed significantly higher Fe in all organs. Accumulation in spleen was fast and independent of NP concentration reaching to maximum levels by the end of the first sampling period (30th day). Dissolved Fe levels in water were very negligible ranging at 4-6μg/L for α-Fe2O3 and 17-21μg/L for γ-Fe2O3 NPs (for 1mg/L suspensions). Despite that, Fe levels in gills and brain reflect more dissolved Fe accumulation from metastable γ-Fe2O3 polymorph. Ingested NPs cleared from the organs completely within 30-day elimination period, except the liver and spleen. Liver contained about 31% of α- and 46% of γ-Fe2O3, while spleen retained about 62% of α- and 35% of the γ-polymorph. No significant disturbances were observed in hematological parameters, including hemoglobin, hematocrit, red blood cell and white blood cell counts (p>0.05). Serum glucose (GLU) levels decreased in treatments exposed to 1.0mg/L of γ-Fe2O3 NPs at day 30 (p0.05), but increased significantly within elimination period due to mobilization of ingested NPs from liver and spleen to blood. Though respiratory burst activity was not affected (p>0.05), lysozyme activity (LA) was suppressed suggesting an immunosuppressive effects from both Fe2O3 NPs (pniloticus under chronic exposure. PMID:27232508

  8. Helicity-based particle-relabeling operator and normal mode expansion of the dissipationless incompressible Hall magnetohydrodynamics.

    Science.gov (United States)

    Araki, Keisuke

    2015-12-01

    The dynamics of an incompressible, dissipationless Hall magnetohydrodynamic medium are investigated from Lagrangian mechanical viewpoint. The hybrid and magnetic helicities are shown to emerge, respectively, from the application of the particle relabeling symmetry for ion and electron flows to Noether's first theorem, while the constant of motion associated with the theorem is generally given by their arbitrary linear combination. Furthermore, integral path variation associated with the invariant action is expressed by the operation of an integrodifferential operator on the reference path. The eigenfunctions of this operator are double Beltrami flows, i.e., force-free stationary solutions to the equation of motion and provide a family of orthogonal function bases that yields the spectral representation of the equation of motion with a remarkably simple form. Among the double Beltrami flows, considering the influence of a uniform background magnetic field and the Hall term effect vanishing limit, the generalized Elsässer variables are found to be the most suitable for avoiding problems with singularities in the standard magnetohydrodynamic limit. PMID:26764837

  9. Characteristics of Fine Particles in an Urban Atmosphere—Relationships with Meteorological Parameters and Trace Gases

    Science.gov (United States)

    Zhang, Tianhao; Zhu, Zhongmin; Gong, Wei; Xiang, Hao; Fang, Ruimin

    2016-01-01

    Atmospheric fine particles (diameter < 1 μm) attract a growing global health concern and have increased in urban areas that have a strong link to nucleation, traffic emissions, and industrial emissions. To reveal the characteristics of fine particles in an industrial city of a developing country, two-year measurements of particle number size distribution (15.1 nm–661 nm), meteorological parameters, and trace gases were made in the city of Wuhan located in central China from June 2012 to May 2014. The annual average particle number concentrations in the nucleation mode (15.1 nm–30 nm), Aitken mode (30 nm–100 nm), and accumulation mode (100 nm–661 nm) reached 4923 cm−3, 12193 cm−3 and 4801 cm−3, respectively. Based on Pearson coefficients between particle number concentrations and meteorological parameters, precipitation and temperature both had significantly negative relationships with particle number concentrations, whereas atmospheric pressure was positively correlated with the particle number concentrations. The diurnal variation of number concentration in nucleation mode particles correlated closely with photochemical processes in all four seasons. At the same time, distinct growth of particles from nucleation mode to Aitken mode was only found in spring, summer, and autumn. The two peaks of Aitken mode and accumulation mode particles in morning and evening corresponded obviously to traffic exhaust emissions peaks. A phenomenon of “repeated, short-lived” nucleation events have been created to explain the durability of high particle concentrations, which was instigated by exogenous pollutants, during winter in a case analysis of Wuhan. Measurements of hourly trace gases and segmental meteorological factors were applied as proxies for complex chemical reactions and dense industrial activities. The results of this study offer reasonable estimations of particle impacts and provide references for emissions control strategies in industrial cities of

  10. Risk assessment of arsenic and other metals via atmospheric particles, and effects of atmospheric exposure and other demographic factors on their accumulations in human scalp hair in urban area of Guangzhou, China.

    Science.gov (United States)

    Huang, Minjuan; Chen, Xunwen; Shao, Dingding; Zhao, Yinge; Wang, Wei; Wong, Ming Hung

    2014-04-01

    Eighty-eight scalp hair samples were collected from Guangzhou (GZ) urban population (15-65 years) to investigate the accumulation of As and other metals (Cr, Mn, Ni, Cu, Zn, Cd, Sn, Sb, Hg and Pb). Demographic information, including body weight, height, age, gender, habits of smoking and drinking, types of drinking water, duration of stay in GZ, days of stay in GZ per year (days/year), and hours spent in indoor environment per day (h/day), were also recorded during hair sampling to refine the uncertainty of risk assessment derived from exposures to elements via dust and airborne particles. No significant non-carcinogenic risk was found. However, the cancer risks of Cr and As for both ingestion and inhalation exceeded the most tolerable regulated level (1.0×10(-6)). The environmental exposures to urban dust and airborne particles were observed significantly correlated to accumulations of Cd (R=0.306, p=0.005) and Ni (R=0.333, p=0.002) in scalp hair. Furthermore, the hair burden of elements was also significantly (pnutritional and physical status, reflected by BMI and BSA (Cr, Ni, Cd, Sb and Hg). Nutritional and physical status was observed as the exclusive important factor influencing As speciation in human scalp hair. However, habits of smoking and alcohol drinking as well as types of drinking water were not identified as the significant influencing factors on any element (p>0.05).

  11. Variation of particle number concentration and size distributions at the urban environment in Vilnius (Lithuania)

    Science.gov (United States)

    Ulevicius, Vidmantas; Byčenkienë, Steigvilë; Plauškaitë, Kristina; Dudoitis, Vadimas

    2013-05-01

    This study presents results of research on urban aerosol particles with a focus on the particle size distribution and the aerosol particle number concentration (PNC). The real time measurements of the aerosol PNC in the size range of 9-840 nm were performed at the urban background site using a Condensed Particle Counter and Scanning Mobility Particle Sizer (SMPS). Strong diurnal patterns in aerosol PNC were evident as a direct effect of three sources of the aerosol particles (nucleation, traffic, and residential heating appliances). The traffic exhaust emissions were a major contributor of the pollution observed at the roadside site that was dominated by the nucleation mode particles, while particles formed due to the residential heating appliances and secondary formation processes contributed to the accumulation mode particles and could impact the variation of PNC and its size distribution during the same day.

  12. Particle-size distribution of polybrominated diphenyl ethers (PBDEs) and its implications for health

    Science.gov (United States)

    Lyu, Y.; Xu, T.; Li, X.; Cheng, T.; Yang, X.; Sun, X.; Chen, J.

    2015-12-01

    In order better to understand the particle-size distribution of particulate PBDEs and their deposition pattern in human respiratory tract, we made an one year campaign 2012-2013 for the measurement of size-resolved aerosol particles at Shanghai urban site. The results showed that particulate PBDEs exhibited a bimodal distribution with a mode peak in the accumulation particle size range and the second mode peak in the coarse particle size ranges. As the number of bromine atoms in the molecule increased, accumulation mode peak intensity increased while coarse mode peak intensity decreased. This change was the consistent with the variation of PBDEs' sub-cooled vapor pressure. Absorption and adsorption process dominated the distribution of PBDEs among the different size particles. Evaluated deposition flux of Σ13PBDE was 26.8 pg h-1, in which coarse particles contributed most PBDEs in head and tracheobronchial regions, while fine mode particles contributed major PBDEs in the alveoli region. In associated with the fact that fine particles can penetrate deeper into the respiratory system, fine particle-bound highly brominated PBDEs can be inhaled more deeply into human lungs and cause a greater risk to human health.

  13. Size distribution of particle-associated polybrominated diphenyl ethers (PBDEs) and their implications for health

    Science.gov (United States)

    Lyu, Yan; Xu, Tingting; Li, Xiang; Cheng, Tiantao; Yang, Xin; Sun, Xiaomin; Chen, Jianmin

    2016-03-01

    In order to better understand the size distribution of particle-associated PBDEs and their deposition pattern in the human respiratory tract, we carried out a 1-year campaign during 2012-2013 for the measurement of size-resolved particles at the urban site of Shanghai. The results showed that particulate PBDEs exhibited a bimodal distribution with a mode peak in the accumulation particle size range and the second mode peak in the coarse particle size ranges. As the number of bromine atoms in the molecule increases, accumulation-mode peak intensity increased while coarse-mode peak intensity decreased. This change was consistent with the variation of PBDEs' subcooled vapor pressure. Absorption and adsorption processes dominated the distribution of PBDEs among the different size particles. The evaluated deposition flux of Σ13 PBDEs was 26.8 pg h-1, in which coarse particles contributed most PBDEs in head and tracheobronchial regions, while fine-mode particles contributed major PBDEs in the alveoli region. In association with the fact that fine particles can penetrate deeper into the respiratory system, fine-particle-bound highly brominated PBDEs can be inhaled more deeply into human lungs and cause a greater risk to human health.

  14. Stochastic model of ultrafine particle deposition and clearance in the human respiratory tract

    International Nuclear Information System (INIS)

    Deposition and clearance of insoluble ultrafine particles, ranging from 1 to 100 nm, were simulated by stochastic models using Monte Carlo methods. Brownian motion is the dominant mode of deposition in human airways. The additional effects of convective diffusion in bifurcations and axial diffusion (convective mixing) primarily affect particle transport and deposition of particles in the 1-10 nm range. Regarding total deposition, the effects of both convective mechanisms are practically compensated by the concomitant effect of molecular radial diffusion (Brownian motion). During the first hours following inhalation, 1 nm particles are predicted to be cleared much faster than particles in the size range from 10 to 100 nm, with a retained fraction of about 80% after 24 h. For 1-10 nm particles, extracellular transfer to blood is the most likely mode of clearance, while uptake and subsequent accumulation in epithelial cells are assumed to be the preferential mechanisms for 10-100 nm particles. (author)

  15. Solids Accumulation Scouting Studies

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

    2012-09-26

    The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of

  16. An angular momentum conserving Affine-Particle-In-Cell method

    CERN Document Server

    Jiang, Chenfanfu; Teran, Joseph

    2016-01-01

    We present a new technique for transferring momentum and velocity between particles and grid with Particle-In-Cell (PIC) calculations which we call Affine-Particle-In-Cell (APIC). APIC represents particle velocities as locally affine, rather than locally constant as in traditional PIC. We show that this representation allows APIC to conserve linear and angular momentum across transfers while also dramatically reducing numerical diffusion usually associated with PIC. Notably, conservation is achieved with lumped mass, as opposed to the more commonly used Fluid Implicit Particle (FLIP) transfers which require a 'full' mass matrix for exact conservation. Furthermore, unlike FLIP, APIC retains a filtering property of the original PIC and thus does not accumulate velocity modes on particles as FLIP does. In particular, we demonstrate that APIC does not experience velocity instabilities that are characteristic of FLIP in a number of Material Point Method (MPM) hyperelasticity calculations. Lastly, we demonstrate th...

  17. In-situ studies on volatile jet exhaust particle emissions - impacts of fuel sulfur content and environmental conditions on nuclei-mode aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F.; Baumann, R.; Petzold, A.; Busen, R.; Schulte, P.; Fiebig, M. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Brock, C.A. [Denver Univ., CO (United States). Dept. of Engineering

    2000-02-01

    In-situ measurements of ultrafine aerosol particle emissions were performed at cruise altitudes behind the DLR ATTAS research jet (RR M45H M501 engines) and a B737-300 aircraft (CFM56-3B1 engines). Measurements were made 0.15-20 seconds after emission as the source aircraft burned fuel with sulfur contents (FSC) of 2.6, 56 or 118 mg kg{sup -1}. Particle size distributions of from 3 to 60 nm diameter were determined using CN-counters with varying lower size detection limits. Volatile particle concentrations in the aircraft plumes strongly increased as diameter decreased toward the sizes of large molecular clusters, illustrating that apparent particle emissions are extremely sensitive to the smallest particle size detectable by the instrument used. Environmental conditions and plume age alone could influence the number of detected ultrafine (volatile) aerosols within an order of magnitude, as well. The observed volatile particle emissions decreased nonlinearly as FSC decreased to 60 mg kg{sup -1}, reaching minimum values of about 2 x 10{sup 17} kg{sup -1} and 2 x 10{sup 16} kg{sup -1} for particles >3 nm and >5 nm, respectively. Volatile particle emissions did not change significantly as FSCs were further reduced below 60 mg kg{sup -1}. Volatile particle emissions did not differ significantly between the two studied engine types. In contrast, soot particle emissions from the modern CFM56-3B1 engines were 4-5 times less (4 x 10{sup 14} kg{sup -1}) than from the older RR M45H M501 engines (1.8 x 10{sup 15} kg{sup -1}). Contrail processing has been identified as an efficient sink/quenching parameter for ultrafine particles and reduces the remaining interstitial aerosol by factors 2-10 depending on particle size.

  18. Ice slurry accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, K.G.; Kauffeld, M.

    1998-06-01

    More and more refrigeration systems are designed with secondary loops, thus reducing the refrigerant charge of the primary refrigeration plant. In order not to increase energy consumption by introducing a secondary refrigerant, alternatives to the well established single phase coolants (brines) and different concepts of the cooling plant have to be evaluated. Combining the use of ice-slurry - mixture of water, a freezing point depressing agent (antifreeze) and ice particles - as melting secondary refrigerant and the use of a cool storage makes it possible to build plants with secondary loops without increasing the energy consumption and investment. At the same time the operating costs can be kept at a lower level. The accumulation of ice-slurry is compared with other and more traditional storage systems. The method is evaluated and the potential in different applications is estimated. Aspects of practically use of ice-slurry has been examined in the laboratory at the Danish Technological Institute (DTI). This paper will include the final conclusions from this work concerning tank construction, agitator system, inlet, outlet and control. The work at DTI indicates that in some applications systems with ice-slurry and accumulation tanks have a great future. These applications are described by a varying load profile and a process temperature suiting the temperature of ice-slurry (-3 - -8/deg. C). (au)

  19. The α particle diagnostics on the base of CO2-laser radiation scattering on thermal fluctuations of ion Berstein mode type

    International Nuclear Information System (INIS)

    A new way of α-particle diagnostics enabling by means of laser scattering to determine an average energy and relative concentration of α-particles with high space resolution, is discussed. The technique is based on scattering of CO2-laser radiation on plasma fluctuations of Bernstein ion wave type with frequencies exceeding frequency of low hybrid resonance

  20. Physical characterization of aerosol particles during the Chinese New Year’s firework events

    Science.gov (United States)

    Zhang, Min; Wang, Xuemei; Chen, Jianmin; Cheng, Tiantao; Wang, Tao; Yang, Xin; Gong, Youguo; Geng, Fuhai; Chen, Changhong

    2010-12-01

    Measurements for particles 10 nm to 10 μm were taken using a Wide-range Particle Spectrometer during the Chinese New Year (CNY) celebrations in 2009 in Shanghai, China. These celebrations provided an opportunity to study the number concentration and size distribution of particles in an especial atmospheric pollution situation due to firework displays. The firework activities had a clear contribution to the number concentration of small accumulation mode particles (100-500 nm) and PM 1 mass concentration, with a maximum total number concentration of 3.8 × 10 4 cm -3. A clear shift of particles from nucleation and Aitken mode to small accumulation mode was observed at the peak of the CNY firework event, which can be explained by reduced atmospheric lifetimes of smaller particles via the concept of the coagulation sink. High particle density (2.7 g cm -3) was identified as being particularly characteristic of the firework aerosols. Recalculated fine particles PM 1 exhibited on average above 150 μg m -3 for more than 12 hours, which was a health risk to susceptible individuals. Integral physical parameters of firework aerosols were calculated for understanding their physical properties and further model simulation.

  1. Ultrafine particle emission characteristics of diesel engine by on-board and test bench measurement

    Institute of Scientific and Technical Information of China (English)

    Cheng Huang; Diming Lou; Zhiyuan Hu; Piqiang Tan; Di Yao; Wei Hu; Peng Li; Jin Ren; Changhong Chen

    2012-01-01

    This study investigated the emission characteristics of ultrafine particles based on test bench and on-board measurements.The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35) × 108 cm-3.The on-board measurement results illustrated that the ultrafine particles were strongly correlated with changes in real-world driving cycles.The particle number concentration was down to 2.0 × 106 cm-3 and 2.7 × 107 cm-3 under decelerating and idling operations and as high as 5.0 × 108 cm-3 under accelerating operation.It was also indicated that the particle number measured by the two methods increased with the growth of engine load at each engine speed in both cases.The particle number presented a "U" shaped distribution with changing speed at high engine load conditions,which implies that the particle number will reach its lowest level at medium engine speeds.The particle sizes of both measurements showed single mode distributions.The peak of particle size was located at about 50-80 nm in the accumulation mode particle range.Nucleation mode particles will significantly increase at low engine load operations like idling and decelerating caused by the high concentration of unburned organic compounds.

  2. Taming the post-Newtonian expansion: Simplifying the modes of the gravitational wave energy flux at infinity for a point particle in a circular orbit around a Schwarzschild black hole

    CERN Document Server

    Johnson-McDaniel, Nathan K

    2014-01-01

    (Abridged) High-order terms in the post-Newtonian (PN) expansions of various quantities for compact binaries exhibit a combinatorial increase in complexity, including ever-increasing numbers of transcendentals. Here we consider the gravitational wave energy flux at infinity from a point particle in a circular orbit around a Schwarzschild black hole, which is known to 22PN beyond the lowest-order Newtonian prediction, at which point each order has over 1000 terms. We introduce a factorization that considerably simplifies the spherical harmonic modes of the energy flux (and thus also the amplitudes of the spherical harmonic modes of the gravitational waves); it is likely that much of the complexity this factorization removes is due to curved-space wave propagation (e.g., tail effects). For the modes with azimuthal number l of 7 or greater, this factorization reduces the expressions for the modes that enter the 22PN total energy flux to pure integer PN series with rational coefficients, which amounts to a reduct...

  3. Number size distributions and seasonality of submicron particles in Europe 2008-2009

    Science.gov (United States)

    Asmi, A.; Wiedensohler, A.; Laj, P.; Fjaeraa, A.-M.; Sellegri, K.; Birmili, W.; Weingartner, E.; Baltensperger, U.; Zdimal, V.; Zikova, N.; Putaud, J.-P.; Marinoni, A.; Tunved, P.; Hansson, H.-C.; Fiebig, M.; Kivekäs, N.; Lihavainen, H.; Asmi, E.; Ulevicius, V.; Aalto, P. P.; Swietlicki, E.; Kristensson, A.; Mihalopoulos, N.; Kalivitis, N.; Kalapov, I.; Kiss, G.; de Leeuw, G.; Henzing, B.; Harrison, R. M.; Beddows, D.; O'Dowd, C.; Jennings, S. G.; Flentje, H.; Weinhold, K.; Meinhardt, F.; Ries, L.; Kulmala, M.

    2011-06-01

    Two years of harmonized aerosol number size distribution data from 24 European field monitoring sites have been analysed. The results give a comprehensive overview of the European near surface aerosol particle number concentrations and number size distributions between 30 and 500 nm of dry particle diameter. Spatial and temporal distribution of aerosols in the particle sizes most important for climate applications are presented. We also analyse the annual, weekly and diurnal cycles of the aerosol number concentrations, provide log-normal fitting parameters for median number size distributions, and give guidance notes for data users. Emphasis is placed on the usability of results within the aerosol modelling community. We also show that the aerosol number concentrations of Aitken and accumulation mode particles (with 100 nm dry diameter as a cut-off between modes) are related, although there is significant variation in the ratios of the modal number concentrations. Different aerosol and station types are distinguished from this data and this methodology has potential for further categorization of stations aerosol number size distribution types. The European submicron aerosol was divided into characteristic types: Central European aerosol, characterized by single mode median size distributions, unimodal number concentration histograms and low variability in CCN-sized aerosol number concentrations; Nordic aerosol with low number concentrations, although showing pronounced seasonal variation of especially Aitken mode particles; Mountain sites (altitude over 1000 m a.s.l.) with a strong seasonal cycle in aerosol number concentrations, high variability, and very low median number concentrations. Southern and Western European regions had fewer stations, which decreases the regional coverage of these results. Aerosol number concentrations over the Britain and Ireland had very high variance and there are indications of mixed air masses from several source regions; the

  4. Steady- and transient-state analysis of fully ceramic microencapsulated fuel with randomly dispersed tristructural isotropic particles via two-temperature homogenized model-I: Theory and method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Hee; Cho, Bum Hee; Cho, Nam Zin [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-06-15

    As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM) fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC) matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1) matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2) preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1) they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2) they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained.

  5. Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size

    Energy Technology Data Exchange (ETDEWEB)

    Ma, H., E-mail: mah77@uga.edu [Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602 (United States); Kabengi, N.J.; Bertsch, P.M.; Unrine, J.M. [Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546 (United States); Glenn, T.C.; Williams, P.L. [Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602 (United States)

    2011-06-15

    The present study evaluated phototoxicity of nanoparticulate ZnO and bulk-ZnO under natural sunlight (NSL) versus ambient artificial laboratory light (AALL) illumination to a free-living nematode Caenorhabditis elegans. Phototoxicity of nano-ZnO and bulk-ZnO was largely dependent on illumination method as 2-h exposure under NSL caused significantly greater mortality in C. elegans than under AALL. This phototoxicity was closely related to photocatalytic reactive oxygen species (ROS) generation by the ZnO particles as indicated by concomitant methylene blue photodegradation. Both materials caused mortality in C. elegans under AALL during 24-h exposure although neither degraded methylene blue, suggesting mechanisms of toxicity other than photocatalytic ROS generation were involved. Particle dissolution of ZnO did not appear to play an important role in the toxicity observed in this study. Nano-ZnO showed greater phototoxicity than bulk-ZnO despite their similar size of aggregates, suggesting primary particle size is more important than aggregate size in determining phototoxicity. - Highlights: > Phototoxicity of nano- or bulk-ZnO was enhanced by natural sunlight illumination. > This phototoxicity was well-correlated to photocatalytic ROS generation. > Toxicity of ZnO particles not related to photocatalytic ROS generation was also observed. > Nano-ZnO showed greater phototoxicity than bulk-ZnO due to its greater total surface area per unit mass. > Primary particle size appeared to be more important than aggregate size in determining phototoxicity. - Phototoxicity of nanoparticulate and bulk ZnO was greatly enhanced by natural sunlight illumination compared to artificial laboratory light illumination.

  6. Excursions through KK modes

    Science.gov (United States)

    Furuuchi, Kazuyuki

    2016-07-01

    In this article we study Kaluza-Klein (KK) dimensional reduction of massive Abelian gauge theories with charged matter fields on a circle. Since local gauge transformations change position dependence of the charged fields, the decomposition of the charged matter fields into KK modes is gauge dependent. While whole KK mass spectrum is independent of the gauge choice, the mode number depends on the gauge. The masses of the KK modes also depend on the field value of the zero-mode of the extra dimensional component of the gauge field. In particular, one of the KK modes in the KK tower of each massless 5D charged field becomes massless at particular values of the extra-dimensional component of the gauge field. When the extra-dimensional component of the gauge field is identified with the inflaton, this structure leads to recursive cosmological particle productions.

  7. 多手段综合分析在塔河油田石炭系薄储集层预测中的应用%Modes of Es2/Es3 unconformity and feature of hydrocarbon migration and accumulation in Bonan Sag

    Institute of Scientific and Technical Information of China (English)

    刘桂珍; 杜伟维; 范琪

    2013-01-01

    Taking Es2/Es3 class II unconformity in Paleogene of the south slope zone of Bonan Sag in Jiyang Depression as an example, the modes of class II unconformity and the feature of hydrocarbon migration and accumulation are analyzed based on mineralogy, drilling and logging data and seismic information. The results show that Es2/Es3 class II unconformity structure is a no-clay structure. There are four types of unconformity combination modes according to the occurrence and the lithology superposition relation of the strata above and below the unconformity surface. The plane distribution of the unconformity combination modes controls the hydrocarbon migration and accumulation feature of linear migration and local enrichment.%针对塔河油田石炭系卡拉沙依组砂岩储集层埋藏深、砂层薄、横向变化快、非均质性严重、地震识别困难等问题,通过对地震资料提频,利用地震切片、曲线重构下的测井约束反演和相控储层预测等多手段技术综合分析,将地震属性和反演波阻抗有机结合,指导储集层砂体相控解释,确定了含油砂体的空间展布与描述.实践表明,该方法能有效地利用地震数据体进行薄层储集体预测.

  8. Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry

    Directory of Open Access Journals (Sweden)

    R. C. Moffet

    2007-05-01

    Full Text Available Continuous ambient measurements with aerosol time-of-flight mass spectrometry (ATOFMS were carried out in an industrial/residential section in the northern part of Mexico City as part of the Mexico City Metropolitan Area – 2006 campaign (MCMA-2006 between 7–27 March, 2006. Biomass and organic carbon (OC particle types were found to dominate the accumulation mode both day and night. The concentrations of both organic carbon and biomass particles were roughly equal early in the morning, but biomass became the largest contributor to the accumulation mode mass from the late morning until early evening. The diurnal pattern can be attributed to aging and/or a change in meteorology. Fresh elemental carbon (EC particles were observed during rush hour. The majority of the EC particles were mixed with nitrate, sulfate, organic carbon and potassium. Submicron particles from industrial sources in the northeast were composed of an internal mixture of Pb, Zn, EC and Cl and peaked early in the morning. A unique nitrogen-containing organic (NOC particle type was observed, and is hypothesized to be from industrial emissions based on the temporal profile and back trajectory analysis. This study provides unique insights into the real-time changes in single particle mixing state as a function of size and time for aerosols in Mexico City. These new findings indicate that biomass burning and industrial operations make significant contributions to particles in Mexico City. These sources have received relatively little attention in previous intensive field campaigns.

  9. Characterization of new particle and secondary aerosol formation during summertime in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y. M. (Key Laboratory for Atmospheric Chemistry, Centre for Atmosphere Watch and Services, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing (China); Graduate Univ. of Chinese Academy of Sciences, Beijing (China)); Zhang, X. Y.; Sun, J. Y.; Lin, W. L.; Shen, X. J. (Key Laboratory for Atmospheric Chemistry, Centre for Atmosphere Watch and Services, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing (China)), e-mail: xiaoye@cams.cma.gov.cn; Gong, S. L. (Air Quality Research Div., Science and Technology Branch, Environment Canada, Toronto (Canada)); Yang, S. (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Inst. of Atmospheric Physics, CAS, Beijing (China))

    2011-07-15

    Size-resolved aerosol number and mass concentrations and the mixing ratios of O{sub 3} and various trace gases were continuously measured at an urban station before and during the Beijing Olympic and Paralympic Games (5 June to 22 September, 2008). 23 new particle formation (NPF) events were identified; these usually were associated with changes in wind direction and/or rising concentrations of gas-phase precursors or after precipitation events. Most of the NPF events started in the morning and continued to noon as particles in the nucleation mode grew into the Aitken mode. From noon to midnight, the aerosols grew into the accumulation mode through condensation and coagulation. Ozone showed a gradual rise starting around 10:00 local time, reached its peak around 15:00 and then declined as the organics increased. The dominant new particle species were organics (40-75% of PM{sub 1}) and sulphate; nitrate and ammonium were more minor contributors

  10. Impact of the Pedestal on Global Performance and Confinement Scalings in I-mode

    Science.gov (United States)

    Walk, John; Hughes, Jerry; Hubbard, Amanda; Whyte, Dennis; White, Anne; Alcator C-Mod Team

    2015-11-01

    The I-mode is a novel high-confinement regime pioneered on Alcator C-Mod, notable for its strong temperature pedestal without the accompanying density pedestal found in conventional H-modes. This separation in transport channels gives the desired improved energy confinement while maintaining low particle confinement, avoiding excessive impurity accumulation. Moreover, I-mode operation is naturally free of deleterious Edge-Localized Modes (ELMs). Recent experiments on Alcator C-Mod have characterized the pedestal structure in I-mode. The impact of the pedestal response (particularly to fueling and heating power) and core profile stiffness on global performance and confinement have demonstrated confinement metrics competitive with H-mode operation on Alcator C-Mod, and consistent with concepts for I-mode access & operation on ITER. Following the practice of the ITER89 and ITER98 scaling laws for L- and H-mode energy confinement, an initial, illustrative attempt at an I-mode confinement scaling has also been developed. The initial characterization from C-Mod data is consistent with the observed pedestal properties in I-mode, particularly the weak degradation of energy confinement with heating power, and comparatively strong positive response to fueling and increased magnetic field. Supported by U.S. Department of Energy award DE-FC02-99ER54512, using Alcator C-Mod, a DOE Office of Science User Facility.

  11. Aerosol number size distributions over a coastal semi urban location: Seasonal changes and ultrafine particle bursts.

    Science.gov (United States)

    Babu, S Suresh; Kompalli, Sobhan Kumar; Moorthy, K Krishna

    2016-09-01

    Number-size distribution is one of the important microphysical properties of atmospheric aerosols that influence aerosol life cycle, aerosol-radiation interaction as well as aerosol-cloud interactions. Making use of one-yearlong measurements of aerosol particle number-size distributions (PNSD) over a broad size spectrum (~15-15,000nm) from a tropical coastal semi-urban location-Trivandrum (Thiruvananthapuram), the size characteristics, their seasonality and response to mesoscale and synoptic scale meteorology are examined. While the accumulation mode contributed mostly to the annual mean concentration, ultrafine particles (having diameter <100nm) contributed as much as 45% to the total concentration, and thus constitute a strong reservoir, that would add to the larger particles through size transformation. The size distributions were, in general, bimodal with well-defined modes in the accumulation and coarse regimes, with mode diameters lying in the range 141 to 167nm and 1150 to 1760nm respectively, in different seasons. Despite the contribution of the coarse sized particles to the total number concentration being meager, they contributed significantly to the surface area and volume, especially during transport of marine air mass highlighting the role of synoptic air mass changes. Significant diurnal variation occurred in the number concentrations, geometric mean diameters, which is mostly attributed to the dynamics of the local coastal atmospheric boundary layer and the effect of mesoscale land/sea breeze circulation. Bursts of ultrafine particles (UFP) occurred quite frequently, apparently during periods of land-sea breeze transitions, caused by the strong mixing of precursor-rich urban air mass with the cleaner marine air mass; the resulting turbulence along with boundary layer dynamics aiding the nucleation. These ex-situ particles were observed at the surface due to the transport associated with boundary layer dynamics. The particle growth rates from

  12. Source appointment of fine particle number and volume concentration during severe haze pollution in Beijing in January 2013.

    Science.gov (United States)

    Liu, Zirui; Wang, Yuesi; Hu, Bo; Ji, Dongsheng; Zhang, Junke; Wu, Fangkun; Wan, Xin; Wang, Yonghong

    2016-04-01

    Extreme haze episodes repeatedly shrouded Beijing during the winter of 2012-2013, causing major environmental and health problems. To better understand these extreme events, particle number size distribution (PNSD) and particle chemical composition (PCC) data collected in an intensive winter campaign in an urban site of Beijing were used to investigate the sources of ambient fine particles. Positive matrix factorization (PMF) analysis resolved a total of eight factors: two traffic factors, combustion factors, secondary aerosol, two accumulation mode aerosol factors, road dust, and long-range transported (LRT) dust. Traffic emissions (54%) and combustion aerosol (27%) were found to be the most important sources for particle number concentration, whereas combustion aerosol (33%) and accumulation mode aerosol (37%) dominated particle volume concentrations. Chemical compositions and sources of fine particles changed dynamically in the haze episodes. An enhanced role of secondary inorganic species was observed in the formation of haze pollution. Regional transport played an important role for high particles, contribution of which was on average up to 24-49% during the haze episodes. Secondary aerosols from urban background presented the largest contributions (45%) for the rapid increase of fine particles in the severest haze episode. In addition, the invasion of LRT dust aerosols further elevated the fine particles during the extreme haze episode. Our results showed a clear impact of regional transport on the local air pollution, suggesting the importance of regional-scale emission control measures in the local air quality management of Beijing.

  13. Trapping of photophoretic particles

    CERN Document Server

    Magiera, Martin P

    2014-01-01

    A trapping mechanism for self-propelled particles based on an inhomogeneous drive is presented and studied analytically as well as by computer simulations. In experiments this method can be realized using photophoretic Janus particles driven by a light source, which shines through a shading mask and leads to an accumulation of the swimmers in the shaded part. The mechanism can be traced back to a finite penetration depth of particles impinging from the illuminated part of the system into the shaded part.

  14. Parametric Landau damping of space charge modes

    CERN Document Server

    Macridin, Alexandru; Stern, Eric; Amundson, James; Spentzouris, Panagiotis

    2016-01-01

    Landau damping is the mechanism of plasma and beam stabilization; it is caused by energy transfer from collective modes to incoherent motion of resonant particles. Normally this resonance requires the wave frequency in the particle frame to match the resonant particles frequency. Using the Synergia modeling package to study transverse coherent modes of bunched beams with space charge, we have identified a new kind of damping mechanism, parametric Landau damping, driven by the modulation of the wave-particle interaction.

  15. Hygroscopicity of aerosol particles and CCN activity of nearly hydrophobic particles in the urban atmosphere over Japan during summer

    Science.gov (United States)

    Ogawa, Shuhei; Setoguchi, Yoshitaka; Kawana, Kaori; Nakayama, Tomoki; Ikeda, Yuka; Sawada, Yuuki; Matsumi, Yutaka; Mochida, Michihiro

    2016-06-01

    We investigated the hygroscopicity of 150 nm particles and the number-size distributions and the cloud condensation nuclei (CCN) activity of nearly hydrophobic particles in aerosols over Nagoya, Japan, during summer. We analyzed the correlations between the number concentrations of particles in specific hygroscopic growth factor (g) ranges and the mass concentrations of chemical components. This analysis suggests the association of nearly hydrophobic particles with hydrocarbon-like organic aerosol, elemental carbon and semivolatile oxygenated organic aerosol (SV-OOA), that of less hygroscopic particles with SV-OOA and nitrate and that of more hygroscopic particles with low-volatile oxygenated organic aerosol (LV-OOA) and sulfate. The hygroscopicity parameter (κ) of organics was derived based on the g distributions and chemical composition of 150 nm particles. The κ of the organics correlated positively with the fraction of the total organic mass spectral signal at m/z 44 and the volume fraction of the LV-OOA to the organics, indicating that organics with highly oxygenated structures including carboxylic acid groups contribute to the water uptake. The number-size distributions of the nearly hydrophobic particles with g around 1.0 and 1.1 correlated with the mass concentrations of chemical components. The results show that the chemical composition of the particles with g around 1.0 was different between the Aitken mode and the accumulation mode size ranges. An analysis for a parameter Fmax of the curves fitted to the CCN efficiency spectra of the particles with g around 1.0 suggests that the coating by organics associated with SV-OOA elevated the CCN activity of these particles.

  16. 颗粒离散元模拟堆积碎石土变形的参数灵敏度分析%Particles discrete element simulation accumulation of gravel soil deformation parameter sensitivity analysis

    Institute of Scientific and Technical Information of China (English)

    董辉; 马一跃; 傅鹤林; 王智超; 陈铖

    2015-01-01

    The author uses the granular discrete element method to simulate the arbitrary shape stone and calibrate the mesoscopic parameters of gravel soil which was mainly constituted by weathering , unloading ,alluvial ,deluvial ,etc .Calibration is based on indoor triaxial compression experiments meas‐ured data at the same time considering the scale effect of sample .T his paper analyzed the sensitivity of the mesoscopic parameters w hich affection the accumulation of gravel soil macro deformation characteris‐tics through the virtual experiment .Studies have shown that :① The mesoscopic parameters of gravel soils based on indoor experimental calibration relative error is within 5% .② The size of the virtual experiment include model 1(101 mm × 200 mm) and the model 2(300 mm × 600 mm) .The model 2 to mesoscopi parameters calibration has scale effect ,but the relative error controlled within 9% .③ There are nonlinear positive relationships between the coefficient of friction of discrete element particles and the angle of internal friction ,and the shear strength ,and the residual strength .When the friction coefficient increased by 0 .1 ,the peak deviator stress average increased 118 .85 kPa and the residual strength average increased 90 .44 kPa .④ The greater the confining pressure ,the weaker the material dilatancy is ,when the confining pressure is changing betw een 100 kPa~500 kPa ,the dilatancy characteristic value K is obtained from 3 to 6 .The cohesive force of the damaged model nearly increases linearly as confining pressure increases .⑤ The greater the Young’s modulus ,the greater the shear strength of the gravel soil is ,but there is not a linear relationship between them .Moreover ,Young’s modulus does not affect residual strength of material significantly .%采用颗粒离散单元方法,实现任意形状块石的模拟,基于室内试验数据标定滑坡坡体物质的堆(残、坡)积碎石土的细观参数,并考虑试样尺

  17. Variations of fine particle physiochemical properties during a heavy haze episode in the winter of Beijing.

    Science.gov (United States)

    Niu, Hongya; Hu, Wei; Zhang, Daizhou; Wu, Zhijun; Guo, Song; Pian, Wei; Cheng, Wenjing; Hu, Min

    2016-11-15

    Chemical composition, morphology, size and mixture of fine particles were measured in a heavy haze and the post-haze air in Beijing in January 2012. With the occurrence of haze, the concentrations of gaseous and particulate pollutants including organics, sulfate, nitrate, and ammonium grew gradually. The hourly averaged PM2.5 concentration increased from 118μgm(-3) to 402μgm(-3) within 12h. In contrast, it was less than 10μgm(-3) in the post-haze air. Occupying approximately 46% in mass, organics were the major component of PM1 in both the haze and post-haze air. Analysis of individual particles in the size range of 0.2-1.1μm revealed that secondary-like particles and soot particles were always the majority, and most soot particles had a core-shell structure. The number ratio of secondary-like particles to soot particles in accumulation mode in the haze air was about 2:1, and that in the post-haze air was 8:1. These results indicate both secondary particle formation and primary emission contributed substantially to the haze. The mode size of the haze particles was about 0.7μm, and the mode size of the post-haze particles was 0.4μm, indicating the remarkable growth of particles in haze. However, the ratios of the core size to shell size of core-shell structure soot particles in the haze were similar to those in the post-haze air, suggesting a quick aging of soot particles in either the haze air or the post-haze air. PMID:27470669

  18. Variations of fine particle physiochemical properties during a heavy haze episode in the winter of Beijing.

    Science.gov (United States)

    Niu, Hongya; Hu, Wei; Zhang, Daizhou; Wu, Zhijun; Guo, Song; Pian, Wei; Cheng, Wenjing; Hu, Min

    2016-11-15

    Chemical composition, morphology, size and mixture of fine particles were measured in a heavy haze and the post-haze air in Beijing in January 2012. With the occurrence of haze, the concentrations of gaseous and particulate pollutants including organics, sulfate, nitrate, and ammonium grew gradually. The hourly averaged PM2.5 concentration increased from 118μgm(-3) to 402μgm(-3) within 12h. In contrast, it was less than 10μgm(-3) in the post-haze air. Occupying approximately 46% in mass, organics were the major component of PM1 in both the haze and post-haze air. Analysis of individual particles in the size range of 0.2-1.1μm revealed that secondary-like particles and soot particles were always the majority, and most soot particles had a core-shell structure. The number ratio of secondary-like particles to soot particles in accumulation mode in the haze air was about 2:1, and that in the post-haze air was 8:1. These results indicate both secondary particle formation and primary emission contributed substantially to the haze. The mode size of the haze particles was about 0.7μm, and the mode size of the post-haze particles was 0.4μm, indicating the remarkable growth of particles in haze. However, the ratios of the core size to shell size of core-shell structure soot particles in the haze were similar to those in the post-haze air, suggesting a quick aging of soot particles in either the haze air or the post-haze air.

  19. Particle deposition to forests: An alternative to K-theory

    Science.gov (United States)

    Huang, Cheng-Wei; Launiainen, Samuli; Grönholm, Tiia; Katul, Gabriel G.

    2014-09-01

    It has been known for some time that flux-gradient closure schemes (or K-theory), widely used to model the aerosol sized particle turbulent diffusivity, are problematic within canopies. Reported momentum transport in a zero- or counter-mean velocity gradient flow within open trunk spaces of forests is prototypical of the failure of K-theory. To circumvent this problem, a multi-layered and size-resolved second-order closure model is developed using the mean particle turbulent flux budget as a primary closure for the particle turbulent flux instead of K-theory. The proposed model is evaluated against the multi-level size-resolved particle fluxes and particle concentration measurements conducted within and above a tall Scots pine forest situated in Hyytiälä, Southern Finland. Conditions promoting the failure of K-theory for different particle sizes and canopy layers and the characteristics of the particle transport processes within the canopy sub-layer (CSL) are discussed. Using the model, it is shown that K-theory may still be plausible for modeling the particle deposition velocity when the particle size range is smaller than 1 μm provided the local particle turbulent diffusivity is estimated from the characteristic turbulent relaxation time scale and the vertical velocity variance. Model calculations suggest that the partitioning of particle deposition onto foliage and forest floor appears insensitive to the friction velocity for particles smaller than 100 nm (ultrafine), but decreases with increasing friction velocity for particles larger than 100 nm (accumulation and coarse modes).

  20. Particle number size distribution in the eastern Mediterranean: Formation and growth rates of ultrafine airborne atmospheric particles

    Science.gov (United States)

    Kopanakis, I.; Chatoutsidou, S. E.; Torseth, K.; Glytsos, T.; Lazaridis, M.

    2013-10-01

    Particle number concentration was measured between June 2009 and June 2010 at Akrotiri research station in a rural/suburban region of western Crete (Greece). Overall, the available data covered 157 days during the aforementioned period of measurements. The objectives were to study the number size distribution characteristics of ambient aerosols and furthermore to identify new particle formation events and to evaluate particle formation rates and growth rates of the newborn particles. Aerosol particles with mobility diameters between 10 and 1100 nm were measured using a Scanning Mobility Particle Sizer (SMPS) system. Measurements were performed at ambient relative humidities. The median total particle number concentration was 525 #/cm3 whereas the number concentration ranged between 130 #/cm3 and 9597 #/cm3. The average percentage of particles with diameters between 10 nm and 100 nm (N10-100) to total particles was 53% during summer and spring, but reached 80% during winter. Maximum average contribution of nano-particles (10 nm heating. Furthermore, back trajectories (HYSPLIT model) showed that different air mass origins are linked to different levels of particle number concentrations, with higher values associated with air masses passing from polluted areas before reaching the Akrotiri station. Modal analysis of the measured size distribution data revealed a strong nucleation mode during winter (15-25 nm), which can be correlated with emissions from local sources (domestic heating). The nucleation mode was observed also during the spring campaigns and was partly linked to new particle formation events. On the contrary, an accumulation mode (80-120 nm) prevailed in the measurements during summer campaigns, when the station area was influenced by polluted air masses arriving mainly from Eastern Europe. In total, 13 new particle formation events were recorded during the 157 days of measurements. Nucleation events were associated with low values of N100 particle number

  1. Number-size distribution of aerosol particles and new particle formation events in tropical and subtropical Pacific Oceans

    Science.gov (United States)

    Ueda, S.; Miura, K.; Kawata, R.; Furutani, H.; Uematsu, M.; Omori, Y.; Tanimoto, H.

    2016-10-01

    Number-size distributions of aerosol particles with diameters of 10-500 nm in the marine boundary layer were observed continually onboard the R/V Hakuho Maru over the equatorial and subtropical North Pacific and South Pacific during December 2011-March 2012. Number-size distributions over each area were parameterized using a sum of up to three lognormal functions. Bi-modal size distributions with peak diameters at 30-80 nm (Aitken mode) and 100-200 nm (accumulation mode) were observed frequently. Larger peak diameters of Aitken and accumulation modes were observed over the eastern equator, where 5-day backward trajectories showed that the air masses had derived from high-chlorophyll oceanic regions without precipitation. Smaller peak diameters and low concentrations were often observed over the North Pacific. The trajectories show that such air mass originated from oceanic regions with less chlorophyll, exhibiting high precipitation frequency. New particle formation (NPF) events have often been observed over the mid-latitude eastern South Pacific with a low condensation sink (CS) and some dimethyl sulfide, although none was observed over the equator, where CS was higher. The lesser CS condition at NPF events was mostly correlated with local precipitation or precipitation along the trajectories within 1 day. These results suggest that differences of the number-size distribution and occasions of NPF events among sea areas most closely accord with precipitation along the trajectories.

  2. Particle Pollution

    Science.gov (United States)

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  3. Evaluation of the particle measurement programme (PMP) protocol to remove the vehicles' exhaust aerosol volatile phase.

    Science.gov (United States)

    Giechaskiel, B; Chirico, R; Decarlo, P F; Clairotte, M; Adam, T; Martini, G; Heringa, M F; Richter, R; Prevot, A S H; Baltensperger, U; Astorga, C

    2010-10-01

    European regulation for Euro 5/6 light duty emissions introduced the measurement of non-volatile particles with diameter >23 nm. The volatile phase is removed by using a heated dilution stage (150 degrees C) and a heated tube (at 300-400 degrees C). We investigated experimentally the removal efficiency for volatile species of the specific protocol by conducting measurements with two Euro 3 diesel light duty vehicles, a Euro 2 moped, and a Euro III heavy duty vehicle with the system's heaters on and off. The particle number distributions were measured with a Scanning Mobility Particle Sizer (SMPS) and a Fast Mobility Particle Sizer (FMPS). An Aerosol Mass Spectrometer (AMS) was used to identify the non-refractory chemical composition of the particles. A Multi-Angle Absorption Photometer (MAAP) was used to measure the black carbon concentration. The results showed that the condensed material in the accumulation mode (defined here as particles in the diameter range of approximately 50-500 nm) was removed with an efficiency of 50-90%. The (volatile) nucleation mode was also completely evaporated or was decreased to sizes <23 nm; thus these particles wouldn't be counted from the particle counter, indicating the robustness of the protocol.

  4. Plastids and Carotenoid Accumulation.

    Science.gov (United States)

    Li, Li; Yuan, Hui; Zeng, Yunliu; Xu, Qiang

    2016-01-01

    Plastids are ubiquitously present in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids, except proplastids, can synthesize carotenoids. However, plastid types have a profound effect on carotenoid accumulation and stability. In this chapter, we discuss carotenoid biosynthesis and regulation in various plastids with a focus on carotenoids in chromoplasts. Plastid transition related to carotenoid biosynthesis and the different capacity of various plastids to sequester carotenoids and the associated effect on carotenoid stability are described in light of carotenoid accumulation in plants. PMID:27485226

  5. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    Science.gov (United States)

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J.-D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; Weigand, M.; Kilcoyne, A. L. D.; Andreae, M. O.

    2015-08-01

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia (61° N, 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical compositions of aerosol particles were analyzed by x-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38 % of particulate matter (PM) in the accumulation mode and coarse mode, respectively. The water-soluble fraction of organic matter was estimated to be 52 and 8 % of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34 % in the accumulation mode vs. ~ 47 % in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5-99.4 % RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same relative humidity (RH), starting at ~ 70 %, while efflorescence occurred at different humidities, i.e., at ~ 35 % RH for submicron particles vs. ~ 50 % RH for supermicron particles. This ~ 15 % RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5-99.4 % RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv,ws value related to the water-soluble (ws

  6. Accumulation by Conservation

    NARCIS (Netherlands)

    Büscher, Bram; Fletcher, Robert

    2014-01-01

    Following the financial crisis and its aftermath, it is clear that the inherent contradictions of capitalist accumulation have become even more intense and plunged the global economy into unprecedented turmoil and urgency. Governments, business leaders and other elite agents are frantically searchin

  7. Chimpanzee accumulative stone throwing.

    Science.gov (United States)

    Kühl, Hjalmar S; Kalan, Ammie K; Arandjelovic, Mimi; Aubert, Floris; D'Auvergne, Lucy; Goedmakers, Annemarie; Jones, Sorrel; Kehoe, Laura; Regnaut, Sebastien; Tickle, Alexander; Ton, Els; van Schijndel, Joost; Abwe, Ekwoge E; Angedakin, Samuel; Agbor, Anthony; Ayimisin, Emmanuel Ayuk; Bailey, Emma; Bessone, Mattia; Bonnet, Matthieu; Brazolla, Gregory; Buh, Valentine Ebua; Chancellor, Rebecca; Cipoletta, Chloe; Cohen, Heather; Corogenes, Katherine; Coupland, Charlotte; Curran, Bryan; Deschner, Tobias; Dierks, Karsten; Dieguez, Paula; Dilambaka, Emmanuel; Diotoh, Orume; Dowd, Dervla; Dunn, Andrew; Eshuis, Henk; Fernandez, Rumen; Ginath, Yisa; Hart, John; Hedwig, Daniela; Ter Heegde, Martijn; Hicks, Thurston Cleveland; Imong, Inaoyom; Jeffery, Kathryn J; Junker, Jessica; Kadam, Parag; Kambi, Mohamed; Kienast, Ivonne; Kujirakwinja, Deo; Langergraber, Kevin; Lapeyre, Vincent; Lapuente, Juan; Lee, Kevin; Leinert, Vera; Meier, Amelia; Maretti, Giovanna; Marrocoli, Sergio; Mbi, Tanyi Julius; Mihindou, Vianet; Moebius, Yasmin; Morgan, David; Morgan, Bethan; Mulindahabi, Felix; Murai, Mizuki; Niyigabae, Protais; Normand, Emma; Ntare, Nicolas; Ormsby, Lucy Jayne; Piel, Alex; Pruetz, Jill; Rundus, Aaron; Sanz, Crickette; Sommer, Volker; Stewart, Fiona; Tagg, Nikki; Vanleeuwe, Hilde; Vergnes, Virginie; Willie, Jacob; Wittig, Roman M; Zuberbuehler, Klaus; Boesch, Christophe

    2016-01-01

    The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behaviour leading to artefacts and their assemblages to be incorporated. Here, we describe newly discovered stone tool-use behaviour and stone accumulation sites in wild chimpanzees reminiscent of human cairns. In addition to data from 17 mid- to long-term chimpanzee research sites, we sampled a further 34 Pan troglodytes communities. We found four populations in West Africa where chimpanzees habitually bang and throw rocks against trees, or toss them into tree cavities, resulting in conspicuous stone accumulations at these sites. This represents the first record of repeated observations of individual chimpanzees exhibiting stone tool use for a purpose other than extractive foraging at what appear to be targeted trees. The ritualized behavioural display and collection of artefacts at particular locations observed in chimpanzee accumulative stone throwing may have implications for the inferences that can be drawn from archaeological stone assemblages and the origins of ritual sites. PMID:26923684

  8. Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing

    Science.gov (United States)

    Tan, Jihua; Duan, Jingchun; Zhen, Naijia; He, Kebin; Hao, Jiming

    2016-01-01

    The abundance, behavior, and source of chemical species in size-fractionated atmospheric particle were studied with a 13-stage low pressure impactor (ELPI) during high polluted winter episode in Beijing. Thirty three elements (Al, Ca, Fe, K, Mg, Na, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, and Pb) and eight water soluble ions (Cl-, NO3-, SO42 -, NH4+, Na+, K+, Ca2 +, and Mg2 +) were determined by ICP/MS and IC, respectively. The size distribution of TC (OC + EC) was reconstructed. Averagely, 51.5 ± 5.3% and 74.1 ± 3.7% of the total aerosol mass was distributed in the sub-micron (PM1) and fine particle (PM2.5), respectively. A significant shift to larger fractions during heavy pollution episode was observed for aerosol mass, NH4+, SO42 -, NO3-, K, Fe, Cu, Zn, Cd, and Pb. The mass size distributions of NH4+, SO42 -, NO3-, and K were dominated by accumulation mode. Size distributions of elements were classified into four main types: (I) elements were enriched within the accumulation mode (fine, intermediate, and coarse modes; and (IV) those which were mainly found within particles larger than 2.7 μm (Al, Mg, Si, Ca, Sc, Tl, Fe, Sr, Zr, and Ba). [H+]cor showed an accumulation mode at 600-700 nm and the role of Ca2 + should be fully considered in the estimation of acidity. The acidity in accumulation mode particles suggested that generally gaseous NH3 was not enough to neutralize sulfate completely. PMF method was applied for source apportionment of elements combined with water soluble ions. Dust, vehicle, aged coal combustion, and sea salt were identified, and the size resolved source apportionments were discussed. Aged coal combustion was the important source of fine particles and dust contributed most to coarse particle.

  9. Seasonal variation of atmospheric particle number concentrations, new particle formation and atmospheric oxidation capacity at the high Arctic site Villum Research Station, Station Nord

    Science.gov (United States)

    Nguyen, Quynh T.; Glasius, Marianne; Sørensen, Lise L.; Jensen, Bjarne; Skov, Henrik; Birmili, Wolfram; Wiedensohler, Alfred; Kristensson, Adam; Nøjgaard, Jacob K.; Massling, Andreas

    2016-09-01

    This work presents an analysis of the physical properties of sub-micrometer aerosol particles measured at the high Arctic site Villum Research Station, Station Nord (VRS), northeast Greenland, between July 2010 and February 2013. The study focuses on particle number concentrations, particle number size distributions and the occurrence of new particle formation (NPF) events and their seasonality in the high Arctic, where observations and characterization of such aerosol particle properties and corresponding events are rare and understanding of related processes is lacking.A clear accumulation mode was observed during the darker months from October until mid-May, which became considerably more pronounced during the prominent Arctic haze months from March to mid-May. In contrast, nucleation- and Aitken-mode particles were predominantly observed during the summer months. Analysis of wind direction and wind speed indicated possible contributions of marine sources from the easterly side of the station to the observed summertime particle number concentrations, while southwesterly to westerly winds dominated during the darker months. NPF events lasting from hours to days were mostly observed from June until August, with fewer events observed during the months with less sunlight, i.e., March, April, September and October. The results tend to indicate that ozone (O3) might be weakly anti-correlated with particle number concentrations of the nucleation-mode range (10-30 nm) in almost half of the NPF events, while no positive correlation was observed. Calculations of air mass back trajectories using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for the NPF event days suggested that the onset or interruption of events could possibly be explained by changes in air mass origin. A map of event occurrence probability was computed, indicating that southerly air masses from over the Greenland Sea were more likely linked to those events.

  10. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO, Siberia, during a summer campaign

    Directory of Open Access Journals (Sweden)

    E. F. Mikhailov

    2015-03-01

    Full Text Available In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO in Central Siberia (61° N; 89° E from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical composition of aerosol particles were analyzed by X-ray micro-spectroscopy (STXM-NEXAFS and transmission electron microscopy (TEM. A mass closure analysis indicates that organic carbon accounted for 61 and 38% of PM in the accumulation mode and coarse mode, respectively. The water soluble fraction of organic matter was estimated to be 52 and 8% of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ∼34% in the accumulation vs. ∼47% in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA over the range of 5–99.4% RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same RH, starting at ∼70%, while efflorescence occurred at different humidities, i.e., at ∼35% RH for submicron particles vs. ∼50% RH for supermicron particles. This ∼15% RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4% RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv, ws value related to the water soluble (ws fraction was estimated to be ∼0

  11. Chimpanzee accumulative stone throwing

    OpenAIRE

    Hjalmar S Kühl; Kalan, Ammie K.; Mimi Arandjelovic; Floris Aubert; Lucy D’Auvergne; Annemarie Goedmakers; Sorrel Jones; Laura Kehoe; Sebastien Regnaut; Alexander Tickle; Els Ton; Joost van Schijndel; Abwe, Ekwoge E; Samuel Angedakin; Anthony Agbor

    2016-01-01

    The authors would like to thank the Max Planck Society and Krekeler Foundation for generous funding of the Pan African Programme. The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behav...

  12. Information Accumulation in Development

    OpenAIRE

    Acemoglu, Daron; Zilibotti, Fabrizio

    1998-01-01

    We propose a model in which economic relations and institutions in advanced and less developed countires differ as these societies have access to different amounts of information. The lack of information in less developped economies makes it hard to evaluate the performance of managers, and leads to high "agency costs". Differencies in the amount of information have a variety of sources. As well as factors related to the informational infrastructure, we emphasize that societies accumulate inf...

  13. Failure Modes

    DEFF Research Database (Denmark)

    Jakobsen, K. P.; Burcharth, H. F.; Ibsen, Lars Bo;

    1999-01-01

    The present appendix contains the derivation of ten different limit state equations divided on three different failure modes. Five of the limit state equations can be used independently of the characteristics of the subsoil, whereas the remaining five can be used for either drained or undrained...

  14. Long term particle size distribution measurements at Mount Waliguan, a high-altitude site in inland China

    Directory of Open Access Journals (Sweden)

    N. Kivekäs

    2009-08-01

    Full Text Available Particle number size distributions in size range 12–570 nm were measured continuously at Mount Waliguan, a remote mountain-top station in inland China. The station is located at the altitude of 3816 m a.s.l., and some 600–1200 m above the surrounding area. The measurement period lasted from September 2005 to May 2007. The measurements were verified with independent CPC measurements at the same site. The average particle concentration in ambient conditions was 2030 cm−3, which is higher than the values measured at similar altitude in other regions of the world. On average, the Aitken mode contributed to roughly half of the particle number concentration. The concentrations were found to be higher during the summer than during the winter. The diurnal variation was also investigated and a clear pattern was found for the nucleation mode during all seasons, so that the nucleation mode particle concentration increased in the afternoon. The same pattern was visible in the Aitken mode during the summer, whereas the accumulation mode did not show any level of diurnal pattern during any season. Excluding the nucleation mode, the average day-time particle concentrations were not significantly higher than those measured at night-time, indicating no systematic pattern of change between planetary boundary layer conditions and free troposphere conditions. In air masses coming from east, the number concentration of particles was higher than in other air masses, which indicates that the air mass might be affected anthropogenic pollution east of the station. Also other factors, such as active new-particle formation, keep aerosol number concentrations high in the area.

  15. Long term particle size distribution measurements at Mount Waliguan, a high-altitude site in inland China

    Directory of Open Access Journals (Sweden)

    N. Kivekäs

    2009-01-01

    Full Text Available Particle number size distributions in size range 12–570nm were measured continuously at Mount Waliguan, a remote mountain-top station in inland China. The station is located at the altitude of 3816 m above the sea level, and some 600 m above the surrounding area. The measurement period lasted from September 2005 to May 2007. The measurements were verified with independent CPC measurements at the same site. The average particle concentration in ambient conditions was 2040 cm−3, which is higher than the values measured at similar altitude in other regions of the world. On average, the Aitken mode contributed to roughly half of the particle number concentration. The concentrations were found to be higher during the summer than during the winter. The diurnal variation was also investigated and a clear pattern was found for the nucleation mode during all seasons, so that the nucleation mode particle concentration increased in the afternoon. The same pattern was visible in the Aitken mode during the summer, whereas the accumulation mode did not show any level of diurnal pattern. Excluding the nucleation mode, the average day-time particle concentrations were not significantly higher than those measured at night-time, indicating no systematic pattern of change between planetary boundary layer conditions and free troposphere conditions. In air masses coming from east, the number concentration of particles was higher than in other air masses, which indicates that the air mass might be affected by anthropogenic pollution east of the station. Also other factors, such as active new-particle formation, keep aerosol number concentrations high in the area.

  16. Causality and Primordial Tensor Modes

    CERN Document Server

    Baumann, Daniel

    2009-01-01

    We introduce the real space correlation function of $B$-mode polarization of the cosmic microwave background (CMB) as a probe of superhorizon tensor perturbations created by inflation. By causality, any non-inflationary mechanism for gravitational wave production after reheating, like global phase transitions or cosmic strings, must have vanishing correlations for angular separations greater than the angle subtended by the particle horizon at recombination, i.e. $\\theta \\gtrsim 2^\\circ$. Since ordinary $B$-modes are defined non-locally in terms of the Stokes parameters $Q$ and $U$ and therefore don't have to respect causality, special care is taken to define `causal $\\tilde B$-modes' for the analysis. We compute the real space $\\tilde B$-mode correlation function for inflation and discuss its detectability on superhorizon scales where it provides an unambiguous test of inflationary gravitational waves. The correct identification of inflationary tensor modes is crucial since it relates directly to the energy s...

  17. Scissors Mode in Gd Nuclei

    Directory of Open Access Journals (Sweden)

    Wu C.Y.

    2012-02-01

    Full Text Available Spectra of γ rays following neutron capture at isolated resonances of 6 stable Gd isotopes were measured with highly segmented BaF2 detector DANCE at the Los Alamos LANSCE spallation neutron source. The main emphasis was put on studying the γ-cascade decay of neutron resonances to get unique information on photon strength. An analysis of the accumulated γ-ray spectra within the extreme statistical model leads to an inescapable conclusion that scissors mode resonances are built not only on the ground-state, but also on excited levels in all product nuclei studied. The results on summed B(M1↑ strength and energy of the scissors mode are compared with systematics of scissors mode parameters for the ground-state transitions deduced from nuclear resonance fluorescence measurements. A specific feature of our experiments is the investigation of scissors mode of odd nuclei, for which the nuclear resonance fluorescence provides only limited information.

  18. Scissors Mode in Gd Nuclei

    Science.gov (United States)

    Kroll, J.; Baramsai, B.; Becker, J. A.; Bečvář, F.; Bredeweg, T. A.; Couture, A.; Chyzh, A.; Dashdorj, D.; Haight, R. C.; Jandel, M.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Parker, W.; Rundberg, R. S.; Ullmann, J. L.; Vieira, G. J.; Walker, C. L.; Wilhelmy, J. B.; Wouters, J. M.; Wu, C. Y.

    2012-02-01

    Spectra of γ rays following neutron capture at isolated resonances of 6 stable Gd isotopes were measured with highly segmented BaF2 detector DANCE at the Los Alamos LANSCE spallation neutron source. The main emphasis was put on studying the γ-cascade decay of neutron resonances to get unique information on photon strength. An analysis of the accumulated γ-ray spectra within the extreme statistical model leads to an inescapable conclusion that scissors mode resonances are built not only on the ground-state, but also on excited levels in all product nuclei studied. The results on summed B(M1)↑ strength and energy of the scissors mode are compared with systematics of scissors mode parameters for the ground-state transitions deduced from nuclear resonance fluorescence measurements. A specific feature of our experiments is the investigation of scissors mode of odd nuclei, for which the nuclear resonance fluorescence provides only limited information.

  19. Evaluation of a global aerosol microphysics model against size-resolved particle statistics in the marine atmosphere

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2007-01-01

    Full Text Available A statistical synthesis of marine aerosol measurements from experiments in four different oceans is used to evaluate a global aerosol microphysics model (GLOMAP. We compare the model against observed size resolved particle concentrations, probability distributions, and the temporal persistence of different size particles. We attempt to explain the observed sub-micrometre size distributions in terms of sulfate and sea spray and quantify the possible contributions of anthropogenic sulfate and carbonaceous material to the number and mass distribution. The model predicts a bimodal size distribution that agrees well with observations as a grand average over all regions, but there are large regional differences. Notably, observed Aitken mode number concentrations are more than a factor 10 higher than in the model for the N Atlantic but a factor 7 lower than the model in the NW Pacific. We also find that modelled Aitken mode and accumulation mode geometric mean diameters are generally smaller in the model by 10–30%. Comparison with observed free tropospheric Aitken mode distributions suggests that the model underpredicts growth of these particles during descent to the marine boundary layer (MBL. Recent observations of a substantial organic component of free tropospheric aerosol could explain this discrepancy. We find that anthropogenic continental material makes a substantial contribution to N Atlantic MBL aerosol, with typically 60–90% of sulfate across the particle size range coming from anthropogenic sources, even if we analyse air that has spent an average of >120 h away from land. However, anthropogenic primary black carbon and organic carbon particles (at the emission size and quantity assumed here do not explain the large discrepancies in Aitken mode number. Several explanations for the discrepancy are suggested. The lack of lower atmospheric particle formation in the model may explain low N Atlantic particle concentrations. However, the

  20. A Research on the Superiority and Applicability of the Mode for Purchase Economically Affordable Housing by Accumulation Fund-Taking Two Typical Cities as Examples%住房公积金购买经适房模式的优越性和适用性研究--以典型城市为例

    Institute of Scientific and Technical Information of China (English)

    曲翔宇; 张运书

    2014-01-01

    以典型城市上海市和合肥市为例,运用6个住房消费指标来定量分析住房公积金购买经适房模式的优越性和适用性。结果表明,其优越性是可以降低消费者购房的总金额和每月的还贷额,减轻消费者还贷压力;其适用性是指该模式适合经济发达地区和经济欠发达地区。最后提出了提高住房公积金的缴存基数以及抑制经适房价格上涨趋势的政策建议。%The paper, selecting two typical cities Shanghai and Hefei as examples, uses six housing consumption indexes to make a quantitative analysis on the superiority and applicability of the mode of purchase economically affordable housing by accumulation fund. The results show that the superiority is that it can reduce the total sum of money for housing purchasers and their loan amount they should pay every month, which reduces the pressure of consumers;the applicability means that it is suitable for developed economic ar-eas and less developed economic areas. At last, it presents the specific policy suggestions on the improvement of the deposit base for housing fund and the curb of trend of rise in prices of economically affordable housing.

  1. Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing

    Science.gov (United States)

    Tan, Jihua; Duan, Jingchun; Zhen, Naijia; He, Kebin; Hao, Jiming

    2016-01-01

    The abundance, behavior, and source of chemical species in size-fractionated atmospheric particle were studied with a 13-stage low pressure impactor (ELPI) during high polluted winter episode in Beijing. Thirty three elements (Al, Ca, Fe, K, Mg, Na, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, and Pb) and eight water soluble ions (Cl-, NO3-, SO42 -, NH4+, Na+, K+, Ca2 +, and Mg2 +) were determined by ICP/MS and IC, respectively. The size distribution of TC (OC + EC) was reconstructed. Averagely, 51.5 ± 5.3% and 74.1 ± 3.7% of the total aerosol mass was distributed in the sub-micron (PM1) and fine particle (PM2.5), respectively. A significant shift to larger fractions during heavy pollution episode was observed for aerosol mass, NH4+, SO42 -, NO3-, K, Fe, Cu, Zn, Cd, and Pb. The mass size distributions of NH4+, SO42 -, NO3-, and K were dominated by accumulation mode. Size distributions of elements were classified into four main types: (I) elements were enriched within the accumulation mode (water soluble ions. Dust, vehicle, aged coal combustion, and sea salt were identified, and the size resolved source apportionments were discussed. Aged coal combustion was the important source of fine particles and dust contributed most to coarse particle.

  2. Dynamic rotor mode in antiferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Lefmann, Kim; Jacobsen, H.; Garde, J.;

    2015-01-01

    We present experimental, numerical, and theoretical evidence for an unusual mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8-nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K...

  3. Damping of tensor modes in inflation

    OpenAIRE

    Ng, Kin-Wang

    2011-01-01

    We discuss the damping of tensor modes due to anisotropic stress in inflation. The effect is negligible in standard inflation and may be significantly large in inflation models that involve drastic production of free-streaming particles.

  4. Modethema Mode

    Directory of Open Access Journals (Sweden)

    Julia Bertschik

    2001-07-01

    Full Text Available Das Themenheft „Mode/Kunst – Fashion/Art“ der Zeitschrift figurationen versammelt heterogene Beiträge, die die Beziehung zwischen Kleidermode und Kunst von der Renaissance bis in die Gegenwart unter literaturwissenschaftlichem Schwerpunkt untersuchen. Reflexionen internationaler Künstler/-innen, Autorinnen und Autoren über die modischen Inszenierungsweisen des Körpers werden dabei auf ihre Darstellung der Geschlechter ebenso überprüft wie auf ihre ästhetische Stellung innerhalb des künstlerischen Gesamtwerks oder des zeitspezifischen Kanons.

  5. The Antiproton Accumulator (AA)

    CERN Multimedia

    1980-01-01

    Section 06 - 08*) of the AA where the dispersion (and hence the horizontal beam size) is large. One can distinguish (left to right): A vacuum-tank, two bending magnets (BST06 and BST07 in blue) with a quadrupole (QDN07, in red) in between, another vacuum-tank, a wide quadrupole (QFW08) and a further tank . The tanks are covered with heating tape for bake-out. The tank left of BST06 contained the stack core pickup for stochastic cooling (see 7906193, 7906190, 8005051), the two other tanks served mainly as vacuum chambers in the region where the beam was large. Peter Zettwoch works on BST06. *) see: H. Koziol, Antiproton Accumulator Parameter List, PS/AA/Note 84-2 (1984)

  6. Particle creation in a toroidal universe

    OpenAIRE

    Fornal, Bartosz

    2012-01-01

    We calculate the particle production rate in an expanding universe with a three-torus topology. We discuss also the complete evolution of the size of such a universe. The energy density of particles created through the nonzero modes is computed for selected masses. The unique contribution of the zero mode and its properties are also analyzed.

  7. Size-resolved flux measurement of sub-micrometer particles over an urban area

    Directory of Open Access Journals (Sweden)

    Malte Julian Deventer

    2013-12-01

    Full Text Available From April 11th to May 27th, 2011, the turbulent exchange of sub-micrometer particles between the urban surface and the urban boundary-layer was measured above the city area of Münster (NW Germany. The scope of the study is to examine the contributions of particles of different size classes to the total measured fluxes. Eddy-covariance measurements were performed at 65 m above ground. The particle concentrations in 99 size bins with particle diameters ranging from 55 to 1000 nm were measured with an optical particle spectrometer. For flux calculations we grouped these 99 original bins into 18 wider channels with an upper cut-off of 320 nm, and a further rather coarse channel for particles up to 1 ?m. The overall results reveal that Münster is a relevant source of about 2.8 · 108 particles m?2 d?1 on weekdays and 1.8 · 108 particles m?2 d?1 on Sundays within the indicated size range. These emissions are predominantly driven by secondary particles of the Aitken mode, which are most likely caused by traffic. Hence traffic hotspots are a major contribution to the net fluxes. On the other hand, considering the mass fluxes, Münster is a sink of 0.53 ?g m?2 d?1 on weekdays and 0.08 ?g m?2 d?1 on Sundays. Here, mainly particles of the accumulation mode with diameters above 167 nm lead to deposition fluxes. Number and mass fluxes exhibit distinct daily and weekly patterns.

  8. The potential contribution of organic salts to new particle growth

    Directory of Open Access Journals (Sweden)

    K. C. Barsanti

    2008-12-01

    Full Text Available Field and lab measurements suggest that low-molecular weight (MW organic acids and bases exist in accumulation and nucleation mode particles, despite their relatively high pure-liquid vapor pressures. The mechanism(s by which such compounds contribute to the mass growth of existing aerosol particles and newly formed particles has not been thoroughly explored. One mechanism by which low-MW compounds may contribute to new particle growth is through the formation of organic salts. In this paper we use thermodynamic modeling to explore the potential for organic salt formation by atmospherically relevant organic acids and bases for two system types: one in which the relative contribution of ammonia vs. amines in forming organic salts was evaluated, the other in which the decrease in volatility of organic acids and bases due to organic salt formation was assessed. The modeling approach employed relied heavily on group contribution and other estimation methods for necessary physical and chemical parameters. The results of this work suggest that amines may be an important contributor to organic salt formation, and that experimental data are greatly needed to improve our understanding of organic salt formation in atmospherically relevant systems and to accurately predict the potential contribution of such salts to new particle growth.

  9. In situ aerosol characterization at Cape Verde. Part 1: Particle number size distributions, hygroscopic growth and state of mixing of the marine and Saharan dust aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Schladitz, Alexander; Muller, Thomas; Nowak, Andreas; Massling, Andreas; Wiedensohler, Alfred (Leibniz Institute for Tropospheric Research, Leipzig (Germany)), e-mail: alexander.schladitz@tropos.de; Kandler, Konrad; Lieke, Kirsten (Institute for Applied Geosciences-Environmental Mineralogy, Technical Univ. Darmstadt, Darmstadt (Germany))

    2011-09-15

    Particle number size distributions and hygroscopic properties of marine and Saharan dust aerosol were investigated during the SAMUM-2 field study at Cape Verde in winter 2008. Aitken and accumulation mode particles were mainly assigned to the marine aerosol, whereas coarse mode particles were composed of sea-salt and a variable fraction of Saharan mineral dust. A new methodical approach was used to derive hygroscopic growth and state of mixing for a particle size range (volume equivalent) from dp{sub ve} = 26 nm to 10 mum. For hygroscopic particles with dp{sub ve} < 100 nm, the median hygroscopicity parameter kappa is 0.35. From 100 nm < dp{sub ve} < 350 nm, kappa increases to 0.65. For larger particles, kappa at dp{sub ve} = 350 nm was used. For nearly hydrophobic particles, kappa is between 0 and 0.1 for dp{sub ve} < 250 nm and decreases to 0 for dp{sub ve} > 250 nm. The mixing state of Saharan dust in terms of the number fraction of nearly hydrophobic particles showed the highest variation and ranges from 0.3 to almost 1. This study was used to perform a successful mass closure at ambient conditions and demonstrates the important role of hygroscopic growth of large sea-salt particles

  10. Emissions from Ethanol-Gasoline Blends: A Single Particle Perspective

    Directory of Open Access Journals (Sweden)

    Peter H. McMurry

    2011-06-01

    Full Text Available Due to its agricultural origin and function as a fuel oxygenate, ethanol is being promoted as an alternative biomass-based fuel for use in spark ignition engines, with mandates for its use at state and regional levels. While it has been established that the addition of ethanol to a fuel reduces the particulate mass concentration in the exhaust, little attention has been paid to changes in the physicochemical properties of the emitted particles. In this work, a dynamometer-mounted GM Quad-4 spark ignition engine run without aftertreatment at 1,500 RPM and 100% load was used with four different fuel blends, containing 0, 20, 40 and 85 percent ethanol in gasoline. This allowed the effects of the fuel composition to be isolated from other effects. Instrumentation employed included two Aerosol Time-of-Flight Mass Spectrometers covering different size ranges for analysis of single particle composition, an Aethalometer for black carbon, a Scanning Mobility Particle Sizer for particle size distributions, a Photoelectric Aerosol Sensor for particle-bound polycyclic aromatic hydrocarbon (PAH species and gravimetric filter measurements for particulate mass concentrations. It was found that, under the conditions investigated here, additional ethanol content in the fuel changes the particle size distribution, especially in the accumulation mode, and decreases the black carbon and total particulate mass concentrations. The molecular weight distribution of the PAHs was found to decrease with added ethanol. However, PAHs produced from higher ethanol-content fuels are associated with NO2− (m/z—46 in the single-particle mass spectra, indicating the presence of nitro-PAHs. Compounds associated with the gasoline (e.g., sulfur-containing species are diminished due to dilution as ethanol is added to the fuel relative to those associated with the lubricating oil (e.g., calcium, zinc, phosphate in the single particle spectra. These changes have potential

  11. The Antiproton Accumulator (AA)

    CERN Multimedia

    1980-01-01

    A section of the AA where the dispersion (and hence the horizontal beam size) is large. One can distinguish (left to right): A large vacuum-tank, a quadrupole (QDN09*), a bending magnet (BST08), another vacuum-tank, a wide quadrupole (QFW08) and (in the background) a further bending magnet (BST08). The tanks are covered with heating tape for bake-out. The tank left of QDN09 contained the kickers for stochastic pre-cooling (see 790621, 8002234, 8002637X), the other one served mainly as vacuum chamber in the region where the beam was large. Peter Zettwoch works on QFW08. * see: H. Koziol, Antiproton Accumulator Parameter List, PS/AA/Note 84-2 (1984) See under 7911303, 7911597X, 8004261 and 8202324. For photos of the AA in different phases of completion (between 1979 and 1982) see: 7911303, 7911597X, 8004261, 8004608X, 8005563X, 8005565X, 8006716X, 8006722X, 8010939X, 8010941X, 8202324, 8202658X, 8203628X .

  12. Water vapour accumulation mechanisms in the Western Mediterranean Basin and the development of European extreme rainfalls

    Directory of Open Access Journals (Sweden)

    E. Sáez de Cámara

    2011-01-01

    Full Text Available This paper examines the role of a recently described warm season circulation at the middle troposphere of northern Africa and that of the recirculation-accumulation mode of the Western Mediterranean Basin (WMB in the initiation of rainfall episodes in central and eastern Europe. Both of these atmospheric mechanisms can accumulate not only soil dust and pollutants for several days but also water vapour by evaporation both over the subtropical Atlantic and the western and central Mediterranean. Accumulation layers are vented off into the surrounding area after the irruption of perturbations. In particular, this work explores the exportation of water vapour under perturbed conditions associated with the passage of ‘Vb’ cyclones. The exceptional rainfall experienced over large areas of central Europe (Elbe/Danube floods during August 11-13, 2002 is exposed as a case study. The procedure to simulate the mechanisms involves a combination of the Regional Atmospheric Modelling System and HYbrid PArticle Concentration and Transport modelling systems. MODIS water vapour products, radio-soundings, wind profiler radars and surface-satellite precipitation data are used to verify the simulation outputs. Our results show that most of the precipitation occurring in the target area during the initiation and deepening of the episode was very likely originated in an air mass exported from the WMB. After our tracking experiment, that air mass, with an initial Atlantic origin, entered the WMB and circulated during 4 days (August 6-9 within the marine boundary layer and the coastal range of mountains of the WMB, accumulating vapour. Then, most of it was transported on August 10, after the irruption of the 'Vb' cyclone Ilse, through the Italian Peninsula and the Adriatic Sea, across the Western Balkans into the target area. The transported vapour together with evaporation en route initiated the rainfall episode.

  13. Airborne observations of aerosol microphysical properties and particle ageing processes in the troposphere above Europe

    Directory of Open Access Journals (Sweden)

    T. Hamburger

    2012-12-01

    Full Text Available In-situ measurements of aerosol microphysical properties were performed in May 2008 during the EUCAARI-LONGREX campaign. Two aircraft, the FAAM BAe-146 and DLR Falcon 20, operated from Oberpfaffenhofen, Germany. A comprehensive data set was obtained comprising the wider region of Europe north of the Alps throughout the whole tropospheric column. Prevailing stable synoptic conditions enabled measurements of accumulating emissions inside the continental boundary layer reaching a maximum total number concentration of 19 000 particles cm−3 stp. Ultra-fine particles as indicators for nucleation events were observed within the boundary layer during high pressure conditions and after updraft of emissions induced by frontal passages above 8 km altitude in the upper free troposphere. Aerosol ageing processes during air mass transport are analysed using trajectory analysis. The ratio of particles containing a non-volatile core (250 °C to the total aerosol number concentration was observed to increase within the first 12 to 48 h from the particle source from 50 to 85% due to coagulation. Aged aerosol also features an increased fraction of accumulation mode particles of approximately 40% of the total number concentration. The presented analysis provides an extensive data set of tropospheric aerosol microphysical properties on a continental scale which can be used for atmospheric aerosol models and comparisons of satellite retrievals.

  14. Airborne observations of aerosol microphysical properties and particle ageing processes in the troposphere above Europe

    Science.gov (United States)

    Hamburger, T.; McMeeking, G.; Minikin, A.; Petzold, A.; Coe, H.; Krejci, R.

    2012-12-01

    In-situ measurements of aerosol microphysical properties were performed in May 2008 during the EUCAARI-LONGREX campaign. Two aircraft, the FAAM BAe-146 and DLR Falcon 20, operated from Oberpfaffenhofen, Germany. A comprehensive data set was obtained comprising the wider region of Europe north of the Alps throughout the whole tropospheric column. Prevailing stable synoptic conditions enabled measurements of accumulating emissions inside the continental boundary layer reaching a maximum total number concentration of 19 000 particles cm-3 stp. Ultra-fine particles as indicators for nucleation events were observed within the boundary layer during high pressure conditions and after updraft of emissions induced by frontal passages above 8 km altitude in the upper free troposphere. Aerosol ageing processes during air mass transport are analysed using trajectory analysis. The ratio of particles containing a non-volatile core (250 °C) to the total aerosol number concentration was observed to increase within the first 12 to 48 h from the particle source from 50 to 85% due to coagulation. Aged aerosol also features an increased fraction of accumulation mode particles of approximately 40% of the total number concentration. The presented analysis provides an extensive data set of tropospheric aerosol microphysical properties on a continental scale which can be used for atmospheric aerosol models and comparisons of satellite retrievals.

  15. Physical and chemical properties of pollution aerosol particles transported from North America to Greenland as measured during the POLARCAT summer campaign

    Directory of Open Access Journals (Sweden)

    B. Quennehen

    2011-04-01

    Full Text Available Within the framework of the POLARCAT-France campaign, aerosol physical, chemical and optical properties over Greenland were measured onboard the French ATR-42 research aircraft. The Lagrangian particle dispersion model FLEXPART was used to determine air mass origins. The study focuses particularly on the characterization of air masses transported from the North American continent. Air masses that picked up emissions from Canadian and Alaskan boreal forest fires as well as from the cities on the American east coast were identified and selected for a detailed study. Measurements of CO concentrations, aerosol chemical composition, aerosol size distributions, aerosol volatile fractions and aerosol light absorption (mainly from black carbon are used in order to study the relationship between CO enhancement, ageing of the air masses, aerosol particle concentrations and size distributions. Aerosol size distributions are in good agreement with previous studies, even though, wet scavenging potentially occurred along the pathway between the emission sources and Greenland leading to lower concentrations in the aerosol accumulation mode. The measured aerosol size distributions show a significant enhancement of Aitken mode particles. It is demonstrated that the Aitken mode is largely composed of black carbon, while the accumulation mode is more dominated by organics, as deduced from aerosol mass spectrometric AMS and aerosol volatility measurements. Overall, during the campaign rather small amounts of black carbon from the North American continent were transported towards Greenland. An important finding given the potential climate impacts of black carbon in the Arctic.

  16. Particle-Particle-String Vertex

    OpenAIRE

    Ishibashi, Nobuyuki

    1996-01-01

    We study a theory of particles interacting with strings. Considering such a theory for Type IIA superstring will give some clue about M-theory. As a first step toward such a theory, we construct the particle-particle-string interaction vertex generalizing the D-particle boundary state.

  17. Physics of the H-mode

    International Nuclear Information System (INIS)

    A theoretical picture of the H-mode is proposed which explains some of the most important features of this good confinement mode in neutral beam heated plasmas with divertors. From consideration of the transport through the separatrix and along the open field lines outside the separatrix, as well as the stability of the plasma inside the separatrix, we show that a bifurcation in the operating parameters is possible. At high edge temperatures, very large particle confinement times are possible because of the Ware pinch. The transport of particles and heat along the open field lines to the divertor region depends on temperature in a non-monotonic way, and the bifurcation of the thermal equilibrium which is implied may correspond to the L- to H-mode transition. The improvement of the interior confinement in the H-mode, when the edge temperature is higher, is shown to follow from the tearing mode stability properties of current profiles with pedestals. (author)

  18. Erosion, sediment transportation and accumulation in rivers

    Institute of Scientific and Technical Information of China (English)

    N.I.ALEKSEEVSKIY; K.M.BERKOVICH; R.S.CHALOV

    2008-01-01

    The present paper analyses the interrelation between erosion,sediment transportation and accumulation proposed by N.I.Makkaveyev (1908-1983) and its further development in modem studies of river channel processes in Russia.Spatio-temporal linkages between erosion and accumulation are defined considering channel processes at different scales - river longitudinal profile,channel morphological patterns,alluvial bedforms (bars,dunes) and individual sediment particles.Relations between river geomorphic activity,flow transportation capacity and sediment budgets are established (sediment input and output;channel bed erosion and sediment entrainment into flow -termination of sediment transport and its deposition).Channel planforms,floodplain segments separated by the latter and alluvial channel bedforms are shown to be geomorphic expressions of sediment transport process at different spatial and temporal scales.This paper is dedicated to the 100th anniversary of N.I.Makkaveyev,Professor of the Moscow State University,author of the book "River channel and erosion in its basin" (1955).That book is regarded in Russia as the pioneering work which initiated the complex hydrological and geographical studies of channel processes and laid a basis for the theory of unified fluvial erosion-accumulation process.

  19. 柴达木盆地北缘南八仙构造油气运聚成藏机理与模式探讨%Discussion of the Mode and Mechanism of Oil and Gas Accumulation in the Nanbaxian Pool in the North of the Qaidam Basin

    Institute of Scientific and Technical Information of China (English)

    李凤君; 罗群; 陈淑兰; 刘运宏; 田丰华

    2005-01-01

    Because of the difference of oil and gas accumulation condition between the hanging wall and the footwall of a fault, there is a peculiar accumulation mechanism that oil and gas mainly exists in the hanging wall of the basement fault, but in the footwall of the shallow detachment fault in the Nanbaxian pool. The oil and gas of the Nanbaxian pool came from the mature Jurassic hydrocarbon source rock of the Yibei depression located at the south of the Nanbaxian pool. Firstly, the oil and gas accumulated in the traps of the hanging wall of the basement fault by way of the unconformity and the basement faults, and turned into some primary deep pools; and then, the shallow detachment fault that formed in the later tectonic movement broke into the deep primary pools, which caused the oil and gas migration upwards along the basement faults and the shallow detachment faults and the evolvement into some secondary oil and gas pools later. The history of the Nanbaxian oil and gas accumulation can be summarized successively as the syndepositional upheaval controlled by faults; single hydrocarbon source rock; unconformities and faults as migration channels; buoyancy, overpressure and tectonic stress as dynamic forces; multistage migration and accumulation of oil and gas; and finally an overlapped double-floor pattern of oil and gas accumulation. The most important explorative targets in the north of the Qaidam Basin are traps connected with the primary pools in the footwall by shallow detachment faults.

  20. Study of second stability for ITG modes

    International Nuclear Information System (INIS)

    The second stability regime for ion-temperature-gradient (ITG) modes is studied in details with a global linear gyrokinetic particle-in-cell code which takes the full toroidal MHD equilibrium data. The trapped-ion and the toroidal ITG regimes are explored. We perform simultaneous ideal MHD stability computations for both kink (n = 1) and ballooning (n = ∝) modes. We use the results to find partially optimized configurations that are stable to ideal MHD modes and where the ITG modes are stable or have very low growth rates. Such configurations are expected to have very low level of ITG-induced transport. (orig.)

  1. Particles Emission from Gasoline Vehicles

    Institute of Scientific and Technical Information of China (English)

    WANG Jun-fang; GE Yun-shan; TAN Jian-wei; HE Chao; YOU Ke-wei; YOU Qiu-wen

    2009-01-01

    Number concentration and size distribution from gasoline cars are investigated at transient modes on the chassis dynamometers,which are measured using electrical low pressure impactor (ELPI) for the ECE15 and EUDC cycles.Results indicate that,during cold start,particle number emission is higher than that under hot start.It is found that the number of particles increases with the vehicle speeds.Furthermore,particles with diameter smaller than 200 nm constitute the predominant part of total emission in the entire cycle.In addition,the tentative information about composition of emitted particles is also discussed.

  2. Accumulation of Radiocesium in Eleutherococcus sciadophylloides

    Energy Technology Data Exchange (ETDEWEB)

    Sugiura, Y.; Takenaka, C.; Kanasashi, T. [Graduate School of Bioagricultural Sciences, Nagoya University, 464-8601, Nagoya City, Aichi Prefecture (Japan); Deguchi, S. [School of Agricultural Sciences, Nagoya University, Nagoya City, Aichi Prefecture, 464-8601 (Japan); Matsuda, Y. [Graduate School of Bioresources, Mie University, Tsu City, Mie Prefecture, 514-0102 (Japan); Ozawa, H. [Fukushima Prefectural Forestry Research Centre, Koriyama City Fukushima Prefecture, 963-0112 (Japan)

    2014-07-01

    1. Introduction: After Fukushima Daiichi Nuclear Power Plant accident, radiocesium ({sup 137}Cs) had deposited on forests in Fukushima Prefecture. In order to comprehend radiocesium circulation in forest ecosystem, it is important to understand about properties of {sup 137}Cs accumulation of each plant species. In addition, {sup 137}Cs accumulator plants would be candidates of phyto-remediation, which is a remediation method using plants to remove pollutants from environment. We aimed to find {sup 137}Cs accumulator plants and to clarify the accumulate mechanisms. 2. Materials and Methods: We collected soil and plant samples at 22 points in Fukushima Prefecture more than once a year from May 2011 to October 2013. Surface (0-5 cm) soils were collected at the same site as the plant sampling. The soil samples were air-dried for 2-3 weeks and then passed through a 2 mm sieve. Foliar samples were washed with tap water to remove soil particles and rinsed with deionized water for {sup 137}Cs and other elements analysis. The samples were dried at 80 deg. C for 48 hr and ground with a mill mixer. {sup 137}Cs activities in soil and plant samples were determined by means of high-purity Ge detector (HPGe). The elements concentrations of the plant samples were determined by inductively coupled plasma mass spectrometry (ICP-MS) after wet digestion with HNO{sub 3}. 3. Results and Discussion: As a whole trend, evergreen tree species such as Camellia japonica and Cryptomeria japonica contained {sup 137}Cs at high concentration due to the deposited {sup 137}Cs on old leaves and foliar absorption. The activities in leaves of deciduous tree species were lower than those in evergreen trees. However, we confirmed that a deciduous tree species, Eleutherococcus sciadophylloides, collected in 2012 and 2013 accumulated {sup 137}Cs, whereas that collected in 2011 did not accumulate {sup 137}Cs. The {sup 137}Cs concentration of E. sciadophylloides in 2012 and 2013 were higher than those of

  3. Dynamic radioactive particle source

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  4. Accumulated damage process of thermal sprayed coating under rolling contact by acoustic emission technique

    Science.gov (United States)

    Xu, Jia; Zhou, Zhen-yu; Piao, Zhong-yu

    2016-09-01

    The accumulated damage process of rolling contact fatigue (RCF) of plasma-sprayed coatings was investigated. The influences of surface roughness, loading condition, and stress cycle frequency on the accumulated damage status of the coatings were discussed. A ball-ondisc machine was employed to conduct RCF experiments. Acoustic emission (AE) technique was introduced to monitor the RCF process of the coatings. AE signal characteristics were investigated to reveal the accumulated damage process. Result showed that the polished coating would resist the asperity contact and remit accumulated damage. The RCF lifetime would then extend. Heavy load would aggravate the accumulated damage status and induce surface fracture. Wear became the main failure mode that reduced the RCF lifetime. Frequent stress cycle would aggravate the accumulated damage status and induce interface fracture. Fatigue then became the main failure mode that also reduced the RCF lifetime.

  5. Energetic particle physics issues for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.Z.; Budny, R.; Fu, G.Y. [and others

    1996-12-31

    This paper summarizes our present understanding of the following energetic/alpha particle physics issues for the 21 MA, 20 TF coil ITER Interim Design configuration and operational scenarios: (a) toroidal field ripple effects on alpha particle confinement, (b) energetic particle interaction with low frequency MHD modes, (c) energetic particle excitation of toroidal Alfven eigenmodes, and (d) energetic particle transport due to MHD modes. TF ripple effects on alpha loss in ITER under a number of different operating conditions are found to be small with a maximum loss of 1%. With careful plasma control in ITER reversed-shear operation, TF ripple induced alpha loss can be reduced to below the nominal ITER design limit of 5%. Fishbone modes are expected to be unstable for {beta}{sub {alpha}} > 1%, and sawtooth stabilization is lost if the ideal kink growth rate exceeds 10% of the deeply trapped alpha precessional drift frequency evaluated at the q = 1 surface. However, it is expected that the fishbone modes will lead only to a local flattening of the alpha profile due to small banana size. MHD modes observed during slow decrease of stored energy after fast partial electron temperature collapse in JT-60U reversed-shear experiments may be resonant type instabilities; they may have implications on the energetic particle confinement in ITER reversed-shear operation. From the results of various TAE stability code calculations, ITER equilibria appear to lie close to TAE linear stability thresholds. However, the prognosis depends strongly on q profile and profiles of alpha and other high energy particles species. If TAE modes are unstable in ITER, the stochastic diffusion is the main loss mechanism, which scales with ({delta}B{sub r}/B){sup 2}, because of the relatively small alpha particle banana orbit size. For isolated TAE modes the particle loss is very small, and TAE modes saturate via the resonant wave-particle trapping process at very small amplitude.

  6. Physical properties of the arctic summer aerosol particles in relation to sources at Ny-Alesund, Svalbard

    Indian Academy of Sciences (India)

    C G Deshpande; A K Kamra

    2014-02-01

    Measurements of the number concentration and size distribution of aerosol particles in the size range of 0.5–20 m diameter were made with an aerodynamic particle sizer at an Arctic site at Ny-Alesund, Svalbard in August–September 2007 during the International Polar Year 2007–2008. Data are analyzed to study the aerosol number concentration–wind speed relationships. The sea-salt particles of marine origin generated within the Arctic circle are identified as the main source of the Arctic summer aerosols. Total number concentration of aerosol particles increases with increase in wind speed, the increase being more when winds from open leads over the oceanic sector are reaching the station as compared to when winds from pack ice in other directions are reaching the station. The larger increase with winds from the oceanic sector is attributed to the enhanced bubble-breaking activity and increased entrainment of dimethyl sulphide particles at the sea surface. Although, the increase in total aerosol number concentration associated with the winds from the oceanic sector is spread over the whole range of particle sizes, the increase in coarse mode particles is more prominent than that in the accumulation mode particles. The age of airmass over pack ice is also an important factor to determine the aerosol concentration over the Arctic region. The process of rainout/washout of the aerosol particles due to drizzle/snowfall is an effective sink mechanism in the Arctic environment. The aerosol particle concentration starts decreasing within a few minutes from the start of these events but requires a few hours to restore to the normal background aerosol level after the end of event.

  7. Mutagenicity of airborne particles.

    Science.gov (United States)

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles.

  8. Idealization Second Quantization of Composite Particles

    Institute of Scientific and Technical Information of China (English)

    ZHOU Duan-Lu; YU Si-Xia; SUN Chang-Pu

    2001-01-01

    A practical method is developed to deal with the second quantization of the many-body system containing the composite particles.In our treatment,the modes associated with composite particles are regarded approximately as independent ones compared with those of unbound particles.The field operators of the composite particles thus arise naturally in the second quantization Hamiltonian.To be emphasized,the second quantization Hamiltonian has the regular structures which correspond clearly to different physical processes.``

  9. Particle migration leads to deposition-free fractionation

    NARCIS (Netherlands)

    Dinther, van A.M.C.; Schroën, C.G.P.H.; Boom, R.M.

    2013-01-01

    In membrane filtration, theporesizeofthemembranedeterminesthesizeof ‘particles’ that shouldbe rejected,leading to accumulation of particles on the membrane surface and changed particle retention in time.A process without accumulation and thereby constant retention as function of time would be well s

  10. Production, growth and properties of ultrafine atmospheric aerosol particles in an urban environment

    Directory of Open Access Journals (Sweden)

    I. Salma

    2011-02-01

    Full Text Available Number concentrations of atmospheric aerosol particles were measured by a flow-switching type differential mobility particle sizer in an electrical mobility diameter range of 6–1000 nm in 30 channels near central Budapest with a time resolution of 10 min continuously from 3 November 2008 to 2 November 2009. Daily median number concentrations of particles varied from 3.8 × 103 to 29 ×103 cm−3 with a yearly median of 11.8 × 103 cm−3. Contribution of ultrafine particles to the total particle number ranged from 58 to 92% with a mean ratio and standard deviation of (79 ± 6%. Typical diurnal variation of the particle number concentration was related to the major emission patterns in cities, new particle formation, sinks of particles and meteorology. Shapes of the monthly mean number size distributions were similar to each other. Overall mean for the number median mobility diameter of the Aitken and accumulation modes were 26 and 93 nm, respectively, which are substantially smaller than for rural or background environments. The Aitken and accumulation modes contributed similarly to the total particle number concentrations at the actual measurement location. New particle formation and growth unambiguously occurred on 83 days, which represent 27% of all relevant days. Hence, new particle formation and growth are not rare phenomena in Budapest. Their frequency showed an apparent seasonal variation with a minimum of 7.3% in winter and a maximum of 44% in spring. New particle formation events were linked to increased gas-phase H2SO4 concentrations. In the studied area, new particle formation is mainly affected by condensation sink and solar radiation. The formation process seems to be not sensitive to SO2, which was present in a yearly median concentration of 6.7 μg m−3. This suggests that the precursor gas was always available in excess

  11. Airborne observations of aerosol microphysical properties and particle ageing processes in the troposphere above Europe

    Directory of Open Access Journals (Sweden)

    T. Hamburger

    2012-08-01

    Full Text Available In-situ measurements of aerosol microphysical properties were performed in May 2008 during the EUCAARI-LONGREX campaign. Two aircraft, the FAAM BAe-146 and DLR Falcon 20, operated from Oberpfaffenhofen, Germany. A comprehensive data set was obtained comprising the wider region of Europe north of the Alps throughout the whole tropospheric column. Prevailing stable synoptic conditions enabled measurements of accumulating emissions inside the continental boundary layer reaching a maximum total number concentration of 19 000 particles cm−3 stp. Nucleation events were observed within the boundary layer during high pressure conditions and after updraft of emissions induced by frontal passages above 8 km altitude in the upper free troposphere. Aerosol ageing processes during air mass transport are analysed using trajectory analysis. The ratio of particles containing a non-volatile core (250 °C to the total aerosol number concentration was observed to increase within the first 12 to 48 h from the particle source from 50 to 85% due to coagulation. Aged aerosol also features an increased fraction of accumulation mode particles of approximately 40% of the total number concentration. The presented analysis provides an extensive data set of tropospheric aerosol microphysical properties on a continental scale which can be used for atmospheric aerosol models and comparisons of satellite retrievals.

  12. Oligopoly banking and capital accumulation

    OpenAIRE

    Nicola Cetorelli; Pietro F. Peretto

    2000-01-01

    We develop a dynamic general equilibrium model of capital accumulation where credit is intermediated by banks operating in a Cournot oligopoly. The number of banks affects capital accumulation through two channels. First, it affects the quantity of credit available to entrepreneurs. Second, it affects banks' decisions to collect costly information about entrepreneurs, and thus determines the efficiency of the credit market. We show that under plausible conditions, the market structure that ma...

  13. Cystathionine accumulation in Saccharomyces cerevisiae.

    OpenAIRE

    Ono, B; Suruga, T; Yamamoto, M.; Yamamoto, S.; Murata, K; Kimura, A; Shinoda, S; Ohmori, S.

    1984-01-01

    A cysteine-dependent strain of Saccharomyces cerevisiae and its prototrophic revertants accumulated cystathionine in cells. The cystathionine accumulation was caused by a single mutation having a high incidence of gene conversion. The mutation was designated cys3 and was shown to cause loss of gamma-cystathionase activity. Cysteine dependence of the initial strain was determined by two linked and interacting mutations, cys3 and cys1 . Since cys1 mutations cause a loss of serine acetyltransfer...

  14. Berreman mode and epsilon near zero mode.

    Science.gov (United States)

    Vassant, Simon; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques

    2012-10-01

    In this paper, we discuss the existence of an electromagnetic mode propagating in a thin dielectric film deposited on a metallic film at the particular frequency such that the dielectric permittivity vanishes. We discuss the remarkable properties of this mode in terms of extreme subwavelength mode confinment and its potential applications. We also discuss the link between this mode, the IR absorption peak on a thin dielectric film known as Berreman effect and the surface phonon polariton mode at the air/dielectric interface. Finally, we establish a connection with the polarization shift occuring in quantum wells. PMID:23188363

  15. Influence of the operating modes of wood-fired stoves on particle emissions; Einfluss der Betriebsweise auf die Partikelemissionen von Holzoefen. Projektzusatz 1+2 zum Projekt Wirkung von Verbrennungspartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Klippel, N.; Nussbaumer, T.

    2007-03-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) examines the influence of the operating characteristics of wood-fired stoves on their particle emissions. Four types of stove are compared: A metal stove with small combustion chamber and a low mass of ceramic lining, a stove with a large combustion chamber and heavier ceramic lining, a newly designed stove with two-stage combustion using gasification and gas oxidation in a separate combustion chamber using secondary air and a modern pellet-fired stove operated with wood and straw pellets. The report describes the measurement programme and presents the results obtained using gravimetric measurements. The spectrum of particle emissions measured for the four types of stove are presented and discussed. The correlation of carbon monoxide and fine-dust emissions is examined. The results of biological tests and the chemical analysis of the dust are discussed.

  16. Primitive Accumulation and Temporalities of Capitalism

    Directory of Open Access Journals (Sweden)

    Joanna Bednarek

    2015-04-01

    Full Text Available The main thesis of the article is the statement that capitalism is composed of many different, incoherent temporalities, as well as that apprehension of capitalism from the angle of primitive accumulation enables the more accurate grasp of the modes of its functioning, including the complexity created by the interactions of the temporalities mentionned. The problem of primitive accumulation is, as Sandro Mezzadra proves, a good starting point for analysing this issue. It allows us to pose two questions: first, the question of the relation between the historical dimension and the structural logic of capitalism; second, the question of hierarchical relation between the center and the periphery of the capitalist system.Dipesh Chakrabarty’s project of ‘provincializing Europe’ proves helpful here, as it’s goal is deconstruction of the categories of progress, modernization and the capital with its abstract structure. The aim is not to negate the fact that capitalist abstraction is a real force, but to show that this force develops by means of constant assimiliation of the other – redefined as ‘backward’ or archaic. The linear scheme is in force, because it is the main mechanism of imposing the power of capital; as such, it is not politically neutral.

  17. Laguerre-Gaussian laser modes for biophotonics and micromanipulation

    Science.gov (United States)

    MacDonald, M. P.; Paterson, L.; Armstrong, G.; Arlt, Jochen; Bryant, P.; Sibbett, Wilson; Dholakia, Kishan

    2003-11-01

    Laguerre-Gaussian (LG) laser modes (annular shaped modes with helical phase fronts) are used to both manipulate and cut microscopic particles. We use holographically produced LG laser modes to manipulate microscopic bubbles. Interference patterns formed from LG modes of opposite phase helicity are used to create 3D structures and to continuously rotate glass rods. The technique of using and LG beam to create microscopic sections of chromosomes is described.

  18. An optical particle size spectrometer for aircraft-borne measurements in IAGOS-CARIBIC

    Science.gov (United States)

    Hermann, Markus; Weigelt, Andreas; Assmann, Denise; Pfeifer, Sascha; Muller, Thomas; Conrath, Thomas; Voigtlander, Jens; Heintzenberg, Jost; Wiedensohler, Alfred; Martinsson, Bengt G.; Deshler, Terry; Brenninkmeijer, Carl A. M.; Zahn, Andreas

    2016-05-01

    The particle number size distribution is an important parameter to characterize the atmospheric aerosol and its influence on the Earth's climate. Here we describe a new optical particle size spectrometer (OPSS) for measurements of the accumulation mode particle number size distribution in the tropopause region on board a passenger aircraft (IAGOS-CARIBIC observatory: In-service Aircraft for a Global Observing System - Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container). A modified KS93 particle sensor from RION Co., Ltd., together with a new airflow system and a dedicated data acquisition system, is the key component of the CARIBIC OPSS. The instrument records individual particle pulse signal curves in the particle size range 130-1110 nm diameter (for a particle refractive index of 1.47-i0.006) together with a time stamp and thus allows the post-flight choice of the time resolution and the size distribution bin width. The CARIBIC OPSS has a 50 % particle detection diameter of 152 nm and a maximum asymptotic counting efficiency of 98 %. The instrument's measurement performance shows no pressure dependency and no particle coincidence for free tropospheric conditions. The size response function of the CARIBIC OPSS was obtained by a polystyrene latex calibration in combination with model calculations. Particle number size distributions measured with the new OPSS in the lowermost stratosphere agreed within a factor of 2 in concentration with balloon-borne measurements over western North America. Since June 2010 the CARIBIC OPSS is deployed once per month in the IAGOS-CARIBIC observatory.

  19. Glycogen accumulation in alveolar type II cells in 3-methylindole--induced pulmonary edema in goats.

    OpenAIRE

    Atwal, O. S.; Bray, T. M.

    1981-01-01

    The present study shows that intravenous infusion of 3-methylindole (3MI) induced acute pulmonary edema in goats. Edematous changes were seen in the alveoli and the interalveolar interstitium. At 72 hours after treatment, an accumulation of glycogen that had a pathognomonic appearance of alpha particles was observed in the alveolar Type II cells. A rich accumulation of glycogen particles and defective lamellar bodies containing triglycerides were the significant morphologic changes in the alv...

  20. Effect of biodiesel on the particle size distribution in the exhaust of common-rail diesel engine and the mechanism of nanoparticle formation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Effect of biodiesel blends on the particle size distribution (PSD) of exhaust aerosol and the mechanism of nanoparticle formation were investigated with a modern common rail light-duty diesel engine. The results showed that PSD of diesel included two modes:nucleation mode (NM) and accumulation mode (CM). The criterion diameter of the two modes is 50 nm. Only CM was observed for all fuels under the condition of 50 N.m,2000 r/min. When the engine torque was higher than 150 N.m,log-modal PSD of diesel shifted to bimodal. At higher loads,if the biodiesel blend ratio was below 60%,the PSD of biodiesel blends still included the two modes. However,no NM particles were found for pure biodiesel. At lower loads,only CM was found in PSD of all fuels. Significant reduction of CM particles was found for biodiesel blends compared with diesel. Discussion on the mechanism of nanoparticle formation indicated that for the light-duty diesel engine with oxidation catalysts,fuel consumption and exhaust temperature increased with increasing the engine loads,and SO2 was converted to SO3 by catalyst which,in its hydrated form,could act as the precursor for biodiesel NM formation. Therefore,sulfur level of biodiesel blends dominates the nanoparticle formation in light-duty diesel engine with oxidation catalysts.

  1. Effect of biodiesel on the particle size distribution in the exhaust of common-rail diesel engine and the mechanism of nanoparticle formation

    Institute of Scientific and Technical Information of China (English)

    ZHANG XuSheng; ZHAO Hui; HU ZongJie; WU ZhiJun; LI LiGuang

    2009-01-01

    Effect of biodiesel blends on the particle size distribution (PSD) of exhaust aerosol and the mechanism of nanoparticle formation were investigated with a modern common rail light-duty diesel engine. The results showed that PSD of diesel included two modes: nucleation mode (NM) and accumulation mode (CM). The criterion diameter of the two modes is 50 rim. Only CM was observed for all fuels under the condition of 50 N. M, 2000 r/min. When the engine torque was higher than 150 N. M, log-modal PSD of diesel shifted to bimodal. At higher loads, if the biodiesel blend ratio was below 60%, the PSD of bio-diesel blends still included the two modes. However, no NM particles were found for pure biodiesel. At lower loads, only CM was found in PSD of all fuels. Significant reduction of CM particles was found for biodiesel blends compared with diesel. Discussion on the mechanism of nanoparUcle formation indi-cated that for the light-duty diesel engine with oxidation catalysts, fuel consumption and exhaust temperature increased with increasing the engine loads, and Sol was converted to SO3 by catalyst which, in its hydrated form, could act as the precursor for biodiesei NM formation. Therefore, sulfur level of biodiesel blends dominates the nanoparticle formation in light-duty diesel engine with oxidation catalysts.

  2. Effects of different corn/wheat year-round tillage modes on post-anthesis dry matter accumulation and transfer and grain yield of wheat in rain-fed farming area of Southern Henan Province.%豫南雨养区周年不同耕作模式对小麦花后干物质动态和产量的影响

    Institute of Scientific and Technical Information of China (English)

    李向东; 季书勤; 张德奇; 郭瑞; 王汉芳; 吕凤荣

    2011-01-01

    A 4-year ( 2006 -2009 ) field experiment was conducted to study the effects of different com-wheat year-round tillage modes on the post-anthesis dry matter accumulation and transfer, grain-filling, and grain yield of winter wheat in a rain-fed farming area of southern Henan Province. Six modes including traditional tillage ( T1 ) , non-straw mulching and pre-sowing shallow plough for corn + straw mulching and non-tillage for wheat (T2), straw mulching and pre-sowing shallow plough for corn + non-straw-mulching and non-tillage for wheat (T3) , non-straw mulching and pre-sowing deep plough for corn + non-straw mulching and non-tillage for wheat (T4) , straw mulching and pre-sowing deep plough for com + straw mulching and non-tillage for wheat (T3) , and non-straw mulching and pre-sowing shallow plough for com + burying smashed straw in soil and rotor tillage (T6) were examined. Among the test modes, T, and T5 showed the best effects, under which, the leaf staying-green period of winter wheat was the longest, and the dry matter accumulation in vegetative organs was significantly higher ( P<0. 05 ) than that under other modes. Also, the transfer amount of the pre-anthesis assimilates in vegetative organs under T,and T5 was higher, and the transfer amount and rate of post-anthesis assimilates in the vegetative organs were 11.9% and 11.7%, and 11.6% and 11.4% higher than those under T3 and T6, respectively ( P<0. 01). Under T, and T5 , the contribution of the post-anthesis assimilates to the grain yield of winter wheat was 8. 4% and 7. 9% , and 8. 8% and 8. 3% higher than that under T3 and T6( P<0. 05 ) , and the grain yield was 7545. 0 and 7480. 5 kg · hnT2, being 14. 8% and 13, 8% higher than that under T6 , respectively (P<0. 01) . Overall, mode T5 had the best effect in promoting the dry matter accumulation in winter wheat vegetative organs and the transfer of post-anthesis assimilates to the grain, and also, played important roles in soil water conservation and

  3. Particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.

    1993-09-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.

  4. Method for direct detection of pitch angle scattering of energetic electrons caused by whistler mode chorus emissions

    Science.gov (United States)

    Kitahara, M.; Katoh, Y.

    2016-06-01

    The Wave-Particle Interaction Analyzer (WPIA), a new instrument proposed by Fukuhara et al. (2009), measures the relative phase angle between the wave magnetic field vector and the velocity vector of each particle and calculates the energy exchange from waves to particles. In this study, we expand its applicability by proposing a method of using the WPIA to directly detect pitch angle scattering of resonant particles by plasma waves by calculating the g values. The g value is defined as the accumulation value of the Lorentz force acting on each particle and indicates the lost momentum of waves. We apply the proposed method to the results of a one-dimensional electron hybrid simulation reproducing the generation of whistler mode chorus emissions around the magnetic equator. Using the wave and particle data obtained at fixed observation points assumed in the simulation system, we conduct a pseudo-observation of the simulation result using the WPIA and analyze the g values. Our analysis yielded significant values indicating the strong pitch angle scattering for electrons in the kinetic energy and pitch angle ranges satisfying the cyclotron resonance condition with the reproduced chorus emissions. The results of this study demonstrate that the proposed method enables us to directly and quantitatively identify the location at which pitch angle scattering occurs in the simulation system and that the method can be applied to the results of space-based observations by the forthcoming Exploration of energization and Radiation in Geospace (ERG) satellite.

  5. Influence of vibration mode on the screening process

    Institute of Scientific and Technical Information of China (English)

    Dong Hailin; Liu Chusheng; Zhao Yuemin; Zhao Lala

    2013-01-01

    The screening of particles with different vibration modes was simulated by means of a 3D discrete element method (3D-DEM).The motion and penetration of the particles on the screen deck were analyzed for linear,circular and elliptical vibration of the screen.The results show that the travel velocity of the particles is the fastest,but the screening efficiency is the lowest,for the linear vibration mode.The circular motion resulted in the highest screening efficiency,but the lowest particle travel velocity.In the steady state the screening efficiency for each mode is seen to increase gradually along the longitudinal direction of the deck.The screening efficiency increment of the circular mode is the largest while the linear mode shows the smallest increment.The volume fraction of near-mesh size particles at the underside is larger than that of small size particles all along the screen deck.Linear screening mode has more nearmesh and small size particles on the first three deck sections,and fewer on the last two sections,compared to the circular or elliptical modes.

  6. Particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, Anwar

    2014-09-01

    Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.

  7. Particle physics

    International Nuclear Information System (INIS)

    Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.

  8. Particle Physics

    CERN Document Server

    Martin, B R

    2008-01-01

    An essential introduction to particle physics, with coverage ranging from the basics through to the very latest developments, in an accessible and carefully structured text. Particle Physics: Third Edition is a revision of a highly regarded introduction to particle physics. In its two previous editions this book has proved to be an accessible and balanced introduction to modern particle physics, suitable for those students needed a more comprehensive introduction to the subject than provided by the 'compendium' style physics books. In the Third Edition the standard mod

  9. Beam accumulation with the SIS electron cooler

    CERN Document Server

    Steck, Markus; Blasche, K; Franczak, B J; Franzke, B; Winkler, T; Parkhomchuk, V V

    2000-01-01

    An electron cooling system has started operation in the heavy ion synchrotron SIS which is used to increase the intensity for highly charged ions. Fast transverse cooling of the hot ion beam after horizontal multiturn injection allows beam accumulation at the injection energy. After optimization of the accumulation process an intensity increase in a synchrotron pulse by more than one order of magnitude has been achieved. For highly charged ions the maximum number of particles has been increased from 1x10 sup 8 to 1x10 sup 9. For lighter ions intensity limitations have been encountered which are caused by the high phase space density of the cooled ion beam. Momentum spreads in the 10 sup - sup 4 range and emittances well below 10 pi mm mrad have been demonstrated. Recombination losses both in the residual gas and with the free cooler electrons determine the maximum intensity for highly charged ions. Systematic measurements of the recombination rates have been performed providing data for an optimum choice of t...

  10. Light-weight materials produced by accumulative roll bonding

    OpenAIRE

    Govindaraj, Nagaraj Vinayagam

    2013-01-01

    The work presented in this thesis is an experimental study of roll bonding and accumulative roll bonding of similar and dissimilar metal combinations with special focus on bond strength evaluation, post process heat treatments and layer continuity of the harder phase. Three objectives have been pursued. The first objective was development of a new method to test the bond strength in tensile mode. The second objective was to assess the influence of post deformation heat treatments on the mecha...

  11. List mode multichannel analyzer

    Science.gov (United States)

    Archer, Daniel E.; Luke, S. John; Mauger, G. Joseph; Riot, Vincent J.; Knapp, David A.

    2007-08-07

    A digital list mode multichannel analyzer (MCA) built around a programmable FPGA device for onboard data analysis and on-the-fly modification of system detection/operating parameters, and capable of collecting and processing data in very small time bins (<1 millisecond) when used in histogramming mode, or in list mode as a list mode MCA.

  12. IMM Iterated Extended Particle Filter Algorithm

    OpenAIRE

    Yang Wan; Shouyong Wang; Xing Qin

    2013-01-01

    In order to solve the tracking problem of radar maneuvering target in nonlinear system model and non-Gaussian noise background, this paper puts forward one interacting multiple model (IMM) iterated extended particle filter algorithm (IMM-IEHPF). The algorithm makes use of multiple modes to model the target motion form to track any maneuvering target and each mode uses iterated extended particle filter (IEHPF) to deal with the state estimation problem of nonlinear non-Gaussian system. IEH...

  13. Morphology and Optical Properties of Mixed Aerosol Particles

    Science.gov (United States)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2016-04-01

    LLPS in accumulation-sized particles and the change in their absorption using a cavity ring down aerosol spectrometer. If LLPS alters the absorptive properties of the suggested model aerosols significantly, absorption measurements of accumulation mode particles of the same composition would allow proving that LLPS indeed occurs in particles of accumulation mode size. Up to now LLPS has not been studied for particles in this size range. References: 1. Bertram, et al. Atmos. Chem & Phys, 11(21), 10995-11006, 2011.
 2. Krieger, et al. Chemical Society Reviews, 41(19), 6631-6662, 2012 
3. Song, M. et al. Geophys Res Lett, 39(19), 2012b 4. Smith et al. Atmos Chem & Phys, 12(20), 9613- 9628, 2012.
 5. You, Y. et al. Proceedings of the National Academy of Sciences, 109(33), 13188-13193, 2012.

  14. Aerosol size distribution and new particle formation in the western Yangtze River Delta of China: 2 years of measurements at the SORPES station

    Science.gov (United States)

    Qi, X. M.; Ding, A. J.; Nie, W.; Petäjä, T.; Kerminen, V.-M.; Herrmann, E.; Xie, Y. N.; Zheng, L. F.; Manninen, H.; Aalto, P.; Sun, J. N.; Xu, Z. N.; Chi, X. G.; Huang, X.; Boy, M.; Virkkula, A.; Yang, X.-Q.; Fu, C. B.; Kulmala, M.

    2015-11-01

    Aerosol particles play important roles in regional air quality and global climate change. In this study, we analyzed 2 years (2011-2013) of measurements of submicron particles (6-800 nm) at a suburban site in the western Yangtze River Delta (YRD) of eastern China. The number concentrations (NCs) of particles in the nucleation, Aitken and accumulation modes were 5300 ± 5500, 8000 ± 4400, 5800 ± 3200 cm-3, respectively. The NCs of total particles are comparable to those at urban/suburban sites in other Chinese megacities, such as Beijing, but about 10 times higher than in the remote western China. Long-range and regional transport largely influenced number concentrations and size distributions of submicron particles. The highest and lowest accumulation-mode particle number concentrations were observed in air masses from the YRD and coastal regions, respectively. Continental air masses from inland brought the highest concentrations of nucleation-mode particles. New particle formation (NPF) events, apparent in 44 % of the effective measurement days, occurred frequently in all the seasons except winter. The frequency of NPF in spring, summer and autumn is much higher than other measurement sites in China. Sulfuric acid was found to be the main driver of NPF events. The particle formation rate was the highest in spring (3.6 ± 2.4 cm-3 s-1), whereas the particle growth rate had the highest values in summer (12.8 ± 4.4 nm h-1). The formation rate was typically high in relatively clean air masses, whereas the growth rate tended to be high in the polluted YRD air masses. The frequency of NPF events and the particle growth rates showed a strong year-to-year difference. In the summer of 2013, associated with a multi-week heat wave and strong photochemical processes, NPF events occurred with larger frequency and higher growth rates compared with the same period in 2012. The difference in the location and strength of the subtropical high pressure system, which influences

  15. Trapping of interacting propelled colloidal particles in inhomogeneous media

    OpenAIRE

    Magiera, Martin P.; Brendel, Lothar

    2014-01-01

    A trapping mechanism for propelled colloidal particles based on an inhomogeneous drive is presented and studied by means of computer simulations. In experiments this method can be realized using photophoretic Janus particles driven by a light source, which shines through a shading mask and leads to an accumulation of the particles in the passive part. An equation for an accumulation parameter is derived using the effective inhomogeneous diffusion constant generated by the inhomogeneous drive....

  16. Particle Distribution in a Fixed Bed Down Draft Wood Gasifier

    DEFF Research Database (Denmark)

    Hindsgaul, Claus

    2005-01-01

    Char particle samples were collected from six distances above the grate in a fixed bed of a down draft biomass gasifier. Each sample was separated into twelve size fractions by screening through standard sieves in order to determine the local particle size distribution. The ash contents of each...... particle fraction was determined. The measured ash content in the larger particles was nearly constant throughout the bed, while ash accumulated in particle sizes around 1 mm near the bottom....

  17. Echo particle image velocimetry.

    Science.gov (United States)

    DeMarchi, Nicholas; White, Christopher

    2012-12-27

    The transport of mass, momentum, and energy in fluid flows is ultimately determined by spatiotemporal distributions of the fluid velocity field.(1) Consequently, a prerequisite for understanding, predicting, and controlling fluid flows is the capability to measure the velocity field with adequate spatial and temporal resolution.(2) For velocity measurements in optically opaque fluids or through optically opaque geometries, echo particle image velocimetry (EPIV) is an attractive diagnostic technique to generate "instantaneous" two-dimensional fields of velocity.(3,4,5,6) In this paper, the operating protocol for an EPIV system built by integrating a commercial medical ultrasound machine(7) with a PC running commercial particle image velocimetry (PIV) software(8) is described, and validation measurements in Hagen-Poiseuille (i.e., laminar pipe) flow are reported. For the EPIV measurements, a phased array probe connected to the medical ultrasound machine is used to generate a two-dimensional ultrasound image by pulsing the piezoelectric probe elements at different times. Each probe element transmits an ultrasound pulse into the fluid, and tracer particles in the fluid (either naturally occurring or seeded) reflect ultrasound echoes back to the probe where they are recorded. The amplitude of the reflected ultrasound waves and their time delay relative to transmission are used to create what is known as B-mode (brightness mode) two-dimensional ultrasound images. Specifically, the time delay is used to determine the position of the scatterer in the fluid and the amplitude is used to assign intensity to the scatterer. The time required to obtain a single B-mode image, t, is determined by the time it take to pulse all the elements of the phased array probe. For acquiring multiple B-mode images, the frame rate of the system in frames per second (fps) = 1/δt. (See 9 for a review of ultrasound imaging.) For a typical EPIV experiment, the frame rate is between 20-60 fps

  18. Accumulation of mercury in fish

    International Nuclear Information System (INIS)

    In model experiments the direct uptake (excluding the food chain) of different dissolved mercury compounds by female species of Poecilia reticulata was investigated using the radiochemical tracer method. Hg-203 labelled Hg(NO3)2 and CH3HgCl were dissolved in deionized water resulting in concentrations of 0.1/1/5/10 and 20 ng Hg/ml H2O. The fish were measured in vivo using a 3'' x 3'' NaI(Tl) well-type-detector. The experiments showed, that the accumulation rate (ng Hg/g/sub fi/. d) depends very much on the chemical form and the concentration of the dissolved Hg-compound. The accumulation in a CH3HgCl-solution is about four times as fast as in a Hg(NO3)2- solution. In the presence of complexing agents the accumulation rates decrease whereas the accumulation rates increase with increasing Hg-concentration in the water. The release of incorporated methylmercury has a half life of about 69 days. For inorganic mercury a two step mechanism has been found with half lives of 4 days and 68 days, respectively. The relative amount of mercury released in the second step increases with increasing time of incorporation. This indicates the methylation of inorganic mercury in the fish

  19. Completeness of the Accumulation Calculus

    Institute of Scientific and Technical Information of China (English)

    虞慧群; 孙永强; 等

    1998-01-01

    The accumulation calculs(AC for short)is an interval based temporal logic to specify and reason about hybrid real-time systems.This paper presents a formal proof system for AC,and proves that the system is complete relative to that of Interval Temporal Logic(ITL for short)on real domain.

  20. Extracting entanglement from identical particles.

    Science.gov (United States)

    Killoran, N; Cramer, M; Plenio, M B

    2014-04-18

    Identical particles and entanglement are both fundamental components of quantum mechanics. However, when identical particles are condensed in a single spatial mode, the standard notions of entanglement, based on clearly identifiable subsystems, break down. This has led many to conclude that such systems have limited value for quantum information tasks, compared to distinguishable particle systems. To the contrary, we show that any entanglement formally appearing amongst the identical particles, including entanglement due purely to symmetrization, can be extracted into an entangled state of independent modes, which can then be applied to any task. In fact, the entanglement of the mode system is in one-to-one correspondence with the entanglement between the inaccessible identical particles. This settles the long-standing debate about the resource capabilities of such states, in particular spin-squeezed states of Bose-Einstein condensates, while also revealing a new perspective on how and when entanglement is generated in passive optical networks. Our results thus reveal new fundamental connections between entanglement, squeezing, and indistinguishability.

  1. Helium accumulation effects using bench marked 0-D model

    International Nuclear Information System (INIS)

    Helium ''ash'' accumulation is a key issue relative to our ability to achieve a steady-state ignited tokamak. 1-D transport simulations using the BALDUR code have been used to examine the correlation between the global helium particle confinement time and the edge exhaust (or recycling) efficiency. This provides a way to benchmark the widely used 0-D model. In this paper, burn conditions for an ITER-like plasma with various helium edge recycling coefficients are examined

  2. Ash accumulation effects using bench marked 0-D model

    International Nuclear Information System (INIS)

    Ash accumulation is a key issue relative to our ability to achieve D-3He ARIES III burn conditions. 1-1/2-d transport simulations using the BALDUR code have been used to examine the correlation between the global ash particle confinement time and the edge exhaust (or recycling) efficiency. This provides a way to benchmark the widely used 0-D model. The burn conditions for an ARIES-III plasma with various ash edge recycling coefficients are examined

  3. Elementary Particles

    Science.gov (United States)

    Parham, R.

    1974-01-01

    Presents the text of a speech given to a conference of physics teachers in which the full spectrum of elementary particles is given, along with their classification. Also includes some teaching materials available on this topic. (PEB)

  4. Higgs particles

    International Nuclear Information System (INIS)

    The theoretical work on models of the electroweak interaction and simple grand unified models with a nonstandard set of Higgs particles is reviewed. Emphasis is placed on light and even strictly massless Higgs particles: Goldstone and pseudo-Goldstone bosons. It is shown that such bosons arise in a natural way in the theory if the Higgs particles are in fact composite. The low-energy effective Lagrangian of these particles is studied. A detailed study is made of the problem of CP breaking in a strong interaction and of a natural solution of this problem through the introduction of a pseudo-Goldstone particle: an axion. The theory of the ''standard'' axion and its experimental status are reviewed. Possible ''invisible'' and ''visualized'' axions are discussed, as are certain astrophysical aspects of the existence of an axion. By analogy with the axion, an analysis is made of another hypothetical particle: the strictly massless Goldstone boson or arion. Model-independent properties of the arion are determined. The similarity between the arion fields and magnetic fields and the differences between these fields are shown. Possible methods for detecting an arion field are discussed. An experiment which has set a limit on the strength of the arion interaction is described. Neutral Goldstone bosons whose emission is accompanied by changes in fermion flavors (''familons'') are discussed. Two versions of the theory with a Goldstone boson (a majoron) which arises upon a spontaneous breaking of lepton number are described

  5. A Systematic Analysis of Coal Accumulation Process

    Institute of Scientific and Technical Information of China (English)

    CHENG Aiguo

    2008-01-01

    Formation of coal seam and coal-rich zone is an integrated result of a series of factors in coal accumulation process. The coal accumulation system is an architectural aggregation of coal accumulation factors. It can be classified into 4 levels: the global coal accumulation super-system, the coal accumulation domain mega.system, the coal accumulation basin system, and the coal seam or coal seam set sub-system. The coal accumulation process is an open, dynamic, and grey system, and is meanwhile a system with such natures as aggregation, relevance, entirety, purpose-orientated, hierarchy, and environment adaptability. In this paper, we take coal accumulation process as a system to study origin of coal seam and coal-rich zone; and we will discuss a methodology of the systematic analysis of coal accumulation process. As an example, the Ordos coal basin was investigated to elucidate the application of the method of the coal accumulation system analysis.

  6. Circling particles and drafting in optical vortices

    OpenAIRE

    Reichert, Michael; Stark, Holger

    2004-01-01

    Particles suspended in a viscous fluid circle in optical vortices generated by holographic optical-tweezer techniques [Curtis J E and Grier D G 2003 Phys. Rev. Lett. 90 133901]. We model this system and show that hydrodynamic interactions between the circling particles determine their collective motion. We perform a linear-stability analysis to investigate the stability of regular particle clusters and illustrate the limit cycle to which the unstable modes converge. We clarify that drafting o...

  7. Metal accumulating plants: Medium's role

    Science.gov (United States)

    Rabier, J.; Prudent, P.; Szymanska, B.; Mevy, J.-P.

    2003-05-01

    To evaluate phytoremediation potentialities by metal accumulation in tolerant plants, trials are carried out using in vitro cultures. Organie compounds influence on metal accumulation is studied with metals supplemented media. The tested compounds on zinc and lead absorption by Brassica juncea, are chelating agents (EDTA, citric acid) and soluble organic fractions of compost. EDTA seems to enhance the transfer of lead in plant but it is the opposite in the case of zinc. Citric acid stimulates root absorption for both zinc and lead. For the aqueous extracts of compost, variable effects are obtained according to the origin of compost (green wastes and food wastes). In'all tested conditions of cultures, zinc is mainly exported towards shoot while lead is stored in root.

  8. Quasilinear Line Broadened Model for Energetic Particle Transport

    Science.gov (United States)

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2011-10-01

    We present a self-consistent quasi-linear model that describes wave-particle interaction in toroidal geometry and computes fast ion transport during TAE mode evolution. The model bridges the gap between single mode resonances, where it predicts the analytically expected saturation levels, and the case of multiple modes overlapping, where particles diffuse across phase space. Results are presented in the large aspect ratio limit where analytic expressions are used for Fourier harmonics of the power exchange between waves and particles, . Implemention of a more realistic mode structure calculated by NOVAK code are also presented. This work is funded by DOE contract DE-AC02-09CH11466.

  9. Entry Modes of Starbucks

    OpenAIRE

    Santamaría Sotillo, Beatriz; Ni, Shuang

    2008-01-01

    Topic:When an MNC seeks to enter a foreign country, it must choose the most appropriate entry mode for that specific market, such as exporting, licensing, a turnkey project, franchising, joint ventures or wholly-owned subsidiaries. There are many factors which affect the choice of entry modes. Influential factors contributing to the entry mode decision can have different degrees of impact for each particular country. As a consequence, an MNC has to use different entry modes in order to adapt ...

  10. Switching mode power supplies

    OpenAIRE

    Beard, David W.

    1980-01-01

    The subject of switching mode power supplies was examined. A comparison between linear regulators and switching mode power supplies was made to show the options available for the various types of convertors. Two switching mode power supplies were constructed and tested. The operating efficiency of both systems was found to be more than eighty percent over the specified input voltage and load current conditions. The switching mode power supply circuits required additional ...

  11. Normal Modes of the B=4 Skyrme Soliton

    CERN Document Server

    Barnes, C; Turok, N G; Barnes, Chris; Baskerville, Kim; Turok, Neil

    1997-01-01

    The Skyrme model of nuclear physics requires quantisation if it is to match observed nuclear properties. A simple technique is used to find the normal mode spectrum of the baryon number $B=4$ Skyrme soliton, representing the $\\alpha$ particle. We find sixteen vibrational modes and classify them under the cubic symmetry group $O_h$ of the static solution. The spectrum possesses a remarkable structure, with the lowest energy modes lying in those representations expected from an approximate correspondence between Skyrmions and BPS monopoles. The next mode up is the `breather', and above that are higher multipole breathing modes.

  12. Debt Redemption and Reserve Accumulation

    OpenAIRE

    Laura Alfaro; Fabio Kanczuk

    2013-01-01

    Foreign participation in local-currency bond markets in emerging countries has increased dramatically over the past decade. In light of this trend, we revisit sovereign debt sustainability and incentives to default when the sovereign is temporarily excluded from capital markets. Differently from previous analyses, we assume that in addition to accumulating international reserves, countries can borrow internationally using their own currency. As opposed to traditional sovereign debt models (al...

  13. Crises and human capital accumulation

    OpenAIRE

    Freddy Heylen; Lorenzo Pozzi

    2007-01-01

    This paper studies the effects of crises on human capital formation. Theoretically, a crisis undermines total factor productivity, which reduces the return to working and to accumulating physical capital. If the crisis is temporary, young agents will study now and work later. Human capital rises. To test our model we rely on inflation crises as our main empirical proxy. Using GMM panel procedures, our analysis for 86 countries in 1970-2000 confirms the positive effects of crises on human capi...

  14. Analysis of micro-particles in TRISTAN vacuum chambers

    International Nuclear Information System (INIS)

    Micro-particles in the beam chamber of a TRISTAN vacuum system were investigated from the point of view of suppressing micro-particles trapped in the accumulation ring. Micro-particles coming from ion pumps (IP) and distributed ion pumps (DIP), aluminium alloy particles produced during treatment of aluminium alloy chambers for welding, micro-particles from the environment, i.e.soil (granite rocks or amphiboles), particles of concrete and painting materials were identified. A molten iron particle found in a chamber suggests interaction between the particle and bunched electron beam. Most of the particles coming from outside the chambers can be avoided by using high class clean rooms. The particles from the ion pumps can be reduced using different pumps which do not emit particles. The particles produced during assembly of, for example, DIP must be suppressed by accepting different assembling from the traditional ones. (author)

  15. Modes of log gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hohm, Olaf; Rosseel, Jan; Townsend, Paul K.

    2011-01-01

    The physical modes of a recently proposed D-dimensional "critical gravity'', linearized about its anti-de Sitter vacuum, are investigated. All "log mode'' solutions, which we categorize as "spin-2'' or "Proca'', arise as limits of the massive spin-2 modes of the noncritical theory. The linearized Ei

  16. Integrated mode converter for mode division multiplexing

    Science.gov (United States)

    Perez-Galacho, Diego; Alonso-Ramos, Carlos Alberto; Marris-Morini, Delphine; Vakarin, Vladyslav; Le Roux, Xavier; Ortega-Moñux, Alejandro; Wangüemert-Perez, Juan Gonzalo; Vivien, Laurent

    2016-05-01

    The ever growing demands of bandwidth in optical communication systems are making traditional Wavelength Division Multiplexing (WDM) based systems to reach its limit. In order to cope with future bandwidth demand is necessary to use new levels of orthogonality, such as the waveguide mode or the polarization state. Mode Division Multiplexing (MDM) has recently attracted attention as a possible solution to increase aggregate bandwidth. In this work we discuss the proposition a of mode converter that can cover the whole C-Band of optical communications. The Mode Converter is based on two Multimode Interference (MMI) couplers and a phase shifter. Insertion loss (IL) below 0.2 dB and Extinction ratio (ER) higher than 20 dB in a broad bandwidth range of 1.5 μm to 1.6 μm have been estimated. The total length of the device is less than 30 μm.

  17. Few-mode fibers for mode division multiplexing transmission

    Science.gov (United States)

    Kubota, Hirokazu; Morioka, Toshio

    2012-01-01

    A study is presented of the fiber properties needed to achieve 10-mode multiplexing transmission. A combination of MIMO processing with optical LP mode separation is proposed to prevent the need for massive MIMO computation. The impact of mode crosstalk, differential mode delay, and the mode dependent loss of the few-mode fibers on mode multiplexing are discussed.

  18. Surface-atmosphere decoupling limits accumulation at Summit, Greenland.

    Science.gov (United States)

    Berkelhammer, Max; Noone, David C; Steen-Larsen, Hans Christian; Bailey, Adriana; Cox, Christopher J; O'Neill, Michael S; Schneider, David; Steffen, Konrad; White, James W C

    2016-04-01

    Despite rapid melting in the coastal regions of the Greenland Ice Sheet, a significant area (~40%) of the ice sheet rarely experiences surface melting. In these regions, the controls on annual accumulation are poorly constrained owing to surface conditions (for example, surface clouds, blowing snow, and surface inversions), which render moisture flux estimates from myriad approaches (that is, eddy covariance, remote sensing, and direct observations) highly uncertain. Accumulation is partially determined by the temperature dependence of saturation vapor pressure, which influences the maximum humidity of air parcels reaching the ice sheet interior. However, independent proxies for surface temperature and accumulation from ice cores show that the response of accumulation to temperature is variable and not generally consistent with a purely thermodynamic control. Using three years of stable water vapor isotope profiles from a high altitude site on the Greenland Ice Sheet, we show that as the boundary layer becomes increasingly stable, a decoupling between the ice sheet and atmosphere occurs. The limited interaction between the ice sheet surface and free tropospheric air reduces the capacity for surface condensation to achieve the rate set by the humidity of the air parcels reaching interior Greenland. The isolation of the surface also acts to recycle sublimated moisture by recondensing it onto fog particles, which returns the moisture back to the surface through gravitational settling. The observations highlight a unique mechanism by which ice sheet mass is conserved, which has implications for understanding both past and future changes in accumulation rate and the isotopic signal in ice cores from Greenland.

  19. Characteristics of ultrafine particle from a compression-ignition engine fueled with low sulfur diesel

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; ZHANG WuGao; LEI Zhu; LI XinLing; HUANG Zhen

    2009-01-01

    Number size distributions (NSDs, 10-487 nm) and composition of nanoparticle emitted from an engine fueled with ordinary diesel (OD) and low sulfur diesel (LSD) fuel were comparatively studied. The re-suits indicate that, compared with the OD, the LSD was found to slightly decrease the mass concentra-tion, and significantly reduce the number concentration of the total particles (10-487 nm), and the reduction of number increased with the speed and load of engine. The NSD for the two fuels showed a similar bimodal structure under all test engine conditions. Under the same engine conditions, the nu-cleation mode for LSD fuel was significantly lower than that of ordinary diesel. However, the accumu-lation mode for the two fuels showed little difference. The elements composition of exhaust particles included C, O, Cl, S, Si, Ca, Na, Al and K. The S element was not detected in LSD fuel case. The main component of soluble organic fraction (SOF) of exhaust particles for the two fuels included saturated alkane (C15-C26), ester and polycyclic aromatic hydrocarbons (PAHs). However, PAHs were not found in LSD fuel case.

  20. Environmental applications of the particle analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, E.J.; Hoffman, C.R.

    1993-09-28

    This study demonstrates the applicability of particle counting technology for analysis of various water treatment systems at the Rocky Flats Plant. The Particle Analysis System described in this study determined the water quality of samples from environmental remediation, stormwater treatment, and drinking water treatment operations. Samples were measured in either discrete or on-line mode. This data showed filtration efficiencies, particle counts, particle size distributions, and real-time treatment system performance. Particle counting proved more sensitive than the turbidimetric measurement technique commonly used by the water treatment industry. Particle counting is a two-dimensional measurement of counts and sizes, whereas turbidity is a one-dimensional measurement of water clarity. Samples showing identical turbidities could be distinguished easily with the Particle Analysis System. The Particle Analysis System proved to be an efficient and reliable water quality measurement tool, and it is applicable to a variety of water treatment systems at the Rocky Flats Plant.

  1. Fuel recycling and natural density in EAST H-mode discharges

    International Nuclear Information System (INIS)

    Highlights: • ELM frequency has clear effect on natural density in EAST tokamak. • Plasma heating power has weak effect on natural density. • Wall retention has weak effect on natural density due to intensive lithium coating. - Abstract: The natural density (plasma density without gas puffing) of an ELMy H-mode discharge is strongly affected by fuel recycling and plasma parameters. In the EAST 2012 campaign fuel recycling and natural density were investigated in H-mode discharges. The results show that natural density is decreased gradually with high frequency ELMs, and increased with low frequency ELMs or in ELM-free phase. Plasma density is increased gradually when H-mode discharge is in the phase of alternating ELM and ELM-free. A statistical investigation and scaling of natural density with various plasma normalized parameters shows the natural density is affected by plasma current, heating power, magnetic configuration, first wall temperature, and divertor cryopump status. The influence of plasma heating power, total number of injected particles, and accumulated fuel retention is very weak, probably due to the intensive lithium conditionings. The results indicate that the natural density could be partially controlled by the combination of different parameters

  2. Particle concentrations and number size distributions in the planetary boundary layer derived from airship based measurements

    Science.gov (United States)

    Tillmann, Ralf; Zhao, Defeng; Ehn, Mikael; Hofzumahaus, Andreas; Holland, Frank; Rohrer, Franz; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    Atmospheric particles play a key role for regional and global climate due to their direct and indirect radiative forcing effects. The concentration and size of the particles are important variables to these effects. Within the continental planetary boundary layer (PBL) the particle number size distribution is influenced by meteorological parameters, local sinks and sources resulting in variable spatial distributions. However, measurements of particle number size distributions over a broad vertical range of the PBL are rare. The airship ZEPPELIN NT is an ideal platform to measure atmospheric aerosols on a regional scale within an altitude range up to 1000 m. For campaigns in the Netherlands, Northern Italy and South Finland in 2012 and 2013 the airship was deployed with a wide range of instruments, including measurements of different trace gases, short lived radicals, solar radiation, aerosols and meteorological parameters. Flights were carried out at different times of the day to investigate the influence of the diurnal evolution of the PBL on atmospheric trace gases and aerosols. During night and early morning hours the concentration and size distribution of atmospheric particles were found to be strongly influenced by the layered structure of the PBL, i.e. the nocturnal boundary layer and the residual layer. Within the residual layer particle concentrations stay relatively constant as this layer is decoupled from ground sources. The particles persist in the accumulation mode as expected for an aged aerosol. In the nocturnal boundary layer particle concentrations and size are more dynamic with higher concentrations than in the residual layer. A few hours after sunrise, the layered structure of the PBL intermixes. During daytime the PBL is well mixed and a negative concentration gradient with increasing height is observed. Several height profiles at different times of the day and at different locations in Europe were measured. The aerosol measurements will be

  3. Heavy Metals Accumulation in Topsoils from the Wine-growing Regions Part 1. Factors which Control Retention

    Directory of Open Access Journals (Sweden)

    Marija Romić

    2004-03-01

    Full Text Available The problem of exposure of agricultural soils to different anthropogenic inputs of heavy metals has been investigated in soils from two wine-producing subregions in northwestern Croatia. The aim of this study was to explore :(i the main soil properties and topsoil accumulation of heavy metals in vineyards under long-term cultivation, and (ii the origin and the preferential feature of metal retention in vineyard topsoil using the multivariate statistical method. The investigated area was marked on regular square grid with 1-km spacing. Topsoil samples (0-10 cm were collected from each sampling point and analyzed for soil chemical properties, particle size distribution and heavy metal concentrations after aqua region digestion. All soil data were incorporate into the GIS base. Summary statistics of the data set were first calculated to evaluate the distributions, and afterward processed by means of R-mode factor analysis, applying the varimax-raw rotational technique. Anthropogenic input of metals in soils of the studied wine-growing regions mostly originates from agrochemicals, since the direct influence of the urban environment or industry is almost negligible. Accumulation of copper and zinc in topsoil, determined in this research, is the most common effect of continuing fertilization and protection against diseases and pests in vineyards.

  4. Modes of Log Gravity

    CERN Document Server

    Bergshoeff, Eric A; Rosseel, Jan; Townsend, Paul K

    2011-01-01

    The physical modes of a recently proposed D-dimensional "critical gravity", linearized about its anti-de Sitter vacuum, are investigated. All "log mode" solutions, which we categorize as `spin 2' or `Proca', arise as limits of the massive spin 2 modes of the non-critical theory. The linearized Einstein tensor of a spin 2 log mode is itself a 'non-gauge' solution of the linearized Einstein equations whereas the linearized Einstein tensor of a Proca mode takes the form of a linearized general coordinate transformation. Our results suggest the existence of a holographically dual logarithmic conformal field theory.

  5. Hygroscopic growth of urban aerosol particles in Beijing (China during wintertime: a comparison of three experimental methods

    Directory of Open Access Journals (Sweden)

    J. Meier

    2009-03-01

    Full Text Available This paper presents hygroscopicity measurements of aerosol particles in the urban atmosphere of Beijing carried out in January 2005. Therefore, three different methods were used: 1 Combining Humidifying Differential Mobility Particle Sizer (H-DMPS and Twin Differential Mobility Particle Sizer (TDMPS measurements; 2 Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA technique; 3 Calculating hygroscopic growth factors on the basis of a solubility model quantified by Micro Orifice Uniform Deposit Impactor (MOUDI samples. Particle number size distributions from H-DMPS and TDMPS were evaluated to derive size-resolved descriptive hygroscopic growth factors (DHGF of 30–400 nm particles at relative humidities (RH of 55%, 77% and 90%. The atmospheric particles in Beijing were rather hydrophobic, with a maximum growth factor in the accumulation mode around 1.40 (±0.03 at 90% RH. The descriptive hygroscopic growth factors decreased significantly towards the lower measurement limit (1.04 (±0.15 at Dp=30 nm. A good agreement was found between the DHGFs and the H-TDMA-derived hygroscopic growth factors in the accumulation mode (100–400 nm, the DHGFs underestimated the values from the H-TDMA in the Aitken mode (<100 nm by up to 0.1 at 90% RH. The calculation of hygroscopic growth factors based on the measured chemical composition showed that different modes of combining the inorganic ions caused a variation in growth factor of 0.1 at 90% RH. The solubility model was able to reproduce the size-dependent trend in the growth factor found by the other methods. In two cases of ion-dominated aerosol, the composition-derived growth factors tended to agree (±0.05 or underestimate (up to 0.1 the values measured by the other two methods. In the case of the organic-dominated aerosol, the reverse was true, with an overestimation of up to 0.2. The results shed light on the real experimental and methodological uncertainties that are still

  6. Harmonic Oscillators and Elementary Particles

    CERN Document Server

    Sobouti, Y

    2016-01-01

    Two dynamical systems with same symmetry should have features in common, and as far as their shared symmetry is concerned, one may represent the other. The three light quark constituents of the hadrons, a) have an approximate flavor SU(3) symmetry, b) have an exact color SU(3) symmetry, and c) as spin 1/2 particles, have a Lorentz SO(3,1) symmetry. So does a 3D harmonic oscillator. a) Its Hamiltonian has the SU(3) symmetry, breakable if the 3 fundamental modes of oscillation are not identical. b) The 3 directions of oscillation have the permutation symmetry. This enables one to create three copies of unbreakable SU(3) symmetry for each mode of the oscillation, and mimic the color of the elementary particles. And c) The Lagrangian of the 3D oscillator has the SO(3,1) symmetry. This can be employed to accommodate the spin of the particles. In this paper we draw up a one-to-one correspondence between the eigen modes of the Poisson bracket operator of the 3D oscillator and the flavor multiplets of the particles, ...

  7. Source apportionment of size-segregated atmospheric particles based on the major water-soluble components in Lecce (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Contini, D., E-mail: d.contini@isac.cnr.it [Istituto di Scienze dell' Atmosfera e del Clima, ISAC-CNR, Lecce (Italy); Cesari, D. [Istituto di Scienze dell' Atmosfera e del Clima, ISAC-CNR, Lecce (Italy); Genga, A.; Siciliano, M. [Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce (Italy); Ielpo, P. [Istituto di Scienze dell' Atmosfera e del Clima, ISAC-CNR, Lecce (Italy); Istituto di Ricerca Sulle Acque, IRSA-CNR, Bari (Italy); Guascito, M.R. [Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce (Italy); Conte, M. [Istituto di Scienze dell' Atmosfera e del Clima, ISAC-CNR, Lecce (Italy)

    2014-02-01

    Atmospheric aerosols have potential effects on human health, on the radiation balance, on climate, and on visibility. The understanding of these effects requires detailed knowledge of aerosol composition and size distributions and of how the different sources contribute to particles of different sizes. In this work, aerosol samples were collected using a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI). Measurements were taken between February and October 2011 in an urban background site near Lecce (Apulia region, southeast of Italy). Samples were analysed to evaluate the concentrations of water-soluble ions (SO{sub 4}{sup 2−}, NO{sub 3}{sup −}, NH{sub 4}{sup +}, Cl{sup −}, Na{sup +}, K{sup +}, Mg{sup 2+} and Ca{sup 2+}) and of water-soluble organic and inorganic carbon. The aerosols were characterised by two modes, an accumulation mode having a mass median diameter (MMD) of 0.35 ± 0.02 μm, representing 51 ± 4% of the aerosols and a coarse mode (MMD = 4.5 ± 0.4 μm), representing 49 ± 4% of the aerosols. The data were used to estimate the losses in the impactor by comparison with a low-volume sampler. The average loss in the MOUDI-collected aerosol was 19 ± 2%, and the largest loss was observed for NO{sub 3}{sup −} (35 ± 10%). Significant losses were observed for Ca{sup 2+} (16 ± 5%), SO{sub 4}{sup 2−} (19 ± 5%) and K{sup +} (10 ± 4%), whereas the losses for Na{sup +} and Mg{sup 2+} were negligible. Size-segregated source apportionment was performed using Positive Matrix Factorization (PMF), which was applied separately to the coarse (size interval 1–18 μm) and accumulation (size interval 0.056–1 μm) modes. The PMF model was able to reasonably reconstruct the concentration in each size-range. The uncertainties in the source apportionment due to impactor losses were evaluated. In the accumulation mode, it was not possible to distinguish the traffic contribution from other combustion sources. In the coarse mode, it was not possible to

  8. Particle physics

    CERN Document Server

    Martin, Brian R

    2017-01-01

    An accessible and carefully structured introduction to Particle Physics, including important coverage of the Higgs Boson and recent progress in neutrino physics. Fourth edition of this successful title in the Manchester Physics series. Includes information on recent key discoveries including : An account of the discovery of exotic hadrons, beyond the simple quark model; Expanded treatments of neutrino physics and CP violation in B-decays; An updated account of ‘physics beyond the standard model’, including the interaction of particle physics with cosmology; Additional problems in all chapters, with solutions to selected problems available on the book’s website; Advanced material appears in optional starred sections.

  9. Mode selection laser

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a semiconductor mode selection laser, particularly to a VCSEL laser (200) having mode selection properties. The mode selection capability of the laser is achieved by configuring one of the reflectors (15,51) in the resonance cavity so that a reflectivity of the reflector...... (15) varies spatially in one dimension or two dimensions. Accordingly, the reflector (15) with spatially varying reflectivity is part both of the resonance cavity and the mode selection functionality of the laser. A plurality of the lasers configured with different mode selectors, i.e. different...... spatial reflector variations, may be combined to generate a laser beam containing a plurality of orthogonal modes. The laser beam may be injected into a few- mode optical fiber, e.g. for the purpose of optical communication. The VCSEL may have intra-cavity contacts (31,37) and a Tunnel junction (33...

  10. Organic Nitrate Contribution to New Particle Formation and Growth in Secondary Organic Aerosols from α-Pinene Ozonolysis.

    Science.gov (United States)

    Berkemeier, Thomas; Ammann, Markus; Mentel, Thomas F; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-06-21

    The chemical kinetics of organic nitrate production during new particle formation and growth of secondary organic aerosols (SOA) were investigated using the short-lived radioactive tracer (13)N in flow-reactor studies of α-pinene oxidation with ozone. Direct and quantitative measurements of the nitrogen content indicate that organic nitrates accounted for ∼40% of SOA mass during initial particle formation, decreasing to ∼15% upon particle growth to the accumulation-mode size range (>100 nm). Experiments with OH scavengers and kinetic model results suggest that organic peroxy radicals formed by α-pinene reacting with secondary OH from ozonolysis are key intermediates in the organic nitrate formation process. The direct reaction of α-pinene with NO3 was found to be less important for particle-phase organic nitrate formation. The nitrogen content of SOA particles decreased slightly upon increase of relative humidity up to 80%. The experiments show a tight correlation between organic nitrate content and SOA particle-number concentrations, implying that the condensing organic nitrates are among the extremely low volatility organic compounds (ELVOC) that may play an important role in the nucleation and growth of atmospheric nanoparticles. PMID:27219077

  11. VH mode accessibility and global H-mode properties in previous and present JET configurations

    International Nuclear Information System (INIS)

    In JET VH modes, there is a distinct confinement transition following the cessation of ELMs, observed in a wide variety of tokamak operating conditions, using both NBI and ICRF heating methods. Important factors which influence VH mode accessibility such as magnetic configuration and vessel conditions have been identified. The new JET pumped divertor configuration has much improved plasma shaping control and power and particle exhaust capability and should permit exploitation of plasmas with VH confinement properties over an even wider range of operating regimes, particularly at high plasma current; first H-modes have been obtained in the 1994 JET operating period and initial results are reported. (authors). 7 refs., 6 figs

  12. VH mode accessibility and global H-mode properties in previous and present JET configurations

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T.T.C.; Ali-Arshad, S.; Bures, M.; Christiansen, J.P.; Esch, H.P.L. de; Fishpool, G.; Jarvis, O.N.; Koenig, R.; Lawson, K.D.; Lomas, P.J.; Marcus, F.B.; Sartori, R.; Schunke, B.; Smeulders, P.; Stork, D.; Taroni, A.; Thomas, P.R.; Thomsen, K. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    In JET VH modes, there is a distinct confinement transition following the cessation of ELMs, observed in a wide variety of tokamak operating conditions, using both NBI and ICRF heating methods. Important factors which influence VH mode accessibility such as magnetic configuration and vessel conditions have been identified. The new JET pumped divertor configuration has much improved plasma shaping control and power and particle exhaust capability and should permit exploitation of plasmas with VH confinement properties over an even wider range of operating regimes, particularly at high plasma current; first H-modes have been obtained in the 1994 JET operating period and initial results are reported. (authors). 7 refs., 6 figs.

  13. Characterization and parameterization of atmospheric particle number-, mass-, and chemical-size distributions in central Europe during LACE 98 and MINT

    Science.gov (United States)

    Neusüß, C.; Wex, H.; Birmili, W.; Wiedensohler, A.; Koziar, C.; Busch, B.; Brüggemann, E.; Gnauk, T.; Ebert, M.; Covert, D. S.

    2002-11-01

    Intensive measurements of chemical and physical properties of the atmospheric aerosol have been performed at two sites in central Europe during the Melpitz-Intensive (MINT) in November 1997 and the Lindenberg Aerosol Characterization Experiment 1998 (LACE 98) in July and August 1998. Number-size distributions, hygroscopic particle growth, size-segregated gravimetric mass, and size-segregated chemical masses of water-soluble ions and organic and elemental carbon of aerosol particles have been measured. To obtain information on the quality of the different methods, the number-derived, gravimetric, and chemically derived mass distributions are compared. Gravimetric mass of fine particles is attributed completely to chemical composition by carbonaceous material and ions, including an estimate of the water content due to hygroscopic compounds. For the characterization of coarse particles, which contribute less to the total mass concentration, insoluble material has to be included in the mass balance. Mass concentrations calculated from the number-size distributions are well correlated with the gravimetric mass concentration; however, the calculated mass is larger, especially for the Aitken and accumulation modes. The number-derived mass concentration is most sensitive to the sizing uncertainty of the measured number-size distribution. Moreover, the impactor cutoffs and the limited knowledge about the density of the particles (especially with high carbon content) account for a major part of the uncertainties. The overall uncertainty of the calculated mass, determined as the standard deviation of the average value in a Monte Carlo approach, is found to be about 10%. Lognormal parameters for the number-size and volume-size distributions as well as gravimetric mass-size distribution and corresponding chemical composition are presented for different air mass types. Most of the modal parameters do not differ significantly between the air mass types. Higher mass concentrations

  14. Particle Physics

    CERN Multimedia

    2005-01-01

    While biomedicine and geoscience use grids to bring together many different sub-disciplines, particle physicists use grid computing to increase computing power and storage resources, and to access and analyze vast amounts of data collected from detectors at the world's most powerful accelerators (1 page)

  15. Energetic Ion Interactions with Tearing Mode Stability

    Science.gov (United States)

    Halfmoon, Michael; Brennan, Dylan

    2015-11-01

    This study focuses on the interactions between energetic ions and pressure-driven, slow growing tearing modes in high beta tokamaks. Previous studies have shown that energetic ions interact with and affect the tearing mode stability, in a mechanism similar to those of ideal MHD instabilities and resistive wall modes. The 2/1 tearing mode is found to be damped or stabilized in the presence of energetic ions, with the most significant effects on the slow-growing resistive mode. To gain an understanding of the underlying physics of these effects, we have investigated a combination of reduced analytics and numerical simulations. In the reduced model, a high aspect ratio, step function equilibrium is investigated, where the dynamics of high-energy ions interacting with the tearing mode is implemented through integration over the pressure step. In the simulations, a series of experimentally relevant D-shaped equilibria with fixed monotonic safety factor and varying peaked pressure profiles is analyzed using the δf hybrid kinetic-mhd code in NIMROD. Results show a damping effect from the ions that is consistent between the reduced model and the simulations. The stabilizing effect is mainly due to trapped particle resonance, causing the tearing mode to have a finite frequency. US DOE Grant DE- SC0004125.

  16. Edge-localized mode avoidance and pedestal structure in I-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Walk, J. R., E-mail: jrwalk@psfc.mit.edu; Hughes, J. W.; Hubbard, A. E.; Terry, J. L.; Whyte, D. G.; White, A. E.; Baek, S. G.; Reinke, M. L.; Theiler, C.; Churchill, R. M.; Rice, J. E. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139-4307 (United States); Snyder, P. B.; Osborne, T. [General Atomics, San Diego, CA 92186-5608 (United States); Dominguez, A [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Cziegler, I. [UCSD Center for Momentum Transport and Flow Organization, La Jolla, CA 92093-0417 (United States)

    2014-05-15

    I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle P{sub net}/n{sup ¯}{sub e}, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of P{sub net}/n{sup ¯}{sub e}. This is consistent with targets for increased performance in I-mode, elevating pedestal β{sub p} and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs

  17. 40 CFR Table F-3 to Subpart F of... - Critical Parameters of Idealized Ambient Particle Size Distributions

    Science.gov (United States)

    2010-07-01

    ... Ambient Particle Size Distributions F Table F-3 to Subpart F of Part 53 Protection of Environment... Ambient Particle Size Distributions Idealized Distribution Fine Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) Coarse Particle Mode MMD (µm) Geo. Std. Dev. Conc. (µg/m3) PM2.5/PM10 Ratio FRM...

  18. Predictions for particle deposition from LES of ribbed channel flow

    International Nuclear Information System (INIS)

    Predictions for the deposition of spherical and cylindrical particles from a ribbed channel flow onto adjacent flow boundaries are obtained using large eddy simulation (LES) under the assumption of one-way coupling. Results indicate that spherical particles tend to accumulate on the vertical rib wall facing the mean-flow direction with little particle deposition onto surfaces immediately downstream of the rib. This preferential deposition is not predicted for cylindrical particles

  19. Kinetic effect of toroidal rotation on the geodesic acoustic mode

    Energy Technology Data Exchange (ETDEWEB)

    Guo, W., E-mail: wfguo@ipp.ac.cn; Ye, L.; Zhou, D.; Xiao, X. [Institute of Plasma Physics, Chinese Academy of Science, Hefei, Anhui 230031 (China); Wang, S. [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-01-15

    Kinetic effects of the toroidal rotation on the geodesic acoustic mode are theoretically investigated. It is found that when the toroidal rotation increases, the damping rate increases in the weak rotation regime due to the rotation enhancement of wave-particle interaction, and it decreases in the strong rotation regime due to the reduction of the number of resonant particles. Theoretical results are consistent with the behaviors of the geodesic acoustic mode recently observed in DIII-D and ASDEX-Upgrade. The kinetic damping effect of the rotation on the geodesic acoustic mode may shed light on the regulation of turbulence through the controlling the toroidal rotation.

  20. Continuous Near-Road Monitoring of Ultrafine Particles from 2010-2015 in Toronto, Canada

    Science.gov (United States)

    Su, Y.; Sofowote, U.; Debosz, J.; Munoz, T.

    2015-12-01

    Ultrafine particles (UFPs) have an aerodynamic diameter less than 100 nanometre (nm). Their large surface areas per unit mass favor absorption of toxic chemicals in air. UFPs could penetrate deep into the respiratory or cardiovascular systems and pose adverse health effects. Recent studies showed the association between children exposure to UFPs and their systolic blood pressure. In urban environments, primary sources of UFPs are from road traffic emissions and account for most of the total particle numbers. Controls on UPFs rely on better understanding of their emission sources and environmental behaviour. Ontario Ministry of the Environment and Climate Change have monitored UFPs since 2010 at two near-road stations in Toronto by using TSI 3031 UFP monitors. One station is located in mixed residential and industrial area and 16 meters from a major road with over 20,000 vehicles per day. The other station is surrounded by mixed residential and commercial buildings and 20 meters from a major road with over 20,000 vehicles per day. UFPs concentrations were monitored using six size channels: 20-30nm, 30-50nm, 50-70nm, 70-100nm, 100-200nm, and 200-450nm. The TSI 3031 monitors generally performed well for long-term UFP monitoring. Multi-year measurements of UFPs at the two stations show no apparent inter-annual variation or seasonality. Smaller particles (i.e., 20-50 nm) were found to be composed of over 50% of the measured particles. The observations are generally consistent with the theoretical understanding of particle nuclei mode and accumulation mode. When air mass originated from road traffic, UFPs were elevated in morning traffic hours and to a less extent in the late afternoon. The elevated UFPs number concentrations coincided with other traffic-related air pollutants like nitrogen oxides and black carbon. Moreover, higher number concentrations were found on weekdays than weekends. The observations suggest that UFPs are mostly from vehicle emissions.

  1. Cluster analysis of WIBS single particle bioaerosol data

    Directory of Open Access Journals (Sweden)

    N. H. Robinson

    2012-09-01

    Full Text Available Hierarchical agglomerative cluster analysis was performed on single-particle multi-spatial datasets comprising optical diameter, asymmetry and three different fluorescence measurements, gathered using two dual Waveband Integrated Bioaerosol Sensor (WIBS. The technique is demonstrated on measurements of various fluorescent and non-fluorescent polystyrene latex spheres (PSL before being applied to two separate contemporaneous ambient WIBS datasets recorded in a forest site in Colorado, USA as part of the BEACHON-RoMBAS project. Cluster analysis results between both datasets are consistent. Clusters are tentatively interpreted by comparison of concentration time series and cluster average measurement values to the published literature (of which there is a paucity to represent: non-fluorescent accumulation mode aerosol; bacterial agglomerates; and fungal spores. To our knowledge, this is the first time cluster analysis has been applied to long term online PBAP measurements. The novel application of this clustering technique provides a means for routinely reducing WIBS data to discrete concentration time series which are more easily interpretable, without the need for any a priori assumptions concerning the expected aerosol types. It can reduce the level of subjectivity compared to the more standard analysis approaches, which are typically performed by simple inspection of various ensemble data products. It also has the advantage of potentially resolving less populous or subtly different particle types. This technique is likely to become more robust in the future as fluorescence-based aerosol instrumentation measurement precision, dynamic range and the number of available metrics is improved.

  2. Biota-Sediment Accumulation Factor Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Biota-Sediment Accumulation Factor contains approximately 20,000 biota-sediment accumulation factors (BSAFs) from 20 locations (mostly Superfund sites) for...

  3. Rheology behavior and optimal damping effect of granular particles in a non-obstructive particle damper

    Science.gov (United States)

    Zhang, Kai; Chen, Tianning; Wang, Xiaopeng; Fang, Jianglong

    2016-03-01

    To explore the optimal damping mechanism of non-obstructive particle dampers (NOPDs), research on the relationship between the damping performance of NOPDs and the motion mode of damping particles in NOPDs was carried out based on the rheological properties of vibrated granular particles. Firstly, the damping performance of NOPDs under different excitation intensity and gap clearance was investigated via cantilever system experiments, and an approximate evaluation of the effective mass and effective damping of NOPDs was performed by fitting the experimental data to an equivalent single-degree-of-freedom (SDOF) system with no damping particles. Then the phase diagrams which could show the motion mode of damping particles under different excitation intensity and gap clearance were obtained via a series of vibration table tests. Moreover, the dissipation characteristic of damping particles was explored by the discrete element method (DEM). The study results indicate that when NOPDs play the optimal damping effect the granular Leidenfrost effect whereby the entire particle bed in NOPDs is levitated above the vibrating base by a layer of highly energetic particles is observed. Finally, the damping characteristics of NOPDs was explained by collisions and frictions between particle-particle and particle-wall based on the rheology behavior of damping particles and a new dissipation mechanism was first proposed for the optimal damping performance of NOPDs.

  4. Stochastic component mode synthesis

    OpenAIRE

    Bah, Mamadou T.; Nair, Prasanth B.; Bhaskar, Atul; Keane, Andy J.

    2003-01-01

    In this paper, a stochastic component mode synthesis method is developed for the dynamic analysis of large-scale structures with parameter uncertainties. The main idea is to represent each component displacement using a subspace spanned by a set of stochastic basis vectors in the same fashion as in stochastic reduced basis methods [1, 2]. These vectors represent however stochastic modes in contrast to the deterministic modes used in conventional substructuring methods [3]. The Craig-Bampton r...

  5. Impacts on particles and ozone by transport processes recorded at urban and high-altitude monitoring stations

    Energy Technology Data Exchange (ETDEWEB)

    Nicolás, J.F., E-mail: j.nicolas@umh.es [Laboratory of Atmospheric Pollution (LCA), Miguel Hernández University, Av. de la Universidad s/n, Edif. Alcudia, 03202 Elche (Spain); Crespo, J.; Yubero, E.; Soler, R. [Laboratory of Atmospheric Pollution (LCA), Miguel Hernández University, Av. de la Universidad s/n, Edif. Alcudia, 03202 Elche (Spain); Carratalá, A. [Department of Chemical Engineering, University of Alicante, P.O. Box 99, 03080 Alicante (Spain); Mantilla, E. [Instituto Universitario CEAM-UMH, Parque Tecnológico, C/Charles R. Darwin 14, E-46980 Paterna (Spain)

    2014-01-01

    In order to evaluate the influence of particle transport episodes on particle number concentration temporal trends at both urban and high-altitude (Aitana peak-1558 m a.s.l.) stations, a simultaneous sampling campaign from October 2011 to September 2012 was performed. The monitoring stations are located in southeastern Spain, close to the Mediterranean coast. The annual average value of particle concentration obtained in the larger accumulation mode (size range 0.25–1 μm) at the mountain site, 55.0 ± 3.0 cm{sup − 3}, was practically half that of the value obtained at the urban station (112.0 ± 4.0 cm{sup − 3}). The largest difference between both stations was recorded during December 2011 and January 2012, when particles at the mountain station registered the lowest values. It was observed that during urban stagnant episodes, particle transport from urban sites to the mountain station could take place under specific atmospheric conditions. During these transports, the major particle transfer is produced in the 0.5–2 μm size range. The minimum difference between stations was recorded in summer, particularly in July 2012, which is most likely due to several particle transport events that affected only the mountain station. The particle concentration in the coarse mode was very similar at both monitoring sites, with the biggest difference being recorded during the summer months, 0.4 ± 0.1 cm{sup − 3} at the urban site and 0.9 ± 0.1 cm{sup − 3} at the Aitana peak in August 2012. Saharan dust outbreaks were the main factor responsible for these values during summer time. The regional station was affected more by these outbreaks, recording values of > 4.0 cm{sup − 3}, than the urban site. This long-range particle transport from the Sahara desert also had an effect upon O{sub 3} levels measured at the mountain station. During periods affected by Saharan dust outbreaks, ozone levels underwent a significant decrease (3–17%) with respect to its mean

  6. Particle physics

    CERN Document Server

    Kennedy, Eugene

    2012-01-01

    Stimulated by the Large Hadron Collider and the search for the elusive Higgs Boson, interest in particle physics continues at a high level among scientists and the general public. This book includes theoretical aspects, with chapters outlining the generation model and a charged Higgs boson model as alternative scenarios to the Standard Model. An introduction is provided to postulated axion photon interactions and associated photon dispersion in magnetized media. The complexity of particle physics research requiring the synergistic combination of theory, hardware and computation is described in terms of the e-science paradigm. The book concludes with a chapter tackling potential radiation hazards associated with extremely weakly interacting neutrinos if produced in copious amounts with future high-energy muon-collider facilities.

  7. Potential source regions of dust accumulated in northern Africa

    Science.gov (United States)

    Wasowska, S.; Woronko, B.

    2012-04-01

    Sahara is the largest source of the dust in the world. The material sampled from dust storms in Tunisia (Nefta Oasis, El Kantoui Harbor), north Egypt (Alexandria) and Morocco (Mhamid Oasis) (March 2001, March and April 2009) was taken to identify the potential sources of dust accumulation and transport paths in North Africa. The samples were analyzed on grain size, micromorphology of silt grain surfaces in Scanning Electron Microscope (SEM), elemental composition of grains and their surface crusts, loss on ignition, mineralogical composition of samples and carbonate content. Additionally the meteorological situation was analyzed during the dust storm occurrences and preceding periods. The results of grain size analyses show that all studied sediments belong to the small dust type, and dust accumulated in Mhamid is the clay mineral agglomerated (CMA) dust. The source of the CMA are the old dry lake beds. Dust particles are mobilized as aggregates of clay minerals, what is controlled by structure (particle packing) of the original lake sediment, and accumulation is dry and wet as well. The results of the analysis of the quartz grain surface micromorphology, the elemental composition and loss on ignition indicate that dust accumulated in Morocco originated from a relatively homogenous sediment source and, on the other hand, dust found in Alexandria comes from a diversified source. Dust sampled in Tunisia is characterized by the highest content of carbonates and organic matter which suggests the intensive dispelling acting on the weathered material from carbonate rocks and local Mediterranean soil covers rich in CaCO3. The analyses of meteorological conditions during the dust storms and the analyses of the textural characteristics of deposits show that it is highly probable that analysed aeolian dust was transported both for shorter and longer distances. Hypothetic source areas of dust accumulated in Mhamid could be the old ergs, some located 300-500 km away like

  8. A review of biomass burning emissions, part II: Intensive physical properties of biomass burning particles

    Directory of Open Access Journals (Sweden)

    J. S. Reid

    2004-09-01

    Full Text Available The last decade has seen tremendous advances in atmospheric aerosol particle research that is often performed in the context of climate and global change science. Biomass burning, one of the largest sources of accumulation mode particles globally, has been closely studied for its radiative, geochemical, and dynamic impacts. These studies have taken many forms including laboratory burns, in situ experiments, remote sensing, and modeling. While the differing perspectives of these studies have ultimately improved our qualitative understanding of biomass burning issues, the varied nature of the work make inter-comparisons and resolutions of some specific issues difficult. In short, the literature base has become a milieu of small pieces of the biomass-burning puzzle. This manuscript, the second part of four, examines the properties of biomass-burning particle emissions. Here we review and discuss the literature concerning the measurement of smoke particle size, chemistry, thermodynamic properties, and emission factors. Where appropriate, critiques of measurement techniques are presented. We show that very large differences in measured particle properties have appeared in the literature, in particular with regards to particle carbon budgets. We investigate emissions uncertainties using scale analyses, which shows that while emission factors for grass and brush are relatively well known, very large uncertainties still exist in emission factors of boreal, temperate and some tropical forests. Based on an uncertainty analysis of the community data set of biomass burning measurements, we present simplified models for particle size and emission factors. We close this review paper with a discussion of the community experimental data, point to lapses in the data set, and prioritize future research topics.

  9. A review of biomass burning emissions part II: intensive physical properties of biomass burning particles

    Directory of Open Access Journals (Sweden)

    J. S. Reid

    2005-01-01

    Full Text Available The last decade has seen tremendous advances in atmospheric aerosol particle research that is often performed in the context of climate and global change science. Biomass burning, one of the largest sources of accumulation mode particles globally, has been closely studied for its radiative, geochemical, and dynamic impacts. These studies have taken many forms including laboratory burns, in situ experiments, remote sensing, and modeling. While the differing perspectives of these studies have ultimately improved our qualitative understanding of biomass-burning issues, the varied nature of the work make inter-comparisons and resolutions of some specific issues difficult. In short, the literature base has become a milieu of small pieces of the biomass-burning puzzle. This manuscript, the second part of four, examines the properties of biomass-burning particle emissions. Here we review and discuss the literature concerning the measurement of smoke particle size, chemistry, thermodynamic properties, and emission factors. Where appropriate, critiques of measurement techniques are presented. We show that very large differences in measured particle properties have appeared in the literature, in particular with regards to particle carbon budgets. We investigate emissions uncertainties using scale analyses, which shows that while emission factors for grass and brush are relatively well known, very large uncertainties still exist in emission factors of boreal, temperate and some tropical forests. Based on an uncertainty analysis of the community data set of biomass burning measurements, we present simplified models for particle size and emission factors. We close this review paper with a discussion of the community experimental data, point to lapses in the data set, and prioritize future research topics.

  10. Fast transverse instability in the NSNS Accumulator Ring

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, A.G.; Blaskiewicz, M.

    1997-08-01

    This paper reports on the results of investigation of possible fast transverse instabilities in the NSNS Accumulator Ring. The instability may be caused by the presence of stripline devices like kicker magnets, the active damper system, and by the RF cavities, and the sharp steps of the vacuum pipe. The instability can be overcome by adopting aluminum as the material of the vacuum pipe.Still the growth time of the instability remains short especially for the mode in proximity of the betatron tune.

  11. 47 CFR 32.3100 - Accumulated depreciation.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Accumulated depreciation. 32.3100 Section 32... Accumulated depreciation. (a) This account shall include the accumulated depreciation associated with the... with depreciation amounts concurrently charged to Account 6561, Depreciation...

  12. Micromagnetic simulation of a ferromagnetic particle

    Directory of Open Access Journals (Sweden)

    Ntallis N.

    2014-01-01

    Full Text Available In this work, the magnetic behaviour of a ferromagnetic particle has been investigated by means of micromagnetic modelling, using the Finite Element Method. The simulations were performed on an ellipsoidal particle with uniaxial magnetocrystalline anisotropy by varying the anisotropy constant, the shape and dimensions of the particle. The results indicate the critical particle size for different reversal modes. Above a critical size the formation and motion of domain walls is clearly observed. The associated nucleation and coercive fields are estimated from the demagnetization curves.

  13. Surgical smoke and ultrafine particles

    Directory of Open Access Journals (Sweden)

    Nowak Dennis

    2008-12-01

    Full Text Available Abstract Background Electrocautery, laser tissue ablation, and ultrasonic scalpel tissue dissection all generate a 'surgical smoke' containing ultrafine ( Methods To measure the amount of generated particulates in 'surgical smoke' during different surgical procedures and to quantify the particle number concentration for operation room personnel a condensation particle counter (CPC, model 3007, TSI Inc. was applied. Results Electro-cauterization and argon plasma tissue coagulation induced the production of very high number concentration (> 100000 cm-3 of particles in the diameter range of 10 nm to 1 μm. The peak concentration was confined to the immediate local surrounding of the production side. In the presence of a very efficient air conditioning system the increment and decrement of ultrafine particle occurrence was a matter of seconds, with accumulation of lower particle number concentrations in the operation room for only a few minutes. Conclusion Our investigation showed a short term very high exposure to ultrafine particles for surgeons and close assisting operating personnel – alternating with longer periods of low exposure.

  14. Markov models for accumulating mutations

    CERN Document Server

    Beerenwinkel, Niko

    2007-01-01

    We introduce and analyze a waiting time model for the accumulation of genetic changes. The continuous time conjunctive Bayesian network is defined by a partially ordered set of mutations and by the rate of fixation of each mutation. The partial order encodes constraints on the order in which mutations can fixate in the population, shedding light on the mutational pathways underlying the evolutionary process. We study a censored version of the model and derive equations for an EM algorithm to perform maximum likelihood estimation of the model parameters. We also show how to select the maximum likelihood poset. The model is applied to genetic data from different cancers and from drug resistant HIV samples, indicating implications for diagnosis and treatment.

  15. Chip integrated fuel cell accumulator

    Science.gov (United States)

    Frank, M.; Erdler, G.; Frerichs, H.-P.; Müller, C.; Reinecke, H.

    A unique new design of a chip integrated fuel cell accumulator is presented. The system combines an electrolyser and a self-breathing polymer electrolyte membrane (PEM) fuel cell with integrated palladium hydrogen storage on a silicon substrate. Outstanding advantages of this assembly are the fuel cell with integrated hydrogen storage, the possibility of refuelling it by electrolysis and the opportunity of simply refilling the electrolyte by adding water. By applying an electrical current, wiring the palladium hydrogen storage as cathode and the counter-electrode as anode, the electrolyser produces hydrogen at the palladium surface and oxygen at the electrolyser cell anode. The generated hydrogen is absorbed by the palladium electrode and the hydrogen storage is refilled consequently enabling the fuel cell to function.

  16. Electron-Positron Accumulator (EPA)

    CERN Multimedia

    Photographic Service

    1986-01-01

    After acceleration in the low-current linac LIL-W, the electrons and positrons are accumulated in EPA to obtain a sufficient intensity and a suitable time-structure, before being passed on to the PS for further acceleration to 3.5 GeV. Electrons circulate from right to left, positrons in the other direction. Dipole bending magnets are red, focusing quadrupoles blue, sextupoles for chromaticity-control orange. The vertical tube at the left of the picture belongs to an optical transport system carrying the synchrotron radiation to detectors for beam size measurement. Construction of EPA was completed in spring 1986. LIL-W and EPA were conceived for an energy of 600 MeV, but operation was limited to 500 MeV.

  17. Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the southeast Pacific Ocean

    Directory of Open Access Journals (Sweden)

    C. H. Twohy

    2013-03-01

    Full Text Available The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles on the stratocumulus deck was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI, and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties on an E-W track along 20° S from near the Chilean coast to remote areas offshore. Mean statistics, including their significance, from eight flights and many individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. Single particle analysis was used to reveal types and sources of the enhanced particle number that influence droplet concentration. While a variety of particle types were found throughout the region, the dominant particles near shore were partially neutralized sulfates. Modeling and chemical analysis indicated that the predominant source of these particles in the marine boundary layer along 20° S was anthropogenic pollution from central Chilean sources, with copper smelters a relatively small contribution. Cloud droplets were smaller in regions of enhanced particles near shore. However, physically thinner clouds, and not just higher droplet number concentrations from pollution, both contributed to the smaller droplets. Satellite measurements were used to show that cloud albedo was highest 500–1000 km offshore, and actually slightly lower closer to shore due to the generally thinner clouds and lower

  18. Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the southeast Pacific Ocean

    Science.gov (United States)

    Twohy, C. H.; Anderson, J. R.; Toohey, D. W.; Andrejczuk, M.; Adams, A.; Lytle, M.; George, R. C.; Wood, R.; Saide, P.; Spak, S.; Zuidema, P.; Leon, D.

    2013-03-01

    The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles on the stratocumulus deck was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties on an E-W track along 20° S from near the Chilean coast to remote areas offshore. Mean statistics, including their significance, from eight flights and many individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. Single particle analysis was used to reveal types and sources of the enhanced particle number that influence droplet concentration. While a variety of particle types were found throughout the region, the dominant particles near shore were partially neutralized sulfates. Modeling and chemical analysis indicated that the predominant source of these particles in the marine boundary layer along 20° S was anthropogenic pollution from central Chilean sources, with copper smelters a relatively small contribution. Cloud droplets were smaller in regions of enhanced particles near shore. However, physically thinner clouds, and not just higher droplet number concentrations from pollution, both contributed to the smaller droplets. Satellite measurements were used to show that cloud albedo was highest 500-1000 km offshore, and actually slightly lower closer to shore due to the generally thinner clouds and lower liquid water paths

  19. Sludge accumulation pattern inside oxidation ditch case study.

    Science.gov (United States)

    Fouad, Moharram; El-Morsy, Ahmed

    2014-01-01

    The sludge accumulation pattern of an oxidation ditch (OD) plant treating municipal wastewater was observed under dry and wet weather conditions, during 3 years of operation. The accumulation patterns along the ditches and their rates were revealed. In addition, the composition of the accumulation was investigated. Finally, the ratio of sand and volatile particles, mixed liquor suspended solids (MLSS), and mixed liquor volatile suspended solids, as well as the removal efficiency were also observed against the accumulated sludge. Further, a laboratory-scale channel was used to investigate the settleability of grit after mixing with variable values of MLSS. The observed results indicated that the economical design and operation of ODs using a velocity value between 0.3-0.35 m/s is not recommended, to avoid the settling of all solids. High values of MLSS and sludge age need high horizontal velocity (more than 0.35 m/s) and more power to avoid settling problems and system failure. The influence of flow velocity on the sludge settleability was studied, enabling better planning of future ditch design and operation. PMID:24960009

  20. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Science.gov (United States)

    Luther, Eva M.; Koehler, Yvonne; Diendorf, Joerg; Epple, Matthias; Dringen, Ralf

    2011-09-01

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO3 already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 °C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 °C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  1. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    International Nuclear Information System (INIS)

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO3 already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 0C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 0C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  2. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Eva M; Koehler, Yvonne; Dringen, Ralf [Center for Biomolecular Interactions Bremen, University of Bremen, PO Box 330440, D-28334 Bremen (Germany); Diendorf, Joerg; Epple, Matthias, E-mail: ralf.dringen@uni-bremen.de [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitaetsstrasse 5-7, D-45117 Essen (Germany)

    2011-09-16

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO{sub 3} already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 {sup 0}C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 {sup 0}C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  3. Metabolomic analysis reveals mechanism of antioxidant butylated hydroxyanisole on lipid accumulation in Crypthecodinium cohnii.

    Science.gov (United States)

    Sui, Xiao; Niu, Xiangfeng; Shi, Mengliang; Pei, Guangsheng; Li, Jinghan; Chen, Lei; Wang, Jiangxin; Zhang, Weiwen

    2014-12-24

    The heterotrophic dinoflagellate alga Crypthecodinium cohnii is known to accumulate lipids with a high fraction of docosahexaenoic acid (DHA). In this study, we first evaluated two antioxidant compounds, butylated hydroxyanisole (BHA) and propyl gallate (PG), for their effects on lipid accumulation in C. cohnii. The results showed that antioxidant BHA could increase lipid accumulation in C. cohnii by 8.80% at a final concentration of 30 μM, while PG had no obvious effect on lipid accumulation at the tested concentrations. To decipher the molecular mechanism responsible for the increased lipid accumulation by BHA, we employed an integrated GC-MS and LC-MS metabolomic approach to determine the time-series metabolic profiles with or without BHA, and then subjected the metabolomic data to a principal component analysis (PCA) and a weighted gene coexpression network analysis (WGCNA) network analyses to identify the key metabolic modules and metabolites possibly relevant to the increased lipid accumulation. LC-MS analysis showed that several metabolites, including NADPH, could be important for the stimulation role of BHA on lipid accumulation. Meanwhile GC-MS and network analyses allowed identification of eight metabolic modules and nine hub metabolites possibly relevant to the stimulation role of BHA in C. cohnii. The study provided a metabolomics view of the BHA mode of action on lipid accumulation in C. cohnii, and the information could be valuable for a better understanding of antioxidant effects on lipid accumulation in other microalgae as well. PMID:25436856

  4. Particle hygroscopicity during atmospheric new particle formation events: implications for the chemical species contributing to particle growth

    Directory of Open Access Journals (Sweden)

    Z. Wu

    2013-07-01

    Full Text Available This study examines the hygroscopicity of newly formed particles (diameters range 25–45 nm during two atmospheric new particle formation (NPF events in the German mid-level mountains during the Hill Cap Cloud Thuringia 2010 (HCCT-2010 field experiment. At the end of the NPF event involving clear particle growth, we measured an unusually high soluble particle fraction of 58.5% at 45 nm particle size. The particle growth rate contributed through sulfuric acid condensation only accounts for around 6.5% of the observed growth rate. Estimations showed that sulfuric acid condensation explained, however, only around 10% of that soluble particle fraction. Therefore, the formation of additional water-soluble matter appears imperative to explain the missing soluble fraction. Although direct evidence is missing, we consider water-soluble organics as candidates for this mechanism. For the case with clear growth process, the particle growth rate was determined by two alternative methods based on tracking the mode diameter of the nucleation mode. The mean particle growth rate obtained from the inter-site data comparison using Lagrangian consideration is 3.8 (± 2.6 nm h−1. During the same period, the growth rate calculated based on one site data is 5.0 nm h−1 using log-normal distribution function method. In light of the fact that considerable uncertainties could be involved in both methods, we consider both estimated growth rates consistent.

  5. Radiation in Particle Simulations

    Energy Technology Data Exchange (ETDEWEB)

    More, R; Graziani, F; Glosli, J; Surh, M

    2010-11-19

    Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of megabars to thousands of gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard-Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known. The second method expands the electromagnetic field in normal modes (planewaves in a box with periodic boundary-conditions) and solves the equation for wave amplitudes coupled to the particle motion. The third method is a hybrid molecular dynamics/Monte Carlo (MD/MC) method which calculates radiation emitted or absorbed by electron-ion pairs during close collisions. The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc. This approach is inspired by the virial expansion method of equilibrium statistical mechanics. Using a combination of these methods we believe it is possible to do atomic-scale particle

  6. Guidelines for Waste Accumulation Areas (WAAs)

    International Nuclear Information System (INIS)

    The purpose of this document is to set conditions for establishing and maintaining areas for the accumulation of hazardous waste at LBL. Areas designed for accumulation of these wastes in quantities greater than 100 kg (220 lb) per month of solid waste or 55 gallons per month of liquid waste are called Waste Accumulation Areas (WAAs). Areas designed for accumulation of wastes in smaller amounts are called Satellite Accumulation Areas (SAAs). This document provides guidelines for employee and organizational responsibilities for WAAs; constructing a WAA; storing waste in a WAA; operating and maintaining a WAA, and responding to spills in a WAA. 4 figs

  7. Guidelines for Waste Accumulation Areas (WAAs)

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    The purpose of this document is to set conditions for establishing and maintaining areas for the accumulation of hazardous waste at LBL. Areas designed for accumulation of these wastes in quantities greater than 100 kg (220 lb) per month of solid waste or 55 gallons per month of liquid waste are called Waste Accumulation Areas (WAAs). Areas designed for accumulation of wastes in smaller amounts are called Satellite Accumulation Areas (SAAs). This document provides guidelines for employee and organizational responsibilities for WAAs; constructing a WAA; storing waste in a WAA; operating and maintaining a WAA, and responding to spills in a WAA. 4 figs.

  8. Modes of collaborative reflection

    OpenAIRE

    Degeling, Martin; Prilla, Michael

    2011-01-01

    In this paper, we describe different modes of collaborative reflection as processes of learning at the workplace. We explain why reflection is a decisive means of learning and - based on the modes we describe - how groups of people can be supported in reflection together. For this, we describe how scheduled, concurrent and spontaneous collaborative reflection can be supported by articulation, guidance and synergizing.

  9. Characteristics of atmospheric particulate mercury in size-fractionated particles during haze days in Shanghai

    Science.gov (United States)

    Chen, Xiaojia; Balasubramanian, Rajasekhar; Zhu, Qiongyu; Behera, Sailesh N.; Bo, Dandan; Huang, Xian; Xie, Haiyun; Cheng, Jinping

    2016-04-01

    Atmospheric particulate mercury (PHg) is recognized as a global pollutant that requires regulation because of its significant impacts on both human health and wildlife. The haze episodes that occur frequently in China could influence the transport and fate of PHg. To examine the characteristics of PHg during haze and non-haze days, size-fractioned particles were collected using thirteen-stage Nano-MOUDI samplers (10 nm-18 μm) during a severe haze episode (from December 2013 to January 2014) in Shanghai. The PHg concentration on haze days (4.11 ± 0.53 ng m-3) was three times higher than on non-haze days (1.34 ± 0.15 ng m-3). The ratio of the PHg concentration to total gaseous mercury (TGM) ranged from 0.42 during haze days to 0.21 during non-haze days, which was possibly due to the elevated concentration of particles for gaseous elemental mercury (GEM) adsorption, elevated sulfate and nitrate contributing to GEM oxidation, and the catalytic effect of elevated water-soluble inorganic metal ions. PHg/PM10 during haze days (0.019 ± 0.004 ng/μg) was lower than during non-haze days (0.024 ± 0.002 ng/μg), and PHg/PM10 was significantly reduced with an increasing concentration of PM10, which implied a relatively lower growth velocity of mercury than other compositions on particles during haze days, especially in the diameter range of 0.018-0.032 μm. During haze days, each size-fractioned PHg concentration was higher than the corresponding fraction on non-haze days, and the dominant particle size was in the accumulation mode, with constant accumulation to a particle size of 0.56-1.0 μm. The mass size distribution of PHg was bimodal with peaks at 0.32-0.56 μm and 3.1-6.2 μm on non-haze days, and 0.56-1.0 μm and 3.1-6.2 μm on haze days. There was a clear trend that the dominant size for PHg in the fine modes shifted from 0.32-0.56 μm during non-haze days to 0.56-1.0 μm on haze days, which revealed the higher growth velocity of PHg on haze days due to the

  10. The Influence of Dosing Modes of Coagulate on Arsenic Removal

    Directory of Open Access Journals (Sweden)

    Zhibin Zhang

    2014-01-01

    Full Text Available Three different dosing modes, including one single dosing mode and two sequential dosing modes, were applied in high-arsenic contaminated water treatment. The results illustrated that the As (V soluble and the As (V nonspecifically sorbed were the insignificant species from Fe-As (V samples in the sequential dosing mode, while they were higher in the single dosing mode. However, it could be further concluded that the mobility of the Fe-As (V in sequential dosing mode was greater than that in single dosing mode. Besides, the main arsenic speciation governing the arsenic-borne coagulates was the As (V associated with poorly crystalline hydrous oxides of Fe in sequential or single dosing mode. Moreover, the particle size distribution analysis indicated that the sequential dosing mode was more prevalent in neutralizing and adsorbing the As (V compared with the single dosing mode. In the FT-IR spectra, the presence of arsenic was highlighted by a well resolved band at 825–829 cm−1. The positions of the As–O stretching vibration bands were shifted gradually as the dosing mode changed from the single to the sequential. This result could be related to the distribution of arsenic speciation in different dosing modes.

  11. Particle Mechanics

    CERN Document Server

    Collinson, Chris

    1995-01-01

    * Assumes no prior knowledge* Adopts a modelling approach* Numerous tutorial problems, worked examples and exercises included* Elementary topics augmented by planetary motion and rotating framesThis text provides an invaluable introduction to mechanicsm confining attention to the motion of a particle. It begins with a full discussion of the foundations of the subject within the context of mathematical modelling before covering more advanced topics including the theory of planetary orbits and the use of rotating frames of reference. Truly introductory , the style adoped is perfect for those u

  12. Particle physics

    International Nuclear Information System (INIS)

    The two main themes of this volume are the standard model of the fundamental interactions (and beyond) and astrophysics. The remarkable advances in the theoretical understanding and experimental confirmation of the standard model were reviewed in several lectures where the reader will find a thorough analysis of recent experiments as well as a detailed comparison of the standard model with experiment. On a more theoretical side, supersymmetry, supergravity and strings were discussed as well. The second theme concerns astrophysics where the school was quite successful in bridging the gap between this fascinating subject and more conventional particle physics

  13. Particle Emissions from Biomass Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Szpila, Aneta; Bohgard, Mats [Lund Inst. of Technology (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Div. of Bioenergy Technology; Pagels, Joakim; Rissler, Jenny; Swietlicki, Erik; Gharibi, Arash [Lund Univ. (Sweden). Div. of Nuclear Physics

    2003-05-01

    We have shown that high concentrations of fine particles of the order of 2-7x10{sup -7} particles per cm{sup 3} are being formed in all the combustion units studied. There was a higher difference between the units in terms of particle mass concentrations. While the largest differences was found for gas-phase constituents (CO and THC) and polyaromatic hydrocarbons. In 5 out of 7 studied units, multi-cyclones were the only measure for flue-gas separation. The multicyclones had negligible effect on the particle number concentration and a small effect on the mass of particles smaller than 5 {mu}m. The separation efficiency was much higher for the electrostatic precipitators. The boiler load had a dramatic influence on the coarse mode concentration during combustion of forest residue. PM0.8-6 increased from below 5 mg/m{sup 3} to above 50 mg/m{sup 3} even at a moderate change in boiler load from medium to high. A similar but less pronounced trend was found during combustion of dry wood. PM0.8-PM6 increased from 12 to 23 mg/m{sup 3} when the load was changed from low to high. When increasing the load, the primary airflow taken through the grate is increased; this itself may lead to a higher potential of the air stream to carry coarse particles away from the combustion zone. Measurements with APS-instrument with higher time-resolution showed a corresponding increase in coarse mode number concentration with load. Additional factor influencing observed higher concentration of coarse mode during combustion of forest residues, could be relatively high ash content in this type of fuel (2.2 %) in comparison to dry wood (0.3 %) and pellets (0.5 %). With increasing load we also found a decrease in PM1 during combustion of forest residue. Whether this is caused by scavenging of volatilized material by the high coarse mode concentration or a result of a different amount of volatilized material available for formation of fine particles needs to be shown in future studies. The

  14. Dynamic rotor mode in antiferromagnetic nanoparticles

    OpenAIRE

    Lefmann, K.; Jacobsen, H.; Garde, J; Hedegard, P.; Wischnewski, Andreas; Ancona, S.N.; Jacobsen, H. S.; Bahl, C R H; Theil Kuhn, L.

    2015-01-01

    We present experimental, numerical, and theoretical evidence for an unusual mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8-nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K. However, the signal from inelastic neutron scattering remains above that temperature, indicating a magnetic system in constant motion. In addition, the precession frequency of the inelastic magnetic sign...

  15. Edge Localized Mode Control in TCV

    OpenAIRE

    Rossel, Jonathan

    2012-01-01

    The Tokamak concept, based on magnetic confinement of a hydrogen plasma, is one of today's most promising paths to energy production by nuclear fusion. The experimental scenarios leading to the largest fusion rate are based on a high confinement plasma regime, the H-mode, in which the energy and particle confinement are enhanced by a transport barrier located at the plasma edge and forming a pedestal in the plasma pressure profile. In standard axisymm...

  16. Particle retention during long discharges in Tore Supra and JET

    Energy Technology Data Exchange (ETDEWEB)

    Loarer, T.; Tsitrone, E.; Brosset, C.; Bucalossi, J.; Gunn, J.; Joffrin, E.; Monier-Garbet, P.; Pegourie, B.; Thomas, P. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Loarte, A. [Max-Planck-Institut fuer Plasmaphysik, EFDA-CSU-Garching, Muenchen (Germany); Lomas, P. [Euratom-UKAEA Association, Fusion Culham Science Centre, Abingdon, OX (United Kingdom); Ongena, J. [Ecole Royale Militaire-Koninklijke Militaire School (ERM-KMS), Lab. de Physique des Plasmas-Laboratorium voor Plasmafysica, Bruxelles (Belgium)

    2003-07-01

    The particle balances and the associated particle retentions for the long discharge experiments performed in Tore-Supra and for the L and H mode discharges carried out in JET are reported in this paper. From the reported experiments, the same particle retention behaviors are observed in Tore-Supra and JET in spite of the differences between the plasma geometry and the confinement mode (respectively limiter L-mode and divertor H-mode). A particle retention up to 70-80% of {gamma}(puff) for the larger gas injection has been obtained in JET. The particle retention behavior observed with the gas puff appears to be strongly dominant in the particle retention process. Indeed, no influence has been noticed from the active pumping, the saturation of the recycling area (0.4 D/C), the precedent discharges history (in terms of total 'particles retained' in the vessel) and even from the disruptions (conditioning). Also, the outgassing between discharges becomes negligible in terms of particle recovering when {gamma}(puff) and/or the discharge duration are increased. Finally, neither the edge localized modes (ELMs type-I or III) nor the disruptions modify the reported behaviour. For ITER, the particle retention is strictly limited and from the presented results it seems that strong gas injection should be avoided. (A.C.)

  17. The squeezing entangled state of two particles with unequal mass

    Institute of Scientific and Technical Information of China (English)

    Yang Yang; Fan Hong-Yi

    2013-01-01

    For two unequal-mass particles,we construct the entangled state representation and then derive the corresponding squeezing operator.This squeezing operator has a natural realization in the entangled state representation,which exhibits the intrinsic relation between squeezing and quantum entanglement.This squeezing operator involves both two-mode squeezing and the direct product of two single-mode squeezings.The maximum squeezing occurs when the two particles possess equal mass.When the two particles' mass difference becomes large,the component of the two single-mode squeezings becomes dominant.

  18. Unified theory of particle decay modes in electonic model

    Energy Technology Data Exchange (ETDEWEB)

    Jian, C.X.

    1982-06-01

    In a previous paper we have given a reasonable description of the total number of constituents (eletons and antieletons) in Santilli's structure model of hadrons. In this paper we shall extend these results to inlude decays of unstable hadrons. We shall continue to use the theory of stable and unstable groups with particular reference to Euler's function.

  19. Low-frequency electrostatic dust-modes in a non-uniform magnetized dusty plasma

    Indian Academy of Sciences (India)

    S S Duha; S K Paul; A K Banerjee; A A Mamun

    2004-11-01

    A self-consistent and general description of obliquely propagating low-frequency electrostatic dust-modes in a non-uniform magnetized dusty plasma system has been presented. A number of different situations, which correspond to different low-frequency electrostatic dust-modes, namely, dust-acoustic mode, dust-drift mode, dust-cyclotron mode, dust-lower-hybrid mode, and other associated modes (such as, accelerated and retarded dust-acoustic modes, accelerated and retarded dust-lower-hybrid modes, etc.), have also been investigated. It has been shown that the effects of obliqueness and inhomogeneities in plasma particle number densities introduce new electrostatic dust modes as well as significantly modify the dispersion properties of the other low-frequency electrostatic dust associated modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned.

  20. Dynamic rotor mode in antiferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Lefmann, Kim; Jacobsen, H.; Garde, J.;

    2015-01-01

    We present experimental, numerical, and theoretical evidence for an unusual mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8-nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K....... However, the signal from inelastic neutron scattering remains above that temperature, indicating a magnetic system in constant motion. In addition, the precession frequency of the inelastic magnetic signal shows an increase above 100 K. Numerical Langevin simulations of spin dynamics reproduce all...... measured neutron data and reveal that thermally activated spin canting gives rise to an unusual type of coherent magnetic precession mode. This "rotor" mode can be seen as a high-temperature version of superparamagnetism and is driven by exchange interactions between the two magnetic sublattices. The...

  1. Quantum gravity and inventory accumulation

    CERN Document Server

    Sheffield, Scott

    2011-01-01

    We begin by studying inventory accumulation at a LIFO (last-in-first-out) retailer with two products. In the simplest version, the following occur with equal probability at each time step: first product ordered, first product produced, second product ordered, second product produced. The inventory thus evolves as a simple random walk on Z^2. In more interesting versions, a p fraction of customers orders the "freshest available" product regardless of type. We show that the corresponding random walks scale to Brownian motions with diffusion matrices depending on p. We then turn our attention to the critical Fortuin-Kastelyn random planar map model, which gives, for each q>0, a probability measure on random (discretized) two-dimensional surfaces decorated by loops, related to the q-state Potts model. A longstanding open problem is to show that as the discretization gets finer, the surfaces converge in law to a limiting (loop-decorated) random surface. The limit is expected to be a Liouville quantum gravity surfa...

  2. Trapped Particle Stability for the Kinetic Stabilizer

    CERN Document Server

    Berk, H L

    2011-01-01

    A kinetically stabilized axially symmetric tandem mirror (KSTM) uses the momentum flux of low-energy, unconfined particles that sample only the outer end-regions of the mirror plugs, where large favorable field-line curvature exists. The window of operation is determined for achieving MHD stability with tolerable energy drain from the kinetic stabilizer. Then MHD stable systems are analyzed for stability of the trapped particle mode. This mode is characterized by the detachment of the central-cell plasma from the kinetic stabilizer region without inducing field-line bending. Stability of the trapped particle mode is sensitive to the electron connection between the stabilizer and the end plug. It is found that the stability condition for the trapped particle mode is more constraining than the stability condition for the MHD mode, and it is challenging to satisfy the required power constraint. Furthermore a severe power drain may arise from the necessary connection of low-energy electrons in the kinetic stabili...

  3. Trapped particle stability for the kinetic stabilizer

    Science.gov (United States)

    Berk, H. L.; Pratt, J.

    2011-08-01

    A kinetically stabilized axially symmetric tandem mirror (KSTM) uses the momentum flux of low-energy, unconfined particles that sample only the outer end-regions of the mirror plugs, where large favourable field-line curvature exists. The window of operation is determined for achieving magnetohydrodynamic (MHD) stability with tolerable energy drain from the kinetic stabilizer. Then MHD stable systems are analysed for stability of the trapped particle mode. This mode is characterized by the detachment of the central-cell plasma from the kinetic-stabilizer region without inducing field-line bending. Stability of the trapped particle mode is sensitive to the electron connection between the stabilizer and the end plug. It is found that the stability condition for the trapped particle mode is more constraining than the stability condition for the MHD mode, and it is challenging to satisfy the required power constraint. Furthermore, a severe power drain may arise from the necessary connection of low-energy electrons in the kinetic stabilizer to the central region.

  4. Elastic vibrations of spheroidal nanometric particles

    Science.gov (United States)

    Hernández-Rosas, Juan; Picquart, Michel; Haro-Poniatowski, Emmanuel; Kanehisa, Makoto; Jouanne, Michel; François Morhange, Jean

    2003-11-01

    Particles of nanometric size show low-frequency vibrational modes that can be observed by Raman spectroscopy. These modes involve the collective motion of large numbers of atoms and it is possible to calculate their frequency using elasticity theory. In this work a simple model for oblate-shaped nanoparticles is developed and compared with experimental results obtained in bismuth nanoparticles. It is found that the agreement between theory and experiment is improved in comparison to the spherical model usually employed. However for the smallest particles the elastic model is no longer valid and lattice discreteness has to be considered.

  5. Elastic vibrations of spheroidal nanometric particles

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Rosas, Juan [Departamento de FIsica, Universidad Autonoma Metropolitana Iztapalapa, Apartado Postal 55-534, Mexico, DF 09340 (Mexico); Picquart, Michel [Departamento de FIsica, Universidad Autonoma Metropolitana Iztapalapa, Apartado Postal 55-534, Mexico, DF 09340 (Mexico); Haro-Poniatowski, Emmanuel [Departamento de FIsica, Universidad Autonoma Metropolitana Iztapalapa, Apartado Postal 55-534, Mexico, DF 09340 (Mexico); Kanehisa, Makoto [Laboratoire de Physique des Milieux Desordonnes et Heterogenes, UMR CNRS 7603, Universite Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Jouanne, Michel [Laboratoire de Physique des Milieux Desordonnes et Heterogenes, UMR CNRS 7603, Universite Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Morhange, Jean Francois [Laboratoire de Physique des Milieux Desordonnes et Heterogenes, UMR CNRS 7603, Universite Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

    2003-11-12

    Particles of nanometric size show low-frequency vibrational modes that can be observed by Raman spectroscopy. These modes involve the collective motion of large numbers of atoms and it is possible to calculate their frequency using elasticity theory. In this work a simple model for oblate-shaped nanoparticles is developed and compared with experimental results obtained in bismuth nanoparticles. It is found that the agreement between theory and experiment is improved in comparison to the spherical model usually employed. However for the smallest particles the elastic model is no longer valid and lattice discreteness has to be considered.

  6. Surface modes in physics

    CERN Document Server

    Sernelius, Bo E

    2011-01-01

    Electromagnetic surface modes are present at all surfaces and interfaces between material of different dielectric properties. These modes have very important effects on numerous physical quantities: adhesion, capillary force, step formation and crystal growth, the Casimir effect etc. They cause surface tension and wetting and they give rise to forces which are important e.g. for the stability of colloids.This book is a useful and elegant approach to the topic, showing how the concept of electromagnetic modes can be developed as a unifying theme for a range of condensed matter physics. The

  7. Switch mode power supply

    International Nuclear Information System (INIS)

    This book concentrates on switch mode power supply. It has four parts, which are introduction of switch mode power supply with DC-DC converter such as Buck converter boost converter, Buck-boost converter and PWM control circuit, explanation for SMPS with DC-DC converter modeling and power mode control, resonance converter like resonance switch, converter, multi resonance converter and series resonance and parallel resonance converters, basic test of SMPS with PWM control circuit, Buck converter, Boost converter, flyback converter, forward converter and IC for control circuit.

  8. Surface-atmosphere decoupling limits accumulation at Summit, Greenland.

    Science.gov (United States)

    Berkelhammer, Max; Noone, David C; Steen-Larsen, Hans Christian; Bailey, Adriana; Cox, Christopher J; O'Neill, Michael S; Schneider, David; Steffen, Konrad; White, James W C

    2016-04-01

    Despite rapid melting in the coastal regions of the Greenland Ice Sheet, a significant area (~40%) of the ice sheet rarely experiences surface melting. In these regions, the controls on annual accumulation are poorly constrained owing to surface conditions (for example, surface clouds, blowing snow, and surface inversions), which render moisture flux estimates from myriad approaches (that is, eddy covariance, remote sensing, and direct observations) highly uncertain. Accumulation is partially determined by the temperature dependence of saturation vapor pressure, which influences the maximum humidity of air parcels reaching the ice sheet interior. However, independent proxies for surface temperature and accumulation from ice cores show that the response of accumulation to temperature is variable and not generally consistent with a purely thermodynamic control. Using three years of stable water vapor isotope profiles from a high altitude site on the Greenland Ice Sheet, we show that as the boundary layer becomes increasingly stable, a decoupling between the ice sheet and atmosphere occurs. The limited interaction between the ice sheet surface and free tropospheric air reduces the capacity for surface condensation to achieve the rate set by the humidity of the air parcels reaching interior Greenland. The isolation of the surface also acts to recycle sublimated moisture by recondensing it onto fog particles, which returns the moisture back to the surface through gravitational settling. The observations highlight a unique mechanism by which ice sheet mass is conserved, which has implications for understanding both past and future changes in accumulation rate and the isotopic signal in ice cores from Greenland. PMID:27386509

  9. Van Kampen modes for bunch longitudinal motion

    Energy Technology Data Exchange (ETDEWEB)

    Burov, A.; /Fermilab

    2010-09-01

    Conditions for existence, uniqueness and stability of bunch steady states are considered. For the existence uniqueness problem, simple algebraic equations are derived, showing the result both for the action and Hamiltonian domain distributions. For the stability problem, van Kampen theory is used. Emerging of discrete van Kampen modes show either loss of Landau damping, or instability. This method can be applied for an arbitrary impedance, RF shape and beam distribution function Available areas on intensity-emittance plane are shown for resistive wall wake and single harmonic, bunch shortening and bunch lengthening RF configurations. Language of van Kampen modes is a powerful tool for studying beam stability. Its unique efficiency reveals itself in those complicated cases, when the dielectric function cannot be obtained, as it is for the longitudinal bunch motion. Emergence of a discrete mode means either loss of Landau damping or instability. By definition, the discrete modes lie outside the continuous incoherent spectrum, but they still may stay within the bucket. In the last case, the discrete mode would disappear after a tiny portion of resonant particles would be added. However, if the discrete mode lie outside the bucket, the Landau damping cannot be restored by tiny perturbation of the particle distribution; LLD is called radical in that case. For a given bunch emittance and RF voltage, the intensity is limited either by reduction of the bucket acceptance or by (radical) LLD. In this paper, results are presented for longitudinal bunch stability in weak head-tail approximation and resistive wall impedance; three RF configurations are studied: single harmonic, bunch shortening and bunch lengthening. It is shown that every RF configuration may be preferable, depending on the bunch emittance and intensity.

  10. Spatial Accumulation-Rate Pattern Inferred from Radar Internal Layers and Point Measurements of Velocity and Accumulation near Taylor Mouth, Victoria Land

    Science.gov (United States)

    Waddington, E. D.; Neumann, T. A.; Morse, D. L.; Marshall, H.

    2002-12-01

    Internal layers in ice sheets, as measured by ice-penetrating radar, are most likely isochrones. The depth to a shallow internal layer is proportional to the local accumulation rate. However, low-frequency radars often do not record very shallow layers. High-frequency radars (GPR) record shallow layers, but cannot detect the deeper layers that reflect longer-term patterns of climate. Older, deeper layers are also influenced to an increasing degree by accumulated strain due to ice flow, and by the upstream accumulation rate. For this Geophysical Inverse Problem, our Forward Model is a steady-state ice-flow model with measured ice-sheet surface topography, ice thickness, and flowband width, which tracks particles to create modelled internal layers. Ice motion is driven by the input flux into the upper end of the flowband, and by the accumulation pattern along the flowband. To solve the Inverse Problem, our observations comprise depth of an internal layer, and point measurements of accumulation rate and surface velocity. Associated uncertainties are also required. We use Least-Squares or Singular-Value Decomposition to solve for model parameters (input ice flux, piece-wise linear accumulation-rate profile, and layer age) that minimize the mismatch between the data and the model estimates of the data. If the layer age and its uncertainty are known independently, they can also be used. Variable weights can be assigned to each type of data. The data-resolution matrix shows that, for shallow layers, we can resolve high-wavenumber variations in accumulation rate. For deeper layers, we resolve spatial averages of accumulation rates. We apply the model to a flowband at Taylor Mouth between Taylor Dome and Taylor Glacier. The model finds more variation in the inferred accumulation-rate profile than in the depth-profile of an internal layer. The new accumulation-rate profile produces an improved chronology for an ice core collected along the flowline.

  11. Ultrafine particles

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Weschler, Charles J.; Wierzbicka, Aneta;

    2013-01-01

    Particle number (PN) concentrations (10-300 nm in size) were continuously measured over a period of ∼45 h in 56 residences of nonsmokers in Copenhagen, Denmark. The highest concentrations were measured when occupants were present and awake (geometric mean, GM: 22.3 × 103 cm-3), the lowest when th......). Candle burning occurred in half of the homes where, on average, it was responsible for almost 60% of the integrated exposure. © 2013 American Chemical Society........3 × 105 cm-3·h/day). On average, ∼90% of this exposure occurred outside of the period from midnight to 6 a.m. Source events, especially candle burning, cooking, toasting, and unknown activities, were responsible on average for ∼65% of the residential integrated exposure (51% without the unknown activities...

  12. Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.; Farmer, D. K.; Rizzo, L. V.; Pauliqueivis, T.; Kuwata, Mikinori; Karl, Thomas G.; Guenther, Alex B.; Allan, James D.; Coe, H.; Andreae, M. O.; Poeschl, U.; Jiminez, J. L.; Artaxo, Paulo; Martin, Scot T.

    2015-01-01

    Real-time mass spectra of non-refractory component of submicron aerosol particles were recorded in a tropical rainforest in the central Amazon basin during the wet season of 2008, as a part of the Amazonian Aerosol Characterization Experiment (AMAZE-08). Organic components accounted on average for more than 80% of the non-refractory submicron particle mass concentrations during the period of measurements. Ammonium was present in sufficient quantities to halfway neutralize sulfate. In this acidic, isoprene-dominated, low-NOx environment the high-resolution mass spectra as well as mass closures with ion chromatography measurements did not provide evidence for significant contributions of organosulfate species, at least at concentrations above uncertainty levels. Positive-matrix factorization of the time series of particle mass spectra identified four statistical factors to account for the variance of the signal intensities of the organic constituents: a factor HOA having a hydrocarbon-like signature and identified as regional emissions of primary organic material, a factor OOA-1 associated with fresh production of secondary organic material by a mechanism of BVOC oxidation followed by gas-to-particle conversion, a factor OOA-2 consistent with reactive uptake of isoprene oxidation products, especially epoxydiols by acidic particles, and a factor OOA-3 associated with long range transport and atmospheric aging. The OOA-1, -2, and -3 factors had progressively more oxidized signatures. Diameter-resolved mass spectral markers also suggested enhanced reactive uptake of isoprene oxidation products to the accumulation mode for the OOA-2 factor, and such size partitioning can be indicative of in-cloud process. The campaign-average factor loadings were in a ratio of 1.1:1.0 for the OOA-1 compared to the OOA-2 pathway, suggesting the comparable importance of gas-phase compared to particle-phase (including cloud waters) production pathways of secondary organic material during

  13. New Instrument for Measuring Size-resolved Submicron Sea Spray Particle Production From Ocean

    Science.gov (United States)

    Meskhidze, N.; Petters, M. D.; Reed, R. E.; Dawson, K. W.; Phillips, B.; Royalty, T. M.

    2015-12-01

    Marine aerosols play an important role in controlling the Earth's radiation balance, cloud formation and microphysical properties, and the chemistry of the marine atmosphere. As aerosol effects on climate are estimated from the difference between model simulations with present-day and with preindustrial aerosol and precursor emissions, accurate knowledge of size- and composition-dependent production flux of sea spray particles is important for correct assessment of the role of anthropogenic aerosols in climate change. One particular knowledge gap in sea spray particle emissions resides in yet uncharacterized contributions of sea spray to the cloud condensation nuclei (CCN) budget over the marine boundary layer. The chemical composition of 50 to 200 nm sized sea spray particles, most critical to modeling CCN concentration from size distribution data is often simplified as purely organic, purely sea-salt or mixture of both. The lack of accurate information of the size-dependent production flux of sub-micron sea spray particles prevents the modeling community from resolving discrepancies between model-predicted and measured CCN number concentration in the marine boundary layer. We designed a new system for size-selected sea spray aerosol flux measurement that is composed of a 3D sonic anemometer, two thermodenuders, three differential mobility analyzers, two condensation particle counters, and a CCN counter. The system is designed to operate in both Eddy Covariance (EC) and Relaxed Eddy Accumulation (REA) modes. The system is based on the volatility/humidified tandem differential mobility analyzer technique and is therefore designed to measure the size-resolved turbulent fluxes of sub-micron sized sea-salt particles for a wide range of meteorological, hydrological and ocean chemical/biological conditions. The method and the setup will be presented along with some results from a recent field-deployment of the instrument at the North Carolina coast. This presentation

  14. Charge accumulation in lossy dielectrics: a review

    DEFF Research Database (Denmark)

    Rasmussen, Jørgen Knøster; McAllister, Iain Wilson; Crichton, George C

    1999-01-01

    At present, the phenomenon of charge accumulation in solid dielectrics is under intense experimental study. Using a field theoretical approach, we review the basis for charge accumulation in lossy dielectrics. Thereafter, this macroscopic approach is applied to planar geometries such that the mat......At present, the phenomenon of charge accumulation in solid dielectrics is under intense experimental study. Using a field theoretical approach, we review the basis for charge accumulation in lossy dielectrics. Thereafter, this macroscopic approach is applied to planar geometries...... such that the material parameters which influence charge accumulation are clearly identified; viz. the conductivity, permittivity and dimensions of the insulating media. The two former parameters, together with the applied voltage, govern both the magnitude and polarity of the accumulated charge....

  15. Saturation of single toroidal number Alfvén modes

    Science.gov (United States)

    Wang, X.; Briguglio, S.

    2016-08-01

    The results of numerical simulations are presented to illustrate the saturation mechanism of a single toroidal number Alfvén mode, driven unstable, in a tokamak plasma, by the resonant interaction with energetic ions. The effects of equilibrium geometry non-uniformities and finite mode radial width on the wave-particle nonlinear dynamics are discussed. Saturation occurs as the fast-ion density flattening produced by the radial flux associated to the resonant particles captured in the potential well of the Alfvén wave extends over the whole region where mode-particle power exchange can take place. The occurrence of two different saturation regimes is shown. In the first regime, dubbed resonance detuning, that region is limited by the resonance radial width (that is, the width of the region where the fast-ion resonance frequency matches the mode frequency). In the second regime, called radial decoupling, the power exchange region is limited by the mode radial width. In the former regime, the mode saturation amplitude scales quadratically with the growth rate; in the latter, it scales linearly. The occurrence of one or the other regime can be predicted on the basis of linear dynamics: in particular, the radial profile of the fast-ion resonance frequency and the mode structure. Here, we discuss how such properties can depend on the considered toroidal number and compare simulation results with the predictions obtained from a simplified nonlinear pendulum model.

  16. ACCUMULATION AND CONSUMPTION IN MICROECONOMIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Serghey A. Amelkin

    2004-12-01

    Full Text Available Two main processes are common for an economic system. They are consumption and accumulation. The first one is described by utility function, either cardinal or ordinal one. The mathematical model for accumulation process can be constructed using wealth function introduced within the frame of irreversible microeconomics. Characteristics of utility and wealth functions are compared and a problem of extreme performance of resources exchange process is solved for a case when both the consumption and accumulation exist.

  17. Supersymmetric mode converters

    Science.gov (United States)

    Heinrich, Matthias; Miri, Mohammad-Ali; Stützer, Simon; Nolte, Stefan; Szameit, Alexander; Christodoulides, Demetrios N.

    2015-08-01

    In recent years, the ever-increasing demand for high-capacity transmission systems has driven remarkable advances in technologies that encode information on an optical signal. Mode-division multiplexing makes use of individual modes supported by an optical waveguide as mutually orthogonal channels. The key requirement in this approach is the capability to selectively populate and extract specific modes. Optical supersymmetry (SUSY) has recently been proposed as a particularly elegant way to resolve this design challenge in a manner that is inherently scalable, and at the same time maintains compatibility with existing multiplexing strategies. Supersymmetric partners of multimode waveguides are characterized by the fact that they share all of their effective indices with the original waveguide. The crucial exception is the fundamental mode, which is absent from the spectrum of the partner waveguide. Here, we demonstrate experimentally how this global phase-matching property can be exploited for efficient mode conversion. Multimode structures and their superpartners are experimentally realized in coupled networks of femtosecond laser-written waveguides, and the corresponding light dynamics are directly observed by means of fluorescence microscopy. We show that SUSY transformations can readily facilitate the removal of the fundamental mode from multimode optical structures. In turn, hierarchical sequences of such SUSY partners naturally implement the conversion between modes of adjacent order. Our experiments illustrate just one of the many possibilities of how SUSY may serve as a building block for integrated mode-division multiplexing arrangements. Supersymmetric notions may enrich and expand integrated photonics by versatile optical components and desirable, yet previously unattainable, functionalities.

  18. Mode Gaussian beam tracing

    Science.gov (United States)

    Trofimov, M. Yu.; Zakharenko, A. D.; Kozitskiy, S. B.

    2016-10-01

    A mode parabolic equation in the ray centered coordinates for 3D underwater sound propagation is developed. The Gaussian beam tracing in this case is constructed. The test calculations are carried out for the ASA wedge benchmark and proved an excellent agreement with the source images method in the case of cross-slope propagation. But in the cases of wave propagation at some angles to the cross-slope direction an account of mode interaction becomes necessary.

  19. Structure and Characteristics of the Quasi-Coherent Mode in EDA H-mode Plasmas

    Science.gov (United States)

    Cziegler, I.; Terry, J. L.; Lin, L.; Snipes, J. A.; Porkolab, M.

    2006-10-01

    The quasi-coherent mode (QCM), an edge fluctuation present in Enhanced Dα (EDA) H-mode confinement in Alcator C-Mod, is thought to have a decisive role in enhancing particle transport through the edge pedestal of these plasmas. We present detailed data of the mode structure both in real and spectral space, the propagation speed and direction in various regimes, and additional information on the resistive ballooning character of the mode (e.g. mode propagation with k.B 0 in the counter-current direction). We see a second harmonic at twice the frequency and poloidal wavenumber of the fundamental of the mode (kfundcirc at z = 0 varies between 1-2 cm-1); a radial phase variation over the ˜1 cm region across the pedestal where the mode is present; and a ballooning-like poloidal variation in amplitude. These observations will be used to examine the strengths and weaknesses of different models of the QC fluctuation, and should be of use in understanding its mechanism.

  20. Effect of burners with different feeding modes on emission characteristics of biomass molding fuel particles%不同进料方式燃烧器对生物质燃料颗粒物排放特性的影响

    Institute of Scientific and Technical Information of China (English)

    张学敏; 张永亮; 姚宗路; 赵立欣; 孟海波; 田宜水

    2014-01-01

    为摸清不同进料方式的燃烧器对生物质成型燃料燃烧后颗粒物排放的影响,该文对上进料式(A 型)、水平进料式(B型)和下进料式(C型)等3种类型的燃烧器进行燃烧颗粒排放试验,采用低压电子冲击仪对玉米秸秆、棉秆、木质3种成型燃料燃烧后颗粒物排放开展数量浓度和质量浓度研究,并计算出每种燃料在3种燃烧器中每秒排放的颗粒物数量和质量分布。试验结果表明:3种燃烧器中的颗粒物质量分布都成双峰分布,主要集中在5~7级和12级,占总颗粒物质量的90%;木质和棉杆燃料在A型燃烧器中的颗粒物质量排放最少,玉米秸秆燃料在B型中颗粒物质量最少。3种燃烧器中的颗粒物数量分布都成单峰分布玉米秸秆和木质在B型燃烧器上的颗粒物数量主要集中在1~5级,在A型和C型燃烧器上颗粒物数量主要集中在3~6级;棉杆在C型燃烧器上集中在1~5级,在A型和B型燃烧器上颗粒物数量主要集中在3~6级。3种燃烧器对颗粒物质量的分布影响不大。根据试验结果,建议不同的燃料匹配不同的燃烧器。从颗粒物排放总量角度,玉米秸秆应该匹配B型燃烧器,棉杆和木质燃料应该匹配A型燃烧器。从PM2.5所占比例得出,玉米秸秆燃料应匹配C型燃烧器,棉杆匹配 B 型燃烧器,木质匹配 A 型燃烧器。并建议生物质成型燃料燃烧器结构应具有以下特点:进料连续平稳;带有主动清渣装置并且清渣波动小;鼓风配风,保证过量空气系数高。研究结果为中国生物质固体成型燃料的颗粒物排放法规的制定提供参考。%Different structure and the different feeding mode burners affect the emission and the combustion efficiency of various biomass solid fuels. However, how the burner structure and feeding mode impact on the particle emissions is not clearly understood. To investigate this

  1. Particle size distribution and inorganic aerosol characterization during DAURE 2009 winter field campaign at Montseny site

    Science.gov (United States)

    Aranzazu Revuelta, M.; Gómez-Moreno, Francisco J.; Plaza, Javier; Coz, Esther; Pey, Jorge; Cusack, Michael; Pandolfi, Marco; Rodríguez-Maroto, Jesús J.; Pujadas, Manuel

    2010-05-01

    slight SE flows. During the 4th sampling, the air mass direction was oscillating, arriving from both possible axis sides. Comparing both situations, it was observed that there was not a big difference between them for sulfate and nitrate. Sulfate was found in the accumulation mode and in the backup filter, while nitrate also appeared in the coarse mode. Ammonium had a different behavior. It appeared in the accumulation mode and in the backup filter but not in the coarse mode during both kinds of events. When the air mass direction was oscillating, the ammonium concentration was much higher than during the other 3 samplings, more than enough to neutralize the sulfate and nitrate ions. In this case, the particulate nitrate observed in the coarse mode was neutralized by the calcium ion. Acknowledgement: Special thanks are given to X. Querol and A. Alastuey (IDAEA-CSIC) and J.L. Jimenez (U. Colorado, CO, USA) for organizing the DAURE field campaign. This part of the study has been financed by the CGL2007-3052-E/CLI, CGL2008-02817-E/CLI, PROFASE (CGL2007-64117) and GRACCIE (CSD2007-00067) projects. M.A. Revuelta acknowledges the Ministry of Science and Innovation for their economical support through the FPI predoctoral grant BES-2008-007079.

  2. Zero modes and divergence of entanglement entropy

    CERN Document Server

    Mallayya, Krishnanand; Shankaranarayanan, S; Padmanabhan, T

    2014-01-01

    We investigate the cause of the divergence of the entanglement entropy for the free scalar fields in $(1+1)$ and $(D + 1)$ dimensional space-times. In a canonically equivalent set of variables, we show explicitly that the divergence in the entanglement entropy in $(1 + 1)-$ dimensions is due to the accumulation of large number of near-zero frequency modes as opposed to the commonly held view of divergence having UV origin. The feature revealing the divergence in zero modes is related to the observation that the entropy is invariant under a hidden scaling transformation even when the Hamiltonian is not. We discuss the role of dispersion relations and the dimensionality of the space-time on the behavior of entanglement entropy.

  3. Bi-modes alternation stepping ultrasonic motors

    Institute of Scientific and Technical Information of China (English)

    Jiamei JIN; Chunsheng ZHAO

    2008-01-01

    Based on the principle of alternative operation of two bending vibration modes in an annular stator, this paper presents a standing-wave stepping ultrasonic motor characterized by no accumulative errors driven by an open-loop control circuitry. The driving forces are generated from the motions of projections on the stator in two modes. The positioning of the motor is achieved by the cooperation between the stator projections and rotor teeth, and the number of the rotors determines the stepping angle of the motor. Two-phase sinusoidal signals corresponding to the two modal frequencies drive the motor bi-direction stepping rotation via a switch unit. The prototype runs steadily without miss-step on trial. The single-step angle displacement of the motor is 2.5°.

  4. The fractal characterization of wear particles in relation to the wear status

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The topography and distribution of wear particles produced in the wear process containmuch information about the wear status. Fractal geometry is applied in this paper to describe thewear particle accumulation in order to characterize the wear status change. The sliding wear test isperformed on a pin-on-disc apparatus using steel disc and brass pin. The investigation resultsshow that wear particle accumulation presents a strong bi-fractal behavior. Also, the fractal dimen-sion varies in correspondence to the wear status change. A new fractal index characterizing thewear particle accumulation is put forward. The wear tests of brass pin demonstrate that the fractalindex is effective in describing the wear status change.

  5. Microfabricated particle focusing device

    Energy Technology Data Exchange (ETDEWEB)

    Ravula, Surendra K.; Arrington, Christian L.; Sigman, Jennifer K.; Branch, Darren W.; Brener, Igal; Clem, Paul G.; James, Conrad D.; Hill, Martyn; Boltryk, Rosemary June

    2013-04-23

    A microfabricated particle focusing device comprises an acoustic portion to preconcentrate particles over large spatial dimensions into particle streams and a dielectrophoretic portion for finer particle focusing into single-file columns. The device can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles.

  6. Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the Southeast Pacific ocean

    Directory of Open Access Journals (Sweden)

    C. H. Twohy

    2012-08-01

    Full Text Available The Southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles such as power plants, urban pollution and smelters on the stratocumulus deck was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI, and the non-volatile residual particles were analyzed.

    Many flights focused on the gradient in cloud properties on an E-W track along 20° S from near the Chilean coast to remote areas offshore. Mean statistics from seven flights and many individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. Single particle analysis was used to reveal types and sources of the enhanced particle number. While a variety of particle types were found throughout the region, the dominant particles near shore were partially neutralized sulfates. Modeling and chemical analysis indicated that the predominant source of these particles in the marine boundary layer along 20° S was anthropogenic pollution from central Chilean sources, with copper smelters a relatively small contribution.

    Cloud droplets were more numerous and smaller near shore, and there was less drizzle. Higher droplet number concentration and physically thinner clouds both contributed to the smaller droplets near shore. Satellite measurements were used to show that cloud albedo was highest 500–1000 km offshore, and actually lower closer to shore due to the generally thinner clouds and lower liquid water paths

  7. NASTRAN component-mode synthesis

    Science.gov (United States)

    Guyan, R. J.

    1976-01-01

    Procedure for dynamic substructuring analysis technique is generally as follows: calculation of component modes; selection of component normal modes, calculation of component generalized matrices, assembly of system matrices, and computation of normal modes; and retrieval of component response.

  8. Global kink and ballooning modes in high-beta systems and stability of toroidal drift modes

    International Nuclear Information System (INIS)

    A numerical code (HBT) has been developed which solves for the equilibrium, global stability and high-n stability of plasmas with arbitrary cross-section. Various plasmas are analysed for their stability to these modes in the high-beta limit. Screw-pinch equilibria are stable to high-n ballooning modes up to betas of 18%. The eigenmode equation for drift waves is analysed numerically. The toroidal branch is shown to be destabilized by the non-adiabatic response of trapped and circulating particles. (author)

  9. Cyclotron operating mode determination based on intelligent methods

    International Nuclear Information System (INIS)

    Particle accelerators are generators that produce beams of charged particles with energies depending on the accelerator type. The MGC-20 cyclotron is a cyclic particle accelerator used for accelerating protons, deuterons, alpha particles, and helium-3 to different energies. Main applications are isotopes production, nuclear reactions studies, and mass spectroscopy studies and other industrial applications. The cyclotron is a complicated machine depends on using a strong magnetic field and high frequency-high voltage electric field together to accelerate and bend charged particles inside the accelerating chamber. It consists of the following main parts, the radio frequency system, the main magnet with the auxiliary concentric and harmonic coils, the electrostatic deflector, and the ion source, the beam transport system, and high precision and high stability DC power supplies.To accelerate a particle to certain energy, one has to adjust the cyclotron operating parameters to be suitable to accelerate this particle to that energy. If the cyclotron operating parameters together are adjusted to accelerate a charged particle to certain energy, then these parameters together are named the operating mode to accelerate this particle to that energy. For example the operating mode to accelerate protons to 18 MeV is named the (18 MeV protons operating mode). The operating mode includes many parameters that must be adjusted together to be successful to accelerate, extract, focus, steer a particle from the ion source to the experiment. Due to the big number of parameters in the operating modes, 19 parameters have been selected in this thesis to be used in an intelligent system based on feed forward back propagation neural network to determine the parameters for new operating modes. The new intelligent system depends on the available information about the currently used operating modes.The classic way to determine a new operating mode was depending on trial and error method to

  10. Particle kickers

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    These devices are designed to provide a current pulse of 5000 Amps which will in turn generate a fast magnetic pulse that steers the incoming beam into the LHC. Today, the comprehensive upgrade of the LHC injection kicker system is entering its final stages. The upgraded system will ensure the LHC can be refilled without needing to wait for the kicker magnets to cool, thus enhancing the performance of the whole accelerator.   An upgraded kicker magnet in its vacuum tank, with an upgraded beam screen. The LHC is equipped with two kicker systems installed at the injection points (near points 2 and 8, see schematic diagram) where the particle beams coming from the SPS are injected into the accelerator’s orbit. Each system comprises four magnets and four pulse generators in which the field rises to 0.12 Tesla in less than 900 nanoseconds and for a duration of approximately 8 microseconds. Although the injection kickers only pulse 12 times to fill the LHC up with beam, the LHC beam circ...

  11. Possible routes for lead accumulation in feral pigeons (Columba livia).

    Science.gov (United States)

    Nam, Dong-Ha; Lee, Doo-Pyo

    2006-10-01

    This study examined possible routes for lead (Pb) accumulation in resident pigeons collected from rural, urban, and four industrial sites in Korea. The accumulation pattern of Pb was comparable to the study sites. The highest Pb concentration was found in the bone, followed by kidney, liver, and lung of pigeons. Highest Pb residues in bones were found in urban (Seoul), and two industrial complex areas (Busan and Ulsan), which were about 15 times higher than rural area (Duckjuk island), and followed by Ansan and Yochon industrial areas. Regional Pb variations in liver, kidney, and lung tissues were also similar pattern with the bone Pb difference. These findings indicate that Pb accumulation in tissues of pigeons may be affected by the Pb exposure in their respective habitats. Crop contents and gizzard materials were investigated as representing the ingested items. No difference of Pb concentration was observed in major foods (maize and/or wheat) of crop contents in the study sites except Busan, whereas variations of Pb levels in gizzard materials were indicative of a similar pattern with tissue Pb differences. The Pb concentration in tissues of pigeons did not correspond well to the atmospheric Pb levels. With regard to possible Pb sources, ingested items especially materials present in the gizzard are important sources for Pb contamination to pigeons because Pb-containing sources may be expected to present in roadside particles, dusts, paint chips and building flakes. However, air Pb value being low may not affect significant as the regional variations in tissues of pigeons.

  12. Electrostatic twisted modes in multi-component dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ayub, M. K. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Pohang University of Sciences and Technology, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Ali, S. [National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Ikram, M. [Department of Physics, Hazara University, Mansehra 21300 (Pakistan)

    2016-01-15

    Various electrostatic twisted modes are re-investigated with finite orbital angular momentum in an unmagnetized collisionless multi-component dusty plasma, consisting of positive/negative charged dust particles, ions, and electrons. For this purpose, hydrodynamical equations are employed to obtain paraxial equations in terms of density perturbations, while assuming the Gaussian and Laguerre-Gaussian (LG) beam solutions. Specifically, approximated solutions for potential problem are studied by using the paraxial approximation and expressed the electric field components in terms of LG functions. The energy fluxes associated with these modes are computed and corresponding expressions for orbital angular momenta are derived. Numerical analyses reveal that radial/angular mode numbers as well as dust number density and dust charging states strongly modify the LG potential profiles attributed to different electrostatic modes. Our results are important for understanding particle transport and energy transfer due to wave excitations in multi-component dusty plasmas.

  13. Electrostatic twisted modes in multi-component dusty plasmas

    International Nuclear Information System (INIS)

    Various electrostatic twisted modes are re-investigated with finite orbital angular momentum in an unmagnetized collisionless multi-component dusty plasma, consisting of positive/negative charged dust particles, ions, and electrons. For this purpose, hydrodynamical equations are employed to obtain paraxial equations in terms of density perturbations, while assuming the Gaussian and Laguerre-Gaussian (LG) beam solutions. Specifically, approximated solutions for potential problem are studied by using the paraxial approximation and expressed the electric field components in terms of LG functions. The energy fluxes associated with these modes are computed and corresponding expressions for orbital angular momenta are derived. Numerical analyses reveal that radial/angular mode numbers as well as dust number density and dust charging states strongly modify the LG potential profiles attributed to different electrostatic modes. Our results are important for understanding particle transport and energy transfer due to wave excitations in multi-component dusty plasmas

  14. Characterization of photomultiplier tubes in a novel secondary ionization mode for Secondary Emission Ionization Calorimetry

    CERN Document Server

    Tiras, E; Ogul, H; Southwick, D; Bilki, B; Nachtman, J; Onel, Y

    2016-01-01

    Hamamatsu single anode R7761 and multi-anode R5900-00-M16 Photomultiplier Tubes have been characterized for use in Secondary Emission Ionization Calorimetry study, that is a novel techique to measure the electromagnetic shower particles in extreme radiation environment. There are different SE modes used in the tests, developed from conventional PMT mode. Here, the technical design of secondary emission modules and characterization measurements of both SE modes and the PMT mode are reported.

  15. Coupled dust lattice modes in dust-plasma crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yaroshenko, V. V.; Ivlev, A. V.; Morfill, G. E.

    2005-07-01

    Dust lattice (DL) modes arising in strongly coupled dusty plasmas have been extensively studies in many experiments using radio-frequency discharge plasmas in the laboratory and under microgravity conditions. In the laboratory experiments, the highly negatively charged particles levitate in the sheath region of the horizontal negatively biased electrode where there is a balance between the gravitational and electrostatic forces acting in the vertical direction. If the particles are magnetized by an external field, the magnetic force can also contribute to the force balance and support particle levitation. There are a few characteristic features of the particle trapping in discharge plasma. On the one hand, the complex plasma structures reveal the anisotropy due to vertical ion flows that lead to the formation of an ion wake underneath the suspended microparticles. On the other hand, an equilibrium particle charge strongly depends on the vertical particle position in the sheath region. This introduces anisotropy of the system related to a vertical profile of the equilibrium particle charge. Finally, if the particles are magnetized, there exists a vertical non-uniformity of the magnetic moments induced by the external in homogenous magnetic field. We study the influence of all these factors on coupling of the transverse and longitudinal DL modes in a one-dimensional horizontal particle string. It is found two different ways of the reconnection of the dispersion curves for the longitudinal and transverse modes in the vicinity of their intersection point. When the particles levitate at that part of the complex plasmas, which provides a coupling coefficient to be positive, the transverse and longitudinal branches become confluent in such a way, that there is a considerable frequency gap in the vicinity of the intersection point, in which both DL modes are evanescent. This type of reconnection can be considered as a kind of the linear mode conversion. Conversely if the

  16. Interactions between Janus particles and membranes

    Science.gov (United States)

    Ding, Hong-Ming; Ma, Yu-Qiang

    2012-02-01

    Understanding how nanoparticles interact with cell membranes is of great importance in drug/gene delivery. In this paper, we investigate the interactions between Janus particles and membranes by using dissipative particle dynamics, and find that there exist two different modes (i.e., insertion and engulfment) in the Janus particle-membrane interactions. The initial orientation and properties of Janus particles have an important impact on the interactions. When the hydrophilic part of the particle is close to the membrane or the particle has a larger section area and higher hydrophilic coverage, the particle is more likely to be engulfed by the membrane. We also provide insights into the interactions between Janus particles and membranes containing lipid rafts, and find that a Janus particle could easily detach from a membrane after it is engulfed by the raft. The present study suggests a potential way to translocate Janus particles through membranes, which may give some significant suggestions on future nanoparticle design for drug delivery.

  17. On accumulation time of the Jupiter

    International Nuclear Information System (INIS)

    It is suggested that accumulation time of Mars is strongly influenced by the presence of proto-Jupiter. It is shown that accumulation time of the Mars constrains the growth time scale for Jupiter. This constraint has been roughly estimated to be ∼ 1.7x107 y nearly in agreement with the lifetime of T Tauri phase of the Sun

  18. Electro-optical detection of charged particles

    CERN Document Server

    Semertzidis, Y K; Kowalski, L A; Kraus, D E; Larsen, R; Lazarus, D M; Magurno, B; Nikas, D; Ozben, C; Srinivasan-Rao, T; Tsang, Thomas

    2000-01-01

    We have made the first observation of a charged particle beam by means of its electro-optical effect on the polarization of laser light in a LiNbO sub 3 crystal. The modulation of the laser light during the passage of a pulsed electron beam was observed using a fast photodiode and a digital oscilloscope. The fastest rise time measured, 120 ps, was obtained in the single shot mode and was limited by the bandwidth of the oscilloscope and the associated electronics. This technology holds good for detectors of greatly improved spatial and temporal resolution for single relativistic charged particles as well as particle beams.

  19. Trivelpiece-Gould modes in a uniform unbounded plasma

    Science.gov (United States)

    Stenzel, R. L.; Urrutia, J. M.

    2016-09-01

    Trivelpiece-Gould (TG) modes originally described electrostatic surface waves on an axially magnetized cylindrical plasma column. Subsequent studies of electromagnetic waves in such plasma columns revealed two modes, a predominantly magnetic helicon mode (H) and the mixed magnetic and electrostatic Trivelpiece-Gould modes (TG). The latter are similar to whistler modes near the oblique cyclotron resonance in unbounded plasmas. The wave propagation in cylindrical geometry is assumed to be paraxial while the modes exhibit radial standing waves. The present work shows that TG modes also arise in a uniform plasma without radial standing waves. It is shown experimentally that oblique cyclotron resonance arises in large mode number helicons. Their azimuthal wave number far exceeds the axial wave number which creates whistlers near the oblique cyclotron resonance. Cyclotron damping absorbs the TG mode and can energize electrons in the center of a plasma column rather than the edge of conventional TG modes. The angular orbital field momentum can produce new perpendicular wave-particle interactions.

  20. Accumulation of zirconium by microalgae and cyanobacteria

    International Nuclear Information System (INIS)

    The accumulation of zirconium (Zr) as [Zr4-(OH)8(H2O)16]8+ by cyanobacteria and microalgae has been characterized. In all the cyanobacterial and microalgal species examined, accumulation consisted of a single rapid energy-independent phase (''biosorp-tion'') and no energy-dependent accumulation was observed. Biosorption of Zr was concentration-dependent, followed a Freundlich adsorption isotherm, and was dependent on pH, showing decreased accumulation with decreased pH. Prior treatment with Na+, K+, Cs+, Ca2+, Mg2+ and Sr2+ (added as chlorides) also decreased Zr accumulation by cyanobacteria and microalgae, probably a result of competition between Zr ions and othecations, including H+, for available binding sites on the cell walls. Zr desorption from micoalgae and cyanobacteria was increased by increasing external cation concentrations or by decreasing the pH of the desorption agent. (orig.)

  1. Sliding mode control and observation

    CERN Document Server

    Shtessel, Yuri; Fridman, Leonid; Levant, Arie

    2014-01-01

    The sliding mode control methodology has proven effective in dealing with complex dynamical systems affected by disturbances, uncertainties and unmodeled dynamics. Robust control technology based on this methodology has been applied to many real-world problems, especially in the areas of aerospace control, electric power systems, electromechanical systems, and robotics. Sliding Mode Control and Observation represents the first textbook that starts with classical sliding mode control techniques and progresses toward newly developed higher-order sliding mode control and observation algorithms and their applications. The present volume addresses a range of sliding mode control issues, including: *Conventional sliding mode controller and observer design *Second-order sliding mode controllers and differentiators *Frequency domain analysis of conventional and second-order sliding mode controllers *Higher-order sliding mode controllers and differentiators *Higher-order sliding mode observers *Sliding mode disturbanc...

  2. Thermodynamics of radiation modes

    Energy Technology Data Exchange (ETDEWEB)

    Pina, Eduardo; De la Selva, Sara Maria Teresa [Departamento de Fisica, Universidad Autonoma Metropolitana - Iztapalapa, PO Box 55 534, Mexico, D F, 09340 (Mexico)], E-mail: pge@xanum.uam.mx, E-mail: tere@xanum.uam.mx

    2010-03-15

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the frequencies. One equation relating frequency and volume is used to define the thermodynamics of one mode, and to explain the mystery of the frequency-dependent quantities having a similar behaviour to the non-frequency-dependent quantities for some thermodynamic equations and different behaviour for others. Besides, this frequency-volume relation is used to count the number of modes in a band of frequency.

  3. DIRC, the particle identification system for BABAR

    International Nuclear Information System (INIS)

    The DIRC, a novel type of Cherenkov ring imaging device, is the primary hadronic particle identification system for the BABAR detector at the asymmetric B-factory, PEP-II at SLAC. BABAR began taking data with colliding beams mode in late spring 1999. This paper describes the performance of the DIRC during the first 16 months of operation. (author)

  4. THE ROLE OF NEUTRALS IN H-MODE PEDESTAL FORMATION

    International Nuclear Information System (INIS)

    An analytic model, derived from coupled continuity equations for the electron and neutral deuterium densities, is consistent with many features of edge electron density profiles in the DIII-D tokamak. For an assumed constant particle diffusion coefficient, the model shows that particle transport and neutral fueling produce electron and neutral density profiles that have the same characteristic scale lengths at the plasma edge. For systematic variations of density in H-mode discharges, the model predicts that the width of the electron density transport barrier decreases and the maximum gradient increases, as observed in the experiments. The widths computed from the model agree quantitatively with the experimental widths for conditions in which the model is valid. These results support models of transport barrier formation in which the H-mode particle barrier is driven by the edge particle flux and the width of the barrier is approximately the neutral penetration length

  5. Mode og mozzarella

    DEFF Research Database (Denmark)

    Nielsen, Jakob Isak

    2013-01-01

    Under en samtale i Paolo Sorrentinos La grande bellezza/da. Den store skønhed (2013) anføres det, at Italiens primære eksportvarer er mode og mozzarella. Selve filmen vidner om, at Italien har andet at byde på – heriblandt filmkunst og Roms righoldige kulturhistorie.......Under en samtale i Paolo Sorrentinos La grande bellezza/da. Den store skønhed (2013) anføres det, at Italiens primære eksportvarer er mode og mozzarella. Selve filmen vidner om, at Italien har andet at byde på – heriblandt filmkunst og Roms righoldige kulturhistorie....

  6. Mode-coupling instability of monolayer complex (dusty) plasmas

    Science.gov (United States)

    Zhdanov, Sergey; Ivlev, Alexei; Morfill, Gregor

    2010-05-01

    Strongly coupled complex (dusty) plasmas give us a unique opportunity to go beyond the limits of continuous media and study various generic processes occurring in liquids or solids, in regimes ranging from the onset of cooperative phenomena to large strongly coupled systems at the most detailed kinetic (atomistic) level. On the other hand, there is certain peculiarity of the interparticle interactions in complex plasmas. This can be easily understood if we divide the complete set of elementary charges in complex plasmas into two distinct categories - a subsystem of charges bound to the microparticles, and a subsystem of free plasma charges in the surrounding wakes. Plasma wakes play the role of a "third body" in the mutual particle-particle interaction and, hence, make the pair interaction nonreciprocal. We carried out rigorous theoretical investigation of the DL wave mode coupling occurring in 2D complex plasmas due to particle-wake interactions. The analysis of the mode coupling shows that if the strength of the vertical confinement is below a certain critical value, then resonance coupling between the longitudinal in-plane mode and out-of-plane mode sets in. This results in the emergence of a hybrid mode and drives the mode-coupling instability. The universal dependence of the critical confinement frequency on plasma parameters is calculated, which allows us to specify the conditions when stable 2D highly ordered complex plasma can be formed in experiments.

  7. Composition and properties of atmospheric particles in the eastern Atlantic and impacts on gas phase uptake rates

    Directory of Open Access Journals (Sweden)

    G. McFiggans

    2009-12-01

    humidity using HTDMA data. Heterogeneous uptake rates of hypoiodous acid (HOI were also predicted and the nss accumulation mode was found to be the most significant part of the size distribution, which could act as an inert sink for this species. The predicted uptake rates were enhanced by around a factor of 2 during the African influence period due to the addition of both coarse and fine particles.

    The hygroscopicity of the nss fraction was modelled using the Aerosol Diameter Dependent Equilibrium Model (ADDEM using the measured composition and results compared with the HTDMA data. This was the first time such a reconciliation study with this model has been performed with marine data and good agreement was reached within the resolution of the instruments. The effect of hygroscopic growth on HOI uptake was also modelled and ambient uptake rates were found to be approximately doubled compared to equivalent dry particles.

  8. Particle identification for beauty physics

    Energy Technology Data Exchange (ETDEWEB)

    Ludlam, T.

    1987-01-01

    We look briefly at the requirements for particle identification for possible beauty experiments at the Tevatron, both in the fixed target and the collider mode. Techniques presently in use in high energy physics experiments, and under development, should make sensitive experiments feasible. However, in all cases the present state of the art must be advanced to meet the necessary requirements for segmentation andor rate capability. The most fundamentally difficult challenges appear to be the efficient tagging of soft electrons (for the collider experiment) and the need to handle interaction rates up to /approximately/ 10/sub 9/ HZ in the fixed target mode. In both cases we can find ''in principle'' demonstrations that the requirements can be met. We have considered only the most basic prooperties of detectors, however, and the real answers will come from careful studies of details. 20 refs., 10 figs.

  9. Aflatoxin Accumulation in a Maize Diallel Cross

    Directory of Open Access Journals (Sweden)

    W. Paul Williams

    2015-06-01

    Full Text Available Aflatoxins, produced by the fungus Aspergillus flavus, occur naturally in maize. Contamination of maize grain with aflatoxin is a major food and feed safety problem and greatly reduces the value of the grain. Plant resistance is generally considered a highly desirable approach to reduction or elimination of aflatoxin in maize grain. In this investigation, a diallel cross was produced by crossing 10 inbred lines with varying degrees of resistance to aflatoxin accumulation in all possible combinations. Three lines that previously developed and released as sources of resistance to aflatoxin accumulation were included as parents. The 10 parental inbred lines and the 45 single crosses making up the diallel cross were evaluated for aflatoxin accumulation in field tests conducted in 2013 and 2014. Plants were inoculated with an A. flavus spore suspension seven days after silk emergence. Ears were harvested approximately 60 days later and concentration of aflatoxin in the grain determined. Parental inbred lines Mp717, Mp313E, and Mp719 exhibited low levels (3–12 ng/g of aflatoxin accumulation. In the diallel analysis, both general and specific combining ability were significant sources of variation in the inheritance of resistance to aflatoxin accumulation. General combining ability effects for reduced aflatoxin accumulation were greatest for Mp494, Mp719, and Mp717. These lines should be especially useful in breeding for resistance to aflatoxin accumulation. Breeding strategies, such as reciprocal recurrent selection, would be appropriate.

  10. Alpha particle effects on MHD ballooning

    International Nuclear Information System (INIS)

    During the period, as the first step towards the goal of detail understanding of the effects of alpha particle on MHD Ballooning Modes, a new numerical approach to investigate the stability of low-frequency fluctuations in high temperature tokamaks was developed by solving the gyrokinetic equations for the ion and electron directly as an initial value problem. The advantage of this approach is the inclusion of many important kinetic features of the problem without approximations and computationally more economical than particle-pushing simulation. The ion-temperature-gradient-mode was investigated to benchmark this new simulation technique. Previous results in literature were recovered. Both the adiabatic electron model and the full drift-kinetic electron model are studied. Numerical result shows that the full drift-kinetic electron model is more unstable. The development of subcycling technique to handle the fast electron bounce time is particularly significant to apply this new approach to the alpha particle problem since alpha particle bounce frequency is also significantly higher than the mode frequency. This new numerical technique will be the basis of future study of the microstability in high temperature tokamaks with alpha particles (or any energetic species). 15 refs., 13 figs

  11. Modes of Communication

    Science.gov (United States)

    Dewatripont, Mathias; Tirole, Jean

    2005-01-01

    The paper develops a theory of costly communication in which the sender's and receiver's motivations and abilities endogenously determine the communication mode and the transfer of knowledge. Communication is modeled as a problem of moral hazard in teams, in which the sender and receiver select persuasion and message elaboration efforts. The model…

  12. Thermodynamics of Radiation Modes

    Science.gov (United States)

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  13. SHANGHAI MODE LINGERIE 2010

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ As first trade show in Asia created in 2005 by EUROVET, the 6th session of Shanghai Mode Lingerie will be held on October 19th and 20th.There will be 2 days for intensive business, 8,000 sqm of exhibition space,200 exhibitors, and 5,122 trade visitors.

  14. SHANGHAI Mode Lingerie 2010

    Institute of Scientific and Technical Information of China (English)

    Zhao Fei

    2010-01-01

    @@ As Asia's lingerie &beachwear industry leaders,the 6th session of Shanghai Mode Lingerie aiming at creating the best international lingerie &beachwear pageant was held on October 19th-20th at the Shanghai Exhibition Center,with a sparkling new look and a new conception.

  15. Free carboxylate stretching modes

    NARCIS (Netherlands)

    Oomens, J.; Steill, J. D.

    2008-01-01

    We report the first IR spectroscopic observation of carboxylate stretching modes in free space, i.e., in the complete absence of solvent or counterions. Gas-phase spectra of a series of benzoate anions have been recorded and compared to condensed-phase spectra, revealing the profound influence of th

  16. Mode Gaussian beam tracing

    CERN Document Server

    Trofimov, M Yu; Kozitskiy, S B

    2015-01-01

    An adiabatic mode Helmholtz equation for 3D underwater sound propagation is developed. The Gaussian beam tracing in this case is constructed. The test calculations are carried out for the crosswedge benchmark and proved an excellent agreement with the source images method.

  17. Thermal Operating Modes

    International Nuclear Information System (INIS)

    Higher and lower temperature operating modes (e.g., above and below the boiling point of water) are alternative approaches to managing the heat produced by the radioactive decay of spent nuclear fuel. Current analyses indicate that a repository at the Yucca Mountain site is likely to comply with applicable safety standards regardless of the particular thermal operating mode. Both modes have potential advantages and disadvantages. With a higher temperature operating mode (HTOM), waste packages (WPs) can be placed closer together. This reduces the number of drifts, the required emplacement area, construction costs, and occupational risks to construction workers. In addition, the HTOM would minimize the amount of water that might contact the waste for hundreds of years after closure. On the other hand, higher temperatures introduce uncertainties in the understanding of the long-term performance of the repository because of uncertainties in the thermal effects on WP lifetime and the near-field environment around the drifts. A lower temperature operating mode (LTOM) has the potential to reduce uncertainties in long-term performance of the repository by limiting the effects of temperature on WP lifetime and on the near-field environment around the drifts. Depending on the combination of operating parameters, a LTOM could require construction of additional drifts, a larger emplacement area, increased construction costs, increased occupational risks to construction works, and a longer period of ventilation than a HTOM. The repository design for the potential Yucca Mountain site is flexible and can be constructed and operated in various operating modes to achieve specific technical objectives, accommodate future policy decisions, and use of new information. For example, the flexible design can be operated across a range of temperatures and can be tailored to achieve specific thermal requirements in the future. To accommodate future policy decisions, the repository can be

  18. Fast particle experiments in JT-60U

    International Nuclear Information System (INIS)

    Results of fast particle experiments in JT-60U are presented. The fast particles were created with ICRF heating and negative ion based neutral beam injection (N-NBI) heating. With both heating systems Alfven eigenmodes (AEs) were excited. The AEs that were excited with ICRF during sawtooth stabilization experiments are used to extract information about the magnetic safety profile in the plasma centre. These measurements are compared with motional Stark effect measurements and with sawtooth models. The first results on the radial mode structure of TAEs as measured with an X mode reflectometer system are also given. When the N-NBI beam was injected into a sawtoothing plasma, a significant increase in sawtooth period was observed. A survey is given of the bursting, chirping and stationary frequency modes that have been found in the Alfven range of frequencies when N-NBI was injected. Most, but not all, of these modes scale with the Alfven velocity. One group of modes that starts in the continuum and chirps up to the toroidicity induced Alfven eigenmode (TAE) gap in typically 200 ms can be identified as resonant TAEs, whereas another group of modes appears as short bursts (up to 20 ms) in the Alfven continuum. (author)

  19. Uranium accumulation by aquatic macrophyte, Pistia stratiotes

    International Nuclear Information System (INIS)

    Uranium accumulation by aquatic macrophyte, Pistia stratiotes from aqueous solution was investigated in laboratory condition. The objective was to evaluate the uranium accumulation potential and adopt the plant in uranium containing medium to improve its uptake capacity. The plant was found to tolerate and grow in the pH range of 3-7. Accumulation of uranium improved with increasing pH and the plant could remove 70% uranium from the medium (20 mg/L) within 24 hours of incubation at pH 5-6. Uptake of uranium on either side of this pH range decreased

  20. Recent accumulation rate at Dome A, Antarctica

    Institute of Scientific and Technical Information of China (English)

    HOU ShuGui; LI YuanSheng; XIAO CunDe; REN JiaWen

    2007-01-01

    Based on the horizon of β activity and the density profiles, recent accumulation rate at Dome A, Antarctica is calculated to be 0.023 m water equivalent per year. This value is comparative to the accumulation rates deduced from the other inland sites of Antarctica. Clear-sky precipitation (or diamond dust) dominates the total precipitation at Dome A region. We speculate Dome A as a potential site to discover the oldest ice in Antarctica due to its tremendous ice thickness (>3000 m), extremely low accumulation rate, and low ice velocity.

  1. Microbial accumulation of uranium, radium, and cesium

    International Nuclear Information System (INIS)

    Diverse microbial species varied considerably in their ability to accumulate uranium, cesium, and radium. Mechanistic differences in uranium uptake by Saccharomyces cerevisiae and Pseudomonas aeruginosa were indicated. S. serevisiae exhibited a slow (hours) surface accumulation of uranium which was subject to environmental factors, while P. aeruginosa accumulated uranium rapidly (minutes) as dense intracellular deposits and did not appear to be affected by environmental parameters. Metabolism was not required for uranium uptake by either organism. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several species tested

  2. Geochemistry Model Validation Report: External Accumulation Model

    International Nuclear Information System (INIS)

    The purpose of this Analysis and Modeling Report (AMR) is to validate the External Accumulation Model that predicts accumulation of fissile materials in fractures and lithophysae in the rock beneath a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. (Lithophysae are voids in the rock having concentric shells of finely crystalline alkali feldspar, quartz, and other materials that were formed due to entrapped gas that later escaped, DOE 1998, p. A-25.) The intended use of this model is to estimate the quantities of external accumulation of fissile material for use in external criticality risk assessments for different types of degrading WPs: U.S. Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The scope of the model validation is to (1) describe the model and the parameters used to develop the model, (2) provide rationale for selection of the parameters by comparisons with measured values, and (3) demonstrate that the parameters chosen are the most conservative selection for external criticality risk calculations. To demonstrate the applicability of the model, a Pu-ceramic WP is used as an example. The model begins with a source term from separately documented EQ6 calculations; where the source term is defined as the composition versus time of the water flowing out of a breached waste package (WP). Next, PHREEQC, is used to simulate the transport and interaction of the source term with the resident water and fractured tuff below the repository. In these simulations the primary mechanism for accumulation is mixing of the high pH, actinide-laden source term with resident water; thus lowering the pH values sufficiently for fissile minerals to become insoluble and precipitate. In the final section of the model, the outputs from PHREEQC, are processed to produce mass of accumulation

  3. Energetic Particle Diffusion In Critically Balanced Turbulence

    CERN Document Server

    Laitinen, T; Kelly, J; Marsh, M; 10.1088/0004-637X/764/2/168

    2013-01-01

    Observations and modelling suggest that the fluctuations in magnetised plasmas exhibit scale-dependent anisotropy, with more energy in the fluctuations perpendicular to the mean magnetic field than in the parallel fluctuations and the anisotropy increasing at smaller scales. The scale-dependence of the anisotropy has not been studied in full-orbit simulations of particle transport in turbulent plasmas so far. In this paper, we construct a model of critically balanced turbulence, as suggested by \\cite{GoSr1995}, and calculate energetic particle spatial diffusion coefficients using full-orbit simulations. The model uses an enveloped turbulence approach, where each 2-dimensional wave mode with wavenumber $k_\\perp$ is packed into envelopes of length $L$ following the critical balance condition, $L\\propto k_\\perp^{-2/3}$, with the wave mode parameters changing between envelopes. Using full-orbit particle simulations, we find that both the parallel and perpendicular diffusion coefficients increase by a factor 2, co...

  4. Time-resolved study of Higgs mode in superconductors

    Science.gov (United States)

    Shimano, Ryo

    The behavior of superconductors far from equilibrium has been intensively studied over decades. Goals of these studies are the elucidation of bosonic fluctuations essential for the pairing mechanisms, the manifestation of competing orders or hidden phases, and the optical manipulation of superconductivity. The study of collective modes is crucially important for these perspectives as it provides the information on the dynamics of order parameters in non-equilibirium states. Generally, collective modes in ordered phases associated with spontaneous symmetry breaking are classified into 1) gapless phase modes and 2) gapped amplitude modes. In superconductors, the phase mode is eaten by gauge field, according to the Anderson-Higgs mechanism. The remaining amplitude mode is recently termed as Higgs mode from its analogy to the Higgs boson in particle physics. Despite its long history of investigation, unambiguous observation of Higgs mode has remained elusive. This is because the Higgs mode does not have a charge nor electric dipole and therefore it does not couple directly to the electromagnetic field. Here we report on our recent observation of Higgs mode in s-wave superconductors by using THz-pump and THz-probe spectroscopy technique. After nonadiabatic excitation near the superconducting gap energy with monocycle THz pulses, Higgs mode was observed as oscillations in the transmission of THz probe pulse. The resonant nonlinear coupling between the Higgs mode and coherent radiation field was also discovered, resulting in an efficient third order harmonic generation of the incident THz radiation. The extension of experiments to multiband superconductors and unconventional superconductors will be discussed. Time-resolved study of Higgs mode in superconductors.

  5. Mode couplings and resonance instabilities in dust clusters.

    Science.gov (United States)

    Qiao, Ke; Kong, Jie; Oeveren, Eric Van; Matthews, Lorin S; Hyde, Truell W

    2013-10-01

    The normal modes for three to seven particle two-dimensional (2D) dust clusters in a complex plasma are investigated using an N-body simulation. The ion wakefield downstream of each particle is shown to induce coupling between horizontal and vertical modes. The rules of mode coupling are investigated by classifying the mode eigenvectors employing the Bessel and trigonometric functions indexed by order integers (m, n). It is shown that coupling only occurs between two modes with the same m and that horizontal modes having a higher shear contribution exhibit weaker coupling. Three types of resonances are shown to occur when two coupled modes have the same frequency. Discrete instabilities caused by both the first and third type of resonances are verified and instabilities caused by the third type of resonance are found to induce melting. The melting procedure is observed to go through a two-step process with the solid-liquid transition closely obeying the Lindemann criterion. PMID:24229289

  6. Reversal behaviour in perpendicular iron particle arrays (alumite media)

    NARCIS (Netherlands)

    Lodder, J.C.; Li, Cheng-Zhang

    1989-01-01

    Alumite was chosen as an ideal material for investigating the influence of particle interaction on the magnetic behavior of a perpendicular anisotropic particle array. It was found that the measured reduced coercivity versus the reduced diameter curves fit the theoretical curling mode. However, the

  7. Radio frequency-power and the ring-mode to red-mode transition in an inductively coupled plasma

    International Nuclear Information System (INIS)

    The optical output of an alkali-metal inductively coupled plasma (alkali-ICP) plays an important role in both atomic magnetometers and atomic clocks, producing these devices' atomic signals through optical pumping. Unfortunately, though the alkali-ICP's optical pumping efficiency grows exponentially with temperature, at relatively high temperatures (∼140 deg. C) the discharge transitions from ''ring mode'' to ''red mode'', which is a spectral change in the plasma's output that corresponds broadly to a transition from ''good emission'' for optical pumping to ''poor emission.'' Recently, evidence has accumulated pointing to radiation trapping as the mechanism driving the ring-mode to red-mode transition, suggesting that the phenomenon is primarily linked to the alkali vapor's temperature. However, observations of the transition made in the 1960 s, demonstrating that the ICP temperature associated with the transition depended on rf-power, would appear to cast doubt on this mechanism. Here, we carefully investigate the influence of rf-power on the ring-mode to red-mode transition, finding that rf-power only affects the transition through discharge heating. Thus, the present work shows that the primary effect of rf-power on the ring-mode to red-mode transition can be understood in terms of the radiation trapping mechanism.

  8. Characterization of aerosol particles at the forested site in Lithuania

    Science.gov (United States)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    monitoring station (55˚ 26'26"N; 26˚ 03'60"E) in the eastern part of Lithuania in the Aukštaitija national park during 2-24 July, 2008. The Rugšteliškis station is located in a remote relatively clean forested area. An aerosol mass spectrometer (AMS), developed at Aerodyne Research, was used to obtain real-time quantitative information on particle size-resolved mass loadings for volatile and semi-volatile chemical components present in/on ambient aerosol. The AMS inlet system allows 100 % transmission efficiency for particles with size diameter between 60 to 600 nm and partial transmission down to 20 nm and up to 2000 nm. The aerosol sampling was also carried out using a Micro-Orifice Uniform Deposit Impactor (MOUDI) model 110. The flow rate was 30 l/min, and the 50% aerodynamic cutoff diameters of the 10 stages were 18, 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.32, 0.18, 0.10 and 0.056 m. Aluminum foil was used as the impaction surface. The aerosol samples were analyzed for total carbon using the elemental analyzer (Flash EA1112). Besides, samples were analyzed for ^13C/12C ratio by the isotopic ratio mass spectrometer (Thermo Finnigan Delta Plus Advantage) (Norman et al., 1999; Garbaras et al., 2008). During campaign the dynamic behavior of aerosols was measured and quantitatively compared with meteorological conditions and air mass transport. The submicron aerosol was predominately sulphate and organic material. The AMS was able to discriminate and quantify mixed organic/inorganic accumulation mode particles (300 - 400 nm), which appeared to be dominated by regional sources and were of the origin similar to those seen in the more remote areas. The particulate organic fraction was also investigated in detail using the mass spectral data. By combining the organic matter size distribution (measured with AMS) with the total carbon (TC) size distribution (measured with MOUDI) we were able to report organic carbon to total carbon (OC/TC) ratio in different size particles

  9. Observation of neutral modes in the fractional quantum Hall regime.

    Science.gov (United States)

    Bid, Aveek; Ofek, N; Inoue, H; Heiblum, M; Kane, C L; Umansky, V; Mahalu, D

    2010-07-29

    The quantum Hall effect takes place in a two-dimensional electron gas under a strong magnetic field and involves current flow along the edges of the sample. For some particle-hole conjugate states of the fractional regime (for example, with fillings between 1/2 and 1 of the lowest Landau level), early predictions suggested the presence of counter-propagating edge currents in addition to the expected ones. When this did not agree with the measured conductance, it was suggested that disorder and interactions will lead to counter-propagating modes that carry only energy--the so called neutral modes. In addition, a neutral upstream mode (the Majorana mode) was expected for selected wavefunctions proposed for the even-denominator filling 5/2. Here we report the direct observation of counter-propagating neutral modes for fillings of 2/3, 3/5 and 5/2. The basis of our approach is that, if such modes impinge on a narrow constriction, the neutral quasiparticles will be partly reflected and fragmented into charge carriers, which can be detected through shot noise measurements. We find that the resultant shot noise is proportional to the injected current. Moreover, when we simultaneously inject a charge mode, the presence of the neutral mode was found to significantly affect the Fano factor and the temperature of the backscattered charge mode. In particular, such observations for filling 5/2 may single out the non-Abelian wavefunctions for the state. PMID:20671702

  10. Trapping of interacting propelled colloidal particles in inhomogeneous media.

    Science.gov (United States)

    Magiera, Martin P; Brendel, Lothar

    2015-07-01

    A trapping mechanism for propelled colloidal particles based on an inhomogeneous drive is presented and studied by means of computer simulations. In experiments this method can be realized using photophoretic Janus particles driven by a light source, which is partially blocked by a shading mask. This leads to an accumulation of particles in the passive part. An equation for an accumulation parameter is derived using the effective inhomogeneous diffusion constant generated by the inhomogeneous drive. The impact of particle interaction on the trapping mechanism is studied, as well as the interplay between passivity-induced trapping and the emergent self-clustering of systems containing a high density of active particles. The combination of both effects makes the clusters more controllable for applications. PMID:26274159

  11. Trapping of interacting propelled colloidal particles in inhomogeneous media

    Science.gov (United States)

    Magiera, Martin P.; Brendel, Lothar

    2015-07-01

    A trapping mechanism for propelled colloidal particles based on an inhomogeneous drive is presented and studied by means of computer simulations. In experiments this method can be realized using photophoretic Janus particles driven by a light source, which is partially blocked by a shading mask. This leads to an accumulation of particles in the passive part. An equation for an accumulation parameter is derived using the effective inhomogeneous diffusion constant generated by the inhomogeneous drive. The impact of particle interaction on the trapping mechanism is studied, as well as the interplay between passivity-induced trapping and the emergent self-clustering of systems containing a high density of active particles. The combination of both effects makes the clusters more controllable for applications.

  12. Saltation and suspension of wind-blown particle movement

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Several factors that affect the trajectories of sand particles in a wind-blown sand flux are analyzed by considering the stochastic movement of sand particles transported within turbulent flow in the atmospheric boundary layer. The results show that there are remarkably different trajectories for particles with the same diameter, the same vertical liftoff velocity from sand bed and the same friction ve-locity of wind because of the presence of turbulence flow. The vertical fluctuating velocity of sand particles can be regarded as a reflection of the transport mode, which is related to not only the diameters and liftoff velocity of sand particles but also the shear stress velocity of wind. The critical liftoff velocity and the fraction of each transport mode are calculated for the given particle diameter and friction ve-locity of wind. A comparison of the predicted fraction and the statistical fraction with and without the wind-sand couple effect is made.

  13. Entanglement in Quantum Field Theory: particle mixing and oscillations

    International Nuclear Information System (INIS)

    The phenomena of particle mixing and flavor oscillations in elementary particle physics are associated with multi-mode entanglement of single-particle states. We show that, in the framework of quantum field theory, these phenomena exhibit a fine structure of quantum correlations, as multi-mode multi-particle entanglement appears. Indeed, the presence of anti-particles adds further degrees of freedom, thus providing nontrivial contributions both to flavor entanglement and, more generally, to multi-partite entanglement. By using the global entanglement measure, based on the linear entropies associated with all the possible bipartitions, we analyze the entanglement in the multiparticle states of two-flavor neutrinos and anti-neutrinos. A direct comparison with the instance of the quantum mechanical Pontecorvo single-particle states is also performed.

  14. Packing fraction of particles with lognormal size distribution.

    Science.gov (United States)

    Brouwers, H J H

    2014-05-01

    This paper addresses the packing and void fraction of polydisperse particles with a lognormal size distribution. It is demonstrated that a binomial particle size distribution can be transformed into a continuous particle-size distribution of the lognormal type. Furthermore, an original and exact expression is derived that predicts the packing fraction of mixtures of particles with a lognormal distribution, which is governed by the standard deviation, mode of packing, and particle shape only. For a number of particle shapes and their packing modes (close, loose) the applicable values are given. This closed-form analytical expression governing the packing fraction is thoroughly compared with empirical and computational data reported in the literature, and good agreement is found.

  15. Rock bed heat accumulators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Riaz, M.

    1977-12-01

    The principal objectives of the research program on rock bed heat accumulators (or RBHA) are: (1) to investigate the technical and economic feasibility of storing large amounts of thermal energy (in the tens of MWt range) at high temperature (up to 500/sup 0/C) over extended periods of time (up to 6 months) using native earth or rock materials; (2) to conduct studies to establish the performance characteristics of large rock bed heat accumulators at various power and temperature levels compatible with thermal conversion systems; and (3) to assess the materials and environmental problems associated with the operation of such large heat accumulators. Results of the study indicate that rock bed heat accumulators for seasonal storage are both technically and economically feasible, and hence could be exploited in various applications in which storage plays an essential role such as solar power and total energy systems, district and cogeneration heating systems.

  16. Factors influencing the cardiac MIBG accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Takatsu, Hisato; Fujiwara, Hisayoshi [Gifu Univ. (Japan). School of Medicine

    1997-02-01

    Following factors possibly influencing the cardiac MIBG accumulation were examined mainly in mice. 1. The specific activity of the MIBG (meta-iodo-benzyl guanidine) on the neuronal and non-neuronal fractions. 2. Motor restriction stress on MIBG accumulation and washout. 3. Loading and restriction of sodium chloride on the accumulation and effect of suppression of renin-angiotensin system. 4. Examinations in Dahl rats. 125I- or 131I-MIBG was intravenously administered to mice at 74 kBq. At 30 min or 4 hr after administration, mice were sacrificed and their left ventricles were dissected out for measurement of radioactivity in a liquid scintillation counter. Salt-sensitive and -resistant Dahl rats were given with 37 MBq of 123I-MIBG and cardiac radioactivity was measured externally for calculation of washout. Factors examined were found highly correlated with the accumulation of MIBG and measurement of its washout was considered useful for evaluating sympathetic activity. (K.H.)

  17. Sodium accumulation in rice and quinoa

    International Nuclear Information System (INIS)

    Full text: Sensitivity to salinity is often attributed to excessive accumulation of Na+ ions in leaf cells. This implies that screening for low Na+ accumulation should result in enhanced tolerance to salt. While this is generally true, there are a number of examples where Na+ accumulation is not the only factor. In rice (Oryza sativa) there is good evidence linking genetically-determined Na+ accumulation with tolerance to salinity, but there are other factors that should be considered, including Cl- accumulation and the inter- and intra-cellular distribution of solutes. In quinoa (Chenopodium quinoa) There are large varietal differences in Na+ accumulation, but smaller differences in salt tolerance. We have studied the genetics of salinity responses in two cultivars of rice, Co39 and Moroberekan. The latter accumulates more Na+ than Co39 and many other rice varieties. Experiments at a range of salt concentrations and with varying Na: Ca ratios showed that Na+ accumulation was initially quite low, but increased with time of exposure to salt. Part of the increase in Na+, and all of the observed increase in K+ concentrations, could be attributed to dehydration of the leaves. Measurements of leaf solute and water potentials indicated that solutes accumulated in the leaf apoplast. This resulted in reduced turgor and increased leaf rolling. Concentrations of Cl- in the leaves were several times higher than those of Na+. QTL analysis of a hybrid population derived from these varieties revealed a major QTL for leaf Na+ accumulation on chromosome 1 at a position where QTL for salt tolerance and Na+ uptake have been identified by other groups. No QTL were identified for Cl- accumulation. Is rice relatively salt sensitive because it accumulates low concentrations of Na+ under genetic control, or is Cl- (present at much higher concentrations) responsible for salt damage. We are looking for rice accessions that differ in Cl- accumulation to find Cl- QTL. Perhaps it does not

  18. Particle production at collider energies

    International Nuclear Information System (INIS)

    Key features of the SPS panti p Collider and the detectors of the UA-experiments involved are dealt with in chapter 2, which includes and accord to the ramping mode of the Collider, which allowed to raise the c.m. energy to 900 GeV in the UA5/2 experiment. The following chapters concentrate on physics results. Starting with a discussion of cross sections and diffraction dissociation in chapter 3 we then continue with a presentation of basic features of particle production such as rapidity and multiplicity distributions in chapter 4. There one of the unexpected findings at Collider energies, the breakdown of the so-called KNO-scaling, and new regularities potentially governing multiplicity distributions, are discussed. The findings about correlations among the final state particles, which may tell about the underlying dynamics of multi-particle production and be relevant to models thereof, are described in due detail in chapter 5. Transverse spectra and their trends with energy are shown in chapter 6. Results on identified particles are collected in a separate chapter in order to stress that this piece of information was an important outcome of the UA5 experiment. (orig./HSI)

  19. Radial transport in the far scrape-off layer of ASDEX upgrade during L-mode and ELMy H-mode

    DEFF Research Database (Denmark)

    Ionita, C.; Naulin, Volker; Mehlmann, F.;

    2013-01-01

    The radial turbulent particle flux and the Reynolds stress in the scrape-off layer (SOL) of ASDEX Upgrade were investigated for two limited L-mode (low confinement) and one ELMy H-mode (high confinement) discharge. A fast reciprocating probe was used with a probe head containing five Langmuir pro...

  20. Predictions of H-mode performance in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R. V.; Andre, R.; Bateman, G.; Halpern, F.; Kessel, C. E.; Kritz, A.; McCune, D.

    2008-03-03

    Time-dependent integrated predictive modeling is carried out using the PTRANSP code to predict fusion power and parameters such as alpha particle density and pressure in ITER H-mode plasmas. Auxiliary heating by negative ion neutral beam injection and ion cyclotron heating of He3 minority ions are modeled, and the GLF23 transport model is used in the prediction of the evolution of plasma temperature profiles. Effects of beam steering, beam torque, plasma rotation, beam current drive, pedestal temperatures, sawtooth oscillations, magnetic diffusion, and accumulation of He ash are treated self-consistently. Variations in assumptions associated with physics uncertainties for standard base-line DT H-mode plasmas (with Ip=15 MA, BTF=5.3 T, and Greenwald fraction=0.86) lead to a range of predictions for DT fusion power PDT and quasi-steady state fusion QDT (≡ PDT/Paux). Typical predictions assuming Paux = 50-53 MW yield PDT = 250- 720 MW and QDT = 5 - 14. In some cases where Paux is ramped down or shut off after initial flat-top conditions, quasi-steady QDT can be considerably higher, even infinite. Adverse physics assumptions such as existence of an inward pinch of the helium ash and an ash recycling coefficient approaching unity lead to very low values for PDT. Alternative scenarios with different heating and reduced performance regimes are also considered including plasmas with only H or D isotopes, DT plasmas with toroidal field reduced 10 or 20%, and discharges with reduced beam voltage. In full-performance D-only discharges, tritium burn-up is predicted to generate central tritium densities up to 1016/m3 and DT neutron rates up to 5×1016/s, compared with the DD neutron rates of 6×1017/s. Predictions with the toroidal field reduced 10 or 20% below the planned 5.3 T and keeping the same q98, Greenwald fraction, and Βη indicate that the fusion yield PDT and QDT will be lower by about a factor of two (scaling as B3.5).

  1. Financial Literacy, Schooling, and Wealth Accumulation

    OpenAIRE

    Behrman, Jere R.; Mitchell, Olivia S.; Cindy Soo; David Bravo

    2010-01-01

    Financial literacy and schooling attainment have been linked to household wealth accumulation. Yet prior findings may be biased due to noisy measures of financial literacy and schooling, as well as unobserved factors such as ability, intelligence, and motivation that could enhance financial literacy and schooling but also directly affect wealth accumulation. We use a new household dataset and an instrumental variables approach to isolate the causal effects of financial literacy and schooling ...

  2. Plastic accumulation in the mediterranean sea

    OpenAIRE

    Andrés Cózar; Marina Sanz-Martín; Elisa Martí; Ignacio González-Gordillo, J; Bárbara Ubeda; José Á Gálvez; Xabier Irigoien; Duarte, Carlos M.

    2015-01-01

    Copyright: © 2015 Cózar et al. Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by ...

  3. Development of the flow controlled accumulator

    International Nuclear Information System (INIS)

    Mitsubishi is developing the new type accumulator incorporating the technology of Fluidics as one of seeds for the improved safety of the new generation PWR (Pressurized Water Reactor) plants. This accumulator employs a vortex flow control device named a vortex damper as a Fluidic device for the simplification of the safety systems. We have done a basic experimental study to develop the vortex damper and gotten satisfactory results. This paper describes the results of the basic experiments of the vortex dampers. (author)

  4. Temporal accumulation of oriented visual features

    DEFF Research Database (Denmark)

    Pugeault, Nicolas; Krüger, Norbert

    2011-01-01

    In this paper we present a framework for accumulating on-line a model of a moving object (e.g., when manipulated by a robot). The proposed scheme is based on Bayesian filtering of local features, filtering jointly position, orientation and appearance information. The work presented here is novel......, while making use of the available uncertainty model. The accumulated representations have been used in three different contexts: pose estimation, robotic grasping, and driver assistance scenario....

  5. Plastic Accumulation in the Mediterranean Sea

    OpenAIRE

    Cózar, Andrés; Sanz-Martín, Marina; Martí, Elisa; González-Gordillo, J. Ignacio; Ubeda, Bárbara; Gálvez, José Á.; Irigoien, Xabier; Duarte, Carlos M.

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but...

  6. Small oscillations of two interacting particles in a magnetic field

    Science.gov (United States)

    del Pino, L. A.; Curilef, S.

    2016-11-01

    The classical behavior of two interacting particles in the presence of a uniform magnetic field is studied in the small oscillations approximation. Using the Lagrangian formalism, the equations of motion are derived, as are their solutions and constants of motion. Normal modes of oscillations and their corresponding normal coordinates are obtained that strongly depend on the initial condition; therefore, we observe that the oscillation along the line that joins the particles is non-isochronous. In addition, particular attention has been paid to the planar motion, without the pseudomomentum component parallel to the magnetic field, where one longitudinal mode and two transversal modes are obtained.

  7. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter. Preliminary settling and resuspension testing

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    The full scale, room temperature Hanford Tank Waste Treatment and Immobilization Plant (WTP) High-Level Waste (HLW) melter riser test system was successfully operated with silicone oil and magnetite particles at a loading of 0.1 vol %. Design and construction of the system and instrumentation, and the selection and preparation of simulant materials, are briefly reviewed. Three experiments were completed. A prototypic pour rate was maintained, based on the volumetric flow rate. Settling and accumulation of magnetite particles were observed at the bottom of the riser and along the bottom of the throat after each experiment. The height of the accumulated layer at the bottom of the riser, after the first pouring experiment, approximated the expected level given the solids loading of 0.1 vol %. More detailed observations of particle resuspension and settling were made during and after the third pouring experiment. The accumulated layer of particles at the bottom of the riser appeared to be unaffected after a pouring cycle of approximately 15 minutes at the prototypic flow rate. The accumulated layer of particles along the bottom of the throat was somewhat reduced after the same pouring cycle. Review of the time-lapse recording showed that some of the settling particles flow from the riser into the throat. This may result in a thicker than expected settled layer in the throat.

  8. Immersion mode ice nucleation measurements with the new Portable Immersion Mode Cooling chAmber (PIMCA)

    Science.gov (United States)

    Kohn, Monika; Lohmann, Ulrike; Welti, André; Kanji, Zamin A.

    2016-05-01

    The new Portable Immersion Mode Cooling chAmber (PIMCA) has been developed for online immersion freezing of single-immersed aerosol particles. PIMCA is a vertical extension of the established Portable Ice Nucleation Chamber (PINC). PIMCA immerses aerosol particles into cloud droplets before they enter PINC. Immersion freezing experiments on cloud droplets with a radius of 5-7 μm at a prescribed supercooled temperature (T) and water saturation can be conducted, while other ice nucleation mechanisms (deposition, condensation, and contact mode) are excluded. Validation experiments on reference aerosol (kaolinite, ammonium sulfate, and ammonium nitrate) showed good agreement with theory and literature. The PIMCA-PINC setup was tested in the field during the Zurich AMBient Immersion freezing Study (ZAMBIS) in spring 2014 in Zurich, Switzerland. Significant concentrations of submicron ambient aerosol triggering immersion freezing at T > 236 K were rare. The mean frozen cloud droplet number concentration was estimated to be 7.22·105 L-1 for T ice nucleating particle (INP) concentration based on measured total aerosol larger than 0.5 μm and the parameterization by DeMott et al. (2010) at T = 238 K is INPD10=54 ± 39 L-1. This is a lower limit as supermicron particles were not sampled with PIMCA-PINC during ZAMBIS.

  9. Sucrose induces vesicle accumulation and autophagy.

    Science.gov (United States)

    Higuchi, Takahiro; Nishikawa, Jun; Inoue, Hiroko

    2015-04-01

    It has been shown that the treatment of mammalian cells with sucrose leads to vacuole accumulation associated with lysosomes and upregulation of lysosomal enzyme expression and activity. Autophagy is an evolutionarily conserved homeostatic process by which cells deliver cytoplasmic material for degradation into lysosomes, thus it is probable that sucrose affects the autophagic activity. The role of sucrose in autophagy is unknown; however, another disaccharide, trehalose has been shown to induce autophagy. In the current study, we used mouse embryonic fibroblasts to investigate whether sucrose induces autophagy and whether vesicle formation is associated with autophagy. The results showed that sucrose induces autophagy while being accumulated within the endosomes/lysosomes. These vesicles were swollen and packed within the cytoplasm. Furthermore, trehalose and the trisaccharide raffinose, which are not hydrolyzed in mammalian cells, increased the rate of vesicles accumulation and LC3-II level (a protein marker of autophagy). However, fructose and maltose did not show the same effects. The correlation between the two processes, vesicle accumulation and autophagy induction, was confirmed by treatment of cells with sucrose plus invertase, or maltose plus acarbose-the α-glucosidase inhibitor-and by sucrose deprivation. Results also showed that vesicle accumulation was not affected by autophagy inhibition. Therefore, the data suggest that sucrose-induced autophagy through accumulation of sucrose-containing vesicles is caused by the absence of hydrolysis enzymes.

  10. Sucrose induces vesicle accumulation and autophagy.

    Science.gov (United States)

    Higuchi, Takahiro; Nishikawa, Jun; Inoue, Hiroko

    2015-04-01

    It has been shown that the treatment of mammalian cells with sucrose leads to vacuole accumulation associated with lysosomes and upregulation of lysosomal enzyme expression and activity. Autophagy is an evolutionarily conserved homeostatic process by which cells deliver cytoplasmic material for degradation into lysosomes, thus it is probable that sucrose affects the autophagic activity. The role of sucrose in autophagy is unknown; however, another disaccharide, trehalose has been shown to induce autophagy. In the current study, we used mouse embryonic fibroblasts to investigate whether sucrose induces autophagy and whether vesicle formation is associated with autophagy. The results showed that sucrose induces autophagy while being accumulated within the endosomes/lysosomes. These vesicles were swollen and packed within the cytoplasm. Furthermore, trehalose and the trisaccharide raffinose, which are not hydrolyzed in mammalian cells, increased the rate of vesicles accumulation and LC3-II level (a protein marker of autophagy). However, fructose and maltose did not show the same effects. The correlation between the two processes, vesicle accumulation and autophagy induction, was confirmed by treatment of cells with sucrose plus invertase, or maltose plus acarbose-the α-glucosidase inhibitor-and by sucrose deprivation. Results also showed that vesicle accumulation was not affected by autophagy inhibition. Therefore, the data suggest that sucrose-induced autophagy through accumulation of sucrose-containing vesicles is caused by the absence of hydrolysis enzymes. PMID:25389129

  11. Conveying of Coarse-Grained Particles in Pipes

    OpenAIRE

    Vlasák, P.; Chára, Z.; Konfršt, J. (Jiří); Sobota , J.; Kysela, B. (Bohuš)

    2013-01-01

    The effect of slurry velocity and concentration on the coarse-grained particle–water mixtures flow behavior and pressure drops was studied in horizontal and inclined pipes of inner diameter 100 mm. The study revealed that the coarse-grained particle-water mixtures were significantly stratified, the particles moved principally in a layer close to the pipe invert, for higher flow velocities particle saltation becomes dominant mode of conveying. Frictional pressure drops in vertical pipe ...

  12. Scattering by ensembles of small particles

    International Nuclear Information System (INIS)

    With the advent of high altitude rockets and of space probes, evidence has accumulated that several particle types coexiste in the interplanetary medium. It also became apparent that the zodiacal light is not produced by particles with previously known scattering characteristics. However, the scattering is here shown to be consistent with the hypothesis that presolar interstellar grains accumulate into comets which through fragmentation provide a major component of the interplanetary dust complex. Cometary debris - zodiscal light particles - are therefore modeled as conglomerates of elongated core-mantle particles. Light scattering characteristics of the conglomerates are investigated using a micro-wave analogue method. Approximate theoretical methods for prediction and interpretation of the electro-magnetic scattering patterns are developed and are found to compare favorably with the experimental results and with observations of the zodiacal light. The model is also found to be consistent with comet- and impactdata. Dynamical considerations predicts a small particle component rapidly receding from the Sun, an identification with the B-meteoroids is tentatively suggested. (author)

  13. Enhancement of mode-converted electron Bernstein wave emission during National Spherical Torus Experiment H-mode plasmas

    International Nuclear Information System (INIS)

    A sudden, threefold increase in emission from fundamental electrostatic electron Bernstein waves (EBW) which mode convert and tunnel to the electromagnetic X-mode has been observed during high energy and particle confinement (H-mode) transitions in the National Spherical Torus Experiment (NSTX) plasma [M. Ono, S. Kaye, M. Peng et al., in Proceedings of the 17th IAEA Fusion Energy Conference (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135]. The mode-converted EBW emission viewed normal to the magnetic field on the plasma midplane increases when the density profile steepens in the vicinity of the mode conversion layer, which is located in the plasma scrape off. The measured conversion efficiency during the H-mode is consistent with the calculated EBW to X-mode conversion efficiency derived using edge density data. Calculations indicate that there may also be a small residual contribution to the measured X-mode electromagnetic radiation from polarization-scrambled, O-mode emission, converted from EBWs

  14. Curvature, zero modes and quantum statistics

    Energy Technology Data Exchange (ETDEWEB)

    Calixto, M [Departamento de Matematica Aplicada y EstadIstica, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 56, 30203 Cartagena (Spain); Aldaya, V [Instituto de AstrofIsica de AndalucIa, Apartado Postal 3004, 18080 Granada (Spain)

    2006-08-18

    We explore an intriguing connection between the Fermi-Dirac and Bose-Einstein statistics and the thermal baths obtained from a vacuum radiation of coherent states of zero modes in a second quantized (many-particle) theory on the compact O(3) and noncompact O(2, 1) isometry subgroups of the de Sitter and anti-de Sitter spaces, respectively. The high frequency limit is retrieved as a (zero-curvature) group contraction to the Newton-Hooke (harmonic oscillator) group. We also make some comments on the vacuum energy density and the cosmological constant problem. (letter to the editor)

  15. Spatial resolution of RPC in streamer mode

    International Nuclear Information System (INIS)

    In the framework of an R and D program on the ALICE dimuon trigger system, the spatial resolution of Resistive Plate Chambers working in streamer mode has been investigated during beam tests. Preliminary studies with cosmic rays had evidenced a dependence of the charge profile to the high voltage and to the gas mixture. However, the spatial resolution measured from the beam tests is only slightly varying with the high voltage and is close to the expected value w/√12 where w is the strip pitch, for strips of 1 and 2 cm width. The probability to fire a strip as a function of the distance from the strip to the particle impact has been measured for various high voltages. A simple parametrisation of this probability has been achieved. This allows to predict, under various working condition, the cluster size distributions for RPCs with different strip widths and also to account for the effect of the particle incident angle

  16. Polarization Mode Dispersion Probability Distribution for Arbitrary Mode Coupling

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The probability distribution of the differential group delay for arbitrary mode coupling is simulated with Monte-Carlo method. Fitting the simulation results, we obtain probability distribution function for arbitrary mode coupling.

  17. Flux-driven algebraic damping of m = 1 diocotron mode

    Science.gov (United States)

    Chim, Chi Yung; O'Neil, Thomas M.

    2016-07-01

    Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius r = Rw at the wall of the trap. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This paper explains with analytic theory the new algebraic damping due to particle transport by both mobility and diffusion. As electrons are swept around the "cat's eye" orbits of the resonant wave-particle interaction, they form a dipole (m = 1) density distribution. From this distribution, the electric field component perpendicular to the core displacement produces E × B-drift of the core back to the axis, that is, damps the m = 1 mode. The parallel component produces drift in the azimuthal direction, that is, causes a shift in the mode frequency.

  18. Size-dependent distribution and inhalation cancer risk of particle-bound polycyclic aromatic hydrocarbons at a typical e-waste recycling and an urban site

    International Nuclear Information System (INIS)

    Atmospheric particle size distribution of polycyclic aromatic hydrocarbons (PAHs) in a typical e-waste recycling zone and an urban site (Guangzhou) in southern China featured a unimodal peak in 0.56–1.8 μm for 4–6 ring PAHs but no obvious peak for 2–3 ring PAHs at both sites. The atmospheric deposition fluxes of PAHs were estimated at 5.4 ± 2.3 μg m−2 d−1 in the e-waste recycling zone and 3.1 ± 0.6 μg m−2 d−1 in Guangzhou. In addition, dry and wet deposition fluxes of PAHs were dominated by coarse (Dp > 1.8 μm) and fine particles (Dp < 1.8 μm), respectively. Fine particles predominated the deposition of PAHs in the lung. The results estimated by incremental inhalation cancer risk suggested that particle-bound PAHs posed serious threat to human health within the e-waste recycling zone and Guangzhou. - Highlights: • Particle-bound PAHs were dominantly distributed in fine particles. • Dry and wet deposition fluxes of PAHs were size-dependent. • Accumulation mode particles contributed the most to inhalation cancer risk. • Residents living in both study sites are subject to potential health risk. - Atmospheric deposition fluxes and inhalation cancer risk of particle-bound PAHs are size-dependent

  19. Empirical particle transport model for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Petravic, M.; Kuo-Petravic, G.

    1986-08-01

    A simple empirical particle transport model has been constructed with the purpose of gaining insight into the L- to H-mode transition in tokamaks. The aim was to construct the simplest possible model which would reproduce the measured density profiles in the L-regime, and also produce a qualitatively correct transition to the H-regime without having to assume a completely different transport mode for the bulk of the plasma. Rather than using completely ad hoc constructions for the particle diffusion coefficient, we assume D = 1/5 chi/sub total/, where chi/sub total/ approx. = chi/sub e/ is the thermal diffusivity, and then use the kappa/sub e/ = n/sub e/chi/sub e/ values derived from experiments. The observed temperature profiles are then automatically reproduced, but nontrivially, the correct density profiles are also obtained, for realistic fueling rates and profiles. Our conclusion is that it is sufficient to reduce the transport coefficients within a few centimeters of the surface to produce the H-mode behavior. An additional simple assumption, concerning the particle mean-free path, leads to a convective transport term which reverses sign a few centimeters inside the surface, as required by the H-mode density profiles.

  20. New particle formation in air mass transported between two measurement sites in Northern Finland

    Directory of Open Access Journals (Sweden)

    M. Komppula

    2005-11-01

    to accumulate in the air and to interact with the particles is relatively short. This can lead to low nucleation mode growth rates and even to suppression of detectable particle formation event due to efficient scavenging of newly formed clusters, as was observed in the case studies.

  1. New particle formation in air mass transported between two measurement sites in Northern Finland

    Directory of Open Access Journals (Sweden)

    M. Komppula

    2006-01-01

    organic vapours to accumulate in the air and to interact with the particles is relatively short. This can lead to low nucleation mode growth rates and even to suppression of detectable particle formation event due to efficient scavenging of newly formed clusters, as was observed in the case studies.

  2. Fractal patterns in turbulent flow for laden particles

    Energy Technology Data Exchange (ETDEWEB)

    Farhan, M; Nicolleau, F C G A; Nowakowski, A F [Sheffield Fluid Mechanics Group - Mechanical Engineering, University of Sheffield (United Kingdom); Angilella, J-R, E-mail: m.farhan@sheffield.ac.uk [Laboratoire Environnement, Geomecanique et Ouvrages, Nancy-Universite, Vandoeuvre-les-Nancy (France)

    2011-12-22

    We use Kinematic Simulation as a particular kind of synthetic turbulence model to study the preferential accumulation of laden particles with inertia and gravity. Particles are released as a uniform cloud in the periodic simulation box. We allow particles to settle in synthetic flow and after some times particles concentrate in a particular sub-domain. We study the dimensional properties of these attractors as functions of drift parameter and Stokes number. The attractor's topology varies from curve(D = 1) to fractal plane.

  3. Higher lung accumulation of intravenously injected organic nanotubes

    Directory of Open Access Journals (Sweden)

    Maitani Y

    2013-01-01

    Full Text Available Yoshie Maitani,1 Yuri Nakamura,1 Masao Kon,1 Emi Sanada,1 Kae Sumiyoshi,1 Natsuki Fujine,1 Masumi Asakawa,2 Masaki Kogiso,2 Toshimi Shimizu21Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan; 2Nanotube Research Center (NTRC, National Institute of Advanced Industrial Science and Technology (AIST, Tsukuba, JapanAbstract: The size and shape of intravenously injected particles can affect their biodistribution and is of importance for the development of particulated drug carrier systems. In this study, organic nanotubes (ONTs with a carboxyl group at the surface, a length of approximately 2 µm and outer diameter of 70–90 nm, were injected intravenously into tumor-bearing mice. To use ONTs as drug carriers, the biodistribution in selected organs of ONTs postinjection was examined using irinotecan, as an entrapped water-soluble marker inside ONTs, and gadolinium-chelated ONT, as an ONT marker, and compared with that of a 3 µm fluorescently labeled spherical microparticle which was similar size to the length of ONTs. It was found that for irinotecan, its active metabolite and gadolinium-chelated ONTs were highly accumulated in the lung, but to a lower level in the liver and spleen. On the other hand, microparticles deposited less in the lung and more highly in the liver. Moreover, histologic examination showed ONTs distributed more in lung tissues in part, whereas microparticles were present in blood vessels postinjection. These preliminary results support the notion of using negatively charged ONTs as intravascular carriers to maximize accumulation in the lung whilst reducing sequestration by the liver and spleen. This finding suggested that ONTs are potential carriers for lung-targeting drug delivery.Keywords: organic nanotube, lung, biodistribution, microparticle, particle shape

  4. Stability of the resistive wall mode in JET

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, I T; Gimblett, C G; Gryaznevich, M P; Hender, T C; Howell, D F; Liu, Y Q; Pinches, S D [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)], E-mail: ian.chapman@ukaea.org.uk

    2009-05-15

    The kinetic effects influencing the stability of the resistive wall mode (RWM) are investigated by applying a drift kinetic code to calculate the change in the potential energy of the mode in the presence of thermal and energetic particles. The analysis is carried out for typical JET high-{beta} plasmas. It is found that the strongest kinetic damping of the RWM arises due to mode resonance with the precession motion of the trapped thermal particles. The stability of the RWM in JET plasmas is also probed by using active MHD spectroscopy. The frequency spectrum of the plasma response to oscillating externally applied fields has been measured and fitted to parameter models in order to infer the stability of the RWM. A new model retaining information about the plasma response is presented to describe the resonant field amplification in the presence of a stable RWM.

  5. Unlocking fermionic mode entanglement

    Science.gov (United States)

    Friis, Nicolai

    2016-06-01

    Aside from other puzzling features of entanglement, it has been debated whether a physically meaningful notion of entanglement requires two (or more) particles as carriers of the correlated degrees-of-freedom, or if a single particle could be considered to be entangled as well. While the usefulness of single-boson entanglement has been demonstrated some time ago, the restrictions of superselection rules have previously thwarted attempts at similar arguments for single fermions. In Dasenbrook et al (2016 New J. Phys. 18 043036) this obstacle is overcome. The authors propose a scheme for a Bell test on two copies of single-electron states whose entanglement is individually not accessible. The discussed scheme, which makes use of recent progress in electronic quantum optics, provides an experimentally viable and theoretically unambiguous way to assert that certain single-electron states can be considered to be entangled.

  6. Accumulation of swimming bacteria near an interface

    Science.gov (United States)

    Tang, Jay; Li, Guanglai

    2012-11-01

    Microbes inhabit planet earth over billions of years and have adapted to diverse physical environment of water, soil, and particularly at or near interfaces. We focused our attention on the locomotion of Caulobacter crescentus, a singly flagellated bacterium, at the interface of water/solid or water/air. We measured the distribution of a forward swimming strain of C. crescentus near a surface using a three-dimensional tracking technique based on dark field microscopy and found that the swimming bacteria accumulate heavily within a micrometer from the surface. We attribute this accumulation to frequent collisions of the swimming cells with the surface, causing them to align parallel to the surface as they continually move forward. The extent of accumulation at the steady state is accounted for by balancing alignment caused by these collisions with rotational Brownian motion of the micrometer-sized bacteria. We performed a simulation based on this model, which reproduced the measured results. Additional simulations demonstrate the dependence of accumulation on swimming speed and cell size, showing that longer and faster cells accumulate more near a surface than shorter and slower ones do. The overarching goal of our study is to describe interfacial microbial behavior through detailed analysis of their motion. We acknowledge support by NSF PHY 1058375.

  7. Geomorphic control of landscape carbon accumulation

    Science.gov (United States)

    Rosenbloom, N.A.; Harden, J.W.; Neff, J.C.; Schimel, D.S.

    2006-01-01

    We use the CREEP process-response model to simulate soil organic carbon accumulation in an undisturbed prairie site in Iowa. Our primary objectives are to identify spatial patterns of carbon accumulation, and explore the effect of erosion on basin-scale C accumulation. Our results point to two general findings. First, redistribution of soil carbon by erosion results in a net increase in basin-wide carbon storage relative to a noneroding environment. Landscape-average mean residence times are increased in an eroding landscape owing to the burial/preservation of otherwise labile C. Second, field observations taken along a slope transect may overlook significant intraslope variations in carbon accumulation. Spatial patterns of modeled deep C accumulation are complex. While surface carbon with its relatively short equilibration time is predictable from surface properties, deep carbon is strongly influenced by the landscape's geomorphic and climatic history, resulting in wide spatial variability. Convergence and divergence associated with upland swales and interfluves result in bimodal carbon distributions in upper and mid slopes; variability in carbon storage within modeled mid slopes was as high as simulated differences between erosional shoulders and depositional valley bottoms. The bimodality of mid-slope C variability in the model suggests that a three-dimensional sampling strategy is preferable over the traditional two-dimensional analog or "catena" approach. Copyright 2006 by the American Geophysical Union.

  8. Marginal Stability Dynamics for Energetic Particles

    Science.gov (United States)

    Berk, Herbert

    2009-11-01

    Marginal stability in plasmas characteristically sets a stiff limit to the range of that can be achieved. Below this limit, the system is governed by classical. Near marginal stability, however, plasmas may be subject to rapid processes, resulting in a system that hovers near marginality. This scenario emerged from nonlinear studies of energetic particle relaxation and may be to more general plasma transport. We describe results from several such which include. [1] Avalanches---Near marginal stability, an important point is whether an instability driven by resonant particles where the distribution function has ``free energy'' will cause global radial diffusion. For that,modes need to overlap. This process can be continuous or bursty, the latter having been recently observed in NSTX and DIII-D. [2] Frequency chirping---Recent simulations by Vann showed that marginal stability can be sustained when there is only one unstable linear mode, due to the mechanism of spontaneous frequency sweeping. Although a single mode near stability should not cause dramatic relaxation, nevertheless in the Vann simulations, the achievement of marginal stability induced a continual chirping of that had removed energy from the bulk of the region where the external beam to deposit free energy. The distribution was then found to hover near stability. This mechanism may apply to the n=0 GAM where frequency sweeping might be a mechanism for extracting energy from alpha particles in a burning plasma, thereby reducing the stored alpha particle pressure. One way to implement this is to have the n=0 geodesic acoustic modes (GAM) be preferentially excited, since energy rather than momentum (leading to spatial diffusion) is then primarily extracted from alpha particles.

  9. Particle adhesion and removal

    CERN Document Server

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  10. Review of particle properties. Particle Data Group

    International Nuclear Information System (INIS)

    This review of the properties of leptons, mesons, and baryons is an updating of Review of Particle Properties, Particle Data Group [Rev. Mod. Phys. 48 (1976) No. 2, Part II; and Supplement, Phys. Lett. 68B (1977) 1]. Data are evaluated, listed, averaged, and summarized in tables. Numerous tables, figures, and formulae of interest to particle physicists are also included. A data booklet is available

  11. Nonlinear mode coupling and vibrational energy transfer in Yukawa clusters

    Science.gov (United States)

    Qiao, Ke; Kong, Jie; Matthews, Lorin; Hyde, Truell

    2015-11-01

    Nonlinear mode coupling and the subsequent vibrational energy transfer that results is an important topic in chemical physics research, ranging from small molecules consisting of several atoms to macromolecules such as those found in proteins and DNA. Nonlinear mode coupling is recognized as the mechanism leading to ergodicity, which is a foundational tenet of statistical mechanics. Over the past two decades, Yukawa systems of particles such as those found in complex plasma, have been shown to be an effective model across a large number of physical systems. In this research, nonlinear mode coupling in Yukawa clusters consisting of 3-10 particles is examined via numerical simulation of the vibrational energy transfer between modes starting from an initial excited state. The relationship between the energy transfer process and the internal resonance between modes having a specified frequency ratio and the temporal evolution of the system to a state of equal energy across all modes, i.e., the state of ergodicity, will be discussed. Support from the NSF and the DOE (award numbers PHY-1262031 and PHY-1414523) is gratefully acknowledged.

  12. Avoiding sensor blindness in Geiger mode avalanche photodiode arrays fabricated in a conventional CMOS process

    OpenAIRE

    Vilella Figueras, Eva; Diéguez Barrientos, Àngel

    2011-01-01

    The need to move forward in the knowledge of the subatomic world has stimulated the development of new particle colliders. However, the objectives of the next generation of colliders sets unprecedented challenges to the detector performance. The purpose of this contribution is to present a bidimensional array based on avalanche photodiodes operated in the Geiger mode to track high energy particles in future linear colliders. The bidimensional array can function in a gated mode to reduce the p...

  13. Quasilinear saturation of the aperiodic ordinary mode streaming instability

    Energy Technology Data Exchange (ETDEWEB)

    Stockem Novo, A., E-mail: anne@tp4.rub.de; Schlickeiser, R. [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum-und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Yoon, P. H. [Institute for Physical Science & Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Lazar, M. [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum-und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Centre for Mathematical Plasma Astrophysics, Celestijnenlaan 200B, 3001 Leuven (Belgium); Poedts, S. [Centre for Mathematical Plasma Astrophysics, Celestijnenlaan 200B, 3001 Leuven (Belgium); Seough, J. [Faculty of Human Development, University of Toyama, 3190, Gofuku, Toyama City, Toyama 930-8555 (Japan); International Research Fellow of the Japan Society for the Promotion of Science, Tokyo (Japan)

    2015-09-15

    In collisionless plasmas, only kinetic instabilities and fluctuations are effective in reducing the free energy and scatter plasma particles, preventing an increase of their anisotropy. Solar energetic outflows into the interplanetary plasma give rise to important thermal anisotropies and counterstreaming motions of plasma shells, and the resulting instabilities are expected to regulate the expansion of the solar wind. The present paper combines quasilinear theory and kinetic particle-in-cell simulations in order to study the weakly nonlinear saturation of the ordinary mode in hot counter-streaming plasmas with a temperature anisotropy as a follow-up of the paper by Seough et al. [Phys. Plasmas 22, 082122 (2015)]. This instability provides a plausible mechanism for the origin of dominating, two-dimensional spectrum of transverse magnetic fluctuations observed in the solar wind. Stimulated by the differential motion of electron counterstreams the O mode instability may convert their free large-scale energy by nonlinear collisionless dissipation on plasma particles.

  14. Efficient estimation of burst-mode LDA power spectra

    DEFF Research Database (Denmark)

    Velte, Clara Marika; George, William K

    2010-01-01

    The estimation of power spectra from LDA data provides signal processing challenges for fluid dynamicists for several reasons. Acquisition is dictated by randomly arriving particles which cause the signal to be highly intermittent. This both creates self-noise and causes the measured velocities...... requirements for good statistical convergence due to the random sampling of the data. In the present work, the theory for estimating burst-mode LDA spectra using residence time weighting is discussed and a practical estimator is derived and applied. A brief discussion on the self-noise in spectra...... and correlations is included, as well as one regarding the statistical convergence of the spectral estimator for random sampling. Further, the basic representation of the burst-mode LDA signal has been revisited due to observations in recent years of particles not following the flow (e.g., particle clustering...

  15. Photons in polychromatic rotating modes

    OpenAIRE

    van Enk, S. J.; Nienhuis, G.

    2007-01-01

    We propose a quantum theory of rotating light beams and study some of its properties. Such beams are polychromatic and have either a slowly rotating polarization or a slowly rotating transverse mode pattern. We show that there are, for both cases, three different natural types of modes that qualify as rotating, one of which is a type not previously considered. We discuss differences between these three types of rotating modes on the one hand and nonrotating modes as viewed from a rotating fra...

  16. Atomic dynamics in the mode-mode competition system

    Institute of Scientific and Technical Information of China (English)

    Wu Qin; Fang Mao-Fa

    2004-01-01

    The atomic dynamical properties in the system with competing k-photon and l-photon transitions are studied fully by means of quantum theory. We discuss the influences of the mode-mode competition, the relative competing strengths of the atom and the two-mode field, and the initial state of the system on the atomic dynamics. We show that the presence of the mode-mode competition can result in quite a periodical collapses-revivals of the atomic inversion and the increase of the initial photons of the system can lead to the collapse-revival phenomenon and prolong the revival time of the atomic inversion.

  17. Perturbative Study of Energetic Particle Redistribution by Alfven Eigenmodes in ITER

    Energy Technology Data Exchange (ETDEWEB)

    N.N. Gorelenkov and R.B. White

    2012-10-29

    The modification of particle distributions by magnetohydrodynamic modes is an important topic for magnetically confined plasmas. Low amplitude modes are known to be capable of producing significant modification of injected neutral beam profiles. Flattening of a distribution due to phase mixing in an island or due to portions of phase space becoming stochastic is a process extremely rapid on the time scale of an experiment. In this paper we examine the effect of toroidal Alfven eigenmodes (TAE) and reversed shear Alfven eigenmodes (RSAE) in ITER on alpha particle and injected beam distributions using theoretically predicted mode amplitudes. It is found that for the equilibrium of a hybrid scenario even at ten times the predicted saturation level the modes have negligible effect on these distributions. A strongly reversed shear (or advanced) scenario, having a spectrum of modes that are much more global, is somewhat more susceptible to induced loss due to mode resonance, with alpha particle losses of over one percent with predicted amplitudes and somewhat larger with the assistance of toroidal field ripple. The elevated q profile contributes to stronger TAE (RSAE) drive and more unstable modes. An analysis of the existing mode-particle resonances is carried out to determine which modes are responsible for the profile modification and induced loss. We find that losses are entirely due to resonance with the counter-moving and trapped particle populations, with co-moving passing particles participating in resonances only deep within the plasma and not leading to loss.

  18. Study on Accumulative Effect of Enterprise Symbiotic Space in Agricultural Circular Economy

    Institute of Scientific and Technical Information of China (English)

    ZOU Lei; SUN Changxiong

    2009-01-01

    Enterprise symbiotic behavior is one of the main inter-firm organizational modes in agricultural circular economy, and the importance of its accumulative effect of enterprise symbiotic space is no less than its industry dimensionality. Based on this point, this article firstly started from the space factor and the symbiotic relationship and spatial clusters of the agricultural enterprise were analyzed, accordingly the clusters' analysis framework was introduced. And then the cost model, learning curve and the knowledge stock change were set up and the accumulative mechanism of a rational agricultural enterprise in the symbiotic space was discussed. Therefore, a further analysis on all kinds of accumulative effects of agricultural enterprise was carded on. Finally, we got conclusions from three aspects in this article;meanwhile, we obtained the enlightenment for the related enterprises in light of the reality.

  19. A fluid particle model

    OpenAIRE

    Español, Pep

    1997-01-01

    We present a mechanistic model for a Newtonian fluid called fluid particle dynamics. By analyzing the concept of ``fluid particle'' from the point of view of a Voronoi tessellation of a molecular fluid, we propose an heuristic derivation of a dissipative particle dynamics algorithm that incorporates shear forces between dissipative particles. The inclusion of these non-central shear forces requires the consideration of angular velocities of the dissipative particles in order to comply with th...

  20. Damage mechanics - failure modes

    Energy Technology Data Exchange (ETDEWEB)

    Krajcinovic, D.; Vujosevic, M. [Arizona State Univ., Tempe, AZ (United States)

    1996-12-31

    The present study summarizes the results of the DOE sponsored research program focused on the brittle failure of solids with disordered microstructure. The failure is related to the stochastic processes on the microstructural scale; namely, the nucleation and growth of microcracks. The intrinsic failure modes, such as the percolation, localization and creep rupture, are studied by emphasizing the effect of the micro-structural disorder. A rich spectrum of physical phenomena and new concepts that emerges from this research demonstrates the reasons behind the limitations of traditional, deterministic, and local continuum models.