WorldWideScience

Sample records for accumbens dopamine release

  1. Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors.

    Science.gov (United States)

    Mikhailova, Maria A; Bass, Caroline E; Grinevich, Valentina P; Chappell, Ann M; Deal, Alex L; Bonin, Keith D; Weiner, Jeff L; Gainetdinov, Raul R; Budygin, Evgeny A

    2016-10-01

    Recent optogenetic studies demonstrated that phasic dopamine release in the nucleus accumbens may play a causal role in multiple aspects of natural and drug reward-related behaviors. The role of tonic dopamine release in reward consummatory behavior remains unclear. The current study used a combinatorial viral-mediated gene delivery approach to express ChR2 on mesolimbic dopamine neurons in rats. We used optical activation of this dopamine circuit to mimic tonic dopamine release in the nucleus accumbens and to explore the causal relationship between this form of dopamine signaling within the ventral tegmental area (VTA)-nucleus accumbens projection and consumption of a natural reward. Using a two bottle choice paradigm (sucrose vs. water), the experiments revealed that tonic optogenetic stimulation of mesolimbic dopamine transmission significantly decreased reward consummatory behaviors. Specifically, there was a significant decrease in the number of bouts, licks and amount of sucrose obtained during the drinking session. Notably, activation of VTA dopamine cell bodies or dopamine terminals in the nucleus accumbens resulted in identical behavioral consequences. No changes in water intake were evident under the same experimental conditions. Collectively, these data demonstrate that tonic optogenetic stimulation of VTA-nucleus accumbens dopamine release is sufficient to inhibit reward consummatory behavior, possibly by preventing this circuit from engaging in phasic activity that is thought to be essential for reward-based behaviors.

  2. Cholinergic Interneurons Underlie Spontaneous Dopamine Release in Nucleus Accumbens.

    Science.gov (United States)

    Yorgason, Jordan T; Zeppenfeld, Douglas M; Williams, John T

    2017-02-22

    The release of dopamine from terminals in the NAc is regulated by a number of factors, including voltage-gated ion channels, D2-autoreceptors, and nAChRs. Cholinergic interneurons (CINs) drive dopamine release through activation of nAChRs on dopamine terminals. Using cyclic voltammetry in mouse brain slices, nAChR-dependent spontaneous dopamine transients and the mechanisms underlying the origin were examined in the NAc. Spontaneous events were infrequent (0.3 per minute), but the rate and amplitude were increased after blocking Kv channels with 4-aminopyridine. Although the firing frequency of CINs was increased by blocking glutamate reuptake with TBOA and the Sk blocker apamin, only 4-aminopyridine increased the frequency of dopamine transients. In contrast, inhibition of CIN firing with the μ/δ selective opioid [Met(5)]enkephalin (1 μm) decreased spontaneous dopamine transients. Cocaine increased the rate and amplitude of dopamine transients, suggesting that the activity of the dopamine transporter limits the detection of these events. In the presence of cocaine, the rate of spontaneous dopamine transients was further increased after blocking D2-autoreceptors. Blockade of muscarinic receptors had no effect on evoked dopamine release, suggesting that feedback inhibition of acetylcholine release was not involved. Thus, although spontaneous dopamine transients are reliant on nAChRs, the frequency was not strictly governed by the activity of CINs. The increase in frequency of spontaneous dopamine transients induced by cocaine was not due to an increase in cholinergic tone and is likely a product of an increase in detection resulting from decreased dopamine reuptake.SIGNIFICANCE STATEMENT The actions of dopamine in the NAc are thought to be responsible for endogenous reward and the reinforcing properties of drugs of abuse, such as psychostimulants. The present work examines the mechanisms underlying nAChR-induced spontaneous dopamine release. This study

  3. Direct effect of nicotine on mesolimbic dopamine release in rat nucleus accumbens shell

    NARCIS (Netherlands)

    Kleijn, J.; Folgering, J. H. A.; van der Hart, M. C. G.; Rollema, H.; Cremers, T. I. F. H.; Westerink, B. H. C.

    2011-01-01

    Nicotine stimulates dopamine (DA) cell firing via a local action at somatodendritic sites in the ventral tegmental area (VTA), increasing DA release in the nucleus accumbens (NAcc). Additionally, nicotine may also modulate DA release via a direct effect in the NAcc. This study examined the

  4. Nitric oxide donors enhance the frequency-dependence of dopamine release in nucleus accumbens

    OpenAIRE

    Hartung, Henrike; Threlfell, Sarah; Cragg, Stephanie J

    2011-01-01

    Abstract Dopamine (DA) neurotransmission in the nucleus accumbens (NAc) is critically involved in normal as well as maladaptive motivated behaviours including drug addiction. Whether the striatal neuromodulator nitric oxide (NO) influences DA release in NAc is unknown. We investigated whether exogenous NO modulates DA transmission in NAc core and how this interaction varies depending on frequency of presynaptic activation. We detected DA with cyclic voltammetry at carbon-fiber micr...

  5. Phasic dopamine release in the rat nucleus accumbens predicts approach and avoidance performance.

    Science.gov (United States)

    Gentry, Ronny N; Lee, Brian; Roesch, Matthew R

    2016-10-27

    Dopamine (DA) is critical for reward processing, but significantly less is known about its role in punishment avoidance. Using a combined approach-avoidance task, we measured phasic DA release in the nucleus accumbens (NAc) of rats during presentation of cues that predicted reward, punishment or neutral outcomes and investigated individual differences based on avoidance performance. Here we show that DA release within a single microenvironment is higher for reward and avoidance cues compared with neutral cues and positively correlated with poor avoidance behaviour. We found that DA release delineates trial-type during sessions with good avoidance but is non-selective during poor avoidance, with high release correlating with poor performance. These data demonstrate that phasic DA is released during cued approach and avoidance within the same microenvironment and abnormal processing of value signals is correlated with poor performance.

  6. Effect of ginseng saponina on nicotine-induced dopamine release in the rat nucleus accumbens and striatum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Eun [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Shim, In Sop [Kyunghee University, Seoul (Korea, Republic of); Chung, June Key; Lee, Myung Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2002-10-01

    We investigated the effect of ginseng total saponin (GTS) on nicotine-induced dopamine (DA) release in the striatum and nucleus accumbens of freely moving rats using in vivo microdialysis technique. Systemic pretreatment with GTS decreased striatal DA release induced by local infusion of nicotine into the striatum. However, GTS had no effect on the resting levels of extracellular DA in the striatum. GTS also blocked nicotine-induced DA release in the nucleus accumbens. The results of the present study suggest that GTS acts on the DA terminals to prevent DA release induced by nicotine. This may reflect the blocking effect of GTS on behavioral hyperactivity induced by psychostimulants.

  7. Regulation of /sup 3/H-dopamine release by presynaptic GABA and glutamate heteroreceptors in rat brain nucleus accumbens synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, G.I.; Hetey, L.

    1987-06-01

    The aim of this investigation was a neurochemical study of the effect of agonists of different types of GABA receptors - muscimol (type A receptor), baclofen (type B receptor), delta-aminolevulinic acid (DALA; GABA autoreceptor), and also of GABA itself - on tritium-labelled dopamine release, stimulated by potassium cations, from synaptosomes of the nuclei accumbenes of the rat brain.

  8. Regional influence of cocaine on evoked dopamine release in the nucleus accumbens core: A role for the caudal brainstem.

    Science.gov (United States)

    Gerth, Ashlynn I; Alhadeff, Amber L; Grill, Harvey J; Roitman, Mitchell F

    2017-01-15

    Cocaine increases dopamine concentration in the nucleus accumbens through competitive binding to the dopamine transporter (DAT). However, it also increases the frequency of dopamine release events, a finding that cannot be explained by action at the DAT alone. Rather, this effect may be mediated by cocaine-induced modulation of brain regions that project to dopamine neurons. To explore regional contributions of cocaine to dopamine signaling, we administered cocaine to the lateral or fourth ventricles and compared the effects on dopamine release in the nucleus accumbens evoked by electrical stimulation of the ventral tegmental area to that of systemically-delivered cocaine. Stimulation trains caused a sharp rise in dopamine followed by a slower return to baseline. The magnitude of dopamine release ([DA]max) as well as the latency to decay to fifty percent of the maximum (t(1/2); index of DAT activity) by each stimulation train were recorded. All routes of cocaine delivery caused an increase in [DA]max; only systemic cocaine caused an increase in t(1/2). Importantly, these data are the first to show that hindbrain (fourth ventricle)-delivered cocaine modulates phasic dopamine signaling. Fourth ventricular cocaine robustly increased cFos immunoreactivity in the nucleus of the solitary tract (NTS), suggesting a neural substrate for hindbrain cocaine-mediated effects on [DA]max. Together, the data demonstrate that cocaine-induced effects on phasic dopamine signaling are mediated via actions throughout the brain including the hindbrain. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Beer self-administration provokes lateralized nucleus accumbens dopamine release in male heavy drinkers.

    Science.gov (United States)

    Oberlin, Brandon G; Dzemidzic, Mario; Tran, Stella M; Soeurt, Christina M; O'Connor, Sean J; Yoder, Karmen K; Kareken, David A

    2015-03-01

    Although striatal dopamine (DA) is important in alcohol abuse, the nature of DA release during actual alcohol drinking is unclear, since drinking includes self-administration of both conditioned flavor stimuli (CS) of the alcoholic beverage and subsequent intoxication, the unconditioned stimulus (US). Here, we used a novel self-administration analog to distinguish nucleus accumbens (NAcc) DA responses specific to the CS and US. Right-handed male heavy drinkers (n = 26) received three positron emission tomography (PET) scans with the D2/D3 radioligand [(11)C]raclopride (RAC) and performed a pseudo self-administration task that separately administered a flavor CS of either a habitually consumed beer or the appetitive control Gatorade®, concomitant with the US of ethanol intoxication (0.06 g/dL intravenous (IV) administration) or IV saline. Scan conditions were Gatorade flavor + saline (Gat&Sal), Gatorade flavor + ethanol (Gat&Eth), and beer flavor + ethanol (Beer&Eth). Ethanol (US) reduced RAC binding (inferring DA release) in the left (L) NAcc [Gat&Sal > Gat&Eth]. Beer flavor (CS) increased DA in the right (R) NAcc [Gat&Eth > Beer&Eth]. The combination of beer flavor and ethanol (CS + US), [Gat&Sal > Beer&Eth], induced DA release in bilateral NAcc. Self-reported intoxication during scanning correlated with L NAcc DA release. Relative to saline, infusion of ethanol increased alcoholic drink wanting. Our findings suggest lateralized DA function in the NAcc, with L NAcc DA release most reflecting intoxication, R NAcc DA release most reflecting the flavor CS, and the conjoint CS + US producing a bilateral NAcc response.

  10. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release.

    Science.gov (United States)

    Melchior, James R; Ferris, Mark J; Stuber, Garret D; Riddle, David R; Jones, Sara R

    2015-09-01

    The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse microenvironments. Local electrical stimulation excites all of the neuronal processes in the stimulation field, potentially modulating the dopamine signal - measured using cyclic voltammetry. Optogenetically targeting light stimulation to dopamine

  11. Histamine H3 receptor activation inhibits dopamine synthesis but not release or uptake in rat nucleus accumbens.

    Science.gov (United States)

    Aquino-Miranda, Guillermo; Escamilla-Sánchez, Juan; González-Pantoja, Raúl; Bueno-Nava, Antonio; Arias-Montaño, José-Antonio

    2016-07-01

    We studied the effect of activating histamine H3 receptors (H3Rs) on rat nucleus accumbens (rNAcc) dopaminergic transmission by analyzing [(3)H]-dopamine uptake by synaptosomes, and dopamine synthesis and depolarization-evoked [(3)H]-dopamine release in slices. The uptake of [(3)H]-dopamine by rNAcc synaptosomes was not affected by the H3R agonist RAMH (10(-10)-10(-6) M). In rNAcc slices perfusion with RAMH (1 μM) had no significant effect on [(3)H]-dopamine release evoked by depolarization with 30 mM K(+) (91.4 ± 4.5% of controls). The blockade of dopamine D2 autoreceptors with sulpiride (1 μM) enhanced K(+)-evoked [(3)H]-dopamine release (168.8 ± 15.5% of controls), but under this condition RAMH (1 μM) also failed to affect [(3)H]-dopamine release. Dopamine synthesis was evaluated in rNAcc slices incubated with the l-dihydroxyphenylalanine (DOPA) decarboxylase inhibitor NSD-1015 (1 mM). Forskolin-induced DOPA accumulation (220.1 ± 10.4% of controls) was significantly reduced by RAMH (41.1 ± 6.5% and 43.5 ± 9.1% inhibition at 100 nM and 1 μM, respectively), and this effect was prevented by the H3R antagonist ciproxifan (10 μM). DOPA accumulation induced by preventing cAMP degradation with IBMX (iso-butyl-methylxantine, 1 mM) or by activating receptors for the vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide (PACAP) with PACAP-27 (1 μM) was reduced (IBMX) or prevented (PACAP-27) by RAMH (100 nM). In contrast, DOPA accumulation induced by 8-Bromo-cAMP (1 mM) was not affected by RAMH (100 nM). These results indicate that in rNAcc H3Rs do not modulate dopamine uptake or release, but regulate dopamine synthesis by inhibiting cAMP formation and thus PKA activation. This article is part of the Special Issue entitled 'Histamine Receptors'.

  12. Neuronal calcium sensor-1 deletion in the mouse decreases motivation and dopamine release in the nucleus accumbens.

    Science.gov (United States)

    Ng, Enoch; Varaschin, Rafael K; Su, Ping; Browne, Caleb J; Hermainski, Joanna; Le Foll, Bernard; Pongs, Olaf; Liu, Fang; Trudeau, Louis-Eric; Roder, John C; Wong, Albert H C

    2016-03-15

    Calcium sensors detect intracellular calcium changes and interact with downstream targets to regulate many functions. Neuronal Calcium Sensor-1 (NCS-1) or Frequenin is widely expressed in the nervous system, and involved in neurotransmission, synaptic plasticity and learning. NCS-1 interacts with and regulates dopamine D2 receptor (D2R) internalization and is implicated in disorders like schizophrenia and substance abuse. However, the role of NCS-1 in behaviors dependent on dopamine signaling in the striatum, where D2R is most highly expressed, is unknown. We show that Ncs-1 deletion in the mouse decreases willingness to work for food. Moreover, Ncs-1 knockout mice have significantly lower activity-dependent dopamine release in the nucleus accumbens core in acute slice recordings. In contrast, food preference, responding for conditioned reinforcement, ability to represent changes in reward value, and locomotor response to amphetamine are not impaired. These studies identify novel roles for NCS-1 in regulating activity-dependent striatal dopamine release and aspects of motivated behavior.

  13. Interactions among mu- and delta-opioid receptors, especially putative delta1- and delta2-opioid receptors, promote dopamine release in the nucleus accumbens.

    NARCIS (Netherlands)

    Hirose, N.; Murakawa, K.; Takada, K.; Oi, Y.; Suzuki, T.; Nagase, H.; Cools, A.R.; Koshikawa, N.

    2005-01-01

    The effect of interactions among mu- and delta-opioid receptors, especially the putative delta(1)- and delta(2)-opioid receptors, in the nucleus accumbens on accumbal dopamine release was investigated in awake rats by in vivo brain microdialysis. In agreement with previous studies, perfusion of the

  14. Interactions among mu- and delta-opioid receptors, especially putative delta1- and delta2-opioid receptors, promote dopamine release in the nucleus accumbens.

    NARCIS (Netherlands)

    Hirose, N.; Murakawa, K.; Takada, K.; Oi, Y.; Suzuki, T.; Nagase, H.; Cools, A.R.; Koshikawa, N.

    2005-01-01

    The effect of interactions among mu- and delta-opioid receptors, especially the putative delta(1)- and delta(2)-opioid receptors, in the nucleus accumbens on accumbal dopamine release was investigated in awake rats by in vivo brain microdialysis. In agreement with previous studies, perfusion of the

  15. Sensitized nucleus accumbens dopamine terminal responses to methylphenidate and dopamine transporter releasers after intermittent-access self-administration.

    Science.gov (United States)

    Calipari, Erin S; Jones, Sara R

    2014-07-01

    Long-access methylphenidate (MPH) self-administration has been shown to produce enhanced amphetamine potency at the dopamine transporter and concomitant changes in reinforcing efficacy, suggesting that MPH abuse may change the dopamine system in a way that promotes future drug abuse. While long-access self-administration paradigms have translational validity for cocaine, it may not be as relevant a model of MPH abuse, as it has been suggested that people often take MPH intermittently. Although previous work outlined the neurochemical and behavioral consequences of long-access MPH self-administration, it was not clear whether intermittent access (6 h session; 5 min access/30 min) would result in similar changes. For cocaine, long-access self-administration resulted in tolerance to cocaine's effects on dopamine and behavior while intermittent-access resulted in sensitization. Here we assessed the neurochemical consequences of intermittent-access MPH self-administration on dopamine terminal function. We found increased maximal rates of uptake, increased stimulated release, and subsensitive D2-like autoreceptors. Consistent with previous work using extended-access MPH paradigms, the potencies of amphetamine and MPH, but not cocaine, were increased, demonstrating that unlike cocaine, MPH effects were not altered by the pattern of intake. Although the potency results suggest that MPH may share properties with releasers, dopamine release was increased following acute application of MPH, similar to cocaine, and in contrast to the release decreasing effects of amphetamine. Taken together, these data demonstrate that MPH exhibits properties of both blockers and releasers, and that the compensatory changes produced by MPH self-administration may increase the abuse liability of amphetamines, independent of the pattern of administration.

  16. Involvement of tissue plasminogen activator-plasmin system in depolarization-evoked dopamine release in the nucleus accumbens of mice.

    Science.gov (United States)

    Ito, Mina; Nagai, Taku; Kamei, Hiroyuki; Nakamichi, Noritaka; Nabeshima, Toshitaka; Takuma, Kazuhiro; Yamada, Kiyofumi

    2006-11-01

    Tissue plasminogen activator (tPA), a serine protease, catalyzes the conversion of plasminogen to plasmin. In the present study, we investigated the role of the tPA-plasmin system in depolarization-evoked dopamine (DA) and acetylcholine (ACh) release in the nucleus accumbens (NAc) and hippocampus, respectively, of mice, by using in vivo microdialysis. Microinjection of either tPA or plasmin significantly potentiated 40 mM KCl-induced DA release without affecting basal DA levels. In contrast, plasminogen activator inhibitor-1 dose-dependently reduced 60 mM KCl-induced DA release. The 60 mM KCl-evoked DA release in the NAc was markedly diminished in tPA-deficient (tPA-/-) mice compared with wild-type mice, although basal DA levels did not differ between the two groups. Microinjections of either exogenous tPA (100 ng) or plasmin (100 ng) into the NAc of tPA-/-mice restored 60 mM KCl-induced DA release, as observed in wild-type mice. In contrast, there was no difference in either basal or 60 mM KCl-induced ACh release in the hippocampus between wild-type and tPA-/-mice. Our findings suggest that the tPA-plasmin system is involved in the regulation of depolarization-evoked DA release in the NAc.

  17. N-Methyl-d-aspartate Modulation of Nucleus Accumbens Dopamine Release by Metabotropic Glutamate Receptors: Fast Cyclic Voltammetry Studies in Rat Brain Slices in Vitro.

    Science.gov (United States)

    Yavas, Ersin; Young, Andrew M J

    2017-02-15

    The N-methyl-d-aspartate (NMDA) receptor antagonist, phencyclidine, induces behavioral changes in rodents mimicking symptoms of schizophrenia, possibly mediated through dysregulation of glutamatergic control of mesolimbic dopamine release. We tested the hypothesis that NMDA receptor activation modulates accumbens dopamine release, and that phencyclidine pretreatment altered this modulation. NMDA caused a receptor-specific, dose-dependent decrease in electrically stimulated dopamine release in nucleus accumbens brain slices. This decrease was unaffected by picrotoxin, making it unlikely to be mediated through GABAergic neurones, but was decreased by the metabotropic glutamate receptor antagonist, (RS)-α-methyl-4-sulfonophenylglycine, indicating that NMDA activates mechanisms controlled by these receptors to decrease stimulated dopamine release. The effect of NMDA was unchanged by in vivo pretreatment with phencyclidine (twice daily for 5 days), with a washout period of at least 7 days before experimentation, which supports the hypothesis that there is no enduring direct effect of PCP at NMDA receptors after this pretreatment procedure. We propose that NMDA depression of accumbal dopamine release is mediated by metabotropic glutamate receptors located pre- or perisynaptically, and suggest that NMDA evoked increased extrasynaptic spillover of glutamate is sufficient to activate these receptors that, in turn, inhibit dopamine release. Furthermore, we suggest that enduring functional changes brought about by subchronic phencyclidine pretreatment, modeling deficits in schizophrenia, are downstream effects consequent on chronic blockade of NMDA receptors, rather than direct effects on NMDA receptors themselves.

  18. Dopamine and serotonin uptake inhibitors on the release of dopamine and serotonin in the nucleus accumbens of young and aged rats.

    Science.gov (United States)

    Yoshimoto, K; Kato, B; Ueda, S; Noritake, K; Sakai, K; Shibata, M; Hori, M; Kawano, H; Takeuchi, Y; Wakabayashi, Y; Yasuhara, M

    2001-10-01

    Nucleus accumbens (ACC) of young (4 months old) and aged (24 months old) Wistar rats were perfused with dopamine (DA) uptake blocker, cocaine, or the serotonin (5-HT) selective reuptake inhibitor, fluoxetine, through the microdialysis probe membrane, used to assess the dopamine transporter (DAT) or serotonin transporter (SERT) modulation. The basal extracellular DA release in the ACC was significantly lower in aged rats than young rats. Analysis of DA and 5-HT concentrations in the ACC with increased positive GFAP revealed that DA and DOPAC levels of aged rats were decreased to 55 and 60% of those in young rats, respectively. After co-perfusion with cocaine, both DA and 5-HT releases in the ACC were increased in the young and aged groups. However, the magnitude of the increased DA release was lower in aged rats than young rats. Co-perfusion with fluoxetine showed lower magnitude of the increased DA release in aged rats. It appears that the DAT and SERT system responds initially to ACC cell loss with age, and that especially ACC DAT in the aged rat is more degenerative compared with the young rats. These findings suggest that the serotonergic system with SERT in the remaining ACC neurons show an early adaptive response and resistance to the normal aging and maintain the multiple regulatory system in the ACC despite neural loss since the dopaminergic neurons in the aged animals are vulnerable to aging.

  19. Differential dopamine release dynamics in the nucleus accumbens core and shell track distinct aspects of goal-directed behavior for sucrose.

    Science.gov (United States)

    Cacciapaglia, Fabio; Saddoris, Michael P; Wightman, R Mark; Carelli, Regina M

    2012-04-01

    Mesolimbic dopamine projections to the nucleus accumbens (NAc) have been implicated in goal-directed behaviors for natural rewards and in learning processes involving cue-reward associations. The NAc has been traditionally subdivided into two anatomically distinct sub-regions with different functional properties: the shell and the core. The aim of the present study was to characterize rapid dopamine transmission across the two NAc sub-regions during cue-signaled operant behavior for a natural (sucrose) reward in rats. Using fast-scan cyclic voltammetry (FSCV) we observed differences in the magnitude and dynamics of dopamine release events between the shell and core. Specifically, although cue-evoked dopamine release was observed in both sub-regions, it was larger and longer lasting in the shell compared with the core. Further, secondary dopamine release events were observed following the lever press response for sucrose in the NAc shell, but not the core. These findings demonstrate that the NAc displays regional specificity in dopamine transmission patterns during cued operant behavior for natural reward.

  20. GS 455534 selectively suppresses binge eating of palatable food and attenuates dopamine release in the accumbens of sugar-bingeing rats.

    Science.gov (United States)

    Bocarsly, Miriam E; Hoebel, Bartley G; Paredes, Daniel; von Loga, Isabell; Murray, Susan M; Wang, Miaoyuan; Arolfo, Maria P; Yao, Lina; Diamond, Ivan; Avena, Nicole M

    2014-04-01

    Binge eating palatable foods has been shown to have behavioral and neurochemical similarities to drug addiction. GS 455534 is a highly selective reversible aldehyde dehydrogenase 2 inhibitor that has been shown to reduce alcohol and cocaine intake in rats. Given the overlaps between binge eating and drug abuse, we examined the effects of GS 455534 on binge eating and subsequent dopamine release. Sprague-Dawley rats were maintained on a sugar (experiment 1) or fat (experiment 2) binge eating diet. After 25 days, GS 455534 was administered at 7.5 and 15 mg/kg by an intraperitoneal injection, and food intake was monitored. In experiment 3, rats with cannulae aimed at the nucleus accumbens shell were maintained on the binge sugar diet for 25 days. Microdialysis was performed, during which GS 455534 15 mg/kg was administered, and sugar was available. Dialysate samples were analyzed to determine extracellular levels of dopamine. In experiment 1, GS 455534 selectively decreased sugar intake food was made available in the Binge Sugar group but not the Ad libitum Sugar group, with no effect on chow intake. In experiment 2, GS 455534 decreased fat intake in the Binge Fat group, but not the Ad libitum Fat group, however, it also reduced chow intake. In experiment 3, GS 455534 attenuated accumbens dopamine release by almost 50% in binge eating rats compared with the vehicle injection. The findings suggest that selective reversible aldehyde dehydrogenase 2 inhibitors may have the therapeutic potential to reduce binge eating of palatable foods in clinical populations.

  1. Neurochemical evidence that cocaine- and amphetamine-regulated transcript (CART) 55-102 peptide modulates the dopaminergic reward system by decreasing the dopamine release in the mouse nucleus accumbens.

    Science.gov (United States)

    Rakovska, Angelina; Baranyi, Maria; Windisch, Katalin; Petkova-Kirova, Polina; Gagov, Hristo; Kalfin, Reni

    2017-08-09

    CART (Cocaine- and Amphetamine-Regulated Transcript) peptide is a neurotransmitter naturally occurring in the CNS and found mostly in nucleus accumbens, ventrotegmental area, ventral pallidum, amygdalae and striatum, brain regions associated with drug addiction. In the nucleus accumbens, known for its significant role in motivation, pleasure, reward and reinforcement learning, CART peptide inhibits cocaine and amphetamine-induced dopamine-mediated increases in locomotor activity and behavior, suggesting a CART peptide interaction with the dopaminergic system. Thus in the present study, we examined the effect of CART (55-102) peptide on the basal, electrical field stimulation-evoked (EFS-evoked) (30V, 2Hz, 120 shocks) and returning basal dopamine (DA) release and on the release of the DA metabolites 3,4-dihydroxyphenyl acetaldehyde (DOPAL), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3,4-dihydroxyphenylethanol (DOPET), 3-methoxytyramine (3-MT) as well as on norepinephrine (NE) and dopamine-o-quinone (Daq) in isolated mouse nucleus accumbens, in a preparation, in which any CART peptide effects on the dendrites or soma of ventral tegmental projection neurons have been excluded. We further extended our study to assess the effect of CART (55-102) peptide on basal cocaine-induced release of dopamine and its metabolites DOPAL, DOPAC, HVA, DOPET and 3-MT as well as on NE and Daq. To analyze the amount of [(3)H]dopamine, dopamine metabolites, Daq and NE in the nucleus accumbens superfusate, a high-pressure liquid chromatography (HPLC), coupled with electrochemical, UV and radiochemical detections was used. CART (55-102) peptide, 0.1μM, added alone, exerted: (i) a significant decrease in the basal and EFS-evoked levels of extracellular dopamine (ii) a significant increase in the EFS-evoked and returning basal levels of the dopamine metabolites DOPAC and HVA, major products of dopamine degradation and (iii) a significant decrease in the returning basal

  2. INCREASE IN DOPAMINE RELEASE FROM THE NUCLEUS-ACCUMBENS IN RESPONSE TO FEEDING - A MODEL TO STUDY INTERACTIONS BETWEEN DRUGS AND NATURALLY ACTIVATED DOPAMINERGIC-NEURONS IN THE RAT-BRAIN

    NARCIS (Netherlands)

    WESTERINK, BHC; TEISMAN, A; DEVRIES, JB

    1994-01-01

    The aim of the present study was to investigate the interactions between the in vivo release of dopamine and certain drugs, during conditions of increased dopaminergic activity. Dopaminergic neurons in the nucleus accumbens were activated by feeding hungry rats. 48-96 h after implantation of a micro

  3. MAM (E17) rodent developmental model of neuropsychiatric disease: disruptions in learning and dysregulation of nucleus accumbens dopamine release, but spared executive function.

    Science.gov (United States)

    Howe, William M; Tierney, Patrick L; Young, Damon A; Oomen, Charlotte; Kozak, Rouba

    2015-11-01

    Gestational day 17 methylazoxymethanol (MAM) treatment has been shown to reproduce, in rodents, some of the alterations in cortical and mesolimbic circuitries thought to contribute to schizophrenia. We characterized the behavior of MAM animals in tasks dependent on these circuitries to see what behavioral aspects of schizophrenia the model captures. We then characterized the integrity of mesolimbic dopamine neurotransmission in a subset of animals used in the behavioral experiments. MAM animals' capacity for working memory, attention, and resilience to distraction was tested with two different paradigms. Cue-reward learning and motivation were assayed with Pavlovian conditioned approach. Measurements of electrically stimulated phasic and tonic DA release in the nucleus accumbens with fast-scan cyclic voltammetry were obtained from the same animals used in the Pavlovian task. MAM animals' basic attentional capacities were intact. MAM animals took longer to acquire the working memory task, but once learned, performed at the same level as shams. MAM animals were also slower to develop a Pavlovian conditioned response, but otherwise no different from controls. These same animals showed alterations in terminal DA release that were unmasked by an amphetamine challenge. The predominant behavioral-cognitive feature of the MAM model is a learning impairment that is evident in acquisition of executive function tasks as well as basic Pavlovian associations. MAM animals also have dysregulated terminal DA release, and this may contribute to observed behavioral differences. The MAM model captures some functional impairments of schizophrenia, particularly those related to acquisition of goal-directed behavior.

  4. Effects of amphetamine on dopamine release in the rat nucleus accumbens shell region depend on cannabinoid CB1 receptor activation

    NARCIS (Netherlands)

    Kleijn, J.; Wiskerke, J.; Cremers, T. I. F. H.; Schoffelmeer, A. N. M.; Westerink, B. H. C.; Pattij, T.

    2012-01-01

    The psychostimulant drug amphetamine is often prescribed to treat Attention-Deficit/Hyperactivity Disorder. The behavioral effects of the psychostimulant drug amphetamine depend on its ability to increase monoamine neurotransmission in brain regions such as the nucleus accumbens (NAC) and medial pre

  5. Effects of bupropion on the forced swim test and release of dopamine in the nucleus accumbens in ACTH-treated rats.

    Science.gov (United States)

    Kitamura, Yoshihisa; Yagi, Takahiko; Kitagawa, Kouhei; Shinomiya, Kazuaki; Kawasaki, Hiromu; Asanuma, Masato; Gomita, Yutaka

    2010-08-01

    The dopamine reuptake inhibitor bupropion has clinically been proven to improve depression and treatment-resistant depression. We examined its influence on the duration of immobility during the forced swim test in adrenocorticotropic hormone (ACTH)-treated rats and further analyzed the possible role of dopamine receptors in this effect. Additionally, the mechanism by which bupropion acts in this model was explored specifically in relation to the site of action through the use of microinjections into the medial prefrontal cortex and nucleus accumbens. Bupropion significantly decreased the duration of immobility in normal and ACTH-treated rats. This effect was blocked by D2 and D3 receptor antagonists in normal rats. Furthermore, infusions of bupropion into the nucleus accumbens, but not medial prefrontal cortex, decreased the immobility of normal and ACTH-treated rats during the forced swim test. Bupropion treatment plus repeated ACTH treatment significantly increased the extracellular dopamine concentration. These findings suggest the antidepressant-like effect of bupropion to be related to levels of dopamine in the rat nucleus accumbens.

  6. Encoding of aversion by dopamine and the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    James Edgar Mccutcheon

    2012-09-01

    Full Text Available Adaptive motivated behavior requires rapid discrimination between beneficial and harmful stimuli. Such discrimination leads to the generation of either an approach or rejection response, as appropriate, and enables organisms to maximize reward and minimize punishment. Classically, the nucleus accumbens (NAc and the dopamine projection to it are considered an integral part of the brain’s reward circuit, i.e., they direct approach and consumption behaviors and underlie positive reinforcement. This reward-centered framing ignores important evidence about the role of this system in encoding aversive events. One reason for bias towards reward is the difficulty in designing experiments in which animals repeatedly experience punishments; another is the challenge in dissociating the response to an aversive stimulus itself from the reward/relief experienced when an aversive stimulus is terminated. Here, we review studies that employ techniques with sufficient time resolution to measure responses in ventral tegmental area (VTA and NAc to aversive stimuli as they are delivered. We also present novel findings showing that the same stimulus – intraoral infusion of sucrose – has differing effects on NAc shell dopamine release depending on the prior experience. Here, for some rats, sucrose was rendered aversive by explicitly pairing it with malaise in a conditioned taste aversion paradigm. Thereafter, sucrose infusions led to a suppression of dopamine with a similar magnitude and time course to intra-oral infusions of a bitter quinine solution. The results are discussed in the context of regional differences in dopamine signaling and the implications of a pause in phasic dopamine release within the NAc shell. Together with our data, the emerging literature suggests an important role for differential phasic dopamine signaling in aversion versus reward.

  7. Encoding of aversion by dopamine and the nucleus accumbens.

    Science.gov (United States)

    McCutcheon, James E; Ebner, Stephanie R; Loriaux, Amy L; Roitman, Mitchell F

    2012-01-01

    Adaptive motivated behavior requires rapid discrimination between beneficial and harmful stimuli. Such discrimination leads to the generation of either an approach or rejection response, as appropriate, and enables organisms to maximize reward and minimize punishment. Classically, the nucleus accumbens (NAc) and the dopamine projection to it are considered an integral part of the brain's reward circuit, i.e., they direct approach and consumption behaviors and underlie positive reinforcement. This reward-centered framing ignores important evidence about the role of this system in encoding aversive events. One reason for bias toward reward is the difficulty in designing experiments in which animals repeatedly experience punishments; another is the challenge in dissociating the response to an aversive stimulus itself from the reward/relief experienced when an aversive stimulus is terminated. Here, we review studies that employ techniques with sufficient time resolution to measure responses in ventral tegmental area and NAc to aversive stimuli as they are delivered. We also present novel findings showing that the same stimulus - intra-oral infusion of sucrose - has differing effects on NAc shell dopamine release depending on the prior experience. Here, for some rats, sucrose was rendered aversive by explicitly pairing it with malaise in a conditioned taste aversion paradigm. Thereafter, sucrose infusions led to a suppression of dopamine with a similar magnitude and time course to intra-oral infusions of a bitter quinine solution. The results are discussed in the context of regional differences in dopamine signaling and the implications of a pause in phasic dopamine release within the NAc shell. Together with our data, the emerging literature suggests an important role for differential phasic dopamine signaling in aversion vs. reward.

  8. Mechanisms of Dopamine Release From Rat Striatum and Nucleus Accumbens Slices:The Role of Transporters, Receptors and Membrane Depolarization

    Science.gov (United States)

    1992-07-21

    The release of 5-HT is controlled by autoreceptors of the 5-HT’a and 5- HT’b type , inhibitory heteroreceptors of the GABAB, muscarinic, Ŗ , and D...type , and stimulatory heteroreceptors for somatostatin. Regulation is also afforded by receptors that are acted upon by co-localized

  9. Nucleus accumbens dopamine receptors in the consolidation of spatial memory.

    NARCIS (Netherlands)

    Mele, A.; Avena, M.; Roullet, P.; Leonibus, E. de; Mandillo, S.; Sargolini, F.; Coccurello, R.; Oliverio, A.

    2004-01-01

    Nucleus accumbens dopamine is known to play an important role in motor activity and in behaviours governed by drugs and natural reinforcers, as well as in non-associative forms of learning. At the same time, activation of D1 and D2 dopamine receptors has been suggested to promote intracellular event

  10. Actions of dopamine antagonists on stimulated striatal and limbic dopamine release: an in vivo voltammetric study.

    OpenAIRE

    Stamford, J. A.; Kruk, Z L; Millar, J.

    1988-01-01

    1. Fast cyclic voltammetry at carbon fibre microelectrodes was used to study the effects of several dopamine antagonists upon stimulated dopamine release in the rat striatum and nucleus accumbens. 2. In both nuclei, stimulated dopamine release was increased by D2-receptor-selective and mixed D1/D2-receptor antagonists. The D1-selective antagonist SCH 23390 had no effect. 3. Striatal and limbic dopamine release were elevated by cis- but not trans-flupenthixol. 4. The 'atypical' neuroleptics (c...

  11. Sexual activity increases dopamine transmission in the nucleus accumbens and striatum of female rats.

    Science.gov (United States)

    Pfaus, J G; Damsma, G; Wenkstern, D; Fibiger, H C

    1995-09-25

    In vivo microdialysis was used to monitor extracellular concentrations of dopamine (DA), and its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the nucleus accumbens and dorsal striatum of sexually active female rats during tests of locomotor activity, exposure to a novel chamber, exposure to sex odors, the presentation of a sexually active male rat, and copulation. DA increased slightly but significantly in the nucleus accumbens when a sexually active male was placed behind a wire-mesh screen, and further during copulation. DA also increased significantly in the dorsal striatum during copulation; however, the magnitude of this effect was significantly lower than that observed in the nucleus accumbens. The metabolites DOPAC and HVA generally followed DA with a delay, and increased significantly during copulation in both regions. In contrast, forced locomotion on a rotating drum, exposure to a novel testing chamber, and exposure to sex odors did not increase DA significantly in either region, although forced locomotion increased DOPAC significantly in both regions, and HVA significantly in the nucleus accumbens. The magnitude of DA release in the nucleus accumbens was significantly greater during copulation than running, whereas no significant difference was detected for striatal DA release between these two behavioral conditions. These results indicate that novelty or locomotor activity alone do not account for the increase in DA observed in the nucleus accumbens of female rats during copulation, and suggest that DA transmission in the nucleus accumbens is associated with anticipatory and consummatory aspects of sexual activity, as it is in male rats. In the dorsal striatum, however, DA release during copulation may reflect an increase in locomotor activity associated with active pacing of the male.

  12. The dopamine beta-hydroxylase inhibitor nepicastat increases dopamine release and potentiates psychostimulant-induced dopamine release in the prefrontal cortex.

    Science.gov (United States)

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Bini, Valentina; Gessa, Gian Luigi

    2014-07-01

    The dopamine-beta-hydroxylase inhibitor nepicastat has been shown to reproduce disulfiram ability to suppress the reinstatement of cocaine seeking after extinction in rats. To clarify its mechanism of action, we examined the effect of nepicastat, given alone or in association with cocaine or amphetamine, on catecholamine release in the medial prefrontal cortex and the nucleus accumbens, two key regions involved in the reinforcing and motivational effects of cocaine and in the reinstatement of cocaine seeking. Nepicastat effect on catecholamines was evaluated by microdialysis in freely moving rats. Nepicastat reduced noradrenaline release both in the medial prefrontal cortex and in the nucleus accumbens, and increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. Moreover, nepicastat markedly potentiated cocaine- and amphetamine-induced extracellular dopamine accumulation in the medial prefrontal cortex but not in the nucleus accumbens. Extracellular dopamine accumulation produced by nepicastat alone or by its combination with cocaine or amphetamine was suppressed by the α2 -adrenoceptor agonist clonidine. It is suggested that nepicastat, by suppressing noradrenaline synthesis and release, eliminated the α2 -adrenoceptor mediated inhibitory mechanism that constrains dopamine release and cocaine- and amphetamine-induced dopamine release from noradrenaline or dopamine terminals in the medial prefrontal cortex.

  13. Dopamine Signaling in the Nucleus Accumbens of Animals Self-Administering Drugs of Abuse

    Science.gov (United States)

    Willuhn, Ingo; Wanat, Matthew J.; Clark, Jeremy J.; Phillips, Paul E. M.

    2013-01-01

    Abuse of psychoactive substances can lead to drug addiction. In animals, addiction is best modeled by drug self-administration paradigms. It has been proposed that the crucial common denominator for the development of drug addiction is the ability of drugs of abuse to increase extracellular concentrations of dopamine in the nucleus accumbens (NAcc). Studies using in vivo microdialysis and chronoamperometry in the behaving animal have demonstrated that drugs of abuse increase tonic dopamine concentrations in the NAcc. However, it is known that dopamine neurons respond to reward-related stimuli on a subsecond timescale. Thus, it is necessary to collect neurochemical information with this level of temporal resolution, as achieved with in vivo fast-scan cyclic voltammetry (FSCV), to fully understand the role of phasic dopamine release in normal behavior and drug addiction. We review studies that investigated the effects of drugs of abuse on NAcc dopamine levels in freely-moving animals using in vivo microdialysis, chronoamperometry and FSCV. After a brief introduction of dopamine anatomy and signal transduction, and a section on current theories of dopamine in natural goal-directed behavior, a discussion of techniques for the in vivo assessment of extracellular dopamine behaving animals is presented. Then, we review studies using these techniques to investigate changes in phasic and tonic dopamine signaling in the NAcc during 1) response-dependent and –independent administration of abused drugs, 2) drug-conditioned stimuli and operant behavior in self-administration paradigms, 3) drug withdrawal, and 4) cue-induced reinstatement of drug seeking. These results are then integrated with current ideas on the role of dopamine in addiction with an emphasis on a model illustrating phasic and tonic NAcc dopamine signaling during different stages of drug addiction. This model predicts that phasic dopamine release in response to drug-related stimuli will be enhanced over

  14. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats

    Science.gov (United States)

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats. PMID:28280461

  15. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats.

    Science.gov (United States)

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats.

  16. Sexual behavior increases dopamine transmission in the nucleus accumbens and striatum of male rats: comparison with novelty and locomotion.

    Science.gov (United States)

    Damsma, G; Pfaus, J G; Wenkstern, D; Phillips, A G; Fibiger, H C

    1992-02-01

    Extracellular concentrations of dopamine (DA) and its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were examined concurrently, using in vivo microdialysis, in the nucleus accumbens and dorsal striatum of sexually active male rats during tests of locomotor activity, exposure to a novel chamber, exposure to sex odors, the presentation of a sexually receptive female, and copulation. DA increased significantly in the nucleus accumbens when the males were presented with a sexually receptive female behind a screen and increased further during copulation. Although DA also increased significantly in the dorsal striatum during copulation, the magnitude of the effect was significantly lower than that observed in the nucleus accumbens. In contrast, forced locomotion on a rotating drum, exposure to a novel chamber, and exposure to sex odors did not increase DA significantly in either region, although both DOPAC and HVA increased significantly in both regions during the locomotion test. These results indicate that novelty or locomotor activity alone cannot account for the increased extracellular DA concentrations observed in the nucleus accumbens of male rats during the presentation of a sexually receptive female behind a screen, nor can they account for the increased DA concentrations observed in both the nucleus accumbens and dorsal striatum of male rats during copulation. The preferential increase in DA transmission in the nucleus accumbens, compared with that in the striatum, suggests that anticipatory and consummatory aspects of sexual activity may belong to a class of naturally occurring events with reward values that are mediated by DA release in the nucleus accumbens.

  17. Excitatory amino acid receptors in the ventral tegmental area regulate dopamine release in the ventral striatum

    NARCIS (Netherlands)

    Karreman, M; Westerink, BHC; Moghaddam, B

    1996-01-01

    The role of excitatory amino acid (EAA) receptors located in the ventral tegmental area (VTA) in tonic and phasic regulation of dopamine release in the ventral striatum was investigated. Microdialysis in conscious rats was used to assess dopamine release primarily from the nucleus accumbens shell re

  18. Intermittent-access binge consumption of sweet high-fat liquid does not require opioid or dopamine receptors in the nucleus accumbens.

    Science.gov (United States)

    Lardeux, Sylvie; Kim, James J; Nicola, Saleem M

    2015-10-01

    Binge eating disorders are characterized by episodes of intense consumption of high-calorie food. In recently developed animal models of binge eating, rats given intermittent access to such food escalate their consumption over time. Consumption of calorie-dense food is associated with neurochemical changes in the nucleus accumbens, including dopamine release and alterations in dopamine and opioid receptor expression. Therefore, we hypothesized that binge-like consumption on intermittent access schedules is dependent on opioid and/or dopamine neurotransmission in the accumbens. To test this hypothesis, we asked whether injection of dopamine and opioid receptor antagonists into the core and shell of the accumbens reduced consumption of a sweet high-fat liquid in rats with and without a history of intermittent binge access to the liquid. Although injection of a μ opioid agonist increased consumption, none of the antagonists (including μ opioid, δ opioid, κ opioid, D1 dopamine and D2 dopamine receptor antagonists, as well as the broad-spectrum opioid receptor antagonist naltrexone) reduced consumption, and this was the case whether or not the animals had a prior history of intermittent access. These results suggest that consumption of sweet, fatty food does not require opioid or dopamine receptor activation in the accumbens even under intermittent access conditions that resemble human binge episodes.

  19. Selective Activation of Cholinergic Interneurons Enhances Accumbal Phasic Dopamine Release: Setting the Tone for Reward Processing

    Directory of Open Access Journals (Sweden)

    Roger Cachope

    2012-07-01

    Full Text Available Dopamine plays a critical role in motor control, addiction, and reward-seeking behaviors, and its release dynamics have traditionally been linked to changes in midbrain dopamine neuron activity. Here, we report that selective endogenous cholinergic activation achieved via in vitro optogenetic stimulation of nucleus accumbens, a terminal field of dopaminergic neurons, elicits real-time dopamine release. This mechanism occurs via direct actions on dopamine terminals, does not require changes in neuron firing within the midbrain, and is dependent on glutamatergic receptor activity. More importantly, we demonstrate that in vivo selective activation of cholinergic interneurons is sufficient to elicit dopamine release in the nucleus accumbens. Therefore, the control of accumbal extracellular dopamine levels by endogenous cholinergic activity results from a complex convergence of neurotransmitter/neuromodulator systems that may ultimately synergize to drive motivated behavior.

  20. Individual variation in incentive salience attribution and accumbens dopamine transporter expression and function.

    Science.gov (United States)

    Singer, Bryan F; Guptaroy, Bipasha; Austin, Curtis J; Wohl, Isabella; Lovic, Vedran; Seiler, Jillian L; Vaughan, Roxanne A; Gnegy, Margaret E; Robinson, Terry E; Aragona, Brandon J

    2016-03-01

    Cues (conditioned stimuli; CSs) associated with rewards can come to motivate behavior, but there is considerable individual variation in their ability to do so. For example, a lever-CS that predicts food reward becomes attractive and wanted, and elicits reward-seeking behavior, to a greater extent in some rats ('sign-trackers'; STs) than others ('goal-trackers'; GTs). Variation in dopamine (DA) neurotransmission in the nucleus accumbens (NAc) core is thought to contribute to such individual variation. Given that the DA transporter (DAT) exerts powerful regulation over DA signaling, we characterized the expression and function of the DAT in the accumbens of STs and GTs. STs showed greater DAT surface expression in ventral striatal synaptosomes than GTs, and ex vivo fast-scan cyclic voltammetry recordings of electrically evoked DA release confirmed enhanced DAT function in STs, as indicated by faster DA uptake, specifically in the NAc core. Consistent with this, systemic amphetamine (AMPH) produced greater inhibition of DA uptake in STs than in GTs. Furthermore, injection of AMPH directly into the NAc core enhanced lever-directed approach in STs, presumably by amplifying the incentive value of the CS, but had no effect on goal-tracking behavior. On the other hand, there were no differences between STs and GTs in electrically-evoked DA release in slices, or in total ventral striatal DA content. We conclude that greater DAT surface expression may facilitate the attribution of incentive salience to discrete reward cues. Investigating this variability in animal sub-populations may help explain why some people abuse drugs while others do not. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. The behavioral neurochemistry of motivation: methodological and conceptual issues in studies of the dynamic activity of nucleus accumbens dopamine.

    Science.gov (United States)

    Salamone, J D

    1996-02-01

    Considerable experimental and clinical evidence links forebrain dopamine (DA) systems to the performance of motor activities and to motivational processes. Much of the support for this conclusion was obtained from studies utilizing lesions or drugs to manipulate aspects of central dopaminergic function. Although such experiments yield important information concerning the behavioral consequences of interference with DA systems in brain, they do not demonstrate any relation between the dynamic activity of DA neurons and the level or type of motor function exhibited by the organism. This review discusses the emerging field of behavioral neurochemistry, and provides an overview of recent studies investigating the relation between nucleus accumbens DA release and behavior. Particular emphasis is placed upon current research involving microdialysis, voltammetry and electrophysiology. These different methods are viewed as complementary techniques for investigating the activity of DA systems in behaving animals. Evidence indicates that DA activity is most reliably activated by stimuli that trigger instrumental behavior and during the preparatory or instrumental phase of motivated behavior. The effects of consummatory reactions to positive reinforcers are somewhat equivocal; with food consumption, dialysis studies have yielded inconsistent results, while some voltammetric and electrophysiological studies have shown that DA activity in accumbens or ventral tegmental area actually decreases during consumption of food reinforcement. Moreover, the responsiveness of accumbens DA activity during behavioral stimulation is not unique to appetitive conditions, as several studies have shown that aversive or stressful conditions also stimulate accumbens DA release or metabolism. It is reasonable to suggest at this time that accumbens DA neurons are activated by a variety of different motivational conditions, but that the consequence of that activation is to modulate the behavioral

  2. Extinction and reinstatement of phasic dopamine signals in the nucleus accumbens core during Pavlovian conditioning.

    Science.gov (United States)

    Sunsay, Ceyhun; Rebec, George V

    2014-10-01

    The prediction-error model of dopamine (DA) signaling has largely been confirmed with various appetitive Pavlovian conditioning procedures and has been supported in tests of Pavlovian extinction. Studies have repeatedly shown, however, that extinction does not erase the original memory of conditioning as the prediction-error model presumes, putting the model at odds with contemporary views that treat extinction as an episode of learning rather than unlearning of conditioning. Here, we combined fast-scan cyclic voltammetry (FSCV) with appetitive Pavlovian conditioning to assess DA release directly during extinction and reinstatement. DA was monitored in the nucleus accumbens core, which plays a key role in reward processing. Following at least 4 daily sessions of 16 tone-food pairings, fast-scan cyclic voltammetry was performed while rats received additional tone-food pairings followed by tone alone presentations (i.e., extinction). Acquisition memory was reinstated with noncontingent presentations of reward and then tested with cue presentation. Tone-food pairings produced transient (1- to 3-s) DA release in response to tone. During extinction, the amplitude of the DA response decreased significantly. Following presentation of 2 noncontingent food pellets, subsequent tone presentation reinstated the DA signal. Our results support the prediction-error model for appetitive Pavlovian extinction but not for reinstatement.

  3. Nucleus Accumbens and Dopamine-Mediated Turning Behavior of the Rat: Role of Accumbal Non-dopaminergic Receptors

    NARCIS (Netherlands)

    Ikeda, H.; Kamei, J.; Koshikawa, N.; Cools, A.R.

    2012-01-01

    Accumbal dopamine plays an important role in physiological responses and diseases such as schizophrenia, Parkinson's disease, and depression. Since the nucleus accumbens contains different neurotransmitters, it is important to know how they interact with dopaminergic function: this is because

  4. Neuropeptide Y infusion into the shell region of the rat nucleus accumbens increases extracellular levels of dopamine

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Wegener, Gregers; Hasselstrøm, Jørgen;

    2009-01-01

    Increases in extracellular dopamine in the shell region of the nucleus accumbens are centrally involved in mediating reinforcement of addictive drugs. Neuropeptide Y (NPY) and its receptors are present in the nucleus accumbens and have been implicated in addiction mechanisms. This study further...

  5. Deltorphin II enhances extracellular levels of dopamine in the nucleus accumbens via opioid receptor-independent mechanisms.

    NARCIS (Netherlands)

    Murakawa, K.; Hirose, N.; Takada, K.; Suzuki, T.; Nagase, H.; Cools, A.R.; Koshikawa, N.

    2004-01-01

    The effects of the delta2-opioid receptor agonist, deltorphin II, on extracellular levels of dopamine in the rat nucleus accumbens were investigated in awake animals by in vivo brain microdialysis. In agreement with previous studies, perfusion of deltorphin II (50.0 nmol) into the nucleus accumbens

  6. Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals

    Science.gov (United States)

    Daberkow, DP; Brown, HD; Bunner, KD; Kraniotis, SA; Doellman, MA; Ragozzino, ME; Garris, PA; Roitman, MF

    2013-01-01

    Drugs of abuse hijack brain reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting non-exocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties - which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to two hours. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration and frequency of spontaneous dopamine transients, the naturally occurring, non-electrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sucrose reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sucrose-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify up-regulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926

  7. The Aversive Agent Lithium Chloride Suppresses Phasic Dopamine Release Through Central GLP-1 Receptors

    Science.gov (United States)

    Fortin, Samantha M; Chartoff, Elena H; Roitman, Mitchell F

    2016-01-01

    Unconditioned rewarding stimuli evoke phasic increases in dopamine concentration in the nucleus accumbens (NAc) while discrete aversive stimuli elicit pauses in dopamine neuron firing and reductions in NAc dopamine concentration. The unconditioned effects of more prolonged aversive states on dopamine release dynamics are not well understood and are investigated here using the malaise-inducing agent lithium chloride (LiCl). We used fast-scan cyclic voltammetry to measure phasic increases in NAc dopamine resulting from electrical stimulation of dopamine cell bodies in the ventral tegmental area (VTA). Systemic LiCl injection reduced electrically evoked dopamine release in the NAc of both anesthetized and awake rats. As some behavioral effects of LiCl appear to be mediated through glucagon-like peptide-1 receptor (GLP-1R) activation, we hypothesized that the suppression of phasic dopamine by LiCl is GLP-1R dependent. Indeed, peripheral pretreatment with the GLP-1R antagonist exendin-9 (Ex-9) potently attenuated the LiCl-induced suppression of dopamine. Pretreatment with Ex-9 did not, however, affect the suppression of phasic dopamine release by the kappa-opioid receptor agonist, salvinorin A, supporting a selective effect of GLP-1R stimulation in LiCl-induced dopamine suppression. By delivering Ex-9 to either the lateral or fourth ventricle, we highlight a population of central GLP-1 receptors rostral to the hindbrain that are involved in the LiCl-mediated suppression of NAc dopamine release. PMID:26211731

  8. Local Control of Extracellular Dopamine Levels in the Medial Nucleus Accumbens by a Glutamatergic Projection from the Infralimbic Cortex.

    Science.gov (United States)

    Quiroz, César; Orrú, Marco; Rea, William; Ciudad-Roberts, Andrés; Yepes, Gabriel; Britt, Jonathan P; Ferré, Sergi

    2016-01-20

    It is generally assumed that infralimbic cortex (ILC) and prelimbic cortex, two adjacent areas of the medial prefrontal cortex (mPFC) in rodents, provide selective excitatory glutamatergic inputs to the nucleus accumbens (NAc) shell and core, respectively. It is also generally believed that mPFC influences the extracellular levels of dopamine in the NAc primarily by an excitatory collateral to the ventral tegmental area (VTA). In the present study, we first established the existence of a selective functional connection between ILC and the posteromedial portions of the VTA (pmVTA) and the mNAc shell (pmNAc shell), by measuring striatal neuronal activation (immunohistochemical analysis of ERK1/2 phosphorylation) and glutamate release (in vivo microdialysis) upon ILC electrical stimulation. A novel optogenetic-microdialysis approach allowed the measurement of extracellular concentrations of glutamate and dopamine in the pmNAc shell upon local light-induced stimulation of glutamatergic terminals from ILC. Cortical electrical and local optogenetic stimulation produced significant increases in the extracellular concentrations of glutamate and dopamine in the pmNAc shell. Local blockade of glutamate release by perfusion of an adenosine A2A receptor antagonist in the pmNAc shell blocked the dopamine release induced by local optogenetic stimulation but only partially antagonized dopamine release induced by cortical electrical stimulation. The results demonstrate that ILC excitatory afferents directly modulate the extracellular concentration of dopamine in the pmNAc shell, but also support the involvement of an indirect mechanism of dopamine control, through a concomitant ILC-mediated activation of the pmVTA. Significance statement: We established the existence of a functional connection between the infralimbic cortex (ILC) and the posteromedial portions of the ventral tegmental area (pmVTA) and the medial nucleus acumbens shell (pmNAc shell). A novel optogenetic

  9. Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens.

    Science.gov (United States)

    Teicher, M H; Andersen, S L; Hostetter, J C

    1995-11-21

    Postnatal development of dopamine D1 and D2 receptor families in striatum and nucleus accumbens of rats was studied at 25, 35, 40, 60, 80, 100 and 120 days using autoradiography. These ages were selected to test the hypothesis that dopamine receptors were overproduced prior to puberty (day 40), and pruned back to adult levels thereafter. This hypothesis was confirmed in striatum but not nucleus accumbens. D1 receptor Bmax ([3H]SCH-23390) peaked at 40 days, with levels 67 +/- 21% greater than at 25 days. However, Bmax levels were at least 35% lower at 60-120 days than at 40 days. Similarly, D2 receptor numbers ([3H]YM-09151-2) increased 144 +/- 26% between 25 and 40 days, but were reduced by 34-38% between 60-120 days. In contrast, D1 and D2 receptor Bmax increase approximately 150% between 25 and 40 days in nucleus accumbens, levels fell slightly at 60 or 80 days, but were no different at 100 and 120 days then they were at 40 days. These findings suggest that these two major dopamine target regions follow different developmental strategies, and this has implications for etiological theories of schizophrenia that focus on anomalous receptor pruning.

  10. beta-Alanine elevates dopamine levels in the rat nucleus accumbens: antagonism by strychnine.

    Science.gov (United States)

    Ericson, Mia; Clarke, Rhona B C; Chau, PeiPei; Adermark, Louise; Söderpalm, Bo

    2010-04-01

    Glycine receptors (GlyRs) in the nucleus accumbens (nAc) have recently been suggested to be involved in the reinforcing and dopamine-elevating properties of ethanol via a neuronal circuitry involving the VTA. Apart from ethanol, both glycine and taurine have the ability to modulate dopamine output via GlyRs in the same brain region. In the present study, we wanted to explore whether yet another endogenous ligand for the GlyR, beta-alanine, had similar effects. To this end, we monitored dopamine in the nAc by means of in vivo microdialysis and found that local perfusion of beta-alanine increased dopamine output. In line with previous observations investigating ethanol, glycine and taurine, the competitive GlyR antagonist strychnine completely blocked the dopamine elevation. The present results suggest that beta-alanine has the ability to modulate dopamine levels in the nAc via strychnine-sensitive GlyRs, and are consistent with previous studies suggesting the importance of this receptor for modulating dopamine output.

  11. Neuropeptide Y infusion into the shell region of the rat nucleus accumbens increases extracellular levels of dopamine

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Wegener, Gregers; Hasselstrøm, Jørgen;

    2009-01-01

    Increases in extracellular dopamine in the shell region of the nucleus accumbens are centrally involved in mediating reinforcement of addictive drugs. Neuropeptide Y (NPY) and its receptors are present in the nucleus accumbens and have been implicated in addiction mechanisms. This study further...... explored the potential role of NPY in addiction mechanisms using microdialysis to measure extracellular dopamine in vivo after infusion of NPY directly into the accumbal shell region of adult rats. NPY was found to dose-dependently increase extracellular dopamine levels, indicating that NPY could play...

  12. Absence of NMDA receptors in dopamine neurons attenuates dopamine release but not conditioned approach during Pavlovian conditioning.

    Science.gov (United States)

    Parker, Jones G; Zweifel, Larry S; Clark, Jeremy J; Evans, Scott B; Phillips, Paul E M; Palmiter, Richard D

    2010-07-27

    During Pavlovian conditioning, phasic dopamine (DA) responses emerge to reward-predictive stimuli as the subject learns to anticipate reward delivery. This observation has led to the hypothesis that phasic dopamine signaling is important for learning. To assess the ability of mice to develop anticipatory behavior and to characterize the contribution of dopamine, we used a food-reinforced Pavlovian conditioning paradigm. As mice learned the cue-reward association, they increased their head entries to the food receptacle in a pattern that was consistent with conditioned anticipatory behavior. D1-receptor knockout (D1R-KO) mice had impaired acquisition, and systemic administration of a D1R antagonist blocked both the acquisition and expression of conditioned approach in wild-type mice. To assess the specific contribution of phasic dopamine transmission, we tested mice lacking NMDA-type glutamate receptors (NMDARs) exclusively in dopamine neurons (NR1-KO mice). Surprisingly, NR1-KO mice learned at the same rate as their littermate controls. To evaluate the contribution of NMDARs to phasic dopamine release in this paradigm, we performed fast-scan cyclic voltammetry in the nucleus accumbens of awake mice. Despite having significantly attenuated phasic dopamine release following reward delivery, KO mice developed cue-evoked dopamine release at the same rate as controls. We conclude that NMDARs in dopamine neurons enhance but are not critical for phasic dopamine release to behaviorally relevant stimuli; furthermore, their contribution to phasic dopamine signaling is not necessary for the development of cue-evoked dopamine or anticipatory activity in a D1R-dependent Pavlovian conditioning paradigm.

  13. Cholinergic depletion in nucleus accumbens impairs mesocortical dopamine activation and cognitive function in rats.

    Science.gov (United States)

    Laplante, François; Zhang, Zi-Wei; Huppé-Gourgues, Frédéric; Dufresne, Marc M; Vaucher, Elvire; Sullivan, Ron M

    2012-11-01

    In rats, selective depletion of the cholinergic interneurons in the ventral striatum (nucleus accumbens or N.Acc.) results in heightened behavioural sensitivity to amphetamine and impaired sensorimotor gating processes, suggesting a hyper-responsiveness to dopamine (DA) activity in the N.Acc. We hypothesized that local cholinergic depletion may also trigger distal functional alterations, particularly in prefrontal cortex (PFC). Adult male Sprague-Dawley rats were injected bilaterally in the N.Acc. with an immunotoxin targeting choline acetyltransferase. Two weeks later, cognitive function was assessed using the delayed alternation paradigm in the T-maze. The rats were then implanted with voltammetric recording electrodes in the ventromedial PFC to measure in vivo extracellular DA release in response to mild tail pinch stress. The PFC was also examined for density of tyrosine hydroxylase (TH)-labelled varicosities. In another cohort of control and lesioned rats, we measured post mortem tissue content of DA. Depletion of cholinergic neurons (restricted to N.Acc.) significantly impaired delayed alternation performance across delay intervals. While (basal) post mortem indices of PFC DA function were unaffected by N.Acc. lesions, in vivo mesocortical DA activation was markedly reduced; this deficit correlated significantly with cognitive impairments. TH-labelled varicosities however, were unaffected in cortical layer V relative to controls. These data suggest that selective depletion of cholinergic interneurons in N.Acc. triggers widespread functional impairments in mesocorticolimbic DA function and cognition. The possible relevance of these findings is also discussed in relation to schizophrenia, where reduced density of cholinergic neurons in ventral striatum has been reported. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Antipsychotic treatment leading to dopamine supersensitivity persistently alters nucleus accumbens function.

    Science.gov (United States)

    El Hage, Cynthia; Bédard, Anne-Marie; Samaha, Anne-Noël

    2015-12-01

    Chronic exposure to some antipsychotic medications can induce supersensitivity to dopamine receptor stimulation. This is linked to a worsening of clinical outcome and to antipsychotic treatment failure. Here we investigated the role of striatal subregions [nucleus accumbens (NAc) and caudate-putamen (CPu)] in the expression of antipsychotic-induced dopamine supersensitivity. We treated rats with haloperidol (HAL) or olanzapine (OLZ), using regimens that achieve clinically relevant kinetics of striatal D2 receptor occupancy. Under these conditions, HAL produces dopamine supersensitivity whereas OLZ does not. We then assessed behaviors evoked by the dopamine agonist amphetamine (AMPH). We either injected AMPH into the striatum or inhibited striatal function with microinjections of GABA receptor agonists prior to injecting AMPH systemically. HAL-treated rats were dopamine supersensitive, as indicated by sensitization to systemic AMPH-induced potentiation of both locomotor activity and operant responding for a conditioned reward (CR). Intra-CPu injections of AMPH had no effect on these behaviors, in any group. Intra-NAc injections of AMPH enhanced operant responding for CR in OLZ-treated and control rats, but not in HAL-treated rats. In HAL-treated rats, inhibition of the NAc also failed to disrupt systemic AMPH-induced potentiation of operant responding for CR. Furthermore, while intra-NAc AMPH enhanced locomotion in both HAL-treated and control animals, inhibition of the NAc disrupted systemic AMPH-induced locomotion only in control rats. Thus, antipsychotic-induced dopamine supersensitivity persistently disrupts NAc function, such that some behaviors that normally depend upon NAc dopamine no longer do so. This has implications for understanding dysfunctions in dopamine-mediated behaviors in patients undergoing chronic antipsychotic treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Diazepam alters cocaine self-administration, but not cocaine-stimulated locomotion or nucleus accumbens dopamine

    OpenAIRE

    2008-01-01

    Cocaine is known to enhance nucleus accumbens dopamine (NAcc DA), serve as a positive reinforcer and produce negative effects, such as anxiety. The influence of diazepam on cocaine intake, cocaine-stimulated behavioral activity and NAcc DA was investigated using self-administration and experimenter-administered intravenous (i.v.) cocaine. In Experiment 1, rats were pretreated with diazepam (0.25 mg/kg) or saline (0.1 ml) 30 minutes prior to 20 daily 1-hr cocaine (0.75 mg/kg/inj) self-administ...

  16. The gamma-aminobutyric acid type B (GABAB receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Fu Zhenyu

    2012-07-01

    Full Text Available Abstract Background Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. Methods We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. Results The present study demonstrated that morphine challenge (3 mg/kg, s.c. obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Conclusions Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse.

  17. Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure

    Directory of Open Access Journals (Sweden)

    Jamie H. Rose

    2016-07-01

    Full Text Available The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc κ opioid receptors (KOR in chronic intermittent ethanol (CIE exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs.

  18. Ghrelin regulates phasic dopamine and nucleus accumbens signaling evoked by food-predictive stimuli.

    Science.gov (United States)

    Cone, Jackson J; Roitman, Jamie D; Roitman, Mitchell F

    2015-06-01

    Environmental stimuli that signal food availability hold powerful sway over motivated behavior and promote feeding, in part, by activating the mesolimbic system. These food-predictive cues evoke brief (phasic) changes in nucleus accumbens (NAc) dopamine concentration and in the activity of individual NAc neurons. Phasic fluctuations in mesolimbic signaling have been directly linked to goal-directed behaviors, including behaviors elicited by food-predictive cues. Food-seeking behavior is also strongly influenced by physiological state (i.e., hunger vs. satiety). Ghrelin, a stomach hormone that crosses the blood-brain barrier, is linked to the perception of hunger and drives food intake, including intake potentiated by environmental cues. Notwithstanding, whether ghrelin regulates phasic mesolimbic signaling evoked by food-predictive stimuli is unknown. Here, rats underwent Pavlovian conditioning in which one cue predicted the delivery of rewarding food (CS+) and a second cue predicted nothing (CS-). After training, we measured the effect of ghrelin infused into the lateral ventricle (LV) on sub-second fluctuations in NAc dopamine using fast-scan cyclic voltammetry and individual NAc neuron activity using in vivo electrophysiology in separate groups of rats. LV ghrelin augmented both phasic dopamine and phasic increases in the activity of NAc neurons evoked by the CS+. Importantly, ghrelin did not affect the dopamine nor NAc neuron response to the CS-, suggesting that ghrelin selectively modulated mesolimbic signaling evoked by motivationally significant stimuli. These data demonstrate that ghrelin, a hunger signal linked to physiological state, can regulate cue-evoked mesolimbic signals that underlie food-directed behaviors. Cues that predict food availability powerfully regulate food-seeking behavior. Here we show that cue-evoked changes in both nucleus accumbens (NAc) dopamine (DA) and NAc cell activity are modulated by intra-cranial infusions of the stomach

  19. Activation of dopamine receptors in the nucleus accumbens promotes sucrose-reinforced cued approach behavior

    Directory of Open Access Journals (Sweden)

    Saleem M. Nicola

    2016-07-01

    Full Text Available Dopamine receptor activation in the nucleus accumbens (NAc promotes vigorous environmentally-cued food-seeking in hungry rats. Rats fed ad libitum, however, respond to fewer food-predictive cues, particularly when the value of food reward is low. Here, we investigated whether this difference could be due to differences in the degree of dopamine receptor activation in the NAc. First, we observed that although rats given ad libitum access to chow in their home cages approached a food receptacle in response to reward-predictive cues, the number of such approaches declined as animals accumulated food rewards. Intriguingly, cued approach to food occurred in clusters, with several cued responses followed by successive non-responses. This pattern suggested that behavior was dictated by transitions between two states, responsive and non-responsive. Injection of D1 or D2 dopamine receptor agonists into the NAc dose-dependently increased cue responding by promoting transitions to the responsive state and by preventing transitions to the non-responsive state. In contrast, antagonists of either D1 or D2 receptors promoted long bouts of non-responding by inducing transitions to the non-responsive state and by preventing transitions to the responsive state. Moreover, locomotor behavior during the inter-trial interval was correlated with the responsive state, and was also increased by dopamine receptor agonists. These results suggest that activation of NAc dopamine receptors plays an important role in regulating the probability of approach to food under conditions of normative satiety.

  20. Pramipexole enhances disadvantageous decision-making: Lack of relation to changes in phasic dopamine release.

    Science.gov (United States)

    Pes, Romina; Godar, Sean C; Fox, Andrew T; Burgeno, Lauren M; Strathman, Hunter J; Jarmolowicz, David P; Devoto, Paola; Levant, Beth; Phillips, Paul E; Fowler, Stephen C; Bortolato, Marco

    2017-03-01

    Pramipexole (PPX) is a high-affinity D2-like dopamine receptor agonist, used in the treatment of Parkinson's disease (PD) and restless leg syndrome. Recent evidence indicates that PPX increases the risk of problem gambling and impulse-control disorders in vulnerable patients. Although the molecular bases of these complications remain unclear, several authors have theorized that PPX may increase risk propensity by activating presynaptic dopamine receptors in the mesolimbic system, resulting in the reduction of dopamine release in the nucleus accumbens (NAcc). To test this possibility, we subjected rats to a probability-discounting task specifically designed to capture the response to disadvantageous options. PPX enhanced disadvantageous decision-making at a dose (0.3 mg/kg/day, SC) that reduced phasic dopamine release in the NAcc. To test whether these modifications in dopamine efflux were responsible for the observed neuroeconomic deficits, PPX was administered in combination with the monoamine-depleting agent reserpine (RES), at a low dose (1 mg/kg/day, SC) that did not affect baseline locomotor and operant responses. Contrary to our predictions, RES surprisingly exacerbated the effects of PPX on disadvantageous decision-making, even though it failed to augment PPX-induced decreases in phasic dopamine release. These results collectively suggest that PPX impairs the discounting of probabilistic losses and that the enhancement in risk-taking behaviors secondary to this drug may be dissociated from dynamic changes in mesolimbic dopamine release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Reduced dopamine and glutamate neurotransmission in the nucleus accumbens of quinpirole-sensitized rats hints at inhibitory D2 autoreceptor function.

    Science.gov (United States)

    Escobar, Angélica P; Cornejo, Francisca A; Olivares-Costa, Montserrat; González, Marcela; Fuentealba, José A; Gysling, Katia; España, Rodrigo A; Andrés, María E

    2015-09-01

    Dopamine from the ventral tegmental area and glutamate from several brain nuclei converge in the nucleus accumbens (NAc) to drive motivated behaviors. Repeated activation of D2 receptors with quinpirole (QNP) induces locomotor sensitization and compulsive behaviors, but the mechanisms are unknown. In this study, in vivo microdialysis and fast scan cyclic voltammetry in adult anesthetized rats were used to investigate the effect of repeated QNP on dopamine and glutamate neurotransmission within the NAc. Following eight injections of QNP, a significant decrease in phasic and tonic dopamine release was observed in rats that displayed locomotor sensitization. Either a systemic injection or the infusion of QNP into the NAc decreased dopamine release, and the extent of this effect was similar in QNP-sensitized and control rats, indicating that inhibitory D2 autoreceptor function is maintained despite repeated activation of D2 receptors and decreased dopamine extracellular levels. Basal extracellular levels of glutamate in the NAc were also significantly lower in QNP-treated rats than in controls. Moreover, the increase in NAc glutamate release induced by direct stimulation of medial prefrontal cortex was significantly lower in QNP-sensitized rats. Together, these results indicate that repeated activation of D2 receptors disconnects NAc from medial prefrontal cortex and ventral tegmental area. Repeated administration of the dopamine D2 receptor agonist quinpirole (QNP) induces locomotor sensitization. We found that the NAc of QNP-sensitized rats has reduced glutamate levels coming from prefrontal cortex together with a decreased phasic and tonic dopamine neurotransmission but a conserved presynaptic D2 receptor function. We suggest that locomotor sensitization is because of increased affinity state of D2 post-synaptic receptors. © 2015 International Society for Neurochemistry.

  2. Functionally distinct dopamine signals in nucleus accumbens core and shell in the freely moving rat

    DEFF Research Database (Denmark)

    Dreyer, Jakob K.; Vander Weele, Caitlin M.; Lovic, Vedran

    2016-01-01

    Dynamic signaling of mesolimbic dopamine (DA) neurons has been implicated in reward learning, drug abuse, and motivation. However, this system is complex because firing patterns of these neurons are heterogeneous; subpopulations receive distinct synaptic inputs, and project to anatomically...... and functionally distinct downstream targets, including the nucleus accumbens (NAc) shell and core. The functional roles of these cell populations and their real-time signaling properties in freely moving animals are unknown. Resolving the real-time DA signal requires simultaneous knowledge of the synchronized...... activity of DA cell subpopulations and assessment of the down-stream functional effect ofDArelease. Because this is not yet possible solely by experimentation in vivo,we combine computational modeling and fast-scan cyclic voltammetry data to reconstruct the functionally relevantDAsignal in...

  3. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation.

    Science.gov (United States)

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J

    2016-06-23

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1-D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated.

  4. Reduced dopamine function within the medial shell of the nucleus accumbens enhances latent inhibition.

    Science.gov (United States)

    Nelson, A J D; Thur, K E; Horsley, R R; Spicer, C; Marsden, C A; Cassaday, H J

    2011-03-01

    Latent inhibition (LI) manifests as poorer conditioning to a CS that has previously been presented without consequence. There is some evidence that LI can be potentiated by reduced mesoaccumbal dopamine (DA) function but the locus within the nucleus accumbens of this effect is as yet not firmly established. Experiment 1 tested whether 6-hydroxydopamine (6-OHDA)-induced lesions of DA terminals within the core and medial shell subregions of the nucleus accumbens (NAc) would enhance LI under conditions that normally disrupt LI in controls (weak pre-exposure). LI was measured in a thirst motivated conditioned emotional response procedure with 10 pre-exposures (to a noise CS) and 2 conditioning trials. The vehicle-injected and core-lesioned animals did not show LI and conditioned to the pre-exposed CS at comparable levels to the non-pre-exposed controls. 6-OHDA lesions to the medial shell, however, produced potentiation of LI, demonstrated across two extinction tests. In a subsequent experiment, haloperidol microinjected into the medial shell prior to conditioning similarly enhanced LI. These results underscore the dissociable roles of core and shell subregions of the NAc in mediating the expression of LI and indicate that reduced DA function within the medial shell leads to enhanced LI.

  5. Nucleus accumbens core dopamine signaling tracks the need-based motivational value of food-paired cues.

    Science.gov (United States)

    Aitken, Tara J; Greenfield, Venuz Y; Wassum, Kate M

    2016-03-01

    Environmental reward-predictive stimuli provide a major source of motivation for instrumental reward-seeking activity and this has been linked to dopamine signaling in the nucleus accumbens (NAc) core. This cue-induced incentive motivation can be quite general, not restricted to instrumental actions that earn the same unique reward, and is also typically regulated by one's current need state, such that cues only motivate actions when this is adaptive. But it remains unknown whether cue-evoked dopamine signaling is similarly regulated by need state. Here, we used fast-scan cyclic voltammetry to monitor dopamine concentration changes in the NAc core of rats during a Pavlovian-to-instrumental transfer task in which the motivating influence of two cues, each signaling a distinct food reward (sucrose or food pellets), over an action earning a third unique food reward (polycose) was assessed in a state of hunger and of satiety. Both cues elicited a robust NAc dopamine response when hungry. The magnitude of the sucrose cue-evoked dopamine response correlated with the Pavlovian-to-instrumental transfer effect that was selectively induced by this stimulus. Satiety attenuated these cue-evoked dopamine responses and behavioral responding, even though rats had never experienced the specific food rewards in this state. These data demonstrate that cue-evoked NAc core responses are sensitive to current need state, one critical variable that determines the current adaptive utility of cue-motivated behavior. Food-predictive stimuli motivate food-seeking behavior. Here, we show that food cues evoke a robust nucleus accumbens core dopamine response when hungry that correlates with the cue's ability to invigorate general food seeking. This response is attenuated when sated, demonstrating that food cue-evoked accumbens dopamine responses are sensitive to the need state information that determines the current adaptive utility of cue-motivated action. © 2015 International Society for

  6. Dopamine release dynamics change during adolescence and after voluntary alcohol intake.

    Directory of Open Access Journals (Sweden)

    Sara Palm

    Full Text Available Adolescence is associated with high impulsivity and risk taking, making adolescent individuals more inclined to use drugs. Early drug use is correlated to increased risk for substance use disorders later in life but the neurobiological basis is unclear. The brain undergoes extensive development during adolescence and disturbances at this time are hypothesized to contribute to increased vulnerability. The transition from controlled to compulsive drug use and addiction involve long-lasting changes in neural networks including a shift from the nucleus accumbens, mediating acute reinforcing effects, to recruitment of the dorsal striatum and habit formation. This study aimed to test the hypothesis of increased dopamine release after a pharmacological challenge in adolescent rats. Potassium-evoked dopamine release and uptake was investigated using chronoamperometric dopamine recordings in combination with a challenge by amphetamine in early and late adolescent rats and in adult rats. In addition, the consequences of voluntary alcohol intake during adolescence on these effects were investigated. The data show a gradual increase of evoked dopamine release with age, supporting previous studies suggesting that the pool of releasable dopamine increases with age. In contrast, a gradual decrease in evoked release with age was seen in response to amphetamine, supporting a proportionally larger storage pool of dopamine in younger animals. Dopamine measures after voluntary alcohol intake resulted in lower release amplitudes in response to potassium-chloride, indicating that alcohol affects the releasable pool of dopamine and this may have implications for vulnerability to addiction and other psychiatric diagnoses involving dopamine in the dorsal striatum.

  7. BMI modulates calorie-dependent dopamine changes in accumbens from glucose intake.

    Directory of Open Access Journals (Sweden)

    Gene-Jack Wang

    Full Text Available OBJECTIVE: Dopamine mediates the rewarding effects of food that can lead to overeating and obesity, which then trigger metabolic neuroadaptations that further perpetuate excessive food consumption. We tested the hypothesis that the dopamine response to calorie intake (independent of palatability in striatal brain regions is attenuated with increases in weight. METHOD: We used positron emission tomography with [11C]raclopride to measure dopamine changes triggered by calorie intake by contrasting the effects of an artificial sweetener (sucralose devoid of calories to that of glucose to assess their association with body mass index (BMI in nineteen healthy participants (BMI range 21-35. RESULTS: Neither the measured blood glucose concentrations prior to the sucralose and the glucose challenge days, nor the glucose concentrations following the glucose challenge vary as a function of BMI. In contrast the dopamine changes in ventral striatum (assessed as changes in non-displaceable binding potential of [11C]raclopride triggered by calorie intake (contrast glucose - sucralose were significantly correlated with BMI (r = 0.68 indicating opposite responses in lean than in obese individuals. Specifically whereas in normal weight individuals (BMI <25 consumption of calories was associated with increases in dopamine in the ventral striatum in obese individuals it was associated with decreases in dopamine. CONCLUSION: These findings show reduced dopamine release in ventral striatum with calorie consumption in obese subjects, which might contribute to their excessive food intake to compensate for the deficit between the expected and the actual response to food consumption.

  8. Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning.

    Science.gov (United States)

    Smith-Roe, S L; Kelley, A E

    2000-10-15

    The nucleus accumbens, a brain structure ideally situated to act as an interface between corticolimbic information-processing regions and motor output systems, is well known to subserve behaviors governed by natural reinforcers. In the accumbens core, glutamatergic input from its corticolimbic afferents and dopaminergic input from the ventral tegmental area converge onto common dendrites of the medium spiny neurons that populate the accumbens. We have previously found that blockade of NMDA receptors in the core with the antagonist 2-amino-5-phosphonopentanoic acid (AP-5; 5 nmol) abolishes acquisition but not performance of an appetitive instrumental learning task (Kelley et al., 1997). Because it is currently hypothesized that concurrent dopamine D(1) and glutamate receptor activation is required for long-term changes associated with plasticity, we wished to examine whether the dopamine system in the accumbens core modulates learning via NMDA receptors. Co-infusion of low doses of the D(1) receptor antagonist SCH-23390 (0.3 nmol) and AP-5 (0.5 nmol) into the accumbens core strongly impaired acquisition of instrumental learning (lever pressing for food), whereas when infused separately, these low doses had no effect. Infusion of the combined low doses had no effect on indices of feeding and motor activity, suggesting a specific effect on learning. We hypothesize that co-activation of NMDA and D(1) receptors in the nucleus accumbens core is a key process for acquisition of appetitive instrumental learning. Such an interaction is likely to promote intracellular events and gene regulation necessary for synaptic plasticity and is supported by a number of cellular models.

  9. Dopamine in nucleus accumbens: salience modulation in latent inhibition and overshadowing.

    Science.gov (United States)

    Nelson, A J D; Thur, K E; Marsden, C A; Cassaday, H J

    2011-12-01

    Latent inhibition (LI) is demonstrated when non-reinforced pre-exposure to a to-be-conditioned stimulus retards later learning. Learning is similarly retarded in overshadowing, in this case using the relative intensity of competing cues to manipulate associability. Electrolytic/excitotoxic lesions to shell accumbens (NAc) and systemic amphetamine both reliably abolish LI. Here a conditioned emotional response procedure was used to demonstrate LI and overshadowing and to examine the role of dopamine (DA) within NAc. Experiment 1 showed that LI but not overshadowing was abolished by systemic amphetamine (1.0 mg/kg i.p.). In Experiment 2, 6-hydroxydopamine (6-OHDA) was used to lesion DA terminals within NAc: both shell- and core- (plus shell-)lesioned rats showed normal LI and overshadowing. Experiment 3 compared the effects of amphetamine microinjected at shell and core coordinates prior to conditioning: LI, but not overshadowing, was abolished by 10.0 but not 5.0 µg/side amphetamine injected in core but not shell NAc. These results suggest that the abolition of LI produced by NAc shell lesions is not readily reproduced by regionally restricted DA depletion within NAc; core rather than shell NAc mediates amphetamine-induced abolition of LI; overshadowing is modulated by different neural substrates.

  10. Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens.

    Science.gov (United States)

    Steinberg, Elizabeth E; Boivin, Josiah R; Saunders, Benjamin T; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H

    2014-01-01

    The neural basis of positive reinforcement is often studied in the laboratory using intracranial self-stimulation (ICSS), a simple behavioral model in which subjects perform an action in order to obtain exogenous stimulation of a specific brain area. Recently we showed that activation of ventral tegmental area (VTA) dopamine neurons supports ICSS behavior, consistent with proposed roles of this neural population in reinforcement learning. However, VTA dopamine neurons make connections with diverse brain regions, and the specific efferent target(s) that mediate the ability of dopamine neuron activation to support ICSS have not been definitively demonstrated. Here, we examine in transgenic rats whether dopamine neuron-specific ICSS relies on the connection between the VTA and the nucleus accumbens (NAc), a brain region also implicated in positive reinforcement. We find that optogenetic activation of dopaminergic terminals innervating the NAc is sufficient to drive ICSS, and that ICSS driven by optical activation of dopamine neuron somata in the VTA is significantly attenuated by intra-NAc injections of D1 or D2 receptor antagonists. These data demonstrate that the NAc is a critical efferent target sustaining dopamine neuron-specific ICSS, identify receptor subtypes through which dopamine acts to promote this behavior, and ultimately help to refine our understanding of the neural circuitry mediating positive reinforcement.

  11. Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Elizabeth E Steinberg

    Full Text Available The neural basis of positive reinforcement is often studied in the laboratory using intracranial self-stimulation (ICSS, a simple behavioral model in which subjects perform an action in order to obtain exogenous stimulation of a specific brain area. Recently we showed that activation of ventral tegmental area (VTA dopamine neurons supports ICSS behavior, consistent with proposed roles of this neural population in reinforcement learning. However, VTA dopamine neurons make connections with diverse brain regions, and the specific efferent target(s that mediate the ability of dopamine neuron activation to support ICSS have not been definitively demonstrated. Here, we examine in transgenic rats whether dopamine neuron-specific ICSS relies on the connection between the VTA and the nucleus accumbens (NAc, a brain region also implicated in positive reinforcement. We find that optogenetic activation of dopaminergic terminals innervating the NAc is sufficient to drive ICSS, and that ICSS driven by optical activation of dopamine neuron somata in the VTA is significantly attenuated by intra-NAc injections of D1 or D2 receptor antagonists. These data demonstrate that the NAc is a critical efferent target sustaining dopamine neuron-specific ICSS, identify receptor subtypes through which dopamine acts to promote this behavior, and ultimately help to refine our understanding of the neural circuitry mediating positive reinforcement.

  12. Optical suppression of drug-evoked phasic dopamine release.

    Science.gov (United States)

    McCutcheon, James E; Cone, Jackson J; Sinon, Christopher G; Fortin, Samantha M; Kantak, Pranish A; Witten, Ilana B; Deisseroth, Karl; Stuber, Garret D; Roitman, Mitchell F

    2014-01-01

    Brief fluctuations in dopamine concentration (dopamine transients) play a key role in behavior towards rewards, including drugs of abuse. Drug-evoked dopamine transients may result from actions at both dopamine cell bodies and dopamine terminals. Inhibitory opsins can be targeted to dopamine neurons permitting their firing activity to be suppressed. However, as dopamine transients can become uncoupled from firing, it is unknown whether optogenetic hyperpolarization at the level of the soma is able to suppress dopamine transients. Here, we used in vivo fast-scan cyclic voltammetry to record transients evoked by cocaine and raclopride in nucleus accumbens (NAc) of urethane-anesthetized rats. We targeted halorhodopsin (NpHR) specifically to dopamine cells by injecting Cre-inducible virus into ventral tegmental area (VTA) of transgenic rats that expressed Cre recombinase under control of the tyrosine hydroxylase promoter (TH-Cre(+) rats). Consistent with previous work, co-administration of cocaine and raclopride led to the generation of dopamine transients in NAc shell. Illumination of VTA with laser strongly suppressed the frequency of transients in NpHR-expressing rats, but not in control rats. Laser did not have any effect on amplitude of transients. Thus, optogenetics can effectively reduce the occurrence of drug-evoked transients and is therefore a suitable approach for studying the functional role of such transients in drug-associated behavior.

  13. Optical suppression of drug-evoked phasic dopamine release

    Directory of Open Access Journals (Sweden)

    James Edgar Mccutcheon

    2014-09-01

    Full Text Available Brief fluctuations in dopamine concentration (dopamine transients play a key role in behavior towards rewards, including drugs of abuse. Drug-evoked dopamine transients may result from actions at both dopamine cell bodies and dopamine terminals. Inhibitory opsins can be targeted to dopamine neurons permitting their firing activity to be suppressed. However, as dopamine transients can become uncoupled from firing, it is unknown whether optogenetic hyperpolarization at the level of the soma is able to suppress dopamine transients. Here, we used in vivo fast-scan cyclic voltammetry to record transients evoked by cocaine and raclopride in nucleus accumbens (NAc of urethane-anesthetized rats. We targeted halorhodopsin (NpHR specifically to dopamine cells by injecting Cre-inducible virus into ventral tegmental area (VTA of transgenic rats that expressed Cre recombinase under control of the tyrosine hydroxylase promoter (TH-Cre+ rats. Consistent with previous work, co-administration of cocaine and raclopride led to the generation of dopamine transients in NAc shell. Illumination of VTA with laser strongly suppressed the frequency of transients in NpHR-expressing rats, but not in control rats. Laser did not have any effect on amplitude of transients. Thus, optogenetics can effectively reduce the occurrence of drug-evoked transients and is therefore a suitable approach for studying the functional role of such transients in drug-associated behavior.

  14. Intra-accumbens injection of a dopamine aptamer abates MK-801-induced cognitive dysfunction in a model of schizophrenia.

    Directory of Open Access Journals (Sweden)

    Matthew R Holahan

    Full Text Available Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. The present work investigated the ability of a dopamine-binding DNA aptamer to regulate these MK-801-induced cognitive deficits when injected into the nucleus accumbens. Rats were trained to bar press for chocolate pellet rewards then randomly assigned to receive an intra-accumbens injection of a DNA aptamer (200 nM; n = 7, tris buffer (n = 6 or a randomized DNA oligonucleotide (n = 7. Animals were then treated systemically with MK-801 (0.1 mg/kg and tested for their ability to extinguish their bar pressing response. Two control groups were also included that did not receive MK-801. Data revealed that injection of Tris buffer or the random oligonucleotide sequence into the nucleus accumbens prior to treatment with MK-801 did not reduce the MK-801-induced extinction deficit. Animals continued to press at a high rate over the entire course of the extinction session. Injection of the dopamine aptamer reversed this MK-801-induced elevation in lever pressing to levels as seen in rats not treated with MK-801. Tests for activity showed that the aptamer did not impair locomotor activity. Results demonstrate the in vivo utility of DNA aptamers as tools to investigate neurobiological processes in preclinical animal models of mental health disease.

  15. Intra-accumbens injection of a dopamine aptamer abates MK-801-induced cognitive dysfunction in a model of schizophrenia.

    Science.gov (United States)

    Holahan, Matthew R; Madularu, Dan; McConnell, Erin M; Walsh, Ryan; DeRosa, Maria C

    2011-01-01

    Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. The present work investigated the ability of a dopamine-binding DNA aptamer to regulate these MK-801-induced cognitive deficits when injected into the nucleus accumbens. Rats were trained to bar press for chocolate pellet rewards then randomly assigned to receive an intra-accumbens injection of a DNA aptamer (200 nM; n = 7), tris buffer (n = 6) or a randomized DNA oligonucleotide (n = 7). Animals were then treated systemically with MK-801 (0.1 mg/kg) and tested for their ability to extinguish their bar pressing response. Two control groups were also included that did not receive MK-801. Data revealed that injection of Tris buffer or the random oligonucleotide sequence into the nucleus accumbens prior to treatment with MK-801 did not reduce the MK-801-induced extinction deficit. Animals continued to press at a high rate over the entire course of the extinction session. Injection of the dopamine aptamer reversed this MK-801-induced elevation in lever pressing to levels as seen in rats not treated with MK-801. Tests for activity showed that the aptamer did not impair locomotor activity. Results demonstrate the in vivo utility of DNA aptamers as tools to investigate neurobiological processes in preclinical animal models of mental health disease.

  16. Aversive behavior induced by optogenetic inactivation of ventral tegmental area dopamine neurons is mediated by dopamine D2 receptors in the nucleus accumbens.

    Science.gov (United States)

    Danjo, Teruko; Yoshimi, Kenji; Funabiki, Kazuo; Yawata, Satoshi; Nakanishi, Shigetada

    2014-04-29

    Dopamine (DA) transmission from the ventral tegmental area (VTA) is critical for controlling both rewarding and aversive behaviors. The transient silencing of DA neurons is one of the responses to aversive stimuli, but its consequences and neural mechanisms regarding aversive responses and learning have largely remained elusive. Here, we report that optogenetic inactivation of VTA DA neurons promptly down-regulated DA levels and induced up-regulation of the neural activity in the nucleus accumbens (NAc) as evaluated by Fos expression. This optogenetic suppression of DA neuron firing immediately evoked aversive responses to the previously preferred dark room and led to aversive learning toward the optogenetically conditioned place. Importantly, this place aversion was abolished by knockdown of dopamine D2 receptors but not by that of D1 receptors in the NAc. Silencing of DA neurons in the VTA was thus indispensable for inducing aversive responses and learning through dopamine D2 receptors in the NAc.

  17. Muscarinic receptors discriminated by pirenzepine are involved in the regulation of neurotransmitter release in rat nucleus accumbens.

    Science.gov (United States)

    de Belleroche, J.; Gardiner, I. M.

    1985-01-01

    The effect of pirenzepine, a selective muscarinic antagonist, was tested on the oxotremorine facilitation of the K+-evoked release of [14C]-dopamine from tissue slices of rat nucleus accumbens. The effect of pirenzepine was compared with that of scopolamine and other antagonists which show no heterogeneity in their action on muscarinic receptors in order to determine whether a selective action at a single receptor subtype, M1 or M2, could be distinguished. Pirenzepine and scopolamine both antagonized the oxotremorine-induced (EC50 = 3 X 10(-7) M) facilitation of [14C]-dopamine release with pA2 values of 7.5 and 8.9 respectively. This result indicated that the high affinity pirenzepine receptor (M1) was involved in this response. Low concentrations of 3-quinuclidinyl benzilate (3 X 10(-10) M), N-methylscopolamine (3 X 10(-9) M) and methyl atropine (10(-8) M) also abolished this facilitatory effect of oxotremorine. PMID:2864975

  18. Increases in cytoplasmic dopamine compromise the normal resistance of the nucleus accumbens to methamphetamine neurotoxicity.

    Science.gov (United States)

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2009-06-01

    Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the caudate-putamen (CPu) where long-term DA depletion and microglial activation are most evident. Even damage within the CPu is remarkably heterogenous with lateral and ventral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared of the damage that accompanies binge METH intoxication. Increases in cytoplasmic DA produced by reserpine, L-DOPA or clorgyline prior to METH uncover damage in the NAc as evidenced by microglial activation and depletion of DA, tyrosine hydroxylase (TH), and the DA transporter. These effects do not occur in the NAc after treatment with METH alone. In contrast to the CPu where DA, TH, and DA transporter levels remain depleted chronically, DA nerve ending alterations in the NAc show a partial recovery over time. None of the treatments that enhance METH toxicity in the NAc and CPu lead to losses of TH protein or DA cell bodies in the substantia nigra or the ventral tegmentum. These data show that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of METH to include brain structures not normally targeted for damage by METH alone. The resistance of the NAc to METH-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of METH neurotoxicity by alterations in DA homeostasis is significant in light of the important roles played by this brain structure.

  19. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain-striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear......]raclopride to measure dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand......, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis...

  20. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain—striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear...... dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand......, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis...

  1. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain—striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear...... dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand......, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis...

  2. Role of orexin receptors in the nucleus accumbens in dopamine-dependent turning behaviour of rats.

    NARCIS (Netherlands)

    Kotani, A.; Ikeda, H.; Koshikawa, N.; Cools, A.R.

    2008-01-01

    The role of orexin receptors in the nucleus accumbens shell in rat turning behaviour of rats was studied. Unilateral injection of neither the orexin 1 and 2 receptor agonist orexin A (2 microg) nor the orexin 1 receptor antagonist SB 334867 (20 ng) into the nucleus accumbens shell elicited turning b

  3. Local control of striatal dopamine release

    Directory of Open Access Journals (Sweden)

    Roger eCachope

    2014-05-01

    Full Text Available The mesolimbic and nigrostriatal dopamine (DA systems play a key role in the physiology of reward seeking, motivation and motor control. Importantly, they are also involved in the pathophysiology of Parkinson’s and Huntington’s disease, schizophrenia and addiction. Control of DA release in the striatum is tightly linked to firing of DA neurons in the ventral tegmental area (VTA and the substantia nigra (SN. However, local influences in the striatum affect release by exerting their action directly on axon terminals. For example, endogenous glutamatergic and cholinergic activity is sufficient to trigger striatal DA release independently of cell body firing. Recent developments involving genetic manipulation, pharmacological selectivity or selective stimulation have allowed for better characterization of these phenomena. Such termino-terminal forms of control of DA release transform considerably our understanding of the mesolimbic and nigrostriatal systems, and have strong implications as potential mechanisms to modify impaired control of DA release in the diseased brain. Here, we review these and related mechanisms and their implications in the physiology of ascending DA systems.

  4. Long-term memory for pavlovian fear conditioning requires dopamine in the nucleus accumbens and basolateral amygdala.

    Directory of Open Access Journals (Sweden)

    Jonathan P Fadok

    Full Text Available The neurotransmitter dopamine (DA is essential for learning in a pavlovian fear conditioning paradigm known as fear-potentiated startle (FPS. Mice lacking the ability to synthesize DA fail to learn the association between the conditioned stimulus and the fear-inducing footshock. Previously, we demonstrated that restoration of DA synthesis to neurons of the ventral tegmental area (VTA was sufficient to restore FPS. Here, we used a target-selective viral restoration approach to determine which mesocorticolimbic brain regions receiving DA signaling from the VTA require DA for FPS. We demonstrate that restoration of DA synthesis to both the basolateral amygdala (BLA and nucleus accumbens (NAc is required for long-term memory of FPS. These data provide crucial insight into the dopamine-dependent circuitry involved in the formation of fear-related memory.

  5. Dopamine release in ventral striatum of pathological gamblers losing money

    DEFF Research Database (Denmark)

    Linnet, J; Peterson, E; Doudet, D J;

    2010-01-01

    Linnet J, Peterson E, Doudet DJ, Gjedde A, Møller A. Dopamine release in ventral striatum of pathological gamblers losing money. Objective: To investigate dopaminergic neurotransmission in relation to monetary reward and punishment in pathological gambling. Pathological gamblers (PG) often continue...... gambling despite losses, known as 'chasing one's losses'. We therefore hypothesized that losing money would be associated with increased dopamine release in the ventral striatum of PG compared with healthy controls (HC). Method: We used Positron Emission Tomography (PET) with [(11)C]raclopride to measure...... dopamine release in the ventral striatum of 16 PG and 15 HC playing the Iowa Gambling Task (IGT). Results: PG who lost money had significantly increased dopamine release in the left ventral striatum compared with HC. PG and HC who won money did not differ in dopamine release. Conclusion: Our findings...

  6. A role for accumbal glycine receptors in modulation of dopamine release by the glycine transporter-1 inhibitor Org25935

    Directory of Open Access Journals (Sweden)

    Helga eHöifödt Lidö

    2011-03-01

    Full Text Available AbstractAccumbal glycine modulates basal and ethanol-induced dopamine levels in the nucleus accumbens (nAc as well as voluntary ethanol consumption. Also, systemic administration of the glycine transporter-1 inhibitor Org25935 elevates dopamine levels in nAc, prevents a further ethanol-induced dopamine elevation and robustly and dose-dependently decreases ethanol consumption in rats. Here we investigated whether Org25935 applied locally in nAc modulates dopamine release, and whether accumbal glycine receptors or NMDA receptors are involved in this tentative effect. We also addressed whether Org25935 and ethanol applied locally in nAc interact with dopamine levels, as seen after systemic administration. We used in vivo microdialysis coupled to HPLC-ED in freely moving male Wistar rats to monitor dopamine output in nAc after local perfusion of Org25935 alone, with ethanol, or Org25935-perfusion after pre-treatment with the glycine receptor antagonist strychnine or the NMDA receptor glycine site antagonist L-701.324. Local Org25935 increased extracellular dopamine levels in a subpopulation of rats. Local strychnine, but not systemic L-701.324, antagonized the dopamine-activating effect of Org25935. Ethanol failed to induce a dopamine overflow in the subpopulation responding to Org25935 with a dopamine elevation. The study supports a role for accumbal glycine receptors rather than NMDA receptor signaling in the dopamine-activating effect of Org25935. The results further indicate that the previously reported systemic Org25935-ethanol interaction with regard to accumbal dopamine is localized to the nAc. This adds to the growing evidence for the glycine receptor as an important player in the dopamine reward circuitry and in ethanol’s effects within this system.

  7. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward

    Science.gov (United States)

    Stouffer, Melissa A.; Woods, Catherine A.; Patel, Jyoti C.; Lee, Christian R.; Witkovsky, Paul; Bao, Li; Machold, Robert P.; Jones, Kymry T.; de Vaca, Soledad Cabeza; Reith, Maarten E. A.; Carr, Kenneth D.; Rice, Margaret E.

    2015-01-01

    Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate–putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices. PMID:26503322

  8. Influence of phasic and tonic dopamine release on receptor activation

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kristoffer Kisbye; Herrik, Kjartan F; Berg, Rune W

    2010-01-01

    Tonic and phasic dopamine release is implicated in learning, motivation, and motor functions. However, the relationship between spike patterns in dopaminergic neurons, the extracellular concentration of dopamine, and activation of dopamine receptors remains unresolved. In the present study, we...... develop a computational model of dopamine signaling that give insight into the relationship between the dynamics of release and occupancy of D(1) and D(2) receptors. The model is derived from first principles using experimental data. It has no free parameters and offers unbiased estimation...

  9. AMPA/Kainate, NMDA, and Dopamine D1 Receptor Function in the Nucleus Accumbens Core: A Context-Limited Role in the Encoding and Consolidation of Instrumental Memory

    Science.gov (United States)

    Hernandez, Pepe J.; Andrzejewski, Matthew E.; Sadeghian, Kenneth; Panksepp, Jules B.; Kelley, Ann E.

    2005-01-01

    Neural integration of glutamate- and dopamine-coded signals within the nucleus accumbens (NAc) is a fundamental process governing cellular plasticity underlying reward-related learning. Intra-NAc core blockade of NMDA or D1 receptors in rats impairs instrumental learning (lever-pressing for sugar pellets), but it is not known during which phase of…

  10. Nucleus Accumbens Dopamine D2-Receptor Expressing Neurons Control Behavioral Flexibility in a Place Discrimination Task in the IntelliCage

    Science.gov (United States)

    Macpherson, Tom; Morita, Makiko; Wang, Yanyan; Sasaoka, Toshikuni; Sawa, Akira; Hikida, Takatoshi

    2016-01-01

    Considerable evidence has demonstrated a critical role for the nucleus accumbens (NAc) in the acquisition and flexibility of behavioral strategies. These processes are guided by the activity of two discrete neuron types, dopamine D1- or D2-receptor expressing medium spiny neurons (D1-/D2-MSNs). Here we used the IntelliCage, an automated…

  11. Modulating dopamine release by optogenetics in transgenic mice reveals terminal dopaminergic dynamics.

    Science.gov (United States)

    Lu, Yao; Driscoll, Nicolette; Ozden, Ilker; Yu, Zeyang; Nurmikko, Arto V

    2015-07-01

    Dopamine (DA) release and uptake dynamics in the nucleus accumbens (NAc) have important implications for neurological diseases and mammalian animal behaviors. We demonstrate here the use of cell-type-specific optogenetic targeting in conjunction with fast-scan cyclic voltammetry applied to brain slices prepared from specifically tailored transgenic mice, which conditionally express channelrhodopsin-2 (ChR2) through dopamine transporter (DAT)-Cre. Terminal dopaminergic dynamics and the direct manipulation of induced DA release level by controlling light intensity, pulse width, and the shape of stimulation waveforms were studied. Effective cell terminal-targeting optogenetic induction of DA release at physiological levels in NAc is demonstrated and discussed. It was found that delivering more light energy by increasing stimulation intensity and length is not the only way to control DA release; the temporal shape of the stimulus waveform at light onset is also critically related to induced DA concentrations. In addition, DA uptake dynamics as well as the recovery of the presynaptic releasable DA pool are studied and modeled. More broadly, our experimental findings provide important further evidence for effectively applying optogenetics to induce neurotransmitter release in the behaviorally relevant region of the brain in a highly cell-type selective context.

  12. Relief learning requires a coincident activation of dopamine D1 and NMDA receptors within the nucleus accumbens.

    Science.gov (United States)

    Bergado Acosta, Jorge R; Kahl, Evelyn; Kogias, Georgios; Uzuneser, Taygun C; Fendt, Markus

    2017-03-01

    Relief learning is the association of a stimulus with the offset of an aversive event. Later, the now conditioned relief stimulus induces appetitive-like behavioral changes. We previously demonstrated that the NMDA receptors within the nucleus accumbens (NAC) are involved in relief learning. The NAC is also important for reward learning and it has been shown that reward learning is mediated by an interaction of accumbal dopamine and NMDA glutamate receptors. Since conditioned relief has reward-like properties, we hypothesized that (a) acquisition of relief learning requires the activation of dopamine D1 receptors in the NAC, and (b) if D1 receptors are involved in this process as expected, a concurrent dopamine D1 and NMDA receptor activation may mediate this learning. The present study tested these hypotheses. Therefore, rats received intra-NAC injections of the dopamine D1 receptor antagonist SCH23390 and the NMDA antagonist AP5, either separately or together, at different time points of a relief conditioning procedure. First, we showed that SCH23390 dose-dependently blocked acquisition and the expression of conditioned relief. Next, we demonstrated that co-injections of SCH23390 and AP5 into the NAC, at doses that were ineffective when applied separately, blocked acquisition but not consolidation or expression of relief learning. Notably, neither of the injections affected the locomotor response of the animals to the aversive stimuli suggesting that their perception is not changed. This data indicates that a co-activation of dopamine D1 and NMDA receptors in the NAC is required for acquisition of relief learning. Copyright © 2016. Published by Elsevier Ltd.

  13. In vivo comparison of norepinephrine and dopamine release in rat brain by simultaneous measurements with fast-scan cyclic voltammetry.

    Science.gov (United States)

    Park, Jinwoo; Takmakov, Pavel; Wightman, R Mark

    2011-12-01

    Brain norepinephrine and dopamine regulate a variety of critical behaviors such as stress, learning, memory, and drug addiction. In this study, we demonstrate differences in the regulation of in vivo neurotransmission for dopamine in the anterior nucleus accumbens (NAc) and norepinephrine in the ventral bed nucleus of the stria terminalis (vBNST) of the anesthetized rat. Release of the two catecholamines was measured simultaneously using fast-scan cyclic voltammetry at two different carbon-fiber microelectrodes, each implanted in the brain region of interest. Simultaneous dopamine and norepinephrine release was evoked by electrical stimulation of a region where the ventral noradrenergic bundle, the pathway of noradrenergic neurons, courses through the ventral tegmental area/substantia nigra, the origin of dopaminergic cell bodies. The release and uptake of norepinephrine in the vBNST were both significantly slower than for dopamine in the NAc. Pharmacological manipulations in the same animal demonstrated that the two catecholamines are differently regulated. The combination of a dopamine autoreceptor antagonist and amphetamine significantly increased basal extracellular dopamine whereas a norepinephrine autoreceptor antagonist and amphetamine did not change basal norepinephrine concentration. α-Methyl-p-tyrosine, a tyrosine hydroxylase inhibitor, decreased electrically evoked dopamine release faster than norepinephrine. The dual-microelectrode fast-scan cyclic voltammetry technique along with anatomical and pharmacological evidence confirms that dopamine in the NAc and norepinephrine in the vBNST can be monitored selectively and simultaneously in the same animal. The high temporal and spatial resolution of the technique enabled us to examine differences in the dynamics of extracellular norepinephrine and dopamine concurrently in two different limbic structures.

  14. Stimulant mechanisms of cathinones - effects of mephedrone and other cathinones on basal and electrically evoked dopamine efflux in rat accumbens brain slices.

    Science.gov (United States)

    Opacka-Juffry, Jolanta; Pinnell, Thomas; Patel, Nisha; Bevan, Melissa; Meintel, Meghan; Davidson, Colin

    2014-10-01

    Mephedrone, an erstwhile "legal high", and some non-abused cathinones (ethcathinone, diethylpropion and bupropion) were tested for stimulant effects in vitro, through assessing their abilities to increase basal and electrically evoked dopamine efflux in rat accumbens brain slices, and compared with cocaine and amphetamine. We also tested mephedrone against cocaine in a dopamine transporter binding study. Dopamine efflux was electrically evoked and recorded using voltammetry in the rat accumbens core. We constructed concentration response curves for these cathinones for effects on basal dopamine levels; peak efflux after local electrical stimulation and the time-constant of the dopamine decay phase, an index of dopamine reuptake. We also examined competition between mephedrone or cocaine and [(125)I]RTI121 at the dopamine transporter. Mephedrone was less potent than cocaine at displacing [(125)I]RTI121. Mephedrone and amphetamine increased basal levels of dopamine in the absence of electrical stimulation. Cocaine, bupropion, diethylpropion and ethcathinone all increased the peak dopamine efflux after electrical stimulation and slowed dopamine reuptake. Cocaine was more potent than bupropion and ethcathinone, while diethylpropion was least potent. Notably, cocaine had the fastest onset of action. These data suggest that, with respect to dopamine efflux, mephedrone is more similar to amphetamine than cocaine. These findings also show that cocaine was more potent than bupropion and ethcathinone while diethylpropion was least potent. Mephedrone's binding to the dopamine transporter is consistent with stimulant effects but its potency was lower than that of cocaine. These findings confirm and further characterize stimulant properties of mephedrone and other cathinones in adolescent rat brain.

  15. Individual differences in nucleus accumbens dopamine receptors predict development of addiction-like behavior: a computational approach.

    Science.gov (United States)

    Piray, Payam; Keramati, Mohammad Mahdi; Dezfouli, Amir; Lucas, Caro; Mokri, Azarakhsh

    2010-09-01

    Clinical and experimental observations show individual differences in the development of addiction. Increasing evidence supports the hypothesis that dopamine receptor availability in the nucleus accumbens (NAc) predisposes drug reinforcement. Here, modeling striatal-midbrain dopaminergic circuit, we propose a reinforcement learning model for addiction based on the actor-critic model of striatum. Modeling dopamine receptors in the NAc as modulators of learning rate for appetitive--but not aversive--stimuli in the critic--but not the actor--we define vulnerability to addiction as a relatively lower learning rate for the appetitive stimuli, compared to aversive stimuli, in the critic. We hypothesize that an imbalance in this learning parameter used by appetitive and aversive learning systems can result in addiction. We elucidate that the interaction between the degree of individual vulnerability and the duration of exposure to drug has two progressive consequences: deterioration of the imbalance and establishment of an abnormal habitual response in the actor. Using computational language, the proposed model describes how development of compulsive behavior can be a function of both degree of drug exposure and individual vulnerability. Moreover, the model describes how involvement of the dorsal striatum in addiction can be augmented progressively. The model also interprets other forms of addiction, such as obesity and pathological gambling, in a common mechanism with drug addiction. Finally, the model provides an answer for the question of why behavioral addictions are triggered in Parkinson's disease patients by D2 dopamine agonist treatments.

  16. Differential activation of accumbens shell and core dopamine by sucrose reinforcement with nose poking and with lever pressing.

    Science.gov (United States)

    Bassareo, V; Cucca, F; Frau, R; Di Chiara, G

    2015-11-01

    In order to investigate the role of modus operandi in the changes of nucleus accumbens (NAc) dopamine (DA) transmission in sucrose reinforcement, extracellular DA was monitored by microdialysis in the NAc shell and core of rats trained on a fixed-ratio 1 schedule to respond for sucrose pellets by nose poking and lever pressing respectively. After training, rats were tested on three different sessions: sucrose reinforcement, extinction and passive sucrose presentation. In rats responding by nose poking dialysate DA increased in the shell but not in the core under reinforced as well as under extinction sessions. In contrast, in rats responding by lever pressing dialysate DA increased both in the accumbens shell and core under reinforced and extinction sessions. Response non-contingent sucrose presentation increased dialysate DA in the shell and core of rats trained to respond for sucrose by nose poking as well as in those trained by lever pressing. In rats trained to respond for sucrose by nose poking on a FR5 schedule dialysate DA also increased selectively in the NAc shell during reinforced responding and in both the shell and core under passive sucrose presentation. These findings, while provide an explanation for the discrepancies existing in the literature over the responsiveness of shell and core DA in rats responding for food, are consistent with the notion that NAc shell and core DA encode different aspects of reinforcement.

  17. A High-Fat Meal, or Intraperitoneal Administration of a Fat Emulsion, Increases Extracellular Dopamine in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Bartley G. Hoebel

    2012-06-01

    Full Text Available Evidence links dopamine (DA in the nucleus accumbens (NAc shell to the ingestion of palatable diets. Less is known, however, about the specific relation of DA to dietary fat and circulating triglycerides (TG, which are stimulated by fat intake and promote overeating. The present experiments tested in Sprague-Dawley rats whether extracellular levels of NAc DA increase in response to acute access to fat-rich food or peripheral injection of a fat emulsion and, if so, whether this is related to caloric intake or elevated circulating lipids. When rats consumed more calories of a high-fat meal compared with a low-fat meal, there was a significant increase in extracellular accumbens DA (155% vs. 119%. Systemic injection of a fat emulsion, which like a high-fat diet raises circulating TG but eliminates the factor of taste and allows for the control of caloric intake, also significantly increased extracellular levels of DA (127% compared to an equicaloric glucose solution (70% and saline (85%. Together, this suggests that a rise in circulating TG may contribute to the stimulatory effect of a high-fat diet on NAc DA.

  18. Striatal dopamine release codes uncertainty in pathological gambling.

    Science.gov (United States)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka; Møller, Arne; Doudet, Doris Jeanne; Gjedde, Albert

    2012-10-30

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain-striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear function of expected reward and an inverse U-shaped function of uncertainty. In this study, we investigated the dopaminergic coding of reward and uncertainty in 18 pathological gambling sufferers and 16 healthy controls. We used positron emission tomography (PET) with the tracer [(11)C]raclopride to measure dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis of dopaminergic sensitivity toward uncertainty, and suggest that dopaminergic sensitivity to uncertainty is pronounced in pathological gambling, but not among non-gambling healthy controls. The findings have implications for understanding dopamine dysfunctions in pathological gambling and addictive behaviors.

  19. Increased impulsive behavior and risk proneness following lentivirus-mediated dopamine transporter over-expression in rats' nucleus accumbens.

    Science.gov (United States)

    Adriani, W; Boyer, F; Gioiosa, L; Macrì, S; Dreyer, J-L; Laviola, G

    2009-03-03

    Multiple theories have been proposed for sensation seeking and vulnerability to impulse-control disorders [Zuckerman M, Kuhlman DM (2000) Personality and risk-taking: Common biosocial factors. J Pers 68:999-1029], and many of these rely on a dopamine system deficit. Available animal models reproduce only some behavioral symptoms and seem devoid of construct validity. We used lentivirus tools for over-expressing or silencing the dopamine transporter (DAT) and we evaluated the resulting behavioral profiles in terms of motivation and self-control. Wistar adult rats received stereotaxic inoculation of a lentivirus that allowed localized intra-accumbens delivery of a DAT gene enhancer/silencer, or the green fluorescent protein, GFP. These animals were studied for intolerance to delay, risk proneness and novelty seeking. As expected, controls shifted their demanding from a large reward toward a small one when the delivery of the former was increasingly delayed (or uncertain). Interestingly, in the absence of general locomotor effects, DAT over-expressing rats showed increased impulsivity (i.e. a more marked shift of demanding from the large/delayed toward the small/soon reward), and increased risk proneness (i.e. a less marked shift from the large/uncertain toward the small/sure reward), compared with controls. Rats with enhanced or silenced DAT expression did not show any significant preference for a novel environment. In summary, consistent with literature on comorbidity between attention-deficit/hyperactivity disorder and pathological gambling, we demonstrate that DAT over-expression in rats' nucleus accumbens leads to impulsive and risk prone phenotype. Thus, a reduced dopaminergic tone following altered accumbal DAT function may subserve a sensation-seeker phenotype and the vulnerability to impulse-control disorders.

  20. Blockade of Dopamine Activity in the Nucleus Accumbens Impairs Learning Extinction of Conditioned Fear

    Science.gov (United States)

    Holtzman-Assif, Orit; Laurent, Vincent; Westbrook, R. Frederick

    2010-01-01

    Three experiments used rats to investigate the role of dopamine activity in learning to inhibit conditioned fear responses (freezing) in extinction. In Experiment 1, rats systemically injected with the D2 dopamine antagonist, haloperidol, froze more across multiple extinction sessions and on a drug-free retention test than control rats. In…

  1. Blockade of Dopamine Activity in the Nucleus Accumbens Impairs Learning Extinction of Conditioned Fear

    Science.gov (United States)

    Holtzman-Assif, Orit; Laurent, Vincent; Westbrook, R. Frederick

    2010-01-01

    Three experiments used rats to investigate the role of dopamine activity in learning to inhibit conditioned fear responses (freezing) in extinction. In Experiment 1, rats systemically injected with the D2 dopamine antagonist, haloperidol, froze more across multiple extinction sessions and on a drug-free retention test than control rats. In…

  2. Tamping Ramping: Algorithmic, Implementational, and Computational Explanations of Phasic Dopamine Signals in the Accumbens.

    Directory of Open Access Journals (Sweden)

    Kevin Lloyd

    2015-12-01

    Full Text Available Substantial evidence suggests that the phasic activity of dopamine neurons represents reinforcement learning's temporal difference prediction error. However, recent reports of ramp-like increases in dopamine concentration in the striatum when animals are about to act, or are about to reach rewards, appear to pose a challenge to established thinking. This is because the implied activity is persistently predictable by preceding stimuli, and so cannot arise as this sort of prediction error. Here, we explore three possible accounts of such ramping signals: (a the resolution of uncertainty about the timing of action; (b the direct influence of dopamine over mechanisms associated with making choices; and (c a new model of discounted vigour. Collectively, these suggest that dopamine ramps may be explained, with only minor disturbance, by standard theoretical ideas, though urgent questions remain regarding their proximal cause. We suggest experimental approaches to disentangling which of the proposed mechanisms are responsible for dopamine ramps.

  3. Role of Dopamine Receptors Subtypes, D1-Like and D2-Like, within the Nucleus Accumbens Subregions, Core and Shell, on Memory Consolidation in the One-Trial Inhibitory Avoidance Task

    Science.gov (United States)

    Manago, Francesca; Castellano, Claudio; Oliverio, Alberto; Mele, Andrea; De Leonibus, Elvira

    2009-01-01

    Recent evidence demonstrated that dopamine within the nucleus accumbens mediates consolidation of both associative and nonassociative memories. However, the specific contribution of the nucleus accumbens subregions, core and shell, and of D1 and D2 receptors subtypes has not been yet clarified. The aim of this study was, therefore, to directly…

  4. Role of Dopamine Receptors Subtypes, D1-Like and D2-Like, within the Nucleus Accumbens Subregions, Core and Shell, on Memory Consolidation in the One-Trial Inhibitory Avoidance Task

    Science.gov (United States)

    Manago, Francesca; Castellano, Claudio; Oliverio, Alberto; Mele, Andrea; De Leonibus, Elvira

    2009-01-01

    Recent evidence demonstrated that dopamine within the nucleus accumbens mediates consolidation of both associative and nonassociative memories. However, the specific contribution of the nucleus accumbens subregions, core and shell, and of D1 and D2 receptors subtypes has not been yet clarified. The aim of this study was, therefore, to directly…

  5. Dopamine D2 receptors in the nucleus accumbens are important for social attachment in female prairie voles (Microtus ochrogaster).

    Science.gov (United States)

    Gingrich, B; Liu, Y; Cascio, C; Wang, Z; Insel, T R

    2000-02-01

    The prairie vole (Microtus ochrogaster), a monogamous rodent that forms long-lasting pair bonds, has proven useful for the neurobiological study of social attachment. In the laboratory, pair bonds can be assessed by testing for a partner preference, a choice test in which pair-bonded voles regularly prefer their partner to a conspecific stranger. Studies reported here investigate the role of dopamine D2-like receptors (i.e., D2, D3, and D4 receptors) in the nucleus accumbens (NAcc) for the formation of a partner preference in female voles. Mating facilitated partner preference formation and associated with an approximately 50% increase in extracellular dopamine in the NAcc. Microinjection of the D2 antagonist eticlopride into the NAcc (but not the prelimbic cortex) blocked the formation of a partner preference in mating voles, whereas the D2 agonist quinpirole facilitated formation of a partner preference in the absence of mating. Taken together, these results suggest that D2-like receptors in the NAcc are important for the mediation of social attachments in female voles.

  6. Repeated cocaine enhances ventral hippocampal-stimulated dopamine efflux in the nucleus accumbens and alters ventral hippocampal NMDA receptor subunit expression.

    Science.gov (United States)

    Barr, Jeffrey L; Forster, Gina L; Unterwald, Ellen M

    2014-08-01

    Dopaminergic neurotransmission in the nucleus accumbens is important for various reward-related cognitive processes including reinforcement learning. Repeated cocaine enhances hippocampal synaptic plasticity, and phasic elevations of accumbal dopamine evoked by unconditioned stimuli are dependent on impulse flow from the ventral hippocampus. Therefore, sensitized hippocampal activity may be one mechanism by which drugs of abuse enhance limbic dopaminergic activity. In this study, in vivo microdialysis in freely moving adult male Sprague-Dawley rats was used to investigate the effect of repeated cocaine on ventral hippocampus-mediated dopaminergic transmission within the medial shell of the nucleus accumbens. Following seven daily injections of saline or cocaine (20 mg/kg, ip), unilateral infusion of N-methyl-d-aspartate (NMDA, 0.5 μg) into the ventral hippocampus transiently increased both motoric activity and ipsilateral dopamine efflux in the medial shell of the nucleus accumbens, and this effect was greater in rats that received repeated cocaine compared to controls that received repeated saline. In addition, repeated cocaine altered NMDA receptor subunit expression in the ventral hippocampus, reducing the NR2A : NR2B subunit ratio. Together, these results suggest that repeated exposure to cocaine produces maladaptive ventral hippocampal-nucleus accumbens communication, in part through changes in glutamate receptor composition. A behaviorally sensitizing regimen of cocaine (20 mg/kg, ip 7 days) also sensitized ventral hippocampus (hipp)-mediated dopaminergic transmission within the nucleus accumbens (Nac) to NMDA stimulation (bolts). This was associated with reduced ventral hippocampal NR2A:NR2B subunit ratio, suggesting that repeated exposure to cocaine produces changes in hippocampal NMDA receptor composition that lead to enhanced ventral hippocampus-nucleus accumbens communication.

  7. Presynaptic action of neurotensin on dopamine release through inhibition of D2 receptor function

    Directory of Open Access Journals (Sweden)

    Trudeau Louis-Eric

    2009-08-01

    Full Text Available Abstract Background Neurotensin (NT is known to act on dopamine (DA neurons at the somatodendritic level to regulate cell firing and secondarily enhance DA release. In addition, anatomical and indirect physiological data suggest the presence of NT receptors at the terminal level. However, a clear demonstration of the mechanism of action of NT on dopaminergic axon terminals is lacking. We hypothesize that NT acts to increase DA release by inhibiting the function of terminal D2 autoreceptors. To test this hypothesis, we used fast-scan cyclic voltammetry (FCV to monitor in real time the axonal release of DA in the nucleus accumbens (NAcc. Results DA release was evoked by single electrical pulses and pulse trains (10 Hz, 30 pulses. Under these two stimulation conditions, we evaluated the characteristics of DA D2 autoreceptors and the presynaptic action of NT in the NAcc shell and shell/core border region. The selective agonist of D2 autoreceptors, quinpirole (1 μM, inhibited DA overflow evoked by both single and train pulses. In sharp contrast, the selective D2 receptor antagonist, sulpiride (5 μM, strongly enhanced DA release triggered by pulse trains, without any effect on DA release elicited by single pulses, thus confirming previous observations. We then determined the effect of NT (8–13 (100 nM and found that although it failed to increase DA release evoked by single pulses, it strongly enhanced DA release evoked by pulse trains that lead to prolonged DA release and engage D2 autoreceptors. In addition, initial blockade of D2 autoreceptors by sulpiride considerably inhibited further facilitation of DA release generated by NT (8–13. Conclusion Taken together, these data suggest that NT enhances DA release principally by inhibiting the function of terminal D2 autoreceptors and not by more direct mechanisms such as facilitation of terminal calcium influx.

  8. Striatal cholinergic interneurons Drive GABA release from dopamine terminals.

    Science.gov (United States)

    Nelson, Alexandra B; Hammack, Nora; Yang, Cindy F; Shah, Nirao M; Seal, Rebecca P; Kreitzer, Anatol C

    2014-04-01

    Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically driven IPSCs were not affected by ablation of striatal fast-spiking interneurons but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons.

  9. Imaging of dopamine release induced by pharmacologic and nonpharmacologic stimulations

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Technological advances in molecular imaging made it possible to image synaptic neurotransmitter concentration in living human brain. The dopaminergic system has been most intensively studied because of its importance in neurological as well as psychiatric disorders. This paper provides a brief overview of recent progress in imaging studies of dopamine release induced by pharmacologic and nonpharmacologic stimulations.

  10. Chorein Sensitive Dopamine Release from Pheochromocytoma (PC12 Cells

    Directory of Open Access Journals (Sweden)

    Sabina Honisch

    2015-12-01

    Full Text Available Background: Chorein, a protein supporting activation of phosphoinositide 3 kinase (PI3K, participates in the regulation of actin polymerization and cell survival. A loss of function mutation of the chorein encoding gene VPS13A (vacuolar protein sorting-associated protein 13A leads to chorea-acanthocytosis (ChAc, a neurodegenerative disorder with simultaneous erythrocyte akanthocytosis. In blood platelets chorein deficiency has been shown to compromise expression of vesicle-associated membrane protein 8 (VAMP8 and thus degranulation. The present study explored whether chorein is similarly involved in VAMP8 expression and dopamine release of pheochromocytoma (PC12 cells. Methods: Chorein was down-regulated by silencing in PC12 cells. Transmission electron microscopy was employed to quantify the number of vesicles, RT-PCR to determine transcript levels, Western blotting to quantify protein expression and ELISA to determine dopamine release. Results: Chorein silencing significantly reduced the number of vesicles, VAMP8 transcript levels and VAMP8 protein abundance. Increase of extracellular K+ from 5 mM to 40 mM resulted in marked stimulation of dopamine release, an effect significantly blunted by chorein silencing. Conclusions: Chorein deficiency down-regulates VAMP8 expression, vesicle numbers and dopamine release in pheochromocytoma cells.

  11. Noradrenaline-induced release of newly-synthesized accumbal dopamine: differential role of alpha- and beta-adrenoceptors

    Directory of Open Access Journals (Sweden)

    Francisca eMeyer

    2014-08-01

    Full Text Available Previous studies have shown that intra-accumbens infusion of isoproterenol (ISO, a beta-adrenoceptor-agonist, and phenylephrine (PE, an alpha-adrenoceptor-agonist, increase the release of accumbal dopamine (DA. In the present study we analyzed whether the ISO-induced release of DA is sensitive to pretreatment with the DA synthesis inhibitor alpha-methyl-para-tyrosine (AMPT. Earlier studies have shown that the PE-induced release of DA is derived from DA pools that are resistant to AMPT. In addition to PE, the alpha-adrenoceptor-antagonist phentolamine (PA was also found to increase accumbal DA release. Therefore, we investigated whether similar to the DA-increasing effect of PE, the DA increase induced by PA is resistant to AMPT. Pretreatment with AMPT prevented the ISO-induced increase of accumbal DA. The accumbal DA increase after PA was not reduced by the DA synthesis inhibitor, independently of the amount of DA released. These results show that mesolimbic beta-, but not alpha-adrenoceptors, control the release of accumbal newly-synthesized DA pools. The DA-increasing effects of PE have previously been ascribed to stimulation of presynaptic receptors located on noradrenergic terminals, whereas the DA-increasing effects of PA and ISO have been ascribed to an action of these drugs at postsynaptic receptors on dopaminergic terminals. The fact that AMPT did not affect the accumbal DA response to PE and PA, whereas it did prevent the accumbal DA increase to ISO, supports our previously reported hypothesis that the noradrenergic neurons of the nucleus accumbens containing presynaptic alpha-adrenoceptors impinge upon the dopaminergic terminals in the nucleus accumbens containing postsynaptic adrenoceptors of the alpha but not of the beta type. The putative therapeutic effects of noradrenergic agents in the treatment of DA-related disorders are shortly discussed.

  12. Optogenetic control of serotonin and dopamine release in Drosophila larvae.

    Science.gov (United States)

    Xiao, Ning; Privman, Eve; Venton, B Jill

    2014-08-20

    Optogenetic control of neurotransmitter release is an elegant method to investigate neurobiological mechanisms with millisecond precision and cell type-specific resolution. Channelrhodopsin-2 (ChR2) can be expressed in specific neurons, and blue light used to activate those neurons. Previously, in Drosophila, neurotransmitter release and uptake have been studied after continuous optical illumination. In this study, we investigated the effects of pulsed optical stimulation trains on serotonin or dopamine release in larval ventral nerve cords. In larvae with ChR2 expressed in serotonergic neurons, low-frequency stimulations produced a distinct, steady-state response while high-frequency patterns were peak shaped. Evoked serotonin release increased with increasing stimulation frequency and then plateaued. The steady-state response and the frequency dependence disappeared after administering the uptake inhibitor fluoxetine, indicating that uptake plays a significant role in regulating the extracellular serotonin concentration. Pulsed stimulations were also used to evoke dopamine release in flies expressing ChR2 in dopaminergic neurons and similar frequency dependence was observed. Release due to pulsed optical stimulations was modeled to determine the uptake kinetics. For serotonin, Vmax was 0.54 ± 0.07 μM/s and Km was 0.61 ± 0.04 μM; and for dopamine, Vmax was 0.12 ± 0.03 μM/s and Km was 0.45 ± 0.13 μM. The amount of serotonin released per stimulation pulse was 4.4 ± 1.0 nM, and the amount of dopamine was 1.6 ± 0.3 nM. Thus, pulsed optical stimulations can be used to mimic neuronal firing patterns and will allow Drosophila to be used as a model system for studying mechanisms underlying neurotransmission.

  13. Dopamine control of LH release in the tench (Tinca tinca).

    Science.gov (United States)

    Podhorec, Peter; Socha, Magdalena; Sokolowska-Mikolajczyk, Miroslawa; Policar, Tomas; Svinger, Viktor W; Drozd, Borek; Kouril, Jan

    2012-01-01

    Tench (Tinca tinca) is apparently the only known member of the Cyprinidae in which ovulation is stimulated following administration of a low dose of GnRH analogue (GnRHa) without a dopamine inhibitor. This study evaluated LH release effectiveness of the most commonly used GnRHa and clarified whether LH secretion followed by ovulation is subject to inhibitory dopaminergic control in tench. Fish were intraperitoneally injected with three types of GnRHa, GnRHa with dopamine inhibitor metoclopramide (combined treatment), or the dopamine inhibitor metoclopramide alone. LH concentrations at five sampling times (0, 6, 12, 24, and 33 h) together with ovulation success and fecundity index were recorded. The combined treatment triggered an almost immediate LH release peak with a gradual decline, and resulted in a high ovulation rate. In contrast to the combined treatment, an application of GnRHa alone at 10 μg kg(-1) induced gradual increase of LH concentrations with peaks close to ovulation time, and with high ovulation success. Significant differences in LH concentrations at 6 and 12h and no differences in ovulation success were found between the combined and the GnRHa alone treatments. Metoclopramide alone induced a small increase in LH with no ovulation. The study presents clear evidence of dopaminergic control of LH release in tench, with a high ovulation rate obtained after application of GnRHa alone or in combination with dopamine inhibitor.

  14. Role of dopamine and GABA in the control of motor activity elicited from the rat nucleus accumbens.

    Science.gov (United States)

    Wong, L S; Eshel, G; Dreher, J; Ong, J; Jackson, D M

    1991-04-01

    The application of 1.2 and 12.0 micrograms/side of the GABAA receptor agonist 3-aminopropane sulphonic acid bilaterally into the nucleus accumbens (Acb) of rats nonsignificantly depressed locomotor activity as assessed in automated Animex activity cages, while the highest dose (60 micrograms/side) significantly stimulated activity. The GABAA receptor antagonists picrotoxinin (0.0625 and 0.125 micrograms/saide) and bicuculline (0.895 micrograms/side) produced forward locomotion around the cage accompanied by a number of other behaviours. The GABAB agonist baclofen (0.023 and 0.092 micrograms/side) induced a short-lasting (18 min) locomotor depression. None of the GABAB antagonists tested (2-hydroxysaclofen 2.6 micrograms/side, two novel beta-(benzo[b]furan) analogues of baclofen 9G or 9H each 6.8 micrograms/side, 4-aminobutylphosphonic acid 1.32 micrograms/side and phaclofen 0.535 and 2 micrograms/side) significantly affected locomotor activity. In rats pretreated with reserpine and alpha-methyl-p-tyrosine, picrotoxinin (0.0625 and 0.125 micrograms/side) did not significantly alter locomotor activity. Furthermore, when picrotoxinin (0.0625 micrograms/side) was combined with either the selective dopamine (DA) D1 agonist SKF38393 or the selective D2 agonist quinpirole, no significant alteration in locomotor function occurred. When SKF38393 and quinpirole were coadministered, significant stimulation occurred which was further enhanced by the addition of picrotoxinin. It is concluded that GABAA receptors, together with D1 and D2 receptors, play a major role in modulating the control of motor function by the Acb of rats.

  15. Dopamine D1 receptor modulation in nucleus accumbens lowers voluntary wheel running in rats bred to run high distances.

    Science.gov (United States)

    Roberts, Michael D; Gilpin, Leigh; Parker, Kyle E; Childs, Thomas E; Will, Matthew J; Booth, Frank W

    2012-02-01

    Dopamine signaling in the nucleus accumbens (NAc) has been postulated to influence reward development towards drugs of abuse and exercise. Herein, we used generation 4-5 rats that were selectively bred to voluntary run high (HVR) versus low (LVR) distances in order to examine if dopamine-like 1 (D1) receptor modulation in the NAc differentially affects nightly voluntary wheel running between these lines. A subset of generation 5-6 HVR and LVR rats were also used to study the mRNA expression of key genes related to reward and addiction in the NAc (i.e., DRD1, DRD5, DRD2, Nr4a2, FosB, and BDNF). In a crossover fashion, a D1-like agonist SKF 82958 (2 μg per side) or D1-like full antagonist SCH 23390 (4 μg per side) was bilaterally injected into the NAc of HVR and LVR female Wistar rats prior to their high running nights. Notably, during hours 2-4 (between 2000 and 2300) of the dark cycle there was a significant decrement in running distances in the HVR rats treated with the D1 agonist (p=0.025) and antagonist (p=0.017) whereas the running distances in LVR rats were not affected. Interestingly, HVR and LVR rats possessed similar NAc concentrations of the studied mRNAs. These data suggest that: a) animals predisposed to run high distances on a nightly basis may quickly develop a rewarding response to exercise due to an optimal D1-like receptor signaling pathway in the NAc that can be perturbed by either activation or blocking, b) D1-like agonist or antagonist injections do not increase running distances in rats that are bred to run low nightly distances, and c) running differences between HVR and LVR animals are seemingly not due to the expression of the studied mRNAs. Given the societal prevalence of obesity and extraneous physical inactivity, future studies should be performed in order to further determine the culprit for the low running phenotype observed in LVR animals.

  16. Individual differences in ethanol locomotor sensitization are associated with dopamine D1 receptor intra-cellular signaling of DARPP-32 in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Karina Possa Abrahao

    Full Text Available In mice there are clear individual differences in the development of behavioral sensitization to ethanol, a progressive potentiation of its psychomotor stimulant effect. Variability in the behavioral responses to ethanol has been associated with alcohol preference. Here we investigated if the functional hyperresponsiveness of D1 receptors observed in ethanol sensitized mice leads to an increased activation of DARPP-32, a central regulatory protein in medium spiny neurons, in the nucleus accumbens - a brain region known to play a role in drug reinforcement. Swiss Webster mice received ethanol (2.2 g/kg/day or saline i.p. administrations for 21 days and were weekly evaluated regarding their locomotor activity. From those treated with ethanol, the 33% with the highest levels of locomotor activity were classified as "sensitized" and the 33% with the lowest levels as "non-sensitized". The latter presented similar locomotor levels to those of saline-treated mice. Different subgroups of mice received intra-accumbens administrations of saline and, 48 h later, SKF-38393, D1 receptor agonist 0.1 or 1 µg/side. Indeed, sensitized mice presented functional hyperresponsiveness of D1 receptors in the accumbens. Two weeks following the ethanol treatment, other subgroups received systemic saline or SKF 10 mg/kg, 20 min before the euthanasia. The nucleus accumbens were dissected for the Western Blot analyses of total DARPP-32 and phospho-Thr34-DARPP-32 expression. D1 receptor activation induced higher phospho-Thr34-DARPP-32 expression in sensitized mice than in non-sensitized or saline. The functionally hyperresponsiveness of D1 receptors in the nucleus accumbens is associated with an increased phospho-Thr34-DARPP-32 expression after D1 receptor activation. These data suggest that an enduring increase in the sensitivity of the dopamine D1 receptor intracellular pathway sensitivity represents a neurobiological correlate associated with the development of

  17. Dopamine release from serotonergic nerve fibers is reduced in L-DOPA-induced dyskinesia

    Science.gov (United States)

    Nevalainen, Nina; af Bjerkén, Sara; Lundblad, Martin; Gerhardt, Greg A.; Strömberg, Ingrid

    2011-01-01

    L-DOPA (3,4-dihydroxyphenyl-L-alanine) is the most commonly used treatment for symptomatic control in patients with Parkinson’s disease. Unfortunately, most patients develop severe side effects, such as dyskinesia, upon chronic L-DOPA treatment. The patophysiology of dyskinesia is unclear, however, involvement of serotonergic nerve fibers in converting L-DOPA to dopamine has been suggested. Therefore, potassium-evoked dopamine release was studied after local application of L-DOPA in the striata of normal, dopamine- and dopamine/serotonin-lesioned L-DOPA naïve, and dopamine-denervated chronically L-DOPA-treated dyskinetic rats using in vivo chronoamperometry. The results revealed that local L-DOPA administration into normal and intact hemisphere of dopamine-lesioned L-DOPA naïve animals significantly increased the potassium-evoked dopamine release. L-DOPA application also increased the dopamine peak amplitude in the dopamine-depleted L-DOPA naïve striatum, although these dopamine levels were several-folds lower than in the normal striatum, while no increased dopamine release was found in the dopamine/serotonin-denervated striatum. In dyskinetic animals, local L-DOPA application did not affect the dopamine release, resulting in significantly attenuated dopamine levels compared to those measured in L-DOPA naïve dopamine-denervated striatum. To conclude, L-DOPA is most likely converted to dopamine in serotonergic nerve fibers in the dopamine-depleted striatum, but the dopamine release is several-fold lower than in normal striatum. Furthermore, L-DOPA loading does not increase the dopamine release in dyskinetic animals as found in L-DOPA naïve animals, despite similar density of serotonergic innervation. Thus, the dopamine overflow produced from the serotonergic nerve fibers appears not to be the major cause of dyskinetic behavior. PMID:21534956

  18. Relative Timing Between Kappa Opioid Receptor Activation and Cocaine Determines the Impact on Reward and Dopamine Release

    Science.gov (United States)

    Chartoff, Elena H; Ebner, Shayla R; Sparrow, Angela; Potter, David; Baker, Phillip M; Ragozzino, Michael E; Roitman, Mitchell F

    2016-01-01

    Negative affective states can increase the rewarding value of drugs of abuse and promote drug taking. Chronic cocaine exposure increases levels of the neuropeptide dynorphin, an endogenous ligand at kappa opioid receptors (KOR) that suppresses dopamine release in the nucleus accumbens (NAc) and elicits negative affective states upon drug withdrawal. However, there is evidence that the effects of KOR activation on affective state are biphasic: immediate aversive effects are followed by delayed increases in reward. The impact of KOR-induced affective states on reward-related effects of cocaine over time is not known. We hypothesize that the initial aversive effects of KOR activation increase, whereas the delayed rewarding effects decrease, the net effects of cocaine on reward and dopamine release. We treated rats with cocaine at various times (15 min to 48 h) after administration of the selective KOR agonist salvinorin A (salvA). Using intracranial self-stimulation and fast scan cyclic voltammetry, we found that cocaine-induced increases in brain stimulation reward and evoked dopamine release in the NAc core were potentiated when cocaine was administered within 1 h of salvA, but attenuated when administered 24 h after salvA. Quantitative real-time PCR was used to show that KOR and prodynorphin mRNA levels were decreased in the NAc, whereas tyrosine hydroxylase and dopamine transporter mRNA levels and tissue dopamine content were increased in the ventral tegmental area 24 h post-salvA. These findings raise the possibility that KOR activation—as occurs upon withdrawal from chronic cocaine—modulates vulnerability to cocaine in a time-dependent manner. PMID:26239494

  19. On the role of subsecond dopamine release in conditioned avoidance

    Directory of Open Access Journals (Sweden)

    Erik B Oleson

    2013-06-01

    Full Text Available Using shock avoidance procedures to study conditioned behavioral responses has a rich history within the field of experimental psychology. Such experiments led to the formulation of the general concept of negative reinforcement and specific theories attempting to explain escape and avoidance behavior, or why animals choose to either terminate or prevent the presentation of an aversive event. For example, the two-factor theory of avoidance holds that cues preceding an aversive event begin to evoke conditioned fear responses, and these conditioned fear responses reinforce the instrumental avoidance response. Current neuroscientific advances are providing new perspectives into this historical literature. Due to its well-established role in reinforcement processes and behavioral control, the mesolimbic dopamine system presented itself as a logical starting point in the search for neural correlates of avoidance and escape behavior. We recently demonstrated that phasic dopamine release events are inhibited by stimuli associated with aversive events but increased by stimuli preceding the successful avoidance of the aversive event. The latter observation is inconsistent with the second component of the two-factor theory of avoidance and; therefore, led us propose a new theoretical explanation of conditioned avoidance: 1 fear is initially conditioned to the warning signal and dopamine computes this fear association as a decrease in release, 2 the warning signal, now capable of producing a negative emotional state, suppresses dopamine release and behavior, 3 over repeated trials the warning signal becomes associated with safety rather than fear; dopaminergic neurons already compute safety as an increase in release and begin to encode the warning signal as the earliest predictor of safety 4 the warning signal now promotes conditioned avoidance via dopaminergic modulation of the brain’s incentive-motivational circuitry.

  20. Early social isolation disrupts latent inhibition and increases dopamine D2 receptor expression in the medial prefrontal cortex and nucleus accumbens of adult rats.

    Science.gov (United States)

    Han, Xiao; Li, Nanxin; Xue, Xiaofang; Shao, Feng; Wang, Weiwen

    2012-04-04

    Adolescence is a critical period for neurodevelopment. In the present study, we investigated the effects of peri-adolescent social isolation on latent inhibition (LI) and dopamine D2 receptor expression in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) of young adult rats. Male Sprague-Dawley rats were randomly divided into adolescent isolation (ISO; isolated housing, 21-34 days of age) and social housing (SOC) groups. LI was tested at postnatal day 56. After behavioral testing, the number of dopamine D2 receptor-expressing cells was determined using immunohistochemistry. Adolescent social isolation impaired LI and increased the number of cells expressing the D2 receptor in the mPFC and NAc. The results suggest that adolescent social isolation produces profound effects on cognitive and dopaminergic function in adult rats, and could be used as an animal model of various neurodevelopmental disorders.

  1. Acute fasting increases somatodendritic dopamine release in the ventral tegmental area.

    Science.gov (United States)

    Roseberry, Aaron G

    2015-08-01

    Fasting and food restriction alter the activity of the mesolimbic dopamine system to affect multiple reward-related behaviors. Food restriction decreases baseline dopamine levels in efferent target sites and enhances dopamine release in response to rewards such as food and drugs. In addition to releasing dopamine from axon terminals, dopamine neurons in the ventral tegmental area (VTA) also release dopamine from their soma and dendrites, and this somatodendritic dopamine release acts as an autoinhibitory signal to inhibit neighboring VTA dopamine neurons. It is unknown whether acute fasting also affects dopamine release, including the local inhibitory somatodendritic dopamine release in the VTA. In these studies, I have tested whether fasting affects the inhibitory somatodendritic dopamine release within the VTA by examining whether an acute 24-h fast affects the inhibitory postsynaptic current mediated by evoked somatodendritic dopamine release (D2R IPSC). Fasting increased the contribution of the first action potential to the overall D2R IPSC and increased the ratio of repeated D2R IPSCs evoked at short intervals. Fasting also reduced the effect of forskolin on the D2R IPSC and led to a significantly bigger decrease in the D2R IPSC in low extracellular calcium. Finally, fasting resulted in an increase in the D2R IPSCs when a more physiologically relevant train of D2R IPSCs was used. Taken together, these results indicate that fasting caused a change in the properties of somatodendritic dopamine release, possibly by increasing dopamine release, and that this increased release can be sustained under conditions where dopamine neurons are highly active.

  2. Salsolinol modulation of dopamine neurons

    OpenAIRE

    Guiqin eXie; Kresimir eKrnjevic; Jiang Hong Ye

    2013-01-01

    Salsolinol, a tetrahydroisoquinoline present in the human and rat brains, is the condensation product of dopamine and acetaldehyde, the first metabolite of ethanol. Previous evidence obtained in vivo links salsolinol with the mesolimbic dopaminergic system: salsolinol is self-administered into the posterior of the ventral tegmental area (pVTA) of rats; intra-VTA administration of salsolinol induces a strong conditional place preference and increases dopamine release in the nucleus accumbens. ...

  3. Role of dopamine D2-like receptors within the ventral tegmental area and nucleus accumbens in antinociception induced by lateral hypothalamus stimulation.

    Science.gov (United States)

    Moradi, Marzieh; Yazdanian, Mohamadreza; Haghparast, Abbas

    2015-10-01

    Several lines of evidence have shown that stimulation of the lateral hypothalamus (LH) can induce antinociception. It has been indicated that hypothalamic orexinergic neurons send projections throughout the dopamine mesolimbic pathway. Functional interaction between the LH and the main area of the mesolimbic pathway such as the ventral tegmental area (VTA) and the nucleus accumbens (NAc) implicates in pain modulation. Thus, in this study, we investigated the role of D2-like dopamine receptors within the VTA and NAc in the LH stimulation-induced antinociception. Male Wistar rats weighing 230-280 g were unilaterally implanted with two separate cannulae into the LH and VTA or NAc. Animals received intra-VTA (0.25, 1 and 4 μg/0.3 μl DMSO) and intra-accumbal (0.125, 0.25, 1 and 4 μg/0.5 μl DMSO) infusions of sulpiride as a selective D2-like receptor antagonist, prior to intra-LH carbachol (125 nM/rat) administration. In the tail-flick test, the antinociceptive effects were measured using a tail-flick algesiometer and represented as maximal possible effect (%MPE) within 5, 15, 30, 45 and 60 min after injections. Our results showed that intra-VTA and intra-accumbal sulpiride dose-dependently attenuated the LH stimulation-induced antinociception. However, the blockade of D2-like receptors within the NAc was more significant than that of the VTA. These findings show that D2-like dopamine receptors in these regions play an important role in the LH-mediated modulation of nociceptive information in the acute model of pain in the rats. It seems that this pain modulating system is more relevant to D2-like receptors in the nucleus accumbens. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Importancia dopaminérgica en farmacodinamia de cocaína evaluada por alteraciones de GABA y glutamato en el núcleo accumbens de ratas

    Directory of Open Access Journals (Sweden)

    Edgar A. Gélvez

    1996-06-01

    Full Text Available Este trabajo se propuso demostrar la importancia del sistema dopaminérgico en la farmacodinamia de cocaína en el SNC de ratas. Este postulado se verificó evaluando las alteraciones de GABA y glutamato en el núcleo accumbens. Este enfoque se sustenta en la gran cantidad de evidencias que muestran, consistentemente alteraciones en la actividad dopaminérgica por cocaína. Además, el GABA y el glutamato tienen gran importancia en los efectos agudos y crónicos por cocaína. Es bien conocida la interrelación de GABA y glutamato con la actividad dopaminérgica en el núcleo accumbens. Se diseñó un estudio por 16 días de administración de cocaína a ratas a la dosis inicial de 30 mglkgldía (IP con incremento de 5 mglkg cada 4 días, a las cuales se les había lesionado la actividad dopaminérgica en el núcleo accumbens con la neurotoxina 6- hidroxidopamina en ácido ascórbico. Además, se conformó un grupo basal que recibió estereotáxicamante, en el núcleo accumbens, ácido ascórbico en solución salina 0,9% y se trató con un volumen correspondiente de solución salina (IP y, un grupo control, al cual estereotáxicamente, en el núcleo mencionado, se le administró 6-OHDA (en ácido ascórbico, recibiendo posteriormente como tratamiento solución salina (IP. La determinación de los niveles de GABA y glutamato se realizó por métodos enzimáticos. Se observó que la administración crónica de cocaína produce una disminución significativa en el nivel de GABA en el núcleo accumbens del grupo problema, con relación a los grupos basal y control. En tanto, el nivel de glutamato en el grupo problema mostró un incremento significativo con relación al grupo basal, pero, no con relación al grupo control. En conclusión, los resultados de este trabajo sostienen la hipótesis del papel importante que tiene la dopamina en la farmacoterapia de cocaína a través de las alteraciones en los niveles de GABA y glutamato o alteraciones en

  5. Neuronal release of endogenous dopamine from corpus of guinea pig stomach.

    Science.gov (United States)

    Shichijo, K; Sakurai-Yamashita, Y; Sekine, I; Taniyama, K

    1997-11-01

    Neuronal release of endogenous dopamine was identified in mucosa-free preparations (muscle layer including intramural plexus) from guinea pig stomach corpus by measuring tissue dopamine content and dopamine release and by immunohistochemical methods using a dopamine antiserum. Dopamine content in mucosa-free preparations of guinea pig gastric corpus was one-tenth of norepinephrine content. Electrical transmural stimulation of mucosa-free preparations of gastric corpus increased the release of endogenous dopamine in a frequency-dependent (3-20 Hz) manner. The stimulated release of dopamine was prevented by either removal of external Ca2+ or treatment with tetrodotoxin. Dopamine-immunopositive nerve fibers surrounding choline acetyltransferase-immunopositive ganglion cells were seen in the myenteric plexus of whole mount preparations of gastric corpus even after bilateral transection of the splanchnic nerve proximal to the junction with the vagal nerve (section of nerves between the celiac ganglion and stomach). Domperidone and sulpiride potentiated the stimulated release of acetylcholine and reversed the dopamine-induced inhibition of acetylcholine release from mucosa-free preparations. These results indicate that dopamine is physiologically released from neurons and from possible dopaminergic nerve terminals and regulates cholinergic neuronal activity in the corpus of guinea pig stomach.

  6. Adenosine transiently modulates stimulated dopamine release in the caudate-putamen via A1 receptors.

    Science.gov (United States)

    Ross, Ashley E; Venton, B Jill

    2015-01-01

    Adenosine modulates dopamine in the brain via A1 and A2A receptors, but that modulation has only been characterized on a slow time scale. Recent studies have characterized a rapid signaling mode of adenosine that suggests a possible rapid modulatory role. Here, fast-scan cyclic voltammetry was used to characterize the extent to which transient adenosine changes modulate stimulated dopamine release (5 pulses at 60 Hz) in rat caudate-putamen brain slices. Exogenous adenosine was applied and dopamine concentration monitored. Adenosine only modulated dopamine when it was applied 2 or 5 s before stimulation. Longer time intervals and bath application of 5 μM adenosine did not decrease dopamine release. Mechanical stimulation of endogenous adenosine 2 s before dopamine stimulation also decreased stimulated dopamine release by 41 ± 7%, similar to the 54 ± 6% decrease in dopamine after exogenous adenosine application. Dopamine inhibition by transient adenosine was recovered within 10 min. The A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine blocked the dopamine modulation, whereas dopamine modulation was unaffected by the A2A receptor antagonist SCH 442416. Thus, transient adenosine changes can transiently modulate phasic dopamine release via A1 receptors. These data demonstrate that adenosine has a rapid, but transient, modulatory role in the brain. Here, transient adenosine was shown to modulate phasic dopamine release on the order of seconds by acting at the A1 receptor. However, sustained increases in adenosine did not regulate phasic dopamine release. This study demonstrates for the first time a transient, neuromodulatory function of rapid adenosine to regulate rapid neurotransmitter release.

  7. Amphetamine Elicits Opposing Actions on Readily Releasable and Reserve Pools for Dopamine

    Science.gov (United States)

    Covey, Dan P.; Juliano, Steven A.; Garris, Paul A.

    2013-01-01

    Amphetamine, a highly addictive drug with therapeutic efficacy, exerts paradoxical effects on the fundamental communication modes employed by dopamine neurons in modulating behavior. While amphetamine elevates tonic dopamine signaling by depleting vesicular stores and driving non-exocytotic release through reverse transport, this psychostimulant also activates phasic dopamine signaling by up-regulating vesicular dopamine release. We hypothesized that these seemingly incongruent effects arise from amphetamine depleting the reserve pool and enhancing the readily releasable pool. This novel hypothesis was tested using in vivo voltammetry and stimulus trains of varying duration to access different vesicular stores. We show that amphetamine actions are stimulus dependent in the dorsal striatum. Specifically, amphetamine up-regulated vesicular dopamine release elicited by a short-duration train, which interrogates the readily releasable pool, but depleted release elicited by a long-duration train, which interrogates the reserve pool. These opposing actions of vesicular dopamine release were associated with concurrent increases in tonic and phasic dopamine responses. A link between vesicular depletion and tonic signaling was supported by results obtained for amphetamine in the ventral striatum and cocaine in both striatal sub-regions, which demonstrated augmented vesicular release and phasic signals only. We submit that amphetamine differentially targeting dopamine stores reconciles the paradoxical activation of tonic and phasic dopamine signaling. Overall, these results further highlight the unique and region-distinct cellular mechanisms of amphetamine and may have important implications for its addictive and therapeutic properties. PMID:23671560

  8. Distinct contributions of dopamine in the dorsolateral striatum and nucleus accumbens shell to the reinforcing properties of cocaine

    National Research Council Canada - National Science Library

    Veeneman - Rijkens, M.M.J; Broekhoven, M.H; Damsteegt, R; Vanderschuren, L.J.M.J

    .... Therefore, we systematically investigated the involvement of dopamine in dorsal and ventral striatal regions in cocaine self-administration, using various schedules of reinforcement in animals...

  9. Simultaneous radioenzymatic assay of dopamine and dihydroxyphenylacetic acid: an index of in vivo dopamine release

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.H.; Wooten, G.F.

    1981-03-01

    The relative brain tissue concentrations of dopamine (DA) and its deaminated metabolite, dihydroxyphenylacetic acid (DOPAC), appears to be a reliable index of the functional activity of dopaminergic neurons. In order to apply this approach to the assessment of dopaminergic neuronal activity in small regions of brain, we have developed a sensitive radioenzymatic assay for simultaneous measurement of DA and DOPAC. The sensitivity of the assay for DA is approximately 10 pg and for DOPAC 100 pg. In addition, the assay is highly specific, simple, and relatively inexpensive. The concurrent estimation of tissue DA and DOPAC concentrations seems to be a reliable means of evaluating the rate of DA turnover or release in behavioral, electrical stimulation, and certain drug paradigms. However, the release or turnover of DA as induced by D-amphetamine (and perhaps other indirectly-acting dopaminemimetic drugs) cannot be meaningfully assessed by measurement of DA and DOPAC alone.

  10. Socially isolated rats exhibit changes in dopamine homeostasis pertinent to schizophrenia

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Steiniger-Brach, Björn; Helboe, Lone;

    2011-01-01

    an investigation of prefrontal cortical dopamine dynamics using in vivo microdialysis. Social isolation for 12 weeks after weaning caused increased locomotor activity in response to novelty and amphetamine challenge. In vivo microdialysis experiments revealed that while social isolation did not change basal...... dopamine levels in the nucleus accumbens, it did cause a significant reduction of basal dopamine release in the prefrontal cortex. In addition, social isolation lead to a significantly larger dopamine response to an amphetamine challenge, in both the nucleus accumbens and the prefrontal cortex compared...

  11. Measuring dopamine release in the human brain with PET

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York at Stony Brook, Stony Brook, NY (United States). Dept. of Psychiatry; Fowler, J.S.; Logan, J.; Wang, G.J. [Brookhaven National Lab., Upton, NY (United States)

    1995-12-01

    The dopamine system is involved in the regulation of brain regions that subserve motor, cognitive and motivational behaviors. Disruptions of dopamine (DA) function have ben implicated in neurological and psychiatric illnesses including substance abuse as well as on some of the deficits associated with aging of the human brain. This has made the DA system an important topic in research in the neurosciences and neuroimaging as well as an important molecular target for drug development. Positron Emission Tomography (PET), was the first technology that enabled direct measurement of components of the DA system in the living human brain. Imaging studies of DA in the living brain have been indirect, relying on the development of radiotracers to label DA receptors, DA transporters, compounds which have specificity for the enzymes which degrade synaptic DA. Additionally, through the use of tracers that provide information on regional brain activity (ie brain glucose metabolism and cerebral blood flow) and of appropriate pharmacological interventions, it has been possible to assess the functional consequences of changes in brain DA activity. DA specific ligands have been useful in the evaluation of patients with neuropsychiatric illnesses as well as to investigate receptor blockade by antipsychotic drugs. A limitation of strategies that rely on the use of DA specific ligands is that the measures do not necessarily reflect the functional state of the dopaminergic system and that there use to study the effects of drugs is limited to the investigation of receptor or transporter occupancy. Newer strategies have been developed in an attempt to provide with information on dopamine release and on the functional responsivity of the DA system in the human brain. This in turn allows to investigate the effects of pharmacological agent in an analogous way to what is done with microdialysis techniques.

  12. Veratridine-evoked release of dopamine from guinea pig isolated cochlea

    NARCIS (Netherlands)

    Halmos, G; Gáborján, A; Lendvai, B; Répássy, G; Szabó, L Z; Vizi, E S

    2000-01-01

    Dopamine released from the lateral olivocochlear efferent system is thought to inhibit the toxic effect of the extreme glutamate outflow from the inner hair cells during ischemia or acoustic trauma. Using in vitro microvolume superfusion, we have studied the release of [(3)H]dopamine from the latera

  13. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum.

    Science.gov (United States)

    Goutier, W; Lowry, J P; McCreary, A C; O'Connor, J J

    2016-05-01

    Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500 nM) induced a decrease in dopamine efflux at low frequency (single pulse or five pulses at 10 Hz) and an increase at high frequency (100 Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.

  14. MR-DTI and PET multimodal imaging of dopamine release within subdivisions of basal ganglia

    Science.gov (United States)

    Tziortzi, A.; Searle, G.; Tsoumpas, C.; Long, C.; Shotbolt, P.; Rabiner, E.; Jenkinson, M.; Gunn, R. N.

    2011-09-01

    The basal ganglia is a group of anatomical nuclei, functionally organised into limbic, associative and sensorimotor regions, which plays a central role in dopamine related neurological and psychiatric disorders. In this study, we combine two imaging modalities to enable the measurement of dopamine release in functionally related subdivisions of the basal ganglia. [11C]-(+)-PHNO Positron Emission Tomography (PET) measurements in the living human brain pre- and post-administration of amphetamine allow for the estimation of regional dopamine release. Combined Magnetic Resonance Diffusion Tensor Imaging (MR-DTI) data allows for the definition of functional territories of the basal ganglia from connectivity information. The results suggest that there is a difference in dopamine release among the connectivity derived functional subdivisions. Dopamine release is highest in the limbic area followed by the sensorimotor and then the associative area with this pattern reflected in both striatum and pallidum.

  15. Nicotine restores morphine-induced memory deficit through the D1 and D2 dopamine receptor mechanisms in the nucleus accumbens.

    Science.gov (United States)

    Azizbeigi, Ronak; Ahmadi, Shamseddin; Babapour, Vahab; Rezayof, Ameneh; Zarrindast, Mohammad Reza

    2011-08-01

    Involvement of the dopamine D1 and D2 receptors in the nucleus accumbens (NAc) with interaction between morphine and nicotine on inhibitory avoidance (IA) memory was investigated. A step-through type of inhibitory avoidance tasks was used to assess memory in male Wistar rats. The results showed that subcutaneous (s.c.) administration of morphine (7.5 mg/kg) after training decreased retrieval of IA memory in the animals when tested 24 h later. Pre-test administration of the same dose of morphine significantly reversed the deficiency in retrieval. The results also showed that pre-test administration of nicotine (0.2 and 0.4 mg/kg, s.c.) by itself mimicked the effect of pre-test morphine, and lower doses of nicotine (0.1 and 0.2 mg/kg) also improved the effect of a low dose of morphine (2.5 mg/kg) on retrieval of IA memory. Pre-test intra-NAc administration of the dopamine D1 receptor antagonist, SCH 23390 (0.001 and 0.01 µg/rat), and the dopamine D2 receptor antagonist, sulpiride (0.5 and 1 µg/rat) caused no significant effects on IA memory by themselves, but both prevented reinstatement of the retrieval of IA memory by the effective dose of nicotine (0.4 mg/kg). It can be concluded that the dopaminergic mechanism(s) in the NAc is a crosslink for the effect of morphine and nicotine on reinstatement of retrieval of IA memory impaired by post-training administration of morphine.

  16. Effects of dopamine antagonists on methamphetamine-induced dopamine release in high and low alcohol preference rats.

    Science.gov (United States)

    Nishiguchi, Minori; Kinoshita, Hiroshi; Kasuda, Shogo; Takahashi, Montonori; Yamamura, Takehiko; Matsui, Kiyoshi; Ouchi, Harumi; Minami, Takako; Hishida, Shigeru; Nishio, Hajime

    2010-03-01

    The authors have previously shown that high alcohol preference rats (HAP) have a significantly higher sensitivity than low alcohol preference rats (LAP) for methamphetamine (MAP). In this study, changes in dopamine and serotonin release induced by MAP (1 mg/kg, intraperitoneally) after pre-treatment with D1 and D2 receptor antagonists were examined in the striatum of rats with different alcohol preferences to elucidate differences in receptor levels between the two rat strains. D1 receptor antagonist SCH23390 or D2 receptor antagonist haloperidol were administrated intracerebroventricularly 10 min before MAP stimulation. This study investigated the effect of methamphetamine-induced dopamine and serotonin release in striatum using microdialysis of freely moving rats coupled to ECD-HPLC. With haloperidol treatment both strains of rats showed a significantly greater maximum increase on MAP-induced dopamine release compared with respective control rats. However, after SCH23390 treatment only HAP rats showed a significantly greater increase in dopamine release compared with controls. SCH23390 blocks mainly D1 receptors only in the post-synaptic membrane, whereas haloperidol blocks D2 receptors in both the pre-synaptic and post-synaptic membranes. The MAP-induced increase in dopamine release following haloperidol pre-treatment was greater than SCH23390 pre-treatment in both strains. This result indicates that D2 receptors (autoreceptors) in the pre-synaptic membrane were blocked, leading to the elimination of the feedback function that regulates dopamine release. These data suggested that alcohol preference is associated with the action of MAP, and the dopaminergic mechanism, specifically the D1 system in the striatum, might have a different pathway dependent on alcohol preference.

  17. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory.

    Science.gov (United States)

    Kempadoo, Kimberly A; Mosharov, Eugene V; Choi, Se Joon; Sulzer, David; Kandel, Eric R

    2016-12-20

    Dopamine neurotransmission in the dorsal hippocampus is critical for a range of functions from spatial learning and synaptic plasticity to the deficits underlying psychiatric disorders such as attention-deficit hyperactivity disorder. The ventral tegmental area (VTA) is the presumed source of dopamine in the dorsal hippocampus. However, there is a surprising scarcity of VTA dopamine axons in the dorsal hippocampus despite the dense network of dopamine receptors. We have explored this apparent paradox using optogenetic, biochemical, and behavioral approaches and found that dopaminergic axons and subsequent dopamine release in the dorsal hippocampus originate from neurons of the locus coeruleus (LC). Photostimulation of LC axons produced an increase in dopamine release in the dorsal hippocampus as revealed by high-performance liquid chromatography. Furthermore, optogenetically induced release of dopamine from the LC into the dorsal hippocampus enhanced selective attention and spatial object recognition via the dopamine D1/D5 receptor. These results suggest that spatial learning and memory are energized by the release of dopamine in the dorsal hippocampus from noradrenergic neurons of the LC. The present findings are critical for identifying the neural circuits that enable proper attention selection and successful learning and memory.

  18. S-(N, N-diethylcarbamoyl)glutathione (carbamathione), a disulfiram metabolite and its effect on nucleus accumbens and prefrontal cortex dopamine, GABA, and glutamate: A microdialysis study

    Science.gov (United States)

    Faiman, Morris D.; Kaul, Swetha; Latif, Shaheen A.; Williams, Todd D.; Lunte, Craig E.

    2015-01-01

    Disulfiram (DSF), used for the treatment of alcohol use disorders (AUDs) for over six decades, most recently has shown promise for treating cocaine dependence. Although DSF’s mechanism of action in alcohol abuse is due to the inhibition of liver mitochondrial aldehyde dehydrogenase (ALDH2), its mechanism of action in the treatment of cocaine dependence is unknown. DSF is a pro-drug, forming a number of metabolites each with discrete pharmacological actions. One metabolite formed during DSF bioactivation is S-(N, N-diethylcarbamoyl) glutathione (carbamathione) (carb). We previously showed that carb affects glutamate binding. In the present studies, we employed microdialysis techniques to investigate the effect of carb administration on dopamine (DA), GABA, and glutamate (Glu) in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC), two brain regions implicated in substance abuse dependence. The effect of DSF on DA, GABA, and Glu in the NAc also was determined. Both studies were carried out in male rats. Carb (20, 50, 200 mg/kg i v) in a dose-dependent manner increased DA, decreased GABA, and had a biphasic effect on Glu, first increasing and then decreasing Glu in both the NAc and mPFC. These changes all occurred concurrently. After carb administration, NAc and mPFC carb, as well as carb in plasma, were rapidly eliminated with a half-life for each approximately 4 min, while the changes in DA, GABA, and GLu in the NAc and mPFC persisted for approximately two hours. The maximal increase in carb (Cmax) in the NAc and mPFC after carb administration was dose-dependent, as was the area under the curve (AUC). DSF (200 mg/kg i p) also increased DA, decreased GABA, and had a biphasic effect on Glu in the NAc similar to that observed in the NAc after carb administration. When the cytochrome P450 inhibitor N-benzylimidazole (NBI) (20 mg/kg i p) was administered before DSF dosing, no carb could be detected in the NAc and plasma and also no changes in NAc DA, GABA

  19. Striatal dopamine release in the rat during a cued lever-press task for food reward and the development of changes over time measured using high-speed voltammetry.

    Science.gov (United States)

    Nakazato, Taizo

    2005-09-01

    Substantia nigra dopamine neuronal activity in the primate is thought to be related to the error in predicting reward delivery. Dopamine release in rat nucleus accumbens has been shown to increase in relation to drug/food-seeking behaviour. It is not known how the release of dopamine in the striatum corresponds to the many distinct steps of a rewarded, cued task (e.g. recognizing the cue, executing the behaviour, anticipating the reward, receiving the reward) and how dopamine release then changes over time as task performance improves. To investigate dopamine release during a rewarded, cued task and the development of changes in dopamine release over time, changes in extracellular striatal dopamine concentration during a rewarded, cued lever-press task were measured a few days every week for 5 months using high-speed in vivo voltammetry. Rats were trained to press a lever after a tone to obtain a food reward. The reaction time for the lever press decreased gradually as training continued. Changes in dopamine concentration were measured in the anterior striatum (ventral portion) during the task performance after an initial 6-day familiarization period, in which the animals learned that a lever press yielded food, and a 5-week period for surgery, recovery, and electrode preparation. During the task performance, dopamine concentration started to increase just after the cue, peaked near the time of the lever press, and returned to basal levels 1-2 s after the lever press. This pattern of changes in dopamine concentration was observed over the 5 months of testing, the peak dopamine concentration increasing steadily until peaking at week 7, at which time the task performance had not yet improved significantly from week 2. By week 13, task performance had significantly improved and peak dopamine concentration had begun to subside. Thus, the increase in dopamine concentration after the cue was highest while the task was not yet perfected and subsided toward the end of the

  20. Ascorbate reduces morphine-induced extracellular DOPAC level in the nucleus accumbens: A microdialysis study in rats.

    Science.gov (United States)

    Rajaei, Z; Alaei, H; Nasimi, A; Amini, H; Ahmadiani, A

    2005-08-16

    Most drugs of abuse increase dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) release in the shell of the nucleus accumbens. The effects of ascorbate, which is known to modulate dopamine neurotransmission, on the extracellular level of DOPAC in the nucleus accumbens of naive rats and of rats treated acutely with morphine were studied by using in vivo microdialysis and high performance liquid chromatography with electrochemical detection (HPLC-ECD). Acute morphine (20 mg/kg ip) treatment increased the level of DOPAC in the nucleus accumbens to approximately 170% of basal level. Acute treatment with ascorbate (500 mg/kg ip) alone did not alter nucleus accumbens' DOPAC level, but pretreatment with ascorbate (500 mg/kg ip) 30 min before morphine administration attenuated the effects of acute morphine on the level of DOPAC. These results suggest that ascorbate modulates the mesolimbic dopaminergic pathway.

  1. The non-peptidic delta opioid receptor agonist TAN-67 enhances dopamine efflux in the nucleus accumbens of freely moving rats via a mechanism that involves both glutamate and free radicals.

    NARCIS (Netherlands)

    Fusa, K.; Takahashi, I.; Watanabe, S.; Aono, Y.; Ikeda, H.; Saigusa, T.; Nagase, H.; Suzuki, T.; Koshikawa, N.; Cools, A.R.

    2005-01-01

    The activation of the delta-opioid receptors in the nucleus accumbens is known to induce a large and rapid increase of accumbal dopamine efflux. (+/-)-TAN-67 (2-methyl-4a(alpha)-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12a(alpha)-octahydro -quinolino[2,3,3,-g]isoquinoline) is a centrally acting non-peptidi

  2. Monitoring axonal and somatodendritic dopamine release using fast-scan cyclic voltammetry in brain slices.

    Science.gov (United States)

    Patel, Jyoti C; Rice, Margaret E

    2013-01-01

    Brain dopamine pathways serve wide-ranging functions including the control of movement, reward, cognition, learning, and mood. Consequently, dysfunction of dopamine transmission has been implicated in clinical conditions such as Parkinson's disease, schizophrenia, addiction, and depression. Establishing factors that regulate dopamine release can provide novel insights into dopaminergic communication under normal conditions, as well as in animal models of disease in the brain. Here we describe methods for the study of somatodendritic and axonal dopamine release in brain slice preparations. Topics covered include preparation and calibration of carbon-fiber microelectrodes for use with fast-scan cyclic voltammetry, preparation of midbrain and forebrain slices, and procedures of eliciting and recording electrically evoked dopamine release from in vitro brain slices.

  3. Enhanced striatal dopamine release during food stimulation in binge eating disorder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, g.j.; Wang, G.-J.; Geliebter, A.; Volkow, N.D.; Telang, F.W.; Logan, Jaynbe, M.C.; Galanti, K.; Selig, P.A.; Han, H.; Zhu, W.; Wong, C.T.; Fowler, J.S.

    2011-01-13

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [{sup 11}C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.

  4. Enhanced striatal dopamine release during food stimulation in binge eating disorder.

    Science.gov (United States)

    Wang, Gene-Jack; Geliebter, Allan; Volkow, Nora D; Telang, Frank W; Logan, Jean; Jayne, Millard C; Galanti, Kochavi; Selig, Peter A; Han, Hao; Zhu, Wei; Wong, Christopher T; Fowler, Joanna S

    2011-08-01

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [(11)C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.

  5. Selective Enhancement of Dopamine Release in the Ventral Pallidum of Methamphetamine-Sensitized Mice.

    Science.gov (United States)

    Stout, Kristen A; Dunn, Amy R; Lohr, Kelly M; Alter, Shawn P; Cliburn, Rachel A; Guillot, Thomas S; Miller, Gary W

    2016-10-19

    Drugs of abuse induce sensitization, which is defined as enhanced response to additional drug following a period of withdrawal. Sensitization occurs in both humans and animal models of drug reinforcement and contributes substantially to the addictive nature of drugs of abuse, because it is thought to represent enhanced motivational wanting for drug. The ventral pallidum, a key member of the reward pathway, contributes to behaviors associated with reward, such as sensitization. Dopamine inputs to the ventral pallidum have not been directly characterized. Here we provide anatomical, neurochemical, and behavioral evidence demonstrating that dopamine terminals in the ventral pallidum contribute to reward in mice. We report subregional differences in dopamine release, measured by ex vivo fast-scan cyclic voltammetry: rostral ventral pallidum exhibits increased dopamine release and uptake compared with caudal ventral pallidum, which is correlated with tissue expression of dopaminergic proteins. We then subjected mice to a methamphetamine-sensitization protocol to investigate the contribution of dopaminergic projections to the region in reward related behavior. Methamphetamine-sensitized animals displayed a 508% and 307% increase in baseline dopamine release in the rostral and caudal ventral pallidum, respectively. Augmented dopamine release in the rostral ventral pallidum was significantly correlated with sensitized locomotor activity. Moreover, this presynaptic dopaminergic plasticity occurred only in the ventral pallidum and not in the ventral or dorsal striatum, suggesting that dopamine release in the ventral pallidum may be integrally important to drug-induced sensitization.

  6. A critical role of nucleus accumbens dopamine D1-family receptors in renewal of alcohol seeking after punishment-imposed abstinence.

    Science.gov (United States)

    Marchant, Nathan J; Kaganovsky, Konstantin

    2015-06-01

    In humans, places or contexts previously associated with alcohol use often provoke relapse during abstinence. This phenomenon is modeled in laboratory animals using the ABA renewal procedure, in which extinction training in context (B) suppresses alcohol seeking, and renewal of this seeking occurs when the animal returns to the original training context (A). However, extinction training does not adequately capture the motivation for abstinence in human alcoholics who typically self-initiate abstinence in response to the negative consequences of excessive use. We recently developed a procedure to study renewal in laboratory rats after abstinence imposed by negative consequences (footshock punishment). The mechanisms of renewal of punished alcohol seeking are largely unknown. Here, we used the D1-family receptor antagonist SCH 23390 to examine the role of nucleus accumbens (NAc) shell and core dopamine in renewal of alcohol seeking after punishment-imposed abstinence. We trained alcohol-preferring "P rats" to self-administer 20% alcohol in Context A and subsequently suppressed alcohol taking via response-contingent footshock punishment in Context B. We tested the effects of systemic, NAc shell, or NAc core injections of SCH 23390 on renewal of alcohol seeking after punishment-imposed abstinence. We found that both systemic and NAc shell and core injections of SCH 23390 decreased renewal of punished alcohol seeking. Our results demonstrate a critical role of NAc dopamine in renewal of alcohol seeking after punishment-imposed abstinence. We discuss these results in reference to the brain mechanisms of renewal of alcohol seeking after extinction versus punishment.

  7. Real-time electrochemical recording of dopamine release under optogenetic stimulation.

    Directory of Open Access Journals (Sweden)

    Wen-Tai Chiu

    Full Text Available Dopaminergic PC12 cells can synthesize and release dopamine, providing a good cellular model for investigating dopamine regulation. Optogenetic stimulation of channelrhodopsin-2 provides high spatial and temporal precision for selective stimulation as a powerful neuromodulation tool for neuroscience studies. The aim of this study is to measure dopamine release from dopaminergic PC12 cells under optogenetic stimulation using electrochemical recording of self-assembled monolayers modified microelectrode with amperometric measurement in real time. The activation of PC12 cells under various optogenetic stimulation schemes are characterized by measuring single-cell Ca(2+ imaging. After 10 seconds of optogenetic stimulation, the evoked intracellular Ca(2+ level and dopamine current of channelrhodopsin-2-transfected PC12 cells were 1.6- and 3.5-fold higher than those of the control cells. The optogenetic stimulation effects on Ca(2+ influx and dopamine release were 81% and 63% inhibition by using a Ca(2+ channel antagonist Nifedipine. The results indicate that optogenetic stimulation can evoke voltage-gated Ca(2+ channel-dependent dopamine exocytosis from PC12 cells in a cell specific, temporally precise and dose-dependent manner. This proposed dopamine recording system can be developed to be a good cell model for dopamine regulation and drug screening in vitro, or dopaminergic cell implantation therapy in vivo using optogenetic stimulation in a precise and convenient way.

  8. Real-time electrochemical recording of dopamine release under optogenetic stimulation.

    Science.gov (United States)

    Chiu, Wen-Tai; Lin, Che-Ming; Tsai, Tien-Chun; Wu, Chun-Wei; Tsai, Ching-Lin; Lin, Sheng-Hsiang; Chen, Jia-Jin Jason

    2014-01-01

    Dopaminergic PC12 cells can synthesize and release dopamine, providing a good cellular model for investigating dopamine regulation. Optogenetic stimulation of channelrhodopsin-2 provides high spatial and temporal precision for selective stimulation as a powerful neuromodulation tool for neuroscience studies. The aim of this study is to measure dopamine release from dopaminergic PC12 cells under optogenetic stimulation using electrochemical recording of self-assembled monolayers modified microelectrode with amperometric measurement in real time. The activation of PC12 cells under various optogenetic stimulation schemes are characterized by measuring single-cell Ca(2+) imaging. After 10 seconds of optogenetic stimulation, the evoked intracellular Ca(2+) level and dopamine current of channelrhodopsin-2-transfected PC12 cells were 1.6- and 3.5-fold higher than those of the control cells. The optogenetic stimulation effects on Ca(2+) influx and dopamine release were 81% and 63% inhibition by using a Ca(2+) channel antagonist Nifedipine. The results indicate that optogenetic stimulation can evoke voltage-gated Ca(2+) channel-dependent dopamine exocytosis from PC12 cells in a cell specific, temporally precise and dose-dependent manner. This proposed dopamine recording system can be developed to be a good cell model for dopamine regulation and drug screening in vitro, or dopaminergic cell implantation therapy in vivo using optogenetic stimulation in a precise and convenient way.

  9. Functional Fast Scan Cyclic Voltammetry Assay to Characterize Dopamine D2 and D3 Autoreceptors in the Mouse Striatum

    Science.gov (United States)

    2010-01-01

    Dopamine D2 and D3 autoreceptors are located on presynaptic terminals and are known to control the release and synthesis of dopamine. Dopamine D3 receptors have a fairly restricted pattern of expression in the mammalian brain. Their localization in the nucleus accumbens core and shell is of particular interest because of their association with the rewarding properties of drugs of abuse. Using background subtracted fast scan cyclic voltammetry, we investigated the effects of dopamine D2 and D3 agonists on electrically stimulated dopamine release and uptake rates in the mouse caudate putamen and nucleus accumbens core and shell. The dopamine D2 agonists (−)-quinpirole hydrochloride and 5,6,7,8-tetrahydro-6-(2-propen-1-yl)-4H-thiazolo[4,5-d]azepin-2-amine dihydrochloride (B-HT 920) had the same dopamine release inhibition effects on caudate putamen and nucleus accumbens (core and shell) on the basis of their EC50 values and efficacies. This suggests that the dopamine D2 autoreceptor functionality is comparable in all three striatal regions investigated. The dopamine D3 agonists (4aR,10bR)-3,4a,4,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin-9-ol hydrochloride ((+)-PD 128907) and (±)-7-Hydroxy-2-dipropylaminotetralin hydrobromide (7-OH-DPAT) had a significantly greater effect on dopamine release inhibition in the nucleus accumbens shell than in the caudate putamen. This study confirms that, the dopamine D3 autoreceptor functionality is greater in the nucleus accumbens shell followed by the nucleus accumbens core, with the caudate putamen having the least. Neither dopamine D2 nor D3 agonists affected the uptake rates in nucleus accumbens but concentrations greater than 0.1 μM lowered the uptake rate in caudate putamen. To validate our method of evaluating dopamine D2 and D3 autoreceptors, sulpiride (D2 antagonist) and nafadotride (D3 antagonist) were used to reverse the effects of the dopamine agonists to approximately 100% of the preagonist

  10. Doped Overoxidized Polypyrrole Microelectrodes as Sensors for the Detection of Dopamine Released from Cell Populations

    DEFF Research Database (Denmark)

    Sasso, Luigi; Heiskanen, Arto; Diazzi, Francesco

    2013-01-01

    A surface modification of interdigitated gold microelectrodes (IDEs) with a doped polypyrrole (PPy) film for detection of dopamine released from populations of differentiated PC12 cells is presented. A thin PPy layer was potentiostatically electropolymerized from an 10 aqueous pyrrole solution onto...... in dopamine detection. Overoxidation of the PPy films was shown to contribute to a significant enhancement in sensitivity to dopamine. The changes caused by overoxidation in the electrochemical behavior and electrode morphology were investigated using cyclic voltammetry and SEM as well as AFM, respectively....... The optimal dopant for dopamine detection was found to be polystyrenesulfonate anion (PSS-15 ). Rat pheochromocytoma (PC12) cells, a suitable model to study exocytotic dopamine release, were differentiated on IDEs functionalized with an overoxidized PSS--doped PPy film. The modified electrodes were used...

  11. Membrane permeable C-terminal dopamine transporter peptides attenuate amphetamine-evoked dopamine release

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Owens, WA; Winkler, Marie-Therese

    2013-01-01

    The dopamine transporter (DAT) is responsible for sequestration of extracellular dopamine (DA). The psychostimulant amphetamine (AMPH) is a DAT substrate, which is actively transported into the nerve terminal, eliciting vesicular depletion and reversal of DA transport via DAT. Here, we investigate...

  12. Attenuated Tonic and Enhanced Phasic Release of Dopamine in Attention Deficit Hyperactivity Disorder.

    Directory of Open Access Journals (Sweden)

    Rajendra D Badgaiyan

    Full Text Available It is unclear whether attention deficit hyperactive disorder (ADHD is a hypodopaminergic or hyperdopaminergic condition. Different sets of data suggest either hyperactive or hypoactive dopamine system. Since indirect methods used in earlier studies have arrived at contradictory conclusions, we directly measured the tonic and phasic release of dopamine in ADHD volunteers. The tonic release in ADHD and healthy control volunteers was measured and compared using dynamic molecular imaging technique. The phasic release during performance of Eriksen's flanker task was measured in the two groups using single scan dynamic molecular imaging technique. In these experiments volunteers were positioned in a positron emission tomography (PET camera and administered a dopamine receptor ligand (11C-raclopride intravenously. After the injection PET data were acquired dynamically while volunteers either stayed still (tonic release experiments or performed the flanker task (phasic release experiments. PET data were analyzed to measure dynamic changes in ligand binding potential (BP and other receptor kinetic parameters. The analysis revealed that at rest the ligand BP was significantly higher in the right caudate of ADHD volunteers suggesting reduced tonic release. During task performance significantly lower ligand BP was observed in the same area, indicating increased phasic release. In ADHD tonic release of dopamine is attenuated and the phasic release is enhanced in the right caudate. By characterizing the nature of dysregulated dopamine neurotransmission in ADHD, the results explain earlier findings of reduced or increased dopaminergic activity.

  13. The Anorexigenic Peptide Neuromedin U (NMU Attenuates Amphetamine-Induced Locomotor Stimulation, Accumbal Dopamine Release and Expression of Conditioned Place Preference in Mice.

    Directory of Open Access Journals (Sweden)

    Daniel Vallöf

    Full Text Available Amphetamine dependence, besides its substantial economical consequence, is a serious cause of mortality and morbidity. By investigations of the neurochemical correlates through which addictive drugs, such as amphetamine, activate the mesoaccumbal dopamine system unique targets for treatment of drug addiction can be identified. This reward link consists of a dopamine projection from the ventral tegmental area to the nucleus accumbens (NAc suggesting that these brain areas are important for reward. The physiological function of gut-brain peptides has expanded beyond food intake modulation and involves regulation of drug reinforcement. A novel candidate for reward regulation is the anorexigenic peptide neuromedin U (NMU. We therefore investigated the effects of intracerebroventricular (icv administration of NMU on amphetamine's well-documented effects on the mesoaccumbal dopamine system, i.e. locomotor stimulation and accumbal dopamine release in mice. In addition, the effect of accumbal NMU administration on locomotor activity was examined. The effect of NMU, icv or intra-NAc, on the expression of conditioned place preference (CPP was elucidated. Firstly, we showed that icv administration of NMU attenuate the amphetamine-induced locomotor stimulation, accumbal dopamine release and expression of CPP in mice. Secondly, we found that a lower dose of NMU (icv reduce the amphetamine-induced locomotor stimulation in mice. Thirdly, we demonstrated that NMU administration into the NAc block the ability of amphetamine to cause a locomotor stimulation in mice. However, accumbal NMU administration did not attenuate the amphetamine-induced expression of CPP in mice. Our novel data suggest that central NMU signalling is involved in development of amphetamine dependence.

  14. Nucleus accumbens dopamine and mu-opioid receptors modulate the reinstatement of food-seeking behavior by food-associated cues.

    Science.gov (United States)

    Guy, Elizabeth G; Choi, Eugene; Pratt, Wayne E

    2011-06-01

    The high attrition rates for dietary interventions aimed at promoting a healthier body mass may be caused, at least in part, by constant exposure to environmental stimuli that are associated with palatable foods. In both humans and animals, conditioned stimuli (CSs) that signal reward availability reliably reinstate food- and drug-seeking behaviors. The nucleus accumbens (NAcc) is critically involved in the cue-evoked reinstatement of food-seeking, but the role of individual neurotransmitter systems within the NAcc remains to be determined. These experiments tested the effects of intra-accumbal pharmacological manipulations of dopamine (DA) D(1) and D(2) receptors, mu-opioid receptors, or serotonin (5-HT) receptors on cue-evoked relapse to food-seeking. Rats were trained to lever press for sucrose pellets and the concurrent presentation of a light-tone CS. Once training was complete, lever-pressing was extinguished in the absence of either sucrose or CS presentation. Once each rat had reached extinction criterion, they received two reinstatement sessions in which lever pressing was renewed by response-contingent presentation of the CS. Prior to each reinstatement test, rats received NAcc microinfusions of saline or the selective D(1) receptor antagonist SCH 23390, the D(2) receptor antagonist raclopride, the mu-opioid receptor agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO), or 5-HT hydrogen maleate. Compared to saline test days, intra-accumbens infusions of SCH 23390 (1 μg/0.5 μL), raclopride (1 μg/0.5 μL), or DAMGO (0.25 μg/0.5 μL) effectively blocked the cue-evoked reinstatement of food-seeking. In contrast, stimulation of serotonin (5-HT) receptors by 5-HT hydrogen maleate (5 μg/0.5 μL) had no effect on cue-induced reinstatement. These novel data support roles for NAcc DA D(1), D(2), and mu-opioid receptors in the cue-evoked reinstatement of food seeking.

  15. Chlorpromazine, haloperidol, metoclopramide and domperidone release prolactin through dopamine antagonism at low concentrations but paradoxically inhibit prolactin release at high concentrations.

    Science.gov (United States)

    Besser, G. M.; Delitala, G.; Grossman, A.; Stubbs, W. A.; Yeo, T.

    1980-01-01

    1. The effects of chlorpromazine, haloperidol, metoclopramide and domperidone on the release of prolactin from perfused columns of dispersed rat anterior pituitary cells were studied. 2. Chlorpromazine, haloperidol, metoclopramide and domperidone antagonized the dopamine-mediated inhibition of prolactin release at low concentrations. 3. Each dopamine antagonist displaced the dose-response curve for dopamine-induced suppression of prolactin release to the right in a parallel manner. 4. At higher concentrations, the four drugs became less effective as dopamine antagonists. 5. At high concentrations in the absence of dopamine, chlorpromazine, haloperidol, metoclopramide and domperidone paradoxically suppressed prolactin secretion by an unknown mechanism. PMID:6110459

  16. Doped overoxidized polypyrrole microelectrodes as sensors for the detection of dopamine released from cell populations.

    Science.gov (United States)

    Sasso, Luigi; Heiskanen, Arto; Diazzi, Francesco; Dimaki, Maria; Castillo-León, Jaime; Vergani, Marco; Landini, Ettore; Raiteri, Roberto; Ferrari, Giorgio; Carminati, Marco; Sampietro, Marco; Svendsen, Winnie E; Emnéus, Jenny

    2013-07-07

    A surface modification of interdigitated gold microelectrodes (IDEs) with a doped polypyrrole (PPy) film for detection of dopamine released from populations of differentiated PC12 cells is presented. A thin PPy layer was potentiostatically electropolymerized from an aqueous pyrrole solution onto electrode surfaces. The conducting polymer film was doped during electropolymerization by introducing counter-ions in the monomer solution. Several counter-ions were tested and the resulting electrode modifications were characterized electrochemically to find the optimal dopant that increases sensitivity in dopamine detection. Overoxidation of the PPy films was shown to contribute to a significant enhancement in sensitivity to dopamine. The changes caused by overoxidation in the electrochemical behavior and electrode morphology were investigated using cyclic voltammetry and SEM as well as AFM, respectively. The optimal dopant for dopamine detection was found to be polystyrene sulfonate anion (PSS(-)). Rat pheochromocytoma (PC12) cells, a suitable model to study exocytotic dopamine release, were differentiated on IDEs functionalized with an overoxidized PSS(-)-doped PPy film. The modified electrodes were used to amperometrically detect dopamine released by populations of cells upon triggering cellular exocytosis with an elevated K(+) concentration. A comparison between the generated current on bare gold electrodes and gold electrodes modified with overoxidized doped PPy illustrates the clear advantage of the modification, yielding 2.6-fold signal amplification. The results also illustrate how to use cell population based dopamine exocytosis measurements to obtain biologically significant information that can be relevant in, for instance, the study of neural stem cell differentiation into dopaminergic neurons.

  17. PRESYNAPTIC DOPAMINE MODULATION BY STIMULANT SELF ADMINISTRATION

    Science.gov (United States)

    España, Rodrigo A.; Jones, Sara R.

    2013-01-01

    The mesolimbic dopamine system is an essential participant in the initiation and modulation of various forms of goal-directed behavior, including drug reinforcement and addiction processes. Dopamine neurotransmission is increased by acute administration of all drugs of abuse, including the stimulants cocaine and amphetamine. Chronic exposure to these drugs via voluntary self-administration provides a model of stimulant abuse that is useful in evaluating potential behavioral and neurochemical adaptations that occur during addiction. This review describes commonly used methodologies to measure dopamine and baseline parameters of presynaptic dopamine regulation, including exocytotic release and reuptake through the dopamine transporter in the nucleus accumbens core, as well as dramatic adaptations in dopamine neurotransmission and drug sensitivity that occur with acute non-contingent and chronic, contingent self-administration of cocaine and amphetamine. PMID:23277050

  18. Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress?

    Science.gov (United States)

    Peciña, Susana; Schulkin, Jay; Berridge, Kent C

    2006-01-01

    Background Corticotropin-releasing factor (CRF) is typically considered to mediate aversive aspects of stress, fear and anxiety. However, CRF release in the brain is also elicited by natural rewards and incentive cues, raising the possibility that some CRF systems in the brain mediate an independent function of positive incentive motivation, such as amplifying incentive salience. Here we asked whether activation of a limbic CRF subsystem magnifies the increase in positive motivation for reward elicited by incentive cues previously associated with that reward, in a way that might exacerbate cue-triggered binge pursuit of food or other incentives? We assessed the impact of CRF microinjections into the medial shell of nucleus accumbens using a pure incentive version of Pavlovian-Instrumental transfer, a measure specifically sensitive to the incentive salience of reward cues (which it separates from influences of aversive stress, stress reduction, frustration and other traditional explanations for stress-increased behavior). Rats were first trained to press one of two levers to obtain sucrose pellets, and then separately conditioned to associate a Pavlovian cue with free sucrose pellets. On test days, rats received microinjections of vehicle, CRF (250 or 500 ng/0.2 μl) or amphetamine (20 μg/0.2 μl). Lever pressing was assessed in the presence or absence of the Pavlovian cues during a half-hour test. Results Microinjections of the highest dose of CRF (500 ng) or amphetamine (20 μg) selectively enhanced the ability of Pavlovian reward cues to trigger phasic peaks of increased instrumental performance for a sucrose reward, each peak lasting a minute or so before decaying after the cue. Lever pressing was not enhanced by CRF microinjections in the baseline absence of the Pavlovian cue or during the presentation without a cue, showing that the CRF enhancement could not be explained as a result of generalized motor arousal, frustration or stress, or by persistent

  19. Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress?

    Directory of Open Access Journals (Sweden)

    Schulkin Jay

    2006-04-01

    Full Text Available Abstract Background Corticotropin-releasing factor (CRF is typically considered to mediate aversive aspects of stress, fear and anxiety. However, CRF release in the brain is also elicited by natural rewards and incentive cues, raising the possibility that some CRF systems in the brain mediate an independent function of positive incentive motivation, such as amplifying incentive salience. Here we asked whether activation of a limbic CRF subsystem magnifies the increase in positive motivation for reward elicited by incentive cues previously associated with that reward, in a way that might exacerbate cue-triggered binge pursuit of food or other incentives? We assessed the impact of CRF microinjections into the medial shell of nucleus accumbens using a pure incentive version of Pavlovian-Instrumental transfer, a measure specifically sensitive to the incentive salience of reward cues (which it separates from influences of aversive stress, stress reduction, frustration and other traditional explanations for stress-increased behavior. Rats were first trained to press one of two levers to obtain sucrose pellets, and then separately conditioned to associate a Pavlovian cue with free sucrose pellets. On test days, rats received microinjections of vehicle, CRF (250 or 500 ng/0.2 μl or amphetamine (20 μg/0.2 μl. Lever pressing was assessed in the presence or absence of the Pavlovian cues during a half-hour test. Results Microinjections of the highest dose of CRF (500 ng or amphetamine (20 μg selectively enhanced the ability of Pavlovian reward cues to trigger phasic peaks of increased instrumental performance for a sucrose reward, each peak lasting a minute or so before decaying after the cue. Lever pressing was not enhanced by CRF microinjections in the baseline absence of the Pavlovian cue or during the presentation without a cue, showing that the CRF enhancement could not be explained as a result of generalized motor arousal, frustration or stress

  20. Identification of coffee components that stimulate dopamine release from pheochromocytoma cells (PC-12).

    Science.gov (United States)

    Walker, J; Rohm, B; Lang, R; Pariza, M W; Hofmann, T; Somoza, V

    2012-02-01

    Coffee and caffeine are known to affect the limbic system, but data on the influence of coffee and coffee constituents on neurotransmitter release is limited. We investigated dopamine release and Ca(2+)-mobilization in pheochromocytoma cells (PC-12 cells) after stimulation with two lyophilized coffee beverages prepared from either Coffea arabica (AR) or Coffea canephora var. robusta (RB) beans and constituents thereof. Both coffee lyophilizates showed effects in dilutions between 1:100 and 1:10,000. To identify the active coffee compound, coffee constituents were tested in beverage and plasma representative concentrations. Caffeine, trigonelline, N-methylpyridinium, chlorogenic acid, catechol, pyrogallol and 5-hydroxytryptamides increased calcium signaling and dopamine release, although with different efficacies. While N-methylpyridinium stimulated the Ca(2+)-mobilization most potently (EC(200): 0.14±0.29μM), treatment of the cells with pyrogallol (EC(200): 48±14nM) or 5-hydroxytryptamides (EC(200): 10±3nM) lead to the most pronounced effect on dopamine release. In contrast, no effect was seen for the reconstituted biomimetic mixture. We therefore conclude that each of the coffee constituents tested stimulated the dopamine release in PC-12 cells. Since no effect was found for their biomimetic mixture, we hypothesize other coffee constituents being responsible for the dopamine release demonstrated for AR and RB coffee brews. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Tyrosine administration enhances dopamine synthesis and release in light-activated rat retina

    Science.gov (United States)

    Gibson, C. J.; Watkins, C. J.; Wurtman, R. J.

    1983-01-01

    Exposure of dark-adapted albino rats to light (350 lux) significantly elevated retinal levels of the dopamine metabolite dihydroxyphenyl acetic acid during the next hour; their return to a dark environment caused dihydroxyphenyl acetic acid levels to fall. Retinal dopamine levels were increased slightly by light exposure, suggesting that the increase in dihydroxyphenyl acetic acid reflected accelerated dopamine synthesis. Administration of tyrosine (100 mg/kg, i.p.) further elevated retinal dihydroxyphenyl acetic acid among light-exposed animals, but failed to affect dopamine release among animals in the dark. These observations show that a physiological stimulus - light exposure - can cause catecholaminergic neurons to become tyrosine-dependent; they also suggest that food consumption may affect neurotransmitter release within the retina.

  2. Phasic dopamine release drives rapid activation of striatal D2-receptors

    Science.gov (United States)

    Marcott, Pamela F; Mamaligas, Aphroditi A; Ford, Christopher P

    2014-01-01

    Summary Striatal dopamine transmission underlies numerous goal-directed behaviors. Medium spiny neurons (MSNs) are a major target of dopamine in the striatum. However, as dopamine does not directly evoke a synaptic event in MSNs, the time course of dopamine signaling in these cells remains unclear. To examine how dopamine release activates D2-receptors on MSNs, G-protein activated inwardly rectifying potassium (GIRK2; Kir 3.2) channels were virally overexpressed in the striatum and the resulting outward currents were used as a sensor of D2-receptor activation. Electrical and optogenetic stimulation of dopamine terminals evoked robust D2-receptor inhibitory post-synaptic currents (IPSCs) in GIRK2-expressing MSNs that occurred in under a second. Evoked D2-IPSCs could be driven by repetitive stimulation and were not occluded by background dopamine tone. Together, the results indicate that D2-receptors on MSNs exhibit functional low affinity and suggest that striatal D2-receptors can encode both tonic and phasic dopamine signals. PMID:25242218

  3. Microinjection of CART (cocaine- and amphetamine-regulated transcript) peptide into the nucleus accumbens inhibits the cocaine-induced upregulation of dopamine receptors and locomotor sensitization.

    Science.gov (United States)

    Peng, Qinghua; Sun, Xi; Liu, Ziyong; Yang, Jianghua; Oh, Ki-Wan; Hu, Zhenzhen

    2014-09-01

    Repeated exposure to addictive drugs enhances dopamine receptor (DR) signaling and the ultimate phosphorylation of the cyclic adenosine 5'-monophosphate (cAMP)-response element-binding protein (CREB)-regulated cocaine- and amphetamine-regulated transcript (CART) expression in the nucleus accumbens (NAcc). These effects are known to contribute to the expression of behavioral sensitization. CART peptides are neuropeptides that modulate drug reward and reinforcement. The present experiments investigated the effects of CART 55-102 microinjection into the NAcc on (1) the phosphorylation of CREB, (2) cAMP/protein kinase A (PKA) signaling and (3) extracellular signal-regulated kinase (ERK) phosphorylated kinase signaling. Here, we show that repeated microinjections into the NAcc of CART 55-102 peptides (1.0 or 2.5μg, 0.5μl/side) attenuates cocaine-induced enhancements of D1R, D2R and D3R phosphorylation in this sites. Furthermore, the microinjection of CART 55-102 followed by repeated injections of cocaine (15mg/kg) dose-dependently blocked the enhancement of cAMP levels, PKA activity and pERK and pCREB levels on the fifth day of cocaine administration. The cocaine-induced locomotor activity and behavioral sensitization in rats were also inhibited by the 5-day-microinjection of CART peptides. These results suggest that the phosphorylation of CREB by cocaine in the NAcc was blocked by the CART 55-102 peptide via the inhibition of D1R and D2R stimulation, D3R phosphorylation, cAMP/PKA signaling and ERK phosphorylated kinase signaling. These effects may have played a compensatory inhibitory role in the behavioral sensitization of rats that received microinjections of CART 55-102.

  4. Nucleus accumbens neurotransmission and effort-related choice behavior in food motivation: effects of drugs acting on dopamine, adenosine, and muscarinic acetylcholine receptors.

    Science.gov (United States)

    Nunes, Eric J; Randall, Patrick A; Podurgiel, Samantha; Correa, Mercè; Salamone, John D

    2013-11-01

    Mesolimbic dopamine (DA) is a critical component of the brain circuitry regulating behavioral activation and effort-related processes. Although nucleus accumbens (NAc) DA depletions or antagonism leave aspects of appetite and primary food motivation intact, rats with impaired DA transmission reallocate their instrumental behavior away from food-reinforced tasks with high response requirements, and instead select less effortful food-seeking behaviors. Previous work showed that adenosine A2A antagonists can reverse the effects of DA D2 antagonists on effort-related choice, and that stimulation of adenosine A2A receptors produces behavioral effects that are similar to those induced by DA antagonism. The present review summarizes the literature on the role of NAc DA and adenosine in effort-related processes, and also presents original data on the effects of local stimulation of muscarinic acetylcholine receptors in NAc core. Local injections of the muscarinic agonist pilocarpine directly into NAc core produces shifts in effort-related choice behavior similar to those induced by DA antagonism or A2A receptor stimulation, decreasing lever pressing but increasing chow intake in rats responding on a concurrent fixed ratio/chow feeding choice task. In contrast, injections into a neostriatal control site dorsal to the NAc were ineffective. The actions of pilocarpine on this task were attenuated by co-administration of the muscarinic antagonist scopolamine. Thus, drugs that act on DA, adenosine A2A, and muscarinic receptors regulate effort-related choice behavior, which may have implications for the treatment of psychiatric symptoms such as psychomotor slowing, fatigue or anergia that can be observed in depression and other disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Role of dopamine in the plasticity of glutamic acid decarboxylase messenger RNA in the rat frontal cortex and the nucleus accumbens.

    Science.gov (United States)

    Rétaux, S; Trovero, F; Besson, M J

    1994-12-01

    The modulatory role of dopamine (DA) on the expression of mRNA encoding the large isoform of glutamic acid decarboxylase (GAD67), the biosynthesis enzyme of gamma aminobutyric acid (GABA), was examined in GABA neurons of two structures innervated by DA neurons originating from the ventral tegmental area (VTA): the medial frontal cortex (MFC) and the nucleus accumbens (NAcc). A bilateral electrolytic lesion of VTA was performed in rats to produce a DA denervation of both the MFC and NAcc. The efficacy of VTA lesions was verified by measurement of locomotor activity and by immunohistochemical detection of tyrosine hydroxylase in the mesencephalon. GAD67 mRNA was detected by in situ hybridization histochemistry using a 35S-labelled cDNA probe. Densitometric analysis of GAD67 mRNA hybridization signals revealed in VTA-lesioned rats a significant decrease (-24%) in GAD67 mRNA levels in the prelimbic area of the MFC and no significant effect in the anterior cingulate area or the frontoparietal cortex. Single cell analyses by computer-assisted grain counting showed that the decrease in GAD67 mRNA levels in prelimbic MFC was due to a change in GAD67 mRNA expression in a subpopulation of GABA interneurons located in the deep cortical layers (V-VI). By contrast, in the NAcc of VTA-lesioned rats, GAD67 mRNA levels were significantly increased in the anterior part and in the core but were unchanged in the shell part. These results suggest that in two target structures of VTA DA neurons, GAD67 mRNA expression is, in normal conditions, under a tonic stimulatory and a tonic inhibitory DA control in the MFC and the NAcc respectively. A schematic diagram is proposed for functional interactions between these structures.

  6. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets.

    Science.gov (United States)

    Peris, Joanna; MacFadyen, Kaley; Smith, Justin A; de Kloet, Annette D; Wang, Lei; Krause, Eric G

    2017-04-01

    The mesolimbic dopamine (DA) circuitry determines which behaviors are positively reinforcing and therefore should be encoded in the memory to become a part of the behavioral repertoire. Natural reinforcers, like food and sex, activate this pathway, thereby increasing the likelihood of further consummatory, social, and sexual behaviors. Oxytocin (OT) has been implicated in mediating natural reward and OT-synthesizing neurons project to the ventral tegmental area (VTA) and nucleus accumbens (NAc); however, direct neuroanatomical evidence of OT regulation of DA neurons within the VTA is sparse. To phenotype OT-receptor (OTR) expressing neurons originating within the VTA, we delivered Cre-inducible adeno-associated virus that drives the expression of fluorescent marker into the VTA of male mice that had Cre-recombinase driven by OTR gene expression. OTR-expressing VTA neurons project to NAc, prefrontal cortex, the extended amygdala, and other forebrain regions but less than 10% of these OTR-expressing neurons were identified as DA neurons (defined by tyrosine hydroxylase colocalization). Instead, almost 50% of OTR-expressing cells in the VTA were glutamate (GLU) neurons, as indicated by expression of mRNA for the vesicular GLU transporter (vGluT). About one-third of OTR-expressing VTA neurons did not colocalize with either DA or GLU phenotypic markers. Thus, OTR expression by VTA neurons implicates that OT regulation of reward circuitry is more complex than a direct action on DA neurotransmission. J. Comp. Neurol. 525:1094-1108, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. The possible interaction of dopamine system in nucleus accumbens shell and glutamate system of prelimbic region on locomotor activity in rat

    Directory of Open Access Journals (Sweden)

    Hatam Ahmadi

    2013-06-01

    Full Text Available Background: Nucleus accumbens (NAc and prefrontal cortex (PFC dopaminergic and glutamatergic systems are involved in regulating of locomotor activity behaviors. This study has investigated the interaction of NAc shell dopaminergic system and prelimbic glutamatergic systems in regulating locomotor activity and related parameters. Methods: The aim of this study was the effect the drugs injection interaction in the brain of male Wistar rats on locomotor activity and related parameters, in the order of this purpose, open field apparatus that automatically recorded locomotor activity was employed. Unilateral intra-cerebral injection of drugs was done. Results: Unilateral intra-prelimbic injection of D-AP7 (N-methyl-D-aspartic acid= NMDA receptor antagonist; 0.25, 0.5 and 1μg/μl did not alter locomotor activity behaviors. However, infusion of NMDA (0.9μg/μl in this region increased locomotor activity (P<0.01, whereas decreased rearing (P<0.01 and grooming (P<0.01 which was blocked by D-AP7 (0.25μg/μl (P<0.01. Moreover, unilateral infusion of SCH23390 (dopamine D1 receptor antagonist; 0.25, 0.5 and 1μg/μl into the left NAc shell did not alter locomotor activity. However, injection of SKF38393 (dopamine D1 receptor agonist; 4μg/μl into the left NAc shell increased locomotor activity (P<0.05 which was blocked by SCH23390 (0.25μg/μl (P<0.01. Furthermore, the subthreshold dose infusion of SCH23390 (0.25μg/μl into the left NAc shell reduced the effect of intra- prelimbic NMDA on locomotor activity (P<0.01. In addition, intra-NAc shell administration of the subthreshold dose of SKF38393 (1μg/μl potentiated the middle dose (P<0.05, whereas decreased the higher dose of intra-left prelimbic NMDA response (P<0.05 on locomotor activity. Conclusion: The results suggested a modulatory effect of the NAc shell dopaminergic system on increased locomotor activity by activating glutamate system in prelimbic.

  8. BOLD and its connection to dopamine release in human striatum: a cross-cohort comparison

    Science.gov (United States)

    Lohrenz, Terry; Kishida, Kenneth T.

    2016-01-01

    Activity in midbrain dopamine neurons modulates the release of dopamine in terminal structures including the striatum, and controls reward-dependent valuation and choice. This fluctuating release of dopamine is thought to encode reward prediction error (RPE) signals and other value-related information crucial to decision-making, and such models have been used to track prediction error signals in the striatum as encoded by BOLD signals. However, until recently there have been no comparisons of BOLD responses and dopamine responses except for one clear correlation of these two signals in rodents. No such comparisons have been made in humans. Here, we report on the connection between the RPE-related BOLD signal recorded in one group of subjects carrying out an investment task, and the corresponding dopamine signal recorded directly using fast-scan cyclic voltammetry in a separate group of Parkinson's disease patients undergoing DBS surgery while performing the same task. The data display some correspondence between the signal types; however, there is not a one-to-one relationship. Further work is necessary to quantify the relationship between dopamine release, the BOLD signal and the computational models that have guided our understanding of both at the level of the striatum. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574306

  9. Glutamate stimulation of (/sup 3/H)dopamine release from dissociated cell cultures of rat ventral mesencephalon

    Energy Technology Data Exchange (ETDEWEB)

    Mount, H.; Welner, S.; Quirion, R.; Boksa, P.

    1989-04-01

    In dissociated cell cultures of fetal rat ventral mesencephalon preloaded with (3H)dopamine, glutamate (10(-5)-10(-3) M) stimulated the release of (3H)dopamine. Glutamate stimulation of (3H)dopamine release was Ca2+ dependent and was blocked by the glutamate antagonist, cis-2,3-piperidine dicarboxylic acid. Glutamate stimulation of (3H)dopamine release was not due to glutamate neurotoxicity because (1) glutamate did not cause release of a cytosolic marker, lactate dehydrogenase, and (2) preincubation of cultures with glutamate did not impair subsequent ability of the cells to take up or release (3H)dopamine. Thus, these dissociated cell cultures appear to provide a good model system to characterize glutamate stimulation of dopamine release. Release of (3H)dopamine from these cultures was stimulated by veratridine, an activator of voltage-sensitive Na+ channels, and this stimulation was blocked by tetrodotoxin. However, glutamate-stimulated (3H)dopamine release was not blocked by tetrodotoxin or Zn2+. Substitution of NaCl in the extracellular medium by sucrose, LiCl, or Na2SO4 had no effect on glutamate stimulation of (3H)dopamine release; however, release was inhibited when NaCl was replaced by choline chloride or N-methyl-D-glucamine HCl. Glutamate-stimulated (3H)-dopamine release was well maintained (60-82% of control) in the presence of Co2+, which blocks Ca2+ action potentials, and was unaffected by the local anesthetic, lidocaine. These results are discussed in terms of the receptor and ionic mechanisms involved in the stimulation of dopamine release by excitatory amino acids.

  10. Enhanced Dopamine Release by Dopamine Transport Inhibitors Described by a Restricted Diffusion Model and Fast-Scan Cyclic Voltammetry.

    Science.gov (United States)

    Hoffman, Alexander F; Spivak, Charles E; Lupica, Carl R

    2016-06-15

    Fast-scan cyclic voltammetry (FSCV) using carbon fiber electrodes is widely used to rapidly monitor changes in dopamine (DA) levels in vitro and in vivo. Current analytical approaches utilize parameters such as peak oxidation current amplitude and decay times to estimate release and uptake processes, respectively. However, peak amplitude changes are often observed with uptake inhibitors, thereby confounding the interpretation of these parameters. To overcome this limitation, we demonstrate that a simple five-parameter, two-compartment model mathematically describes DA signals as a balance of release (r/ke) and uptake (ku), summed with adsorption (kads and kdes) of DA to the carbon electrode surface. Using nonlinear regression, we demonstrate that our model precisely describes measured DA signals obtained in brain slice recordings. The parameters extracted from these curves were then validated using pharmacological manipulations that selectively alter vesicular release or DA transporter (DAT)-mediated uptake. Manipulation of DA release through altering the Ca(2+)/Mg(2+) ratio or adding tetrodotoxin reduced the release parameter with no effect on the uptake parameter. DAT inhibitors methylenedioxypyrovalerone, cocaine, and nomifensine significantly reduced uptake and increased vesicular DA release. In contrast, a low concentration of amphetamine reduced uptake but had no effect on DA release. Finally, the kappa opioid receptor agonist U50,488 significantly reduced vesicular DA release but had no effect on uptake. Together, these data demonstrate a novel analytical approach to distinguish the effects of manipulations on DA release or uptake that can be used to interpret FSCV data.

  11. Dopamine release from transplanted neural stem cells in Parkinsonian rat striatum in vivo.

    Science.gov (United States)

    Kang, Xinjiang; Xu, Huadong; Teng, Sasa; Zhang, Xiaoyu; Deng, Zijun; Zhou, Li; Zuo, Panli; Liu, Bing; Liu, Bin; Wu, Qihui; Wang, Li; Hu, Meiqin; Dou, Haiqiang; Liu, Wei; Zhu, Feipeng; Li, Qing; Guo, Shu; Gu, Jingli; Lei, Qian; Lü, Jing; Mu, Yu; Jin, Mu; Wang, Shirong; Jiang, Wei; Liu, Kun; Wang, Changhe; Li, Wenlin; Zhang, Kang; Zhou, Zhuan

    2014-11-04

    Embryonic stem cell-based therapies exhibit great potential for the treatment of Parkinson's disease (PD) because they can significantly rescue PD-like behaviors. However, whether the transplanted cells themselves release dopamine in vivo remains elusive. We and others have recently induced human embryonic stem cells into primitive neural stem cells (pNSCs) that are self-renewable for massive/transplantable production and can efficiently differentiate into dopamine-like neurons (pNSC-DAn) in culture. Here, we showed that after the striatal transplantation of pNSC-DAn, (i) pNSC-DAn retained tyrosine hydroxylase expression and reduced PD-like asymmetric rotation; (ii) depolarization-evoked dopamine release and reuptake were significantly rescued in the striatum both in vitro (brain slices) and in vivo, as determined jointly by microdialysis-based HPLC and electrochemical carbon fiber electrodes; and (iii) the rescued dopamine was released directly from the grafted pNSC-DAn (and not from injured original cells). Thus, pNSC-DAn grafts release and reuptake dopamine in the striatum in vivo and alleviate PD symptoms in rats, providing proof-of-concept for human clinical translation.

  12. New Repeat Polymorphism in the AKT1 Gene Predicts Striatal Dopamine D2/D3 Receptor Availability and Stimulant-Induced Dopamine Release in the Healthy Human Brain.

    Science.gov (United States)

    Shumay, Elena; Wiers, Corinde E; Shokri-Kojori, Ehsan; Kim, Sung Won; Hodgkinson, Colin A; Sun, Hui; Tomasi, Dardo; Wong, Christopher T; Weinberger, Daniel R; Wang, Gene-Jack; Fowler, Joanna S; Volkow, Nora D

    2017-05-10

    The role of the protein kinase Akt1 in dopamine neurotransmission is well recognized and has been implicated in schizophrenia and psychosis. However, the extent to which variants in the AKT1 gene influence dopamine neurotransmission is not well understood. Here we investigated the effect of a newly characterized variant number tandem repeat (VNTR) polymorphism in AKT1 [major alleles: L- (eight repeats) and H- (nine repeats)] on striatal dopamine D2/D3 receptor (DRD2) availability and on dopamine release in healthy volunteers. We used PET and [(11)C]raclopride to assess baseline DRD2 availability in 91 participants. In 54 of these participants, we also measured intravenous methylphenidate-induced dopamine release to measure dopamine release. Dopamine release was quantified as the difference in specific binding of [(11)C]raclopride (nondisplaceable binding potential) between baseline values and values following methylphenidate injection. There was an effect of AKT1 genotype on DRD2 availability at baseline for the caudate (F(2,90) = 8.2, p = 0.001) and putamen (F(2,90) = 6.6, p = 0.002), but not the ventral striatum (p = 0.3). For the caudate and putamen, LL showed higher DRD2 availability than HH; HL were in between. There was also a significant effect of AKT1 genotype on dopamine increases in the ventral striatum (F(2,53) = 5.3, p = 0.009), with increases being stronger in HH > HL > LL. However, no dopamine increases were observed in the caudate (p = 0.1) or putamen (p = 0.8) following methylphenidate injection. Our results provide evidence that the AKT1 gene modulates both striatal DRD2 availability and dopamine release in the human brain, which could account for its association with schizophrenia and psychosis. The clinical relevance of the newly characterized AKT1 VNTR merits investigation.SIGNIFICANCE STATEMENT The AKT1 gene has been implicated in schizophrenia and psychosis. This association is likely to reflect modulation of dopamine signaling by Akt1 kinase

  13. Opposing effects of narcotic gases and pressure on the striatal dopamine release in rats.

    Science.gov (United States)

    Balon, Norbert; Kriem, Badreddine; Dousset, Erick; Weiss, Michel; Rostain, Jean-Claude

    2002-08-30

    Nitrogen-oxygen breathing mixtures, for pressures higher than 0.5 MPa, decrease the release of dopamine in the rat striatum, due to the narcotic potency of nitrogen. In contrast, high pressures of helium-oxygen breathing mixtures of more than 1-2 MPa induce an increase of the striatal dopamine release and an enhancement of motor activity, referred to as the high pressure nervous syndrome (HPNS), and attributed to the effect of pressure per se. It has been demonstrated that the effect of pressure could be antagonized by narcotic gas in a ternary mixture, but most of the narcotic gas studies measuring DA release were executed below the threshold for pressure effect. To examine the effect of narcotic gases at pressure on the rat striatal dopamine release, we have used two gases, with different narcotic potency, at sublethargic pressure, nitrogen at 3 MPa and argon at 2 MPa. In addition, to dissociate the effect of the pressure, we have used nitrous oxide at 0.1 MPa to induce narcosis at very low pressure, and helium at 8 MPa to study the effect of pressure per se. In all the narcotic conditions we have recorded a decrease of the striatal dopamine release. In contrast, helium pressure induced an increase of DA release. For the pressures used, the results suggest that the decrease of dopamine release was independent of such an effect of the pressure. However, for the same narcotic gas, the measurements of the extracellular DA performed in the striatum seem to reflect an opposing effect of pressure, since the decrease in DA release is lower with increasing pressure.

  14. Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs.

    Science.gov (United States)

    Wang, Yuexiang; Lee, Jang-Won; Oh, Gyeon; Grady, Sharon R; McIntosh, J Michael; Brunzell, Darlene H; Cannon, Jason R; Drenan, Ryan M

    2014-04-01

    α6β2* nicotinic acetylcholine receptors (nAChRs)s in the ventral tegmental area to nucleus accumbens (NAc) pathway are implicated in the response to nicotine, and recent work suggests these receptors play a role in the rewarding action of ethanol. Here, we studied mice expressing gain-of-function α6β2* nAChRs (α6L9'S mice) that are hypersensitive to nicotine and endogenous acetylcholine. Evoked extracellular dopamine (DA) levels were enhanced in α6L9'S NAc slices compared to control, non-transgenic (non-Tg) slices. Extracellular DA levels in both non-Tg and α6L9'S slices were further enhanced in the presence of GBR12909, suggesting intact DA transporter function in both mouse strains. Ongoing α6β2* nAChR activation by acetylcholine plays a role in enhancing DA levels, as α-conotoxin MII completely abolished evoked DA release in α6L9'S slices and decreased spontaneous DA release from striatal synaptosomes. In HPLC experiments, α6L9'S NAc tissue contained significantly more DA, 3,4-dihydroxyphenylacetic acid, and homovanillic acid compared to non-Tg NAc tissue. Serotonin (5-HT), 5-hydroxyindoleacetic acid, and norepinephrine (NE) were unchanged in α6L9'S compared to non-Tg tissue. Western blot analysis revealed increased tyrosine hydroxylase expression in α6L9'S NAc. Overall, these results show that enhanced α6β2* nAChR activity in NAc can stimulate DA production and lead to increased extracellular DA levels. © 2013 International Society for Neurochemistry.

  15. ENDOCANNABINOID 2-ARACHIDONOYLGLYCEROL SELF-ADMINISTRATION BY SPRAGUE-DAWLEY RATS AND STIMULATION OF IN VIVO DOPAMINE TRANSMISSION IN THE NUCLEUS ACCUMBENS SHELL

    Directory of Open Access Journals (Sweden)

    Maria Antonietta eDe Luca

    2014-10-01

    Full Text Available 2-Arachidonoylglycerol (2-AG is the most potent endogenous ligand of brain cannabinoid CB1 receptors and is synthesized on demand from 2-arachidonate-containing phosphoinositides by the action of diacyglycerol lipase in response to increased intracellular calcium. Several studies indicate that the endocannabinoid (eCB system is involved in the mechanism of reward and that diverse drugs of abuse increase brain eCB levels. In addition, eCB are self-administered (SA by squirrel monkeys, and anandamide increases nucleus accumbens (NAc shell dopamine (DA in rats. To date, there is no evidence on the reinforcing effects of 2-AG and its effects on DA transmission in rodents. In order to fill this gap, we studied intravenous 2-AG SA and monitored the effect of 2-AG on extracellular DA in the NAc shell and core via microdialysis in male Sprague-Dawley rats. Rats were implanted with jugular catheters and trained to self-administer 2-AG (25g/kg/inf iv in single daily 1h sessions for 5 weeks under initial Fixed Ratio (FR 1 schedule. The ratio was subsequently increased to FR2. Active nose-poking increased from the 6th SA session (acquisition phase but no significant increase of nose-pokes was observed after FR2. When 2-AG was substituted for vehicle (25th SA session, extinction phase, rate responding, as well as number of injections, slowly decreased. When vehicle was replaced with 2-AG, SA behavior immediately recovered (reacquisition phase. The reinforcing effects of 2-AG in SA behavior were fully blocked by the CB1 receptor inverse agonist/antagonist rimonabant (1 mg/kg ip, 30 min before SA session. In the microdialysis studies, we observed that 2-AG (0.1-1.0 mg/kg iv preferentially stimulates NAc shell as compared to the NAc core. NAc shell DA increased by about 25% over basal value at the highest doses tested (0.5 and 1.0 mg/kg iv. The results obtained suggest that the eCB system, via 2-AG, plays an important role in reward.

  16. SEMICIRCADIAN RHYTHM OF DOPAMINE RELEASE IN THE MEDIOBASAL HYPOTHALAMUS IN AWAKE RATS DURING PSEUDOPREGNANCY - EVIDENCE THAT A THYROTROPIN-RELEASING-HORMONE ANALOG STIMULATES DOPAMINE RELEASE AND THEREBY INHIBITS PROLACTIN SECRETION

    NARCIS (Netherlands)

    TIMMERMAN, W; POELMAN, RT; WESTERINK, BHC; SCHUILING, GA

    1995-01-01

    The release of dopamine (DA) from tuberoinfundibular (TIDA) neurons during prolactin (PRL) surge and nonsurge periods and the effects of the thyrotropin-releasing hormone (TRH) analogue CG 3703 on DA and PRL secretion were studied in awake pseudopregnant (PSP) rats by simultaneous measurement of ext

  17. Salsolinol modulation of dopamine neurons

    Directory of Open Access Journals (Sweden)

    Guiqin eXie

    2013-05-01

    Full Text Available Salsolinol, a tetrahydroisoquinoline present in the human and rat brains, is the condensation product of dopamine and acetaldehyde, the first metabolite of ethanol. Previous evidence obtained in vivo links salsolinol with the mesolimbic dopaminergic system: salsolinol is self-administered into the posterior of the ventral tegmental area (pVTA of rats; intra-VTA administration of salsolinol induces a strong conditional place preference and increases dopamine release in the nucleus accumbens. However, the underlying neuronal mechanisms are unclear. Here we present an overview of some of the recent research on this topic. Electrophysiological studies reveal that dopaminergic neurons in the posterior ventral tegmental area (pVTA are a target of salsolinol. In acute brain slices from rats, salsolinol increases the excitability and accelerates the ongoing firing of dopamine neurons in the pVTA. Intriguingly, this action of salsolinol involves multiple pre- and post-synaptic mechanisms, including: (a depolarizing the membrane potential of dopamine neurons; (b activating mu opioid receptors on the GABAergic inputs to dopamine neurons, which decreases GABAergic activity and dopamine neurons are disinhibited; and (c enhancing presynaptic glutamatergic transmission onto dopamine neurons via activation of dopamine type 1 receptors, probably situated on the glutamatergic terminals. These novel mechanisms may contribute to the rewarding/reinforcing properties of salsolinol observed in vivo.

  18. Acetylcholine in the accumbens is decreased by diazepam and increased by benzodiazepine withdrawal: a possible mechanism for dependency.

    Science.gov (United States)

    Rada, Pedro; Hoebel, Bartley G

    2005-01-31

    Diazepam is a benzodiazepine used in the treatment of anxiety, insomnia and seizures, but with the potential for abuse. Like the other benzodiazepine anxiolytics, diazepam does not increase dopamine in the nucleus accumbens. This raises the question as to which other neurotransmitter systems are involved in diazepam dependence. The goal was to monitor dopamine and acetylcholine simultaneously following acute and chronic diazepam treatment and after flumazenil-induced withdrawal. Rats were prepared with microdialysis probes in the nucleus accumbens and given diazepam (2, 5 and 7.5 mg/kg) acutely and again after chronic treatment. Accumbens dopamine and acetylcholine decreased, with signs of tolerance to the dopamine effect. When these animals were put into the withdrawal state with flumazenil, there was a significant rise in acetylcholine (145%, P<0.001) with a smaller significant rise in dopamine (124%, P<0.01). It is suggested that the increase in acetylcholine release, relative to dopamine, is a neural component of the withdrawal state that is aversive.

  19. Dopamine Release and Uptake Impairments and Behavioral Alterations Observed in Mice that Model Fragile X Mental Retardation Syndrome.

    Science.gov (United States)

    Fulks, Jenny L; O'Bryhim, Bliss E; Wenzel, Sara K; Fowler, Stephen C; Vorontsova, Elena; Pinkston, Jonathan W; Ortiz, Andrea N; Johnson, Michael A

    2010-10-20

    In this study we evaluated the relationship between amphetamine-induced behavioral alterations and dopamine release and uptake characteristics in Fmr1 knockout (Fmr1 KO) mice, which model fragile X syndrome. The behavioral analyses, obtained at millisecond temporal resolution and 2 mm spatial resolution using a force-plate actometer, revealed that Fmr1 KO mice express a lower degree of focused stereotypy compared to wild type (WT) control mice after injection with 10 mg/kg (ip) amphetamine. To identify potentially related neurochemical mechanisms underlying this phenomenon, we measured electrically-evoked dopamine release and uptake using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in striatal brain slices. At 10 weeks of age, dopamine release per pulse, which is dopamine release corrected for differences in uptake, was unchanged. However, at 15 (the age of behavioral testing) and 20 weeks of age, dopamine per pulse and the maximum rate of dopamine uptake was diminished in Fmr1 KO mice compared to WT mice. Dopamine uptake measurements, obtained at different amphetamine concentrations, indicated that dopamine transporters in both genotypes have equal affinities for amphetamine. Moreover, dopamine release measurements from slices treated with quinpirole, a D2-family receptor agonist, rule out enhanced D2 autoreceptor sensitivity as a mechanism of release inhibition. However, dopamine release, uncorrected for uptake and normalized against the corresponding pre-drug release peaks, increased in Fmr1 KO mice, but not in WT mice. Collectively, these data are consistent with a scenario in which a decrease in extracellular dopamine levels in the striatum result in diminished expression of focused stereotypy in Fmr1 KO mice.

  20. Simultaneous measurement of glutamate and dopamine release from isolated guinea pig cochlea

    NARCIS (Netherlands)

    Halmos, Gyorgy; Lendvai, Balázs; Gáborján, Anita; Baranyi, Mária; Szabó, László Z; Csokonai Vitéz, Lajos

    2002-01-01

    Glutamate is proved to be a neurotransmitter in the mammalian cochlea, transmitting signals between the inner hair cells and the afferent cochlear nerve terminals. The transmission in this synapse is modulated by the lateral olivocochlear efferent fibers by releasing dopamine and other

  1. Intrahippocampal Infusions of Anisomycin Produce Amnesia: Contribution of Increased Release of Norepinephrine, Dopamine, and Acetylcholine

    Science.gov (United States)

    Qi, Zhenghan; Gold, Paul E.

    2009-01-01

    Intra-amygdala injections of anisomycin produce large increases in the release of norepinephrine (NE), dopamine (DA), and serotonin in the amygdala. Pretreatment with intra-amygdala injections of the beta-adrenergic receptor antagonist propranolol attenuates anisomycin-induced amnesia without reversing the inhibition of protein synthesis, and…

  2. A new aspect of aminoglycoside ototoxicity : impairment of cochlear dopamine release

    NARCIS (Netherlands)

    Gáborján, A; Halmos, G; Répássy, G; Vizi, E S

    2001-01-01

    Aminoglycoside ototoxicity is a well-documented process via several pathophysiological pathways. The protective role of cochlear dopamine, released from the lateral olivocochlear efferents, was implicated previously in case of ischemia or acoustic trauma, as it postsynaptically inhibits the effect o

  3. Simultaneous measurement of glutamate and dopamine release from isolated guinea pig cochlea

    NARCIS (Netherlands)

    Halmos, Gyorgy; Lendvai, Balázs; Gáborján, Anita; Baranyi, Mária; Szabó, László Z; Csokonai Vitéz, Lajos

    2002-01-01

    Glutamate is proved to be a neurotransmitter in the mammalian cochlea, transmitting signals between the inner hair cells and the afferent cochlear nerve terminals. The transmission in this synapse is modulated by the lateral olivocochlear efferent fibers by releasing dopamine and other neurotransmit

  4. Regionally distinct phasic dopamine release patterns in the striatum during reversal learning

    NARCIS (Netherlands)

    Klanker, Marianne; Fellinger, Lisanne; Feenstra, M.G.P.; Willuhn, Ingo; Denys, D.

    2017-01-01

    Striatal dopamine (DA) plays a central role in reward-related learning and behavioral adaptation to changing environments. Recent studies suggest that rather than being broadcast as a uniform signal throughout the entire region, DA release dynamics diverge between different striatal regions. In a pr

  5. Intrahippocampal Infusions of Anisomycin Produce Amnesia: Contribution of Increased Release of Norepinephrine, Dopamine, and Acetylcholine

    Science.gov (United States)

    Qi, Zhenghan; Gold, Paul E.

    2009-01-01

    Intra-amygdala injections of anisomycin produce large increases in the release of norepinephrine (NE), dopamine (DA), and serotonin in the amygdala. Pretreatment with intra-amygdala injections of the beta-adrenergic receptor antagonist propranolol attenuates anisomycin-induced amnesia without reversing the inhibition of protein synthesis, and…

  6. Cocaine serves as a peripheral interoceptive conditioned stimulus for central glutamate and dopamine release.

    Directory of Open Access Journals (Sweden)

    Roy A Wise

    Full Text Available Intravenous injections of cocaine HCl are habit-forming because, among their many actions, they elevate extracellular dopamine levels in the terminal fields of the mesocorticolimbic dopamine system. This action, thought to be very important for cocaine's strong addiction liability, is believed to have very short latency and is assumed to reflect rapid brain entry and pharmacokinetics of the drug. However, while intravenous cocaine HCl has almost immediate effects on behavior and extracellular dopamine levels, recent evidence suggests that its central pharmacological effects are not evident until 10 or more seconds after IV injection. Thus the immediate effects of a given intravenous cocaine injection on extracellular dopamine concentration and behavior appear to occur before there is sufficient time for cocaine to act centrally as a dopamine uptake inhibitor. To explore the contribution of peripheral effects of cocaine to the early activation of the dopamine system, we used brain microdialysis to measure the effects of cocaine methiodide (MI--a cocaine analogue that does not cross the blood brain barrier--on glutamate (excitatory input to the dopamine cells. IP injections of cocaine MI were ineffective in cocaine-naïve animals but stimulated ventral tegmental glutamate release in rats previously trained to lever-press for cocaine HCl. This peripherally triggered glutamate input was sufficient to reinstate cocaine-seeking in previously trained animals that had undergone extinction of the habit. These findings offer an explanation for short-latency behavioral responses and immediate dopamine elevations seen following cocaine injections in cocaine-experienced but not cocaine-naïve animals.

  7. Enhanced dopamine release by dopamine transport inhibitors described by a restricted diffusion model and fast scan cyclic voltammetry

    Science.gov (United States)

    Hoffman, Alexander F.; Spivak, Charles E.; Lupica, Carl R.

    2016-01-01

    Fast-scan cyclic voltammetry (FSCV) using carbon fiber electrodes is widely used to rapidly monitor changes in dopamine (DA) levels in vitro and in vivo. Current analytical approaches utilize parameters such as peak oxidation current amplitude and decay times to estimate release and uptake processes, respectively. However, peak amplitude changes are often observed with uptake inhibitors, thereby confounding the interpretation of these parameters. To overcome this limitation, we demonstrate that a simple, 5 parameter, two compartment model mathematically describes DA signals as a balance of release (r/ke) and uptake (ku), summed with adsorption (kads and kdes) of DA to the carbon electrode surface. Using non-linear regression, we demonstrate that our model precisely describes measured DA signals obtained in brain slice recordings. The parameters extracted from these curves were then validated using pharmacological manipulations that selectively alter vesicular release or DA transporter (DAT)-mediated uptake. Manipulation of DA release through altered Ca2+/Mg2+ ratio or tetrodotoxin (TTX), reduced the release parameter with no effect on the uptake parameter. The DAT inhibitors methylenedioxypyrovalerone (MDPV), cocaine, and nomifensine significantly reduced uptake and increased vesicular DA release. In contrast, a low concentration of amphetamine reduced uptake but had no effect on DA release. Finally, the kappa-opioid receptor (KOR) agonist U50,488 significantly reduced vesicular DA release but had no effect on uptake. Together, these data demonstrate a novel analytical approach to distinguish the effects of manipulations on DA release or uptake that can be used to interpret FSCV data. PMID:27018734

  8. Striatal dopamine release in a schizophrenia mouse model measured by electrochemical amperometry in vivo.

    Science.gov (United States)

    Xu, Huadong; Zuo, Panli; Wang, Shirong; Zhou, Li; Sun, Xiaoxuan; Hu, Meiqin; Liu, Bin; Wu, Qihui; Dou, Haiqiang; Liu, Bing; Zhu, Feipeng; Teng, Sasa; Zhang, Xiaoyu; Wang, Li; Li, Qing; Jin, Mu; Kang, Xinjiang; Xiong, Wei; Wang, Changhe; Zhou, Zhuan

    2015-06-01

    Schizophrenia is a severely devastating mental disorder, the pathological process of which is proposed to be associated with the dysfunction of dopaminergic transmission. Our previous results have demonstrated slower kinetics of transmitter release (glutamate release in hippocampus and norepinephrine release in adrenal slice) in a schizophrenia model, dysbindin null-sandy mice. However, whether dopaminergic transmission in the nigrostriatal pathway contributes to the pathology of dysbindin-/- mice remains unknown. Here, we have provided a step-by-step protocol to be applied in the in vivo amperometric recording of dopamine (DA) release from the mouse striatum evoked by an action potential (AP) pattern. With this protocol, AP pattern-dependent DA release was recorded from dysbindin-/- mice striatum in vivo. On combining amperometric recording in slices and electrophysiology, we found that in dysbindin-/- mice, (1) presynaptically, AP-pattern dependent dopamine overflow and uptake were intact in vivo; (2) the recycling of the dopamine vesicle pool remained unchanged. (3) Postsynaptically, the excitability of medium spiny neuron (MSN) was also normal, as revealed by patch-clamp recordings in striatal slices. Taken together, in contrast to reduced norepinephrine release in adrenal chromaffin cells, the dopaminergic transmission remains unchanged in the nigrostriatal pathway in dysbindin-/- mice, providing a new insight into the functions of the schizophrenia susceptibility gene dysbindin.

  9. pH-regulated release of dopamine from well-ordered self-assembled monolayers: electrochemical studies.

    Science.gov (United States)

    Kazemi, Sayed Habib; Alizadeh, Abdolhamid; Mohamadi, Rahim; Khodaei, Mohammad Mahdi; Kordestani, Davood

    2013-12-01

    In the present work, gold electrode modified with novel aldehyde-terminated self-assembled monolayers (SAMs) was used for controllable load and release of dopamine molecules by pH triggering. Electrochemical techniques including cyclic voltammetry (CV) and electrochemcial impedance spectroscopy (EIS) were employed to investigate the SAMs characteristic on the gold electrode surface. The electrochemical experiments indicated Faradaic behavior for the electrode surface after its modification with dopamine. Notably, it was observed that decreasing the conditioning pH, results in a decrease of peak currents, presumably due to the hydrolysis of the terminal imine bonds and releasing the dopamine moiety into the solution. Moreover, the preliminary kinetics studies were done for dopamine release from the SAMs surface as a model to design future drug delivery systems. Finally, the rate constant of dopamine release from the SAMs modified surface estimated to be 0.167 day(-1) at pH=3.

  10. Striatal dopamine release and biphasic pattern of locomotor and motor activity under gas narcosis.

    Science.gov (United States)

    Balon, Norbert; Risso, Jean-Jacques; Blanc, François; Rostain, Jean-Claude; Weiss, Michel

    2003-05-02

    Inert gas narcosis is a neurological syndrome appearing when humans or animals are exposed to hyperbaric inert gases (nitrogen, argon) composed by motor and cognitive impairments. Inert gas narcosis induces a decrease of the dopamine release at the striatum level, structure involved in the regulation of the extrapyramidal motricity. We have investigated, in freely moving rats exposed to different narcotic conditions, the relationship between the locomotor and motor activity and the striatal dopamine release, using respectively a computerized device that enables a quantitative analysis of this behavioural disturbance and voltammetry. The use of 3 MPa of nitrogen, 2 MPa of argon and 0.1 MPa of nitrous oxide, revealed after a transient phase of hyperactivity, a lower level of the locomotor and motor activity, in relation with the decrease of the striatal dopamine release. It is concluded that the striatal dopamine decrease could be related to the decrease of the locomotor and motor hyperactivity, but that other(s) neurotransmitter(s) could be primarily involved in the behavioural motor disturbances induced by narcotics. This biphasic effect could be of major importance for future pharmacological investigations, and motor categorization, on the basic mechanisms of inert gas at pressure.

  11. Signaling Mechanisms in the Nitric Oxide Donor- and Amphetamine-Induced Dopamine Release in Mesencephalic Primary Cultured Neurons.

    Science.gov (United States)

    Salum, Cristiane; Schmidt, Fanny; Michel, Patrick P; Del-Bel, Elaine; Raisman-Vozari, Rita

    2016-01-01

    Previous research has shown that nitric oxide (NO) synthase inhibitors prevent rodents' sensorimotor gating impairments induced by dopamine releasing drugs, such as amphetamine (Amph) and methylphenidate. The mechanisms of this effect have not been entirely understood. In the present work, we investigated some possible mechanisms by which the NO donor, NOC-12 (3-ethyl-3-(ethylaminoethyl)-1-hydroxy-2-oxo-1-triazene), influence spontaneous and Amph-induced dopamine release, using rat mesencephalic primary cultured neurons preparations. Our results showed that NOC-12 increased dopamine release in a concentration-dependent manner and potentiated the Amph-induced one. Dopamine release induced by NOC-12 was disrupted by N-acetyl-L-cystein (NAC-a free radical scavenger) and MK-801, a NMDA (N-methyl-D-aspartate) non-competitive antagonist, and was concentration dependently affected by oxadiazolo[4,3]quinoxalin-1-one, an inhibitor of the soluble guanylate cyclase (sGC). In contrast, dopamine released by Amph was facilitated by NAC and by MK-801 and not affected by nifedipine (a L-type-Ca(+2) channel blocker), which enhanced NOC-12-induced dopamine release. The present work demonstrates that DA release induced by NOC-12 is partially dependent on sGC and on NMDA activation, and is modulated by L-type Ca(+2) channel and the antioxidant NAC. This mechanism differs from the Amph-induced one, which appears not to depend on L-type Ca(+2) channel and seems to be facilitated by NMDA channel blocking and by NAC. These results suggest that Amph and NOC-12 induce dopamine release through complementary pathways, which may explain the potentiation of Amph-induced dopamine release by NOC-12. These findings contribute to understand the involvement of NO in dopamine-related neuropsychiatric and neurodegenerative diseases.

  12. The prefrontal cortex regulates the basal release of dopamine in the limbic striatum : An effect mediated by ventral tegmental area

    NARCIS (Netherlands)

    Karreman, M; Moghaddam, B

    1996-01-01

    The present study examined whether the prefrontal cortex (PFC) exerts a tonic control over the basal release of dopamine in the limbic striatum and whether this control is mediated by glutamatergic afferents to the dopamine cell body or terminal regions. Using intracerebral microdialysis in freely m

  13. Effects of oral exposure to mining waste on in vivo dopamine release from rat striatum.

    OpenAIRE

    1998-01-01

    Several single components of mining waste (arsenic, manganese, lead, cadmium) to which humans are exposed at the mining area of Villa de la Paz, Mexico, are known to provoke alterations of striatal dopaminergic parameters. In this study we used an animal model to examine neurochemical changes resulting from exposure to a metal mixture. We used microdialysis to compare in vivo dopamine release from adult rats subchronically exposed to a mining waste by oral route with those from a control grou...

  14. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration

    Directory of Open Access Journals (Sweden)

    Caroline E Bass

    2013-11-01

    Full Text Available There is compelling evidence that acute ethanol exposure stimulates ventral tegmental area (VTA dopamine cell activity and that VTA-dependent dopamine release in terminal fields within the nucleus accumbens plays an integral role in the regulation of ethanol drinking behaviors. Unfortunately, due to technical limitations, the specific temporal dynamics linking VTA dopamine cell activation and ethanol self-administration are not known. In fact, establishing a causal link between specific patterns of dopamine transmission and ethanol drinking behaviors has proven elusive. Here, we sought to address these gaps in our knowledge using a newly developed viral-mediated gene delivery strategy to selectively express Channelrhodopsin-2 (ChR2 on dopamine cells in the VTA of wild-type rats. We then used this approach to precisely control VTA dopamine transmission during voluntary ethanol drinking sessions. The results confirmed that ChR2 was selectively expressed on VTA dopamine cells and delivery of blue light pulses to the VTA induced dopamine release in accumbal terminal fields with very high temporal and spatial precision. Brief high frequency VTA stimulation induced phasic patterns of dopamine release in the nucleus accumbens. Lower frequency stimulation, applied for longer periods mimicked tonic increases in accumbal dopamine. Notably, using this optogenetic approach in rats engaged in an intermittent ethanol drinking procedure, we found that tonic, but not phasic, stimulation of VTA dopamine cells selectively attenuated ethanol drinking behaviors. Collectively, these data demonstrate the effectiveness of a novel viral targeting strategy that can be used to restrict opsin expression to dopamine cells in standard outbred animals and provide the first causal evidence demonstrating that tonic activation of VTA dopamine neurons selectively decreases ethanol self-administration behaviors.

  15. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration.

    Science.gov (United States)

    Bass, Caroline E; Grinevich, Valentina P; Gioia, Dominic; Day-Brown, Jonathan D; Bonin, Keith D; Stuber, Garret D; Weiner, Jeff L; Budygin, Evgeny A

    2013-01-01

    There is compelling evidence that acute ethanol exposure stimulates ventral tegmental area (VTA) dopamine cell activity and that VTA-dependent dopamine release in terminal fields within the nucleus accumbens plays an integral role in the regulation of ethanol drinking behaviors. Unfortunately, due to technical limitations, the specific temporal dynamics linking VTA dopamine cell activation and ethanol self-administration are not known. In fact, establishing a causal link between specific patterns of dopamine transmission and ethanol drinking behaviors has proven elusive. Here, we sought to address these gaps in our knowledge using a newly developed viral-mediated gene delivery strategy to selectively express Channelrhodopsin-2 (ChR2) on dopamine cells in the VTA of wild-type rats. We then used this approach to precisely control VTA dopamine transmission during voluntary ethanol drinking sessions. The results confirmed that ChR2 was selectively expressed on VTA dopamine cells and delivery of blue light pulses to the VTA induced dopamine release in accumbal terminal fields with very high temporal and spatial precision. Brief high frequency VTA stimulation induced phasic patterns of dopamine release in the nucleus accumbens. Lower frequency stimulation, applied for longer periods mimicked tonic increases in accumbal dopamine. Notably, using this optogenetic approach in rats engaged in an intermittent ethanol drinking procedure, we found that tonic, but not phasic, stimulation of VTA dopamine cells selectively attenuated ethanol drinking behaviors. Collectively, these data demonstrate the effectiveness of a novel viral targeting strategy that can be used to restrict opsin expression to dopamine cells in standard outbred animals and provide the first causal evidence demonstrating that tonic activation of VTA dopamine neurons selectively decreases ethanol self-administration behaviors.

  16. Reward-Induced Phasic Dopamine Release in the Monkey Ventral Striatum and Putamen.

    Directory of Open Access Journals (Sweden)

    Kenji Yoshimi

    Full Text Available In-vivo voltammetry has successfully been used to detect dopamine release in rodent brains, but its application to monkeys has been limited. We have previously detected dopamine release in the caudate of behaving Japanese monkeys using diamond microelectrodes (Yoshimi 2011; however it is not known whether the release pattern is the same in various areas of the forebrain. Recent studies have suggested variations in the dopaminergic projections to forebrain areas. In the present study, we attempted simultaneous recording at two locations in the striatum, using fast-scan cyclic voltammetry (FSCV on carbon fibers, which has been widely used in rodents. Responses to unpredicted food and liquid rewards were detected repeatedly. The response to the liquid reward after conditioned stimuli was enhanced after switching the prediction cue. These characteristics were generally similar between the ventral striatum and the putamen. Overall, the technical application of FSCV recording in multiple locations was successful in behaving primates, and further voltammetric recordings in multiple locations will expand our knowledge of dopamine reward responses.

  17. Reward-Induced Phasic Dopamine Release in the Monkey Ventral Striatum and Putamen.

    Science.gov (United States)

    Yoshimi, Kenji; Kumada, Shiori; Weitemier, Adam; Jo, Takayuki; Inoue, Masato

    2015-01-01

    In-vivo voltammetry has successfully been used to detect dopamine release in rodent brains, but its application to monkeys has been limited. We have previously detected dopamine release in the caudate of behaving Japanese monkeys using diamond microelectrodes (Yoshimi 2011); however it is not known whether the release pattern is the same in various areas of the forebrain. Recent studies have suggested variations in the dopaminergic projections to forebrain areas. In the present study, we attempted simultaneous recording at two locations in the striatum, using fast-scan cyclic voltammetry (FSCV) on carbon fibers, which has been widely used in rodents. Responses to unpredicted food and liquid rewards were detected repeatedly. The response to the liquid reward after conditioned stimuli was enhanced after switching the prediction cue. These characteristics were generally similar between the ventral striatum and the putamen. Overall, the technical application of FSCV recording in multiple locations was successful in behaving primates, and further voltammetric recordings in multiple locations will expand our knowledge of dopamine reward responses.

  18. Intracerebroventricular administration of ouabain alters synaptic plasticity and dopamine release in rat medial prefrontal cortex.

    Science.gov (United States)

    Sui, Li; Song, Xiao-Jin; Ren, Jie; Ju, Li-Hua; Wang, Yan

    2013-08-01

    Intracerebroventricular (ICV) administration of ouabain, a specific Na-K-ATPase inhibitor, in rats mimics the manic phenotypes of bipolar disorder and thus has been proposed as one of the best animal models of mania. Bipolar mania has been known to be associated with dysfunctions of medial prefrontal cortex (mPFC), a brain area critically involved in mental functions; however, the exact mechanism underlying these dysfunctions is not yet clear. The present study investigated synaptic transmission, synaptic plasticity, and dopamine release in Sprague-Dawley rat mPFC following ICV administration of ouabain (5 μl of 1 mM ouabain). The electrophysiological results demonstrated that ouabain depressed the short- and the long-term synaptic plasticity, represented by paired-pulse facilitation and long-term potentiation, respectively, in the mPFC. These ouabain-induced alterations in synaptic plasticity can be prevented by pre-treatment with lithium (intraperitoneal injection of 47.5 mg/kg lithium, twice a day, 7 days), which acts as an effective mood stabilizer in preventing mania. The electrochemical results demonstrated that ICV administration of ouabain enhanced dopamine release in the mPFC, which did not be affected by pre-treatment with lithium. These findings suggested that alterations in synaptic plasticity and dopamine release in the mPFC might underlie the dysfunctions of mPFC accompanied with ouabain administration-induced bipolar mania.

  19. Nicotine enhancement of dopamine release by a calcium-dependent increase in the size of the readily releasable pool of synaptic vesicles.

    Science.gov (United States)

    Turner, Timothy J

    2004-12-15

    A major factor underlying compulsive tobacco use is nicotine-induced modulation of dopamine release in the mesolimbic reward pathway (Wise and Rompre, 1989). An established biochemical mechanism for nicotine-enhanced dopamine release is by activating presynaptic nicotinic acetylcholine receptors (nAChRs) (Wonnacott, 1997). Prolonged application of 10(-7) to 10(-5) m nicotine to striatal synaptosomes promoted a sustained efflux of [3H]dopamine. This nicotine effect was mediated by non-alpha7 nAChRs, because it was blocked by 5 mum mecamylamine but was resistant to 100 nm alpha-bungarotoxin (alphaBgTx). Dopamine release was diminished by omitting Na+ or by applying peptide calcium channel blockers, indicating that nAChRs trigger release by depolarizing the nerve terminals. However, because alpha7 receptors rapidly desensitize in the continuous presence of agonists, a repetitive stimulation protocol was used to evaluate the possible significance of desensitization. This protocol produced a transient increase in [3H]dopamine released by depolarization and a significant increase in the response to hypertonic solutions that measure the size of the readily releasable pool (RRP) of synaptic vesicles. The nicotine-induced increase in the size of the readily releasable pool was blocked by alphaBgTx and by the calmodulin antagonist calmidazolium, suggesting that Ca2+ entry through alpha7 nAChRs specifically enhances synaptic vesicle mobilization at dopamine terminals. Thus, nicotine enhances dopamine release by two complementary actions mediated by discrete nAChR subtypes and suggest that the alpha7 nAChR-mediated pathway is tightly and specifically coupled to refilling of the RRP of vesicles in dopamine terminals.

  20. Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Møller, Arne; Peterson, Ericka

    2011-01-01

    Gambling excitement is believed to be associated with biological measures of pathological gambling. Here, we tested the hypothesis that dopamine release would be associated with increased excitement levels in Pathological Gamblers compared with Healthy Controls.......Gambling excitement is believed to be associated with biological measures of pathological gambling. Here, we tested the hypothesis that dopamine release would be associated with increased excitement levels in Pathological Gamblers compared with Healthy Controls....

  1. Dopamine modulates acetylcholine release via octopamine and CREB signaling in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Satoshi Suo

    Full Text Available Animals change their behavior and metabolism in response to external stimuli. cAMP response element binding protein (CREB is a signal-activated transcription factor that enables the coupling of extracellular signals and gene expression to induce adaptive changes. Biogenic amine neurotransmitters regulate CREB and such regulation is important for long-term changes in various nervous system functions, including learning and drug addiction. In Caenorhabditis elegans, the amine neurotransmitter octopamine activates a CREB homolog, CRH-1, in cholinergic SIA neurons, whereas dopamine suppresses CREB activation by inhibiting octopamine signaling in response to food stimuli. However, the physiological role of this activation is unknown. In this study, the effect of dopamine, octopamine, and CREB on acetylcholine signaling was analyzed using the acetylcholinesterase inhibitor aldicarb. Mutants with decreased dopamine signaling exhibited reduced acetylcholine signaling, and octopamine and CREB functioned downstream of dopamine in this regulation. This study demonstrates that the regulation of CREB by amine neurotransmitters modulates acetylcholine release from the neurons of C. elegans.

  2. A planar microelectrode array for simultaneous detection of electrically evoked dopamine release from distinct locations of a single isolated neuron.

    Science.gov (United States)

    Patel, Bhavik Anil; Luk, Collin C; Leow, Pei Ling; Lee, Arthur J; Zaidi, Wali; Syed, Naweed I

    2013-05-21

    Neurotransmission is a key process of communication between neurons. Although much is known about this process and the influence it has on the function of the body, little is understood about the dynamics of signalling from structural regions of a single neuron. In this study we have fabricated and characterised a microelectrode array (MEA) which was utilised for simultaneous multi-site recordings of dopamine release from an isolated single neuron. The MEA consisted of gold electrodes that were created in plane with the insulation layer using a chemical mechanical planarization process. The detection limit for dopamine measurements was 11 ± 3 nM and all the gold electrodes performed in a consistent fashion during amperometric recordings of 100 nM dopamine. Fouling of the gold electrode was investigated, where no significant change in the current was observed over 4 hours when monitoring 100 nM dopamine. The MEA was accessed using freshly isolated dopaminergic somas from the pond snail, Lymnaea stagnalis, where electrically evoked dopamine release was clearly observed. Measurements were conducted at four structural locations of a single isolated neuron, where electrically evoked dopamine release was observed from the cell body, axonal regions and the terminal. Over time, the release of dopamine varied over the structural regions of the neuron. Such information can provide an insight into the signalling mechanism of neurons and how they potentially form synaptic connections.

  3. EFFECTS OF REVERSIBLE INACTIVATION OF BILATERAL ACCUMBENS NUCLEI ON MEMORY STORAGE: ANIMAL STUDY IN RAT MODEL

    Directory of Open Access Journals (Sweden)

    H.A ALAEI

    2002-12-01

    Full Text Available Introduction. Memory and learning play an important role in human"s life that will become problematic in case disability is weak for any reason. There are many factors that facilitate process of mamory and learning of which accumbens nucleus plays an important role. Accumbens nucleus, which is a part of the limbic system, is one of many nuclei found of the septum in the mesencephalon. This study was performed to determine the effects of reversible Inactivation of a accumbens nuclei by lidocaein on memory storage in rat. Method s. Male wistar rats were surgically implancted with cannulae at the accumbens nuclei (Acb bilaterally one weak later they recived one trial PAL (1 mA 1.S sec and exactly at times zero, 60 and 120 minutes after posttraining, lidocaine was infused into the Acb. Retention was tested two days after training. Latency period before entering into the dark part of the shuttle box and duration of time in darkness were index for evaluation of retention. Results. A significant impaired retention performance was at zero and 60 minutes after posttrianing infusion of lidocaine into the Acb. Infusion administered 120 minutes after training had no effect. Discussion. This study has shown that Accumbens nucleus plays major role in praimary learning and memory and it is probable that by blocking this nucleus dopamine release is diminished which causes the learning process to be delayed consequently.

  4. Clavulanic acid increases dopamine release in neuronal cells through a mechanism involving enhanced vesicle trafficking

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2011-01-01

    Clavulanic acid is a CNS-modulating compound with exceptional blood-brain barrier permeability and safety profile. Clavulanic acid has been proposed to have anti-depressant activity and is currently entering Phase IIb clinical trials for the treatment of Major Depressive Disorder (MDD). Studies have also shown that clavulanic acid suppresses anxiety and enhances sexual functions in rodent and primate models by a mechanism involving central nervous system (CNS) modulation, although its detailed mechanism of action has yet to be elucidated. To further examine its potential as a CNS modulating agent as well as its mechanism of action, we investigated the effects of clavulanic acid in neuronal cells. Our results indicate that clavulanic acid enhances dopamine release in PC12 and SH-SY5Y cells without affecting dopamine synthesis. Furthermore, using affinity chromatography we were able to identify two proteins, Munc18-1 and Rab4 that potentially bind to clavulanic acid and play a critical role in neurosecretion and the vesicle trafficking process. Consistent with this result, an increase in the translocation of Munc18-1 and Rab4 from the cytoplasm to the plasma membrane was observed in clavulanic acid treated cells. Overall, these data suggest that clavulanic acid enhances dopamine release in a mechanism involving Munc18-1 and Rab4 modulation and warrants further investigation of its therapeutic use in CNS disorders, such as depression. PMID:21964384

  5. Clavulanic acid increases dopamine release in neuronal cells through a mechanism involving enhanced vesicle trafficking.

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2011-10-24

    Clavulanic acid is a CNS-modulating compound with exceptional blood-brain barrier permeability and safety profile. Clavulanic acid has been proposed to have anti-depressant activity and is currently entering Phase IIb clinical trials for the treatment of Major Depressive Disorder (MDD). Studies have also shown that clavulanic acid suppresses anxiety and enhances sexual functions in rodent and primate models by a mechanism involving central nervous system (CNS) modulation, although its detailed mechanism of action has yet to be elucidated. To further examine its potential as a CNS modulating agent as well as its mechanism of action, we investigated the effects of clavulanic acid in neuronal cells. Our results indicate that clavulanic acid enhances dopamine release in PC12 and SH-SY5Y cells without affecting dopamine synthesis. Furthermore, using affinity chromatography we were able to identify two proteins, Munc18-1 and Rab4 that potentially bind to clavulanic acid and play a critical role in neurosecretion and the vesicle trafficking process. Consistent with this result, an increase in the translocation of Munc18-1 and Rab4 from the cytoplasm to the plasma membrane was observed in clavulanic acid treated cells. Overall, these data suggest that clavulanic acid enhances dopamine release in a mechanism involving Munc18-1 and Rab4 modulation and warrants further investigation of its therapeutic use in CNS disorders, such as depression.

  6. Amphetamine-induced dopamine release and neurocognitive function in treatment-naive adults with ADHD.

    Science.gov (United States)

    Cherkasova, Mariya V; Faridi, Nazlie; Casey, Kevin F; O'Driscoll, Gillian A; Hechtman, Lily; Joober, Ridha; Baker, Glen B; Palmer, Jennifer; Dagher, Alain; Leyton, Marco; Benkelfat, Chawki

    2014-05-01

    Converging evidence from clinical, preclinical, neuroimaging, and genetic research implicates dopamine neurotransmission in the pathophysiology of attention deficit hyperactivity disorder (ADHD). The in vivo neuroreceptor imaging evidence also suggests alterations in the dopamine system in ADHD; however, the nature and behavioral significance of those have not yet been established. Here, we investigated striatal dopaminergic function in ADHD using [(11)C]raclopride PET with a d-amphetamine challenge. We also examined the relationship of striatal dopamine responses to ADHD symptoms and neurocognitive function. A total of 15 treatment-free, noncomorbid adult males with ADHD (age: 29.87 ± 8.65) and 18 healthy male controls (age: 25.44 ± 6.77) underwent two PET scans: one following a lactose placebo and the other following d-amphetamine (0.3 mg/kg, p.o.), administered double blind and in random order counterbalanced across groups. In a separate session without a drug, participants performed a battery of neurocognitive tests. Relative to the healthy controls, the ADHD patients, as a group, showed greater d-amphetamine-induced decreases in striatal [(11)C]raclopride binding and performed more poorly on measures of response inhibition. Across groups, a greater magnitude of d-amphetamine-induced change in [(11)C]raclopride binding potential was associated with poorer performance on measures of response inhibition and ADHD symptoms. Our findings suggest an augmented striatal dopaminergic response in treatment-naive ADHD. Though in contrast to results of a previous study, this finding appears consistent with a model proposing exaggerated phasic dopamine release in ADHD. A susceptibility to increased phasic dopamine responsivity may contribute to such characteristics of ADHD as poor inhibition and impulsivity.

  7. Dopamine D2 receptor desensitization by dopamine or corticotropin releasing factor in ventral tegmental area neurons is associated with increased glutamate release.

    Science.gov (United States)

    Nimitvilai, Sudarat; Herman, Melissa; You, Chang; Arora, Devinder S; McElvain, Maureen A; Roberto, Marisa; Brodie, Mark S

    2014-07-01

    Neurons of the ventral tegmental area (VTA) are the source of dopaminergic (DAergic) input to important brain regions related to addiction. Prolonged exposure of these VTA neurons to moderate concentrations of dopamine (DA) causes a time-dependent decrease in DA-induced inhibition, a complex desensitization called DA inhibition reversal (DIR). DIR is mediated by conventional protein kinase C (cPKC) through concurrent stimulation of D2 and D1-like DA receptors, or by D2 stimulation concurrent with activation of some Gq-linked receptors. Corticotropin releasing factor (CRF) acts via Gq, and can modulate glutamater neurotransmission in the VTA. In the present study, we used brain slice electrophysiology to characterize the interaction of DA, glutamate antagonists, and CRF agonists in the induction and maintenance of DIR in the VTA. Glutamate receptor antagonists blocked induction but not maintenance of DIR. Putative blockers of neurotransmitter release and store-operated calcium channels blocked and reversed DIR. CRF and the CRF agonist urocortin reversed inhibition produced by the D2 agonist quinpirole, consistent with our earlier work indicating that Gq activation reverses quinpirole-mediated inhibition. In whole cell recordings, the combination of urocortin and quinpirole, but not either agent alone, increased spontaneous excitatory postsynaptic currents (sEPSCs) in VTA neurons. Likewise, the combination of a D1-like receptor agonist and quinpirole, but not either agent alone, increased sEPSCs in VTA neurons. In summary, desensitization of D2 receptors induced by dopamine or CRF on DAergic VTA neurons is associated with increased glutamatergic signaling in the VTA.

  8. Electrical release of dopamine and levodopa mediated by amphiphilic β-cyclodextrins immobilized on polycrystalline gold

    Science.gov (United States)

    Foschi, Giulia; Leonardi, Francesca; Scala, Angela; Biscarini, Fabio; Kovtun, Alessandro; Liscio, Andrea; Mazzaglia, Antonino; Casalini, Stefano

    2015-11-01

    Vesicles of cationic amphiphilic β-cyclodextrins have been immobilized on polycrystalline gold by exploiting the chemical affinity between their amino groups and Au atoms. The presence of cyclodextrins has been widely investigated by means of AFM, XPS, kelvin probe and electrochemical measurements. This multi-functional coating confers distinct electrochemical features such as pH-dependent behavior and partial/total blocking properties towards electro-active species. The host-guest properties of β-cyclodextrins have been successfully exploited in order to trap drugs, like dopamine and levodopa. The further release of these drugs was successfully achieved by providing specific electrical stimuli. This proof-of-concept led us to fabricate an electronic device (i.e. an organic transistor) capable of dispensing both dopamine and levodopa in aqueous solution.Vesicles of cationic amphiphilic β-cyclodextrins have been immobilized on polycrystalline gold by exploiting the chemical affinity between their amino groups and Au atoms. The presence of cyclodextrins has been widely investigated by means of AFM, XPS, kelvin probe and electrochemical measurements. This multi-functional coating confers distinct electrochemical features such as pH-dependent behavior and partial/total blocking properties towards electro-active species. The host-guest properties of β-cyclodextrins have been successfully exploited in order to trap drugs, like dopamine and levodopa. The further release of these drugs was successfully achieved by providing specific electrical stimuli. This proof-of-concept led us to fabricate an electronic device (i.e. an organic transistor) capable of dispensing both dopamine and levodopa in aqueous solution. Electronic supplementary information (ESI) available: Kelvin probe, AFM and electrochemical data are reported. Furthermore, the chemical backbone of both types of cyclodextrins are shown. See DOI: 10.1039/c5nr05405b

  9. A Markov State-based Quantitative Kinetic Model of Sodium Release from the Dopamine Transporter

    Science.gov (United States)

    Razavi, Asghar M.; Khelashvili, George; Weinstein, Harel

    2017-01-01

    The dopamine transporter (DAT) belongs to the neurotransmitter:sodium symporter (NSS) family of membrane proteins that are responsible for reuptake of neurotransmitters from the synaptic cleft to terminate a neuronal signal and enable subsequent neurotransmitter release from the presynaptic neuron. The release of one sodium ion from the crystallographically determined sodium binding site Na2 had been identified as an initial step in the transport cycle which prepares the transporter for substrate translocation by stabilizing an inward-open conformation. We have constructed Markov State Models (MSMs) from extensive molecular dynamics simulations of human DAT (hDAT) to explore the mechanism of this sodium release. Our results quantify the release process triggered by hydration of the Na2 site that occurs concomitantly with a conformational transition from an outward-facing to an inward-facing state of the transporter. The kinetics of the release process are computed from the MSM, and transition path theory is used to identify the most probable sodium release pathways. An intermediate state is discovered on the sodium release pathway, and the results reveal the importance of various modes of interaction of the N-terminus of hDAT in controlling the pathways of release.

  10. Effects of the NMDA receptor antagonists on deltamethrin-induced striatal dopamine release in conscious unrestrained rats.

    Science.gov (United States)

    Morikawa, Takuya; Furuhama, Kazuhisa

    2009-08-01

    To better understand the neurotoxicity caused by the pyrethroid pesticide, we examined the effects of the N-methyl-D-aspartate (NMDA) receptor antagonists MK-801, a non-competitive cation channel blocker, and 2-amino-5-phosphonovaleric acid (APV), a competitive Na(+) channel blocker, on extracellular dopamine levels in male Sprague-Dawley rats receiving the type II pyrethroid deltamethrin using an in vivo microdialysis system. Deltamethrin (60 mg/kg, i.p.) evidently increased striatal dopamine levels with a peak time of 120 min, and the local infusion (i.c.) of either MK-801(650 muM) or APV (500 muM) completely blocked these actions. The fluctuation in the dopamine metabolite 3-MT also resembled that in dopamine. Our results suggest that dopamine-releasing neurons would be modulated via the NMDA receptor by the excitatory glutamatergic neurons after deltamethrin treatment.

  11. Monitoring of dopamine release in single cell using ultrasensitive ITO microsensors modified with carbon nanotubes.

    Science.gov (United States)

    Shi, Bao-Xian; Wang, Yu; Zhang, Kai; Lam, Tin-Lun; Chan, Helen Lai-Wa

    2011-02-15

    The study of single cell dynamics has been greatly adapted in biological and medical research and applications. In this work a novel microfluidic electrochemical sensor with carbon nanotubes (CNTs) modified indium tin oxide (ITO) microelectrode was developed for single cells release monitoring. The sensitivity of the electrochemical sensor after CNTs surface modification was improved by 2.5-3 orders of magnitude. The developed CNTs modified ITO sensor was successfully employed to monitor the dopamine release from single living rat pheochromocytoma (PC 12) cells. Its ultrahigh sensitivity, transparency and need for fewer agents enable this smart electrochemical sensor to become a powerful tool in recording dynamic release from various living tissues and organs optically and electrically.

  12. Translationally Controlled Tumor Protein Stimulates Dopamine Release from PC12 Cells via Ca(2+)-Independent Phospholipase A₂ Pathways.

    Science.gov (United States)

    Seo, Jihui; Maeng, Jeehye; Kim, Hwa-Jung

    2016-10-24

    The translationally controlled tumor protein (TCTP), initially identified as a tumor- and growth-related protein, is also known as a histamine-releasing factor (HRF). TCTP is widely distributed in the neuronal systems, but its function is largely uncharacterized. Here, we report a novel function of TCTP in the neurotransmitter release from a neurosecretory, pheochromocytoma (PC12) cells. Treatment with recombinant TCTP (rTCTP) enhanced both basal and depolarization (50 mM KCl)-evoked [³H]dopamine release in concentration- and time-dependent manners. Interestingly, even though rTCTP induced the increase in intracellular calcium levels ([Ca(2+)]i), the rTCTP-driven effect on dopamine release was mediated by a Ca(2+)-independent pathway, as evidenced by the fact that Ca(2+)-modulating agents such as Ca(2+) chelators and a voltage-gated L-type Ca(2+)-channel blocker did not produce any changes in rTCTP-evoked dopamine release. In a study to investigate the involvement of phospholipase A₂ (PLA₂) in rTCTP-induced dopamine release, the inhibitor for Ca(2+)-independent PLA₂ (iPLA₂) produced a significant inhibitory effect on rTCTP-induced dopamine release, whereas this release was not significantly inhibited by Ca(2+)-dependent cytosolic PLA₂ (cPLA₂) and secretory PLA₂ (sPLA₂) inhibitors. We found that rTCTP-induced dopamine release from neuronal PC12 cells was modulated by a Ca(2+)-independent mechanism that involved PLA₂ in the process, suggesting the regulatory role of TCTP in the neuronal functions.

  13. Translationally Controlled Tumor Protein Stimulates Dopamine Release from PC12 Cells via Ca2+-Independent Phospholipase A2 Pathways

    Directory of Open Access Journals (Sweden)

    Jihui Seo

    2016-10-01

    Full Text Available The translationally controlled tumor protein (TCTP, initially identified as a tumor- and growth-related protein, is also known as a histamine-releasing factor (HRF. TCTP is widely distributed in the neuronal systems, but its function is largely uncharacterized. Here, we report a novel function of TCTP in the neurotransmitter release from a neurosecretory, pheochromocytoma (PC12 cells. Treatment with recombinant TCTP (rTCTP enhanced both basal and depolarization (50 mM KCl-evoked [3H]dopamine release in concentration- and time-dependent manners. Interestingly, even though rTCTP induced the increase in intracellular calcium levels ([Ca2+]i, the rTCTP-driven effect on dopamine release was mediated by a Ca2+-independent pathway, as evidenced by the fact that Ca2+-modulating agents such as Ca2+ chelators and a voltage-gated L-type Ca2+-channel blocker did not produce any changes in rTCTP-evoked dopamine release. In a study to investigate the involvement of phospholipase A2 (PLA2 in rTCTP-induced dopamine release, the inhibitor for Ca2+-independent PLA2 (iPLA2 produced a significant inhibitory effect on rTCTP-induced dopamine release, whereas this release was not significantly inhibited by Ca2+-dependent cytosolic PLA2 (cPLA2 and secretory PLA2 (sPLA2 inhibitors. We found that rTCTP-induced dopamine release from neuronal PC12 cells was modulated by a Ca2+-independent mechanism that involved PLA2 in the process, suggesting the regulatory role of TCTP in the neuronal functions.

  14. Effects of oral exposure to mining waste on in vivo dopamine release from rat striatum.

    Science.gov (United States)

    Rodríguez, V M; Dufour, L; Carrizales, L; Díaz-Barriga, F; Jiménez-Capdeville, M E

    1998-01-01

    Several single components of mining waste (arsenic, manganese, lead, cadmium) to which humans are exposed at the mining area of Villa de la Paz, Mexico, are known to provoke alterations of striatal dopaminergic parameters. In this study we used an animal model to examine neurochemical changes resulting from exposure to a metal mixture. We used microdialysis to compare in vivo dopamine release from adult rats subchronically exposed to a mining waste by oral route with those from a control group and from a sodium arsenite group (25 mg/kg/day). We found that arsenic and manganese do accumulate in rat brain after 2 weeks of oral exposure. The mining waste group showed significantly decreased basal levels of dihydroxyphenylacetic acid (DOPAC; 66.7 +/- 7.53 pg/ microl) when compared to a control group (113.7 +/- 14.3 pg/ microl). Although basal dopamine release rates were comparable among groups, when the system was challenged with a long-standing depolarization through high-potassium perfusion, animals exposed to mining waste were not able to sustain an increased dopamine release in response to depolarization (mining waste group 5.5 +/- 0.5 pg/ microl versus control group 21.7 +/- 5.8 pg/ microl). Also, DOPAC and homovanillic acid levels were significantly lower in exposed animals than in controls during stimulation with high potassium. The arsenite group showed a similar tendency to that from the mining waste group. In vivo microdialysis provides relevant data about the effects of a chemical mixture. Our results indicate that this mining waste may represent a health risk for the exposed population. Images Figure 1 Figure 2 Figure 3 PMID:9681976

  15. [Suppression by dopamine of GH release induced by GRF in a case of acromegaly].

    Science.gov (United States)

    Matsubara, M; Odagaki, E; Morioka, T

    1987-03-20

    Inhibition of plasma GH by dopaminergic agonists is one of the characteristics of the GH secretion in acromegaly. GRF is known to stimulate GH secretion in most patients with acromegaly. In order to elucidate the relationship between GRF and dopamine in regulating the secretion of GH in this disease, we examined plasma GH responses to dopamine (DA) infusion (4 micrograms/kg/min), GRF injection (100 micrograms i.v.), sulpiride (SP) injection (200 mg i.v.), a DA blocker, DA plus GRF and SP plus GRF in a 51-year-old male patient with acromegaly. Plasma GH was reduced to 14% of the initial level by iv infusion of DA, and was elevated to 158% by iv injection of GRF. No considerable change was observed in plasma GH by iv infusion of SP (114% of the initial level). GH release induced by GRF was remarkably reduced by simultaneous administration of DA (28% of the initial level), whereas SP administration did not affect GRF-induced GH release (154%). The marked reduction of GH release after DA plus GRF seems to suggest that the effect of DA on the GH regulation is stronger than that of GRF in this acromegalic patient. It is suggested also that endogenous DA may not play an inhibitory role in GH secretion in this case since DA blockade by SP did not raise basal GH levels and the GH response to GRF.

  16. Examining the complex regulation and drug-induced plasticity of dopamine release and uptake using voltammetry in brain slices.

    Science.gov (United States)

    Ferris, Mark J; Calipari, Erin S; Yorgason, Jordan T; Jones, Sara R

    2013-05-15

    Fast scan cyclic voltammetry in brain slices (slice voltammetry) has been used over the last several decades to increase substantially our understanding of the complex local regulation of dopamine release and uptake in the striatum. This technique is routinely used for the study of changes that occur in the dopamine system associated with various disease states and pharmacological treatments, and to study mechanisms of local circuitry regulation of dopamine terminal function. In the context of this Review, we compare the relative advantages of voltammetry using striatal slice preparations versus in vivo preparations, and highlight recent advances in our understanding of dopamine release and uptake in the striatum specifically from studies that use slice voltammetry in drug-naïve animals and animals with a history of psychostimulant self-administration.

  17. Changes in striatal dopamine release associated with human motor-skill acquisition.

    Directory of Open Access Journals (Sweden)

    Shoji Kawashima

    Full Text Available The acquisition of new motor skills is essential throughout daily life and involves the processes of learning new motor sequence and encoding elementary aspects of new movement. Although previous animal studies have suggested a functional importance for striatal dopamine release in the learning of new motor sequence, its role in encoding elementary aspects of new movement has not yet been investigated. To elucidate this, we investigated changes in striatal dopamine levels during initial skill-training (Day 1 compared with acquired conditions (Day 2 using (11C-raclopride positron-emission tomography. Ten volunteers learned to perform brisk contractions using their non-dominant left thumbs with the aid of visual feedback. On Day 1, the mean acceleration of each session was improved through repeated training sessions until performance neared asymptotic levels, while improved motor performance was retained from the beginning on Day 2. The (11C-raclopride binding potential (BP in the right putamen was reduced during initial skill-training compared with under acquired conditions. Moreover, voxel-wise analysis revealed that (11C-raclopride BP was particularly reduced in the right antero-dorsal to the lateral part of the putamen. Based on findings from previous fMRI studies that show a gradual shift of activation within the striatum during the initial processing of motor learning, striatal dopamine may play a role in the dynamic cortico-striatal activation during encoding of new motor memory in skill acquisition.

  18. Striatal dopamine terminals release serotonin after 5-HTP pretreatment: in vivo voltammetric data.

    Science.gov (United States)

    Stamford, J A; Kruk, Z L; Millar, J

    1990-05-07

    Peripheral administration of 5-hydroxytryptophan (5-HTP) to rats causes 'wet dog' shakes and a parallel elevation of brain serotonin (5-HT) levels. The increase in 5-HT concentration does not, however, correlate with the endogenous 5-HT innervation raising the possibility that some 5-HTP is decarboxylated in non-serotonergic cells. In the present study we used in vivo voltammetry to establish whether 5-HTP treatment led to formation of 5-HT as a 'false transmitter' in striatal dopamine (DA) neurons. Fast cyclic voltammetry at carbon fibre microelectrodes (CFMs) was used to monitor striatal monoamine release following electrical stimulation of the median forebrain bundle (MFB). In the absence of any pretreatment DA was the sole compound released by stimulation. However, when DA release was abolished with alpha-methyl-p-tyrosine (AMPT), 5-HTP administration (after peripheral decarboxylase inhibition) caused a dose-dependent release of 5-HT, confirmed by the voltammetric characteristics. Central decarboxylase inhibition prevented release indicating that 5-HTP itself was not released. By monitoring reduction peaks it was possible to record DA and 5-HT release simultaneously at a single CFM. While DA and 5-HT oxidised at the same potential their reduction peaks were separated by approximately 450 mV. It was shown, using this means, that 5-HT was still detectable even when DA release was not abolished by AMPT. DA and 5-HT release showed a significant positive correlation suggesting that they were released from the same nerves. We conclude that, after 5-HTP treatment, 5-HT can be released as a false transmitter from striatal DA neurones.

  19. Real-Time Chemical Measurements of Dopamine Release in the Brain

    Science.gov (United States)

    Roberts, James G.; Lugo-Morales, Leyda Z.; Loziuk, Philip L.; Sombers, Leslie A.

    2017-01-01

    Rapid changes in extracellular dopamine concentrations in freely moving or anesthetized rats can be detected using fast-scan cyclic voltammetry (FSCV). Background-subtracted FSCV is a real-time electrochemical technique that can monitor neurochemical transmission in the brain on a subsecond timescale, while providing chemical information on the analyte. Also, this voltammetric approach allows for the investigation of the kinetics of release and uptake of molecules in the brain. This chapter describes, completely, how to make these measurements and the properties of FSCV that make it uniquely suitable for performing chemical measurements of dopaminergic neurotransmission in vivo. PMID:23296789

  20. Effects of a combination of 3,4-methylenedioxymeth amphetamine and caffeine on real time stimulated dopamine release in the rat striatum: Studies using fast cyclic voltammetry.

    Science.gov (United States)

    O'Connor, J J; O'Boyle, K M; Lowry, J P

    2017-08-24

    It is well documented that caffeine exacerbates the hyperthermia associated with acute exposure to 3,4-methylenedioxymethamphetamine (MDMA) in rats. Previous reports have also indicated that MDMA-related enhancement of dopamine release is exacerbated in the presence of caffeine. In the present study we have examined whether the effects of MDMA on real-time stimulated dopamine release, in the absence of uptake inhibition, are accentuated in the presence of caffeine. Isolated striatal slices from adult male Wistar rats were treated acutely with MDMA, caffeine, or a combination, and their effects on single and 5pulse stimulated dopamine release monitored using the technique of fast cyclic voltammetry. Caffeine at 10 or 100μM had no significant effect on single pulse stimulated dopamine release. However 100μM caffeine caused a significant peak increase in 5pulse stimulated dopamine release. Both 1 and 30μM MDMA gave rise to a significant increase in both single and 5-pulse dopamine release and reuptake. A combination of 100μM caffeine and 1 or 30μM MDMA did not significantly enhance the effects of MDMA on single or 5pulse dopamine release and reuptake when compared to that applied alone. Utilizing single action potential dependent dopamine release, these results do not demonstrate a caffeine-enhanced MDMA-induced dopamine release. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Lobelane inhibits methamphetamine-evoked dopamine release via inhibition of the vesicular monoamine transporter-2.

    Science.gov (United States)

    Nickell, Justin R; Krishnamurthy, Sairam; Norrholm, Seth; Deaciuc, Gabriela; Siripurapu, Kiran B; Zheng, Guangrong; Crooks, Peter A; Dwoskin, Linda P

    2010-02-01

    Lobeline is currently being evaluated in clinical trials as a methamphetamine abuse treatment. Lobeline interacts with nicotinic receptor subtypes, dopamine transporters (DATs), and vesicular monoamine transporters (VMAT2s). Methamphetamine inhibits VMAT2 and promotes dopamine (DA) release from synaptic vesicles, resulting ultimately in increased extracellular DA. The present study generated structure-activity relationships by defunctionalizing the lobeline molecule and determining effects on [(3)H]dihydrotetrabenazine binding, inhibition of [(3)H]DA uptake into striatal synaptic vesicles and synaptosomes, the mechanism of VMAT2 inhibition, and inhibition of methamphetamine-evoked DA release. Compared with lobeline, the analogs exhibited greater potency inhibiting DA transporter (DAT) function. Saturated analogs, lobelane and nor-lobelane, exhibited high potency (K(i) = 45 nM) inhibiting vesicular [(3)H]DA uptake, and lobelane competitively inhibited VMAT2 function. Lobeline and lobelane exhibited 67- and 35-fold greater potency, respectively, in inhibiting VMAT2 function compared to DAT function. Lobelane potently decreased (IC(50) = 0.65 microM; I(max) = 73%) methamphetamine-evoked DA overflow, and with a greater maximal effect compared with lobeline (IC(50) = 0.42 microM, I(max) = 56.1%). These results provide support for VMAT2 as a target for inhibition of methamphetamine effects. Both trans-isomers and demethylated analogs of lobelane had reduced or unaltered potency inhibiting VMAT2 function and lower maximal inhibition of methamphetamine-evoked DA release compared with lobelane. Thus, defunctionalization, cis-stereochemistry of the side chains, and presence of the piperidino N-methyl are structural features that afford greatest inhibition of methamphetamine-evoked DA release and enhancement of selectivity for VMAT2. The current results reveal that lobelane, a selective VMAT2 inhibitor, inhibits methamphetamine-evoked DA release and is a promising lead for

  2. Lobelane Inhibits Methamphetamine-Evoked Dopamine Release via Inhibition of the Vesicular Monoamine Transporter-2S⃞

    Science.gov (United States)

    Nickell, Justin R.; Krishnamurthy, Sairam; Norrholm, Seth; Deaciuc, Gabriela; Siripurapu, Kiran B.; Zheng, Guangrong; Crooks, Peter A.

    2010-01-01

    Lobeline is currently being evaluated in clinical trials as a methamphetamine abuse treatment. Lobeline interacts with nicotinic receptor subtypes, dopamine transporters (DATs), and vesicular monoamine transporters (VMAT2s). Methamphetamine inhibits VMAT2 and promotes dopamine (DA) release from synaptic vesicles, resulting ultimately in increased extracellular DA. The present study generated structure-activity relationships by defunctionalizing the lobeline molecule and determining effects on [3H]dihydrotetrabenazine binding, inhibition of [3H]DA uptake into striatal synaptic vesicles and synaptosomes, the mechanism of VMAT2 inhibition, and inhibition of methamphetamine-evoked DA release. Compared with lobeline, the analogs exhibited greater potency inhibiting DA transporter (DAT) function. Saturated analogs, lobelane and nor-lobelane, exhibited high potency (Ki = 45 nM) inhibiting vesicular [3H]DA uptake, and lobelane competitively inhibited VMAT2 function. Lobeline and lobelane exhibited 67- and 35-fold greater potency, respectively, in inhibiting VMAT2 function compared to DAT function. Lobelane potently decreased (IC50 = 0.65 μM; Imax = 73%) methamphetamine-evoked DA overflow, and with a greater maximal effect compared with lobeline (IC50 = 0.42 μM, Imax = 56.1%). These results provide support for VMAT2 as a target for inhibition of methamphetamine effects. Both trans-isomers and demethylated analogs of lobelane had reduced or unaltered potency inhibiting VMAT2 function and lower maximal inhibition of methamphetamine-evoked DA release compared with lobelane. Thus, defunctionalization, cis-stereochemistry of the side chains, and presence of the piperidino N-methyl are structural features that afford greatest inhibition of methamphetamine-evoked DA release and enhancement of selectivity for VMAT2. The current results reveal that lobelane, a selective VMAT2 inhibitor, inhibits methamphetamine-evoked DA release and is a promising lead for the development of a

  3. Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding.

    Science.gov (United States)

    Baldo, Brian A; Kelley, Ann E

    2007-04-01

    The idea that nucleus accumbens (Acb) dopamine transmission contributes to the neural mediation of reward, at least in a general sense, has achieved wide acceptance. Nevertheless, debate remains over the precise nature of dopamine's role in reward and even over the nature of reward itself. In the present article, evidence is reviewed from studies of food intake, feeding microstructure, instrumental responding for food reinforcement, and dopamine efflux associated with feeding, which suggests that reward processing in the Acb is best understood as an interaction among distinct processes coded by discrete neurotransmitter systems. In agreement with several theories of Acb dopamine function, it is proposed here that allocation of motor effort in seeking food or food-associated conditioned stimuli can be dissociated from computations relevant to the hedonic evaluation of food during the consummatory act. The former appears to depend upon Acb dopamine transmission and the latter upon striatal opioid peptide release. Moreover, dopamine transmission may play a role in 'stamping in' associations between motor acts and goal attainment and perhaps also neural representations corresponding to rewarding outcomes. Finally, evidence is reviewed that amino acid transmission specifically in the Acb shell acts as a central 'circuit breaker' to flexibly enable or terminate the consummatory act, via descending connections to hypothalamic feeding control systems. The heuristic framework outlined above may help explain why dopamine-compromising manipulations that strongly diminish instrumental goal-seeking behaviors leave consummatory activity relatively unaffected.

  4. Regionally distinct phasic dopamine release patterns in the striatum during reversal learning.

    Science.gov (United States)

    Klanker, Marianne; Fellinger, Lisanne; Feenstra, Matthijs; Willuhn, Ingo; Denys, Damiaan

    2017-03-14

    Striatal dopamine (DA) plays a central role in reward-related learning and behavioral adaptation to changing environments. Recent studies suggest that rather than being broadcast as a uniform signal throughout the entire region, DA release dynamics diverge between different striatal regions. In a previous study, we showed that phasic DA release patterns in the ventromedial striatum (VMS) rapidly adapt during reversal learning. However, it is unknown how DA dynamics in the dorsolateral striatum (DLS) are modulated during such adaptive behavior. Here, we used fast-scan cyclic voltammetry to measure phasic DA release in the DLS during spatial reversal learning. In the DLS, we observed minor DA release after the onset of a visual cue signaling reward availability, followed by more pronounced DA release during more proximal reward cues (e.g., lever extension) and execution of the operant response (i.e., lever press), both in rewarded and non-rewarded trials. These release dynamics (minor DA after onset of the predictive visual cue, prominent DA during the operant response) did not change significantly during or following a reversal of response-reward contingencies. Notably, the DA increase to the lever press did not reflect a general signal related to the initiation of any motivated motor response, as we did not observe DA release when rats initiated nose pokes into the food receptacle during inter-trial intervals. This suggests that DA release in the DLS occurs selectively during the initiation and execution of a learned operant response. Together with our previous results obtained in the VMS, these findings reveal distinct phasic DA release patterns during adaptation of established behavior in DLS and VMS. The VMS DA signal, which is highly sensitive to reversal of response-reward contingences, may provide a teaching signal to guide reward-related learning and facilitate behavioral adaptation, whereas DLS DA may reflect a 'response execution signal' largely

  5. Effects of repeated hyperbaric nitrogen-oxygen exposures on the striatal dopamine release and on motor disturbances in rats.

    Science.gov (United States)

    Lavoute, Cécile; Weiss, Michel; Rostain, Jean-Claude

    2005-09-14

    Previous studies have demonstrated disruptions of motor activities and a decrease of extracellular dopamine level in the striatum of rats exposed to high pressure of nitrogen. Men exposed to nitrogen pressure develop also motor and cognitive disturbances related to inert gas narcosis. After repetitive exposures, adaptation to narcosis was subjectively reported. To study the effects of repetitive exposures to hyperbaric nitrogen-oxygen, male Sprague-Dawley rats were implanted in the striatum with multifiber carbon dopamine-sensitive electrodes. After recovery from surgery, free-moving rats were exposed for 2 h up to 3 MPa of nitrogen-oxygen mixture before and after one daily exposure to 1 MPa of nitrogen-oxygen, for 5 consecutive days. Dopamine release was measured by differential pulse voltammetry and motor activities were quantified using piezo-electric captor. At the first exposure to 3 MPa, the striatal dopamine level decreased during the compression (-15%) to reach -20% during the stay at 3 MPa. Motor activities were increased during compression (+15%) and the first 60 min at constant pressure (+10%). In contrast, at the second exposure to 3 MPa, an increase of dopamine of +15% was obtained during the whole exposure. However, total motor activities remained unchanged as compared to the first exposure. Our results confirm that nitrogen exposure at 3 MPa led to a decreased striatal dopamine release and increased motor disturbances in naïve rats. Repetitive exposures to 1 MPa of nitrogen induced a reversal effect on the dopamine release which suggests a neurochemical change at the level of the neurotransmitter regulation processes of the basal ganglia. In contrast, motor activity remained quantitatively unchanged, thus suggesting that dopamine is not involved alone in modulating these motor disturbances.

  6. Midbrain dopaminergic neurons generate calcium and sodium currents and release dopamine in the striatum of pups

    Directory of Open Access Journals (Sweden)

    Diana Carolina Ferrari

    2012-03-01

    Full Text Available Midbrain dopaminergic neurons (mDA neurons are essential for the control of diverse motor and cognitive behaviors. However, our understanding of the activity of immature mDA neurons is rudimentary. Rodent mDA neurons migrate and differentiate early in embryonic life and dopaminergic axons enter the striatum and contact striatal neurons a few days before birth, but when these are functional is not known. Here, we recorded Ca2+ transients and Na+ spikes from embryonic (E16-E18 and early postnatal (P0-P7 mDA neurons with dynamic two photon imaging and patch clamp techniques in slices from tyrosine hydroxylase-GFP mice, and measured evoked dopamine release in the striatum with amperometry. We show that half of identified E16-P0 mDA neurons spontaneously generate non-synaptic, intrinsically-driven Ca2+ spikes and Ca2+ plateaus mediated by N- and L-type voltage-gated Ca2+ channels. Starting from E18-P0, half of the mDA neurons also reliably generate overshooting Na+ spikes with an abrupt maturation at birth (P0 = E19. At that stage (E18-P0, dopaminergic terminals release dopamine in a calcium-dependent manner in the striatum in response to local stimulation. We propose that the intrinsic spontaneous activity of mouse mDA neurons may impact the development/activity of the striatal network from birth.

  7. Hyperbaric He but not N2 augments Ca2+-dependent dopamine release from rat striatum.

    Science.gov (United States)

    Paul, M L; Philp, R B

    1989-07-01

    Endogenous dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured by high performance liquid chromatography with electrochemical detection in perfusate from continuously superfused rat brain striatal slices, and the effects of various pressures of He and N2 were determined. He at 24 and 100 atmospheres absolute (ATA) significantly (P less than 0.01 and less than 0.05) increased the release of DA evoked by a 6-min exposure to 35 mM K+, whereas He at 48 ATA did not. Experiments conducted in a Ca2+-free medium showed that only the extracellular Ca2+-dependent component of release was affected by pressure. Similar increases in DA release were observed when DA reuptake and metabolism were blocked with cocaine and pargyline, although statistical significance was not achieved. N2 did not significantly affect DA release at 12, 24, 48, or 100 ATA. The results indicate that He (= hydrostatic pressure) augments Ca2+-dependent DA release and that substitution of N2 negates this effect. The relevance of these observations to the phenomena of high pressure neurologic syndrome in divers and the anesthetic reversal of pressure effects is discussed.

  8. Role of dopamine D1 and D2 receptors in the nucleus accumbens shell on the acquisition and expression of fructose-conditioned flavor-flavor preferences in rats.

    Science.gov (United States)

    Bernal, Sonia Y; Dostova, Irina; Kest, Asher; Abayev, Yana; Kandova, Ester; Touzani, Khalid; Sclafani, Anthony; Bodnar, Richard J

    2008-06-26

    Systemic administration of dopamine D1 (SCH23390) and less so D2 (raclopride) receptor antagonists significantly reduce acquisition and expression of fructose-conditioned flavor preferences (CFP). Because dopamine in the nucleus accumbens shell (NAcS) is implicated in food reward, the present study examined whether NAcS D1 or D2 antagonists altered acquisition and/or expression of fructose-CFP. In Experiment 1, food-restricted rats with bilateral NAcS cannulae were trained to drink a fructose (8%)+saccharin (0.2%) solution mixed with one flavor (CS+/Fs) and a less-preferred 0.2% saccharin solution with mixed another flavor (CS-/s). Unlimited two-bottle tests with the two flavors in saccharin (0.2%: CS+/s, CS-/s) occurred 10 min following total bilateral NAcS doses of 0, 12, 24 or 48 nmol of SCH23390 or raclopride. Preference for CS+/s over CS-/s following vehicle treatment (76%) was significantly reduced by SCH23390 (48 nmol, 62%) and raclopride (24 nmol, 63%). In Experiment 2, rats received bilateral NAcS injections (12 nmol) of SCH23390 or raclopride on one-bottle training (16 ml) days. Yoked control rats received vehicle and were limited to the CS intakes of the D1 and D2 groups, whereas untreated controls without injections received their CS ration during training. Subsequent unlimited two-bottle tests revealed initial preferences of CS+/s over CS-/s in all groups that remained stable in untreated and yoked controls, but were lost over the six tests sessions in D1 and D2 groups. These data indicate that NAcS D1 and D2 antagonists significantly attenuated the expression of the fructose-CFP and did not block acquisition, but hastened extinction of fructose-CFP.

  9. Observation of reward delivery to a conspecific modulates dopamine release in ventral striatum.

    Science.gov (United States)

    Kashtelyan, Vadim; Lichtenberg, Nina T; Chen, Mindy L; Cheer, Joseph F; Roesch, Matthew R

    2014-11-03

    Dopamine (DA) neurons increase and decrease firing for rewards that are better and worse than expected, respectively. These correlates have been observed at the level of single-unit firing and in measurements of phasic DA release in ventral striatum (VS). Here, we ask whether DA release is modulated by delivery of reward, not to oneself, but to a conspecific. It is unknown what, if anything, DA release encodes during social situations in which one animal witnesses another animal receive reward. It might be predicted that DA release will increase, suggesting that watching a conspecific receive reward is a favorable outcome. Conversely, DA release may be entirely dependent on personal experience, or perhaps observation of receipt of reward might be experienced as a negative outcome because another individual, rather than oneself, receives the reward. Our data show that animals display a mixture of affective states during observation of conspecific reward, first exhibiting increases in appetitive calls (50 kHz), then exhibiting increases in aversive calls (22 kHz). Like ultrasonic vocalizations (USVs), DA signals were modulated by delivery of reward to the conspecific. We show stronger DA release during observation of the conspecific receiving reward relative to observation of reward delivered to an empty box, but only on the first trial. During the following trials, this relationship reversed: DA release was reduced during observation of the conspecific receiving reward. These findings suggest that positive and negative states associated with conspecific reward delivery modulate DA signals related to learning in social situations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Target-specific suppression of GABA release from parvalbumin interneurons in the basolateral amygdala by dopamine.

    Science.gov (United States)

    Chu, Hong-Yuan; Ito, Wataru; Li, Jiayang; Morozov, Alexei

    2012-10-17

    Dopamine (DA) in the basolateral amygdala (BLA) promotes fear learning by disinhibiting principal neurons (PNs) and enabling synaptic plasticity in their sensory inputs. While BLA interneurons (INs) are heterogeneous, it is unclear which interneuron subtypes decrease GABAergic input to PNs in the presence of DA. Here, using cell type-selective photostimulation by channelrhodopsin 2 in BLA slices from mouse brain, we examined the role of parvalbumin-positive INs (PV-INs), the major interneuronal subpopulation in BLA, in the disinhibitory effect of DA. We found that DA selectively suppressed GABAergic transmission from PV-INs to PNs by acting on presynaptic D(2) receptors, and this effect was mimicked by Rp-cAMP, an inhibitor of cAMP-dependent signaling. In contrast, DA did not alter GABA release from PV-INs to INs. Furthermore, neither suppressing cAMP-dependent signaling by Rp-cAMP nor enhancing it by forskolin altered GABA release from PV-INs to BLA INs. Overall, DA disinhibits BLA, at least in part, by suppressing GABA release from PV-INs in the target cell-specific manner that results from differential control of this release by cAMP-dependent signaling.

  11. Beer flavor provokes striatal dopamine release in male drinkers: mediation by family history of alcoholism.

    Science.gov (United States)

    Oberlin, Brandon G; Dzemidzic, Mario; Tran, Stella M; Soeurt, Christina M; Albrecht, Daniel S; Yoder, Karmen K; Kareken, David A

    2013-08-01

    Striatal dopamine (DA) is increased by virtually all drugs of abuse, including alcohol. However, drug-associated cues are also known to provoke striatal DA transmission- a phenomenon linked to the motivated behaviors associated with addiction. To our knowledge, no one has tested if alcohol's classically conditioned flavor cues, in the absence of a significant pharmacologic effect, are capable of eliciting striatal DA release in humans. Employing positron emission tomography (PET), we hypothesized that beer's flavor alone can reduce the binding potential (BP) of [(11)C]raclopride (RAC; a reflection of striatal DA release) in the ventral striatum, relative to an appetitive flavor control. Forty-nine men, ranging from social to heavy drinking, mean age 25, with a varied family history of alcoholism underwent two [(11)C]RAC PET scans: one while tasting beer, and one while tasting Gatorade. Relative to the control flavor of Gatorade, beer flavor significantly increased self-reported desire to drink, and reduced [(11)C]RAC BP, indicating that the alcohol-associated flavor cues induced DA release. BP reductions were strongest in subjects with first-degree alcoholic relatives. These results demonstrate that alcohol-conditioned flavor cues can provoke ventral striatal DA release, absent significant pharmacologic effects, and that the response is strongest in subjects with a greater genetic risk for alcoholism. Striatal DA responses to salient alcohol cues may thus be an inherited risk factor for alcoholism.

  12. Beer Flavor Provokes Striatal Dopamine Release in Male Drinkers: Mediation by Family History of Alcoholism

    Science.gov (United States)

    Oberlin, Brandon G; Dzemidzic, Mario; Tran, Stella M; Soeurt, Christina M; Albrecht, Daniel S; Yoder, Karmen K; Kareken, David A

    2013-01-01

    Striatal dopamine (DA) is increased by virtually all drugs of abuse, including alcohol. However, drug-associated cues are also known to provoke striatal DA transmission- a phenomenon linked to the motivated behaviors associated with addiction. To our knowledge, no one has tested if alcohol's classically conditioned flavor cues, in the absence of a significant pharmacologic effect, are capable of eliciting striatal DA release in humans. Employing positron emission tomography (PET), we hypothesized that beer's flavor alone can reduce the binding potential (BP) of [11C]raclopride (RAC; a reflection of striatal DA release) in the ventral striatum, relative to an appetitive flavor control. Forty-nine men, ranging from social to heavy drinking, mean age 25, with a varied family history of alcoholism underwent two [11C]RAC PET scans: one while tasting beer, and one while tasting Gatorade. Relative to the control flavor of Gatorade, beer flavor significantly increased self-reported desire to drink, and reduced [11C]RAC BP, indicating that the alcohol-associated flavor cues induced DA release. BP reductions were strongest in subjects with first-degree alcoholic relatives. These results demonstrate that alcohol-conditioned flavor cues can provoke ventral striatal DA release, absent significant pharmacologic effects, and that the response is strongest in subjects with a greater genetic risk for alcoholism. Striatal DA responses to salient alcohol cues may thus be an inherited risk factor for alcoholism. PMID:23588036

  13. Mesolimbic alpha-, but not beta-adrenoceptors control the accumbal release of dopamine that is derived from reserpine-sensitive storage vesicles.

    NARCIS (Netherlands)

    Verheij, M.M.M.; Cools, A.R.

    2009-01-01

    Mesolimbic beta-, but not alpha-adrenoceptors control the accumbal release of dopamine that is derived from alpha-methyl-para-tyrosine-sensitive pools of newly synthesized neurotransmitter. The aim of this study was to investigate which of these adrenoceptors control the accumbal release of dopamine

  14. Influence of Volatile Anesthesia on the Release of Glutamate and other Amino Acids in the Nucleus Accumbens in a Rat Model of Alcohol Withdrawal: A Pilot Study

    Science.gov (United States)

    Seidemann, Thomas; Spies, Claudia; Morgenstern, Rudolf; Wernecke, Klaus-Dieter; Netzhammer, Nicolai

    2017-01-01

    Background Alcohol withdrawal syndrome is a potentially life-threatening condition, which can occur when patients with alcohol use disorders undergo general anesthesia. Excitatory amino acids, such as glutamate, act as neurotransmitters and are known to play a key role in alcohol withdrawal syndrome. To understand this process better, we investigated the influence of isoflurane, sevoflurane, and desflurane anesthesia on the profile of excitatory and inhibitory amino acids in the nucleus accumbens (NAcc) of alcohol-withdrawn rats (AWR). Methods Eighty Wistar rats were randomized into two groups of 40, pair-fed with alcoholic or non-alcoholic nutrition. Nutrition was withdrawn and microdialysis was performed to measure the activity of amino acids in the NAcc. The onset time of the withdrawal syndrome was first determined in an experiment with 20 rats. Sixty rats then received isoflurane, sevoflurane, or desflurane anesthesia for three hours during the withdrawal period, followed by one hour of elimination. Amino acid concentrations were measured using chromatography and results were compared to baseline levels measured prior to induction of anesthesia. Results Glutamate release increased in the alcohol group at five hours after the last alcohol intake (p = 0.002). After 140 min, desflurane anesthesia led to a lower release of glutamate (p < 0.001) and aspartate (p = 0.0007) in AWR compared to controls. GABA release under and after desflurane anesthesia was also significantly lower in AWR than controls (p = 0.023). Over the course of isoflurane anesthesia, arginine release decreased in AWR compared to controls (p < 0.001), and aspartate release increased after induction relative to controls (p20min = 0.015 and p40min = 0.006). However, amino acid levels did not differ between the groups as a result of sevoflurane anesthesia. Conclusions Each of three volatile anesthetics we studied showed different effects on excitatory and inhibitory amino acid concentrations. Under

  15. Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Møller, Arne; Peterson, Ericka

    2011-01-01

    Aims Gambling excitement is believed to be associated with biological measures of pathological gambling. Here, we tested the hypothesis that dopamine release would be associated with increased excitement levels in Pathological Gamblers compared with Healthy Controls. Design Pathological Gamblers...... and Healthy Controlswere experimentally compared in a non-gambling (baseline) and gambling condition. Measurements We used Positron Emission Tomography (PET) with the tracer raclopride to measure dopamine D 2/3 receptor availability in the ventral striatum during a non-gambling and gambling condition...... of the Iowa GamblingTask (IGT). After each condition participants rated their excitement level. Setting Laboratory experiment. Participants 18 Pathological Gamblers and 16 Healthy Controls. Findings Pathological Gamblers with dopamine release in the ventral striatum had significantly higher excitement levels...

  16. Effects of monoamine releasers with varying selectivity for releasing dopamine/norepinephrine versus serotonin on choice between cocaine and food in rhesus monkeys.

    Science.gov (United States)

    Banks, Matthew L; Blough, Bruce E; Negus, S Stevens

    2011-12-01

    Monoamine releasers constitute one class of candidate medications for the treatment of cocaine abuse, and concurrent cocaine-versus-food choice procedures are potentially valuable as experimental tools to evaluate the efficacy and safety of candidate medications. This study assessed the choice between cocaine and food by rhesus monkeys during treatment with five monoamine releasers that varied in selectivity to promote the release of dopamine and norepinephrine versus serotonin (5HT) [m-fluoroamphetamine, (+)-phenmetrazine, (+)-methamphetamine, napthylisopropylamine and (±)-fenfluramine]. Rhesus monkeys (n=8) responded under a concurrent-choice schedule of food delivery (1-g pellets, fixed ratio 100 schedule) and cocaine injections (0-0.1 mg/kg/injection, fixed ratio 10 schedule). Cocaine choice dose-effect curves were determined daily during continuous 7-day treatment with saline or with each test compound dose. During saline treatment, cocaine maintained a dose-dependent increase in cocaine choice, and the highest cocaine doses (0.032-0.1 mg/kg/injection) maintained almost exclusive cocaine choice. Efficacy of monoamine releasers to decrease cocaine choice corresponded to their pharmacological selectivity to release dopamine and norepinephrine versus 5HT. None of the releasers reduced cocaine choice or promoted reallocation of responding to food choice to the same extent as when saline was substituted for cocaine. These results extend the range of conditions across which dopamine and norepinephrine-selective releasers have been shown to reduce cocaine self-administration.

  17. D2 autoreceptor inhibition reveals oxygen-glucose deprivation-induced release of dopamine in guinea-pig cochlea

    NARCIS (Netherlands)

    Halmos, G; Doleviczényi, Z; Répássy, G; Kittel, A; Vizi, E S; Lendvai, B; Zelles, T

    2005-01-01

    Dopamine (DA), released from the lateral olivocochlear (LOC) efferent terminals, the efferent arm of the short-loop feedback in the cochlea, is considered as a protective factor in the inner ear since it inhibits auditory nerve dendrite firing in ischemia- or noise-induced excitotoxicity leading to

  18. Phasic dopamine release in the medial prefrontal cortex enhances stimulus discrimination.

    Science.gov (United States)

    Popescu, Andrei T; Zhou, Michael R; Poo, Mu-Ming

    2016-05-31

    Phasic dopamine (DA) release is believed to guide associative learning. Most studies have focused on projections from the ventral tegmental area (VTA) to the striatum, and the action of DA in other VTA target regions remains unclear. Using optogenetic activation of VTA projections, we examined DA function in the medial prefrontal cortex (mPFC). We found that mice perceived optogenetically induced DA release in mPFC as neither rewarding nor aversive, and did not change their previously learned behavior in response to DA transients. However, repetitive temporal pairing of an auditory conditioned stimulus (CS) with mPFC DA release resulted in faster learning of a subsequent task involving discrimination of the same CS against unpaired stimuli. Similar results were obtained using both appetitive and aversive unconditioned stimuli, supporting the notion that DA transients in mPFC do not represent valence. Using extracellular recordings, we found that CS-DA pairings increased firing of mPFC neurons in response to CSs, and administration of D1 or D2 DA-receptor antagonists in mPFC during learning impaired stimulus discrimination. We conclude that DA transients tune mPFC neurons for the recognition of behaviorally relevant events during learning.

  19. Phorbol esters potentiate rapid dopamine release from median eminence and striatal synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Shu, C.; Selmanoff, M.

    1988-06-01

    In the present study, we investigated the ability of phorbol esters to potentiate Ca2+-dependent depolarization-induced release of tritium-labeled dopamine ((3H)DA) from median eminence and striatal synaptosomes. Phorbol esters potentiated (3H)DA release in a concentration-dependent manner in both kinds of dopaminergic nerve terminals and with a potency series similar to that reported for stimulation of protein kinase-C (PKC) activity in other cell systems. Evoked (3H)DA release was increased by 12-O-tetradecanoylphorbol-13-acetate (TPA; 10(-7) M) after 1, 3, 5, and 10 sec of depolarization. The effect of TPA was suppressed by sphingosine, a PKC inhibitor. TPA enhanced (3H)DA release evoked by high K+, veratridine or the Ca2+ ionophore A23187. Phorbol ester potentiation was found to be depolarization dependent, as it was present from 30-75 mM, but not at 5-20 mM external K+. Potentiation was seen at all external Ca2+ concentrations studied between 0.01-3 mM. However, in the absence of external free Ca2+ (i.e. with 0.1 mM EGTA), the phorbol effect was not present. These data indicate that an increase in intrasynaptosomal Ca2+ concentration is necessary for the enhancement of (3H)DA release by phorbol esters to occur. The combination of TPA and the Ca2+ ionophore A23187 does not show the marked synergism observed in some other systems, that is maximal release was not reinstated. This suggests that in dopaminergic nerve terminals, activation of PKC has a modulatory, rather than a mediating, effect on release. Recently, we have shown that hyperprolactinemia stimulated (3H)DA release from median eminence synaptosomes by an external Ca2+-independent mechanism which might involve the PKC pathway. However, in the present work we found that the TPA and PRL effects on evoked (3H)DA release were additive, suggesting that two independent mechanisms are involved.

  20. Direct monitoring of dopamine and 5-HT release in substantia nigra and ventral tegmental area in vitro

    DEFF Research Database (Denmark)

    Rice, M E; Richards, C D; Nedergaard, S;

    1994-01-01

    Fast-scan cyclic voltammetry with carbon fibre microelectrodes was used to detect endogenous dopamine (DA) and 5-hydroxytryptamine (5-HT) release from three distinct regions of guinea-pig mid-brain in vitro: rostral and caudal substantia nigra (SN) and the ventral tegmental area (VTA). Previous...... these regions with in situ electrodes and demonstrates the utility of fast-scan cyclic voltammetry to investigate the mechanisms and possible non-classical functions of somato-dendritic DA release....

  1. Treatment of Parkinson’s disease: nanostructured sol–gel silica–dopamine reservoirs for controlled drug release in the central nervous system

    Science.gov (United States)

    López, Tessy; Bata-García, José L; Esquivel, Dulce; Ortiz-Islas, Emma; Gonzalez, Richard; Ascencio, Jorge; Quintana, Patricia; Oskam, Gerko; Álvarez-Cervera, Fernando J; Heredia-López, Francisco J; Góngora-Alfaro, José L

    2011-01-01

    Introduction We have evaluated the use of silica–dopamine reservoirs synthesized by the sol–gel approach with the aim of using them in the treatment of Parkinson’s disease, specifically as a device for the controlled release of dopamine in the striatum. Theoretical calculations illustrate that dopamine is expected to assume a planar structure and exhibit weak interactions with the silica surface. Methods Several samples were prepared by varying the wt% of dopamine added during the hydrolysis of tetraethyl orthosilicate. The silica–dopamine reservoirs were characterized by N2 adsorption, scanning and transmission electron microscopy, and Fourier transform infrared spectroscopy. The in vitro release profiles were determined using ultraviolet visible absorbance spectroscopy. The textural analyses showed a maximum value for the surface area of 620 m2/g nanostructured silica materials. The stability of dopamine in the silica network was confirmed by infrared and 13C-nuclear magnetic resonance spectroscopy. The reservoirs were evaluated by means of apomorphine-induced rotation behavior in hemiparkisonian rats. Results The in vitro dopamine delivery profiles indicate two regimes of release, a fast and sustained dopamine delivery was observed up to 24 hours, and after this time the rate of delivery became constant. Histologic analysis of formalin-fixed brains performed 24–32 weeks after reservoir implantation revealed that silica–dopamine implants had a reddish-brown color, suggesting the presence of oxidized dopamine, likely caused by the fixation procedure, while implants without dopamine were always translucent. Conclusion The major finding of the study was that intrastriatal silica–dopamine implants reversed the rotational asymmetry induced by apomorphine, a dopamine agonist, in hemiparkinsonian rats. No dyskinesias or other motor abnormalities were observed in animals implanted with silica or silica–dopamine. PMID:21289978

  2. Corticosterone regulates both naturally occurring and cocaine-induced dopamine signaling by selectively decreasing dopamine uptake.

    Science.gov (United States)

    Wheeler, Daniel S; Ebben, Amanda L; Kurtoglu, Beliz; Lovell, Marissa E; Bohn, Austin T; Jasek, Isabella A; Baker, David A; Mantsch, John R; Gasser, Paul J; Wheeler, Robert A

    2017-10-01

    Stressful and aversive events promote maladaptive reward-seeking behaviors such as drug addiction by acting, in part, on the mesolimbic dopamine system. Using animal models, data from our lab and others show that stress and cocaine can interact to produce a synergistic effect on reward circuitry. This effect is also observed when the stress hormone corticosterone is administered directly into the nucleus accumbens (NAc), indicating that glucocorticoids act locally in dopamine terminal regions to enhance cocaine's effects on dopamine signaling. However, prior studies in behaving animals have not provided mechanistic insight. Using fast-scan cyclic voltammetry, we examined the effect of systemic corticosterone on spontaneous dopamine release events (transients) in the NAc core and shell in behaving rats. A physiologically relevant systemic injection of corticosterone (2 mg/kg i.p.) induced an increase in dopamine transient amplitude and duration (both voltammetric measures sensitive to decreases in dopamine clearance), but had no effect on the frequency of transient release events. This effect was compounded by cocaine (2.5 mg/kg i.p.). However, a second experiment indicated that the same injection of corticosterone had no detectable effect on the dopaminergic encoding of a palatable natural reward (saccharin). Taken together, these results suggest that corticosterone interferes with naturally-occurring dopamine uptake locally, and this effect is a critical determinant of dopamine concentration specifically in situations in which the dopamine transporter is pharmacologically blocked by cocaine. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Iptkalim inhibits cocaine challenge—induced enhancement of dopamine levels in nucleus accumbens and striatum of rats by up—regulating Kir6.1 and Kir6.2 mRNA expression

    Institute of Scientific and Technical Information of China (English)

    HEHai-Rong; DINGJian-Hua; GUBing; WANGHai; HUGang; LIUYun

    2003-01-01

    AIM:To investigate the effect and mechanism of novel ATP-sensitive potassium channel opener (KCO) iptkalim (IPT) on acute and cocaine challenge-induced alterations in the levels of dopamine (DA) and glutamate (Glu) from nucleus accumbens (NAc), striatum, and prefrontal cortex (PFC) in rats. METHODS: The levels of DA and Glu were assayed using high performance liquid chromatography (HPLC) combined with amperometric and fluorescent detection, respectively. The mRNA levels of Kir6.1, Kir6.2, SUR1, and SUR2 were measured by semiquantitative reverse transcription polymerase chain reaction (RT-PCR). RESULTS: IPT did not affect acute cocaine (30mg/kg,ip)-induced elevations in either DA levels from NAc and striatum or Glu levels from NAc and PFC. An acute cocaine challenge (30mg/kg,ip) on d 21 after withdrawal caused an elevation in DA levels in NAc and striatum. Moreover, the same treatment also increased Gluo levels in PFC and NAc of cocaine-pretreated rats. Repeated IPT injections reversed cocaine challenge-induced DA increase in NAc and striatum. Cocaine challenge increased Kir6.1 and Kir6.2 mRNA expression in striatum and NAc and only elevate Kir6.2 expression in PFC in both cocainepretreated rats and rats pretreated with IPT plus cocaine. Moreover, expression of Kir6.1 and Kir6.2 mRNA was augmented in rats pretreated with IPT plus cocaine compared to rats pretreated with cocaine alone. No significant change was found in the SUR1 and SUR2 expression of all four groups. CONCLUSION:IPT inhibited cocaine challenge-induced enhancement of DA levels in NAc and striatum by up-regulating Kir6.1 and Kir6.2 mRNA expression.

  4. Studies, using in vivo microdialysis, on the effect of the dopamine uptake inhibitor GBR 12909 on 3,4-methylenedioxymethamphetamine ('ecstasy')-induced dopamine release and free radical formation in the mouse striatum.

    Science.gov (United States)

    Camarero, Jorge; Sanchez, Veronica; O'Shea, Esther; Green, A Richard; Colado, M Isabel

    2002-06-01

    The present study examined the mechanisms by which 3,4-methylenedioxymethamphetamine (MDMA) produces long-term neurotoxicity of striatal dopamine neurones in mice and the protective action of the dopamine uptake inhibitor GBR 12909. MDMA (30 mg/kg, i.p.), given three times at 3-h intervals, produced a rapid increase in striatal dopamine release measured by in vivo microdialysis (maximum increase to 380 +/- 64% of baseline). This increase was enhanced to 576 +/- 109% of baseline by GBR 12909 (10 mg/kg, i.p.) administered 30 min before each dose of MDMA, supporting the contention that MDMA enters the terminal by diffusion and not via the dopamine uptake site. This, in addition to the fact that perfusion of the probe with a low Ca(2+) medium inhibited the MDMA-induced increase in extracellular dopamine, indicates that the neurotransmitter may be released by a Ca(2+) -dependent mechanism not related to the dopamine transporter. MDMA (30 mg/kg x 3) increased the formation of 2,3-dihydroxybenzoic acid (2,3-DHBA) from salicylic acid perfused through a probe implanted in the striatum, indicating that MDMA increased free radical formation. GBR 12909 pre-treatment attenuated the MDMA-induced increase in 2,3-DHBA formation by approximately 50%, but had no significant intrinsic radical trapping activity. MDMA administration increased lipid peroxidation in striatal synaptosomes, an effect reduced by approximately 60% by GBR 12909 pre-treatment. GBR 12909 did not modify the MDMA-induced changes in body temperature. These data suggest that MDMA-induced toxicity of dopamine neurones in mice results from free radical formation which in turn induces an oxidative stress process. The data also indicate that the free radical formation is probably not associated with the MDMA-induced dopamine release and that MDMA does not induce dopamine release via an action at the dopamine transporter.

  5. Circadian-related heteromerization of adrenergic and dopamine D₄ receptors modulates melatonin synthesis and release in the pineal gland.

    Directory of Open Access Journals (Sweden)

    Sergio González

    Full Text Available The role of the pineal gland is to translate the rhythmic cycles of night and day encoded by the retina into hormonal signals that are transmitted to the rest of the neuronal system in the form of serotonin and melatonin synthesis and release. Here we describe that the production of both melatonin and serotonin by the pineal gland is regulated by a circadian-related heteromerization of adrenergic and dopamine D₄ receptors. Through α(₁B-D₄ and β₁-D₄ receptor heteromers dopamine inhibits adrenergic receptor signaling and blocks the synthesis of melatonin induced by adrenergic receptor ligands. This inhibition was not observed at hours of the day when D₄ was not expressed. These data provide a new perspective on dopamine function and constitute the first example of a circadian-controlled receptor heteromer. The unanticipated heteromerization between adrenergic and dopamine D₄ receptors provides a feedback mechanism for the neuronal hormone system in the form of dopamine to control circadian inputs.

  6. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25{+-}2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% {+-} 1.3% and 10.6% {+-} 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% {+-} 4.5% vs. 6.6% {+-} 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release.

  7. Dopamine release in organotypic cultures of foetal mouse mesencephalon: effects of depolarizing agents, pargyline, nomifensine, tetrodotoxin and calcium

    DEFF Research Database (Denmark)

    Larsen, Trine R; Rossen, Sine; Gramsbergen, Jan B

    2008-01-01

    Organotypic mesencephalic cultures provide an attractive in vitro alternative to study development of the nigrostriatal system and pathophysiological mechanisms related to Parkinson's disease. However, dopamine (DA) release mechanisms have been poorly characterized in such cultures. We report here...... levels increased 1.6-fold and DA release expressed as a percentage of total DA (medium + tissue contents) increased from 20% to 34% during this growth period in vitro. Co-treatments with high K(+) or veratridine did not cause major changes in percentages of DA release. Tyrosine hydroxylase activity...

  8. Sulpiride in combination with fluvoxamine increases in vivo dopamine release selectively in rat prefrontal cortex.

    Science.gov (United States)

    Ago, Yukio; Nakamura, Shigeo; Baba, Akemichi; Matsuda, Toshio

    2005-01-01

    Coadministration of atypical antipsychotics and selective serotonin reuptake inhibitors (SSRIs) enhances the release of monoamines such as dopamine (DA), norepinephrine (NE), and serotonin (5-HT) in the prefrontal cortex. To clarify the role of DA-D2/3 receptors in the combination effect, we examined the effects of coadministration of the selective DA-D2/3 antagonist sulpiride and the SSRI fluvoxamine on amine neurotransmitter release in rat prefrontal cortex. Sulpiride (10 mg/kg, i.p.) and fluvoxamine (10 mg/kg, i.p.) alone did not affect extracellular DA levels, while their coadministration caused a significant increase in DA levels. Sulpiride alone did not affect extracellular levels of 5-HT and NE in the prefrontal cortex, while fluvoxamine alone caused a marked increase in 5-HT levels and a slight increase in NE levels. Sulpiride did not affect the fluvoxamine-induced increases in extracellular levels of 5-HT and NE. The DA-D2/3 antagonist haloperidol (0.1 mg/kg) in combination with fluvoxamine also caused a selective increase in extracellular DA levels in the cortex. Coadministration of sulpiride and fluvoxamine did not affect extracellular DA levels in the striatum. Combination of systemic sulpiride and local fluvoxamine did not increase the DA levels, but that of systemic fluvoxamine with local sulpiride increased. The combination effect in increasing prefrontal DA levels was antagonized systemically, but not locally, by the 5-HT1A antagonist WAY100635 at a low dose. These findings suggest that the combination of prefrontal DA-D2/3 receptor blockade and 5-HT1A receptor activation in regions other than the cortex plays an important role in sulpiride and fluvoxamine-induced increase in prefrontal DA release.

  9. Activation of muscarinic and nicotinic acetylcholine receptors in the nucleus accumbens core is necessary for the acquisition of drug reinforcement.

    Science.gov (United States)

    Crespo, Jose A; Sturm, Katja; Saria, Alois; Zernig, Gerald

    2006-05-31

    Neurotransmitter release in the nucleus accumbens core (NACore) during the acquisition of remifentanil or cocaine reinforcement was determined in an operant runway procedure by simultaneous tandem mass spectrometric analysis of dopamine, acetylcholine, and remifentanil or cocaine itself. Run times for remifentanil or cocaine continually decreased over the five consecutive runs of the experiment. Intra-NACore dopamine, acetylcholine, and drug peaked with each intravenous remifentanil or cocaine self-administration and decreased to pre-run baseline with half-lives of approximately 10 min. As expected, remifentanil or cocaine peaks did not vary between the five runs. Surprisingly, however, drug-contingent dopamine peaks also did not change over the five runs, whereas acetylcholine peaks did. Thus, the acquisition of drug reinforcement was paralleled by a continuous increase in acetylcholine overflow in the NACore, whereas the overflow of dopamine, the expected prime neurotransmitter candidate for conditioning in drug reinforcement, did not increase. Local intra-accumbens administration by reverse microdialysis of either atropine or mecamylamine completely and reversibly blocked the acquisition of remifentanil reinforcement. Our findings suggest that activation of muscarinic and nicotinic acetylcholine receptors in the NACore by acetylcholine volume transmission is necessary during the acquisition phase of drug reinforcement conditioning.

  10. Long-term but not short-term blockade of dopamine release in Drosophila impairs orientation during flight in a visual attention paradigm.

    Science.gov (United States)

    Ye, Yizhou; Xi, Wang; Peng, Yueqing; Wang, Yizheng; Guo, Aike

    2004-08-01

    Dopamine is a major neuromodulator in both vertebrates and invertebrates and has profound effects on many physiological processes, including the regulation of attention. Most studies of the functions of dopamine use models with long-term blockade of dopamine release and few effects of transient blockade have yet been reported. The goal of the present study was to determine the role of dopamine in attention-like behavior in Drosophila by taking advantage of the fly's orientation behavior during flight. The examination of several different transgenic flies in a single-target visual attention paradigm showed that flies lost their orientation ability if dopamine release was blocked from the beginning of the development of dopaminergic neurons. This is similar to the attention loss in mammals. However, if the blockade of dopamine release was induced during the experimental procedure, flies performed normally. Statistical analysis of the behavioral assessment showed a significant difference between long-term and transient blockade. Using the RNA interference approach, we generated flies with down-regulated J-domain protein, which is a potential cochaperone in synaptic vesicle release, to make an alternative form of long-term dopamine-blockade mutant. Behavioral assays revealed that flies with permanent J-domain protein down-regulation specifically in dopaminergic neurons have an attention defect similar to that induced by long-term blockade of dopamine release. Furthermore, dopamine depletion beginning at eclosion also caused an attention deficit. Our results indicate that prolonged but not transient blockade of dopamine release impairs visual attention-like behavior in Drosophila.

  11. Increased amphetamine-induced locomotor activity, sensitization, and accumbal dopamine release in M5 muscarinic receptor knockout mice

    DEFF Research Database (Denmark)

    Schmidt, Lene S; Miller, Anthony D; Lester, Deranda B

    2010-01-01

    showed that M(5) receptor knockout (M (5) (-/-) ) mice are less sensitive to the reinforcing properties of addictive drugs. MATERIALS AND METHODS: Here, we investigate the role of M(5) receptors in the effects of amphetamine and cocaine on locomotor activity, locomotor sensitization, and dopamine release...... using M (5) (-/-) mice backcrossed to the C57BL/6NTac strain. STATISTICAL ANALYSES: Sensitization of the locomotor response is considered a model for chronic adaptations to repeated substance exposure, which might be related to drug craving and relapse. The effects of amphetamine on locomotor activity......-induced hyperactivity and dopamine release as well as amphetamine sensitization are enhanced in mice lacking the M(5) receptor. These results support the concept that the M(5) receptor modulates effects of addictive drugs....

  12. On the release of catecholamines and dopamine-beta-hydroxylase evoked by ouabain in the perfused cat adrenal gland.

    OpenAIRE

    Garcia, A. G.; Hernandez, M.; Horga, J. F.; Sanchez-Garcia, P.

    1980-01-01

    1 Secretion of catecholamines (CA) and dopamine-beta-hydroxylase (DBH) activity from the retrogradely perfused cat adrenal gland was studied following ouabain infusion. Perfusion with ouabain (10(-4) M) for 10 min caused a gradual release of CA in the effluent which reached its peak 30 min after the ouabain pulse, and was maintained constant for at least 1 h. The effect of ouabain seemed to be irreversible. 2 Mecamylamine, while blocking the CA secretory effects of acetylcholine (ACh) perfusi...

  13. Striatal dopamine release induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex: effect of aging

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Kim, Ji Sun; Lee, Byung Chul; Kim, Yu Kyeong; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    We previously demonstrated dopamine (DA) release in the bilateral striatal regions following prefrontal repetitive transcranial magnetic stimulation (rTMS) in young subjects. Several lines of evidence support substantial age-related changes in human dopaminergic neurotransmission. One possible explanation is alteration of cortico striatal neural connection with aging. Therefore, we investigated how frontal activation by rTMS influences striatal DA release in the elderly with SPECT measurements of striatal binding of [123I]iodobenzamide (lBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy elderly male subjects (age, 64 3 y) were studied with brain [123I]IBZM SPECT under three conditions (resting, sham stimulation, and active rTMS over left dorsolateral prefrontal cortex (DLPFC)), while receiving a bolus plus constant infusion of [123I]IBZM. rTMS session consisted of three blocks. In each block, 15 trains of 2 sec duration were delivered with 10 Hz stimulation frequency and 100% motor threshold. Striatal V3', calculated as (striatal - occipital)/occipital radioactivity, was measured under equilibrium condition at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over left DLPFC induced no significant change in V3' in the right striatum compared with baseline condition (0.91 0.25 vs. 0.96 0.25, P = NS). Interestingly, left striatal V3' showed a significant increase after rTMS over left DLPFC compared with sham condition (1.09 0.33 vs. 0.93 0.27, P < 0.05; 17.0 11.1% increase). These results are discrepant from previous ones from young subjects, who showed frontal rTMS-induced reduction of striatal V3', indicating rTMS-induced striatal DA release. We found no significant striatal DA release induced by rTMS over DLPFC in healthy elderly subjects using in vivo binding competition techniques. These results may support an altered cortico striatal circuit in normal aging.

  14. L-DOPA inhibits excitatory synaptic transmission in the rat nucleus tractus solitarius through release of dopamine.

    Science.gov (United States)

    Ohi, Y; Kodama, D; Haji, A

    2017-09-30

    The mode of action of L-DOPA on excitatory synaptic transmission in second-order neurons of the nucleus tractus solitarius (NTS) was studied using the rat brainstem slices. Superfusion of L-DOPA (10μM) reduced the frequency of miniature excitatory postsynaptic currents (mEPSCs) without any effect on the amplitude. A low concentration (1μM) was ineffective on the mEPSCs, and the highest concentration (100μM) exerted a stronger inhibitory effect. L-DOPA (10μM) decreased the amplitude of EPSCs (eEPSCs) evoked by electrical stimulation of the tractus solitarius and increased the paired-pulse ratio. The inhibitory effects of L-DOPA on mEPSCs and eEPSCs were similar to those of dopamine (100μM). The effects of L-DOPA were blocked by a competitive antagonist, L-DOPA methyl ester (100μM) and also by a D2 receptor antagonist, sulpiride (10μM), while those of dopamine were blocked by the latter but not by the former. In reserpine (5mg/kg, s.c.)-treated rats, the effects of L-DOPA on both mEPSCs and eEPSCs were completely abolished, but those of dopamine remained unchanged. The present results suggest a possibility that L-DOPA may induce the release of dopamine from the axon terminals in the NTS and the released dopamine suppresses the glutamatergic transmission through activation of the presynaptic D2 receptors. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Conductor compounds of phenylpentane in Mycoleptodonoides aitchisonii mycelium enhance the release of dopamine from rat brain striatum slices.

    Science.gov (United States)

    Okuyama, Satoshi; Sawasaki, Emi; Yokogoshi, Hidehiko

    2004-04-01

    Monoterpene compound is a major component of essential oils in various aromatic species. Previous reports about the monoterpene compound linalool and its effect on the brain neurotransmitters glutamic acid, GABA and acetylcholine, but not catecholamines, have been reported. In this study, we investigated the effect of linalool or conductor compounds of phenylpentane, including 1-phenyl-3-pentanol and 1-phenyl-3-pentanone, on dopamine release using rat striatal slices. The edible mushroom Mycoleptodonoides aitchisonii belongs to the Climacodontaceae family, and its cultivate medium or mycelium contains derivatives of the fragrant conductor compound, phenylpentane. Compared to basal levels, 2.5 microg linalool increased dopamine from striatal slices 3-fold. A 4-fold increase in dopamine release resulted from 2.5 microg 1-phenyl-3-pentanol administration, while a half dose of this compound induced a 2.5-fold increase. A greater than 2-fold increase resulted with 2.5 microg 1-phenyl-3-pentanone. These data indicate that striatum has sensitivity for these fragrant compounds and different releasing effects result with differ structures. These actions may affect other neurotransmitters and influence brain function.

  16. Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning.

    Science.gov (United States)

    Hart, Andrew S; Clark, Jeremy J; Phillips, Paul E M

    2015-01-01

    Cue- and reward-evoked phasic dopamine activity during Pavlovian and operant conditioning paradigms is well correlated with reward-prediction errors from formal reinforcement learning models, which feature teaching signals in the form of discrepancies between actual and expected reward outcomes. Additionally, in learning tasks where conditioned cues probabilistically predict rewards, dopamine neurons show sustained cue-evoked responses that are correlated with the variance of reward and are maximal to cues predicting rewards with a probability of 0.5. Therefore, it has been suggested that sustained dopamine activity after cue presentation encodes the uncertainty of impending reward delivery. In the current study we examined the acquisition and maintenance of these neural correlates using fast-scan cyclic voltammetry in rats implanted with carbon fiber electrodes in the nucleus accumbens core during probabilistic Pavlovian conditioning. The advantage of this technique is that we can sample from the same animal and recording location throughout learning with single trial resolution. We report that dopamine release in the nucleus accumbens core contains correlates of both expected value and variance. A quantitative analysis of these signals throughout learning, and during the ongoing updating process after learning in probabilistic conditions, demonstrates that these correlates are dynamically encoded during these phases. Peak CS-evoked responses are correlated with expected value and predominate during early learning while a variance-correlated sustained CS signal develops during the post-asymptotic updating phase.

  17. Histamine H3 receptor activation prevents dopamine D1 receptor-mediated inhibition of dopamine release in the rat striatum: a microdialysis study.

    Science.gov (United States)

    Alfaro-Rodriguez, Alfonso; Alonso-Spilsbury, María; Arch-Tirado, Emilio; Gonzalez-Pina, Rigoberto; Arias-Montaño, José-Antonio; Bueno-Nava, Antonio

    2013-09-27

    Histamine H3 receptors (H3Rs) co-localize with dopamine (DA) D1 receptors (D1Rs) on striatal medium spiny neurons and functionally antagonize D1R-mediated responses. The intra-striatal administration of D1R agonists reduces DA release whereas D1R antagonists have the opposite effect. In this work, a microdialysis method was used to study the effect of co-activating D1 and H3 receptors on the release of DA from the rat dorsal striatum. Infusion of the D1R agonist SKF-38393 (0.5 and 1 μM) significantly reduced DA release (26-58%), and this effect was prevented by co-administration of the H3R agonist immepip (10 μM). In turn, the effect of immepip was blocked by the H3R antagonist thioperamide (10 μM). Our results indicate that co-stimulation of post-synaptic D1 and H3 receptors may indirectly regulate basal DA release in the rat striatum and provide in vivo evidence for a functional interaction between D1 and H3 receptors in the basal ganglia.

  18. Native CB1 receptor affinity, intrinsic activity and accumbens shell dopamine stimulant properties of third generation SPICE/K2 cannabinoids: BB-22, 5F-PB-22, 5F-AKB-48 and STS-135.

    Science.gov (United States)

    De Luca, Maria Antonietta; Castelli, M Paola; Loi, Barbara; Porcu, Alessandra; Martorelli, Mariella; Miliano, Cristina; Kellett, Kathryn; Davidson, Colin; Stair, Jacqueline L; Schifano, Fabrizio; Di Chiara, Gaetano

    2016-06-01

    In order to investigate the in vivo dopamine (DA) stimulant properties of selected 3rd generation Spice/K2 cannabinoids, BB-22, 5F-PB-22, 5F-AKB-48 and STS-135, their in vitro affinity and agonist potency at native rat and mice CB1 receptors was studied. The compounds bind with high affinity to CB1 receptors in rat cerebral cortex homogenates and stimulate CB1-induced [(35)S]GTPγS binding with high potency and efficacy. BB-22 and 5F-PB-22 showed the lowest Ki of binding to CB1 receptors (0.11 and 0.13 nM), i.e., 30 and 26 times lower respectively than that of JWH-018 (3.38 nM), and a potency (EC50, 2.9 and 3.7 nM, respectively) and efficacy (Emax, 217% and 203%, respectively) as CB1 agonists higher than JWH-018 (EC50, 20.2 nM; Emax, 163%). 5F-AKB-48 and STS-135 had higher Ki for CB1 binding, higher EC50 and lower Emax as CB1 agonists than BB-22 and 5F-PB-22 but still comparatively more favourable than JWH-018. The agonist properties of all the compounds were abolished or drastically reduced by the CB1 antagonist/inverse agonist AM251 (0.1 μM). No activation of G-protein was observed in CB1-KO mice. BB-22 (0.003-0.01 mg/kg i.v.) increased dialysate DA in the accumbens shell but not in the core or in the medial prefrontal cortex, with a bell shaped dose-response curve and an effect at 0.01 mg/kg and a biphasic time-course. Systemic AM251 (1.0 mg/kg i.p.) completely prevented the stimulant effect of BB-22 on dialysate DA in the NAc shell. All the other compounds increased dialysate DA in the NAc shell at doses consistent with their in vitro affinity for CB1 receptors (5F-PB-22, 0.01 mg/kg; 5F-AKB-48, 0.1 mg/kg; STS-135, 0.15 mg/kg i.v.). 3rd generation cannabinoids can be even more potent and super-high CB1 receptor agonists compared to JWH-018. Future research will try to establish if these properties can explain the high toxicity and lethality associated with these compounds.

  19. A glutamatergic reward input from the dorsal raphe to ventral tegmental area dopamine neurons.

    Science.gov (United States)

    Qi, Jia; Zhang, Shiliang; Wang, Hui-Ling; Wang, Huikun; de Jesus Aceves Buendia, Jose; Hoffman, Alexander F; Lupica, Carl R; Seal, Rebecca P; Morales, Marisela

    2014-11-12

    Electrical stimulation of the dorsal raphe (DR) and ventral tegmental area (VTA) activates the fibres of the same reward pathway but the phenotype of this pathway and the direction of the reward-relevant fibres have not been determined. Here we report rewarding effects following activation of a DR-originating pathway consisting of vesicular glutamate transporter 3 (VGluT3) containing neurons that form asymmetric synapses onto VTA dopamine neurons that project to nucleus accumbens. Optogenetic VTA activation of this projection elicits AMPA-mediated synaptic excitatory currents in VTA mesoaccumbens dopaminergic neurons and causes dopamine release in nucleus accumbens. Activation also reinforces instrumental behaviour and establishes conditioned place preferences. These findings indicate that the DR-VGluT3 pathway to VTA utilizes glutamate as a neurotransmitter and is a substrate linking the DR-one of the most sensitive reward sites in the brain--to VTA dopaminergic neurons.

  20. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons

    Science.gov (United States)

    Linehan, Victoria; Trask, Robert B.; Briggs, Chantalle; Rowe, Todd M.; Hirasawa, Michiru

    2017-01-01

    Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups, where orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying DA action on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using whole cell patch clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration dependent, bidirectional manner. Low (1 μM) and high concentrations (100 μM) of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors, whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. PMID:26036709

  1. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons.

    Science.gov (United States)

    Linehan, Victoria; Trask, Robert B; Briggs, Chantalle; Rowe, Todd M; Hirasawa, Michiru

    2015-08-01

    Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups: orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying the action of DA on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using the whole-cell patch-clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration-dependent bidirectional manner. Low (1 μM) and high (100 μM) concentrations of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G-protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours.

  2. Dopamine regulation of gonadotropin-releasing hormone neuron excitability in male and female mice.

    Science.gov (United States)

    Liu, Xinhuai; Herbison, Allan E

    2013-01-01

    Numerous in vivo studies have shown that dopamine is involved in the regulation of LH secretion in mammals. However, the mechanisms through which this occurs are not known. In this study, we used green fluorescent protein-tagged GnRH neurons to examine whether and how dopamine may modulate the activity of adult GnRH neurons in the mouse. Bath-applied dopamine (10-80 μm) potently inhibited the firing of approximately 50% of GnRH neurons. This resulted from direct postsynaptic inhibitory actions through D1-like, D2-like, or both receptors. Further, one third of GnRH neurons exhibited an increase in their basal firing rate after administration of SCH23390 (D1-like antagonist) and/or raclopride (D2-like antagonist) indicating tonic inhibition by endogenous dopamine in the brain slice. The role of dopamine in presynaptic modulation of the anteroventral periventricular nucleus (AVPV) γ-aminobutyric acid/glutamate input to GnRH neurons was examined. Exogenous dopamine was found to presynaptically inhibit AVPV-evoked γ-aminobutyric acid /glutamate postsynaptic currents in about 50% of GnRH neurons. These effects were, again, mediated by both D1- and D2-like receptors. Neither postsynaptic nor presynaptic actions of dopamine were found to be different between diestrous, proestrous, and estrous females, or males. Approximately 20% of GnRH neurons were shown to receive a dopaminergic input from AVPV neurons in male and female mice. Together, these observations show that dopamine is one of the most potent inhibitors of GnRH neuron excitability and that this is achieved through complex pre- and postsynaptic actions that each involve D1- and D2-like receptor activation.

  3. D4 and D1 dopamine receptors modulate [3H] GABA release in the substantia nigra pars reticulata of the rat.

    Science.gov (United States)

    Acosta-García, Jacqueline; Hernández-Chan, Nancy; Paz-Bermúdez, Francisco; Sierra, Arturo; Erlij, David; Aceves, Jorge; Florán, Benjamín

    2009-12-01

    Neurons of the globus pallidus express dopamine D4 receptors that can modulate transmitter release by their axon terminals. Indeed, GABA release from pallidal terminals in the subthalamic nucleus and in the reticular nucleus of the thalamus is inhibited by activation of D4 receptors. Here we investigated whether GABA release by pallidal projections to the substantia nigra reticulate (SNr) is also modulated by D4 receptors. Dopamine-stimulated depolarization-induced GABA release in slices of the SNr; however, after selective blockade of D1 receptors, dopamine inhibited release. The selective D4 agonist PD 168,077 (IC(50) = 5.30 nM) mimicked the inhibition of release while the selective D4 antagonist L-745,870 blocked the inhibition. To identify the source of D1 and D4 modulated terminals, we unilaterally injected kainic acid in either the GP or the striatum. After lesions of the pallidum, the D4 induced inhibition of release was blocked while the D1 induced stimulation was still significant. Lesions of the striatum had the converse effects. We conclude that release of dopamine in the SNr enhances GABA release mainly through activation of D1 receptors in striatonigral projections and inhibits release mainly through activation of D4 receptors in pallidonigral projections. Because deficient D4 receptor signaling in globus pallidus terminals will lead to disinhibition of impulse traffic through the thalamus we speculate that the D4 abnormalities observed in ADHD patients may be important in the generation of the syndrome.

  4. Effects of cysteamine on dopamine-mediated behaviors: evidence for dopamine-somatostatin interactions in the striatum

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Iverson, M.T.; Radke, J.M.; Vincent, S.R.

    1986-06-01

    The effects of prior treatment with cysteamine, a drug which appears to deplete selectively the neuropeptide somatostatin, on apomorphine-induced stereotypy and amphetamine-induced locomotor activity and conditioned place preferences were investigated. Twelve hours following systemic cysteamine injections apomorphine-induced stereotypy was attenuated and striatal somatostatin levels were reduced by half. Systemic cysteamine also decreased the motor stimulant effects of amphetamine, without influencing the rewarding properties as determined by the conditioned place preference procedure. Direct injections of cysteamine into the nucleus accumbens also decreased the locomotor response to amphetamine, and produced a local reduction in somatostatin levels in the accumbens. Cysteamine did not appear to alter monoamine turnover in the striatum after either systemic or intra-accumbens injections. These results suggest that somatostatin in the nucleus accumbens and caudate-putamen modulates the motor, but not the reinforcing properties of dopaminergic drugs, possibly via an action postsynaptic to dopamine-releasing terminals. Furthermore, it is evident from these results that cysteamine is an important tool with which to study the central actions of somatostatin.

  5. Differential behavioral reinforcement effects of dopamine receptor agonists in the rat with bilateral lesion of the posterior ventral tegmental area.

    Science.gov (United States)

    Ouachikh, Omar; Dieb, Wisam; Durif, Franck; Hafidi, Aziz

    2013-09-01

    Dopamine dysregulation syndrome in Parkinson's disease has been attributed to dopamine replacement therapies and/or a lesion of the dopaminergic system. The dopaminergic neuronal loss targets the substantia nigra and the ventral tegmental area (VTA). We hypothesize that dopamine replacement therapy is responsible for the potential reinforcement effect in Parkinson's disease by acting on the neuronal reward circuitry. Therefore this study was designed to explore the potential motivational effect of dopamine replacement therapy in bilateral VTA-lesioned animals. The posterior (p)VTA, which project to the nucleus accumbens (NAc) constitutes the major dopamine neuronal circuitry implicated in addictive disorders. Using the conditioned place preference (CPP) behavioral paradigm, we investigated the motivational effects of dopamine receptor agonists, and cocaine in rat with a 6-OHDA bilateral lesion of the pVTA. Amongst the dopamine receptor agonists used in this study only the D2R and D3R agonists (bromocriptine, PD128907 and pramipexole), induced a significant CPP in pVTA-lesioned animals. Dopamine receptor agonists did not induce behavioral sensitization in sham animals. Moreover, confocal D2R immunostaining analysis showed a significant increase in the number of D2R per cell body in the NAc shell of pVTA lesioned rats compared to sham. This result correlated, for the first time, the dopamine receptor agonists effect with DR2 overexpression in the NAc shell of pVTA-lesioned rats. In addition, cocaine, which is known to increase dopamine release, induced behavioral sensitization in sham group but not in dopamine deprived group. Thus, the later result highlighted the importance of pVTA-NAc dopaminergic pathway in positive reinforcements. Altogether these data suggested that the implication of the dopamine replacement therapy in the appearance of dopamine dysregulation syndrome in Parkinson's disease is probably due to both neuronal degeneration in the posterior VTA and

  6. 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man--a PET study with [11C]raclopride.

    Science.gov (United States)

    Vollenweider, F X; Vontobel, P; Hell, D; Leenders, K L

    1999-05-01

    The modulating effects of serotonin on dopamine neurotransmission are not well understood, particularly in acute psychotic states. Positron emission tomography was used to examine the effect of psilocybin on the in vivo binding of [11C]raclopride to D2-dopamine receptors in the striatum in healthy volunteers after placebo and a psychotomimetic dose of psilocybin (n = 7). Psilocybin is a potent indoleamine hallucinogen and a mixed 5-HT2A and 5-HT1A receptor agonist. Psilocybin administration (0.25 mg/kg p.o.) produced changes in mood, disturbances in thinking, illusions, elementary and complex visual hallucinations and impaired ego-functioning. Psilocybin significantly decreased [11C]raclopride receptor binding potential (BP) bilaterally in the caudate nucleus (19%) and putamen (20%) consistent with an increase in endogenous dopamine. Changes in [11C]raclopride BP in the ventral striatum correlated with depersonalization associated with euphoria. Together with previous reports of 5-HT receptor involvement in striatal dopamine release, it is concluded that stimulation of both 5-HT2A and 5-HT1A receptors may be important for the modulation of striatal dopamine release in acute psychoses. The present results indirectly support the hypothesis of a serotonin-dopamine dysbalance in schizophrenia and suggest that psilocybin is a valuable tool in the analysis of serotonin-dopamine interactions in acute psychotic states.

  7. Dopaminergic responses in the core part of the nucleus accumbens to subcutaneous MK801 administration are increased following postnatal transient blockade of the prefrontal cortex.

    Science.gov (United States)

    Tagliabue, Emmanuelle; Pouvreau, Tiphaine; Eybrard, Séverine; Meyer, Francisca; Louilot, Alain

    2017-09-29

    Schizophrenia is a complex and devastating neuropsychiatric disease thought to result from impaired connectivity between several integrative regions, stemming from developmental failures. In particular, the left prefrontal cortex of schizophrenia patients seems to be targeted by such early developmental disturbances. Data obtained over the last three decades support the hypothesis of a dopaminergic dysfunction in schizophrenia. Striatal dopaminergic dysregulation in schizophrenia may result from a dysconnection between the prefrontal cortex and the striatum (dorsal and ventral) involving glutamatergic N-methyl-d-aspartate (NMDA) receptors. In the context of animal modeling of the pathophysiology of schizophrenia, the present study was designed to investigate the effects of MK 801 (dizocilpine) on locomotor activity and dopaminergic responses in the left core part of the nucleus accumbens (ventral striatum) in adult rats following neonatal tetrodotoxin inactivation of the left prefrontal cortex (infralimbic/prelimbic region) at postnatal day 8. Dopaminergic variations were recorded in the nucleus accumbens by means of in vivo voltammetry in freely moving adult animals. Following MK 801 administration, and in comparison to control (PBS) animals, animals microinjected with tetrodotoxin display locomotor hyperactivity and increased extracellular dopamine levels in the core part of the nucleus accumbens. These findings suggest neonatal functional inactivation of the prefrontal cortex may lead to a dysregulation of dopamine release in the core part of the nucleus accumbens involving NMDA receptors. The results obtained may provide new insight into the involvement of NMDA receptors in the pathophysiology of schizophrenia and suggest that future studies should look carefully at the core of the nucleus accumbens. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effects of NMDA administration in the substantia nigra pars compacta on the striatal dopamine release before and after repetitive exposures to nitrogen narcosis in rats.

    Science.gov (United States)

    Lavoute, C; Weiss, M; Rostain, J C

    2006-01-01

    Hyperbaric nitrogen-oxygen exposure developed in rats a decrement of the striatal dopamine release, which was reversed by repetitive exposures. This dopamine decrease could be the result of the antagonistic effect of nitrogen on NMDA receptors. The increment of the dopamine release, following repetitive exposures to nitrogen, could be attributed to a desensitisation of NMDA receptors to the effects of nitrogen. To test these hypotheses, male Sprague-Dawley rats were implanted with electrodes in the striatum to measure dopamine release by voltammetry and cannula in the substantia nigra pars compacta for NMDA injection. Free-moving rats were exposed up to 3MPa of nitrogen-oxygen mixture before and after 5 exposures to 1MPa. At the first exposure to 3MPa, the dopamine level decreased (-15%) but is counteracted by NMDA administration. In contrast, after repetitive exposure, the second exposure to 3MPa, induces a 10% dopamine increase. NMDA administration significantly potentiated this increase. Our results neither support the hypothesis of an antagonist effect of nitrogen on NMDA receptors at the first exposure, nor that of a NMDA receptor desensitization following repetitive exposures to hyperbaric nitrogen.

  9. THE REGULATION OF DOPAMINE RELEASE FROM NIGROSTRIATAL NEURONS IN CONSCIOUS RATS - THE ROLE OF SOMATODENDRITIC AUTORECEPTORS

    NARCIS (Netherlands)

    SANTIAGO, M; WESTERINK, BHC

    1991-01-01

    Drugs were infused into the substantia nigra of the rat brain via a microdialysis probe, and the extracellular concentration of dopamine (DA) and 3,4-dihydroxyphenylacetic acid was recorded from a second dialysis probe implanted in the ipsilateral striatum. This approach allowed the evaluation of th

  10. The pharmacological effect of positive KCNQ (Kv7) modulators on dopamine release from striatal slices

    DEFF Research Database (Denmark)

    Jensen, Majbrit M; Lange, Sofie Cecilie; Thomsen, Morten Skøtt;

    2011-01-01

    Retigabine is an anti-epileptic drug that inhibits neuronal firing by stabilizing the membrane potential through positive modulation of voltage-dependent KCNQ potassium channels in cortical neurons and in mesencephalic dopamine (DA) neurons. The purpose of this study was to compare the effect of ...

  11. Effect of pressure on the release of endogenous dopamine from rat striatum and the role of sodium-calcium exchange.

    Science.gov (United States)

    Paul, M L; Philp, R B

    1992-01-01

    Exposure to environmental pressures in excess of 20 atm abs can precipitate a hyperexcitability state known as high pressure neurologic syndrome (HPNS). Little is known about the underlying neurochemical basis of this syndrome. An in vitro model of the synthesis and release of endogenous dopamine (DA) from rat striatal slices has been used to examine the mechanism underlying the effects of high pressures of He. He at 100 atm abs produced changes in DA release which were strikingly similar to those of the cardiac glycoside, ouabain. Neither pressure nor ouabain (1-10 microM) had any significant effects on the spontaneous (nonevoked) release of DA or its metabolite 3,4-dihydroxyphenylacetic acid, but both pressure and ouabain significantly enhanced the stimulated release of DA which was evoked by a 6-min exposure to 35 mM KCl (P less than 0.05 and P less than 0.001). In both cases, this effect was dependent on the presence of extracellular Ca2+. Augmentation of evoked DA release by both ouabain and He pressure was reversed (P less than 0.05) by 3,4-dichlorobenzamil, a selective antagonist of the membrane Na+/Ca2+ exchange mechanism. The results suggest that pressure exerts its effects on DA release by increasing intracellular-free Ca2+ exchange after pressure-inhibition of the activity of the membrane Na,K-ATPase.

  12. Presentation of smoking-associated cues does not elicit dopamine release after one-hour smoking abstinence: A [11C]-(+-PHNO PET study.

    Directory of Open Access Journals (Sweden)

    Lina Chiuccariello

    Full Text Available The presentation of drug-associated cues has been shown to elicit craving and dopamine release in the striatum of drug-dependent individuals. Similarly, exposure to tobacco-associated cues induces craving and increases the propensity to relapse in tobacco- dependent smokers. However, whether exposure to tobacco-associated cues elicits dopamine release in the striatum of smokers remains to be investigated. We hypothesized that presentation of smoking-related cues compared to neutral cues would induce craving and elevation of intrasynaptic dopamine levels in subregions of the striatum and that the magnitude of dopamine release would be correlated with subjective levels of craving in briefly abstinent tobacco smokers. Eighteen participants underwent two [(11C]-(+-PHNO positron emission tomography (PET scans after one-hour abstinence period: one during presentation of smoking-associated images and one during presentation of neutral images. Smoking cues significantly increased craving compared to neutral cues on one, but not all, craving measures; however, this increase in craving was not associated with overall significant differences in [(11C]-(+-PHNO binding potential (BPND (an indirect measure of dopamine release between the two experimental conditions in any of the brain regions of interest sampled. Our findings suggest that presentation of smoking cues does not elicit detectable (by PET overall increases in dopamine in humans after one-hour nicotine abstinence. Future research should consider studying smoking cue-induced dopamine release at a longer abstinence period, since recent findings suggest the ability of smoking-related cues to induce craving is associated with a longer duration of smoking abstinence.

  13. Pharmacological characterization of dopamine, norepinephrine and serotonin release in the rat prefrontal cortex by neuronal nicotinic acetylcholine receptor agonists.

    Science.gov (United States)

    Rao, Tadimeti S; Correa, Lucia D; Adams, Pamala; Santori, Emily M; Sacaan, Aida I

    2003-11-14

    Neuronal nicotinic acetylcholine receptors (nAChRs) modulate synaptic transmission by regulating neurotransmitter release, an action that involves multiple nAChRs. The effects of four nAChR agonists, nicotine (NIC), 1,1-dimethyl-4-phenylpiperzinium iodide (DMPP), cytisine (CYT) and epibatidine (EPI) were investigated on [3H]-norepinephrine (NE), [3H]-dopamine (DA) and [3H]-serotonin (5-HT) release from rat prefrontal cortical (PFC) slices. All four agonists evoked [3H]-DA release to a similar magnitude but with a differing rank order of potency of EPI>DMPP approximately NIC approximately CYT. Similarly, all four agonists also increased [3H]-NE release, but with a differing rank order of potency of EPI>CYT approximately DMPP>NIC. NIC-induced [3H]-NE and [3H]-DA release responses were both calcium-dependent and attenuated by the sodium channel antagonist, tetrodotoxin (TTX) and by the nAChR antagonists mecamylamine (MEC) and dihydro-beta-erythroidine (DHbetaE), but not by D-tubocurare (D-TC). The modulation of [3H]-5-HT release by nAChR agonists was distinct from that seen for catecholamines. DMPP produced robust increases with minimal release observed with other agonists. DMPP-induced [3H]-5-HT release was neither sensitive to known nAChR antagonists nor dependent on external calcium. The differences between nicotinic agonist induced catecholamine and serotonin release suggest involvement of distinct nAChRs.

  14. Effects of morphine on hypothalamic corticotropin-releasing factor (CRF, norepinephrine and dopamine in non-stressed and stressed rats.

    Directory of Open Access Journals (Sweden)

    Suemaru,Shuso

    1985-12-01

    Full Text Available The effects of morphine on the hypothalamic corticotropin-releasing factor (CRF, norepinephrine (NE and dopamine (DA concentrations were investigated in non-stressed and stressed rats. Acutely administered morphine stimulated both the synthesis and release of CRF in the hypothalamus, thereby activating the pituitary-adrenocortical system in non-stressed rats, but inhibited the stress-induced CRF synthesis and ACTH-corticosterone secretion. Either a morphine or ether-laparotomy stress reduced NE and DA concentrations in the hypothalamus. A pretreatment with morphine inhibited the stress-induced reduction in the hypothalamic NE and DA concentrations, and induced a significant increase in the DA concentration. These observations suggest that hypothalamic NE and DA are involved in morphine-induced changes in hypothalamo-pituitary-adrenocortical (HPA activity and that endogenous opiates have a role in regulating CRF secretion by interacting with hypothalamic biogenic amines.

  15. Non-opiate [beta]-endorphin fragments and dopamine--III [gamma]-type endorphins and various neuroleptics counteract the hypoactivity elicited by injection of apomorphine into the nucleus accumbens

    NARCIS (Netherlands)

    Ree, J.M. van; Caffe, A.R.; Wolterink, G.

    1982-01-01

    The hypoactivity in rats induced by small doses of apomorphine, injected bilaterally into the nucleus accumbens area of the brain, could be antagonized by pretreatment with the neuroleptic-like neuropeptide des-enkephalin-γ-endorphin (DEγE, β-endorphin 6–17) as well as with the neuroleptic drugs hal

  16. Effects of extracerebral dopamine on salsolinol- or thyrotropin-releasing hormone-induced prolactin (PRL) secretion in goats.

    Science.gov (United States)

    Inaba, Yuki; Kato, Yuki; Itou, Azumi; Chiba, Aoi; Sawai, Ken; Fülöp, Ferenc; Nagy, György Miklos; Hashizume, Tsutomu

    2016-12-01

    The aim of the present study was to clarify the effect of extracerebral dopamine (DA) on salsolinol (SAL)-induced prolactin (PRL) secretion in goats. An intravenous injection of SAL or thyrotropin-releasing hormone (TRH) was given to female goats before and after treatment with an extracerebral DA receptor antagonist, domperidone (DOM), and the PRL-releasing response to SAL was compared with that to TRH. DOM alone increased plasma PRL concentrations and the PRL-releasing response to DOM alone was greater than that to either SAL alone or TRH alone. The PRL-releasing response to DOM plus SAL was similar to that to DOM alone, and no additive effect of DOM and SAL on the secretion of PRL was observed. In contrast, the PRL-releasing response to DOM plus TRH was greater than that to either TRH alone or DOM alone and DOM synergistically increased TRH-induced PRL secretion. The present results demonstrate that the mechanism involved in PRL secretion by SAL differs from that by TRH, and suggest that the extracerebral DA might be associated in part with the modulation of SAL-induced PRL secretion in goats.

  17. Role of glutamate receptors and nitric oxide on the effects of glufosinate ammonium, an organophosphate pesticide, on in vivo dopamine release in rat striatum.

    Science.gov (United States)

    Faro, Lilian R F; Ferreira Nunes, Brenda V; Alfonso, Miguel; Ferreira, Vania M; Durán, Rafael

    2013-09-15

    The purpose of the present work was to assess the possible role of glutamatergic receptors and nitric oxide (NO) production on effects of glufosinate ammonium (GLA), an organophosphate pesticide structurally related to glutamate, on in vivo striatal dopamine release in awake and freely moving rats. For this, we used antagonists of NMDA (MK-801 and AP5) or AMPA/kainate (CNQX) receptors, or nitric oxide synthase (NOS) inhibitors (l-NAME and 7-NI), to study the effects of GLA on release of dopamine from rat striatum. So, intrastriatal infusion of 10mM GLA significantly increased dopamine levels (1035±140%, compared with basal levels) and administration of GLA to MK-801 (250μM) or AP5 (650μM) pretreated animals, produced increases in dopamine overflow that were ∼40% and ∼90% smaller than those observed in animals not pretreated with MK-801 or AP5. Administration of GLA to CNQX (500μM) pretreated animals produced an effect that was not significantly different from the one produced in animals not pretreated with CNQX. On the other hand, administration of GLA to l-NAME (100μM) or 7-NI (100μM) pretreated animals, produced increases in dopamine overflow that were ∼80% and ∼75% smaller than those observed in animals not pretreated with these inhibitors. In summary, GLA appears to act, at least in part, through an overstimulation of NMDA (and not AMPA/kainate) receptors with possible NO production to induce in vivo dopamine release. Administration of NMDA receptor antagonists and NOS inhibitors partially blocks the release of dopamine from rat striatum.

  18. Changes in the kinetics of ( sup 3 H)dopamine release from median eminence and striatal synaptosomes during aging

    Energy Technology Data Exchange (ETDEWEB)

    Gregerson, K.A.; Selmanoff, M. (Univ. of Maryland School of Medicine, Baltimore (USA))

    1990-01-01

    The release of preaccumulated tritium-labeled dopamine was examined in isolated nerve terminals prepared from the median eminence (ME) and corpus striatum (CS) of young, middle-aged, and old male rats. Fractional release of (3H)DA was measured over 1- to 10-sec time intervals under basal and depolarizing conditions in the presence of calcium. No differences in the rate of basal efflux between the age groups were observed in either ME or CS preparations. Fast-phase evoked (3H)DA release from CS synaptosomes was unchanged from young to middle-aged, but was decreased in old preparations. These data demonstrate that the nigrostriatal nerve terminal has a diminished ability to respond fully to depolarizing stimuli in advanced age. Mean serum PRL levels in old rats were 2.3-fold greater than those in both young and middle-aged rats, while serum LH levels were decreased 2.0-fold in middle-aged and old compared with those in young rats. The fact that LH levels were already decreased in middle-aged rats while PRL levels had not yet increased suggests that decreased gonadotropin titers in old rats do not result from the coincident hyperprolactinemia. In ME synaptosomes, depolarization-induced (3H)DA release was decreased at all time points in middle-aged preparations compared to that in young preparations. The reduced fractional release from the middle-aged ME synaptosomes was due to a depressed rate of release during the initial second of depolarization. Evoked release from ME terminals of old rats was comparable to that measured in the young group. Thus, there occurred an age-related biphasic change in the initial rate of evoked DA release from ME synaptosomes. Diminished response of ME dopaminergic terminals to depolarizing stimuli during middle age may be important in the later development of hyperprolactinemia in aging male rats.

  19. Striatal dopamine dynamics in mice following acute and repeated toluene exposure.

    Science.gov (United States)

    Apawu, Aaron K; Mathews, Tiffany A; Bowen, Scott E

    2015-01-01

    The abused inhalant toluene has potent behavioral effects, but only recently has progress been made in understanding the neurochemical actions that mediate the action of toluene in the brain. Available evidence suggests that toluene inhalation alters dopamine (DA) neurotransmission, but toluene's mechanism of action is unknown. The present study evaluated the effect of acute and repeated toluene inhalation (0, 2,000, or 4,000 ppm) on locomotor activity as well as striatal DA release and uptake using slice fast-scan cyclic voltammetry. Acutely, 2,000 and 4,000 ppm toluene increased locomotor activity, while neurochemically only 4,000 ppm toluene potentiated electrically evoked DA release across the caudate-putamen and the nucleus accumbens. Repeated administration of toluene resulted in sensitization to toluene's locomotor activity effects. Brain slices obtained from mice repeatedly exposed to toluene demonstrated no difference in stimulated DA release in the caudate-putamen as compared to control animals. Repeated exposure to 2,000 and 4,000 ppm toluene caused a concentration-dependent decrease of 25-50 % in evoked DA release in the nucleus accumbens core and shell relative to air-exposed mice. These voltammetric neurochemical findings following repeated toluene exposure suggest that there may be a compensatory downregulation of the DA system. Acute or repeated toluene exposure had no effect on the DA uptake kinetics. Taken together, these results demonstrate that acute toluene inhalation potentiates DA release, while repeated toluene exposure attenuates DA release in the nucleus accumbens only.

  20. Novel bis-, tris-, and tetrakis-tertiary amino analogs as antagonists at neuronal nicotinic receptors that mediate nicotine-evoked dopamine release.

    Science.gov (United States)

    Zhang, Zhenfa; Zheng, Guangrong; Pivavarchyk, Marharyta; Deaciuc, A Gabriela; Dwoskin, Linda P; Crooks, Peter A

    2011-01-01

    A series of tertiary amine analogs derived from lead azaaromatic quaternary ammonium salts has been designed and synthesized. The preliminary structure-activity relationships of these new analogs suggest that such tertiary amine analogs, which potently inhibit nicotine-evoked dopamine release from rat striatum, represent drug-like inhibitors of α6-containing nicotinic acetylcholine receptors. The bis-tertiary amine analog 7 exhibited an IC(50) of 0.95 nM, while the tris-tertiary amine analog 19 had an IC(50) of 0.35 nM at nAChRs mediating nicotine-evoked dopamine release.

  1. Striatal dopamine release in reading and writing measured with [123I]iodobenzamide and single photon emission computed tomography in right handed human subjects.

    Science.gov (United States)

    Schommartz, B; Larisch, R; Vosberg, H; Müller-Gärtner, H M

    2000-09-29

    Competition between endogenous dopamine and a radioligand for postsynaptic dopamine D(2) receptor binding was examined in two groups of eight subjects each who had to read or write off a text, respectively, and in a control group. Single photon emission computed tomography (SPECT) and the ligand [(123)I]iodobenzamide (IBZM) were used for in vivo imaging. Subjects commenced reading or writing immediately before IBZM injection and continued for 30min thereafter. SPECT images were acquired 60min later. Striatum-to-parietal-cortex IBZM uptake ratios were lower in subjects who wrote off the text than in controls indicating competition of IBZM and dopamine. There was no difference between subjects who read the text and controls. Thus, dopamine release occurs as a consequence of the motoric activity involved in writing rather than of cognitive functions necessary for reading the text.

  2. Effect of MK-801 on methamphetamine-induced dopaminergic neurotoxicity: long-term attenuation of methamphetamine-induced dopamine release

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Eun; Kim, Yu Ri; Hwang, Se Hwan [Sungkyunkwan Univ., School of Medicine, Seoul (Korea, Republic of)

    2001-08-01

    Repeated administration of methamphetamine (METH) produces high extracellular levels of dopamine (DA) and subsequent striatal DA terminal damage. The effect of MK-801, a noncompetitive N-methyl-D-aspartate receptor antagonist, on METH-induced changes in DA transporter (DAT) and DA release evoked by an acute METH challenge was evaluated in rodent striatum using [{sup 3}H] WIN 38,428 ex vivo auto-radiography and in vivo microdialysis. Four injections of METH (10 mg/kg, i.p.), each given 2 h apart, produced 71% decrease in DAT levels in mouse striatum 3 d after administration. Pretreatment with MK-801 (2.5 g/kg, i.p.) 15 min before each of the four METH injections protected completely against striatal DAT depletions. Four injections of MK-801 alone did not significantly change striatal DAT levels. Striatal DA release evoked by an acute METH challenge (4mg/kg, i.p.) at 3 d after repeated administration of METH in rats was decreased but significant compared with controls, which was attenuated by repeated pretreatment with MK-801. Also, repeated injections of MK-801 alone attenuated acute METH-induced striatal DA release 3 d after administration. These results suggest that repeated administration of MK-801 may exert a preventive effect against METH-induced DA terminal injury through long-term attenuation of DA release induced by METH and other stimuli.

  3. Pharmacokinetics and dopamine/acetylcholine releasing effects of ginsenoside Re in hippocampus and mPFC of freely moving rats

    Institute of Scientific and Technical Information of China (English)

    Jing SHI; Wei XUE; Wen-jie ZHAO; Ke-xin LI

    2013-01-01

    Aim: To investigate the pharmacokinetics and dopamine/acetylcholine-releasing effects of ginsenoside Re (Re) in brain regions related to learning and memory,and to clarify the neurochemical mechanisms underlying its anti-dementia activity.Methods: Microdialysis was conducted on awake,freely moving adult male SD rats with dialysis probes implanted into the hippocampus,medial prefrontal cortex (mPFC) or the third ventricle.The concentrations of Re,dopamine (DA) and acetylcholine (ACh) in dialysates were determined using LC-MS/MS.Results: Subcutaneous administration of a single dose of Re (12.5,25 or 50 mg/kg) rapidly distributed to the cerebrospinal fluid and exhibited linear pharmacokinetics.The peak concentration (Cmax) occurred at 60 min for all doses.Re was not detectable after 240 min in the dialysates for the low dose of 12.5 mg/kg.At the same time,Re dose-dependently increased extracellular levels of DA and ACh in the hippocampus and mPFC,and more prominent effects were observed in the hippocampus.Conclusion: The combined study of the pharmacokinetics and pharmacodynamics of Re demonstrate that increase of extracellular levels of DA and ACh,particularly in the hippocampus,may contribute,at least in part,to the anti-dementia activity of Re.

  4. Dopamine dysregulation syndrome in Parkinson's disease patients with unsatisfactory switching from immediate to extended release pramipexole: a further clue to incentive sensitization mechanisms?

    Science.gov (United States)

    Solla, Paolo; Cannas, Antonino; Corona, Marta; Marrosu, Maria Giovanna; Marrosu, Francesco

    2013-01-01

    A small proportion of patients with Parkinson's disease (PD), chronically under dopamine replacement therapy, may undergo an addiction-like behavioral disturbance, named dopamine dysregulation syndrome (DDS). This behavioral disorder is characterized by the increase of doses beyond those required for motor control, and its management remains difficult; thus, early recognition and careful monitoring of at-risk individuals are crucial. We report the cases of two PD patients with a previous unsatisfactory switching from an immediate release (IR) to an extended release (ER) pramipexole formulation who developed DDS. PD patients unsatisfactorily switched from an IR to an ER formulation of dopamine agonists should be considered as at-risk individuals for DDS development.

  5. Aspects of dopamine and acetylcholine release induced by glutamate receptors; Aspectos das liberacoes de dopamina e acetilcolina mediadas por receptores de glutamato

    Energy Technology Data Exchange (ETDEWEB)

    Paes, Paulo Cesar de Arruda

    2002-07-01

    The basal ganglia play an important role in the motor control of rats and humans. This control involves different neurotransmitters and the mutual control of these key elements has been subject to several studies. In this work we determined the role of glutamate on the release of radioactively labelled dopamine and acetylcholine from chopped striatal tissue in vitro. The values of Effective Concentration 50% for glutamate, NMDA, kainic, quisqualic acids and AMPA on the release of dopamine and acetylcholine were obtained. The inhibitory effects of magnesium, tetrodotoxin, MK-801, AP5 and MCPG, as well as the effects of glycin were evaluated. The results suggested that dopamine is influenced by the NMDA type glutamate receptor while acetylcholine seems to be influenced by NMDA, kainate and AMPA receptors. Tetrodotoxin experiments suggested that kainate receptors are both present in cholinergic terminals and cell bodies while AMPA and NMDA receptors are preferentially distributed in cell bodies. Magnesium effectively blocked the NMDA stimulation and unexpectedly also AMPA- and quisqualate-induced acetylcholine release. The latter could not be blocked by MCPG ruling out the participation of methabotropic receptors. MK-801 also blocked NMDA-receptors. Results point out the importance of the glutamic acid control of dopamine and acetylcholine release in striatal tissue. (author)

  6. Music and the nucleus accumbens.

    Science.gov (United States)

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA.

  7. Indolizidine (-)-235B' and related structural analogs: discovery of nicotinic receptor antagonists that inhibit nicotine-evoked [3H]dopamine release.

    Science.gov (United States)

    Pivavarchyk, Marharyta; Smith, Andrew M; Zhang, Zhenfa; Zhou, Dejun; Wang, Xu; Toyooka, Naoki; Tsuneki, Hiroshi; Sasaoka, Toshiyasu; McIntosh, J Michael; Crooks, Peter A; Dwoskin, Linda P

    2011-05-11

    Although several therapeutic agents are available to aid in tobacco smoking cessation, relapse rates continue to be high, warranting the development of alternative pharmacotherapies. Nicotine-evoked dopamine release from its presynaptic terminals in the central nervous system leads to reward which maintains continued tobacco use. The ability of indolizidine (-)-235B' and a sub-library of structurally related analogs to inhibit nicotine-evoked [(3)H]dopamine release from rat striatal slices was determined in the current study. Indolizidine (-)-235B' inhibited nicotine-evoked [(3)H]dopamine release in a concentration-dependent manner (IC(50)=42 nM, I(max)=55%). Compound (-)-237D, the double bond-reduced analog, afforded the greatest inhibitory potency (IC(50)=0.18 nM, I(max)=76%), and was 233-fold more potent than indolizidine (-)-235B'. The des-8-methyl aza-analog of indolizidine (-)-235B', ZZ-272, also inhibited nicotine-evoked [(3)H]dopamine release (IC(50)=413 nM, I(max)=59%). Concomitant exposure to maximally effective concentrations of indolizidine (-)-235B', ZZ-272 or (-)-237D with a maximally effective concentration of α-conotoxin MII, a selective antagonist for α6β2-containing nicotinic receptors, resulted in inhibition of nicotine-evoked [(3)H]dopamine release no greater than that produced by each compound alone. The latter results suggest that indolizidine (-)-235B', (-)-237D, ZZ-272 and α-conotoxin MII inhibit the same α-conotoxin MII-sensitive nicotinic receptor subtypes. Thus, indolizidine (-)-235B' and its analogs act as antagonists of α6β2-nicotinic receptors and constitute a novel structural scaffold for the discovery of pharmacotherapies for smoking cessation.

  8. Comparison of the Effects of Acute and Chronic Administration of Tetrahydroisoquinoline Amines on the In Vivo Dopamine Release: A Microdialysis Study in the Rat Striatum.

    Science.gov (United States)

    Wąsik, Agnieszka; Romańska, Irena; Antkiewicz-Michaluk, Lucyna

    2016-11-01

    The etiology of Parkinson's disease (PD) may involve endogenous and exogenous factors. 1-Benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ), which was shown to be neurotoxic for dopaminergic neurons, is one of such factors, thus it can be used to construct an animal model of PD. In contrast, 1,2,3,4-tetrahydroisoquinoline (TIQ) and 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) produce neuroprotective effects acting as monoamino oxidase (MAO) inhibitors and free radical scavengers that reduce oxidative stress in the mammalian brain. In this study, we aimed to investigate the effects of neuroprotective compounds, TIQ and 1MeTIQ, on the dopamine release in vivo in an animal model of PD induced by chronic administration of 1BnTIQ (25 mg/kg i.p.). Using an in vivo microdialysis methodology, we measured the impact of both acute and chronic treatment with TIQ and 1MeTIQ (50 mg/kg i.p.) on 1BnTIQ-induced changes in dopamine release in the rat striatum. Additionally, the behavioral test was carried out to check the influence of repeated administrations of the investigated compounds on the locomotor activity of rats. The behavioral studies showed that the chronic administration of 1BnTIQ produced a significant elevation of exploratory locomotor activity, and both the investigated amines, TIQ and 1MeTIQ, administered together with 1BnTIQ completely prevented 1BnTIQ-produced hyperactivity. The in vivo microdialysis studies demonstrated that the chronic treatment with 1BnTIQ caused a significant and long-lasting increase in the dopamine release (approximately 300 %) to the extracellular space in the rat striatum, which was demonstrated in the basal samples 24 h after 1BnTIQ injection. The combined chronic administration of 1BnTIQ and the investigated compounds, TIQ or 1MeTIQ, completely antagonized the 1BnTIQ-induced essential disturbances of the dopamine releasing to the extracellular space in the striatum. In conclusion, we suggest that higher concentrations of 1BnTIQ in

  9. Rewarding and aversive effects of nicotine are segregated within the nucleus accumbens.

    Science.gov (United States)

    Sellings, Laurie H L; Baharnouri, Golriz; McQuade, Lindsey E; Clarke, Paul B S

    2008-07-01

    Forebrain dopamine plays a critical role in motivated behavior. According to the classic view, mesolimbic dopamine selectively guides behavior motivated by positive reinforcers. However, this has been challenged in favor of a wider role encompassing aversively motivated behavior. This controversy is particularly striking in the case of nicotine, with opposing claims that either the rewarding or the aversive effect of nicotine is critically dependent on mesolimbic dopamine transmission. In the present study, the effects of 6-hydroxydopamine lesions of nucleus accumbens core vs. medial shell on intravenous nicotine conditioned place preference and conditioned taste aversion were examined in male adult rats. Dopaminergic denervation in accumbens medial shell was associated with decreased nicotine conditioned place preference. Conversely, denervation in accumbens core was associated with an increase in conditioned place preference. In addition, dopaminergic denervation of accumbens core but not medial shell abolished conditioned taste aversion for nicotine. We conclude that nucleus accumbens core and medial shell dopaminergic innervation exert segregated effects on rewarding and aversive effects of nicotine. More generally, our findings indicate that dopaminergic transmission may mediate or enable opposing motivational processes within functionally distinct domains of the accumbens.

  10. Ceftriaxone attenuates acute cocaine‐evoked dopaminergic neurotransmission in the nucleus accumbens of the rat

    Science.gov (United States)

    Rasmussen, B A; Tallarida, C S; Scholl, J L; Forster, G L; Unterwald, E M; Rawls, S M

    2015-01-01

    Background and Purpose Ceftriaxone is a β‐lactam antibiotic and glutamate transporter activator that reduces the reinforcing effects of psychostimulants. Ceftriaxone also reduces locomotor activation following acute psychostimulant exposure, suggesting that alterations in dopamine transmission in the nucleus accumbens contribute to its mechanism of action. In the present studies we tested the hypothesis that pretreatment with ceftriaxone disrupts acute cocaine‐evoked dopaminergic neurotransmission in the nucleus accumbens. Experimental Approach Adult male Sprague–Dawley rats were pretreated with saline or ceftriaxone (200 mg kg−1, i.p. × 10 days) and then challenged with cocaine (15 mg kg−1, i.p.). Motor activity, dopamine efflux (via in vivo microdialysis) and protein levels of tyrosine hydroxylase (TH), the dopamine transporter and organic cation transporter as well as α‐synuclein, Akt and GSK3β were analysed in the nucleus accumbens. Key Results Ceftriaxone‐pretreated rats challenged with cocaine displayed reduced locomotor activity and accumbal dopamine efflux compared with saline‐pretreated controls challenged with cocaine. The reduction in cocaine‐evoked dopamine levels was not counteracted by excitatory amino acid transporter 2 blockade in the nucleus accumbens. Pretreatment with ceftriaxone increased Akt/GSK3β signalling in the nucleus accumbens and reduced levels of dopamine transporter, TH and phosphorylated α‐synuclein, indicating that ceftriaxone affects numerous proteins involved in dopaminergic transmission. Conclusions and Implications These results are the first evidence that ceftriaxone affects cocaine‐evoked dopaminergic transmission, in addition to its well‐described effects on glutamate, and suggest that its ability to attenuate cocaine‐induced behaviours, such as psychomotor activity, is due in part to reduced dopaminergic neurotransmission in the nucleus accumbens. PMID:26375494

  11. Patterns of renal dopamine release to regulate diuresis and natriuresis during volume expansion. Role of renal monoamine-oxidase.

    Science.gov (United States)

    de Luca Sarobe, Verónica; Di Ciano, Luis; Carranza, Andrea M; Levin, Gloria; Arrizurieta, Elvira E; Ibarra, Fernando R

    2010-01-01

    Diuretic and natriuretic effects of renal dopamine (DA) are well established. However, in volume expansion the pattern of renal DA release into urine (UDAV) and the role of enzymes involved in DA synthesis/degradation have not yet been defined. The objective was to determine the pattern of UDAV during volume expansion and to characterize the involvement of monoamine-oxidase (MAO) and aromatic amino-acid decarboxylase (AADC) in this response. In this study male Wistar rats were expanded with NaCl 0.9% at a rate of 5% BWt per hour. At the beginning of expansion three groups received a single drug injection as follows: C (vehicle, Control), IMAO (MAO inhibitor Pargyline, 20 mg/kg BWt, i.v.) and BNZ (AADC inhibitor Benserazide, 25 mg/kg BWt, i.v.). Results revealed that in C rats UDAV (ng/30 min/100g BWt) increased in the first 30 min expansion from 11.5 +/- 1.20 to 21.8 +/- 3.10 (p diuresis and natriuresis over controls. BNZ abolished the early UDAV peak to 3.2+/-0.72 (p diuresis were diminished by BNZ treatment. Results indicate that an increment in renal DA release into urine occurs early in expansion and in a peak-shaped way. In this response MAO plays a predominant role.

  12. Angiotensin AT1 and AT2 receptor antagonists modulate nicotine-evoked [³H]dopamine and [³H]norepinephrine release.

    Science.gov (United States)

    Narayanaswami, Vidya; Somkuwar, Sucharita S; Horton, David B; Cassis, Lisa A; Dwoskin, Linda P

    2013-09-01

    Tobacco smoking is the leading preventable cause of death in the United States. A major negative health consequence of chronic smoking is hypertension. Untoward addictive and cardiovascular sequelae associated with chronic smoking are mediated by nicotine-induced activation of nicotinic receptors (nAChRs) within striatal dopaminergic and hypothalamic noradrenergic systems. Hypertension involves both brain and peripheral angiotensin systems. Activation of angiotensin type-1 receptors (AT1) release dopamine and norepinephrine. The current study determined the role of AT1 and angiotensin type-2 (AT2) receptors in mediating nicotine-evoked dopamine and norepinephrine release from striatal and hypothalamic slices, respectively. The potential involvement of nAChRs in mediating effects of AT1 antagonist losartan and AT2 antagonist, 1-[[4-(dimethylamino)-3-methylphenyl]methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (PD123319) was evaluated by determining their affinities for α4β2* and α7* nAChRs using [³H]nicotine and [³H]methyllycaconitine binding assays, respectively. Results show that losartan concentration-dependently inhibited nicotine-evoked [³H]dopamine and [³H]norepinephrine release (IC₅₀: 3.9 ± 1.2 and 2.2 ± 0.7 μM; Imax: 82 ± 3 and 89 ± 6%, respectively). In contrast, PD123319 did not alter nicotine-evoked norepinephrine release, and potentiated nicotine-evoked dopamine release. These results indicate that AT1 receptors modulate nicotine-evoked striatal dopamine and hypothalamic norepinephrine release. Furthermore, AT1 receptor activation appears to be counteracted by AT2 receptor activation in striatum. Losartan and PD123319 did not inhibit [³H]nicotine or [³H]methyllycaconitine binding, indicating that these AT1 and AT2 antagonists do not interact with the agonist recognition sites on α4β2* and α7* nAChRs to mediate these effects of nicotine. Thus, angiotensin receptors contribute to the effects of

  13. Dopamine, behavioral economics, and effort

    Directory of Open Access Journals (Sweden)

    John D Salamone

    2009-09-01

    Full Text Available Abstract. There are numerous problems with the hypothesis that brain dopamine (DA systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders.

  14. Dopamine, behavioral economics, and effort.

    Science.gov (United States)

    Salamone, John D; Correa, Merce; Farrar, Andrew M; Nunes, Eric J; Pardo, Marta

    2009-01-01

    There are numerous problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements). Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum) also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders.

  15. GBR12909 attenuates amphetamine-induced striatal dopamine release as measured by [(11)C]raclopride continuous infusion PET scans.

    Science.gov (United States)

    Villemagne, V L; Wong, D F; Yokoi, F; Stephane, M; Rice, K C; Matecka, D; Clough, D J; Dannals, R F; Rothman, R B

    1999-09-15

    Major neurochemical effects of methamphetamine include release of dopamine (DA), serotonin (5-HT), and norepinephrine (NE) via a carrier-mediated exchange mechanism. Preclinical research supports the hypothesis that elevations of mesolimbic DA mediate the addictive and reinforcing effects of methamphetamine and amphetamine. This hypothesis has not been adequately tested in humans. Previous in vivo rodent microdialysis demonstrated that the high affinity DA uptake inhibitor, GBR12909, attenuates cocaine- and amphetamine-induced increases in mesolimbic DA. The present study determined the ability of GBR12909 to attenuate amphetamine-induced increases in striatal DA as measured by [(11)C]raclopride continuous infusion positron emission tomography (PET) scans in two Papio anubis baboons. [(11)C]Raclopride was given in a continuous infusion paradigm resulting in a flat volume of distribution vs. time for up to 45 min postinjection. At that time, a 1.5 mg/kg amphetamine i.v. bolus was administered which caused a significant (30.3%) reduction in the volume of distribution (V(3)"). The percent reduction in the volume of distribution and, hence, a measure of the intrasynaptic DA release ranged between 22-41%. GBR12909 (1 mg/kg, slow i.v. infusion) was administered 90 min before the administration of the radiotracer. The comparison of the volume of distribution before and after administration of GBR12909 showed that GBR12909 inhibited amphetamine-induced DA release by 74%. These experiments suggest that GBR12909 is an important prototypical medication to test the hypothesis that stimulant-induced euphoria is mediated by DA and, if the DA hypothesis is correct, a potential treatment agent for cocaine and methamphetamine abuse. Furthermore, this quantitative approach demonstrates a way of testing various treatment medications, including other forms of GBR12909 such as a decanoate derivative.

  16. Switch from excitatory to inhibitory actions of ethanol on dopamine levels after chronic exposure: Role of kappa opioid receptors.

    Science.gov (United States)

    Karkhanis, Anushree N; Huggins, Kimberly N; Rose, Jamie H; Jones, Sara R

    2016-11-01

    Acute ethanol exposure is known to stimulate the dopamine system; however, chronic exposure has been shown to downregulate the dopamine system. In rodents, chronic intermittent exposure (CIE) to ethanol also increases negative affect during withdrawal, such as, increases in anxiety- and depressive-like behavior. Moreover, CIE exposure results in increased ethanol drinking and preference during withdrawal. Previous literature documents reductions in CIE-induced anxiety-, depressive-like behaviors and ethanol intake in response to kappa opioid receptor (KOR) blockade. KORs are located on presynaptic dopamine terminals in the nucleus accumbens (NAc) and inhibit release, an effect which has been linked to negative affective behaviors. Previous reports show an upregulation in KOR function following extended CIE exposure; however it is not clear whether there is a direct link between KOR upregulation and dopamine downregulation during withdrawal from CIE. This study aimed to examine the effects of KOR modulation on dopamine responses to ethanol of behaving mice exposed to air or ethanol vapor in a repeated intermittent pattern. First, we showed that KORs have a greater response to an agonist after moderate CIE compared to air exposed mice using ex vivo fast scan cyclic voltammetry. Second, using in vivo microdialysis, we showed that, in contrast to the expected increase in extracellular levels of dopamine following an acute ethanol challenge in air exposed mice, CIE exposed mice exhibited a robust decrease in dopamine levels. Third, we showed that blockade of KORs reversed the aberrant inhibitory dopamine response to ethanol in CIE exposed mice while not affecting the air exposed mice demonstrating that inhibition of KORs "rescued" dopamine responses in CIE exposed mice. Taken together, these findings indicate that augmentation of dynorphin/KOR system activity drives the reduction in stimulated (electrical and ethanol) dopamine release in the NAc. Thus, blockade of

  17. The potential role of dopamine D₃ receptor neurotransmission in cognition.

    Science.gov (United States)

    Nakajima, Shinichiro; Gerretsen, Philip; Takeuchi, Hiroyoshi; Caravaggio, Fernando; Chow, Tiffany; Le Foll, Bernard; Mulsant, Benoit; Pollock, Bruce; Graff-Guerrero, Ariel

    2013-08-01

    Currently available treatments have limited pro-cognitive effects for neuropsychiatric disorders, such as schizophrenia, Parkinson's disease and Alzheimer's disease. The primary objective of this work is to review the literature on the role of dopamine D₃ receptors in cognition, and propose dopamine D₃ receptor antagonists as possible cognitive enhancers for neuropsychiatric disorders. A literature search was performed to identify animal and human studies on D₃ receptors and cognition using PubMed, MEDLINE and EMBASE. The search terms included "dopamine D₃ receptor" and "cognition". The literature search identified 164 articles. The results revealed: (1) D₃ receptors are associated with cognitive functioning in both healthy individuals and those with neuropsychiatric disorders; (2) D₃ receptor blockade appears to enhance while D₃ receptor agonism seems to impair cognitive function, including memory, attention, learning, processing speed, social recognition and executive function independent of age; and (3) D₃ receptor antagonists may exert their pro-cognitive effect by enhancing the release of acetylcholine in the prefrontal cortex, disinhibiting the activity of dopamine neurons projecting to the nucleus accumbens or prefrontal cortex, or activating CREB signaling in the hippocampus. These findings suggest that D₃ receptor blockade may enhance cognitive performance in healthy individuals and treat cognitive dysfunction in individuals with a neuropsychiatric disorder. Clinical trials are needed to confirm these effects.

  18. Voltammetric characterization of the effect of monoamine uptake inhibitors and releasers on dopamine and serotonin uptake in mouse caudate-putamen and substantia nigra slices

    OpenAIRE

    John, Carrie E.; Jones, Sara R

    2007-01-01

    Fast scan cyclic voltammetry is an electrochemical technique used to measure dynamics of transporter-mediated monoamine uptake in real time and provides a tool to evaluate the detailed effects of monoamine uptake inhibitors and releasers on dopamine and serotonin transporter function. We measured the effects of cocaine, methylphenidate, 2β-propanoyl–3β-(4tolyl) tropane (PTT), fluoxetine, amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), phentermine and fenfluramine on do...

  19. Stimulated serotonin release from hyperinnervated terminals subsequent to neonatal dopamine depletion regulates striatal tachykinin, but not enkephalin gene expression.

    Science.gov (United States)

    Basura, G J; Walker, P D

    2000-09-30

    Dopamine (DA) depletion in neonatal rodents results in depressed tachykinin and elevated enkephalin gene expression in the adult striatum (STR). Concurrently, serotonin (5-HT) fibers sprout to hyperinnervate the DA-depleted anterior striatum (A-STR). The present study was designed to determine if increased 5-HT release from sprouted terminals influences dysregulated preprotachykinin (PPT) and preproenkephalin (PPE) mRNA expression in the DA-depleted STR. Three-day-old Sprague-Dawley rat pups received bilateral intracerebroventricular injections of vehicle or the DA neurotoxin 6-hydroxydopamine (6-OHDA, 100 microg). Two months later, rats received a single intraperitoneal injection of vehicle or the acute 5-HT releasing agent p-chloroamphetamine (PCA; 10 mg/kg). Rats were killed 4 h later and striata processed for monoamine content by HPLC-ED and mRNA expression by in situ hybridization within specific subregions of the A-STR and posterior striatum (P-STR). 6-OHDA treatment severely (>98%) reduced striatal DA levels, while 5-HT content in the A-STR was significantly elevated (doubled), indicative of 5-HT hyperinnervation. Following 6-OHDA, PPT mRNA levels were depressed 60-66% across three subregions of the A-STR and 52-59% across two subregions of the P-STR, while PPE mRNA expression was elevated in both the A-STR (50-62%) and P-STR (55-82%). PCA normalized PPT mRNA levels in all regions of the DA-depleted A-STR and P-STR, yet did not alter PPE levels in either dorsal central or medial regions from 6-OHDA alone, but reduced PPE to control levels in the dorsal lateral A-STR. These data indicate that increased 5-HT neurotransmission, following neonatal 6-OHDA treatment, primarily influences PPT-containing neurons of the direct striatal output pathway.

  20. Antipsychotic drugs classified by their effects on the release of dopamine and noradrenaline in the prefrontal cortex and striatum

    NARCIS (Netherlands)

    Westerink, B.H.C.; Kawahara, Y; de Boer, P; Geels, C; de Vries, J.B; Wikström, H.V; van Kalkeren, A; van Vliet, B; Kruse, C.H; Long, S.K

    2001-01-01

    Dose-effect curves were established for the effects of the antipsychotic drugs haloperidol, clozapine, olanzapine, risperidone and ziprasidone on extracellular levels of dopamine and noradrenaline in the medial prefrontal cortex, and of dopamine in the striatum. Haloperidol was more effective in sti

  1. Single versus multiple impulse control disorders in Parkinson's disease: an ¹¹C-raclopride positron emission tomography study of reward cue-evoked striatal dopamine release.

    Science.gov (United States)

    Wu, Kit; Politis, Marios; O'Sullivan, Sean S; Lawrence, Andrew D; Warsi, Sarah; Bose, Subrata; Lees, Andrew J; Piccini, Paola

    2015-06-01

    Impulse control disorders (ICDs) are reported in Parkinson's disease (PD) in association with dopaminergic treatment. Approximately 25 % of patients with ICDs have multiple co-occurring ICDs (i.e. more than one diagnosed ICD). The extent to which dopaminergic neurotransmission in PD patients with multiple ICDs differs from those with only one diagnosed ICD is unknown. The aims of this study are: (1) to investigate dopamine neurotransmission in PD patients diagnosed with multiple ICDs, single ICDs and non-ICD controls in response to reward-related visual cues using positron emission tomography with (11)C-raclopride. (2) to compare clinical features of the above three groups. PD individuals with mulitple ICDs (n = 10), single ICD (n = 7) and no ICDs (n = 9) were recruited and underwent two positron emission tomography (PET) scans with (11)C-raclopride: one where they viewed neutral visual cues and the other where they viewed a range of visual cues related to different rewards. Individuals with both multiple ICDs and single ICDs showed significantly greater ventral striatal dopamine release compared to non-ICD PD individuals in response to reward cues, but the two ICD groups did not differ from each other in the extent of dopamine release. Subjects with multiple ICDs were, however, significantly more depressed, and had higher levels of impulsive sensation-seeking compared to subjects with single ICDs and without ICDs. This is the first study to compare dopamine neurotransmission using PET neuroimaging in PD subjects with multiple vs. single ICDs. Our results suggest that striatal dopamine neurotransmission is not directly related to the co-occurrence of ICDs in PD, potentially implicating non-dopaminergic mechanisms linked to depression; and suggest that physicians should be vigilant in managing depression in PD patients with ICDs.

  2. Programming of Dopaminergic Neurons by Neonatal Sex Hormone Exposure: Effects on Dopamine Content and Tyrosine Hydroxylase Expression in Adult Male Rats

    Science.gov (United States)

    Espinosa, Pedro; Silva, Roxana A.; Sanguinetti, Nicole K.; Venegas, Francisca C.; Riquelme, Raul; González, Luis F.; Cruz, Gonzalo; Renard, Georgina M.; Moya, Pablo R.; Sotomayor-Zárate, Ramón

    2016-01-01

    We sought to determine the long-term changes produced by neonatal sex hormone administration on the functioning of midbrain dopaminergic neurons in adult male rats. Sprague-Dawley rats were injected subcutaneously at postnatal day 1 and were assigned to the following experimental groups: TP (testosterone propionate of 1.0 mg/50 μL); DHT (dihydrotestosterone of 1.0 mg/50 μL); EV (estradiol valerate of 0.1 mg/50 μL); and control (sesame oil of 50 μL). At postnatal day 60, neurochemical studies were performed to determine dopamine content in substantia nigra-ventral tegmental area and dopamine release in nucleus accumbens. Molecular (mRNA expression of tyrosine hydroxylase) and cellular (tyrosine hydroxylase immunoreactivity) studies were also performed. We found increased dopamine content in substantia nigra-ventral tegmental area of TP and EV rats, in addition to increased dopamine release in nucleus accumbens. However, neonatal exposure to DHT, a nonaromatizable androgen, did not affect midbrain dopaminergic neurons. Correspondingly, compared to control rats, levels of tyrosine hydroxylase mRNA and protein were significantly increased in TP and EV rats but not in DHT rats, as determined by qPCR and immunohistochemistry, respectively. Our results suggest an estrogenic mechanism involving increased tyrosine hydroxylase expression, either by direct estrogenic action or by aromatization of testosterone to estradiol in substantia nigra-ventral tegmental area. PMID:26904299

  3. Programming of Dopaminergic Neurons by Neonatal Sex Hormone Exposure: Effects on Dopamine Content and Tyrosine Hydroxylase Expression in Adult Male Rats

    Directory of Open Access Journals (Sweden)

    Pedro Espinosa

    2016-01-01

    Full Text Available We sought to determine the long-term changes produced by neonatal sex hormone administration on the functioning of midbrain dopaminergic neurons in adult male rats. Sprague-Dawley rats were injected subcutaneously at postnatal day 1 and were assigned to the following experimental groups: TP (testosterone propionate of 1.0 mg/50 μL; DHT (dihydrotestosterone of 1.0 mg/50 μL; EV (estradiol valerate of 0.1 mg/50 μL; and control (sesame oil of 50 μL. At postnatal day 60, neurochemical studies were performed to determine dopamine content in substantia nigra-ventral tegmental area and dopamine release in nucleus accumbens. Molecular (mRNA expression of tyrosine hydroxylase and cellular (tyrosine hydroxylase immunoreactivity studies were also performed. We found increased dopamine content in substantia nigra-ventral tegmental area of TP and EV rats, in addition to increased dopamine release in nucleus accumbens. However, neonatal exposure to DHT, a nonaromatizable androgen, did not affect midbrain dopaminergic neurons. Correspondingly, compared to control rats, levels of tyrosine hydroxylase mRNA and protein were significantly increased in TP and EV rats but not in DHT rats, as determined by qPCR and immunohistochemistry, respectively. Our results suggest an estrogenic mechanism involving increased tyrosine hydroxylase expression, either by direct estrogenic action or by aromatization of testosterone to estradiol in substantia nigra-ventral tegmental area.

  4. Dopamine D1 Receptor-Mediated Transmission Maintains Information Flow Through the Cortico-Striato-Entopeduncular Direct Pathway to Release Movements.

    Science.gov (United States)

    Chiken, Satomi; Sato, Asako; Ohta, Chikara; Kurokawa, Makoto; Arai, Satoshi; Maeshima, Jun; Sunayama-Morita, Tomoko; Sasaoka, Toshikuni; Nambu, Atsushi

    2015-12-01

    In the basal ganglia (BG), dopamine plays a pivotal role in motor control, and dopamine deficiency results in severe motor dysfunctions as seen in Parkinson's disease. According to the well-accepted model of the BG, dopamine activates striatal direct pathway neurons that directly project to the output nuclei of the BG through D1 receptors (D1Rs), whereas dopamine inhibits striatal indirect pathway neurons that project to the external pallidum (GPe) through D2 receptors. To clarify the exact role of dopaminergic transmission via D1Rs in vivo, we developed novel D1R knockdown mice in which D1Rs can be conditionally and reversibly regulated. Suppression of D1R expression by doxycycline treatment decreased spontaneous motor activity and impaired motor ability in the mice. Neuronal activity in the entopeduncular nucleus (EPN), one of the output nuclei of the rodent BG, was recorded in awake conditions to examine the mechanism of motor deficits. Cortically evoked inhibition in the EPN mediated by the cortico-striato-EPN direct pathway was mostly lost during suppression of D1R expression, whereas spontaneous firing rates and patterns remained unchanged. On the other hand, GPe activity changed little. These results suggest that D1R-mediated dopaminergic transmission maintains the information flow through the direct pathway to appropriately release motor actions.

  5. Ventral tegmental area glutamate neurons co-release GABA and promote positive reinforcement.

    Science.gov (United States)

    Yoo, Ji Hoon; Zell, Vivien; Gutierrez-Reed, Navarre; Wu, Johnathan; Ressler, Reed; Shenasa, Mohammad Ali; Johnson, Alexander B; Fife, Kathryn H; Faget, Lauren; Hnasko, Thomas S

    2016-12-15

    In addition to dopamine neurons, the ventral tegmental area (VTA) contains GABA-, glutamate- and co-releasing neurons, and recent reports suggest a complex role for the glutamate neurons in behavioural reinforcement. We report that optogenetic stimulation of VTA glutamate neurons or terminals serves as a positive reinforcer on operant behavioural assays. Mice display marked preference for brief over sustained VTA glutamate neuron stimulation resulting in behavioural responses that are notably distinct from dopamine neuron stimulation and resistant to dopamine receptor antagonists. Whole-cell recordings reveal EPSCs following stimulation of VTA glutamate terminals in the nucleus accumbens or local VTA collaterals; but reveal both excitatory and monosynaptic inhibitory currents in the ventral pallidum and lateral habenula, though the net effects on postsynaptic firing in each region are consistent with the observed rewarding behavioural effects. These data indicate that VTA glutamate neurons co-release GABA in a projection-target-dependent manner and that their transient activation drives positive reinforcement.

  6. Regulation of dopamine release by CASK-β modulates locomotor initiation in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Justin eSlawson

    2014-11-01

    Full Text Available CASK is an evolutionarily conserved scaffolding protein that has roles in many cell types. In Drosophila, loss of the entire CASK gene or just the CASK-β transcript causes a complex set of adult locomotor defects. In this study, we show that the motor initiation component of this phenotype is due to loss of CASK-β in dopaminergic neurons and can be specifically rescued by expression of CASK-β within this subset of neurons. Functional imaging demonstrates that mutation of CASK-β disrupts coupling of neuronal activity to vesicle fusion. Consistent with this, locomotor initiation can be rescued by artificially driving activity in dopaminergic neurons. The molecular mechanism underlying this role of CASK-β in dopaminergic neurons involves interaction with Hsc70-4, a molecular chaperone previously shown to regulate calcium-dependent vesicle fusion. These data suggest that there is a novel CASK-β-dependent regulatory complex in dopaminergic neurons that serves to link activity and neurotransmitter release.

  7. Acute intraperitoneal injection of caffeine improves endurance exercise performance in association with increasing brain dopamine release during exercise.

    Science.gov (United States)

    Zheng, Xinyan; Takatsu, Satomi; Wang, Hongli; Hasegawa, Hiroshi

    2014-07-01

    The purpose of this study was to examine changes of thermoregulation, neurotransmitters in the preoptic area and anterior hypothalamus (PO/AH), which is the thermoregulatory center, and endurance exercise performance after the intraperitoneal injection of caffeine in rats. Core body temperature (Tcore), oxygen consumption (VO₂) and tail skin temperature (Ttail) were measured. A microdialysis probe was inserted in the PO/AH, and samples for the measurements of extracellular dopamine (DA), noradrenaline (NA) and serotonin (5-HT) levels were collected. During the rest experiment, 1 h after baseline collections in the chamber (23 °C), the rats were intraperitoneally injected with saline, or 3 mg kg(-1) or 10 mg kg(-1) caffeine. The duration of the test was 4 h. During the exercise experiment, baseline collections on the treadmill were obtained for 1 h. One hour before the start of exercise, rats were intraperitoneally injected with either 10 mg kg(-1) caffeine (CAF) or saline (SAL). Animals ran until fatigue at a speed of 18 m min(-1), at a 5% grade, on the treadmill in a normal environment (23 °C). At rest, 3 mg kg(-1) caffeine did not influence Tcore, Ttail, VO₂, extracellular DA, NA and 5-HT. 10 mg kg(-1) caffeine caused significant increases in Tcore, VO₂, Ttail and extracellular DA in the PO/AH. In addition, 10 mg kg(-1) caffeine increased the run time to fatigue (SAL: 104.4 ± 30.9 min, CAF: 134.0 ± 31.1 min, pexercise increased Tcore, VO₂, Ttail and extracellular DA in the PO/AH. NA increased during exercise, while neither caffeine nor exercise changed 5-HT. These results indicate that caffeine has ergogenic and hyperthermic effects, and these effects may be related to changes of DA release in the brain.

  8. Gene × Environment interaction and resilience: effects of child maltreatment and serotonin, corticotropin releasing hormone, dopamine, and oxytocin genes.

    Science.gov (United States)

    Cicchetti, Dante; Rogosch, Fred A

    2012-05-01

    In this investigation, gene-environment interaction effects in predicting resilience in adaptive functioning among maltreated and nonmaltreated low-income children (N = 595) were examined. A multicomponent index of resilient functioning was derived and levels of resilient functioning were identified. Variants in four genes (serotonin transporter linked polymorphic region, corticotropin releasing hormone receptor 1, dopamine receptor D4-521C/T, and oxytocin receptor) were investigated. In a series of analyses of covariance, child maltreatment demonstrated a strong negative main effect on children's resilient functioning, whereas no main effects for any of the genotypes of the respective genes were found. However, gene-environment interactions involving genotypes of each of the respective genes and maltreatment status were obtained. For each respective gene, among children with a specific genotype, the relative advantage in resilient functioning of nonmaltreated compared to maltreated children was stronger than was the case for nonmaltreated and maltreated children with other genotypes of the respective gene. Across the four genes, a composite of the genotypes that more strongly differentiated resilient functioning between nonmaltreated and maltreated children provided further evidence of genetic variations influencing resilient functioning in nonmaltreated children, whereas genetic variation had a negligible effect on promoting resilience among maltreated children. Additional effects were observed for children based on the number of subtypes of maltreatment children experienced, as well as for abuse and neglect subgroups. Finally, maltreated and nonmaltreated children with high levels of resilience differed in their average number of differentiating genotypes. These results suggest that differential resilient outcomes are based on the interaction between genes and developmental experiences.

  9. Positron emission tomography (PET) imaging of nicotine-induced dopamine release in squirrel monkeys using [(18)F]Fallypride.

    Science.gov (United States)

    Naylor, Jennifer E; Hiranita, Takato; Matazel, Katelin S; Zhang, Xuan; Paule, Merle G; Goodwin, Amy K

    2017-10-01

    Nicotine, the principal psychoactive tobacco constituent, is thought to produce its reinforcing effects via actions within the mesolimbic dopamine (DA) system. The objective of the current study was to examine the effect of nicotine on DA D2/D3 receptor availability in the nonhuman primate brain with the use of the radioligand [(18)F]fallypride and positron emission tomography (PET). Ten adult male squirrel monkeys were used in the current study. Each subject underwent two PET scans, one with an injection (IV) of saline and subsequently one with an injection of nicotine (0.032mg/kg). The DA D2/D3 antagonist, [(18)F]fallypride, was delivered IV at the beginning of each scan, and nicotine or saline was delivered at 45min into the scan. Regions of interest (ROI) were drawn on specific brain regions and these were used to quantify standard uptake values (SUVs). The SUV is defined as the average concentration of radioactivity in the ROI x body weight/injected dose. Using the cerebellum as a reference region, SUV ratios (SUVROI/SUVcerebellum) were calculated to compare saline and nicotine effects in each ROI. Two-way repeated ANOVA revealed a significant decrease of SUV ratios in both striatal and extrastriatal regions following an injection of nicotine during the PET scans. Like other drugs of abuse, these results indicate that nicotine administration may produce DA release, as suggested by the decrease in [(18)F]fallypride signal in striatal regions. These findings from a nonhuman primate model provide further evidence that the mesolimbic DA system is affected by the use of products that contain nicotine. Published by Elsevier B.V.

  10. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections.

    Science.gov (United States)

    Kupchik, Yonatan M; Brown, Robyn M; Heinsbroek, Jasper A; Lobo, Mary Kay; Schwartz, Danielle J; Kalivas, Peter W

    2015-09-01

    It is widely accepted that D1 dopamine receptor-expressing striatal neurons convey their information directly to the output nuclei of the basal ganglia, whereas D2-expressing neurons do so indirectly via pallidal neurons. Combining optogenetics and electrophysiology, we found that this architecture does not apply to mouse nucleus accumbens projections to the ventral pallidum. Thus, current thinking attributing D1 and D2 selectivity to accumbens projections akin to dorsal striatal pathways needs to be reconsidered.

  11. 5-HT6/7 receptor antagonists facilitate dopamine release in the cochlea via a GABAergic disinhibitory mechanism

    NARCIS (Netherlands)

    Doleviczenyi, Zoltan; Vizi, E. Sylvester; Gacsalyi, Istvan; Pallagi, Katalin; Volk, Balazs; Harsing, Laszlo G.; Halmos, Gyorgy; Lendvai, Balazs; Zelles, Tibor

    2008-01-01

    In humans, serotonin (5-HT) has been implicated in numerous physiological and pathological processes in the peripheral auditory system. Dopamine (DA), another transmitter of the lateral olivocochlear (LOC) efferents making synapses on cochlear nerve dendrites, controls auditory nerve activation and

  12. Cocaine self-administration disrupts mesolimbic dopamine circuit function and attenuates dopaminergic responsiveness to cocaine.

    Science.gov (United States)

    Siciliano, Cody A; Ferris, Mark J; Jones, Sara R

    2015-08-01

    Dopaminergic projections from the ventral midbrain to the nucleus accumbens (NAc) have long been implicated in encoding associations between reward availability and environmental stimuli. As such, this circuit is instrumental in guiding behaviors towards obtaining maximal rewards based on previous experience. Cocaine acts on the dopamine system to exert its reinforcing effects and it is thought that cocaine-induced dysregulation of dopamine neurotransmission contributes to the difficulty that cocaine addicts exhibit in selecting environmentally appropriate behaviors. Here we used cocaine self-administration combined with in vivo fast scan cyclic voltammetry in anesthetised rats to examine the function of the ventral tegmental area to NAc projection neurons. Over 5 days of cocaine self-administration (fixed-ratio 1; 1.5 mg/kg/injection; 40 injections/day), animals increased their rate of intake. Following cocaine self-administration, there was a marked reduction in ventral tegmental area-stimulated NAc dopamine release. Additionally, there was a decreased augmentation of stimulated dopamine overflow in response to a cocaine challenge. These findings demonstrate that cocaine induces a hypodopaminergic state, which may contribute to the inflexible drug-taking and drug-seeking behaviors observed in cocaine abusers. Additionally, tolerance to the ability of cocaine to elevate dopamine may lead to increased cocaine intake in order to overcome decreased effects, another hallmark of cocaine abuse. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Effects of dopamine on leptin release and leptin gene (OB expression in adipocytes from obese and hypertensive patients

    Directory of Open Access Journals (Sweden)

    Alvarez-Aguilar C

    2013-11-01

    gene messenger ribonucleic acid expression under different doses of DA was observed in adipocytes from obese hypertensive patients. Whereas prolactin treatment elicited a significant increase of both leptin release and OB gene expression, NE reduced these parameters. Although similar effects of DA and NE were observed in adipocytes from controls, baseline values in controls were reduced to 20% of the value in adipocytes from obese hypertensive patients. Conclusion: These results suggest that DAergic deficiency contributes to metabolic disorders linked to hyperleptinemia in obese and hypertensive patients. Keywords: dopamine, leptin, cultured adipocytes, obesity, hypertension

  14. Neurons of human nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Sazdanović Maja

    2011-01-01

    Full Text Available Background/Aim. Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. Methods. The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I - fusiform neurons; type II - fusiform neurons with lateral dendrite, arising from a part of the cell body; type III - pyramidal-like neuron; type IV - multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV - multipolar neurons. Results. Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV - multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. Conclusion. Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.

  15. Effects of the triple monoamine uptake inhibitor amitifadine on pain-related depression of behavior and mesolimbic dopamine release in rats.

    Science.gov (United States)

    Miller, Laurence L; Leitl, Michael D; Banks, Matthew L; Blough, Bruce E; Negus, S Stevens

    2015-01-01

    Pain-related depression of behavior and mood is a key therapeutic target in the treatment of pain. Clinical evidence suggests a role for decreased dopamine (DA) signaling in pain-related depression of behavior and mood. Similarly, in rats, intraperitoneal injection of dilute lactic acid (IP acid) serves as a chemical noxious stimulus to produce analgesic-reversible decreases in both (1) extracellular DA levels in nucleus accumbens (NAc) and (2) intracranial self-stimulation (ICSS), an operant behavior reliant on NAc DA. Intraperitonial acid-induced depression of ICSS is blocked by DA transporter (DAT) inhibitors, but clinical viability of selective DAT inhibitors as analgesics is limited by abuse potential. Drugs that produce combined inhibition of both DA and serotonin transporters may retain efficacy to block pain-related behavioral depression with reduced abuse liability. Amitifadine is a "triple uptake inhibitor" that inhibits DAT with approximately 5- to 10-fold weaker potency than it inhibits serotonin and norepinephrine transporters. This study compared amitifadine effects on IP acid-induced depression of NAc DA and ICSS and IP acid-stimulated stretching in male Sprague-Dawley rats. Amitifadine blocked IP acid-induced depression of both NAc DA and ICSS and IP acid-stimulated stretching. In the absence of the noxious stimulus, amitifadine increased NAc levels of both DA and serotonin, and behaviorally, amitifadine produced significant but weak abuse-related ICSS facilitation. Moreover, amitifadine was more potent to block IP acid-induced depression of ICSS than to facilitate control ICSS. These results support consideration of amitifadine and related monoamine uptake inhibitors as candidate analgesics for treatment of pain-related behavioral depression.

  16. THE EFFECT OF INTRASTRIATAL APPLICATION OF DIRECTLY AND INDIRECTLY ACTING DOPAMINE AGONISTS AND ANTAGONISTS ON THE INVIVO RELEASE OF ACETYLCHOLINE MEASURED BY BRAIN MICRODIALYSIS - THE IMPORTANCE OF THE POSTSURGERY INTERVAL

    NARCIS (Netherlands)

    DEBOER, P; DAMSMA, G; SCHRAM, Q; STOOF, JC; ZAAGSMA, J; WESTERINK, BHC

    1992-01-01

    The effect of intrastriatal application of D-1, D-2 and indirect dopaminergic drugs on the release of striatal acetylcholine as a function of the post-implantation intervals was studied using in vivo microdialysis. The dopamine D-2 agonists LY 171555 and (-)N0437 inhibited the release of striatal ac

  17. Partial agonist properties of the antipsychotics SSR181507, aripiprazole and bifeprunox at dopamine D2 receptors: G protein activation and prolactin release.

    Science.gov (United States)

    Cosi, Cristina; Carilla-Durand, Elisabeth; Assié, Marie Bernadette; Ormiere, Anne Marie; Maraval, Mireille; Leduc, Nathalie; Newman-Tancredi, Adrian

    2006-03-27

    Dopamine D2 receptor antagonists induce hyperprolactinemia depending on the extent of D2 receptor blockade. We compared the effects of the new antipsychotic agents SSR181507 ((3-exo)-8-benzoyl-N-[[(2 s)7-chloro-2,3-dihydro-1,4-benzodioxin-1-yl]methyl]-8-azabicyclo[3.2.1]octane-3-methanamine monohydrochloride), bifeprunox (DU127090: 1-(2-Oxo-benzoxazolin-7-yl)-4-(3-biphenyl)methylpiperazinemesylate) and SLV313 (1-(2,3-dihydro-benzo[1,4]dioxin-5-yl)-4-[5-(4-fluorophenyl)-pyridin-3-ylmethyl]-piperazine) with those of aripiprazole (7-{4-[4-(2,3-dichlorophenyl)-1-piperazinyl]-butyloxy)-3,4-dihydro-2(1 H)-quinolinone), clozapine and haloperidol, on functional measures of dopamine D2 receptor activity in vitro and in vivo: [35S]-GTPgammaS binding to membranes from Sf9 insect cells expressing human dopamine D2 Long (hD2 L) receptors, and serum prolactin levels in the rat. All compounds antagonized apomorphine-induced G protein activation at dopamine hD2 L receptors. Antagonist potencies of aripiprazole, bifeprunox and SLV313 were similar to haloperidol (pK(b) = 9.12), whereas SSR181507 (8.16) and clozapine (7.35) were less potent. Haloperidol, SLV313 and clozapine were silent antagonists but SSR181507, bifeprunox and aripiprazole stimulated [35S]-GTPgammaS binding by 17.5%, 26.3% and 25.6%, respectively, relative to 100 microM apomorphine (Emax = 100%). pEC50s were: SSR181507, 8.08; bifeprunox, 8.97; aripiprazole, 8.56. These effects were antagonized by raclopride. Following oral administration in vivo, the drugs increased prolactin release to different extents. SLV313 and haloperidol potently (ED50 0.12 and 0.22 mg/kg p.o., respectively) stimulated prolactin release up to 86 and 83 ng/ml. Aripiprazole potently (ED50 0.66 mg/kg p.o.) but partially (32 ng/ml) induced prolactin release. SSR181507 (ED50 4.9 mg/kg p.o.) also partially (23 ng/ml) enhanced prolactin release. Bifeprunox only weakly increased prolactin at high doses (13 ng/ml at 40 mg/kg) and clozapine only

  18. Protection from inorganic mercury effects on the in vivo dopamine release by ionotropic glutamate receptor antagonists and nitric oxide synthase inhibitors.

    Science.gov (United States)

    Vidal, Lucía; Durán, Rafael; Faro, Lilian F; Campos, Francisco; Cervantes, Rosa C; Alfonso, Miguel

    2007-09-05

    The possible role of ionotropics glutamate receptors on the HgCl(2)-induced dopamine (DA) release from rat striatum was investigated by using in vivo brain microdialysis technique after administration of selective NMDA and AMPA/Kainate receptors antagonists dizocilpine (MK-801), D (-)-2-amino-5-phoshonopentanoic acid (AP5), and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Moreover, we have also studied the effects of nitric oxide synthase (NOS) inhibitors L-nitro-arginine methyl ester (L-NAME) and 7-nitro-indazol (7-NI) on HgCl(2)-induced DA release. Intraestriatal infusion of 1mM HgCl(2) increased striatal DA to 1717.2+/-375.4% respect to basal levels. Infusion of 1mM HgCl(2) in 400 microM MK-801 pre-treated animals produced an increase on striatal DA levels 61% smaller than that induced in non-pre-treated animals. In the case of AP5, this treatment reduced 92% the increase produced by HgCl(2) as compared to non-pre-treated rats. Nevertheless, the administration of CNQX did not produce any effect on HgCl(2)-induced dopamine release. Intrastriatal infusion of 1mM HgCl(2) in 100 microM L-NAME pre-treated animals produced an increase on extracellular DA levels 82% smaller than produced by HgCl(2) alone. In addition, the pre-treatment with 7-NI reduced 90% the increase produced by infusion of HgCl(2) alone in rats. Thus, HgCl(2)-induced DA release could be produced at last in part, by overstimulation of NMDA receptors with NO production, since administration of NMDA receptor antagonists and NOS inhibitors protected against HgCl(2) effects on DA release.

  19. Further human evidence for striatal dopamine release induced by administration of ∆9-tetrahydrocannabinol (THC): selectivity to limbic striatum.

    NARCIS (Netherlands)

    Bossong, MG; Mehta, Mitul; van Berckel, Bart; Howes, Oliver; Kahn, RS; Stokes, Paul

    2015-01-01

    RATIONALE: Elevated dopamine function is thought to play a key role in both the rewarding effects of addictive drugs and the pathophysiology of schizophrenia. Accumulating epidemiological evidence indicates that cannabis use is a risk factor for the development of schizophrenia. However, human

  20. CHARACTERIZATION AND PHARMACOLOGICAL RESPONSIVENESS OF DOPAMINE RELEASE RECORDED BY MICRODIALYSIS IN THE SUBSTANTIA-NIGRA OF CONSCIOUS RATS

    NARCIS (Netherlands)

    SANTIAGO, M; WESTERINK, BHC

    1991-01-01

    The extracellular concentration of dopamine (DA) and 3,4-dihydroxyphenylacetic acid in the substantia nigra (SN) and striatum was estimated by microdialysis. The dialysate content of DA from the SN was recorded during infusion of a DA uptake blocker (nomifensine; 5-mu-mol/L) dissolved in the perfusi

  1. Membrane events and ionic processes involved in dopamine release from tuberoinfundibular neurons. I. Effect of the inhibition of the Na+,K+-adenosine triphosphatase pump by ouabain

    Energy Technology Data Exchange (ETDEWEB)

    Taglialatela, M.; Amoroso, S.; Kaparos, G.; Maurano, F.; Di Renzo, G.F.; Annunziato, L.

    1988-08-01

    In the present study we investigated the membrane events and the ionic processes which mediate the stimulatory effect of ouabain on the release of endogenous dopamine (DA) and previously taken-up (3H)DA release from rat hypothalamic tuberoinfundibular dopaminergic (TIDA) neurons. Ouabain (0.1-1 mM) dose-dependently stimulated endogenous DA and newly taken-up (3H)DA release. This effect was counteracted partially by nomifensine (10 microM). Removal of Ca++ ions from the extracellular space in the presence of the Ca++-chelator ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid prevented completely ouabain-elicited (3H)DA release. Lanthanum (1 mM) and cobalt (2 mM), two inorganic Ca++-entry blockers, were able to inhibit this stimulatory effect, whereas verapamil (10 microM) and nitrendipine (50 microM), two organic antagonists of the voltage-operated channel for Ca++ ions, failed to affect ouabain-induced (3H)DA release. By contrast, adriamycin (100-300 microM), a putative inhibitor of cardiac Na+-Ca++ antiporter, dose-dependently prevented ouabain-induced (3H)DA release from TIDA neurons. Finally, tetrodotoxin reduced digitalis-stimulated (3H)DA release. In conclusion, these results seem to be compatible with the idea that the inhibition of Na+,K+-adenosine triphosphatase by ouabain stimulates the release of (3H)DA from a central neuronal system like the TIDA tract and that this effect is critically dependent on the entrance of Ca++ ions into the nerve terminals of these neurons. In addition the Na+-Ca++ exchange antiporter appears to be the membrane system which transports Ca++ ions into the neuronal cytoplasm during Na+,K+-adenosine triphosphatase inhibition. The enhanced intracellular Ca++ availability triggers DA release which could occur partially through a carrier-dependent process.

  2. Membrane events and ionic processes involved in dopamine release from tuberoinfundibular neurons. I. Effect of the inhibition of the Na+,K+-adenosine triphosphatase pump by ouabain.

    Science.gov (United States)

    Taglialatela, M; Amoroso, S; Kaparos, G; Maurano, F; Di Renzo, G F; Annunziato, L

    1988-08-01

    In the present study we investigated the membrane events and the ionic processes which mediate the stimulatory effect of ouabain on the release of endogenous dopamine (DA) and "previously taken-up" [3H]DA release from rat hypothalamic tuberoinfundibular dopaminergic (TIDA) neurons. Ouabain (0.1-1 mM) dose-dependently stimulated endogenous DA and "newly taken-up" [3H]DA release. This effect was counteracted partially by nomifensine (10 microM). Removal of Ca++ ions from the extracellular space in the presence of the Ca++-chelator ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid prevented completely ouabain-elicited [3H]DA release. Lanthanum (1 mM) and cobalt (2 mM), two inorganic Ca++-entry blockers, were able to inhibit this stimulatory effect, whereas verapamil (10 microM) and nitrendipine (50 microM), two organic antagonists of the voltage-operated channel for Ca++ ions, failed to affect ouabain-induced [3H]DA release. By contrast, adriamycin (100-300 microM), a putative inhibitor of cardiac Na+-Ca++ antiporter, dose-dependently prevented ouabain-induced [3H]DA release from TIDA neurons. Finally, tetrodotoxin reduced digitalis-stimulated [3H]DA release. In conclusion, these results seem to be compatible with the idea that the inhibition of Na+,K+-adenosine triphosphatase by ouabain stimulates the release of [3H]DA from a central neuronal system like the TIDA tract and that this effect is critically dependent on the entrance of Ca++ ions into the nerve terminals of these neurons. In addition the Na+-Ca++ exchange antiporter appears to be the membrane system which transports Ca++ ions into the neuronal cytoplasm during Na+,K+-adenosine triphosphatase inhibition. The enhanced intracellular Ca++ availability triggers DA release which could occur partially through a carrier-dependent process.

  3. QSAR study on maximal inhibition (Imax) of quaternary ammonium antagonists for S-(-)-nicotine-evoked dopamine release from dopaminergic nerve terminals in rat striatum.

    Science.gov (United States)

    Zheng, Fang; McConnell, Matthew J; Zhan, Chang-Guo; Dwoskin, Linda P; Crooks, Peter A

    2009-07-01

    Maximal inhibition (I(max)) of the agonist effect is an important pharmacological property of inhibitors that interact with multiple receptor subtypes that are activated by the same agonist and which elicit the same functional response. This report represents the first QSAR study on a set of 66 mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating nicotine-evoked dopamine release, conducted using multi-linear regression (MLR) and neural network (NN) analysis with the maximal inhibition (I(max)) values of the antagonists as target values. The statistical results for the generated MLR model were: r(2)=0.89, rmsd=9.01, q(2)=0.83 and loormsd=11.1; the statistical results for the generated NN model were: r(2)=0.89, rmsd=8.98, q(2)=0.83 and loormsd=11.2. The maximal inhibition values of the compounds exhibited a good correlation with the predictions made by the QSAR models developed, which provide a basis for rationalizing selection of compounds for synthesis in the discovery of effective and selective second generation inhibitors of nAChRs mediating nicotine-evoked dopamine release.

  4. CyPPA, a Positive SK3/SK2 Modulator, Reduces Activity of Dopaminergic Neurons, Inhibits Dopamine Release, and Counteracts Hyperdopaminergic Behaviors Induced by Methylphenidate

    DEFF Research Database (Denmark)

    Herrik, Kjartan F; Redrobe, John P; Holst, Dorte

    2012-01-01

    Dopamine (DA) containing midbrain neurons play critical roles in several psychiatric and neurological diseases, including schizophrenia and attention deficit hyperactivity disorder, and the substantia nigra pars compacta neurons selectively degenerate in Parkinson's disease. Pharmacological...... modulation of DA receptors and transporters are well established approaches for treatment of DA-related disorders. Direct modulation of the DA system by influencing the discharge pattern of these autonomously firing neurons has yet to be exploited as a potential therapeutic strategy. Small conductance Ca(2...... mouse and rat midbrain slices. Using an immunocytochemically and pharmacologically validated DA release assay employing cultured DA neurons from rats, we show that CyPPA repressed DA release in a concentration-dependent manner with a maximal effect equal to the D2 receptor agonist quinpirole. In vivo...

  5. High-Fat-Diet-Induced Deficits in Dopamine Terminal Function Are Reversed by Restoring Insulin Signaling.

    Science.gov (United States)

    Fordahl, Steve C; Jones, Sara R

    2017-02-15

    Systemically released insulin crosses the blood-brain barrier and binds to insulin receptors on several neural cell types, including dopaminergic neurons. Insulin has been shown to decrease dopamine neuron firing in the ventral tegmental area (VTA), but potentiate release and reuptake at dopamine terminals in the nucleus accumbens (NAc). Here we show that prolonged consumption of a high fat diet blocks insulin's effects in the NAc, but insulin's effects are restored by inhibiting protein tyrosine phosphatase 1B, which supports insulin receptor signaling. Mice fed a high fat diet (60% kcals from fat) displayed significantly higher fasting blood glucose 160 mg/dL, compared to 101 mg/dL for control-diet-fed mice, and high-fat-diet-fed mice showed reduced blood glucose clearance after an intraperitoneal glucose tolerance test. Using fast scan cyclic voltammetry to measure electrically evoked dopamine in brain slices containing the NAc core, high-fat-diet-fed mice exhibited slower dopamine reuptake compared to control-diet-fed mice (2.2 ± 0.1 and 2.67 ± 0.15 μM/s, respectively). Moreover, glucose clearance rate was negatively correlated with Vmax. Insulin (10 nM to 1 μM) dose dependently increased reuptake rates in control-diet-fed mice compared with in the high-fat-diet group; however, the small molecule insulin receptor sensitizing agent, TCS 401 (300 nM), restored reuptake in high-fat-diet-fed mice to control-diet levels, and a small molecule inhibitor of the insulin receptor, BMS 536924 (300 nM), attenuated reuptake, similar to high-fat-diet-fed mice. These data show that a high-fat diet impairs dopamine reuptake by attenuating insulin signaling at dopamine terminals.

  6. Persistent cue-evoked activity of accumbens neurons after prolonged abstinence from self-administered cocaine.

    Science.gov (United States)

    Ghitza, Udi E; Fabbricatore, Anthony T; Prokopenko, Volodymyr; Pawlak, Anthony P; West, Mark O

    2003-08-13

    Persistent neural processing of information regarding drug-predictive environmental stimuli may be involved in motivating drug abusers to engage in drug seeking after abstinence. The addictive effects of various drugs depend on the mesocorticolimbic dopamine system innervating the nucleus accumbens. We used single-unit recording in rats to test whether accumbens neurons exhibit responses to a discriminative stimulus (SD) tone previously paired with cocaine availability during cocaine self-administration. Presentation of the tone after 3-4 weeks of abstinence resulted in a cue-induced relapse of drug seeking under extinction conditions. Accumbens neurons did not exhibit tone-evoked activity before cocaine self-administration training but exhibited significant SD tone-evoked activity during extinction. Under extinction conditions, shell neurons exhibited significantly greater activity evoked by the SD tone than that evoked by a neutral tone (i.e., never paired with reinforcement). In contrast, core neurons responded indiscriminately to presentations of the SD tone or the neutral tone. Accumbens shell neurons exhibited significantly greater SD tone-evoked activity than did accumbens core neurons. Although the onset of SD tone-evoked activity occurred well before the earliest movements commenced (150 msec), this activity often persisted beyond the onset of tone-evoked movements. These results indicate that accumbens shell neurons exhibit persistent processing of information regarding reward-related stimuli after prolonged drug abstinence. Moreover, the accumbens shell appears to be involved in discriminating the motivational value of reward-related associative stimuli, whereas the accumbens core does not.

  7. The potential role of dopamine D3 receptor neurotransmission in cognition

    Science.gov (United States)

    Nakajima, Shinichiro; Gerretsen, Philip; Takeuchi, Hiroyoshi; Caravaggio, Fernando; Chow, Tiffany; Le Foll, Bernard; Mulsant, Benoit; Pollock, Bruce; Graff-Guerrero, Ariel

    2013-01-01

    Currently available treatments have limited pro-cognitive effects for neuropsychiatric disorders, such as schizophrenia, Parkinson’s disease and Alzheimer’s disease. The primary objective of this work is to review the literature on the role of dopamine D3 receptors in cognition, and propose dopamine D3 receptor antagonists as possible cognitive enhancers for neuropsychiatric disorders. A literature search was performed to identify animal and human studies on D3 receptors and cognition using PubMed, MEDLINE and EMBASE. The search terms included “dopamine D3 receptor” and “cognition”. The literature search identified 164 articles. The results revealed: (1) D3 receptors are associated with cognitive functioning in both healthy individuals and those with neuropsychiatric disorders; (2) D3 receptor blockade appears to enhance while D3 receptor agonism seems to impair cognitive function, including memory, attention, learning, processing speed, social recognition and executive function independent of age; and (3) D3 receptor antagonists may exert their pro-cognitive effect by enhancing the release of acetylcholine in the prefrontal cortex, disinhibiting the activity of dopamine neurons projecting to the nucleus accumbens or prefrontal cortex, or activating CREB signaling in the hippocampus. These findings suggest that D3 receptor blockade may enhance cognitive performance in healthy individuals and treat cognitive dysfunction in individuals with a neuropsychiatric disorder. Clinical trials are needed to confirm these effects. PMID:23791072

  8. The effects of endomorphins and diprotin A on striatal dopamine release induced by electrical stimulation-an in vitro superfusion study in rats.

    Science.gov (United States)

    Bagosi, Zsolt; Jászberényi, Miklós; Bujdosó, Erika; Szabó, Gyula; Telegdy, Gyula

    2006-12-01

    The endomorphins (EM1: Tyr-Pro-Trp-Phe-NH2, and EM2: Tyr-Pro-Phe-Phe-NH2) are recently discovered endogenous ligands for mu-opioid receptors (MORs) with role of neurotransmitters or neuromodulators in mammals. Cessation of their physiological action may be effected through rapid enzymatic degradation by the dipeptidyl-peptidase IV (DPPIV) found in the brain synaptic membranes. An in vitro superfusion system was utilized to investigate the actions of EM1, EM2 and specific DPPIV inhibitor diprotin A on the striatal release of dopamine (DA) induced by electrical stimulation in rats. The involvement of the different MORs (MOR1 and MOR2) in this process was studied by pretreatment with MOR antagonists beta-funaltrexamine (a MOR1 and MOR2 antagonist) and naloxonazine (a MOR1 antagonist). EM1 significantly increased the tritium-labelled dopamine DA release induced by electrical stimulation. EM2 was effective only when the slices were pretreated with diprotin A. beta-Funaltrexamine antagonized the stimulatory effects of both EM1 and EM2. The administration of naloxonazine did not appreciably influence the action of EM1, but blocked the action of EM2, at least when the slices were pretreated with diprotin A. These data suggest that both EM1 and EM2 increase DA release from the striatum and, though diprotin A does not affect the action of EM1, it inhibits the enzymatic degradation of EM2. The DA-stimulating action induced by EM1 seems to be mediated by MOR2, while that evoked by EM2 appears to be transmitted by MOR1.

  9. Stimulation of glutamate receptors in the ventral tegmental area is necessary for serotonin-2 receptor-induced increases in mesocortical dopamine release

    Science.gov (United States)

    Pehek, E.A.; Hernan, A.E.

    2017-01-01

    Modulation of dopamine (DA) released by serotonin-2 (5-HT2) receptors has been implicated in the mechanism of action of antipsychotic drugs. The mesocortical DA system has been implicated particularly in the cognitive deficits observed in schizophrenia. Agonism at 5-HT2A receptors in the prefrontal cortex is associated with increases in cortical DA release. Evidence indicates that 5-HT2A receptors in the cortex regulate mesocortical DA release through stimulation of a “long-loop” feedback system from the PFC to the VTA and back. However, a causal role for VTA glutamate in the 5-HT2-induced increases in PFC DA has not been established. The present study does so by measuring 5-HT2 agonist-induced DA release in the cortex after infusions of glutamate antagonists into the VTA. Infusions of a combination of a NMDA (AP-5: 2-amino-5-phosphopentanoic acid) and an AMPA/kainate (CNQX: 6-cyano-7-nitroquinoxaline-2,3-dione) receptor antagonist into the VTA blocked the increases in cortical DA produced by administration of the 5-HT2 agonist DOI [(±)-2,5-Dimethoxy-4-iodoamphetamine] (2.5 mg/kg s.c.). These results demonstrate that stimulation of glutamate receptors in the VTA is necessary for 5-HT2 agonist-induced increases in cortical DA. PMID:25637799

  10. Interactions between Brainstem Noradrenergic Neurons and the Nucleus Accumbens Shell in Modulating Memory for Emotionally Arousing Events

    Science.gov (United States)

    Kerfoot, Erin C.; Williams, Cedric L.

    2011-01-01

    The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…

  11. Interactions between Brainstem Noradrenergic Neurons and the Nucleus Accumbens Shell in Modulating Memory for Emotionally Arousing Events

    Science.gov (United States)

    Kerfoot, Erin C.; Williams, Cedric L.

    2011-01-01

    The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…

  12. Oral Administration of Methylphenidate (Ritalin) Affects Dopamine Release Differentially Between the Prefrontal Cortex and Striatum: A Microdialysis Study in the Monkey.

    Science.gov (United States)

    Kodama, Tohru; Kojima, Takashi; Honda, Yoshiko; Hosokawa, Takayuki; Tsutsui, Ken-Ichiro; Watanabe, Masataka

    2017-03-01

    Methylphenidate (MPH; trade name Ritalin) is a widely used drug for the treatment of attention deficit hyperactivity disorder (ADHD) and is often used as a cognitive enhancer. Because MPH increases dopamine (DA) release by blocking the DA transporter in the human striatum, MPH is supposed to work on attention and cognition through a DA increase in the striatum. However, ADHD patients show impaired prefrontal cortex (PFC) function and MPH administration is associated with increased neural activity in the PFC. Although MPH is indicated to increase DA release in the rat PFC, there has been no study to examine MPH-induced DA changes in the human PFC because of technical difficulties associated with the low level of PFC DA receptors. Using the microdialysis technique, we examined the effects of oral administration of MPH on DA release in both the PFC and striatum in the monkey. We also tested the effect of MPH on cognitive task performance. As in human studies, in the striatum, both high and low doses of MPH induced consistent increases in DA release ∼30 min after their administrations. In the PFC, a consistent increase in DA release was observed 1 h after a high dose, but not low doses, of MPH. Low doses of MPH improved cognitive task performance, but a high dose of MPH made the monkey drowsy. Therefore, low-dose MPH-induced cognitive enhancement is supported by striatum DA increase.SIGNIFICANCE STATEMENT Methylphenidate (MPH) is a widely used drug for the treatment of attention deficit hyperactivity disorder and is often used as a cognitive enhancer. Although human positron emission tomography studies suggest that MPH works on attention and cognition through dopamine (DA) changes in the striatum, there has been no study to examine MPH-induced DA changes in the human prefrontal cortex (PFC). Using the microdialysis technique in monkeys, we found, for the first time, that low doses of MPH consistently increased DA release in the striatum but did not in the PFC

  13. Acetylcholine release in the mesocorticolimbic dopamine system during cocaine seeking: conditioned and unconditioned contributions to reward and motivation.

    Science.gov (United States)

    You, Zhi-Bing; Wang, Bin; Zitzman, Dawnya; Wise, Roy A

    2008-09-03

    Microdialysis was used to assess the contribution to cocaine seeking of cholinergic input to the mesocorticolimbic dopamine system in ventral tegmental area (VTA). VTA acetylcholine (ACh) was elevated in animals lever pressing for intravenous cocaine and in cocaine-experienced and cocaine-naive animals passively receiving similar "yoked" injections. In cocaine-trained animals, the elevations comprised an initial (first hour) peak to approximately 160% of baseline and a subsequent plateau of 140% of baseline for the rest of the cocaine intake period. In cocaine-naive animals, yoked cocaine injections raised ACh levels to the 140% plateau but did not cause the initial 160% peak. In cocaine-trained animals that received unexpected saline (extinction conditions) rather than the expected cocaine, the initial peak was seen but the subsequent plateau was absent. VTA ACh levels played a causal role and were not just a correlate of cocaine seeking. Blocking muscarinic input to the VTA increased cocaine intake; the increase in intake offset the decrease in cholinergic input, resulting in the same VTA dopamine levels as were seen in the absence of the ACh antagonists. Increased VTA ACh levels (resulting from 10 microM VTA neostigmine infusion) increased VTA dopamine levels and reinstated cocaine seeking in cocaine-trained animals that had undergone extinction; these effects were strongly attenuated by local infusion of a muscarinic antagonist and weakly attenuated by a nicotinic antagonist. These findings identify two cholinergic responses to cocaine self-administration, an unconditioned response to cocaine itself and a conditioned response triggered by cocaine-predictive cues, and confirm that these cholinergic responses contribute to the control of cocaine seeking.

  14. Genetic disruption of dopamine production results in pituitary adenomas and severe prolactinemia

    Science.gov (United States)

    Dopamine release from tuberoinfundibular dopamine neurons into the median eminence activates dopamine-D2 receptors in the pituitary gland where it inhibits lactotroph function. We have previously described genetic dopamine-deficient mouse models which lack the ability to synthesize dopamine. Because...

  15. Pathological gamma oscillations, impaired dopamine release, synapse loss and reduced dynamic range of unitary glutamatergic synaptic transmission in the striatum of hypokinetic Q175 Huntington mice.

    Science.gov (United States)

    Rothe, T; Deliano, M; Wójtowicz, A M; Dvorzhak, A; Harnack, D; Paul, S; Vagner, T; Melnick, I; Stark, H; Grantyn, R

    2015-12-17

    Huntington's disease (HD) is a severe genetically inherited neurodegenerative disorder. Patients present with three principal phenotypes of motor symptoms: choreatic, hypokinetic-rigid and mixed. The Q175 mouse model of disease offers an opportunity to investigate the cellular basis of the hypokinetic-rigid form of HD. At the age of 1 year homozygote Q175 mice exhibited the following signs of hypokinesia: Reduced frequency of spontaneous movements on a precision balance at daytime (-55%), increased total time spent without movement in an open field (+42%), failures in the execution of unconditioned avoidance reactions (+32%), reduced ability for conditioned avoidance (-96%) and increased reaction times (+65%) in a shuttle box. Local field potential recordings revealed low-frequency gamma oscillations in the striatum as a characteristic feature of HD mice at rest. There was no significant loss of DARPP-32 immunolabeled striatal projection neurons (SPNs) although the level of DARPP-32 immunoreactivity was lower in HD. As a potential cause of hypokinesia, HD mice revealed a strong reduction in striatal KCl-induced dopamine release, accompanied by a decrease in the number of tyrosine hydroxylase-(TH)- and VMAT2-positive synaptic varicosities. The presynaptic TH fluorescence level was also reduced. Patch-clamp experiments were performed in slices from 1-year-old mice to record unitary EPSCs (uEPSCs) of presumed cortical origin in the absence of G-protein-mediated modulation. In HD mice, the maximal amplitudes of uEPSCs amounted to 69% of the WT level which matches the loss of VGluT1+/SYP+ synaptic terminals in immunostained sections. These results identify impairment of cortico-striatal synaptic transmission and dopamine release as a potential basis of hypokinesia in HD.

  16. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    Directory of Open Access Journals (Sweden)

    Sebastien eParnaudeau

    2014-02-01

    Full Text Available The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs release. GCs bind the glucocorticoid receptor (GR a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While the GR within dopamine-innervated areas drives cocaine’s behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurones is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice.

  17. Imaging of Dopamine in PD and Implications for Motor and Neuropsychiatric Manifestations of PD

    OpenAIRE

    Raul ede la Fuente-Fernandez

    2013-01-01

    Parkinson’s disease (PD) is characterized by dopamine depletion in the putamen, which leads to motor dysfunction. As the disease progresses, a substantial degree of dopamine depletion also occurs in caudate and nucleus accumbens. This may explain a number of neuropsychiatric manifestations, including depression, apathy, and cognitive decline. Dopamine replacement therapy partially restores motor function but long-term treatment is often associated with motor complications (motor fluctuations ...

  18. Ventral tegmental area dopamine revisited: effects of acute and repeated stress

    OpenAIRE

    Holly, Elizabeth N.; Miczek, Klaus A.

    2015-01-01

    Aversive events rapidly and potently excite certain dopamine neurons in the ventral tegmental area (VTA), promoting phasic increases in the medial prefrontal cortex and nucleus accumbens. This is in apparent contradiction to a wealth of literature demonstrating that most VTA dopamine neurons are strongly activated by reward and reward-predictive cues while inhibited by aversive stimuli. How can these divergent processes both be mediated by VTA dopamine neurons? The answer may lie within the f...

  19. N-methyl-d-aspartate-evoked release of [{sup 3}H]acetylcholine in striatal compartments of the rat: regulatory roles of dopamine and GABA

    Energy Technology Data Exchange (ETDEWEB)

    Glowinski, J.; Perez, S.; Desban, M.; Gauchy, C.; Kemel, M.L.; Blanchet, F. [Chaire de Neuropharmacologie, INSERM U114, College de France, 11 place Marcelin Berthelot, 75231 Paris (France)

    1997-08-26

    The N-methyl-d-aspartate-evoked release of [{sup 3}H]acetylcholine previously formed from [{sup 3}H]choline was estimated in striosome- (identified by [{sup 3}H]naloxone binding) or matrix-enriched areas of the rat striatum using an in vitro microsuperfusion procedure. Experiments were performed in either the absence or the presence of dopaminergic and/or GABAergic receptor antagonists. Although the cell bodies of the cholinergic interneurons were mainly found in the matrix, in the absence of magnesium, N-methyl-d-aspartate (50 {mu}M) stimulated the release of [{sup 3}H]acetylcholine in both striatal compartments. These responses were blocked by either magnesium, dizocilpine maleate, 7-chlorokynurenate or tetrodotoxin. N-Methyl-d-aspartate responses were concentration-dependent, but the 1 mM N-methyl-d-aspartate response was higher in striosomes than in the matrix. The co-application of d-serine (10 {mu}M) enhanced the 10 {mu}M N-methyl-d-aspartate response in both compartments, but reduced those induced by 1 mM N-methyl-d-aspartate, this reduction being higher in striosomes. The blockade of dopaminergic transmission with the D{sub 2} and D{sub 1} dopaminergic receptor antagonists, (-)-sulpiride (1 {mu}M) and SCH23390 (1 {mu}M), was without effect on the 50 {mu}M N-methyl-d-aspartate-evoked release of [{sup 3}H]acetylcholine, but markedly enhanced the 1 mM N-methyl-d-aspartate + d-serine-evoked response in striosomes and to a lesser extent in the matrix. Disinhibitory responses of similar amplitude were observed not only in striosomes but also in the matrix when (-)-sulpiride was used alone, while SCH23390 alone enhanced the 1 mM N-methyl-d-aspartate + d-serine response only in striosomes and to a lower extent than (-)-sulpiride. These results indicate that D{sub 2} receptors are mainly involved in the inhibitory effect of dopamine on the 1 mM N-methyl-d-aspartate + d-serine-evoked release of [{sup 3}H]acetylcholine. They also show that the stimulation of D{sub 1

  20. In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: a positron emission tomography study with [(11)C]-(+)-PHNO.

    Science.gov (United States)

    Boileau, I; Payer, D; Chugani, B; Lobo, D S S; Houle, S; Wilson, A A; Warsh, J; Kish, S J; Zack, M

    2014-12-01

    Drug addiction has been associated with deficits in mesostriatal dopamine (DA) function, but whether this state extends to behavioral addictions such as pathological gambling (PG) is unclear. Here we used positron emission tomography and the D3 receptor-preferring radioligand [(11)C]-(+)-PHNO during a dual-scan protocol to investigate DA release in response to oral amphetamine in pathological gamblers (n=12) and healthy controls (n=11). In contrast with human neuroimaging findings in drug addiction, we report the first evidence that PG is associated with greater DA release in dorsal striatum (54-63% greater [(11)C]-(+)-PHNO displacement) than controls. Importantly, dopaminergic response to amphetamine in gamblers was positively predicted by D3 receptor levels (measured in substantia nigra), and related to gambling severity, allowing for construction of a mechanistic model that could help explain DA contributions to PG. Our results are consistent with a hyperdopaminergic state in PG, and support the hypothesis that dopaminergic sensitization involving D3-related mechanisms might contribute to the pathophysiology of behavioral addictions.

  1. A comparison of two semi-mechanistic models for prolactin release and prediction of receptor occupancy following administration of dopamine D2 receptor antagonists in rats.

    Science.gov (United States)

    Taneja, Amit; Vermeulen, An; Huntjens, Dymphy R H; Danhof, Meindert; De Lange, Elizabeth C M; Proost, Johannes H

    2016-10-15

    We compared the model performance of two semi-mechanistic pharmacokinetic-pharmacodynamic models, the precursor pool model and the agonist-antagonist interaction model, to describe prolactin response following the administration of the dopamine D2 receptor antagonists risperidone, paliperidone or remoxipride in rats. The time course of pituitary dopamine D2 receptor occupancy was also predicted. Male Wistar rats received a single dose (risperidone, paliperidone, remoxipride) or two consecutive doses (remoxipride). Population modeling was applied to fit the pool and interaction models to the prolactin data. The pool model was modified to predict the time course of pituitary D2 receptor occupancy. Unbound plasma concentrations of the D2 receptor antagonists were considered the drivers of the prolactin response. Both models were used to predict prolactin release following multiple doses of paliperidone. Both models described the data well and model performance was comparable. Estimated unbound EC50 for risperidone and paliperidone was 35.1nM (relative standard error 51%) and for remoxipride it was 94.8nM (31%). KI values for these compounds were 11.1nM (21%) and 113nM (27%), respectively. Estimated pituitary D2 receptor occupancies for risperidone and remoxipride were comparable to literature findings. The interaction model better predicted prolactin profiles following multiple paliperidone doses, while the pool model predicted tolerance better. The performance of both models in describing the prolactin profiles was comparable. The pool model could additionally describe the time course of pituitary D2 receptor occupancy. Prolactin response following multiple paliperidone doses was better predicted by the interaction model.

  2. Hormonal induction of spawning in 4 species of frogs by coinjection with a gonadotropin-releasing hormone agonist and a dopamine antagonist

    Directory of Open Access Journals (Sweden)

    Wignall Jacqui

    2010-04-01

    Full Text Available Abstract Background It is well known that many anurans do not reproduce easily in captivity. Some methods are based on administration of mammalian hormones such as human chorionic gonadotropin, which are not effective in many frogs. There is a need for simple, cost-effective alternative techniques to induce spawning. Methods Our new method is based on the injection of a combination of a gonadotropin-releasing hormone (GnRH agonist and a dopamine antagonist. We have named this formulation AMPHIPLEX, which is derived from the combination of the words amphibian and amplexus. This name refers to the specific reproductive behavior of frogs when the male mounts and clasps the female to induce ovulation and to fertilize the eggs as they are laid. Results We describe the use of the method and demonstrate its applicability for captive breeding in 3 different anuran families. We tested several combinations of GnRH agonists with dopamine antagonists using Lithobates pipiens. The combination of des-Gly10, D-Ala6, Pro-LHRH (0.4 microrams/g body weight and metoclopramide (10 micrograms/g BWt. MET was most effective. It was used in-season, after short-term captivity and in frogs artificially hibernated under laboratory conditions. The AMPHIPLEX method was also effective in 3 Argentinian frogs, Ceratophrys ornata, Ceratophrys cranwelli and Odontophrynus americanus. Conclusion Our approach offers some advantages over other hormonally-based techniques. Both sexes are injected only once and at the same time, reducing handling stress. AMPHIPLEX is a new reproductive management tool for captive breeding in Anura.

  3. Hormonal induction of spawning in 4 species of frogs by coinjection with a gonadotropin-releasing hormone agonist and a dopamine antagonist

    Science.gov (United States)

    2010-01-01

    Background It is well known that many anurans do not reproduce easily in captivity. Some methods are based on administration of mammalian hormones such as human chorionic gonadotropin, which are not effective in many frogs. There is a need for simple, cost-effective alternative techniques to induce spawning. Methods Our new method is based on the injection of a combination of a gonadotropin-releasing hormone (GnRH) agonist and a dopamine antagonist. We have named this formulation AMPHIPLEX, which is derived from the combination of the words amphibian and amplexus. This name refers to the specific reproductive behavior of frogs when the male mounts and clasps the female to induce ovulation and to fertilize the eggs as they are laid. Results We describe the use of the method and demonstrate its applicability for captive breeding in 3 different anuran families. We tested several combinations of GnRH agonists with dopamine antagonists using Lithobates pipiens. The combination of des-Gly10, D-Ala6, Pro-LHRH (0.4 microrams/g body weight) and metoclopramide (10 micrograms/g BWt. MET) was most effective. It was used in-season, after short-term captivity and in frogs artificially hibernated under laboratory conditions. The AMPHIPLEX method was also effective in 3 Argentinian frogs, Ceratophrys ornata, Ceratophrys cranwelli and Odontophrynus americanus. Conclusion Our approach offers some advantages over other hormonally-based techniques. Both sexes are injected only once and at the same time, reducing handling stress. AMPHIPLEX is a new reproductive management tool for captive breeding in Anura. PMID:20398399

  4. Impact of serotonin 2C receptor null mutation on physiology and behavior associated with nigrostriatal dopamine pathway function.

    Science.gov (United States)

    Abdallah, Luna; Bonasera, Stephen J; Hopf, F Woodward; O'Dell, Laura; Giorgetti, Marco; Jongsma, Minke; Carra, Scott; Pierucci, Massimo; Di Giovanni, Giuseppe; Esposito, Ennio; Parsons, Loren H; Bonci, Antonello; Tecott, Laurence H

    2009-06-24

    The impact of serotonergic neurotransmission on brain dopaminergic pathways has substantial relevance to many neuropsychiatric disorders. A particularly prominent role has been ascribed to the inhibitory effects of serotonin 2C receptor (5-HT(2C)R) activation on physiology and behavior mediated by the mesolimbic dopaminergic pathway, particularly in the terminal region of the nucleus accumbens. The influence of this receptor subtype on functions mediated by the nigrostriatal dopaminergic pathway is less clear. Here we report that a null mutation eliminating expression of 5-HT(2C)Rs produces marked alterations in the activity and functional output of this pathway. 5-HT(2C)R mutant mice displayed increased activity of substantia nigra pars compacta (SNc) dopaminergic neurons, elevated baseline extracellular dopamine concentrations in the dorsal striatum (DSt), alterations in grooming behavior, and enhanced sensitivity to the stereotypic behavioral effects of d-amphetamine and GBR 12909. These psychostimulant responses occurred in the absence of phenotypic differences in drug-induced extracellular dopamine concentration, suggesting a phenotypic alteration in behavioral responses to released dopamine. This was further suggested by enhanced behavioral responses of mutant mice to the D(1) receptor agonist SKF 81297. Differences in DSt D(1) or D(2) receptor expression were not found, nor were differences in medium spiny neuron firing patterns or intrinsic membrane properties following dopamine stimulation. We conclude that 5-HT(2C)Rs regulate nigrostriatal dopaminergic activity and function both at SNc dopaminergic neurons and at a locus downstream of the DSt.

  5. Dopamine Burden Triggers Neurodegeneration via Production and Release of TNF-α from Astrocytes in Minimal Hepatic Encephalopathy.

    Science.gov (United States)

    Ding, Saidan; Wang, Weikan; Wang, Xuebao; Liang, Yong; Liu, Leping; Ye, Yiru; Yang, Jianjing; Gao, Hongchang; Zhuge, Qichuan

    2016-10-01

    Dopamine (DA)-induced learning and memory impairment is well documented in minimal hepatic encephalopathy (MHE), but the contribution of DA to neurodegeneration and the involved underlying mechanisms are not fully understood. In this study, the effect of DA on neuronal apoptosis was initially detected. The results showed that MHE/DA (10 μg)-treated rats displayed neuronal apoptosis. However, we found that DA (10 μM) treatment did not induce evident apoptosis in primary cultured neurons (PCNs) but did produce TNF-α in primary cultured astrocytes (PCAs). Furthermore, co-cultures between PCAs and PCNs exposed to DA exhibited increased astrocytic TNF-α levels and neuronal apoptosis compared with co-cultures exposed to the vehicle, indicating the attribution of the neuronal apoptosis to astrocytic TNF-α. We also demonstrated that DA enhanced TNF-α production from astrocytes by activation of the TLR4/MyD88/NF-κB pathway, and secreted astrocytic TNF-α-potentiated neuronal apoptosis through inactivation of the PI3K/Akt/mTOR pathway. Overall, the findings from this study suggest that DA stimulates substantial production and secretion of astrocytic TNF-α, consequently and indirectly triggering progressive neurodegeneration, resulting in cognitive decline and memory loss in MHE.

  6. Characterization of Optically and Electrically Evoked Dopamine Release in Striatal Slices from Digenic Knock-in Mice with DAT-Driven Expression of Channelrhodopsin

    Science.gov (United States)

    2017-01-01

    Fast-scan cyclic voltammetry (FCV) is an established method to monitor increases in extracellular dopamine (DA) concentration ([DA]o) in the striatum, which is densely innervated by DA axons. Ex vivo brain slice preparations provide an opportunity to identify endogenous modulators of DA release. For these experiments, local electrical stimulation is often used to elicit release of DA, as well as other transmitters, in the striatal microcircuitry; changes in evoked increases in [DA]o after application of a pharmacological agent (e.g., a receptor antagonist) indicate a regulatory role for the transmitter system interrogated. Optogenetic methods that allow specific stimulation of DA axons provide a complementary, bottom-up approach for elucidating factors that regulate DA release. To this end, we have characterized DA release evoked by local electrical and optical stimulation in striatal slices from mice that genetically express a variant of channelrhodopsin-2 (ChR2). Evoked increases in [DA]o in the dorsal and ventral striatum (dStr and vStr) were examined in a cross of a Cre-dependent ChR2 line (“Ai32” mice) with a DAT::Cre mouse line. In dStr, repeated optical pulse-train stimulation at the same recording site resulted in rundown of evoked [DA]o using heterozygous mice, which contrasted with the stability seen with electrical stimulation. Similar rundown was seen in the presence of a nicotinic acetylcholine receptor (nAChR) antagonist, implicating the absence of concurrent nAChR activation in DA release instability in slices. Rundown with optical stimulation in dStr could be circumvented by recording from a population of sites, each stimulated only once. Same-site rundown was less pronounced with single-pulse stimulation, and a stable baseline could be attained. In vStr, stable optically evoked increases in [DA]o at single sites could be achieved using heterozygous mice, although with relatively low peak [DA]o. Low release could be overcome by using mice with a

  7. Temporal changes of striatal dopamine release during and after a video game with a monetary reward: a PET study with [{sup 11}C]raclopride continuous infusion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. E. [Sungkyunkwon University School of Medicine, Suwon (Korea, Republic of); Cho, S. S.; Choe, Y. S.; Lee, S. Y.; Kang, E.; Kim, B. T. [Seoul National University hospital, Seoul (Korea, Republic of)

    2002-07-01

    In an attempt to understand the neurochemical changes associated with rewarded motor learning in human brain, we investigated the temporal changes of striatal dopamine (DA) release during and after a goal-directed psychomotor task (a video game) with a monetary incentive using [{sup 11}C]raclopride PET. Seven healthy, right-handed, nonsmokers were studied with PET for 120 min (50 min resting followed by 40 min video game and another 30 min resting) while receiving a bolus plus constant infusion of the DA D2 receptor radioligand [{sup 11}C]raclopride. During the video game (from 50 to 90 min postinjection), subjects played Tetris, which involved learning of joystick movement to fit falling jigsaw blocks, and periodically rewarded with unpredictable amount monetary incentives for improved performance. Striatal V3', calculated as striatal-cerebellar/cerebellar activity ratio, was measured under equilibrium condition, at baseline and during and after the video game. Striatal V3' was significantly reduced during the video game compared with baseline levels, indicating increased DA release in this region (caudate, -15{+-}6%; putamen, -30{+-}10%). During the 30 min after the game ended, striatal [{sup 11}C]raclopride binding was gradually increased and the V3' approached baseline levels. There was a significant correlation between the reduction in striatal V3' and the task performance during the video game. These results demonstrate DA release in the human striatum during a psychomotor task with a monetary reward and to our knowledge for the first time a gradual DA restoration to baseline levels following the offset of stimulation. They also illustrate that acute fluctuations of synaptic DA can be measured in vivo using [{sup 11}C]raclopride PET.

  8. Dopamine release via the vacuolar ATPase V0 sector c-subunit, confirmed in N18 neuroblastoma cells, results in behavioral recovery in hemiparkinsonian mice.

    Science.gov (United States)

    Jin, Duo; Muramatsu, Shin-Ichi; Shimizu, Nobuaki; Yokoyama, Shigeru; Hirai, Hirokazu; Yamada, Kiyofumi; Liu, Hong-Xiang; Higashida, Chiharu; Hashii, Minako; Higashida, Akihiko; Asano, Masahide; Ohkuma, Shoji; Higashida, Haruhiro

    2012-11-01

    A 16-kDa proteolipid, mediatophore, in Torpedo electric organs mediates Ca(2+)-dependent acetylcholine release. Mediatophore is identical to the pore-forming stalk c-subunit of the V0 sector of vacuolar proton ATPase (ATP6V0C). The function of ATP6V0C in the mammalian central nervous system is not clear. Here, we report transfection of adeno-associated viral vectors harboring rat ATP6V0C into the mouse substantia nigra, in which high potassium stimulation increased overflow of endogenous dopamine (DA) measured in the striatum by in vivo microdialysis. Next, in the striatum of 6-hydroxydopamine-lesioned mice, a model of Parkinson's disease (PD), human tyrosine hydroxylase, aromatic l-amino-acid decarboxylase and guanosine triphosphate cyclohydrolase 1, together with or without ATP6V0C, were expressed in the caudoputamen for rescue. Motor performance on the accelerating rotarod test and amphetamine-induced ipsilateral rotation were improved in the rescued mice coexpressing ATP6V0C. [(3)H]DA, taken up into cultured N18 neuronal tumor cells transformed to express ATP6V0C, was released by potassium stimulation. These results indicated that ATP6V0C mediates DA release from nerve terminals in the striatum of DA neurons of normal mice and from gene-transferred striatal cells of parkinsonian mice. The results suggested that ATP6V0C may be useful as a rescue molecule in addition to DA-synthetic enzymes in the gene therapy of PD.

  9. QSAR modeling of mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating dopamine release.

    Science.gov (United States)

    Zheng, Fang; Bayram, Ersin; Sumithran, Sangeetha P; Ayers, Joshua T; Zhan, Chang-Guo; Schmitt, Jeffrey D; Dwoskin, Linda P; Crooks, Peter A

    2006-05-01

    Back-propagation artificial neural networks (ANNs) were trained on a dataset of 42 molecules with quantitative IC50 values to model structure-activity relationships of mono- and bis-quaternary ammonium salts as antagonists at neuronal nicotinic acetylcholine receptors (nAChR) mediating nicotine-evoked dopamine release. The ANN QSAR models produced a reasonable level of correlation between experimental and calculated log(1/IC50) (r2=0.76, r(cv)2=0.64). An external test for the models was performed on a dataset of 18 molecules with IC50 values >1 microM. Fourteen of these were correctly classified. Classification ability of various models, including self-organizing maps (SOM), for all 60 molecules was also evaluated. A detailed analysis of the modeling results revealed the following relative contributions of the used descriptors to the trained ANN QSAR model: approximately 44.0% from the length of the N-alkyl chain attached to the quaternary ammonium head group, approximately 20.0% from Moriguchi octanol-water partition coefficient of the molecule, approximately 13.0% from molecular surface area, approximately 12.6% from the first component shape directional WHIM index/unweighted, approximately 7.8% from Ghose-Crippen molar refractivity, and 2.6% from the lowest unoccupied molecular orbital energy. The ANN QSAR models were also evaluated using a set of 13 newly synthesized compounds (11 biologically active antagonists and two biologically inactive compounds) whose structures had not been previously utilized in the training set. Twelve among 13 compounds were predicted to be active which further supports the robustness of the trained models. Other insights from modeling include a structural modification in the bis-quinolinium series that involved replacing the 5 and/or 8 as well as the 5' and/or 8' carbon atoms with nitrogen atoms, predicting inactive compounds. Such data can be effectively used to reduce synthetic and in vitro screening activities by eliminating

  10. The glucagon-like peptide 1 analogue Exendin-4 attenuates the nicotine-induced locomotor stimulation, accumbal dopamine release, conditioned place preference as well as the expression of locomotor sensitization in mice.

    Directory of Open Access Journals (Sweden)

    Emil Egecioglu

    Full Text Available The gastrointestinal peptide glucagon-like peptide 1 (GLP-1 is known to regulate consummatory behavior and is released in response to nutrient ingestion. Analogues of this peptide recently emerged as novel pharmacotherapies for treatment of type II diabetes since they reduce gastric emptying, glucagon secretion as well as enhance glucose-dependent insulin secretion. The findings that GLP-1 targets reward related areas including mesolimbic dopamine areas indicate that the physiological role of GLP-1 extends beyond food intake and glucose homeostasis control to include reward regulation. The present series of experiments was therefore designed to investigate the effects of the GLP-1 receptor agonist, Exendin-4 (Ex4, on established nicotine-induced effects on the mesolimbic dopamine system in mice. Specifically, we show that treatment with Ex4, at a dose with no effect per se, attenuate nicotine-induced locomotor stimulation, accumbal dopamine release as well as the expression of conditioned place preference in mice. In accordance, Ex4 also blocks nicotine-induced expression of locomotor sensitization in mice. Given that development of nicotine addiction largely depends on the effects of nicotine on the mesolimbic dopamine system these findings indicate that the GLP-1 receptor may be a potential target for the development of novel treatment strategies for nicotine cessations in humans.

  11. Role of nucleus accumbens glutamatergic plasticity in drug addiction.

    Science.gov (United States)

    Quintero, Gabriel C

    2013-01-01

    Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance's effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca(2+)-permeable AMPA receptors (CP-AMPARs) at the level of the NAc

  12. Co-release of noradrenaline and dopamine in the cerebral cortex elicited by single train and repeated train stimulation of the locus coeruleus

    Directory of Open Access Journals (Sweden)

    Saba Pierluigi

    2005-05-01

    Full Text Available Abstract Background Previous studies by our group suggest that extracellular dopamine (DA and noradrenaline (NA may be co-released from noradrenergic nerve terminals in the cerebral cortex. We recently demonstrated that the concomitant release of DA and NA could be elicited in the cerebral cortex by electrical stimulation of the locus coeruleus (LC. This study analyses the effect of both single train and repeated electrical stimulation of LC on NA and DA release in the medial prefrontal cortex (mPFC, occipital cortex (Occ, and caudate nucleus. To rule out possible stressful effects of electrical stimulation, experiments were performed on chloral hydrate anaesthetised rats. Results Twenty min electrical stimulation of the LC, with burst type pattern of pulses, increased NA and DA both in the mPFC and in the Occ. NA in both cortices and DA in the mPFC returned to baseline within 20 min after the end of the stimulation period, while DA in the Occ reached a maximum increase during 20 min post-stimulation and remained higher than baseline values at 220 min post-stimulation. Local perfusion with tetrodotoxin (TTX, 10 μM markedly reduced baseline NA and DA in the mPFC and Occ and totally suppressed the effect of electrical stimulation in both areas. A sequence of five 20 min stimulations at 20 min intervals were delivered to the LC. Each stimulus increased NA to the same extent and duration as the first stimulus, whereas DA remained elevated at the time next stimulus was delivered, so that baseline DA progressively increased in the mPFC and Occ to reach about 130 and 200% the initial level, respectively. In the presence of the NA transport (NAT blocker desipramine (DMI, 100 μM, multiple LC stimulation still increased extracellular NA and DA levels. Electrical stimulation of the LC increased NA levels in the homolateral caudate nucleus, but failed to modify DA level. Conclusion The results confirm and extend that LC stimulation induces a concomitant

  13. r-bPiDI, an α6β2* Nicotinic Receptor Antagonist, Decreases Nicotine-Evoked Dopamine Release and Nicotine Reinforcement

    Science.gov (United States)

    Beckmann, Joshua S.; Meyer, Andrew C.; Pivavarchyk, M.; Horton, David B.; Zheng, Guangrong; Smith, Andrew M.; Wooters, Thomas E.; McIntosh, J. Michael; Crooks, Peter A.; Bardo, Michael T.

    2015-01-01

    α6β2* nicotinic acetylcholine receptors (nACh Rs) expressed by dopaminergic neurons mediate nicotine-evoked dopamine (DA) release and nicotine reinforcement. α6β2* antagonists inhibit these effects of nicotine, such that α6β2* receptors serve as therapeutic targets for nicotine addiction. The present research assessed the neuropharmacology of 1,10-bis(3-methyl-5,6-dihydropyridin-1(2H)-yl)decane (r-bPiDI), a novel small-molecule, tertiary amino analog of its parent compound, N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI). bPiDI was previously shown to inhibit both nicotine-evoked DA release and the reinforcing effects of nicotine. In the current study, r-bPiDI inhibition of [3H]nicotine and [3H]methyllyca-conitine binding sites was evaluated to assess interaction with the recognition binding sites on α4β2* and α7* nAChRs, respectively. Further, r-bPiDI inhibition of nicotine-evoked DA release in vitro in the absence and presence of α-conotoxin MII and following chronic in vivo nicotine administration were determined. The ability of r-bPiDI to decrease nicotine self-administration and food-maintained responding was also assessed. Results show that r-bPiDI did not inhibit [3H]nicotine or [3H]methylly-caconitine binding, but potently (IC50 = 37.5 nM) inhibited nicotine-evoked DA release from superfused striatal slices obtained from either drug naïve rats or from those repeatedly treated with nicotine. r-bPiDI inhibition of nicotine-evoked DA release was not different in the absence or presence of α-conotoxin MII, indicating that r-bPiDI acts as a potent, selective α6β2* nAChR antagonist. Acute systemic administration of r-bPiDI specifically decreased nicotine self-administration by 75 %, and did not alter food-maintained responding, demonstrating greater specificity relative to bPiDI and bPiDDB, as well as the tertiary amino analog r-bPiDDB. The current work describes the discovery of r-bPiDI, a tertiary amino, α-conotoxin MII-like small molecule

  14. The effects of serotonin, dopamine, gonadotropin-releasing hormones, and corazonin, on the androgenic gland of the giant freshwater prawn, Macrobrachium rosenbergii.

    Science.gov (United States)

    Siangcham, Tanapan; Tinikul, Yotsawan; Poljaroen, Jaruwan; Sroyraya, Morakot; Changklungmoa, Narin; Phoungpetchara, Ittipon; Kankuan, Wilairat; Sumpownon, Chanudporn; Wanichanon, Chaitip; Hanna, Peter J; Sobhon, Prasert

    2013-11-01

    Neurotransmitters and neurohormones are agents that control gonad maturation in decapod crustaceans. Of these, serotonin (5-HT) and dopamine (DA) are neurotransmitters with known antagonist roles in female reproduction, whilst gonadotropin-releasing hormones (GnRHs) and corazonin (Crz) are neurohormones that exercise both positive and negative controls in some invertebrates. However, the effects of these agents on the androgenic gland (AG), which controls testicular maturation and male sex development in decapods, via insulin-like androgenic gland hormone (IAG), are unknown. Therefore, we set out to assay the effects of 5-HT, DA, l-GnRH-III, oct-GnRH and Crz, on the AG of small male Macrobrachium rosenbergii (Mr), using histological studies, a BrdU proliferative cell assay, immunofluorescence of Mr-IAG, and ELISA of Mr-IAG. The results showed stimulatory effects by 5-HT and l-GnRH-III through significant increases in AG size, proliferation of AG cells, and Mr-IAG production (Prosenbergii, as they induce increases in AG and testicular size, IAG production, and spermatogenesis. The mechanisms by which these occur are part of our on-going research.

  15. CyPPA, a positive SK3/SK2 modulator, reduces activity of dopaminergic neurons, inhibits dopamine release, and counteracts hyperdopaminergic behaviors induced by methylphenidate

    Directory of Open Access Journals (Sweden)

    Kjartan F. Herrik

    2012-02-01

    Full Text Available Dopamine (DA containing midbrain neurons play critical roles in several psychiatric and neurological diseases, including schizophrenia and attention deficit hyperactivity disorder (ADHD, and the substantia nigra pars compacta neurons selectively degenerate in Parkinson’s disease. Pharmacological modulation of DA receptors and transporters are well established approaches for treatment of DA-related disorders. Direct modulation of the DA system by influencing the discharge pattern of these autonomously firing neurons has yet to be exploited as a potential therapeutic strategy. Small conductance Ca2+-activated K+ channels (SK channels, in particular the SK3 subtype, are important in the physiology of DA neurons, and agents modifying SK channel activity could potentially affect DA-signaling and DA-related behaviors. Here we show that CyPPA (cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl-6-methyl-pyrimidin-4-yl]-amine, a subtype-selective positive modulator of SK channels (SK3 > SK2 >>> SK1, IK, decreased spontaneous firing rate, increased the duration of the apamin-sensitive, medium duration afterhyperpolarization (mAHP, and caused an activity-dependent inhibition of current-evoked action potentials in DA neurons from both mouse and rat midbrain slices. Using a immunohistochemically and pharmacologically validated DA release assay employing cultured DA neurons from rats, we show that CyPPA repressed DA release in a concentration-dependent manner with a maximal effect equal to the D2 receptor agonist quinpirole. In vivo studies revealed that systemic administration of CyPPA attenuated methylphenidate-induced hyperactivity and stereotypic behaviors in mice. Taken together, the data accentuate the important role played by SK3 channels in the physiology of DA neurons, and indicate that their facilitation by CyPPA profoundly influences physiological as well as pharmacologically induced hyperdopaminergic behavior.

  16. 5-hydroxytryptamine- and dopamine-releasing effects of ring-substituted amphetamines on rat brain: a comparative study using in vivo microdialysis.

    Science.gov (United States)

    Matsumoto, T; Maeno, Y; Kato, H; Seko-Nakamura, Y; Monma-Ohtaki, J; Ishiba, A; Nagao, M; Aoki, Y

    2014-08-01

    Using in vivo microdialysis, a comparative study was conducted to examine the effects of amphetamine-related compounds (methamphetamine, MAP; 3,4-methylenedioxymethamphetamine, MDMA; p-methoxyamphetamine, PMA; p-methoxymethamphetamine, PMMA; 4-methylthioamphetamine, 4-MTA; 3,4,5-trimethoxyamphetamine, TMA; 2,5-dimethoxy-4-iodoamphetamine, DOI) on extracellular levels of serotonin (5-HT) and dopamine (DA). Dialysates were assayed using HPLC equipped with electrochemical detector following i.p. administration with each drug at a dose of 5 mg/kg. MAP was found to drastically and rapidly increase 5-HT and DA levels (870% and 1460%, respectively). PMA, PMMA, and 4-MTA slightly increased DA levels (150-290%) but remarkably increased 5-HT levels (540-900%). In contrast, TMA and DOI caused no detectable changes in levels of both monoamines. We observed that the potent DA-releasing action of MAP was remarkably decreased by introduction of methoxy or methylthio group at the para position (MAP vs. PMMA or 4-MTA), but introduction of two additional adjacent methoxy groups into PMA totally abolished its 5-HT-/DA-releasing action (PMA vs. TMA). In addition, para-mono-substituted compounds inhibited both monoamine oxidase (MAO) enzymes more strongly than other compounds; PMA and 4-MTA exhibited submicromolar IC50 values for MAO-A. On the other hand, TMA scarcely affected the activity of both MAO enzymes as well as extracellular levels of 5-HT and DA. In this comparative study, MDMA, PMA, and 4-MTA functioned similar to PMMA, a typical empathogen; these findings therefore could be helpful in clarifying the psychopharmacological properties of amphetamine-related, empathogenic designer drugs.

  17. NMDA receptor antagonism potentiates the L-DOPA-induced extracellular dopamine release in the subthalamic nucleus of hemi-parkinson rats.

    Science.gov (United States)

    El Arfani, Anissa; Bentea, Eduard; Aourz, Najat; Ampe, Ben; De Deurwaerdère, Philippe; Van Eeckhaut, Ann; Massie, Ann; Sarre, Sophie; Smolders, Ilse; Michotte, Yvette

    2014-10-01

    Long term treatment with L-3,4-dihydroxyphenylalanine (L-DOPA) is associated with several motor complications. Clinical improvement of this treatment is therefore needed. Lesions or high frequency stimulation of the hyperactive subthalamic nucleus (STN) in Parkinson's disease (PD), alleviate the motor symptoms and reduce dyskinesia, either directly and/or by allowing the reduction of the L-DOPA dose. N-methyl-D-aspartate (NMDA) receptor antagonists might have similar actions. However it remains elusive how the neurochemistry changes in the STN after a separate or combined administration of L-DOPA and a NMDA receptor antagonist. By means of in vivo microdialysis, the effect of L-DOPA and/or MK 801, on the extracellular dopamine (DA) and glutamate (GLU) levels was investigated for the first time in the STN of sham and 6-hydroxydopamine-lesioned rats. The L-DOPA-induced DA increase in the STN was significantly higher in DA-depleted rats compared to shams. MK 801 did not influence the L-DOPA-induced DA release in shams. However, MK 801 enhanced the L-DOPA-induced DA release in hemi-parkinson rats. Interestingly, the extracellular STN GLU levels remained unchanged after nigral degeneration. Furthermore, administration of MK 801 alone or combined with L-DOPA did not alter the STN GLU levels in both sham and DA-depleted rats. The present study does not support the hypothesis that DA-ergic degeneration influences the STN GLU levels neither that MK 801 alters the GLU levels in lesioned and non-lesioned rats. However, NMDA receptor antagonists could be used as a beneficial adjuvant treatment for PD by enhancing the therapeutic efficacy of l-DOPA at least in part in the STN.

  18. 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man - A PET study with [C-11]raclopride

    NARCIS (Netherlands)

    Vollenweider, FX; Vontobel, P; Hell, D; Leenders, KL

    The modulating effects of serotonin on dopamine neurotransmission are not well understood, particularly in acute psychotic states. Positron emission tomography was used to examine the effect of psilocybin on the in vivo binding of [C-11]raclopride to D-2-dopamine receptors in the striatum in healthy

  19. 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man - A PET study with [C-11]raclopride

    NARCIS (Netherlands)

    Vollenweider, FX; Vontobel, P; Hell, D; Leenders, KL

    1999-01-01

    The modulating effects of serotonin on dopamine neurotransmission are not well understood, particularly in acute psychotic states. Positron emission tomography was used to examine the effect of psilocybin on the in vivo binding of [C-11]raclopride to D-2-dopamine receptors in the striatum in healthy

  20. The Novel Pyrrolidine Nor-Lobelane Analog UKCP-110 [cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride] Inhibits VMAT2 Function, Methamphetamine-Evoked Dopamine Release, and Methamphetamine Self-Administration in RatsS⃞

    Science.gov (United States)

    Beckmann, Joshua S.; Siripurapu, Kiran B.; Nickell, Justin R.; Horton, David B.; Denehy, Emily D.; Vartak, Ashish; Crooks, Peter A.; Bardo, Michael T.

    2010-01-01

    Both lobeline and lobelane attenuate methamphetamine self-administration in rats by decreasing methamphetamine-induced dopamine release via interaction with vesicular monoamine transporter-2 (VMAT2). A novel derivative of nor-lobelane, cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-110), and its trans-isomers, (2R,5R)-trans-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-111) and (2S,5S)-trans-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-112), were evaluated for inhibition of [3H]dihydrotetrabenazine binding and [3H]dopamine uptake by using a rat synaptic vesicle preparation to assess VMAT2 interaction. Compounds were evaluated for inhibition of [3H]nicotine and [3H]methyllycaconitine binding to assess interaction with the major nicotinic receptor subtypes. In addition, compounds were evaluated for inhibition of methamphetamine-evoked endogenous dopamine release by using striatal slices. The most promising compound, UKCP-110, was evaluated for its ability to decrease methamphetamine self-administration and methamphetamine discriminative stimulus cues and for its effect on food-maintained operant responding. UKCP-110, UKCP-111, and UKCP-112 inhibited [3H]dihydrotetrabenazine binding (Ki = 2.66 ± 0.37, 1.05 ± 0.10, and 3.80 ± 0.31 μM, respectively) and had high potency inhibiting [3H]dopamine uptake (Ki = 0.028 ± 0.001, 0.046 ± 0.008, 0.043 ± 0.004 μM, respectively), but lacked affinity at nicotinic receptors. Although the trans-isomers did not alter methamphetamine-evoked dopamine release, UKCP-110 inhibited (IC50 = 1.8 ± 0.2 μM; Imax = 67.18 ± 6.11 μM) methamphetamine-evoked dopamine release. At high concentrations, UKCP-110 also increased extracellular dihydroxyphenylacetic acid. It is noteworthy that UKCP-110 decreased the number of methamphetamine self-infusions, while having no effect on food-reinforced behavior or the methamphetamine stimulus cue. Thus, UKCP-110 represents a new lead in the development of novel pharmacotherapies for

  1. The novel pyrrolidine nor-lobelane analog UKCP-110 [cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride] inhibits VMAT2 function, methamphetamine-evoked dopamine release, and methamphetamine self-administration in rats.

    Science.gov (United States)

    Beckmann, Joshua S; Siripurapu, Kiran B; Nickell, Justin R; Horton, David B; Denehy, Emily D; Vartak, Ashish; Crooks, Peter A; Dwoskin, Linda P; Bardo, Michael T

    2010-12-01

    Both lobeline and lobelane attenuate methamphetamine self-administration in rats by decreasing methamphetamine-induced dopamine release via interaction with vesicular monoamine transporter-2 (VMAT2). A novel derivative of nor-lobelane, cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-110), and its trans-isomers, (2R,5R)-trans-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-111) and (2S,5S)-trans-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-112), were evaluated for inhibition of [(3)H]dihydrotetrabenazine binding and [(3)H]dopamine uptake by using a rat synaptic vesicle preparation to assess VMAT2 interaction. Compounds were evaluated for inhibition of [(3)H]nicotine and [(3)H]methyllycaconitine binding to assess interaction with the major nicotinic receptor subtypes. In addition, compounds were evaluated for inhibition of methamphetamine-evoked endogenous dopamine release by using striatal slices. The most promising compound, UKCP-110, was evaluated for its ability to decrease methamphetamine self-administration and methamphetamine discriminative stimulus cues and for its effect on food-maintained operant responding. UKCP-110, UKCP-111, and UKCP-112 inhibited [(3)H]dihydrotetrabenazine binding (K(i) = 2.66 ± 0.37, 1.05 ± 0.10, and 3.80 ± 0.31 μM, respectively) and had high potency inhibiting [(3)H]dopamine uptake (K(i) = 0.028 ± 0.001, 0.046 ± 0.008, 0.043 ± 0.004 μM, respectively), but lacked affinity at nicotinic receptors. Although the trans-isomers did not alter methamphetamine-evoked dopamine release, UKCP-110 inhibited (IC(50) = 1.8 ± 0.2 μM; I(max) = 67.18 ± 6.11 μM) methamphetamine-evoked dopamine release. At high concentrations, UKCP-110 also increased extracellular dihydroxyphenylacetic acid. It is noteworthy that UKCP-110 decreased the number of methamphetamine self-infusions, while having no effect on food-reinforced behavior or the methamphetamine stimulus cue. Thus, UKCP-110 represents a new lead in the development of novel

  2. γ-endorphin and Nα-acetyl-γ-endorphin interfere with distinct dopaminergic systems in the nucleus accumbens via opioid and non-opioid mechanisms

    NARCIS (Netherlands)

    Ree, J.M. van; Gaffori, O.; Kiraly, I.

    1984-01-01

    Low doses (10 ng) of the dopamine agonist apomorphine induced hypolocomotion when injected into the nucleus accumbens of rats. This behavioral response was antagonized by local treatment with either the opioid peptide γ-endorphin (γE) or the non-opioid peptide Nα-acetyl-γ-endorphin (AcγE) in a dose

  3. Role of nucleus accumbens glutamatergic plasticity in drug addiction

    Directory of Open Access Journals (Sweden)

    Quintero GC

    2013-09-01

    Full Text Available Gabriel C Quintero1–31Florida State University – Panama, Clayton, Panama; 2Medical University of South Carolina, Charleston, South Carolina, USA; 3Smithsonian Tropical Research Institute, Ancon, Republic of PanamaAbstract: Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR. These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance’s effects, disregard of basic aspects of life (for example, family, and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1 of alpha-amino-3-hydroxy-5-methyl-4

  4. Amphetamine self-administration attenuates dopamine D2 autoreceptor function.

    Science.gov (United States)

    Calipari, Erin S; Sun, Haiguo; Eldeeb, Khalil; Luessen, Deborah J; Feng, Xin; Howlett, Allyn C; Jones, Sara R; Chen, Rong

    2014-07-01

    Dopamine D2 autoreceptors located on the midbrain dopaminergic neurons modulate dopamine (DA) neuron firing, DA release, and DA synthesis through a negative-feedback mechanism. Dysfunctional D2 autoreceptors following repeated drug exposure could lead to aberrant DA activity in the ventral tegmental area (VTA) and projection areas such as nucleus accumbens (NAcc), promoting drug-seeking and -taking behavior. Therefore, it is important to understand molecular mechanisms underlying drug-induced changes in D2 autoreceptors. Here, we reported that 5 days of amphetamine (AMPH) self-administration reduced the ability of D2 autoreceptors to inhibit DA release in the NAcc as determined by voltammetry. Using the antibody-capture [(35)S]GTPγS scintillation proximity assay, we demonstrated for the first time that midbrain D2/D3 receptors were preferentially coupled to Gαi2, whereas striatal D2/D3 receptors were coupled equally to Gαi2 and Gαo for signaling. Importantly, AMPH abolished the interaction between Gαi2 and D2/D3 receptors in the midbrain while leaving striatal D2/D3 receptors unchanged. The disruption of the coupling between D2/D3 receptors and Gαi2 by AMPH is at least partially explained by the enhanced RGS2 (regulator of G-protein signaling 2) activity resulting from an increased RGS2 trafficking to the membrane. AMPH had no effects on the midbrain expression and trafficking of other RGS proteins such as RGS4 and RGS8. Our data suggest that midbrain D2/D3 receptors are more susceptible to AMPH-induced alterations. Reduced D2 autoreceptor function could lead to enhanced DA signaling and ultimately addiction-related behavior. RGS2 may be a potential non-dopaminergic target for pharmacological intervention of dysfunctional DA transmission and drug addiction.

  5. Amphetamine Self-Administration Attenuates Dopamine D2 Autoreceptor Function

    Science.gov (United States)

    Calipari, Erin S; Sun, Haiguo; Eldeeb, Khalil; Luessen, Deborah J; Feng, Xin; Howlett, Allyn C; Jones, Sara R; Chen, Rong

    2014-01-01

    Dopamine D2 autoreceptors located on the midbrain dopaminergic neurons modulate dopamine (DA) neuron firing, DA release, and DA synthesis through a negative-feedback mechanism. Dysfunctional D2 autoreceptors following repeated drug exposure could lead to aberrant DA activity in the ventral tegmental area (VTA) and projection areas such as nucleus accumbens (NAcc), promoting drug-seeking and -taking behavior. Therefore, it is important to understand molecular mechanisms underlying drug-induced changes in D2 autoreceptors. Here, we reported that 5 days of amphetamine (AMPH) self-administration reduced the ability of D2 autoreceptors to inhibit DA release in the NAcc as determined by voltammetry. Using the antibody-capture [35S]GTPγS scintillation proximity assay, we demonstrated for the first time that midbrain D2/D3 receptors were preferentially coupled to Gαi2, whereas striatal D2/D3 receptors were coupled equally to Gαi2 and Gαo for signaling. Importantly, AMPH abolished the interaction between Gαi2 and D2/D3 receptors in the midbrain while leaving striatal D2/D3 receptors unchanged. The disruption of the coupling between D2/D3 receptors and Gαi2 by AMPH is at least partially explained by the enhanced RGS2 (regulator of G-protein signaling 2) activity resulting from an increased RGS2 trafficking to the membrane. AMPH had no effects on the midbrain expression and trafficking of other RGS proteins such as RGS4 and RGS8. Our data suggest that midbrain D2/D3 receptors are more susceptible to AMPH-induced alterations. Reduced D2 autoreceptor function could lead to enhanced DA signaling and ultimately addiction-related behavior. RGS2 may be a potential non-dopaminergic target for pharmacological intervention of dysfunctional DA transmission and drug addiction. PMID:24513972

  6. Effects of metoclopramide and metoclopramide/dopamine on blood pressure and insulin release in normotensive, hypertensive, and type 2 diabetic subjects.

    Science.gov (United States)

    Contreras, Freddy; Fouillioux, Christian; Lares, Mary; Bolívar, Hector; Hernández, Rafael Hernández; Velasco, Manuel; Cano, Raquel; Chacin, Maricarmen; Bermúdez, Valmore

    2010-01-01

    The objective is to determine cardiovascular and insulin release effects under metoclopramide (MTC) and dopamine (DA) infusion by using an acute comparative design with the intravenous infusion of both drugs. We evaluated 15 normal (normotensive and normoglycemic) subjects, 13 hypertensive, and 15 type 2 diabetic subjects. Subjects were submitted to an experimental design in which we first gave them a 0.9% saline solution for 30 minutes, and then administered MTC at 7.5 microg kg min through an intravenous infusion during a period of 30 minutes. Although subjects were receiving MTC, we added an intravenous infusion of DA at 1-3 microg kg min during 30 minutes. Blood pressure, heart rate, serum lipid profile, and insulin levels were measured. Sympathetic reactivity by the cold pressor test was also measured. In normotensive subjects, there was a systolic blood pressure and heart rate increase during MTC plus DA infusion. In subjects with diabetes mellitus there was a heart rate increase without changes in blood pressure during the MTC plus DA infusion period. In hypertensive subjects, MTC induced a significant decrease of systolic and diastolic blood pressure. During MTC plus DA period there was an increase of heart rate but no significant changes in blood pressure. During cold pressor test in both diabetic and hypertensive subjects, there were significant increases of both blood pressure and heart rate. Insulin serum levels increased in normotensive and hypertensive subjects but were attenuated in subjects with diabetes mellitus. We conclude that there is a pharmacologic interaction between MTC and DA, that the pressor effects of DA are due to activation to beta and alpha adrenergic receptors, and that the cardiovascular effects of DA in type 2 diabetic subjects are attenuated by a probable defect in sympathetic system and to endothelial dysfunction.

  7. Unaltered striatal dopamine release levels in young Parkin knockout, Pink1 knockout, DJ-1 knockout and LRRK2 R1441G transgenic mice.

    Directory of Open Access Journals (Sweden)

    Gonzalo Sanchez

    Full Text Available Parkinson's disease (PD is one of the most prevalent neurodegenerative brain diseases; it is accompanied by extensive loss of dopamine (DA neurons of the substantia nigra that project to the putamen, leading to impaired motor functions. Several genes have been associated with hereditary forms of the disease and transgenic mice have been developed by a number of groups to produce animal models of PD and to explore the basic functions of these genes. Surprisingly, most of the various mouse lines generated such as Parkin KO, Pink1 KO, DJ-1 KO and LRRK2 transgenic have been reported to lack degeneration of nigral DA neuron, one of the hallmarks of PD. However, modest impairments of motor behavior have been reported, suggesting the possibility that the models recapitulate at least some of the early stages of PD, including early dysfunction of DA axon terminals. To further evaluate this possibility, here we provide for the first time a systematic comparison of DA release in four different mouse lines, examined at a young age range, prior to potential age-dependent compensations. Using fast scan cyclic voltammetry in striatal sections prepared from young, 6-8 weeks old mice, we examined sub-second DA overflow evoked by single pulses and action potential trains. Unexpectedly, none of the models displayed any dysfunction of DA overflow or reuptake. These results, compatible with the lack of DA neuron loss in these models, suggest that molecular dysfunctions caused by the absence or mutation of these individual genes are not sufficient to perturb the function and survival of mouse DA neurons.

  8. Histamine H{sub 3} receptor activation selectively inhibits dopamine D{sub 1} receptor-dependent [{sup 3}H]GABA release from depolarization-stimulated slices of rat substantia nigra pars reticulata

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, J. [Departmento de Fisiologia, Biofisica y Neurociencias, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado postal 14-740, 07000 Mexico (Mexico); Young, J.M. [Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge (United Kingdom); Arias-Montano, J.A.; Floran, B.; Garcia, M. [Departmento de Fisiologia, Biofisica y Neurociencias, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado postal 14-740, 07000 Mexico (Mexico)

    1997-06-25

    The release of [{sup 3}H]GABA from slices of rat substantia nigra pars reticulata induced by increasing extracellular K{sup +} from 6 to 15 mM in the presence of 10 {mu}M sulpiride was inhibited by 73{+-}3% by 1 {mu}M SCH 23390, consistent with a large component of release dependent upon D{sub 1} receptor activation. The histamine H{sub 3} receptor-selective agonist immepip (1 {mu}M) and the non-selective agonist histamine (100 {mu}M) inhibited [{sup 3}H]GABA release by 78{+-}2 and 80{+-}2%, respectively. The inhibition by both agonists was reversed by the H{sub 3} receptor antagonist thioperamide (1 {mu}M). However, in the presence of 1 {mu}M SCH 23390 depolarization-induced release of [{sup 3}H]GABA was not significantly decreased by 1 {mu}M immepip. In rats depleted of dopamine by pretreatment with reserpine, immepip no longer inhibited control release of [{sup 3}H]GABA, but in the presence of 1 {mu}M SKF 38393, which produced a 7{+-}1-fold stimulation of release, immepip reduced the release to a level not statistically different from that in the presence of immepip alone. Immepip (1 {mu}M) also inhibited the depolarization-induced release of [{sup 3}H]dopamine from substantia nigra pars reticulata slices, by 38{+-}3%.The evidence is consistent with the proposition that activation of histamine H{sub 3} receptors leads to the selective inhibition of the component of depolarization-induced [{sup 3}H]GABA release in substantia nigra pars reticulata slices which is dependent upon D{sub 1} receptor activation. This appears to be largely an action at the terminals of the striatonigral GABA projection neurons, which may be enhanced by a partial inhibition of dendritic [{sup 3}H]dopamine release. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Effects of unilateral 6-OHDA lesions on [3H]-N-propylnorapomorphine binding in striatum ex vivo and vulnerability to amphetamine-evoked dopamine release in rat

    DEFF Research Database (Denmark)

    Palner, Mikael; Kjaerby, Celia; Knudsen, Gitte M

    2011-01-01

    It has been argued that agonist ligands for dopamine D(2/3) receptors recognize a privileged subset of the receptors in living striatum, those which are functionally coupled to intracellular G-proteins. In support of this claim, the D(2/3) agonist [(3)H]-N-propylnorapomorphine ([(3)H]NPA) proved ...... from endogenous dopamine, as seen in the lesioned side of 6-OHDA induced hemi-parkinsonism....

  10. Salsolinol modulation of dopamine neurons

    OpenAIRE

    Xie, Guiqin; Krnjević, Krešimir; Ye, Jiang-Hong

    2013-01-01

    Salsolinol, a tetrahydroisoquinoline present in the human and rat brains, is the condensation product of dopamine and acetaldehyde, the first metabolite of ethanol. Previous evidence obtained in vivo links salsolinol with the mesolimbic dopaminergic (DA) system: salsolinol is self-administered into the posterior of the ventral tegmental area (pVTA) of rats; intra-VTA administration of salsolinol induces a strong conditional place preference and increases dopamine release in the nucleus accumb...

  11. Summary data of potency and parameter information from semi-mechanistic PKPD modeling of prolactin release following administration of the dopamine D2 receptor antagonists risperidone, paliperidone and remoxipride in rats

    Directory of Open Access Journals (Sweden)

    Amit Taneja

    2016-09-01

    Full Text Available We provide the reader with relevant data related to our recently published paper, comparing two mathematical models to describe prolactin turnover in rats following one or two doses of the dopamine D2 receptor antagonists risperidone, paliperidone and remoxipride, “A comparison of two semi-mechanistic models for prolactin release and prediction of receptor occupancy following administration of dopamine D2 receptor antagonists in rats” (Taneja et al., 2016 [1]. All information is tabulated. Summary level data on the in vitro potencies and the physicochemical properties is presented in Table 1. Model parameters required to explore the precursor pool model are presented in Table 2. In Table 3, estimated parameter comparisons for both models are presented, when separate potencies are estimated for risperidone and paliperidone, as compared to a common potency for both drugs. In Table 4, parameter estimates are compared when the drug effect is parameterized in terms of drug concentration or receptor occupancy.

  12. Dopamine in the Brain: Hypothesizing Surfeit or Deficit Links to Reward and Addiction

    Science.gov (United States)

    Blum, Kenneth; Thanos, Peter K.; Oscar-Berman, Marlene; Febo, Marcelo; Baron, David; Badgaiyan, Rajendra D.; Gardner, Eliot; Demetrovics, Zsolt; Fahlke, Claudia; Haberstick, Brett C.; Dushaj, Kristina; Gold, Mark S.

    2016-01-01

    Recently there has been debate concerning the role of brain dopamine in reward and addiction. David Nutt and associates eloquently proposed that dopamine (DA) may be central to psycho stimulant dependence and some what important for alcohol, but not important for opiates, nicotine or even cannabis. Others have also argued that surfeit theories can explain for example cocaine seeking behavior as well as non-substance-related addictive behaviors. It seems prudent to distinguish between what constitutes “surfeit” compared to” deficit” in terms of short-term (acute) and long-term (chronic) brain reward circuitry responsivity. In an attempt to resolve controversy regarding the contributions of mesolimbic DA systems to reward, we review the three main competing explanatory categories: “liking”, “learning”, and “wanting”. They are (a) the hedonic impact -liking reward, (b) the ability to predict rewarding effects-learning and (c) the incentive salience of reward-related stimuli -wanting. In terms of acute effects, most of the evidence seems to favor the “surfeit theory”. Due to preferential dopamine release at mesolimbic-VTA-caudate-accumbens loci most drugs of abuse and Reward Deficiency Syndrome (RDS) behaviors have been linked to heightened feelings of well-being and hyperdopaminergic states.The “dopamine hypotheses” originally thought to be simple, is now believed to be quite complex and involves encoding the set point of hedonic tone, encoding attention, reward expectancy, and incentive motivation. Importantly, Willuhn et al. shows that in a self-administration paradigm, (chronic) excessive use of cocaine is caused by decreased phasic dopamine signaling in the striatum. In terms of chronic addictions, others have shown a blunted responsivity at brain reward sites with food, nicotine, and even gambling behavior. Finally, we are cognizant of the differences in dopaminergic function as addiction progresses and argue that relapse may be tied

  13. The dopamine hypothesis of drug addiction and its potential therapeutic value.

    Directory of Open Access Journals (Sweden)

    Marco eDiana

    2011-11-01

    Full Text Available Dopamine (DA transmission is deeply affected by drugs of abuse, and alterations in DA function are involved in various phases of drug addiction and potentially exploitable therapeutically. In particular, basic studies have documented a reduction in the electrophysiological activity of DA neurons in alcohol, opiate, cannabinoid and other drug-dependent rats. Further, DA release in the Nacc is decreased in virtually all drug-dependent rodents. In parallel, these studies are supported by increments in intracranial self stimulation (ICSS thresholds during withdrawal from alcohol, nicotine, opiates, and other drugs of abuse, thereby suggesting a hypofunction of the neural substrate of ICSS. Accordingly, morphological evaluations fed into realistic computational analysis of the Medium Spiny Neuron (MSN of the Nucleus accumbens (Nacc, post-synaptic counterpart of DA terminals, show profound changes in structure and function of the entire mesolimbic system. In line with these findings, human imaging studies have shown a reduction of dopamine receptors accompanied by a lesser release of endogenous DA in the ventral striatum of cocaine, heroin and alcohol-dependent subjects, thereby offering visual proof of the ‘dopamine-impoverished’ addicted human brain.The reduction in physiological activity of the DA system leads to the idea that an increment in its activity, to restore pre-drug levels, may yield significant clinical improvements (reduction of craving, relapse and drug-seeking/taking. In theory, it may be achieved pharmacologically and/or with novel interventions such as Transcranial Magnetic Stimulation (TMS. Its anatomo-physiological rationale as a possible therapeutic aid in alcoholics and other addicts will be described and proposed as a theoretical framework to be subjected to experimental testing in human addicts.

  14. Grafted dopamine neurons: Morphology, neurochemistry, and electrophysiology.

    Science.gov (United States)

    Strömberg, Ingrid; Bickford, Paula; Gerhardt, Greg A

    2010-02-09

    Grafting of dopamine-rich tissue to counteract the symptoms in Parkinson's disease became a promising tool for future treatment. This article discusses how to improve the functional outcome with respect to graft outgrowth and functions of dopamine release and electrophysiological responses to graft implantation in the host brain striatal target. It has been documented that a subpopulation of the dopamine neurons innervates the host brain in a target-specific manner, while some of the grafted dopamine neurons never project to the host striatum. Neurochemical studies have demonstrated that the graft-induced outgrowth synthesize, store, metabolize and release dopamine and possibly other neurotransmitters such as 5-HT. Furthermore, the released dopamine affects the dopamine-depleted brain in areas that are larger than the graft-derived nerve fibers reach. While stem cells will most likely be the future source of cells to be used in grafting, it is important to find the guiding cues for how to reinnervate the dopamine-depleted striatum in a proper way with respect to the dopamine subpopulations of A9 and A10 to efficiently treat the motor abnormalities seen in Parkinson's disease.

  15. High fat diet augments amphetamine sensitization in mice: Role of feeding pattern, obesity, and dopamine terminal changes.

    Science.gov (United States)

    Fordahl, Steve C; Locke, Jason L; Jones, Sara R

    2016-10-01

    High fat (HF) diet-induced obesity has been shown to augment behavioral responses to psychostimulants that target the dopamine system. The purpose of this study was to characterize dopamine terminal changes induced by a HF diet that correspond with enhanced locomotor sensitization to amphetamine. C57BL/6J mice had limited (2hr 3 d/week) or extended (24 h 7 d/week) access to a HF diet or standard chow for six weeks. Mice were then repeatedly exposed to amphetamine (AMPH), and their locomotor responses to an amphetamine challenge were measured. Fast scan cyclic voltammetry was used to identify changes in dopamine terminal function after AMPH exposure. Exposure to a HF diet reduced dopamine uptake and increased locomotor responses to acute, high-dose AMPH administration compared to chow fed mice. Microdialysis showed elevated extracellular dopamine in the nucleus accumbens (NAc) coincided with enhanced locomotion after acute AMPH in HF-fed mice. All mice exhibited locomotor sensitization to amphetamine, but both extended and limited access to a HF diet augmented this response. Neither HF-fed group showed the robust amphetamine sensitization-induced increases in dopamine release, reuptake, and amphetamine potency observed in chow fed animals. However, the potency of amphetamine as an uptake inhibitor was significantly elevated after sensitization in mice with extended (but not limited) access to HF. Conversely, after amphetamine sensitization, mice with limited (but not extended) access to HF displayed reduced autoreceptor sensitivity to the D2/D3 agonist quinpirole. Additionally, we observed reduced membrane dopamine transporter (DAT) levels after HF, and a shift in DAT localization to the cytosol was detected with limited access to HF. This study showed that different patterns of HF exposure produced distinct dopamine terminal adaptations to repeated AMPH, which differed from chow fed mice, and enhanced sensitization to AMPH. Locomotor sensitization in chow fed

  16. Moderate intensity treadmill exercise alters food preference via dopaminergic plasticity of ventral tegmental area-nucleus accumbens in obese mice.

    Science.gov (United States)

    Chen, Wei; Wang, Hai Jun; Shang, Ning Ning; Liu, Jun; Li, Juan; Tang, Dong Hui; Li, Qiong

    2017-02-22

    Obesity has been associated with the excessive intake of palatable food as well as physical inactivity. To investigate the neurobiological mechanism underlying the exercised-induced prevention and treatment of obesity, the present study examined the effect of treadmill exercise on the preference for palatable food in mice. Levels of tyrosine hydroxylase (TH) in the ventral tegmental area-nucleus accumbens system were also analysed, as well as levels of dopamine, dopamine transporter, and D2 receptors in the nucleus accumbens. Forty C57BL/6J mice were randomly divided into a control group (CG, n=10) and a high-fat diet group (HG, N=30). Mice of the HG group were fed a high-fat diet for 12 weeks in order to induce a model of obesity, following which the obese mice were randomly divided into an obese control group (OG, n=11) and an obese+exercise group (OEG, n=12). OEG mice received 8 weeks of treadmill exercise intervention. Our results indicate that, relative to animals in the OG group, OEG mice exhibited significant decreases in the preference for high-fat diets and insulin resistance, along with increases in the preference for sucrose and milk, TH and D2 receptor expression, and levels of dopamine in the ventral tegmental area-nucleus accumbens system. These results suggest that moderate-intensity treadmill exercise can alter food preference in obese mice, which may be mediated by dopaminergic plasticity of the ventral tegmental area-nucleus accumbens and enhanced insulin sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Prolonged nicotine exposure down-regulates presynaptic NMDA receptors in dopaminergic terminals of the rat nucleus accumbens.

    Science.gov (United States)

    Salamone, Alessia; Zappettini, Stefania; Grilli, Massimo; Olivero, Guendalina; Agostinho, Paula; Tomé, Angelo R; Chen, Jiayang; Pittaluga, Anna; Cunha, Rodrigo A; Marchi, Mario

    2014-04-01

    The presynaptic control of dopamine release in the nucleus accumbens (NAc) by glutamate and acetylcholine has a profound impact on reward signaling. Here we provide immunocytochemical and neurochemical evidence supporting the co-localization and functional interaction between nicotinic acetylcholine receptors (nAChRs) and N-methyl-D-aspartic acid (NMDA) receptors in dopaminergic terminals of the NAc. Most NAc dopaminergic terminals possessed the nAChR α4 subunit and the pre-exposure of synaptosomes to nicotine (30 μM) or to the α4β2-containing nAChR agonist 5IA85380 (10 nM) selectively inhibited the NMDA (100 μM)-evoked, but not the 4-aminopyridine (10 μM)-evoked, [(3)H] dopamine outflow; this inhibition was blunted by mecamylamine (10 μM). Nicotine and 5IA85380 pretreatment also inhibited the NMDA (100 μM)-evoked increase of calcium levels in single nerve terminals, an effect prevented by dihydro-β-erythroidine (1 μM). This supports a functional interaction between α4β2-containing nAChR and NMDA receptors within the same terminal, as supported by the immunocytochemical co-localization of α4 and GluN1 subunits in individual NAc dopaminergic terminals. The NMDA-evoked [(3)H]dopamine outflow was blocked by MK801 (1 μM) and inhibited by the selective GluN2B-selective antagonists ifenprodil (1 μM) and RO 25-6981 (1 μM), but not by the GluN2A-preferring antagonists CPP-19755 (1 μM) and ZnCl2 (1 nM). Notably, nicotine pretreatment significantly decreased the density of biotin-tagged GluN2B proteins in NAc synaptosomes. These results show that nAChRs dynamically and negatively regulate NMDA receptors in NAc dopaminergic terminals through the internalization of GluN2B receptors.

  18. Effects of unilateral 6-OHDA lesions on [3H]-N-propylnorapomorphine binding in striatum ex vivo and vulnerability to amphetamine-evoked dopamine release in rat

    DEFF Research Database (Denmark)

    Palner, Mikael; Kjaerby, Celia; Knudsen, Gitte M;

    2011-01-01

    ligands should likewise be fitter than antagonists for detecting responses to denervation in positron emission tomography studies of idiopathic Parkinson's disease. Agonist binding increases in vivo are likely to reflect the composite of a sensitization-like phenomenon, and relatively less competition...... from endogenous dopamine, as seen in the lesioned side of 6-OHDA induced hemi-parkinsonism....

  19. Restoration of Dopamine Release Deficits during Object Recognition Memory Acquisition Attenuates Cognitive Impairment in a Triple Transgenic Mice Model of Alzheimer's Disease

    Science.gov (United States)

    Guzman-Ramos, Kioko; Moreno-Castilla, Perla; Castro-Cruz, Monica; McGaugh, James L.; Martinez-Coria, Hilda; LaFerla, Frank M.; Bermudez-Rattoni, Federico

    2012-01-01

    Previous findings indicate that the acquisition and consolidation of recognition memory involves dopaminergic activity. Although dopamine deregulation has been observed in Alzheimer's disease (AD) patients, the dysfunction of this neurotransmitter has not been investigated in animal models of AD. The aim of this study was to assess, by in vivo…

  20. EFFECT OF PRECURSOR LOADING ON THE SYNTHESIS RATE AND RELEASE OF DOPAMINE AND SEROTONIN IN THE STRIATUM - A MICRODIALYSIS STUDY IN CONSCIOUS RATS

    NARCIS (Netherlands)

    WESTERINK, BHC; DEVRIES, JB

    1991-01-01

    The effects of systemic administration of tyrosine and phenylalanine on the extracellular levels of tyrosine and dopamine were determined by microdialysis in the striatum of awake rats. In addition, the effects of these precursors on in vivo 3,4-dihydroxyphenylalanine (DOPA) formation were determine

  1. Restoration of Dopamine Release Deficits during Object Recognition Memory Acquisition Attenuates Cognitive Impairment in a Triple Transgenic Mice Model of Alzheimer's Disease

    Science.gov (United States)

    Guzman-Ramos, Kioko; Moreno-Castilla, Perla; Castro-Cruz, Monica; McGaugh, James L.; Martinez-Coria, Hilda; LaFerla, Frank M.; Bermudez-Rattoni, Federico

    2012-01-01

    Previous findings indicate that the acquisition and consolidation of recognition memory involves dopaminergic activity. Although dopamine deregulation has been observed in Alzheimer's disease (AD) patients, the dysfunction of this neurotransmitter has not been investigated in animal models of AD. The aim of this study was to assess, by in vivo…

  2. Reduced insulin-receptor mediated modulation of striatal dopamine release by basal insulin as a possible contributing factor to hyperdopaminergia in schizophrenia.

    Science.gov (United States)

    Caravaggio, Fernando; Hahn, Margaret; Nakajima, Shinichiro; Gerretsen, Philip; Remington, Gary; Graff-Guerrero, Ariel

    2015-10-01

    Schizophrenia is a severe and chronic neuropsychiatric disorder which affects 1% of the world population. Using the brain imaging technique positron emission tomography (PET) it has been demonstrated that persons with schizophrenia have greater dopamine transmission in the striatum compared to healthy controls. However, little progress has been made as to elucidating other biological mechanisms which may account for this hyperdopaminergic state in this disease. Studies in animals have demonstrated that insulin receptors are expressed on midbrain dopamine neurons, and that insulin from the periphery acts on these receptors to modify dopamine transmission in the striatum. This is pertinent given that several lines of evidence suggest that insulin receptor functioning may be abnormal in the brains of persons with schizophrenia. Post-mortem studies have shown that persons with schizophrenia have less than half the number of cortical insulin receptors compared to healthy persons. Moreover, these post-mortem findings are unlikely due to the effects of antipsychotic treatment; studies in cell lines and animals suggest antipsychotics enhance insulin receptor functioning. Further, hyperinsulinemia - even prior to antipsychotic use - seems to be related to less psychotic symptoms in patients with schizophrenia. Collectively, these data suggest that midbrain insulin receptor functioning may be abnormal in persons with schizophrenia, resulting in reduced insulin-mediated regulation of dopamine transmission in the striatum. Such a deficit may account for the hyperdopaminergic state observed in these patients and would help guide the development of novel treatment strategies. We hypothesize that, (i) insulin receptor expression and/or function is reduced in midbrain dopamine neurons in persons with schizophrenia, (ii) basal insulin should reduce dopaminergic transmission in the striatum via these receptors, and (iii) this modulation of dopaminergic transmission by basal insulin

  3. Ventral tegmental area dopamine revisited: effects of acute and repeated stress.

    Science.gov (United States)

    Holly, Elizabeth N; Miczek, Klaus A

    2016-01-01

    Aversive events rapidly and potently excite certain dopamine neurons in the ventral tegmental area (VTA), promoting phasic increases in the medial prefrontal cortex and nucleus accumbens. This is in apparent contradiction to a wealth of literature demonstrating that most VTA dopamine neurons are strongly activated by reward and reward-predictive cues while inhibited by aversive stimuli. How can these divergent processes both be mediated by VTA dopamine neurons? The answer may lie within the functional and anatomical heterogeneity of the VTA. We focus on VTA heterogeneity in anatomy, neurochemistry, electrophysiology, and afferent/efferent connectivity. Second, recent evidence for a critical role of VTA dopamine neurons in response to both acute and repeated stress will be discussed. Understanding which dopamine neurons are activated by stress, the neural mechanisms driving the activation, and where these neurons project will provide valuable insight into how stress can promote psychiatric disorders associated with the dopamine system, such as addiction and depression.

  4. Apathy in Parkinson's disease is associated with nucleus accumbens atrophy: a magnetic resonance imaging shape analysis.

    Science.gov (United States)

    Carriere, Nicolas; Besson, Pierre; Dujardin, Kathy; Duhamel, Alain; Defebvre, Luc; Delmaire, Christine; Devos, David

    2014-06-01

    Apathy is characterized by lack of interest, loss of initiative, and flattening of affect. It is a frequent, very disabling nonmotor complication of Parkinson's disease (PD). The condition may notably occur when dopaminergic medications are tapered after the initiation of subthalamic stimulation and thus can be referred to as "dopaminergic apathy." Even in the absence of tapering, some patients may develop a form of apathy as PD progresses. This form is often related to cognitive decline and does not respond to dopaminergic medications (dopa-resistant apathy). We aimed at determining whether dopa-resistant apathy in PD is related to striatofrontal morphological changes. We compared the shape of the striatum (using spherical harmonic parameterization and sampling in a three-dimensional point distribution model [SPHARM-PDM]), cortical thickness, and fractional anisotropy (using tract-based spatial statistics) in 10 consecutive patients with dopamine-refractory apathy, 10 matched nonapathetic PD patients and 10 healthy controls. Apathy in PD was associated with atrophy of the left nucleus accumbens. The SPHARM-PDM analysis highlighted (1) a positive correlation between the severity of apathy and atrophy of the left nucleus accumbens, (2) greater atrophy of the dorsolateral head of the left caudate in apathetic patients than in nonapathetic patients, and (3) greater atrophy in the bilateral nucleus accumbens in apathetic patients than in controls. There were no significant intergroup differences in cortical thickness or fractional anisotropy. Dopa-resistant apathy in PD was associated with atrophy of the left nucleus accumbens and the dorsolateral head of the left caudate.

  5. Hypofunction of prefrontal cortex NMDA receptors does not change stress-induced release of dopamine and noradrenaline in amygdala but disrupts aversive memory.

    Science.gov (United States)

    Del Arco, Alberto; Ronzoni, Giacomo; Mora, Francisco

    2015-07-01

    A dysfunction of prefrontal cortex has been associated with the exacerbated response to stress observed in schizophrenic patients and high-risk individuals to develop psychosis. The hypofunction of NMDA glutamatergic receptors induced by NMDA antagonists produces cortico-limbic hyperactivity, and this is used as an experimental model to resemble behavioural abnormalities observed in schizophrenia. The aim of the present study was to investigate whether injections of NMDA antagonists into the medial prefrontal cortex of the rat change (1) the increases of dopamine, noradrenaline and corticosterone concentrations produced by acute stress in amygdala, and (2) the acquisition of aversive memory related to a stressful event. Male Wistar rats were implanted with guide cannulae to perform microdialysis and bilateral microinjections (0.5 μl/side) of the NMDA antagonist 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phophonic acid (CPP) (25 and 100 ng). Prefrontal injections were performed 60 min before restraint stress in microdialysis experiments, or training (footshock; 0.6 mA, 2 s) in inhibitory avoidance test. Retention latency was evaluated 24 h after training as an index of aversive memory. Acute stress increased amygdala dialysate concentrations of dopamine (160% of baseline), noradrenaline (145% of baseline) and corticosterone (170% of baseline). Prefrontal injections of CPP did not change the increases of dopamine, noradrenaline or corticosterone produced by stress. In contrast, CPP significantly reduced the retention latency in the inhibitory avoidance test. These results suggest that the hypofunction of prefrontal NMDA receptors does not change the sensitivity to acute stress of dopamine and noradrenaline projections to amygdala but impairs the acquisition of aversive memory.

  6. Changes in stress-stimulated allopregnanolone levels induced by neonatal estradiol treatment are associated with enhanced dopamine release in adult female rats: reversal by progesterone administration.

    Science.gov (United States)

    Porcu, Patrizia; Lallai, Valeria; Locci, Andrea; Catzeddu, Sandro; Serra, Valeria; Pisu, Maria Giuseppina; Serra, Mariangela; Dazzi, Laura; Concas, Alessandra

    2017-03-01

    Allopregnanolone plays a role in the stress response and homeostasis. Alterations in the estrogen milieu during the perinatal period influence brain development in a manner that persists into adulthood. Accordingly, we showed that a single administration of estradiol benzoate (EB) on the day of birth decreases brain allopregnanolone concentrations in adult female rats. We examined whether the persistent decrease in allopregnanolone concentrations, induced by neonatal EB treatment, might affect sensitivity to stress during adulthood. Female rats were treated with 10 μg of EB or vehicle on the day of birth. During adulthood, the response to acute foot shock stress was assessed by measuring changes in brain allopregnanolone and corticosterone levels, as well as extracellular dopamine output in the medial prefrontal cortex (mPFC). Neonatal EB treatment enhanced stress-stimulated allopregnanolone levels in the hypothalamus, as well as extracellular dopamine output in the mPFC; this latest effect is reverted by subchronic progesterone treatment. By contrast, neonatal EB treatment did not alter stress-induced corticosterone levels, sensitivity to hypothalamic-pituitary-adrenal (HPA) axis negative feedback, or abundance of glucocorticoid and mineralocorticoid receptors. The persistent decrease in brain allopregnanolone concentrations, induced by neonatal EB treatment, enhances stress-stimulated allopregnanolone levels and extracellular dopamine output during adulthood. These effects are not associated to an impairment in HPA axis activity. Heightened sensitivity to stress is a risk factor for several neuropsychiatric disorders; these results suggest that exposure to estrogen during development may predispose individuals to such disorders.

  7. Injection of Cocaine-Amphetamine Regulated Transcript (CART) peptide into the nucleus accumbens does not inhibit caffeine-induced locomotor activity: Implications for CART peptide mechanism.

    Science.gov (United States)

    Job, Martin O

    2016-09-01

    Much evidence suggests that intra-nucleus accumbens (NAc) CART peptide (CART 55-102) injection inhibits locomotor activity (LMA) when there is an increase in the release and activity of dopamine (DA) in the NAc. However, this hypothesis has not been fully tested. One way to examine this is to determine if there is a lack of effect of intra-NAc CART peptide on LMA that does not involve increases in DA release in the NAc. Several studies have suggested that caffeine-induced LMA does not involve extracellular DA release in the NAc core. Therefore, in this study, we have examined the effect of injections of CART peptide (2.5μg) into the NAc core on the locomotor effects of caffeine in male Sprague-Dawley rats. Several LMA relevant doses of caffeine were used (0, 10, 20mg/kg i.p.), and an inverted U response curve was found as expected. We determined, in the same animals, that intra-NAc CART peptide had no effect on caffeine-induced LMA whereas it blunted cocaine-mediated LMA, as shown by other reports. We also extended a previous observation in mice by showing that at a LMA activating dose of caffeine there is no alteration of CART peptide levels in the NAc of rats. Our study supports the hypothesis that the inhibitory effects of CART peptide in the NAc may be exerted only under conditions of increased extracellular DA release and activity in this region. Our results also suggest that intra-NAc CART 55-102 does not generally inhibit increases in LMA due to all drugs, but has a more specific inhibitory effect on dopaminergic neurotransmission.

  8. Prolonged Consumption of Sucrose in a Binge-Like Manner, Alters the Morphology of Medium Spiny Neurons in the Nucleus Accumbens Shell.

    Directory of Open Access Journals (Sweden)

    Paul M Klenowski

    2016-03-01

    Full Text Available The modern diet has become highly sweetened, resulting in unprecedented levels of sugar consumption, particularly among adolescents. While chronic long-term sugar intake is known to contribute to the development of metabolic disorders including obesity and type II diabetes, little is known regarding the direct consequences of long-term, binge-like sugar consumption on the brain. Because sugar can cause the release of dopamine in the nucleus accumbens (NAc similarly to drugs of abuse, we investigated changes in the morphology of neurons in this brain region following short- (4 weeks and long-term (12 weeks binge-like sucrose consumption using an intermittent two-bottle choice paradigm. We used Golgi-Cox staining to impregnate medium spiny neurons (MSNs from the NAc core and shell of short- and long-term sucrose consuming rats and compared these to age matched water controls. We show that prolonged binge-like sucrose consumption significantly decreased the total dendritic length of NAc shell MSNs compared to age-matched control rats. We also found that the restructuring of these neurons resulted primarily from reduced distal dendritic complexity. Conversely, we observed increased spine densities at the distal branch orders of NAc shell MSNs from long-term sucrose consuming rats. Combined, these results highlight the neuronal effects of prolonged binge-like intake of sucrose on NAc shell MSN morphology.

  9. Mechanisms of activation of nucleus accumbens neurons by cocaine via sigma-1 receptor-inositol 1,4,5-trisphosphate-transient receptor potential canonical channel pathways.

    Science.gov (United States)

    Barr, Jeffrey L; Deliu, Elena; Brailoiu, G Cristina; Zhao, Pingwei; Yan, Guang; Abood, Mary E; Unterwald, Ellen M; Brailoiu, Eugen

    2015-08-01

    Cocaine promotes addictive behavior primarily by blocking the dopamine transporter, thus increasing dopamine transmission in the nucleus accumbens (nAcc); however, additional mechanisms are continually emerging. Sigma-1 receptors (σ1Rs) are known targets for cocaine, yet the mechanisms underlying σ1R-mediated effects of cocaine are incompletely understood. The present study examined direct effects of cocaine on dissociated nAcc neurons expressing phosphatidylinositol-linked D1 receptors. Endoplasmic reticulum-located σ1Rs and inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) were targeted using intracellular microinjection. IP3 microinjection robustly elevated intracellular Ca(2+) concentration, [Ca(2+)]i. While cocaine alone was devoid of an effect, the IP3-induced response was σ1R-dependently enhanced by cocaine co-injection. Likewise, cocaine augmented the [Ca(2+)]i increase elicited by extracellularly applying an IP3-generating molecule (ATP), via σ1Rs. The cocaine-induced enhancement of the IP3/ATP-mediated Ca(2+) elevation occurred at pharmacologically relevant concentrations and was mediated by transient receptor potential canonical channels (TRPC). IP3 microinjection elicited a slight, transient depolarization, further converted to a greatly enhanced, prolonged response, by cocaine co-injection. The cocaine-triggered augmentation was σ1R-dependent, TRPC-mediated and contingent on [Ca(2+)]i elevation. ATP-induced depolarization was similarly enhanced by cocaine. Thus, we identify a novel mechanism by which cocaine promotes activation of D1-expressing nAcc neurons: enhancement of IP3R-mediated responses via σ1R activation at the endoplasmic reticulum, resulting in augmented Ca(2+) release and amplified depolarization due to subsequent stimulation of TRPC. In vivo, intra-accumbal blockade of σ1R or TRPC significantly diminished cocaine-induced hyperlocomotion and locomotor sensitization, endorsing a physio-pathological significance of the pathway

  10. Expression of 5-HT2A receptors in prefrontal cortex pyramidal neurons projecting to nucleus accumbens. Potential relevance for atypical antipsychotic action

    OpenAIRE

    Mocci, Giuseppe; Jiménez-Sánchez, Laura; Adell, Albert; Cortés, Roser; Artigas, Francesc

    2013-01-01

    The prefrontal cortex (PFC) is involved in higher brain functions altered in schizophrenia. Classical antipsychotic drugs modulate information processing in cortico-limbic circuits via dopamine D2 receptor blockade in nucleus accumbens (NAc) whereas atypical antipsychotic drugs preferentially target cortical serotonin (5-HT) receptors. The brain networks involved in the therapeutic action of atypical drugs are not fully understood. Previous work indicated that medial PFC (mPFC) pyramidal neur...

  11. Endomorphin-2 and endomorphin-1 promote the extracellular amount of accumbal dopamine via nonopioid and mu-opioid receptors, respectively.

    NARCIS (Netherlands)

    Okutsu, H.; Watanabe, S.; Takahashi, I.; Aono, Y.; Saigusa, T.; Koshikawa, N.; Cools, A.R.

    2006-01-01

    Activation of mu-opioid receptors in the nucleus accumbens (NAc) is known to increase accumbal dopamine efflux in rats. Endomorphin-2 (Tyr-Pro-Phe-Phe-NH(2); EM-2) and endomorphin-1 (Tyr-Pro-Trp-Phe-NH(2); EM-1) are suggested to be the endogenous ligands for the mu-opioid receptor. As the ability of

  12. Dual effects of limbic seizures on psychosis-relevant behaviors shown by nucleus accumbens kindling in rats

    Science.gov (United States)

    Ma, Jingyi; Leung, L. Stan

    2016-01-01

    Background A paradox in epilepsy and psychiatry is that temporal lobe epilepsy is often predisposed to schizophrenic-like psychosis, whereas convulsive therapy can relieve schizophrenic symptoms. We have previously demonstrated that the nucleus accumbens is a key structure in mediating postictal psychosis induced by a hippocampal electrographic seizure. Objective/Hypothesis The purpose of this study is to test a hypothesis that accumbens kindling cumulating in a single (1-time) or repeated (5-times) convulsive seizures have different effects on animal models of psychosis. Methods Electrical stimulation at 60 Hz was applied to nucleus accumbens to evoke afterdischarges until one, or five, convulsive seizures that involved the hind limbs (stage 5 seizures) were attained. Behavioral tests, performed at 3 days after the last seizure, included gating of hippocampal auditory evoked potentials (AEP) and prepulse inhibition to an acoustic startle response (PPI), tested without drug injection or after ketamine (3 mg/kg s.c.) injection, as well as locomotion induced by ketamine or methamphetamine (1 mg/kg i.p.). Results Compared to non-kindled control rats, 1-time, but not 5-times, convulsive seizures induced PPI deficit and decreased gating of hippocampal AEP, without drug injection. Compared to non-kindled rats, 5-times, but not 1-time, convulsive seizures antagonized ketamine-induced hyperlocomotion, ketamine-induced PPI deficit and AEP gating decrease. However, both 1- and 5-times convulsive seizures, significantly enhanced methamphetamine-induced locomotion as compared to non-kindled rats. Conclusions Accumbens kindling ending with 1 convulsive seizure may induce schizophrenic-like behaviors, while repeated (≥ 5) convulsive seizures induced by accumbens kindling may have therapeutic effects on dopamine independent psychosis. PMID:27267861

  13. Dopamine synapse is a neuroligin-2-mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures.

    Science.gov (United States)

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-04-12

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets.

  14. MCH and apomorphine in combination enhance action potential firing of nucleus accumbens shell neurons in vitro

    Directory of Open Access Journals (Sweden)

    F Woodward Hopf

    2013-04-01

    Full Text Available The MCH and dopamine receptor systems have been shown to modulate a number of behaviors related to reward processing, addiction, and neuropsychiatric conditions such as schizophrenia and depression. In addition, MCH and dopamine receptors can interact in a positive manner, for example in the expression of cocaine self-administration. A recent report (Chung et al., 2011a showed that the DA1/DA2 dopamine receptor activator apomorphine suppresses pre-pulse inhibition, a preclinical model for some aspects of schizophrenia. Importantly, MCH can enhance the effects of lower doses of apomorphine, suggesting that co-modulation of dopamine and MCH receptors might alleviate some symptoms of schizophrenia with a lower dose of dopamine receptor modulator and thus fewer potential side effects. Here, we investigated whether MCH and apomorphine could enhance action potential firing in vitro in the nucleus accumbens shell (NAshell, a region which has previously been shown to mediate some behavioral effects of MCH. Using whole-cell patch-clamp electrophysiology, we found that MCH, which has no effect on firing on its own, was able to increase NAshell firing when combined with a subthreshold dose of apomorphine. Further, this MCH/apomorphine increase in firing was prevented by an antagonist of either a DA1 or a DA2 receptor, suggesting that apomorphine acts through both receptor types to enhance NAshell firing. The MCH/apomorphine-mediated firing increase was also prevented by an MCH receptor antagonist or a PKA inhibitor. Taken together, our results suggest that MCH can interact with lower doses of apomorphine to enhance NAshell firing, and thus that MCH and apomorphine might interact in vivo within the NAshell to suppress pre-pulse inhibition.

  15. Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acides antisense to the dopamine transporter

    Energy Technology Data Exchange (ETDEWEB)

    Porat, S.; Gabbay, M.; Tauber, M.; Ratovitski, T.; Blinder, E.; Simantov, R. [Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100 (Israel)

    1996-09-01

    Human neuroblastoma NMB cells take up [{sup 3}H]dopamine in a selective manner indicating that dopamine transporters are responsible for this uptake. These cells were therefore used as a model to study dopamine neurotoxicity, and to elucidate the role of dopamine transporters in controlling cell death. Treatment with 0.05-0.4 mM dopamine changed cells' morphology within 4 h, accompanied by retraction of processes, shrinkage, apoptosis-like atrophy, accumulation of apoptotic particles, DNA fragmentation and cell death. Cycloheximide inhibited dopamine's effect, suggesting that induction of apoptosis by dopamine was dependent upon protein synthesis. Dopamine cytotoxicity, monitored morphologically by flow cytometric analysis, and by lactate dehydrogenase released, was blocked by cocaine but not by the noradrenaline and serotonin uptake blockers desimipramine and imipramine, respectively. Attempting to inhibit dopamine transport and toxicity in a drug-free and highly selective way, three 18-mer dopamine transporter antisense phosphorothioate oligonucleotides (numbers 1, 2 and 3) and a new plasmid vector expressing the entire rat dopamine transporter complementary DNA in the antisense orientation were prepared and tested. Antisense phosphorothioate oligonucleotide 3 inhibited [{sup 3}H]dopamine uptake in a time- and dose-dependent manner. Likewise, transient transfection of NMB cells with the plasmid expressing dopamine transporter complementary DNA in the antisense orientation partially blocked [{sup 3}H]dopamine uptake. Antisense phosphorothioate oligonucleotide 3 also decreased, dose-dependently, the toxic effect of dopamine and 6-hydroxydopamine. Western blot analysis with newly prepared anti-human dopamine transporter antibodies showed that antisense phosphorothioate oligonucleotide 3 decreased the transporter protein level. These studies contribute to better understand the mechanism of dopamine-induced apoptosis and neurotoxicity. (Copyright (c) 1996

  16. 3,4-Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, D.J.; Guan, X.M.; Shulgin, A.T. (Department of Neurology Neurological Sciences, Stanford University Medical Center, CA (USA))

    1991-03-01

    The effect of various analogues of the neurotoxic amphetamine derivative, MDA (3,4-methylenedioxyamphetamine) on carrier-mediated, calcium-independent release of 3H-5-HT and 3H-DA from rat brain synaptosomes was investigated. Both enantiomers of the neurotoxic analogues MDA and MDMA (3,4-methylenedioxymethamphetamine) induce synaptosomal release of 3H-5-HT and 3H-DA in vitro. The release of 3H-5-HT induced by MDMA is partially blocked by 10(-6) M fluoxetine. The (+) enantiomers of both MDA and MDMA are more potent than the (-) enantiomers as releasers of both 3H-5-HT and 3H-DA. Eleven analogues, differing from MDA with respect to the nature and number of ring and/or side chain substituents, also show some activity in the release experiments, and are more potent as releasers of 3H-5-HT than of 3H-DA. The amphetamine derivatives {plus minus}fenfluramine, {plus minus}norfenfluramine, {plus minus}MDE, {plus minus}PCA, and d-methamphetamine are all potent releasers of 3H-5-HT and show varying degrees of activity as 3H-DA releasers. The hallucinogen DOM does not cause significant release of either 3H-monoamine. Possible long-term serotonergic neurotoxicity was assessed by quantifying the density of 5-HT uptake sites in rats treated with multiple doses of selected analogues using 3H-paroxetine to label 5-HT uptake sites. In the neurotoxicity study of the compounds investigated, only (+)MDA caused a significant loss of 5-HT uptake sites in comparison to saline-treated controls. These results are discussed in terms of the apparent structure-activity properties affecting 3H-monoamine release and their possible relevance to neurotoxicity in this series of MDA congeners.

  17. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex.

    Directory of Open Access Journals (Sweden)

    Sang Soo Cho

    Full Text Available BACKGROUND: Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson's disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of non-invasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC (areas 9/46 stimulation on prefrontal dopamine (DA. METHODOLOGY/PRINCIPAL FINDINGS: Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [(11C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [(11C]FLB 457 binding potential (BP in the ipsilateral subgenual anterior cingulate cortex (ACC (BA 25/12, pregenual ACC (BA 32 and medial orbitofrontal cortex (BA 11. There were no significant changes in [(11C]FLB 457 BP following right DLPFC rTMS. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [(11C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help to identify the neurobiological effects of TMS for the treatment of different neurological and psychiatric diseases.

  18. Dopamine in the medial amygdala network mediates human bonding

    Science.gov (United States)

    Touroutoglou, Alexandra; Rudy, Tali; Salcedo, Stephanie; Feldman, Ruth; Hooker, Jacob M.; Dickerson, Bradford C.; Catana, Ciprian; Barrett, Lisa Feldman

    2017-01-01

    Research in humans and nonhuman animals indicates that social affiliation, and particularly maternal bonding, depends on reward circuitry. Although numerous mechanistic studies in rodents demonstrated that maternal bonding depends on striatal dopamine transmission, the neurochemistry supporting maternal behavior in humans has not been described so far. In this study, we tested the role of central dopamine in human bonding. We applied a combined functional MRI-PET scanner to simultaneously probe mothers’ dopamine responses to their infants and the connectivity between the nucleus accumbens (NAcc), the amygdala, and the medial prefrontal cortex (mPFC), which form an intrinsic network (referred to as the “medial amygdala network”) that supports social functioning. We also measured the mothers’ behavioral synchrony with their infants and plasma oxytocin. The results of this study suggest that synchronous maternal behavior is associated with increased dopamine responses to the mother’s infant and stronger intrinsic connectivity within the medial amygdala network. Moreover, stronger network connectivity is associated with increased dopamine responses within the network and decreased plasma oxytocin. Together, these data indicate that dopamine is involved in human bonding. Compared with other mammals, humans have an unusually complex social life. The complexity of human bonding cannot be fully captured in nonhuman animal models, particularly in pathological bonding, such as that in autistic spectrum disorder or postpartum depression. Thus, investigations of the neurochemistry of social bonding in humans, for which this study provides initial evidence, are warranted. PMID:28193868

  19. Insulin resistance impairs nigrostriatal dopamine function.

    Science.gov (United States)

    Morris, J K; Bomhoff, G L; Gorres, B K; Davis, V A; Kim, J; Lee, P-P; Brooks, W M; Gerhardt, G A; Geiger, P C; Stanford, J A

    2011-09-01

    Clinical studies have indicated a link between Parkinson's disease (PD) and Type 2 Diabetes. Although preclinical studies have examined the effect of high-fat feeding on dopamine function in brain reward pathways, the effect of diet on neurotransmission in the nigrostriatal pathway, which is affected in PD and parkinsonism, is less clear. We hypothesized that a high-fat diet, which models early-stage Type 2 Diabetes, would disrupt nigrostriatal dopamine function in young adult Fischer 344 rats. Rats were fed a high fat diet (60% calories from fat) or a normal chow diet for 12 weeks. High fat-fed animals were insulin resistant compared to chow-fed controls. Potassium-evoked dopamine release and dopamine clearance were measured in the striatum using in vivo electrochemistry. Dopamine release was attenuated and dopamine clearance was diminished in the high-fat diet group compared to chow-fed rats. Magnetic resonance imaging indicated increased iron deposition in the substantia nigra of the high fat group. This finding was supported by alterations in the expression of several proteins involved in iron metabolism in the substantia nigra in this group compared to chow-fed animals. The diet-induced systemic and basal ganglia-specific changes may play a role in the observed impairment of nigrostriatal dopamine function. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Computational systems analysis of dopamine metabolism.

    Directory of Open Access Journals (Sweden)

    Zhen Qi

    Full Text Available A prominent feature of Parkinson's disease (PD is the loss of dopamine in the striatum, and many therapeutic interventions for the disease are aimed at restoring dopamine signaling. Dopamine signaling includes the synthesis, storage, release, and recycling of dopamine in the presynaptic terminal and activation of pre- and post-synaptic receptors and various downstream signaling cascades. As an aid that might facilitate our understanding of dopamine dynamics in the pathogenesis and treatment in PD, we have begun to merge currently available information and expert knowledge regarding presynaptic dopamine homeostasis into a computational model, following the guidelines of biochemical systems theory. After subjecting our model to mathematical diagnosis and analysis, we made direct comparisons between model predictions and experimental observations and found that the model exhibited a high degree of predictive capacity with respect to genetic and pharmacological changes in gene expression or function. Our results suggest potential approaches to restoring the dopamine imbalance and the associated generation of oxidative stress. While the proposed model of dopamine metabolism is preliminary, future extensions and refinements may eventually serve as an in silico platform for prescreening potential therapeutics, identifying immediate side effects, screening for biomarkers, and assessing the impact of risk factors of the disease.

  1. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    Science.gov (United States)

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cocaine exposure reorganizes cell type- and input-specific connectivity in the nucleus accumbens.

    Science.gov (United States)

    MacAskill, Andrew F; Cassel, John M; Carter, Adam G

    2014-09-01

    Repeated exposure to cocaine alters the structural and functional properties of medium spiny neurons (MSNs) in the nucleus accumbens (NAc). These changes suggest a rewiring of the NAc circuit, with an enhancement of excitatory synaptic connections onto MSNs. However, it is unknown how drug exposure alters the balance of long-range afferents onto different cell types in the NAc. Here we used whole-cell recordings, two-photon microscopy, optogenetics and pharmacogenetics to show how repeated cocaine exposure alters connectivity in the mouse NAc medial shell. Cocaine selectively enhanced amygdala innervation of MSNs expressing D1 dopamine receptors (D1-MSNs) relative to D2-MSNs. We also found that amygdala activity was required for cocaine-induced changes to behavior and connectivity. Finally, we established how heightened amygdala innervation can explain the structural and functional changes evoked by cocaine. Our findings reveal how exposure to drugs of abuse fundamentally reorganizes cell type- and input-specific connectivity in the NAc.

  3. Altered dopamine signaling in naturally occurring maternal neglect.

    Directory of Open Access Journals (Sweden)

    Stephen C Gammie

    Full Text Available BACKGROUND: Child neglect is the most common form of child maltreatment, yet the biological basis of maternal neglect is poorly understood and a rodent model is lacking. METHODOLOGY/PRINCIPAL FINDINGS: The current study characterizes a population of mice (MaD1 which naturally exhibit maternal neglect (little or no care of offspring at an average rate of 17% per generation. We identified a set of risk factors that can predict future neglect of offspring, including decreased self-grooming and elevated activity. At the time of neglect, neglectful mothers swam significantly more in a forced swim test relative to nurturing mothers. Cross-fostered offspring raised by neglectful mothers in turn exhibit increased expression of risk factors for maternal neglect and decreased maternal care as adults, suggestive of possible epigenetic contributions to neglect. Unexpectedly, offspring from neglectful mothers elicited maternal neglect from cross-fostered nurturing mothers, suggesting that factors regulating neglect are not solely within the mother. To identify a neurological pathway underlying maternal neglect, we examined brain activity in neglectful and nurturing mice. c-Fos expression was significantly elevated in neglectful relative to nurturing mothers in the CNS, particularly within dopamine associated areas, such as the zona incerta (ZI, ventral tegmental area (VTA, and nucleus accumbens. Phosphorylated tyrosine hydroxylase (a marker for dopamine production was significantly elevated in ZI and higher in VTA (although not significantly in neglectful mice. Tyrosine hydroxylase levels were unaltered, suggesting a dysregulation of dopamine activity rather than cell number. Phosphorylation of DARPP-32, a marker for dopamine D1-like receptor activation, was elevated within nucleus accumbens and caudate-putamen in neglectful versus nurturing dams. CONCLUSIONS/SIGNIFICANCE: These findings suggest that atypical dopamine activity within the maternal brain

  4. Addiction: Beyond dopamine reward circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Telang, F.

    2011-09-13

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  5. Role of Dopamine Signaling in Drug Addiction.

    Science.gov (United States)

    Chen, Wan; Nong, Zhihuan; Li, Yaoxuan; Huang, Jianping; Chen, Chunxia; Huang, Luying

    2017-01-01

    Addiction is a chronic, relapsing disease of the brain that includes drug-induced compulsive seeking behavior and consumption of drugs. Dopamine (DA) is considered to be critical in drug addiction due to reward mechanisms in the midbrain. In this article, we review the major animal models in addictive drug experiments in vivo and in vitro. We discuss the relevance of the structure and pharmacological function of DA receptors. To improve the understanding of the role of DA receptors in reward pathways, specific brain regions, including the Ventral tegmental area, Nucleus accumbens, Prefrontal cortex, and Habenula, are highlighted. These factors contribute to the development of novel therapeutic targets that act at DA receptors. In addiction, the development of neuroimaging method will increase our understanding of the mechanisms underlying drug addiction. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. 4-Methylthioamphetamine increases dopamine in the rat striatum and has rewarding effects in vivo.

    Science.gov (United States)

    Sotomayor-Zárate, Ramón; Quiroz, Gabriel; Araya, Katherine A; Abarca, Jorge; Ibáñez, María R; Montecinos, Alejandro; Guajardo, Carlos; Núñez, Gabriel; Fierro, Angélica; Moya, Pablo R; Iturriaga-Vásquez, Patricio; Gómez-Molina, Cristóbal; Gysling, Katia; Reyes-Parada, Miguel

    2012-12-01

    4-Methylthioamphetamine (MTA) is a phenylisopropylamine derivative whose use has been associated with severe intoxications. MTA is usually regarded as a selective serotonin-releasing agent. Nevertheless, previous data have suggested that its mechanism of action probably involves a catecholaminergic component. As little is known about dopaminergic effects of this drug, in this work the actions of MTA upon the dopamine (DA) transporter (DAT) were studied in vitro, in vivo and in silico. Also, the possible abuse liability of MTA was behaviourally assessed. MTA exhibited an in vitro affinity for the rat DAT in the low micromolar range (6.01 μM) and induced a significant, dose-dependent increase in striatal DA. MTA significantly increased c-Fos-positive cells in striatum and nucleus accumbens, induced conditioned place preference and increased locomotor activity. Docking experiments were performed in a homology model of the DAT. In conclusion, our results show that MTA is able to increase extracellular striatal DA levels and that its administration has rewarding properties. These effects were observed at concentrations or doses that can be relevant to its use in human beings.

  7. Early increase in dopamine release in the ipsilateral striatum after unilateral intranigral administration of lactacystin produces spontaneous contralateral rotations in rats.

    Science.gov (United States)

    Konieczny, J; Lenda, T; Czarnecka, A

    2016-06-02

    Since the discovery of the role of the ubiquitin-proteasome system (UPS) in the pathogenesis of Parkinson's disease, UPS inhibitors, such as lactacystin have been used to investigate the relationship between UPS impairment and degeneration of dopamine (DA) neurons. However, mostly long-term neurotoxic effects of lactacystin have been studied in animal models. Therefore, the aim of our study was to investigate behavioral and biochemical changes related to the DA system during the first week following unilateral intranigral injection of lactacystin to rats. We found that lactacystin produced early spontaneous contralateral rotations which were inhibited by combined administration of DA D1 and D2 receptor antagonists. Simultaneously, an increase in the extracellular level of DA and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) was found in the ipsilateral striatum. In contrast, one week after lesion, when turning behavior was no longer visible, a decrease in the extracellular level of DA, DOPAC and HVA was demonstrated. It was accompanied by a substantial reduction in the tissue levels of DA and its metabolites in the lesioned substantia nigra and striatum. We concluded that unilateral intranigral administration of lactacystin produces an early increase in DA neurotransmission which precedes a decrease in the striatal and nigral tissue DA content. It is manifested by the appearance of spontaneous contralateral rotations and an elevation of the extracellular DA level in the ipsilateral striatum. Since similar behavior was previously observed after intranigral administration of rotenone and MPP(+) but not 6-hydroxydopamine (6-OHDA), it may indicate a common mechanism of action shared by these neurotoxins.

  8. Voxelwise lp-ntPET for detecting localized, transient dopamine release of unknown timing: sensitivity analysis and application to cigarette smoking in the PET scanner.

    Science.gov (United States)

    Kim, Su Jin; Sullivan, Jenna M; Wang, Shuo; Cosgrove, Kelly P; Morris, Evan D

    2014-09-01

    The "linear parametric neurotransmitter PET" (lp-ntPET) model estimates time variation in endogenous neurotransmitter levels from dynamic PET data. The pattern of dopamine (DA) change over time may be an important element of the brain's response to addictive substances such as cigarettes or alcohol. We have extended the lp-ntPET model from the original region of interest (ROI) - based implementation to be able to apply the model at the voxel level. The resulting endpoint is a dynamic image, or movie, of transient neurotransmitter changes. Simulations were performed to select threshold values to reduce the false positive rate when applied to real (11)C-raclopride PET data. We tested the new voxelwise method on simulated data, and finally, we applied it to (11)C-raclopride PET data of subjects smoking cigarettes in the PET scanner. In simulation, the temporal precision of neurotransmitter response was shown to be similar to that of ROI-based lp-ntPET (standard deviation ∼ 3 min). False positive rates for the voxelwise method were well controlled by combining a statistical threshold (the F-test) with a new spatial (cluster-size) thresholding operation. Sensitivity of detection for the new algorithm was greater than 80% for the case of short-lived DA changes that occur in subregions of the striatum as might be the case with cigarette smoking. Finally, in (11)C-raclopride PET data, DA movies reveal for the first time that different temporal patterns of the DA response to smoking may exist in different subregions of the striatum. These spatiotemporal patterns of neurotransmitter change created by voxelwise lp-ntPET may serve as novel biomarkers for addiction and/or treatment efficacy.

  9. Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Newcorn, J.H.; Kollins, S.H.; Wigal, T.L.; Telang, F.; Folwer, J.S.; Goldstein, R.Z.; Klein, N.; Logan, J.; Wong, C.; Swanson, J.M.

    2010-08-17

    Attention-deficit hyperactivity disorder (ADHD) is typically characterized as a disorder of inattention and hyperactivity/impulsivity but there is increasing evidence of deficits in motivation. Using positron emission tomography (PET), we showed decreased function in the brain dopamine reward pathway in adults with ADHD, which, we hypothesized, could underlie the motivation deficits in this disorder. To evaluate this hypothesis, we performed secondary analyses to assess the correlation between the PET measures of dopamine D2/D3 receptor and dopamine transporter availability (obtained with [{sup 11}C]raclopride and [{sup 11}C]cocaine, respectively) in the dopamine reward pathway (midbrain and nucleus accumbens) and a surrogate measure of trait motivation (assessed using the Achievement scale on the Multidimensional Personality Questionnaire or MPQ) in 45 ADHD participants and 41 controls. The Achievement scale was lower in ADHD participants than in controls (11 {+-} 5 vs 14 {+-} 3, P < 0.001) and was significantly correlated with D2/D3 receptors (accumbens: r = 0.39, P < 0.008; midbrain: r = 0.41, P < 0.005) and transporters (accumbens: r = 0.35, P < 0.02) in ADHD participants, but not in controls. ADHD participants also had lower values in the Constraint factor and higher values in the Negative Emotionality factor of the MPQ but did not differ in the Positive Emotionality factor - and none of these were correlated with the dopamine measures. In ADHD participants, scores in the Achievement scale were also negatively correlated with symptoms of inattention (CAARS A, E and SWAN I). These findings provide evidence that disruption of the dopamine reward pathway is associated with motivation deficits in ADHD adults, which may contribute to attention deficits and supports the use of therapeutic interventions to enhance motivation in ADHD.

  10. Motivation Deficit in ADHD is Associated with Dysfunction of the Dopamine Reward Pathway

    Science.gov (United States)

    Volkow, Nora D.; Wang, Gene-Jack; Newcorn, Jeffrey H.; Kollins, Scott H.; Wigal, Tim L.; Telang, Frank; Fowler, Joanna S.; Goldstein, Rita Z.; Klein, Nelly; Logan, Jean; Wong, Christopher; Swanson, James M.

    2010-01-01

    ADHD is typically characterized as a disorder of inattention and hyperactivity/impulsivity but there is increasing evidence of deficits in motivation. Using PET we showed decreased function in the brain dopamine reward pathway in adults with ADHD, which we hypothesized could underlie the motivation deficits in this disorder. To evaluate this hypothesis we performed secondary analyses to assess the correlation between the PET measures of dopamine D2/D3 receptor and dopamine transporter availability (obtained with [11C]raclopride and [11C]cocaine, respectively) in the dopamine reward pathway (midbrain and nucleus accumbens), and a surrogate measures of trait motivation (assessed using the Achievement scale on the Multidimensional Personality Questionnaire or MPQ) in 45 ADHD participants and 41 controls. The Achievement scale was lower in ADHD participants than in controls (11±5 vs 14±3, p<0.001) and was significantly correlated with D2/D3 receptors (accumbens: r=0.39, p<0.008; midbrain: r=0.41, p<0.005) and transporters (accumbens: r=0.35, p < 0.02) in ADHD participants, but not in controls. ADHD participants also had lower values in the Constraint factor and higher values in the Negative Emotionality factor of the MPQ but did not differ in the Positive Emotionality factor - and none of these were correlated with the dopamine measures. In ADHD participants scores in the Achievement scale were also negatively correlated with symptoms of inattention (CAARS A, E and SWAN-I). These findings provide evidence that disruption of the dopamine reward pathway is associated with motivation deficits in ADHD adults, which may contribute to attention deficits and supports the use of therapeutic interventions to enhance motivation in ADHD. PMID:20856250

  11. Effects of Repeated Electroacupuncture on Gene Expression of Cannabinoid Receptor-1 and Dopamine 1 Receptor in Nucleus Accumbens-Caudate Nucleus Region in Inflammatory-pain Rats%反复电针对佐剂性关节炎大鼠伏隔核-尾状核区大麻素CB1受体与多巴胺Dl受体基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    寿鉴; 赵颖倩; 徐鸣曙; 葛林宝

    2011-01-01

    Objective To observe the effect of repeated electroacupuncture (EA) on the expression of cannabinoid receptor-1 (CB 1 ) mRNA and dopamine 1 receptor (D 1 ) mRNA in Nucleus Accumbens (NAC)-Caudate Nucleus (CN) region in inflammatory-pain rats, so as to study its underlying mechanism in analgesia. Methods A total of 30 SD rats were randomized into normal control, model, EA, EA + AM 251 and WIN 552 12-2 groups, with 6 cases in each group. EA (2 Hz/100 Hz, 1 - 3 mA)was applied to "Zusanli"(ST 36) and "Kunlun"(BL 60) for 30 min, once every other day, and 4 sessions all together. Arthritis model was established by injection of Freund's complete adjuvant 0.05 mL in the rat's left ankle. Thermal pain threshold (paw withdrawal latency, PWL) was detected before and after modeling and after repeated EA and/or intraperitoneal injection of AM 251 (an inverse antagonist at the CB 1 cannabinoid receptor, 0. 1 mg/1 00 g) and WIN 55212-2 (a potent cannabinoid receptor agonist, 0.2 mg/100 g). The expression of CB 1 receptor mRNA and D 1 receptor mRNA in the NAC-CN region was measured by real time fluorescence quantitative-polymerase chain reaction. Results Compared with the control group, the pain threshold values of the model group was decreased significantly (P<0.01). In comparison with the model group, the pain threshold values of the EA group and WIN 55212-2 group were increased considerably on day 10 (P<0.01). No significant differences were found between the EA+AM 251 and model groups and between the EA and WIN 55212-2 groups in PWL after the treatment (P>0.05).Compared with the control group, both CB 1 R mRNA and D 1 R mRNA expression levels in the model group were increased slightly, while in comparison with the model group and EA+ AM 251 group, CB 1 R mRNA and D 1 R mRNA expression levels in the EAgroup and WIN 55212-2 group were upregulated obviously. No significant differences were found between the EA+ AM 251 and model groups and between the EA and WIN 55212

  12. Hypothesizing that, A Pro-Dopamine Regulator (KB220Z) Should Optimize, but Not Hyper-Activate the Activity of Trace Amine-Associated Receptor 1 (TAAR-1) and Induce Anti-Craving of Psychostimulants in the Long-Term

    Science.gov (United States)

    Blum, Kenneth; Badgaiyan, Rajendra D.; Braverman, Eric R.; Dushaj, Kristina; Li, Mona; Thanos, Peter K.; Demetrovics, Zsolt; Febo, Marcelo

    2017-01-01

    Unlike other drugs of abuse such as alcohol, nicotine, opiates/opioids, the FDA has not approved any agent to treat psychostimulant dependence. Certainly, it is widely acceptable that dopaminergic signaling is a key factor in both the initiation and continued motivation to abuse this class of stimulant substances. It is also well accepted that psychostimulants such as cocaine affect not only the release of neuronal dopamine at the nucleus accumbens (NAc), but also has powerful inhibitory actions on the dopamine transporter system. Understandably, certain individuals are at high risk and very vulnerable to abuse this class of substances. Trace-amine-associated receptor 1 (TAAR1) is a G -protein coupled receptor activated by trace amines. The encoded protein responds little or not at all to dopamine, serotonin, epinephrine, or histamine, but responds well to beta-phenylethylamine, p-tyramine, octopamine, and tryptamine. This gene is thought to be intronless. TAAR1 agonists reduce the neurochemical effects of cocaine and amphetamines as well as attenuate addiction and abuse associated with these two psychostimulants. The mechanism involves blocking the firing rate of dopamine in the limbic system thereby decreasing a hyperdopaminergic trait/state, whereby the opposite is true for TAAR1 antagonists. Based on many studies, it is accepted that in Reward Deficiency Syndrome (RDS), there is weakened tonic and improved phasic dopamine discharge leading to a hypodopaminergic/glutamatergic trait. The dopamine pro-complex mixture KB220, following many clinical trials including neuroimaging studies, has been shown to enhance resting state functional connectivity in humans (abstinent heroin addicts), naïve rodent models, and regulates extensive theta action in the cingulate gyrus of abstinent psychostimulant abusers. In this article, we are hypothesizing that KB220 may induce its action on resting state functional connectivity, for example, by actually balancing (optimizing

  13. Hypothesizing that, A Pro-Dopamine Regulator (KB220Z) Should Optimize, but Not Hyper-Activate the Activity of Trace Amine-Associated Receptor 1 (TAAR-1) and Induce Anti-Craving of Psychostimulants in the Long-Term.

    Science.gov (United States)

    Blum, Kenneth; Badgaiyan, Rajendra D; Braverman, Eric R; Dushaj, Kristina; Li, Mona; Thanos, Peter K; Demetrovics, Zsolt; Febo, Marcelo

    2016-01-01

    Unlike other drugs of abuse such as alcohol, nicotine, opiates/opioids, the FDA has not approved any agent to treat psychostimulant dependence. Certainly, it is widely acceptable that dopaminergic signaling is a key factor in both the initiation and continued motivation to abuse this class of stimulant substances. It is also well accepted that psychostimulants such as cocaine affect not only the release of neuronal dopamine at the nucleus accumbens (NAc), but also has powerful inhibitory actions on the dopamine transporter system. Understandably, certain individuals are at high risk and very vulnerable to abuse this class of substances. Trace-amine-associated receptor 1 (TAAR1) is a G -protein coupled receptor activated by trace amines. The encoded protein responds little or not at all to dopamine, serotonin, epinephrine, or histamine, but responds well to beta-phenylethylamine, p-tyramine, octopamine, and tryptamine. This gene is thought to be intronless. TAAR1 agonists reduce the neurochemical effects of cocaine and amphetamines as well as attenuate addiction and abuse associated with these two psychostimulants. The mechanism involves blocking the firing rate of dopamine in the limbic system thereby decreasing a hyperdopaminergic trait/state, whereby the opposite is true for TAAR1 antagonists. Based on many studies, it is accepted that in Reward Deficiency Syndrome (RDS), there is weakened tonic and improved phasic dopamine discharge leading to a hypodopaminergic/glutamatergic trait. The dopamine pro-complex mixture KB220, following many clinical trials including neuroimaging studies, has been shown to enhance resting state functional connectivity in humans (abstinent heroin addicts), naïve rodent models, and regulates extensive theta action in the cingulate gyrus of abstinent psychostimulant abusers. In this article, we are hypothesizing that KB220 may induce its action on resting state functional connectivity, for example, by actually balancing (optimizing

  14. Minireview: new roles for peripheral dopamine on metabolic control and tumor growth: let's seek the balance.

    Science.gov (United States)

    Rubí, Blanca; Maechler, Pierre

    2010-12-01

    In peripheral tissues, dopamine is released from neuronal cells and is synthesized within specific parenchyma. Dopamine released from sympathetic nerves predominantly contributes to plasma dopamine levels. Despite growing evidence for peripheral source and action of dopamine and the widespread expression of dopamine receptors in peripheral tissues, most studies have focused on functions of dopamine in the central nervous system. Symptoms of several brain disorders, including schizophrenia, Parkinson's disease, attention-deficit hyperactivity disorder, and depression, are alleviated by pharmacological modulation of dopamine transmission. Regarding systemic disorders, the role of dopamine is still poorly understood. Here we describe the pioneering and recent evidence for functional roles of peripheral dopamine. Peripheral and central dopamine systems are sensitive to environmental stress, such as a high-fat diet, suggesting a basis of covariance of peripheral and central actions of dopaminergic agents. Given the extended use of such medications, it is crucial to better understand the integrated effects of dopamine in the whole organism. Delineation of peripheral and central dopaminergic mechanisms would facilitate targeted and safer use of drugs modulating dopamine action. We discuss the increasing evidence for a link between peripheral dopamine and obesity. This review also describes the recently uncovered protective actions of dopamine on energy metabolism and proliferation in tumoral cells.

  15. Heterogeneity in Dopamine Neuron Synaptic Actions Across the Striatum and Its Relevance for Schizophrenia.

    Science.gov (United States)

    Chuhma, Nao; Mingote, Susana; Kalmbach, Abigail; Yetnikoff, Leora; Rayport, Stephen

    2017-01-01

    Brain imaging has revealed alterations in dopamine uptake, release, and receptor levels in patients with schizophrenia that have been resolved on the scale of striatal subregions. However, the underlying synaptic mechanisms are on a finer scale. Dopamine neuron synaptic actions vary across the striatum, involving variations not only in dopamine release but also in dopamine neuron connectivity, cotransmission, modulation, and activity. Optogenetic studies have revealed that dopamine neurons release dopamine in a synaptic signal mode, and that the neurons also release glutamate and gamma-aminobutyric acid as cotransmitters, with striking regional variation. Fast glutamate and gamma-aminobutyric acid cotransmission convey discrete patterns of dopamine neuron activity to striatal neurons. Glutamate may function not only in a signaling role at a subset of dopamine neuron synapses, but also in mediating vesicular synergy, contributing to regional differences in loading of dopamine into synaptic vesicles. Regional differences in dopamine neuron signaling are likely to be differentially involved in the schizophrenia disease process and likely determine the subregional specificity of the action of psychostimulants that exacerbate the disorder, and antipsychotics that ameliorate the disorder. Elucidating dopamine neuron synaptic signaling offers the potential for achieving greater pharmacological specificity through intersectional pharmacological actions targeting subsets of dopamine neuron synapses. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Agonist signalling properties of radiotracers used for imaging of dopamine D-2/3 receptors

    NARCIS (Netherlands)

    van Wieringen, Jan-Peter; Michel, Martin C.; Janssen, Henk M.; Janssen, Anton G.; Elsinga, Philip H.; Booij, Jan

    2014-01-01

    Background: Dopamine D-2/3 receptor (D2/3R) agonist radiopharmaceuticals are considered superior to antagonists to detect dopamine release, e.g. induced by amphetamines. Agonists bind preferentially to the high-affinity state of the dopamine D2R, which has been proposed as the reason why agonists ar

  17. Recognition unit-free and self-cleaning photoelectrochemical sensing platform on TiO2 nanotube photonic crystals for sensitive and selective detection of dopamine release from mouse brain.

    Science.gov (United States)

    Xin, Yanmei; Li, Zhenzhen; Wu, Wenlong; Fu, Baihe; Wu, Hongjun; Zhang, Zhonghai

    2017-01-15

    For implementing sensitive and selective detection of biological molecules, the biosensors are been designed more and more complicated. The exploration of detection platform in a simple way without loss their sensitivity and selectivity is always a big challenge. Herein, a prototype of recognition biomolecule unit-free photoelectrochemical (PEC) sensing platform with self-cleaning activity is proposed with TiO2 nanotube photonic crystal (TiO2 NTPCs) materials as photoelectrode, and dopamine (DA) molecule as both sensitizer and target analyte. The unique adsorption between DA and TiO2 NTPCs induces the formation of charge transfer complex, which not only expends the optical absorption of TiO2 into visible light region, thus significantly boosts the PEC performance under illumination of visible light, but also implements the selective detection of DA on TiO2 photoelectrode. This simple but efficient PEC analysis platform presents a low detection limit of 0.15nm for detection of DA, which allows to realize the sensitive and selective determination of DA release from the mouse brain for its practical application after coupled with a microdialysis probe. The DA functionalized TiO2 NTPCs PEC sensing platform opens up a new PEC detection model, without using extra-biomolecule auxiliary, just with target molecule naturally adsorbed on the electrode for sensitive and selective detection, and paves a new avenue for biosensors design with minimalism idea.

  18. Surface modification with dopamine and heparin/poly-L-lysine nanoparticles provides a favorable release behavior for the healing of vascular stent lesions.

    Science.gov (United States)

    Liu, Tao; Zeng, Zheng; Liu, Yang; Wang, Jian; Maitz, Manfred F; Wang, Yuan; Liu, Shihui; Chen, Junying; Huang, Nan

    2014-06-11

    Surface biofunctional modification of coronary artery stents to prevent thrombosis and restenosis formation, as well as accelerate endothelialization, has become a new hot spot. However, bioactive coatings on implants are not yet sufficiently developed for long-term activity, as they quickly lose efficiency in vivo and finally fail. On the basis of a novel time-ordered concept of biofunctionality for vascular stents, heparin/poly l-lysine nanoparticle (NP) was developed and immobilized on a polydopamine-coated titanium surface, with the aim of regulating and maintaining the intravascular biological response within the normal range after biomaterial implantation. An in vitro dynamic release model was established to mimic the blood flow condition in vivo with three phases: (1) An early phase (1-7 days) with release of predominantly anticoagulant and anti-inflammatory substances and to a minor degree antiproliferative effects against smooth muscle cells (SMCs); (2) this is followed by a phase (7-14 days) of supported endothelial cell (ECs) proliferation and suppressed SMC proliferation with persisting high antithrombogenicity and anti-inflammatory properties of the surface. (3) Finally, a stable stage (14-28 days) with adequate biomolecules on the surface that maintain hemocompatibility and anti inflammation as well as inhibit SMCs proliferation and promote ECs growth. In vivo animal tests further confirmed that the NP-modified surface provides a favorable release behavior to apply a stage-adjusted remedy. We suggested that these observations provide important guidance and potential means for reasonable and suitable platform construction on a stent surface.

  19. Reinforcement signalling in Drosophila; dopamine does it all after all.

    Science.gov (United States)

    Waddell, Scott

    2013-06-01

    Reinforcement systems are believed to drive synaptic plasticity within neural circuits that store memories. Recent evidence from the fruit fly suggests that anatomically distinct dopaminergic neurons ultimately provide the key instructive signals for both appetitive and aversive learning. This dual role for dopamine overturns the previous model that octopamine signalled reward and dopamine punishment. More importantly, this anatomically segregated double role for dopamine in reward and aversion mirrors that emerging in mammals. Therefore, an antagonistic organization of distinct reinforcing dopaminegic neurons is a conserved feature of brains. It now seems crucial to understand how the dopaminergic neurons are controlled and what the released dopamine does to the underlying circuits to convey opposite valence.

  20. Dopamine receptor and hypertension.

    Science.gov (United States)

    Zeng, Chunyu; Eisner, Gilbert M; Felder, Robin A; Jose, Pedro A

    2005-01-01

    Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and reactive oxygen and by interacting with vasopressin, renin-angiotensin, and the sympathetic nervous system. Decreased renal dopamine production and/or impaired dopamine receptor function have been reported in hypertension. Disruption of any of the dopamine receptors (D(1), D(2), D(3), D(4), and D(5)) results in hypertension. In this paper, we review the mechanisms by which hypertension develops when dopamine receptor function is perturbed.

  1. VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons

    Science.gov (United States)

    Qi, Jia; Zhang, Shiliang; Wang, Hui-Ling; Barker, David J.; Miranda-Barrientos, Jorge; Morales, Marisela

    2016-01-01

    The ventral tegmental area (VTA) is best known for its dopamine neurons, some of which project to nucleus accumbens (nAcc). However, the VTA also has glutamatergic neurons that project to nAcc. The function of the mesoaccumbens-glutamatergic pathway remains unknown. Here, we report that nAcc photoactivation of mesoaccumbens-glutamatergic fibers promotes aversion. Although we found that these mesoaccumbens-glutamate-fibers lack GABA, the aversion evoked by their photoactivation depends on glutamate and GABA receptor signaling, and not on dopamine receptor signaling. We found that mesoaccumbens-glutamatergic-fibers establish multiple asymmetric synapses on single parvalbumin-GABAergic interneurons, and that nAcc photoactivation of these fibers drives AMPA-mediated cellular firing of parvalbumin-GABAergic interneurons. These parvalbumin-GABAergic-interneurons, in turn, inhibit nAcc medium spiny output neurons, as such, controlling inhibitory neurotransmission within nAcc. The mesoaccumbens-glutamatergic pathway is the first glutamatergic input to nAcc shown to mediate aversion, instead of reward, and the first pathway shown to establish excitatory synapses on nAcc parvalbumin-GABAergic interneurons. PMID:27019014

  2. Reward-based hypertension control by a synthetic brain–dopamine interface

    OpenAIRE

    Rossger, K.; Charpin-El Hamri, G.; Fussenegger, M

    2013-01-01

    Essential activities such as feeding and reproduction as well as social, emotional, and mental behavior are reinforced by the brain’s reward system. Pleasure status directly correlates with dopamine levels released in the brain. Because dopamine leaks into the bloodstream via the sympathetic nervous system, brain and blood dopamine levels are interrelated. We designed a synthetic dopamine sensor-effector device that enables engineered human cells, insulated by immunoprotective microcontainers...

  3. Increased palatable food intake and response to food cues in intrauterine growth-restricted rats are related to tyrosine hydroxylase content in the orbitofrontal cortex and nucleus accumbens.

    Science.gov (United States)

    Alves, Márcio Bonesso; Dalle Molle, Roberta; Desai, Mina; Ross, Michael G; Silveira, Patrícia Pelufo

    2015-01-01

    Intrauterine growth restriction (IUGR) is associated with altered food preferences, which may contribute to increased risk of obesity. We evaluated the effects of IUGR on attention to a palatable food cue, as well as tyrosine hydroxylase (TH) content in the orbitofrontal cortex (OFC) and nucleus accumbens (NAcc) in response to sweet food intake. From day 10 of gestation and through lactation, Sprague-Dawley rats received either an ad libitum (Adlib) or a 50% food-restricted (FR) diet. At birth, pups were cross-fostered, generating four groups (gestation/lactation): Adlib/Adlib (control), FR/Adlib (intrauterine growth-restricted), Adlib/FR, and FR/FR. Adult attention to palatable food cues was measured using the Attentional Set-Shifting Task (ASST), which uses a sweet pellet as reward. TH content in the OFC and NAcc was measured at baseline and in response to palatable food intake. At 90 days of age, FR/Adlib males ate more sweet food than controls, without differences in females. However, when compared to Controls, FR/Adlib females needed fewer trials to reach criterion in the ASST (p=0.04) and exhibited increased TH content in the OFC in response to sweet food (p=0.03). In the NAcc, there was a differential response of TH content after sweet food intake in both FR/Adlib males and females (pfood preferences involves the central response to palatable food cues and intake, affecting dopamine release in select structures of the brain reward system. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Dopamine encoding of Pavlovian incentive stimuli diminishes with extended training.

    Science.gov (United States)

    Clark, Jeremy J; Collins, Anne L; Sanford, Christina Akers; Phillips, Paul E M

    2013-02-20

    Dopamine is highly implicated both as a teaching signal in reinforcement learning and in motivating actions to obtain rewards. However, theoretical disconnects remain between the temporal encoding properties of dopamine neurons and the behavioral consequences of its release. Here, we demonstrate in rats that dopamine evoked by Pavlovian cues increases during acquisition, but dissociates from stable conditioned appetitive behavior as this signal returns to preconditioning levels with extended training. Experimental manipulation of the statistical parameters of the behavioral paradigm revealed that this attenuation of cue-evoked dopamine release during the postasymptotic period was attributable to acquired knowledge of the temporal structure of the task. In parallel, conditioned behavior became less dopamine dependent after extended training. Thus, the current work demonstrates that as the presentation of reward-predictive stimuli becomes anticipated through the acquisition of task information, there is a shift in the neurobiological substrates that mediate the motivational properties of these incentive stimuli.

  5. A thalamic input to the nucleus accumbens mediates opiate dependence.

    Science.gov (United States)

    Zhu, Yingjie; Wienecke, Carl F R; Nachtrab, Gregory; Chen, Xiaoke

    2016-02-11

    Chronic opiate use induces opiate dependence, which is characterized by extremely unpleasant physical and emotional feelings after drug use is terminated. Both the rewarding effects of a drug and the desire to avoid withdrawal symptoms motivate continued drug use, and the nucleus accumbens is important for orchestrating both processes. While multiple inputs to the nucleus accumbens regulate reward, little is known about the nucleus accumbens circuitry underlying withdrawal. Here we identify the paraventricular nucleus of the thalamus as a prominent input to the nucleus accumbens mediating the expression of opiate-withdrawal-induced physical signs and aversive memory. Activity in the paraventricular nucleus of the thalamus to nucleus accumbens pathway is necessary and sufficient to mediate behavioural aversion. Selectively silencing this pathway abolishes aversive symptoms in two different mouse models of opiate withdrawal. Chronic morphine exposure selectively potentiates excitatory transmission between the paraventricular nucleus of the thalamus and D2-receptor-expressing medium spiny neurons via synaptic insertion of GluA2-lacking AMPA receptors. Notably, in vivo optogenetic depotentiation restores normal transmission at these synapses and robustly suppresses morphine withdrawal symptoms. This links morphine-evoked pathway- and cell-type-specific plasticity in the paraventricular nucleus of the thalamus to nucleus accumbens circuit to opiate dependence, and suggests that reprogramming this circuit holds promise for treating opiate addiction.

  6. Dopamine receptors and hypertension.

    Science.gov (United States)

    Banday, Anees Ahmad; Lokhandwala, Mustafa F

    2008-08-01

    Dopamine plays an important role in regulating renal function and blood pressure. Dopamine synthesis and dopamine receptor subtypes have been shown in the kidney. Dopamine acts via cell surface receptors coupled to G proteins; the receptors are classified via pharmacologic and molecular cloning studies into two families, D1-like and D2-like. Two D1-like receptors cloned in mammals, the D1 and D5 receptors (D1A and D1B in rodents), are linked to adenylyl cyclase stimulation. Three D2-like receptors (D2, D3, and D4) have been cloned and are linked mainly to adenylyl cyclase inhibition. Activation of D1-like receptors on the proximal tubules inhibits tubular sodium reabsorption by inhibiting Na/H-exchanger and Na/K-adenosine triphosphatase activity. Reports exist of defective renal dopamine production and/or dopamine receptor function in human primary hypertension and in genetic models of animal hypertension. In humans with essential hypertension, renal dopamine production in response to sodium loading is often impaired and may contribute to hypertension. A primary defect in D1-like receptors and an altered signaling system in proximal tubules may reduce dopamine-mediated effects on renal sodium excretion. The molecular basis for dopamine receptor dysfunction in hypertension is being investigated, and may involve an abnormal posttranslational modification of the dopamine receptor.

  7. Central and peripheral contributions to dynamic changes in nucleus accumbens glucose induced by intravenous cocaine

    Directory of Open Access Journals (Sweden)

    Ken Taro Wakabayashi

    2015-02-01

    Full Text Available The pattern of neural, physiological and behavioral effects induced by cocaine is consistent with metabolic neural activation, yet direct attempts to evaluate central metabolic effects of this drug have produced controversial results. Here, we used enzyme-based glucose sensors coupled with high-speed amperometry in freely moving rats to examine how intravenous cocaine at a behaviorally active dose affects extracellular glucose levels in the nucleus accumbens (NAc, a critical structure within the motivation-reinforcement circuit. In drug-naive rats, cocaine induced a bimodal increase in glucose, with the first, ultra-fast phasic rise appearing during the injection (latency 6-8 s; ~50 µM or ~5% of baseline followed by a larger, more prolonged tonic elevation (~100 µM or 10% of baseline, peak ~15 min. While the rapid, phasic component of the glucose response remained stable following subsequent cocaine injections, the tonic component progressively decreased. Cocaine-methiodide, cocaine’s peripherally acting analog, induced an equally rapid and strong initial glucose rise, indicating cocaine’s action on peripheral neural substrates as its cause. However, this analog did not induce increases in either locomotion or tonic glucose, suggesting direct central mediation of these cocaine effects. Under systemic pharmacological blockade of dopamine transmission, both phasic and tonic components of the cocaine-induced glucose response were only slightly reduced, suggesting a significant role of non-dopamine mechanisms in cocaine-induced accumbal glucose influx. Hence, intravenous cocaine induces rapid, strong inflow of glucose into NAc extracellular space by involving both peripheral and central, non-dopamine drug actions, thus preventing a possible deficit resulting from enhanced glucose use by brain cells.

  8. Central and peripheral contributions to dynamic changes in nucleus accumbens glucose induced by intravenous cocaine

    Science.gov (United States)

    Wakabayashi, Ken T.; Kiyatkin, Eugene A.

    2015-01-01

    The pattern of neural, physiological and behavioral effects induced by cocaine is consistent with metabolic neural activation, yet direct attempts to evaluate central metabolic effects of this drug have produced controversial results. Here, we used enzyme-based glucose sensors coupled with high-speed amperometry in freely moving rats to examine how intravenous cocaine at a behaviorally active dose affects extracellular glucose levels in the nucleus accumbens (NAc), a critical structure within the motivation-reinforcement circuit. In drug-naive rats, cocaine induced a bimodal increase in glucose, with the first, ultra-fast phasic rise appearing during the injection (latency 6–8 s; ~50 μM or ~5% of baseline) followed by a larger, more prolonged tonic elevation (~100 μM or 10% of baseline, peak ~15 min). While the rapid, phasic component of the glucose response remained stable following subsequent cocaine injections, the tonic component progressively decreased. Cocaine-methiodide, cocaine's peripherally acting analog, induced an equally rapid and strong initial glucose rise, indicating cocaine's action on peripheral neural substrates as its cause. However, this analog did not induce increases in either locomotion or tonic glucose, suggesting direct central mediation of these cocaine effects. Under systemic pharmacological blockade of dopamine transmission, both phasic and tonic components of the cocaine-induced glucose response were only slightly reduced, suggesting a significant role of non-dopamine mechanisms in cocaine-induced accumbal glucose influx. Hence, intravenous cocaine induces rapid, strong inflow of glucose into NAc extracellular space by involving both peripheral and central, non-dopamine drug actions, thus preventing a possible deficit resulting from enhanced glucose use by brain cells. PMID:25729349

  9. Decoding the Dopamine Signal in Macaque Prefrontal Cortex: A Simulation Study Using the Cx3Dp Simulator

    Science.gov (United States)

    Spühler, Isabelle Ayumi; Hauri, Andreas

    2013-01-01

    Dopamine transmission in the prefrontal cortex plays an important role in reward based learning, working memory and attention. Dopamine is thought to be released non-synaptically into the extracellular space and to reach distant receptors through diffusion. This simulation study examines how the dopamine signal might be decoded by the recipient neuron. The simulation was based on parameters from the literature and on our own quantified, structural data from macaque prefrontal area 10. The change in extracellular dopamine concentration was estimated at different distances from release sites and related to the affinity of the dopamine receptors. Due to the sparse and random distribution of release sites, a transient heterogeneous pattern of dopamine concentration emerges. Our simulation predicts, however, that at any point in the simulation volume there is sufficient dopamine to bind and activate high-affinity dopamine receptors. We propose that dopamine is broadcast to its distant receptors and any change from the local baseline concentration might be decoded by a transient change in the binding probability of dopamine receptors. Dopamine could thus provide a graduated ‘teaching’ signal to reinforce concurrently active synapses and cell assemblies. In conditions of highly reduced or highly elevated dopamine levels the simulations predict that relative changes in the dopamine signal can no longer be decoded, which might explain why cognitive deficits are observed in patients with Parkinson’s disease, or induced through drugs blocking dopamine reuptake. PMID:23951205

  10. Aberrant dopamine D2-like receptor function in a rodent model of schizophrenia.

    Science.gov (United States)

    Perez, Stephanie M; Lodge, Daniel J

    2012-11-01

    Based on the observation that antipsychotic medications display antagonist properties at dopamine D2-like receptors, aberrant dopamine signaling has been proposed to underlie psychosis in patients with schizophrenia. Thus, it is not surprising that considerable research has been devoted to understanding the mechanisms involved in the antipsychotic action of these compounds. It is important to note that the majority of these studies have been performed in "normal" experimental animals. Given that these animals do not possess the aberrant neuronal information processing typically associated with schizophrenia, the aim of the current study was to examine the dopamine D2 receptor system in a rodent model of schizophrenia. Here, we demonstrate that methylazoxymethanol acetate (MAM)-treated rats display an enhanced effect of quinpirole on dopamine neuron activity and an aberrant locomotor response to D2-like receptor activation, suggesting changes in postsynaptic D2-like receptor function. To better understand the mechanisms underlying the enhanced response to D2-like ligands in MAM-treated rats, we examined the expression of D2, D3, and dopamine transporter mRNA in the nucleus accumbens and ventral tegmental area by quantitative reverse transcription-polymerase chain reaction. MAM-treated rats displayed a significant increase in dopamine D3 receptor mRNA expression in the nucleus accumbens with no significant changes in the expression of the D2 receptor. Taken together, these data demonstrate robust alterations in dopamine D2-like receptor function in a rodent model of schizophrenia and provide evidence that preclinical studies examining the mechanisms of antipsychotic drug action should be performed in animal models that mirror aspects of the abnormal neuronal transmission thought to underlie symptoms of schizophrenia.

  11. Reduced levels of Cacna1c attenuate mesolimbic dopamine system function.

    Science.gov (United States)

    Terrillion, C E; Dao, D T; Cachope, R; Lobo, M K; Puche, A C; Cheer, J F; Gould, T D

    2017-06-01

    Genetic variation in CACNA1C, which codes for the L-type calcium channel (LTCC) Cav 1.2, is associated with clinical diagnoses of bipolar disorder, depression and schizophrenia. Dysregulation of the mesolimbic-dopamine (ML-DA) system is linked to these syndromes and LTCCs are required for normal DAergic neurotransmission between the ventral tegmental area (VTA) and nucleus accumbens (NAc). It is unclear, however, how variations in CACNA1C genotype, and potential subsequent changes in expression levels in these regions, modify risk. Using constitutive and conditional knockout mice, and treatment with the LTCC antagonist nimodipine, we examined the role of Cacna1c in DA-mediated behaviors elicited by psychomotor stimulants. Using fast-scan cyclic voltammetry, DA release and reuptake in the NAc were measured. We find that subsecond DA release in Cacna1c haploinsufficient mice lacks normal sensitivity to inhibition of the DA transporter (DAT). Constitutive haploinsufficiency of Cacna1c led to attenuation of hyperlocomotion following acute administration of stimulants specific to DAT, and locomotor sensitization of these mice to the DAT antagonist GBR12909 did not reach the same level as wild-type mice. The maintenance of sensitization to GBR12909 was attenuated by administration of nimodipine. Sensitization to GBR12909 was attenuated in mice with reduced Cacna1c selectively in the VTA but not in the NAc. Our findings show that Cacna1c is crucial for normal behavioral responses to DA stimulants and that its activity in the VTA is required for behavioral sensitization. Cacna1c likely exerts these effects through modifications to presynaptic ML-DA system function. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  12. Prefrontocortical dopamine loss in rats delays long-term extinction of contextual conditioned fear, and reduces social interaction without affecting short-term social interaction memory.

    Science.gov (United States)

    Fernandez Espejo, Emilio

    2003-03-01

    Prefrontal dopamine loss delays extinction of cued fear conditioning responses, but its role in contextual fear conditioning has not been explored. Medial prefrontal lesions also enhance social interaction in rats, but the role of prefrontal dopamine loss on social interaction memory is not known. Besides, a role for subcortical accumbal dopamine on mnesic changes after prefrontal dopamine manipulation has been proposed but not explored. The objective was to study the involvement of dopaminergic neurotransmission in the medial prefrontal cortex (mPFC) and nucleus accumbens in two mnesic tasks: contextual fear conditioning and social interaction memory. For contextual fear conditioning, short- and long-term freezing responses after an electric shock were studied, as well as extinction retention. Regarding social interaction memory, the recognition of a juvenile, a very sensitive short-term memory test, was used. Dopamine loss was carried out by injection of 6-hydroxydopamine, and postmortem catecholamine levels were analyzed by high-performance liquid chromatography. Prefrontocortical dopamine loss (>76%) led to a reactive enhancement of accumbal dopamine content (ploss. In lesioned rats, long-term extinction of contextual fear conditioning was significantly delayed and extinction retention was impaired without changes in acquisition and short-term contextual fear conditioning and, on the other hand, acquisition and short-term social interaction memory were not affected, although time spent on social interaction was significantly reduced. Added dopamine loss in the nucleus accumbens (>76%) did not alter these behavioral changes. In summary, the results of the present study indicate that the dopaminergic network in the mPFC (but not in the nucleus accumbens) coordinates the normal long-term extinction of contextual fear conditioning responses without affecting their acquisition, and it is involved in time spent on social interaction, but not acquisition and short

  13. Dopamine Dynamics during Continuous Intracranial Self-Stimulation: Effect of Waveform on Fast-Scan Cyclic Voltammetry Data.

    Science.gov (United States)

    Rodeberg, Nathan T; Johnson, Justin A; Bucher, Elizabeth S; Wightman, R Mark

    2016-11-16

    The neurotransmitter dopamine is heavily implicated in intracranial self-stimulation (ICSS). Many drugs of abuse that affect ICSS behavior target the dopaminergic system, and optogenetic activation of dopamine neurons is sufficient to support self-stimulation. However, the patterns of phasic dopamine release during ICSS remain unclear. Early ICSS studies using fast-scan cyclic voltammetry (FSCV) rarely observed phasic dopamine release, which led to the surprising conclusion that it is dissociated from ICSS. However, several advances in the sensitivity (i.e., the use of waveforms with extended anodic limits) and analysis (i.e., principal component regression) of FSCV measurements have made it possible to detect smaller, yet physiologically relevant, dopamine release events. Therefore, this study revisits phasic dopamine release during ICSS using these tools. It was found that the anodic limit of the voltammetric waveform has a substantial effect on the patterns of dopamine release observed during continuous ICSS. While data collected with low anodic limits (i.e., +1.0 V) support the disappearance of phasic dopamine release observed in previous investigation, the use of high anodic limits (+1.3 V, +1.4 V) allows for continual detection of dopamine release throughout ICSS. However, the +1.4 V waveform lacks the ability to resolve narrowly spaced events, with the best balance of temporal resolution and sensitivity provided by the +1.3 V waveform. Ultimately, it is revealed that the amplitude of phasic dopamine release decays but does not fully disappear during continuous ICSS.

  14. The dopamine theory of addiction: 40 years of highs and lows.

    Science.gov (United States)

    Nutt, David J; Lingford-Hughes, Anne; Erritzoe, David; Stokes, Paul R A

    2015-05-01

    For several decades, addiction has come to be viewed as a disorder of the dopamine neurotransmitter system; however, this view has not led to new treatments. In this Opinion article, we review the origins of the dopamine theory of addiction and discuss the ability of addictive drugs to elicit the release of dopamine in the human striatum. There is robust evidence that stimulants increase striatal dopamine levels and some evidence that alcohol may have such an effect, but little evidence, if any, that cannabis and opiates increase dopamine levels. Moreover, there is good evidence that striatal dopamine receptor availability and dopamine release are diminished in individuals with stimulant or alcohol dependence but not in individuals with opiate, nicotine or cannabis dependence. These observations have implications for understanding reward and treatment responses in various addictions.

  15. Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise.

    Science.gov (United States)

    Felger, Jennifer C; Miller, Andrew H

    2012-08-01

    Data suggest that cytokines released during the inflammatory response target subcortical structures including the basal ganglia as well as dopamine function to acutely induce behavioral changes that support fighting infection and wound healing. However, chronic inflammation and exposure to inflammatory cytokines appears to lead to persisting alterations in the basal ganglia and dopamine function reflected by anhedonia, fatigue, and psychomotor slowing. Moreover, reduced neural responses to hedonic reward, decreased dopamine metabolites in the cerebrospinal fluid and increased presynaptic dopamine uptake and decreased turnover have been described. This multiplicity of changes in the basal ganglia and dopamine function suggest fundamental effects of inflammatory cytokines on dopamine synthesis, packaging, release and/or reuptake, which may sabotage and circumvent the efficacy of current treatment approaches. Thus, examination of the mechanisms by which cytokines alter the basal ganglia and dopamine function will yield novel insights into the treatment of cytokine-induced behavioral changes and inflammatory malaise. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Unexpected global impact of VTA dopamine neuron activation as measured by opto-fMRI

    Science.gov (United States)

    Lohani, Sweyta; Poplawsky, Alexander John; Kim, Seong-Gi; Moghaddam, Bita

    2016-01-01

    Dopamine neurons in the ventral tegmental area (VTA) are strongly implicated in cognitive and affective processing as well as in psychiatric disorders including schizophrenia, ADHD and substance abuse disorders. In human studies, dopamine-related functions are routinely assessed using functional magnetic resonance imaging (fMRI) measures of blood oxygenation-level dependent (BOLD) signals during the performance of dopamine-dependent tasks. There is, however, a critical void in our knowledge about if and how activation of VTA dopamine neurons specifically influences regional or global fMRI signals. Here we used optogenetics in Th::Cre rats to selectively stimulate VTA dopamine neurons while simultaneously measuring global hemodynamic changes using BOLD and cerebral blood volume-weighted (CBVw) fMRI. Phasic activation of VTA dopamine neurons increased BOLD and CBVw fMRI signals in VTA-innervated limbic regions, including the ventral striatum (nucleus accumbens). Surprisingly, basal ganglia regions that receive sparse or no VTA dopaminergic innervation, including the dorsal striatum and the globus pallidus, were also activated. In fact, the most prominent fMRI signal increase in the forebrain was observed in the dorsal striatum that is not traditionally associated with VTA dopamine neurotransmission. These data establish causation between phasic activation of VTA dopamine neurons and global fMRI signals. They further suggest that mesolimbic and non-limbic basal ganglia dopamine circuits are functionally connected and, thus, provide a potential novel framework for understanding dopamine-dependent functions and interpreting data obtained from human fMRI studies. PMID:27457809

  17. Unexpected global impact of VTA dopamine neuron activation as measured by opto-fMRI.

    Science.gov (United States)

    Lohani, S; Poplawsky, A J; Kim, S-G; Moghaddam, B

    2017-04-01

    Dopamine neurons in the ventral tegmental area (VTA) are strongly implicated in cognitive and affective processing as well as in psychiatric disorders, including schizophrenia, depression, attention-deficit hyperactivity disorder and substance abuse disorders. In human studies, dopamine-related functions are routinely assessed using functional magnetic resonance imaging (fMRI) measures of blood oxygenation-level-dependent (BOLD) signals during the performance of dopamine-dependent tasks. There is, however, a critical void in our knowledge about whether and how activation of VTA dopamine neurons specifically influences regional or global fMRI signals. Here, we used optogenetics in Th::Cre rats to selectively stimulate VTA dopamine neurons while simultaneously measuring global hemodynamic changes using BOLD and cerebral blood volume-weighted (CBVw) fMRI. Phasic activation of VTA dopamine neurons increased BOLD and CBVw fMRI signals in VTA-innervated limbic regions, including the ventral striatum (nucleus accumbens). Surprisingly, basal ganglia regions that receive sparse or no VTA dopaminergic innervation, including the dorsal striatum and the globus pallidus, were also activated. In fact, the most prominent fMRI signal increase in the forebrain was observed in the dorsal striatum that is not traditionally associated with VTA dopamine neurotransmission. These data establish causation between phasic activation of VTA dopamine neurons and global fMRI signals. They further suggest that mesolimbic and non-limbic basal ganglia dopamine circuits are functionally connected and thus provide a potential novel framework for understanding dopamine-dependent functions and interpreting data obtained from human fMRI studies.

  18. Dopamine and Huntington's disease.

    Science.gov (United States)

    Schwab, Laetitia C; Garas, Shady N; Garas, Shaady N; Drouin-Ouellet, Janelle; Mason, Sarah L; Stott, Simon R; Barker, Roger A

    2015-04-01

    Huntington's disease (HD) is an incurable, inherited, progressive neurodegenerative disorder that is defined by a combination of motor, cognitive and psychiatric features. Pre-clinical and clinical studies have demonstrated an important role