WorldWideScience

Sample records for accumbens cortical glutamate

  1. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis

    Science.gov (United States)

    Heinsbroek, J. A.; Gipson, C. D.; Kupchik, Y. M.; Spencer, S.; Smith, A. C. W.; Roberts-Wolfe, D.; Kalivas, P. W.

    2016-01-01

    The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances. PMID:27363441

  2. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis.

    Science.gov (United States)

    Scofield, M D; Heinsbroek, J A; Gipson, C D; Kupchik, Y M; Spencer, S; Smith, A C W; Roberts-Wolfe, D; Kalivas, P W

    2016-07-01

    The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Biochemical evidence for overlapping neocortical and allocortical glutamate projections to the nucleus accumbens and rostral caudatoputamen in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Walaas, I

    1981-01-01

    The high affinity uptake of L-glutamate has been used to investigate the origin and distribution of putative glutamate fibers in restricted parts of the rostral caudatoputamen and the nucleus accumbens of the rat brain. Ablation of the frontal cortex reduced the glutamate uptake heavily (-77%) in the dorsal part of the ipsilateral caudatoputamen, but also led to significant decreases in the ventral parts of the ipsilateral caudatoputamen (-62% and -53%) in the ipsilateral nucleus accumbens (-25% and -18%) and in the contralateral dorsal part of the caudatoputamen (-21%). Lesion of the caudal neocortex reduced the glutamate uptake in the dorsal part of the ipsilateral caudatoputamen only (-23%). Lesions of the fimbria/fornix reduced the glutamate uptake in both parts of the ipsilateral nucleus accumbens (-46% and -34%) and by approximately 20% in the whole dorsoventral extent of the anterior caudatoputamen. The results indicate that the frontal neocortex distributes fibers which may use glutamate as neurotransmitter both to the whole ipsilateral caudatoputamen and to the nucleus accumbens, and also to the dorsal parts of the contralateral caudatoputamen. The caudal neocortex probably sends such fibers to the dorsal ipsilateral caudatoputamen and the caudal allocortex sends such fibers through the fimbria/fornix to the nucleus accumbens and the ventral part of the ipsilateral caudatoputamen. The results thus corroborate previous suggestions of close similarities between the nucleus accumbens and the ventral caudatoputamen.

  4. Cortical drive of low-frequency oscillations in the human nucleus accumbens during action selection.

    Science.gov (United States)

    Stenner, Max-Philipp; Litvak, Vladimir; Rutledge, Robb B; Zaehle, Tino; Schmitt, Friedhelm C; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J

    2015-07-01

    The nucleus accumbens is thought to contribute to action selection by integrating behaviorally relevant information from multiple regions, including prefrontal cortex. Studies in rodents suggest that information flow to the nucleus accumbens may be regulated via task-dependent oscillatory coupling between regions. During instrumental behavior, local field potentials (LFP) in the rat nucleus accumbens and prefrontal cortex are coupled at delta frequencies (Gruber AJ, Hussain RJ, O'Donnell P. PLoS One 4: e5062, 2009), possibly mediating suppression of afferent input from other areas and thereby supporting cortical control (Calhoon GG, O'Donnell P. Neuron 78: 181-190, 2013). In this report, we demonstrate low-frequency cortico-accumbens coupling in humans, both at rest and during a decision-making task. We recorded LFP from the nucleus accumbens in six epilepsy patients who underwent implantation of deep brain stimulation electrodes. All patients showed significant coherence and phase-synchronization between LFP and surface EEG at delta and low theta frequencies. Although the direction of this coupling as indexed by Granger causality varied between subjects in the resting-state data, all patients showed a cortical drive of the nucleus accumbens during action selection in a decision-making task. In three patients this was accompanied by a significant coherence increase over baseline. Our results suggest that low-frequency cortico-accumbens coupling represents a highly conserved regulatory mechanism for action selection. Copyright © 2015 the American Physiological Society.

  5. Glutamate concentration in the medial prefrontal cortex predicts resting-state cortical-subcortical functional connectivity in humans.

    Directory of Open Access Journals (Sweden)

    Niall W Duncan

    Full Text Available Communication between cortical and subcortical regions is integral to a wide range of psychological processes and has been implicated in a number of psychiatric conditions. Studies in animals have provided insight into the biochemical and connectivity processes underlying such communication. However, to date no experiments that link these factors in humans in vivo have been carried out. To investigate the role of glutamate in individual differences in communication between the cortex--specifically the medial prefrontal cortex (mPFC--and subcortical regions in humans, a combination of resting-state fMRI, DTI and MRS was performed. The subcortical target regions were the nucleus accumbens (NAc, dorsomedial thalamus (DMT, and periaqueductal grey (PAG. It was found that functional connectivity between the mPFC and each of the NAc and DMT was positively correlated with mPFC glutamate concentrations, whilst functional connectivity between the mPFC and PAG was negatively correlated with glutamate concentration. The correlations involving mPFC glutamate and FC between the mPFC and each of the DMT and PAG were mirrored by correlations with structural connectivity, providing evidence that the glutamatergic relationship may, in part, be due to direct connectivity. These results are in agreement with existing results from animal studies and may have relevance for MDD and schizophrenia.

  6. Traumatic Brain Injury Increases Cortical Glutamate Network Activity by Compromising GABAergic Control.

    Science.gov (United States)

    Cantu, David; Walker, Kendall; Andresen, Lauren; Taylor-Weiner, Amaro; Hampton, David; Tesco, Giuseppina; Dulla, Chris G

    2015-08-01

    Traumatic brain injury (TBI) is a major risk factor for developing pharmaco-resistant epilepsy. Although disruptions in brain circuitry are associated with TBI, the precise mechanisms by which brain injury leads to epileptiform network activity is unknown. Using controlled cortical impact (CCI) as a model of TBI, we examined how cortical excitability and glutamatergic signaling was altered following injury. We optically mapped cortical glutamate signaling using FRET-based glutamate biosensors, while simultaneously recording cortical field potentials in acute brain slices 2-4 weeks following CCI. Cortical electrical stimulation evoked polyphasic, epileptiform field potentials and disrupted the input-output relationship in deep layers of CCI-injured cortex. High-speed glutamate biosensor imaging showed that glutamate signaling was significantly increased in the injured cortex. Elevated glutamate responses correlated with epileptiform activity, were highest directly adjacent to the injury, and spread via deep cortical layers. Immunoreactivity for markers of GABAergic interneurons were significantly decreased throughout CCI cortex. Lastly, spontaneous inhibitory postsynaptic current frequency decreased and spontaneous excitatory postsynaptic current increased after CCI injury. Our results suggest that specific cortical neuronal microcircuits may initiate and facilitate the spread of epileptiform activity following TBI. Increased glutamatergic signaling due to loss of GABAergic control may provide a mechanism by which TBI can give rise to post-traumatic epilepsy. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Cortical cholinergic deficiency enhances amphetamine-induced dopamine release in the accumbens but not striatum.

    Science.gov (United States)

    Mattsson, Anna; Olson, Lars; Svensson, Torgny H; Schilström, Björn

    2007-11-01

    Cholinergic dysfunction has been implicated as a putative contributing factor in the pathogenesis of schizophrenia. Recently, we showed that cholinergic denervation of the neocortex in adult rats leads to a marked increase in the behavioral response to amphetamine. The main objective of this study was to investigate if the enhanced locomotor response to amphetamine seen after cortical cholinergic denervation was paralleled by an increased amphetamine-induced release of dopamine in the nucleus accumbens and/or striatum. The corticopetal cholinergic projections were lesioned by intraparenchymal infusion of 192 IgG-saporin into the nucleus basalis magnocellularis of adult rats. Amphetamine-induced dopamine release in the nucleus accumbens or striatum was monitored by in vivo microdialysis 2 to 3 weeks after lesioning. We found that cholinergic denervation of the rat neocortex leads to a significantly increased amphetamine-induced dopamine release in the nucleus accumbens. Interestingly, the cholinergic lesion did not affect amphetamine-induced release of dopamine in the striatum. The enhanced amphetamine-induced dopamine release in the nucleus accumbens in the cholinergically denervated rats could be reversed by administration of the muscarinic agonist oxotremorine, but not nicotine, prior to the amphetamine challenge, suggesting that loss of muscarinic receptor stimulation is likely to have caused the observed effect. The results suggest that abnormal responsiveness of dopamine neurons can be secondary to cortical cholinergic deficiency. This, in turn, might be of relevance for the pathophysiology of schizophrenia and provides a possible link between cholinergic disturbances and alteration of dopamine transmission.

  8. Laser-scanning astrocyte mapping reveals increased glutamate-responsive domain size and disrupted maturation of glutamate uptake following neonatal cortical freeze-lesion

    Directory of Open Access Journals (Sweden)

    Mortiz eArmbruster

    2014-09-01

    Full Text Available Astrocytic uptake of glutamate shapes extracellular neurotransmitter dynamics, receptor activation, and synaptogenesis. During development, glutamate transport becomes more robust. How neonatal brain insult affects the functional maturation of glutamate transport remains unanswered. Neonatal brain insult can lead to developmental delays, cognitive losses, and epilepsy; the disruption of glutamate transport is known to cause changes in synaptogenesis, receptor activation, and seizure. Using the neonatal freeze-lesion (FL model, we have investigated how insult affects the maturation of astrocytic glutamate transport. As lesioning occurs on the day of birth, a time when astrocytes are still functionally immature, this model is ideal for identifying changes in astrocyte maturation following insult. Reactive astrocytosis, astrocyte proliferation, and in vitro hyperexcitability are known to occur in this model. To probe astrocyte glutamate transport with better spatial precision we have developed a novel technique, Laser Scanning Astrocyte Mapping (LSAM, which combines glutamate transport current (TC recording from astrocytes with laser scanning glutamate photolysis. LSAM allows us to identify the area from which a single astrocyte can transport glutamate and to quantify spatial heterogeneity in the rate of glutamate clearance kinetics within that domain. Using LSAM, we report that cortical astrocytes have an increased glutamate-responsive area following FL and that TCs have faster decay times in distal, as compared to proximal processes. Furthermore, the developmental shift from GLAST- to GLT-1-dominated clearance is disrupted following FL. These findings introduce a novel method to probe astrocyte glutamate uptake and show that neonatal cortical FL disrupts the functional maturation of cortical astrocytes.

  9. TAAR1 Modulates Cortical Glutamate NMDA Receptor Function

    Science.gov (United States)

    Espinoza, Stefano; Lignani, Gabriele; Caffino, Lucia; Maggi, Silvia; Sukhanov, Ilya; Leo, Damiana; Mus, Liudmila; Emanuele, Marco; Ronzitti, Giuseppe; Harmeier, Anja; Medrihan, Lucian; Sotnikova, Tatyana D; Chieregatti, Evelina; Hoener, Marius C; Benfenati, Fabio; Tucci, Valter; Fumagalli, Fabio; Gainetdinov, Raul R

    2015-01-01

    Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions. PMID:25749299

  10. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats.

    Science.gov (United States)

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats.

  11. Inducible nitric oxide inhibitors block NMDA antagonist-stimulated motoric behaviors and medial prefrontal cortical glutamate efflux

    Directory of Open Access Journals (Sweden)

    Hadley C Bergstrom

    2015-12-01

    Full Text Available Nitric oxide (NO plays a critical role in the motoric and glutamate releasing action of N-methyl-D-aspartate (NMDA-antagonist stimulants. Earlier studies utilized neuronal nitric oxide synthase inhibitors (nNOS for studying the neurobehavioral effects of noncompetitive NMDA-antagonist stimulants such as dizocilpine (MK-801 and phencyclidine (PCP. This study explores the role of the inducible nitric oxide synthase inhibitors (iNOS aminoguanidine (AG and (--epigallocatechin-3-gallate (EGCG in NMDA-antagonist induced motoric behavior and prefrontal cortical glutamate efflux. Adult male rats were administered a dose range of AG, EGCG or vehicle prior to receiving NMDA antagonists MK-801, PCP or a conventional psychostimulant (cocaine and tested for motoric behavior in an open arena. Glutamate in the medial prefrontal cortex was measured using in vivo microdialysis after a combination of AG or EGCG prior to MK-801. Acute administration of AG or EGCG dose-dependently attenuated the locomotor and ataxic properties of MK-801 and PCP. Both AG and EGCG were unable to block the motoric effects of cocaine, indicating the acute pharmacologic action of AG and EGCG is specific to NMDA antagonism and not generalizable to all stimulant class drugs. AG and EGCG normalized MK-801-stimulated medial prefrontal cortical glutamate efflux. These data demonstrate that AG and EGCG attenuates NMDA antagonist-stimulated motoric behavior and cortical glutamate efflux. Our results suggest that EGCG-like polyphenol nutraceuticals (contained in green tea and chocolate may be clinically useful in protecting against the adverse behavioral dissociative and cortical glutamate stimulating effects of NMDA antagonists. Medications that interfere with NMDA antagonists such as MK-801 and PCP have been proposed as treatments for schizophrenia.

  12. Green Tea Polyphenols Attenuated Glutamate Excitotoxicity via Antioxidative and Antiapoptotic Pathway in the Primary Cultured Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Lin Cong

    2016-01-01

    Full Text Available Green tea polyphenols are a natural product which has antioxidative and antiapoptotic effects. It has been shown that glutamate excitotoxicity induced oxidative stress is linked to neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. In this study we explored the neuroprotective effect of green teen polyphenols against glutamate excitotoxicity in the primary cultured cortical neurons. We found that green tea polyphenols protected against glutamate induced neurotoxicity in the cortical neurons as measured by MTT and TUNEL assays. Green tea polyphenols were then showed to inhibit the glutamate induced ROS release and SOD activity reduction in the neurons. Furthermore, our results demonstrated that green tea polyphenols restored the dysfunction of mitochondrial pro- or antiapoptotic proteins Bax, Bcl-2, and caspase-3 caused by glutamate. Interestingly, the neuroprotective effect of green tea polyphenols was abrogated when the neurons were incubated with siBcl-2. Taken together, these results demonstrated that green tea polyphenols protected against glutamate excitotoxicity through antioxidative and antiapoptotic pathways.

  13. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes.

    Science.gov (United States)

    Shen, Yao; Tian, Yueyang; Shi, Xiaojie; Yang, Jianbo; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin

    2014-08-01

    Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Protection of cortical cells by equine estrogens against glutamate-induced excitotoxicity is mediated through a calcium independent mechanism

    Directory of Open Access Journals (Sweden)

    Perrella Joel

    2005-05-01

    Full Text Available Abstract Background High concentrations of glutamate can accumulate in the brain and may be involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease. This form of neurotoxicity involves changes in the regulation of cellular calcium (Ca2+ and generation of free radicals such as peroxynitrite (ONOO-. Estrogen may protect against glutamate-induced cell death by reducing the excitotoxic Ca2+ influx associated with glutamate excitotoxicity. In this study, the inhibition of N-methyl-D-aspartate (NMDA receptor and nitric oxide synthase (NOS along with the effect of 17β-estradiol (17β-E2 and a more potent antioxidant Δ8, 17β-estradiol (Δ8, 17β-E2 on cell viability and intracellular Ca2+ ([Ca2+]i, following treatment of rat cortical cells with glutamate, was investigated. Results Primary rat cortical cells were cultured for 7–12 days in Neurobasal medium containing B27 supplements. Addition of glutamate (200 μM decreased cell viability to 51.3 ± 0.7% compared to control. Treatment with the noncompetitive NMDAR antagonist, MK-801, and the NOS inhibitor, L-NAME, completely prevented cell death. Pretreatment (24 hrs with 17β-E2 and Δ8, 17β-E2 (0.01 to 10 μM significantly reduced cell death. 17β-E2 was more potent than Δ8, 17β-E2. Glutamate caused a rapid 2.5 fold increase in [Ca2+]i. Treatment with 0.001 to 10 μM MK-801 reduced the initial Ca2+ influx by 14–41% and increased cell viability significantly. Pretreatment with 17β-E2 and Δ8, 17β-E2 had no effect on Ca2+ influx but protected the cortical cells against glutamate-induced cell death. Conclusion Glutamate-induced cell death in cortical cultures can occur through NMDAR and NOS-linked mechanisms by increasing nitric oxide and ONOO-. Equine estrogens: 17β-E2 and Δ8, 17β-E2, significantly protected cortical cells against glutamate-induced excitotoxicity by a mechanism that appears to be independent of Ca2+ influx. To our knowledge, this is a first

  15. Fluctuations in nucleus accumbens extracellular glutamate and glucose during motivated glucose-drinking behavior: dissecting the neurochemistry of reward.

    Science.gov (United States)

    Wakabayashi, Ken T; Myal, Stephanie E; Kiyatkin, Eugene A

    2015-02-01

    While motivated behavior involves multiple neurochemical systems, few studies have focused on the role of glutamate, the brain's excitatory neurotransmitter, and glucose, the energetic substrate of neural activity in reward-related neural processes. Here, we used high-speed amperometry with enzyme-based substrate-sensitive and control, enzyme-free biosensors to examine second-scale fluctuations in the extracellular levels of these substances in the nucleus accumbens shell during glucose-drinking behavior in trained rats. Glutamate rose rapidly after the presentation of a glucose-containing cup and before the initiation of drinking (reward seeking), decreased more slowly to levels below baseline during consumption (sensory reward), and returned to baseline when the ingested glucose reached the brain (metabolic reward). When water was substituted for glucose, glutamate rapidly increased with cup presentation and in contrast to glucose drinking, increased above baseline after rats tasted the water and refused to drink further. Therefore, extracellular glutamate show distinct changes associated with key events of motivated drinking behavior and opposite dynamics during sensory and metabolic components of reward. In contrast to glutamate, glucose increased at each stimulus and behavioral event, showing a sustained elevation during the entire behavior and a robust post-ingestion rise that correlated with the gradual return of glutamate levels to their baseline. By comparing active drinking with passive intra-gastric glucose delivery, we revealed that fluctuations in extracellular glucose are highly dynamic, reflecting a balance between rapid delivery because of neural activity, intense metabolism, and the influence of ingested glucose reaching the brain. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  16. Crambescidin 816 induces calcium influx though glutamate receptors in primary cultures of cortical neurons

    Directory of Open Access Journals (Sweden)

    Víctor Martín Vázquez

    2014-06-01

    In summary, our data suggest that the cytotoxic effect of 10 μM Cramb816 in cortical neurons may be related to an increase in the cytosolic calcium concentration elicited by the toxin, which is shown to be mediated by glutamate receptor activation. Further studies analyzing the effect of glutamate receptor blockers on the cytotoxic effect of Cramb816 are needed to confirm this hypothesis.

  17. Ceftriaxone attenuates ethanol drinking and restores extracellular glutamate concentration through normalization of GLT-1 in nucleus accumbens of male alcohol-preferring rats.

    Science.gov (United States)

    Das, Sujan C; Yamamoto, Bryan K; Hristov, Alexandar M; Sari, Youssef

    2015-10-01

    Alteration of glutamatergic-neurotransmission is a hallmark of alcohol dependence. We have previously reported that chronic ethanol-drinking downregulated glutamate transporter 1 (GLT-1) in nucleus accumbens (NAc) in male P rats in a manner that was reversed by ceftriaxone treatment. However, the effect of ceftriaxone on extracellular glutamate concentrations in NAc after chronic ethanol-drinking has not yet been studied. In the present study, male P rats were treated with ceftriaxone (100 mg/kg/day, i.p.) for five consecutive days following five-weeks of free choice ethanol (15% and 30%) drinking. In vivo microdialysis was performed to measure the extracellular glutamate concentrations in NAc and the effect of blockade of GLT-1 with dihydrokainic acid (DHK) on extracellular glutamate in NAc of ceftriaxone-treated rats was determined. Ceftriaxone treatment attenuated ethanol intake as well as ethanol preference. Extracellular glutamate was significantly higher in NAc after five-weeks of ethanol drinking in saline-treated compared to water control rats. Ceftriaxone treatment blocked the increase extracellular glutamate produced by ethanol intake. Blockade of GLT-1 by DHK reversed the effects of ceftriaxone on glutamate and implicated the role of GLT-1 in the normalization of extracellular glutamate by ceftriaxone. In addition, GLT-1 protein was decreased in ethanol exposed animals and ceftriaxone treatment reversed this deficit. Ceftriaxone treatment also increased glutamine synthetase activity in NAc but not in PFC as compared to ethanol drinking saline-treated rats. Our present study demonstrates that ceftriaxone treatment prevents ethanol drinking in part through normalization of extracellular glutamate concentrations in NAc of male P rats via GLT-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Altered Gradients of Glutamate and Gamma-Aminobutyric Acid Transcripts in the Cortical Visuospatial Working Memory Network in Schizophrenia.

    Science.gov (United States)

    Hoftman, Gil D; Dienel, Samuel J; Bazmi, Holly H; Zhang, Yun; Chen, Kehui; Lewis, David A

    2018-04-15

    Visuospatial working memory (vsWM), which is impaired in schizophrenia, requires information transfer across multiple nodes in the cerebral cortex, including visual, posterior parietal, and dorsolateral prefrontal regions. Information is conveyed across these regions via the excitatory projections of glutamatergic pyramidal neurons located in layer 3, whose activity is modulated by local inhibitory gamma-aminobutyric acidergic (GABAergic) neurons. Key properties of these neurons differ across these cortical regions. Consequently, in schizophrenia, alterations in the expression of gene products regulating these properties could disrupt vsWM function in different ways, depending on the region(s) affected. Here, we quantified the expression of markers of glutamate and GABA neurotransmission selectively in layer 3 of four cortical regions in the vsWM network from 20 matched pairs of schizophrenia and unaffected comparison subjects. In comparison subjects, levels of glutamate transcripts tended to increase, whereas GABA transcript levels tended to decrease, from caudal to rostral, across cortical regions of the vsWM network. Composite measures across all transcripts revealed a significant effect of region, with the glutamate measure lowest in the primary visual cortex and highest in the dorsolateral prefrontal cortex, whereas the GABA measure showed the opposite pattern. In schizophrenia subjects, the expression levels of many of these transcripts were altered. However, this disease effect differed across regions, such that the caudal-to-rostral increase in the glutamate measure was blunted and the caudal-to-rostral decline in the GABA measure was enhanced in the illness. Differential alterations in layer 3 glutamate and GABA neurotransmission across cortical regions may contribute to vsWM deficits in schizophrenia. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Antagonists of group I metabotropic glutamate receptors and cortical afterdischarges in immature rats

    Czech Academy of Sciences Publication Activity Database

    Lojková-Janečková, Denisa; Ng, Jessica; Mareš, Pavel

    2009-01-01

    Roč. 50, č. 9 (2009), s. 2123-2129 ISSN 0013-9580 R&D Projects: GA ČR(CZ) GA305/06/1188 Institutional research plan: CEZ:AV0Z50110509 Keywords : cortical seizures * metabotropic glutamate receptors * development Subject RIV: FH - Neurology Impact factor: 4.052, year: 2009

  20. Effects of surgical and chemical lesions on neurotransmitter candidates in the nucleus accumbens of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Walaas, I; Fonnum, F

    1979-01-01

    The origin of fibers containing different neurotransmitter candidates in the nucleus accumbens of rat brain has been studied with surgical and chemical lesion techniques. Destruction of the medial forebrain bundle decreased the activity of aromatic amino acid decarboxylase by 80% in the nucleus. Cutting of the fornix or a hemitransection decreased the high affinity uptake of glutamate by 45% and the endogenous level of glutamate by 33%. The high affinity uptake of glutamate was concentrated in the synaptosomal fraction and the decrease after the lesion was most pronounced in this fraction. Restricted lesions indicated that fibers in the fimbria/fornix coming from the subiculum were responsible for this part of the glutamate uptake in the nucleus. Local injection of kainic acid into the nucleus was accompanied by a 75% decrease in choline acetyltransferase and a 35% decrease in acetylcholineserase activities, a 70% decrease in glutamate decarboxylase activity and a 60% decrease in the high affinity uptake of ..gamma..-aminobutyrate, a 45% decrease in high affinity glutamate uptake, and no change in aromatic amino acid decarboxylase activity. Performing a lesion of the fornix after kainic acid injection led to an 85% decrease in high affinity glutamate uptake, without further affecting the other neuronal markers. The results indicate that all aminergic fibers to the nucleus accumbens are ascending in the medial forebrain bundle, that the subiculum-accumbens fibers are glutamergic and the nucleus also contains intrinsic glutamergic or aspartergic cells. Cholinergic and ..gamma..-aminobutyrate-containing cells are wholly intrinsic to the nucleus.

  1. Prefrontal cortex modulates desire and dread generated by nucleus accumbens glutamate disruption.

    Science.gov (United States)

    Richard, Jocelyn M; Berridge, Kent C

    2013-02-15

    Corticolimbic circuits, including direct projections from prefrontal cortex to nucleus accumbens (NAc), permit top-down control of intense motivations generated by subcortical circuits. In rats, localized disruptions of glutamate signaling within medial shell of NAc generate desire or dread, anatomically organized along a rostrocaudal gradient analogous to a limbic keyboard. At rostral locations in shell, these disruptions generate appetitive eating, but at caudal locations the disruptions generate progressively fearful behaviors (distress vocalizations, escape attempts, and antipredator reactions). Here, we asked whether medial prefrontal cortex can modulate intense motivations generated by subcortical NAc disruptions. We used simultaneous microinjections in medial prefrontal cortex regions and in NAc shell to examine whether the desire or dread generated by NAc shell disruptions is modulated by activation/inhibition of three specific regions of prefrontal cortex: medial orbitofrontal cortex, infralimbic cortex (homologous to area 25 or subgenual anterior cingulate in the human), or prelimbic cortex (midventral anterior cingulate). We found that activation of medial orbitofrontal cortex biased intense bivalent motivation in an appetitive direction by amplifying generation of eating behavior by middle to caudal NAc disruptions, without altering fear. In contrast, activation of infralimbic prefrontal cortex powerfully and generally suppressed both appetitive eating and fearful behaviors generated by NAc shell disruptions. These results suggest that corticolimbic projections from discrete prefrontal regions can either bias motivational valence or generally suppress subcortically generated intense motivations of desire or fear. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Glutamate-induced apoptosis in primary cortical neurons is inhibited by equine estrogens via down-regulation of caspase-3 and prevention of mitochondrial cytochrome c release

    Directory of Open Access Journals (Sweden)

    Zhang YueMei

    2005-02-01

    Full Text Available Abstract Background Apoptosis plays a key role in cell death observed in neurodegenerative diseases marked by a progressive loss of neurons as seen in Alzheimer's disease. Although the exact cause of apoptosis is not known, a number of factors such as free radicals, insufficient levels of nerve growth factors and excessive levels of glutamate have been implicated. We and others, have previously reported that in a stable HT22 neuronal cell line, glutamate induces apoptosis as indicated by DNA fragmentation and up- and down-regulation of Bax (pro-apoptotic, and Bcl-2 (anti-apoptotic genes respectively. Furthermore, these changes were reversed/inhibited by estrogens. Several lines of evidence also indicate that a family of cysteine proteases (caspases appear to play a critical role in neuronal apoptosis. The purpose of the present study is to determine in primary cultures of cortical cells, if glutamate-induced neuronal apoptosis and its inhibition by estrogens involve changes in caspase-3 protease and whether this process is mediated by Fas receptor and/or mitochondrial signal transduction pathways involving release of cytochrome c. Results In primary cultures of rat cortical cells, glutamate induced apoptosis that was associated with enhanced DNA fragmentation, morphological changes, and up-regulation of pro-caspase-3. Exposure of cortical cells to glutamate resulted in a time-dependent cell death and an increase in caspase-3 protein levels. Although the increase in caspase-3 levels was evident after 3 h, cell death was only significantly increased after 6 h. Treatment of cells for 6 h with 1 to 20 mM glutamate resulted in a 35 to 45% cell death that was associated with a 45 to 65% increase in the expression of caspase-3 protein. Pretreatment with caspase-3-protease inhibitor z-DEVD or pan-caspase inhibitor z-VAD significantly decreased glutamate-induced cell death of cortical cells. Exposure of cells to glutamate for 6 h in the presence or

  3. Cortical Gamma-Aminobutyric Acid and Glutamate in Posttraumatic Stress Disorder and Their Relationships to Self-Reported Sleep Quality

    Science.gov (United States)

    Meyerhoff, Dieter J.; Mon, Anderson; Metzler, Thomas; Neylan, Thomas C.

    2014-01-01

    Study Objectives: To test if posttraumatic stress disorder (PTSD) is associated with low brain gamma-aminobutyric acid (GABA) levels and if reduced GABA is mediated by poor sleep quality. Design: Laboratory study using in vivo proton magnetic resonance spectroscopy (1H MRS) and behavioral testing. Setting: VA Medical Center Research Service, Psychiatry and Radiology. Patients or Participants: Twenty-seven patients with PTSD (PTSD+) and 18 trauma-exposed controls without PTSD (PTSD−), recruited from United States Army reservists, Army National Guard, and mental health clinics. Interventions: None. Measurements and Results: 1H MRS at 4 Tesla yielded spectra from three cortical brain regions. In parieto-occipital and temporal cortices, PTSD+ had lower GABA concentrations than PTSD−. As expected, PTSD+ had higher depressive and anxiety symptom scores and a higher Insomnia Severity Index (ISI) score. Higher ISI correlated with lower GABA and higher glutamate levels in parieto-occipital cortex and tended to correlate with lower GABA in the anterior cingulate. The relationship between parieto-occipital GABA and PTSD diagnosis was fully mediated through insomnia severity. Lower N-acetylaspartate and glutamate concentrations in the anterior cingulate cortex correlated with higher arousal scores, whereas depressive and anxiety symptoms did generally not influence metabolite concentrations. Conclusions: Low brain gamma-aminobutyric acid (GABA) concentration in posttraumatic stress disorder (PTSD) is consistent with most findings in panic and social anxiety disorders. Low GABA associated with poor sleep quality is consistent with the hyperarousal theory of both primary insomnia and PTSD. Our data demonstrate that poor sleep quality mediates low parieto-occipital GABA in PTSD. The findings have implications for PTSD treatment approaches. Citation: Meyerhoff DJ, Mon A, Metzler T, Neylan TC. Cortical gamma-aminobutyric acid and glutamate in posttraumatic stress disorder and

  4. SIRT1-mediated deacetylation of PGC1α attributes to the protection of curcumin against glutamate excitotoxicity in cortical neurons

    International Nuclear Information System (INIS)

    Jia, Ning; Sun, Qinru; Su, Qian; Chen, Guomin

    2016-01-01

    It is widely accepted that accumulation of extracellular glutamate mediates neuronal injuries in a number of neurological disorders via binding glutamate receptors. However, usage of the glutamate receptor antagonists aimed to prevent glutamate excitotoxicity is still controversial. As a polyphenol natural product, curcumin, has been implied multiple bioactivities. In this study, we explored whether the silent information regulator 1 (SIRT1)-peroxisome proliferator-activated receptor-coactivator 1α (PGC1α) pathway participated in the protection of curcumin against glutamate excitotoxicity. The cultured primary cortical neurons were treated with glutamate to set up a neuronal excitotoxicity model. The MTT and TUNEL methods were employed to measure cell viability and apoptosis, respectively. The mitochondrial function, the expression levels of SIRT1, PGC1α and acetylated PGC1α (ac-PGC1α) were measured to explore the mechanism of curcumin against glutamate excitotoxicity. The results showed that glutamate significantly induced cell death and apoptosis, which was blocked by pretreatment with curcumin. Meanwhile, curcumin preserved mitochondrial function, increased the expression level of SIRT1 and reduced the level of ac-PGC1α in the presence of glutamate. These results suggest that SIRT1-mediated deacetylation of PGC1α attributes to the neuroprotection of curcumin against glutamate excitotoxicity. - Highlights: • Curcumin attenuates glutamate induced cell death and apoptosis in cultured neurons. • Curcumin preserves mitochondrial function in the presence of glutamate. • Curcumin enhanced the expression of SIRT1 in the glutamate rich environment. • SIRT1-mediated deacetylation of PGC1α attributes to the neuroprotection of curcumin.

  5. An investigation of interactions between hypocretin/orexin signaling and glutamate receptor surface expression in the rat nucleus accumbens under basal conditions and after cocaine exposure.

    Science.gov (United States)

    Plaza-Zabala, Ainhoa; Li, Xuan; Milovanovic, Mike; Loweth, Jessica A; Maldonado, Rafael; Berrendero, Fernando; Wolf, Marina E

    2013-12-17

    Hypocretin peptides are critical for the effects of cocaine on excitatory synaptic strength in the ventral tegmental area (VTA). However, little is known about their role in cocaine-induced synaptic plasticity in the nucleus accumbens (NAc). First, we tested whether hypocretin-1 by itself could acutely modulate glutamate receptor surface expression in the NAc, given that hypocretin-1 in the VTA reproduces cocaine's effects on glutamate transmission. We found no effect of hypocretin-1 infusion on AMPA or NMDA receptor surface expression in the NAc, measured by biotinylation, either 30 min or 3h after the infusion. Second, we were interested in whether changes in hypocretin receptor-2 (Hcrtr-2) expression contribute to cocaine-induced plasticity in the NAc. As a first step towards addressing this question, Hcrtr-2 surface expression was compared in the NAc after withdrawal from extended-access self-administration of saline (control) versus cocaine. We found that surface Hcrtr-2 levels remain unchanged following 14, 25 or 48 days of withdrawal from cocaine, a time period in which high conductance GluA2-lacking AMPA receptors progressively emerge in the NAc. Overall, our results fail to support a role for hypocretins in acute modulation of glutamate receptor levels in the NAc or a role for altered Hcrtr-2 expression in withdrawal-dependent synaptic adaptations in the NAc following cocaine self-administration. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Excitant amino acid projections from rat amygdala and thalamus to nucleus accumbens

    International Nuclear Information System (INIS)

    Robinson, T.G.; Beart, P.M.

    1988-01-01

    High affinity uptake of D-[ 3 H]aspartate, [ 3 H]choline and [ 3 H]GABA was examined in synaptosomal-containing preparations of rat nucleus accumbens septi 7 to 10 days after unilateral or bilateral N-methyl-D-aspartate lesions confined to the parataenial nucleus of the thalamus or the basolateral nucleus of the amygdala. Uptake of both D-[ 3 H]aspartate and [ 3 H]choline was significantly reduced (11% and 14% less than control, respectively) by unilateral lesion of the thalamus, whereas [ 3 H]GABA uptake was unaffected. Bilateral thalamic lesions significantly reduced D-[ 3 H]aspartate uptake (11% less than control) into homogenates of the nucleus accumbens, whilst [ 3 H]GABA uptake was unaltered. D-[ 3 H]aspartate uptake was significantly reduced (26% less than control) following unilateral lesion of the amygdala, whereas both [ 3 H]GABA and [ 3 H]choline uptake were unaffected. Bilateral amygdaloid lesions significantly increased D-[ 3 H]aspartate uptake (39% greater than control), whilst uptake of [ 3 H]GABA was not affected. The results implicate glutamate and/or aspartate as putative neurotransmitters in afferent projections from the basolateral amygdala and the parataenial thalamus to the nucleus accumbens. Thalamic afferents to the nucleus accumbens may also utilize acetylcholine as their transmitter

  7. Dynamics of Ionic Shifts in Cortical Spreading Depression.

    Science.gov (United States)

    Enger, Rune; Tang, Wannan; Vindedal, Gry Fluge; Jensen, Vidar; Johannes Helm, P; Sprengel, Rolf; Looger, Loren L; Nagelhus, Erlend A

    2015-11-01

    Cortical spreading depression is a slowly propagating wave of near-complete depolarization of brain cells followed by temporary suppression of neuronal activity. Accumulating evidence indicates that cortical spreading depression underlies the migraine aura and that similar waves promote tissue damage in stroke, trauma, and hemorrhage. Cortical spreading depression is characterized by neuronal swelling, profound elevation of extracellular potassium and glutamate, multiphasic blood flow changes, and drop in tissue oxygen tension. The slow speed of the cortical spreading depression wave implies that it is mediated by diffusion of a chemical substance, yet the identity of this substance and the pathway it follows are unknown. Intercellular spread between gap junction-coupled neurons or glial cells and interstitial diffusion of K(+) or glutamate have been proposed. Here we use extracellular direct current potential recordings, K(+)-sensitive microelectrodes, and 2-photon imaging with ultrasensitive Ca(2+) and glutamate fluorescent probes to elucidate the spatiotemporal dynamics of ionic shifts associated with the propagation of cortical spreading depression in the visual cortex of adult living mice. Our data argue against intercellular spread of Ca(2+) carrying the cortical spreading depression wavefront and are in favor of interstitial K(+) diffusion, rather than glutamate diffusion, as the leading event in cortical spreading depression. © The Author 2015. Published by Oxford University Press.

  8. Cortical Gene Expression After a Conditional Knockout of 67 kDa Glutamic Acid Decarboxylase in Parvalbumin Neurons.

    Science.gov (United States)

    Georgiev, Danko; Yoshihara, Toru; Kawabata, Rika; Matsubara, Takurou; Tsubomoto, Makoto; Minabe, Yoshio; Lewis, David A; Hashimoto, Takanori

    2016-07-01

    In the cortex of subjects with schizophrenia, expression of glutamic acid decarboxylase 67 (GAD67), the enzyme primarily responsible for cortical GABA synthesis, is reduced in the subset of GABA neurons that express parvalbumin (PV). This GAD67 deficit is accompanied by lower cortical levels of other GABA-associated transcripts, including GABA transporter-1, PV, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B, somatostatin, GABAA receptor α1 subunit, and KCNS3 potassium channel subunit mRNAs. In contrast, messenger RNA (mRNA) levels for glutamic acid decarboxylase 65 (GAD65), another enzyme for GABA synthesis, are not altered. We tested the hypothesis that this pattern of GABA-associated transcript levels is secondary to the GAD67 deficit in PV neurons by analyzing cortical levels of these GABA-associated mRNAs in mice with a PV neuron-specific GAD67 knockout. Using in situ hybridization, we found that none of the examined GABA-associated transcripts had lower cortical expression in the knockout mice. In contrast, PV, BDNF, KCNS3, and GAD65 mRNA levels were higher in the homozygous mice. In addition, our behavioral test battery failed to detect a change in sensorimotor gating or working memory, although the homozygous mice exhibited increased spontaneous activities. These findings suggest that reduced GAD67 expression in PV neurons is not an upstream cause of the lower levels of GABA-associated transcripts, or of the characteristic behaviors, in schizophrenia. In PV neuron-specific GAD67 knockout mice, increased levels of PV, BDNF, and KCNS3 mRNAs might be the consequence of increased neuronal activity secondary to lower GABA synthesis, whereas increased GAD65 mRNA might represent a compensatory response to increase GABA synthesis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Glutamate and GABA contributions to medial prefrontal cortical activity to emotion: implications for mood disorders.

    Science.gov (United States)

    Stan, Ana D; Schirda, Claudiu V; Bertocci, Michele A; Bebko, Genna M; Kronhaus, Dina M; Aslam, Haris A; LaBarbara, Eduard J; Tanase, Costin; Lockovich, Jeanette C; Pollock, Myrna H; Stiffler, Richelle S; Phillips, Mary L

    2014-09-30

    The dorsomedial prefrontal cortex (MdPFC) and anterior cingulate cortices (ACC) play a critical role in implicit emotion regulation; however the understanding of the specific neurotransmitters that mediate such role is lacking. In this study, we examined relationships between MdPFC concentrations of two neurotransmitters, glutamate and γ-amino butyric acid (GABA), and BOLD activity in ACC during performance of an implicit facial emotion-processing task. Twenty healthy volunteers, aged 20-35 years, were scanned while performing an implicit facial emotion-processing task, whereby presented facial expressions changed from neutral to one of the four emotions: happy, anger, fear, or sad. Glutamate concentrations were measured before and after the emotion-processing task in right MdPFC using magnetic resonance spectroscopy (MRS). GABA concentrations were measured in bilateral MdPFC after the emotion-processing task. Multiple regression models were run to determine the relative contribution of glutamate and GABA concentration, age, and gender to BOLD signal in ACC to each of the four emotions. Multiple regression analyses revealed a significant negative correlation between MdPFC GABA concentration and BOLD signal in subgenual ACC (psad versus shape contrast. For the anger versus shape contrast, there was a significant negative correlation between age and BOLD signal in pregenual ACC (p<0.05, corrected) and a positive correlation between MdPFC glutamate concentration (pre-task) and BOLD signal in pregenual ACC (p<0.05, corrected). Our findings are the first to provide insight into relationships between MdPFC neurotransmitter concentrations and ACC BOLD signal, and could further understanding of molecular mechanisms underlying emotion processing in healthy and mood-disordered individuals. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Salivary kynurenic acid response to psychological stress: inverse relationship to cortical glutamate in schizophrenia.

    Science.gov (United States)

    Chiappelli, Joshua; Rowland, Laura M; Notarangelo, Francesca M; Wijtenburg, S Andrea; Thomas, Marian A R; Pocivavsek, Ana; Jones, Aaron; Wisner, Krista; Kochunov, Peter; Schwarcz, Robert; Hong, L Elliot

    2018-04-18

    Frontal glutamatergic synapses are thought to be critical for adaptive, long-term stress responses. Prefrontal cortices, including the anterior cingulate cortex (ACC) contribute to stress perception and regulation, and are involved in top-down regulation of peripheral glucocorticoid and inflammatory responses to stress. Levels of kynurenic acid (KYNA) in saliva increase in response to psychological stress, and this stress-induced effect may be abnormal in people with schizophrenia. Here we test the hypothesis that ACC glutamatergic functioning may contribute to the stress-induced salivary KYNA response in schizophrenia. In 56 patients with schizophrenia and 58 healthy controls, our results confirm that levels of KYNA in saliva increase following psychological stress. The magnitude of the effect correlated negatively with proton magnetic resonance spectroscopy (MRS) glutamate + glutamine (r = -.31, p = .017) and glutamate (r = -0.27, p = .047) levels in the ACC in patients but not in the controls (all p ≥ .45). Although, a causal relationship cannot be ascertained in this cross-sectional study, these findings suggest a potentially meaningful link between central glutamate levels and kynurenine pathway response to stress in individuals with schizophrenia.

  11. Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes

    Directory of Open Access Journals (Sweden)

    Brendan S Whitelaw

    2013-09-01

    Full Text Available We recently found evidence for anatomic and physical linkages between the astroglial Na+-dependent glutamate transporters (GLT-1/EAAT2 and GLAST/EAAT1 and mitochondria. In these same studies, we found that the glutamate dehydrogenase (GDH inhibitor, epigallocatechin-monogallate (EGCG, inhibits both glutamate oxidation and Na+-dependent glutamate uptake in astrocytes. In the present study, we extend this finding by exploring the effects of EGCG on Na+-dependent L-[3H]-glutamate (Glu uptake in crude membranes (P2 prepared from rat brain cortex. In this preparation, uptake is almost exclusively mediated by GLT-1. EGCG inhibited L-[3H]-Glu uptake in cortical membranes with an IC50 value of 230 µM. We also studied the effects of two additional inhibitors of GDH, hexachlorophene (HCP and bithionol (BTH. Both of these compounds also caused concentration-dependent inhibition of glutamate uptake in cortical membranes. Pre-incubating with HCP for up to 15 min had no greater effect than that observed with no pre-incubation, showing that the effects occur rapidly. HCP decreased the Vmax for glutamate uptake without changing the Km, consistent with a non-competitive mechanism of action. EGCG, HCP, and BTH also inhibited Na+-dependent transport of D-[3H]-aspartate (Asp, a non-metabolizable substrate, and [3H]-γ-aminobutyric acid (GABA. In contrast to the forebrain, glutamate uptake in crude cerebellar membranes (P2 is likely mediated by GLAST (EAAT1. Therefore, the effects of these compounds were examined in cerebellar membranes. In this region, none of these compounds had any effect on uptake of either L-[3H]-Glu or D-[3H]-Asp, but they all inhibited [3H]-GABA uptake. Together these studies suggest that GDH is preferentially required for glutamate uptake in forebrain as compared to cerebellum, and GDH may be required for GABA uptake as well. They also provide further evidence for a functional linkage between glutamate transport and mitochondria.

  12. Synergy by secretory phospholipase A2 and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures

    DEFF Research Database (Denmark)

    Kolko, M; DeCoster, M A; de Turco, E B

    1996-01-01

    glutamate and sPLA2 from bee venom. sPLA2, at concentrations eliciting low neurotoxicity (acid into triacylglycerols. Free [3H]arachidonic acid accumulated at higher enzyme concentrations......, from Taipan snake venom. The NMDA receptor antagonist MK-801 blocked glutamate effects and partially inhibited sPLA2 OS2 but not sPLA2 from bee venom-induced arachidonic acid release. Thus, the synergy with glutamate and very low concentrations of exogenously added sPLA2 suggests a potential role......Secretory and cytosolic phospholipases A2 (sPLA2 and cPLA2) may contribute to the release of arachidonic acid and other bioactive lipids, which are modulators of synaptic function. In primary cortical neuron cultures, neurotoxic cell death and [3H]arachidonate metabolism was studied after adding...

  13. Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens.

    Science.gov (United States)

    Bardo, M T

    1998-01-01

    Multiple lines of research have implicated the mesolimbic dopamine system in drug reward measured by either the drug self-administration or conditioned place preference paradigm. The present review summarizes recent work that examines the neuropharmacological mechanisms by which drugs impinge on this dopaminergic neural circuitry, as well as other systems that provide input and output circuits to the mesolimbic dopamine system. Studies examining the effect of selective agonist and antagonist drugs administered systemically have indicated that multiple neurotransmitters are involved, including dopamine, serotonin, acetylcholine, glutamate, GABA, and various peptides. Direct microinjection studies have also provided crucial evidence indicating that, in addition to the mesolimbic dopamine system, other structures play a role in drug reward, including the ventral pallidum, amygdala, hippocampus, hypothalamus, and pedunculopontine tegmental nucleus. GABAergic circuitry descending from the nucleus accumbens to the pedunculopontine tegmental nucleus via the ventral pallidum appears to be especially important in directing the behavioral sequelae associated with reward produced by various drugs of abuse. However, activation of the reward circuitry is achieved differently for various drugs of abuse. With amphetamine and cocaine, initiation of reward is controlled within the nucleus accumbens and prefrontal cortex, respectively. With opiates, initiation of reward involves the ventral tegmental area, nucleus accumbens, hippocampus, and hypothalamus. It is not clear presently if these multiple anatomical structures mediate opiate reward by converging on a single output system or multiple output systems.

  14. Cortical gamma-aminobutyric acid and glutamate in posttraumatic stress disorder and their relationships to self-reported sleep quality.

    Science.gov (United States)

    Meyerhoff, Dieter J; Mon, Anderson; Metzler, Thomas; Neylan, Thomas C

    2014-05-01

    To test if posttraumatic stress disorder (PTSD) is associated with low brain gamma-aminobutyric acid (GABA) levels and if reduced GABA is mediated by poor sleep quality. Laboratory study using in vivo proton magnetic resonance spectroscopy (1H MRS) and behavioral testing. VA Medical Center Research Service, Psychiatry and Radiology. Twenty-seven patients with PTSD (PTSD+) and 18 trauma-exposed controls without PTSD (PTSD-), recruited from United States Army reservists, Army National Guard, and mental health clinics. None. 1H MRS at 4 Tesla yielded spectra from three cortical brain regions. In parieto-occipital and temporal cortices, PTSD+ had lower GABA concentrations than PTSD-. As expected, PTSD+ had higher depressive and anxiety symptom scores and a higher Insomnia Severity Index (ISI) score. Higher ISI correlated with lower GABA and higher glutamate levels in parieto-occipital cortex and tended to correlate with lower GABA in the anterior cingulate. The relationship between parieto-occipital GABA and PTSD diagnosis was fully mediated through insomnia severity. Lower N-acetylaspartate and glutamate concentrations in the anterior cingulate cortex correlated with higher arousal scores, whereas depressive and anxiety symptoms did generally not influence metabolite concentrations. Low brain gamma-aminobutyric acid (GABA) concentration in posttraumatic stress disorder (PTSD) is consistent with most findings in panic and social anxiety disorders. Low GABA associated with poor sleep quality is consistent with the hyperarousal theory of both primary insomnia and PTSD. Our data demonstrate that poor sleep quality mediates low parieto-occipital GABA in PTSD. The findings have implications for PTSD treatment approaches.

  15. Modulation of gene expression of adenosine and metabotropic glutamate receptors in rat's neuronal cells exposed to L-glutamate and [60]fullerene.

    Science.gov (United States)

    Giust, Davide; Da Ros, Tatiana; Martín, Mairena; Albasanz, José Luis

    2014-08-01

    L-Glutamate (L-Glu) has been often associated not only to fundamental physiological roles, as learning and memory, but also to neuronal cell death and the genesis and development of important neurodegenerative diseases. Herein we studied the variation in the adenosine and metabotropic glutamate receptors expression induced by L-Glu treatment in rat's cortical neurons. The possibility to have structural alteration of the cells induced by L-Glu (100 nM, 1 and 10 microM) has been addressed, studying the modulation of microtubule associated protein-2 (MAP-2) and neurofilament heavy polypeptide (NEFH), natively associated proteins to the dendritic shape maintenance. Results showed that the proposed treatments were not destabilizing the cells, so the L-Glu concentrations were acceptable to investigate fluctuation in receptors expression, which were studied by RT-PCR. Interestingly, C60 fullerene derivative t3ss elicited a protective effect against glutamate toxicity, as demonstrated by MTT assay. In addition, t3ss compound exerted a different effect on the adenosine and metabotropic glutamate receptors analyzed. Interestingly, A(2A) and mGlu1 mRNAs were significantly decreased in conditions were t3ss neuroprotected cortical neurons from L-Glu toxicity. In summary, t3ss protects neurons from glutamate toxicity in a process that appears to be associated with the modulation of the gene expression of adenosine and metabotropic glutamate receptors.

  16. Norepinephrine in the Medial Pre-frontal Cortex Supports Accumbens Shell Responses to a Novel Palatable Food in Food-Restricted Mice Only

    Directory of Open Access Journals (Sweden)

    Emanuele Claudio Latagliata

    2018-01-01

    Full Text Available Previous findings from this laboratory demonstrate: (1 that different classes of addictive drugs require intact norepinephrine (NE transmission in the medial pre Frontal Cortex (mpFC to promote conditioned place preference and to increase dopamine (DA tone in the nucleus accumbens shell (NAc Shell; (2 that only food-restricted mice require intact NE transmission in the mpFC to develop conditioned preference for a context associated with milk chocolate; and (3 that food-restricted mice show a significantly larger increase of mpFC NE outflow then free fed mice when experiencing the palatable food for the first time. In the present study we tested the hypothesis that only the high levels of frontal cortical NE elicited by the natural reward in food restricted mice stimulate mesoaccumbens DA transmission. To this aim we investigated the ability of a first experience with milk chocolate to increase DA outflow in the accumbens Shell and c-fos expression in striatal and limbic areas of food–restricted and ad-libitum fed mice. Moreover, we tested the effects of a selective depletion of frontal cortical NE on both responses in either feeding group. Only in food-restricted mice milk chocolate induced an increase of DA outflow beyond baseline in the accumbens Shell and a c-fos expression larger than that promoted by a novel inedible object in the nucleus accumbens. Moreover, depletion of frontal cortical NE selectively prevented both the increase of DA outflow and the large expression of c-fos promoted by milk chocolate in the NAc Shell of food-restricted mice. These findings support the conclusion that in food-restricted mice a novel palatable food activates the motivational circuit engaged by addictive drugs and support the development of noradrenergic pharmacology of motivational disturbances.

  17. High glutamate attenuates S100B and LDH outputs from rat cortical slices enhanced by either oxygen-glucose deprivation or menadione.

    Science.gov (United States)

    Demircan, Celaleddin; Gül, Zülfiye; Büyükuysal, R Levent

    2014-07-01

    One hour incubation of rat cortical slices in a medium without oxygen and glucose (oxygen-glucose deprivation, OGD) increased S100B release to 6.53 ± 0.3 ng/ml/mg protein from its control value of 3.61 ± 0.2 ng/ml/mg protein. When these slices were then transferred to a medium containing oxygen and glucose (reoxygenation, REO), S100B release rose to 344 % of its control value. REO also caused 192 % increase in lactate dehydrogenase (LDH) leakage. Glutamate added at millimolar concentration into the medium decreased OGD or REO-induced S100B release and REO-induced LDH leakage. Alpha-ketoglutarate, a metabolic product of glutamate, was found to be as effective as glutamate in decreasing the S100B and LDH outputs. Similarly lactate, 2-ketobutyrate and ethyl pyruvate, a lipophilic derivative of pyruvate, also exerted a glutamate-like effect on S100B and LDH outputs. Preincubation with menadione, which produces H2O2 intracellularly, significantly increased S100B and LDH levels in normoxic medium. All drugs tested in the present study, with the exception of pyruvate, showed a complete protection against menadione preincubation. Additionally, each OGD-REO, menadione or H2O2-induced mitochondrial energy impairments determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining and OGD-REO or menadione-induced increases in reactive oxygen substances (ROS) determined by 2,7-dichlorofluorescin diacetate (DCFH-DA) were also recovered by glutamate. Interestingly, H2O2-induced increase in fluorescence intensity derived from DCFH-DA in a slice-free physiological medium was attenuated significantly by glutamate and alpha-keto acids. All these drug actions support the conclusion that high glutamate, such as alpha-ketoglutarate and other keto acids, protects the slices against OGD- and REO-induced S100B and LDH outputs probably by scavenging ROS in addition to its energy substrate metabolite property.

  18. The Marine Guanidine Alkaloid Crambescidin 816 Induces Calcium Influx and Cytotoxicity in Primary Cultures of Cortical Neurons through Glutamate Receptors.

    Science.gov (United States)

    Mendez, Aida G; Juncal, Andrea Boente; Silva, Siguara B L; Thomas, Olivier P; Martín Vázquez, Víctor; Alfonso, Amparo; Vieytes, Mercedes R; Vale, Carmen; Botana, Luís M

    2017-07-19

    Crambescidin 816 is a guanidine alkaloid produced by the sponge Crambe crambe with known antitumoral activity. While the information describing the effects of this alkaloid in central neurons is scarce, Cramb816 is known to block voltage dependent calcium channels being selective for L-type channels. Moreover, Cramb816 reduced neuronal viability through an unknown mechanism. Here, we aimed to describe the toxic activity of Cramb816 in cortical neurons. Since calcium influx is considered the main mechanism responsible for neuronal cell death, the effects of Cramb816 in the cytosolic calcium concentration of cortical neurons were studied. The alkaloid decreased neuronal viability and induced a dose-dependent increase in cytosolic calcium that was also related to the presence of calcium in the extracellular media. The increase in calcium influx was age dependent, being higher in younger neurons. Moreover, this effect was prevented by glutamate receptor antagonists, which did not fully block the cytotoxic effect of Cramb816 after 24 h of treatment but completely prevented Cramb816 cytotoxicity after 10 min exposure. Therefore, the findings presented herein provide new insights into the cytotoxic effect of Cramb816 in cortical neurons.

  19. Altered morphology of the nucleus accumbens in persistent developmental stuttering.

    Science.gov (United States)

    Neef, Nicole E; Bütfering, Christoph; Auer, Tibor; Metzger, F Luise; Euler, Harald A; Frahm, Jens; Paulus, Walter; Sommer, Martin

    2018-03-01

    Neuroimaging studies in persistent developmental stuttering repeatedly report altered basal ganglia functions. Together with thalamus and cerebellum, these structures mediate sensorimotor functions and thus represent a plausible link between stuttering and neuroanatomy. However, stuttering is a complex, multifactorial disorder. Besides sensorimotor functions, emotional and social-motivational factors constitute major aspects of the disorder. Here, we investigated cortical and subcortical gray matter regions to study whether persistent developmental stuttering is also linked to alterations of limbic structures. The study included 33 right-handed participants who stutter and 34 right-handed control participants matched for sex, age, and education. Structural images were acquired using magnetic resonance imaging to estimate volumetric characteristics of the nucleus accumbens, hippocampus, amygdala, pallidum, putamen, caudate nucleus, and thalamus. Volumetric comparisons and vertex-based shape comparisons revealed structural differences. The right nucleus accumbens was larger in participants who stutter compared to controls. Recent theories of basal ganglia functions suggest that the nucleus accumbens is a motivation-to-movement interface. A speaker intends to reach communicative goals, but stuttering can derail these efforts. It is therefore highly plausible to find alterations in the motivation-to-movement interface in stuttering. While behavioral studies of stuttering sought to find links between the limbic and sensorimotor system, we provide the first neuroimaging evidence of alterations in the limbic system. Thus, our findings might initialize a unified neurobiological framework of persistent developmental stuttering that integrates sensorimotor and social-motivational neuroanatomical circuitries. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Agmatine Prevents Adaptation of the Hippocampal Glutamate System in Chronic Morphine-Treated Rats.

    Science.gov (United States)

    Wang, Xiao-Fei; Zhao, Tai-Yun; Su, Rui-Bin; Wu, Ning; Li, Jin

    2016-12-01

    Chronic exposure to opioids induces adaptation of glutamate neurotransmission, which plays a crucial role in addiction. Our previous studies revealed that agmatine attenuates opioid addiction and prevents the adaptation of glutamate neurotransmission in the nucleus accumbens of chronic morphine-treated rats. The hippocampus is important for drug addiction; however, whether adaptation of glutamate neurotransmission is modulated by agmatine in the hippocampus remains unknown. Here, we found that continuous pretreatment of rats with ascending doses of morphine for 5 days resulted in an increase in the hippocampal extracellular glutamate level induced by naloxone (2 mg/kg, i.p.) precipitation. Agmatine (20 mg/kg, s.c.) administered concurrently with morphine for 5 days attenuated the elevation of extracellular glutamate levels induced by naloxone precipitation. Furthermore, in the hippocampal synaptosome model, agmatine decreased the release and increased the uptake of glutamate in synaptosomes from chronic morphine-treated rats, which might contribute to the reduced elevation of glutamate levels induced by agmatine. We also found that expression of the hippocampal NR2B subunit, rather than the NR1 subunit, of N-methyl-D-aspartate receptors (NMDARs) was down-regulated after chronic morphine treatment, and agmatine inhibited this reduction. Taken together, agmatine prevented the adaptation of the hippocampal glutamate system caused by chronic exposure to morphine, including modulating extracellular glutamate concentration and NMDAR expression, which might be one of the mechanisms underlying the attenuation of opioid addiction by agmatine.

  1. Differential alterations of cortical glutamatergic binding sites in senile dementia of the Alzheimer type

    International Nuclear Information System (INIS)

    Chalmers, D.T.; Dewar, D.; Graham, D.I.; Brooks, D.N.; McCulloch, J.

    1990-01-01

    Involvement of cortical glutamatergic mechanisms in senile dementia of the Alzheimer type (SDAT) has been investigated with quantitative ligand-binding autoradiography. The distribution and density of Na(+)-dependent glutamate uptake sites and glutamate receptor subtypes--kainate, quisqualate, and N-methyl-D-aspartate--were measured in adjacent sections of frontal cortex obtained postmortem from six patients with SDAT and six age-matched controls. The number of senile plaques was determined in the same brain region. Binding of D-[3H]aspartate to Na(+)-dependent uptake sites was reduced by approximately 40% throughout SDAT frontal cortex relative to controls, indicating a general loss of glutamatergic presynaptic terminals. [3H]Kainate receptor binding was significantly increased by approximately 70% in deep layers of SDAT frontal cortex compared with controls, whereas this binding was unaltered in superficial laminae. There was a positive correlation (r = 0.914) between kainate binding and senile plaque number in deep cortical layers. Quisqualate receptors, as assessed by 2-amino-3-hydroxy-5-[3H]methylisoxazole-4-propionic acid binding, were unaltered in SDAT frontal cortex compared with controls. There was a small reduction (25%) in N-methyl-D-aspartate-sensitive [3H]glutamate binding only in superficial cortical layers of SDAT brains relative to control subjects. [3H]Glutamate binding in SDAT subjects was unrelated to senile plaque number in superficial cortical layers (r = 0.104). These results indicate that in the presence of cortical glutamatergic terminal loss in SDAT plastic alterations occur in some glutamate receptor subtypes but not in others

  2. GABA and glutamate in schizophrenia: a 7 T ¹H-MRS study.

    Science.gov (United States)

    Marsman, Anouk; Mandl, René C W; Klomp, Dennis W J; Bohlken, Marc M; Boer, Vincent O; Andreychenko, Anna; Cahn, Wiepke; Kahn, René S; Luijten, Peter R; Hulshoff Pol, Hilleke E

    2014-01-01

    Schizophrenia is characterized by loss of brain volume, which may represent an ongoing pathophysiological process. This loss of brain volume may be explained by reduced neuropil rather than neuronal loss, suggesting abnormal synaptic plasticity and cortical microcircuitry. A possible mechanism is hypofunction of the NMDA-type of glutamate receptor, which reduces the excitation of inhibitory GABAergic interneurons, resulting in a disinhibition of glutamatergic pyramidal neurons. Disinhibition of pyramidal cells may result in excessive stimulation by glutamate, which in turn could cause neuronal damage or death through excitotoxicity. In this study, GABA/creatine ratios, and glutamate, NAA, creatine and choline concentrations in the prefrontal and parieto-occipital cortices were measured in 17 patients with schizophrenia and 23 healthy controls using proton magnetic resonance spectroscopy at an ultra-high magnetic field strength of 7 T. Significantly lower GABA/Cr ratios were found in patients with schizophrenia in the prefrontal cortex as compared to healthy controls, with GABA/Cr ratios inversely correlated with cognitive functioning in the patients. No significant change in the GABA/Cr ratio was found between patients and controls in the parieto-occipital cortex, nor were levels of glutamate, NAA, creatine, and choline differed in patients and controls in the prefrontal and parieto-occipital cortices. Our findings support a mechanism involving altered GABA levels distinguished from glutamate levels in the medial prefrontal cortex in schizophrenia, particularly in high functioning patients. A (compensatory) role for GABA through altered inhibitory neurotransmission in the prefrontal cortex may be ongoing in (higher functioning) patients with schizophrenia.

  3. Adolescent Mice Are Resilient to Alcohol Withdrawal-Induced Anxiety and Changes in Indices of Glutamate Function within the Nucleus Accumbens.

    Science.gov (United States)

    Lee, Kaziya M; Coelho, Michal A; McGregor, Hadley A; Solton, Noah R; Cohen, Matan; Szumlinski, Karen K

    2016-01-01

    Binge-drinking is the most prevalent form of alcohol abuse and while an early life history of binge-drinking is a significant risk factor for subsequent alcoholism and co-morbid affective disorders, relatively little is known regarding the biobehavioral impact of binge-drinking during the sensitive neurodevelopmental period of adolescence. In adult mice, a month-long history of binge-drinking elicits a hyper-glutamatergic state within the nucleus accumbens (Acb), coinciding with hyper-anxiety. Herein, we employed a murine model of binge-drinking to determine whether or not: (1) withdrawal-induced changes in brain and behavior differ between adult and adolescent bingers; and (2) increased behavioral signs of negative affect and changes in Acb expression of glutamate-related proteins would be apparent in adult mice with less chronic binge-drinking experience (14 days, approximating the duration of mouse adolescence). Adult and adolescent male C57BL/6J mice were subjected to a 14-day binge-drinking protocol (5, 10, 20 and 40% alcohol (v/v) for 2 h/day), while age-matched controls received water. At 24 h withdrawal, half of the animals from each group were assayed for negative affect, while tissue was sampled from the shell (AcbSh) and core (AcbC) subregions of the remaining mice for immunoblotting analyses. Adult bingers exhibited hyper-anxiety when tested for defensive marble burying. Additionally, adult bingers showed increased mGlu1, mGlu5, and GluN2b expression in the AcbSh and PKCε and CAMKII in the AcbC. Compared to adults, adolescent mice exhibited higher alcohol intake and blood alcohol concentrations (BACs); however, adolescent bingers did not show increased anxiety in the marble-burying test. Furthermore, adolescent bingers also failed to exhibit the same alcohol-induced changes in mGlu and kinase protein expression seen in the adult bingers. Irrespective of age, bingers exhibited behavioral hyperactivity in the forced swim test (FST) compared to water

  4. Adolescent mice are resilient to alcohol withdrawal-induced anxiety and changes in indices of glutamate function within the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Kaziya M Lee

    2016-11-01

    Full Text Available Binge-drinking is the most prevalent form of alcohol abuse and while an early life history of binge-drinking is a significant risk factor for subsequent alcoholism and co-morbid affective disorders, relatively little is known regarding the biobehavioral impact of binge-drinking during the sensitive neurodevelopmental period of adolescence. In adult mice, a month-long history of binge-drinking elicits a hyper-glutamatergic state within the nucleus accumbens (Acb, coinciding with hyper-anxiety. Herein, we employed a murine model of binge-drinking to determine whether or not: 1 withdrawal-induced changes in brain and behavior differ between adult and adolescent bingers and 2 increased behavioral signs of negative affect and changes in Acb expression of glutamate-related proteins would be apparent in adult mice with less chronic binge-drinking experience (14 days, approximating the duration of mouse adolescence. Adult and adolescent male C57BL/6J mice were subjected to a 14-day binge-drinking protocol (5, 10, 20 and 40% alcohol (v/v for 2 h/day, while age-matched controls received water. At 24 h withdrawal, half of the animals from each group were assayed for negative affect, while tissue was sampled from the shell (AcbSh and core (AcbC subregions of the remaining mice for immunoblotting analyses. Adult bingers exhibited hyper-anxiety when tested for defensive marble burying. Additionally, adult bingers showed increased mGlu1, mGlu5, and GluN2b expression in the AcbSh and PKCε and CAMKII in the AcbC. Compared to adults, adolescent mice exhibited higher alcohol intake and blood alcohol concentrations; however, adolescent bingers did not show increased anxiety in the marble-burying test. Furthermore, adolescent bingers also failed to exhibit the same alcohol-induced changes in mGlu and kinase protein expression seen in the adult bingers. Irrespective of age, bingers exhibited behavioral hyperactivity in the forced swim test compared to water drinkers

  5. Peri-adolescent drinking of ethanol and/or nicotine modulates astroglial glutamate transporters and metabotropic glutamate receptor-1 in female alcohol-preferring rats.

    Science.gov (United States)

    Alasmari, Fawaz; Bell, Richard L; Rao, P S S; Hammad, Alaa M; Sari, Youssef

    2018-07-01

    Impairment in glutamate neurotransmission mediates the development of dependence upon nicotine (NIC) and ethanol (EtOH). Previous work indicates that continuous access to EtOH or phasic exposure to NIC reduces expression of the glutamate transporter-1 (GLT-1) and cystine/glutamate antiporter (xCT) but not the glutamate/aspartate transporter (GLAST). Additionally, metabotropic glutamate receptors (mGluRs) expression was affected following exposure to EtOH or NIC. However, little is known about the effects of EtOH and NIC co-consumption on GLT-1, xCT, GLAST, and mGluR1 expression. In this study, peri-adolescent female alcohol preferring (P) rats were given binge-like access to water, sucrose (SUC), SUC-NIC, EtOH, or EtOH-NIC for four weeks. The present study determined the effects of these reinforcers on GLT-1, xCT, GLAST, and mGluR1 expression in the nucleus accumbens (NAc), hippocampus (HIP) and prefrontal cortex (PFC). GLT-1 and xCT expression were decreased in the NAc following both SUC-NIC and EtOH-NIC. In addition, only xCT expression was downregulated in the HIP in both of these latter groups. Also, glutathione peroxidase (GPx) activity in the HIP was reduced following SUC, SUC-NIC, EtOH, and EtOH-NIC consumption. Similar to previous work, GLAST expression was not altered in any brain region by any of the reinforcers. However, mGluR1 expression was increased in the NAc in the SUC-NIC, EtOH, and EtOH-NIC groups. These results indicate that peri-adolescent binge-like drinking of EtOH or SUC with or without NIC may exert differential effects on astroglial glutamate transporters and receptors. Our data further parallel some of the previous findings observed in adult rats. Copyright © 2018. Published by Elsevier Inc.

  6. Effects of aromatic amino acids on glutamate-induced neuronal cell death

    International Nuclear Information System (INIS)

    Zafar, Z.; Sumners, C.

    2005-01-01

    Glutamate accumulation is believed to lead to overstimulation of glutamate receptors which results in neuronal death. The protective effects of aromatic amino acids on glutamate induced neuronal cell death were examined using rat cerebral cortical neurons. Neuronal death is quantified by measuring lactate dehydrogenase (LDH) using a spectrophotometric microtiter plate reader (ELISA reader). Neuronal cells were incubated with varying doses of glutamate plus or minus the aromatic amino acid D-Phenylalanine (D-Phe) for different time periods to observe protection against cytotoxicity. Percent cytotoxicity was seen to follow a dose dependent rise with increasing concentrations of glutamate, reaching a plateau at around 100 -500 uM glutamate. Lower levels of cytotoxicity were achieved with cell exposed to D-Phe and Dibromo tyrosine (DBrT). 48-hour experimental runs were also carried out to further investigate the mode of action of D-Phe. It was found that the difference between cytotoxicity levels of control cells and protected cells was higher over longer time. (author)

  7. GABA and glutamate in schizophrenia: A 7 T 1H-MRS study

    Directory of Open Access Journals (Sweden)

    Anouk Marsman

    2014-01-01

    In this study, GABA/creatine ratios, and glutamate, NAA, creatine and choline concentrations in the prefrontal and parieto-occipital cortices were measured in 17 patients with schizophrenia and 23 healthy controls using proton magnetic resonance spectroscopy at an ultra-high magnetic field strength of 7 T. Significantly lower GABA/Cr ratios were found in patients with schizophrenia in the prefrontal cortex as compared to healthy controls, with GABA/Cr ratios inversely correlated with cognitive functioning in the patients. No significant change in the GABA/Cr ratio was found between patients and controls in the parieto-occipital cortex, nor were levels of glutamate, NAA, creatine, and choline differed in patients and controls in the prefrontal and parieto-occipital cortices. Our findings support a mechanism involving altered GABA levels distinguished from glutamate levels in the medial prefrontal cortex in schizophrenia, particularly in high functioning patients. A (compensatory role for GABA through altered inhibitory neurotransmission in the prefrontal cortex may be ongoing in (higher functioning patients with schizophrenia.

  8. Cortico-cortical communication dynamics

    Directory of Open Access Journals (Sweden)

    Per E Roland

    2014-05-01

    Full Text Available IIn principle, cortico-cortical communication dynamics is simple: neurons in one cortical area communicate by sending action potentials that release glutamate and excite their target neurons in other cortical areas. In practice, knowledge about cortico-cortical communication dynamics is minute. One reason is that no current technique can capture the fast spatio-temporal cortico-cortical evolution of action potential transmission and membrane conductances with sufficient spatial resolution. A combination of optogenetics and monosynaptic tracing with virus can reveal the spatio-temporal cortico-cortical dynamics of specific neurons and their targets, but does not reveal how the dynamics evolves under natural conditions. Spontaneous ongoing action potentials also spread across cortical areas and are difficult to separate from structured evoked and intrinsic brain activity such as thinking. At a certain state of evolution, the dynamics may engage larger populations of neurons to drive the brain to decisions, percepts and behaviors. For example, successfully evolving dynamics to sensory transients can appear at the mesoscopic scale revealing how the transient is perceived. As a consequence of these methodological and conceptual difficulties, studies in this field comprise a wide range of computational models, large-scale measurements (e.g., by MEG, EEG, and a combination of invasive measurements in animal experiments. Further obstacles and challenges of studying cortico-cortical communication dynamics are outlined in this critical review.

  9. The effect of nucleotides and adenosine on stimulus-evoked glutamate release from rat brain cortical slices.

    Science.gov (United States)

    Bennett, G C; Boarder, M R

    2000-10-01

    Evidence has previously been presented that P1 receptors for adenosine, and P2 receptors for nucleotides such as ATP, regulate stimulus-evoked release of biogenic amines from nerve terminals in the brain. Here we investigated whether adenosine and nucleotides exert presynaptic control over depolarisation-elicited glutamate release. Slices of rat brain cortex were perfused and stimulated with pulses of 46 mM K(+) in the presence of the glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (0.2 mM). High K(+) substantially increased efflux of glutamate from the slices. Basal glutamate release was unchanged by the presence of nucleotides or adenosine at concentrations of 300 microM. Adenosine, ATP, ADP and adenosine 5'-O-(3-thiotriphoshate) at 300 microM attenuated depolarisation-evoked release of glutamate. However UTP, 2-methylthio ATP, 2-methylthio ADP, and alpha,beta-methylene ATP at 300 microM had no effect on stimulated glutamate efflux. Adenosine deaminase blocked the effect of adenosine, but left the response to ATP unchanged. The A(1) antagonist 8-cyclopentyl-1, 3-dipropylxanthine antagonised the inhibitory effect of both adenosine and ATP. Cibacron blue 3GA inhibited stimulus-evoked glutamate release when applied alone. When cibacron blue 3GA was present with ATP, stimulus-evoked glutamate release was almost eliminated. However, this P2 antagonist had no effect on the inhibition by adenosine. These results show that the release of glutamate from depolarised nerve terminals of the rat cerebral cortex is inhibited by adenosine and ATP. ATP appears to act directly and not through conversion to adenosine.

  10. Distinct Neurochemical Adaptations Within the Nucleus Accumbens Produced by a History of Self-Administered vs Non-Contingently Administered Intravenous Methamphetamine

    Science.gov (United States)

    Lominac, Kevin D; Sacramento, Arianne D; Szumlinski, Karen K; Kippin, Tod E

    2012-01-01

    Methamphetamine is a highly addictive psychomotor stimulant yet the neurobiological consequences of methamphetamine self-administration remain under-characterized. Thus, we employed microdialysis in rats trained to self-administer intravenous (IV) infusions of methamphetamine (METH-SA) or saline (SAL) and a group of rats receiving non-contingent IV infusions of methamphetamine (METH-NC) at 1 or 21 days withdrawal to determine the dopamine and glutamate responses in the nucleus accumbens (NAC) to a 2 mg/kg methamphetamine intraperitoneal challenge. Furthermore, basal NAC extracellular glutamate content was assessed employing no net-flux procedures in these three groups at both time points. At both 1- and 21-day withdrawal points, methamphetamine elicited a rise in extracellular dopamine in SAL animals and this effect was sensitized in METH-NC rats. However, METH-SA animals showed a much greater sensitized dopamine response to the drug challenge compared with the other groups. Additionally, acute methamphetamine decreased extracellular glutamate in both SAL and METH-NC animals at both time-points. In contrast, METH-SA rats exhibited a modest and delayed rise in glutamate at 1-day withdrawal and this rise was sensitized at 21 days withdrawal. Finally, no net-flux microdialysis revealed elevated basal glutamate and increased extraction fraction at both withdrawal time-points in METH-SA rats. Although METH-NC rats exhibited no change in the glutamate extraction fraction, they exhibited a time-dependent elevation in basal glutamate levels. These data illustrate for the first time that a history of methamphetamine self-administration produces enduring changes in NAC neurotransmission and that non-pharmacological factors have a critical role in the expression of these methamphetamine-induced neurochemical adaptations. PMID:22030712

  11. Metabolic activation of amygdala, lateral septum and accumbens circuits during food anticipatory behavior.

    Science.gov (United States)

    Olivo, Diana; Caba, Mario; Gonzalez-Lima, Francisco; Rodríguez-Landa, Juan F; Corona-Morales, Aleph A

    2017-01-01

    When food is restricted to a brief fixed period every day, animals show an increase in temperature, corticosterone concentration and locomotor activity for 2-3h before feeding time, termed food anticipatory activity. Mechanisms and neuroanatomical circuits responsible for food anticipatory activity remain unclear, and may involve both oscillators and networks related to temporal conditioning. Rabbit pups are nursed once-a-day so they represent a natural model of circadian food anticipatory activity. Food anticipatory behavior in pups may be associated with neural circuits that temporally anticipate feeding, while the nursing event may produce consummatory effects. Therefore, we used New Zealand white rabbit pups entrained to circadian feeding to investigate the hypothesis that structures related to reward expectation and conditioned emotional responses would show a metabolic rhythm anticipatory of the nursing event, different from that shown by structures related to reward delivery. Quantitative cytochrome oxidase histochemistry was used to measure regional brain metabolic activity at eight different times during the day. We found that neural metabolism peaked before nursing, during food anticipatory behavior, in nuclei of the extended amygdala (basolateral, medial and central nuclei, bed nucleus of the stria terminalis), lateral septum and accumbens core. After pups were fed, however, maximal metabolic activity was expressed in the accumbens shell, caudate, putamen and cortical amygdala. Neural and behavioral activation persisted when animals were fasted by two cycles, at the time of expected nursing. These findings suggest that metabolic activation of amygdala-septal-accumbens circuits involved in temporal conditioning may contribute to food anticipatory activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes.

    Science.gov (United States)

    Lalo, Ulyana; Pankratov, Yuri; Kirchhoff, Frank; North, R Alan; Verkhratsky, Alexei

    2006-03-08

    Chemical transmission between neurons and glial cells is an important element of integration in the CNS. Here, we describe currents activated by NMDA in cortical astrocytes, identified in transgenic mice that express enhanced green fluorescent protein under control of the human glial fibrillary acidic protein promoter. Astrocytes were studied by whole-cell voltage clamp either in slices or after gentle nonenzymatic mechanical dissociation. Acutely isolated astrocytes showed a three-component response to glutamate. The initial rapid component was blocked by 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), which is an antagonist of AMPA receptors (IC50, 2 microM), and the NMDA receptor antagonist D-AP-5 blocked the later sustained component (IC50, 0.6 microM). The third component of glutamate application response was sensitive to D,L-threo-beta-benzyloxyaspartate, a glutamate transporter blocker. Fast application of NMDA evoked concentration-dependent inward currents (EC50, 0.3 microM); these showed use-dependent block by (+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate (MK-801). These NMDA-evoked currents were linearly dependent on membrane potential and were not affected by extracellular magnesium at concentrations up to 10 mM. Electrical stimulation of axons in layer IV-VI induced a complex inward current in astrocytes situated in the cortical layer II, part of which was sensitive to MK-801 at holding potential -80 mV and was not affected by the AMPA glutamate receptor antagonist NBQX. The fast miniature spontaneous currents were observed in cortical astrocytes in slices as well. These currents exhibited both AMPA and NMDA receptor-mediated components. We conclude that cortical astrocytes express functional NMDA receptors that are devoid of Mg2+ block, and these receptors are involved in neuronal-glial signal transmission.

  13. Short-term cortical plasticity induced by conditioning pain modulation

    DEFF Research Database (Denmark)

    Egsgaard, Line Lindhardt; Buchgreitz, Line; Wang, Li

    2012-01-01

    To investigate the effects of homotopic and heterotopic conditioning pain modulation (CPM) on short-term cortical plasticity. Glutamate (tonic pain) or isotonic saline (sham) was injected in the upper trapezius (homotopic) and in the thenar (heterotopic) muscles. Intramuscular electrical stimulat......To investigate the effects of homotopic and heterotopic conditioning pain modulation (CPM) on short-term cortical plasticity. Glutamate (tonic pain) or isotonic saline (sham) was injected in the upper trapezius (homotopic) and in the thenar (heterotopic) muscles. Intramuscular electrical......, and after homotopic and heterotopic CPM versus control. Peak latencies at N100, P200, and P300 were extracted and the location/strength of corresponding dipole current sources and multiple dipoles were estimated. Homotopic CPM caused hypoalgesia (P = 0.032, 30.6% compared to baseline) to electrical...... stimulation. No cortical changes were found for homotopic CPM. A positive correlation at P200 between electrical pain threshold after tonic pain and the z coordinate after tonic pain (P = 0.032) was found for homotopic CPM. For heterotopic CPM, no significant hypoalgesia was found and a dipole shift of the P...

  14. Role of the origin of glutamatergic synaptic inputs in controlling synaptic plasticity and its modulation by alcohol in mice nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Gilles Erwann Martin

    2015-07-01

    Full Text Available It is widely accepted that long-lasting changes of synaptic strength in the nucleus accumbens, a brain region involved in drug reward, mediate acute and chronic effects of alcohol. However, our understanding of the mechanisms underlying the effects of alcohol on synaptic plasticity is limited by the fact that the nucleus accumbens receives glutamatergic inputs from distinct brain regions (e.g. the prefrontal cortex, the amygdala and the hippocampus, each region providing different information (e.g. spatial, emotional and cognitive. Combining whole-cell patch-clamp recordings and the optogenetic technique, we examined synaptic plasticity, and its regulation by alcohol, at cortical, hippocampal and amygdala inputs in fresh slices of mouse tissue. We showed that the origin of synaptic inputs determines the basic properties of glutamatergic synaptic transmission, the expression of spike-timing dependent long-term depression (tLTD and long-term potentiation (tLTP and their regulation by alcohol. While we observed both tLTP and tLTD at amygadala and hippocampal synapses, we showed that cortical inputs only undergo tLTD. Functionally, we provide evidence that acute EtOH has little effects on higher order information coming from the prefrontal cortex (PFCx, while severely impacting the ability of emotional and contextual information to induce long-lasting changes of synaptic strength.

  15. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets.

    Science.gov (United States)

    Peris, Joanna; MacFadyen, Kaley; Smith, Justin A; de Kloet, Annette D; Wang, Lei; Krause, Eric G

    2017-04-01

    The mesolimbic dopamine (DA) circuitry determines which behaviors are positively reinforcing and therefore should be encoded in the memory to become a part of the behavioral repertoire. Natural reinforcers, like food and sex, activate this pathway, thereby increasing the likelihood of further consummatory, social, and sexual behaviors. Oxytocin (OT) has been implicated in mediating natural reward and OT-synthesizing neurons project to the ventral tegmental area (VTA) and nucleus accumbens (NAc); however, direct neuroanatomical evidence of OT regulation of DA neurons within the VTA is sparse. To phenotype OT-receptor (OTR) expressing neurons originating within the VTA, we delivered Cre-inducible adeno-associated virus that drives the expression of fluorescent marker into the VTA of male mice that had Cre-recombinase driven by OTR gene expression. OTR-expressing VTA neurons project to NAc, prefrontal cortex, the extended amygdala, and other forebrain regions but less than 10% of these OTR-expressing neurons were identified as DA neurons (defined by tyrosine hydroxylase colocalization). Instead, almost 50% of OTR-expressing cells in the VTA were glutamate (GLU) neurons, as indicated by expression of mRNA for the vesicular GLU transporter (vGluT). About one-third of OTR-expressing VTA neurons did not colocalize with either DA or GLU phenotypic markers. Thus, OTR expression by VTA neurons implicates that OT regulation of reward circuitry is more complex than a direct action on DA neurotransmission. J. Comp. Neurol. 525:1094-1108, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Pharmacological or genetic orexin 1 receptor inhibition attenuates MK-801 induced glutamate release in mouse cortex

    Directory of Open Access Journals (Sweden)

    Leah eAluisio

    2014-05-01

    Full Text Available The orexin/hypocretin neuropeptides are produced by a cluster of neurons within the lateral posterior hypothalamus and participate in neuronal regulation by activating their receptors (OX1 and OX2 receptors. The orexin system projects widely through the brain and functions as an interface between multiple regulatory systems including wakefulness, energy balance, stress, reward and emotion. Recent studies have demonstrated that orexins and glutamate interact at the synaptic level and that orexins facilitate glutamate actions. We tested the hypothesis that orexins modulate glutamate signaling via OX1 receptors by monitoring levels of glutamate in frontal cortex of freely moving mice using enzyme coated biosensors under inhibited OX1 receptor conditions. MK-801, an NMDA receptor antagonist, was administered subcutaneously (0.178 mg/kg to indirectly disinhibit pyramidal neurons and therefore increase cortical glutamate release. In wild-type mice, pretreatment with the OX1 receptor antagonist GSK-1059865 (10 mg/kg S.C. which had no effect by itself, significantly attenuated the cortical glutamate release elicited by MK-801. OX1 receptor knockout mice had a blunted glutamate release response to MK-801 and exhibited about half of the glutamate release observed in wild-type mice in agreement with the data obtained with transient blockade of OX1 receptors. These results indicate that pharmacological (transient or genetic (permanent inhibition of the OX1 receptor similarly interfere with glutamatergic function in the cortex. Selectively targeting the OX1 receptor with an antagonist may normalize hyperglutamatergic states and thus may represent a novel therapeutic strategy for the treatment of various psychiatric disorders associated with hyperactive states.

  17. Silicon Wafer-Based Platinum Microelectrode Array Biosensor for Near Real-Time Measurement of Glutamate in Vivo

    Directory of Open Access Journals (Sweden)

    Nigel T. Maidment

    2008-08-01

    Full Text Available Using Micro-Electro-Mechanical-Systems (MEMS technologies, we have developed silicon wafer-based platinum microelectrode arrays (MEAs modified with glutamate oxidase (GluOx for electroenzymatic detection of glutamate in vivo. These MEAs were designed to have optimal spatial resolution for in vivo recordings. Selective detection of glutamate in the presence of the electroactive interferents, dopamine and ascorbic acid, was attained by deposition of polypyrrole and Nafion. The sensors responded to glutamate with a limit of detection under 1μM and a sub-1-second response time in solution. In addition to extensive in vitro characterization, the utility of these MEA glutamate biosensors was also established in vivo. In the anesthetized rat, these MEA glutamate biosensors were used for detection of cortically-evoked glutamate release in the ventral striatum. The MEA biosensors also were applied to the detection of stress-induced glutamate release in the dorsal striatum of the freely-moving rat.

  18. Glucose, Lactate, β-Hydroxybutyrate, Acetate, GABA, and Succinate as Substrates for Synthesis of Glutamate and GABA in the Glutamine-Glutamate/GABA Cycle.

    Science.gov (United States)

    Hertz, Leif; Rothman, Douglas L

    2016-01-01

    The glutamine-glutamate/GABA cycle is an astrocytic-neuronal pathway transferring precursors for transmitter glutamate and GABA from astrocytes to neurons. In addition, the cycle carries released transmitter back to astrocytes, where a minor fraction (~25 %) is degraded (requiring a similar amount of resynthesis) and the remainder returned to the neurons for reuse. The flux in the cycle is intense, amounting to the same value as neuronal glucose utilization rate or 75-80 % of total cortical glucose consumption. This glucose:glutamate ratio is reduced when high amounts of β-hydroxybutyrate are present, but β-hydroxybutyrate can at most replace 60 % of glucose during awake brain function. The cycle is initiated by α-ketoglutarate production in astrocytes and its conversion via glutamate to glutamine which is released. A crucial reaction in the cycle is metabolism of glutamine after its accumulation in neurons. In glutamatergic neurons all generated glutamate enters the mitochondria and its exit to the cytosol occurs in a process resembling the malate-aspartate shuttle and therefore requiring concomitant pyruvate metabolism. In GABAergic neurons one half enters the mitochondria, whereas the other one half is released directly from the cytosol. A revised concept is proposed for the synthesis and metabolism of vesicular and nonvesicular GABA. It includes the well-established neuronal GABA reuptake, its metabolism, and use for resynthesis of vesicular GABA. In contrast, mitochondrial glutamate is by transamination to α-ketoglutarate and subsequent retransamination to releasable glutamate essential for the transaminations occurring during metabolism of accumulated GABA and subsequent resynthesis of vesicular GABA.

  19. Somatostatin-immunoreactive senile plaque-like structures in the frontal cortex and nucleus accumbens of aged tree shrews and Japanese macaques.

    Science.gov (United States)

    Yamashita, Akiko; Fuchs, Eberhard; Taira, Masato; Yamamoto, Takamitsu; Hayashi, Motoharu

    2012-06-01

    Previously, we demonstrated decreased expression of somatostatin mRNA in aged macaque brain, particularly in the prefrontal cortex. To investigate whether or not this age-dependent decrease in mRNA is related to morphological changes, we analyzed somatostatin cells in the cerebra of aged Japanese macaques and compared them with those in rats and tree shrews, the latter of which are closely related to primates. Brains of aged macaques, tree shrews, and rats were investigated by immunohistochemistry with special emphasis on somatostatin. We observed degenerating somatostatin-immunoreactive cells in the cortices of aged macaques and tree shrews. Somatostatin-immunoreactive senile plaque-like structures were found in areas 6 and 8 and in the nucleus accumbens of macaques, as well as in the nucleus accumbens and the cortex of aged tree shrews, where amyloid accumulations were observed. Somatostatin degenerations may be related to amyloid accumulations and may play roles in impairments of cognitive functions during aging. © 2012 John Wiley & Sons A/S.

  20. The possible interaction of dopamine system in nucleus accumbens shell and glutamate system of prelimbic region on locomotor activity in rat

    Directory of Open Access Journals (Sweden)

    Hatam Ahmadi

    2013-06-01

    Full Text Available Background: Nucleus accumbens (NAc and prefrontal cortex (PFC dopaminergic and glutamatergic systems are involved in regulating of locomotor activity behaviors. This study has investigated the interaction of NAc shell dopaminergic system and prelimbic glutamatergic systems in regulating locomotor activity and related parameters. Methods: The aim of this study was the effect the drugs injection interaction in the brain of male Wistar rats on locomotor activity and related parameters, in the order of this purpose, open field apparatus that automatically recorded locomotor activity was employed. Unilateral intra-cerebral injection of drugs was done. Results: Unilateral intra-prelimbic injection of D-AP7 (N-methyl-D-aspartic acid= NMDA receptor antagonist; 0.25, 0.5 and 1μg/μl did not alter locomotor activity behaviors. However, infusion of NMDA (0.9μg/μl in this region increased locomotor activity (P<0.01, whereas decreased rearing (P<0.01 and grooming (P<0.01 which was blocked by D-AP7 (0.25μg/μl (P<0.01. Moreover, unilateral infusion of SCH23390 (dopamine D1 receptor antagonist; 0.25, 0.5 and 1μg/μl into the left NAc shell did not alter locomotor activity. However, injection of SKF38393 (dopamine D1 receptor agonist; 4μg/μl into the left NAc shell increased locomotor activity (P<0.05 which was blocked by SCH23390 (0.25μg/μl (P<0.01. Furthermore, the subthreshold dose infusion of SCH23390 (0.25μg/μl into the left NAc shell reduced the effect of intra- prelimbic NMDA on locomotor activity (P<0.01. In addition, intra-NAc shell administration of the subthreshold dose of SKF38393 (1μg/μl potentiated the middle dose (P<0.05, whereas decreased the higher dose of intra-left prelimbic NMDA response (P<0.05 on locomotor activity. Conclusion: The results suggested a modulatory effect of the NAc shell dopaminergic system on increased locomotor activity by activating glutamate system in prelimbic.

  1. Palmitoylethanolamide Inhibits Glutamate Release in Rat Cerebrocortical Nerve Terminals

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin

    2015-03-01

    Full Text Available The effect of palmitoylethanolamide (PEA, an endogenous fatty acid amide displaying neuroprotective actions, on glutamate release from rat cerebrocortical nerve terminals (synaptosomes was investigated. PEA inhibited the Ca2+-dependent release of glutamate, which was triggered by exposing synaptosomes to the potassium channel blocker 4-aminopyridine. This release inhibition was concentration dependent, associated with a reduction in cytosolic Ca2+ concentration, and not due to a change in synaptosomal membrane potential. The glutamate release-inhibiting effect of PEA was prevented by the Cav2.1 (P/Q-type channel blocker ω-agatoxin IVA or the protein kinase A inhibitor H89, not affected by the intracellular Ca2+ release inhibitors dantrolene and CGP37157, and partially antagonized by the cannabinoid CB1 receptor antagonist AM281. Based on these results, we suggest that PEA exerts its presynaptic inhibition, likely through a reduction in the Ca2+ influx mediated by Cav2.1 (P/Q-type channels, thereby inhibiting the release of glutamate from rat cortical nerve terminals. This release inhibition might be linked to the activation of presynaptic cannabinoid CB1 receptors and the suppression of the protein kinase A pathway.

  2. The glutamate-glutamine(GABA cycle: importance of late postnatal development and potential reciprocal interactions between biosynthesis and degradation

    Directory of Open Access Journals (Sweden)

    Leif eHertz

    2013-05-01

    Full Text Available The gold standard for studies of glutamate-glutamine(GABA cycling and its connections to brain biosynthesis from glucose of glutamate and GABA and their subsequent metabolism are the elegant in vivo studies by 13C magnetic resonance spectroscopy (NMR, showing the large fluxes in the cycle. However, simpler experiments in intact brain tissue (e.g. immunohistochemistry, brain slices, cultured brain cells and mitochondria have also made important contributions to the understanding of details, mechanisms and functional consequences of glutamate/GABA biosynthesis and degradation. The purpose of this review is to attempt to integrate evidence from different sources regarding i the enzyme(s responsible for the initial conversion of -ketoglutarate to glutamate; ii the possibility that especially glutamate oxidation is essentially confined to astrocytes; and iii the ontogenetically very late onset and maturation of glutamine-glutamate(GABA cycle function. Pathway models based on the functional importance of aspartate for glutamate synthesis suggest the possibility of interacting pathways for biosynthesis and degradation of glutamate and GABA and the use of transamination as the default mechanism for initiation of glutamate oxidation. The late development and maturation are related to the late cortical gliogenesis and convert brain cortical function from being purely neuronal to becoming neuronal-astrocytic. This conversion is associated with huge increases in energy demand and production, and the character of potentially incurred gains of function are discussed. These may include alterations in learning mechanisms, in mice indicated by lack of pairing of odor learning with aversive stimuli in newborn animals but the development of such an association 10-12 days later. The possibility is suggested that analogous maturational changes may contribute to differences in the way learning is accomplished in the newborn human brain and during later development.

  3. The 'glial' glutamate transporter, EAAT2 (Glt-1) accounts for high affinity glutamate uptake into adult rodent nerve endings.

    Science.gov (United States)

    Suchak, Sachin K; Baloyianni, Nicoletta V; Perkinton, Michael S; Williams, Robert J; Meldrum, Brian S; Rattray, Marcus

    2003-02-01

    The excitatory amino acid transporters (EAAT) removes neurotransmitters glutamate and aspartate from the synaptic cleft. Most CNS glutamate uptake is mediated by EAAT2 into glia, though nerve terminals show evidence for uptake, through an unknown transporter. Reverse-transcriptase PCR identified the expression of EAAT1, EAAT2, EAAT3 and EAAT4 mRNAs in primary cultures of mouse cortical or striatal neurones. We have used synaptosomes and glial plasmalemmal vesicles (GPV) from adult mouse and rat CNS to identify the nerve terminal transporter. Western blotting showed detectable levels of the transporters EAAT1 (GLAST) and EAAT2 (Glt-1) in both synaptosomes and GPVs. Uptake of [3H]D-aspartate or [3H]L-glutamate into these preparations revealed sodium-dependent uptake in GPV and synaptosomes which was inhibited by a range of EAAT blockers: dihydrokainate, serine-o-sulfate, l-trans-2,4-pyrrolidine dicarboxylate (PDC) (+/-)-threo-3-methylglutamate and (2S,4R )-4-methylglutamate. The IC50 values found for these compounds suggested functional expression of the 'glial, transporter, EAAT2 in nerve terminals. Additionally blockade of the majority EAAT2 uptake sites with 100 micro m dihydrokainate, failed to unmask any functional non-EAAT2 uptake sites. The data presented in this study indicate that EAAT2 is the predominant nerve terminal glutamate transporter in the adult rodent CNS.

  4. Biochemical evidence for glutamate as a transmitter in hippocampal efferents to the basal forebrain and hypothalamus in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Walaas, I; Fonnum, F

    1980-01-01

    The effects of bilateral transection of the fornix bundle on the high affinity uptake of glutamate and on the amino acid content in several nuclei of rat forebrain and hypothalamus were studied in order to investigate the possible role of glutamate as a transmitter of these fibres. This lesion decreased the high affinity uptake of L-glutamate by 60 to 70% in the mammillary body and lateral septum, and by 40 to 50% in the anterior diagonal band nucleus, the bed nucleus of the stria terminalis, the mediobasal hypothalamus and the nucleus accumbens. The content of endogenous glutamate in samples dissected from freeze-dried tissue also decreased significantly in these regions. Endogenous aspartate was slightly decreased in the anterior diagonal band nucleus and the mammillary body, but unchanged in the other regions. No significant changes were seen in the levels of serine, ..gamma..-aminobutyric acid, glutamine and taurine, except for an increase in glutamine and taurine in the bed nucleus of the stria terminalis. The high affinity uptake of ..gamma..-aminobutyric acid, tested in the bed nucleus of the stria terminalis, the mediobasal hypothalamus and the mammillary body, was unchanged after the lesion. The results indicate that allocortical efferents innervating subcortial nuclei through the fornix might use glutamate as a transmitter. The study further supports the concept that glutamate plays an important role as transmitter of several different corticofugal fibre systems in mammalian brain.

  5. Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Lykke, Kasper; Bryk, Jaroslaw; Stridh, Malin H; Zaganas, Ioannis; Skytt, Dorte M; Schousboe, Arne; Bak, Lasse K; Enard, Wolfgang; Pääbo, Svante; Waagepetersen, Helle S

    2017-03-01

    A key enzyme in brain glutamate homeostasis is glutamate dehydrogenase (GDH) which links carbohydrate and amino acid metabolism mediating glutamate degradation to CO 2 and expanding tricarboxylic acid (TCA) cycle capacity with intermediates, i.e. anaplerosis. Humans express two GDH isoforms, GDH1 and 2, whereas most other mammals express only GDH1. hGDH1 is widely expressed in human brain while hGDH2 is confined to astrocytes. The two isoforms display different enzymatic properties and the nature of these supports that hGDH2 expression in astrocytes potentially increases glutamate oxidation and supports the TCA cycle during energy-demanding processes such as high intensity glutamatergic signaling. However, little is known about how expression of hGDH2 affects the handling of glutamate and TCA cycle metabolism in astrocytes. Therefore, we cultured astrocytes from cerebral cortical tissue of hGDH2-expressing transgenic mice. We measured glutamate uptake and metabolism using [ 3 H]glutamate, while the effect on metabolic pathways of glutamate and glucose was evaluated by use of 13 C and 14 C substrates and analysis by mass spectrometry and determination of radioactively labeled metabolites including CO 2 , respectively. We conclude that hGDH2 expression increases capacity for uptake and oxidative metabolism of glutamate, particularly during increased workload and aglycemia. Additionally, hGDH2 expression increased utilization of branched-chain amino acids (BCAA) during aglycemia and caused a general decrease in oxidative glucose metabolism. We speculate, that expression of hGDH2 allows astrocytes to spare glucose and utilize BCAAs during substrate shortages. These findings support the proposed role of hGDH2 in astrocytes as an important fail-safe during situations of intense glutamatergic activity. GLIA 2017;65:474-488. © 2016 Wiley Periodicals, Inc.

  6. Nucleus accumbens and impulsivity

    NARCIS (Netherlands)

    Basar, K.; Sesia, T.; Groenewegen, H.J.; Steinbusch, H.W.; Visser-vandewalle, V.; Temel, Y.

    2010-01-01

    The multifaceted concept of impulsivity implies that different impulsivity aspects, mediated by different neural processes, influence behavior at different levels. The nucleus accumbens (NAc) is a key component of the neural processes regulating impulsivity. In this review, we discuss the findings

  7. Deletion of Type 2 Metabotropic Glutamate Receptor Decreases Sensitivity to Cocaine Reward in Rats.

    Science.gov (United States)

    Yang, Hong-Ju; Zhang, Hai-Ying; Bi, Guo-Hua; He, Yi; Gao, Jun-Tao; Xi, Zheng-Xiong

    2017-07-11

    Cocaine users show reduced expression of the metabotropic glutamate receptor (mGluR2), but it is not clear whether this is a predisposing trait for addiction or a consequence of drug exposure. In this study, we found that a nonsense mutation at the mGluR2 gene decreased mGluR2 expression and altered the seeking and taking of cocaine. mGluR2 mutant rats show reduced sensitivity to cocaine reward, requiring more cocaine to reach satiation when it was freely available and ceasing their drug-seeking behavior sooner than controls when the response requirement was increased. mGluR2 mutant rats also show a lower propensity to relapse after a period of cocaine abstinence, an effect associated with reduced cocaine-induced dopamine and glutamate overflow in the nucleus accumbens. These findings suggest that mGluR2 polymorphisms or reduced availability of mGluR2 might be risk factors for the initial development of cocaine use but could actually protect against addiction by reducing sensitivity to cocaine reward. Published by Elsevier Inc.

  8. Involvement of direct inhibition of NMDA receptors in the effects of sigma-receptor ligands on glutamate neurotoxicity in vitro.

    Science.gov (United States)

    Nishikawa, H; Hashino, A; Kume, T; Katsuki, H; Kaneko, S; Akaike, A

    2000-09-15

    This study was performed to examine the roles of the N-methyl-D-aspartate (NMDA) receptor/phencyclidine (PCP) channel complex in the protective effects of sigma-receptor ligands against glutamate neurotoxicity in cultured cortical neurons derived from fetal rats. A 1-h exposure of cultures to glutamate caused a marked loss of viability, as determined by Trypan blue exclusion. This acute neurotoxicity of glutamate was prevented by NMDA receptor antagonists. Expression of sigma(1) receptor mRNA in cortical cultures was confirmed by reverse transcription polymerase chain reaction (RT-PCR). sigma Receptor ligands with affinity for NMDA receptor channels including the PCP site, such as (+)-N-allylnormetazocine ((+)-SKF10,047), haloperidol, and R(-)-N-(3-phenyl-1-propyl)-1-phenyl-2-aminopropane ((-)-PPAP), prevented glutamate neurotoxicity in a concentration-dependent manner. In contrast, other sigma-receptor ligands without affinity for NMDA receptors, such as carbetapentane and R(+)-3-(3-hydroxyphenyl)-N-propylpiperidine ((+)-3-PPP), did not show neuroprotective effects. Putative endogenous sigma receptor ligands such as pregnenolone, progesterone, and dehydroepiandrosterone did not affect glutamate neurotoxicity. The protective effects of (+)-SKF10,047, haloperidol, and (-)-PPAP were not affected by the sigma(1) receptor antagonist rimcazole. These results suggested that a direct interaction with NMDA receptors but not with sigma receptors plays a crucial role in the neuroprotective effects of sigma receptor ligands with affinity for NMDA receptors.

  9. Biochemical evidence for. gamma. -aminobutyrate containing fibres from the nucleus accumbens to the substantia nigra and ventral tegmental area in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Walaas, I; Fonnum, F

    1980-01-01

    Glutamate decarboxylase activity, a specific marker for ..gamma..-aminobutyrate-containing neurons, has been analysed in microdissected samples from rat mesencephalon following unilateral electrocoagulations of the nucleus accumbens. This lesion resulted in a consistent decrease of 50% in the enzyme activity in the rostromedial substantia nigra, and a slight, but insignificant decrease (- 15%) in the medial parts of the caudal pars compacta of the substantia nigra. No change was found in the lateral pars compacta or the central pars reticulata. In the ventral tegmental area, the highest activity was found in the rostromedial part, adjacent to the mammillary body. At this level, a significant decrease of 20% was found in the ventral tegmental area on the lesioned side. In contrast, the activities in the medial accessory optic nucleus and the caudal ventral tegmental area adjacent to the interpenduncular nucleus were unchanged. The results indicate that the nucleus accumbens sends ..gamma..-aminobutyrate-containing fibres to the rostromedial substantia nigra and to the rostral ventral tegmental area. The caudal ventral tegmental area, the lateral pars compacta and the central pars reticulata do not receive measurable amounts of such fibres.

  10. Cortical substrate oxidation during hyperketonemia in the fasted anesthetized rat in vivo

    OpenAIRE

    Jiang, Lihong; Mason, Graeme F; Rothman, Douglas L; de Graaf, Robin A; Behar, Kevin L

    2011-01-01

    Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours (n=6) and receiving intravenous [2,4-13C2]--β-hydroxybutyrate (BHB). Time courses of 13C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tes...

  11. Acute phencyclidine administration induces c-Fos-immunoreactivity in interneurons in cortical and subcortical regions

    DEFF Research Database (Denmark)

    Hervig, Mona E; Thomsen, Morten S; Kalló, Imre

    2016-01-01

    and thalamus of rats. A single dose of PCP (10mg/kg, s.c.) significantly increased total number of c-Fos-IR in: (1) the prelimbic, infralimbic, anterior cingulate, ventrolateral orbital, motor, somatosensory and retrosplenial cortices as well as the nucleus accumbens (NAc), field CA1 of the hippocampus (CA1......) field of hippocampus and mediodorsal thalamus (MD); (2) PV-IR cells in the ventrolateral orbitofrontal and retrosplenial cortices and CA1 field of hippocampus; and (3) CB-IR cells in the motor cortex. Overall, our data indicate that PCP activates a wide range of cortical and subcortical brain regions...... and subcortical areas, but whether such induction occurs in specific populations of GABAergic interneuron subtypes still remains to be established. We performed an immunohistochemical analysis of the PCP-induced c-Fos-immunoreactivity (IR) in parvalbumin (PV) and calbindin (CB) interneuron subtypes in the cortex...

  12. Dipeptide Piracetam Analogue Noopept Improves Viability of Hippocampal HT-22 Neurons in the Glutamate Toxicity Model.

    Science.gov (United States)

    Antipova, T A; Nikolaev, S V; Ostrovskaya, P U; Gudasheva, T A; Seredenin, S B

    2016-05-01

    Effect of noopept (N-phenylacetyl-prolylglycine ethyl ester) on viability of neurons exposed to neurotoxic action of glutamic acid (5 mM) was studied in vitro in immortalized mouse hippocampal HT-22 neurons. Noopept added to the medium before or after glutamic acid improved neuronal survival in a concentration range of 10-11-10-5 M. Comparison of the effective noopept concentrations determined in previous studies on cultured cortical and cerebellar neurons showed that hippocampal neurons are more sensitive to the protective effect of noopept.

  13. Rewarding and aversive effects of nicotine are segregated within the nucleus accumbens.

    Science.gov (United States)

    Sellings, Laurie H L; Baharnouri, Golriz; McQuade, Lindsey E; Clarke, Paul B S

    2008-07-01

    Forebrain dopamine plays a critical role in motivated behavior. According to the classic view, mesolimbic dopamine selectively guides behavior motivated by positive reinforcers. However, this has been challenged in favor of a wider role encompassing aversively motivated behavior. This controversy is particularly striking in the case of nicotine, with opposing claims that either the rewarding or the aversive effect of nicotine is critically dependent on mesolimbic dopamine transmission. In the present study, the effects of 6-hydroxydopamine lesions of nucleus accumbens core vs. medial shell on intravenous nicotine conditioned place preference and conditioned taste aversion were examined in male adult rats. Dopaminergic denervation in accumbens medial shell was associated with decreased nicotine conditioned place preference. Conversely, denervation in accumbens core was associated with an increase in conditioned place preference. In addition, dopaminergic denervation of accumbens core but not medial shell abolished conditioned taste aversion for nicotine. We conclude that nucleus accumbens core and medial shell dopaminergic innervation exert segregated effects on rewarding and aversive effects of nicotine. More generally, our findings indicate that dopaminergic transmission may mediate or enable opposing motivational processes within functionally distinct domains of the accumbens.

  14. 7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings.

    Science.gov (United States)

    Thakkar, Katharine N; Rösler, Lara; Wijnen, Jannie P; Boer, Vincent O; Klomp, Dennis W J; Cahn, Wiepke; Kahn, René S; Neggers, Sebastiaan F W

    2017-03-15

    The N-methyl-D-aspartate receptor hypofunction model of schizophrenia predicts dysfunction in both glutamatergic and gamma-aminobutyric acidergic (GABAergic) transmission. We addressed this hypothesis by measuring GABA, glutamate, glutamine, and the sum of glutamine plus glutamate concentrations in vivo in patients with schizophrenia using proton magnetic resonance spectroscopy at 7T, which allows separation of metabolites that would otherwise overlap at lower field strengths. In addition, we investigated whether altered levels of GABA, glutamate, glutamine, and the sum of glutamine plus glutamate reflect genetic vulnerability to schizophrenia by including healthy first-degree relatives. Proton magnetic resonance spectroscopy at 7T was performed in 21 patients with chronic schizophrenia who were taking medication, 23 healthy first-degree relatives of patients with schizophrenia, and 24 healthy nonrelatives. Glutamate, glutamine, and GABA were measured cortically and subcortically in bilateral basal ganglia and occipital cortex. Patients with schizophrenia had reduced cortical GABA compared with healthy relatives and the combined sample of healthy relatives and healthy nonrelatives, suggesting that altered GABAergic systems in schizophrenia are associated with either disease state or medication effects. Reduced cortical glutamine relative to healthy control subjects was observed in patients with schizophrenia and the combined sample of healthy relatives and patients with schizophrenia, suggesting that altered glutamatergic metabolite levels are associated with illness liability. No group differences were found in the basal ganglia. Taken together, these findings are consistent with alterations in GABAergic and glutamatergic systems in patients with schizophrenia and provide novel insights into these systems in healthy relatives. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Repair of Neocortex in a Model of Cortical Dysplasia

    Science.gov (United States)

    2007-03-27

    as dyslexia, intractable epilepsy, and schizophrenia which has been linked to abnormal reelin expression (Grayson et al., 2005; Brigman et al., 2006...exposure to ethanol on glutamate and GABA immunoreactivity in macaque somatosensory and motor cortices: critical timing of exposure. Neuroscience...Rothblat LA (2006) Executive functions in the heterozygous reeler mouse model of schizophrenia . Behav Neurosci 120:984-988. Caldwell MA, He X

  16. The effect of nucleotides and adenosine on stimulus-evoked glutamate release from rat brain cortical slices

    OpenAIRE

    Bennett, Gillian C; Boarder, Michael R

    2000-01-01

    Evidence has previously been presented that P1 receptors for adenosine, and P2 receptors for nucleotides such as ATP, regulate stimulus-evoked release of biogenic amines from nerve terminals in the brain. Here we investigated whether adenosine and nucleotides exert presynaptic control over depolarisation-elicited glutamate release.Slices of rat brain cortex were perfused and stimulated with pulses of 46 mM K+ in the presence of the glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxyl...

  17. Calpain-GRIP Signaling in Nucleus Accumbens Core Mediates the Reconsolidation of Drug Reward Memory.

    Science.gov (United States)

    Liang, Jie; Li, Jia-Li; Han, Ying; Luo, Yi-Xiao; Xue, Yan-Xue; Zhang, Yàn; Zhang, Yán; Zhang, Li-Bo; Chen, Man-Li; Lu, Lin; Shi, Jie

    2017-09-13

    Exposure to drug-paired cues causes drug memories to be in a destabilized state and interfering with memory reconsolidation can inhibit relapse. Calpain, a calcium-dependent neutral cysteine protease, is involved in synaptic plasticity and the formation of long-term fear memory. However, the role of calpain in the reconsolidation of drug reward memory is still unknown. In the present study, using a conditioned place preference (CPP) model, we found that exposure to drug-paired contextual stimuli induced the activation of calpain and decreased the expression of glutamate receptor interacting protein 1 (GRIP1) in the nucleus accumbens (NAc) core, but not shell, of male rats. Infusions of calpain inhibitors in the NAc core immediately after retrieval disrupted the reconsolidation of cocaine/morphine cue memory and blocked retrieval-induced calpain activation and GRIP1 degradation. The suppressive effect of calpain inhibitors on the expression of drug-induced CPP lasted for at least 14 d. The inhibition of calpain without retrieval 6 h after retrieval or after exposure to an unpaired context had no effects on the expression of reward memory. Calpain inhibition after retrieval also decreased cocaine seeking in a self-administration model and this effect did not recover spontaneously after 28 d. Moreover, the knock-down of GRIP1 expression in the NAc core by lentivirus-mediated short-hairpin RNA blocked disruption of the reconsolidation of drug cue memories that was induced by calpain inhibitor treatment. These results suggest that calpain activity in the NAc core is crucial for the reconsolidation of drug reward memory via the regulation of GRIP1 expression. SIGNIFICANCE STATEMENT Calpain plays an important role in synaptic plasticity and long-term memory consolidation, however, its role in the reconsolidation of drug cue memory remains unknown. Using conditioned place preference and self-administration procedures, we found that exposure to drug-paired cues induced the

  18. Longitudinal MRI study of cortical thickness, perfusion, and metabolite levels in major depressive disorder

    DEFF Research Database (Denmark)

    Järnum, Hanna; Eskildsen, Simon Fristed; Steffensen, Elena G

    2011-01-01

    OBJECTIVE: To determine whether patients with major depressive disorder (MDD) display morphologic, functional, and metabolic brain abnormalities in limbic-cortical regions at a baseline magnetic resonance (MR) scan and whether these changes are normalized in MDD patients in remission at a follow......-acetylaspartate, myo-inositol, and glutamate levels in MDD patients compared with healthy controls at baseline. CONCLUSION: Using novel MRI techniques, we have found abnormalities in cerebral regions related to cortical-limbic pathways in MDD patients....

  19. Interactions between estrogen receptors and metabotropic glutamate receptors and their impact on drug addiction in females.

    Science.gov (United States)

    Tonn Eisinger, Katherine R; Gross, Kellie S; Head, Brian P; Mermelstein, Paul G

    2018-03-10

    Estrogen receptors α and β (ERα and ERβ) have a unique relationship with metabotropic glutamate receptors (mGluRs) in the female rodent brain such that estradiol is able to recruit intracellular G-protein signaling cascades to influence neuronal physiology, structure, and ultimately behavior. While this association between ERs and mGluRs exists in many cell types and brain regions, its effects are perhaps most striking in the nucleus accumbens (NAc). This review will discuss the original characterization of ER/mGluR signaling and how estradiol activity in the NAc confers increased sensitivity to drugs of abuse in females through this mechanism. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Juxtacortical Lesions and Cortical Thinning in Multiple Sclerosis.

    Science.gov (United States)

    Pareto, D; Sastre-Garriga, J; Auger, C; Vives-Gilabert, Y; Delgado, J; Tintoré, M; Montalban, X; Rovira, A

    2015-12-01

    The role of juxtacortical lesions in brain volume loss in multiple sclerosis has not been fully clarified. The aim of this study was to explore the role of juxtacortical lesions on cortical atrophy and to investigate whether the presence of juxtacortical lesions is related to local cortical thinning in the early stages of MS. A total of 131 patients with clinically isolated syndrome or with relapsing-remitting MS were scanned on a 3T system. Patients with clinically isolated syndrome were classified into 3 groups based on the presence and topography of brain lesions: no lesions (n = 24), only non-juxtacortical lesions (n = 33), and juxtacortical lesions and non-juxtacortical lesions (n = 34). Patients with relapsing-remitting MS were classified into 2 groups: only non-juxtacortical lesions (n = 10) and with non-juxtacortical lesions and juxtacortical lesions (n = 30). A juxtacortical lesion probability map was generated, and cortical thickness was measured by using FreeSurfer. Juxtacortical lesion volume in relapsing-remitting MS was double that of patients with clinically isolated syndrome. The insula showed the highest density of juxtacortical lesions, followed by the temporal, parietal, frontal, and occipital lobes. Patients with relapsing-remitting MS with juxtacortical lesions showed significantly thinner cortices overall and in the parietal and temporal lobes compared with those with clinically isolated syndrome with normal brain MR imaging. The volume of subcortical structures (thalamus, pallidum, putamen, and accumbens) was significantly decreased in relapsing-remitting MS with juxtacortical lesions compared with clinically isolated syndrome with normal brain MR imaging. The spatial distribution of juxtacortical lesions was not found to overlap with areas of cortical thinning. Cortical thinning and subcortical gray matter volume loss in patients with a clinically isolated syndrome or relapsing-remitting MS was related to the presence of juxtacortical

  1. Cortical synaptic transmission in CaV2.1 knockin mice with the S218L missense mutation which causes a severe familial hemiplegic migraine syndrome in humans.

    Directory of Open Access Journals (Sweden)

    Dania eVecchia

    2015-02-01

    Full Text Available Familial hemiplegic migraine type 1 (FHM1 is caused by gain-of-function mutations in CaV2.1 (P/Q-type Ca2+ channels. Knockin (KI mice carrying the FHM1 R192Q missense mutation show enhanced cortical excitatory synaptic transmission at pyramidal cell synapses but unaltered cortical inhibitory neurotransmission at fast-spiking interneuron synapses. Enhanced cortical glutamate release was shown to cause the facilitation of cortical spreading depression (CSD in R192Q KI mice. It, however, remains unknown how other FHM1 mutations affect cortical synaptic transmission. Here, we studied neurotransmission in cortical neurons in microculture from KI mice carrying the S218L mutation, which causes a severe FHM syndrome in humans and an allele-dosage dependent facilitation of experimental CSD in KI mice, which is larger than that caused by the R192Q mutation. We show gain-of-function of excitatory neurotransmission, due to increased action-potential evoked Ca2+ influx and increased probability of glutamate release at pyramidal cell synapses, but unaltered inhibitory neurotransmission at multipolar interneuron synapses in S218L KI mice. In contrast with the larger gain-of-function of neuronal CaV2.1 current in homozygous than heterozygous S218L KI mice, the gain-of-function of evoked glutamate release, the paired-pulse ratio and the Ca2+ dependence of the EPSC were all similar in homozygous and heterozygous S218L KI mice, suggesting compensatory changes in the homozygous mice. Furthermore, we reveal a unique feature of S218L KI cortical synapses which is the presence of a fraction of mutant CaV2.1 channels being open at resting potential. Our data suggest that, while the gain-of-function of evoked glutamate release may explain the facilitation of CSD in heterozygous S218L KI mice, the further facilitation of CSD in homozygous S218L KI mice is due to other CaV2.1-dependent mechanisms, that likely include Ca2+ influx at voltages sub-threshold for action

  2. Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals

    International Nuclear Information System (INIS)

    Lin, Tzu-Yu; Lu, Cheng-Wei; Wang, Chia-Chuan; Lu, Jyh-Feng; Wang, Su-Jane

    2012-01-01

    Hispidulin, a naturally occurring flavone, has been reported to have an antiepileptic profile. An excessive release of glutamate is considered to be related to neuropathology of epilepsy. We investigated whether hispidulin affected endogenous glutamate release in rat cerebral cortex nerve terminals (synaptosomes) and explored the possible mechanism. Hispidulin inhibited the release of glutamate evoked by the K + channel blocker 4-aminopyridine (4-AP). The effects of hispidulin on the evoked glutamate release were prevented by the chelation of extracellular Ca 2+ ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate did not have any effect on hispidulin action. Hispidulin reduced the depolarization-induced increase in cytosolic free Ca 2+ concentration ([Ca 2+ ] C ), but did not alter 4-AP-mediated depolarization. Furthermore, the effect of hispidulin on evoked glutamate release was abolished by blocking the Ca v 2.2 (N-type) and Ca v 2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na + /Ca 2+ exchange. Mitogen-activated protein kinase kinase (MEK) inhibition also prevented the inhibitory effect of hispidulin on evoked glutamate release. Western blot analyses showed that hispidulin decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK; this decrease was also blocked by the MEK inhibitor. Moreover, the inhibition of glutamate release by hispidulin was strongly attenuated in mice without synapsin I. These results show that hispidulin inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca 2+ entry and ERK/synapsin I signaling pathway. -- Highlights: ► Hispidulin inhibited glutamate release from rat cerebrocortical synaptosomes. ► This action did

  3. Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tzu-Yu [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei, 22060, Taiwan (China); Department of Mechanical Engineering, Yuan Ze University, Taoyuan, 320, Taiwan (China); Lu, Cheng-Wei [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei, 22060, Taiwan (China); Wang, Chia-Chuan; Lu, Jyh-Feng [School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei, 24205, Taiwan (China); Wang, Su-Jane, E-mail: med0003@mail.fju.edu.tw [Graduate Institute of Basic Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei, 24205, Taiwan (China); School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei, 24205, Taiwan (China)

    2012-09-01

    Hispidulin, a naturally occurring flavone, has been reported to have an antiepileptic profile. An excessive release of glutamate is considered to be related to neuropathology of epilepsy. We investigated whether hispidulin affected endogenous glutamate release in rat cerebral cortex nerve terminals (synaptosomes) and explored the possible mechanism. Hispidulin inhibited the release of glutamate evoked by the K{sup +} channel blocker 4-aminopyridine (4-AP). The effects of hispidulin on the evoked glutamate release were prevented by the chelation of extracellular Ca{sup 2+} ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate did not have any effect on hispidulin action. Hispidulin reduced the depolarization-induced increase in cytosolic free Ca{sup 2+} concentration ([Ca{sup 2+}]{sub C}), but did not alter 4-AP-mediated depolarization. Furthermore, the effect of hispidulin on evoked glutamate release was abolished by blocking the Ca{sub v}2.2 (N-type) and Ca{sub v}2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na{sup +}/Ca{sup 2+} exchange. Mitogen-activated protein kinase kinase (MEK) inhibition also prevented the inhibitory effect of hispidulin on evoked glutamate release. Western blot analyses showed that hispidulin decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK; this decrease was also blocked by the MEK inhibitor. Moreover, the inhibition of glutamate release by hispidulin was strongly attenuated in mice without synapsin I. These results show that hispidulin inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca{sup 2+} entry and ERK/synapsin I signaling pathway. -- Highlights: ► Hispidulin inhibited glutamate release from rat

  4. The effects of nicotine injection in rat nucleus accumbens on anxiety

    Directory of Open Access Journals (Sweden)

    Ghorbani Yekta B

    2013-05-01

    Full Text Available Background: Previous reports showed that nucleus accumbens involved in the etiology and pathophysiology of major depression, anxiety and addiction. It is not clear that how these mechanisms occur in the brain. In the present study, the influence of direct nicotine injection in the nucleus accumbens in rats’ anxiety-related behavior was investigated. Methods: Wistar rats were used in this study. Male Wistar rats bred in an animal house, in a temperature-controlled (22±2 ◦C room with a 12 hour light/darkcycle. Rats were anesthetized using intraperitoneal injection of ketamine hydrochloride and xylazine, then placed in an stereotactic instrument for microinjection cannula implantation The stainless steel guide cannula was implanted bilaterally in the right and left dorsal the nucleus accumbens shell according to Paxinos and Watson atlas. After recovery, anxiety behavior and locomotor activity were tested. We used the elevated plus maze to test anxiety. This apparatus has widely been employed to test parameters of anxiety-related behaviors including the open armtime percentage (%OAT, open arm entries percentage (%OAE, locomotor activity and we record effect of drugs after injection directly in the nucleus accumbens on anxiety-related behavior.Results: Experiments showed that bilateral injections into the nucleus accumbens Nicotine, acetylcholine receptor agonist, dose 0.1 of the dose (0.05 and 0.1, 0.25, 0.5 microgram per rat caused a significant increase in the percentage of time spent in the open arms (%OAT, compared to the control group. We did not record any significant change locomotor activity and open arm entries percentage (%OAE in rats.Conclusion: Nicotinic receptors in the nucleus accumbens shell involved to anxiety-like behavior in male rats.

  5. Glutamate/GABA+ ratio is associated with the psychosocial domain of autistic and schizotypal traits.

    Science.gov (United States)

    Ford, Talitha C; Nibbs, Richard; Crewther, David P

    2017-01-01

    The autism and schizophrenia spectra overlap to a large degree in the social and interpersonal domains. Similarly, abnormal excitatory glutamate and inhibitory γ-aminobutyric acid (GABA) neurotransmitter concentrations have been reported for both spectra, with the interplay of these neurotransmitters important for cortical excitation to inhibition regulation. This study investigates whether these neurotransmitter abnormalities are specific to the shared symptomatology, and whether the degree of abnormality increases with increasing symptom severity. Hence, the relationship between the glutamate/GABA ratio and autism and schizophrenia spectrum traits in an unmedicated, subclinical population was investigated. A total of 37 adults (19 female, 18 male) aged 18-38 years completed the Autism Spectrum Quotient (AQ) and Schizotypal Personality Questionnaire (SPQ), and participated in the resting state proton magnetic resonance spectroscopy study in which sequences specific for quantification of glutamate and GABA+ concentration were applied to a right and left superior temporal voxel. There were significant, moderate, positive relationships between right superior temporal glutamate/GABA+ ratio and AQ, SPQ and AQ+SPQ total scores (pGABA+ coinciding with higher scores on these subscales. Only the relationships between glutamate/GABA+ ratio and Social Anxiety, Constricted Affect, Social Skills and Communication survived multiple comparison correction (pGABA+ ratio reduced with increasing restricted imagination (pschizophrenia spectra.

  6. The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures.

    Science.gov (United States)

    Meloni, Bruno P; Craig, Amanda J; Milech, Nadia; Hopkins, Richard M; Watt, Paul M; Knuckey, Neville W

    2014-03-01

    Cell-penetrating peptides (CPPs) are small peptides (typically 5-25 amino acids), which are used to facilitate the delivery of normally non-permeable cargos such as other peptides, proteins, nucleic acids, or drugs into cells. However, several recent studies have demonstrated that the TAT CPP has neuroprotective properties. Therefore, in this study, we assessed the TAT and three other CPPs (penetratin, Arg-9, Pep-1) for their neuroprotective properties in cortical neuronal cultures following exposure to glutamic acid, kainic acid, or in vitro ischemia (oxygen-glucose deprivation). Arg-9, penetratin, and TAT-D displayed consistent and high level neuroprotective activity in both the glutamic acid (IC50: 0.78, 3.4, 13.9 μM) and kainic acid (IC50: 0.81, 2.0, 6.2 μM) injury models, while Pep-1 was ineffective. The TAT-D isoform displayed similar efficacy to the TAT-L isoform in the glutamic acid model. Interestingly, Arg-9 was the only CPP that displayed efficacy when washed-out prior to glutamic acid exposure. Neuroprotection following in vitro ischemia was more variable with all peptides providing some level of neuroprotection (IC50; Arg-9: 6.0 μM, TAT-D: 7.1 μM, penetratin/Pep-1: >10 μM). The positive control peptides JNKI-1D-TAT (JNK inhibitory peptide) and/or PYC36L-TAT (AP-1 inhibitory peptide) were neuroprotective in all models. Finally, in a post-glutamic acid treatment experiment, Arg-9 was highly effective when added immediately after, and mildly effective when added 15 min post-insult, while the JNKI-1D-TAT control peptide was ineffective when added post-insult. These findings demonstrate that different CPPs have the ability to inhibit neurodamaging events/pathways associated with excitotoxic and ischemic injuries. More importantly, they highlight the need to interpret neuroprotection studies when using CPPs as delivery agents with caution. On a positive note, the cytoprotective properties of CPPs suggests they are ideal carrier molecules to

  7. Altered medial temporal activation related to local glutamate levels in subjects with prodromal signs of psychosis.

    Science.gov (United States)

    Valli, Isabel; Stone, James; Mechelli, Andrea; Bhattacharyya, Sagnik; Raffin, Marie; Allen, Paul; Fusar-Poli, Paolo; Lythgoe, David; O'Gorman, Ruth; Seal, Marc; McGuire, Philip

    2011-01-01

    Both medial temporal cortical dysfunction and perturbed glutamatergic neurotransmission are regarded as fundamental pathophysiological features of psychosis. However, although animal models of psychosis suggest that these two abnormalities are interrelated, their relationship in humans has yet to be investigated. We used a combination of functional magnetic resonance imaging and magnetic resonance spectroscopy to investigate the relationship between medial temporal activation during an episodic memory task and local glutamate levels in 22 individuals with an at-risk mental state for psychosis and 14 healthy volunteers. We observed a significant between-group difference in the coupling of medial temporal activation with local glutamate levels. In control subjects, medial temporal activation during episodic encoding was positively associated with medial temporal glutamate. However, in the clinical population, medial temporal activation was reduced, and the relationship with glutamate was absent. In individuals at high risk of psychosis, medial temporal dysfunction seemed related to a loss of the normal relationship with local glutamate levels. This study provides the first evidence that links medial temporal dysfunction with the central glutamate system in humans and is consistent with evidence that drugs that modulate glutamatergic transmission might be useful in the treatment of psychosis. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Abnormal cortical synaptic transmission in CaV2.1 knockin mice with the S218L missense mutation which causes a severe familial hemiplegic migraine syndrome in humans

    Science.gov (United States)

    Vecchia, Dania; Tottene, Angelita; van den Maagdenberg, Arn M.J.M.; Pietrobon, Daniela

    2015-01-01

    Familial hemiplegic migraine type 1 (FHM1) is caused by gain-of-function mutations in CaV2.1 (P/Q-type) Ca2+ channels. Knockin (KI) mice carrying the FHM1 R192Q missense mutation show enhanced cortical excitatory synaptic transmission at pyramidal cell synapses but unaltered cortical inhibitory neurotransmission at fast-spiking interneuron synapses. Enhanced cortical glutamate release was shown to cause the facilitation of cortical spreading depression (CSD) in R192Q KI mice. It, however, remains unknown how other FHM1 mutations affect cortical synaptic transmission. Here, we studied neurotransmission in cortical neurons in microculture from KI mice carrying the S218L mutation, which causes a severe FHM syndrome in humans and an allele-dosage dependent facilitation of experimental CSD in KI mice, which is larger than that caused by the R192Q mutation. We show gain-of-function of excitatory neurotransmission, due to increased action-potential evoked Ca2+ influx and increased probability of glutamate release at pyramidal cell synapses, but unaltered inhibitory neurotransmission at multipolar interneuron synapses in S218L KI mice. In contrast with the larger gain-of-function of neuronal CaV2.1 current in homozygous than heterozygous S218L KI mice, the gain-of-function of evoked glutamate release, the paired-pulse ratio and the Ca2+ dependence of the excitatory postsynaptic current were similar in homozygous and heterozygous S218L KI mice, suggesting compensatory changes in the homozygous mice. Furthermore, we reveal a unique feature of S218L KI cortical synapses which is the presence of a fraction of mutant CaV2.1 channels being open at resting potential. Our data suggest that, while the gain-of-function of evoked glutamate release may explain the facilitation of CSD in heterozygous S218L KI mice, the further facilitation of CSD in homozygous S218L KI mice is due to other CaV2.1-dependent mechanisms, that likely include Ca2+ influx at voltages sub-threshold for action

  9. Sexual attraction enhances glutamate transmission in mammalian anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Wu Long-Jun

    2009-05-01

    Full Text Available Abstract Functional human brain imaging studies have indicated the essential role of cortical regions, such as the anterior cingulate cortex (ACC, in romantic love and sex. However, the neurobiological basis of how the ACC neurons are activated and engaged in sexual attraction remains unknown. Using transgenic mice in which the expression of green fluorescent protein (GFP is controlled by the promoter of the activity-dependent gene c-fos, we found that ACC pyramidal neurons are activated by sexual attraction. The presynaptic glutamate release to the activated neurons is increased and pharmacological inhibition of neuronal activities in the ACC reduced the interest of male mice to female mice. Our results present direct evidence of the critical role of the ACC in sexual attraction, and long-term increases in glutamate mediated excitatory transmission may contribute to sexual attraction between male and female mice.

  10. Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits.

    Science.gov (United States)

    Ujfalussy, Balázs B; Makara, Judit K; Branco, Tiago; Lengyel, Máté

    2015-12-24

    Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits.

  11. The role of glutamate in neuronal ion homeostasis: A case study of spreading depolarization.

    Directory of Open Access Journals (Sweden)

    Niklas Hübel

    2017-10-01

    Full Text Available Simultaneous changes in ion concentrations, glutamate, and cell volume together with exchange of matter between cell network and vasculature are ubiquitous in numerous brain pathologies. A complete understanding of pathological conditions as well as normal brain function, therefore, hinges on elucidating the molecular and cellular pathways involved in these mostly interdependent variations. In this paper, we develop the first computational framework that combines the Hodgkin-Huxley type spiking dynamics, dynamic ion concentrations and glutamate homeostasis, neuronal and astroglial volume changes, and ion exchange with vasculature into a comprehensive model to elucidate the role of glutamate uptake in the dynamics of spreading depolarization (SD-the electrophysiological event underlying numerous pathologies including migraine, ischemic stroke, aneurysmal subarachnoid hemorrhage, intracerebral hematoma, and trauma. We are particularly interested in investigating the role of glutamate in the duration and termination of SD caused by K+ perfusion and oxygen-glucose deprivation. Our results demonstrate that glutamate signaling plays a key role in the dynamics of SD, and that impaired glutamate uptake leads to recovery failure of neurons from SD. We confirm predictions from our model experimentally by showing that inhibiting astrocytic glutamate uptake using TFB-TBOA nearly quadruples the duration of SD in layers 2-3 of visual cortical slices from juvenile rats. The model equations are either derived purely from first physical principles of electroneutrality, osmosis, and conservation of particles or a combination of these principles and known physiological facts. Accordingly, we claim that our approach can be used as a future guide to investigate the role of glutamate, ion concentrations, and dynamics cell volume in other brain pathologies and normal brain function.

  12. The role of glutamate in neuronal ion homeostasis: A case study of spreading depolarization.

    Science.gov (United States)

    Hübel, Niklas; Hosseini-Zare, Mahshid S; Žiburkus, Jokūbas; Ullah, Ghanim

    2017-10-01

    Simultaneous changes in ion concentrations, glutamate, and cell volume together with exchange of matter between cell network and vasculature are ubiquitous in numerous brain pathologies. A complete understanding of pathological conditions as well as normal brain function, therefore, hinges on elucidating the molecular and cellular pathways involved in these mostly interdependent variations. In this paper, we develop the first computational framework that combines the Hodgkin-Huxley type spiking dynamics, dynamic ion concentrations and glutamate homeostasis, neuronal and astroglial volume changes, and ion exchange with vasculature into a comprehensive model to elucidate the role of glutamate uptake in the dynamics of spreading depolarization (SD)-the electrophysiological event underlying numerous pathologies including migraine, ischemic stroke, aneurysmal subarachnoid hemorrhage, intracerebral hematoma, and trauma. We are particularly interested in investigating the role of glutamate in the duration and termination of SD caused by K+ perfusion and oxygen-glucose deprivation. Our results demonstrate that glutamate signaling plays a key role in the dynamics of SD, and that impaired glutamate uptake leads to recovery failure of neurons from SD. We confirm predictions from our model experimentally by showing that inhibiting astrocytic glutamate uptake using TFB-TBOA nearly quadruples the duration of SD in layers 2-3 of visual cortical slices from juvenile rats. The model equations are either derived purely from first physical principles of electroneutrality, osmosis, and conservation of particles or a combination of these principles and known physiological facts. Accordingly, we claim that our approach can be used as a future guide to investigate the role of glutamate, ion concentrations, and dynamics cell volume in other brain pathologies and normal brain function.

  13. Facebook usage on smartphones and gray matter volume of the nucleus accumbens.

    Science.gov (United States)

    Montag, Christian; Markowetz, Alexander; Blaszkiewicz, Konrad; Andone, Ionut; Lachmann, Bernd; Sariyska, Rayna; Trendafilov, Boris; Eibes, Mark; Kolb, Julia; Reuter, Martin; Weber, Bernd; Markett, Sebastian

    2017-06-30

    A recent study has implicated the nucleus accumbens of the ventral striatum in explaining why online-users spend time on the social network platform Facebook. Here, higher activity of the nucleus accumbens was associated with gaining reputation on social media. In the present study, we touched a related research field. We recorded the actual Facebook usage of N=62 participants on their smartphones over the course of five weeks and correlated summary measures of Facebook use with gray matter volume of the nucleus accumbens. It appeared, that in particular higher daily frequency of checking Facebook on the smartphone was robustly linked with smaller gray matter volumes of the nucleus accumbens. The present study gives additional support for the rewarding aspects of Facebook usage. Moreover, it shows the feasibility to include real life behavior variables in human neuroscientific research. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases

    DEFF Research Database (Denmark)

    McKenna, Mary C; Stridh, Malin H; McNair, Laura Frendrup

    2016-01-01

    to the presynaptic neurons as the nonexcitatory amino acid glutamine. The cycle was initially thought to function with a 1:1 ratio between glutamate released and glutamine taken up by neurons. However, studies of glutamate metabolism in astrocytes have shown that a considerable proportion of glutamate undergoes...... the enzymes that mediate this conversion. Methods include pharmacological tools such as the transaminase inhibitor aminooxyacetic acid, studies using GDH knockout mice, and siRNA-mediated knockdown of GDH in astrocytes. Studies in brain slices incubated with [15N]glutamate demonstrated activity of GDH......The cellular distribution of transporters and enzymes related to glutamate metabolism led to the concept of the glutamate–glutamine cycle. Glutamate is released as a neurotransmitter and taken up primarily by astrocytes ensheathing the synapses. The glutamate carbon skeleton is transferred back...

  15. Intracellular synthesis of glutamic acid in Bacillus methylotrophicus SK19.001, a glutamate-independent poly(γ-glutamic acid)-producing strain.

    Science.gov (United States)

    Peng, Yingyun; Zhang, Tao; Mu, Wanmeng; Miao, Ming; Jiang, Bo

    2016-01-15

    Bacillus methylotrophicus SK19.001 is a glutamate-independent strain that produces poly(γ-glutamic acid) (γ-PGA), a polymer of D- and L-glutamic acids that possesses applications in food, the environment, agriculture, etc. This study was undertaken to explore the synthetic pathway of intracellular L- and D-glutamic acid in SK19.001 by investigating the effects of tricarboxylic acid cycle intermediates and different amino acids as metabolic precursors on the production of γ-PGA and analyzing the activities of the enzymes involved in the synthesis of L- and D-glutamate. Tricarboxylic acid cycle intermediates and amino acids could participate in the synthesis of γ-PGA via independent pathways in SK19.001. L-Aspartate aminotransferase, L-glutaminase and L-glutamate synthase were the enzymatic sources of L-glutamate. Glutamate racemase was responsible for the formation of D-glutamate for the synthesis of γ-PGA, and the synthetase had stereoselectivity for glutamate substrate. The enzymatic sources of L-glutamate were investigated for the first time in the glutamate-independent γ-PGA-producing strain, and multiple enzymatic sources of L-glutamate were verified in SK19.001, which will benefit efforts to improve production of γ-PGA with metabolic engineering strategies. © 2015 Society of Chemical Industry.

  16. Alterations of cortical GABA neurons and network oscillations in schizophrenia.

    Science.gov (United States)

    Gonzalez-Burgos, Guillermo; Hashimoto, Takanori; Lewis, David A

    2010-08-01

    The hypothesis that alterations of cortical inhibitory gamma-aminobutyric acid (GABA) neurons are a central element in the pathology of schizophrenia has emerged from a series of postmortem studies. How such abnormalities may contribute to the clinical features of schizophrenia has been substantially informed by a convergence with basic neuroscience studies revealing complex details of GABA neuron function in the healthy brain. Importantly, activity of the parvalbumin-containing class of GABA neurons has been linked to the production of cortical network oscillations. Furthermore, growing knowledge supports the concept that gamma band oscillations (30-80 Hz) are an essential mechanism for cortical information transmission and processing. Herein we review recent studies further indicating that inhibition from parvalbumin-positive GABA neurons is necessary to produce gamma oscillations in cortical circuits; provide an update on postmortem studies documenting that deficits in the expression of glutamic acid decarboxylase67, which accounts for most GABA synthesis in the cortex, are widely observed in schizophrenia; and describe studies using novel, noninvasive approaches directly assessing potential relations between alterations in GABA, oscillations, and cognitive function in schizophrenia.

  17. Lycopene depresses glutamate release through inhibition of voltage-dependent Ca2+ entry and protein kinase C in rat cerebrocortical nerve terminals.

    Science.gov (United States)

    Lu, Cheng-Wei; Hung, Chi-Feng; Jean, Wei-Horng; Lin, Tzu-Yu; Huang, Shu-Kuei; Wang, Su-Jane

    2018-05-01

    Lycopene is a natural dietary carotenoid that was reported to exhibit a neuroprotective profile. Considering that excitotoxicity and cell death induced by glutamate are involved in many brain disorders, the effect of lycopene on glutamate release in rat cerebrocortical nerve terminals and the possible mechanism involved in such effect was investigated. We observed here that lycopene inhibited 4-aminopyridine (4-AP)-evoked glutamate release and intrasynaptosomal Ca 2+ concentration elevation. The inhibitory effect of lycopene on 4-AP-evoked glutamate release was markedly reduced in the presence of the Ca v 2.2 (N-type) and Ca v 2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was insensitive to the intracellular Ca 2+ -release inhibitors dantrolene and CGP37157. Furthermore, in the presence of the protein kinase C inhibitors GF109203X and Go6976, the action of lycopene on evoked glutamate release was prevented. These results are the first to suggest that lycopene inhibits glutamate release from rat cortical synaptosomes by suppressing presynaptic Ca 2+ entry and protein kinase C activity.

  18. Efferent connections and nigral afferents of the nucleus accumbens septi in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Nauta, W J.H.; Smith, G P; Faull, R L.M.; Domesick, V B [Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Psychology

    1978-01-01

    The results of this study by the methods of autoradiographic fiber-tracing and retrograde cell-labelling confirm earlier reports of accumbens projections to the globus pallidus and to dorsal strata of the medial half of the substantia nigra. Also in accord with previous autoradiographic evidence, sparser projections could be traced to a variety of subcortical structures implicated in the circuitry of the limbic system: bed nucleus of the stria terminalis, septum, preoptic region, hypothalamus, ventral tegmental area, nuclei paratenialis and mediodorsalis thalami, and lateral habenular nucleus. Contrary to earlier reports, striatopallidal fibers from the accumbens were found to be distributed largely to the subcommissural part of the external pallidal segment and to avoid almost entirely the internal pallidal segment. Mesencephalic projections from the accumbens largely coincide with those from the preoptic region and hypothalamus; like the latter they prominantly involve the region of the out-lying nigral cell groups A10 and A8 and extend caudally beyond the nigral complex to the cuneiform and parabrachial regions of the tegmentum as well as to caudoventral parts of the central grey substance. Horseradish peroxidase injected into the nucleus accumbens labels numerous neurons in the region of cell group A10 and in the supralemniscal 'retrorubral nucleus', but only sporadic cells in the pars compacta of the substantia nigra proper. It thus appears that the accumbens projects to a region of the nigral complex considerably larger than that from which it receives nigrostriatal fibers, and hence, that the nigro-striato-nigral circuit associated with the accumbens is not organized in a mode of simple point-for-point reciprocity. The problem of delimiting the accumbens from the rest of the striatum is examined by comparing cases of tracer injection into various discrete loci within the ventral zone of the striatum.

  19. Glutamate signalling and secretory phospholipase A2 modulate the release of arachidonic acid from neuronal membranes

    DEFF Research Database (Denmark)

    Rodriguez De Turco, Elena B; Jackson, Fannie R; DeCoster, Mark A

    2002-01-01

    The lipid mediators generated by phospholipases A(2) (PLA(2)), free arachidonic acid (AA), eicosanoids, and platelet-activating factor, modulate neuronal activity; when overproduced, some of them become potent neurotoxins. We have shown, using primary cortical neuron cultures, that glutamate...... and secretory PLA(2) (sPLA(2)) from bee venom (bv sPLA(2)) and Taipan snake venom (OS2) elicit synergy in inducing neuronal cell death. Low concentrations of sPLA(2) are selective ligands of cell-surface sPLA(2) receptors. We investigated which neuronal arachidonoyl phospholipids are targeted by glutamate......) and in minor changes in other phospholipids. A similar profile, although of greater magnitude, was observed 20 hr posttreatment. Glutamate (80 microM) induced much less mobilization of (3)H-AA than did sPLA(2) and resulted in a threefold greater degradation of (3)H-AA PE than of (3)H-AA PC by 20 hr...

  20. Glutamate/GABA+ ratio is associated with the psychosocial domain of autistic and schizotypal traits.

    Directory of Open Access Journals (Sweden)

    Talitha C Ford

    Full Text Available The autism and schizophrenia spectra overlap to a large degree in the social and interpersonal domains. Similarly, abnormal excitatory glutamate and inhibitory γ-aminobutyric acid (GABA neurotransmitter concentrations have been reported for both spectra, with the interplay of these neurotransmitters important for cortical excitation to inhibition regulation. This study investigates whether these neurotransmitter abnormalities are specific to the shared symptomatology, and whether the degree of abnormality increases with increasing symptom severity. Hence, the relationship between the glutamate/GABA ratio and autism and schizophrenia spectrum traits in an unmedicated, subclinical population was investigated.A total of 37 adults (19 female, 18 male aged 18-38 years completed the Autism Spectrum Quotient (AQ and Schizotypal Personality Questionnaire (SPQ, and participated in the resting state proton magnetic resonance spectroscopy study in which sequences specific for quantification of glutamate and GABA+ concentration were applied to a right and left superior temporal voxel.There were significant, moderate, positive relationships between right superior temporal glutamate/GABA+ ratio and AQ, SPQ and AQ+SPQ total scores (p<0.05, SPQ subscales Social Anxiety, No Close Friend, Constricted Affect, Odd Behaviour, Odd Speech, Ideas of Reference and Suspiciousness, and AQ subscales Social Skills, Communication and Attention Switching (p<0.05; increased glutamate/GABA+ coinciding with higher scores on these subscales. Only the relationships between glutamate/GABA+ ratio and Social Anxiety, Constricted Affect, Social Skills and Communication survived multiple comparison correction (p< 0.004. Left superior temporal glutamate/GABA+ ratio reduced with increasing restricted imagination (p<0.05.These findings demonstrate evidence for an association between excitatory/inhibitory neurotransmitter concentrations and symptoms that are shared between the autism and

  1. The role of glutamine transport in metabolism in the brain cortical tissue slice

    International Nuclear Information System (INIS)

    Hare, N.; Bubb, W.A.; Rae, C.; Broeer, S.

    2001-01-01

    The widely accepted 'glutamate/glutamine cycle' holds that glutamate released as a neurotransmitter in the brain is taken up by surrounding astrocytes, converted to neuro-inactive glutamine and transported back to neurons for reconversion to glutamate. Little, however, is known about the role of glutamine transport in this process. The situation is complicated by the fact that glutamine is transported by a variety of general amino-acid transporters of low specificity. The role of these transporters in flux of glutamine through the glutamate/glutamine cycle was investigated by 13 C NMR monitoring of the flux of C from [3- 13 C]L-lactate in guinea pig cortical tissue slices in the presence of competitive inhibitors of the A-type(α-(methylamino)isobutyrate; MeAIB) and N-type (histidine) transporters. The presence of each inhibitor (10 mM) produced no significant decrease in total metabolite pool size but resulted in a significant decrease in flux of [ 13 C] into the neurotransmitters glutamate and GABA and also into glutamine and alanine. The factional enrichment of glutamate and GABA was also significantly lower. By contrast there was no effect on the amount of [ 13 C] incorporated into aspartate isotopomers which may represent a predominantly astrocyte-labelled pool. These results are consistent with involvement of glutamine transporters in the recycling of synaptic glutamate by demonstrating partial blockage of incorporation of [ 13 C] label into neuronal metabolites

  2. Working Memory Modulates Glutamate Levels in the Dorsolateral Prefrontal Cortex during 1H fMRS

    Directory of Open Access Journals (Sweden)

    Eric A. Woodcock

    2018-03-01

    Full Text Available Glutamate is involved in excitatory neurotransmission and metabolic processes related to brain function. Previous studies using proton functional magnetic resonance spectroscopy (1H fMRS have demonstrated elevated cortical glutamate levels by 2–4% during visual and motor stimulation, relative to periods of no stimulation. Here, we extended this approach to working memory cognitive task performance, which has been consistently associated with dorsolateral prefrontal cortex (dlPFC activation. Sixteen healthy adult volunteers completed a continuous visual fixation “rest” task followed by a letter 2-back working memory task during 1H fMRS acquisition of the left dlPFC, which encompassed Brodmann areas 45 and 46 over a 4.5-cm3 volume. Using a 100% automated fitting procedure integrated with LCModel, raw spectra were eddy current-, phase-, and shift-corrected prior to quantification resulting in a 32s temporal resolution or 8 averages per spectra. Task compliance was high (95 ± 11% correct and the mean Cramer-Rao Lower Bound of glutamate was 6.9 ± 0.9%. Relative to continuous passive visual fixation, left dlPFC glutamate levels were significantly higher by 2.7% (0.32 mmol/kg wet weight during letter 2-back performance. Elevated dlPFC glutamate levels reflect increased metabolic activity and excitatory neurotransmission driven by working memory-related cognitive demands. These results provide the first in vivo demonstration of elevated dlPFC glutamate levels during working memory.

  3. The Effects of NAD+ on Apoptotic Neuronal Death and Mitochondrial Biogenesis and Function after Glutamate Excitotoxicity

    Science.gov (United States)

    Wang, Xiaowan; Li, Hailong; Ding, Shinghua

    2014-01-01

    NAD+ is an essential co-enzyme for cellular energy metabolism and is also involved as a substrate for many cellular enzymatic reactions. It has been shown that NAD+ has a beneficial effect on neuronal survival and brain injury in in vitro and in vivo ischemic models. However, the effect of NAD+ on mitochondrial biogenesis and function in ischemia has not been well investigated. In the present study, we used an in vitro glutamate excitotoxicity model of primary cultured cortical neurons to study the effect of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function. Our results show that supplementation of NAD+ could effectively reduce apoptotic neuronal death, and apoptotic inducing factor translocation after neurons were challenged with excitotoxic glutamate stimulation. Using different approaches including confocal imaging, mitochondrial DNA measurement and Western blot analysis of PGC-1 and NRF-1, we also found that NAD+ could significantly attenuate glutamate-induced mitochondrial fragmentation and the impairment of mitochondrial biogenesis. Furthermore, NAD+ treatment effectively inhibited mitochondrial membrane potential depolarization and NADH redistribution after excitotoxic glutamate stimulation. Taken together, our results demonstrated that NAD+ is capable of inhibiting apoptotic neuronal death after glutamate excitotoxicity via preserving mitochondrial biogenesis and integrity. Our findings provide insights into potential neuroprotective strategies in ischemic stroke. PMID:25387075

  4. Specificity of exogenous acetate and glutamate as astrocyte substrates examined in acute brain slices from female mice using methionine sulfoximine (MSO) to inhibit glutamine synthesis

    DEFF Research Database (Denmark)

    Andersen, Jens Velde; McNair, Laura Frendrup; Schousboe, Arne

    2017-01-01

    Removal of endogenously released glutamate is mediated primarily by astrocytes and exogenous (13) C-labeled glutamate has been applied to study glutamate metabolism in astrocytes. Likewise, studies have clearly established the relevance of (13) C-labeled acetate as an astrocyte specific metabolic...... cortical slices from female NMRI mice were incubated in media containing [1,2-(13) C]acetate or [U-(13) C]glutamate, with or without methionine sulfoximine (MSO) to inhibit glutamine synthetase (GS). Tissue extracts were analyzed by gas chromatography-mass spectrometry. Blocking GS abolished the majority...... of glutamine (13) C-labeling from [1,2-(13) C]acetate as intended. However, (13) C-labeling of GABA was only 40-50% reduced by MSO, suggesting considerable neuronal uptake of acetate. Moreover, labeling of glutamate from [1,2-(13) C]acetate in the presence of MSO exceeded the level probable from exclusive...

  5. Individual differences in the forced swimming test and neurochemical kinetics in the rat brain.

    Science.gov (United States)

    Sequeira-Cordero, Andrey; Mora-Gallegos, Andrea; Cuenca-Berger, Patricia; Fornaguera-Trías, Jaime

    2014-04-10

    Individual differences in the forced swimming test (FST) could be associated with differential temporal dynamics of gene expression and neurotransmitter activity. We tested juvenile male rats in the FST and classified the animals into those with low and high immobility according to the amount of immobility time recorded in FST. These groups and a control group which did not undergo the FST were sacrificed either 1, 6 or 24 h after the test. We analyzed the expression of the CRF, CRFR1, BDNF and TrkB in the prefrontal cortex, hippocampus and nucleus accumbens as well as norepinephrine, dopamine, serotonin, glutamate, GABA and glutamine in the hippocampus and nucleus accumbens. Animals with low immobility showed significant reductions of BDNF expression across time points in both the prefrontal cortex and the nucleus accumbens when compared with non-swim control. Moreover, rats with high immobility only showed a significant decrease of BDNF expression in the prefrontal cortex 6h after the FST. Regarding neurotransmitters, only accumbal dopamine turnover and hippocampal glutamate content showed an effect of individual differences (i.e. animals with low and high immobility), whereas nearly all parameters showed significant differences across time points. Correlational analyses suggest that immobility in the FST, probably reflecting despair, is related to prefrontal cortical BDNF and to the kinetics observed in several other neurochemical parameters. Taken together, our results suggest that individual differences observed in depression-like behavior can be associated not only with changes in the concentrations of key neurochemical factors but also with differential time courses of such factors. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Intracellular Na+ concentration influences short-term plasticity of glutamate transporter-mediated currents in neocortical astrocytes.

    Science.gov (United States)

    Unichenko, Petr; Myakhar, Olga; Kirischuk, Sergei

    2012-04-01

    Fast synaptic transmission requires a rapid clearance of the released neurotransmitter from the extracellular space. Glial glutamate transporters (excitatory amino acid transporters, EAATs) strongly contribute to glutamate removal. In this work, we investigated the paired-pulse plasticity of synaptically activated, glutamate transporter-mediated currents (STCs) in cortical layer 2/3 astrocytes. STCs were elicited by local electrical stimulation in layer 4 in the presence of ionotropic glutamate (AMPA and NMDA), GABAA, and GABAB receptor antagonists. In experiments with low [Na(+)]i (5 mM) intrapipette solution, STCs elicited by paired-pulse stimulation demonstrated paired-pulse facilitation (PPF) at short (astrocytic [Na(+)]i, reduced the mean STC amplitude, decreased PPF at short ISIs, and slowed STC kinetics. All GABA-induced changes were blocked by NO-711 and SNAP-5114, GABA transporter (GATs) antagonists. In experiments with the low intrapipette solution, GAT blockade under control conditions decreased PPF at short ISIs both at room and at near physiological temperatures. Dialysis of single astrocyte with low [Na(+)]i solution increased the amplitude and reduced PPR of evoked field potentials recorded in the vicinity of the astrocyte. We conclude that (1) endogenous GABA via GATs may influence EAAT functioning and (2) astrocytic [Na(+)]i modulates the short-term plasticity of STCs and in turn the efficacy of glutamate removal. Copyright © 2012 Wiley Periodicals, Inc.

  7. Inhibition of PKMzeta in nucleus accumbens core abolishes long-term drug reward memory.

    Science.gov (United States)

    Li, Yan-qin; Xue, Yan-xue; He, Ying-ying; Li, Fang-qiong; Xue, Li-fen; Xu, Chun-mei; Sacktor, Todd Charlton; Shaham, Yavin; Lu, Lin

    2011-04-06

    During abstinence, memories of drug-associated cues persist for many months, and exposure to these cues often provokes relapse to drug use. The mechanisms underlying the maintenance of these memories are unknown. A constitutively active atypical protein kinase C (PKC) isozyme, protein kinase M ζ (PKMζ), is required for maintenance of spatial memory, conditioned taste aversion, and other memory forms. We used conditioned place preference (CPP) and conditioned place aversion (CPA) procedures to study the role of nucleus accumbens PKMζ in the maintenance of drug reward and aversion memories in rats. Morphine CPP training (10 mg/kg, 4 pairings) increased PKMζ levels in accumbens core but not shell. Injections of the PKMζ inhibitor ζ inhibitory peptide (ZIP) into accumbens core but not shell after CPP training blocked morphine CPP expression for up to 14 d after injections. This effect was mimicked by the PKC inhibitor chelerythrine, which inhibits PKMζ, but not by the conventional and novel PKC inhibitor staurosporine, which does not effectively inhibit PKMζ. ZIP injections into accumbens core after training also blocked the expression of cocaine (10 mg/kg) and high-fat food CPP but had no effect on CPA induced by naloxone-precipitated morphine withdrawal. Accumbens core injections of Tat-GluR2(3Y), which inhibits GluR2-dependent AMPA receptor endocytosis, prevented the impairment in morphine CPP induced by local ZIP injections, indicating that the persistent effect of PKMζ is on GluR2-containing AMPA receptors. Results indicate that PKMζ activity in accumbens core is a critical cellular substrate for the maintenance of memories of relapse-provoking reward cues during prolonged abstinence periods.

  8. Chronic ciguatoxin treatment induces synaptic scaling through voltage gated sodium channels in cortical neurons.

    Science.gov (United States)

    Martín, Víctor; Vale, Carmen; Rubiolo, Juan A; Roel, Maria; Hirama, Masahiro; Yamashita, Shuji; Vieytes, Mercedes R; Botana, Luís M

    2015-06-15

    Ciguatoxins are sodium channels activators that cause ciguatera, one of the most widespread nonbacterial forms of food poisoning, which presents with long-term neurological alterations. In central neurons, chronic perturbations in activity induce homeostatic synaptic mechanisms that adjust the strength of excitatory synapses and modulate glutamate receptor expression in order to stabilize the overall activity. Immediate early genes, such as Arc and Egr1, are induced in response to activity changes and underlie the trafficking of glutamate receptors during neuronal homeostasis. To better understand the long lasting neurological consequences of ciguatera, it is important to establish the role that chronic changes in activity produced by ciguatoxins represent to central neurons. Here, the effect of a 30 min exposure of 10-13 days in vitro (DIV) cortical neurons to the synthetic ciguatoxin CTX 3C on Arc and Egr1 expression was evaluated using real-time polymerase chain reaction approaches. Since the toxin increased the mRNA levels of both Arc and Egr1, the effect of CTX 3C in NaV channels, membrane potential, firing activity, miniature excitatory postsynaptic currents (mEPSCs), and glutamate receptors expression in cortical neurons after a 24 h exposure was evaluated using electrophysiological and western blot approaches. The data presented here show that CTX 3C induced an upregulation of Arc and Egr1 that was prevented by previous coincubation of the neurons with the NaV channel blocker tetrodotoxin. In addition, chronic CTX 3C caused a concentration-dependent shift in the activation voltage of NaV channels to more negative potentials and produced membrane potential depolarization. Moreover, 24 h treatment of cortical neurons with 5 nM CTX 3C decreased neuronal firing and induced synaptic scaling mechanisms, as evidenced by a decrease in the amplitude of mEPSCs and downregulation in the protein level of glutamate receptors that was also prevented by tetrodotoxin

  9. Ethanol up-regulates nucleus accumbens neuronal activity dependent pentraxin (Narp): implications for alcohol-induced behavioral plasticity.

    Science.gov (United States)

    Ary, Alexis W; Cozzoli, Debra K; Finn, Deborah A; Crabbe, John C; Dehoff, Marlin H; Worley, Paul F; Szumlinski, Karen K

    2012-06-01

    Neuronal activity dependent pentraxin (Narp) interacts with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors to facilitate excitatory synapse formation by aggregating them at established synapses. Alcohol is well-characterized to influence central glutamatergic transmission, including AMPA receptor function. Herein, we examined the influence of injected and ingested alcohol upon Narp protein expression, as well as basal Narp expression in mouse lines selectively bred for high blood alcohol concentrations under limited access conditions. Alcohol up-regulated accumbens Narp levels, concomitant with increases in levels of the GluR1 AMPA receptor subunit. However, accumbens Narp or GluR1 levels did not vary as a function of selectively bred genotype. We next employed a Narp knock-out (KO) strategy to begin to understand the behavioral relevance of alcohol-induced changes in protein expression in several assays of alcohol reward. Compared to wild-type mice, Narp KO animals: fail to escalate daily intake of high alcohol concentrations under free-access conditions; shift their preference away from high alcohol concentrations with repeated alcohol experience; exhibit a conditioned place-aversion in response to the repeated pairing of 3 g/kg alcohol with a distinct environment and fail to exhibit alcohol-induced locomotor hyperactivity following repeated alcohol treatment. Narp deletion did not influence the daily intake of either food or water, nor did it alter any aspect of spontaneous or alcohol-induced motor activity, including the development of tolerance to its motor-impairing effects with repeated treatment. Taken together, these data indicate that Narp induction, and presumably subsequent aggregation of AMPA receptors, may be important for neuroplasticity within limbic subcircuits mediating or maintaining the rewarding properties of alcohol. Published by Elsevier Inc.

  10. Disruption of the glutamate-glutamine cycle involving astrocytes in an animal model of depression for males and females

    Directory of Open Access Journals (Sweden)

    Virginie Rappeneau

    2016-12-01

    Full Text Available Background: Women are twice as likely as men to develop major depression (MD. The brain mechanisms underlying this sex disparity are not clear. Disruption of the glutamate-glutamine cycle has been implicated in psychiatric disturbances. This study identifies sex-based impairments in the glutamate-glutamine cycle involving astrocytes using an animal model of depression. Methods: Male and female adult Long-Evans rats were exposed to chronic social defeat stress (CSDS for 21 days, using a modified resident-intruder paradigm. Territorial aggression was used for males and maternal aggression was used for females to induce depressive-like deficits for intruders. The depressive-like phenotype was assessed with intake for saccharin solution, weight gain, estrous cycle, and corticosterone (CORT. Behaviors displayed by the intruders during daily encounters with residents were characterized. Rats with daily handling were used as controls for each sex. Ten days after the last encounter, both the intruders and controls were subjected to a no-net-flux in vivo microdialysis to assess glutamate accumulation and extracellular glutamine in the nucleus accumbens (NAc. The contralateral hemispheres were used for determining changes in astrocytic markers, including glial fibrillary acidic protein (GFAP and glutamate transporter-1 (GLT-1. Results: Both male and female intruders reduced saccharin intake over the course of CSDS, compared to their pre-stress period and to their respective controls. Male intruders exhibited submissive/defensive behaviors to territorial aggression by receiving sideways threats and bites. These males showed reductions in striatal GLT-1 and spontaneous glutamine in the NAc, compared to controls. Female intruders exhibited isolated behaviors to maternal aggression, including immobility, rearing, and self-grooming. Their non-reproductive days were extended. Also, they showed reductions in prefrontal and accumbal GFAP+ cells and prefrontal GLT

  11. Comparison of Glutamate Turnover in Nerve Terminals and Brain Tissue During [1,6-13C2]Glucose Metabolism in Anesthetized Rats.

    Science.gov (United States)

    Patel, Anant B; Lai, James C K; Chowdhury, Golam I M; Rothman, Douglas L; Behar, Kevin L

    2017-01-01

    The 13 C turnover of neurotransmitter amino acids (glutamate, GABA and aspartate) were determined from extracts of forebrain nerve terminals and brain homogenate, and fronto-parietal cortex from anesthetized rats undergoing timed infusions of [1,6- 13 C 2 ]glucose or [2- 13 C]acetate. Nerve terminal 13 C fractional labeling of glutamate and aspartate was lower than those in whole cortical tissue at all times measured (up to 120 min), suggesting either the presence of a constant dilution flux from an unlabeled substrate or an unlabeled (effectively non-communicating on the measurement timescale) glutamate pool in the nerve terminals. Half times of 13 C labeling from [1,6- 13 C 2 ]glucose, as estimated by least squares exponential fitting to the time course data, were longer for nerve terminals (Glu C4 , 21.8 min; GABA C2 21.0 min) compared to cortical tissue (Glu C4 , 12.4 min; GABA C2 , 14.5 min), except for Asp C3 , which was similar (26.5 vs. 27.0 min). The slower turnover of glutamate in the nerve terminals (but not GABA) compared to the cortex may reflect selective effects of anesthesia on activity-dependent glucose use, which might be more pronounced in the terminals. The 13 C labeling ratio for glutamate-C4 from [2- 13 C]acetate over that of 13 C-glucose was twice as large in nerve terminals compared to cortex, suggesting that astroglial glutamine under the 13 C glucose infusion was the likely source of much of the nerve terminal dilution. The net replenishment of most of the nerve terminal amino acid pools occurs directly via trafficking of astroglial glutamine.

  12. Differential Dopamine Regulation of Ca2+ Signaling and Its Timing Dependence in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Immani Swapna

    2016-04-01

    Full Text Available Dopamine action in the nucleus accumbens (NAc is thought to drive appetitive behavior and Pavlovian reward learning. However, it remains controversial how dopamine achieves these behavioral effects by regulating medium spiny projection neurons (MSNs of the NAc, especially on a behaviorally relevant timescale. Metabotropic glutamate receptor (mGluR-induced Ca2+ signaling dependent on the Ca2+- releasing messenger inositol 1,4,5-triphosphate (IP3 plays a critical role in controlling neuronal excitability and synaptic plasticity. Here, we show that transient dopamine application facilitates mGluR/IP3-induced Ca2+ signals within a time window of ∼2–10 s in a subpopulation of MSNs in the NAc core. Dopamine facilitation of IP3-induced Ca2+ signaling is mediated by D1 dopamine receptors. In dopamine-insensitive MSNs, activation of A2A adenosine receptors causes enhancement of IP3-evoked Ca2+ signals, which is reversed by D2 dopamine receptor activation. These results show that dopamine differentially regulates Ca2+ signaling on the order of seconds in two distinct MSN subpopulations.

  13. Perimovement decrease of alpha/beta oscillations in the human nucleus accumbens.

    Science.gov (United States)

    Stenner, Max-Philipp; Dürschmid, Stefan; Rutledge, Robb B; Zaehle, Tino; Schmitt, Friedhelm C; Kaufmann, Jörn; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J; Schoenfeld, Mircea Ariel

    2016-10-01

    The human nucleus accumbens is thought to play an important role in guiding future action selection via an evaluation of current action outcomes. Here we provide electrophysiological evidence for a more direct, i.e., online, role during action preparation. We recorded local field potentials from the nucleus accumbens in patients with epilepsy undergoing surgery for deep brain stimulation. We found a consistent decrease in the power of alpha/beta oscillations (10-30 Hz) before and around the time of movements. This perimovement alpha/beta desynchronization was observed in seven of eight patients and was present both before instructed movements in a serial reaction time task as well as before self-paced, deliberate choices in a decision making task. A similar beta decrease over sensorimotor cortex and in the subthalamic nucleus has been directly related to movement preparation and execution. Our results support the idea of a direct role of the human nucleus accumbens in action preparation and execution. Copyright © 2016 the American Physiological Society.

  14. Cholinergic basal forebrain structures are not essential for mediation of the arousing action of glutamate.

    Science.gov (United States)

    Lelkes, Zoltán; Abdurakhmanova, Shamsiiat; Porkka-Heiskanen, Tarja

    2017-09-18

    The cholinergic basal forebrain contributes to cortical activation and receives rich innervations from the ascending activating system. It is involved in the mediation of the arousing actions of noradrenaline and histamine. Glutamatergic stimulation in the basal forebrain results in cortical acetylcholine release and suppression of sleep. However, it is not known to what extent the cholinergic versus non-cholinergic basal forebrain projection neurones contribute to the arousing action of glutamate. To clarify this question, we administered N-methyl-D-aspartate (NMDA), a glutamate agonist, into the basal forebrain in intact rats and after destruction of the cholinergic cells in the basal forebrain with 192 immunoglobulin (Ig)G-saporin. In eight Han-Wistar rats with implanted electroencephalogram/electromyogram (EEG/EMG) electrodes and guide cannulas for microdialysis probes, 0.23 μg 192 IgG-saporin was administered into the basal forebrain, while the eight control animals received artificial cerebrospinal fluid. Two weeks later, a microdialysis probe targeted into the basal forebrain was perfused with cerebrospinal fluid on the baseline day and for 3 h with 0.3 mmNMDA on the subsequent day. Sleep-wake activity was recorded for 24 h on both days. NMDA exhibited a robust arousing effect in both the intact and the lesioned rats. Wakefulness was increased and both non-REM and REM sleep were decreased significantly during the 3-h NMDA perfusion. Destruction of the basal forebrain cholinergic neurones did not abolish the wake-enhancing action of NMDA. Thus, the cholinergic basal forebrain structures are not essential for the mediation of the arousing action of glutamate. © 2017 European Sleep Research Society.

  15. An Exploratory Study of Spectroscopic Glutamatergic Correlates of Cortical Excitability in Depressed Adolescents

    Directory of Open Access Journals (Sweden)

    Charles P. Lewis

    2016-11-01

    Full Text Available Introduction: Transcranial magnetic stimulation (TMS research has suggested dysfunction in cortical glutamatergic systems in depression, while proton magnetic resonance spectroscopy (1H-MRS studies have demonstrated deficits in concentrations of glutamatergic metabolites in depressed individuals in several cortical regions, including the anterior cingulate cortex (ACC. However, few studies have combined TMS and MRS methods to examine relationships between glutamatergic neurochemistry and excitatory and inhibitory neural functions, and none have utilized TMS-MRS methodology in clinical populations or in youth. This exploratory study aimed to examine relationships between TMS measures of cortical excitability and inhibition and concentrations of glutamatergic metabolites as measured by 1H-MRS in depressed adolescents. Methods: Twenty-four children and adolescents (aged 11-18 years with depressive symptoms underwent TMS testing, which included measures of the resting motor threshold (RMT, cortical silent period (CSP, short-interval intracortical inhibition (SICI, and intracortical facilitation (ICF. Fourteen participants from the same sample also completed 1H-MRS in a 3 T MRI scanner after TMS testing. Glutamate + glutamine (Glx concentrations were measured in medial ACC and left primary motor cortex voxels with a TE-optimized PRESS sequence. Metabolite concentrations were corrected for cerebrospinal fluid after tissue segmentation. Pearson product-moment and Spearman rank-order correlations were calculated to assess relationships between TMS measures and Glx. Results: In the left primary motor cortex voxel, Glx had a significant positive correlation with the RMT. In the medial ACC voxel, Glx had significant positive correlations with ICF at the 10-ms and 20-ms ISIs.Conclusions: These preliminary data implicate glutamate in cortical excitatory processes measured by TMS. Limitations included small sample size, lack of healthy control comparators

  16. Blood Glutamate Scavenging: Insight into Neuroprotection

    Directory of Open Access Journals (Sweden)

    Alexander Zlotnik

    2012-08-01

    Full Text Available Brain insults are characterized by a multitude of complex processes, of which glutamate release plays a major role. Deleterious excess of glutamate in the brain’s extracellular fluids stimulates glutamate receptors, which in turn lead to cell swelling, apoptosis, and neuronal death. These exacerbate neurological outcome. Approaches aimed at antagonizing the astrocytic and glial glutamate receptors have failed to demonstrate clinical benefit. Alternatively, eliminating excess glutamate from brain interstitial fluids by making use of the naturally occurring brain-to-blood glutamate efflux has been shown to be effective in various animal studies. This is facilitated by gradient driven transport across brain capillary endothelial glutamate transporters. Blood glutamate scavengers enhance this naturally occurring mechanism by reducing the blood glutamate concentration, thus increasing the rate at which excess glutamate is cleared. Blood glutamate scavenging is achieved by several mechanisms including: catalyzation of the enzymatic process involved in glutamate metabolism, redistribution of glutamate into tissue, and acute stress response. Regardless of the mechanism involved, decreased blood glutamate concentration is associated with improved neurological outcome. This review focuses on the physiological, mechanistic and clinical roles of blood glutamate scavenging, particularly in the context of acute and chronic CNS injury. We discuss the details of brain-to-blood glutamate efflux, auto-regulation mechanisms of blood glutamate, natural and exogenous blood glutamate scavenging systems, and redistribution of glutamate. We then propose different applied methodologies to reduce blood and brain glutamate concentrations and discuss the neuroprotective role of blood glutamate scavenging.

  17. Memory Trace Reactivation and Behavioral Response during Retrieval Are Differentially Modulated by Amygdalar Glutamate Receptors Activity: Interaction between Amygdala and Insular Cortex

    Science.gov (United States)

    Osorio-Gómez, Daniel; Guzmán-Ramos, Kioko; Bermúdez-Rattoni, Federico

    2017-01-01

    The insular cortex (IC) is required for conditioned taste aversion (CTA) retrieval. However, it remains unknown which cortical neurotransmitters levels are modified upon CTA retrieval. Using in vivo microdialysis, we observed that there were clear elevations in extracellular glutamate, norepinephrine, and dopamine in and around the center of the…

  18. Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes

    DEFF Research Database (Denmark)

    Pajęcka, Kamilla; Nissen, Jakob D; Stridh, Malin H

    2015-01-01

    -500 µM) in the presence or in the absence of glucose, the metabolism of these substrates was studied by using tritiated glutamate or 2-deoxyglucose as tracers. In addition, the cellular contents of glutamate and ATP were determined. The astrocytes were able to maintain physiological levels of ATP...... regardless of the expression level of GDH and the incubation condition, indicating a high degree of flexibility with regard to regulatory mechanisms involved in maintaining an adequate energy level in the cells. Glutamate uptake was found to be increased in these cells when exposed to increasing levels...

  19. Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders.

    Science.gov (United States)

    Sanacora, Gerard; Treccani, Giulia; Popoli, Maurizio

    2012-01-01

    Half a century after the first formulation of the monoamine hypothesis, compelling evidence implies that long-term changes in an array of brain areas and circuits mediating complex cognitive-emotional behaviors represent the biological underpinnings of mood/anxiety disorders. A large number of clinical studies suggest that pathophysiology is associated with dysfunction of the predominant glutamatergic system, malfunction in the mechanisms regulating clearance and metabolism of glutamate, and cytoarchitectural/morphological maladaptive changes in a number of brain areas mediating cognitive-emotional behaviors. Concurrently, a wealth of data from animal models have shown that different types of environmental stress enhance glutamate release/transmission in limbic/cortical areas and exert powerful structural effects, inducing dendritic remodeling, reduction of synapses and possibly volumetric reductions resembling those observed in depressed patients. Because a vast majority of neurons and synapses in these areas and circuits use glutamate as neurotransmitter, it would be limiting to maintain that glutamate is in some way 'involved' in mood/anxiety disorders; rather it should be recognized that the glutamatergic system is a primary mediator of psychiatric pathology and, potentially, also a final common pathway for the therapeutic action of antidepressant agents. A paradigm shift from a monoamine hypothesis of depression to a neuroplasticity hypothesis focused on glutamate may represent a substantial advancement in the working hypothesis that drives research for new drugs and therapies. Importantly, despite the availability of multiple classes of drugs with monoamine-based mechanisms of action, there remains a large percentage of patients who fail to achieve a sustained remission of depressive symptoms. The unmet need for improved pharmacotherapies for treatment-resistant depression means there is a large space for the development of new compounds with novel mechanisms

  20. Relief memory consolidation requires protein synthesis within the nucleus accumbens.

    Science.gov (United States)

    Bruning, Johann E A; Breitfeld, Tino; Kahl, Evelyn; Bergado-Acosta, Jorge R; Fendt, Markus

    2016-06-01

    Relief learning refers to the association of a stimulus with the relief from an aversive event. The thus-learned relief stimulus then can induce, e.g., an attenuation of the startle response or approach behavior, indicating positive valence. Previous studies revealed that the nucleus accumbens is essential for the acquisition and retrieval of relief memory. Here, we ask whether the nucleus accumbens is also the brain site for consolidation of relief memory into a long-term form. In rats, we blocked local protein synthesis within the nucleus accumbens by local infusions of anisomycin at different time points during a relief conditioning experiment. Accumbal anisomycin injections immediately after the relief conditioning session, but not 4 h later, prevented the consolidation into long-term relief memory. The retention of already consolidated relief memory was not affected by anisomycin injections. This identifies a time window and site for relief memory consolidation. These findings should complement our understanding of the full range of effects of adverse experiences, including cases of their distortion in humans such as post-traumatic stress disorder and/or phobias. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats.

    Science.gov (United States)

    Salti, Ahmad; Kummer, Kai K; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana

    2015-12-01

    We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Glutamate Receptors within the Mesolimbic Dopamine System Mediate Alcohol Relapse Behavior.

    Science.gov (United States)

    Eisenhardt, Manuela; Leixner, Sarah; Luján, Rafael; Spanagel, Rainer; Bilbao, Ainhoa

    2015-11-25

    Glutamatergic input within the mesolimbic dopamine (DA) pathway plays a critical role in the development of addictive behavior. Although this is well established for some drugs of abuse, it is not known whether glutamate receptors within the mesolimbic system are involved in mediating the addictive properties of chronic alcohol use. Here we evaluated the contribution of mesolimbic NMDARs and AMPARs in mediating alcohol-seeking responses induced by environmental stimuli and relapse behavior using four inducible mutant mouse lines lacking the glutamate receptor genes Grin1 or Gria1 in either DA transporter (DAT) or D1R-expressing neurons. We first demonstrate the lack of GluN1 or GluA1 in either DAT- or D1R-expressing neurons in our mutant mouse lines by colocalization studies. We then show that GluN1 and GluA1 receptor subunits within these neuronal subpopulations mediate the alcohol deprivation effect, while having no impact on context- plus cue-induced reinstatement of alcohol-seeking behavior. We further validated these results pharmacologically by demonstrating similar reductions in the alcohol deprivation effect after infusion of the NMDAR antagonist memantine into the nucleus accumbens and ventral tegmental area of control mice, and a rescue of the mutant phenotype via pharmacological potentiation of AMPAR activity using aniracetam. In conclusion, dopamine neurons as well as D1R-expressing medium spiny neurons and their glutamatergic inputs via NMDARs and AMPARs act in concert to influence relapse responses. These results provide a neuroanatomical and molecular substrate for relapse behavior and emphasize the importance of glutamatergic drugs in modulating relapse behavior. Here we provide genetic and pharmacological evidence that glutamate receptors within the mesolimbic dopamine system play an essential role in alcohol relapse. Using various inducible and site-specific transgenic mouse models and pharmacological validation experiments, we show that critical

  3. Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF and this process is inhibited by equine estrogens

    Directory of Open Access Journals (Sweden)

    Bhavnani Bhagu R

    2006-06-01

    Full Text Available Abstract Background Glutamate, a major excitatory amino acid neurotransmitter, causes apoptotic neuronal cell death at high concentrations. Our previous studies have shown that depending on the neuronal cell type, glutamate-induced apoptotic cell death was associated with regulation of genes such as Bcl-2, Bax, and/or caspase-3 and mitochondrial cytochrome c. To further delineate the intracellular mechanisms, we have investigated the role of calpain, an important calcium-dependent protease thought to be involved in apoptosis along with mitochondrial apoptosis inducing factor (AIF and caspase-3 in primary cortical cells and a mouse hippocampal cell line HT22. Results Glutamate-induced apoptotic cell death in neuronal cells was associated with characteristic DNA fragmentation, morphological changes, activation of calpain and caspase-3 as well as the upregulation and/or translocation of AIF from mitochondria into cytosol and nuclei. Our results reveal that primary cortical cells and HT22 cells display different patterns of regulation of these genes/proteins. In primary cortical cells, glutamate induces activation of calpain, caspase-3 and translocation of AIF from mitochondria to cytosol and nuclei. In contrast, in HT22 cells, only the activation of calpain and upregulation and translocation of AIF occurred. In both cell types, these processes were inhibited/reversed by 17β-estradiol and Δ8,17β-estradiol with the latter being more potent. Conclusion Depending upon the neuronal cell type, at least two mechanisms are involved in glutamate-induced apoptosis: a caspase-3-dependent pathway and a caspase-independent pathway involving calpain and AIF. Since HT22 cells lack caspase-3, glutamate-induced apoptosis is mediated via the caspase-independent pathway in this cell line. Kinetics of this apoptotic pathway further indicate that calpain rather than caspase-3, plays a critical role in the glutamate-induced apoptosis. Our studies further indicate

  4. The glutamate/GABA-glutamine cycle

    DEFF Research Database (Denmark)

    Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S

    2006-01-01

    Neurons are metabolically handicapped in the sense that they are not able to perform de novo synthesis of neurotransmitter glutamate and gamma-aminobutyric acid (GABA) from glucose. A metabolite shuttle known as the glutamate/GABA-glutamine cycle describes the release of neurotransmitter glutamate...... or GABA from neurons and subsequent uptake into astrocytes. In return, astrocytes release glutamine to be taken up into neurons for use as neurotransmitter precursor. In this review, the basic properties of the glutamate/GABA-glutamine cycle will be discussed, including aspects of transport and metabolism...... of intercellular transfer of ammonia produced in neurons (when glutamine is deamidated to glutamate) and utilized in astrocytes (for amidation of glutamate) when the glutamate/GABA-glutamine cycle is operating. A main objective of this review is to endorse the view that the glutamate/GABA-glutamine cycle must...

  5. Off-line concomitant release of dopamine and glutamate involvement in taste memory consolidation.

    Science.gov (United States)

    Guzmán-Ramos, Kioko; Osorio-Gómez, Daniel; Moreno-Castilla, Perla; Bermúdez-Rattoni, Federico

    2010-07-01

    It has been postulated that memory consolidation process requires post-learning molecular changes that will support long-term experiences. In the present study, we assessed with in vivo microdialysis and capillary electrophoresis whether such changes involve the release of neurotransmitters at post-acquisition stages. Using conditioned taste aversion paradigm we observed spontaneous off-line (i.e. in absence of stimulation) dopamine and glutamate reactivation within the insular cortex about 45 min after the stimuli association. These increments did not appear in control groups that were unable to acquire the task, and it seems to be dependent on amygdala activity since its reversible inactivation by tetrodotoxin impaired cortical off-line release of both neurotransmitters and memory consolidation. In addition, blockade of dopaminergic D1 and/or NMDA receptors before the off-line activity impaired long- but not short-term memory. These results suggest that off-line extracellular increments of glutamate and dopamine have a significant functional role in consolidation of taste memory.

  6. Continuous and intermittent transcranial magnetic theta burst stimulation modify tactile learning performance and cortical protein expression in the rat differently.

    Science.gov (United States)

    Mix, Annika; Benali, Alia; Eysel, Ulf T; Funke, Klaus

    2010-11-01

    Repetitive transcranial magnetic stimulation (rTMS) can modulate cortical excitability in a stimulus-frequency-dependent manner. Two kinds of theta burst stimulation (TBS) [intermittent TBS (iTBS) and continuous TBS (cTBS)] modulate human cortical excitability differently, with iTBS increasing it and cTBS decreasing it. In rats, we recently showed that this is accompanied by changes in the cortical expression of proteins related to the activity of inhibitory neurons. Expression levels of the calcium-binding protein parvalbumin (PV) and of the 67-kDa isoform of glutamic acid decarboxylase (GAD67) were strongly reduced following iTBS, but not cTBS, whereas both increased expression of the 65-kDa isoform of glutamic acid decarboxylase. In the present study, to investigate possible functional consequences, we applied iTBS and cTBS to rats learning a tactile discrimination task. Conscious rats received either verum or sham rTMS prior to the task. Finally, to investigate how rTMS and learning effects interact, protein expression was determined for cortical areas directly involved in the task and for those either not, or indirectly, involved. We found that iTBS, but not cTBS, improved learning and strongly reduced cortical PV and GAD67 expression. However, the combination of learning and iTBS prevented this effect in those cortical areas involved in the task, but not in unrelated areas. We conclude that the improved learning found following iTBS is a result of the interaction of two effects, possibly in a homeostatic manner: a general weakening of inhibition mediated by the fast-spiking interneurons, and re-established activity in those neurons specifically involved in the learning task, leading to enhanced contrast between learning-induced and background activity. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  7. Long-term exposure to endogenous levels of tributyltin decreases GluR2 expression and increases neuronal vulnerability to glutamate

    International Nuclear Information System (INIS)

    Nakatsu, Yusuke; Kotake, Yaichiro; Takishita, Tomoko; Ohta, Shigeru

    2009-01-01

    Tributyltin (TBT), an endocrine-disrupting chemical, has been used commercially as a heat stabilizer, agricultural pesticide and component of antifouling paints. In this study, we investigated the effect of long-term exposure to endogenous levels of TBT on neuronal glutamate receptors. Cultured rat cortical neurons were exposed to 1-50 nM TBT for 9 days (from day 2 to day 10 in vitro). The number of neurons was reduced by long-term exposure to 50 nM TBT, but not to 1-20 nM TBT. Long-term exposure to 20 nM TBT decreased the mRNA expression of glutamate receptors NR1, NR2A, GluR1 and GluR2, and increased that of NR2B, GluR3 and GluR4. GluR2 protein was also reduced by long-term exposure to TBT. Because AMPA receptor lacking GluR2 exhibits Ca 2+ permeability, we investigated whether Ca 2+ influx or glutamate toxicity was affected. Indeed, glutamate-induced Ca 2+ influx was increased in TBT-treated neurons. Consistent with this, neurons became more susceptible to glutamate toxicity as a result of long-term exposure to TBT and this susceptibility was abolished by an antagonist of GluR2-lacking AMPA receptor. Thus, it is suggested that long-term exposure to endogenous levels of TBT induces a decrease of GluR2 protein, causing neurons become more susceptible to glutamate toxicity.

  8. Long-term exposure to endogenous levels of tributyltin decreases GluR2 expression and increases neuronal vulnerability to glutamate.

    Science.gov (United States)

    Nakatsu, Yusuke; Kotake, Yaichiro; Takishita, Tomoko; Ohta, Shigeru

    2009-10-15

    Tributyltin (TBT), an endocrine-disrupting chemical, has been used commercially as a heat stabilizer, agricultural pesticide and component of antifouling paints. In this study, we investigated the effect of long-term exposure to endogenous levels of TBT on neuronal glutamate receptors. Cultured rat cortical neurons were exposed to 1-50 nM TBT for 9 days (from day 2 to day 10 in vitro). The number of neurons was reduced by long-term exposure to 50 nM TBT, but not to 1-20 nM TBT. Long-term exposure to 20 nM TBT decreased the mRNA expression of glutamate receptors NR1, NR2A, GluR1 and GluR2, and increased that of NR2B, GluR3 and GluR4. GluR2 protein was also reduced by long-term exposure to TBT. Because AMPA receptor lacking GluR2 exhibits Ca2+ permeability, we investigated whether Ca2+ influx or glutamate toxicity was affected. Indeed, glutamate-induced Ca2+ influx was increased in TBT-treated neurons. Consistent with this, neurons became more susceptible to glutamate toxicity as a result of long-term exposure to TBT and this susceptibility was abolished by an antagonist of GluR2-lacking AMPA receptor. Thus, it is suggested that long-term exposure to endogenous levels of TBT induces a decrease of GluR2 protein, causing neurons become more susceptible to glutamate toxicity.

  9. Evidence for increased glutamatergic cortical facilitation in children and adolescents with major depressive disorder.

    Science.gov (United States)

    Croarkin, Paul E; Nakonezny, Paul A; Husain, Mustafa M; Melton, Tabatha; Buyukdura, Jeylan S; Kennard, Betsy D; Emslie, Graham J; Kozel, F Andrew; Daskalakis, Zafiris J

    2013-03-01

    Converging lines of evidence implicate the glutamate and γ-aminobutyric acid neurotransmitter systems in the pathophysiology of major depressive disorder. Transcranial magnetic stimulation cortical excitability and inhibition paradigms have been used to assess cortical glutamatergic and γ-aminobutyric acid-mediated tone in adults with major depressive disorder, but not in children and adolescents. To compare measures of cortical excitability and inhibition with 4 different paradigms in a group of children and adolescents with major depressive disorder vs healthy controls. Cross-sectional study examining medication-free children and adolescents (aged 9-17 years) with major depressive disorder compared with healthy controls. Cortical excitability was assessed with motor threshold and intracortical facilitation measures. Cortical inhibition was measured with cortical silent period and intracortical inhibition paradigms. University-based child and adolescent psychiatry clinic and neurostimulation laboratory. Twenty-four participants with major depressive disorder and 22 healthy controls matched for age and sex. Patients with major depressive disorder were medication naive and had moderate to severe symptoms based on an evaluation with a child and adolescent psychiatrist and scores on the Children's Depression Rating Scale-Revised. Motor threshold, intracortical facilitation, cortical silent period, and intracortical inhibition. Compared with healthy controls, depressed patients had significantly increased intracortical facilitation at interstimulus intervals of 10 and 15 milliseconds bilaterally. There were no significant group differences in cortical inhibition measures. These findings suggest that major depressive disorder in children and adolescents is associated with increased intracortical facilitation and excessive glutamatergic activity.

  10. 50 Hz hippocampal stimulation in refractory epilepsy: Higher level of basal glutamate predicts greater release of glutamate.

    Science.gov (United States)

    Cavus, Idil; Widi, Gabriel A; Duckrow, Robert B; Zaveri, Hitten; Kennard, Jeremy T; Krystal, John; Spencer, Dennis D

    2016-02-01

    The effect of electrical stimulation on brain glutamate release in humans is unknown. Glutamate is elevated at baseline in the epileptogenic hippocampus of patients with refractory epilepsy, and increases during spontaneous seizures. We examined the effect of 50 Hz stimulation on glutamate release and its relationship to interictal levels in the hippocampus of patients with epilepsy. In addition, we measured basal and stimulated glutamate levels in a subset of these patients where stimulation elicited a seizure. Subjects (n = 10) were patients with medically refractory epilepsy who were undergoing intracranial electroencephalography (EEG) evaluation in an epilepsy monitoring unit. Electrical stimulation (50 Hz) was delivered through implanted hippocampal electrodes (n = 11), and microdialysate samples were collected every 2 min. Basal glutamate, changes in glutamate efflux with stimulation, and the relationships between peak stimulation-associated glutamate concentrations, basal zero-flow levels, and stimulated seizures were examined. Stimulation of epileptic hippocampi in patients with refractory epilepsy caused increases in glutamate efflux (p = 0.005, n = 10), and 4 of ten patients experienced brief stimulated seizures. Stimulation-induced increases in glutamate were not observed during the evoked seizures, but rather were related to the elevation in interictal basal glutamate (R(2) = 0.81, p = 0.001). The evoked-seizure group had lower basal glutamate levels than the no-seizure group (p = 0.04), with no stimulation-induced change in glutamate efflux (p = 0.47, n = 4). Conversely, increased glutamate was observed following stimulation in the no-seizure group (p = 0.005, n = 7). Subjects with an atrophic hippocampus had higher basal glutamate levels (p = 0.03, n = 7) and higher stimulation-induced glutamate efflux. Electrical stimulation of the epileptic hippocampus either increased extracellular glutamate efflux or induced seizures. The magnitude of stimulated

  11. Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Bo [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049 (China); Zhang, Shu [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao 266100 (China); Lang, Qiaolin [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Song, Jianxia; Han, Lihui [Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao 266100 (China); Liu, Aihua, E-mail: liuah@qibebt.ac.cn [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049 (China)

    2015-07-16

    Highlights: • E. coli surface-dispalyed Gldh exhibiting excellent enzyme activity and stability. • Sensitive amperometric biosensor for glutamate using Gldh-bacteria and MWNTs. • The glutamate biosensor exhibited high specificity and stability. - Abstract: A novel L-glutamate biosensor was fabricated using bacteria surface-displayed glutamate dehydrogenase (Gldh-bacteria). Here the cofactor NADP{sup +}-specific dependent Gldh was expressed on the surface of Escherichia coli using N-terminal region of ice nucleation protein (INP) as the anchoring motif. The cell fractionation assay and SDS-PAGE analysis indicated that the majority of INP-Gldh fusion proteins were located on the surface of cells. The biosensor was fabricated by successively casting polyethyleneimine (PEI)-dispersed multi-walled carbon nanotubes (MWNTs), Gldh-bacteria and Nafion onto the glassy carbon electrode (Nafion/Gldh-bacteria/PEI-MWNTs/GCE). The MWNTs could not only significantly lower the oxidation overpotential towards NAPDH, which was the product of NADP{sup +} involving in the oxidation of glutamate by Gldh, but also enhanced the current response. Under the optimized experimental conditions, the current–time curve of the Nafion/Gldh-bacteria/PEI-MWNTs/GCE was performed at +0.52 V (vs. SCE) by amperometry varying glutamate concentration. The current response was linear with glutamate concentration in two ranges (10 μM–1 mM and 2–10 mM). The low limit of detection was estimated to be 2 μM glutamate (S/N = 3). Moreover, the proposed biosensor is stable, specific, reproducible and simple, which can be applied to real samples detection.

  12. Cannabis use is quantitatively associated with nucleus accumbens and amygdala abnormalities in young adult recreational users.

    Science.gov (United States)

    Gilman, Jodi M; Kuster, John K; Lee, Sang; Lee, Myung Joo; Kim, Byoung Woo; Makris, Nikos; van der Kouwe, Andre; Blood, Anne J; Breiter, Hans C

    2014-04-16

    Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use, and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization.

  13. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production.

    Science.gov (United States)

    Tian, Guangming; Wang, Qin; Wei, Xuetuan; Ma, Xin; Chen, Shouwen

    2017-04-01

    Poly-γ-glutamic acid (γ-PGA), a natural biopolymer, is widely used in cosmetics, medicine, food, water treatment, and agriculture owing to its features of moisture sequestration, cation chelation, non-toxicity and biodegradability. Intracellular glutamic acid, the substrate of γ-PGA, is a limiting factor for high yield in γ-PGA production. Bacillus subtilis and Bacillus licheniformis are both important γ-PGA producing strains, and B. subtilis synthesizes glutamic acid in vivo using the unique GOGAT/GS pathway. However, little is known about the glutamate synthesis pathway in B. licheniformis. The aim of this work was to characterize the glutamate dehydrogenase (RocG) in glutamic acid synthesis from B. licheniformis with both in vivo and in vitro experiments. By re-directing the carbon flux distribution, the rocG gene deletion mutant WX-02ΔrocG produced intracellular glutamic acid with a concentration of 90ng/log(CFU), which was only 23.7% that of the wild-type WX-02 (380ng/log(CFU)). Furthermore, the γ-PGA yield of mutant WX-02ΔrocG was 5.37g/L, a decrease of 45.3% compared to the wild type (9.82g/L). In vitro enzymatic assays of RocG showed that RocG has higher affinity for 2-oxoglutarate than glutamate, and the glutamate synthesis rate was far above degradation. This is probably the first study to reveal the glutamic acid synthesis pathway and the specific functions of RocG in B. licheniformis. The results indicate that γ-PGA production can be enhanced through improving intracellular glutamic acid synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Intra-accumbens baclofen, but not muscimol, mimics the effects of food withdrawal on feeding behaviour.

    Science.gov (United States)

    Pulman, K G T; Somerville, E M; Clifton, P G

    2010-11-01

    Intra-accumbens stimulation of GABA receptors results in a robust increase in food intake. However the differential consequences of stimulating GABA(A) and GABA(B) receptors in the nucleus accumbens have not been extensively explored with respect to feeding behaviour. Here we compare the effects of the GABA(B) receptor agonist baclofen and GABA(A) receptor agonist muscimol, infused into the nucleus accumbens shell, on food intake and related behavior patterns. Baclofen (110-440 ρmol) dose dependently enhanced intake and delayed the onset of satiety within the test period as did the effects of 4-8h food withdrawal. Muscimol (220-660 ρmol) enhanced intake but also disrupted the sequence of associated behaviours at every dose tested. We conclude that GABA(B) receptors in the nucleus accumbens shell may play a role in relation to feeding motivation whereas GABA(A) receptors may, as previously suggested, have a more restricted role in relation to the motor components of approach to food and ingestion. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart

    2011-01-01

    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  16. Glutamate and Neurodegenerative Disease

    Science.gov (United States)

    Schaeffer, Eric; Duplantier, Allen

    As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

  17. Glutamate decarboxylase immunoreactivity and gamma-[3H] aminobutyric acid accumulation within the same neurons in dissociated cell cultures of cerebral cortex

    International Nuclear Information System (INIS)

    Neale, E.A.; Oertel, W.H.; Bowers, L.M.; Weise, V.K.

    1983-01-01

    In order to evaluate the reliability of high affinity [ 3 H]GABA accumulation as a marker for GABAergic neurons, murine cerebral cortical neurons were studied in dissociated cell culture. Cultures which had been incubated in [ 3 H]GABA were stained immunohistochemically for the GABA-synthesizing enzyme, glutamate decarboxylase, fixed with paraformaldehyde, and subsequently processed for radioautography. In mature cultures, there was an 84 to 94% correlation between the presence of the enzyme and [ 3 H]GABA uptake within the same cortical neurons. These data provide direct evidence that those neurons which synthesize GABA are the same neurons which are labeled by high affinity [ 3 H]GABA uptake

  18. Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models.

    Science.gov (United States)

    Horder, Jamie; Petrinovic, Marija M; Mendez, Maria A; Bruns, Andreas; Takumi, Toru; Spooren, Will; Barker, Gareth J; Künnecke, Basil; Murphy, Declan G

    2018-05-25

    Autism spectrum disorder (ASD) is a pervasive neurodevelopmental syndrome with a high human and economic burden. The pathophysiology of ASD is largely unclear, thus hampering development of pharmacological treatments for the core symptoms of the disorder. Abnormalities in glutamate and GABA signaling have been hypothesized to underlie ASD symptoms, and may form a therapeutic target, but it is not known whether these abnormalities are recapitulated in humans with ASD, as well as in rodent models of the disorder. We used translational proton magnetic resonance spectroscopy ([1H]MRS) to compare glutamate and GABA levels in adult humans with ASD and in a panel of six diverse rodent ASD models, encompassing genetic and environmental etiologies. [1H]MRS was performed in the striatum and the medial prefrontal cortex, of the humans, mice, and rats in order to allow for direct cross-species comparisons in specific cortical and subcortical brain regions implicated in ASD. In humans with ASD, glutamate concentration was reduced in the striatum and this was correlated with the severity of social symptoms. GABA levels were not altered in either brain region. The reduction in striatal glutamate was recapitulated in mice prenatally exposed to valproate, and in mice and rats carrying Nlgn3 mutations, but not in rodent ASD models with other etiologies. Our findings suggest that glutamate/GABA abnormalities in the corticostriatal circuitry may be a key pathological mechanism in ASD; and may be linked to alterations in the neuroligin-neurexin signaling complex.

  19. Left nucleus accumbens atrophy in deficit schizophrenia: A preliminary study.

    Science.gov (United States)

    De Rossi, Pietro; Dacquino, Claudia; Piras, Fabrizio; Caltagirone, Carlo; Spalletta, Gianfranco

    2016-08-30

    A question that remains to be answered is whether schizophrenia can be characterized by a single etiopathophysiology or whether separate sub-syndromes should be differentiated to define specific mechanisms for each sub-type. Individuals affected by the deficit subtype of schizophrenia (DSZ) display avolitional/amotivational features that respond poorly to conventional treatments. Characterizing DSZ from a neuroanatomical point of view may help clarify this issue and develop new treatment strategies. To determine if DSZ is associated with structural alterations in specific deep grey matter structures linked to its key clinical features, 22 DSZ patients, 22 non-deficit schizophrenia (NDSZ) patients and 22 healthy controls (HC) were recruited for a case-control cross-sectional study. High-resolution magnetic resonance imaging was performed in all subjects and volumes of deep grey matter structures were measured using FreeSurfer. DSZ patients displayed smaller left accumbens volumes compared to both NDSZ patients and HC. Moreover, age and duration of illness were significantly associated with lower volume of the left accumbens in DSZ but not in NDSZ. Findings indicate that DSZ is associated with lower volume of the nucleus accumbens in the dominant hemisphere. This is consistent with the psychopathological features and functional impairments present in DSZ and thus indicates a potential mechanism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Glutamic acid as anticancer agent: An overview.

    Science.gov (United States)

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  1. Prefrontal changes in the glutamate-glutamine cycle and neuronal/glial glutamate transporters in depression with and without suicide

    NARCIS (Netherlands)

    Zhao, J.; Verwer, R.W.H.; van Wamelen, D.J.; Qi, X.R.; Gao, S.F.; Lucassen, P.J.; Swaab, D.F.

    2016-01-01

    There are indications for changes in glutamate metabolism in relation to depression or suicide. The glutamate-glutamine cycle and neuronal/glial glutamate transporters mediate the uptake of the glutamate and glutamine. The expression of various components of the glutamate-glutamine cycle and the

  2. Characterization of the effects of serotonin on the release of [3H]dopamine from rat nucleus accumbens and striatal slices

    International Nuclear Information System (INIS)

    Nurse, B.; Russell, V.A.; Taljaard, J.J.

    1988-01-01

    The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of [ 3 H]dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal 3 H overflow and reduced K+-induced release of [ 3 H]DA from nucleus accumbens slices. The effect of serotonin on basal 3 H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of [ 3 H]DA in the nucleus accumbens or striatum. The serotonin agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of [ 3 H]DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens

  3. Astrocytes Control Neuronal Excitability in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Tommaso Fellin

    2007-01-01

    Full Text Available Though accumulating evidence shows that the metabotropic glutamate receptor 5 (mGluR5 mediates some of the actions of extracellular glutamate after cocaine use, the cellular events underlying this action are poorly understood. In this review, we will discuss recent results showing that mGluR5 receptors are key regulators of astrocyte activity. Synaptic release of glutamate activates mGluR5 expressed in perisynaptic astrocytes and generates intense Ca2+ signaling in these cells. Ca2+ oscillations, in turn, trigger the release from astrocytes of the gliotransmitter glutamate, which modulates neuronal excitability by activating NMDA receptors. By integrating these results with the most recent evidence demonstrating the importance of astrocytes in the regulation of neuronal excitability, we propose that astrocytes are involved in mediating some of the mGluR5-dependent drug-induced behaviors.

  4. MRI findings in glutamic acid decarboxylase associated autoimmune epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksen, Jason R.; Carr, Carrie M.; Koeller, Kelly K.; Verdoorn, Jared T.; Kotsenas, Amy L. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Gadoth, Avi; Pittock, Sean J. [Mayo Clinic, Department of Neurology, Rochester, MN (United States)

    2018-03-15

    Glutamic acid decarboxylase (GAD65) has been implicated in a number of autoimmune-associated neurologic syndromes, including autoimmune epilepsy. This study categorizes the spectrum of MRI findings in patients with a clinical diagnosis of autoimmune epilepsy and elevated serum GAD65 autoantibodies. An institutional database search identified patients with elevated serum GAD65 antibodies and a clinical diagnosis of autoimmune epilepsy who had undergone brain MRI. Imaging studies were reviewed by three board-certified neuroradiologists and one neuroradiology fellow. Studies were evaluated for cortical/subcortical and hippocampal signal abnormality, cerebellar and cerebral volume loss, mesial temporal sclerosis, and parenchymal/leptomeningeal enhancement. The electronic medical record was reviewed for relevant clinical information and laboratory markers. A study cohort of 19 patients was identified. The majority of patients were female (84%), with a mean age of onset of 27 years. Serum GAD65 titers ranged from 33 to 4415 nmol/L (normal < 0.02 nmol/L). The most common presentation was medically intractable, complex partial seizures with temporal lobe onset. Parenchymal atrophy was the most common imaging finding (47%), with a subset of patients demonstrating cortical/subcortical parenchymal T2 hyperintensity (37%) or abnormal hippocampal signal (26%). No patients demonstrated abnormal parenchymal/leptomeningeal enhancement. The most common MRI finding in GAD65-associated autoimmune epilepsy is disproportionate parenchymal atrophy for age, often associated with abnormal cortical/subcortical T2 hyperintensities. Hippocampal abnormalities are seen in a minority of patients. This constellation of findings in a patient with medically intractable epilepsy should raise the possibility of GAD65 autoimmunity. (orig.)

  5. Slow phasic changes in nucleus accumbens dopamine release during fixed ratio acquisition: a microdialysis study.

    Science.gov (United States)

    Segovia, K N; Correa, M; Salamone, J D

    2011-11-24

    Nucleus accumbens dopamine (DA) is a critical component of the brain circuitry regulating behavioral output during reinforcement-seeking behavior. Several studies have investigated the characteristics of accumbens DA release during the performance of well-learned operant behaviors, but relatively few have focused on the initial acquisition of particular instrumental behaviors or operant schedules. The present experiments focused on the initial acquisition of operant performance on a reinforcement schedule by studying the transition from a fixed ratio 1 (FR1) schedule to another operant schedule with a higher ratio requirement (i.e. fixed ratio 5 [FR5]). Microdialysis sessions were conducted in different groups of rats that were tested on either the FR1 schedule; the first, second, or third day of FR5 training; or after weeks of FR5 training. Consistent with previous studies, well-trained rats performing on the FR5 schedule after weeks of training showed significant increases in extracellular DA in both core and shell subregions of nucleus accumbens during the behavioral session. On the first day of FR5 training, there was a substantial increase in DA release in nucleus accumbens shell (i.e. approximately 300% of baseline). In contrast, accumbens core DA release was greatest on the second day of FR5 training. In parallel experiments, DA release in core and shell subregions did not significantly increase during free consumption of the same high carbohydrate food pellets that were used in the operant experiments, despite the very high levels of food intake in experienced rats. However, in rats exposed to the high-carbohydrate food for the first time, there was a tendency for extracellular DA to show a small increase. These results demonstrate that transient increases in accumbens DA release occur during the initial acquisition of ratio performance, and suggest that core and shell subregions show different temporal patterns during acquisition of instrumental behavior

  6. Differential regulation of the Rac1 GTPase-activating protein (GAP) BCR during oxygen/glucose deprivation in hippocampal and cortical neurons.

    Science.gov (United States)

    Smith, Katharine R; Rajgor, Dipen; Hanley, Jonathan G

    2017-12-08

    Brain ischemia causes oxygen and glucose deprivation (OGD) in neurons, triggering a cascade of events leading to synaptic accumulation of glutamate. Excessive activation of glutamate receptors causes excitotoxicity and delayed cell death in vulnerable neurons. Following global cerebral ischemia, hippocampal CA1 pyramidal neurons are more vulnerable to injury than their cortical counterparts, but the mechanisms that underlie this difference are unclear. Signaling via Rho-family small GTPases, their upstream guanine nucleotide exchange factors, and GTPase-activating proteins (GAPs) is differentially dysregulated in response to OGD/ischemia in hippocampal and cortical neurons. Increased Rac1 activity caused by OGD/ischemia contributes to neuronal death in hippocampal neurons via diverse effects on NADPH oxidase activity and dendritic spine morphology. The Rac1 guanine nucleotide exchange factor Tiam1 mediates an OGD-induced increase in Rac1 activity in hippocampal neurons; however, the identity of an antagonistic GAP remains elusive. Here we show that the Rac1 GAP breakpoint cluster region (BCR) associates with NMDA receptors (NMDARs) along with Tiam1 and that this protein complex is more abundant in hippocampal compared with cortical neurons. Although total BCR is similar in the two neuronal types, BCR is more active in hippocampal compared with cortical neurons. OGD causes an NMDAR- and Ca 2+ -permeable AMPAR-dependent deactivation of BCR in hippocampal but not cortical neurons. BCR knockdown occludes OGD-induced Rac1 activation in hippocampal neurons. Furthermore, disrupting the Tiam1-NMDAR interaction with a fragment of Tiam1 blocks OGD-induced Tiam1 activation but has no effect on the deactivation of BCR. This work identifies BCR as a critical player in Rac1 regulation during OGD in hippocampal neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase.

    Science.gov (United States)

    Liang, Bo; Zhang, Shu; Lang, Qiaolin; Song, Jianxia; Han, Lihui; Liu, Aihua

    2015-07-16

    A novel L-glutamate biosensor was fabricated using bacteria surface-displayed glutamate dehydrogenase (Gldh-bacteria). Here the cofactor NADP(+)-specific dependent Gldh was expressed on the surface of Escherichia coli using N-terminal region of ice nucleation protein (INP) as the anchoring motif. The cell fractionation assay and SDS-PAGE analysis indicated that the majority of INP-Gldh fusion proteins were located on the surface of cells. The biosensor was fabricated by successively casting polyethyleneimine (PEI)-dispersed multi-walled carbon nanotubes (MWNTs), Gldh-bacteria and Nafion onto the glassy carbon electrode (Nafion/Gldh-bacteria/PEI-MWNTs/GCE). The MWNTs could not only significantly lower the oxidation overpotential towards NAPDH, which was the product of NADP(+) involving in the oxidation of glutamate by Gldh, but also enhanced the current response. Under the optimized experimental conditions, the current-time curve of the Nafion/Gldh-bacteria/PEI-MWNTs/GCE was performed at +0.52 V (vs. SCE) by amperometry varying glutamate concentration. The current response was linear with glutamate concentration in two ranges (10 μM-1 mM and 2-10 mM). The low limit of detection was estimated to be 2 μM glutamate (S/N=3). Moreover, the proposed biosensor is stable, specific, reproducible and simple, which can be applied to real samples detection. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Abnormal glutamate release in aged BTBR mouse model of autism.

    Science.gov (United States)

    Wei, Hongen; Ding, Caiyun; Jin, Guorong; Yin, Haizhen; Liu, Jianrong; Hu, Fengyun

    2015-01-01

    Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. Most of the available research on autism is focused on children and young adults and little is known about the pathological alternation of autism in older adults. In order to investigate the neurobiological alternation of autism in old age stage, we compared the morphology and synaptic function of excitatory synapses between the BTBR mice with low level sociability and B6 mice with high level sociability. The results revealed that the number of excitatory synapse colocalized with pre- and post-synaptic marker was not different between aged BTBR and B6 mice. The aged BTBR mice had a normal structure of dendritic spine and the expression of Shank3 protein in the brain as well as that in B6 mice. The baseline and KCl-evoked glutamate release from the cortical synaptoneurosome in aged BTBR mice was lower than that in aged B6 mice. Overall, the data indicate that there is a link between disturbances of the glutamate transmission and autism. These findings provide new evidences for the hypothesis of excitation/inhibition imbalance in autism. Further work is required to determine the cause of this putative abnormality.

  9. Circadian Regulation of Glutamate Transporters

    Directory of Open Access Journals (Sweden)

    Donají Chi-Castañeda

    2018-06-01

    Full Text Available L-glutamate is the major excitatory amino acid in the mammalian central nervous system (CNS. This neurotransmitter is essential for higher brain functions such as learning, cognition and memory. A tight regulation of extra-synaptic glutamate levels is needed to prevent a neurotoxic insult. Glutamate removal from the synaptic cleft is carried out by a family of sodium-dependent high-affinity transporters, collectively known as excitatory amino acid transporters. Dysfunction of glutamate transporters is generally involved in acute neuronal injury and neurodegenerative diseases, so characterizing and understanding the mechanisms that lead to the development of these disorders is an important goal in the design of novel treatments for the neurodegenerative diseases. Increasing evidence indicates glutamate transporters are controlled by the circadian system in direct and indirect manners, so in this contribution we focus on the mechanisms of circadian regulation (transcriptional, translational, post-translational and post-transcriptional regulation of glutamate transport in neuronal and glial cells, and their consequence in brain function.

  10. mGluR5 ablation in cortical glutamatergic neurons increases novelty-induced locomotion.

    Directory of Open Access Journals (Sweden)

    Chris P Jew

    Full Text Available The group I metabotropic glutamate receptor 5 (mGluR5 has been implicated in the pathology of various neurological disorders including schizophrenia, ADHD, and autism. mGluR5-dependent synaptic plasticity has been described at a variety of neural connections and its signaling has been implicated in several behaviors. These behaviors include locomotor reactivity to novel environment, sensorimotor gating, anxiety, and cognition. mGluR5 is expressed in glutamatergic neurons, inhibitory neurons, and glia in various brain regions. In this study, we show that deleting mGluR5 expression only in principal cortical neurons leads to defective cannabinoid receptor 1 (CB1R dependent synaptic plasticity in the prefrontal cortex. These cortical glutamatergic mGluR5 knockout mice exhibit increased novelty-induced locomotion, and their locomotion can be further enhanced by treatment with the psychostimulant methylphenidate. Despite a modest reduction in repetitive behaviors, cortical glutamatergic mGluR5 knockout mice are normal in sensorimotor gating, anxiety, motor balance/learning and fear conditioning behaviors. These results show that mGluR5 signaling in cortical glutamatergic neurons is required for precisely modulating locomotor reactivity to a novel environment but not for sensorimotor gating, anxiety, motor coordination, several forms of learning or social interactions.

  11. Astrocytic and neuronal oxidative metabolism are coupled to the rate of glutamate-glutamine cycle in the tree shrew visual cortex.

    Science.gov (United States)

    Sonnay, Sarah; Poirot, Jordan; Just, Nathalie; Clerc, Anne-Catherine; Gruetter, Rolf; Rainer, Gregor; Duarte, João M N

    2018-03-01

    Astrocytes play an important role in glutamatergic neurotransmission, namely by clearing synaptic glutamate and converting it into glutamine that is transferred back to neurons. The rate of this glutamate-glutamine cycle (V NT ) has been proposed to couple to that of glucose utilization and of neuronal tricarboxylic acid (TCA) cycle. In this study, we tested the hypothesis that glutamatergic neurotransmission is also coupled to the TCA cycle rate in astrocytes. For that we investigated energy metabolism by means of magnetic resonance spectroscopy (MRS) in the primary visual cortex of tree shrews (Tupaia belangeri) under light isoflurane anesthesia at rest and during continuous visual stimulation. After identifying the activated cortical volume by blood oxygenation level-dependent functional magnetic resonance imaging, 1 H MRS was performed to measure stimulation-induced variations in metabolite concentrations. Relative to baseline, stimulation of cortical activity for 20 min caused a reduction of glucose concentration by -0.34 ± 0.09 µmol/g (p glucose infusion was employed to measure fluxes of energy metabolism. Stimulation of glutamatergic activity, as indicated by a 20% increase of V NT , resulted in increased TCA cycle rates in neurons by 12% ( VTCAn, p glucose oxidation and to mitochondrial metabolism in both neurons and astrocytes. © 2017 Wiley Periodicals, Inc.

  12. Resting state glutamate predicts elevated pre-stimulus alpha during self-relatedness: A combined EEG-MRS study on "rest-self overlap".

    Science.gov (United States)

    Bai, Yu; Nakao, Takashi; Xu, Jiameng; Qin, Pengmin; Chaves, Pedro; Heinzel, Alexander; Duncan, Niall; Lane, Timothy; Yen, Nai-Shing; Tsai, Shang-Yueh; Northoff, Georg

    2016-01-01

    Recent studies have demonstrated neural overlap between resting state activity and self-referential processing. This "rest-self" overlap occurs especially in anterior cortical midline structures like the perigenual anterior cingulate cortex (PACC). However, the exact neurotemporal and biochemical mechanisms remain to be identified. Therefore, we conducted a combined electroencephalography (EEG)-magnetic resonance spectroscopy (MRS) study. EEG focused on pre-stimulus (e.g., prior to stimulus presentation or perception) power changes to assess the degree to which those changes can predict subjects' perception (and judgment) of subsequent stimuli as high or low self-related. MRS measured resting state concentration of glutamate, focusing on PACC. High pre-stimulus (e.g., prior to stimulus presentation or perception) alpha power significantly correlated with both perception of stimuli judged to be highly self-related and with resting state glutamate concentrations in the PACC. In sum, our results show (i) pre-stimulus (e.g., prior to stimulus presentation or perception) alpha power and resting state glutamate concentration to mediate rest-self overlap that (ii) dispose or incline subjects to assign high degrees of self-relatedness to perceptual stimuli.

  13. Glutamic acid as anticancer agent: An overview

    OpenAIRE

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. I...

  14. Behavioral Flexibility Is Increased by Optogenetic Inhibition of Neurons in the Nucleus Accumbens Shell during Specific Time Segments

    Science.gov (United States)

    Aquili, Luca; Liu, Andrew W.; Shindou, Mayumi; Shindou, Tomomi; Wickens, Jeffery R.

    2014-01-01

    Behavioral flexibility is vital for survival in an environment of changing contingencies. The nucleus accumbens may play an important role in behavioral flexibility, representing learned stimulus-reward associations in neural activity during response selection and learning from results. To investigate the role of nucleus accumbens neural activity…

  15. [Schizophrenia and cortical GABA neurotransmission].

    Science.gov (United States)

    Hashimoto, Takanori; Matsubara, Takuro; Lewis, David A

    2010-01-01

    Individuals with schizophrenia show disturbances in a number of brain functions that regulate cognitive, affective, motor, and sensory processing. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related molecules. First, mRNA levels for the 67-kilodalton isoform of glutamic acid decarboxylase (GAD67), an enzyme principally responsible for GABA synthesis, and the GABA membrane transporter GAT1, which regulates the reuptake of synaptically released GABA, are decreased in a subset of GABA neurons. Second, affected GABA neurons include those that express the calcium-binding protein parvalbumin (PV), because PV mRNA levels are decreased in the prefrontal cortex of subjects with schizophrenia and GAD67 mRNA is undetectable in almost half of PV-containing neurons. These changes are accompanied by decreased GAT1 expression in the presynaptic terminals of PV-containing neurons and by increased postsynaptic GABA-A receptor alpha2 subunit expression at the axon initial segments of pyramidal neurons. These findings indicate decreased GABA synthesis/release by PV-containing GABA neurons and compensatory changes at synapses formed by these neurons. Third, another subset of GABA neurons that express the neuropeptide somatostatin (SST) also appear to be affected because their specific markers, SST and neuropeptide Y mRNAs, are decreased in a manner highly correlated with the decreases in GAD67 mRNA. Finally, mRNA levels for GABA-A receptor subunits for synaptic (alpha1 and gamma2) and extra-synaptic (delta) receptors are decreased, indicating alterations in both synaptic and extra-synaptic GABA neurotransmission. Together, this pattern of changes indicates that the altered GABA neurotransmission is specific to PV-containing and SST-containing GABA neuron subsets and involves both synaptic and extra

  16. Effect of Temporary Inactivation of Nucleus Accumbens on Chronic Stress Induced by Electric Shock to the Sole of the Foot in Female NMRI Mice

    Directory of Open Access Journals (Sweden)

    F Nicaeili

    2016-04-01

    Full Text Available BACKGROUND AND OBJECTIVE: Activity changes in the neurons of nucleus accumbens during stress have been previously identified. However, the role of nucleus accumbens in diminishing stress-induced side-effects is not fully understood. In this study, we aimed to evaluate the effects of temporary inactivation of nucleus accumbens on stress-induced metabolic changes in female mice. METHODS: This experimental study was performed on 48 female NMRI mice with an average 27±3 g. The nucleus accumbens was unilaterally and bilaterally cannulated. After one week of recovery, 2% lidocaine or saline was administered in mice for four consecutive days (5 min per day before inducing electric shock to the sole of the foot. Plasma corticosterone level, food and water intake, and delay in eating were assessed as stress-induced metabolic parameters. FINDINGS: Stress lonely, caused an increase in plasma corticosterone (17±0.8 compared with the control group (4.5±0.3 (p<0.001. It also, caused an increase delay in eating (%218±9.8, p<0.01 and, decrease water (%80±4.5 and food (%84±5.5 intake (p<0.05. Temporary inactivation of nucleus accumbens did not affect the stress-induced changes in plasma corticosterone, and it suppressed the effect of stress on the amount of water intake; inactivation of the left nucleus accumbens was more effective (%195±7.6, p<0.01. Temporary inactivation of nucleus accumbens neutralized the effect of stress on the amount of food intake. Temporary inactivation of the right nucleus accumbens augmented the effect of stress on delay in eating (%264±10.8, p<0.01, and inactivation of the left nucleus accumbens could suppress this effect. CONCLUSION: It seems that temporary inactivation of nucleus accumbens can be effective in diminishing stress-induced metabolic changes. However, this influence is indicative of asymmetry in the function of right and left nucleus accumbens

  17. Aprendiendo de las consecuencias de los actos: estudio electrofisiológico del hipocampo, corteza prefrontal y núcleo accumbens

    OpenAIRE

    Jurado Parras, María Teresa

    2012-01-01

    Programa de Doctorado en Neurociencias La presente Tesis Doctoral se ha centrado en el estudio del papel del hipocampo, la corteza prefrontal medial y el núcleo accumbens en la adquisición del condicionamiento instrumental, del aprendizaje por observación y de la ejecución de tareas instrumentales. Además, se ha estudiado la participación de las sinapsis CA3 ¿ CA1, CA1 ¿ corteza prefrontal medial, corteza prefrontal medial ¿ núcleo accumbens y núcleo accumbens ¿ corteza prefrontal medial e...

  18. In Vitro Functional Characterization of GET73 as Possible Negative Allosteric Modulator of Metabotropic Glutamate Receptor 5.

    Science.gov (United States)

    Beggiato, Sarah; Borelli, Andrea C; Tomasini, Maria C; Castelli, M Paola; Pintori, Nicholas; Cacciaglia, Roberto; Loche, Antonella; Ferraro, Luca

    2018-01-01

    The present study was aimed to further characterize the pharmacological profile of N-[4-(trifluoromethyl) benzyl]-4-methoxybutyramide (GET73), a putative negative allosteric modulator (NAM) of metabotropic glutamate subtype 5 receptor (mGluR5) under development as a novel medication for the treatment of alcohol dependence. This aim has been accomplished by means of a series of in vitro functional assays. These assays include the measure of several down-stream signaling [intracellular Ca ++ levels, inositol phosphate (IP) formation and CREB phosphorylation (pCREB)] which are generally affected by mGluR5 ligands. In particular, GET73 (0.1 nM-10 μM) was explored for its ability to displace the concentration-response curve of some mGluR5 agonists/probes (glutamate, L-quisqualate, CHPG) in different native preparations. GET73 produced a rightward shift of concentration-response curves of glutamate- and CHPG-induced intracellular Ca ++ levels in primary cultures of rat cortical astrocytes. The compound also induced a rightward shift of concentration response curve of glutamate- and L-quisqualate-induced increase in IP turnover in rat hippocampus slices, along with a reduction of CHPG (10 mM)-induced increase in IP formation. Moreover, GET73 produced a rightward shift of concentration-response curve of glutamate-, CHPG- and L-quisqualate-induced pCREB levels in rat cerebral cortex neurons. Although the engagement of other targets cannot be definitively ruled out, these data support the view that GET73 acts as an mGluR5 NAM and support the significance of further investigating the possible mechanism of action of the compound.

  19. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons.

    Science.gov (United States)

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew Cn; Swindale, Nicholas V; Murphy, Timothy H

    2017-02-04

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps.

  20. Extensive neuroadaptive changes in cortical gene-transcript expressions of the glutamate system in response to repeated intermittent MDMA administration in adolescent rats

    Directory of Open Access Journals (Sweden)

    Malki Rana

    2008-04-01

    Full Text Available Abstract Background Many studies have focused on the implication of the serotonin and dopamine systems in neuroadaptive responses to the recreational drug 3,4-methylenedioxy-metamphetamine (MDMA. Less attention has been given to the major excitatory neurotransmitter glutamate known to be implicated in schizophrenia and drug addiction. The aim of the present study was to investigate the effect of repeated intermittent MDMA administration upon gene-transcript expression of the glutamate transporters (EAAT1, EAAT2-1, EAAT2-2, the glutamate receptor subunits of AMPA (GluR1, GluR2, GluR3, the glutamate receptor subunits of NMDA (NR1, NR2A and NR2B, as well as metabotropic glutamate receptors (mGluR1, mGluR2, mGluR3, mGluR5 in six different brain regions. Adolescent male Sprague Dawley rats received MDMA at the doses of 3 × 1 and 3 × 5 mg/kg/day, or 3× vehicle 3 hours apart, every 7th day for 4 weeks. The gene-transcript levels were assessed using real-time PCR validated with a range of housekeeping genes. Results The findings showed pronounced enhancements in gene-transcript expression of GluR2, mGluR1, mGluR5, NR1, NR2A, NR2B, EAAT1, and EAAT2-2 in the cortex at bregma +1.6. In the caudate putamen, mRNA levels of GluR3, NR2A, and NR2B receptor subunits were significantly increased. In contrast, the gene-transcript expression of GluR1 was reduced in the hippocampus. In the hypothalamus, there was a significant increase of GluR1, GluR3, mGluR1, and mGluR3 gene-transcript expressions. Conclusion Repeated intermittent MDMA administration induces neuroadaptive changes in gene-transcript expressions of glutamatergic NMDA and AMPA receptor subunits, metabotropic receptors and transporters in regions of the brain regulating reward-related associative learning, cognition, and memory and neuro-endocrine functions.

  1. Glutamate monitoring in vitro and in vivo: recent progress in the field of glutamate biosensors

    DEFF Research Database (Denmark)

    Rieben, Nathalie Ines; Rose, Nadia Cherouati; Martinez, Karen Laurence

    2009-01-01

    is currently the most common method for in vivo glutamate sampling. However, the recent development and improvement of enzyme-based amperometric glutamate biosensors makes them a promising alternative to microdialysis for in vivo applications, as well as valuable devices for in vitro applications in basic......, and different techniques have been developed to this end. This review presents and discusses these techniques, especially the recent progress in the field of glutamate biosensors, as well as the great potential of nanotechnology in glutamate sensing. Microdialysis coupled to analytical detection techniques...... neurobiological research. Another interesting group of biosensors for glutamate are fluorescence-based glutamate biosensors, which have unsurpassed spatio-temporal resolution and are therefore important tools for investigating glutamate dynamics during signaling. Adding to this list are biosensors based on nano...

  2. Glutamate Efflux at the Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Cederberg-Helms, Hans Christian; Uhd-Nielsen, Carsten; Brodin, Birger

    2014-01-01

    is well known, however endothelial cells may also play an important role through mediating brain-to-blood L-glutamate efflux. Expression of excitatory amino acid transporters has been demonstrated in brain endothelial cells of bovine, human, murine, rat and porcine origin. These can account for high...... affinity concentrative uptake of L-glutamate from the brain interstitial fluid into the capillary endothelial cells. The mechanisms in between L-glutamate uptake in the endothelial cells and L-glutamate appearing in the blood are still unclear and may involve a luminal transporter for L......-glutamate, metabolism of L-glutamate and transport of metabolites or a combination of the two. However, both in vitro and in vivo studies have demonstrated blood-to-brain transport of L-glutamate, at least during pathological events. This review summarizes the current knowledge on the brain-to-blood L-glutamate efflux...

  3. Contributions of the Nucleus Accumbens Shell in Mediating the Enhancement in Memory Following Noradrenergic Activation of Either the Amygdala or Hippocampus

    Directory of Open Access Journals (Sweden)

    Erin C. Kerfoot

    2018-02-01

    Full Text Available The nucleus accumbens shell is a site of converging inputs during memory processing for emotional events. The accumbens receives input from the nucleus of the solitary tract (NTS regarding changes in peripheral autonomic functioning following emotional arousal. The shell also receives input from the amygdala and hippocampus regarding affective and contextual attributes of new learning experiences. The successful encoding of affect or context is facilitated by activating noradrenergic systems in either the amygdala or hippocampus. Recent findings indicate that memory enhancement produced by activating NTS neurons, is attenuated by suppressing accumbens functioning after learning. This finding illustrates the significance of the shell in integrating information from the periphery to modulate memory for arousing events. However, it is not known if the accumbens shell plays an equally important role in consolidating information that is initially processed in the amygdala and hippocampus. The present study determined if the convergence of inputs from these limbic regions within the nucleus accumbens contributes to successful encoding of emotional events into memory. Male Sprague-Dawley rats received bilateral cannula implants 2 mm above the accumbens shell and a second bilateral implant 2 mm above either the amygdala or hippocampus. The subjects were trained for 6 days to drink from a water spout. On day 7, a 0.35 mA footshock was initiated as the rat approached the spout and was terminated once the rat escaped into a white compartment. Subjects were then given intra-amygdala or hippocampal infusions of PBS or a dose of norepinephrine (0.2 μg previously shown to enhance memory. Later, all subjects were given intra-accumbens infusion of muscimol to functionally inactivate the shell. Muscimol inactivation of the accumbens shell was delayed to allow sufficient time for norepinephrine to activate intracellular cascades that lead to long-term synaptic

  4. Contributions of the Nucleus Accumbens Shell in Mediating the Enhancement in Memory Following Noradrenergic Activation of Either the Amygdala or Hippocampus.

    Science.gov (United States)

    Kerfoot, Erin C; Williams, Cedric L

    2018-01-01

    The nucleus accumbens shell is a site of converging inputs during memory processing for emotional events. The accumbens receives input from the nucleus of the solitary tract (NTS) regarding changes in peripheral autonomic functioning following emotional arousal. The shell also receives input from the amygdala and hippocampus regarding affective and contextual attributes of new learning experiences. The successful encoding of affect or context is facilitated by activating noradrenergic systems in either the amygdala or hippocampus. Recent findings indicate that memory enhancement produced by activating NTS neurons, is attenuated by suppressing accumbens functioning after learning. This finding illustrates the significance of the shell in integrating information from the periphery to modulate memory for arousing events. However, it is not known if the accumbens shell plays an equally important role in consolidating information that is initially processed in the amygdala and hippocampus. The present study determined if the convergence of inputs from these limbic regions within the nucleus accumbens contributes to successful encoding of emotional events into memory. Male Sprague-Dawley rats received bilateral cannula implants 2 mm above the accumbens shell and a second bilateral implant 2 mm above either the amygdala or hippocampus. The subjects were trained for 6 days to drink from a water spout. On day 7, a 0.35 mA footshock was initiated as the rat approached the spout and was terminated once the rat escaped into a white compartment. Subjects were then given intra-amygdala or hippocampal infusions of PBS or a dose of norepinephrine (0.2 μg) previously shown to enhance memory. Later, all subjects were given intra-accumbens infusion of muscimol to functionally inactivate the shell. Muscimol inactivation of the accumbens shell was delayed to allow sufficient time for norepinephrine to activate intracellular cascades that lead to long-term synaptic modifications

  5. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    Science.gov (United States)

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  6. Alternative Splicing of AMPA subunits in Prefrontal Cortical Fields of Cynomolgus Monkeys following Chronic Ethanol Self-Administration

    Directory of Open Access Journals (Sweden)

    Glen eAcosta

    2012-01-01

    Full Text Available Functional impairment of the orbital and medial prefrontal cortex underlies deficits in executive control that characterize addictive disorders, including alcohol addiction. Previous studies indicate that alcohol alters glutamate neurotransmission and one substrate of these effects may be through the reconfiguration of the subunits constituting ionotropic glutamate receptor (iGluR complexes. Glutamatergic transmission is integral to cortico-cortical and cortico-subcortical communication and alcohol-induced changes in the abundance of the receptor subunits and/or their splice variants may result in critical functional impairments of prefrontal cortex in alcohol dependence. To this end, the effects of chronic ethanol self-administration on glutamate receptor ionotropic AMPA (GRIA subunit variant and kainate (GRIK subunit mRNA expression were studied in the orbitofrontal cortex (OFC, dorsolateral prefrontal cortex (DLPFC and anterior cingulate cortex (ACC of male cynomolgus monkeys. In DLPFC, total AMPA splice variant expression and total kainate receptor subunit expression were significantly decreased in alcohol drinking monkeys. Expression levels of GRIA3 flip and flop and GRIA4 flop mRNAs in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. In OFC, AMPA subunit splice variant expression was reduced in the alcohol treated group. GRIA2 flop mRNA levels in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. Results from these studies provide further evidence of transcriptional regulation of iGluR subunits in the primate brain following chronic alcohol self-administration. Additional studies examining the cellular localization of such effects in the framework of primate prefrontal cortical circuitry are warranted.

  7. Radiometric microassay for glutamic acid decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Maderdrut, J L [North Carolina Dept. of Mental Health, Raleigh (USA); North Carolina Univ., Chapel Hill (USA). School of Medicine)

    1979-01-01

    A simple method for purifying L-(/sup 3/H) glutamic acid and incubation conditions suitable for estimating L-glutamic acid decarboxylase activity are described. Routine and recycled cation-exchange procedure for separating ..gamma..-aminobutyric acid from L-glutamate are outlined and compared. Recycling increases the sensitivity of the cation-exchange method by 6-7 fold. L-Glutamate decarboxylase activity can be measured reliably in samples of embryonic neural tissue having wet-weights of approximately 1 ..mu..g. The cation-exchange method is compared with the anion-exchange and CO/sub 2/-trapping methods. L-Glutamate decarboxylase activity has been detected in the lumbar spinal cord of the chick embryo at Day 21/4 (stage 14) using the cation-exchange method. This is 5-6 days earlier than L-glutamate decarboxylase activity has been detected in embryonic neural tissue by previous investigators. L-Glutamate decarboxylase is present in the lumbar spinal cord at least as early as the birth of the first lumbar spinal cord neurons and at least 1-2 days before the initiation of synaptogenesis.

  8. Introduction to the Glutamate-Glutamine Cycle

    DEFF Research Database (Denmark)

    Sonnewald, Ursula; Schousboe, Arne

    2016-01-01

    . This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate......The term 'glutamate-glutamine cycle' was coined several decades ago based on the observation that using certain (14)C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor...... released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion...

  9. Introduction to the Glutamate-Glutamine Cycle

    DEFF Research Database (Denmark)

    Sonnewald, Ursula; Schousboe, Arne

    2016-01-01

    released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion......The term 'glutamate-glutamine cycle' was coined several decades ago based on the observation that using certain (14)C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor....... This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate...

  10. Electrophysiological and pathological study of focal cortical dysplasia

    International Nuclear Information System (INIS)

    Hodozuka, Akira; Hashizume, Kiyotaka; Hayashi, Yoshimitsu; Tanaka, Tatsuya

    2008-01-01

    -methyl-D-aspartate (NMDA) receptors were almost negative in both areas. Glutamate R-1 receptors were decreased in both areas, but glutamate R-2 receptors were increased in both areas. These findings support the results of electrophysiological study. In conclusion, not only the epileptic property of experimental focal cortical dysplasia but also perilesional epileptogenesis was demonstrated. These findings support the results of surgery for patients with focal cortical dysplasia. In cases of FCD, total removal of the lesion and resection of the perilesional epileptic focus are needed for a good outcome. (author)

  11. Neurogranin in the nucleus accumbens regulates NMDA receptor tolerance and motivation for ethanol seeking.

    Science.gov (United States)

    Reker, Ashlie N; Oliveros, Alfredo; Sullivan, John M; Nahar, Lailun; Hinton, David J; Kim, Taehyun; Bruner, Robert C; Choi, Doo-Sup; Goeders, Nicholas E; Nam, Hyung W

    2018-03-15

    Dysfunction of N-methyl-d-aspartate receptor (NMDAR) signaling in the nucleus accumbens (NAc) has been implicated in the pathophysiology of alcohol use disorders (AUD). Neurogranin (Ng), a calmodulin-binding protein, is exclusively expressed in the post-synapse, and mediates NMDAR driven synaptic plasticity by regulating the calcium-calmodulin (Ca 2+ -CaM) pathway. To study the functional role of Ng in AUD, we administrated behavior tests including Pavlovian instrument transfer (PIT), operant conditioning, and rotarod test using Ng null mice (Ng -/- mice). We used adeno-associated virus (AAV)-mediated Ng expression and pharmacological manipulation to validate behavioral responses in Ng -/- mice. The results from our multidisciplinary approaches demonstrated that deficit of Ng increases tolerance to NMDAR inhibition and elicit faster cue reactivity during PIT without changes in ethanol reward. Operant conditioning results demonstrated that Ng -/- mice self-administered significantly more ethanol and displayed reduced sensitivity to aversive motivation. We identified that ethanol exposure decreases mGluR5 (metabotropic glutamate receptor 5) expression in the NAc of Ng -/- mice and pharmacological inhibition of mGluR5 reverses NMDAR desensitization in Ng -/- mice. Together these findings specifically suggest that accumbal Ng plays an essential role in the counterbalance between NMDAR and mGluR5 signaling; which alters NMDAR resistance, and thereby altering aversive motivation for ethanol and may ultimately contribute to susceptibility for alcohol addiction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. "Hyperglutamatergic cortico-striato-thalamo-cortical circuit" breaker drugs alleviate tics in a transgenic circuit model of Tourette׳s syndrome.

    Science.gov (United States)

    Nordstrom, Eric J; Bittner, Katie C; McGrath, Michael J; Parks, Clinton R; Burton, Frank H

    2015-12-10

    The brain circuits underlying tics in Tourette׳s syndrome (TS) are unknown but thought to involve cortico/amygdalo-striato-thalamo-cortical (CSTC) loop hyperactivity. We previously engineered a transgenic mouse "circuit model" of TS by expressing an artificial neuropotentiating transgene (encoding the cAMP-elevating, intracellular A1 subunit of cholera toxin) within a small population of dopamine D1 receptor-expressing somatosensory cortical and limbic neurons that hyperactivate cortico/amygdalostriatal glutamatergic output circuits thought to be hyperactive in TS and comorbid obsessive-compulsive (OC) disorders. As in TS, these D1CT-7 ("Ticcy") transgenic mice׳s tics were alleviated by the TS drugs clonidine and dopamine D2 receptor antagonists; and their chronic glutamate-excited striatal motor output was unbalanced toward hyperactivity of the motoric direct pathway and inactivity of the cataleptic indirect pathway. Here we have examined whether these mice׳s tics are countered by drugs that "break" sequential elements of their hyperactive cortical/amygdalar glutamatergic and efferent striatal circuit: anti-serotonoceptive and anti-noradrenoceptive corticostriatal glutamate output blockers (the serotonin 5-HT2a,c receptor antagonist ritanserin and the NE alpha-1 receptor antagonist prazosin); agmatinergic striatothalamic GABA output blockers (the presynaptic agmatine/imidazoline I1 receptor agonist moxonidine); and nigrostriatal dopamine output blockers (the presynaptic D2 receptor agonist bromocriptine). Each drug class alleviates tics in the Ticcy mice, suggesting a hyperglutamatergic CSTC "tic circuit" could exist in TS wherein cortical/amygdalar pyramidal projection neurons׳ glutamatergic overexcitation of both striatal output neurons and nigrostriatal dopaminergic modulatory neurons unbalances their circuit integration to excite striatothalamic output and create tics, and illuminating new TS drug strategies. Copyright © 2015 The Authors. Published by

  13. Changes in nucleus accumbens and neostriatal c-Fos and DARPP-32 immunoreactivity during different stages of food-reinforced instrumental training.

    Science.gov (United States)

    Segovia, Kristen N; Correa, Merce; Lennington, Jessica B; Conover, Joanne C; Salamone, John D

    2012-04-01

    Nucleus accumbens is involved in several aspects of instrumental behavior, motivation and learning. Recent studies showed that dopamine (DA) release in the accumbens shell was significantly increased on the first day of training on a fixed ratio (FR) 5 schedule (i.e. the transition from FR1 to FR5) compared with those rats that continued FR1 training, even though the rats on their first day of FR5 training received less food reinforcement than rats continuing on the FR1 schedule. Additionally, the second day of FR5 responding was marked by a significant increase in DA release in accumbens core. The present studies employed immunohistochemical methods to characterize the changes in cellular markers of accumbens and neostriatal neural activity that occur during various stages of food-reinforced FR5 training. c-Fos and DARPP-32 immunoreactivity in accumbens shell was significantly increased on the first day of FR5 training, while core c-Fos and DARPP-32 expression showed large increases on the second day of FR5 training. Additional studies showed that c-Fos and DARPP-32 expression in neostriatum increased after more extensive training. Double-labeling studies with immunofluorescence methods indicated that increases in accumbens c-Fos and DARPP-32 expression were primarily seen in substance-P-positive neurons. These increases in accumbens c-Fos and DARPP-32 immunoreactivity seen during the initial phases of FR training may reflect several factors, including novelty, learning, stress or the presentation of a work-related challenge to the organism. Moreover, it appears that the separate subregions of the striatal complex are differentially activated at distinct phases of instrumental training. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  14. Glutamate: Tastant and Neuromodulator in Taste Buds.

    Science.gov (United States)

    Vandenbeuch, Aurelie; Kinnamon, Sue C

    2016-07-01

    In taste buds, glutamate plays a double role as a gustatory stimulus and neuromodulator. The detection of glutamate as a tastant involves several G protein-coupled receptors, including the heterodimer taste receptor type 1, member 1 and 3 as well as metabotropic glutamate receptors (mGluR1 and mGluR4). Both receptor types participate in the detection of glutamate as shown with knockout animals and selective antagonists. At the basal part of taste buds, ionotropic glutamate receptors [N-methyl-d-aspartate (NMDA) and non-NMDA] are expressed and participate in the modulation of the taste signal before its transmission to the brain. Evidence suggests that glutamate has an efferent function on taste cells and modulates the release of other neurotransmitters such as serotonin and ATP. This short article reviews the recent developments in the field with regard to glutamate receptors involved in both functions as well as the influence of glutamate on the taste signal. © 2016 American Society for Nutrition.

  15. Recreational marijuana use impacts white matter integrity and subcortical (but not cortical morphometry

    Directory of Open Access Journals (Sweden)

    Joseph M. Orr

    2016-01-01

    Full Text Available A recent shift in legal and social attitudes toward marijuana use has also spawned a surge of interest in understanding the effects of marijuana use on the brain. There is considerable evidence that an adolescent onset of marijuana use negatively impacts white matter coherence. On the other hand, a recent well-controlled study demonstrated no effects of marijuana use on the morphometry of subcortical or cortical structures when users and non-users were matched for alcohol use. Regardless, most studies have involved small, carefully selected samples, so the ability to generalize to larger populations is limited. In an attempt to address this issue, we examined the effects of marijuana use on white matter integrity and cortical and subcortical morphometry using data from the Human Connectome Project (HCP consortium. The HCP data consists of ultra-high resolution neuroimaging data from a large community sample, including 466 adults reporting recreational marijuana use. Rather than just contrasting two groups of individuals who vary significantly in marijuana usage as typifies prior studies, we leveraged the large sample size provided by the HCP data to examine parametric effects of recreational marijuana use. Our results indicate that the earlier the age of onset of marijuana use, the lower was white matter coherence. Age of onset also also affected the shape of the accumbens, while the number of lifetime uses impacted the shape of the amygdala and hippocampus. Marijuana use had no effect on cortical volumes. These findings suggest subtle but significant effects of recreational marijuana use on brain structure.

  16. Recreational marijuana use impacts white matter integrity and subcortical (but not cortical) morphometry.

    Science.gov (United States)

    Orr, Joseph M; Paschall, Courtnie J; Banich, Marie T

    2016-01-01

    A recent shift in legal and social attitudes toward marijuana use has also spawned a surge of interest in understanding the effects of marijuana use on the brain. There is considerable evidence that an adolescent onset of marijuana use negatively impacts white matter coherence. On the other hand, a recent well-controlled study demonstrated no effects of marijuana use on the morphometry of subcortical or cortical structures when users and non-users were matched for alcohol use. Regardless, most studies have involved small, carefully selected samples, so the ability to generalize to larger populations is limited. In an attempt to address this issue, we examined the effects of marijuana use on white matter integrity and cortical and subcortical morphometry using data from the Human Connectome Project (HCP) consortium. The HCP data consists of ultra-high resolution neuroimaging data from a large community sample, including 466 adults reporting recreational marijuana use. Rather than just contrasting two groups of individuals who vary significantly in marijuana usage as typifies prior studies, we leveraged the large sample size provided by the HCP data to examine parametric effects of recreational marijuana use. Our results indicate that the earlier the age of onset of marijuana use, the lower was white matter coherence. Age of onset also also affected the shape of the accumbens, while the number of lifetime uses impacted the shape of the amygdala and hippocampus. Marijuana use had no effect on cortical volumes. These findings suggest subtle but significant effects of recreational marijuana use on brain structure.

  17. Glutamate Transporters in the Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Helms, Hans Christian Cederberg; Nielsen, Carsten Uhd; Waagepetersen, Helle S

    2017-01-01

    concentration of L-glutamate causes excitotoxicity. A tight control of the brain interstitial fluid L-glutamate levels is therefore imperative, in order to maintain optimal neurotransmission and to avoid such excitotoxicity. The blood-brain barrier, i.e., the endothelial lining of the brain capillaries...... cells. The mechanisms underlying transendothelial L-glutamate transport are however still not well understood. The present chapter summarizes the current knowledge on blood-brain barrier L-glutamate transporters and the suggested pathways for the brain-to-blood L-glutamate efflux......., regulates the exchange of nutrients, gases, and metabolic waste products between plasma and brain interstitial fluid. It has been suggested that brain capillary endothelial cells could play an important role in L-glutamate homeostasis by mediating brain-to-blood L-glutamate efflux. Both in vitro and in vivo...

  18. Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum.

    Science.gov (United States)

    Cao, Yan; Duan, Zuoying; Shi, Zhongping

    2014-02-01

    Biotin is an important factor affecting the performance of glutamate fermentation by biotin auxotrophic Corynebacterium glutamicum and glutamate is over-produced only when initial biotin content is controlled at suitable levels or initial biotin is excessive but with Tween 40 addition during fermentation. The transcription levels of key enzymes at pyruvate, isocitrate and α-ketoglutarate metabolic nodes, as well as transport protein (TP) of glutamate were investigated under the conditions of varied biotin contents and Tween 40 supplementation. When biotin was insufficient, the genes encoding key enzymes and TP were down-regulated in the early production phase, in particular, the transcription level of isocitrate dehydrogenase (ICDH) which was only 2% of that of control. Although the cells' morphology transformation and TP level were not affected, low transcription level of ICDH led to lower final glutamate concentration (64 g/L). When biotin was excessive, the transcription levels of key enzymes were at comparable levels as those of control with ICDH as an exception, which was only 3-22% of control level throughout production phase. In this case, little intracellular glutamate accumulation (1.5 mg/g DCW) and impermeable membrane resulted in non glutamate secretion into broth, even though the quantity of TP was more than 10-folds of control level. Addition of Tween 40 when biotin was excessive stimulated the expression of all key enzymes and TP, intracellular glutamate content was much higher (10-12 mg/g DCW), and final glutamate concentration reached control level (75-80 g/L). Hence, the membrane alteration and TP were indispensable in glutamate secretion. Biotin and Tween 40 influenced the expression level of ICDH and glutamate efflux, thereby influencing glutamate production.

  19. Long-Lasting Impairment of mGluR5-Activated Intracellular Pathways in the Striatum After Withdrawal of Cocaine Self-Administration

    Science.gov (United States)

    Hoffmann, Hanne Mette; Crouzin, Nadine; Moreno, Estefanía; Raivio, Noora; Fuentes, Silvia; McCormick, Peter J.; Vignes, Michel

    2017-01-01

    Abstract Background: Cocaine addiction continues to be a major heath concern, and despite public health intervention there is a lack of efficient pharmacological treatment options. A newly identified potential target are the group I metabotropic glutamate receptors, with allosteric modulators showing particular promise. Methods: We evaluated the capacity of group I metabotropic glutamate receptors to induce functional responses in ex vivo striatal slices from rats with (1) acute cocaine self-administration, (2) chronic cocaine self-administration, and (3) 60 days cocaine self-administration withdrawal by Western blot and extracellular recordings of synaptic transmission. Results: We found that striatal group I metabotropic glutamate receptors are the principal mediator of the mGluR1/5 agonist (RS)-3,5-dihydroxyphenylglycine-induced cAMP responsive-element binding protein phosphorylation. Both acute and chronic cocaine self-administration blunted group I metabotropic glutamate receptor effects on cAMP responsive-element binding protein phosphorylation in the striatum, which correlated with the capacity to induce long-term depression, an effect that was maintained 60 days after chronic cocaine self-administration withdrawal. In the nucleus accumbens, the principal brain region mediating the rewarding effects of drugs, chronic cocaine self-administration blunted group I metabotropic glutamate receptor stimulation of extracellular signal-regulated protein kinases 1/2 and cAMP responsive-element binding protein. Interestingly, the group I metabotropic glutamate receptor antagonist/inverse-agonist, 2-methyl-6-(phenylethynyl)pyridine hydrochloride, led to a specific increase in cAMP responsive-element binding protein phosphorylation after chronic cocaine self-administration, specifically in the nucleus accumbens, but not in the striatum. Conclusions: Prolonged cocaine self-administration, through withdrawal, leads to a blunting of group I metabotropic glutamate receptor

  20. Enzymatic production of α-ketoglutaric acid from l-glutamic acid via l-glutamate oxidase.

    Science.gov (United States)

    Niu, Panqing; Dong, Xiaoxiang; Wang, Yuancai; Liu, Liming

    2014-06-10

    In this study, a novel strategy for α-ketoglutaric acid (α-KG) production from l-glutamic acid using recombinant l-glutamate oxidase (LGOX) was developed. First, by analyzing the molecular structure characteristics of l-glutamic acid and α-KG, LGOX was found to be the best catalyst for oxidizing the amino group of l-glutamic acid to a ketonic group without the need for exogenous cofactor. Then the LGOX gene was expressed in Escherichia coli BL21 (DE3) in a soluble and active form, and the recombinant LGOX activity reached to a maximum value of 0.59U/mL at pH 6.5, 30°C. Finally, the maximum α-KG concentration reached 104.7g/L from 110g/L l-glutamic acid in 24h, under the following optimum conditions: 1.5U/mL LGOX, 250U/mL catalase, 3mM MnCl2, 30°C, and pH 6.5. Copyright © 2014. Published by Elsevier B.V.

  1. Effects of tetra hydro cannabinol to the dendritc tree and synapses of the accumbens nucleus of wistar rats

    Directory of Open Access Journals (Sweden)

    Dimitrijević I.

    2013-01-01

    Full Text Available Cannabis is one of the most widely used intoxicants; almost half of all 18 year olds in the USA and in most European countries admit to having tried it at least once, and ~10% of that age group are regular users. Δ9-Tetrahydrocannabinol (THC, the principal psychoactive ingredient in marijuana, produces euphoria and relaxation and impairs motor coordination, time sense, and short term memory. In the hippocampus, CBs inhibit GABA release from a subset of interneurons and inhibit glutamate release from principal neurons. Cannabinoids are reported to produce both rapid and long-term changes in synaptic transmission. Our study was carried out on ten male rats out of which brains of six of them were used as the representative sample for electron microscope analysis, while 4 were used for light microspcopy performed by Golgi method. Three were exposed to THC and 3 were controls. Axodendric synapses in the core and shell of the accumbens nucleus (AN were studied under electron microscope. The results have shown widening of the synaptic cleft in the shell of AN. This result is a leading point to our further investigations which are going to involve a behavioral component, and different aspects of morphological studies. [Projekat Ministarstva nauke Republike Srbije, br. III 41020

  2. Inhibition of the Mitochondrial Glutamate Carrier SLC25A22 in Astrocytes Leads to Intracellular Glutamate Accumulation

    Directory of Open Access Journals (Sweden)

    Emmanuelle Goubert

    2017-05-01

    Full Text Available The solute carrier family 25 (SLC25 drives the import of a large diversity of metabolites into mitochondria, a key cellular structure involved in many metabolic functions. Mutations of the mitochondrial glutamate carrier SLC25A22 (also named GC1 have been identified in early epileptic encephalopathy (EEE and migrating partial seizures in infancy (MPSI but the pathophysiological mechanism of GC1 deficiency is still unknown, hampered by the absence of an in vivo model. This carrier is mainly expressed in astrocytes and is the principal gate for glutamate entry into mitochondria. A sufficient supply of energy is essential for the proper function of the brain and mitochondria have a pivotal role in maintaining energy homeostasis. In this work, we wanted to study the consequences of GC1 absence in an in vitro model in order to understand if glutamate catabolism and/or mitochondrial function could be affected. First, short hairpin RNA (shRNA designed to specifically silence GC1 were validated in rat C6 glioma cells. Silencing GC1 in C6 resulted in a reduction of the GC1 mRNA combined with a decrease of the mitochondrial glutamate carrier activity. Then, primary astrocyte cultures were prepared and transfected with shRNA-GC1 or mismatch-RNA (mmRNA constructs using the Neon® Transfection System in order to target a high number of primary astrocytes, more than 64%. Silencing GC1 in primary astrocytes resulted in a reduced nicotinamide adenine dinucleotide (Phosphate (NAD(PH formation upon glutamate stimulation. We also observed that the mitochondrial respiratory chain (MRC was functional after glucose stimulation but not activated by glutamate, resulting in a lower level of cellular adenosine triphosphate (ATP in silenced astrocytes compared to control cells. Moreover, GC1 inactivation resulted in an intracellular glutamate accumulation. Our results show that mitochondrial glutamate transport via GC1 is important in sustaining glutamate homeostasis in

  3. The application of glutamic acid alpha-decarboxylase for the valorization of glutamic acid

    NARCIS (Netherlands)

    Lammens, T.M.; Biase, De Daniela; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2009-01-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of nitrogen containing bulk chemicals, thereby decreasing the dependency on fossil fuels. On the pathway from glutamic acid to a range of molecules, the

  4. Effects of dopamine and glutamate on synaptic plasticity: a computational modeling approach for drug abuse as comorbidity in mood disorders.

    Science.gov (United States)

    Qi, Z; Kikuchi, S; Tretter, F; Voit, E O

    2011-05-01

    Major depressive disorder (MDD) affects about 16% of the general population and is a leading cause of death in the United States and around the world. Aggravating the situation is the fact that "drug use disorders" are highly comorbid in MDD patients, and VICE VERSA. Drug use and MDD share a common component, the dopamine system, which is critical in many motivation and reward processes, as well as in the regulation of stress responses in MDD. A potentiating mechanism in drug use disorders appears to be synaptic plasticity, which is regulated by dopamine transmission. In this article, we describe a computational model of the synaptic plasticity of GABAergic medium spiny neurons in the nucleus accumbens, which is critical in the reward system. The model accounts for effects of both dopamine and glutamate transmission. Model simulations show that GABAergic medium spiny neurons tend to respond to dopamine stimuli with synaptic potentiation and to glutamate signals with synaptic depression. Concurrent dopamine and glutamate signals cause various types of synaptic plasticity, depending on input scenarios. Interestingly, the model shows that a single 0.5 mg/kg dose of amphetamine can cause synaptic potentiation for over 2 h, a phenomenon that makes synaptic plasticity of medium spiny neurons behave quasi as a bistable system. The model also identifies mechanisms that could potentially be critical to correcting modifications of synaptic plasticity caused by drugs in MDD patients. An example is the feedback loop between protein kinase A, phosphodiesterase, and the second messenger cAMP in the postsynapse. Since reward mechanisms activated by psychostimulants could be crucial in establishing addiction comorbidity in patients with MDD, this model might become an aid for identifying and targeting specific modules within the reward system and lead to a better understanding and potential treatment of comorbid drug use disorders in MDD. © Georg Thieme Verlag KG Stuttgart · New

  5. 21 CFR 182.1045 - Glutamic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glutamic acid. 182.1045 Section 182.1045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1045 Glutamic acid. (a) Product. Glutamic acid. (b) [Reserved] (c) Limitations, restrictions, or...

  6. Influence of Glutamic Acid on the Properties of Poly(xylitol glutamate sebacate Bioelastomer

    Directory of Open Access Journals (Sweden)

    Weifu Dong

    2013-11-01

    Full Text Available In order to further improve the biocompatibility of xylitol based poly(xylitol sebacate (PXS bioelastomer, a novel kind of amino acid based poly(xylitol glutamate sebacate (PXGS has been successfully prepared in this work by melt polycondensation of xylitol, N-Boc glutamic acid and sebacic acid. Differential scanning calorimetry (DSC results indicated the glass-transition temperatures could be decreased by feeding N-Boc glutamic acid. In comparison to PXS, PXGS exhibited comparable tensile strength and much higher elongation at break at the same ratio of acid/xylitol. The introduction of glutamic acid increased the hydrophilicity and in vitro degradation rate of the bioelastomer. It was found that PXGS exhibited excellent properties, such as tensile properties, biodegradability and hydrophilicity, which could be easily tuned by altering the feeding monomer ratios. The amino groups in the PXGS polyester side chains are readily functionalized, thus the biomelastomers can be considered as potential biomaterials for biomedical application.

  7. Microbial production of poly-γ-glutamic acid.

    Science.gov (United States)

    Sirisansaneeyakul, Sarote; Cao, Mingfeng; Kongklom, Nuttawut; Chuensangjun, Chaniga; Shi, Zhongping; Chisti, Yusuf

    2017-09-05

    Poly-γ-glutamic acid (γ-PGA) is a natural, biodegradable and water-soluble biopolymer of glutamic acid. This review is focused on nonrecombinant microbial production of γ-PGA via fermentation processes. In view of its commercial importance, the emphasis is on L-glutamic acid independent producers (i.e. microorganisms that do not require feeding with the relatively expensive amino acid L-glutamic acid to produce γ-PGA), but glutamic acid dependent production is discussed for comparison. Strategies for improving production, reducing costs and using renewable feedstocks are discussed.

  8. Deep brain stimulation of the nucleus accumbens shell attenuates cue-induced reinstatement of both cocaine and sucrose seeking in rats.

    Science.gov (United States)

    Guercio, Leonardo A; Schmidt, Heath D; Pierce, R Christopher

    2015-03-15

    Stimuli previously associated with drug taking can become triggers that can elicit craving and lead to relapse of drug-seeking behavior. Here, we examined the influence of deep brain stimulation (DBS) in the nucleus accumbens shell on cue-induced reinstatement of cocaine seeking, an animal model of relapse. Rats were allowed to self-administer cocaine (0.254 mg, i.v.) for 2 h daily for 21 days, with each infusion of cocaine being paired with a cue light. After 21 days of self-administration, cocaine-taking behavior was extinguished by replacing cocaine with saline in the absence of the cue light. Next, during the reinstatement phase, DBS was administered bilaterally into the nucleus accumbens shell through bipolar stainless steel electrodes immediately prior to re-exposure to cues previously associated with cocaine reinforcement. DBS continued throughout the 2 h reinstatement session. Parallel studies examined the influence of accumbens shell DBS on reinstatement induced by cues previously associated with sucrose reinforcement. Results indicated that DBS of the nucleus accumbens shell significantly attenuated cue-induced reinstatement of cocaine and sucrose seeking. Together, these results indicate that DBS of the accumbens shell disrupts cue-induced reinstatement associated with both a drug and a natural reinforcer. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Chronic Fluoxetine Induces Activity Changes in Recovery From Poststroke Anxiety, Depression, and Cognitive Impairment.

    Science.gov (United States)

    Vahid-Ansari, Faranak; Albert, Paul R

    2018-01-01

    Poststroke depression (PSD) is a common outcome of stroke that limits recovery and is only partially responsive to chronic antidepressant treatment. In order to elucidate changes in the cortical-limbic circuitry associated with PSD and its treatment, we examined a novel mouse model of persistent PSD. Focal endothelin-1-induced ischemia of the left medial prefrontal cortex (mPFC) in male C57BL6 mice resulted in a chronic anxiety and depression phenotype. Here, we show severe cognitive impairment in spatial learning and memory in the stroke mice. The behavioral and cognitive phenotypes were reversed by chronic (4-week) treatment with fluoxetine, alone or with voluntary exercise (free-running wheel), but not by exercise alone. To assess chronic cellular activation, FosB + cells were co-labeled for markers of glutamate/pyramidal (VGluT1-3/CaMKIIα), γ-aminobutyric acid (GAD67), and serotonin (TPH). At 6 weeks poststroke versus sham (or 4 days poststroke), left mPFC stroke induced widespread FosB activation, more on the right (contralesional) than on the left side. Stroke activated glutamate cells of the mPFC, nucleus accumbens, amygdala, hippocampus, and raphe serotonin neurons. Chronic fluoxetine balanced bilateral neuronal activity, reducing total FosB and FosB/CamKII + cells (mPFC, nucleus accumbens), and unlike exercise, increasing FosB/GAD67 + cells (septum, amygdala) or both (hippocampus, raphe). In summary, chronic antidepressant but not exercise mediates recovery in this unilateral ischemic PSD model that is associated with region-specific reversal of stroke-induced pyramidal cell hyperactivity and increase in γ-aminobutyric acidergic activity. Targeted brain stimulation to restore brain activity could provide a rational approach for treating clinical PSD.

  10. Glutamate stimulates the formation of N-acylphosphatidylethanolamine in cortical neurons in culture

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Lauritzen, L.; Strand, A.M.

    1995-01-01

    The formation of anandamide (N-arachidonoylethanolamine), N-acylethanolamine, and N-acylphosphatidylethanolamine was studied in primary cultures of rat cortical neurons. The cells were incubated for 22 h with [C]ethanolamine, [U-C]arachidonic acid, [H]arachidonic acid, [P]phosphate, [C]stearic acid......-acylethanolamine. Compound I could be labelled with [C]stearic acid and [H]myristic acid, but not with [H]- or [C]arachidonic acid. Exogenous [H]anandamide was metabolised with a t( 1/2 ) of 2.6 h. The labelling of the two compounds identified as N-acylethanolamine and N-acylphosphatidylethanolamine were more pronounced......, or [H]myristic acid. The lipids from the cells and media were separated by thin layer chromatography. [C]Ethanolamine labelling revealed two compounds (I and II), which on different thin layer chromatography systems migrated as N-acylethanolamine (0.06-0.55% of total radioactivity) and N...

  11. Cortical compression rapidly trimmed transcallosal projections and altered axonal anterograde transport machinery.

    Science.gov (United States)

    Chen, Li-Jin; Wang, Yueh-Jan; Tseng, Guo-Fang

    2017-10-24

    Trauma and tumor compressing the brain distort underlying cortical neurons. Compressed cortical neurons remodel their dendrites instantly. The effects on axons however remain unclear. Using a rat epidural bead implantation model, we studied the effects of unilateral somatosensory cortical compression on its transcallosal projection and the reversibility of the changes following decompression. Compression reduced the density, branching profuseness and boutons of the projection axons in the contralateral homotopic cortex 1week and 1month post-compression. Projection fiber density was higher 1-month than 1-week post-compression, suggesting adaptive temporal changes. Compression reduced contralateral cortical synaptophysin, vesicular glutamate transporter 1 (VGLUT1) and postsynaptic density protein-95 (PSD95) expressions in a week and the first two marker proteins further by 1month. βIII-tubulin and kinesin light chain (KLC) expressions in the corpus callosum (CC) where transcallosal axons traveled were also decreased. Kinesin heavy chain (KHC) level in CC was temporarily increased 1week after compression. Decompression increased transcallosal axon density and branching profuseness to higher than sham while bouton density returned to sham levels. This was accompanied by restoration of synaptophysin, VGLUT1 and PSD95 expressions in the contralateral cortex of the 1-week, but not the 1-month, compression rats. Decompression restored βIII-tubulin, but not KLC and KHC expressions in CC. However, KLC and KHC expressions in the cell bodies of the layer II/III pyramidal neurons partially recovered. Our results show cerebral compression compromised cortical axonal outputs and reduced transcallosal projection. Some of these changes did not recover in long-term decompression. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Cell-specific gain modulation by synaptically released zinc in cortical circuits of audition.

    Science.gov (United States)

    Anderson, Charles T; Kumar, Manoj; Xiong, Shanshan; Tzounopoulos, Thanos

    2017-09-09

    In many excitatory synapses, mobile zinc is found within glutamatergic vesicles and is coreleased with glutamate. Ex vivo studies established that synaptically released (synaptic) zinc inhibits excitatory neurotransmission at lower frequencies of synaptic activity but enhances steady state synaptic responses during higher frequencies of activity. However, it remains unknown how synaptic zinc affects neuronal processing in vivo. Here, we imaged the sound-evoked neuronal activity of the primary auditory cortex in awake mice. We discovered that synaptic zinc enhanced the gain of sound-evoked responses in CaMKII-expressing principal neurons, but it reduced the gain of parvalbumin- and somatostatin-expressing interneurons. This modulation was sound intensity-dependent and, in part, NMDA receptor-independent. By establishing a previously unknown link between synaptic zinc and gain control of auditory cortical processing, our findings advance understanding about cortical synaptic mechanisms and create a new framework for approaching and interpreting the role of the auditory cortex in sound processing.

  13. Increased cerebral (R-[11C]PK11195 uptake and glutamate release in a rat model of traumatic brain injury: a longitudinal pilot study

    Directory of Open Access Journals (Sweden)

    Lammertsma Adriaan A

    2011-06-01

    Full Text Available Abstract Background The aim of the present study was to investigate microglia activation over time following traumatic brain injury (TBI and to relate these findings to glutamate release. Procedures Sequential dynamic (R-[11C]PK11195 PET scans were performed in rats 24 hours before (baseline, and one and ten days after TBI using controlled cortical impact, or a sham procedure. Extracellular fluid (ECF glutamate concentrations were measured using cerebral microdialysis. Brains were processed for histopathology and (immuno-histochemistry. Results Ten days after TBI, (R-[11C]PK11195 binding was significantly increased in TBI rats compared with both baseline values and sham controls (p -1 as compared with the sham procedure (6.4 ± 3.6 μmol·L-1. Significant differences were found between TBI and sham for ED-1, OX-6, GFAP, Perl's, and Fluoro-Jade B. Conclusions Increased cerebral uptake of (R-[11C]PK11195 ten days after TBI points to prolonged and ongoing activation of microglia. This activation followed a significant acute posttraumatic increase in ECF glutamate levels.

  14. Reboxetine Enhances the Olanzapine-Induced Antipsychotic-Like Effect, Cortical Dopamine Outflow and NMDA Receptor-Mediated Transmission

    Science.gov (United States)

    Marcus, Monica M; Jardemark, Kent; Malmerfelt, Anna; Björkholm, Carl; Svensson, Torgny H

    2010-01-01

    Preclinical data have shown that addition of the selective norepinephrine transporter (NET) inhibitor reboxetine increases the antipsychotic-like effect of the D2/3 antagonist raclopride and, in parallel, enhances cortical dopamine output. Subsequent clinical results suggested that adding reboxetine to stable treatments with various antipsychotic drugs (APDs) may improve positive, negative and depressive symptoms in schizophrenia. In this study, we investigated in rats the effects of adding reboxetine to the second-generation APD olanzapine on: (i) antipsychotic efficacy, using the conditioned avoidance response (CAR) test, (ii) extrapyramidal side effect (EPS) liability, using a catalepsy test, (iii) dopamine efflux in the medial prefrontal cortex and the nucleus accumbens, using in vivo microdialysis in freely moving animals and (iv) cortical N-methyl--aspartate (NMDA) receptor-mediated transmission, using intracellular electrophysiological recording in vitro. Reboxetine (6 mg/kg) enhanced the suppression of CAR induced by a suboptimal dose (1.25 mg/kg), but not an optimal (2.5 mg/kg) dose of olanzapine without any concomitant catalepsy. Addition of reboxetine to the low dose of olanzapine also markedly increased cortical dopamine outflow and facilitated prefrontal NMDA receptor-mediated transmission. Our data suggest that adjunctive treatment with a NET inhibitor may enhance the therapeutic effect of low-dose olanzapine in schizophrenia without increasing EPS liability and add an antidepressant action, thus in principle allowing for a dose reduction of olanzapine with a concomitant reduction of dose-related side effects, such as EPS and weight gain. PMID:20463659

  15. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum.

    Science.gov (United States)

    Feng, Jun; Quan, Yufen; Gu, Yanyan; Liu, Fenghong; Huang, Xiaozhong; Shen, Haosheng; Dang, Yulei; Cao, Mingfeng; Gao, Weixia; Lu, Xiaoyun; Wang, Yi; Song, Cunjiang; Wang, Shufang

    2017-05-22

    Poly-γ-glutamic acid (γ-PGA) is a valuable polymer with glutamate as its sole precursor. Enhancement of the intracellular glutamate synthesis is a very important strategy for the improvement of γ-PGA production, especially for those glutamate-independent γ-PGA producing strains. Corynebacterium glutamicum has long been used for industrial glutamate production and it exhibits some unique features for glutamate synthesis; therefore introduction of these metabolic characters into the γ-PGA producing strain might lead to increased intracellular glutamate availability, and thus ultimate γ-PGA production. In this study, the unique glutamate synthesis features from C. glutamicum was introduced into the glutamate-independent γ-PGA producing Bacillus amyloliquefaciens NK-1 strain. After introducing the energy-saving NADPH-dependent glutamate dehydrogenase (NADPH-GDH) pathway, the NK-1 (pHT315-gdh) strain showed slightly increase (by 9.1%) in γ-PGA production. Moreover, an optimized metabolic toggle switch for controlling the expression of ɑ-oxoglutarate dehydrogenase complex (ODHC) was introduced into the NK-1 strain, because it was previously shown that the ODHC in C. glutamicum was completely inhibited when glutamate was actively produced. The obtained NK-PO1 (pHT01-xylR) strain showed 66.2% higher γ-PGA production than the NK-1 strain. However, the further combination of these two strategies (introducing both NADPH-GDH pathway and the metabolic toggle switch) did not lead to further increase of γ-PGA production but rather the resultant γ-PGA production was even lower than that in the NK-1 strain. We proposed new metabolic engineering strategies to improve the γ-PGA production in B. amyloliquefaciens. The NK-1 (pHT315-gdh) strain with the introduction of NADPH-GDH pathway showed 9.1% improvement in γ-PGA production. The NK-PO1 (pHT01-xylR) strain with the introduction of a metabolic toggle switch for controlling the expression of ODHC showed 66.2% higher

  16. Cerebral ischemic injury decreases α-synuclein expression in brain tissue and glutamate-exposed HT22 cells.

    Science.gov (United States)

    Koh, Phil-Ok

    2017-09-01

    α-Synuclein is abundantly expressed in neuronal tissue, plays an essential role in the pathogenesis of neurodegenerative disorders, and exerts a neuroprotective effect against oxidative stress. Cerebral ischemia causes severe neurological disorders and neuronal dysfunction. In this study, we examined α-synuclein expression in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury and neuronal cells damaged by glutamate treatment. MCAO surgical operation was performed on male Sprague-Dawley rats, and brain samples were isolated 24 hours after MCAO. We confirmed neurological behavior deficit, infarction area, and histopathological changes following MCAO injury. A proteomic approach and Western blot analysis demonstrated a decrease in α-synuclein in the cerebral cortices after MCAO injury. Moreover, glutamate treatment induced neuronal cell death and decreased α-synuclein expression in a hippocampal-derived cell line in a dose-dependent manner. It is known that α-synuclein regulates neuronal survival, and low levels of α-synuclein expression result in cytotoxicity. Thus, these results suggest that cerebral ischemic injury leads to a reduction in α-synuclein and consequently causes serious brain damage.

  17. Sexual behavior induction of c-Fos in the nucleus accumbens and amphetamine-stimulated locomotor activity are sensitized by previous sexual experience in female Syrian hamsters.

    Science.gov (United States)

    Bradley, K C; Meisel, R L

    2001-03-15

    Dopamine transmission in the nucleus accumbens can be activated by drugs, stress, or motivated behaviors, and repeated exposure to these stimuli can sensitize this dopamine response. The objectives of this study were to determine whether female sexual behavior activates nucleus accumbens neurons and whether past sexual experience cross-sensitizes neuronal responses in the nucleus accumbens to amphetamine. Using immunocytochemical labeling, c-Fos expression in different subregions (shell vs core at the rostral, middle, and caudal levels) of the nucleus accumbens was examined in female hamsters that had varying amounts of sexual experience. Female hamsters, given either 6 weeks of sexual experience or remaining sexually naive, were tested for sexual behavior by exposure to adult male hamsters. Previous sexual experience increased c-Fos labeling in the rostral and caudal levels but not in the middle levels of the nucleus accumbens. Testing for sexual behavior increased labeling in the core, but not the shell, of the nucleus accumbens. To validate that female sexual behavior can sensitize neurons in the mesolimbic dopamine pathway, the locomotor responses of sexually experienced and sexually naive females to an amphetamine injection were then compared. Amphetamine increased general locomotor activity in all females. However, sexually experienced animals responded sooner to amphetamine than did sexually naive animals. These data indicate that female sexual behavior can activate neurons in the nucleus accumbens and that sexual experience can cross-sensitize neuronal responses to amphetamine. In addition, these results provide additional evidence for functional differences between the shell and core of the nucleus accumbens and across its anteroposterior axis.

  18. Deletion of glutamate dehydrogenase 1 (Glud1) in the central nervous system affects glutamate handling without altering synaptic transmission

    DEFF Research Database (Denmark)

    Frigerio, Francesca; Karaca, Melis; De Roo, Mathias

    2012-01-01

    Glutamate dehydrogenase (GDH), encoded by GLUD1, participates in the breakdown and synthesis of glutamate, the main excitatory neurotransmitter. In the CNS, besides its primary signaling function, glutamate is also at the crossroad of metabolic and neurotransmitter pathways. Importance of brain GDH...... was questioned here by generation of CNS-specific GDH-null mice (CnsGlud1(-/-)); which were viable, fertile and without apparent behavioral problems. GDH immunoreactivity as well as enzymatic activity were absent in Cns-Glud1(-/-) brains. Immunohistochemical analyses on brain sections revealed that the pyramidal...... oxidative catabolism of glutamate in astrocytes, showing that GDH is required for Krebs cycle pathway. As revealed by NMR studies, brain glutamate levels remained unchanged, whereas glutamine levels were increased. This pattern was favored by up-regulation of astrocyte-type glutamate and glutamine...

  19. Strontium D-Glutamate Hexahydrate and Strontium Di(hydrogen L-glutamate) Pentahydrate

    DEFF Research Database (Denmark)

    Christgau, Stephan; Odderhede, Jette; Stahl, Kenny

    2005-01-01

    Sr(C5H7NO4)] center dot 6H(2)O, ( I), and [Sr(C5H8NO4)(2)] center dot 5H(2)O, (II), both crystallize with similar strontium - glutamate - water layers. In ( I), the neutral layers are connected through hydrogen bonds by water molecules, while in ( II), the positively charged layers are connected...... through hydrogen bonds and electrostatic interactions by interleaving layers of hydrogen glutamate anions and water molecules....

  20. A radiometric microassay for glutamic acid decarboxylase

    International Nuclear Information System (INIS)

    Maderdrut, J.L.; North Carolina Univ., Chapel Hill

    1979-01-01

    A simple method for purifying L-[ 3 H] glutamic acid and incubation conditions suitable for estimating L-glutamic acid decarboxylase activity are described. Routine and recycled cation-exchange procedure for separating γ-aminobutyric acid from L-glutamate are outlined and compared. Recycling increases the sensitivity of the cation-exchange method by 6-7 fold. L-Glutamate decarboxylase activity can be measured reliably in samples of embryonic neural tissue having wet-weights of approximately 1 μg. The cation-exchange method is compared with the anion-exchange and CO 2 -trapping methods. L-Glutamate decarboxylase activity has been detected in the lumbar spinal cord of the chick embryo at Day 21/4 (stage 14) using the cation-exchange method. This is 5-6 days earlier than L-glutamate decarboxylase activity has been detected in embryonic neural tissue by previous investigators. L-Glutamate decarboxylase is present in the lumbar spinal cord at least as early as the birth of the first lumbar spinal cord neurons and at least 1-2 days before the initiation of synaptogenesis. (author)

  1. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... on glutamate metabolism in astrocytes was studied using primary cultures of these cells from mouse cerebral cortex during incubation in media containing 2.5 mM glucose and 100 µM [U-(13)C]glutamate. The metabolism of glutamate including a detailed analysis of its metabolic pathways involving the tricarboxylic...... skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were...

  2. Fluorescence imaging of glutamate release in neurons

    International Nuclear Information System (INIS)

    Wang, Ziqiang; Yeung, Edward S.

    1999-01-01

    A noninvasive detection scheme based on glutamate dehydrogenase (GDH) enzymatic assay combined with microscopy was developed to measure the glutamate release in cultured cells from the central nervous system (CNS). The enzyme reaction is very specific and sensitive. The detection limit with charge-coupled device (CCD) imaging is down to μM levels of glutamate with reasonable response time (∼30 s). The standard glutamate test shows a linear response over 3 orders of magnitude, from μM to 0.1 mM range. The in vitro monitoring of glutamate release from cultured neuron cells demonstrated excellent spatial and temporal resolution. (c) 1999 Society for Applied Spectroscopy

  3. N-acetylcysteine, a glutamate modulator, in the treatment of trichotillomania: a double-blind, placebo-controlled study.

    Science.gov (United States)

    Grant, Jon E; Odlaug, Brian L; Kim, Suck Won

    2009-07-01

    Trichotillomania is characterized by repetitive hair pulling that causes noticeable hair loss. Data on the pharmacologic treatment of trichotillomania are limited to conflicting studies of serotonergic medications. N-acetylcysteine, an amino acid, seems to restore the extracellular glutamate concentration in the nucleus accumbens and, therefore, offers promise in the reduction of compulsive behavior. To determine the efficacy and tolerability of N-acetylcysteine in adults with trichotillomania. Twelve-week, double-blind, placebo-controlled trial. Ambulatory care center. Fifty individuals with trichotillomania (45 women and 5 men; mean [SD] age, 34.3 [12.1] years). N-acetylcysteine (dosing range, 1200-2400 mg/d) or placebo was administered for 12 weeks. Patients were assessed using the Massachusetts General Hospital Hair Pulling Scale, the Clinical Global Impression scale, the Psychiatric Institute Trichotillomania Scale, and measures of depression, anxiety, and psychosocial functioning. Outcomes were examined using analysis of variance modeling analyses and linear regression in an intention-to-treat population. Patients assigned to receive N-acetylcysteine had significantly greater reductions in hair-pulling symptoms as measured using the Massachusetts General Hospital Hair Pulling Scale (P acetylcysteine use compared with 16% taking placebo (P = .003). Significant improvement was initially noted after 9 weeks of treatment. This study, the first to our knowledge that examines the efficacy of a glutamatergic agent in the treatment of trichotillomania, found that N-acetylcysteine demonstrated statistically significant reductions in trichotillomania symptoms. No adverse events occurred in the N-acetylcysteine group, and N-acetylcysteine was well tolerated. Pharmacologic modulation of the glutamate system may prove to be useful in the control of a range of compulsive behaviors. clinicaltrials.gov Identifier: NCT00354770.

  4. RANTES modulates the release of glutamate in human neocortex.

    Science.gov (United States)

    Musante, Veronica; Longordo, Fabio; Neri, Elisa; Pedrazzi, Marco; Kalfas, Fotios; Severi, Paolo; Raiteri, Maurizio; Pittaluga, Anna

    2008-11-19

    The effects of the recombinant chemokine human RANTES (hRANTES) on the release of glutamate from human neocortex glutamatergic nerve endings were investigated. hRANTES facilitated the spontaneous release of d [(3)H]D-aspartate ([(3)H]DASP-) by binding Pertussis toxin-sensitive G-protein-coupled receptors (GPCRs), whose activation caused Ca(2+) mobilization from inositol trisphosphate-sensitive stores and cytosolic tyrosine kinase-mediated phosphorylations. Facilitation of release switched to inhibition when the effects of hRANTES on the 12 mM K(+)-evoked [(3)H]D-ASP exocytosis were studied. Inhibition of exocytosis relied on activation of Pertussis toxin-sensitive GPCRs negatively coupled to adenylyl cyclase. Both hRANTES effects were prevented by met-RANTES, an antagonist at the chemokine receptors (CCRs) of the CCR1, CCR3, and CCR5 subtypes. Interestingly, human neocortex glutamatergic nerve endings seem to possess all three receptor subtypes. Blockade of CCR1 and CCR5 by antibodies against the extracellular domain of CCRs prevented both the hRANTES effect on [(3)H]D-ASP release, whereas blockade of CCR3 prevented inhibition, but not facilitation, of release. The effects of RANTES on the spontaneous and the evoked release of [(3)H]D-ASP were also observed in experiments with mouse cortical synaptosomes, which may therefore represent an appropriate animal model to study RANTES-induced effects on neurotransmission. It is concluded that glutamate transmission can be modulated in opposite directions by RANTES acting at distinct CCR receptor subtypes coupled to different transduction pathways, consistent with the multiple and sometimes contrasting effects of the chemokine.

  5. Presynaptic mGlu1 and mGlu5 autoreceptors facilitate glutamate exocytosis from mouse cortical nerve endings.

    Science.gov (United States)

    Musante, Veronica; Neri, Elisa; Feligioni, Marco; Puliti, Aldamaria; Pedrazzi, Marco; Conti, Valerio; Usai, Cesare; Diaspro, Alberto; Ravazzolo, Roberto; Henley, Jeremy M; Battaglia, Giuseppe; Pittaluga, Anna

    2008-09-01

    The effects of mGlu1 and mGlu5 receptor activation on the depolarization-evoked release of [3H]d-aspartate ([3H]D-ASP) from mouse cortical synaptosomes were investigated. The mGlu1/5 receptor agonist 3,5-DHPG (0.1-100microM) potentiated the K+(12mM)-evoked [3H]D-ASP overflow. The potentiation occurred in a concentration-dependent manner showing a biphasic pattern. The agonist potentiated [3H]D-ASP exocytosis when applied at 0.3microM; the efficacy of 3,5-DHPG then rapidly declined and reappeared at 30-100microM. The fall of efficacy of agonist at intermediate concentration may be consistent with 3,5-DHPG-induced receptor desensitization. Facilitation of [3H]D-ASP exocytosis caused by 0.3microM 3,5-DHPG was prevented by the selective mGlu5 receptor antagonist MPEP, but was insensitive to the selective mGlu1 receptor antagonist CPCCOEt. In contrast, CPCCOEt prevented the potentiation by 50microM 3,5-DHPG, while MPEP had minimal effect. Unexpectedly, LY 367385 antagonized both the 3,5-DHPG-induced effects. A total of 0.3microM 3,5-DHPG failed to facilitate the K+-evoked [3H]D-ASP overflow from mGlu5 receptor knockout (mGlu5-/-) cortical synaptosomes, but not from nerve terminals prepared from the cortex of animals lacking the mGlu1 receptors, the crv4/crv4 mice. On the contrary, 50microM 3,5-DHPG failed to affect the [3H]D-ASP exocytosis from cortical synaptosomes obtained from crv4/crv4 and mGlu5-/-mice. Western blot analyses in subsynaptic fractions support the existence of both mGlu1 and mGlu5 autoreceptors located presynaptically, while immunocytochemistry revealed their presence at glutamatergic terminals. We propose that mGlu1 and mGlu5 autoreceptors exist on mouse glutamatergic cortical terminals; mGlu5 receptors may represent the "high affinity" binding sites for 3,5-DHPG, while mGlu1 autoreceptors represent the "low affinity" binding sites.

  6. Glutamate and Brain Glutaminases in Drug Addiction.

    Science.gov (United States)

    Márquez, Javier; Campos-Sandoval, José A; Peñalver, Ana; Matés, José M; Segura, Juan A; Blanco, Eduardo; Alonso, Francisco J; de Fonseca, Fernando Rodríguez

    2017-03-01

    Glutamate is the principal excitatory neurotransmitter in the central nervous system and its actions are related to the behavioral effects of psychostimulant drugs. In the last two decades, basic neuroscience research and preclinical studies with animal models are suggesting a critical role for glutamate transmission in drug reward, reinforcement, and relapse. Although most of the interest has been centered in post-synaptic glutamate receptors, the presynaptic synthesis of glutamate through brain glutaminases may also contribute to imbalances in glutamate homeostasis, a key feature of the glutamatergic hypothesis of addiction. Glutaminases are the main glutamate-producing enzymes in brain and dysregulation of their function have been associated with neurodegenerative diseases and neurological disorders; however, the possible implication of these enzymes in drug addiction remains largely unknown. This mini-review focuses on brain glutaminase isozymes and their alterations by in vivo exposure to drugs of abuse, which are discussed in the context of the glutamate homeostasis theory of addiction. Recent findings from mouse models have shown that drugs induce changes in the expression profiles of key glutamatergic transmission genes, although the molecular mechanisms that regulate drug-induced neuronal sensitization and behavioral plasticity are not clear.

  7. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence.

    Science.gov (United States)

    Bull, Cecilia; Freitas, Kelen C C; Zou, Shiping; Poland, Ryan S; Syed, Wahab A; Urban, Daniel J; Minter, Sabrina C; Shelton, Keith L; Hauser, Kurt F; Negus, S Stevens; Knapp, Pamela E; Bowers, M Scott

    2014-11-01

    Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH self-administration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with

  8. Influence of the glutamic acid content of the diet on the catabolic rate of labelled glutamic acid in rats. 3

    International Nuclear Information System (INIS)

    Simon, O.; Wilke, A.; Bergner, H.

    1984-01-01

    Mal rats received during a 8 days experimental feeding period diets with different contents in glutamic acid. The daily feed intake was restricted to the energy maintenance level of 460 kJ/kg/sup 0.75/. The diet contained a mixture of L-amino acids corresponding to the pattern of egg protein except glutamic acid. Glutamic acid was added successively at 10 levels (0 to 14.8 % of dry matter) and the resulting diets were fed to groups of 4 animals each. At the end of the experimental feeding period 14 C- and 15 N-labelled glutamic acid were applied by intragastric infusion. CO 2 and 14 CO 2 excretion was measured during the following 4 hours and the urinary N and 15 N excretion during the following 24 hours. The CO 2 excretion decreased from 53 to 44 mmol CO 2 /100g body weight with increasing levels of dietary glutamic acid. This change seems to result from the increasing proportion of amino acids as an energetic fuel. While the amount of oxidized glutamic acid increased with increasing supplements of glutamic acid the relative 14 CO 2 excretion decreased from 57 to 48 % of the applied radioactivity. The urinary 15 N excretion during 24 hours was 31 % of the given amount of 15 N if no glutamic acid was included in the diet. This proportion increased successively up to 52 % in the case of the highest supply of glutamic acid. Because the total N excretion increased at the same extent as the 15 N excretion a complete mixing of the NH 2 groups resulting from glutamic acid due to desamination with the ammonia pool was assumed. No correlation between glutamic acid content of the diet and specific radioactivity of CO 2 or atom-% 15 N excess of urinary N was observed. (author)

  9. Specific rescue by ortho-hydroxy atorvastatin of cortical GABAergic neurons from previous oxygen/glucose deprivation: role of pCREB.

    Science.gov (United States)

    Guirao, Verónica; Martí-Sistac, Octavi; DeGregorio-Rocasolano, Núria; Ponce, Jovita; Dávalos, Antoni; Gasull, Teresa

    2017-11-01

    The statin atorvastatin (ATV) given as a post-treatment has been reported beneficial in stroke, although the mechanisms involved are not well understood so far. Here, we investigated in vitro the effect of post-treatment with ATV and its main bioactive metabolite ortho-hydroxy ATV (o-ATV) on neuroprotection after oxygen and glucose deprivation (OGD), and the role of the pro-survival cAMP response element-binding protein (CREB). Post-OGD treatment of primary cultures of rat cortical neurons with o-ATV, but not ATV, provided neuroprotection to a specific subset of cortical neurons that were large and positive for glutamic acid decarboxylase (large-GAD (+) neurons, GABAergic). Significantly, only these GABAergic neurons showed an increase in phosphorylated CREB (pCREB) early after neuronal cultures were treated post-OGD with o-ATV. We found that o-ATV, but not ATV, increased the neuronal uptake of glutamate from the medium; this provides a rationale for the specific effect of o-ATV on pCREB in large-GABAergic neurons, which have a higher ratio of synaptic (pCREB-promoting) vs extrasynaptic (pCREB-reducing) N-methyl-D-aspartate (NMDA) receptors (NMDAR) than that of small-non-GABAergic neurons. When we pharmacologically increased pCREB levels post-OGD in non-GABAergic neurons, through the selective activation of synaptic NMDAR, we observed as well long-lasting neuronal survival. We propose that the statin metabolite o-ATV given post-OGD boosts the intrinsic pro-survival factor pCREB in large-GABAergic cortical neurons in vitro, this contributing to protect them from OGD. © 2017 International Society for Neurochemistry.

  10. Enhanced glutamate, IP3 and cAMP activity in the cerebral cortex of Unilateral 6-hydroxydopamine induced Parkinson's rats: Effect of 5-HT, GABA and bone marrow cell supplementation

    Directory of Open Access Journals (Sweden)

    Romeo Chinthu

    2011-01-01

    Full Text Available Abstract Parkinson's disease is characterized by progressive cell death in the substantia nigra pars compacta, which leads to dopamine depletion in the striatum and indirectly to cortical dysfunction. Increased glutamatergic transmission in the basal ganglia is implicated in the pathophysiology of Parkinson's disease and glutamate receptor mediated excitotoxicity has been suggested to be one of the possible causes of the neuronal degeneration. In the present study, the effects of serotonin, gamma-aminobutyric acid and bone marrow cells infused intranigrally to substantia nigra individually and in combination on unilateral 6-hydroxydopamine induced Parkinson's rat model was analyzed. Scatchard analysis of total glutamate and NMDA receptor binding parameters showed a significant increase in Bmax (P

  11. Fabrication of Implantable, Enzyme-Immobilized Glutamate Sensors for the Monitoring of Glutamate Concentration Changes in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Tina T.-C. Tseng

    2014-06-01

    Full Text Available Glutamate sensors based on the immobilization of glutamate oxidase (GlutOx were prepared by adsorption on electrodeposited chitosan (Method 1 and by crosslinking with glutaraldehyde (Method 2 on micromachined platinum microelectrodes. It was observed that glutamate sensors prepared by Method 1 have faster response time (<2 s and lower detection limit (2.5 ± 1.1 μM compared to that prepared by Method 2 (response time: <5 sec and detection limit: 6.5 ± 1.7 μM; glutamate sensors prepared by Method 2 have a larger linear detection range (20–352 μM and higher sensitivity (86.8 ± 8.8 nA·μM−1·cm−2, N = 12 compared to those prepared by Method 1 (linear detection range: 20–217 μM and sensitivity: 34.9 ± 4.8 nA·μM−1·cm−2, N = 8. The applicability of the glutamate sensors in vivo was also demonstrated. The glutamate sensors were implanted into the rat brain to monitor the stress-induced extracellular glutamate release in the hypothalamus of the awake, freely moving rat.

  12. 21 CFR 182.1047 - Glutamic acid hydrochloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glutamic acid hydrochloride. 182.1047 Section 182.1047 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1047 Glutamic acid hydrochloride. (a) Product. Glutamic acid hydrochloride. (b...

  13. Evaluation of the Interaction between NMDA Receptors of Nucleus Accumbens and Muscarinic Receptors in Memory

    Directory of Open Access Journals (Sweden)

    Saba Taheri

    2013-02-01

    Full Text Available Background and Objectives: Whereas studies have indicated the interaction between NMDA and cholinergic systems, this study was performed with the aim of determining the role of NMDA receptors in the nucleus accumbens (NAc in scopolamine-induced amnesia.Methods: In this study, at first rats were anesthetized with intra-peritoneal injection of ketamine hydrochloride plus xylazine, and then placed in a stereotaxic apparatus. Two stainless-steel cannulas were placed 2mm above nucleus accumbens shell. All animals were allowed to recover for one week, before beginning the behavioral testing. Then, animals were trained in a step-through type inhibitory avoidance task. The drugs were injected after successful training and before testing. The animals were tested 24h after training, and the step-through latency time was measured as the memory criterion in male Wistar rats. One-way analysis of variance and Tukey’s test were used for analysis of the data. p<0.05 was considered statistically significant.Results: Intra-nucleus accumbens (intra-NAc injection of scopolamine or NMDA caused impairment in memory in rats. Although, co-administration of an ineffective dose of NMDA with an ineffective dose of scopolamine had no significant effect on memory performance, effective doses of NMDA prevented the amnesic effect of scopolamine on inhibitory avoidance memory. On the other hand, intra-NAc injection of NMDA receptor antagonist, i.e., MK-801 caused no change in memory performance by itself, and its co-administration with an effective dose of scopolamine could not prevent the impairing effect of the latter drug. Conclusion: The finding of this study indicated that NMDA receptors in the nucleus accumbens are involved in the modulation of scopolamine-induced amnesia.

  14. Glutamate mechanisms underlying opiate memories

    NARCIS (Netherlands)

    Peters, J.; de Vries, T.J.

    2012-01-01

    As the major excitatory neurotransmitter in the brain, glutamate plays an undisputable integral role in opiate addiction. This relates, in part, to the fact that addiction is a disorder of learning and memory, and glutamate is required for most types of memory formation. As opiate addiction

  15. Introduction to the Glutamate-Glutamine Cycle.

    Science.gov (United States)

    Sonnewald, Ursula; Schousboe, Arne

    2016-01-01

    The term 'glutamate-glutamine cycle' was coined several decades ago based on the observation that using certain 14 C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor. This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion but more recent research has seriously questioned this.This volume of Advances in Neurobiology is intended to provide a detailed discussion of recent developments in research aimed at delineating the functional roles of the cycle taking into account that in order for this system to work there must be a tight coupling between metabolism of glutamate in astrocytes, transfer of glutamine to neurons and de novo synthesis of glutamine in astrocytes. To understand this, knowledge about the activity and regulation of the enzymes and transporters involved in these processes is required and as can be seen from the table of contents these issues will be dealt with in detail in the individual chapters of the book.

  16. The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment

    Science.gov (United States)

    Rojas, Donald C.

    2014-01-01

    Glutamate is the major excitatory neurotransmitter in the brain and may be a key neurotransmitter involved in autism. Literature pertaining to glutamate and autism or related disorders (e.g., Fragile X syndrome) is reviewed in this article. Interest in glutamatergic dysfunction in autism is high due to increasing convergent evidence implicating the system in the disorder from peripheral biomarkers, neuroimaging, protein expression, genetics and animal models. Currently, there are no pharmaceutical interventions approved for autism that address glutamate deficits in the disorder. New treatments related to glutamatergic neurotransmission, however, are emerging. In addition, older glutamate-modulating medications with approved indications for use in other disorders are being investigated for re-tasking as treatments for autism. This review presents evidence in support of glutamate abnormalities in autism and the potential for translation into new treatments for the disorder. PMID:24752754

  17. Influence of the glutamic acid content of the diet on the catabolic rate of labelled glutamic acid in rats. 2

    International Nuclear Information System (INIS)

    Wilke, A.; Simon, O.; Bergner, H.

    1984-01-01

    40 rats with a body weight of 100 g received 7 semisynthetic diets with different contents of glutamic acid and one diet contained whole-egg. A L-amino acid mixture corresponding to the pattern of egg protein was the protein source of the semisynthetic diets. Glutamic acid was supplemented succesively from 0 to 58 mol-% of the total amino acid content. On the 8th day of the experimental feeding the animals were labelled by subcutaneous injection of 14 C-glutamic acid. Subsequently the CO 2 and the 14 CO 2 excretion were measured for 24 hours. In this period 64 to 68 % of the injected radioactivity were recovered as 14 CO 2 . The curve pattern of 14 CO 2 excretion indicates two different processes of 14 CO 2 formation. One characterizing the direct degradation of glutamic acid to CO 2 with a high rate constant and a second one with a lower rate constant characterizing the 14 CO 2 formation via metabolites of glutamic acid. 77 % of the total 14 CO 2 excretion in 24 hours resulted from the direct oxidation of glutamic acid and 23 % from the oxidation of intermediates. When 14 CO 2 formation was measured 10 to 24 hours after injection of 14 C-glutamic acid a positive correlation to the content of glutamic acid in the diet was observed. The intestinal tissue contributes considerably to the catabolization of glutamic acid, however, there seems to exist an upper limit for this capacity. (author)

  18. Ipsilateral feeding-specific circuits between the nucleus accumbens shell and the lateral hypothalamus: regulation by glutamate and GABA receptor subtypes.

    Science.gov (United States)

    Urstadt, Kevin R; Kally, Peter; Zaidi, Sana F; Stanley, B Glenn

    2013-04-01

    The nucleus accumbens shell (AcbSh) and the lateral hypothalamus (LH) are both involved in the control of food intake. Activation of GABA(A) receptors or blockade of AMPA and kainate receptors within the AcbSh induces feeding, as does blockade of GABA(A) receptors or activation of NMDA receptors in the LH. Further, evidence suggests that feeding induced via the AcbSh can be suppressed by LH inhibition. However, it is unclear if this suppression is specific to feeding. Adult male Sprague-Dawley rats with 3 intracranial guide cannulas, one unilaterally into the AcbSh and two bilaterally into the LH, were used to explore this issue. DNQX (1.25 μg) or muscimol (100 ng) infused into the AcbSh unilaterally elicited feeding, and this elicited intake was suppressed by bilateral LH injection of d-AP5 (2 μg) or muscimol (25 ng). The effectiveness of d-AP5 or muscimol infusion into either the LH site ipsilateral or contralateral to the AcbSh injection was compared. Ipsilateral LH injection of d-AP5 or muscimol was significantly more effective than contralateral injection in suppressing food intake initiated by AcbSh injection of DNQX or muscimol. These results add to the prior evidence that inhibition of the LH through pharmacological modulation of NMDA or GABA(A) receptors specifically suppresses feeding initiated by AcbSh inhibition, and that these two regions communicate via an ipsilateral circuit to specifically regulate feeding. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The Nitric Oxide Donor SNAP-Induced Amino Acid Neurotransmitter Release in Cortical Neurons. Effects of Blockers of Voltage-Dependent Sodium and Calcium Channels

    Science.gov (United States)

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    Background The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. Findings The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Conclusions Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons. PMID:24598811

  20. The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels.

    Science.gov (United States)

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons.

  1. The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels.

    Directory of Open Access Journals (Sweden)

    José Joaquín Merino

    Full Text Available The discovery that nitric oxide (NO functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated.The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated.Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons.

  2. Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence?

    Directory of Open Access Journals (Sweden)

    Pamela eMaher

    2015-12-01

    Full Text Available Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors and a class of G-protein coupled receptors (metabotropic glutamate receptors. Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer’s disease and Huntington’s disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases.

  3. Functional Comparison of the Two Bacillus anthracis Glutamate Racemases▿

    OpenAIRE

    Dodd, Dylan; Reese, Joseph G.; Louer, Craig R.; Ballard, Jimmy D.; Spies, M. Ashley; Blanke, Steven R.

    2007-01-01

    Glutamate racemase activity in Bacillus anthracis is of significant interest with respect to chemotherapeutic drug design, because l-glutamate stereoisomerization to d-glutamate is predicted to be closely associated with peptidoglycan and capsule biosynthesis, which are important for growth and virulence, respectively. In contrast to most bacteria, which harbor a single glutamate racemase gene, the genomic sequence of B. anthracis predicts two genes encoding glutamate racemases, racE1 and rac...

  4. Sleep/wake dependent changes in cortical glucose concentrations.

    Science.gov (United States)

    Dash, Michael B; Bellesi, Michele; Tononi, Giulio; Cirelli, Chiara

    2013-01-01

    Most of the energy in the brain comes from glucose and supports glutamatergic activity. The firing rate of cortical glutamatergic neurons, as well as cortical extracellular glutamate levels, increase with time spent awake and decline throughout non rapid eye movement sleep, raising the question whether glucose levels reflect behavioral state and sleep/wake history. Here chronic (2-3 days) electroencephalographic recordings in the rat cerebral cortex were coupled with fixed-potential amperometry to monitor the extracellular concentration of glucose ([gluc]) on a second-by-second basis across the spontaneous sleep-wake cycle and in response to 3 h of sleep deprivation. [Gluc] progressively increased during non rapid eye movement sleep and declined during rapid eye movement sleep, while during wake an early decline in [gluc] was followed by an increase 8-15 min after awakening. There was a significant time of day effect during the dark phase, when rats are mostly awake, with [gluc] being significantly lower during the last 3-4 h of the night relative to the first 3-4 h. Moreover, the duration of the early phase of [gluc] decline during wake was longer after prolonged wake than after consolidated sleep. Thus, the sleep/wake history may affect the levels of glucose available to the brain upon awakening. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  5. Glutamate and GABA-metabolizing enzymes in post-mortem cerebellum in Alzheimer's disease: phosphate-activated glutaminase and glutamic acid decarboxylase.

    Science.gov (United States)

    Burbaeva, G Sh; Boksha, I S; Tereshkina, E B; Savushkina, O K; Prokhorova, T A; Vorobyeva, E A

    2014-10-01

    Enzymes of glutamate and GABA metabolism in postmortem cerebellum from patients with Alzheimer's disease (AD) have not been comprehensively studied. The present work reports results of original comparative study on levels of phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase isoenzymes (GAD65/67) in autopsied cerebellum samples from AD patients and matched controls (13 cases in each group) as well as summarizes published evidence for altered levels of PAG and GAD65/67 in AD brain. Altered (decreased) levels of these enzymes and changes in links between amounts of these enzymes and other glutamate-metabolizing enzymes (such as glutamate dehydrogenase and glutamine synthetase-like protein) in AD cerebella suggest significantly impaired glutamate and GABA metabolism in this brain region, which was previously regarded as not substantially involved in AD pathogenesis.

  6. Chronic suppression of μ-opioid receptor signaling in the nucleus accumbens attenuates development of diet-induced obesity in rats.

    Science.gov (United States)

    Lenard, N R; Zheng, H; Berthoud, H-R

    2010-06-01

    To test the hypothesis that micro-opioid receptor signaling in the nucleus accumbens contributes to hedonic (over)eating and obesity. To investigate the effects of chronic micro-opioid antagonism in the nucleus accumbens core or shell on intake of a palatable diet, and the development of diet-induced obesity in rats. Chronic blockade of micro-opioid receptor signaling in the nucleus accumbens core or shell was achieved by means of repeated injections (every 4-5 days) of the irreversible receptor antagonist beta-funaltrexamine (BFNA) over 3-5 weeks. The diet consisted of either a choice of high-fat chow, chocolate-flavored Ensure and regular chow (each nutritionally complete) or regular chow only. Intake of each food item, body weight and body fat mass were monitored throughout the study. The BFNA injections aimed at either the core or shell of the nucleus accumbens resulted in significantly attenuated intake of palatable diet, body weight gain and fat accretion, compared with vehicle control injections. The injection of BFNA in the core did not significantly change these parameters in chow-fed control rats. The injection of BFNA in the core and shell differentially affected intake of the two palatable food items: in the core, BFNA significantly reduced the intake of high-fat, but not of Ensure, whereas in the shell, it significantly reduced the intake of Ensure, but not of high-fat, compared with vehicle treatment. Endogenous micro-opioid receptor signaling in the nucleus accumbens core and shell is necessary for palatable diet-induced hyperphagia and obesity to fully develop in rats. Sweet and non-sweet fatty foods may be differentially processed in subcomponents of the ventral striatum.

  7. Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity.

    Science.gov (United States)

    Virgin, C E; Ha, T P; Packan, D R; Tombaugh, G C; Yang, S H; Horner, H C; Sapolsky, R M

    1991-10-01

    Glucocorticoids (GCs), the adrenal steroid hormones secreted during stress, can damage the hippocampus and impair its capacity to survive coincident neurological insults. This GC endangerment of the hippocampus is energetic in nature, as it can be prevented when neurons are supplemented with additional energy substrates. This energetic endangerment might arise from the ability of GCs to inhibit glucose transport into both hippocampal neurons and astrocytes. The present study explores the GC inhibition in astrocytes. (1) GCs inhibited glucose transport approximately 15-30% in both primary and secondary hippocampal astrocyte cultures. (2) The parameters of inhibition agreed with the mechanisms of GC inhibition of glucose transport in peripheral tissues: A minimum of 4 h of GC exposure were required, and the effect was steroid specific (i.e., it was not triggered by estrogen, progesterone, or testosterone) and tissue specific (i.e., it was not triggered by GCs in cerebellar or cortical cultures). (3) Similar GC treatment caused a decrease in astrocyte survival during hypoglycemia and a decrease in the affinity of glutamate uptake. This latter observation suggests that GCs might impair the ability of astrocytes to aid neurons during times of neurologic crisis (i.e., by impairing their ability to remove damaging glutamate from the synapse).

  8. Controversial action of positive modulator of subtype 7 of metabotropic glutamate receptors AMN082 on cortical epileptic afterdischarges in immature rats

    Czech Academy of Sciences Publication Activity Database

    Szczurowska, Ewa; Mareš, Pavel

    2009-01-01

    Roč. 623, 1-3 (2009), s. 37-40 ISSN 0014-2999 R&D Projects: GA ČR(CZ) GA305/06/1188 Institutional research plan: CEZ:AV0Z50110509 Keywords : epileptic afterdischarges * glutamate receptors * rat Subject RIV: FH - Neuro logy Impact factor: 2.585, year: 2009

  9. Delineation of glutamate pathways and secretory responses in pancreatic islets with ß-cell-specific abrogation of the glutamate dehydrogenase

    DEFF Research Database (Denmark)

    Vetterli, Laurene; Carobbio, Stefania; Pournourmohammadi, Shirin

    2012-01-01

    isolated from βGlud1(-/-) mice exhibited half of the response measured in control islets. The amplifying pathway, tested at stimulatory glucose concentrations in the presence of KCl and diazoxide, was markedly inhibited in βGlud1(-/-) islets. On glucose stimulation, net synthesis of glutamate from α......-ketoglutarate was impaired in GDH-deficient islets. Accordingly, glucose-induced elevation of glutamate levels observed in control islets was absent in βGlud1(-/-) islets. Parallel biochemical pathways, namely alanine and aspartate aminotransferases, could not compensate for the lack of GDH. However, the secretory response...... to glucose was fully restored by the provision of cellular glutamate when βGlud1(-/-) islets were exposed to dimethyl glutamate. This shows that permissive levels of glutamate are required for the full development of glucose-stimulated insulin secretion and that GDH plays an indispensable role...

  10. Mutual diffusion coefficients of L-glutamic acid and monosodium L-glutamate in aqueous solutions at T = 298.15 K

    International Nuclear Information System (INIS)

    Ribeiro, Ana C.F.; Rodrigo, M.M.; Barros, Marisa C.F.; Verissimo, Luis M.P.; Romero, Carmen; Valente, Artur J.M.; Esteso, Miguel A.

    2014-01-01

    Highlights: • Interdiffusion coefficients of L-glutamic acid and sodium L-glutamate were measured. • The L-glutamic acid behaves as a monoprotic weak acid. • The sodium L-glutamate shows a symmetrical 1:1 non-associated behaviour. • Limiting diffusion coefficients and ionic conductivities were estimated. • Diffusion coefficients were discussed on the basis of the Onsager–Fuoss equations. - Abstract: Mutual diffusion coefficient values for binary aqueous solutions of both L-glutamic acid (H 2 Glu) and sodium L-glutamate (NaHGlu) were measured with the Taylor dispersion technique, at T = 298.15 K, and concentrations ranging from (0.001 to 0.100) mol · dm −3 . The results were discussed on the basis of the Onsager–Fuoss and the Nernst theoretical equations, by considering the H 2 Glu as a weak acid (monoprotic acid, with K 2 = 5.62 · 10 −5 ). The smaller values found for the acid with respect to those of the salt, confirm this association hypothesis. From the diffusion coefficient values at infinitesimal concentration, limiting ionic conductivities as well as the hydrodynamic radius of the hydrogen glutamate ion (HGlu − ) were derived and analyzed in terms of the chain methylene groups. The effect of different phenomena, such as association or complexation, were also taken into consideration and discussed. Values for the dissociation degree for H 2 Glu were also estimated

  11. The Role of the Nucleus Accumbens in Knowing when to Respond

    Science.gov (United States)

    Singh, Teghpal; McDannald, Michael A.; Takahashi, Yuji K.; Haney, Richard Z.; Cooch, Nisha K.; Lucantonio, Federica; Schoenbaum, Geoffrey

    2011-01-01

    While knowing what to expect is important, it is equally important to know when to expect it and to respond accordingly. This is apparent even in simple Pavlovian training situations in which animals learn to respond more strongly closer to reward delivery. Here we report that the nucleus accumbens core, an area well-positioned to represent…

  12. Social interaction and cocaine conditioning in mice increase spontaneous spike frequency in the nucleus accumbens or septal nuclei as revealed by multielectrode array recordings.

    Science.gov (United States)

    Kummer, Kai K; El Rawas, Rana; Kress, Michaela; Saria, Alois; Zernig, Gerald

    2015-01-01

    Both cocaine and social interaction place preference conditioning lead to increased neuronal expression of the immediate early gene EGR1 in the nucleus accumbens, a central region of the reward pathway, suggesting that both drug and natural rewards may be processed in similar brain regions. In order to gain novel insights into the intrinsic in vitro electrical activity of the nucleus accumbens and adjacent brain regions and to explore the effects of reward conditioning on network activity, we performed multielectrode array recordings of spontaneous firing in acute brain slices of mice conditioned to either cocaine or social interaction place preference. Cocaine conditioning increased the spike frequency of neurons in the septal nuclei, whereas social interaction conditioning increased the spike frequency in the nucleus accumbens compared to saline control animals. In addition, social interaction conditioning decreased the amount of active neuron clusters in the nucleus accumbens. Our findings suggest that place preference conditioning for both drug and natural rewards may induce persistent changes in neuronal network activity in the nucleus accumbens and the septum that are still preserved in acute slice preparations. © 2015 S. Karger AG, Basel.

  13. Intra-accumbens baclofen, but not muscimol, increases second order instrumental responding for food reward in rats.

    Directory of Open Access Journals (Sweden)

    Kim G T Pulman

    Full Text Available Stimulation of either GABA(A or GABA(B receptors within the nucleus accumbens shell strongly enhances food intake in rats. However the effects of subtype-selective stimulation of GABA receptors on instrumental responses for food reward are less well characterized. Here we contrast the effects of the GABA(A receptor agonist muscimol and GABA(B receptor agonist baclofen on instrumental responding for food using a second order reinforcement schedule. Bilateral intra-accumbens administration of baclofen (220-440 pmol stimulated responding but a higher dose (660 pmol induced stereotyped oral behaviour that interfered with responding. Baclofen (220-660 pmol also stimulated intake of freely available chow. Muscimol (220-660 pmol was without effect on responding for food on this schedule but did stimulate intake of freely available chow. Unilateral administration of either baclofen or muscimol (220 pmol induced similar patterns of c-fos immunoreactivity in several hypothalamic sites but differed in its induction in the central nucleus of the amygdala. We conclude that stimulation of GABA(A or GABA(B receptors in the nucleus accumbens shell of rats produces clearly distinguishable effects on operant responding for food.

  14. Intra-accumbens baclofen, but not muscimol, increases second order instrumental responding for food reward in rats.

    Science.gov (United States)

    Pulman, Kim G T; Somerville, Elizabeth M; Clifton, Peter G

    2012-01-01

    Stimulation of either GABA(A) or GABA(B) receptors within the nucleus accumbens shell strongly enhances food intake in rats. However the effects of subtype-selective stimulation of GABA receptors on instrumental responses for food reward are less well characterized. Here we contrast the effects of the GABA(A) receptor agonist muscimol and GABA(B) receptor agonist baclofen on instrumental responding for food using a second order reinforcement schedule. Bilateral intra-accumbens administration of baclofen (220-440 pmol) stimulated responding but a higher dose (660 pmol) induced stereotyped oral behaviour that interfered with responding. Baclofen (220-660 pmol) also stimulated intake of freely available chow. Muscimol (220-660 pmol) was without effect on responding for food on this schedule but did stimulate intake of freely available chow. Unilateral administration of either baclofen or muscimol (220 pmol) induced similar patterns of c-fos immunoreactivity in several hypothalamic sites but differed in its induction in the central nucleus of the amygdala. We conclude that stimulation of GABA(A) or GABA(B) receptors in the nucleus accumbens shell of rats produces clearly distinguishable effects on operant responding for food.

  15. The Influence of Glutamate on Axonal Compound Action Potential In Vitro.

    Science.gov (United States)

    Abouelela, Ahmed; Wieraszko, Andrzej

    2016-01-01

    Background  Our previous experiments demonstrated modulation of the amplitude of the axonal compound action potential (CAP) by electrical stimulation. To verify assumption that glutamate released from axons could be involved in this phenomenon, the modification of the axonal CAP induced by glutamate was investigated. Objectives  The major objective of this research is to verify the hypothesis that axonal activity would trigger the release of glutamate, which in turn would interact with specific axonal receptors modifying the amplitude of the action potential. Methods  Segments of the sciatic nerve were exposed to exogenous glutamate in vitro, and CAP was recorded before and after glutamate application. In some experiments, the release of radioactive glutamate analog from the sciatic nerve exposed to exogenous glutamate was also evaluated. Results  The glutamate-induced increase in CAP was blocked by different glutamate receptor antagonists. The effect of glutamate was not observed in Ca-free medium, and was blocked by antagonists of calcium channels. Exogenous glutamate, applied to the segments of sciatic nerve, induced the release of radioactive glutamate analog, demonstrating glutamate-induced glutamate release. Immunohistochemical examination revealed that axolemma contains components necessary for glutamatergic neurotransmission. Conclusion  The proteins of the axonal membrane can under the influence of electrical stimulation or exogenous glutamate change membrane permeability and ionic conductance, leading to a change in the amplitude of CAP. We suggest that increased axonal activity leads to the release of glutamate that results in changes in the amplitude of CAPs.

  16. Modeling of glutamate-induced dynamical patterns

    DEFF Research Database (Denmark)

    Faurby-Bentzen, Christian Krefeld; Zhabotinsky, A.M.; Laugesen, Jakob Lund

    2009-01-01

    Based on established physiological mechanisms, the paper presents a detailed computer model, which supports the hypothesis that temporal lobe epilepsy may be caused by failure of glutamate reuptake from the extracellular space. The elevated glutamate concentration causes an increased activation...

  17. Effect of ginseng saponina on nicotine-induced dopamine release in the rat nucleus accumbens and striatum

    International Nuclear Information System (INIS)

    Kim, Sang Eun; Shim, In Sop; Chung, June Key; Lee, Myung Chul

    2002-01-01

    We investigated the effect of ginseng total saponin (GTS) on nicotine-induced dopamine (DA) release in the striatum and nucleus accumbens of freely moving rats using in vivo microdialysis technique. Systemic pretreatment with GTS decreased striatal DA release induced by local infusion of nicotine into the striatum. However, GTS had no effect on the resting levels of extracellular DA in the striatum. GTS also blocked nicotine-induced DA release in the nucleus accumbens. The results of the present study suggest that GTS acts on the DA terminals to prevent DA release induced by nicotine. This may reflect the blocking effect of GTS on behavioral hyperactivity induced by psychostimulants

  18. Effect of ginseng saponina on nicotine-induced dopamine release in the rat nucleus accumbens and striatum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Eun [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Shim, In Sop [Kyunghee University, Seoul (Korea, Republic of); Chung, June Key; Lee, Myung Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2002-10-01

    We investigated the effect of ginseng total saponin (GTS) on nicotine-induced dopamine (DA) release in the striatum and nucleus accumbens of freely moving rats using in vivo microdialysis technique. Systemic pretreatment with GTS decreased striatal DA release induced by local infusion of nicotine into the striatum. However, GTS had no effect on the resting levels of extracellular DA in the striatum. GTS also blocked nicotine-induced DA release in the nucleus accumbens. The results of the present study suggest that GTS acts on the DA terminals to prevent DA release induced by nicotine. This may reflect the blocking effect of GTS on behavioral hyperactivity induced by psychostimulants.

  19. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2.

    Directory of Open Access Journals (Sweden)

    Loredana Leo

    2011-06-01

    Full Text Available Familial hemiplegic migraine type 2 (FHM2 is an autosomal dominant form of migraine with aura that is caused by mutations of the α2-subunit of the Na,K-ATPase, an isoform almost exclusively expressed in astrocytes in the adult brain. We generated the first FHM2 knock-in mouse model carrying the human W887R mutation in the Atp1a2 orthologous gene. Homozygous Atp1a2(R887/R887 mutants died just after birth, while heterozygous Atp1a2(+/R887 mice showed no apparent clinical phenotype. The mutant α2 Na,K-ATPase protein was barely detectable in the brain of homozygous mutants and strongly reduced in the brain of heterozygous mutants, likely as a consequence of endoplasmic reticulum retention and subsequent proteasomal degradation, as we demonstrate in transfected cells. In vivo analysis of cortical spreading depression (CSD, the phenomenon underlying migraine aura, revealed a decreased induction threshold and an increased velocity of propagation in the heterozygous FHM2 mouse. Since several lines of evidence involve a specific role of the glial α2 Na,K pump in active reuptake of glutamate from the synaptic cleft, we hypothesize that CSD facilitation in the FHM2 mouse model is sustained by inefficient glutamate clearance by astrocytes and consequent increased cortical excitatory neurotransmission. The demonstration that FHM2 and FHM1 mutations share the ability to facilitate induction and propagation of CSD in mouse models further support the role of CSD as a key migraine trigger.

  20. Pharmacological stimuli decreasing nucleus accumbens dopamine can act as positive reinforcers but have a low addictive potential.

    Science.gov (United States)

    Marinelli, M; Barrot, M; Simon, H; Oberlander, C; Dekeyne, A; Le Moal, M; Piazza, P V

    1998-10-01

    Opioid peptides, through mu and delta receptors, play an important part in reward. In contrast, the role of kappa receptors is more controversial. We examined the possible positive reinforcing effects of a selective kappa agonist, RU 51599, by studying intravenous self-administration in the rat. The effect of RU 51599 on dopamine release in the nucleus accumbens was also studied, as opioids and dopamine seem to interact in the mediation of reward. The behavioural and dopaminergic effects of RU 51599 were compared with those of the mu agonist heroin. Rats self-administered both RU 51599 (6.5, 20 and 60 microg/inj) and heroin (30 microg/inj) at low ratio requirement. When the ratio requirement, i.e. the number of responses necessary to receive one drug infusion, was increased, self-administration of RU 51599 rapidly extinguished, whereas self-administration of heroin was maintained. Intravenous infusion of RU 51599 (100, 200 and 400 microg) dose-dependently decreased (25, 30 and 40%, respectively) extracellular concentrations of dopamine, as measured by means of microdialysis in freely moving rats. In contrast, heroin increased accumbens dopamine (130% over baseline). These results indicate that kappa receptors, similarly to mu ones, can mediate positive reinforcing effects of opioid peptides. However, the strength of the reinforcement is very low for kappa receptors. This suggests that changes in accumbens dopamine do not correlate with the capacity of a stimulus to induce reward or aversion. In contrast, a parallel seems to exist between an increase in accumbens dopamine and the drive to reach or obtain a positive reinforcer.

  1. Neuropeptide Y infusion into the shell region of the rat nucleus accumbens increases extracellular levels of dopamine

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Wegener, Gregers; Hasselstrøm, Jørgen

    2009-01-01

    Increases in extracellular dopamine in the shell region of the nucleus accumbens are centrally involved in mediating reinforcement of addictive drugs. Neuropeptide Y (NPY) and its receptors are present in the nucleus accumbens and have been implicated in addiction mechanisms. This study further...... explored the potential role of NPY in addiction mechanisms using microdialysis to measure extracellular dopamine in vivo after infusion of NPY directly into the accumbal shell region of adult rats. NPY was found to dose-dependently increase extracellular dopamine levels, indicating that NPY could play...... an important role in drug reinforcement by modulating accumbal dopamine levels...

  2. Characterization of energy and neurotransmitter metabolism in cortical glutamatergic neurons derived from human induced pluripotent stem cells: A novel approach to study metabolism in human neurons.

    Science.gov (United States)

    Aldana, Blanca I; Zhang, Yu; Lihme, Maria Fog; Bak, Lasse K; Nielsen, Jørgen E; Holst, Bjørn; Hyttel, Poul; Freude, Kristine K; Waagepetersen, Helle S

    2017-06-01

    Alterations in the cellular metabolic machinery of the brain are associated with neurodegenerative disorders such as Alzheimer's disease. Novel human cellular disease models are essential in order to study underlying disease mechanisms. In the present study, we characterized major metabolic pathways in neurons derived from human induced pluripotent stem cells (hiPSC). With this aim, cultures of hiPSC-derived neurons were incubated with [U- 13 C]glucose, [U- 13 C]glutamate or [U- 13 C]glutamine. Isotopic labeling in metabolites was determined using gas chromatography coupled to mass spectrometry, and cellular amino acid content was quantified by high-performance liquid chromatography. Additionally, we evaluated mitochondrial function using real-time assessment of oxygen consumption via the Seahorse XF e 96 Analyzer. Moreover, in order to validate the hiPSC-derived neurons as a model system, a metabolic profiling was performed in parallel in primary neuronal cultures of mouse cerebral cortex and cerebellum. These serve as well-established models of GABAergic and glutamatergic neurons, respectively. The hiPSC-derived neurons were previously characterized as being forebrain-specific cortical glutamatergic neurons. However, a comparable preparation of predominantly mouse cortical glutamatergic neurons is not available. We found a higher glycolytic capacity in hiPSC-derived neurons compared to mouse neurons and a substantial oxidative metabolism through the mitochondrial tricarboxylic acid (TCA) cycle. This finding is supported by the extracellular acidification and oxygen consumption rates measured in the cultured human neurons. [U- 13 C]Glutamate and [U- 13 C]glutamine were found to be efficient energy substrates for the neuronal cultures originating from both mice and humans. Interestingly, isotopic labeling in metabolites from [U- 13 C]glutamate was higher than that from [U- 13 C]glutamine. Although the metabolic profile of hiPSC-derived neurons in vitro was

  3. Direct effect of nicotine on mesolimbic dopamine release in rat nucleus accumbens shell

    NARCIS (Netherlands)

    Kleijn, J.; Folgering, J. H. A.; van der Hart, M. C. G.; Rollema, H.; Cremers, T. I. F. H.; Westerink, B. H. C.

    2011-01-01

    Nicotine stimulates dopamine (DA) cell firing via a local action at somatodendritic sites in the ventral tegmental area (VTA), increasing DA release in the nucleus accumbens (NAcc). Additionally, nicotine may also modulate DA release via a direct effect in the NAcc. This study examined the

  4. Wireless Instantaneous Neurotransmitter Concentration System-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring.

    Science.gov (United States)

    Agnesi, Filippo; Tye, Susannah J; Bledsoe, Jonathan M; Griessenauer, Christoph J; Kimble, Christopher J; Sieck, Gary C; Bennet, Kevin E; Garris, Paul A; Blaha, Charles D; Lee, Kendall H

    2009-10-01

    In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time. The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal model, the pig. The

  5. Wireless Instantaneous Neurotransmitter Concentration System–based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring

    Science.gov (United States)

    Agnesi, Filippo; Tye, Susannah J.; Bledsoe, Jonathan M.; Griessenauer, Christoph J.; Kimble, Christopher J.; Sieck, Gary C.; Bennet, Kevin E.; Garris, Paul A.; Blaha, Charles D.; Lee, Kendall H.

    2009-01-01

    Object In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time. Methods The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal

  6. Disease: H01450 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available l ganglia and nucleus accumbens, as well as altered glutamate transmission. First line treatments for this disorder are cognitive...ed neurotrophic factor gene Val66Met polymorphism and cognitive function in obsessive-compulsive disorder. ...

  7. A Novel Corynebacterium glutamicum l-Glutamate Exporter.

    Science.gov (United States)

    Wang, Yu; Cao, Guoqiang; Xu, Deyu; Fan, Liwen; Wu, Xinyang; Ni, Xiaomeng; Zhao, Shuxin; Zheng, Ping; Sun, Jibin; Ma, Yanhe

    2018-03-15

    Besides metabolic pathways and regulatory networks, transport systems are also pivotal for cellular metabolism and hyperproduction of biochemicals using microbial cell factories. The identification and characterization of transporters are therefore of great significance for the understanding and engineering of transport reactions. Herein, a novel l-glutamate exporter, MscCG2, which exists extensively in Corynebacterium glutamicum strains but is distinct from the only known l-glutamate exporter, MscCG, was discovered in an industrial l-glutamate-producing C. glutamicum strain. MscCG2 was predicted to possess three transmembrane helices in the N-terminal region and located in the cytoplasmic membrane, which are typical structural characteristics of the mechanosensitive channel of small conductance. MscCG2 has a low amino acid sequence identity (23%) to MscCG and evolved separately from MscCG with four transmembrane helices. Despite the considerable differences between MscCG2 and MscCG in sequence and structure, gene deletion and complementation confirmed that MscCG2 also functioned as an l-glutamate exporter and an osmotic safety valve in C. glutamicum Besides, transcriptional analysis showed that MscCG2 and MscCG genes were transcribed in similar patterns and not induced by l-glutamate-producing conditions. It was also demonstrated that MscCG2-mediated l-glutamate excretion was activated by biotin limitation or penicillin treatment and that constitutive l-glutamate excretion was triggered by a gain-of-function mutation of MscCG2 (A151V). Discovery of MscCG2 will enrich the understanding of bacterial amino acid transport and provide additional targets for exporter engineering. IMPORTANCE The exchange of matter, energy, and information with surroundings is fundamental for cellular metabolism. Therefore, studying transport systems that are essential for these processes is of great significance. Besides, transport systems of bacterial cells are usually related to

  8. Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120

    International Nuclear Information System (INIS)

    Wang Zhuying; Pekarskaya, Olga; Bencheikh, Meryem; Chao Wei; Gelbard, Harris A.; Ghorpade, Anuja; Rothstein, Jeffrey D.; Volsky, David J.

    2003-01-01

    L-Glutamate is the major excitatory neurotransmitter in the brain. Astrocytes maintain low levels of synaptic glutamate by high-affinity uptake and defects in this function may lead to neuronal cell death by excitotoxicity. We tested the effects of HIV-1 and its envelope glycoprotein gp120 upon glutamate uptake and expression of glutamate transporters EAAT1 and EAAT2 in fetal human astrocytes in vitro. Astrocytes isolated from fetal tissues between 16 and 19 weeks of gestation expressed EAAT1 and EAAT2 RNA and proteins as detected by Northern blot analysis and immunoblotting, respectively, and the cells were capable of specific glutamate uptake. Exposure of astrocytes to HIV-1 or gp120 significantly impaired glutamate uptake by the cells, with maximum inhibition within 6 h, followed by gradual decline during 3 days of observation. HIV-1-infected cells showed a 59% reduction in V max for glutamate transport, indicating a reduction in the number of active transporter sites on the cell surface. Impaired glutamate transport after HIV-1 infection or gp120 exposure correlated with a 40-70% decline in steady-state levels of EAAT2 RNA and protein. EAAT1 RNA and protein levels were less affected. Treatment of astrocytes with tumor necrosis factor-α (TNF-α) decreased the expression of both EAAT1 and EAAT2, but neither HIV-1 nor gp120 were found to induce TNF-α production by astrocytes. These findings demonstrate that HIV-1 and gp120 induce transcriptional downmodulation of the EAAT2 transporter gene in human astrocytes and coordinately attenuate glutamate transport by the cells. Reduction of the ability of HIV-1-infected astrocytes to take up glutamate may contribute to the development of neurological disease

  9. Markedly Lower Glutamic Acid Decarboxylase 67 Protein Levels in a Subset of Boutons in Schizophrenia.

    Science.gov (United States)

    Rocco, Brad R; Lewis, David A; Fish, Kenneth N

    2016-06-15

    Convergent findings indicate that cortical gamma-aminobutyric acid (GABA)ergic circuitry is altered in schizophrenia. Postmortem studies have consistently found lower levels of glutamic acid decarboxylase 67 (GAD67) messenger RNA (mRNA) in the prefrontal cortex (PFC) of subjects with schizophrenia. At the cellular level, the density of GABA neurons with detectable levels of GAD67 mRNA is ~30% lower across cortical layers. Knowing how this transcript deficit translates to GAD67 protein levels in axonal boutons is important for understanding the impact it might have on GABA synthesis. In addition, because reductions in GAD67 expression before, but not after, the maturation of GABAergic boutons results in a lower density of GABAergic boutons in mouse cortical cultures, knowing if GABAergic bouton density is altered in schizophrenia would provide insight into the timing of the GAD67 deficit. PFC tissue sections from 20 matched pairs of schizophrenia and comparison subjects were immunolabeled for the vesicular GABA transporter (vGAT) and GAD67. vGAT+ bouton density did not differ between subject groups, consistent with findings that vGAT mRNA levels are unaltered in the illness and confirming that the number of cortical GABAergic boutons is not lower in schizophrenia. In contrast, in schizophrenia subjects, the proportion of vGAT+ boutons with detectable GAD67 levels (vGAT+/GAD67+ boutons) was 16% lower and mean GAD67 levels were 14% lower in the remaining vGAT+/GAD67+ boutons. Our findings suggest that GABA production is markedly reduced in a subset of boutons in the PFC of schizophrenia subjects and that this reduction likely occurs after the maturation of GABAergic boutons. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Effect of MK-801 on the development of nicotine sensitization of nucleus accumbens dopamine release

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soo Kyung; Choung, In Soon; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    We have previously found that MK-801, a noncompetitive NMDA receptor antagonist, prevents behavioral sensitization to nicotine. This study aimed to investigate the effect of MK-801 on a neurochemical component of nicotine sensitization by evaluating the effect of the drug on nicotine sensitization of nucleus accumbens dopamine (DA) release. Sprague-Dawley rats were pretreated with MK-801 (0.3 mg/kg, i.p.) or saline 30 min before injection of nicotine (0.4 mg/kg, s.c., once daily) for 7 consecutive days. Twenty-four hours after the last drug injection, animals were challenged with local perfusion of 5 mM nicotine into the shell of nucleus accumbens and DA release was monitored using in vivo microdialysis. In rats pretreated with chronic nicotine, local nicotine challenge induced a greater increase of accumbal DA release than in saline-treated animals (maximal DA response 969 {+-} 235% (mean {+-} SEM) of basal level vs. 520 {+-} 93%, P < 0.05). Co-administration of MK-801 with nicotine attenuated an increase of DA release elicited by local nicotine challenge, compared with nicotine alone (maximal DA response 427 {+-} 83% of basal level vs. 969 {+-} 235%, P < 0.01). These results suggest that MK-801 blocks the development of nicotine sensitization of nucleus accumbens DA release, further supporting the involvement of NMDA receptors in the development of behavioral sensitization to nicotine.

  11. Effect of MK-801 on the development of nicotine sensitization of nucleus accumbens dopamine release

    International Nuclear Information System (INIS)

    Hong, Soo Kyung; Choung, In Soon; Kim, Sang Eun

    2005-01-01

    We have previously found that MK-801, a noncompetitive NMDA receptor antagonist, prevents behavioral sensitization to nicotine. This study aimed to investigate the effect of MK-801 on a neurochemical component of nicotine sensitization by evaluating the effect of the drug on nicotine sensitization of nucleus accumbens dopamine (DA) release. Sprague-Dawley rats were pretreated with MK-801 (0.3 mg/kg, i.p.) or saline 30 min before injection of nicotine (0.4 mg/kg, s.c., once daily) for 7 consecutive days. Twenty-four hours after the last drug injection, animals were challenged with local perfusion of 5 mM nicotine into the shell of nucleus accumbens and DA release was monitored using in vivo microdialysis. In rats pretreated with chronic nicotine, local nicotine challenge induced a greater increase of accumbal DA release than in saline-treated animals (maximal DA response 969 ± 235% (mean ± SEM) of basal level vs. 520 ± 93%, P < 0.05). Co-administration of MK-801 with nicotine attenuated an increase of DA release elicited by local nicotine challenge, compared with nicotine alone (maximal DA response 427 ± 83% of basal level vs. 969 ± 235%, P < 0.01). These results suggest that MK-801 blocks the development of nicotine sensitization of nucleus accumbens DA release, further supporting the involvement of NMDA receptors in the development of behavioral sensitization to nicotine

  12. Dopamine D1-D2 receptor heteromer in dual phenotype GABA/glutamate-coexpressing striatal medium spiny neurons: regulation of BDNF, GAD67 and VGLUT1/2.

    Directory of Open Access Journals (Sweden)

    Melissa L Perreault

    Full Text Available In basal ganglia a significant subset of GABAergic medium spiny neurons (MSNs coexpress D1 and D2 receptors (D1R and D2R along with the neuropeptides dynorphin (DYN and enkephalin (ENK. These coexpressing neurons have been recently shown to have a region-specific distribution throughout the mesolimbic and basal ganglia circuits. While the functional relevance of these MSNs remains relatively unexplored, they have been shown to exhibit the unique property of expressing the dopamine D1-D2 receptor heteromer, a novel receptor complex with distinct pharmacology and cell signaling properties. Here we showed that MSNs coexpressing the D1R and D2R also exhibited a dual GABA/glutamate phenotype. Activation of the D1R-D2R heteromer in these neurons resulted in the simultaneous, but differential regulation of proteins involved in GABA and glutamate production or vesicular uptake in the nucleus accumbens (NAc, ventral tegmental area (VTA, caudate putamen and substantia nigra (SN. Additionally, activation of the D1R-D2R heteromer in NAc shell, but not NAc core, differentially altered protein expression in VTA and SN, regions rich in dopamine cell bodies. The identification of a MSN with dual inhibitory and excitatory intrinsic functions provides new insights into the neuroanatomy of the basal ganglia and demonstrates a novel source of glutamate in this circuit. Furthermore, the demonstration of a dopamine receptor complex with the potential to differentially regulate the expression of proteins directly involved in GABAergic inhibitory or glutamatergic excitatory activation in VTA and SN may potentially provide new insights into the regulation of dopamine neuron activity. This could have broad implications in understanding how dysregulation of neurotransmission within basal ganglia contributes to dopamine neuronal dysfunction.

  13. Glutamate. Its applications in food and contribution to health.

    Science.gov (United States)

    Jinap, S; Hajeb, P

    2010-08-01

    This article reviews application of glutamate in food and its benefits and role as one of the common food ingredients used. Monosodium glutamate is one of the most abundant naturally occurring amino acids which frequently added as a flavor enhancer. It produced a unique taste that cannot be provided by other basic taste (saltiness, sourness, sweetness and bitterness), referred to as a fifth taste (umami). Glutamate serves some functions in the body as well, serving as an energy source for certain tissues and as a substrate for glutathione synthesis. Glutamate has the potential to enhance food intake in older individuals and dietary free glutamate evoked a visceral sensation from the stomach, intestine and portal vein. Small quantities of glutamate used in combination with a reduced amount of table salt during food preparation allow for far less salt to be used during and after cooking. Because glutamate is one of the most intensely studied food ingredients in the food supply and has been found safe, the Joint Expert Committee on Food Additives of the United Nations Food and Agriculture Organization and World Health Organization placed it in the safest category for food additives. Despite a widespread belief that glutamate can elicit asthma, migraine headache and Chinese Restaurant Syndrome (CRS), there are no consistent clinical data to support this claim. In addition, findings from the literature indicate that there is no consistent evidence to suggest that individuals may be uniquely sensitive to glutamate. 2010 Elsevier Ltd. All rights reserved.

  14. Synaptic function is modulated by LRRK2 and glutamate release is increased in cortical neurons of G2019S LRRK2 knock-in mice.

    Science.gov (United States)

    Beccano-Kelly, Dayne A; Kuhlmann, Naila; Tatarnikov, Igor; Volta, Mattia; Munsie, Lise N; Chou, Patrick; Cao, Li-Ping; Han, Heather; Tapia, Lucia; Farrer, Matthew J; Milnerwood, Austen J

    2014-01-01

    Mutations in Leucine-Rich Repeat Kinase-2 (LRRK2) result in familial Parkinson's disease and the G2019S mutation alone accounts for up to 30% in some ethnicities. Despite this, the function of LRRK2 is largely undetermined although evidence suggests roles in phosphorylation, protein interactions, autophagy and endocytosis. Emerging reports link loss of LRRK2 to altered synaptic transmission, but the effects of the G2019S mutation upon synaptic release in mammalian neurons are unknown. To assess wild type and mutant LRRK2 in established neuronal networks, we conducted immunocytochemical, electrophysiological and biochemical characterization of >3 week old cortical cultures of LRRK2 knock-out, wild-type overexpressing and G2019S knock-in mice. Synaptic release and synapse numbers were grossly normal in LRRK2 knock-out cells, but discretely reduced glutamatergic activity and reduced synaptic protein levels were observed. Conversely, synapse density was modestly but significantly increased in wild-type LRRK2 overexpressing cultures although event frequency was not. In knock-in cultures, glutamate release was markedly elevated, in the absence of any change to synapse density, indicating that physiological levels of G2019S LRRK2 elevate probability of release. Several pre-synaptic regulatory proteins shown by others to interact with LRRK2 were expressed at normal levels in knock-in cultures; however, synapsin 1 phosphorylation was significantly reduced. Thus, perturbations to the pre-synaptic release machinery and elevated synaptic transmission are early neuronal effects of LRRK2 G2019S. Furthermore, the comparison of knock-in and overexpressing cultures suggests that one copy of the G2019S mutation has a more pronounced effect than an ~3-fold increase in LRRK2 protein. Mutant-induced increases in transmission may convey additional stressors to neuronal physiology that may eventually contribute to the pathogenesis of Parkinson's disease.

  15. Role of aminotransferases in glutamate metabolism of human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ellinger, James J. [University of Wisconsin-Madison, Department of Biochemistry (United States); Lewis, Ian A. [Princeton University, Lewis-Sigler Institute for Integrative Genomics (United States); Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, Department of Biochemistry (United States)

    2011-04-15

    Human erythrocytes require a continual supply of glutamate to support glutathione synthesis, but are unable to transport this amino acid across their cell membrane. Consequently, erythrocytes rely on de novo glutamate biosynthesis from {alpha}-ketoglutarate and glutamine to maintain intracellular levels of glutamate. Erythrocytic glutamate biosynthesis is catalyzed by three enzymes, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and glutamine aminohydrolase (GA). Although the presence of these enzymes in RBCs has been well documented, the relative contributions of each pathway have not been established. Understanding the relative contributions of each biosynthetic pathway is critical for designing effective therapies for sickle cell disease, hemolytic anemia, pulmonary hypertension, and other glutathione-related disorders. In this study, we use multidimensional {sup 1}H-{sup 13}C nuclear magnetic resonance (NMR) spectroscopy and multiple reaction mode mass spectrometry (MRM-MS) to measure the kinetics of de novo glutamate biosynthesis via AST, ALT, and GA in intact cells and RBC lysates. We show that up to 89% of the erythrocyte glutamate pool can be derived from ALT and that ALT-derived glutamate is subsequently used for glutathione synthesis.

  16. A critical role for protein degradation in the nucleus accumbens core in cocaine reward memory.

    Science.gov (United States)

    Ren, Zhen-Yu; Liu, Meng-Meng; Xue, Yan-Xue; Ding, Zeng-Bo; Xue, Li-Fen; Zhai, Suo-Di; Lu, Lin

    2013-04-01

    The intense associative memories that develop between cocaine-paired contexts and rewarding stimuli contribute to cocaine seeking and relapse. Previous studies have shown impairment in cocaine reward memories by manipulating a labile state induced by memory retrieval, but the mechanisms that underlie the destabilization of cocaine reward memory are unknown. In this study, using a Pavlovian cocaine-induced conditioned place preference (CPP) procedure in rats, we tested the contribution of ubiquitin-proteasome system-dependent protein degradation in destabilization of cocaine reward memory. First, we found that polyubiquitinated protein expression levels and polyubiquitinated N-ethylmaleimide-sensitive fusion (NSF) markedly increased 15 min after retrieval while NSF protein levels decreased 1 h after retrieval in the synaptosomal membrane fraction in the nucleus accumbens (NAc) core. We then found that infusion of the proteasome inhibitor lactacystin into the NAc core prevented the impairment of memory reconsolidation induced by the protein synthesis inhibitor anisomycin and reversed the effects of anisomycin on NSF and glutamate receptor 2 (GluR2) protein levels in the synaptosomal membrane fraction in the NAc core. We also found that lactacystin infusion into the NAc core but not into the shell immediately after extinction training sessions inhibited CPP extinction and reversed the extinction training-induced decrease in NSF and GluR2 in the synaptosomal membrane fraction in the NAc core. Finally, infusions of lactacystin by itself into the NAc core immediately after each training session or before the CPP retrieval test had no effect on the consolidation and retrieval of cocaine reward memory. These findings suggest that ubiquitin-proteasome system-dependent protein degradation is critical for retrieval-induced memory destabilization.

  17. Influence of the glutamic acid content of the diet on the catabolisc rate of labelled glutamic acid in rats. 1

    International Nuclear Information System (INIS)

    Bergner, H.; Wilke, A.; Simon, O.; Wolf, E.

    1984-01-01

    Male rats received in 8 groups of 10 animals each for a period of 7 days 7 synthetic diets and one semisynthetic diet on maintenance requirement level. A L-amino acid mixture corresponding to the pattern of egg protein without glutamic acid was the protein source of the synthetic diets. Glutamic acid was supplemented successively from 0 to 58 mol-% of the total amino acid content. The crude protein source of diet 8 was whole-egg powder. On the 8th day of experiment 5 animals per group were labelled by intragastric infusion with 14 C-glutamic acid. During the following 24 hours the excretion of CO 2 and 14 CO 2 was measured. Throughout the experimental feeding body weight was relative constant, however, when the synthetic diets were fed it was necessary to increase the daily amount of energy from 460 to 480 kJ/kg/sup 0.67/. The relative 14 CO 2 excretion within 24 hours was 68-75 % of the dose. However, the main part of the amount of radioactivity excreted during 24 hours was already found after 4 to 6 hours. Exponential functions calculated from the data of cumulative 14 CO 2 excretion suggest the existence of a fast process of 14 CO 2 formation directly from 14 C-glutamic acid, reaching a plateau within 2 hours and a slow process of oxidation of intermediates of glutamic acid metabolism, causing a continued 14 CO 2 formation even after 24 hours. The oxidation of 14 C-glutamic acid to CO 2 decreased 2 to 14 hours after labelling if the glutamic acid content of the diet increased. The same was found for the specific radioactivity of 14 CO 2 . A storage of intermediates of glutamic acid before degradation was assumed. (author)

  18. Nucleus accumbens response to gains in reputation for the self relative to gains for others predicts social media use.

    Science.gov (United States)

    Meshi, Dar; Morawetz, Carmen; Heekeren, Hauke R

    2013-01-01

    Our reputation is important to us; we've experienced natural selection to care about our reputation. Recently, the neural processing of gains in reputation (positive social feedback concerning one's character) has been shown to occur in the human ventral striatum. It is still unclear, however, how individual differences in the processing of gains in reputation may lead to individual differences in real-world behavior. For example, in the real-world, one way that people currently maintain their reputation is by using social media websites, like Facebook. Furthermore, Facebook use consists of a social comparison component, where users observe others' behavior and can compare it to their own. Therefore, we hypothesized a relationship between the way the brain processes specifically self-relevant gains in reputation and one's degree of Facebook use. We recorded functional neuroimaging data while participants received gains in reputation, observed the gains in reputation of another person, or received monetary reward. We demonstrate that across participants, when responding to gains in reputation for the self, relative to observing gains for others, reward-related activity in the left nucleus accumbens predicts Facebook use. However, nucleus accumbens activity in response to monetary reward did not predict Facebook use. Finally, a control step-wise regression analysis showed that Facebook use primarily explains our results in the nucleus accumbens. Overall, our results demonstrate how individual sensitivity of the nucleus accumbens to the receipt of self-relevant social information leads to differences in real-world behavior.

  19. Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model.

    Science.gov (United States)

    Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P

    2017-02-01

    In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.

  20. Immunochemical characterization of the brain glutamate binding protein

    International Nuclear Information System (INIS)

    Roy, S.

    1986-01-01

    A glutamate binding protein (GBP) was purified from bovine and rat brain to near homogeneity. Polyclonal antibodies were raised against this protein. An enzyme-linked-immunosorbent-assay was used to quantify and determine the specificity of the antibody response. The antibodies were shown to strongly react with bovine brain GBP and the analogous protein from rat brain. The antibodies did not show any crossreactivity with the glutamate metabolizing enzymes, glutamate dehydrogenase, glutamine synthetase and glutamyl transpeptidase, however it crossreacted moderately with glutamate decarboxylase. The antibodies were also used to define the possible physiologic activity of GBP in synaptic membranes. The antibodies were shown: (i) to inhibit the excitatory amino-acid stimulation of thiocyanate (SCN)flux, (ii) had no effect on transport of L-Glutamic acid across the synaptic membrane, and (iii) had no effect on the depolarization-induced release of L-glutamate. When the anti-GBP antibodies were used to localize and quantify the GBP distribution in various subcellular fractions and in brain tissue samples, it was found that the hippocampus had the highest immunoreactivity followed by the cerebral cortex, cerebellar cortex and caudate-putamen. The distribution of immunoreactivity in the subcellular fraction were as follows: synaptic membranes > crude mitochondrial fraction > homogenate > myelin. In conclusion these studies suggest that: (a) the rat brain GBP and the bovine brain GBP are immunologically homologous protein, (b) there are no structural similarities between the GBP and the glutamate metabolizing enzymes with the exception of glutamate decarboxylase and (c) the subcellular and regional distribution of the GBP immunoreactivity followed a similar pattern as observed for L-[ 3 H]-binding

  1. Arctigenin reduces neuronal responses in the somatosensory cortex via the inhibition of non-NMDA glutamate receptors.

    Science.gov (United States)

    Borbély, Sándor; Jócsák, Gergely; Moldován, Kinga; Sedlák, Éva; Preininger, Éva; Boldizsár, Imre; Tóth, Attila; Atlason, Palmi T; Molnár, Elek; Világi, Ildikó

    2016-07-01

    Lignans are biologically active phenolic compounds related to lignin, produced in different plants. Arctigenin, a dibenzylbutyrolactone-type lignan, has been used as a neuroprotective agent for the treatment of encephalitis. Previous studies of cultured rat cerebral cortical neurones raised the possibility that arctigenin inhibits kainate-induced excitotoxicity. The aims of the present study were: 1) to analyse the effect of arctigenin on normal synaptic activity in ex vivo brain slices, 2) to determine its receptor binding properties and test the effect of arctigenin on AMPA/kainate receptor activation and 3) to establish its effects on neuronal activity in vivo. Arctigenin inhibited glutamatergic transmission and reduced the evoked field responses. The inhibitory effect of arctigenin on the evoked field responses proved to be substantially dose dependent. Our results indicate that arctigenin exerts its effects under physiological conditions and not only on hyper-excited neurons. Furthermore, arctigenin can cross the blood-brain barrier and in the brain it interacts with kainate sensitive ionotropic glutamate receptors. These results indicate that arctigenin is a potentially useful new pharmacological tool for the inhibition of glutamate-evoked responses in the central nervous system in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. BDNF-Val66Met-Polymorphism Impact on Cortical Plasticity in Schizophrenia Patients: A Proof-of-Concept Study

    Science.gov (United States)

    Nitsche, Michael A.; Wobrock, Thomas; Bunse, Tilmann; Rein, Bettina; Herrmann, Maximiliane; Schmitt, Andrea; Nieratschker, Vanessa; Witt, Stephanie H.; Rietschel, Marcella; Falkai, Peter; Hasan, Alkomiet

    2015-01-01

    Background: Brain-derived neurotrophic factor (BDNF) has been shown to be a moderator of neuroplasticity. A frequent BDNF-polymorphism (Val66Met) is associated with impairments of cortical plasticity. In patients with schizophrenia, reduced neuroplastic responses following non-invasive brain stimulation have been reported consistently. Various studies have indicated a relationship between the BDNF-Val66Met-polymorphism and motor-cortical plasticity in healthy individuals, but schizophrenia patients have yet to be investigated. The aim of this proof-of-concept study was, therefore, to test the impact of the BDNF-Val66Met-polymorphism on inhibitory and facilitatory cortical plasticity in schizophrenia patients. Methods: Cortical plasticity was investigated in 22 schizophrenia patients and 35 healthy controls using anodal and cathodal transcranial direct-current stimulation (tDCS) applied to the left primary motor cortex. Animal and human research indicates that excitability shifts following anodal and cathodal tDCS are related to molecular long-term potentiation and long-term depression. To test motor-cortical excitability before and after tDCS, well-established single- and paired-pulse transcranial magnetic stimulation protocols were applied. Results: Our analysis revealed increased glutamate-mediated intracortical facilitation in met-heterozygotes compared to val-homozygotes at baseline. Following cathodal tDCS, schizophrenia met-heterozygotes had reduced gamma-amino-butyric-acid-mediated short-interval intracortical inhibition, whereas healthy met-heterozygotes displayed the opposite effect. The BDNF-Val66Met-polymorphism did not influence single-pulse motor-evoked potential amplitudes after tDCS. Conclusions: These preliminary findings support the notion of an association of the BDNF-Val66Met-polymorphism with observable alterations in plasticity following cathodal tDCS in schizophrenia patients. This indicates a complex interaction between inhibitory

  3. The nucleus accumbens and learning and memory.

    Science.gov (United States)

    Setlow, B

    1997-09-01

    Recent research on the nucleus accumbens (NA) indicates that this brain region is involved in learning and memory processes in a way that is separable from its other well-known roles in behavior, such as motivation, reward, and locomotor activity. These findings have suggested that 1) the NA may be involved in declarative, or hippocampal formation-dependent learning and memory, and not in several other non-declarative forms of learning and memory, and 2) the NA may be selectively involved in certain stages of learning and memory. These characteristics suggest that the NA may be part of a larger striatal system which subserves acquisition and consolidation, but is not a site of long-term storage, of different forms of learning and memory.

  4. Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes

    Directory of Open Access Journals (Sweden)

    Dougherty Patrick M

    2009-07-01

    Full Text Available Abstract Background Removing and sequestering synaptically released glutamate from the extracellular space is carried out by specific plasma membrane transporters that are primarily located in astrocytes. Glial glutamate transporter function can be monitored by recording the currents that are produced by co-transportation of Na+ ions with the uptake of glutamate. The goal of this study was to characterize glutamate transporter function in astrocytes of the spinal cord dorsal horn in real time by recording synaptically evoked glutamate transporter currents. Results Whole-cell patch clamp recordings were obtained from astrocytes in the spinal substantia gelatinosa (SG area in spinal slices of young adult rats. Glutamate transporter currents were evoked in these cells by electrical stimulation at the spinal dorsal root entry zone in the presence of bicuculline, strychnine, DNQX and D-AP5. Transporter currents were abolished when synaptic transmission was blocked by TTX or Cd2+. Pharmacological studies identified two subtypes of glutamate transporters in spinal astrocytes, GLAST and GLT-1. Glutamate transporter currents were graded with stimulus intensity, reaching peak responses at 4 to 5 times activation threshold, but were reduced following low-frequency (0.1 – 1 Hz repetitive stimulation. Conclusion These results suggest that glutamate transporters of spinal astrocytes could be activated by synaptic activation, and recording glutamate transporter currents may provide a means of examining the real time physiological responses of glial cells in spinal sensory processing, sensitization, hyperalgesia and chronic pain.

  5. Nucleus accumbens opioid, GABaergic, and dopaminergic modulation of palatable food motivation: contrasting effects revealed by a progressive ratio study in the rat.

    Science.gov (United States)

    Zhang, Min; Balmadrid, Christian; Kelley, Ann E

    2003-04-01

    The current studies were designed to evaluate whether incentive motivation for palatable food is altered after manipulations of opioid, GABAergic, and dopaminergic transmission within the nucleus accumbens. A progressive ratio schedule was used to measure lever-pressing for sugar pellets after microinfusion of drugs into the nucleus accumbens in non-food-deprived rats. The mu opioid agonist D-Ala2, NMe-Phe4, Glyo15-enkephalin and the indirect dopamine agonist amphetamine induced a marked increase in break point and correct lever-presses; the GABA(A) agonist muscimol did not affect breakpoint or lever-presses. The data suggest that opioid, dopaminergic, and GABAergic systems within the accumbens differentially modulate food-seeking behavior through mechanisms related to hedonic evaluation of food, incentive salience, and control of motor feeding circuits, respectively.

  6. Regulation of anxiety and initiation of sexual behavior by CREB in the nucleus accumbens

    Science.gov (United States)

    Barrot, Michel; Wallace, Deanna L.; Bolaños, Carlos A.; Graham, Danielle L.; Perrotti, Linda I.; Neve, Rachael L.; Chambliss, Heather; Yin, Jerry C.; Nestler, Eric J.

    2005-01-01

    Sexual deficits and other behavioral disturbances such as anxiety-like behaviors can be observed in animals that have undergone social isolation, especially in species having important social interactions. Using a model of protracted social isolation in adult rats, we observed increased anxiety-like behavior and deficits in both the latency to initiate sexual behavior and the latency to ejaculate. We show, using transgenic cAMP response element (CRE)-LacZ reporter mice, that protracted social isolation also reduces CRE-dependent transcription within the nucleus accumbens. This decrease in CRE-dependent transcription can be mimicked in nonisolated animals by local viral gene transfer of a dominant negative mutant of CRE-binding protein (CREB). We previously showed that this manipulation increases anxiety-like behavior. We show here that it also impairs initiation of sexual behavior in nonisolated animals, a deficit that can be corrected by anxiolytic drug treatment. This local reduction in CREB activity, however, has no influence on ejaculation parameters. Reciprocally, we used the viral transgenic approach to overexpress CREB in the nucleus accumbens of isolated animals. We show that this local increase in CREB activity completely rescued the anxiety phenotype of the isolated animals, as well as their deficit in initiating sexual behavior, but failed to rescue the deficit in ejaculation. Our data suggest a role for the nucleus accumbens in anxiety responses and in specific aspects of sexual behavior. The results also provide insight into the molecular mechanisms by which social interactions affect brain plasticity and behavior. PMID:15923261

  7. Cortical visual impairment

    OpenAIRE

    Koželj, Urša

    2013-01-01

    In this thesis we discuss cortical visual impairment, diagnosis that is in the developed world in first place, since 20 percent of children with blindness or low vision are diagnosed with it. The objectives of the thesis are to define cortical visual impairment and the definition of characters suggestive of the cortical visual impairment as well as to search for causes that affect the growing diagnosis of cortical visual impairment. There are a lot of signs of cortical visual impairment. ...

  8. Influence of glutamic acid enantiomers on C-mineralization.

    Science.gov (United States)

    Formánek, Pavel; Vranová, Valerie; Lojková, Lea

    2015-02-01

    Seasonal dynamics in the mineralization of glutamic acid enantiomers in soils from selected ecosystems was determined and subjected to a range of treatments: ambient x elevated CO2 level and meadow x dense x thinned forest environment. Mineralization of glutamic acid was determined by incubation of the soil with 2 mg L- or D-glutamic acid g(-1) of dry soil to induce the maximum respiration rate. Mineralization of glutamic acid enantiomers in soils fluctuates over the course of a vegetation season, following a similar trend across a range of ecosystems. Mineralization is affected by environmental changes and management practices, including elevated CO2 level and thinning intensity. L-glutamic acid metabolism is more dependent on soil type as compared to metabolism of its D-enantiomer. The results support the hypothesis that the slower rate of D- compared to L- amino acid mineralization is due to different roles in anabolism and catabolism of the soil microbial community. © 2014 Wiley Periodicals, Inc.

  9. Glutamine and glutamate: Nonessential or essential amino acids?

    Directory of Open Access Journals (Sweden)

    Malcolm Watford

    2015-09-01

    Full Text Available Glutamine and glutamate are not considered essential amino acids but they play important roles in maintaining growth and health in both neonates and adults. Although glutamine and glutamate are highly abundant in most feedstuffs there is increasing evidence that they may be limiting during pregnancy, lactation and neonatal growth, particularly when relatively low protein diets are fed. Supplementation of diets with glutamine, glutamate or both at 0.5 to 1.0% to both suckling and recently weaned piglets improves intestinal and immune function and results in better growth. In addition such supplementation to the sow prevents some of the loss of lean body mass during lactation, and increases milk glutamine content. However, a number of important questions related to physiological condition, species under study and the form and amount of the supplements need to be addressed before the full benefits of glutamine and glutamate supplementation in domestic animal production can be realized. Keywords: Amino acid, Glutamate, Glutamine, Lactation, Pregnancy, Growth

  10. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids. © 2015 Wiley Periodicals, Inc.

  11. The correlative study between acupoint stimulations and corresponding brain cortices on functional MRI

    International Nuclear Information System (INIS)

    Zhou Cheng; Chen Min; Cai Kui; Wang Wenchao; Yang Zhenghan; Zhao Weifeng; Li Guozhen; Wang Jiazhou; Tian Lifang; Zhou Tiangang; Lai Song

    2005-01-01

    Objective: To characterize the cortical activation of acupuncture with BOLD-based fMRI technique. Methods: The study was performed in 31 healthy volunteers (27 men, 4 women; age range 21-48 years) with acupuncture of points along the stomach meridian of Foot-Yangming and the gallbladder meridian of Foot-Shaoyang. The acupoints of the stomach meridian of Foot-Yangming included Futu (S 32) in 7 volunteers and Zusanli (S 36) in 9 volunteers; and the acupoints of the gallbladder meridian of Foot-Shaoyang included Yanglingquan (G34) in 7 volunteers and Guangming (G37) in 8 volunteers. MRI data were acquired on a GE 1.5 T Signa Horizon/Echo-speed scanner. 12 oblique axial slices paralleled to the AC-PC line were scanned. T 2 * images were acquired using EPI technique. Data sets of sequential images were analyzed with software package AFNI. Results: Acupuncture at points S32 and S36 resulted in activation of the hypothalamus, nucleus accumbens, hippocampal complex, and frontal gyri, and the average enhancement in the above activated areas was (4.28 ± 1.50)%. Acupuncture at vision-related points G34 and G37 resulted in activation of the occipital lobe as well as other cortices such as pons, basal ganglion, temporal lobe, and frontal lobe, and the BOLD signal changes of the visual cortex were (3.31 ± l.2)%. Conclusion: These preliminary fMRI results demonstrate strong regional BOLD signal changes in the brain upon acupuncture, hence demonstrates physiological evidence of acupuncture effect. (authors)

  12. Lysine and arginine reduce the effects of cerebral ischemic insults and inhibit glutamate-induced neuronal activity in rats

    Directory of Open Access Journals (Sweden)

    Takashi Kondoh

    2010-06-01

    Full Text Available Intravenous administration of arginine was shown to be protective against cerebral ischemic insults via nitric oxide production and possibly via additional mechanisms. The present study aimed at evaluating the neuroprotective effects of oral administration of lysine (a basic amino acid, arginine, and their combination on ischemic insults (cerebral edema and infarction and hemispheric brain swelling induced by transient middle cerebral artery occlusion/reperfusion in rats. Magnetic resonance imaging and 2,3,5-triphenyltetrazolium chloride staining were performed two days after ischemia induction. In control animals, the major edematous areas were observed in the cerebral cortex and striatum. The volumes associated with cortical edema were significantly reduced by lysine (2.0 g/kg, arginine (0.6 g/kg, or their combined administration (0.6 g/kg each. Protective effects of these amino acids on infarction were comparable to the inhibitory effects on edema formation. Interestingly, these amino acids, even at low dose (0.6 g/kg, were effective to reduce hemispheric brain swelling. Additionally, the effects of in vivo microiontophoretic (juxtaneuronal applications of these amino acids on glutamate-evoked neuronal activity in the ventromedial hypothalamus were investigated in awake rats. Glutamate-induced neuronal activity was robustly inhibited by microiontophoretic applications of lysine or arginine onto neuronal membranes. Taken together, our results demonstrate the neuroprotective effects of oral ingestion of lysine and arginine against ischemic insults (cerebral edema and infarction, especially in the cerebral cortex, and suggest that suppression of glutamate-induced neuronal activity might be the primary mechanism associated with these neuroprotective effects.

  13. Cell-type specific increases in female hamster nucleus accumbens spine density following female sexual experience.

    Science.gov (United States)

    Staffend, Nancy A; Hedges, Valerie L; Chemel, Benjamin R; Watts, Val J; Meisel, Robert L

    2014-11-01

    Female sexual behavior is an established model of a naturally motivated behavior which is regulated by activity within the mesolimbic dopamine system. Repeated activation of the mesolimbic circuit by female sexual behavior elevates dopamine release and produces persistent postsynaptic alterations to dopamine D1 receptor signaling within the nucleus accumbens. Here we demonstrate that sexual experience in female Syrian hamsters significantly increases spine density and alters morphology selectively in D1 receptor-expressing medium spiny neurons within the nucleus accumbens core, with no corresponding change in dopamine receptor binding or protein expression. Our findings demonstrate that previous life experience with a naturally motivated behavior has the capacity to induce persistent structural alterations to the mesolimbic circuit that can increase reproductive success and are analogous to the persistent structural changes following repeated exposure to many drugs of abuse.

  14. Posttranslational Modification Biology of Glutamate Receptors and Drug Addiction

    Directory of Open Access Journals (Sweden)

    Li-Min eMao

    2011-03-01

    Full Text Available Posttranslational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues on their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues. Other modifications such as ubiquitination and sumoylation at lysine residues also occur to certain glutamate receptors. These modifications are dynamic and reversible in nature and are regulatable by changing synaptic inputs. The regulated modifications significantly impact the receptor in many ways, including interrelated changes in biochemistry (synthesis, subunit assembling and protein-protein interactions, subcellular redistribution (trafficking, endocytosis, synaptic delivery and clustering, and physiology, usually associated with changes in synaptic plasticity. Glutamate receptors are enriched in the striatum and cooperate closely with dopamine to regulate striatal signaling. Emerging evidence shows that modification processes of striatal glutamate receptors are sensitive to addictive drugs, such as psychostimulants (cocaine and amphetamines. Altered modifications are believed to be directly linked to enduring receptor/synaptic plasticity and drug-seeking. This review summarizes several major types of modifications of glutamate receptors and analyzes the role of these modifications in striatal signaling and in the pathogenesis of psychostimulant addiction.

  15. Serum Glutamic-Oxaloacetic Transaminase (GOT) and Glutamic-Pyruvic Transaminase (GPT) Levels in Children and Adolescents with Intellectual Disabilities

    Science.gov (United States)

    Lin, Jin-Ding; Lin, Pei-Ying; Chen, Li-Mei; Fang, Wen-Hui; Lin, Lan-Ping; Loh, Ching-Hui

    2010-01-01

    The elevated serum glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) rate among people with intellectual disabilities (ID) is unknown and have not been sufficiently studies. The present paper aims to provide the profile of GOT and GPT, and their associated relationship with other biochemical levels of children or…

  16. Nucleus accumbens response to gains in reputation for the self relative to gains for others predicts social media use

    Directory of Open Access Journals (Sweden)

    Dar eMeshi

    2013-08-01

    Full Text Available Our reputation is important to us; we’ve experienced natural selection to care about our reputation. Recently, the neural processing of gains in reputation (positive social feedback concerning one’s character has been shown to occur in the human ventral striatum. It is still unclear, however, how individual differences in the processing of gains in reputation may lead to individual differences in real-world behavior. For example, in the real-world, one way that people currently maintain their reputation is by using social media websites, like Facebook. Furthermore, Facebook use consists of a social comparison component, where users observe others’ behavior and can compare it to their own. Therefore, we hypothesized a relationship between the way the brain processes specifically self-relevant gains in reputation and one’s degree of Facebook use. We recorded functional neuroimaging data while participants received gains in reputation, observed the gains in reputation of another person, or received monetary reward. We demonstrate that across participants, when responding to gains in reputation for the self, relative to observing gains for others, reward-related activity in the left nucleus accumbens predicts Facebook use. However, nucleus accumbens activity in response to monetary reward did not predict Facebook use. Finally, a control step-wise regression analysis showed that Facebook use primarily explains our results in the nucleus accumbens. Overall, our results demonstrate how individual sensitivity of the nucleus accumbens to the receipt of self-relevant social information leads to differences in real-world behavior.

  17. Adeno-associated virus (AAV-mediated suppression of Ca2+/calmodulin kinase IV activity in the nucleus accumbens modulates emotional behaviour in mice

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-12-01

    Full Text Available Abstract Background Calcium/calmodulin-dependent protein kinase IV (CaMKIV controls activity-dependent gene transcription by regulating the activity of the cyclic AMP response element binding protein (CREB. This signaling pathway is involved in gating emotional responses in the CNS but previous studies did not address the potential roles of CaMKIV in discrete brain regions. In the present study, we aimed at specifically dissecting the role of CaMKIV in the nucleus accumbens of adult mice. Results We used recombinant adeno-associated virus (rAAV-mediated gene transfer of a dominant-negative CaMKIV variant (rAAV-dnCaMKIV to inhibit endogenous CaMKIV in the nucleus accumbens. rAAV-dnCaMKIV treated animals were subjected to a battery of tests including, prepulse inhibition of the acoustic startle response, open field, social interaction and anxiety-related behaviour. We found that basal locomotor activity in the open field, and prepulse inhibition or startle performance were unaltered in mice infected with rAAV-dnCaMKIV in the nucleus accumbens. However, anxiogenic effects were revealed in social interaction testing and the light/dark emergence test. Conclusion Our findings suggest a modulatory role of CaMKIV in the nucleus accumbens in anxiety-like behaviour but not sensorimotor gating.

  18. Glutamate-Mediated Primary Somatosensory Cortex Excitability Correlated with Circulating Copper and Ceruloplasmin

    Directory of Open Access Journals (Sweden)

    Franca Tecchio

    2011-01-01

    Full Text Available Objective. To verify whether markers of metal homeostasis are related to a magnetoencephalographic index representative of glutamate-mediated excitability of the primary somatosensory cortex. The index is identified as the source strength of the earliest component (M20 of the somatosensory magnetic fields (SEFs evoked by right median nerve stimulation at wrist. Method. Thirty healthy right-handed subjects (51±22 years were enrolled in the study. A source reconstruction algorithm was applied to assess the amount of synchronously activated neurons subtending the M20 and the following SEF component (M30, which is generated by two independent contributions of gabaergic and glutamatergic transmission. Serum copper, ceruloplasmin, iron, transferrin, transferrin saturation, and zinc levels were measured. Results. Total copper and ceruloplasmin negatively correlated with the M20 source strength. Conclusion. This pilot study suggests that higher level of body copper reserve, as marked by ceruloplasmin variations, parallels lower cortical glutamatergic responsiveness.

  19. Enhanced limbic/impaired cortical-loop connection onto the hippocampus of NHE rats: Application of resting-state functional connectivity in a preclinical ADHD model.

    Science.gov (United States)

    Zoratto, F; Palombelli, G M; Ruocco, L A; Carboni, E; Laviola, G; Sadile, A G; Adriani, W; Canese, R

    2017-08-30

    Due to a hyperfunctioning mesocorticolimbic system, Naples-High-Excitability (NHE) rats have been proposed to model for the meso-cortical variant of attention deficit/hyperactivity disorder (ADHD). Compared to Naples Random-Bred (NRB) controls, NHE rats show hyperactivity, impaired non-selective attention (Aspide et al., 1998), and impaired selective spatial attention (Ruocco et al., 2009a, 2014). Alteration in limbic functions has been proposed; however, resulting unbalance among forebrain areas has not been assessed yet. By resting-state functional Magnetic-Resonance Imaging (fMRI) in vivo, we investigated the connectivity of neuronal networks belonging to limbic vs. cortical loops in NHE and NRB rats (n=10 each). Notably, resting-state fMRI was applied using a multi-slice sagittal, gradient-echo sequence. Voxel-wise connectivity maps at rest, based on temporal correlation among fMRI time-series, were computed by seeding the hippocampus (Hip), nucleus accumbens (NAcc), dorsal striatum (dStr), amygdala (Amy) and dorsal/medial prefrontal cortex (PFC), both hemispheres. To summarize patterns of altered connection, clearly directional connectivity was evident within the cortical loop: bilaterally and specularly, from orbital and dorsal PFCs through dStr and hence towards Hip. Such network communication was reduced in NHE rats (also, with less mesencephalic/pontine innervation). Conversely, enhanced network activity emerged within the limbic loop of NHE rats: from left PFC, both through the NAcc and directly, to the Hip (all of which received greater ventral tegmental innervation, likely dopamine). Together with tuned-down cortical loop, this potentiated limbic loop may serve a major role in controlling ADHD-like behavioral symptoms in NHE rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The Group 2 Metabotropic Glutamate Receptor Agonist LY379268 Rescues Neuronal, Neurochemical and Motor Abnormalities in R6/2 Huntington’s Disease Mice

    Science.gov (United States)

    Reiner, A.; Lafferty, D.C.; Wang, H.B.; Del Mar, N.; Deng, Y.P.

    2012-01-01

    Excitotoxic injury to striatum by dysfunctional cortical input or aberrant glutamate uptake may contribute to Huntington’s Disease (HD) pathogenesis. Since corticostriatal terminals possess mGluR2/3 autoreceptors, whose activation dampens glutamate release, we tested the ability of the mGluR2/3 agonist LY379268 to improve the phenotype in R6/2 HD mice with 120–125 CAG repeats. Daily subcutaneous injection of a maximum tolerated dose (MTD) of LY379268 (20mg/kg) had no evident adverse effects in WT mice, and diverse benefits in R6/2 mice, both in a cohort of mice tested behaviorally until the end of R6/2 lifespan and in a cohort sacrificed at 10 weeks of age for blinded histological analysis. MTD LY379268 yielded a significant 11% increase in R6/2 survival, an improvement on rotarod, normalization and/or improvement in locomotor parameters measured in open field (activity, speed, acceleration, endurance, and gait), a rescue of a 15–20% cortical and striatal neuron loss, normalization of SP striatal neuron neurochemistry, and to a lesser extent enkephalinergic striatal neuron neurochemistry. Deficits were greater in male than female R6/2 mice, and drug benefit tended to be greater in males. The improvements in SP striatal neurons, which facilitate movement, are consistent with the improved movement in LY379268-treated R6/2 mice. Our data indicate that mGluR2/3 agonists may be particularly useful for ameliorating the morphological, neurochemical and motor defects observed in HD. PMID:22472187

  1. Dyadic social interaction inhibits cocaine-conditioned place preference and the associated activation of the accumbens corridor.

    Science.gov (United States)

    Zernig, Gerald; Pinheiro, Barbara S

    2015-09-01

    Impaired social interaction is a hallmark symptom of many psychiatric disorders. In substance use disorders, impaired social interaction is triply harmful (a) because addicts increasingly prefer the drug of abuse to the natural reward of drug-free social interaction, thus worsening the progression of the disease by increasing their drug consumption, (b) because treatment adherence and, consequently, treatment success itself depends on the ability of the recovering addict to maintain social interaction and adhere to treatment, and (c) because socially interacting with an individual suffering from a substance use disorder may be harmful for others. Helping the addict reorient his/her behavior away from the drug of abuse toward social interaction would therefore be of considerable therapeutic benefit. This article reviews our work on the neural basis of such a reorientation from cocaine, as a prototypical drug of abuse, toward dyadic (i.e. one-to-one) social interaction and compares our findings with the effects of other potentially beneficial interventions, that is, environmental enrichment or paired housing, on the activation of the accumbens and other brain regions involved in behavior motivated by drugs of abuse or nondrug stimuli. Our experimental models are based on the conditioned place preference paradigm. As the therapeutically most promising finding, only four 15 min episodes of dyadic social interaction were able to inhibit both the subsequent reacquisition/re-expression of preference for cocaine and the neural activation associated with this behavior, that is, an increase in the expression of the immediate early gene Early Growth Response protein 1 (EGR1, Zif268) in the nucleus accumbens, basolateral and central amygdala, and the ventral tegmental area. The time spent in the cocaine-associated conditioning compartment was correlated with the density of EGR1-activated neurons not only in the medial core (AcbCm) and medial shell (AcbShm) of the nucleus

  2. Cortical substrate oxidation during hyperketonemia in the fasted anesthetized rat in vivo.

    Science.gov (United States)

    Jiang, Lihong; Mason, Graeme F; Rothman, Douglas L; de Graaf, Robin A; Behar, Kevin L

    2011-12-01

    Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours (n=6) and receiving intravenous [2,4-(13)C(2)]-D-β-hydroxybutyrate (BHB). Time courses of (13)C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tesla using spatially localized (1)H-[(13)C]-nuclear magnetic resonance spectroscopy. Metabolic rates were estimated by fitting a constrained, two-compartment (neuron-astrocyte) metabolic model to the (13)C time-course data. We found that ketone body oxidation was substantial, accounting for 40% of total substrate oxidation (glucose plus ketone bodies) by neurons and astrocytes. D-β-Hydroxybutyrate was oxidized to a greater extent in neurons than in astrocytes (≈ 70:30), and followed a pattern closely similar to the metabolism of [1-(13)C]glucose reported in previous studies. Total neuronal tricarboxylic acid cycle (TCA) flux in hyperketonemic rats was similar to values reported for normal (nonketotic) anesthetized rats infused with [1-(13)C]glucose, but neuronal glucose oxidation was 40% to 50% lower, indicating that ketone bodies had compensated for the reduction in glucose use.

  3. Joint assessment of white matter integrity, cortical and subcortical atrophy to distinguish AD from behavioral variant FTD: A two-center study

    Directory of Open Access Journals (Sweden)

    Christiane Möller

    2015-01-01

    Full Text Available We investigated the ability of cortical and subcortical gray matter (GM atrophy in combination with white matter (WM integrity to distinguish behavioral variant frontotemporal dementia (bvFTD from Alzheimer's disease (AD and from controls using voxel-based morphometry, subcortical structure segmentation, and tract-based spatial statistics. To determine which combination of MR markers differentiated the three groups with the highest accuracy, we conducted discriminant function analyses. Adjusted for age, sex and center, both types of dementia had more GM atrophy, lower fractional anisotropy (FA and higher mean (MD, axial (L1 and radial diffusivity (L23 values than controls. BvFTD patients had more GM atrophy in orbitofrontal and inferior frontal areas than AD patients. In addition, caudate nucleus and nucleus accumbens were smaller in bvFTD than in AD. FA values were lower; MD, L1 and L23 values were higher, especially in frontal areas of the brain for bvFTD compared to AD patients. The combination of cortical GM, hippocampal volume and WM integrity measurements, classified 97–100% of controls, 81–100% of AD and 67–75% of bvFTD patients correctly. Our results suggest that WM integrity measures add complementary information to measures of GM atrophy, thereby improving the classification between AD and bvFTD.

  4. Nucleus Accumbens and Its Role in Reward and Emotional Circuitry: A Potential Hot Mess in Substance Use and Emotional Disorders

    Directory of Open Access Journals (Sweden)

    Mani Pavuluri

    2017-04-01

    Full Text Available Nucleus accumbens (NAc is a key region in the brain that is integral to both the reward and the emotional systems. The aim of the current paper is to synthesize the basic and the clinical neuroscience discoveries relevant to the NAc for the purpose of two-way translation. Selected literature on the structure and the functionality of the NAc is reviewed across animal and human studies. Dopamine, gamma-aminobutyric acid (GABA and glutamate are the three key neurotransmitters that modulate the reward function and the motor activity. Dissociative roles of the core and the shell of the NAc include getting to the reward and staying on task with discretion, respectively. NAc shows decreased activation to reward in the individuals with major depressive disorder and the bipolar disorder, relative to that healthy controls (HC. The “difficult to please” or insatiability in response to reward in the emotional disorders may possibly be explained by such a neural pattern. Furthermore, it is likely that the increased amygdala activity reported in mood disorders could be accentuating the “wanting” of the reward by the virtue of its connections with the NAc, explaining the potential “hot mess”. In contrast, the NAc shows increased reward response in substance use disorders, relative to HC, in response to reward and emotional tasks. Accurate characterization of the NAc and its functionality in the human imaging studies of mood and substance use has important treatment implications.

  5. Suppression of motor cortical excitability in anesthetized rats by low frequency repetitive transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Paul A Muller

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is a widely-used method for modulating cortical excitability in humans, by mechanisms thought to involve use-dependent synaptic plasticity. For example, when low frequency rTMS (LF rTMS is applied over the motor cortex, in humans, it predictably leads to a suppression of the motor evoked potential (MEP, presumably reflecting long-term depression (LTD -like mechanisms. Yet how closely such rTMS effects actually match LTD is unknown. We therefore sought to (1 reproduce cortico-spinal depression by LF rTMS in rats, (2 establish a reliable animal model for rTMS effects that may enable mechanistic studies, and (3 test whether LTD-like properties are evident in the rat LF rTMS setup. Lateralized MEPs were obtained from anesthetized Long-Evans rats. To test frequency-dependence of LF rTMS, rats underwent rTMS at one of three frequencies, 0.25, 0.5, or 1 Hz. We next tested the dependence of rTMS effects on N-methyl-D-aspartate glutamate receptor (NMDAR, by application of two NMDAR antagonists. We find that 1 Hz rTMS preferentially depresses unilateral MEP in rats, and that this LTD-like effect is blocked by NMDAR antagonists. These are the first electrophysiological data showing depression of cortical excitability following LF rTMS in rats, and the first to demonstrate dependence of this form of cortical plasticity on the NMDAR. We also note that our report is the first to show that the capacity for LTD-type cortical suppression by rTMS is present under barbiturate anesthesia, suggesting that future neuromodulatory rTMS applications under anesthesia may be considered.

  6. Serum Glutamate Is a Predictor for the Diagnosis of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Gheyath Al Gawwam

    2017-01-01

    Full Text Available One neurotransmitter, glutamate, has been implicated in the autoimmune demyelination seen in multiple sclerosis (MS. Glutamate is present in many tissues in the body, so consideration should be given to whether the serum level of glutamate is likely well correlated with the activity of the disease. This research aimed to compare the serum glutamate levels from patients diagnosed with MS with those from an age-matched control population. A review of this data could shed light upon whether the serum testing of glutamate using Enzyme-Linked Immunosorbent Assay (ELISA is a reliable indicator of MS activity. Serum samples were obtained from 55 patients with different patterns of MS and from 25 healthy adults as a control group. The ELISA technique was used to determine the glutamate levels in the serum samples. The mean serum glutamate level for patients with MS was 1.318±0.543 nmol/ml and that of the controls was 0.873±0.341 nmol/ml. The serum glutamate levels showed an area under the curve via the receiver operating characteristics (ROC of 0.738, which was significant (p value = 0.001. The present study is the first to establish a strong connection between the serum glutamate levels and MS patients, where there was statistically significant elevation of serum glutamate in MS patients; hence this elevation might be used as a monitor to help in the diagnosis of MS patients.

  7. Serotonin gating of cortical and thalamic glutamate inputs onto principal neurons of the basolateral amygdala.

    Science.gov (United States)

    Guo, Ji-Dong; O'Flaherty, Brendan M; Rainnie, Donald G

    2017-11-01

    The basolateral amygdala (BLA) is a key site for crossmodal association of sensory stimuli and an important relay in the neural circuitry of emotion. Indeed, the BLA receives substantial glutamatergic inputs from multiple brain regions including the prefrontal cortex and thalamic nuclei. Modulation of glutamatergic transmission in the BLA regulates stress- and anxiety-related behaviors. Serotonin (5-HT) also plays an important role in regulating stress-related behavior through activation of both pre- and postsynaptic 5-HT receptors. Multiple 5-HT receptors are expressed in the BLA, where 5-HT has been reported to modulate glutamatergic transmission. However, the 5-HT receptor subtype mediating this effect is not yet clear. The aim of this study was to use patch-clamp recordings from BLA neurons in an ex vivo slice preparation to examine 1) the effect of 5-HT on extrinsic sensory inputs, and 2) to determine if any pathway specificity exists in 5-HT regulation of glutamatergic transmission. Two independent input pathways into the BLA were stimulated: the external capsule to mimic cortical input, and the internal capsule to mimic thalamic input. Bath application of 5-HT reversibly reduced the amplitude of evoked excitatory postsynaptic currents (eEPSCs) induced by stimulation of both pathways. The decrease was associated with an increase in the paired-pulse ratio and coefficient of variation of eEPSC amplitude, suggesting 5-HT acts presynaptically. Moreover, the effect of 5-HT in both pathways was mimicked by the selective 5-HT 1B receptor agonist CP93129, but not by the 5-HT 1A receptor agonist 8-OH DPAT. Similarly the effect of exogenous 5-HT was blocked by the 5-HT 1B receptor antagonist GR55562, but not affected by the 5-HT 1A receptor antagonist WAY 100635 or the 5-HT 2 receptor antagonists pirenperone and MDL 100907. Together these data suggest 5-HT gates cortical and thalamic glutamatergic inputs into the BLA by activating presynaptic 5-HT 1B receptors

  8. [Determination of glutamic acid in biological material by capillary electrophoresis].

    Science.gov (United States)

    Narezhnaya, E; Krukier, I; Avrutskaya, V; Degtyareva, A; Igumnova, E A

    2015-01-01

    The conditions for the identification and determination of Glutamic acid by capillary zone electrophoresis without their preliminary derivatization have been optimized. The effect of concentration of buffer electrolyte and pH on determination of Glutamic acid has been investigated. It is shown that the 5 Mm borate buffer concentration and a pH 9.15 are optimal. Quantitative determination of glutamic acid has been carried out using a linear dependence between the concentration of the analyte and the area of the peak. The accuracy and reproducibility of the determination are confirmed by the method "introduced - found". Glutamic acid has been determined in the placenta homogenate. The duration of analysis doesn't exceed 30 minutes. The results showed a decrease in the level of glutamic acid in cases of pregnancy complicated by placental insufficiency compared with the physiological, and this fact allows to consider the level of glutamic acid as a possible marker of complicated pregnancy.

  9. Food Application of Newly Developed Handy-type Glutamate Sensor.

    Science.gov (United States)

    Mukai, Yuuka; Oikawa, Tsutomu

    2016-01-01

    Tests on physiological functions of umami have been actively conducted and a need recognized for a high-performance quantification device that is simple and cost-effective, and whose use is not limited to a particular location or user. To address this need, Ajinomoto Co. and Tanita Corp. have jointly been researching and developing a simple device for glutamate measurement. The device uses L-glutamate oxidase immobilized on a hydrogen peroxide electrode. L-glutamate in the sample is converted to α-ketoglutaric acid, which produces hydrogen peroxide. Subsequently, the electrical current from the electrochemical reaction of hydrogen peroxide is measured to determine the L-glutamate concentration. In order to evaluate its basic performance, we used this device to measure the concentration of L-glutamate standard solutions. In a concentration range of 0-1.0%, the difference from the theoretical value was minimal. The coefficient of variation (CV) value of 3 measurements was 4% or less. This shows that the device has a reasonable level of precision and accuracy. The device was also used in trial measurements of L-glutamate concentrations in food. There was a good correlation between the results obtained using the developed device and those obtained with an amino acid analyzer; the correlation coefficient was R=0.997 (n=24). In this review, we demonstrate the use of our device to measure the glutamate concentration in miso soup served daily at a home for elderly people, and other foods and ingredients.

  10. Regulation of Alcohol Extinction and Cue-Induced Reinstatement by Specific Projections among Medial Prefrontal Cortex, Nucleus Accumbens, and Basolateral Amygdala.

    Science.gov (United States)

    Keistler, Colby R; Hammarlund, Emma; Barker, Jacqueline M; Bond, Colin W; DiLeone, Ralph J; Pittenger, Christopher; Taylor, Jane R

    2017-04-26

    The ability to inhibit drinking is a significant challenge for recovering alcoholics, especially in the presence of alcohol-associated cues. Previous studies have demonstrated that the regulation of cue-guided alcohol seeking is mediated by the basolateral amygdala (BLA), nucleus accumbens (NAc), and medial prefrontal cortex (mPFC). However, given the high interconnectivity between these structures, it is unclear how mPFC projections to each subcortical structure, as well as projections between BLA and NAc, mediate alcohol-seeking behaviors. Here, we evaluate how cortico-striatal, cortico-amygdalar, and amygdalo-striatal projections control extinction and relapse in a rat model of alcohol seeking. Specifically, we used a combinatorial viral technique to express diphtheria toxin receptors in specific neuron populations based on their projection targets. We then used this strategy to create directionally selective ablations of three distinct pathways after acquisition of ethanol self-administration but before extinction and reinstatement. We demonstrate that ablation of mPFC neurons projecting to NAc, but not BLA, blocks cue-induced reinstatement of alcohol seeking and neither pathway is necessary for extinction of responding. Further, we show that ablating BLA neurons that project to NAc disrupts extinction of alcohol approach behaviors and attenuates reinstatement. Together, these data provide evidence that the mPFC→NAc pathway is necessary for cue-induced reinstatement of alcohol seeking, expand our understanding of how the BLA→NAc pathway regulates alcohol behavior, and introduce a new methodology for the manipulation of target-specific neural projections. SIGNIFICANCE STATEMENT The vast majority of recovering alcoholics will relapse at least once and understanding how the brain regulates relapse will be key to developing more effective behavior and pharmacological therapies for alcoholism. Given the high interconnectivity of cortical, striatal, and limbic

  11. Metabolic control of vesicular glutamate transport and release.

    Science.gov (United States)

    Juge, Narinobu; Gray, John A; Omote, Hiroshi; Miyaji, Takaaki; Inoue, Tsuyoshi; Hara, Chiaki; Uneyama, Hisayuki; Edwards, Robert H; Nicoll, Roger A; Moriyama, Yoshinori

    2010-10-06

    Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl(-). Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl(-) acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl(-) at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Feedback-induced glutamate spillover enhances negative feedback from horizontal cells to cones

    NARCIS (Netherlands)

    Vroman, Rozan; Kamermans, Maarten

    2015-01-01

    In the retina, horizontal cells feed back negatively to cone photoreceptors. Glutamate released from cones can spill over to neighbouring cones. Here we show that cone glutamate release induced by negative feedback can also spill over to neighbouring cones. This glutamate activates the glutamate

  13. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA...

  14. Nucleus Accumbens and Dopamine-Mediated Turning Behavior of the Rat: Role of Accumbal Non-dopaminergic Receptors

    NARCIS (Netherlands)

    Ikeda, H.; Kamei, J.; Koshikawa, N.; Cools, A.R.

    2012-01-01

    Accumbal dopamine plays an important role in physiological responses and diseases such as schizophrenia, Parkinson's disease, and depression. Since the nucleus accumbens contains different neurotransmitters, it is important to know how they interact with dopaminergic function: this is because

  15. Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens.

    Science.gov (United States)

    Rose, Jamie H; Karkhanis, Anushree N; Chen, Rong; Gioia, Dominic; Lopez, Marcelo F; Becker, Howard C; McCool, Brian A; Jones, Sara R

    2016-05-01

    Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. These data suggest that the chronic intermittent ethanol-induced increase in ethanol intake and anxiety

  16. A computational study of astrocytic glutamate influence on post-synaptic neuronal excitability.

    Directory of Open Access Journals (Sweden)

    Bronac Flanagan

    2018-04-01

    Full Text Available The ability of astrocytes to rapidly clear synaptic glutamate and purposefully release the excitatory transmitter is critical in the functioning of synapses and neuronal circuits. Dysfunctions of these homeostatic functions have been implicated in the pathology of brain disorders such as mesial temporal lobe epilepsy. However, the reasons for these dysfunctions are not clear from experimental data and computational models have been developed to provide further understanding of the implications of glutamate clearance from the extracellular space, as a result of EAAT2 downregulation: although they only partially account for the glutamate clearance process. In this work, we develop an explicit model of the astrocytic glutamate transporters, providing a more complete description of the glutamate chemical potential across the astrocytic membrane and its contribution to glutamate transporter driving force based on thermodynamic principles and experimental data. Analysis of our model demonstrates that increased astrocytic glutamate content due to glutamine synthetase downregulation also results in increased postsynaptic quantal size due to gliotransmission. Moreover, the proposed model demonstrates that increased astrocytic glutamate could prolong the time course of glutamate in the synaptic cleft and enhances astrocyte-induced slow inward currents, causing a disruption to the clarity of synaptic signalling and the occurrence of intervals of higher frequency postsynaptic firing. Overall, our work distilled the necessity of a low astrocytic glutamate concentration for reliable synaptic transmission of information and the possible implications of enhanced glutamate levels as in epilepsy.

  17. Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: A role in depression

    NARCIS (Netherlands)

    Eisch, A.J.; Bolanos, C.A.; de Wit, J.; Simonak, R.D.; Pudiak, C.M.; Barrot, M.; Verhaagen, J.; Nestler, E.J.

    2003-01-01

    Background: Previous work has shown that brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase receptor B (TrkB), are involved in appetitive behavior. Here we show that BDNF in the ventral tegmental area-nucleus accumbens (VTA-NAc) pathway is also involved in the development of

  18. 40 CFR 721.3821 - L-Glutamic acid, N-(1-oxododecyl)-.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false L-Glutamic acid, N-(1-oxododecyl... Substances § 721.3821 L-Glutamic acid, N-(1-oxododecyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic acid, N-(1-oxododecyl)- (PMN P...

  19. Essential roles of aspartate aminotransferase 1 and vesicular glutamate transporters in β-cell glutamate signaling for incretin-induced insulin secretion.

    Directory of Open Access Journals (Sweden)

    Naoya Murao

    Full Text Available Incretins (GLP-1 and GIP potentiate insulin secretion through cAMP signaling in pancreatic β-cells in a glucose-dependent manner. We recently proposed a mechanistic model of incretin-induced insulin secretion (IIIS that requires two critical processes: 1 generation of cytosolic glutamate through the malate-aspartate (MA shuttle in glucose metabolism and 2 glutamate transport into insulin granules by cAMP signaling to promote insulin granule exocytosis. To directly prove the model, we have established and characterized CRISPR/Cas9-engineered clonal mouse β-cell lines deficient for the genes critical in these two processes: aspartate aminotransferase 1 (AST1, gene symbol Got1, a key enzyme in the MA shuttle, which generates cytosolic glutamate, and the vesicular glutamate transporters (VGLUT1, VGLUT2, and VGLUT3, gene symbol Slc17a7, Slc17a6, and Slc17a8, respectively, which participate in glutamate transport into secretory vesicles. Got1 knockout (KO β-cell lines were defective in cytosolic glutamate production from glucose and showed impaired IIIS. Unexpectedly, different from the previous finding that global Slc17a7 KO mice exhibited impaired IIIS from pancreatic islets, β-cell specific Slc17a7 KO mice showed no significant impairment in IIIS, as assessed by pancreas perfusion experiment. Single Slc17a7 KO β-cell lines also retained IIIS, probably due to compensatory upregulation of Slc17a6. Interestingly, triple KO of Slc17a7, Slc17a6, and Slc17a8 diminished IIIS, which was rescued by exogenously introduced wild-type Slc17a7 or Slc17a6 genes. The present study provides direct evidence for the essential roles of AST1 and VGLUTs in β-cell glutamate signaling for IIIS and also shows the usefulness of the CRISPR/Cas9 system for studying β-cells by simultaneous disruption of multiple genes.

  20. Monosodium Glutamate Toxicity

    African Journals Online (AJOL)

    Dr Olaleye

    The brain is reportedly sensitive to monosodium glutamate (MSG) toxicity via oxidative stress. Sida acuta leaf ethanolic .... wherein the right hemisphere, was preserved for histology and fixed in 10% ... Biochemical Assays: The left hemisphere of the brain samples was ...... development in male and female rats. Exp Physiol.

  1. Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Lykke, Kasper; Bryk, Jaroslaw

    2017-01-01

    A key enzyme in brain glutamate homeostasis is glutamate dehydrogenase (GDH) which links carbohydrate and amino acid metabolism mediating glutamate degradation to CO2 and expanding tricarboxylic acid (TCA) cycle capacity with intermediates, i.e. anaplerosis. Humans express two GDH isoforms, GDH1...... and 2, whereas most other mammals express only GDH1. hGDH1 is widely expressed in human brain while hGDH2 is confined to astrocytes. The two isoforms display different enzymatic properties and the nature of these supports that hGDH2 expression in astrocytes potentially increases glutamate oxidation...

  2. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    Science.gov (United States)

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B.; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound. PMID:22754309

  3. Glutamic acid and its derivatives: candidates for rational design of anticancer drugs.

    Science.gov (United States)

    Ali, Imran; Wani, Waseem A; Haque, Ashanul; Saleem, Kishwar

    2013-05-01

    Throughout the history of human civilizations, cancer has been a major health problem. Its treatment has been interesting but challenging to scientists. Glutamic acid and its derivative glutamine are known to play interesting roles in cancer genesis, hence, it was realized that structurally variant glutamic acid derivatives may be designed and developed and, might be having antagonistic effects on cancer. The present article describes the state-of-art of glutamic acid and its derivatives as anticancer agents. Attempts have been made to explore the effectivity of drug-delivery systems based on glutamic acid for the delivery of anticancer drugs. Moreover, efforts have also been made to discuss the mechanism of action of glutamic acid derivatives as anticancer agents, clinical applications of glutamic acid derivatives, as well as recent developments and future perspectives of glutamic acid drug development have also been discussed.

  4. Corticostriatal circuitry in regulating diseases characterized by intrusive thinking.

    Science.gov (United States)

    Kalivas, Benjamin C; Kalivas, Peter W

    2016-03-01

    Intrusive thinking triggers clinical symptoms in many neuropsychiatric disorders. Using drug addiction as an exemplar disorder sustained in part by intrusive thinking, we explore studies demonstrating that impairments in corticostriatal circuitry strongly contribute to intrusive thinking. Neuroimaging studies have long implicated this projection in cue-induced craving to use drugs, and preclinical models show that marked changes are produced at corticostriatal synapses in the nucleus accumbens during a relapse episode. We delineate an accumbens microcircuit that mediates cue-induced drug seeking becoming an intrusive event. This microcircuit harbors many potential therapeutic targets. We focus on preclinical and clinical studies, showing that administering N-acetylcysteine restores uptake of synaptic glutamate by astroglial glutamate transporters and thereby inhibits intrusive thinking. We posit that because intrusive thinking is a shared endophenotype in many disorders, N-acetylcysteine has positive effects in clinical trials for a variety of neuropsychiatric disorders, including drug addiction, gambling, trichotillomania, and depression.

  5. N-Acetylcysteine Reverses Cocaine Induced Metaplasticity

    Science.gov (United States)

    Moussawi, Khaled; Pacchioni, Alejandra; Moran, Megan; Olive, M. Foster; Gass, Justin T.; Lavin, Antonieta; Kalivas, Peter W

    2009-01-01

    Cocaine addiction is characterized by an impaired ability to develop adaptive behaviors that can compete with cocaine seeking, implying a deficit in the ability to induce plasticity in cortico-accumbens circuitry critical for regulating motivated behavior. RWe found that rats withdrawn from cocaine self-administration had a marked in vivo deficit in the ability to develop long-term potentation (LTP) and depression (LTD) in the nucleus accumbens core subregion following stimulation of prefrontal cortex. N-acetylcysteine treatment prevents relapse in animal models and craving in humans by activating cystine-glutamate exchange and thereby stimulating extrasynaptic metabotropic glutamate receptors (mGluR). N-acetylcysteine treatment restored the ability to induce LTP and LTD by indirectly stimulating mGluR2/3 and mGluR5, respectively. Cocaine self-administration induces metaplasticity that inhibits the further induction of synaptic plasticity, and this impairment can be reversed by N-acetylcysteine, a drug that also prevents relapse. PMID:19136971

  6. N-Acetylcysteine reverses cocaine-induced metaplasticity.

    Science.gov (United States)

    Moussawi, Khaled; Pacchioni, Alejandra; Moran, Megan; Olive, M Foster; Gass, Justin T; Lavin, Antonieta; Kalivas, Peter W

    2009-02-01

    Cocaine addiction is characterized by an impaired ability to develop adaptive behaviors that can compete with cocaine seeking, implying a deficit in the ability to induce plasticity in cortico-accumbens circuitry crucial for regulating motivated behavior. We found that rats withdrawn from cocaine self-administration had a marked in vivo deficit in the ability to develop long-term potentiation (LTP) and long-term depression (LTD) in the nucleus accumbens core subregion after stimulation of the prefrontal cortex. N-acetylcysteine (NAC) treatment prevents relapse in animal models and craving in humans by activating cystine-glutamate exchange and thereby stimulating extrasynaptic metabotropic glutamate receptors (mGluR). NAC treatment of rats restored the ability to induce LTP and LTD by indirectly stimulating mGluR2/3 and mGluR5, respectively. Our findings show that cocaine self-administration induces metaplasticity that inhibits further induction of synaptic plasticity, and this impairment can be reversed by NAC, a drug that also prevents relapse.

  7. Complex formation between glutamic acid and molybdenum (VI)

    International Nuclear Information System (INIS)

    Gharib, Farrokh; Khorrami, S.A.; Sharifi, Sasan

    1997-01-01

    Equilibria of the reaction of molybdenum (VI) with L-glutamic acid have been studied in aqueous solution in the pH range 2.5 to 9.5, using spectrophotometric and optical rotation methods at constant ionic strength (0.15 mol dm -3 sodium perchlorate) and temperature 25 ± 0.1 degC. Our studies have shown that glutamic acid forms a mononuclear complex with Mo(VI) of the type MoO 3 L 2- at pH 5.5. The stability constant of this complexation and the dissociation constants of L-glutamic acid have been determined. (author). 17 refs., 2 figs., 4 tabs

  8. Glutamate-induced glutamate release: A proposed mechanism for calcium bursting in astrocytes

    Science.gov (United States)

    Larter, Raima; Craig, Melissa Glendening

    2005-12-01

    Here we present a new model for the generation of complex calcium-bursting patterns in astrocytes, a type of brain cell recently implicated in a variety of neural functions including memory formation. The model involves two positive feedback processes, in which the key feedback species are calcium ion and glutamate. The latter is the most abundant excitatory neurotransmitter in the brain and has been shown to be involved in bidirectional communication between astrocytes and nearby neurons. The glutamate feedback process considered here is shown to be critical for the generation of complex bursting oscillations in the astrocytes and to, perhaps, code for information which may be passed from neuron to neuron via the astrocyte. These processes may be involved in memory storage and formation as well as in mechanisms which lead to dynamical diseases such as epilepsy.

  9. The glutamate aspartate transporter (GLAST) mediates L-glutamate-stimulated ascorbate-release via swelling-activated anion channels in cultured neonatal rodent astrocytes.

    Science.gov (United States)

    Lane, Darius J R; Lawen, Alfons

    2013-03-01

    Vitamin C (ascorbate) plays important neuroprotective and neuromodulatory roles in the mammalian brain. Astrocytes are crucially involved in brain ascorbate homeostasis and may assist in regenerating extracellular ascorbate from its oxidised forms. Ascorbate accumulated by astrocytes can be released rapidly by a process that is stimulated by the excitatory amino acid, L-glutamate. This process is thought to be neuroprotective against excitotoxicity. Although of potential clinical interest, the mechanism of this stimulated ascorbate-release remains unknown. Here, we report that primary cultures of mouse and rat astrocytes release ascorbate following initial uptake of dehydroascorbate and accumulation of intracellular ascorbate. Ascorbate-release was not due to cellular lysis, as assessed by cellular release of the cytosolic enzyme lactate dehydrogenase, and was stimulated by L-glutamate and L-aspartate, but not the non-excitatory amino acid L-glutamine. This stimulation was due to glutamate-induced cellular swelling, as it was both attenuated by hypertonic and emulated by hypotonic media. Glutamate-stimulated ascorbate-release was also sensitive to inhibitors of volume-sensitive anion channels, suggesting that the latter may provide the conduit for ascorbate efflux. Glutamate-stimulated ascorbate-release was not recapitulated by selective agonists of either ionotropic or group I metabotropic glutamate receptors, but was completely blocked by either of two compounds, TFB-TBOA and UCPH-101, which non-selectively and selectively inhibit the glial Na(+)-dependent excitatory amino acid transporter, GLAST, respectively. These results suggest that an impairment of astrocytic ascorbate-release may exacerbate neuronal dysfunction in neurodegenerative disorders and acute brain injury in which excitotoxicity and/or GLAST deregulation have been implicated.

  10. Cortical Regulation of Striatal Medium Spiny Neuron Dendritic Remodeling in Parkinsonism: Modulation of Glutamate Release Reverses Dopamine Depletion–Induced Dendritic Spine Loss

    OpenAIRE

    Garcia, Bonnie G.; Neely, M. Diana; Deutch, Ariel Y.

    2010-01-01

    Striatal medium spiny neurons (MSNs) receive glutamatergic afferents from the cerebral cortex and dopaminergic inputs from the substantia nigra (SN). Striatal dopamine loss decreases the number of MSN dendritic spines. This loss of spines has been suggested to reflect the removal of tonic dopamine inhibitory control over corticostriatal glutamatergic drive, with increased glutamate release culminating in MSN spine loss. We tested this hypothesis in two ways. We first determined in vivo if dec...

  11. Cortical tremor: a variant of cortical reflex myoclonus.

    Science.gov (United States)

    Ikeda, A; Kakigi, R; Funai, N; Neshige, R; Kuroda, Y; Shibasaki, H

    1990-10-01

    Two patients with action tremor that was thought to originate in the cerebral cortex showed fine shivering-like finger twitching provoked mainly by action and posture. Surface EMG showed relatively rhythmic discharge at a rate of about 9 Hz, which resembled essential tremor. However, electrophysiologic studies revealed giant somatosensory evoked potentials (SEPs) with enhanced long-loop reflex and premovement cortical spike by the jerk-locked averaging method. Treatment with beta-blocker showed no effect, but anticonvulsants such as clonazepam, valproate, and primidone were effective to suppress the tremor and the amplitude of SEPs. We call this involuntary movement "cortical tremor," which is in fact a variant of cortical reflex myoclonus.

  12. GABA and glutamate uptake and metabolism in retinal glial (Müller cells

    Directory of Open Access Journals (Sweden)

    Andreas eBringmann

    2013-04-01

    Full Text Available Müller cells, the principal glial cells of the retina, support the synaptic activity by the uptake and metabolization of extracellular neurotransmitters. Müller cells express uptake and exchange systems for various neurotransmitters including glutamate and -aminobutyric acid (GABA. Müller cells remove the bulk of extracellular glutamate in the inner retina and contribute to the glutamate clearance around photoreceptor terminals. By the uptake of glutamate, Müller cells are involved in the shaping and termination of the synaptic activity, particularly in the inner retina. Reactive Müller cells are neuroprotective, e.g., by the clearance of excess extracellular glutamate, but may also contribute to neuronal degeneration by a malfunctioning or even reversal of glial glutamate transporters, or by a downregulation of the key enzyme, glutamine synthetase. This review summarizes the present knowledge about the role of Müller cells in the clearance and metabolization of extracellular glutamate and GABA. Some major pathways of GABA and glutamate metabolism in Müller cells are described; these pathways are involved in the glutamate-glutamine cycle of the retina, in the defense against oxidative stress via the production of glutathione, and in the production of substrates for the neuronal energy metabolism.

  13. Intramuscular temperature modulates glutamate-evoked masseter muscle pain intensity in humans.

    Science.gov (United States)

    Sato, Hitoshi; Castrillon, Eduardo E; Cairns, Brian E; Bendixen, Karina H; Wang, Kelun; Nakagawa, Taneaki; Wajima, Koichi; Svensson, Peter

    2015-01-01

    To determine whether glutamate-evoked jaw muscle pain is altered by the temperature of the solution injected. Sixteen healthy volunteers participated and received injections of hot (48°C), neutral (36°C), or cold (3°C) solutions (0.5 mL) of glutamate or isotonic saline into the masseter muscle. Pain intensity was assessed with an electronic visual analog scale (eVAS). Numeric rating scale (NRS) scores of unpleasantness and temperature perception, pain-drawing areas, and pressure pain thresholds (PPTs) were also measured. Participants filled out the McGill Pain Questionnaire (MPQ). Two-way or three-way repeated measures ANOVA were used for data analyses. Injection of hot glutamate and cold glutamate solutions significantly increased and decreased, respectively, the peak pain intensity compared with injection of neutral glutamate solution. The duration of glutamate-evoked pain was significantly longer when hot glutamate was injected than when cold glutamate was injected. No significant effect of temperature on pain intensity was observed when isotonic saline was injected. No effect of solution temperature was detected on unpleasantness, heat perception, cold perception, area of pain drawings, or PPTs. There was a significantly greater use of the "numb" term in the MPQ to describe the injection of cold solutions compared to the injection of both neutral and hot solutions. Glutamate-evoked jaw muscle pain was significantly altered by the temperature of the injection solution. Although temperature perception in the jaw muscle is poor, pain intensity is increased when the muscle tissue temperature is elevated.

  14. Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide

    International Nuclear Information System (INIS)

    Kurokawa, Yuko; Sekiguchi, Fumiko; Kubo, Satoko; Yamasaki, Yoshiko; Matsuda, Sachi; Okamoto, Yukari; Sekimoto, Teruki; Fukatsu, Anna; Nishikawa, Hiroyuki; Kume, Toshiaki; Fukushima, Nobuyuki; Akaike, Akinori; Kawabata, Atsufumi

    2011-01-01

    Highlights: ► Hydrogen sulfide causes NMDA receptor-independent neurotoxicity in mouse fetal cortical neurons. ► Activation of ERK mediates the toxicity of hydrogen sulfide. ► Apoptotic mechanisms are involved in the hydrogen-induced cell death. -- Abstract: Hydrogen sulfide (H 2 S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H 2 S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypan blue staining, but did not significantly reduce the glutamate toxicity. The neurotoxicity of NaHS was resistant to inhibitors of NMDA receptors, T-type calcium channels and NOS, and was blocked by inhibitors of MEK, but not JNK, p38 MAP kinase, PKC and Src. NaHS caused prompt phosphorylation of ERK and upregulation of Bad, followed by translocation of Bax to mitochondria and release of mitochondrial cytochrome c, leading to the nuclear condensation/fragmentation. These effects of NaHS were suppressed by the MEK inhibitor. Our data suggest that the NMDA receptor-independent neurotoxicity of H 2 S involves activation of the MEK/ERK pathway and some apoptotic mechanisms.

  15. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10.

    Science.gov (United States)

    Zhang, Huili; Zhu, Jianzhong; Zhu, Xiangcheng; Cai, Jin; Zhang, Anyi; Hong, Yizhi; Huang, Jin; Huang, Lei; Xu, Zhinan

    2012-07-01

    A new exogenous glutamic acid-independent γ-PGA producing strain was isolated and characterized as Bacillus subtilis C10. The factors influencing the endogenous glutamic acid supply and the biosynthesis of γ-PGA in this strain were investigated. The results indicated that citric acid and oxalic acid showed the significant capability to support the overproduction of γ-PGA. This stimulated increase of γ-PGA biosynthesis by citric acid or oxalic acid was further proved in the 10 L fermentor. To understand the possible mechanism contributing to the improved γ-PGA production, the activities of four key intracellular enzymes were measured, and the possible carbon fluxes were proposed. The result indicated that the enhanced level of pyruvate dehydrogenase (PDH) activity caused by oxalic acid was important for glutamic acid synthesized de novo from glucose. Moreover, isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) were the positive regulators of glutamic acid biosynthesis, while 2-oxoglutarate dehydrogenase complex (ODHC) was the negative one. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13...

  17. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens LL3.

    Science.gov (United States)

    Zhang, Wei; He, Yulian; Gao, Weixia; Feng, Jun; Cao, Mingfeng; Yang, Chao; Song, Cunjiang; Wang, Shufang

    2015-02-01

    Here, we attempted to elevate poly-gamma-glutamic acid (γ-PGA) production by modifying genes involved in glutamate metabolism in Bacillus amyloliquefaciens LL3. Products of rocR, rocG and gudB facilitate the conversion from glutamate to 2-oxoglutarate in Bacillus subtillis. The gene odhA is responsible for the synthesis of a component of the 2-oxoglutarate dehydrogenase complex that catalyzes the oxidative decarboxylation of 2-oxoglutarate to succinyl coenzyme A. In-frame deletions of these four genes were performed. In shake flask experiments the gudB/rocG double mutant presented enhanced production of γ-PGA, a 38 % increase compared with wild type. When fermented in a 5-L fermenter with pH control, the γ-PGA yield of the rocR mutant was increased to 5.83 g/L from 4.55 g/L for shake flask experiments. The gudB/rocG double mutant produced 5.68 g/L γ-PGA compared with that of 4.03 g/L for the wild type, a 40 % increase. Those results indicated the possibility of improving γ-PGA production by modifying glutamate metabolism, and identified potential genetic targets to improve γ-PGA production.

  18. Protective Effect of Edaravone on Glutamate-Induced Neurotoxicity in Spiral Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Xiaohui Bai

    2016-01-01

    Full Text Available Glutamate is an important excitatory neurotransmitter in mammalian brains, but excessive amount of glutamate can cause “excitotoxicity” and lead to neuronal death. As bipolar neurons, spiral ganglion neurons (SGNs function as a “bridge” in transmitting auditory information from the ear to the brain and can be damaged by excessive glutamate which results in sensorineural hearing loss. In this study, edaravone, a free radical scavenger, elicited both preventative and therapeutic effects on SGNs against glutamate-induced cell damage that was tested by MTT assay and trypan blue staining. Ho.33342 and PI double staining revealed that apoptosis as well as necrosis took place during glutamate treatment, and apoptosis was the main type of cell death. Oxidative stress played an important role in glutamate-induced cell damage but pretreatment with edaravone alleviated cell death. Results of western blot demonstrated that mechanisms underlying the toxicity of glutamate and the protection of edaravone were related to the PI3K pathway and Bcl-2 protein family.

  19. Protective Effect of Edaravone on Glutamate-Induced Neurotoxicity in Spiral Ganglion Neurons

    Science.gov (United States)

    Bai, Xiaohui; Zhang, Chi; Chen, Aiping; Liu, Wenwen; Li, Jianfeng; Sun, Qian

    2016-01-01

    Glutamate is an important excitatory neurotransmitter in mammalian brains, but excessive amount of glutamate can cause “excitotoxicity” and lead to neuronal death. As bipolar neurons, spiral ganglion neurons (SGNs) function as a “bridge” in transmitting auditory information from the ear to the brain and can be damaged by excessive glutamate which results in sensorineural hearing loss. In this study, edaravone, a free radical scavenger, elicited both preventative and therapeutic effects on SGNs against glutamate-induced cell damage that was tested by MTT assay and trypan blue staining. Ho.33342 and PI double staining revealed that apoptosis as well as necrosis took place during glutamate treatment, and apoptosis was the main type of cell death. Oxidative stress played an important role in glutamate-induced cell damage but pretreatment with edaravone alleviated cell death. Results of western blot demonstrated that mechanisms underlying the toxicity of glutamate and the protection of edaravone were related to the PI3K pathway and Bcl-2 protein family. PMID:27957345

  20. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.

    Directory of Open Access Journals (Sweden)

    Yijen A Huang

    Full Text Available Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III taste bud cells (∼50% respond to 100 µM glutamate, NMDA, or kainic acid (KA with an increase in intracellular Ca(2+. In contrast, Receptor (Type II taste cells rarely (4% responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.

  1. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.

    Science.gov (United States)

    Huang, Yijen A; Grant, Jeff; Roper, Stephen

    2012-01-01

    Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III) taste bud cells (∼50%) respond to 100 µM glutamate, NMDA, or kainic acid (KA) with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami) receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.

  2. Glutamate metabolism is down-regulated in astrocytes during experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Hardin-Pouzet, H; Krakowski, M; Bourbonnière, L

    1997-01-01

    dehydrogenase (GDH) expression were dramatically reduced. These two astrocytic enzymes are responsible for degradation of glutamate, the most abundant excitatory neurotransmitter in the brain. Since elevated levels of glutamate may be neurotoxic, we propose that the decreased capacity of astrocytes...... to metabolize glutamate may contribute to EAE pathology....

  3. Curcumin-Protected PC12 Cells Against Glutamate-Induced Oxidative Toxicity

    Directory of Open Access Journals (Sweden)

    Chi-Huang Chang

    2014-01-01

    Full Text Available Glutamate is a major excitatory neurotransmitter present in the central nervous system. The glutamate/cystine antiporter system xc– connects the antioxidant defense with neurotransmission and behaviour. Overactivation of ionotropic glutamate receptors induces neuronal death, a pathway called excitotoxicity. Glutamate-induced oxidative stress is a major contributor to neurodegenerative diseases including cerebral ischemia, Alzheimer’s and Huntington’s disease. Curcuma has a wide spectrum of biological activities regarding neuroprotection and neurocognition. By reducing the oxidative damage, curcumin attenuates a spinal cord ischemia-reperfusion injury, seizures and hippocampal neuronal loss. The rat pheochromocytoma (PC12 cell line exhibits many characteristics useful for the study of the neuroprotection and neurocognition. This investigation was carried out to determine whether the neuroprotective effects of curcumin can be observed via the glutamate-PC12 cell model. Results indicate that glutamate (20 mM upregulated glutathione peroxidase 1, glutathione disulphide, Ca2+ influx, nitric oxide production, cytochrome c release, Bax/Bcl-2 ratio, caspase-3 activity, lactate dehydrogenase release, reactive oxygen species, H2O2, and malondialdehyde; and downregulated glutathione, glutathione reductase, superoxide dismutase and catalase, resulting in enhanced cell apoptosis. Curcumin alleviates all these adverse effects. Conclusively, curcumin can effectively protect PC12 cells against the glutamate-induced oxidative toxicity. Its mode of action involves two pathways: the glutathione-dependent nitric oxide-reactive oxygen species pathway and the mitochondria-dependent nitric oxide-reactive oxygen species pathway.

  4. Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles

    Science.gov (United States)

    Wilson, Christina L.; Natarajan, Vaishaali; Hayward, Stephen L.; Khalimonchuk, Oleh; Kidambi, Srivatsan

    2015-11-01

    Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 +/- 10.56 ppm, 136.0 +/- 31.73 ppm and 62.37 +/- 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction.Titanium dioxide (Ti

  5. Creatine affords protection against glutamate-induced nitrosative and oxidative stress.

    Science.gov (United States)

    Cunha, Mauricio P; Lieberknecht, Vicente; Ramos-Hryb, Ana Belén; Olescowicz, Gislaine; Ludka, Fabiana K; Tasca, Carla I; Gabilan, Nelson H; Rodrigues, Ana Lúcia S

    2016-05-01

    Creatine has been reported to exert beneficial effects in several neurodegenerative diseases in which glutamatergic excitotoxicity and oxidative stress play an etiological role. The purpose of this study was to investigate the protective effects of creatine, as compared to the N-Methyl-d-Aspartate (NMDA) receptor antagonist dizocilpine (MK-801), against glutamate or hydrogen peroxide (H2O2)-induced injury in human neuroblastoma SH-SY5Y cells. Exposure of cells to glutamate (60-80 mM) or H2O2 (200-300 μM) for 24 h decreased cellular viability and increased dichlorofluorescein (DCF) fluorescence (indicative of increased reactive oxygen species, ROS) and nitric oxide (NO) production (assessed by mono-nitrogen oxides, NOx, levels). Creatine (1-10 mM) or MK-801 (0.1-10 μM) reduced glutamate- and H2O2-induced toxicity. The protective effect of creatine against glutamate-induced toxicity involves its antioxidant effect, since creatine, similar to MK-801, prevented the increase on DCF fluorescence induced by glutamate or H2O2. Furthermore, creatine or MK-801 blocked glutamate- and H2O2-induced increases in NOx levels. In another set of experiments, the repeated, but not acute, administration of creatine (300 mg/kg, po) in mice prevented the decreases on cellular viability and mitochondrial membrane potential (assessed by tetramethylrhodamine ethyl ester, TMRE, probe) of hippocampal slices incubated with glutamate (10 mM). Creatine concentration-dependent decreased the amount of nitrite formed in the reaction of oxygen with NO produced from sodium nitroprusside solution, suggesting that its protective effect against glutamate or H2O2-induced toxicity might be due to its scavenger activity. Overall, the results suggest that creatine may be useful as adjuvant therapy for neurodegenerative disease treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Extent of cortical involvement in amyotrophic lateral sclerosis--an analysis based on cortical thickness.

    Science.gov (United States)

    Thorns, Johannes; Jansma, Henk; Peschel, Thomas; Grosskreutz, Julian; Mohammadi, Bahram; Dengler, Reinhard; Münte, Thomas F

    2013-10-18

    Besides the defining involvement of upper and lower motor neurons, the involvement of extramotor structures has been increasingly acknowledged in amyotrophic lateral sclerosis (ALS). Here we investigated a group of 14 mildly to moderately affected ALS patients and 14 age-matched healthy control participants using cortical thickness analysis. Cortical thickness was determined from high resolution 3D T1 magnetic resonance images and involved semiautomatic segmentation in grey and white matter, cortical alignment and determination of thickness using the Laplace method. In addition to a whole-cortex analysis a region of interest approach was applied. ALS patients showed regions of significant cortical thinning in the pre- and postcentral gyri bilaterally. Further regions of cortical thinning included superior and inferior parietal lobule, angular and supramarginal gyrus, insula, superior frontal, temporal and occipital regions, thus further substantiating extramotor involvement in ALS. A relationship between cortical thickness of the right superior frontal cortex and clinical severity (assessed by the ALS functional rating scale) was also demonstrated. Cortical thickness is reduced in ALS not only in motor areas but in widespread non-motor cortical areas. Cortical thickness is related to clinical severity.

  7. Music and the nucleus accumbens.

    Science.gov (United States)

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA.

  8. Some Properties of Glutamate Dehydrogenase from the Marine Red ...

    African Journals Online (AJOL)

    Keywords: ammonia assimilation, glutamate dehydrogenase, GDH, Gracilaria sordida, red alga, enzyme activity. Glutamate dehydrogenases (GDH, EC ... Anabolic functions could be assimilation of ammonia released during photorespiration and synthesis of N-rich transport compounds. Western Indian Ocean Journal of ...

  9. Exocytosis of gliotransmitters from cortical astrocytes: implications for synaptic plasticity and aging.

    Science.gov (United States)

    Lalo, Ulyana; Rasooli-Nejad, Seyed; Pankratov, Yuriy

    2014-10-01

    Maintaining brain function during aging is very important for mental and physical health. Recent studies showed a crucial importance of communication between two major types of brain cells: neurons transmitting electrical signals, and glial cells, which maintain the well-being and function of neurons. Still, the study of age-related changes in neuron-glia signalling is far from complete. We have shown previously that cortical astrocytes are capable of releasing ATP by a quantal soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) complex-dependent mechanism. Release of ATP from cortical astrocytes can be activated via various pathways, including direct UV-uncaging of intracellular Ca²⁺ or G-protein-coupled receptors. Importantly, release of both ATP and glutamate from neocortical astrocytes was not observed in brain slices of dominant-negative SNARE (dnSNARE) mice, expressing dnSNARE domain selectively in astrocytes. We also discovered that astrocyte-driven ATP can cause significant attenuation of synaptic inhibition in the pyramidal neurons via Ca²⁺-interaction between the neuronal ATP and γ-aminobutyric acid (GABA) receptors. Furthermore, we showed that astrocyte-derived ATP can facilitate the induction of long-term potentiation of synaptic plasticity in the neocortex. Our recent data have shown that an age-related decrease in the astroglial Ca²⁺ signalling can cause a substantial decrease in the exocytosis of gliotransmitters, in particular ATP. Age-related impairment of ATP release from cortical astrocytes can cause a decrease in the extent of astroglial modulation of synaptic transmission in the neocortex and can therefore contribute to the age-related impairment of synaptic plasticity and cognitive decline. Combined, our results strongly support the physiological relevance of glial exocytosis for glia-neuron communications and brain function.

  10. Risk-Conferring Glutamatergic Genes and Brain Glutamate Plus Glutamine in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Juan R. Bustillo

    2017-06-01

    Full Text Available BackgroundThe proton magnetic resonance spectroscopy (1H-MRS signals from glutamate (or the combined glutamate and glutamine signal—Glx have been found to be greater in various brain regions in people with schizophrenia. Recently, the Psychiatric Genetics Consortium reported that several common single-nucleotide polymorphisms (SNPs in glutamate-related genes confer increased risk of schizophrenia. Here, we examined the relationship between presence of these risk polymorphisms and brain Glx levels in schizophrenia.Methods1H-MRS imaging data from an axial, supraventricular tissue slab were acquired in 56 schizophrenia patients and 67 healthy subjects. Glx was measured in gray matter (GM and white matter (WM regions. The genetic data included six polymorphisms genotyped across an Illumina 5M SNP array. Only three of six glutamate as well as calcium-related SNPs were available for examination. These included three glutamate-related polymorphisms (rs10520163 in CLCN3, rs12704290 in GRM3, and rs12325245 in SLC38A7, and three calcium signaling polymorphisms (rs1339227 in RIMS1, rs7893279 in CACNB2, and rs2007044 in CACNA1C. Summary risk scores for the three glutamate and the three calcium polymorphisms were calculated.ResultsGlx levels in GM positively correlated with glutamate-related genetic risk score but only in younger (≤36 years schizophrenia patients (p = 0.01. Glx levels did not correlate with calcium risk scores. Glx was higher in the schizophrenia group compared to levels in controls in GM and WM regardless of age (p < 0.001.ConclusionElevations in brain Glx are in part, related to common allelic variants of glutamate-related genes known to increase the risk for schizophrenia. Since the glutamate risk scores did not differ between groups, some other genetic or environmental factors likely interact with the variability in glutamate-related risk SNPs to contribute to an increase in brain Glx early in the illness.

  11. Subcellular fractionation on Percoll gradient of mossy fiber synaptosomes: evoked release of glutamate, GABA, aspartate and glutamate decarboxylase activity in control and degranulated rat hippocampus.

    Science.gov (United States)

    Taupin, P; Ben-Ari, Y; Roisin, M P

    1994-05-02

    Using discontinuous density gradient centrifugation in isotonic Percoll sucrose, we have characterized two subcellular fractions (PII and PIII) enriched in mossy fiber synaptosomes and two others (SII and SIII) enriched in small synaptosomes. These synaptosomal fractions were compared with those obtained from adult hippocampus irradiated at neonatal stage to destroy granule cells and their mossy fibers. Synaptosomes were viable as judged by their ability to release aspartate, glutamate and GABA upon K+ depolarization. After irradiation, compared to the control values, the release of glutamate and GABA was decreased by 57 and 74% in the PIII fraction, but not in the other fractions and the content of glutamate, aspartate and GABA was also decreased in PIII fraction by 62, 44 and 52% respectively. These results suggest that mossy fiber (MF) synaptosomes contain and release glutamate and GABA. Measurement of the GABA synthesizing enzyme, glutamate decarboxylase, exhibited no significant difference after irradiation, suggesting that GABA is not synthesized by this enzyme in mossy fibers.

  12. Glutamate neurotransmission is affected in prenatally stressed offspring

    DEFF Research Database (Denmark)

    Adrover, Ezequiela; Pallarés, Maria Eugenia; Baier, Carlos Javier

    2015-01-01

    Previous studies from our laboratory have shown that male adult offspring of stressed mothers exhibited higher levels of ionotropic and metabotropic glutamate receptors than control rats. These offspring also showed long-lasting astroglial hypertrophy and a reduced dendritic arborization with syn......Previous studies from our laboratory have shown that male adult offspring of stressed mothers exhibited higher levels of ionotropic and metabotropic glutamate receptors than control rats. These offspring also showed long-lasting astroglial hypertrophy and a reduced dendritic arborization...... with synaptic loss. Since metabolism of glutamate is dependent on interactions between neurons and surrounding astroglia, our results suggest that glutamate neurotransmitter pathways might be impaired in the brain of prenatally stressed rats. To study the effect of prenatal stress on the metabolism...... was not affected it was found that prenatal stress (PS) changed the expression of the transporters, thus, producing a higher level of vesicular vGluT-1 in the frontal cortex (FCx) and elevated levels of GLT1 protein and messenger RNA in the hippocampus (HPC) of adult male PS offspring. We also observed increased...

  13. Glutamate modulation of GABA transport in retinal horizontal cells of the skate

    Science.gov (United States)

    Kreitzer, Matthew A; Andersen, Kristen A; Malchow, Robert Paul

    2003-01-01

    Transport of the amino acid GABA into neurons and glia plays a key role in regulating the effects of GABA in the vertebrate retina. We have examined the modulation of GABA-elicited transport currents of retinal horizontal cells by glutamate, the likely neurotransmitter of vertebrate photoreceptors. Enzymatically isolated external horizontal cells of skate were examined using whole-cell voltage-clamp techniques. GABA (1 mm) elicited an inward current that was completely suppressed by the GABA transport inhibitors tiagabine (10 μm) and SKF89976-A (100 μm), but was unaffected by 100 μm picrotoxin. Prior application of 100 μm glutamate significantly reduced the GABA-elicited current. Glutamate depressed the GABA dose-response curve without shifting the curve laterally or altering the voltage dependence of the current. The ionotropic glutamate receptor agonists kainate and AMPA also reduced the GABA-elicited current, and the effects of glutamate and kainate were abolished by the ionotropic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline. NMDA neither elicited a current nor modified the GABA-induced current, and metabotropic glutamate analogues were also without effect. Inhibition of the GABA-elicited current by glutamate and kainate was reduced when extracellular calcium was removed and when recording pipettes contained high concentrations of the calcium chelator BAPTA. Caffeine (5 mm) and thapsigargin (2 nm), agents known to alter intracellular calcium levels, also reduced the GABA-elicited current, but increases in calcium induced by depolarization alone did not. Our data suggest that glutamate regulates GABA transport in retinal horizontal cells through a calcium-dependent process, and imply a close physical relationship between calcium-permeable glutamate receptors and GABA transporters in these cells. PMID:12562999

  14. Glutamate Concentration in the Superior Temporal Sulcus Relates to Neuroticism in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Johanna Balz

    2018-05-01

    Full Text Available Clinical studies suggest aberrant neurotransmitter concentrations in the brains of patients with schizophrenia (SCZ. Numerous studies have indicated deviant glutamate concentrations in SCZ, although the findings are inconsistent. Moreover, alterations in glutamate concentrations could be linked to personality traits in SCZ. Here, we examined the relationships between personality dimensions and glutamate concentrations in a voxel encompassing the occipital cortex (OCC and another voxel encompassing the left superior temporal sulcus (STS. We used proton magnetic resonance spectroscopy to examine glutamate concentrations in the OCC and the STS in 19 SCZ and 21 non-psychiatric healthy control (HC participants. Personality dimensions neuroticism, extraversion, openness, agreeableness and conscientiousness were assessed using the NEO-FFI questionnaire. SCZ compared to HC showed higher glutamate concentrations in the STS, reduced extraversion scores, and enhanced neuroticism scores. No group differences were observed for the other personality traits and for glutamate concentrations in the OCC. For the SCZ group, glutamate concentrations in STS were negatively correlated with the neuroticism scores [r = -0.537, p = 0.018] but this was not found in HC [r(19 = 0.011, p = 0.962]. No other significant correlations were found. Our study showed an inverse relationship between glutamate concentrations in the STS and neuroticism scores in SCZ. Elevated glutamate in the STS might serve as a compensatory mechanism that enables patients with enhanced concentrations to control and prevent the expression of neuroticism.

  15. Protein phosphatase 2ACα gene knock-out results in cortical atrophy through activating hippo cascade in neuronal progenitor cells.

    Science.gov (United States)

    Liu, Bo; Sun, Li-Hua; Huang, Yan-Fei; Guo, Li-Jun; Luo, Li-Shu

    2018-02-01

    Protein phosphatase 2ACα (PP2ACα), a vital member of the protein phosphatase family, has been studied primarily as a regulator for the development, growth and protein synthesis of a lot of cell types. Dysfunction of PP2ACα protein results in neurodegenerative disease; however, this finding has not been directly confirmed in the mouse model with PP2ACα gene knock-out. Therefore, in this study presented here, we generated the PP2ACα gene knock-out mouse model by the Cre-loxP targeting gene system, with the purpose to directly observe the regulatory role of PP2ACα gene in the development of mouse's cerebral cortex. We observe that knocking-out PP2ACα gene in the central nervous system (CNS) results in cortical neuronal shrinkage, synaptic plasticity impairments, and learning/memory deficits. Further study reveals that PP2ACα gene knock-out initiates Hippo cascade in cortical neuroprogenitor cells (NPCs), which blocks YAP translocation into the nuclei of NPCs. Notably, p73, directly targeted by Hippo cascade, can bind to the promoter of glutaminase2 (GLS2) that plays a dominant role in the enzymatic regulation of glutamate/glutamine cycle. Finally, we find that PP2ACα gene knock-out inhibits the glutamine synthesis through up-regulating the activity of phosphorylated-p73 in cortical NPCs. Taken together, it concludes that PP2ACα critically supports cortical neuronal growth and cognitive function via regulating the signaling transduction of Hippo-p73 cascade. And PP2ACα indirectly modulates the glutamine synthesis of cortical NPCs through targeting p73 that plays a direct transcriptional regulatory role in the gene expression of GLS2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. MDMA decreases glutamic acid decarboxylase (GAD) 67-immunoreactive neurons in the hippocampus and increases seizure susceptibility: Role for glutamate.

    Science.gov (United States)

    Huff, Courtney L; Morano, Rachel L; Herman, James P; Yamamoto, Bryan K; Gudelsky, Gary A

    2016-12-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37-58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Rapid synthesis and metabolism of glutamate in N2-fixing bacteroids

    International Nuclear Information System (INIS)

    Salminen, S.O.; Streeter, J.G.

    1987-01-01

    Symbiotic nodule bacteroids are thought to support N 2 fixation mainly by metabolizing dicarboxylic acids to CO 2 , generating reductant and ATP required by nitrogenase. Bradyrhizobium japonicum bacteroids were isolated anaerobically and incubated at 2% O 2 with 14 C-labeled succinate, malate, glutamate, or aspartate. 14 CO 2 was collected, and the bacteroid contents separated into neutral, organic acid, and amino acid fractions. The respiration of substrates, relative to their uptake, was malate > glutamate > succinate > aspartate. Analysis of the fractions revealed that will all substrates the radioactivity was found mostly in the amino acid fraction. The labeling of the neutral fraction was negligible and only a small amount of label was found in the organic acid fraction indicating a small pool size. TLC of the amino acid fraction showed the label to be principally in glutamate. Glutamate contained 67, 80, 97, and 88% of the 14 C in the amino acid fraction in bacteroids fed with succinate, malate, glutamate and aspartate, respectively. The data suggest that glutamate may play an important role in the bacteroid function

  18. Glutamine and glutamate as vital metabolites

    Directory of Open Access Journals (Sweden)

    Newsholme P.

    2003-01-01

    Full Text Available Glucose is widely accepted as the primary nutrient for the maintenance and promotion of cell function. This metabolite leads to production of ATP, NADPH and precursors for the synthesis of macromolecules such as nucleic acids and phospholipids. We propose that, in addition to glucose, the 5-carbon amino acids glutamine and glutamate should be considered to be equally important for maintenance and promotion of cell function. The functions of glutamine/glutamate are many, i.e., they are substrates for protein synthesis, anabolic precursors for muscle growth, they regulate acid-base balance in the kidney, they are substrates for ureagenesis in the liver and for hepatic and renal gluconeogenesis, they act as an oxidative fuel for the intestine and cells of the immune system, provide inter-organ nitrogen transport, and act as precursors of neurotransmitter synthesis, of nucleotide and nucleic acid synthesis and of glutathione production. Many of these functions are interrelated with glucose metabolism. The specialized aspects of glutamine/glutamate metabolism of different glutamine-utilizing cells are discussed in the context of glucose requirements and cell function.

  19. Neuroprotective effects of α-iso-cubebenol on glutamate-induced neurotoxicity.

    Science.gov (United States)

    Park, Sun Young; Choi, Yung Hyun; Park, Geuntae; Choi, Young-Whan

    2015-09-01

    α-Iso-cubebenol is a natural compound isolated from Schisandra chinensis, and is reported to have beneficial bioactivity including anti-inflammatory and anti-tumor activities. Glutamate-induced oxidative neuronal damage has been implicated in a variety of neurodegenerative disorders. Here we investigated the mechanisms of α-iso-cubebenol protection of mouse hippocampus-derived neuronal cells (HT22 cells) from apoptotic cell death induced by the major excitatory neurotransmitter, glutamate. Pretreatment with α-iso-cubebenol markedly attenuated glutamate-induced loss of cell viability and release of lactate dehydrogenase), in a dose-dependent manner. α-Iso-cubebenol significantly reduced glutamate-induced intracellular reactive oxygen species and calcium accumulation. Strikingly, α-iso-cubebenol inhibited glutamate-induced mitochondrial depolarization, which releases apoptosis-inducing factor from mitochondria. α-Iso-cubebenol also suppressed glutamate-induced phosphorylation of extracellular-signal-regulated kinases. Furthermore, α-iso-cubebenol induced CREB phosphorylation and Nrf-2 nuclear accumulation and increased the promoter activity of ARE and CREB in HT22 cells. α-Iso-cubebenol also upregulated the expression of phase-II detoxifying/antioxidant enzymes such as HO-1 and NQO1. Subsequent studies revealed that the inhibitory effects of α-iso-cubebenol on glutamate-induced apoptosis were abolished by small interfering RNA-mediated knockdown of CREB and Nrf-2. These findings suggest that α-iso-cubebenol prevents excitotoxin-induced oxidative damage to neurons by inhibiting apoptotic cell death, and might be a potential preventive or therapeutic agent for neurodegenerative disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids

    Science.gov (United States)

    Covey, Dan P.; Bunner, Kendra D.; Schuweiler, Douglas R.; Cheer, Joseph F.; Garris, Paul A.

    2018-01-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement

  1. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    Science.gov (United States)

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement

  2. Is glutamate involved in transient lower esophageal sphincter relaxations?

    NARCIS (Netherlands)

    Hirsch, D. P.; Tytgat, G. N. J.; Boeckxstaens, G. E. E.

    2002-01-01

    Glutamate is an important excitatory amino acid and plays a major role in brain stem neurotransmission. Although the effect of glutamate on esophaoreal motility is well studied, its role in the triggering of transient lower esophageal sphincter relaxations (TLESRs) remains to be determined.

  3. Synthesis and distribution of L-glutamic acid with three different labels

    International Nuclear Information System (INIS)

    Cohen, M.B.; Spolter, Leonard; Chia Chin Chang; MacDonald, N.S.

    1982-01-01

    A study was performed to compare the distribution of C-11 L-glutamic acid, labeled on the carboxyl group of either the alpha or gamma carbon with that of N-13 L-glutamic acid in order to determine if the position of the label is of importance in the study of the distribution of glutamic acid

  4. Mammalian folylpoly-γ-glutamate synthetase. 2. Substrate specificity and kinetic properties

    International Nuclear Information System (INIS)

    Cichowicz, D.J.; Shane, B.

    1987-01-01

    The specificity of hog liver folylpolyglutamate synthetase for folate substrates and for nucleotide and L-[ 14 C]glutamate substrates and analogues has been investigated. The kinetic mechanism, determined by using aminopterin as the folate substrate, is ordered Ter-Ter with MgATP binding first, folate second, and glutamate last. This mechanism precludes the sequential addition of glutamate moieties to enzyme-bound folate. Folate, dihydrofolate, and tetrahydrofolate possess the optimal configurations for catalysis while 5- and 10-position substitutions of the folate molecule impair catalysis. k/sub cat/ values decrease with increasing glutamate chain length, and the rate of decrease varies depending on the state of reduction and substitution of the folate molecule. Folate binding, as assessed by on rates, is slow. Dihydrofolate exhibits the fastest rate, and the rates are slightly reduced for tetrahydrofolate and 10-formyltetrahydrofolate and greatly reduced for 5-methyltetrahydrofolate and folic acid. Tetrahydrofolate polyglutamates are the only long glutamate chain length folates with detectable substrate activity. The specificity of the L-glutamate binding site is very narrow. L-Homocysteate and 4-threo-fluoroglutamate are alternate substrates and act as chain termination inhibitors in that their addition to the folate molecule prevents or severely retards the further addition of glutamate moieties. The K/sub m/ for glutamate is dependent on the folate substrate used. MgATP is the preferred nucleotide substrate, and β,γ-methylene-ATP, β,γ-imido-ATP, adenosine 5'-O-(3-thiotriphosphate), P 1 ,P 5 -di(adenosine-5') pentaphosphate, and free ATP 4- are potent inhibitors of the reaction

  5. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-10-01

    Full Text Available Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS. Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress.

  6. Fluoxetine Alleviates Behavioral Depression while Decreasing Acetylcholine Release in the Nucleus Accumbens Shell

    OpenAIRE

    Chau, David T; Rada, Pedro V; Kim, Kay; Kosloff, Rebecca A; Hoebel, Bartley G

    2011-01-01

    Selective serotonin reuptake inhibitors, such as fluoxetine, have demonstrated the ability to alleviate behavioral depression in the forced swim test; however, the sites and mechanisms of their actions remain to be further elucidated. Previous studies have suggested that behavioral depression in the swim test is mediated in part by acetylcholine (ACh) stimulating the cholinergic M1 receptors in the nucleus accumbens (NAc) shell. The current study tested whether acute, local, and chronic, subc...

  7. In vitro evidence for the brain glutamate efflux hypothesis

    DEFF Research Database (Denmark)

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby

    2012-01-01

    resistance values of 1014 ± 70 O cm(2) , and (14) C-D-mannitol permeability values of 0.88 ± 0.13 × 10(-6) cm s(-1) . Unidirectional flux studies showed that L-aspartate and L-glutamate, but not D-aspartate, displayed polarized transport in the brain-to-blood direction, however, all three amino acids......The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L......-glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial...

  8. GMP reverses the facilitatory effect of glutamate on inhibitory avoidance task in rats.

    Science.gov (United States)

    Rubin, M A; Jurach, A; da Costa Júnior, E M; Lima, T T; Jiménez-Bernal, R E; Begnini, J; Souza, D O; de Mello, C F

    1996-09-02

    Previous studies have demonstrated that post-training intrahippocampal glutamate administration improves inhibitory avoidance task performance in rats. Antagonism of the agonist actions of glutamate by guanine nucleotides has been shown at the molecular and behavioural level. In the present investigation we demonstrate that intrahippocampal co-administration of GMP (guanosine 5'-monophosphate) reverses the facilitatory effect of glutamate on the inhibitory avoidance learning paradigm and inhibits [3H]glutamate binding in hippocampal synaptic plasma membranes. These results suggest that guanine nucleotides may modulate glutamate actions.

  9. Individual differences in ethanol locomotor sensitization are associated with dopamine D1 receptor intra-cellular signaling of DARPP-32 in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Karina Possa Abrahao

    Full Text Available In mice there are clear individual differences in the development of behavioral sensitization to ethanol, a progressive potentiation of its psychomotor stimulant effect. Variability in the behavioral responses to ethanol has been associated with alcohol preference. Here we investigated if the functional hyperresponsiveness of D1 receptors observed in ethanol sensitized mice leads to an increased activation of DARPP-32, a central regulatory protein in medium spiny neurons, in the nucleus accumbens - a brain region known to play a role in drug reinforcement. Swiss Webster mice received ethanol (2.2 g/kg/day or saline i.p. administrations for 21 days and were weekly evaluated regarding their locomotor activity. From those treated with ethanol, the 33% with the highest levels of locomotor activity were classified as "sensitized" and the 33% with the lowest levels as "non-sensitized". The latter presented similar locomotor levels to those of saline-treated mice. Different subgroups of mice received intra-accumbens administrations of saline and, 48 h later, SKF-38393, D1 receptor agonist 0.1 or 1 µg/side. Indeed, sensitized mice presented functional hyperresponsiveness of D1 receptors in the accumbens. Two weeks following the ethanol treatment, other subgroups received systemic saline or SKF 10 mg/kg, 20 min before the euthanasia. The nucleus accumbens were dissected for the Western Blot analyses of total DARPP-32 and phospho-Thr34-DARPP-32 expression. D1 receptor activation induced higher phospho-Thr34-DARPP-32 expression in sensitized mice than in non-sensitized or saline. The functionally hyperresponsiveness of D1 receptors in the nucleus accumbens is associated with an increased phospho-Thr34-DARPP-32 expression after D1 receptor activation. These data suggest that an enduring increase in the sensitivity of the dopamine D1 receptor intracellular pathway sensitivity represents a neurobiological correlate associated with the development of

  10. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    Science.gov (United States)

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  11. Microscopic picture of the aqueous solvation of glutamic acid

    NARCIS (Netherlands)

    Leenders, E.J.M.; Bolhuis, P.G.; Meijer, E.J.

    2008-01-01

    We present molecular dynamics simulations of glutamic acid and glutamate solvated in water, using both density functional theory (DFT) and the Gromos96 force field. We focus on the microscopic aspects of the solvation−particularly on the hydrogen bond structures and dynamics−and investigate the

  12. Poly-gamma-glutamic acid a substitute of salivary protein statherin

    International Nuclear Information System (INIS)

    Qamar, Z.; Rahim, Z.B.H.A.; Fatima, T.

    2016-01-01

    The modus operandi of salivary proteins in reducing the kinetics of enamel dissolution during simulated caries challenges is thought to be associated with interaction of glutamic acid residues with human teeth surfaces. Japanese traditional food stuff natto is rich with chain of repeating glutamic acid residues linked by gamma-peptide bond and hence, named poly-gamma-glutamic acid (PGGA). It is a naturally occurring polypeptide and may therefore perform similar caries inhibitory functions as statherin. (author)

  13. Monosodium glutamate neonatal treatment induces cardiovascular autonomic function changes in rodents

    Directory of Open Access Journals (Sweden)

    Signorá Peres Konrad

    2012-10-01

    Full Text Available OBJECTIVES: The aim of this study was to evaluate cardiovascular autonomic function in a rodent obesity model induced by monosodium glutamate injections during the first seven days of life. METHOD: The animals were assigned to control (control, n = 10 and monosodium glutamate (monosodium glutamate, n = 13 groups. Thirty-three weeks after birth, arterial and venous catheters were implanted for arterial pressure measurements, drug administration, and blood sampling. Baroreflex sensitivity was evaluated according to the tachycardic and bradycardic responses induced by sodium nitroprusside and phenylephrine infusion, respectively. Sympathetic and vagal effects were determined by administering methylatropine and propranolol. RESULTS: Body weight, Lee index, and epididymal white adipose tissue values were higher in the monosodium glutamate group in comparison to the control group. The monosodium glutamate-treated rats displayed insulin resistance, as shown by a reduced glucose/insulin index (-62.5%, an increased area under the curve of total insulin secretion during glucose overload (39.3%, and basal hyperinsulinemia. The mean arterial pressure values were higher in the monosodium glutamate rats, whereas heart rate variability (>7 times, bradycardic responses (>4 times, and vagal (~38% and sympathetic effects (~36% were reduced as compared to the control group. CONCLUSION: Our results suggest that obesity induced by neonatal monosodium glutamate treatment impairs cardiac autonomic function and most likely contributes to increased arterial pressure and insulin resistance.

  14. Fentanyl increases dopamine release in rat nucleus accumbens: involvement of mesolimbic mu- and delta-2-opioid receptors

    NARCIS (Netherlands)

    Yoshida, Y.; Koide, S.; Hirose, N.; Takada, K.; Tomiyama, K; Koshikawa, N.; Cools, A.R.

    1999-01-01

    The effects of the u-receptor agonist fentanyl on extracellular levels of dopamine in rat nucleus accumbens were studied in awake animals by in vivo brain microdialysis. Fentanyl dosedependently increased the levels of dopamine when given intravenously (ug/kg) or via a microdialysis probe placed

  15. The Neurobiology of Methamphetamine Induced Psychosis

    Directory of Open Access Journals (Sweden)

    Jennifer Hsin-Wen Hsieh

    2014-07-01

    Full Text Available Chronic methamphetamine abuse commonly leads to psychosis, with positive and cognitive symptoms that are similar to those of schizophrenia. Methamphetamine induced psychosis (MAP can persist and diagnoses of MAP often change to a diagnosis of schizophrenia over time. Studies in schizophrenia have found much evidence of cortical GABAergic dysfunction. Methamphetamine psychosis is a well studied model for schizophrenia, however there is little research on the effects of methamphetamine on cortical GABAergic function in the model, and the neurobiology of MAP is unknown. This paper reviews the effects of methamphetamine on dopaminergic pathways, with focus on its ability to increase glutamate release in the cortex. Excess cortical glutamate would likely damage GABAergic interneurons, and evidence of this disturbance as a result of methamphetamine treatment will be discussed. We propose that cortical GABAergic interneurons are particularly vulnerable to glutamate overflow as a result of subcellular location of NMDA receptors on interneurons in the cortex. Damage to cortical GABAergic function would lead to dysregulation of cortical signals, resulting in psychosis, and further support methamphetamine induced psychosis as a model for schizophrenia.

  16. Feedback-induced glutamate spillover enhances negative feedback from horizontal cells to cones

    NARCIS (Netherlands)

    Vroman, Rozan; Kamermans, M.

    2015-01-01

    KEY POINTS: In the retina, horizontal cells feed back negatively to cone photoreceptors. Glutamate released from cones can spill over to neighbouring cones. Here we show that cone glutamate release induced by negative feedback can also spill over to neighbouring cones. This glutamate activates the

  17. Oxytocin Acts in Nucleus Accumbens to Attenuate Methamphetamine Seeking and Demand.

    Science.gov (United States)

    Cox, Brittney M; Bentzley, Brandon S; Regen-Tuero, Helaina; See, Ronald E; Reichel, Carmela M; Aston-Jones, Gary

    2017-06-01

    Evidence indicates that oxytocin, an endogenous peptide well known for its role in social behaviors, childbirth, and lactation, is a promising addiction pharmacotherapy. We employed a within-session behavioral-economic (BE) procedure in rats to examine oxytocin as a pharmacotherapy for methamphetamine (meth) addiction. The BE paradigm was modeled after BE procedures used to assess motivation for drugs in humans with addiction. The same BE variables assessed across species have been shown to predict later relapse behavior. Thus, the translational potential of preclinical BE studies is particularly strong. We tested the effects of systemic and microinfused oxytocin on demand for self-administered intravenous meth and reinstatement of extinguished meth seeking in male and female rats using a BE paradigm. Correlations between meth demand and meth seeking were assessed. Female rats showed greater demand (i.e., motivation) for meth compared with male rats. In both male and female rats, meth demand predicted reinstatement of meth seeking, and systemic oxytocin decreased demand for meth and attenuated reinstatement to meth seeking. Oxytocin was most effective at decreasing meth demand and seeking in rats with the strongest motivation for drug. Finally, these effects of systemic oxytocin were mediated by actions in the nucleus accumbens. Oxytocin decreases meth demand and seeking in both sexes, and these effects depend on oxytocin signaling in the nucleus accumbens. Overall, these data indicate that development of oxytocin-based therapies may be a promising treatment approach for meth addiction in humans. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Sleep spindles are related to schizotypal personality traits and thalamic glutamine/glutamate in healthy subjects.

    Science.gov (United States)

    Lustenberger, Caroline; O'Gorman, Ruth L; Pugin, Fiona; Tüshaus, Laura; Wehrle, Flavia; Achermann, Peter; Huber, Reto

    2015-03-01

    Schizophrenia is a severe mental disorder affecting approximately 1% of the worldwide population. Yet, schizophrenia-like experiences (schizotypy) are very common in the healthy population, indicating a continuum between normal mental functioning and the psychosis found in schizophrenic patients. A continuum between schizotypy and schizophrenia would be supported if they share the same neurobiological origin. Two such neurobiological markers of schizophrenia are: (1) a reduction of sleep spindles (12-15 Hz oscillations during nonrapid eye movement sleep), likely reflecting deficits in thalamo-cortical circuits and (2) increased glutamine and glutamate (Glx) levels in the thalamus. Thus, this study aimed to investigate whether sleep spindles and Glx levels are related to schizotypal personality traits in healthy subjects. Twenty young male subjects underwent 2 all-night sleep electroencephalography recordings (128 electrodes). Sleep spindles were detected automatically. After those 2 nights, thalamic Glx levels were measured by magnetic resonance spectroscopy. Subjects completed a magical ideation scale to assess schizotypy. Sleep spindle density was negatively correlated with magical ideation (r = -.64, P .1). The common relationship of sleep spindle density with schizotypy and thalamic Glx levels indicates a neurobiological overlap between nonclinical schizotypy and schizophrenia. Thus, sleep spindle density and magical ideation may reflect the anatomy and efficiency of the thalamo-cortical system that shows pronounced impairment in patients with schizophrenia. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Ethanol and phencyclidine interact with respect to nucleus accumbens dopamine release: differential effects of administration order and pretreatment protocol

    Directory of Open Access Journals (Sweden)

    Chris Pickering

    2010-06-01

    Full Text Available Executive dysfunction is a common symptom among alcohol-dependent individuals. Phencyclidine (PCP injection induces dysfunction in the prefrontal cortex of animals but little is known about how PCP affects the response to ethanol. Using the in vivo microdialysis technique in male Wistar rats, we investigated how systemic injection of 5 mg/kg PCP would affect the dopamine release induced by local infusion of 300 mM ethanol into the nucleus accumbens. PCP given 60 min before ethanol entirely blocked ethanol-induced dopamine release. However, when ethanol was administered 60 min before PCP, both drugs induced dopamine release and PCP’s effect was potentiated by ethanol (180% increase vs 150%. To test the role of prefrontal cortex dysfunction in ethanol reinforcement, animals were pre-treated for 5 days with 2.58 mg/kg PCP according to previously used ‘PFC hypofunction protocols’. This, however, did not change the relative response to PCP or ethanol compared to saline-treated controls. qPCR illustrated that this PCP dose did not significantly change expression of glucose transporters Glut1 (SLC2A1 or Glut3 (SLC2A3, monocarboxylate transporter MCT2 (SLC16A7, glutamate transporters GLT-1 (SLC1A2 or GLAST (SLC1A3, the immediate early gene Arc (Arg3.1 or GABAergic neuron markers GAT-1 (SLC6A1 and parvalbumin. Therefore, we concluded that PCP at a dose of 2.58 mg/kg for 5 days did not induce hypofunction in Wistar rats. However, PCP and ethanol do have overlapping mechanisms of action and these drugs differentially affect mesolimbic dopaminergic transmission depending on the order of administration.

  20. Response of hippocampal mossy fiber zinc to excessive glutamate release.

    Science.gov (United States)

    Takeda, Atsushi; Minami, Akira; Sakurada, Naomi; Nakajima, Satoko; Oku, Naoto

    2007-01-01

    The response of hippocampal mossy fiber zinc to excessive glutamate release was examined to understand the role of the zinc in excessive excitation in the hippocampus. Extracellular zinc and glutamate concentrations during excessive stimulation with high K(+) were compared between the hippocampal CA3 and CA1 by the in vivo microdialysis. Zinc concentration in the CA3 was more increased than that in the CA1, while glutamate concentration in the CA3 was less increased than that in the CA1. It is likely that more increase in extracellular zinc is linked with less increase in extracellular glutamate in the CA3. To see zinc action in mossy fiber synapses during excessive excitation, furthermore, 1mM glutamate was regionally delivered to the stratum lucidum in the presence of zinc or CaEDTA, a membrane-impermeable zinc chelator, and intracellular calcium signal was measured in the CA3 pyramidal cell layer. The persistent increase in calcium signal during stimulation with glutamate was significantly attenuated in the presence of 100 microM zinc, while significantly enhanced in the presence of 1mM CaEDTA. These results suggest that zinc released from mossy fibers attenuates the increase in intracellular calcium signal in mossy fiber synapses and postsynaptic CA3 neurons after excessive inputs to dentate granular cells.

  1. Excretion and intestinal absorption of tritiated glutamic acid by carp, Cyprinus Carpio

    International Nuclear Information System (INIS)

    Watabe, Terushia; Kistner, G.

    1986-01-01

    Excretion and intestinal absorption of tritiated glutamic acid by carp was investigated. Approximately 80% of orally administered tritium was excreted at a half life value of 1.4 h and an observed slower excretion of 7 days for the remainder. Tritium incorporated in glutamic acid was efficiently retained at the site of absorption, i.e. intestine, liver, gill, kidney, blood and muscle. A dual marking experiment using tritiated glutamic acid and 14 C-market glutamic acid showed higher excretion of tritium by factors 2.0 to 4.9 than that of 14 C. Tritiated glutamic acid is considered to be mainly incorporated in the citric acid cycle soon after administration and the release of tritium in tritiated water through the cycle is assumed as causing the initial rapid excretion of tritium in carp. The intestinal absorption of glutamic acid was likely to depend on its concentration in the administered solution. The maximum level of absorption is estimated to be 0.1 m mol/0.5 h for one year old carp. The results obtained here would make it possible to estimate the tritium contamination of fish due to tritiated glutamic acid entering the food chain. (orig.)

  2. Surface grafting of poly(L-glutamates). 3. Block copolymerization

    NARCIS (Netherlands)

    Wieringa, RH; Siesling, EA; Werkman, PJ; Vorenkamp, EJ; Schouten, AJ

    2001-01-01

    This paper describes for the first time the synthesis of surface-grafted AB-block copolypeptides, consisting of poly(gamma -benzyl L-glutamate) (PBLG) as the A-block and poly(gamma -methyl L-glutamate) (PMLG) as the B-block. Immobilized primary amine groups of (,gamma -aminopropyl)triethoxysilane

  3. In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate.

    Science.gov (United States)

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby; Nielsen, Carsten Uhd; Brodin, Birger

    2012-05-01

    The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L-glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial resistance values of 1014 ± 70 Ω cm(2) , and (14) C-D-mannitol permeability values of 0.88 ± 0.13 × 10(-6) cm s(-1) . Unidirectional flux studies showed that L-aspartate and L-glutamate, but not D-aspartate, displayed polarized transport in the brain-to-blood direction, however, all three amino acids accumulated in the cocultures when applied from the abluminal side. The transcellular transport kinetics were characterized with a K(m) of 69 ± 15 μM and a J(max) of 44 ± 3.1 pmol min(-1) cm(-2) for L-aspartate and a K(m) of 138 ± 49 μM and J(max) of 28 ± 3.1 pmol min(-1) cm(-2) for L-glutamate. The EAAT inhibitor, DL-threo-ß-Benzyloxyaspartate, inhibited transendothelial brain-to-blood fluxes of L-glutamate and L-aspartate. Expression of EAAT-1 (Slc1a3), -2 (Slc1a2), and -3 (Slc1a1) mRNA in the endothelial cells was confirmed by conventional PCR and localization of EAAT-1 and -3 in endothelial cells was shown with immunofluorescence. Overall, the findings suggest that the blood-brain barrier itself may participate in regulating brain L-glutamate concentrations. Copyright © 2012 Wiley Periodicals, Inc.

  4. Glutamate mediated astrocytic filtering of neuronal activity.

    Directory of Open Access Journals (Sweden)

    Gilad Wallach

    2014-12-01

    Full Text Available Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity.

  5. Glutamate Mediated Astrocytic Filtering of Neuronal Activity

    Science.gov (United States)

    Herzog, Nitzan; De Pittà, Maurizio; Jacob, Eshel Ben; Berry, Hugues; Hanein, Yael

    2014-01-01

    Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity. PMID:25521344

  6. Brain glutamine synthesis requires neuronal-born aspartate as amino donor for glial glutamate formation.

    Science.gov (United States)

    Pardo, Beatriz; Rodrigues, Tiago B; Contreras, Laura; Garzón, Miguel; Llorente-Folch, Irene; Kobayashi, Keiko; Saheki, Takeyori; Cerdan, Sebastian; Satrústegui, Jorgina

    2011-01-01

    The glutamate-glutamine cycle faces a drain of glutamate by oxidation, which is balanced by the anaplerotic synthesis of glutamate and glutamine in astrocytes. De novo synthesis of glutamate by astrocytes requires an amino group whose origin is unknown. The deficiency in Aralar/AGC1, the main mitochondrial carrier for aspartate-glutamate expressed in brain, results in a drastic fall in brain glutamine production but a modest decrease in brain glutamate levels, which is not due to decreases in neuronal or synaptosomal glutamate content. In vivo (13)C nuclear magnetic resonance labeling with (13)C(2)acetate or (1-(13)C) glucose showed that the drop in brain glutamine is due to a failure in glial glutamate synthesis. Aralar deficiency induces a decrease in aspartate content, an increase in lactate production, and lactate-to-pyruvate ratio in cultured neurons but not in cultured astrocytes, indicating that Aralar is only functional in neurons. We find that aspartate, but not other amino acids, increases glutamate synthesis in both control and aralar-deficient astrocytes, mainly by serving as amino donor. These findings suggest the existence of a neuron-to-astrocyte aspartate transcellular pathway required for astrocyte glutamate synthesis and subsequent glutamine formation. This pathway may provide a mechanism to transfer neuronal-born redox equivalents to mitochondria in astrocytes.

  7. Real-time monitoring of extracellular l-glutamate levels released by high-frequency stimulation at region CA1 of hippocampal slices with a glass capillary-based l-glutamate sensor

    Directory of Open Access Journals (Sweden)

    Yuki Ikegami

    2014-12-01

    Full Text Available Real-time monitoring of l-glutamate released by high-frequency stimulation in region CA1 of mouse hippocampal slices was performed with a glass capillary-based sensor, in combination with the recoding of excitatory postsynaptic potentials (fEPSPs. A method for extracting l-glutamate currents from the recorded ones was described and applied for determining the level of extracellular l-glutamate released by 100 Hz stimulation. Recording of an l-glutamate current with a current sampling interval of 1 Hz was found to be useful for acquiring a Faradaic current that reflects l-glutamate level released by the high-frequency stimulation of 7 trains, each 20 stimuli at 100 Hz and inter-train interval of 3 s. The l-glutamate level was obtained as 15 ± 6 μM (n = 8 for the persistent enhancement of fEPSPs, i.e., the induction of long-term potentiation (LTP, and 3 ± 1 μM (n = 5 for the case of no LTP induction. Based on these observations, the level of the extracellular l-glutamate was shown to play a crucial role in the induction of LTP.

  8. Role of Dopamine Receptors Subtypes, D1-Like and D2-Like, within the Nucleus Accumbens Subregions, Core and Shell, on Memory Consolidation in the One-Trial Inhibitory Avoidance Task

    Science.gov (United States)

    Manago, Francesca; Castellano, Claudio; Oliverio, Alberto; Mele, Andrea; De Leonibus, Elvira

    2009-01-01

    Recent evidence demonstrated that dopamine within the nucleus accumbens mediates consolidation of both associative and nonassociative memories. However, the specific contribution of the nucleus accumbens subregions, core and shell, and of D1 and D2 receptors subtypes has not been yet clarified. The aim of this study was, therefore, to directly…

  9. Dynamic Amygdala Influences on the Fronto-Striatal Brain Mechanisms Involved in Self-Control of Impulsive Desires.

    Science.gov (United States)

    Krämer, Bernd; Gruber, Oliver

    2015-01-01

    Human decisions are guided by a variety of motivational factors, such as immediate rewards, long-term goals, and emotions. We used functional magnetic resonance imaging to investigate the dynamic functional interactions between the amygdala, the nucleus accumbens, and the prefrontal cortex that underlie the influences of emotions, desires, and rationality on human decisions. We found that increased functional connectivity between the amygdala and the nucleus accumbens facilitated the approach of an immediate reward in the presence of emotional information. Further, increased functional interactions of the anteroventral prefrontal cortex with the amygdala and the nucleus accumbens were associated with rational decisions in dilemma situations. These findings support previous animal studies by demonstrating that emotional signals from the amygdala and goal-oriented information from prefrontal cortices interface in the nucleus accumbens to guide human decisions and reward-directed actions. © 2015 S. Karger AG, Basel.

  10. Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli

    Directory of Open Access Journals (Sweden)

    Lanuza Enrique

    2007-11-01

    Full Text Available Abstract Background Vertebrates sense chemical stimuli through the olfactory receptor neurons whose axons project to the main olfactory bulb. The main projections of the olfactory bulb are directed to the olfactory cortex and olfactory amygdala (the anterior and posterolateral cortical amygdalae. The posterolateral cortical amygdaloid nucleus mainly projects to other amygdaloid nuclei; other seemingly minor outputs are directed to the ventral striatum, in particular to the olfactory tubercle and the islands of Calleja. Results Although the olfactory projections have been previously described in the literature, injection of dextran-amines into the rat main olfactory bulb was performed with the aim of delimiting the olfactory tubercle and posterolateral cortical amygdaloid nucleus in our own material. Injection of dextran-amines into the posterolateral cortical amygdaloid nucleus of rats resulted in anterograde labeling in the ventral striatum, in particular in the core of the nucleus accumbens, and in the medial olfactory tubercle including some islands of Calleja and the cell bridges across the ventral pallidum. Injections of Fluoro-Gold into the ventral striatum were performed to allow retrograde confirmation of these projections. Conclusion The present results extend previous descriptions of the posterolateral cortical amygdaloid nucleus efferent projections, which are mainly directed to the core of the nucleus accumbens and the medial olfactory tubercle. Our data indicate that the projection to the core of the nucleus accumbens arises from layer III; the projection to the olfactory tubercle arises from layer II and is much more robust than previously thought. This latter projection is directed to the medial olfactory tubercle including the corresponding islands of Calleja, an area recently described as critical node for the neural circuit of addiction to some stimulant drugs of abuse.

  11. Regional alterations of brain biogenic amines and GABA/glutamate levels in rats following chronic lead exposure during neonatal development

    Energy Technology Data Exchange (ETDEWEB)

    Shailesh Kumar, M V; Desiraju, T [National Inst. of Mental Health and Neuro Sciences, Bangalore (India). Dept. of Neurophysiology

    1990-06-01

    Wistar rat pups were administered either a high dose of lead acetate (400 {mu}g lead-g body weight/day) or a low dose (100 {mu}g lead/g body weight/day) by gastric intubation, from 2 days through 60 days of age. The rats on both these doses exhibited statistically significant decreases in body and brain weights throughout the lead treatment period. A group of rats on high dose was also rehabilitated by discontinuing the lead from 60 days of age. In these rats, at 160 days of age, the body weight but not the brain weight recovered to normal levels. During the lead intake, the rats on high dose revealed significant elevations in the levels of noradrenaline (NA) in the hippocampus (HI), cerebellum (CE), hypothalamus (HY), brainstem (BS), and accumbens-striatum (SA). The elevated levels in all the above regions except in the HY persisted even after rehabilitation. The dopamine (DA) levels changed significantly in opposite directions in HY (elevation) and BS (reduction) during the lead treatment, and the HY recovered after rehabilitation. Under lead, the serotonin (5HT) levels were elevated significantly in the HI, BS and MC (motor cortex), while after rehabilitation the abnormality persisted only in the MC. Low dose lead treatment was also effective on the same areas of brain. In the low dose group, estimation of the levels of GABA and glutamate were also done, and a significant decrease of GABA in CE and glutamate in MC was observed. The differences observed in the neurotoxic effects (none or significant) of lead in the different regions for each of the transmitters (NA, DA, 5HT) supports the interesting conclusion that the vulnerability of the axon terminals of any given type is dependent on some regional factors, although the projections of the different regions originate from an apparently similar category of neurons in the brain stem. (orig.).

  12. 78 FR 76321 - Monosodium Glutamate From China and Indonesia

    Science.gov (United States)

    2013-12-17

    ... (Preliminary)] Monosodium Glutamate From China and Indonesia Determinations On the basis of the record \\1... injured by reason of imports from China and Indonesia of monosodium glutamate, provided for in subheading... United States at less than fair value (LTFV) and subsidized by the Governments of China and Indonesia. \\1...

  13. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs

    Energy Technology Data Exchange (ETDEWEB)

    Bello, Oscar Daniel; Cappa, Andrea Isabel; Paola, Matilde de; Zanetti, María Natalia [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Fukuda, Mitsunori [Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Fissore, Rafael A. [Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003 (United States); Mayorga, Luis S. [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Michaut, Marcela A., E-mail: mmichaut@gmail.com [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (Argentina)

    2016-09-10

    Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blot analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs. - Highlights: • Rab3A has a similar migration pattern to cortical granules in mouse oocytes. • Rab3A can be a marker of

  14. GDH-Dependent Glutamate Oxidation in the Brain Dictates Peripheral Energy Substrate Distribution

    DEFF Research Database (Denmark)

    Karaca, Melis; Frigerio, Francesca; Migrenne, Stephanie

    2015-01-01

    in a central energy-deprivation state with increased ADP/ATP ratios and phospho-AMPK in the hypothalamus. This induced changes in the autonomous nervous system balance, with increased sympathetic activity promoting hepatic glucose production and mobilization of substrates reshaping peripheral energy stores...... glutamate dehydrogenase (GDH) activity. Here, we investigated the significance of glutamate as energy substrate for the brain. Upon glutamate exposure, astrocytes generated ATP in a GDH-dependent way. The observed lack of glutamate oxidation in brain-specific GDH null CnsGlud1(-/-) mice resulted...

  15. Lesions of the dopaminergic innervation of the nucleus accumbens medial shell delay the generation of preference for sucrose, but not of sexual pheromones.

    Science.gov (United States)

    Martínez-Hernández, José; Lanuza, Enrique; Martínez-García, Fernando

    2012-01-15

    Male sexual pheromones are rewarding stimuli for female mice, able to induce conditioned place preference. To test whether processing these natural reinforcing stimuli depends on the dopaminergic innervation of the nucleus accumbens, as for other natural rewards, we compare the effects of specific lesions of the dopaminergic innervation of the medial shell of the nucleus accumbens on two different appetitive behaviours, 'pheromone seeking' and sucrose preferential intake. Female mice, with no previous experience with either adult male chemical stimuli or with sucrose, received injections of 6-hydroxydopamine (or vehicle) in the medial shell of the accumbens. Then, we analyzed their preference for male soiled-bedding and their preferential intake of a sucrose solution, with particular emphasis on the dynamics of acquisition of both natural rewards. The results indicate that both lesioned and sham animals showed similar preference for male sexual pheromones, which was constant along the test (linear dynamics). In contrast, lesioned animals differed from sham operated mice in the dynamics of sucrose consumption in their first test of sucrose preference. Sham animals showed an initial sucrose preference followed by preference for water, which can be interpreted as sucrose neophobia. Lesioned animals showed no preference at the beginning of the test, and a delayed sucrose preference appeared followed by a delayed neophobia. The next day, during a second sucrose-preference test, both groups displayed comparable and sustained preferential sucrose intake. Therefore, dopamine in the medial shell of the nucleus accumbens has a different role on the reward of sexual pheromones and sucrose. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Prefrontal cortex glutamate correlates with mental perspective-taking.

    Directory of Open Access Journals (Sweden)

    Christiane Montag

    Full Text Available BACKGROUND: Dysfunctions in theory of mind and empathic abilities have been suggested as core symptoms in major psychiatric disorders including schizophrenia and autism. Since self monitoring, perspective taking and empathy have been linked to prefrontal (PFC and anterior cingulate cortex (ACC function, neurotransmitter variations in these areas may account for normal and pathological variations of these functions. Converging evidence indicates an essential role of glutamatergic neurotransmission in psychiatric diseases with pronounced deficits in empathy. However, the role of the glutamate system for different dimensions of empathy has not been investigated so far. METHODOLOGY/PRINCIPAL FINDINGS: Absolute concentrations of cerebral glutamate in the ACC, left dorsolateral PFC and left hippocampus were determined by 3-tesla proton magnetic resonance spectroscopy (1H-MRS in 17 healthy individuals. Three dimensions of empathy were estimated by a self-rating questionnaire, the Interpersonal Reactivity Index (IRI. Linear regression analysis showed that dorsolateral PFC glutamate concentration was predicted by IRI factor "perspective taking" (T = -2.710, p = 0.018; adjusted alpha-level of 0.017, Bonferroni but not by "empathic concern" or "personal distress". No significant relationship between IRI subscores and the glutamate levels in the ACC or left hippocampus was detected. CONCLUSIONS/SIGNIFICANCE: This is the first study to investigate the role of the glutamate system for dimensions of theory of mind and empathy. Results are in line with recent concepts that executive top-down control of behavior is mediated by prefrontal glutamatergic projections. This is a preliminary finding that needs a replication in an independent sample.

  17. The Role of Primary Motor Cortex (M1) Glutamate and GABA Signaling in l-DOPA-Induced Dyskinesia in Parkinsonian Rats.

    Science.gov (United States)

    Lindenbach, David; Conti, Melissa M; Ostock, Corinne Y; George, Jessica A; Goldenberg, Adam A; Melikhov-Sosin, Mitchell; Nuss, Emily E; Bishop, Christopher

    2016-09-21

    itself. Although dyskinesia is associated with dynamic changes in primary motor cortex physiology, to date, there are no published studies investigating in vivo neurotransmitter release in M1 during dyskinesia. In parkinsonian rats, l-DOPA administration reduced M1 glutamate efflux and enhanced GABA efflux, coincident with the emergence of dyskinetic behaviors. Dyskinesia could be reduced by local M1 modulation of D1, AMPA, and GABAA receptors, providing preclinical support for the notion that exogenously blunting M1 signaling (pharmacologically or with cortical stimulation) is a therapeutic approach to the treatment of debilitating dyskinesias. Copyright © 2016 the authors 0270-6474/16/369873-15$15.00/0.

  18. Accumbens Shell AMPA Receptors Mediate Expression of Extinguished Reward Seeking through Interactions with Basolateral Amygdala

    Science.gov (United States)

    Millan, E. Zayra; McNally, Gavan P.

    2011-01-01

    Extinction is the reduction in drug seeking when the contingency between drug seeking behavior and the delivery of drug reward is broken. Here, we investigated a role for the nucleus accumbens shell (AcbSh). Rats were trained to respond for 4% (v/v) alcoholic beer in one context (Context A) followed by extinction in a second context (Context B).…

  19. Cortical Visual Impairment

    Science.gov (United States)

    ... resolves by one year of life. Is “cortical blindness” the same thing as CVI? Cortical blindness is ... What visual characteristics are associated with CVI? • Distinct color preferences • Variable level of vision loss, often demonstrating ...

  20. 40 CFR 721.3820 - L-Glutamic acid, N-(1-oxododecyl)-, disodium salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false L-Glutamic acid, N-(1-oxododecyl... Specific Chemical Substances § 721.3820 L-Glutamic acid, N-(1-oxododecyl)-, disodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic...

  1. Hierarchical mutational events compensate for glutamate auxotrophy of a Bacillus subtilis gltC mutant.

    Science.gov (United States)

    Dormeyer, Miriam; Lübke, Anastasia L; Müller, Peter; Lentes, Sabine; Reuß, Daniel R; Thürmer, Andrea; Stülke, Jörg; Daniel, Rolf; Brantl, Sabine; Commichau, Fabian M

    2017-06-01

    Glutamate is the major donor of nitrogen for anabolic reactions. The Gram-positive soil bacterium Bacillus subtilis either utilizes exogenously provided glutamate or synthesizes it using the gltAB-encoded glutamate synthase (GOGAT). In the absence of glutamate, the transcription factor GltC activates expression of the GOGAT genes for glutamate production. Consequently, a gltC mutant strain is auxotrophic for glutamate. Using a genetic selection and screening system, we could isolate and differentiate between gltC suppressor mutants in one step. All mutants had acquired the ability to synthesize glutamate, independent of GltC. We identified (i) gain-of-function mutations in the gltR gene, encoding the transcription factor GltR, (ii) mutations in the promoter of the gltAB operon and (iii) massive amplification of the genomic locus containing the gltAB operon. The mutants belonging to the first two classes constitutively expressed the gltAB genes and produced sufficient glutamate for growth. By contrast, mutants that belong to the third class appeared most frequently and solved glutamate limitation by increasing the copy number of the poorly expressed gltAB genes. Thus, glutamate auxotrophy of a B. subtilis gltC mutant can be relieved in multiple ways. Moreover, recombination-dependent amplification of the gltAB genes is the predominant mutational event indicating a hierarchy of mutations. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Backpropagating Action Potentials Enable Detection of Extrasynaptic Glutamate by NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Yu-Wei Wu

    2012-05-01

    Full Text Available Synaptic NMDA receptors (NMDARs are crucial for neural coding and plasticity. However, little is known about the adaptive function of extrasynaptic NMDARs occurring mainly on dendritic shafts. Here, we find that in CA1 pyramidal neurons, backpropagating action potentials (bAPs recruit shaft NMDARs exposed to ambient glutamate. In contrast, spine NMDARs are “protected,” under baseline conditions, from such glutamate influences by perisynaptic transporters: we detect bAP-evoked Ca2+ entry through these receptors upon local synaptic or photolytic glutamate release. During theta-burst firing, NMDAR-dependent Ca2+ entry either downregulates or upregulates an h-channel conductance (Gh of the cell depending on whether synaptic glutamate release is intact or blocked. Thus, the balance between activation of synaptic and extrasynaptic NMDARs can determine the sign of Gh plasticity. Gh plasticity in turn regulates dendritic input probed by local glutamate uncaging. These results uncover a metaplasticity mechanism potentially important for neural coding and memory formation.

  3. Distribution of vesicular glutamate transporters in the human brain

    Directory of Open Access Journals (Sweden)

    Erika eVigneault

    2015-03-01

    Full Text Available Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3 are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains.

  4. Neuroprotective effects of the novel glutamate transporter inhibitor (-)-3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]-isoxazole-4-carboxylic acid, which preferentially inhibits reverse transport (glutamate release) compared with glutamate reuptake

    DEFF Research Database (Denmark)

    Colleoni, Simona; Jensen, Anders Asbjørn; Landucci, Elisa

    2008-01-01

    on the three hEAAT subtypes. (-)-HIP-A maintained the remarkable property, previously reported with the racemates, of inhibiting synaptosomal glutamate-induced [3H]D-aspartate release (reverse transport) at concentrations significantly lower than those inhibiting [3H]L-glutamate uptake. New data suggest...

  5. Relationship between Glutamate Dysfunction and Symptoms and Cognitive Function in Psychosis

    OpenAIRE

    Merritt, Kate; McGuire, Philip; Egerton, Alice

    2013-01-01

    The glutamate hypothesis of schizophrenia, proposed over two decades ago, originated following the observation that administration of drugs that block NMDA glutamate receptors, such as ketamine, could induce schizophrenia-like symptoms. Since then, this hypothesis has been extended to describe how glutamate abnormalities may disturb brain function and underpin psychotic symptoms and cognitive impairments. The glutamatergic system is now a major focus for the development of new compounds in sc...

  6. Individuals with more severe depression fail to sustain nucleus accumbens activity to preferred music over time.

    Science.gov (United States)

    Jenkins, Lisanne M; Skerrett, Kristy A; DelDonno, Sophie R; Patrón, Víctor G; Meyers, Kortni K; Peltier, Scott; Zubieta, Jon-Kar; Langenecker, Scott A; Starkman, Monica N

    2018-05-30

    We investigated the ability of preferred classical music to activate the nucleus accumbens in patients with Major depressive disorder (MDD). Twelve males with MDD and 10 never mentally ill male healthy controls (HC) completed measures of anhedonia and depression severity, and listened to 90-second segments of preferred classical music during fMRI. Compared to HCs, individuals with MDD showed less activation of the left nucleus accumbens (NAcc). Individuals with MDD showed attenuation of the left NAcc response in later compared to earlier parts of the experiment, supporting theories that MDD involves an inability to sustain reward network activation. Counter intuitively, we found that NAcc activity during early music listening was associated with greater depression severity. In whole-brain analyses, anhedonia scores predicted activity in regions within the default mode network, supporting previous findings. Our results support theories that MDD involves an inability to sustain reward network activation. It also highlights that pleasant classical music can engage critical neural reward circuitry in MDD. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Elucidation of the pathways of catabolic glutamate conversion in three thermophilic anaerobic bacteria.

    Science.gov (United States)

    Plugge, C M; van Leeuwen, J M; Hummelen, T; Balk, M; Stams, A J

    2001-07-01

    The glutamate catabolism of three thermophilic syntrophic anaerobes was compared based on the combined use of [(13)C] glutamate NMR measurements and enzyme activity determinations. In some cases the uptake of intermediates from different pathways was studied. The three organisms, Caloramator coolhaasii, Thermanaerovibrio acidaminovorans and strain TGO, had a different stoichiometry of glutamate conversion and were dependent on the presence of a hydrogen scavenger (Methanobacterium thermoautotrophicum Z245) to a different degree for their growth. C. coolhaasii formed acetate, CO(2), NH(4)(+) and H(2) from glutamate. Acetate was found to be formed through the beta-methylaspartate pathway in pure culture as well as in coculture. T. acidaminovorans converted glutamate to acetate, propionate, CO(2), NH(4)(+) and H(2). Most likely, this organism uses the beta-methylaspartate pathway for acetate formation. Propionate formation occurred through a direct oxidation of glutamate via succinyl-CoA and methylmalonyl-CoA. The metabolism of T. acidaminovorans shifted in favour of propionate formation when grown in coculture with the methanogen, but this did not lead to the use of a different glutamate degradation pathway. Strain TGO, an obligate syntrophic glutamate-degrading organism, formed propionate, traces of succinate, CO(2), NH(4)(+) and H(2). Glutamate was converted to propionate oxidatively via the intermediates succinyl-CoA and methylmalonyl-CoA. A minor part of the succinyl-CoA was converted to succinate and excreted.

  8. Interactions between Brainstem Noradrenergic Neurons and the Nucleus Accumbens Shell in Modulating Memory for Emotionally Arousing Events

    Science.gov (United States)

    Kerfoot, Erin C.; Williams, Cedric L.

    2011-01-01

    The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…

  9. Effects of Bee Venom on Glutamate-Induced Toxicity in Neuronal and Glial Cells

    Directory of Open Access Journals (Sweden)

    Sang Min Lee

    2012-01-01

    Full Text Available Bee venom (BV, which is extracted from honeybees, is used in traditional Korean medical therapy. Several groups have demonstrated the anti-inflammatory effects of BV in osteoarthritis both in vivo and in vitro. Glutamate is the predominant excitatory neurotransmitter in the central nervous system (CNS. Changes in glutamate release and uptake due to alterations in the activity of glutamate transporters have been reported in many neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. To assess if BV can prevent glutamate-mediated neurotoxicity, we examined cell viability and signal transduction in glutamate-treated neuronal and microglial cells in the presence and absence of BV. We induced glutamatergic toxicity in neuronal cells and microglial cells and found that BV protected against cell death. Furthermore, BV significantly inhibited the cellular toxicity of glutamate, and pretreatment with BV altered MAP kinase activation (e.g., JNK, ERK, and p38 following exposure to glutamate. These findings suggest that treatment with BV may be helpful in reducing glutamatergic cell toxicity in neurodegenerative diseases.

  10. VGLUTs and Glutamate Synthesis—Focus on DRG Neurons and Pain

    Directory of Open Access Journals (Sweden)

    Mariana Malet

    2015-12-01

    Full Text Available The amino acid glutamate is the principal excitatory transmitter in the nervous system, including in sensory neurons that convey pain sensation from the periphery to the brain. It is now well established that a family of membrane proteins, termed vesicular glutamate transporters (VGLUTs, serve a critical function in these neurons: they incorporate glutamate into synaptic vesicles. VGLUTs have a central role both under normal neurotransmission and pathological conditions, such as neuropathic or inflammatory pain. In the present short review, we will address VGLUTs in the context of primary afferent neurons. We will focus on the role of VGLUTs in pain triggered by noxious stimuli, peripheral nerve injury, and tissue inflammation, as mostly explored in transgenic mice. The possible interplay between glutamate biosynthesis and VGLUT-dependent packaging in synaptic vesicles, and its potential impact in various pain states will be presented.

  11. Limited energy supply in Müller cells alters glutamate uptake

    DEFF Research Database (Denmark)

    Toft-Kehler, Anne Katrine; Skytt, Dorte Marie; Poulsen, Kristian Arild

    2014-01-01

    The viability of retinal ganglion cells (RGC) is essential for the maintenance of visual function. RGC homeostasis is maintained by the surrounding retinal glial cells, the Müller cells, which buffer the extracellular concentration of neurotransmitters and provide the RGCs with energy. This study...... evaluates if glucose-deprivation of Müller cells interferes with their ability to remove glutamate from the extracellular space. The human Müller glial cell line, Moorfields/Institute of Ophthalmology-Müller 1, was used to study changes in glutamate uptake. Excitatory amino acid transporter (EAAT) proteins...... were up-regulated in glucose-deprived Müller cells and glutamate uptake was significantly increased in the absence of glucose. The present findings revealed an up-regulation of EAAT1 and EAAT2 in glucose-deprived Müller cells as well as an increased ability to take up glutamate. Hence, glucose...

  12. probing the cob(ii)alamin conductor hypothesis with glutamate ...

    African Journals Online (AJOL)

    dell

    Glutamate mutase activity was also demonstrated upon incubation of GlmS and E with 3',5'- ... overproduced in E.coli (Huhta et al. 2001,. Huhta et ..... Biochemistry. 37: 9704-9715. Buckel W 2001 Unusual enzymes involved in five pathways of glutamate fermentation. Appl. Microbiol. Biotechnol. 57: 263-273. Buckel W and ...

  13. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells

    Science.gov (United States)

    Brew, Helen; Attwell, David

    1987-06-01

    Glutamate is taken up avidly by glial cells in the central nervous system1. Glutamate uptake may terminate the transmitter action of glutamate released from neurons1, and keep extracellular glutamate at concentrations below those which are neurotoxic. We report here that glutamate evokes a large inward current in retinal glial cells which have their membrane potential and intracellular ion concentrations controlled by the whole-cell patch-clamp technique2. This current seems to be due to an electrogenic glutamate uptake carrier, which transports at least two sodium ions with every glutamate anion carried into the cell. Glutamate uptake is strongly voltage-dependent, decreasing at depolarized potentials: when fully activated, it contributes almost half of the conductance in the part of the glial cell membrane facing the retinal neurons. The spatial localization, glutamate affinity and magnitude of the uptake are appropriate for terminating the synaptic action of glutamate released from photoreceptors and bipolar cells. These data challenge present explanations of how the b-wave of the electroretinogram is generated, and suggest a mechanism for non-vesicular voltage-dependent release of glutamate from neurons.

  14. Cannabinoid Receptors Mediate Methamphetamine Induction of High Frequency Gamma Oscillations in the Nucleus Accumbens

    Science.gov (United States)

    Morra, Joshua T.; Glick, Stanley D.; Cheer, Joseph F.

    2012-01-01

    Patients suffering from amphetamine---induced psychosis display repetitive behaviors, partially alleviated by antipsychotics, which are reminiscent of rodent stereotypies. Due to recent evidence implicating endocannabinoid involvement in brain disorders, including psychosis, we studied the effects of endocannabinoid signaling on neuronal oscillations of rats exhibiting methamphetamine stereotypy. Neuronal network oscillations were recorded with multiple single electrode arrays aimed at the nucleus accumbens of freely moving rats. During the experiments, animals were dosed intravenously with the CB1 receptor antagonist rimonabant (0.3 mg/kg) or vehicle followed by an ascending dose regimen of methamphetamine (0.01, 0.1, 1, and 3 mg/kg; cumulative dosing). The effects of drug administration on stereotypy and local gamma oscillations were evaluated. Methamphetamine treatment significantly increased high frequency gamma oscillations (~ 80 Hz). Entrainment of a subpopulation of nucleus accumbens neurons to high frequency gamma was associated with stereotypy encoding in putative fast-spiking interneurons, but not in putative medium spiny neurons. The observed ability of methamphetamine to induce both stereotypy and high frequency gamma power was potently disrupted following CB1 receptor blockade. The present data suggest that CB1 receptor-dependent mechanisms are recruited by methamphetamine to modify striatal interneuron oscillations that accompany changes in psychomotor state, further supporting the link between endocannabinoids and schizophrenia spectrum disorders. PMID:22609048

  15. Exogenous glutamate induces short and long-term potentiation in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Frondaroli, A; Pessia, M; Pettorossi, V E

    2001-08-08

    In rat brain stem slices, high concentrations of exogenous glutamate induce long-term potentiation (LTP) of the field potentials evoked in the medial vestibular nuclei (MVN) by vestibular afferent stimulation. At low concentrations, glutamate can also induce short-term potentiation (STP), indicating that LTP and STP are separate events depending on the level of glutamatergic synapse activation. LTP and STP are prevented by blocking NMDA receptors and nitric oxide (NO) synthesis. Conversely, blocking platelet-activating factor (PAF) and group I metabotropic glutamate receptors only prevents the full development of LTP. Moreover, in the presence of blocking agents, glutamate causes transient inhibition, suggesting that when potentiation is impeded, exogenous glutamate can activate presynaptic mechanisms that reduce glutamate release.

  16. Immunocytochemical localization of the glutamate transporter GLT-1 in goldfish (Carassius auratus) retina

    NARCIS (Netherlands)

    Vandenbranden, C. A.; Yazulla, S.; Studholme, K. M.; Kamphuis, W.; Kamermans, M.

    2000-01-01

    Glutamate is the major excitatory neurotransmitter in the retina of vertebrates. Electrophysiological experiments in goldfish and salamander have shown that neuronal glutamate transporters play an important role in the clearance of glutamate from cone synaptic clefts. In this study, the localization

  17. Nitric oxide synthase-I containing cortical interneurons co-express antioxidative enzymes and anti-apoptotic Bcl-2 following focal ischemia: evidence for direct and indirect mechanisms towards their resistance to neuropathology.

    Science.gov (United States)

    Bidmon, H J; Emde, B; Kowalski, T; Schmitt, M; Mayer, B; Kato, K; Asayama, K; Witte, O W; Zilles, K

    2001-09-01

    Neuronal nitric oxide-I is constitutively expressed in approximately 2% of cortical interneurons and is co-localized with gamma-amino butric acid, somatostatin or neuropeptide Y. These interneurons additionally express high amounts of glutamate receptors which mediate the glutamate-induced hyperexcitation following cerebral injury, under these conditions nitric oxide production increases contributing to a potentiation of oxidative stress. However, perilesional nitric oxide synthase-I containing neurons are known to be resistant to ischemic and excitotoxic injury. In vitro studies show that nitrosonium and nitroxyl ions inactivate N-methyl-D-aspartate receptors, resulting in neuroprotection. The question remains of how these cells are protected against their own high intracellular nitric oxide production after activation. In this study, we investigated immunocytochemically nitric oxide synthase-I containing cortical neurons in rats after unilateral, cortical photothrombosis. In this model of focal ischemia, perilesional, constitutively nitric oxide synthase-I containing neurons survived and co-expressed antioxidative enzymes, such as manganese- and copper-zinc-dependent superoxide dismutases, heme oxygenase-2 and cytosolic glutathione peroxidase. This enhanced antioxidant expression was accompanied by a strong perinuclear presence of the antiapoptotic Bcl-2 protein. No colocalization was detectable with upregulated heme oxygenase-1 in glia and the superoxide and prostaglandin G(2)-producing cyclooxygenase-2 in neurons. These results suggest that nitric oxide synthase-I containing interneurons are protected against intracellular oxidative damage and apoptosis by Bcl-2 and several potent antioxidative enzymes. Since nitric oxide synthase-I positive neurons do not express superoxide-producing enzymes such as cyclooxygenase-1, xanthine oxidase and cyclooxygenase-2 in response to injury, this may additionally contribute to their resistance by reducing their internal

  18. [Molecular organization of glutamate-sensitive chemoexcitatory membranes of nerve cells. Comparative analysis of glutamate-binding membrane proteins from the cerebral cortex of rats and humans].

    Science.gov (United States)

    Dambinova, S A; Gorodinskiĭ, A I; Lekomtseva, T M; Koreshonkov, O N

    1987-10-01

    The kinetics of 3H-L-glutamate binding to human brain synaptic membranes revealed the existence of one type of binding sites with Kd and Vmax comparable with those for freshly isolated rat brain membranes. The fraction of glutamate-binding proteins (GBP) was shown to contain three components with Mr of 14, 60 and 280 kD whose stoichiometry is specific for human and rat brain. All fractions were found to bind the radiolabeled neurotransmitter and to dissociate into subunits with Mr of 14 kD after treatment with-potent detergents (with the exception of the 56-60 kD component). Study of association-dissociation of GBP protein subunits by high performance liquid chromatography confirmed the hypothesis on the oligomeric structure of glutamate receptors which are made up of low molecular weight glycoprotein-lipid subunits and which form ionic channels by way of repeated association. Despite the similarity of antigen determinants in the active center of glutamate receptors from human and rat brain, it was assumed that the stoichiometry of structural organization of receptor subunits isolated from different sources is different. The functional role of structural complexity of human brain glutamate receptors is discussed.

  19. Sources Contributing to the Average Extracellular Concentration of Dopamine in the Nucleus Accumbens

    OpenAIRE

    Owesson-White, CA; Roitman, MF; Sombers, LA; Belle, AM; Keithley, RB; Peele, JL; Carelli, RM; Wightman, RM

    2012-01-01

    Mesolimbic dopamine neurons fire in both tonic and phasic modes resulting in detectable extracellular levels of dopamine in the nucleus accumbens (NAc). In the past, different techniques have targeted dopamine levels in the NAc to establish a basal concentration. In this study we used in vivo fast scan cyclic voltammetry (FSCV) in the NAc of awake, freely moving rats. The experiments were primarily designed to capture changes in dopamine due to phasic firing – that is, the measurement of dopa...

  20. Synaptic glutamate spillover increases NMDA receptor reliability at the cerebellar glomerulus

    OpenAIRE

    Mitchell, Cassie S.; Lee, Robert H.

    2011-01-01

    Glutamate spillover in the mossy fiber to granule cell cerebellar glomeruli has been hypothesized to increase neurotransmission reliability. In this study, we evaluate this hypothesis using an experimentally-based quantitative model of glutamate spillover on the N-methyl-d-aspartate receptors (NMDA-Rs) at the cerebellar glomerulus. The transient and steady-state responses of NMDA-Rs were examined over a physiological range of firing rates. Examined cases included direct glutamate release acti...

  1. Binding of L-glutamic acid to non-receptor materials

    International Nuclear Information System (INIS)

    Periyasamy, S.; Ito, M.; Chiu, T.H.

    1986-01-01

    [ 3 H]L-glutamic acid ([ 3 H]Glu) binding to microfuge tubes, glass fiber filters, and glass tubes was studied in 4 buffers (50 mM, pH 7.4 at 4 0 C). Binding assays were done at 0-4 0 C. Binding to these materials was negligible in the absence of external force, but was increased by suction or centrifugation in Tris-HCl or Tris-citrate buffer. The force-induced binding was much less or was eliminated in Tris-acetate or HEPES-KOH buffer. [ 3 H]Glu binding to microfuge tubes was inhibited by L- but not D- isomers of glutamate and aspartate. DL-2-amino-7-phosphonoheptanoic acid was without effect. Other compounds that showed low to moderate inhibitory activity were N-methyl-D-aspartate, quisqualate, L-glutamic acid diethyl ester. N-methyl-L-aspartate, kainate, and 2-amino-4-phosphonobutyrate. Binding was inhibited by denatured P 2 membrane preparation in Tris-acetate buffer was used. It is suggested that Tris-acetate or HEPES-KOH buffer should be used in the glutamate binding assay

  2. Synthesis of edatrexate (2-13C-glutamate)

    International Nuclear Information System (INIS)

    DeGraw, J.I.; Colwell, W.T.; Jue, Thomas

    1997-01-01

    The experimental antitumor drug Edatrexate, labeled with 99% 13 C at the 2-position of the glutamate acid group was required for 13 C-magnetic resonance spectroscopy studies in biological media. Coupling of 2,4-diamino-4-deoxy-10-ethyl-10-deazapteroic acid with diethyl L-2- 13 C-glutamate as promoted by BOP reagent afforded Edatrexate (2- 13 C-glu) diethyl ester in 60% yield following purification by column chromatography. Saponification by aqueous NaOH in 2-methoxyethanol gave the target molecule in 44% yield or 26% overall. (author)

  3. Conformational Studies on γ - Benzyl- L- Glutamate and L- Valine Containing Block Copolypeptides

    OpenAIRE

    Kumar, Ajay

    2010-01-01

    Conformational studies on γ - benzyl-L- glutamate and L- valine containing block copolypeptides are reported using IR and CD spectra. The block copolypeptides contain valine block in the center and on both sides of the valine are γ - benzyl- L- glutamate blocks. The changes in conformation with increase in chain length of γ - benzyl- L- glutamate blocks are observed. When the chain length of γ - benzyl-L- glutamate block is 13, the block copolypeptide crystallized into beta conformation. With...

  4. In vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI): [3,4-(13)CH(2)]glutamate/glutamine tomography in rat brain.

    Science.gov (United States)

    Hyder, F; Renken, R; Rothman, D L

    1999-12-01

    A method for in vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI) is described. This method is composed of an echo-planar based acquisition implemented with (13)C-(1)H J editing spectroscopy and is intended for high temporal and spatial resolution in vivo spectroscopic imaging of (13)C turnover, from D-[1,6-(13)C]glucose to glutamate and glutamine, in the brain. At a static magnetic field strength of 7 T, both in vitro and in vivo chemical shift imaging data are presented with a spatial resolution of 8 microL (i.e., 1.25 x 1.25 x 5.00 mm(3)) and a maximum spectral bandwidth of 5.2 ppm in (1)H. Chemical shift imaging data acquired every 11 minutes allowed detection of regional [4-(13)CH(2)]glutamate turnover in rat brain. The [4-(13)CH(2)]glutamate turnover curves, which can be converted to tricarboxylic acid cycle fluxes, showed that the tricarboxylic acid cycle flux (V(TCA)) in pure gray and white matter can range from 1.2 +/- 0.2 to 0.5 +/- 0.1 micromol/g/min, respectively, for morphine-anesthetized rats. The mean cortical V(TCA) from 32 voxels of 1.0 +/- 0.3 micromol/g/min (N = 3) is in excellent agreement with previous localized measurements that have demonstrated that V(TCA) can range from 0.9-1.1 micromol/g/min under identical anesthetized conditions. Magn Reson Med 42:997-1003, 1999. Copyright 1999 Wiley-Liss, Inc.

  5. Evidence for a role of glutamate as an efferent transmitter in taste buds

    Directory of Open Access Journals (Sweden)

    Anderson Catherine B

    2010-06-01

    Full Text Available Abstract Background Glutamate has been proposed as a transmitter in the peripheral taste system in addition to its well-documented role as an umami taste stimulus. Evidence for a role as a transmitter includes the presence of ionotropic glutamate receptors in nerve fibers and taste cells, as well as the expression of the glutamate transporter GLAST in Type I taste cells. However, the source and targets of glutamate in lingual tissue are unclear. In the present study, we used molecular, physiological and immunohistochemical methods to investigate the origin of glutamate as well as the targeted receptors in taste buds. Results Using molecular and immunohistochemical techniques, we show that the vesicular transporters for glutamate, VGLUT 1 and 2, but not VGLUT3, are expressed in the nerve fibers surrounding taste buds but likely not in taste cells themselves. Further, we show that P2X2, a specific marker for gustatory but not trigeminal fibers, co-localizes with VGLUT2, suggesting the VGLUT-expressing nerve fibers are of gustatory origin. Calcium imaging indicates that GAD67-GFP Type III taste cells, but not T1R3-GFP Type II cells, respond to glutamate at concentrations expected for a glutamate transmitter, and further, that these responses are partially blocked by NBQX, a specific AMPA/Kainate receptor antagonist. RT-PCR and immunohistochemistry confirm the presence of the Kainate receptor GluR7 in Type III taste cells, suggesting it may be a target of glutamate released from gustatory nerve fibers. Conclusions Taken together, the results suggest that glutamate may be released from gustatory nerve fibers using a vesicular mechanism to modulate Type III taste cells via GluR7.

  6. Increases in food intake or food-seeking behavior induced by GABAergic, opioid, or dopaminergic stimulation of the nucleus accumbens: is it hunger?

    Science.gov (United States)

    Hanlon, Erin C; Baldo, Brian A; Sadeghian, Ken; Kelley, Ann E

    2004-03-01

    Previous work has shown that stimulation of GABAergic, opioid, or dopaminergic systems within the nucleus accumbens modulates food intake and food-seeking behavior. However, it is not known whether such stimulation mimics a motivational state of food deprivation that commonly enables animals to learn a new operant response to obtain food. In order to address this question, acquisition of lever pressing for food in hungry animals was compared with acquisition in non-food-deprived rats subjected to various nucleus accumbens drug treatments. All animals were given the opportunity to learn an instrumental response (a lever press) to obtain a food pellet. Prior to training, ad lib-fed rats were infused with the gamma-aminobutyric acid (GABA)A agonist muscimol (100 ng/0.5 microl per side) or the mu-opioid receptor agonist D-Ala2, N-me-Phe4, Gly-ol5-enkephalin (DAMGO, 0.25 microg/0.5 microl per side), or saline into the nucleus accumbens shell (AcbSh). The indirect dopamine agonist amphetamine (10 microg/0.5 microl per side) was infused into the AcbSh or nucleus accumbens core (AcbC) of ad lib-fed rats. An additional group was food deprived and infused with saline in the AcbSh. Chow and sugar pellet intake responses after drug treatments were also evaluated in free-feeding tests. Muscimol, DAMGO, or amphetamine did not facilitate acquisition of lever pressing for food, despite clearly increasing food intake in free-feeding tests. In contrast, food-deprived animals rapidly learned the task. These findings suggest that pharmacological stimulation of any of these neurochemical systems in isolation is insufficient to enable acquisition of a food-reinforced operant task. Thus, these selective processes, while likely involved in control of food intake and food-seeking behavior, appear unable to recapitulate the conditions necessary to mimic the state of negative energy balance.

  7. Therapeutic effects of glutamic acid in piglets challenged with deoxynivalenol.

    Science.gov (United States)

    Wu, Miaomiao; Xiao, Hao; Ren, Wenkai; Yin, Jie; Tan, Bie; Liu, Gang; Li, Lili; Nyachoti, Charles Martin; Xiong, Xia; Wu, Guoyao

    2014-01-01

    The mycotoxin deoxynivalenol (DON), one of the most common food contaminants, primarily targets the gastrointestinal tract to affect animal and human health. This study was conducted to examine the protective function of glutamic acid on intestinal injury and oxidative stress caused by DON in piglets. Twenty-eight piglets were assigned randomly into 4 dietary treatments (7 pigs/treatment): 1) uncontaminated control diet (NC), 2) NC+DON at 4 mg/kg (DON), 3) NC+2% glutamic acid (GLU), and 4) NC+2% glutamic acid + DON at 4 mg/kg (DG). At day 15, 30 and 37, blood samples were collected to determine serum concentrations of CAT (catalase), T-AOC (total antioxidant capacity), H2O2 (hydrogen peroxide), NO (nitric oxide), MDA (maleic dialdehyde), DAO (diamine oxidase) and D-lactate. Intestinal morphology, and the activation of Akt/mTOR/4EBP1 signal pathway, as well as the concentrations of H2O2, MDA, and DAO in kidney, liver and small intestine, were analyzed at day 37. Results showed that DON significantly (Pglutamic acid supplementation according to the change of oxidative parameters in blood and tissues. Meanwhile, DON caused obvious intestinal injury from microscopic observations and permeability indicators, which was alleviated by glutamic acid supplementation. Moreover, the inhibition of DON on Akt/mTOR/4EBP1 signal pathway was reduced by glutamic acid supplementation. Collectively, these data suggest that glutamic acid may be a useful nutritional regulator for DON-induced damage manifested as oxidative stress, intestinal injury and signaling inhibition.

  8. Frontal glutamate and reward processing in adolescence and adulthood.

    Science.gov (United States)

    Gleich, Tobias; Lorenz, Robert C; Pöhland, Lydia; Raufelder, Diana; Deserno, Lorenz; Beck, Anne; Heinz, Andreas; Kühn, Simone; Gallinat, Jürgen

    2015-11-01

    The fronto-limbic network interaction, driven by glutamatergic and dopaminergic neurotransmission, represents a core mechanism of motivated behavior and personality traits. Reward seeking behavior undergoes tremendous changes in adolescence paralleled by neurobiological changes of this network including the prefrontal cortex, striatum and amygdala. Since fronto-limbic dysfunctions also underlie major psychiatric diseases beginning in adolescence, this investigation focuses on network characteristics separating adolescents from adults. To investigate differences in network interactions, the brain reward system activity (slot machine task) together with frontal glutamate concentration (anterior cingulate cortex, ACC) was measured in 28 adolescents and 26 adults employing functional magnetic resonance imaging and magnetic resonance spectroscopy, respectively. An inverse coupling of glutamate concentrations in the ACC and activation of the ventral striatum was observed in adolescents. Further, amygdala response in adolescents was negatively correlated with the personality trait impulsivity. For adults, no significant associations of network components or correlations with impulsivity were found. The inverse association between frontal glutamate concentration and striatal activation in adolescents is in line with the triadic model of motivated behavior stressing the important role of frontal top-down inhibition on limbic structures. Our data identified glutamate as the mediating neurotransmitter of this inhibitory process and demonstrates the relevance of glutamate on the reward system and related behavioral traits like impulsivity. This fronto-limbic coupling may represent a vulnerability factor for psychiatric disorders starting in adolescence but not in adulthood.

  9. Coupled ion binding and structural transitions along the transport cycle of glutamate transporters

    OpenAIRE

    Verdon, Grégory; Oh, SeCheol; Serio, Ryan N; Boudker, Olga

    2014-01-01

    eLife digest Molecules of glutamate can carry messages between cells in the brain, and these signals are essential for thought and memory. Glutamate molecules can also act as signals to build new connections between brain cells and to prune away unnecessary ones. However, too much glutamate outside of the cells kills the brain tissue and can lead to devastating brain diseases. In a healthy brain, special pumps called glutamate transporters move these molecules back into the brain cells, where...

  10. Neuropeptide Y as a possible homeostatic element for changes in cortical excitability induced by repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Jazmati, Danny; Neubacher, Ute; Funke, Klaus

    2018-02-24

    Repetitive transcranial magnetic stimulation (rTMS) is able to modify cortical excitability. Rat rTMS studies revealed a modulation of inhibitory systems, in particular that of the parvalbumin-expressing (PV+) interneurons, when using intermittent theta-burst stimulation (iTBS). The potential disinhibitory action of iTBS raises the questions of how neocortical circuits stabilize excitatory-inhibitory balance within a physiological range. Neuropeptide Y (NPY) appears to be one candidate. Analysis of cortical expression of PV, NPY and vesicular glutamate transporter type 1 (vGluT1) by immunohistochemical means at the level of cell counts, mean neuropil expression and single cell pre-/postsynaptic expression, with and without intraventricular NPY-injection. Our results show that iTBS not only reduced the number of neurons with high-PV expression in a dose-dependent fashion, but also increased the cortical expression of NPY, discussed to reduce glutamatergic transmission, and this was further associated with a reduced vGluT1 expression, an indicator of glutamateric presynaptic activity. Interneurons showing a low-PV expression exhibit less presynaptic vGluT1 expression compared to those with a high-PV expression. Intraventricular application of NPY prior to iTBS prevented the iTBS-induced reduction in the number of high-PV neurons, the reduction in tissue vGluT1 level and that presynaptic to high-PV cells. We conclude that NPY, possibly via a global but also slow homeostatic control of glutamatergic transmission, modulates the strength and direction of the iTBS effects, likely preventing pathological imbalance of excitatory and inhibitory cortical activity but still allowing enough disinhibition beneficial for plastic changes as during learning. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Glutamate abnormalities in obsessive compulsive disorder: neurobiology, pathophysiology, and treatment.

    Science.gov (United States)

    Pittenger, Christopher; Bloch, Michael H; Williams, Kyle

    2011-12-01

    Obsessive compulsive disorder is prevalent, disabling, incompletely understood, and often resistant to current therapies. Established treatments consist of specialized cognitive-behavioral psychotherapy and pharmacotherapy with medications targeting serotonergic and dopaminergic neurotransmission. However, remission is rare, and more than a quarter of OCD sufferers receive little or no benefit from these approaches, even when they are optimally delivered. New insights into the disorder, and new treatment strategies, are urgently needed. Recent evidence suggests that the ubiquitous excitatory neurotransmitter glutamate is dysregulated in OCD, and that this dysregulation may contribute to the pathophysiology of the disorder. Here we review the current state of this evidence, including neuroimaging studies, genetics, neurochemical investigations, and insights from animal models. Finally, we review recent findings from small clinical trials of glutamate-modulating medications in treatment-refractory OCD. The precise role of glutamate dysregulation in OCD remains unclear, and we lack blinded, well-controlled studies demonstrating therapeutic benefit from glutamate-modulating agents. Nevertheless, the evidence supporting some important perturbation of glutamate in the disorder is increasingly strong. This new perspective on the pathophysiology of OCD, which complements the older focus on monoaminergic neurotransmission, constitutes an important focus of current research and a promising area for the ongoing development of new therapeutics. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Co-administration of ethanol and nicotine: the enduring alterations in the rewarding properties of nicotine and glutamate activity within the mesocorticolimbic system of female alcohol-preferring (P) rats.

    Science.gov (United States)

    Deehan, Gerald A; Hauser, Sheketha R; Waeiss, R Aaron; Knight, Christopher P; Toalston, Jamie E; Truitt, William A; McBride, William J; Rodd, Zachary A

    2015-12-01

    The co-abuse of ethanol (EtOH) and nicotine (NIC) increases the likelihood that an individual will relapse to drug use while attempting to maintain abstinence. There is limited research examining the consequences of long-term EtOH and NIC co-abuse. The current experiments determined the enduring effects of chronic EtOH, NIC, or EtOH + NIC intake on the reinforcing properties of NIC and glutamate (GLU) activity within the mesocorticolimbic (MCL) system. Alcohol-preferring (P) rats self-administered EtOH, Sacc + NIC, or EtOH + NIC combined for 10 weeks. The reinforcing properties of 0.1-3.0 μM NIC within the nucleus accumbens shell (AcbSh) were assessed following a 2-3-week drug-free period using intracranial self-administration (ICSA) procedures. The effects of EtOH, Sacc, Sacc + NIC, or EtOH + NIC intake on extracellular levels and clearance of glutamate (GLU) in the medial prefrontal cortex (mPFC) were also determined. Binge intake of EtOH (96-100 mg%) and NIC (21-27 mg/mL) were attained. All groups of P rats self-infused 3.0 μM NIC directly into the AcbSh, whereas only animals in the EtOH + NIC co-abuse group self-infused the 0.3 and 1.0 μM NIC concentrations. Additionally, self-administration of EtOH + NIC, but not EtOH, Sacc or Sacc + NIC, resulted in enduring increases in basal extracellular GLU levels in the mPFC. Overall, the co-abuse of EtOH + NIC produced enduring neuronal alterations within the MCL which enhanced the rewarding properties of NIC in the AcbSh and elevated extracellular GLU levels within the mPFC.

  13. Nanofiber mat spinal cord dressing-released glutamate impairs blood-spinal cord barrier

    Directory of Open Access Journals (Sweden)

    Dorota Sulejczak

    2016-12-01

    Full Text Available An excessive glutamate level can result in excitotoxic damage and death of central nervous system (CNS cells, and is involved in the pathogenesis of many CNS diseases. It may also be related to a failure of the blood-spinal cord barrier (BSCB. This study was aimed at examining the effects of extended administration of monosodium glutamate on the BSCB and spinal cord cells in adult male Wistar rats. The glutamate was delivered by subarachnoidal application of glutamate-carrying electrospun nanofiber mat dressing at the lumbar enlargement level. Half of the rats with the glutamate-loaded mat application were treated systemically with the histone deacetylase inhibitor valproic acid. A group of intact rats and a rat group with subarachnoidal application of an ‘empty’ (i.e., carrying no glutamate nanofiber mat dressing served as controls. All the rats were euthanized three weeks later and lumbar fragments of their spinal cords were harvested for histological, immunohistochemical and ultrastructural studies. The samples from controls revealed normal parenchyma and BSCB morphology, whereas those from rats with the glutamate-loaded nanofiber mat dressing showed many intraparenchymal microhemorrhages of variable sizes. The capillaries in the vicinity of the glutamate-carrying dressing (in the meninges and white matter alike were edematous and leaky, and their endothelial cells showed degenerative changes: extensive swelling, enhanced vacuo­lization and the presence of vascular intraluminal projections. However, endothelial tight junctions were generally well preserved. Some endothelial cells were dying by necrosis or apoptosis. The adjacent parenchyma showed astrogliosis with astrocytic hypertrophy and swelling of perivascular astrocytic feet. Neurons in the parenchyma revealed multiple symptoms of degeneration, including, inter alia, perikaryal, dendritic and axonal swelling, and destruction of organelles. All the damage symptoms were slightly less

  14. Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation

    Energy Technology Data Exchange (ETDEWEB)

    Fogliarini, Celine [Faculte Timone, Centre de Resonance Magnetique Biologique et Medicale, Marseille (France); Chaumoitre, Katia [Hopital Nord, Department of Radiology, Marseille (France); Chapon, Frederique; Levrier, Olivier; Girard, Nadine [Hopital Timone, Department of Neuroradiology, Marseille Cedex 5 (France); Fernandez, Carla; Figarella-Branger, Dominique [Hopital Timone, Department of Pathology, Marseille (France)

    2005-08-01

    Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa. (orig.)

  15. Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation

    International Nuclear Information System (INIS)

    Fogliarini, Celine; Chaumoitre, Katia; Chapon, Frederique; Levrier, Olivier; Girard, Nadine; Fernandez, Carla; Figarella-Branger, Dominique

    2005-01-01

    Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa. (orig.)

  16. Removal of lead from aqueous solution on glutamate intercalated layered double hydroxide

    Directory of Open Access Journals (Sweden)

    Shen Yanming

    2017-05-01

    Full Text Available Glutamate intercalated Mg–Al layered double hydroxide (LDH was prepared by co-precipitation and the removal of Pb2+ in the aqueous solution was investigated. The prepared samples were characterized by XRD, FT-IR and SEM. It was shown that glutamate can intercalate into the interlayer space of Mg–Al LDH. The glutamate intercalated Mg–Al LDH can effectively adsorb Pb2+ in the aqueous solution with an adsorption capacity of 68.49 mg g−1. The adsorption of Pb2+ on glutamate intercalated Mg–Al LDH fitted the pseudo-second-order kinetics model and the isotherm can be well defined by Langmuir model.

  17. Brain microdialysis of GABA and glutamate : What does it signify?

    NARCIS (Netherlands)

    Timmerman, W; Westerink, B.H.C.

    1997-01-01

    Microdialysis has become a frequently used method to study extracellular levels of GABA and glutamate in the central nervous system. However, the fact that the major part of GABA and glutamate as measured by microdialysis does not fulfill the classical criteria for exocytotic release questions the

  18. The cortical signature of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Federica Agosta

    Full Text Available The aim of this study was to explore the pattern of regional cortical thickness in patients with non-familial amyotrophic lateral sclerosis (ALS and to investigate whether cortical thinning is associated with disease progression rate. Cortical thickness analysis was performed in 44 ALS patients and 26 healthy controls. Group differences in cortical thickness and the age-by-group effects were assessed using vertex-by-vertex and multivariate linear models. The discriminatory ability of MRI variables in distinguishing patients from controls was estimated using the Concordance Statistics (C-statistic within logistic regression analyses. Correlations between cortical thickness measures and disease progression rate were tested using the Pearson coefficient. Relative to controls, ALS patients showed a bilateral cortical thinning of the primary motor, prefrontal and ventral frontal cortices, cingulate gyrus, insula, superior and inferior temporal and parietal regions, and medial and lateral occipital areas. There was a significant age-by-group effect in the sensorimotor cortices bilaterally, suggesting a stronger association between age and cortical thinning in ALS patients compared to controls. The mean cortical thickness of the sensorimotor cortices distinguished patients with ALS from controls (C-statistic ≥ 0.74. Cortical thinning of the left sensorimotor cortices was related to a faster clinical progression (r = -0.33, p = 0.03. Cortical thickness measurements allowed the detection and quantification of motor and extramotor involvement in patients with ALS. Cortical thinning of the precentral gyrus might offer a marker of upper motor neuron involvement and disease progression.

  19. The cortical signature of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Agosta, Federica; Valsasina, Paola; Riva, Nilo; Copetti, Massimiliano; Messina, Maria Josè; Prelle, Alessandro; Comi, Giancarlo; Filippi, Massimo

    2012-01-01

    The aim of this study was to explore the pattern of regional cortical thickness in patients with non-familial amyotrophic lateral sclerosis (ALS) and to investigate whether cortical thinning is associated with disease progression rate. Cortical thickness analysis was performed in 44 ALS patients and 26 healthy controls. Group differences in cortical thickness and the age-by-group effects were assessed using vertex-by-vertex and multivariate linear models. The discriminatory ability of MRI variables in distinguishing patients from controls was estimated using the Concordance Statistics (C-statistic) within logistic regression analyses. Correlations between cortical thickness measures and disease progression rate were tested using the Pearson coefficient. Relative to controls, ALS patients showed a bilateral cortical thinning of the primary motor, prefrontal and ventral frontal cortices, cingulate gyrus, insula, superior and inferior temporal and parietal regions, and medial and lateral occipital areas. There was a significant age-by-group effect in the sensorimotor cortices bilaterally, suggesting a stronger association between age and cortical thinning in ALS patients compared to controls. The mean cortical thickness of the sensorimotor cortices distinguished patients with ALS from controls (C-statistic ≥ 0.74). Cortical thinning of the left sensorimotor cortices was related to a faster clinical progression (r = -0.33, p = 0.03). Cortical thickness measurements allowed the detection and quantification of motor and extramotor involvement in patients with ALS. Cortical thinning of the precentral gyrus might offer a marker of upper motor neuron involvement and disease progression.

  20. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  1. Vesicular glutamate release from central axons contributes to myelin damage.

    Science.gov (United States)

    Doyle, Sean; Hansen, Daniel Bloch; Vella, Jasmine; Bond, Peter; Harper, Glenn; Zammit, Christian; Valentino, Mario; Fern, Robert

    2018-03-12

    The axon myelin sheath is prone to injury associated with N-methyl-D-aspartate (NMDA)-type glutamate receptor activation but the source of glutamate in this context is unknown. Myelin damage results in permanent action potential loss and severe functional deficit in the white matter of the CNS, for example in ischemic stroke. Here, we show that in rats and mice, ischemic conditions trigger activation of myelinic NMDA receptors incorporating GluN2C/D subunits following release of axonal vesicular glutamate into the peri-axonal space under the myelin sheath. Glial sources of glutamate such as reverse transport did not contribute significantly to this phenomenon. We demonstrate selective myelin uptake and retention of a GluN2C/D NMDA receptor negative allosteric modulator that shields myelin from ischemic injury. The findings potentially support a rational approach toward a low-impact prophylactic therapy to protect patients at risk of stroke and other forms of excitotoxic injury.

  2. Immune labeling and purification of a 71-kDa glutamate-binding protein from brain synaptic membranes

    International Nuclear Information System (INIS)

    Chen, J.W.; Cunningham, M.D.; Galton, N.; Michaelis, E.K.

    1988-01-01

    Immunoblot studies of synaptic membranes isolated from rat brain using antibodies raised against a previously purified glutamate-binding protein (GBP) indicated labeling of an ∼ 70-kDa protein band. Since the antibodies used were raised against a 14-kDa GBP, the present studies were undertaken to explore the possibility that the 14-kDa protein may have been a proteolytic fragment of a larger M/sub r/ protein in synaptic membranes. The major protein enriched in the most highly purified fractions was a 71-kDa glycoprotein, but a 63-kDa protein was co-purified during most steps of the isolation procedure. The glutamate-binding characteristics of these isolated protein fractions were very similar to those previously described for the 14-kDa GBP, including estimated dissociation constants for L-glutamate binding of 0.25 and 1 + M, inhibition of glutamate binding by azide and cyanide, and a selectivity of the ligand binding site for L-glutamate and L-aspartate. The neuroexcitatory analogs of L-glutamate and L-aspartate, ibotenate, quisqualate, and D-glutamate, inhibited L[ 3 H]glutamate binding to the isolated proteins, as did the antagonist of L-glutamate-induced neuronal excitation, L-glutamate diethylester. On the basis of the lack of any detectable glutamate-related enzyme activity associated with the isolated proteins and the presence of distinguishing sensitivities to analogs that inhibit glutamate transport carriers in synaptic membranes, it is proposed that the 71-kDa protein may be a component of a physiologic glutamate receptor complex in neuronal membranes

  3. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  4. Cortical bone metastases

    International Nuclear Information System (INIS)

    Davis, T.M. Jr.; Rogers, L.F.; Hendrix, R.W.

    1986-01-01

    Twenty-five cases of bone metastases involving the cortex alone are reviewed. Seven patients had primary lung carcinoma, while 18 had primary tumors not previously reported to produce cortical bone metastases (tumors of the breast, kidney, pancreas, adenocarcinoma of unknown origin, multiple myeloma). Radiographically, these cortical lesions were well circumscribed, osteolytic, and produced soft-tissue swelling and occasional periosteal reaction. A recurrent pattern of metadiaphyseal involvement of the long bones of the lower extremity (particularly the femur) was noted, and is discussed. Findings reported in the literature, review, pathophysiology, and the role of skeletal radiographs, bone scans, and CT scans in evaluating cortical bone metastases are addressed

  5. A critical role of glutamate transporter type 3 in the learning and memory of mice.

    Science.gov (United States)

    Wang, Zhi; Park, Sang-Hon; Zhao, Huijuan; Peng, Shuling; Zuo, Zhiyi

    2014-10-01

    Hippocampus-dependent learning and memory are associated with trafficking of excitatory amino acid transporter type 3 (EAAT3) to the plasma membrane. To assess whether this trafficking is an intrinsic component of the biochemical responses underlying learning and memory, 7- to 9-week old male EAAT3 knockout mice and CD-1 wild-type mice were subjected to fear conditioning. Their hippocampal CA1 regions, amygdalae and entorhinal cortices were harvested before, or 30 min or 3 h after the fear conditioning stimulation. We found that EAAT3 knockout mice had worse contextual and tone-related learning and memory than did the wild-type mice. The expression of EAAT3, glutamate receptor (GluR)1 and GluR2 in the plasma membrane and of phospho-GluR1 (at Ser 831) and phospho-CaMKII in the hippocampus of the wild-type mice was increased at 30 min after the fear conditioning stimulation. Similar biochemical changes occurred in the amygdala. Fear conditioning also increased the expression of c-Fos and activity-regulated cytoskeleton-associated protein (Arc) in the CA1 regions and of Arc in the entorhinal cortices of the wild-type mice. These biochemical responses were attenuated in the EAAT3 knockout mice. These results suggest that EAAT3 plays a critical role in learning and memory. Our results also provide initial evidence that EAAT3 may have receptor-like functions to participate in the biochemical reactions underlying learning and memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Ghrelin receptor antagonism of morphine-induced conditioned place preference and behavioral and accumbens dopaminergic sensitization in rats.

    Science.gov (United States)

    Jerabek, Pavel; Havlickova, Tereza; Puskina, Nina; Charalambous, Chrysostomos; Lapka, Marek; Kacer, Petr; Sustkova-Fiserova, Magdalena

    2017-11-01

    An increasing number of studies over the past few years have demonstrated ghrelin's role in alcohol, cocaine and nicotine abuse. However, the role of ghrelin in opioid effects has rarely been examined. Recently we substantiated in rats that ghrelin growth hormone secretagogue receptors (GHS-R1A) appear to be involved in acute opioid-induced changes in the mesolimbic dopaminergic system associated with the reward processing. The aim of the present study was to ascertain whether a ghrelin antagonist (JMV2959) was able to inhibit morphine-induced biased conditioned place preference and challenge-morphine-induced accumbens dopaminergic sensitization and behavioral sensitization in adult male rats. In the place preference model, the rats were conditioned for 8 days with morphine (10 mg/kg s.c.). On the experimental day, JMV2959 (3 and 6 mg/kg i.p.) or saline were administered before testing. We used in vivo microdialysis to determine changes of dopamine and its metabolites in the nucleus accumbens in rats following challenge-morphine dose (5 mg/kg s.c.) with or without JMV2959 (3 and 6 mg/kg i.p.) pretreatment, administered on the 12th day of spontaneous abstinence from morphine repeated treatment (5 days, 10-40 mg/kg). Induced behavioral changes were simultaneously monitored. Pretreatment with JMV2959 significantly and dose dependently reduced the morphine-induced conditioned place preference and significantly and dose dependently reduced the challenge-morphine-induced dopaminergic sensitization and affected concentration of by-products associated with dopamine metabolism in the nucleus accumbens. JMV2959 pretreatment also significantly reduced challenge-morphine-induced behavioral sensitization. Our present data suggest that GHS-R1A antagonists deserve to be further investigated as a novel treatment strategy for opioid addiction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fetal brain extracellular matrix boosts neuronal network formation in 3D bioengineered model of cortical brain tissue.

    Science.gov (United States)

    Sood, Disha; Chwalek, Karolina; Stuntz, Emily; Pouli, Dimitra; Du, Chuang; Tang-Schomer, Min; Georgakoudi, Irene; Black, Lauren D; Kaplan, David L

    2016-01-01

    The extracellular matrix (ECM) constituting up to 20% of the organ volume is a significant component of the brain due to its instructive role in the compartmentalization of functional microdomains in every brain structure. The composition, quantity and structure of ECM changes dramatically during the development of an organism greatly contributing to the remarkably sophisticated architecture and function of the brain. Since fetal brain is highly plastic, we hypothesize that the fetal brain ECM may contain cues promoting neural growth and differentiation, highly desired in regenerative medicine. Thus, we studied the effect of brain-derived fetal and adult ECM complemented with matricellular proteins on cortical neurons using in vitro 3D bioengineered model of cortical brain tissue. The tested parameters included neuronal network density, cell viability, calcium signaling and electrophysiology. Both, adult and fetal brain ECM as well as matricellular proteins significantly improved neural network formation as compared to single component, collagen I matrix. Additionally, the brain ECM improved cell viability and lowered glutamate release. The fetal brain ECM induced superior neural network formation, calcium signaling and spontaneous spiking activity over adult brain ECM. This study highlights the difference in the neuroinductive properties of fetal and adult brain ECM and suggests that delineating the basis for this divergence may have implications for regenerative medicine.

  8. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Condensed, extracted glutamic acid fermentation product. 573.500 Section 573.500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed...

  9. Inhibitory mechanism of l-glutamic acid on spawning of the starfish Patiria (Asterina) pectinifera.

    Science.gov (United States)

    Mita, Masatoshi

    2017-03-01

    l-Glutamic acid was previously identified as an inhibitor of spawning in the starfish Patiria (Asterina) pectinifera; this study examined how l-glutamic acid works. Oocyte release from ovaries of P. pectinifera occurred after germinal vesicle breakdown (GVBD) and follicular envelope breakdown (FEBD) when gonads were incubated ex vivo with either relaxin-like gonad-stimulating peptide (RGP) or 1-methyladenine (1-MeAde). l-Glutamic acid blocked this spawning phenotype, causing the mature oocytes to remain within the ovaries. Neither RGP-induced 1-MeAde production in ovarian follicle cells nor 1-MeAde-induced GVBD and FEBD was affected by l-glutamic acid. l-Glutamic acid may act through metabotropic receptors in the ovaries to inhibit spawning, as l-(+)-2-amino-4-phosphonobutyric acid, an agonist for metabotropic glutamate receptors, also inhibited spawning induced by 1-MeAde. Application of acetylcholine (ACH) to ovaries under inhibitory conditions with l-glutamic acid, however, brought about spawning, possibly by inducing contraction of the ovarian wall to discharge mature oocytes from the ovaries concurrently with GVBD and FEBD. Thus, l-glutamic acid may inhibit ACH secretion from gonadal nerve cells in the ovary. Mol. Reprod. Dev. 84: 246-256, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Glutamic Acid as Enhancer of Protein Synthesis Kinetics in Hepatocytes from Old Rats.

    Science.gov (United States)

    Brodsky, V Y; Malchenko, L A; Butorina, N N; Lazarev Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2017-08-01

    Dense cultures of hepatocytes from old rats (~2 years old, body weight 530-610 g) are different from similar cultures of hepatocytes from young rats by the low amplitude of protein synthesis rhythm. Addition of glutamic acid (0.2, 0.4, or 0.6 mg/ml) into the culture medium with hepatocytes of old rats resulted in increase in the oscillation amplitudes of the protein synthesis rhythm to the level of young rats. A similar action of glutamic acid on the protein synthesis kinetics was observed in vivo after feeding old rats with glutamic acid. Inhibition of metabotropic receptors of glutamic acid with α-methyl-4-carboxyphenylglycine (0.01 mg/ml) abolished the effect of glutamic acid. The amplitude of oscillation of the protein synthesis rhythm in a cell population characterizes synchronization of individual oscillations caused by direct cell-cell communications. Hence, glutamic acid, acting as a receptor-dependent transmitter, enhanced direct cell-cell communications of hepatocytes that were decreased with aging. As differentiated from other known membrane signaling factors (gangliosides, norepinephrine, serotonin, dopamine), glutamic acid can penetrate into the brain and thus influence the communications and protein synthesis kinetics that are disturbed with aging not only in hepatocytes, but also in neurons.

  11. Genetic and metabolic engineering for microbial production of poly-γ-glutamic acid.

    Science.gov (United States)

    Cao, Mingfeng; Feng, Jun; Sirisansaneeyakul, Sarote; Song, Cunjiang; Chisti, Yusuf

    2018-05-28

    Poly-γ-glutamic acid (γ-PGA) is a natural biopolymer of glutamic acid. The repeating units of γ-PGA may be derived exclusively from d-glutamic acid, or l-glutamic acid, or both. The monomer units are linked by amide bonds between the α-amino group and the γ-carboxylic acid group. γ-PGA is biodegradable, edible and water-soluble. It has numerous existing and emerging applications in processing of foods, medicines and cosmetics. This review focuses on microbial production of γ-PGA via genetically and metabolically engineered recombinant bacteria. Strategies for improving production of γ-PGA include modification of its biosynthesis pathway, enhancing the production of its precursor (glutamic acid), and preventing loss of the precursor to competing byproducts. These and other strategies are discussed. Heterologous synthesis of γ-PGA in industrial bacterial hosts that do not naturally produce γ-PGA is discussed. Emerging trends and the challenges affecting the production of γ-PGA are reviewed. Copyright © 2018. Published by Elsevier Inc.

  12. N-13 L-glutamate uptake in malignancy: its relationship to blood flow

    International Nuclear Information System (INIS)

    Knapp, W.H.; Helus, F.; Sinn, H.; Ostertag, H.; Georgi, P.; Brandeis, W.E.; Braun, A.

    1984-01-01

    Studies on glutamate uptake, with special reference to perfusion, were carried out in 35 rats, each bearing one of five different tumor transplants; also in 15 rats after bone fracture, and in three rabbits. Single-pass extraction of N-13 glutamate was 85-93% in the VX2 tumor of the rabbit and in muscle. Bone fracture in rats caused a threefold increase of tracer uptake 2 days after the event. Comparing N-13 glutamate uptake with the retention of 1-121 microspheres, identical tumor-to-muscle ratios were found for three out of five tumor lines. Comparing the uptake with that of C-11 butanol (ten rats), a close correlation was observed throughout the range of tumor lines. The results suggested that glutamate uptake by malignant tumors is related to blood flow. In nine patients with malignant or benign lesions tumor-to-muscle uptake of N-13 glutamate and Tl-201 showed a linear correlation close to identity

  13. Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats.

    Science.gov (United States)

    Ishiwari, Keita; Madson, Lisa J; Farrar, Andrew M; Mingote, Susana M; Valenta, John P; DiGianvittorio, Michael D; Frank, Lauren E; Correa, Merce; Hockemeyer, Jörg; Müller, Christa; Salamone, John D

    2007-03-28

    There is considerable evidence of interactions between adenosine A2A receptors and dopamine D2 receptors in striatal areas, and antagonists of the A2A receptor have been shown to reverse the motor effects of DA antagonists in animal models. The D2 antagonist haloperidol produces parkinsonism in humans, and also induces motor effects in rats, such as suppression of locomotion. The present experiments were conducted to study the ability of the adenosine A2A antagonist MSX-3 to reverse the locomotor effects of acute or subchronic administration of haloperidol in rats. Systemic (i.p.) injections of MSX-3 (2.5-10.0 mg/kg) were capable of attenuating the suppression of locomotion induced by either acute or repeated (i.e., 14 day) administration of 0.5 mg/kg haloperidol. Bilateral infusions of MSX-3 directly into the nucleus accumbens core (2.5 microg or 5.0 microg in 0.5 microl per side) produced a dose-related increase in locomotor activity in rats treated with 0.5 mg/kg haloperidol either acutely or repeatedly. There were no overall significant effects of MSX-3 infused directly into the dorsomedial nucleus accumbens shell or the ventrolateral neostriatum. These results indicate that antagonism of adenosine A2A receptors can attenuate the locomotor suppression produced by DA antagonism, and that this effect may be at least partially mediated by A2A receptors in the nucleus accumbens core. These studies suggest that adenosine and dopamine systems interact to modulate the locomotor and behavioral activation functions of nucleus accumbens core.

  14. Astrocytes and Glutamate Homoeostasis in Alzheimer's Disease: A Decrease in Glutamine Synthetase, But Not in Glutamate Transporter-1, in the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Magdalena Kulijewicz-Nawrot

    2013-09-01

    Full Text Available Astrocytes control tissue equilibrium and hence define the homoeostasis and function of the CNS (central nervous system. Being principal homoeostatic cells, astroglia are fundamental for various forms of neuropathology, including AD (Alzheimer's disease. AD is a progressive neurodegenerative disorder characterized by the loss of cognitive functions due to specific lesions in mnesic-associated regions, including the mPFC (medial prefrontal cortex. Here, we analyzed the expression of GS (glutamine synthetase and GLT-1 (glutamate transporter-1 in astrocytes in the mPFC during the progression of AD in a triple-transgenic mouse model (3xTg-AD. GS is an astrocyte-specific enzyme, responsible for the intracellular conversion of glutamate into glutamine, whereas the removal of glutamate from the extracellular space is accomplished mainly by astroglia-specific GLT-1. We found a significant decrease in the numerical density (Nv, cells/mm3 of GS-positive astrocytes from early to middle ages (1–9 months; at the age of 1 month by 17%, 6 months by 27% and 9 months by 27% when compared with control animals in parallel with a reduced expression of GS (determined by Western blots, which started at the age of 6 months and was sustained up to 12 months of age. We did not, however, find any changes in the expression of GLT-1, which implies an intact glutamate uptake mechanism. Our results indicate that the decrease in GS expression may underlie a gradual decline in the vital astrocyte-dependent glutamate–glutamine conversion pathway, which in turn may compromise glutamate homoeostasis, leading towards failures in synaptic connectivity with deficient cognition and memory.

  15. Identification of D3 and sigma receptors in the rat striatum and nucleus accumbens using (+/-)-7-hydroxy-N,N-di-n-[3H]propyl-2-aminotetralin and carbetapentane.

    Science.gov (United States)

    Wallace, D R; Booze, R M

    1995-02-01

    Cross-reactions between dopamine D3 and sigma receptor ligands were investigated using (+/-)-7-hydroxy-N,N-di-n-[3H]propyl-2-aminotetralin [(+/-)-7-OH-[3H]-DPAT], a putative D3-selective radioligand, in conjunction with the unlabeled sigma ligands 1,3-di(2-tolyl)guanidine (DTG), carbetapentane, and R(-)-N-(3-phenyl-1-propyl)-1-phenyl-2-aminopropane [R(-)-PPAP]. In transfected CCL1.3 mouse fibroblasts expressing the human D3 receptor, neither DTG nor carbetapentane (0.1 microM) displaced (+/-)-7-OH-[3H]DPAT binding. R(-)-PPAP (0.1 microM) displaced 39.6 +/- 1.0% of total (+/-)-7-OH-[3H]DPAT binding. In striatal and nucleus accumbens homogenates, (+/-)-7-OH-[3H]DPAT labeled a single site (15-20 fmol/mg of protein) with high (1 nM) affinity. Competition analysis with carbetapentane defined both high- and low-affinity sites in striatal (35 and 65%, respectively) and nucleus accumbens (59 and 41%, respectively) tissue, yet R(-)-PPAP identified two sites in equal proportion. Carbetapentane and R(-)-PPAP (0.1 microM) displaced approximately 20-50% of total (+/-)-7-OH-[3H]DPAT binding in striatum, nucleus accumbens, and olfactory tubercle in autoradiographic studies, with the nucleus accumbens shell subregion exhibiting the greatest displacement. To determine directly (+)-7-OH-[3H]DPAT binding to sigma receptors, saturation analysis was performed in the cerebellum while masking D3 receptors with 1 microM dopamine. Under these conditions (+)-7-OH-[3H]DPAT labeled sigma receptors with an affinity of 24 nM. These results suggest that (a) (+/-)-7-OH-[3H]DPAT binds D3 receptors with high affinity in rat brain and (b) a significant proportion of (+/-)-7-OH-[3H]DPAT binding consists of sigma 1 sites and the percentages of these sites differ among the subregions of the striatum and nucleus accumbens.

  16. Reacquisition of cocaine conditioned place preference and its inhibition by previous social interaction preferentially affect D1-medium spiny neurons in the accumbens corridor.

    Science.gov (United States)

    Prast, Janine M; Schardl, Aurelia; Schwarzer, Christoph; Dechant, Georg; Saria, Alois; Zernig, Gerald

    2014-01-01

    We investigated if counterconditioning with dyadic (i.e., one-to-one) social interaction, a strong inhibitor of the subsequent reacquisition of cocaine conditioned place preference (CPP), differentially modulates the activity of the diverse brain regions oriented along a mediolateral corridor reaching from the interhemispheric sulcus to the anterior commissure, i.e., the nucleus of the vertical limb of the diagonal band, the medial septal nucleus, the major island of Calleja, the intermediate part of the lateral septal nucleus, and the medial accumbens shell and core. We also investigated the involvement of the lateral accumbens core and the dorsal caudate putamen. The anterior cingulate 1 (Cg1) region served as a negative control. Contrary to our expectations, we found that all regions of the accumbens corridor showed increased expression of the early growth response protein 1 (EGR1, Zif268) in rats 2 h after reacquisition of CPP for cocaine after a history of cocaine CPP acquisition and extinction. Previous counterconditioning with dyadic social interaction inhibited both the reacquisition of cocaine CPP and the activation of the whole accumbens corridor. EGR1 activation was predominantly found in dynorphin-labeled cells, i.e., presumably D1 receptor-expressing medium spiny neurons (D1-MSNs), with D2-MSNs (immunolabeled with an anti-DRD2 antibody) being less affected. Cholinergic interneurons or GABAergic interneurons positive for parvalbumin, neuropeptide Y or calretinin were not involved in these CPP-related EGR1 changes. Glial cells did not show any EGR1 expression either. The present findings could be of relevance for the therapy of impaired social interaction in substance use disorders, depression, psychosis, and autism spectrum disorders.

  17. Fast inhibition of glutamate-activated currents by caffeine.

    Directory of Open Access Journals (Sweden)

    Nicholas P Vyleta

    Full Text Available BACKGROUND: Caffeine stimulates calcium-induced calcium release (CICR in many cell types. In neurons, caffeine stimulates CICR presynaptically and thus modulates neurotransmitter release. METHODOLOGY/PRINCIPAL FINDINGS: Using the whole-cell patch-clamp technique we found that caffeine (20 mM reversibly increased the frequency and decreased the amplitude of miniature excitatory postsynaptic currents (mEPSCs in neocortical neurons. The increase in mEPSC frequency is consistent with a presynaptic mechanism. Caffeine also reduced exogenously applied glutamate-activated currents, confirming a separate postsynaptic action. This inhibition developed in tens of milliseconds, consistent with block of channel currents. Caffeine (20 mM did not reduce currents activated by exogenous NMDA, indicating that caffeine block is specific to non-NMDA type glutamate receptors. CONCLUSIONS/SIGNIFICANCE: Caffeine-induced inhibition of mEPSC amplitude occurs through postsynaptic block of non-NMDA type ionotropic glutamate receptors. Caffeine thus has both pre and postsynaptic sites of action at excitatory synapses.

  18. The Challenge of Interpreting Glutamate-Receptor Ion-Channel Structures.

    Science.gov (United States)

    Mayer, Mark L

    2017-11-21

    Ion channels activated by glutamate mediate excitatory synaptic transmission in the central nervous system. Similar to other ligand-gated ion channels, their gating cycle begins with transitions from a ligand-free closed state to glutamate-bound active and desensitized states. In an attempt to reveal the molecular mechanisms underlying gating, numerous structures for glutamate receptors have been solved in complexes with agonists, antagonists, allosteric modulators, and auxiliary proteins. The embarrassingly rich library of structures emerging from this work reveals very dynamic molecules with a more complex conformational spectrum than anticipated from functional studies. Unanticipated conformations solved for complexes with competitive antagonists and a lack of understanding of the structural basis for ion channel subconductance states further highlight challenges that have yet to be addressed. Published by Elsevier Inc.

  19. Development of a novel ultrasensitive enzyme immunoassay for human glutamic acid decarboxylase 65 antibody.

    Science.gov (United States)

    Numata, Satoshi; Katakami, Hideki; Inoue, Shinobu; Sawada, Hirotake; Hashida, Seiichi

    2016-07-01

    We developed a novel, ultrasensitive enzyme immunoassay (immune complex transfer enzyme immunoassay) for determination of glutamic acid decarboxylase autoantibody concentrations in serum samples from patients with type 2 diabetes. We developed an immune complex transfer enzyme immunoassay for glutamic acid decarboxylase autoantibody and measured glutamic acid decarboxylase autoantibody from 22 patients with type 1 diabetes, 29 patients with type 2 diabetes, and 32 healthy controls. A conventional ELISA kit identified 10 patients with type 1 diabetes and one patient with type 2 diabetes as glutamic acid decarboxylase autoantibody positive, whereas 15 patients with type 1 diabetes and six patients with type 2 diabetes were identified as glutamic acid decarboxylase autoantibody positive using immune complex transfer enzyme immunoassay. Immune complex transfer enzyme immunoassay is a highly sensitive and specific assay for glutamic acid decarboxylase autoantibody and might be clinically useful for diabetic onset prediction and early diagnosis. © The Author(s) 2016.

  20. Effects of Memantine, an NMDA Antagonist, on Metabolic Syndromes in Female NMRI Mice

    Directory of Open Access Journals (Sweden)

    Naser Osanloo

    2015-10-01

    Results: The intraperitoneal administration of memantine increased plasma corticosterone, water intake, fecal weight and eating latency, but had no effect on food intake or weight. The dose and site-dependent intra-accumbens administration of memantine either exacerbated the effects of stress on plasma corticosterone levels and water and food intake, or else had no effect on these parameters. Furthermore, the administration of memantine had no effect on animal’s weight and inhibited the effects of stress on fecal weight and eating latency. Discussion: The inhibition of glutamate NMDA receptors in the nucleus accumbens can inhibit and/or exacerbate the dose and site-dependent effects of chronic stress, with gender playing a significant role in producing this effect.

  1. Oral glutamate intake reduces acute and chronic effects of ethanol in ...

    African Journals Online (AJOL)

    treatment, male Wistar rats were trained to consume ethanol-sucrose solution during a 2-h period daily, ... Oral treatment with 2.5 g/kg of glutamate reversed the acute motor effects of ethanol. ..... glutamate release in the prefrontal cortex-NAc.

  2. Censoring distances based on labeled cortical distance maps in cortical morphometry.

    Science.gov (United States)

    Ceyhan, Elvan; Nishino, Tomoyuki; Alexopolous, Dimitrios; Todd, Richard D; Botteron, Kelly N; Miller, Michael I; Ratnanather, J Tilak

    2013-01-01

    It has been demonstrated that shape differences in cortical structures may be manifested in neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM) which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM) voxels with respect to GM/white matter (WM) surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information contained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs) of subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy control (Ctrl) subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface) for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  3. Censoring Distances Based on Labeled Cortical Distance Maps in Cortical Morphometry

    Directory of Open Access Journals (Sweden)

    Elvan eCeyhan

    2013-10-01

    Full Text Available It has been demonstrated that shape differences are manifested in cortical structures due to neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM voxels with respect to GM/white matter (WM surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information con-tained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs of subjects with major depressive disorder (MDD, subjects at high risk (HR of MDD, and healthy control (Ctrl subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  4. Effects of amphetamine on dopamine release in the rat nucleus accumbens shell region depend on cannabinoid CB1 receptor activation

    NARCIS (Netherlands)

    Kleijn, J.; Wiskerke, J.; Cremers, T.I.F.H.; Schoffelmeer, A.N.M.; Westerink, B.H.C.; Pattij, T.

    2012-01-01

    The psychostimulant drug amphetamine is often prescribed to treat Attention-Deficit/Hyperactivity Disorder. The behavioral effects of the psychostimulant drug amphetamine depend on its ability to increase monoamine neurotransmission in brain regions such as the nucleus accumbens (NAC) and medial

  5. Characterization of the venom from the spider, Araneus gemma: search for a glutamate antagonist

    International Nuclear Information System (INIS)

    Early, S.L.

    1985-01-01

    Venom from three spiders, Argiope aurantia, Neoscona arabesca, and Araneus gemma have been shown to inhibit the binding of L-[ 3 H]glutamate to both GBP and synaptic membranes. The venom from Araneus gemma was shown to be the most potent of the three venoms in inhibiting the binding of L-[ 3 H]glutamate to GBP. Therefore, Araneus gemma venom was selected for further characterization. Venom from Araneus gemma appeared to contain two factors which inhibit the binding of L-[ 3 H]glutamate to GBP and at least one factor that inhibits L-glutamate-stimulated 35 SCN flux. Factor I is thought to be L-glutamic acid, based on: (1) its similar mobility to glutamic acid in thin-layer chromatography and amino acid analysis, (2) the presence of fingerprint molecular ion peaks for glutamate in the mass spectrum for the methanol:water (17:1) extract and for the fraction from the HPLC-purification of the crude venom, and (3) its L-glutamate-like interaction with the sodium-dependent uptake system. Factor II appears to be a polypeptide, possibly 21 amino acids in length, and does not appear to contain any free amino groups or tryptophan. While the venom does not appear to contain any indoleamines, three catecholamines (epinephrine, epinine, dopamine) and one catecholamine metabolite (DOPAC) were detected

  6. Effect of parenteral glutamate treatment on the localization of neurotransmitters in the mediobasal hypothalamus

    Energy Technology Data Exchange (ETDEWEB)

    Walaas, I; Fonnum, F

    1978-01-01

    The localization of cholinergic, aminergic and amino acid-ergic neurones in the mediobasal hypothalamus has been studied in normal rat brain and in brains where neurones in nucleus arcuatus were destroyed by repeated administration of 2 mg/g body weight monosodium glutamate to newborn animals. In normal animals acetylcholinesterase staining, choline acetyltransferase and aromatic L-amino acid decarboxylase were concentrated in the median eminence and the arcuate nucleus. Glutamate decarboxylase was concentrated at the boundary between the ventromedial and the arcuate nuclei, with lower activity in the arcuate nucleus and very low activity in the median eminence. Nucleus arcuatus contained an intermediate level of high affinity glutamate uptake. In the lesioned animals, there were significant decreases in choline acetyltransferase, acetylcholinesterase staining and glutamate decarboxylase in the median eminence, whereas choline acetyltransferase activity and acetylcholinesterase staining, but not glutamate decarboxylase activity, were decreased in nucleus arcuatus. Aromatic L-amino acid decarboxylase was unchanged in all regions studied. The high affinity uptakes of glutamate, dopamine and noradrenaline, and the endogenous amino acid levels were also unchanged in the treated animals. The results indicate the existence of acetylcholine- and GABA-containing elements in the tuberoinfundibular tract. They further indicate that the dopamine cells in the arcuate nucleus are less sensitive to the toxic effect of glutamate than other cell types, possibly because they contain less glutamate receptors.

  7. Focal and temporal release of glutamate in the mushroom bodies improves olfactory memory in Apis mellifera.

    Science.gov (United States)

    Locatelli, Fernando; Bundrock, Gesine; Müller, Uli

    2005-12-14

    In contrast to vertebrates, the role of the neurotransmitter glutamate in learning and memory in insects has hardly been investigated. The reason is that a pharmacological characterization of insect glutamate receptors is still missing; furthermore, it is difficult to locally restrict pharmacological interventions. In this study, we overcome these problems by using locally and temporally defined photo-uncaging of glutamate to study its role in olfactory learning and memory formation in the honeybee, Apis mellifera. Uncaging glutamate in the mushroom bodies immediately after a weak training protocol induced a higher memory rate 2 d after training, mimicking the effect of a strong training protocol. Glutamate release before training does not facilitate memory formation, suggesting that glutamate mediates processes triggered by training and required for memory formation. Uncaging glutamate in the antennal lobes shows no effect on memory formation. These results provide the first direct evidence for a temporally and locally restricted function of glutamate in memory formation in honeybees and insects.

  8. Dual and Direction-Selective Mechanisms of Phosphate Transport by the Vesicular Glutamate Transporter

    Directory of Open Access Journals (Sweden)

    Julia Preobraschenski

    2018-04-01

    Full Text Available Summary: Vesicular glutamate transporters (VGLUTs fill synaptic vesicles with glutamate and are thus essential for glutamatergic neurotransmission. However, VGLUTs were originally discovered as members of a transporter subfamily specific for inorganic phosphate (Pi. It is still unclear how VGLUTs accommodate glutamate transport coupled to an electrochemical proton gradient ΔμH+ with inversely directed Pi transport coupled to the Na+ gradient and the membrane potential. Using both functional reconstitution and heterologous expression, we show that VGLUT transports glutamate and Pi using a single substrate binding site but different coupling to cation gradients. When facing the cytoplasm, both ions are transported into synaptic vesicles in a ΔμH+-dependent fashion, with glutamate preferred over Pi. When facing the extracellular space, Pi is transported in a Na+-coupled manner, with glutamate competing for binding but at lower affinity. We conclude that VGLUTs have dual functions in both vesicle transmitter loading and Pi homeostasis within glutamatergic neurons. : Preobraschenski et al. show that the vesicular glutamate transporter functions as a bi-directional phosphate transporter that is coupled with different cations in each direction and hence may play a key role in neuronal phosphate homeostasis. Keywords: VGLUT, SLC17 family, type I Na+-dependent inorganic phosphate transporter, ATPase, proteoliposomes, hybrid vesicles, anti-VGLUT1 nanobody

  9. Biosynthetic preparation of L-[13C]- and [15N]glutamate by Brevibacterium flavum

    International Nuclear Information System (INIS)

    Walker, T.E.; London, R.E.

    1987-01-01

    The biosynthesis of isotopically labeled L-glutamic acid by the microorganism Brevibacterium flavum was studied with a variety of carbon-13-enriched precursors. The purpose of this study was twofold: (i) to develop techniques for the efficient preparation of labeled L-glutamate with a variety of useful labeling patterns which can be used for other metabolic studies, and (ii) to better understand the metabolic events leading to label scrambling in these strains. B. flavum, which is used commercially for the production of monosodium glutamate, has the capability of utilizing glucose or acetate as a sole carbon source, and important criterion from the standpoint of developing labeling strategies. Unfortunately, singly labeled glucose precursors lead to excessive isotopic dilution which reduces their usefulness. Studies with [3- 13 C]pyruvate indicate that this problem can in principle be overcome by using labeled three-carbon precursors; however, conditions could not be found which would lead to an acceptable yield of isotopically labeled L-glutamate. In contrast, [1- 13 C]- or [2- 13 C]acetate provides relatively inexpensive, readily available precursors for the production of selectively labeled, high enriched L-glutamate. The preparation of L-[ 15 N]glutamate from [ 15 N]ammonium sulfate was carried out and is a very effective labeling strategy. Analysis of the isotopic distribution in labeled glutamate provides details about the metabolic pathways in these interesting organisms

  10. Assessment of cortical and sub-cortical function in neonates by electrophysiological monitoring

    NARCIS (Netherlands)

    Jennekens, W.

    2012-01-01

    The aim of this thesis was the assessment of cortical and sub-cortical function in neonates by electrophysiological monitoring, i.e. to evaluate the function of the neonatal cortex and brainstem through quantitative analysis of signals readily available in the NICU. These signals include

  11. Peripheral Glutamate Receptors Are Required for Hyperalgesia Induced by Capsaicin

    Directory of Open Access Journals (Sweden)

    You-Hong Jin

    2012-01-01

    Full Text Available Transient receptor potential vanilloid1 (TRPV1 and glutamate receptors (GluRs are located in small diameter primary afferent neurons (nociceptors, and it was speculated that glutamate released in the peripheral tissue in response to activation of TRPV1 might activate nociceptors retrogradely. But, it was not clear which types of GluRs are functioning in the nociceptive sensory transmission. In the present study, we examined the c-Fos expression in spinal cord dorsal horn following injection of drugs associated with glutamate receptors with/without capsaicin into the hindpaw. The subcutaneous injection of capsaicin or glutamate remarkably evoked c-Fos expression in ipsilateral sides of spinal cord dorsal horn. This capsaicin evoked increase of c-Fos expression was significantly prevented by concomitant administration of MK801, CNQX, and CPCCOEt. On the other hand, there were not any significant changes in coinjection of capsaicin and MCCG or MSOP. These results reveal that the activation of iGluRs and group I mGluR in peripheral afferent nerves play an important role in mechanisms whereby capsaicin evokes/maintains nociceptive responses.

  12. Exercise induced upregulation of glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase modifier subunit gene expression in Thoroughbred horses

    Directory of Open Access Journals (Sweden)

    Jeong-Woong Park

    2017-05-01

    Full Text Available Objective This study was performed to reveal the molecular structure and expression patterns of horse glutamate-cysteine ligase catalytic subunit (GCLC and glutamate-cysteine ligase modifier subunit (GCLM genes whose products form glutamate cysteine ligase, which were identified as differentially expressed genes in the previous study. Methods We performed bioinformatics analyses, and gene expression assay with quantitative polymerase chain reaction (qPCR for horse GCLC and GCLM genes in muscle and blood leukocytes of Thoroughbred horses Results Expression of GCLC showed the same pattern in both blood and muscle tissues after exercise. Expression of GCLC increased in the muscle and blood of Thoroughbreds, suggesting a tissue-specific regulatory mechanism for the expression of GCLC. In addition, expression of the GCLM gene increased after exercise in both the blood and muscle of Thoroughbreds. Conclusion We established the expression patterns of GCLC and GCLM in the skeletal muscle and blood of Thoroughbred horses in response to exercise. Further study is now warranted to uncover the functional importance of these genes in exercise and recovery in racehorses.

  13. Riluzole protects against glutamate-induced slowing of neurofilament axonal transport.

    LENUS (Irish Health Repository)

    Stevenson, Alison

    2009-04-24

    Riluzole is the only drug approved for the treatment of amyotrophic lateral sclerosis (ALS) but its precise mode of action is not properly understood. Damage to axonal transport of neurofilaments is believed to be part of the pathogenic mechanism in ALS and this has been linked to defective glutamate handling and increased phosphorylation of neurofilament side-arm domains. Here, we show that riluzole protects against glutamate-induced slowing of neurofilament transport. Protection is associated with decreased neurofilament side-arm phosphorylation and inhibition of the activities of two neurofilament kinases, ERK and p38 that are activated in ALS. Thus, the anti-glutamatergic properties of riluzole include protection against glutamate-induced changes to neurofilament phosphorylation and transport.

  14. Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group.

    Science.gov (United States)

    van Rooij, Daan; Anagnostou, Evdokia; Arango, Celso; Auzias, Guillaume; Behrmann, Marlene; Busatto, Geraldo F; Calderoni, Sara; Daly, Eileen; Deruelle, Christine; Di Martino, Adriana; Dinstein, Ilan; Duran, Fabio Luis Souza; Durston, Sarah; Ecker, Christine; Fair, Damien; Fedor, Jennifer; Fitzgerald, Jackie; Freitag, Christine M; Gallagher, Louise; Gori, Ilaria; Haar, Shlomi; Hoekstra, Liesbeth; Jahanshad, Neda; Jalbrzikowski, Maria; Janssen, Joost; Lerch, Jason; Luna, Beatriz; Martinho, Mauricio Moller; McGrath, Jane; Muratori, Filippo; Murphy, Clodagh M; Murphy, Declan G M; O'Hearn, Kirsten; Oranje, Bob; Parellada, Mara; Retico, Alessandra; Rosa, Pedro; Rubia, Katya; Shook, Devon; Taylor, Margot; Thompson, Paul M; Tosetti, Michela; Wallace, Gregory L; Zhou, Fengfeng; Buitelaar, Jan K

    2018-04-01

    Neuroimaging studies show structural differences in both cortical and subcortical brain regions in children and adults with autism spectrum disorder (ASD) compared with healthy subjects. Findings are inconsistent, however, and it is unclear how differences develop across the lifespan. The authors investigated brain morphometry differences between individuals with ASD and healthy subjects, cross-sectionally across the lifespan, in a large multinational sample from the Enhancing Neuroimaging Genetics Through Meta-Analysis (ENIGMA) ASD working group. The sample comprised 1,571 patients with ASD and 1,651 healthy control subjects (age range, 2-64 years) from 49 participating sites. MRI scans were preprocessed at individual sites with a harmonized protocol based on a validated automated-segmentation software program. Mega-analyses were used to test for case-control differences in subcortical volumes, cortical thickness, and surface area. Development of brain morphometry over the lifespan was modeled using a fractional polynomial approach. The case-control mega-analysis demonstrated that ASD was associated with smaller subcortical volumes of the pallidum, putamen, amygdala, and nucleus accumbens (effect sizes [Cohen's d], 0.13 to -0.13), as well as increased cortical thickness in the frontal cortex and decreased thickness in the temporal cortex (effect sizes, -0.21 to 0.20). Analyses of age effects indicate that the development of cortical thickness is altered in ASD, with the largest differences occurring around adolescence. No age-by-ASD interactions were observed in the subcortical partitions. The ENIGMA ASD working group provides the largest study of brain morphometry differences in ASD to date, using a well-established, validated, publicly available analysis pipeline. ASD patients showed altered morphometry in the cognitive and affective parts of the striatum, frontal cortex, and temporal cortex. Complex developmental trajectories were observed for the different

  15. MDMA (Ecstasy) Decreases the Number of Neurons and Stem Cells in Embryonic Cortical Cultures

    DEFF Research Database (Denmark)

    Kindlundh-Högberg, Anna M S; Pickering, Chris; Wicher, Grzegorz

    2010-01-01

    Ecstasy, 3,4-methylenedioxymetamphetamine (MDMA), is a recreational drug used among adolescents, including young pregnant women. MDMA passes the placental barrier and may therefore influence fetal development. The aim was to investigate the direct effect of MDMA on cortical cells using dissociated...... CNS cortex of rat embryos, E17. The primary culture was exposed to a single dose of MDMA and collected 5 days later. MDMA caused a dramatic, dose-dependent (100 and 400 muM) decrease in nestin-positive stem cell density, as well as a significant reduction (400 muM) in NeuN-positive cells. By q......PCR, MDMA (200 muM) caused a significant decrease in mRNA expression of the 5HT3 receptor, dopamine D(1) receptor, and glutamate transporter EAAT2-1, as well as an increase in mRNA levels of the NMDA NR1 receptor subunit and the 5HT(1A) receptor. In conclusion, MDMA caused a marked reduction in stem cells...

  16. On the potential role of glutamate transport in mental fatigue

    Directory of Open Access Journals (Sweden)

    Hansson Elisabeth

    2004-11-01

    Full Text Available Abstract Mental fatigue, with decreased concentration capacity, is common in neuroinflammatory and neurodegenerative diseases, often appearing prior to other major mental or physical neurological symptoms. Mental fatigue also makes rehabilitation more difficult after a stroke, brain trauma, meningitis or encephalitis. As increased levels of proinflammatory cytokines are reported in these disorders, we wanted to explore whether or not proinflammatory cytokines could induce mental fatigue, and if so, by what mechanisms. It is well known that proinflammatory cytokines are increased in major depression, "sickness behavior" and sleep deprivation, which are all disorders associated with mental fatigue. Furthermore, an influence by specific proinflammatory cytokines, such as interleukin (IL-1, on learning and memory capacities has been observed in several experimental systems. As glutamate signaling is crucial for information intake and processing within the brain, and due to the pivotal role for glutamate in brain metabolism, dynamic alterations in glutamate transmission could be of pathophysiological importance in mental fatigue. Based on this literature and observations from our own laboratory and others on the role of astroglial cells in the fine-tuning of glutamate neurotransmission we present the hypothesis that the proinflammatory cytokines tumor necrosis factor-α, IL-1β and IL-6 could be involved in the pathophysiology of mental fatigue through their ability to attenuate the astroglial clearance of extracellular glutamate, their disintegration of the blood brain barrier, and effects on astroglial metabolism and metabolic supply for the neurons, thereby attenuating glutamate transmission. To test whether our hypothesis is valid or not, brain imaging techniques should be applied with the ability to register, over time and with increasing cognitive loading, the extracellular concentrations of glutamate and potassium (K+ in humans suffering from

  17. Glutamate and dopamine in schizophrenia: an update for the 21st century

    Science.gov (United States)

    Howes, Oliver; McCutcheon, Rob; Stone, James

    2016-01-01

    The glutamate and dopamine hypotheses are leading theories of the pathoaetiology of schizophrenia. Both were initially based on indirect evidence from pharmacological studies supported by post-mortem findings, but have since been substantially advanced by new lines of evidence from in vivo imaging studies. This review provides an up- date on the latest findings on dopamine and glutamate abnormalities in schizophrenia, focusing on the in vivo neuroimaging studies in patients and clinical high risk groups, and considers their implications for understanding the biology and treatment of schizophrenia. These findings have refined both the dopamine and glutamate hypotheses, enabling greater anatomical and functional specificity, and have been complemented by preclinical evidence showing how the risk factors for schizophrenia impact on the dopamine and glutamate systems. The implications of this new evidence for understanding the development and treatment of schizophrenia are considered, and the gaps in current knowledge highlighted. Finally the evidence for an integrated model of the interactions between the glutamate and dopamine systems is reviewed, and future directions discussed. PMID:25586400

  18. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte...... Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo...... synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle...

  19. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci

    Directory of Open Access Journals (Sweden)

    Guillermo Hugo Peralta

    Full Text Available ABSTRACT Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  20. Frontal cortical control of posterior sensory and association cortices through the claustrum.

    Science.gov (United States)

    White, Michael G; Mathur, Brian N

    2018-04-06

    The claustrum is a telencephalic gray matter nucleus that is richly interconnected with the neocortex. This structure subserves top-down executive functions that require frontal cortical control of posterior cortical regions. However, functional anatomical support for the claustrum allowing for long-range intercortical communication is lacking. To test this, we performed a channelrhodopsin-assisted long-circuit mapping strategy in mouse brain slices. We find that anterior cingulate cortex input to the claustrum is transiently amplified by claustrum neurons that, in turn, project to parietal association cortex or to primary and secondary visual cortices. Additionally, we observe that claustrum drive of cortical neurons in parietal association cortex is layer-specific, eliciting action potential generation briefly in layers II/III, IV, and VI but not V. These data are the first to provide a functional anatomical substrate through claustrum that may underlie top-down functions, such as executive attention or working memory, providing critical insight to this most interconnected and enigmatic nucleus.

  1. Effects of pentylenetetrazole and glutamate on metabolism of [U-(13)C]glucose in cultured cerebellar granule neurons.

    Science.gov (United States)

    Eloqayli, Haytham; Qu, Hong; Unsgård, Geirmund; Sletvold, Olav; Hadidi, Hakam; Sonnewald, Ursula

    2002-02-01

    This study was performed to analyze the effects of glutamate and the epileptogenic agent pentylenetetrazole (PTZ) on neuronal glucose metabolism. Cerebellar granule neurons were incubated for 2 h in medium containing 3 mM [U-(13)C]glucose, with and without 0.25 mM glutamate and/or 10 mM PTZ. In the presence of PTZ, decreased glucose consumption with unchanged lactate release was observed, indicating decreased glucose oxidation. PTZ also slowed down tricarboxylic acid (TCA) cycle activity as evidenced by the decreased amounts of labeled aspartate and [1,2-(13)C]glutamate. When glutamate was present, glucose consumption was also decreased. However, the amount of glutamate, derived from [U-(13)C]glucose via the first turn of the TCA cycle, was increased. The decreased amount of [1,2-(13)C]glutamate, derived from the second turn in the TCA cycle, and increased amount of aspartate indicated the dilution of label due to the entrance of unlabeled glutamate into TCA cycle. In the presence of glutamate plus PTZ, the effect of PTZ was enhanced by glutamate. Labeled alanine was detected only in the presence of glutamate plus PTZ, which indicated that oxaloacetate was a better amino acid acceptor than pyruvate. Furthermore, there was also evidence for intracellular compartmentation of oxaloacetate metabolism. Glutamate and PTZ caused similar metabolic changes, however, via different mechanisms. Glutamate substituted for glucose as energy substrate in the TCA cycle, whereas, PTZ appeared to decrease mitochondrial activity.

  2. Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum.

    Science.gov (United States)

    Sato, Hiroki; Orishimo, Keita; Shirai, Tomokazu; Hirasawa, Takashi; Nagahisa, Keisuke; Shimizu, Hiroshi; Wachi, Masaaki

    2008-07-01

    Corynebacterium glutamicum is a biotin auxotrophic bacterium in which glutamate production is induced under biotin-limited conditions. During glutamate production, anaplerotic reactions catalyzed by phosphoenolpyruvate carboxylase (PEPC) and a biotin-containing enzyme pyruvate carboxylase (PC) are believed to play an important role in supplying oxaloacetate in the tricarboxylic acid cycle. To understand the distinct roles of PEPC and PC on glutamate production by C. glutamicum, we observed glutamate production induced under biotin-limited conditions in the disruptants of the genes encoding PEPC (ppc) and PC (pyc), respectively. The pyc disruptant retained the ability to produce high amounts of glutamate, and lactate was simultaneously produced probably due to the increased intracellular pyruvate levels. On the other hand, the ppc knockout mutant could not produce glutamate. Additionally, glutamate production in the pyc disruptant was enhanced by overexpression of ppc rather than disruption of the lactate dehydrogenase gene (ldh), which is involved in lactate production. Metabolic flux analysis based on the 13C-labeling experiment and measurement of 13C-enrichment in glutamate using nuclear magnetic resonance spectroscopy revealed that the flux for anaplerotic reactions in the pyc disruptant was lower than that in the wild type, concomitantly increasing the flux for lactate formation. Moreover, overexpression of ppc increased this flux in both the pyc disruptant and the wild type. Our results suggest that the PEPC-catalyzed anaplerotic reaction is necessary for glutamate production induced under biotin-limited conditions, because PC is not active during glutamate production, and overexpression of ppc effectively enhances glutamate production under biotin-limited conditions.

  3. Label Free Detection of L-Glutamate Using Microfluidic Based Thermal Biosensor

    Directory of Open Access Journals (Sweden)

    Varun Lingaiah Kopparthy

    2015-01-01

    Full Text Available A thermoelectric biosensor for the detection of L-glutamate concentration was developed. The thermoelectric sensor is integrated into a micro-calorimeter which measures the heat produced by biochemical reactions. The device contains a single flow channel that is 120 µm high and 10 mm wide with two fluid inlets and one fluid outlet. An antimony-bismuth (Sb-Bi thermopile with high common mode rejection ratio is attached to the lower channel wall and measures the dynamic changes in the temperature when L-glutamate undergoes oxidative deamination in the presence of glutamate oxidase (GLOD. The thermopile has a Seebeck coefficient of ~7 µV·(m·K−1. The device geometry, together with hydrodynamic focusing, eliminates the need of extensive temperature control. Layer-by-layer assembly is used to immobilize GLOD on the surface of glass coverslips by alternate electrostatic adsorption of polyelectrolyte and GLOD. The impulse injection mode using a 6-port injection valve minimizes sample volume to 5 µL. The sensitivity of the sensor for glutamate is 17.9 nVs·mM−1 in the linear range of 0–54 mM with an R2 value of 0.9873. The lowest detection limit of the sensor for glutamate is 5.3 mM.

  4. Trade-off of cerebello-cortical and cortico-cortical functional networks for planning in 6-year-old children.

    Science.gov (United States)

    Kipping, Judy A; Margulies, Daniel S; Eickhoff, Simon B; Lee, Annie; Qiu, Anqi

    2018-05-03

    Childhood is a critical period for the development of cognitive planning. There is a lack of knowledge on its neural mechanisms in children. This study aimed to examine cerebello-cortical and cortico-cortical functional connectivity in association with planning skills in 6-year-olds (n = 76). We identified the cerebello-cortical and cortico-cortical functional networks related to cognitive planning using activation likelihood estimation (ALE) meta-analysis on existing functional imaging studies on spatial planning, and data-driven independent component analysis (ICA) of children's resting-state functional MRI (rs-fMRI). We investigated associations of cerebello-cortical and cortico-cortical functional connectivity with planning ability in 6-year-olds, as assessed using the Stockings of Cambridge task. Long-range functional connectivity of two cerebellar networks (lobules VI and lateral VIIa) with the prefrontal and premotor cortex were greater in children with poorer planning ability. In contrast, cortico-cortical association networks were not associated with the performance of planning in children. These results highlighted the key contribution of the lateral cerebello-frontal functional connectivity, but not cortico-cortical association functional connectivity, for planning ability in 6-year-olds. Our results suggested that brain adaptation to the acquisition of planning ability during childhood is partially achieved through the engagement of the cerebello-cortical functional connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Anhydrous thallium hydrogen L-glutamate: polymer networks formed by sandwich layers of oxygen-coordinated thallium ions cores shielded by hydrogen L-glutamate counterions.

    Science.gov (United States)

    Bodner, Thomas; Wirnsberger, Bianca; Albering, Jörg; Wiesbrock, Frank

    2011-11-07

    Anhydrous thallium hydrogen L-glutamate [Tl(L-GluH)] crystallizes from water (space group P2(1)) with a layer structure in which the thallium ions are penta- and hexacoordinated exclusively by the oxygen atoms of the γ-carboxylate group of the hydrogen L-glutamate anions to form a two-dimensional coordination polymer. The thallium-oxygen layer is composed of Tl(2)O(2) and TlCO(2) quadrangles and is only 3 Å high. Only one hemisphere of the thallium ions participates in coordination, indicative of the presence of the 6s(2) lone pair of electrons. The thallium-oxygen assemblies are shielded by the hydrogen l-glutamate anions. Only the carbon atom of the α-carboxylate group deviates from the plane spanned by the thallium ions, the γ-carboxylate groups and the proton bearing carbon atoms, which are in trans conformation. Given the abundance of L-glutamic and L-aspartic acid in biological systems on the one hand and the high toxicity of thallium on the other hand, it is worth mentioning that the dominant structural motifs in the crystal structure of [Tl(L-GluH)] strongly resemble their corresponding analogues in the crystalline phase of [K(L-AspH)(H(2)O)(2)].

  6. The Role of Nucleus Accumbens Shell in Learning about Neutral versus Excitatory Stimuli during Pavlovian Fear Conditioning

    Science.gov (United States)

    Bradfield, Laura A.; McNally, Gavan P.

    2010-01-01

    We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning…

  7. Glutamate as a neurotransmitter in the brain: review of physiology and pathology.

    Science.gov (United States)

    Meldrum, B S

    2000-04-01

    Glutamate is the principal excitatory neurotransmitter in brain. Our knowledge of the glutamatergic synapse has advanced enormously in the last 10 years, primarily through application of molecular biological techniques to the study of glutamate receptors and transporters. There are three families of ionotropic receptors with intrinsic cation permeable channels [N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate]. There are three groups of metabotropic, G protein-coupled glutamate receptors (mGluR) that modify neuronal and glial excitability through G protein subunits acting on membrane ion channels and second messengers such as diacylglycerol and cAMP. There are also two glial glutamate transporters and three neuronal transporters in the brain. Glutamate is the most abundant amino acid in the diet. There is no evidence for brain damage in humans resulting from dietary glutamate. A kainate analog, domoate, is sometimes ingested accidentally in blue mussels; this potent toxin causes limbic seizures, which can lead to hippocampal and related pathology and amnesia. Endogenous glutamate, by activating NMDA, AMPA or mGluR1 receptors, may contribute to the brain damage occurring acutely after status epilepticus, cerebral ischemia or traumatic brain injury. It may also contribute to chronic neurodegeneration in such disorders as amyotrophic lateral sclerosis and Huntington's chorea. In animal models of cerebral ischemia and traumatic brain injury, NMDA and AMPA receptor antagonists protect against acute brain damage and delayed behavioral deficits. Such compounds are undergoing testing in humans, but therapeutic efficacy has yet to be established. Other clinical conditions that may respond to drugs acting on glutamatergic transmission include epilepsy, amnesia, anxiety, hyperalgesia and psychosis.

  8. Decreased expression of vesicular glutamate transporter 1 and complexin II mRNAs in schizophrenia: further evidence for a synaptic pathology affecting glutamate neurons.

    Science.gov (United States)

    Eastwood, S L; Harrison, P J

    2005-03-01

    Synaptic protein gene expression is altered in schizophrenia. In the hippocampal formation there may be particular involvement of glutamatergic neurons and their synapses, but overall the profile remains unclear. In this in situ hybridization histochemistry (ISHH) study, we examined four informative synaptic protein transcripts: vesicular glutamate transporter (VGLUT) 1, VGLUT2, complexin I, and complexin II, in dorsolateral prefrontal cortex (DPFC), superior temporal cortex (STC), and hippocampal formation, in 13 subjects with schizophrenia and 18 controls. In these areas, VGLUT1 and complexin II are expressed primarily by excitatory neurons, whereas complexin I is mainly expressed by inhibitory neurons. In schizophrenia, VGLUT1 mRNA was decreased in hippocampal formation and DPFC, complexin II mRNA was reduced in DPFC and STC, and complexin I mRNA decreased in STC. Hippocampal VGLUT1 mRNA declined with age selectively in the schizophrenia group. VGLUT2 mRNA was not quantifiable due to its low level. The data provide additional evidence for a synaptic pathology in schizophrenia, in terms of a reduced expression of three synaptic protein genes. In the hippocampus, the loss of VGLUT1 mRNA supports data indicating that glutamatergic presynaptic deficits are prominent, whereas the pattern of results in temporal and frontal cortex suggests broadly similar changes may affect inhibitory and excitatory neurons. The impairment of synaptic transmission implied by the synaptic protein reductions may contribute to the dysfunction of cortical neural circuits that characterises the disorder.

  9. Non-opiate [beta]-endorphin fragments and dopamine--IV [gamma]-type endorphins may control dopaminergic systems in the nucleus accumbens

    NARCIS (Netherlands)

    Ree, J.M. van; Wolterink, G.; Fekete, M.; Wied, D. de

    1982-01-01

    Chronic treatment with des-enkephalin-γ-endorphin (DEγE, β-endorphin 6–17) twice daily for 10 days into the nucleus accumbens of rats resulted in hypoactivity, while similar treatment with γ-endorphin antiserum led to a marked hyperactivity. This enhanced activity persisted for at least 3 days

  10. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    Science.gov (United States)

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.

  11. Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: When, how and why?

    Directory of Open Access Journals (Sweden)

    Marina E Wolf

    2012-06-01

    Full Text Available In animal models of drug addiction, cocaine exposure has been shown to increase levels of calcium-permeable AMPA receptors (CP-AMPARs in two brain regions that are critical for motivation and reward - the ventral tegmental area (VTA and the nucleus accumbens (NAc. This review compares CP-AMPAR plasticity in the two brain regions and addresses its functional significance. In VTA dopamine neurons, cocaine exposure results in synaptic insertion of high conductance CP-AMPARs in exchange for lower conductance calcium-impermeable AMPARs (CI-AMPARs. This plasticity is rapid (hours, GluA2-dependent, and can be observed with a single cocaine injection. In addition to strengthening synapses and altering Ca2+ signaling, CP-AMPAR insertion affects subsequent induction of plasticity at VTA synapses. However, CP-AMPAR insertion is unlikely to mediate the increased dopamine cell activity that occurs during early withdrawal from cocaine exposure. Within the VTA, the group I metabotropic glutamate receptor mGluR1 exerts a negative influence on CP-AMPAR accumulation. Acutely, mGluR1 stimulation elicits a form of LTD resulting from CP-AMPAR removal and CI-AMPAR insertion. In medium spiny neurons (MSNs of the NAc, extended access cocaine self-administration is required to increase CP-AMPAR levels. This is first detected after approximately a month of withdrawal and then persists. Once present in NAc synapses, CP-AMPARs mediate the expression of incubation of cue-induced cocaine craving. The mechanism of their accumulation may be GluA1-dependent, which differs from that observed in the VTA. However, similar to VTA, mGluR1 stimulation removes CP-AMPARs from MSN synapses. Loss of mGluR1 tone during cocaine withdrawal may contribute to CP-AMPAR accumulation in the NAc. Thus, results in both brain regions point to the possibility of using positive modulators of mGluR1 as a treatment for cocaine addiction.

  12. Spatial integration and cortical dynamics.

    Science.gov (United States)

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-23

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.

  13. Quantitative autoradiographic distribution of L-[3H]glutamate-binding sites in rat central nervous system

    International Nuclear Information System (INIS)

    Greenamyre, J.T.; Young, A.B.; Penney, J.B.

    1984-01-01

    Quantitative autoradiography was used to determine the distribution of L-[3H]glutamate-binding sites in the rat central nervous system. Autoradiography was carried out in the presence of Cl- and Ca2+ ions. Scatchard plots and Hill coefficients of glutamate binding suggested that glutamate was interacting with a single population of sites having a K-D of about 300 nM and a capacity of 14.5 pmol/mg of protein. In displacement studies, ibotenate also appeared to bind to a single class of non-interacting sites with a KI of 28 microM. However, quisqualate displacement of [3H]glutamate binding revealed two well-resolved sites with KIS of 12 nM and 114 microM in striatum. These sites were unevenly distributed, representing different proportions of specific glutamate binding in different brain regions. The distribution of glutamate-binding sites correlated very well with the projection areas of putative glutamatergic pathways. This technique provides an extremely sensitive assay which can be used to gather detailed pharmacological and anatomical information about L-[3H]glutamate binding in the central nervous system

  14. Involvement of the oxytocin system in the nucleus accumbens in the regulation of juvenile social novelty-seeking behavior.

    Science.gov (United States)

    Smith, Caroline J W; Mogavero, Jazmin N; Tulimieri, Maxwell T; Veenema, Alexa H

    2017-07-01

    Exploration of novel environments, stimuli, and conspecifics is highly adaptive during the juvenile period, as individuals transition from immaturity to adulthood. We recently showed that juvenile rats prefer to interact with a novel individual over a familiar cage mate. However, the neural mechanisms underlying this juvenile social novelty-seeking behavior remain largely unknown. One potential candidate is the oxytocin (OXT) system, given its involvement in various motivated social behaviors. Here, we show that administration of the specific oxytocin receptor antagonist desGly-NH 2 ,d(CH 2 ) 5 -[Tyr(Me) 2 ,Thr 4 ]OVT reduces social novelty seeking-behavior in juvenile male rats when injected into the nucleus accumbens (10ng/0.5μl/side). The same drug dose was ineffective at altering social novelty-seeking behavior when administered into the lateral septum or basolateral amygdala. These results are the first to suggest the involvement of the OXT system in the nucleus accumbens in the regulation of juvenile social novelty-seeking behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. ATP secretion from nerve trunks and Schwann cells mediated by glutamate.

    Science.gov (United States)

    Liu, Guo Jun; Bennett, Max R

    2003-11-14

    ATP release from rat sciatic nerves and from cultured Schwann cells isolated from the nerves was investigated using an online bioluminescence technique. ATP was released in relatively large amounts from rat sciatic nerve trunks during electrical stimulation. This release was blocked by the sodium channel inhibitor tetrodotoxin and the non-NMDA glutamate receptor blocker 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Schwann cells isolated from the nerve trunks did not release ATP when electrically stimulated but did in response to glutamate in a concentration-dependent manner. Glutamate-stimulated ATP release was inhibited by specific non-competitive AMPA receptor antagonist GYKI 52466 and competitive non-NMDA receptor antagonist CNQX. Glutamate-stimulated ATP release was decreased by inhibition of anion transporter inhibitors by furosemide, cystic fibrosis transmembrane conductance regulator by glibenclamide and exocytosis by botulinum toxin A, indicating that anion transporters and exocytosis provide the main secretion mechanisms for ATP release from the Schwann cells.

  16. Relationship between glutamate dysfunction and symptoms and cognitive function in psychosis

    Directory of Open Access Journals (Sweden)

    Kate eMerritt

    2013-11-01

    Full Text Available The glutamate hypothesis of schizophrenia, proposed over two decades ago, originated following the observation that administration of drugs that block NMDA glutamate receptors, such as ketamine, could induce schizophrenia–like symptoms. Since then, this hypothesis has been extended to describe how glutamate abnormalities may disturb brain function and underpin psychotic symptoms and cognitive impairments. The glutamatergic system is now a major focus for the development of new compounds in schizophrenia. Relationships between regional brain glutamate function and symptom severity can be investigated using proton magnetic resonance spectroscopy (1H-MRS to estimate levels of glutamatergic metabolites in vivo. Here we briefly review the 1H-MRS studies that have explored relationships between glutamatergic metabolites, symptoms and cognitive function in clinical samples. While some of these studies suggest that more severe symptoms may be associated with elevated glutamatergic function in the anterior cingulate, studies in larger patient samples selected on the basis of symptom severity are required.

  17. Discrimination of cortical laminae using MEG.

    Science.gov (United States)

    Troebinger, Luzia; López, José David; Lutti, Antoine; Bestmann, Sven; Barnes, Gareth

    2014-11-15

    Typically MEG source reconstruction is used to estimate the distribution of current flow on a single anatomically derived cortical surface model. In this study we use two such models representing superficial and deep cortical laminae. We establish how well we can discriminate between these two different cortical layer models based on the same MEG data in the presence of different levels of co-registration noise, Signal-to-Noise Ratio (SNR) and cortical patch size. We demonstrate that it is possible to make a distinction between superficial and deep cortical laminae for levels of co-registration noise of less than 2mm translation and 2° rotation at SNR > 11 dB. We also show that an incorrect estimate of cortical patch size will tend to bias layer estimates. We then use a 3D printed head-cast (Troebinger et al., 2014) to achieve comparable levels of co-registration noise, in an auditory evoked response paradigm, and show that it is possible to discriminate between these cortical layer models in real data. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Co-release of glutamate and GABA from single vesicles in GABAergic neurons exogenously expressing VGLUT3

    Directory of Open Access Journals (Sweden)

    Johannes eZimmermann

    2015-09-01

    Full Text Available The identity of the vesicle neurotransmitter transporter expressed by a neuron largely corresponds with the primary neurotransmitter that cell releases. However, the vesicular glutamate transporter subtype 3 (VGLUT3 is mainly expressed in non-glutamatergic neurons, including cholinergic, serotonergic, or GABAergic neurons. Though a functional role for glutamate release from these non-glutamatergic neurons has been demonstrated, the interplay between VGLUT3 and the neuron’s characteristic neurotransmitter transporter, particularly in the case of GABAergic neurons, at the synaptic and vesicular level is less clear. In this study, we explore how exogenous expression of VGLUT3 in striatal GABAergic neurons affects the packaging and release of glutamate and GABA in synaptic vesicles. We found that VGLUT3 expression in isolated, autaptic GABAergic neurons leads to action potential evoked release of glutamate. Under these conditions, glutamate and GABA could be packaged together in single vesicles release either spontaneously or asynchronously. However, the presence of glutamate in GABAergic vesicles did not affect uptake of GABA itself, suggesting a lack of synergy in vesicle filling for these transmitters. Finally, we found postsynaptic detection of glutamate released from GABAergic terminals difficult when bona fide glutamatergic synapses were present, suggesting that co-released glutamate cannot induce postsynaptic glutamate receptor clustering.

  19. 40 CFR 180.1187 - L-glutamic acid; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false L-glutamic acid; exemption from the... Exemptions From Tolerances § 180.1187 L-glutamic acid; exemption from the requirement of a tolerance. L-glutamic acid is exempt from the requirement of a tolerance on all food commodities when used in accordance...

  20. Both neurons and astrocytes exhibited tetrodotoxin-resistant metabotropic glutamate receptor-dependent spontaneous slow Ca2+ oscillations in striatum.

    Directory of Open Access Journals (Sweden)

    Atsushi Tamura

    Full Text Available The striatum plays an important role in linking cortical activity to basal ganglia outputs. Group I metabotropic glutamate receptors (mGluRs are densely expressed in the medium spiny projection neurons and may be a therapeutic target for Parkinson's disease. The group I mGluRs are known to modulate the intracellular Ca(2+ signaling. To characterize Ca(2+ signaling in striatal cells, spontaneous cytoplasmic Ca(2+ transients were examined in acute slice preparations from transgenic mice expressing green fluorescent protein (GFP in the astrocytes. In both the GFP-negative cells (putative-neurons and astrocytes of the striatum, spontaneous slow and long-lasting intracellular Ca(2+ transients (referred to as slow Ca(2+ oscillations, which lasted up to approximately 200 s, were found. Neither the inhibition of action potentials nor ionotropic glutamate receptors blocked the slow Ca(2+ oscillation. Depletion of the intracellular Ca(2+ store and the blockade of inositol 1,4,5-trisphosphate receptors greatly reduced the transient rate of the slow Ca(2+ oscillation, and the application of an antagonist against mGluR5 also blocked the slow Ca(2+ oscillation in both putative-neurons and astrocytes. Thus, the mGluR5-inositol 1,4,5-trisphosphate signal cascade is the primary contributor to the slow Ca(2+ oscillation in both putative-neurons and astrocytes. The slow Ca(2+ oscillation features multicellular synchrony, and both putative-neurons and astrocytes participate in the synchronous activity. Therefore, the mGluR5-dependent slow Ca(2+ oscillation may involve in the neuron-glia interaction in the striatum.

  1. De-coupling of blood flow and metabolism in the rat brain induced by glutamate

    International Nuclear Information System (INIS)

    Hirose, Shinichiro; Momosaki, Sotaro; Sasaki, Kazunari; Hosoi, Rie; Abe, Kohji; Inoue, Osamu; Gee, A.

    2009-01-01

    Glutamate plays an essential role in neuronal cell death in many neurological disorders. In this study, we examined both glucose metabolism and cerebral blood flow in the same rat following infusion of glutamate or ibotenic acid using the dual-tracer technique. The effects of MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, and 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-kainate receptor antagonist, on the changes in the glucose metabolism and cerebral blood flow induced by glutamate were also examined. The rats were microinjected with glutamate (1 μmol/μl, 2 μl) or ibotenic acid (10 μg/μl, 1 μl) into the right striatum, and dual-tracer autoradiograms of [ 18 F]fluorodeoxyglucose (FDG) and [ 14 C]iofetamine (IMP) were obtained. MK-801 and NBQX were injected intravenously about 45 and 30 min, respectively, after the infusion of glutamate. De-coupling of blood flow and metabolism was noted in the glutamate-infused hemisphere (as assessed by no alteration of [ 18 F]FDG uptake and significant decrease of [ 14 C]IMP uptake). Pretreatments with MK-801, NBQX, or combined use of MK-801 and NBQX did not affect the de-coupling of the blood flow and metabolism induced by glutamate. A histochemical study revealed that about 20% neuronal cell death had occurred in the striatum at 105 min after the infusion of glutamate. In addition, a significant increase of the [ 18 F]FDG uptake and decrease of [ 14 C]IMP uptake were also seen in the rat brain infused with ibotenic acid. These results indicate that glutamate and ibotenic acid caused a significant de-coupling of blood flow and glucose metabolism in the intact rat brain during the early phase of neurodegeneration. It is necessary to evaluate the relation between metabotropic glutamate receptors and de-coupling of blood flow and metabolism. (author)

  2. Detection and quantitation of glutamate carboxypeptidase II in human blood

    Czech Academy of Sciences Publication Activity Database

    Knedlík, Tomáš; Navrátil, Václav; Vik, V.; Pacík, D.; Šácha, Pavel; Konvalinka, Jan

    2014-01-01

    Roč. 74, č. 7 (2014), s. 768-780 ISSN 0270-4137 R&D Projects: GA ČR GAP304/12/0847 Grant - others:OPPC(CZ) CZ.2.16/3.1.00/24016 Institutional support: RVO:61388963 Keywords : serum marker * glutamate carboxypeptidase II * plasma glutamate carboxypeptidase * prostate cancer * prostate -specific membrane antigen Subject RIV: CE - Biochemistry Impact factor: 3.565, year: 2014

  3. L-glutamate Receptor In Paramecium

    Science.gov (United States)

    Bernal-Martínez, Juan; Ortega-Soto, Arturo

    2004-09-01

    Behavioral, electrophysiological and biochemical experiments were performed in order to establish the presence of a glutamate receptor in the ciliate Paramecium. It was found that an AMPA/KA receptor is functionally expressed in Paramecium and that this receptor is immunologically and fillogenetically related to the AMPA/KA receptor present in vertebrates.

  4. Is cortical bone hip? What determines cortical bone properties?

    Science.gov (United States)

    Epstein, Sol

    2007-07-01

    Increased bone turnover may produce a disturbance in bone structure which may result in fracture. In cortical bone, both reduction in turnover and increase in hip bone mineral density (BMD) may be necessary to decrease hip fracture risk and may require relatively greater proportionate changes than for trabecular bone. It should also be noted that increased porosity produces disproportionate reduction in bone strength, and studies have shown that increased cortical porosity and decreased cortical thickness are associated with hip fracture. Continued studies for determining the causes of bone strength and deterioration show distinct promise. Osteocyte viability has been observed to be an indicator of bone strength, with viability as the result of maintaining physiological levels of loading and osteocyte apoptosis as the result of a decrease in loading. Osteocyte apoptosis and decrease are major factors in the bone loss and fracture associated with aging. Both the osteocyte and periosteal cell layer are assuming greater importance in the process of maintaining skeletal integrity as our knowledge of these cells expand, as well being a target for pharmacological agents to reduce fracture especially in cortical bone. The bisphosphonate alendronate has been seen to have a positive effect on cortical bone by allowing customary periosteal growth, while reducing the rate of endocortical bone remodeling and slowing bone loss from the endocortical surface. Risedronate treatment effects were attributed to decrease in bone resorption and thus a decrease in fracture risk. Ibandronate has been seen to increase BMD as the spine and femur as well as a reduced incidence of new vertebral fractures and non vertebral on subset post hoc analysis. And treatment with the anabolic agent PTH(1-34) documented modeling and remodelling of quiescent and active bone surfaces. Receptor activator of nuclear factor kappa B ligand (RANKL) plays a key role in bone destruction, and the human monoclonal

  5. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology.

    Science.gov (United States)

    Pin, Jean-Philippe; Acher, Francine

    2002-06-01

    The metabotropic glutamate receptors are G-protein coupled receptors (GPCR) involved in the regulation of many synapses, including most glutamatergic fast excitatory synapses. Eight subtypes have been identified that can be classified into three groups. The molecular characterization of these receptors revealed proteins much more complex than any other GPCRs. They are composed of a Venus Flytrap (VFT) module where glutamate binds, connected to a heptahelical domain responsible for G-protein coupling. Recent data including the structure of the VFT module determined with and without glutamate, indicate that these receptors function as dimers. Moreover a number of intracellular proteins can regulate their targeting and transduction mechanism. Such structural features of mGlu receptors offer multiple possibilities for synthetic compounds to modulate their activity. In addition to agonists and competitive antagonists acting at the glutamate binding site, a number of non-competitive antagonists with inverse agonist activity, and positive allosteric modulators have been discovered. These later compounds share specific properties that make them good candidates for therapeutic applications. First, their non-amino acid structure makes them pass more easily the blood brain barrier. Second, they are much more selective than any other compound identified so far, being the first subtype selective molecules. Third, for the negative modulators, their non competitive mechanism of action makes them relatively unaffected by high concentrations of glutamate that may be present in disease states (e.g. stroke, epilepsy, neuropathic pain, etc.). Fourth, like the benzodiazepines acting at the GABA(A) receptors, the positive modulators offer a new way to increase the activity of these receptors in vivo, with a low risk of inducing their desensitization. The present review article focuses on the specific structural features of these receptors and highlights the various possibilities these

  6. The structure and function of glutamate receptors: Mg2+ block to X-ray diffraction.

    Science.gov (United States)

    Mayer, Mark L

    2017-01-01

    Experiments on the action of glutamate on mammalian and amphibian nervous systems started back in the 1950s but decades passed before it became widely accepted that glutamate was the major excitatory neurotransmitter in the CNS. The pace of research greatly accelerated in the 1980s when selective ligands that identified glutamate receptor subtypes became widely available, and voltage clamp techniques, coupled with rapid perfusion, began to resolve the unique functional properties of what cloning subsequently revealed to be a large family of receptors with numerous subtypes. More recently the power of X-ray crystallography and cryo-EM has been applied to the study of glutamate receptors, revealing their atomic structures, and the conformational changes that underlie their gating. In this review I summarize the history of this field, viewed through the lens of a career in which I spent 3 decades working on the structure and function of glutamate receptor ion channels. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'. Published by Elsevier Ltd.

  7. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy

    Science.gov (United States)

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J.; Yong, Keir X.X.; Paterson, Ross W.; Slattery, Catherine F.; Foulkes, Alexander J.M.; Rabinovici, Gil D.; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M.; Fox, Nick C.; Crutch, Sebastian J.

    2016-01-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer’s disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. PMID:27318138

  8. Bioconversion of sugar cane molasses into glutamic acid by gamma irradiated corynebacterium glutamicum

    International Nuclear Information System (INIS)

    El-Batal, A.I.

    1996-01-01

    Corynebacterium glutamicum (ATCC 13058) was used for glutamic acid production from sugar cane molasses which contain sufficient. The addition of 5 units ml 4 of penicillin G was superior in glutamic acid production (11.5 g L 4 ). Tweens and their saturated fatty acids were effective on the accumulation of glutamic acid in the culture medium and the maximum yield (16.6 g L 4 ) was the addition of 5 mg ml 4 Tween 40. Gamma irradiation prior to Tween-40 treatment of bacterial cells resulted in an obvious increase in glutamic acid production and it was maximum (23.72 g L 4 ) at 0.1 k Gy exposure dose of inocula. 5 tabs

  9. Protein expression in the nucleus accumbens of rats exposed to developmental vitamin D deficiency.

    Directory of Open Access Journals (Sweden)

    John McGrath

    Full Text Available INTRODUCTION: Developmental vitamin D (DVD deficiency is a candidate risk factor for schizophrenia. Animal models have confirmed that DVD deficiency is associated with a range of altered genomic, proteomic, structural and behavioural outcomes in the rat. Because the nucleus accumbens has been implicated in neuropsychiatric disorders, in the current study we examined protein expression in this region in adult rats exposed to DVD deficiency METHODS: Female Sprague Dawley rats were maintained on a vitamin D deficient diet for 6 weeks, mated and allowed to give birth, after which a diet containing vitamin D was reintroduced. Male adult offspring (n = 8 were compared to control male (n = 8. 2-D gel electrophoresis-based proteomics and mass spectroscopy were used to investigate differential protein expression. RESULTS: There were 35 spots, mapped to 33 unique proteins, which were significantly different between the two groups. Of these, 22 were down-regulated and 13 up-regulated. The fold changes were uniformly small, with the largest FC being -1.67. Within the significantly different spots, three calcium binding proteins (calbindin1, calbindin2 and hippocalcin were altered. Other proteins associated with DVD deficiency related to mitochondrial function, and the dynamin-like proteins. CONCLUSIONS: Developmental vitamin D deficiency was associated with subtle changes in protein expression in the nucleus accumbens. Disruptions in pathways related to calcium-binding proteins and mitochondrial function may underlie some of the behavioural features associated with animal models of developmental vitamin D deficiency.

  10. Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation.

    Science.gov (United States)

    Su, Marcia S; Schlicht, Sabine; Gänzle, Michael G

    2011-08-30

    Acid stress impacts the persistence of lactobacilli in industrial sourdough fermentations, and in intestinal ecosystems. However, the contribution of glutamate to acid resistance in lactobacilli has not been demonstrated experimentally, and evidence for the contribution of acid resistance to the competitiveness of lactobacilli in sourdough is lacking. It was therefore the aim of this study to investigate the ecological role of glutamate decarboxylase in L. reuteri. A gene coding for a putative glutamate decarboxylase, gadB, was identified in the genome of L. reuteri 100-23. Different from the organization of genetic loci coding for glutamate decarboxylase in other lactic acid bacteria, gadB was located adjacent to a putative glutaminase gene, gls3. An isogenic deletion mutant, L. reuteri ∆gadB, was generated by a double crossover method. L. reuteri 100-23 but not L. reuteri ∆gadB converted glutamate to γ-aminobutyrate (GABA) in phosphate butter (pH 2.5). In sourdough, both strains converted glutamine to glutamate but only L. reuteri 100-23 accumulated GABA. Glutamate addition to phosphate buffer, pH 2.5, improved survival of L. reuteri 100-23 100-fold. However, survival of L. reuteri ∆gadB remained essentially unchanged. The disruption of gadB did not affect growth of L. reuteri in mMRS or in sourdough. However, the wild type strain L. reuteri 100-23 displaced L. reuteri ∆gadB after 5 cycles of fermentation in back-slopped sourdough fermentations. The conversion of glutamate to GABA by L. reuteri 100-23 contributes to acid resistance and to competitiveness in industrial sourdough fermentations. The organization of the gene cluster for glutamate conversion, and the availability of amino acids in cereals imply that glutamine rather than glutamate functions as the substrate for GABA formation. The exceptional coupling of glutamine deamidation to glutamate decarboxylation in L. reuteri likely reflects adaptation to cereal substrates.

  11. Dual Effects of TARP γ-2 on Glutamate Efficacy Can Account for AMPA Receptor Autoinactivation

    Directory of Open Access Journals (Sweden)

    Ian D. Coombs

    2017-08-01

    Full Text Available Fast excitatory transmission in the CNS is mediated mainly by AMPA-type glutamate receptors (AMPARs associated with transmembrane AMPAR regulatory proteins (TARPs. At the high glutamate concentrations typically seen during synaptic transmission, TARPs slow receptor desensitization and enhance mean channel conductance. However, their influence on channels gated by low glutamate concentrations, as encountered during delayed transmitter clearance or synaptic spillover, is poorly understood. We report here that TARP γ-2 reduces the ability of low glutamate concentrations to cause AMPAR desensitization and enhances channel gating at low glutamate occupancy. Simulations show that, by shifting the balance between AMPAR activation and desensitization, TARPs can markedly facilitate the transduction of spillover-mediated synaptic signaling. Furthermore, the dual effects of TARPs can account for biphasic steady-state glutamate concentration-response curves—a phenomenon termed “autoinactivation,” previously thought to reflect desensitization-mediated AMPAR/TARP dissociation.

  12. Trajectories of cortical surface area and cortical volume maturation in normal brain development

    Directory of Open Access Journals (Sweden)

    Simon Ducharme

    2015-12-01

    Full Text Available This is a report of developmental trajectories of cortical surface area and cortical volume in the NIH MRI Study of Normal Brain Development. The quality-controlled sample included 384 individual typically-developing subjects with repeated scanning (1–3 per subject, total scans n=753 from 4.9 to 22.3 years of age. The best-fit model (cubic, quadratic, or first-order linear was identified at each vertex using mixed-effects models, with statistical correction for multiple comparisons using random field theory. Analyses were performed with and without controlling for total brain volume. These data are provided for reference and comparison with other databases. Further discussion and interpretation on cortical developmental trajectories can be found in the associated Ducharme et al.׳s article “Trajectories of cortical thickness maturation in normal brain development – the importance of quality control procedures” (Ducharme et al., 2015 [1].

  13. A novel stereospecific synthesis of 14C labeled 1-glutamic acid

    International Nuclear Information System (INIS)

    Wurz, R.E.; Kepner, R.E.; Webb, A.D.

    1989-01-01

    A stereospecific synthesis of 4- 14 C-1-glutamic acid was completed in five steps from sodium 2- 14 C-acetate. The morpholine derived enamine of ethyl pyruvate was reacted with ethyl 2- 14 C-bromoacetate to give after hydrolysis diethyl 4- 14 C-2-oxoglutarate. The 2-oxoglutarate was reacted with hydroxylamine hydrochloride to give diethyl 4-14C-2-hydroxyiminoglutarate which was then reduced with a LiAlH4, (-)-N-methylephedrine and 3,5-dimethylphenol mixture to give 4- 14 C-1-glutamic acid. The 4- 14 C-1-glutamic acid was used in investigations into the biosynthesis of gamma-lactones in sherries

  14. Intercellular signal communication among odontoblasts and trigeminal ganglion neurons via glutamate.

    Science.gov (United States)

    Nishiyama, A; Sato, M; Kimura, M; Katakura, A; Tazaki, M; Shibukawa, Y

    2016-11-01

    Various stimuli to the exposed surface of dentin induce changes in the hydrodynamic force inside the dentinal tubules resulting in dentinal pain. Recent evidences indicate that mechano-sensor channels, such as the transient receptor potential channels, in odontoblasts receive these hydrodynamic forces and trigger the release of ATP to the pulpal neurons, to generate dentinal pain. A recent study, however, has shown that odontoblasts also express glutamate receptors (GluRs). This implies that cells in the dental pulp tissue have the ability to release glutamate, which acts as a functional intercellular mediator to establish inter-odontoblast and odontoblast-trigeminal ganglion (TG) neuron signal communication. To investigate the intercellular signal communication, we applied mechanical stimulation to odontoblasts and measured the intracellular free Ca 2+ concentration ([Ca 2+ ] i ). During mechanical stimulation in the presence of extracellular Ca 2+ , we observed a transient [Ca 2+ ] i increase not only in single stimulated odontoblasts, but also in adjacent odontoblasts. We could not observe these responses in the absence of extracellular Ca 2+ . [Ca 2+ ] i increases in the neighboring odontoblasts during mechanical stimulation of single odontoblasts were inhibited by antagonists of metabotropic glutamate receptors (mGluRs) as well as glutamate-permeable anion channels. In the odontoblast-TG neuron coculture, we observed an increase in [Ca 2+ ] i in the stimulated odontoblasts and TG neurons, in response to direct mechanical stimulation of single odontoblasts. These [Ca 2+ ] i increases in the neighboring TG neurons were inhibited by antagonists for mGluRs. The [Ca 2+ ] i increases in the stimulated odontoblasts were also inhibited by mGluRs antagonists. We further confirmed that the odontoblasts express group I, II, and III mGluRs. However, we could not record any currents evoked from odontoblasts near the mechanically stimulated odontoblast, with or without

  15. Focal cortical dysplasia – review

    International Nuclear Information System (INIS)

    Kabat, Joanna; Król, Przemysław

    2012-01-01

    Focal cortical dysplasia is a malformation of cortical development, which is the most common cause of medically refractory epilepsy in the pediatric population and the second/third most common etiology of medically intractable seizures in adults. Both genetic and acquired factors are involved in the pathogenesis of cortical dysplasia. Numerous classifications of the complex structural abnormalities of focal cortical dysplasia have been proposed – from Taylor et al. in 1971 to the last modification of Palmini classification made by Blumcke in 2011. In general, three types of cortical dysplasia are recognized. Type I focal cortical dysplasia with mild symptomatic expression and late onset, is more often seen in adults, with changes present in the temporal lobe. Clinical symptoms are more severe in type II of cortical dysplasia usually seen in children. In this type, more extensive changes occur outside the temporal lobe with predilection for the frontal lobes. New type III is one of the above dysplasias with associated another principal lesion as hippocampal sclerosis, tumor, vascular malformation or acquired pathology during early life. Brain MRI imaging shows abnormalities in the majority of type II dysplasias and in only some of type I cortical dysplasias. The most common findings on MRI imaging include: focal cortical thickening or thinning, areas of focal brain atrophy, blurring of the gray-white junction, increased signal on T2- and FLAIR-weighted images in the gray and subcortical white matter often tapering toward the ventricle. On the basis of the MRI findings, it is possible to differentiate between type I and type II cortical dysplasia. A complete resection of the epileptogenic zone is required for seizure-free life. MRI imaging is very helpful to identify those patients who are likely to benefit from surgical treatment in a group of patients with drug-resistant epilepsy. However, in type I cortical dysplasia, MR imaging is often normal, and also in both

  16. Does incentive-elicited nucleus accumbens activation differ by substance of abuse? An examination with adolescents

    Directory of Open Access Journals (Sweden)

    Hollis C. Karoly

    2015-12-01

    Full Text Available Numerous questions surround the nature of reward processing in the developing adolescent brain, particularly in regard to polysubstance use. We therefore sought to examine incentive-elicited brain activation in the context of three common substances of abuse (cannabis, tobacco, and alcohol. Due to the role of the nucleus accumbens (NAcc in incentive processing, we compared activation in this region during anticipation of reward and loss using a monetary incentive delay (MID task. Adolescents (ages 14–18; 66% male were matched on age, gender, and frequency of use of any common substances within six distinct groups: cannabis-only (n = 14, tobacco-only (n = 34, alcohol-only (n = 12, cannabis + tobacco (n = 17, cannabis + tobacco + alcohol (n = 17, and non-using controls (n = 38. All groups showed comparable behavioral performance on the MID task. The tobacco-only group showed decreased bilateral nucleus accumbens (NAcc activation during reward anticipation as compared to the alcohol-only group, the control group, and both polysubstance groups. Interestingly, no differences emerged between the cannabis-only group and any of the other groups. Results from this study suggest that youth who tend toward single-substance tobacco use may possess behavioral and/or neurobiological characteristics that differentiate them from both their substance-using and non-substance-using peers.

  17. A Stable Glutamate Biosensor Based on MnO2 Bulk-modified ...

    African Journals Online (AJOL)

    An amperometric glutamate biosensor was developed using screen-printed carbon electrodes bulk-modified with MnO2 (5%, m:m) onto which glutamate oxidase was immobilized via Nafion(R) film entrapment. The analytical performance of the biosensor was assessed in a flow injection mode and peak heights of the ...

  18. Paraventricular Stimulation with Glutamate Elicits Bradycardia and Pituitary Responses

    Science.gov (United States)

    Darlington, Daniel N.; Miyamoto, Michael; Keil, Lanny C.; Dallman, Mary F.

    1989-01-01

    The excitatory neurotransmitter, L-glutamate (0.5 M, pH 7.4), or the organic acid, acetate (0.5 M, pH 7.4), was microinjected (50 nl over 2 min) directly into the paraventricular nuclei (PVN) of pentobarbital sodium-anesthetized rats while arterial blood pressure and heart rate and plasma adrenocorticotropic hormone (ACTH), vasopressin, and oxytocin were measured. Activation of PVN neurons with L-glutamate led to increases in plasma ACTH, vasopressin, and oxytocin and a profound bradycardia (-80 beats/min) with little change in arterial blood pressure. Microinjection of acetate had no effect on the above variables. The decrease in heart rate was shown to be dependent on the concentration of glutamate injected and the volume of injectate. The bradycardia was mediated through the autonomic nervous system because ganglionic blockade (pentolinium tartrate) eliminated the response; atropine and propranolol severely attenuated the bradycardia. The bradycardia was greatest when L-glutamate was microinjected into the caudal PVN. Injections into the rostral PVN or into nuclei surrounding the PVN led to small or nonsignificant decreases in heart rate. Focal electric stimulation (2-50 pA) of the PVN also led to decreases in heart rate and arterial blood pressure. These data suggest that activation of PVN neurons leads to the release of ACTH, vasopressin, and oxytocin from the pituitary and a bradycardia that is mediated by the autonomic nervous system.

  19. Detection of Glutamate and γ-aminobutyric Acid in Vitreous of Patients with Proliferative Diabetic Retinopathy

    Institute of Scientific and Technical Information of China (English)

    Juan Deng; De-Zheng Wu; Rulong Gao

    2000-01-01

    Purpose: To study the levels of glutamate and γ-aminobutyric acid (GABA) in vitreous of patients with proliferative diabetic retinopathy(PDR) and to investigate their roles in retinal ischemia.Method: Vitreous samples were collected from 25 patients (27 eyes) with PDR and 14patients ( 14 eyes) with idiopathic macular hole. Glutamate and GABA detection were performed by high-performance liquid chromatography (HPLC).Results: Patients with PDR had significantly higher concentrations of glutamate and GABA than the control group. The glutamate level has a significantly positive correlation with GABA level.Conclusion: Detection of glutamate and GABA in vitreous provides biochemical support for the mechanism and treatment of ischemic retinal damage in patients with PDR.

  20. Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA

    DEFF Research Database (Denmark)

    Schousboe, Arne; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2013-01-01

    Glutamate and GABA are the quantitatively major neurotransmitters in the brain mediating excitatory and inhibitory signaling, respectively. These amino acids are metabolically interrelated and at the same time they are tightly coupled to the intermediary metabolism including energy homeostasis....... Astrocytes play a pivotal role in the maintenance of the neurotransmitter pools of glutamate and GABA since only these cells express pyruvate carboxylase, the enzyme required for de novo synthesis of the two amino acids. Such de novo synthesis is obligatory to compensate for catabolism of glutamate and GABA...... related to oxidative metabolism when the amino acids are used as energy substrates. This, in turn, is influenced by the extent to which the cycling of the amino acids between neurons and astrocytes may occur. This cycling is brought about by the glutamate/GABA - glutamine cycle the operation of which...