WorldWideScience

Sample records for accretion-disk outflows ii

  1. Nucleosynthesis in the outflows associated with accretion disks of Type II collapsars

    CERN Document Server

    Banerjee, Indrani

    2013-01-01

    We investigate nucleosynthesis inside the outflows from gamma-ray burst (GRB) accretion disks formed by the Type II collapsars. In these collapsars, massive stars undergo core collapse to form a proto-neutron star initially and a mild supernova explosion is driven. The supernova ejecta lack momentum and subsequently this newly formed neutron star gets transformed to a stellar mass black hole via massive fallback. The hydrodynamics and the nucleosynthesis in these accretion disks has been studied extensively in the past. Several heavy elements are synthesized in the disk and much of these heavy elements are ejected from the disk via winds and outflows. We study nucleosynthesis in the outflows launched from these disks by using an adiabatic, spherically expanding outflow model, to understand which of these elements thus synthesized in the disk survive in the outflow. While studying this we find that many new elements like isotopes of titanium, copper, zinc etc. are present in the outflows. 56Ni is abundantly sy...

  2. Multi-dimensional modelling of X-ray spectra for AGN accretion-disk outflows II

    CERN Document Server

    Sim, S A; Long, K S; Turner, T J; Reeves, J N

    2010-01-01

    Highly-ionized fast accretion-disk winds have been suggested as an explanation for a variety of observed absorption and emission features in the X-ray spectra of Active Galactic Nuclei. Simple estimates have suggested that these flows may be massive enough to carry away a significant fraction of the accretion energy and could be involved in creating the link between supermassive black holes and their host galaxies. However, testing these hypotheses, and quantifying the outflow signatures, requires high-quality theoretical spectra for comparison with observations. Here we describe extensions of our Monte Carlo radiative transfer code that allow us to generate realistic theoretical spectra for a much wider variety of disk wind models than possible in our previous work. In particular, we have expanded the range of atomic physics simulated by the code so that L- and M-shell ions can now be included. We have also substantially improved our treatment of both ionization and radiative heating such that we are now abl...

  3. Accretion Disk Outflows from Compact Object Mergers

    Science.gov (United States)

    Metzger, Brian

    Nuclear reactions play a key role in the accretion disks and outflows associated with the merger of binary compact objects and the central engines of gamma-ray bursts and supernovae. The proposed research program will investigate the impact of nucleosynthesis on these events and their observable signatures by means of analytic calculations and numerical simulations. One focus of this research is rapid accretion following the tidal disruption of a white dwarf (WD) by a neutron star (NS) or black hole (BH) binary companion. Tidal disruption shreds the WD into a massive torus composed of C, O, and/or He, which undergoes nuclear reactions and burns to increasingly heavier elements as it flows to smaller radii towards the central compact object. The nuclear energy so released is comparable to that released gravitationally, suggesting that burning could drastically alter the structure and stability of the accretion flow. Axisymmetric hydrodynamic simulations of the evolution of the torus including nuclear burning will be performed to explore issues such as the mass budget of the flow (accretion vs. outflows) and its thermal stability (steady burning and accretion vs. runaway explosion). The mass, velocity, and composition of outflows from the disk will be used in separate radiative transfer calculations to predict the lightcurves and spectra of the 56Ni-decay powered optical transients from WD-NS/WD-BH mergers. The possible connection of such events to recently discovered classes of sub-luminous Type I supernovae will be assessed. The coalescence of NS-NS/NS-BH binaries also results in the formation of a massive torus surrounding a central compact object. Three-dimensional magnetohydrodynamic simulations of the long-term evolution of such accretion disks will be performed, which for the first time follow the effects of weak interactions and the nuclear energy released by Helium recombination. The nucleosynthetic yield of disk outflows will be calculated using a detailed

  4. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.

    Science.gov (United States)

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S

    2015-03-26

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows). PMID:25810204

  5. Wind from black hole accretion disk as the driver of a molecular outflow in a galaxy

    CERN Document Server

    Tombesi, F; Veilleux, S; Reeves, J N; Gonzalez-Alfonso, E; Reynolds, C S

    2015-01-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. Recent observations of large-scale molecular outflows in ultra-luminous infrared galaxies (ULIRGs) have provided the evidence to support these studies, as they directly trace the gas out of which stars form. Theoretical models suggest an origin of these outflows as energy-conserving flows driven by fast AGN accretion disk winds. Previous claims of a connection between large-scale molecular outflows and AGN activity in ULIRGs were incomplete because they were lacking the detection of the putative inner wind. Conversely, studies of powerful AGN accretion disk winds to date have focused only on X-ray observations of local Seyferts and a few higher redshift quasars. Here we show the clear detection of a powerful AGN accretion disk wind with a mildly relativistic ...

  6. An Extensive Numerical Survey of the Correlation Between Outflow Dynamics and Accretion Disk Magnetization

    Science.gov (United States)

    Stepanovs, Deniss; Fendt, Christian

    2016-07-01

    We investigate the accretion–ejection process of jets from magnetized accretion disks. We apply a novel approach to the jet-launching problem in order to obtain correlations between the physical properties of the jet and the underlying disk. We extend and confirm the previous works of Tzeferacos et al. and Murphy et al. by scanning a large parameter range for the disk magnetization, {μ }{{D}}={10}-3.5...{10}-0.7. We disentangle the disk magnetization at the foot point of the outflow as the main parameter that governs the properties of the outflow. We show how the four jet integrals known from steady-state MHD are correlated to the disk magnetization at the jet foot point. This agrees with the usual findings of the steady-state theory, however, here we obtain these correlations from time-dependent simulations that include the dynamical evolution of the disk in the treatment. In particular, we obtain robust correlations between the local disk magnetization and (i) the outflow velocity, (ii) the jet mass loading, (iii) the jet angular momentum, and (iv) the local mass accretion rate. Essentially, we find that strongly magnetized disks launch more energetic and faster jets and, due to a larger Alfvén lever arm, these jets extract more angular momentum from the underlying disk. These kinds of disk–jet systems have, however, a smaller mass loading parameter and a lower mass ejection–accretion ratio. The jets are launched at the disk surface where the magnetization is μ (r,z)≃ 0.1. The magnetization rapidly increases vertically providing the energy reservoir for subsequent jet acceleration. We find indications of a critical disk magnetization {μ }{{D}}≃ 0.01 that separates the regimes of magneto-centrifugally driven and magnetic pressure-driven jets.

  7. The outflows accelerated by the magnetic fields and radiation force of accretion disks

    CERN Document Server

    Cao, Xinwu

    2014-01-01

    The inner region of a luminous accretion disk is radiation pressure dominated. We estimate the surface temperature of a radiation pressure dominated accretion disk, \\Theta=(c_s/r\\Omega_K)^2<<(H/r)^2, which is significantly lower than that of a gas pressure dominated disk, \\Theta (H/r)^2. This means that the outflow can be launched magnetically from the photosphere of the radiation pressure dominate disk only if the effective potential barrier along the magnetic field line is extremely shallow or no potential barrier is present. For the latter case, the slow sonic point in the outflow may probably be in the disk, which leads to a slow circular dense flow above the disk. This implies that hot gas (probably in the corona) is necessary for launching a jet from the radiation pressure dominated disk, which provides a natural explanation on the observational evidence that the relativistic jets are related to hot plasma in some X-ray binaries and active galactic nuclei. We investigate the outflows accelerated f...

  8. High mass accretion disks: ATCA's potential for deep impact II

    Science.gov (United States)

    Walsh, Andrew; Beuther, Henrik; Longmore, Steven; Fallscheer, Cassandra

    2010-10-01

    The understanding of accretion processes and in particular of massive accretion disks is one of the most important topics in high-mass star formation. Based on our successful ATCA disk studies of high mass star formation, we now propose to investigate higher J inversion transitions of NH3 at high angular resolution (~1'') to complement our NH3 (4,4) and (5,5) data obtained last year. Last year's data showed a number of regions with clear rotational profiles, but no flattened structures that would indicate an edge-on accretion disk. We interpret our results to show rotating surrounding envelopes of any accretion disks. We were not able to see the accretion disks themselves because the (4,4) and (5,5) lines are optically thick. With observations of NH3 (7,7) and (8,8), which occur under even more extreme conditions than (4,4) or (5,5), we hope to peer through the surrounding envelope to see the accretion disks.

  9. Probing the connection between the accretion disk, outflows and the jet in 3C111

    Science.gov (United States)

    Tombesi, Francesco

    2011-10-01

    Recent XMM-Newton and Suzaku observations of 3C111 demonstrated the presence of ultra-fast outflows (UFOs) with v~0.1c and their relation with the accretion disk. Independent studies found that X-ray dips are followed by ejection of superluminal radio knots, therefore providing a proof of the disk-jet connection. We acquired evidence that UFOs are preferentially present between X-ray dips and new knots, possibly indicating also a link between disk outflows and the jet. The goal of this XMM-Newton proposal is to confirm this evidence. Given the strong correlation with X-rays, we will use an ongoing optical monitoring campaign to trigger a 90ks observation within two days of a dip to detect a UFO and we request a possible additional 60ks >15 days after to compare with the non-dipped state.

  10. Magnetically Driven Accretion Disk Winds and Ultra-fast Outflows in PG 1211+143

    Science.gov (United States)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2015-05-01

    We present a study of X-ray ionization of MHD accretion-disk winds in an effort to constrain the physics underlying the highly ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption-line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an XMM-Newton/EPIC spectrum of the narrow-line Seyfert, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log (ξc[erg cm s-1]) ≃ 5-6 and a column density on the order of NH ≃ 1023 cm-2 outflowing at a characteristic velocity of vc/c ≃ 0.1-0.2 (where c is the speed of light). The best-fit model favors its radial location at rc ≃ 200 Ro (Ro is the black hole’s innermost stable circular orbit), with an inner wind truncation radius at Rt ≃ 30 Ro. The overall K-shell feature in the data is suggested to be dominated by Fe xxv with very little contribution from Fe xxvi and weakly ionized iron, which is in good agreement with a series of earlier analyses of the UFOs in various AGNs, including PG 1211+143.

  11. An extensive numerical survey of the correlation between outflow dynamics and accretion disk magnetization

    CERN Document Server

    Stepanovs, Deniss

    2016-01-01

    We investigate the accretion-ejection process of jets from magnetized accretion disks. We apply a novel approach to the jet-launching problem in order to obtain correlations between the physical properties of the jet and the underlying disk. We extend and confirm the previous works of \\citet{2009MNRAS.400..820T} and \\citet{2010A&A...512A..82M} by scanning a large parameter range for the disk magnetization, $\\mu_{\\rm D} = 10^{-3.5} ... 10^{-0.7}$. We disentangle the disk magnetization at the foot point of the outflow as the main parameter that governs the properties of the outflow. We show how the four jet integrals known from steady-state MHD are correlated to the disk magnetization at the jet foot point. This agrees with the usual findings of the steady-state theory, however, here we obtain these correlations from time-dependent simulations that include the dynamical evolution of the disk in the treatment. In particular, we obtain robust correlations between the local disk magnetization and (i)the outflo...

  12. Production of all $r$-process nuclides by black hole accretion disk outflows from neutron star mergers

    CERN Document Server

    Wu, Meng-Ru; Martínez-Pinedo, Gabriel; Metzger, Brian D

    2016-01-01

    We consider $r$-process nucleosynthesis in outflows from black hole accretion disks formed in double neutron star and neutron star - black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important -- and in some cases dominant -- contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disk outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second $r$-process peak (mass number $A \\sim 130$), independent of model parameters, with significant production of $A < 130$ nuclei. This implies that dynamical ejecta with high electron fraction may not be required to explain the observed abundances of $r$-process elements in metal poor stars. Disk outflows reach the third peak ($ A \\sim 195$) in most of our simulations, although the amounts produced depend sensitively on the ...

  13. Magnetically-Driven Accretion-Disk Winds and Ultra-Fast Outflows in PG1211+143

    CERN Document Server

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2015-01-01

    We present a study of X-ray ionization of magnetohydrodynamic (MHD) accretion-disk winds in an effort to constrain the physics underlying the highly-ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub-classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically-driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an {\\it XMM-Newton}/EPIC spectrum of the narrow-line Seyfert, \\pg. We find, through identifying the detected features with Fe K$\\alpha$ transitions, that the absorber has a characteristic ionization parameter of $\\log (\\xi_c [erg~cm~s$^{-1}...

  14. Production of the entire range of r-process nuclides by black hole accretion disk outflows from neutron star mergers

    Science.gov (United States)

    Wu, Meng-Ru; Fernández, Rodrigo; Martínez-Pinedo, Gabriel; Metzger, Brian D.

    2016-08-01

    We consider r-process nucleosynthesis in outflows from black hole accretion disks formed in double neutron star and neutron star - black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important - and in some cases dominant - contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disk outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second r-process peak (mass number A ˜ 130), independent of model parameters, with significant production of A nuclear physics inputs. Some of our models produce an abundance spike at A = 132 that is absent in the Solar System r-process distribution. The spike arises from convection in the disk and depends on the treatment of nuclear heating in the simulations. We conclude that disk outflows provide an important - and perhaps dominant - contribution to the r-process yields of compact binary mergers, and hence must be included when assessing the contribution of these systems to the inventory of r-process elements in the Galaxy.

  15. Computation of Mass-Outflow Rates From Advective Accretion Disks Around Black Holes

    CERN Document Server

    Das, T K

    1998-01-01

    We self-consistently compute the mass outflow rate from a mass inflow using the conditions in the centrifugal barrier of an advective flow. Our detailed result agrees with the theoretical estimates given in Chakrabarti (1997; astro-ph/9801079).

  16. Hydrodynamic Models of Line-Driven Accretion Disk Winds II Adiabatic Winds from Nonisothermal Disks

    CERN Document Server

    Pereyra, N A; Blondin, J M; Pereyra, Nicolas Antonio; Kallman, Timothy R.; Blondin, John M.

    2000-01-01

    We present here numerical hydrodynamic simulations of line-driven accretion disk winds in cataclysmic variable systems. We calculate wind mass-loss rate, terminal velocities, and line profiles for CIV (1550 A) for various viewing angles. The models are 2.5-dimensional, include an energy balance condition, and calculate the radiation field as a function of position near an optically thick accretion disk. The model results show that centrifugal forces produce collisions of streamlines in the disk wind which in turn generate an enhanced density region, underlining the necessity of two dimensional calculations where these forces may be represented. For disk luminosity Ldisk = Lsun, white dwarf mass Mwd = 0.6 Msun, and white dwarf radii Rwd = 0.01 Rsun, we obtain a wind mass-loss rate of dMwind/dt = 8.0E-12 Msun/yr, and a terminal velocity of ~3000 km/s. The line profiles we obtain are consistent with observations in their general form, in particular in the maximum absorption at roughly half the terminal velocity ...

  17. Formation of Turbulent Cones in Accretion Disk Outflows and Application to Broad Line Regions of Active Galactic Nuclei

    CERN Document Server

    Poludnenko, A Y; Frank, A

    2002-01-01

    We consider the stability of an accretion disk wind to cloud formation when subject to a central radiation force. For a vertical launch velocity profile that is Keplerian or flatter and the presence of a significant radiation pressure, the wind flow streamlines cross in a conical layer. We argue that such regions are highly unstable, and are natural sites for supersonic turbulence and, consequently, density compressions. We suggest that combined with thermal instability these will all conspire to produce clouds. Such clouds can exist in dynamical equilibrium, constantly dissipating and reforming. As long as there is an inner truncation radius to the wind, our model emerges with a biconical structure similar to that inferred by Elvis (2000) for the broad line region (BLR) of active galactic nuclei (AGN). Our results may also apply to other disk-wind systems.

  18. Jets from magnetized accretion disks

    Science.gov (United States)

    Matsumoto, Ryoji

    When an accretion disk is threaded by large scale poloidal magnetic fields, the injection of magnetic helicity from the accretion disk drives bipolar outflows. We present the results of global magnetohydrodynamic (MHD) simulations of jet formation from a torus initially threaded by vertical magnetic fields. After the torsional Alfvén waves generated by the injected magnetic twists propagate along the large-scale magnetic field lines, magnetically driven jets emanate from the surface of the torus. Due to the magnetic pinch effect, the jets are collimated along the rotation axis. Since the jet formation process extracts angular momentum from the disk, it enhances the accretion rate of the disk material. Through three-dimensional (3D) global MHD simulations, we confirmed previous 2D results that the magnetically braked surface of the disk accretes like an avalanche. Owing to the growth of non-axisymmetric perturbations, the avalanche flow breaks up into spiral channels. Helical structure also appears inside the jet. When magnetic helicity is injected into closed magnetic loops connecting the central object and the accretion disk, it drives recurrent magnetic reconnection and outflows.

  19. The vertical structure of T Tauri accretion disks II physical conditions in the disk

    CERN Document Server

    Malbet, F; Monin, J L

    2001-01-01

    We present a self-consistent analytical model for the computation of the physical conditions in a steady quasi-Keplerian accretion disk. The method, based on the thin disk approximation, considers the disk as concentric cylinders in which we treat the vertical transfer as in a plane-parallel medium. The formalism generalizes a work by Hubeny (1990), linking the disk temperature distribution to the local energy dissipation and leads to analytical formulae for the temperature distribution which help to understand the behaviour of the radiation propagated inside the disks. One of the main features of our new model is that it can take into account many heating sources. We apply the method first to two sources: viscous dissipation and stellar irradiation. We show that other heating sources like horizontal transfer or irradiation from the ambiant medium can also be taken into account. Using the analytical formulation in the case of a modified Shakura & Sunyaev radial distribution that allow the accretion rate t...

  20. Multi-dimensional modelling of X-ray spectra for AGN accretion-disk outflows III: application to a hydrodynamical simulation

    CERN Document Server

    Sim, S A; Miller, L; Long, K S; Turner, T J

    2010-01-01

    We perform multi-dimensional radiative transfer simulations to compute spectra for a hydrodynamical simulation of a line-driven accretion disk wind from an active galactic nucleus. The synthetic spectra confirm expectations from parameterized models that a disk wind can imprint a wide variety of spectroscopic signatures including narrow absorption lines, broad emission lines and a Compton hump. The formation of these features is complex with contributions originating from many of the different structures present in the hydrodynamical simulation. In particular, spectral features are shaped both by gas in a successfully launched outflow and in complex flows where material is lifted out of the disk plane but ultimately falls back. We also confirm that the strong Fe Kalpha line can develop a weak, red-skewed line wing as a result of Compton scattering in the outflow. In addition, we demonstrate that X-ray radiation scattered and reprocessed in the flow has a pivotal part in both the spectrum formation and determi...

  1. RADIAL TRANSPORT OF LARGE-SCALE MAGNETIC FIELDS IN ACCRETION DISKS. II. RELAXATION TO STEADY STATES

    International Nuclear Information System (INIS)

    We study the time evolution of a large-scale magnetic flux threading an accretion disk. The induction equation of the mean poloidal field is solved under the standard viscous disk model. Magnetic flux evolution is controlled by two timescales: one is the timescale of the inward advection of the magnetic flux, τadv. This is induced by the dragging of the flux by the accreting gas. The other is the outward diffusion timescale of the magnetic flux τdif. We consider diffusion due to the Ohmic resistivity. These timescales can be significantly different from the disk viscous timescale τdisk. The behaviors of the magnetic flux evolution are quite different depending on the magnitude relationship of the timescales τadv, τdif, and τdisk. The most interesting phenomena occur when τadv << τdif, τdisk. In such a case, the magnetic flux distribution approaches a quasi-steady profile much faster than the viscous evolution of the gas disk, and the magnetic flux has also been tightly bundled to the inner part of the disk. In the inner part, although the poloidal magnetic field becomes much stronger than the interstellar magnetic field, the field strength is limited to the maximum value that is analytically given by our previous work. We also find a condition for the initial large magnetic flux, which is a fossil of the magnetic field dragging during the early phase of star formation that survives for a duration in which significant gas disk evolution proceeds

  2. Launching of Poynting Jets from Accretion Disks

    CERN Document Server

    Lovelace, R V E

    2009-01-01

    The jets observed to emanate from many compact accreting objects may arise from the twisting of the magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, hydromagnetic outflows, which have a significant mass flux and have energy and angular momentum carried by both matter and electromagnetic field and, Poynting outflows, where the mass flux is negligible and energy and angular momentum are carried predominantly by the electromagnetic field. We describe recent theoretical work on the formation of relativistic Poynting jets from magnetized accretion disks and new relativistic, fully-electromagnetic, particle-in-cell simulations of the formation of jets from accretion disks.

  3. Accretion disk electrodynamics

    Science.gov (United States)

    Coroniti, F. V.

    1985-01-01

    Accretion disk electrodynamic phenomena are separable into two classes: (1) disks and coronas with turbulent magnetic fields; (2) disks and black holes which are connected to a large-scale external magnetic field. Turbulent fields may originate in an alpha-omega dynamo, provide anomalous viscous transport, and sustain an active corona by magnetic buoyancy. The large-scale field can extract energy and angular momentum from the disk and black hole, and be dynamically configured into a collimated relativistic jet.

  4. Ringed accretion disks: instabilities

    CERN Document Server

    Pugliese, D

    2016-01-01

    We analyze the possibility that several instability points may be formed, due to the Paczy\\'nski mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider recently proposed model of ringed accretion disk, made up by several tori (rings) which can be corotating or counterrotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  5. X-ray Reflection from Inhomogeneous Accretion Disks: II. Emission Line Variability and Implications for Reverberation Mapping

    CERN Document Server

    Ballantyne, D R; Young, A J

    2004-01-01

    One of the principal scientific objectives of the upcoming Constellation-X mission is to attempt to map the inner regions of accretion disks around black holes in Seyfert galaxies by reverberation mapping of the Fe K fluorescence line. This area of the disk is likely radiation pressure dominated and subject to various dynamical instabilities. Here, we show that density inhomogeneities in the disk atmosphere resulting from the photon bubble instability (PBI) can cause rapid changes in the X-ray reflection features, even when the illuminating flux is constant. Using a simulation of the development of the PBI, we find that, for the disk parameters chosen, the Fe K and O VIII Ly\\alpha lines vary on timescales as short as a few hundredths of an orbital time. In response to the changes in accretion disk structure, the Fe K equivalent width (EW) shows variations as large as ~100 eV. The magnitude and direction (positive or negative) of the changes depends on the ionization state of the atmosphere. The largest change...

  6. Power Spectrum Density of Stochastic Oscillating Accretion Disk

    Indian Academy of Sciences (India)

    G. B. Long; J. W. Ou; Y. G. Zheng

    2016-06-01

    In this paper, we employ a stochastic oscillating accretion disk model for the power spectral index and variability of BL Lac object S5 0716+714. In the model, we assume that there is a relativistic oscillation of thin accretion disks and it interacts with an external thermal bath through a friction force and a random force. We simulate the light curve and the power spectrum density (PSD) at (i) over-damped, (ii) critically damped and (iii) under-damped cases, respectively. Our results show that the simulated PSD curves depend on the intrinsic property of the accretion disk, and it could be produced in a wide interval ranging from 0.94 to 2.05 by changing the friction coefficient in a stochastic oscillating accretion disk model. We argue that accretion disk stochastic oscillating could be a possible interpretation for observed PSD variability.

  7. X-ray reflected spectra from accretion disk models.II. Diagnostic tools for X-ray observations

    CERN Document Server

    Garcia, J; Mushotzky, R F

    2011-01-01

    We present a comprehensive study of the emission spectra from accreting sources. We use our new reflection code to compute the reflected spectra from an accretion disk illuminated by X-rays. This set of models covers different values of ionization parameter, solar iron abundance and photon index for the illuminating spectrum. These models also include the most complete and recent atomic data for the inner-shell of the iron and oxygen isonuclear sequences. We concentrate our analysis to the 2-10 keV energy region, and in particular to the iron K-shell emission lines. We show the dependency of the equivalent width (EW) of the Fe K$\\alpha$ with the ionization parameter. The maximum value of the EW is $\\sim 800$ eV for models with log $\\xi\\sim 1.5$, and decreases monotonically as $\\xi$ increases. For lower values of $\\xi$ the Fe K$\\alpha$ EW decreases to a minimum near log $\\xi\\sim 0.8$. We produce simulated CCD observations based on our reflection models. For low ionized, reflection dominated cases, the 2-10 keV...

  8. Long-term Properties of Accretion Disks in X-ray Binaries II. Stability of Radiation-Driven Warping

    CERN Document Server

    Clarkson, W I; Coe, M J; Laycock, S

    2003-01-01

    A significant number of X-ray binaries are now known to exhibit long-term ``superorbital'' periodicities on timescales of $\\sim$ 10 - 100 days. Several physical mechanisms have been proposed that give rise to such periodicities, in particular warping and/or precession of the accretion disk. Recent theoretical work predicts the stability to disk warping of X-ray binaries as a function of the mass ratio, binary radius, viscosity and accretion efficiency, and here we examine the constraints that can be placed on such models by current observations. In paper I we used a dynamic power spectrum (DPS) analysis of long-term X-ray datasets (CGRO, RXTE), focusing on the remarkable, smooth variations in the superorbital period exhibited by SMC X-1. Here we use a similar DPS analysis to investigate the stability of the superorbital periodicities in the neutron star X-ray binaries Cyg X-2, LMC X-4 and Her X-1, and thereby confront stability predictions with observation. We find that the period and nature of superorbital v...

  9. Thermal radiation from an accretion disk

    OpenAIRE

    Prigara, F. V.

    2003-01-01

    An effect of stimulated radiation processes on thermal radiation from an accretion disk is considered. The radial density waves triggering flare emission and producing quasi-periodic oscillations in radiation from an accretion disk are discussed. It is argued that the observational data suggest the existence of the weak laser sources in a two-temperature plasma of an accretion disk.

  10. Magnetohydrodynamic Origin of Jets from Accretion Disks

    Science.gov (United States)

    Lovelace, R. V. E.; Romanova, M. M.

    1998-01-01

    A review is made of magnetohydrodynamic (MHD) theory and simulation of outflows from disks for different distributions of magnetic field threading the disk. In one limit of a relatively weak, initially diverging magnetic field, both thermal and magnetic pressure gradients act to drive matter to an outflow, while a toroidal magnetic field develops which strongly collimates the outflow. The collimation greatly reduces the field divergence and the mass outflow rate decreases after an initial peak. In a second limit of a strong magnetic field, the initial field configuration was taken with the field strength on the disk decreasing outwards to small values so that collimation was reduced. As a result, a family of stationary solutions was discovered where matter is driven mainly by the strong magnetic pressure gradient force. The collimation in this case depends on the pressure of an external medium. These flows are qualitatively similar to the analytic solutions for magnetically driven outflows. The problem of the opening of a closed field line configuration linking a magnetized star and an accretion disk is also discussed.

  11. Quasar Accretion Disks Are Strongly Inhomogeneous

    OpenAIRE

    Dexter, Jason; Agol, Eric

    2010-01-01

    Active galactic nuclei (AGN) have been observed to vary stochastically with 10-20 rms amplitudes over a range of optical wavelengths where the emission arises in an accretion disk. Since the accretion disk is unlikely to vary coherently, local fluctuations may be significantly larger than the global rms variability. We investigate toy models of quasar accretion disks consisting of a number of regions, n, whose temperatures vary independently with an amplitude of \\sigma_T in dex. Models with l...

  12. Structures of magnetized thin accretion disks

    Institute of Scientific and Technical Information of China (English)

    LI; xiaoqing(李晓卿); JI; Haisheng(季海生)

    2002-01-01

    We investigate the magnetohydrodynamic (MHD) process in thin accretion disks. Therelevant momentum as well as magnetic reduction equations in the thin disk approximation areincluded. On the basis of these equations, we examine numerically the stationary structures, includingdistributions of the surface mass density, temperature and flow velocities of a disk around a youngstellar object (YSO). The numerical results are as follows: (i) There should be an upper limit to themagnitude of magnetic field, such an upper limit corresponds to the equipartition field. For relevantmagnitude of magnetic field of the disk's interior the disk remains approximately Keplerian. (ii) Thedistribution of effective temperature T(r) is a smoothly decreasing function of radius with power 1 corresponding to the observed radiation flux density, provided that the magnetic fieldindex γ= -1/2,is suitably chosen.

  13. The large scale magnetic fields of thin accretion disks

    CERN Document Server

    Cao, Xinwu

    2013-01-01

    Large scale magnetic field threading an accretion disk is a key ingredient in the jet formation model. The most attractive scenario for the origin of such a large scale field is the advection of the field by the gas in the accretion disk from the interstellar medium or a companion star. However, it is realized that outward diffusion of the accreted field is fast compared to the inward accretion velocity in a geometrically thin accretion disk if the value of the Prandtl number Pm is around unity. In this work, we revisit this problem considering the angular momentum of the disk is removed predominantly by the magnetically driven outflows. The radial velocity of the disk is significantly increased due to the presence of the outflows. Using a simplified model for the vertical disk structure, we find that even moderately weak fields can cause sufficient angular momentum loss via a magnetic wind to balance outward diffusion. There are two equilibrium points, one at low field strengths corresponding to a plasma-bet...

  14. Ringed accretion disks: equilibrium configurations

    CERN Document Server

    Pugliese, D

    2015-01-01

    We investigate a model of ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the General Relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can be then determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We pr...

  15. Non-linear variability in microquasars in relation with the winds from their accretion disks

    CERN Document Server

    Janiuk, Agnieszka; Sukova, Petra; Capitanio, Fiamma; Bianchi, Stefano; Kowalski, Wojtek

    2016-01-01

    The microquasar IGR J17091, which is the recently discovered analogue of the well known source GRS 1915+105, exhibits quasi-periodic outbursts, with a period of 5-70 seconds, and regular amplitudes, referred to as "heartbeat state". We argue that these states are plausibly explained by accretion disk instability, driven by the dominant radiation pressure. Using our GLobal Accretion DIsk Simulation hydrodynamical code, we model these outbursts quantitatively. We also find a correlation between the presence of massive outflows launched from the accretion disk and the stabilization of its oscillations. We verify the theoretical predictions with the available timing and spectral observations. Furthermore, we postulate that the underlying non-linear differential equations that govern the evolution of an accretion disk are responsible for the variability pattern of several other microquasars, including XTE J1550-564, GX 339-4, and GRO J1655-40. This is based on the signatures of deterministic chaos in the observed ...

  16. Foundations of Black Hole Accretion Disk Theory

    Directory of Open Access Journals (Sweden)

    Marek A. Abramowicz

    2013-01-01

    Full Text Available This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks, Shakura-Sunyaev (thin disks, slim disks, and advection-dominated accretion flows (ADAFs. After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs.

  17. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  18. Quasar Accretion Disks Are Strongly Inhomogeneous

    CERN Document Server

    Dexter, Jason

    2010-01-01

    Active galactic nuclei (AGN) have been observed to vary stochastically with 10-20 rms amplitudes over a range of optical wavelengths where the emission arises in an accretion disk. Since the accretion disk is unlikely to vary coherently, local fluctuations may be significantly larger than the global rms variability. We investigate toy models of quasar accretion disks consisting of a number of regions, n, whose temperatures vary independently with an amplitude of \\sigma_T in dex. Models with large fluctuations (\\sigma_T=0.35-0.50) in 100-1000 independently fluctuating zones for every factor of two in radius can explain the observed discrepancy between thin accretion disk sizes inferred from microlensing events and optical luminosity while matching the observed optical variability. For the same range of \\sigma_T, inhomogeneous disk spectra provide excellent fits to the HST quasar composite without invoking global Compton scattering atmospheres to explain the high levels of observed UV emission. Simulated microl...

  19. Accretion disks in Algols: progenitors and evolution

    CERN Document Server

    Van Rensbergen, W

    2016-01-01

    There are only a few Algols with measured accretion disk parameters. These measurements provide additional constraints for tracing the origin of individual systems, narrowing down the initial parameter space. We investigate the origin and evolution of 6 Algol systems with accretion disks to find the initial parameters and evolutionary constraints for them. With a modified binary evolution code, series of close binary evolution are calculated to obtain the best match for observed individual systems. Initial parameters for 6 Algol systems with accretion disks were determined matching both the present system parameters and the observed disk characteristics. When RLOF starts during core hydrogen burning of the donor, the disk lifetime was found to be short. The disk luminosity is comparable to the luminosity of the gainer during a large fraction of the disk lifetime.

  20. Evidence for Fluorescent Fe II Emission from Extended Low Ionization Outflows in Obscured Quasars

    CERN Document Server

    Wang, Tinggui; Yang, Chenwei; Wang, Huiyuan; Zhang, Shaohua

    2016-01-01

    Recent studies have shown that outflows in at least some broad absorption line (BAL) quasars are extended well beyond the putative dusty torus. Such outflows should be detectable in obscured quasars. We present four WISE selected infrared red quasars with very strong and peculiar ultraviolet Fe ii emission lines: strong UV Fe II UV arising from transitions to ground/low excitation levels, and very weak Fe II at wavelengths longer than 2800 {\\AA}. The spectra of these quasars display strong resonant emission lines, such as C IV, Al III and Mg II but sometimes, a lack of non-resonant lines such as C III], S III and He II. We interpret the Fe II lines as resonantly scattered light from the extended outflows that are viewed nearly edge-on, so that the accretion disk and broad line region are obscured by the dusty torus, while the extended outflows are not. We show that dust free gas exposed to strong radiation longward of 912 {\\AA} produces Fe II emission very similar to that observed. The gas is too cool to coll...

  1. The observational appearance of slim accretion disks

    CERN Document Server

    Szuszkiewicz, E; Abramowicz, M A; Szuszkiewicz, Ewa; Malkan, Matthew A; Abramowicz, Marek Artur

    1995-01-01

    We reexamine the hypothesis that the optical/UV/soft X-ray continuum of Active Galactic Nuclei is thermal emission from an accretion disk. Previous studies have shown that fitting the spectra with the standard, optically thick and geometrically thin accretion disk models often led to luminosities which contradict the basic assumptions adopted in the standard model. There is no known reason why the accretion rates in AGN should not be larger than the thin disk limit. In fact, more general, slim accretion disk models are self-consistent even for moderately super-Eddington luminosities. We calculate here spectra from a set of thin and slim, optically thick accretion disks. We discuss the differences between the thin and slim disk models, stressing the implications of these differences for the interpretation of the observed properties of AGN. We found that the spectra can be fitted not only by models with a high mass and a low accretion rate (as in the case of thin disk fitting) but also by models with a low mass...

  2. Quasar Accretion Disks are Strongly Inhomogeneous

    Science.gov (United States)

    Dexter, Jason; Agol, Eric

    2011-01-01

    Active galactic nuclei have been observed to vary stochastically with 10%-20% rms amplitudes over a range of optical wavelengths where the emission arises in an accretion disk. Since the accretion disk is unlikely to vary coherently, local fluctuations may be significantly larger than the global rms variability. We investigate toy models of quasar accretion disks consisting of a number of regions, n, whose temperatures vary independently with an amplitude of σ T in dex. Models with large fluctuations (σ T = 0.35-0.50) in 102-103 independently fluctuating zones for every factor of two in radius can explain the observed discrepancy between thin accretion disk sizes inferred from microlensing events and optical luminosity while matching the observed optical variability. For the same range of σ T , inhomogeneous disk spectra provide excellent fits to the Hubble Space Telescope quasar composite without invoking global Compton scattering atmospheres to explain the high levels of observed UV emission. Simulated microlensing light curves for the Einstein cross from our time-varying toy models are well fit using a time-steady power-law temperature disk and produce magnification light curves that are consistent with current microlensing observations. Deviations due to the inhomogeneous, time-dependent disk structure should occur above the 1% level in the light curves, detectable in future microlensing observations with millimagnitude sensitivity.

  3. Jets and Accretion Disks in X-ray Binaries

    Science.gov (United States)

    Tomsick, John

    The outflow of material in the form of jets is a common phenomenon in astronomical sources with accretion disks. Even though jets are seen coming from the cores of galaxies, Galactic compact objects in X-ray binaries, and stars as they are forming, we do not understand in detail what accretion disk conditions are necessary to support a relativistic jet. This proposal focuses on multi-wavelength studies of X-ray binaries in order to improve our understanding of the connection between the disk and the jet. Specifically, this proposal includes work on two approved cycle 14 Rossi X-ray Timing Explorer (RXTE) programs, an approved XMM-Newton program, as well as a synthesis study of transient black hole X-ray binaries using archival RXTE and radio data. We plan to use X-ray spectral and timing properties to determine the disk properties during the re-activation of the compact jet (as seen in the radio and infrared) during the decays of black hole transient outbursts, to determine how the inner disk properties change at low mass accretion rates, and to use RXTE along with multi-wavelength observations to constrain the jet properties required for the microquasar Cygnus~X-3 to produce high- energy emission. Due to the ubiquity of jets in astrophysical settings, these science topics are relevant to NASA programs dealing with the origin, structure, evolution, and destiny of the Universe, and especially to understanding phenomena near black holes.

  4. Turbulent Comptonization in Black Hole Accretion Disks

    CERN Document Server

    Socrates, A; Blaes, Omer M; Socrates, Aristotle; Davis, Shane W.; Blaes, Omer

    2004-01-01

    In the inner-most regions of radiation pressure supported accretion disks, the turbulent magnetic pressure may greatly exceed that of the gas. If this is the case, it is possible for bulk Alfvenic motions driven by the magnetorotational instability (MRI) to surpass the electron thermal velocity. Bulk rather than thermal Comptonization may then be the dominant radiative process which mediates gravitational energy release. For sufficiently large turbulent stresses, we show that turbulent Comptonization produces a significant contribution to the far-UV and X-ray emission of black hole accretion disks. The existence of this spectral component provides a means of obtaining direct observational constraints on the nature of the turbulence itself. We describe how this component may affect the spectral energy distributions and variability properties of X-ray binaries and active galactic nuclei.

  5. A Note on Bimodal Accretion Disks

    OpenAIRE

    Dullemond, C.P.; Turolla, R.

    1998-01-01

    The existence of bimodal disks is investigated. Following a simple argument based on energetic considerations we show that stationary, bimodal accretion disk models in which a Shakura--Sunyaev disk (SSD) at large radii matches an advection dominated accretion flow (ADAF) at smaller radii are never possible using the standard slim disk approach, unless some extra energy flux is present. The same argument, however, predicts the possibility of a transition from an outer Shapiro--Lightman--Eardle...

  6. Outflow-Confined H II Regions. I. First Signposts of Massive Star Formation

    CERN Document Server

    Tanaka, Kei E I; Zhang, Yichen

    2015-01-01

    We present an evolutionary sequence of models of the photoionized disk-wind outflow around forming massive stars based on the Core Accretion model. The outflow is expected to be the first structure to be ionized by the protostar and can confine the expansion of the H II region, especially in lateral directions in the plane of the accretion disk. The ionizing luminosity increases as Kelvin-Helmholz contraction proceeds, and the H II region is formed when the stellar mass reaches $\\sim\\:10$ - $20\\:M_\\odot$ depending on the initial cloud core properties. Although some part of outer disk surface remains neutral due to shielding by the inner disk and the disk wind, almost the whole of the outflow is ionized in $10^3$ - $10^4\\:{\\rm yr}$ after initial H II region formation. Having calculated the extent and temperature structure of the H II region within the immediate protostellar environment, we then make predictions for the strength of its free-free continuum and recombination line emission. The free-free radio emi...

  7. Stability properties of an isothermal accretion disk

    International Nuclear Information System (INIS)

    A local stability analysis of an isothermal, transonic accretion disk around a non-rotating black hole is used to infer the time-dependent behaviour of linear perturbations. The three modes in the problem are one viscous Lightman-Eardley mode, which is always stable, and two acoustic modes, which are always overstable. If the growth rate is required to be greater than the escape rate, then the acoustic modes become stable in the outer region, and unstable in the innermost region, if the viscosity parameter α is greater than 0.5. (orig.)

  8. Alfvenic Heating of Protostellar Accretion Disks

    OpenAIRE

    Vasconcelos, M. J.; Jatenco-Pereira, V.; R. Opher

    1999-01-01

    We investigate the effects of heating generated by damping of Alfven waves on protostellar accretion disks. Two mechanisms of damping are investigated, nonlinear and turbulent, which were previously studied in stellar winds (Jatenco-Pereira & Opher 1989a, b). For the nominal values studied, f=delta v/v_{A}=0.002 and F=varpi/Omega_{i}=0.1, where delta v, v_{A} and varpi are the amplitude, velocity and average frequency of the Alfven wave, respectively, and Omega_{i} is the ion cyclotron freque...

  9. Waves and Instabilities in Accretion Disks MHD Spectroscopic Analysis

    CERN Document Server

    Keppens, R; Goedbloed, J P

    2002-01-01

    A complete analytical and numerical treatment of all magnetohydrodynamic waves and instabilities for radially stratified, magnetized accretion disks is presented. The instabilities are a possible source of anomalous transport. While recovering results on known hydrodynamicand both weak- and strong-field magnetohydrodynamic perturbations, the full magnetohydrodynamic spectra for a realistic accretion disk model demonstrates a much richer variety of instabilities accessible to the plasma than previously realized. We show that both weakly and strongly magnetized accretion disks are prone to strong non-axisymmetric instabilities.The ability to characterize all waves arising in accretion disks holds great promise for magnetohydrodynamic spectroscopic analysis.

  10. Stability of black hole accretion disks

    Directory of Open Access Journals (Sweden)

    Czerny B.

    2012-12-01

    Full Text Available We discuss the issues of stability of accretion disks that may undergo the limit-cycle oscillations due to the two main types of thermal-viscous instabilities. These are induced either by the domination of radiation pressure in the innermost regions close to the central black hole, or by the partial ionization of hydrogen in the zone of appropriate temperatures. These physical processes may lead to the intermittent activity in AGN on timescales between hundreds and millions of years. We list a number of observational facts that support the idea of the cyclic activity in high accretion rate sources. We conclude however that the observed features of quasars may provide only indirect signatures of the underlying instabilities. Also, the support from the sources with stellar mass black holes, whose variability timescales are observationally feasible, is limited to a few cases of the microquasars. Therefore we consider a number of plausible mechanisms of stabilization of the limit cycle oscillations in high accretion rate accretion disks. The newly found is the stabilizing effect of the stochastic viscosity fluctuations.

  11. Accretion disk structure in SS Cygni

    Science.gov (United States)

    Hessman, F. V.

    1987-02-01

    High-resolution coude observations of nonaxisymmetric line emission from the dwarf nova SS Cygni are presented. By subtracting the constant line component, the asymmetric line emission responsible for the observed phase shift between the absorption and emission line radial velocity curves can be isolated. The extra emission is a large fraction of the total line emission and extends to large velocities (of about 1500 km/sec). The phase stability of the emission demands a large-scale structure which is fixed in the frame of the binary. A magnetic origin of the excitation cannot be ruled out but is implausible. A simple explanation is that the accretion stream from the companion star is able to spill over the edge of the disk, introducing emission at noncircular velocities and most likely disturbing the upper layers of the accretion disk.

  12. Earth, Moon, Sun, and CV Accretion Disks

    CERN Document Server

    Montgomery, M M

    2009-01-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting Cataclysmic Variable (CV) Dwarf Novae systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths' equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar and black hole systems. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our a...

  13. The Cosmic Battery in Astrophysical Accretion Disks

    CERN Document Server

    Contopoulos, Ioannis; Katsanikas, Matthaios

    2015-01-01

    The aberrated radiation pressure at the inner edge of the accretion disk around an astrophysical black hole imparts a relative azimuthal velocity on the electrons with respect to the ions which gives rise to a ring electric current that generates large scale poloidal magnetic field loops. This is the Cosmic Battery established by Contopoulos and Kazanas in 1998. In the present work we perform realistic numerical simulations of this important astrophysical mechanism in advection-dominated accretion flows-ADAF. We confirm the original prediction that the inner parts of the loops are continuously advected toward the central black hole and contribute to the growth of the large scale magnetic field, whereas the outer parts of the loops are continuously diffusing outward through the turbulent accretion flow. This process of inward advection of the axial field and outward diffusion of the return field proceeds all the way to equipartition, thus generating astrophysically significant magnetic fields on astrophysicall...

  14. Accretion disks in luminous young stellar objects

    CERN Document Server

    Beltran, M T

    2015-01-01

    An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and therefore predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.

  15. Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback

    CERN Document Server

    Tombesi, Francesco

    2016-01-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this "quasar mode" feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been dir...

  16. New Insights on the Accretion Disk-Winds Connection in Radio-Loud AGNs from Suzaku

    Science.gov (United States)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Cappi, M.; Reynolds, S.; Mushotzky, R. F.

    2011-01-01

    From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ,,approx.0.1 c in three of them, namely 3C III, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C III to monitor its outflow on approx.7 days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disc-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/jets.

  17. Reverberation Mapping of Accretion Disk Winds in Active Galactic Nuclei

    Science.gov (United States)

    Mangham, S.

    2015-09-01

    Reverberation mapping is commonly used for determining black holes masses in AGN from the delayed response of the Broad Line Region (BLR) to fluctuations in the intensity of the AGN continuum source. However, it can also be an effective tool for investigating the structure and kinematics of the BLR itself. Much prior work has been performed to simulate the transfer functions associated with a range of basic geometries (e.g. Keplerian disks, Hubble-like outflows, etc). One promising model for the BLR is that the emission lines are formed in an equatorial accretion disk wind. Here, we predict the reverberation signatures expected from such a model, by modifying the radiative transfer and ionisation code Python that has previously been used to model broad absorption line quasars. This allows to account self-consistently for ionization and radiative transfer effects in the predicted BLR response, which are normally ignored in such calculations. We discuss the agreement between our results and prior work and consider the possibility of detecting the signature of rotating equatorial disk winds in observations obtained by velocity-resolved reverberation mapping campaigns.

  18. Deceleration Effect of Magnetic Field on Black Hole Accretion Disks

    Institute of Scientific and Technical Information of China (English)

    WANG Ding-Xiong

    2000-01-01

    The deceleration effect of magnetic field near the horizon of a spinning black hole (BH) of accretion disk is investigated in the Blandford-Znajek (BZ) process. It is shown that rates of change with respect to time for both the angular velocities of BH horizon and accreting particles at the inner edge of an accretion disk are reduced in the BZ process, behaving with non-monotonous evolution characteristics. This result implies that the magnetic field near the BH horizon has & deceleration effect not only on the spinning BH but also on the surrounding accretion disk.

  19. Local Magnetohydrodynamical Models of Layered Accretion Disks

    CERN Document Server

    Fleming, T; Fleming, Timothy; Stone, James M.

    2003-01-01

    Using numerical MHD simulations, we have studied the evolution of the magnetorotational instability in stratified accretion disks in which the ionization fraction (and therefore resistivity) varies substantially with height. This model is appropriate to dense, cold disks around protostars or dwarf nova systems which are ionized by external irradiation of cosmic rays or high-energy photons. We find the growth and saturation of the MRI occurs only in the upper layers of the disk where the magnetic Reynolds number exceeds a critical value; in the midplane the disk remains queiscent. The vertical Poynting flux into the "dead", central zone is small, however velocity fluctuations in the dead zone driven by the turbulence in the active layers generate a significant Reynolds stress in the midplane. When normalized by the thermal pressure, the Reynolds stress in the midplane never drops below about 10% of the value of the Maxwell stress in the active layers, even though the Maxwell stress in the dead zone may be orde...

  20. Nucleosynthesis in Gamma Ray Burst Accretion Disks

    CERN Document Server

    Pruet, J; Hoffman, R D; Pruet, Jason

    2003-01-01

    We follow the nuclear reactions that occur in the accretion disks of stellar mass black holes that are accreting at a very high rate, 0.01 to 1 solar masses per second, as is realized in many current models for gamma-ray bursts (GRBs). The degree of neutronization in the disk is a sensitive function of the accretion rate, black hole mass, Kerr parameter, and disk viscosity. For high accretion rates and low viscosity, material arriving at the black hole will consist predominantly of neutrons. This degree of neutronization will have important implications for the dynamics of the GRB producing jet and perhaps for the synthesis of the r-process. For lower accretion rates and high viscosity, as might be appropriate for the outer disk in the collapsar model, neutron-proton equality persists allowing the possible synthesis of 56Ni in the disk wind. 56Ni must be present to make any optically bright Type Ib supernova, and in particular those associated with GRBs.

  1. Sporadically Torqued Accretion Disks Around Black Holes

    CERN Document Server

    Garofalo, D; Garofalo, David; Reynolds, Christopher S.

    2005-01-01

    The assumption that black hole accretion disks possess an untorqued inner boundary, the so-called zero torque boundary condition, has been employed by models of black hole disks for many years. However, recent theoretical and observational work suggests that magnetic forces may appreciably torque the inner disk. This raises the question of the effect that a time-changing magnetic torque may have on the evolution of such a disk. In particular, we explore the suggestion that the ``Deep Minimum State'' of the Seyfert galaxy MCG--6-30-15 can be identified as a sporadic inner disk torquing event. This suggestion is motivated by detailed analyses of changes in the profile of the broad fluorescence iron line in XMM-Newton spectra. We find that the response of such a disk to a torquing event has two phases; an initial damming of the accretion flow together with a partial draining of the disk interior to the torque location, followed by a replenishment of the inner disk as the system achieves a new (torqued) steady-st...

  2. On Hydromagnetic Stresses in Accretion Disk Boundary Layers

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan

    2012-01-01

    viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where...

  3. TLUSTY: Stellar Atmospheres, Accretion Disks, and Spectroscopic Diagnostics

    Science.gov (United States)

    Hubeny, Ivan; Lanz, Thierry

    2011-09-01

    TLUSTY is a user-oriented package written in FORTRAN77 for modeling stellar atmospheres and accretion disks and wide range of spectroscopic diagnostics. In the program's maximum configuration, the user may start from scratch and calculate a model atmosphere of a chosen degree of complexity, and end with a synthetic spectrum in a wavelength region of interest for an arbitrary stellar rotation and an arbitrary instrumental profile. The user may also model the vertical structure of annuli of an accretion disk.

  4. Implications of the β Lyrae accretion disk rim Teff

    Science.gov (United States)

    Linnell, A. P.

    2000-12-01

    Photometric evidence indicates that the massive gainer in the β Lyrae system is hidden from the observer by a thick accretion disk (Linnell, Hubeny, & Harmanec, 1998, ApJ, 509, 379). It is believed that the gainer approximates a main sequence star of Teff= 30000K. Spectroscopic analysis by Balachrandan et al. (1986, MNRAS, 219, 479) establishes a Teff of 13,300K for the donor. System synthetic spectra, fitted via the BINSYN suite to spectrophotometric scan data and IUE spectra, establish a mean rim Teff of 9000K. Assuming conservative mass transfer, Harmanec & Scholz (1993, A&A, 279, 131) use the rate of period change to derive a mass transfer rate of 20x10-6M⊙ yr-1. Connecting the rim Teff to the accretion disk face Teff with the Hubeny theory (Hubeny & Plavec 1991, AJ, 102, 1156) and using the standard accretion disk relations (Frank, King & Raine), the adopted mass transfer rate predicts a rim Teff of 4500K. The BINSYN-derived 9000K rim Teff would require a mass transfer rate 30 times larger than the adopted value. The observed rate of period change excludes such a large mass transfer rate. The bolometric luminosity of the rim, from the BINSYN model, is 5.6x1036erg sec-1. The bolometric luminosity of the gainer, on the adopted model, is 9.8x1037erg sec-1. Thus, the luminosity of the rim is 6% of the luminosity of the gainer. On the BINSYN model, the accretion disk covers 26% of the sky, as seen by the gainer. Absorption of radiation from the gainer, and its reradiation by the accretion disk, could explain the derived Teff of the rim. The conclusion is that the β Lyrae accretion disk structure must be strongly affected by radiation from the hot gainer (unseen by the observer) at the center of the accretion disk.

  5. Angular Momentum Transport in Quasi-Keplerian Accretion Disks

    Indian Academy of Sciences (India)

    Prasad Subramanian; B. S. Pujari; Peter A. Becker

    2004-03-01

    We reexamine arguments advanced by Hayashi & Matsuda (2001), who claim that several simple, physically motivated derivations based on mean free path theory for calculating the viscous torque in a quasi-Keplerian accretion disk yield results that are inconsistent with the generally accepted model. If correct, the ideas proposed by Hayashi & Matsuda would radically alter our understanding of the nature of the angular momentum transport in the disk, which is a central feature of accretion disk theory. However, in this paper we point out several fallacies in their arguments and show that there indeed exists a simple derivation based on mean free path theory that yields an expression for the viscous torque that is proportional to the radial derivative of the angular velocity in the accretion disk, as expected. The derivation is based on the analysis of the epicyclic motion of gas parcels in adjacent eddies in the disk.

  6. Magnetic Instability in Accretion Disks with Anomalous Viscosity

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ai-Ping; LI Xiao-Qing

    2004-01-01

    @@ Using the new model of anomalous viscosity, we investigate the magnetic instability in the accretion disks and give the dispersion formula. On the basis of the dispersion relation obtained, it is numerically shown that the instability condition of viscous accretion disk is well consistent with that of the ideal accretion disk, namely there would be magneto-rotational instability in the presence of a vertical weak magnetic field. For a given distance R from the centre of the disk, the growth rate in the anomalous case deviates from the ideal case more greatly when the vertical magnetic field is smaller. The large viscosity limits to the instability. In the two cases, the distributions of growth rate with wave number k approach each other when the magnetic field increases. It greatly represses the effect of viscosity.

  7. Photon Bubbles and the Vertical Structure of Accretion Disks

    CERN Document Server

    Begelman, M C

    2006-01-01

    We consider the effects of "photon bubble" shock trains on the vertical structure of radiation pressure-dominated accretion disks. These density inhomogeneities are expected to develop spontaneously in radiation-dominated accretion disks where magnetic pressure exceeds gas pressure, even in the presence of magnetorotational instability. They increase the rate at which radiation escapes from the disk, and may allow disks to exceed the Eddington limit by a substantial factor. We first generalize the theory of photon bubbles to include the effects of finite optical depths and radiation damping. Modifications to the diffusion law at low optical depth tend to fill in the low-density regions of photon bubbles, while radiation damping inhibits the formation of photon bubbles at large radii, small accretion rates, and small heights above the equatorial plane. Accretion disks dominated by photon bubble transport may reach luminosities of 10 to >100 times the Eddington limit (L_E), depending on the mass of the central ...

  8. Gravitational Wave Heating of Stars and Accretion Disks

    CERN Document Server

    Li, Gongjie; Loeb, Abraham

    2012-01-01

    We investigate the electromagnetic (EM) counterpart of gravitational waves (GWs) emitted by a supermassive black hole binary (SMBHB) through the viscous dissipation of the GW energy in an accretion disk and stars surrounding the SMBHB. We account for the suppression of the heating rate if the forcing period is shorter than the turnover time of the largest turbulent eddies. We find that the viscous heating luminosity in 0.1 solar mass stars can be significantly higher than their intrinsic luminosity. The relative brightening is small for accretion disks.

  9. Magnetized Accretion-Ejection Structures 2.5D MHD simulations of continuous Ideal Jet launching from resistive accretion disks

    CERN Document Server

    Keppens, R

    2002-01-01

    We present numerical magnetohydrodynamic (MHD) simulations of a magnetized accretion disk launching trans-Alfvenic jets. These simulations, performed in a 2.5 dimensional time-dependent polytropic resistive MHD framework, model a resistive accretion disk threaded by an initial vertical magnetic field. The resistivity is only important inside the disk, and is prescribed as eta = alpha_m V_AH exp(-2Z^2/H^2), where V_A stands for Alfven speed, H is the disk scale height and the coefficient alpha_m is smaller than unity. By performing the simulations over several tens of dynamical disk timescales, we show that the launching of a collimated outflow occurs self-consistently and the ejection of matter is continuous and quasi-stationary. These are the first ever simulations of resistive accretion disks launching non-transient ideal MHD jets. Roughly 15% of accreted mass is persistently ejected. This outflow is safely characterized as a jet since the flow becomes super-fastmagnetosonic, well-collimated and reaches a q...

  10. Warped accretion disks and the unification of Active Galactic Nuclei

    CERN Document Server

    Nayakshin, S

    2004-01-01

    Orientation of parsec-scale accretion disks in AGN is likely to be nearly random for different black hole feeding episodes. Since AGN accretion disks are unstable to self-gravity on parsec scales, star formation in these disks will create young stellar disks, similar to those recently discovered in our Galactic Center. The disks blend into the quasi-spherical star cluster enveloping the AGN on time scales much longer than a likely AGN lifetime. Therefore, the gravitational potential within the radius of the black hole influence is at best axi-symmetric rather than spherically symmetric. Here we show that as a result, a newly formed accretion disk will be warped. For the simplest case of a potential resulting from a thin stellar ring, we calculate the disk precession rates, and the time dependent shape. We find that, for a realistic parameter range, the disk becomes strongly warped in few hundred orbital times. We suggest that this, and possibly other mechanisms of accretion disk warping, have a direct relevan...

  11. Structure and Spectroscopy of Black Hole Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Liedahl, D; Mauche, C

    2005-02-14

    The warped spacetime near black holes is one of the most exotic observable environments in the Universe. X-ray spectra from active galaxies obtained with the current generation of X-ray observatories reveal line emission that is modified by both special relativistic and general relativistic effects. The interpretation is that we are witnessing X-ray irradiated matter orbiting in an accretion disk around a supermassive black hole, as it prepares to cross the event horizon. This interpretation, however, is based upon highly schematized models of accretion disk structure. This report describes a project to design a detailed computer model of accretion disk atmospheres, with the goal of elucidating the high radiation density environments associated with mass flows in the curved spacetime near gravitationally collapsed objects. We have evolved the capability to generate realistic theoretical X-ray line spectra of accretion disks, thereby providing the means for a workable exploration of the behavior of matter in the strong-field limit of gravitation.

  12. Accretion Disks Around Black Holes Twenty Five Years Later

    CERN Document Server

    Chakrabarti, S K

    1998-01-01

    We study the progress of the theory of accretion disks around black holes in last twenty five years and explain why advective disks are the best bet in explaining varied stationary and non-stationary observations from black hole candidates. We show also that the recently proposed advection dominated flows are incorrect.

  13. Accretion Disks Phase Transitions 2-D or not 2-D?

    CERN Document Server

    Abramowicz, M A; Igumenshchev, I V; Abramowicz, Marek Artur; Bjornsson, Gunnlaugur; Igumenshchev, Igor V.

    2000-01-01

    We argue that the proper way to treat thin-thick accretion-disk transitions should take into account the 2-D nature of the problem. We illustrate the physical inconsistency of the 1-D vertically integrated approach by discussing a particular example of the convective transport of energy.

  14. Brackett γ radiation from the inner gaseous accretion disk, magnetosphere, and disk wind region of Herbig AeBe stars

    Science.gov (United States)

    Tambovtseva, L. V.; Grinin, V. P.; Weigelt, G.

    2016-05-01

    Various disk and outflow components such as the magnetosphere, the disk wind, the gaseous accretion disk, and other regions may contribute to the hydrogen line emission of young Herbig AeBe stars. Non-LTE modeling was performed to show the influence of the model parameters of each emitting region on the intensity and shape of the Brγ line profile, to present the spatial brightness distribution of each component, and to compare the contribution of each component to the total line emission. The modeling shows that the disk wind is the dominant contributor to the Brγ line rather than the magnetosphere and inner gaseous accretion disk. The contribution of the disk wind region to the Hα line is also considered.

  15. Gravitational Instability in Neutrino Dominated Accretion Disks

    Institute of Scientific and Technical Information of China (English)

    刘彤; 薛力

    2011-01-01

    We revisit the vertical structure of neutrino-dominated accretion flows (NDAFs) in spherical coordinates under a boundary condition based on a mechanical equilibrium. The solutions show that the NDAF is significantly geometrically thick. The Toomre parameter is determined by the mass accretion rate and the viscosity parameter, which is defined as Q = csΩ/πGΣ, where cs, Ω and Σ are the sound speed, angular velocity and surface density, respectively. According to the distribution of the Toomre parameter, the possible fragments of the disk may appear near the disk surface in the outer region. These possible outflows originating from the gravitational instability of the disk may account for the late-time flares in gamma-ray bursts.%We revisit the vertical structure of neutrino-dominated accretion flows(NDAFs)in spherical coordinates under a boundary condition based on a mechanical equilibrium.The solutions show that the NDAF is significantly geometrically thick.The Toomre parameter is determined by the mass accretion rate and the viscosity parameter,which is defined as Q =csΩ/πG∑,where cs,Ω and ∑ are the sound speed,angular velocity and surface density,respectively.According to the distribution of the Toomre parameter,the possible fragments of the disk may appear near the disk surface in the outer region.These possible outflows originating from the gravitational instability of the disk may account for the late-time flares in gamma-ray bursts.

  16. Magnetic fields in primordial accretion disks

    Science.gov (United States)

    Latif, M. A.; Schleicher, D. R. G.

    2016-01-01

    Magnetic fields are considered a vital ingredient of contemporary star formation and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations and are subsequently amplified by the small-scale dynamo, leading to a strong, tangled magnetic field. We explore how the magnetic field provided by the small-scale dynamo is further amplified via the α-Ω dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop. III star with 10M⊙ and an accretion rate of 10-3M⊙ yr-1, and a supermassive star with 105M⊙ and an accretion rate of 10-1M⊙ yr-1. For the 10M⊙ Pop. III star, we find that coherent magnetic fields can be produced on scales of at least 100 AU, which are sufficient to drive a jet with a luminosity of 100L⊙ and a mass outflow rate of 10-3.7M⊙ yr-1. For the supermassive star, the dynamical timescales in its environment are even shorter, implying smaller orbital timescales and an efficient magnetization out to at least 1000 AU. The jet luminosity corresponds to ~106.0L⊙ and a mass outflow rate of 10-2.1M⊙ yr-1. We expect that the feedback from the supermassive star can have a relevant impact on its host galaxy.

  17. Simulating the Formation of Massive Protostars: I. Radiative Feedback and Accretion Disks

    CERN Document Server

    Klassen, Mikhail; Kuiper, Rolf; Peters, Thomas; Banerjee, Robi

    2016-01-01

    We present radiation hydrodynamic simulations of collapsing protostellar cores with initial masses of 30, 100, and 200 M$_{\\odot}$. We follow their gravitational collapse and the formation of a massive protostar and protostellar accretion disk. We employ a new hybrid radiative feedback method blending raytracing techniques with flux-limited diffusion for a more accurate treatment of the temperature and radiative force. In each case, the disk that forms becomes Toomre-unstable and develops spiral arms. This occurs between 0.35 and 0.55 freefall times and is accompanied by an increase in the accretion rate by a factor of 2-10. Although the disk becomes unstable, no other stars are formed. In the case of our 100 and 200 M$_{\\odot}$ simulation, the star becomes highly super-Eddington and begins to drive bipolar outflow cavities that expand outwards. These radiatively-driven bubbles appear stable, and appear to be channeling gas back onto the protostellar accretion disk. Accretion proceeds strongly through the dis...

  18. Magnetic fields in primordial accretion disks

    CERN Document Server

    Latif, Muhammad A

    2016-01-01

    Magnetic fields are considered as a vital ingredient of contemporary star formation, and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations, and are subsequently amplified by the small-scale dynamo, leading to a strong tangled magnetic field. Here we explore how the magnetic field provided by the small-scale dynamo is further amplified via the $\\alpha-\\Omega$ dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop.~III star with $10$~M$_\\odot$ and an accretion rate of $10^{-3}$~M$_\\odot$~yr$^{-1}$, and a supermassive star with $10^5$~M$_\\odot$ and an accretion rate of $10^{-1}$~M$_\\odot$~yr$^{-1}$. For the $10$~M$_\\odot$ Pop.~III star, we find that coherent magnetic fields can be produced on scales of at least $100$~AU, which are sufficient to drive a jet with a luminosity of $100$~L$_\\odot$ and a mass outflow ra...

  19. On the gravitational stability of gravito-turbulent accretion disks

    CERN Document Server

    Lin, Min-Kai

    2016-01-01

    Low mass, self-gravitating accretion disks admit quasi-steady, `gravito-turbulent' states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: 1) cooling, which reduces pressure support; and/or 2) viscosity, which reduces rotational support. We analyze the gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes wi...

  20. Vertical Structure of Magnetized Accretion Disks around Young Stars

    CERN Document Server

    Lizano, S; Boehler, Y; D'Alessio, P

    2015-01-01

    We model the vertical structure of magnetized accretion disks subject to viscous and resistive heating, and irradiation by the central star. We apply our formalism to the radial structure of magnetized accretion disks threaded by a poloidal magnetic field dragged during the process of star formation developed by Shu and coworkers. We consider disks around low mass protostars, T Tauri, and FU Orionis stars. We consider two levels of disk magnetization, $\\lambda_{sys} = 4$ (strongly magnetized disks), and $\\lambda_{sys} = 12$ (weakly magnetized disks). The rotation rates of strongly magnetized disks have large deviations from Keplerian rotation. In these models, resistive heating dominates the thermal structure for the FU Ori disk. The T Tauri disk is very thin and cold because it is strongly compressed by magnetic pressure; it may be too thin compared with observations. Instead, in the weakly magnetized disks, rotation velocities are close to Keplerian, and resistive heating is always less than 7\\% of the visc...

  1. Local Dynamical Instabilities in Magnetized, Radiation Pressure Supported Accretion Disks

    CERN Document Server

    Blaes, Omer M; Blaes, Omer; Socrates, Aristotle

    2000-01-01

    We present a general linear dispersion relation which describes the coupled behavior of magnetorotational, photon bubble, and convective instabilities in weakly magnetized, differentially rotating accretion disks. We presume the accretion disks to be geometrically thin and supported vertically by radiation pressure. We fully incorporate the effects of a nonzero radiative diffusion length on the linear modes. In an equilibrium with purely vertical magnetic field, the vertical magnetorotational modes are completely unaffected by compressibility, stratification, and radiative diffusion. However, in the presence of azimuthal fields, which are expected in differentially rotating flows, the growth rate of all magnetorotational modes can be reduced substantially below the orbital frequency. This occurs if diffusion destroys radiation sound waves on the length scale of the instability, and the magnetic energy density of the azimuthal component exceeds the non-radiative thermal energy density. While sluggish in this c...

  2. Wave Propagation in Accretion Disks with Self-Gravity

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Ci; YANG Lan-Tian; WU Shao-Ping; DING Shi-Xue

    2001-01-01

    We extend the research by Lubow and Pringle of axisymmetric waves in accretion disks to the case where self gravity of disks should be considered. We derive and analyse the dispersion relations with the effect of self-gravity. Results show that self-gravity extends the forbidden region of the wave propagation: for high frequency p-modes, self-gravity makes the wavelength shorter and the group velocity larger; for low frequency g-modes, the effect is opposite.

  3. A New Approach to Evolution of Black Hole Accretion Disks

    Institute of Scientific and Technical Information of China (English)

    WANG Ding-Xiong; LEI Wei-Hua; XIAO Kan

    2000-01-01

    Evolution of black hole (BH) accretion disks is investigated by a new approach, in which the evolution of the central BH can be derived in terms of BH spin directly, and the evolution characteristics of the concerning BH parameters are shown more easily and obviously. As an example, the unusual evolution characteristics of angular velocity of BH horizon and that of accreting particles at the inner edge of the disk are derived by considering the Blandford-Znajek process.

  4. Fossil magnetic field of accretion disks of young stars

    OpenAIRE

    Dudorov, A. E.; Khaibrakhmanov, S. A.

    2014-01-01

    We elaborate the model of accretion disks of young stars with the fossil large-scale magnetic field in the frame of Shakura and Sunyaev approximation. Equations of the MHD model include Shakura and Sunyaev equations, induction equation and equations of ionization balance. Magnetic field is determined taking into account ohmic diffusion, magnetic ambipolar diffusion and buoyancy. Ionization fraction is calculated considering ionization by cosmic rays and X-rays, thermal ionization, radiative r...

  5. Relativistic reflection X-ray spectra of accretion disks

    Institute of Scientific and Technical Information of China (English)

    Khee-Gan Lee; Kinwah Wu; Steven V. Fuerst; Graziella Branduardi-Raymont; Oliver Crowley

    2009-01-01

    We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow, and the gravity and rotation of the central black hole. The absorption edges in the spectra suffer severe en- ergy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be a powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the re- flection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.

  6. Thin accretion disks in stationary axisymmetric wormhole spacetimes

    International Nuclear Information System (INIS)

    In this paper, we study the physical properties and the equilibrium thermal radiation emission characteristics of matter forming thin accretion disks in stationary axially symmetric wormhole spacetimes. The thin disk models are constructed by taking different values of the wormhole's angular velocity, and the time averaged energy flux, the disk temperature, and the emission spectra of the accretion disks are obtained. Comparing the mass accretion in a rotating wormhole geometry with the one of a Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for wormholes than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating wormholes provide a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Therefore specific signatures appear in the electromagnetic spectrum of thin disks around rotating wormholes, thus leading to the possibility of distinguishing wormhole geometries by using astrophysical observations of the emission spectra from accretion disks.

  7. The role of accretion disks in the formation of massive stars

    CERN Document Server

    Kuiper, Rolf; Beuther, Henrik; Henning, Thomas

    2010-01-01

    We present radiation hydrodynamics simulations of the collapse of massive pre-stellar cores. We treat frequency dependent radiative feedback from stellar evolution and accretion luminosity at a numerical resolution down to 1.27 AU. In the 2D approximation of axially symmetric simulations, it is possible for the first time to simulate the whole accretion phase of several 10^5 yr for the forming massive star and to perform a comprehensive scan of the parameter space. Our simulation series show evidently the necessity to incorporate the dust sublimation front to preserve the high shielding property of massive accretion disks. Our disk accretion models show a persistent high anisotropy of the corresponding thermal radiation field, yielding to the growth of the highest-mass stars ever formed in multi-dimensional radiation hydrodynamics simulations. Non-axially symmetric effects are not necessary to sustain accretion. The radiation pressure launches a stable bipolar outflow, which grows in angle with time as presum...

  8. P-Process Nucleosynthesis inside Supernova-Driven Supercritical Accretion Disks

    CERN Document Server

    Fujimoto, S; Koike, O; Arai, K; Matsuba, R

    2003-01-01

    We investigate p-process nucleosynthesis in a supercritical accretion disk around a compact object of 1.4 M_solar, using the self-similar solution of an optically thick advection dominated flow. Supercritical accretion is expected to occur in a supernova with fallback material accreting onto a new-born compact object. It is found that appreciable amounts of p-nuclei are synthesized via the p-process in supernova-driven supercritical accretion disks (SSADs) when the accretion rate m_dot = M_dot c^2/(16 L_Edd) >10^5, where L_Edd is the Eddington luminosity. Abundance profiles of p-nuclei ejected from SSADs have similar feature to those of the oxygen/neon layers in Type II supernovae when the abundance of the fallback gas far from the compact object is that of the oxygen/neon layers in the progenitor. The overall abundance profile is in agreement with that of the solar system. Some p-nuclei, such as Mo, Ru, Sn, and La, are underproduced in the SSADs as in Type II supernovae. If the fallback gas is mixed with a s...

  9. The Central Engine Structure of 3C120: Evidence for a Retrograde Black Hole or a Refilling Accretion Disk

    OpenAIRE

    Cowperthwaite, Philip S.; Reynolds, Christopher S.

    2012-01-01

    The broad-line radio galaxy 3C120 is a powerful source of both X-ray and radio emission including superluminal jet outflows. We report on our reanalysis of 160 ks of Suzaku data taken in 2006, previously examined by Kataoka et al. (2007). Spectral fits to the XIS and HXD/PIN data over a range of 0.7-45 keV reveal a well-defined iron K line complex with a narrow Ka core and relativistically broadened features consistent with emission from the inner regions of the accretion disk. Furthermore, t...

  10. Evidence for large temperature fluctuations in quasar accretion disks from spectral variability

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, John J.; Anderson, Scott F.; Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Dexter, Jason, E-mail: jruan@astro.washington.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2014-03-10

    The well-known bluer-when-brighter trend observed in quasar variability is a signature of the complex processes in the accretion disk and can be a probe of the quasar variability mechanism. Using a sample of 604 variable quasars with repeat spectra in the Sloan Digital Sky Survey-I/II (SDSS), we construct difference spectra to investigate the physical causes of this bluer-when-brighter trend. The continuum of our composite difference spectrum is well fit by a power law, with a spectral index in excellent agreement with previous results. We measure the spectral variability relative to the underlying spectra of the quasars, which is independent of any extinction, and compare to model predictions. We show that our SDSS spectral variability results cannot be produced by global accretion rate fluctuations in a thin disk alone. However, we find that a simple model of an inhomogeneous disk with localized temperature fluctuations will produce power-law spectral variability over optical wavelengths. We show that the inhomogeneous disk will provide good fits to our observed spectral variability if the disk has large temperature fluctuations in many independently varying zones, in excellent agreement with independent constraints from quasar microlensing disk sizes, their strong UV spectral continuum, and single-band variability amplitudes. Our results provide an independent constraint on quasar variability models and add to the mounting evidence that quasar accretion disks have large localized temperature fluctuations.

  11. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  12. Accretion Disk Line Emission in AGN a Devil's Advocacy

    CERN Document Server

    Sulentic, J W; Dultzin-Hacyan, D

    1998-01-01

    We review the evidence for AGN optical and X-ray broad line emission from an accretion disk. We argue that there is little, if any, statistical evidence to support this assertion. The inconsistency is strongest for the rare class of Balmer profiles that show double peaks. The line profiles predicted by a simple illuminated disk model are often incompatible with the observations. We suggest that the Fe Kalpha line in Seyfert 1 galaxies, where a broad line is most often and most strongly detected, is actually a composite of two lines both with Gaussian profiles; one narrow/unshifted and the other broad/redshifted.

  13. X-Ray Iron Line Constraints on the Inner Accretion Disk and Black Hole Spin

    Science.gov (United States)

    Reynolds, C. S.

    2000-01-01

    The broad iron line, seen in the X-ray spectra of many AGN, is thought to originate from the inner regions of the black hole accretion disk. I will summarize recent developments in using this line to probe the accretion disk structure, as well as the mass and spin of black holes n Seyfert galaxies. In particular, I will present observational evidence suggesting that the inner regions of the accretion disks in low-luminosity AGN (LLAGN) are distinctly different from those in higher-luminosity AGN. This tentative result lends support models of LLAGN based upon advective accretion disks.

  14. Thin accretion disks around cold Bose-Einstein condensate stars

    International Nuclear Information System (INIS)

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars. (orig.)

  15. Thin accretion disks around cold Bose–Einstein condensate stars

    International Nuclear Information System (INIS)

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose–Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars

  16. Evolution of an Accretion Disk in Binary Black Hole Systems

    CERN Document Server

    Kimura, Shigeo S; Toma, Kenji

    2016-01-01

    We investigate evolution of an accretion disk in binary black hole (BBH) systems, the importance of which is now increasing due to its close relationship to possible electromagnetic counterparts of the gravitational waves (GWs) from mergers of BBHs. Perna et al. (2016) proposed a novel evolutionary scenario of an accretion disk in BBHs in which a disk eventually becomes "dead", i.e., the magnetorotational instability (MRI) becomes inactive. In their scenario, the dead disk survives until {\\it a few seconds before} the merger event. We improve the dead disk model and propose another scenario, taking account of effects of the tidal torque from the companion and the critical ionization degree for MRI activation more carefully. We find that the mass of the dead disk is much lower than that in the Perna's scenario. When the binary separation sufficiently becomes small, the tidal heating reactivates MRI and mass accretion onto the black hole (BH). We also find that this disk "revival" happens {\\it many years before...

  17. Massive accretion disks: ATCA's potential for deep impact

    Science.gov (United States)

    Beuther, Henrik; Longmore, Steven; Walsh, Andrew; Fallscheer, Cassandra

    2008-04-01

    The understanding of accretion processes and in particular of massive accretion disks is one of the most important topics in high-mass star formation. Based on our successful ATCA disk-pilot study of IRAS18089-1732 (Beuther & Walsh, ApJL in press), we now propose to investigate a larger sample of eleven disk candidates at high angular resolution (<1'') in the highly excited NH3(4,4)/(5,5) lines. These lines trace the densest and warmest regions and are hence well suited to isolate the accretion disks from their envelopes. The observation will reveal the kinematics of the rotating structures and allow us to differentiate whether the expected disks are in Keplerian rotation like their low-mass counterparts or not. Furthermore, the chosen line pair is well suited to investigate the temperature structure of the regions. Combining the kinematic and temperature information, we will derive detailed physical models of the rotation structures in young massive star-forming regions. Investigating a larger sample is the only way to characterize massive disks in a general way important for a comprehensive understanding of massive star formation. The ATCA with its excellent spatial resolution and sensitivity has the potential to make considerable impact in this field.

  18. On the X-ray heated skin of Accretion Disks

    CERN Document Server

    Nayakshin, S

    1999-01-01

    We present a simple analytical formula for the Thomson depth of the X-rayheated skin of accretion disks valid at any radius and for a broad range ofspectral indices of the incident X-rays, accretion rates and black hole masses.We expect that this formula may find useful applications in studies of geometryof the inner part of accretion flows around compact objects, and in severalother astrophysically important problems, such as the recently observed X-ray``Baldwin'' effect (i.e., monotonic decrease of Fe line's equivalent width withthe X-ray luminosity of AGN), the problem of missing Lyman edge in AGN, andline and continuum variability studies in accretion disks around compactobjects. We compute the reflected X-ray spectra for several representativecases and show that for hard X-ray spectra and large ionizing fluxes the skinrepresents a perfect mirror that does not produce any Fe lines or absorptionfeatures. At the same time, for soft X-ray spectra or small ionizing fluxes,the skin produces very strong ionized...

  19. Thin accretion disks around cold Bose–Einstein condensate stars

    Energy Technology Data Exchange (ETDEWEB)

    Dănilă, Bogdan, E-mail: bogdan.danila22@gmail.com [Department of Physics, Babes-Bolyai University, Kogalniceanu Street, Cluj-Napoca (Romania); Harko, Tiberiu, E-mail: t.harko@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, WC1E 6BT, London (United Kingdom); Kovács, Zoltán, E-mail: kovacsz2013@yahoo.com [Max-Fiedler-Str. 7, 45128, Essen (Germany)

    2015-05-09

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose–Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars.

  20. Estimation of relativistic accretion disk parameters from iron line emission

    CERN Document Server

    Pariev, V I; Miller, W A; Pariev, Vladimir I.; Bromley, Benjamin C.; Miller, Warner A.

    2000-01-01

    The observed iron K-alpha fluorescence lines in Seyfert-1 galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the emission. Here we present an analysis of the geometrical and kinematic properties of the disk based on the extreme frequency shifts of a line profile as determined by measurable flux in both the red and blue wings. The edges of the line are insensitive to the distribution of the X-ray flux over the disk, and hence provide a robust alternative to profile fitting of disk parameters. Our approach yields new, strong bounds on the inclination angle of the disk and the location of the emitting region. We apply our method to interpret observational data from MCG-6-30-15 and find that the commonly assumed inclination 30 deg for the accretion disk in MCG-6-30-15 is inconsistent with the position of the blue edge of the line at a 3 sigma level. A thick turbulent disk model or the presence of highly ionized iron may reconcile the bounds on inclination from the...

  1. Thin accretion disks around cold Bose-Einstein condensate stars

    Energy Technology Data Exchange (ETDEWEB)

    Danila, Bogdan [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Kovacs, Zoltan

    2015-05-15

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars. (orig.)

  2. The Average Size and Temperature Profile of Quasar Accretion Disks

    CERN Document Server

    Jiménez-Vicente, J; Kochanek, C S; Muñoz, J A; Motta, V; Falco, E; Mosquera, A M

    2014-01-01

    We use multi-wavelength microlensing measurements of a sample of 10 image pairs from 8 lensed quasars to study the structure of their accretion disks. By using spectroscopy or narrow band photometry we have been able to remove contamination from the weakly microlensed broad emission lines, extinction and any uncertainties in the large-scale macro magnification of the lens model. We determine a maximum likelihood estimate for the exponent of the size versus wavelength scaling ($r_s\\propto \\lambda^p$ corresponding to a disk temperature profile of $T\\propto r^{-1/p}$) of $p=0.75^{+0.2}_{-0.2}$, and a Bayesian estimate of $p=0.8\\pm0.2$, which are significantly smaller than the prediction of thin disk theory ($p=4/3$). We have also obtained a maximum likelihood estimate for the average quasar accretion disk size of $r_s=4.5^{+1.5}_{-1.2} $ lt-day at a rest frame wavelength of $\\lambda = 1026~{\\mathrm \\AA}$ for microlenses with a mean mass of $M=1 M_\\sun$, in agreement with previous results, and larger than expecte...

  3. Bipolar jets launched from magnetically diffusive accretion disks. I. Ejection efficiency vs field strength and diffusivity

    CERN Document Server

    Sheikhnezami, Somayeh; Porth, Oliver; Vaidya, Bhargav; Ghanbari, Jamshid

    2012-01-01

    We investigate the launching of jets and outflows from magnetically diffusive accretion disks. Using the PLUTO code we solve the time-dependent resistive MHD equations taking into account the disk and jet evolution simultaneously. The main question we address is which kind of disks do launch jets and which kind of disks do not? In particular, we study how the magnitude and distribution of the (turbulent) magnetic diffusivity affect mass loading and jet acceleration. We have applied a turbulent magnetic diffusivity based on \\alpha-prescription, but have also investigate examples where the scale height of diffusivity is larger than that of the disk gas pressure. We further investigate how the ejection efficiency is governed by the magnetic field strength. Our simulations last for up to 5000 dynamical time scales corresponding to 900 orbital periods of the inner disk. As a general result we observe a continuous and robust outflow launched from the inner part of the disk, expanding into a collimated jet of super ...

  4. Effects of Black Hole Spin on the Limit-Cycle Behaviour of Accretion Disks

    Indian Academy of Sciences (India)

    Li Xue; Ju-Fu Lu

    2011-03-01

    We present a spatially 1.5-dimensional, time-dependent numerical study of accretion disks around Kerr black holes. Our study focuses on the limit-cycle behavior of thermally unstable accretion disks. We find that maximal luminosity may be a more appropriate probe of black hole spin than the cycle duration and influence radius.

  5. Nucleosynthesis in Advective Accretion Disks Around Galactic and Extra-Galactic Black Holes

    CERN Document Server

    Mukhopadhyay, B

    1998-01-01

    We compute the nucleosynthesis of materials inside advective disks around black holes. We show that composition of incoming matter can change significantly depending on the accretion rate and accretion disks. These works are improvements on the earlier works in thick accretion disks of Chakrabarti, Jin & Arnett (1987) in presence of advection in the flow.

  6. Angular momentum transport in accretion disk boundary layers around weakly magnetized stars

    DEFF Research Database (Denmark)

    Pessah, M.E.; Chan, C.-K.

    2013-01-01

    , in the boundary layer where the accretion disk meets the surface of a weakly magnetized star. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI...

  7. Accretion disk dynamics in X-ray binaries

    Science.gov (United States)

    Peris, Charith Srian

    Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which

  8. Alignments Of Black Holes With Their Warped Accretion Disks And Episodic Lifetimes Of Active Galactic Nuclei

    CERN Document Server

    Li, Yan-Rong; Cheng, Cheng; Qiu, Jie

    2015-01-01

    Warped accretion disks have attracted intensive attention because of their critical role on shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen-Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of AGNs that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing to determine the gravitomagnetic torque that drives the alignments in a quite simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to...

  9. AGN accretion disks as spatially resolved by polarimetry

    CERN Document Server

    Kishimoto, Makoto; Blaes, Omer; Lawrence, Andy; Boisson, Catherine; Albrecht, Marcus; Leipski, Christian

    2008-01-01

    A crucial difficulty in understanding the nature of the putative accretion disk in AGNs is that some of its key intrinsic spectral signatures cannot be observed directly. The strong emissions from the broad-line region (BLR) and the obscuring torus, which are generally yet to be spatially resolved, essentially 'bury' such signatures. Here we argue that we can actually isolate the disk emission spectrum by using optical and near-infrared polarization of quasars and uncover the important spectral signatures. In these quasars, the polarization is considered to originate from electron scattering interior to the BLR, so that the polarized flux shows the disk spectrum with all the emissions from the BLR and torus eliminated. The polarized flux observations have now revealed a Balmer edge feature in absorption and a blue near-infrared spectral shape consistent with a specific and robust theoretical prediction. These results critically verify the long-standing picture of an optically thick and locally heated disk in ...

  10. Non-critical solution of a magnetic accretion disk

    International Nuclear Information System (INIS)

    An accretion disk consisting of a perfectly conductive plasma is investigated on the assumption that the disk is geometrically thin, axially symmetric and steady. It is found that the solution can exist only in a super-Alfvenic region and does not necessarily approach to the Alfven critical point. The accretion flow is stopped at an inner boundary owing to the centrifugal force, and the amplification of toroidal magnetic fields gives rise to the swelling of the disk. Therefore, it is necessary to take account of either the magnetic interaction with a central star or the resistive process decreasing the magnetic fields near the inner boundary in order to obtain the steady disk. (author)

  11. Accretion Disks Around Binary Black Holes: A Quasistationary Model

    CERN Document Server

    Liu, Yuk Tung

    2010-01-01

    Tidal torques acting on a gaseous accretion disk around a binary black hole can create a gap in the disk near the orbital radius. At late times, when the binary inspiral timescale due to gravitational wave emission becomes shorter than the viscous timescale in the disk, the binary decouples from the disk and eventually merges. Prior to decoupling the balance between tidal and viscous torques drives the disk to a quasistationary equilibrium state, perturbed slightly by small amplitude, spiral density waves emanating from the edges of the gap. We consider a black hole binary with a companion of smaller mass and construct a simple Newtonian model for a geometrically thin, Keplerian disk in the orbital plane of the binary. We solve the disk evolution equations in steady state to determine the quasistationary, (orbit-averaged) surface density profile prior to decoupling. We use our solution, which is analytic up to simple quadratures, to compute the electromagnetic flux and approximate radiation spectrum during th...

  12. Resistivity-driven State Changes in Vertically Stratified Accretion Disks

    CERN Document Server

    Simon, Jacob B; Beckwith, Kris

    2010-01-01

    We investigate the effect of shear viscosity and Ohmic resistivity on the magnetorotational instability (MRI) in vertically stratified accretion disks through a series of local simulations computed with the Athena code. First, we use a series of unstratified shearing box simulations to calibrate the effects of physical dissipation as a function of resolution and background field strength; we find that the effect of the magnetic Prandtl number, Pm = viscosity/resistivity, on the turbulence is captured by ~32 grid zones per disk scale height, H. In agreement with previous results, our stratified disk calculations are characterized by a subthermal, predominately toroidal magnetic field that produces MRI-driven turbulence for |z| < 2 H. Above |z| = 2 H, magnetic pressure dominates and the field is buoyantly unstable. In addition to the turbulent fields, mean radial and toroidal fields are generated near the mid-plane and subsequently rise through the disk. The polarity of the mean field switches on a roughly 1...

  13. Effects of Fluid Instabilities on Accretion Disk Spectra

    CERN Document Server

    Davis, S W; Turner, N J; Socrates, A

    2003-01-01

    Numerical calculations and linear theory of radiation magnetohydrodynamic flows indicate that the photon bubble and magnetorotational instability (MRI) may produce large density inhomogeneities in radiation pressure supported media. We study the effects of the photon bubble instability on accretion disk spectra using 2-D Monte Carlo (MC) and 1-D Feautrier radiative transfer calculations on a snapshot of a 2-D numerical simulation domain. We find an enhancement in the thermalization of the MC spectra over that of the Feautrier calculation. In the inner-most regions of these disks, the turbulent magnetic pressure may greatly exceed that of the gas. It is then possible for bulk turbulent Alfvenic motions driven by the MRI to exceed the thermal velocity making turbulent Comptonization the dominant radiative process. We estimate the spectral distortion due to turbulent Comptonization utilizing a 1-D MC calculation.

  14. Observational Signatures of Tilted Black Hole Accretion Disks from Simulations

    CERN Document Server

    Dexter, Jason

    2011-01-01

    Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer, and compare the estimated locations of the radiation edge with expectations from their aligned (untilted) counterparts. The radiation edge in the tilted simulations is independent of black hole spin for a tilt of 15 degrees, in stark contrast to the results for untilted simulations, which agree with the monotonic dependence on spin expected from thin accretion disk theory. Synthetic emission line profiles from the tilted simulations depend strongly on the observer's azimuth, and exhibit unique features such as broad "blue wings." Coupled with precession,...

  15. On the Structure of Advective Accretion Disks At High Luminosity

    CERN Document Server

    Artemova, I V; Igumenshchev, I V; Novikov, I D; Artemova, Ioulia V.; Bisnovatyi-Kogan, Gennadi S.; Igumenshchev, Igor V.; Novikov, Igor D.

    2001-01-01

    Global solutions of optically thick advective accretion disks around blackholes are constructed. The solutions are obtained by solving numerically a setof ordinary differential equations corresponding to a steady axisymmetricgeometrically thin disk. We pay special attention to consistently satisfy theregularity conditions at singular points of the equations. For this reason weanalytically expand a solution at the singular point, and use coefficients ofthe expansion in our iterative numerical procedure. We obtain consistenttransonic solutions in a wide range of values of the viscosity parameter alphaand mass acretion rate. We compare two different form of viscosity: one takesthe shear stress to be proportional to the pressure, while the other uses theangular velocity gradient-dependent stress. We find that there are two singular points in solutions corresponding to thepressure-proportional shear stress. The inner singular point locates close tothe last stable orbit around black hole. This point changes its typ...

  16. Characteristic QSO Accretion Disk Temperatures from Spectroscopic Continuum Variability

    CERN Document Server

    Pereyra, N A; Turnshek, D A; Hillier, D J; Wilhite, B C; Kron, R G; Schneider, D P; Brinkmann, J; Pereyra, Nicolas A.; Berk, Daniel E. Vanden; Turnshek, David A.; Wilhite, Brian C.; Kron, Richard G.; Schneider, Donald P.; Brinkmann, Jonathan

    2006-01-01

    Using Sloan Digital Sky Survey (SDSS) quasar spectra taken at multiple epochs, we find that the composite flux density differences in the rest frame wavelength range 1300-6000 AA can be fit by a standard thermal accretion disk model where the accretion rate has changed from one epoch to the next (without considering additional continuum emission components). The fit to the composite residual has two free parameters: a normalizing constant and the average characteristic temperature $\\bar{T}^*$. In turn the characteristic temperature is dependent on the ratio of the mass accretion rate to the square of the black hole mass. We therefore conclude that most of the UV/optical variability may be due to processes involving the disk, and thus that a significant fraction of the UV/optical spectrum may come directly from the disk.

  17. Characterizing the mean-field dynamo in turbulent accretion disks

    CERN Document Server

    Gressel, Oliver

    2015-01-01

    The formation and evolution of a wide class of astrophysical objects is governed by turbulent, magnetized accretion disks. Understanding their secular dynamics is of primary importance. Apart from enabling mass accretion via the transport of angular momentum, the turbulence affects the long-term evolution of the embedded magnetic flux, which in turn regulates the efficiency of the transport. In this paper, we take a comprehensive next step towards an effective mean-field model for turbulent astrophysical disks by systematically studying the key properties of magnetorotational turbulence in vertically-stratified, isothermal shearing boxes. This allows us to infer emergent properties of the ensuing chaotic flow as a function of the shear parameter as well as the amount of net-vertical flux. Using the test-field method, we furthermore characterize the mean-field dynamo coefficients that describe the long-term evolution of large-scale fields. We simultaneously infer the vertical shape and the spectral scale depen...

  18. Accretion Disks and Dynamos: Toward a Unified Mean Field Theory

    CERN Document Server

    Blackman, Eric G

    2012-01-01

    Conversion of gravitational energy into radiation near stars and compact objects in accretion disks the origin of large scale magnetic fields in astrophysical rotators have long been distinct topics of active research in astrophysics. In semi-analytic work on both problems it has been useful to presume large scale symmetries, which necessarily results in mean field theories; magnetohydrodynamic turbulence makes the underlying systems locally asymmetric and highly nonlinear. Synergy between theory and simulations should aim for the development of practical, semi-analytic mean field models that capture the essential physics and can be used for observational modeling. Mean field dynamo (MFD) theory and alpha-viscosity accretion disc theory have exemplified such distinct pursuits. Both are presently incomplete, but 21st century MFD theory has nonlinear predictive power compared to 20th century MFD. in contrast, alpha-viscosity accretion theory is still in a 20th century state. In fact, insights from MFD theory ar...

  19. MHD Simulations of Global Accretion Disks with Vertical Magnetic Fields

    CERN Document Server

    Suzuki, Takeru K

    2013-01-01

    (Abridged) We report results of three dimensional MHD simulations of global accretion disks threaded with weak vertical magnetic fields. We perform the simulations in the spherical coordinates with different temperature profiles and accordingly different rotation profiles. In the cases with a spatially constant temperature, because the rotation frequency is vertically constant in the equilibrium condition, general properties of the turbulence are quantitatively similar to those obtained in local shearing box simulations. On the other hand, in the cases with a radially variable temperature profile, the vertical differential rotation, which is inevitable in the equilibrium condition, winds up the magnetic field lines, in addition to the usual radial differential rotation. As a result, the coherent wound magnetic fields contribute to the Maxwell stress in the surface regions. We obtain nondimensional density and velocity fluctuations ~0.1-0.2 at the midplane. The azimuthal power spectra of the magnetic fields sh...

  20. The Intrinsic Quasar Luminosity Function: Accounting for Accretion Disk Anisotropy

    CERN Document Server

    DiPompeo, M A; Brotherton, M S; Runnoe, J C; Green, R F

    2014-01-01

    Quasar luminosity functions are a fundamental probe of the growth and evolution of supermassive black holes. Measuring the intrinsic luminosity function is difficult in practice, due to a multitude of observational and systematic effects. As sample sizes increase and measurement errors drop, characterizing the systematic effects is becoming more important. It is well known that the continuum emission from the accretion disk of quasars is anisotropic --- in part due to its disk-like structure --- but current luminosity function calculations effectively assume isotropy over the range of unobscured lines of sight. Here, we provide the first steps in characterizing the effect of random quasar orientations and simple models of anisotropy on observed luminosity functions. We find that the effect of orientation is not insignificant and exceeds other potential corrections such as those from gravitational lensing of foreground structures. We argue that current observational constraints may overestimate the intrinsic l...

  1. Radiative Transfer in Relativistic Accretion-Disk Winds

    CERN Document Server

    Fukue, Jun

    2007-01-01

    Radiative transfer in a relativistic accretion disk wind is examined under the plane-parallel approximation in the fully special relativistic treatment. For an equilibrium flow, where the flow speed and the source function are constant, the emergent intensity is analytically obtained. In such an equilibrium flow the usual limb-darkening effect does not appear, since the source function is constant. Due to the Doppler and aberration effects associated with the relativistic motion of winds, however, the emergent intensity is strongly enhanced toward the flow direction. This is the {\\it relativistic peaking effect}. We thus carefully treat and estimate the appearance of relativistic winds and jets, when we observe them in an arbitrary direction.

  2. The Photoionized Accretion Disk in Her X-1

    Science.gov (United States)

    Ji, L.; Schulz, N.; Nowak, M.; Marshall, H. L.; Kallman, T.

    2009-08-01

    We present an analysis of several high-resolution Chandra grating observations of the X-ray binary pulsar Her X-1. With a total exposure of 170 ks, the observations are separated by years and cover three combinations of orbital and superorbital phases. Our goal is to determine distinct properties of the photoionized emission and its dependence on phase-dependent variations of the continuum. We find that the continua can be described by a partial covering model which above 2 keV is consistent with recent results from Rossi X-Ray Timing Explorer studies and at low energies is consistent with recent XMM-Newton and BeppoSAX studies. Besides a power law with fixed index, an additional thermal blackbody of 114 eV is required to fit wavelengths above 12 Å (~1 keV). We find that likely all the variability is caused by highly variable absorption columns in the range (1-3) × 1023 cm-2. Strong Fe K line fluorescence in almost all observations reveals that dense, cool material is present not only in the outer regions of the disk but interspersed throughout the disk. Most spectra show strong line emission stemming from a photoionized accretion disk corona (ADC). We model the line emission with generic thermal plasma models as well as with the photoionization code XSTAR and investigate changes of the ionization balance with orbital and superorbital phases. Most accretion disk coronal properties such as disk radii, temperatures, and plasma densities are consistent with previous findings for the low state. We find that these properties change negligibly with respect to orbital and superorbital phases. A couple of the higher energy lines exhibit emissivities that are significantly in excess of expectations from a static ADC.

  3. THE PHOTOIONIZED ACCRETION DISK IN HER X-1

    International Nuclear Information System (INIS)

    We present an analysis of several high-resolution Chandra grating observations of the X-ray binary pulsar Her X-1. With a total exposure of 170 ks, the observations are separated by years and cover three combinations of orbital and superorbital phases. Our goal is to determine distinct properties of the photoionized emission and its dependence on phase-dependent variations of the continuum. We find that the continua can be described by a partial covering model which above 2 keV is consistent with recent results from Rossi X-Ray Timing Explorer studies and at low energies is consistent with recent XMM-Newton and BeppoSAX studies. Besides a power law with fixed index, an additional thermal blackbody of 114 eV is required to fit wavelengths above 12 A (∼1 keV). We find that likely all the variability is caused by highly variable absorption columns in the range (1-3) x 1023 cm-2. Strong Fe K line fluorescence in almost all observations reveals that dense, cool material is present not only in the outer regions of the disk but interspersed throughout the disk. Most spectra show strong line emission stemming from a photoionized accretion disk corona (ADC). We model the line emission with generic thermal plasma models as well as with the photoionization code XSTAR and investigate changes of the ionization balance with orbital and superorbital phases. Most accretion disk coronal properties such as disk radii, temperatures, and plasma densities are consistent with previous findings for the low state. We find that these properties change negligibly with respect to orbital and superorbital phases. A couple of the higher energy lines exhibit emissivities that are significantly in excess of expectations from a static ADC.

  4. On the Gravitational Stability of Gravito-turbulent Accretion Disks

    Science.gov (United States)

    Lin, Min-Kai; Kratter, Kaitlin M.

    2016-06-01

    Low mass, self-gravitating accretion disks admit quasi-steady, “gravito-turbulent” states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: (1) cooling, which reduces pressure support; and/or (2) viscosity, which reduces rotational support. We analyze the axisymmetric gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling in the shearing box approximation. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes with lengthscales on the order of the disk thickness. We apply this new linear theory to protoplanetary disks subject to gravito-turbulence modeled as an effective viscosity, and cooling regulated by dust opacity. We find that viscosity renders the disk beyond ˜60 au dynamically unstable on radial lengthscales a few times the local disk thickness. This is coincident with the empirical condition for disk fragmentation based on a maximum sustainable stress. We suggest turbulent stresses can play an active role in realistic disk fragmentation by removing rotational stabilization against self-gravity, and that the observed transition in behavior from gravito-turbulent to fragmenting may reflect instability of the gravito-turbulent state itself.

  5. Evolution and precession of accretion disk in tidal disruption events

    Directory of Open Access Journals (Sweden)

    Matzner C.D.

    2012-12-01

    Full Text Available In a supermassive black hole (BH tidal disruption event (TDE, the tidally disrupted star feeds the BH via an accretion disk. Most often it is assumed that the accretion rate history, hence the emission light curve, tracks the rate at which new debris mass falls back onto the disk, notably the t−5/3 power law. But this is not the case when the disk evolution due to viscous spreading - the driving force for accretion - is carefully considered. We construct a simple analytical model that comprehensively describes the accretion rate history across 4 different phases of the disk evolution, in the presence of mass fallback and disk wind loss. Accretion rate evolves differently in those phases which are governed by how the disk heat energy is carried away, early on by advection and later by radiation. The accretion rate can decline as steeply as t−5/3 only if copious disk wind loss is present during the early advection-cooled phase. Later, the accretion rate history is t−8/7 or shallower. These have great implications on the TDE flare light curve. A TDE accretion disk is most likely misaligned with the equatorial plane of the spinning BH. Moreover, in the TDE the accretion rate is super- or near-Eddington thus the disk is geometrically thick, for which case the BH’s frame dragging effect may cause the disk precess as a solid body, which may manifest itself as quasi-periodic signal in the TDE light curve. Our disk evolution model predicts the disk precession period increases with time, typically as ∝ t. The results are applied to the recently jetted TDE flare Swift transient J1644 + 57 which shows numerous, quasi-periodic dips in its long-term X-ray light curve. As the current TDE sample increases, the identification of the disk precession signature provides a unique way of measuring BH spin and studying BH accretion physics.

  6. The Accretion Disk Wind in the Black Hole GRS 1915+105

    CERN Document Server

    Miller, J M; Fabian, A C; Gallo, E; Kaastra, J; Kallman, T; King, A L; Proga, D; Reynolds, C S; Zoghbi, A

    2016-01-01

    We report on a 120 ks Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in June, 2015. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lower sensitivity in 2007. The very high resolution of the third-order spectrum reveals four components to the disk wind in the Fe K band alone; the fastest has a blue-shift of v = 0.03c. Broadened re-emission from the wind is also detected in the first-order spectrum, giving rise to clear accretion disk P Cygni profiles. Dynamical modeling of the re-emission spectrum gives wind launching radii of r ~ 10^(2-4) GM/c^2. Wind density values of n ~ 10^(13-16) cm^-3 are then required by the ionization parameter formalism. The small launching radii, high density values, and inferred high mass outflow rates signal a role for magnetic driving. With simple, reasonable assumptions, the wind properties constrain the magnitude of the emergent magnetic field to B ~ 10^(3-4) Gauss ...

  7. Dust in the wind II: Polarization imaging from disk-born outflows

    CERN Document Server

    Marin, F

    2013-01-01

    In this second research note of a series of two, we aim to map the polarized flux emerging from a disk-born, dusty outflow as it was prescribed by Elvis (2000). His structure for quasars was achieved to unify the emission and absorption features observed in active galactic nuclei (AGN) and can be used as an alternative scenario to the typical dusty torus that is extensively used to account for AGN circumnuclear obscuration. Using Monte Carlo radiative transfer simulations, we model an obscuring outflow arising from an emitting accretion disk and examine the resulting polarization degree, polarization angle and polarized flux. Polarization cartography reveals that a disk-born outflow has a similar torus morphology in polar viewing angles, with bright polarized fluxes reprocessed onto the wind funnel. At intermediate and edge-on inclinations, the model is rather close to a double-conical wind, with higher fluxes in the cone bases. It indicates that the optically thick outflow is not efficient enough to avoid ra...

  8. Super-spinning compact objects generated by thick accretion disks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zilong; Bambi, Cosimo, E-mail: zilongli@fudan.edu.cn, E-mail: bambi@fudan.edu.cn [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China)

    2013-03-01

    If astrophysical black hole candidates are the Kerr black holes predicted by General Relativity, the value of their spin parameter must be subject to the theoretical bound |a{sub *}| ≤ 1. In this work, we consider the possibility that these objects are either non-Kerr black holes in an alternative theory of gravity or exotic compact objects in General Relativity. We study the accretion process when their accretion disk is geometrically thick with a simple version of the Polish doughnut model. The picture of the accretion process may be qualitatively different from the one around a Kerr black hole. The inner edge of the disk may not have the typical cusp on the equatorial plane any more, but there may be two cusps, respectively above and below the equatorial plane. We extend previous work on the evolution of the spin parameter and we estimate the maximum value of a{sub *} for the super-massive black hole candidates in galactic nuclei. Since measurements of the mean radiative efficiency of AGNs require η > 0.15, we infer the ''observational'' bound |a{sub *}|∼<1.3, which seems to be quite independent of the exact nature of these objects. Such a bound is only slightly weaker than |a{sub *}|∼<1.2 found in previous work for thin disks.

  9. Evolution of Accretion Disks in Tidal Disruption Events

    CERN Document Server

    Shen, Rong-Feng

    2013-01-01

    In a stellar tidal disruption event (TDE), an accretion disk forms as the stellar debris returns and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. An outer spreading disk is a source of matter for re-accretion at rates which can exceed the later stellar fall-back rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history, or, at longer wavelengths, by its own emission. Moreover, as an angular momentum reservoir, it can broadcast its existence by affecting the disk precession rate. Because these features depend on the disk's internal viscosity and the nature of wind produced in its early, advection-dominated phase, they are useful probes of transient disk physics. To model the evolution of TDE disk size and accretion rate, we account for the possibility of thermal instability for accretion rates...

  10. On the Flaring of Jet-sustaining Accretion Disks

    CERN Document Server

    Namouni, Fathi

    2009-01-01

    Jet systems with two unequal components interact with their parent accretion disks through the asymmetric removal of linear momentum from the star-disk system. We show that as a result of this interaction, the disk's state of least energy is not made up of orbits that lie in a plane containing the star's equator as in a disk without a jet. The disk's profile has the shape of a sombrero curved in the direction of acceleration. For this novel state of minimum energy, we derive the temperature profile of thin disks. The flaring geometry caused by the sombrero profile increases the disk temperature especially in its outer regions. The jet-induced acceleration disturbs the vertical equilibrium of the disk leading to mass loss in the form of a secondary wind emanating from the upper face of the disk. Jet time variability causes the disk to radially expand or contract depending on whether the induced acceleration increases or decreases. Jet time variability also excites vertical motion and eccentric distortions in t...

  11. On the Vertical Structure of Radiation-Dominated Accretion Disks

    CERN Document Server

    Turner, N J

    2004-01-01

    The vertical structure of black hole accretion disks in which radiation dominates the total pressure is investigated using a three-dimensional radiation-MHD calculation. The domain is a small patch of disk centered 100 Schwarzschild radii from a black hole of 10^8 Solar masses, and the stratified shearing-box approximation is used. Magneto-rotational instability converts gravitational energy to turbulent magnetic and kinetic energy. The gas is heated by magnetic dissipation and by radiation damping of the turbulence, and cooled by diffusion and advection of radiation through the vertical boundaries. The resulting structure differs in several fundamental ways from the standard Shakura-Sunyaev picture. The disk consists of three layers. At the midplane, the density is large, and the magnetic pressure and total accretion stress are less than the gas pressure. In lower-density surface layers that are optically thick, the magnetic pressure and stress are greater than the gas pressure but less than the radiation pr...

  12. Irradiation Instability at the Inner Edges of Accretion Disks

    CERN Document Server

    Fung, Jeffrey

    2014-01-01

    An instability can potentially operate in highly irradiated disks where the disk sharply transitions from being radially transparent to opaque (the 'transition region'). Such conditions may exist at the inner edges of transitional disks around T Tauri stars and accretion disks around AGNs. We derive the criterion for this instability, which we term the 'irradiation instability', or IRI. We also present the linear growth rate as a function of beta, the ratio between radiation force and gravity, and c_s, the sound speed of the disk, obtained using two methods: a semi-analytic analysis of the linearized equations and a numerical simulation using the GPU-accelerated hydrodynamical code PEnGUIn. In particular, we find that IRI occurs at beta~0.1 if the transition region extends as wide as ~0.05r, and at higher beta values if it is wider. Furthermore, in the nonlinear evolution of the instability, disks with a large beta and small c_s exhibit 'clumping': extreme local surface density enhancements, reaching a few te...

  13. Formation and evolution of inclined accretion disks in intermediate polars

    Science.gov (United States)

    Fateeva, A. M.; Zhilkin, A. G.; Bisikalo, D. V.

    2016-01-01

    The results of 3D modeling of the formation of the accretion disks of intermediate polars are presented. A model with misaligned rotation axes of accretor and the orbit is onsidered, in which it is assumed that the white dwarf has a dipolar magnetic field with its symmetry axis inclined to the whitedwarf rotation and orbital axes. The computations show that, in the early stages of formation of the disk, the action of magnetic field is able to create the initial (seed) inclination of the disk. This inclination is then supported mainly by the dynamical pressure of the flow from the inner Lagrangian point L1. As themass of the disk increases, the inclination disappears. Under certain conditions, the disk inclination does not arise in systems with misaligned white-dwarf rotation and orbital axes. The influence of the magnetic field and asynchronous rotation of the accretor may result in the formation of spiral waves in the disk with amplitudes sufficient to be detected observationally.

  14. OBSERVATIONAL SIGNATURES OF TILTED BLACK HOLE ACCRETION DISKS FROM SIMULATIONS

    International Nuclear Information System (INIS)

    Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer and compare the estimated locations of the radiation edge with expectations from their aligned (untilted) counterparts. The radiation edge in the tilted simulations is independent of black hole spin for a tilt of 15 deg., in stark contrast to the results for untilted simulations, which agree with the monotonic dependence on spin expected from thin accretion disk theory. Synthetic emission line profiles from the tilted simulations depend strongly on the observer's azimuth and exhibit unique features such as broad 'blue wings'. Coupled with precession, the azimuthal variation could generate time fluctuations in observed emission lines, which would be a clear 'signature' of a tilted accretion flow. Finally, we evaluate the possibility that the observed low- and high-frequency quasi-periodic oscillations (QPOs) from black hole binaries could be produced by misaligned accretion flows. Although low-frequency QPOs from precessing, tilted disks remains a viable option, we find little evidence for significant power in our light curves in the frequency range of high-frequency QPOs.

  15. The intrinsic quasar luminosity function: Accounting for accretion disk anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    DiPompeo, M. A.; Myers, A. D.; Brotherton, M. S. [University of Wyoming, Department of Physics and Astronomy 3905, 1000 East University, Laramie, WY 82071 (United States); Runnoe, J. C. [Penn State University, Department of Astronomy and Astrophysics, 413 Davey Lab, University Park, PA 16802 (United States); Green, R. F. [Large Binocular Telescope Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-05-20

    Quasar luminosity functions are a fundamental probe of the growth and evolution of supermassive black holes. Measuring the intrinsic luminosity function is difficult in practice, due to a multitude of observational and systematic effects. As sample sizes increase and measurement errors drop, characterizing the systematic effects is becoming more important. It is well known that the continuum emission from the accretion disk of quasars is anisotropic—in part due to its disk-like structure—but current luminosity function calculations effectively assume isotropy over the range of unobscured lines of sight. Here, we provide the first steps in characterizing the effect of random quasar orientations and simple models of anisotropy on observed luminosity functions. We find that the effect of orientation is not insignificant and exceeds other potential corrections such as those from gravitational lensing of foreground structures. We argue that current observational constraints may overestimate the intrinsic luminosity function by as much as a factor of ∼2 on the bright end. This has implications for models of quasars and their role in the universe, such as quasars' contribution to cosmological backgrounds.

  16. Effects of local dissipation profiles on magnetized accretion disk spectra

    CERN Document Server

    Tao, Ted

    2013-01-01

    We present spectral calculations of non-LTE accretion disk models appropriate for high luminosity stellar mass black hole X-ray binary systems. We first use a dissipation profile based on scaling the results of shearing box simulations of Hirose et al. (2009) to a range of annuli parameters. We simultaneously scale the effective temperature, orbital frequency and surface density with luminosity and radius according to the standard \\alpha-model (Shakura & Sunyaev, 1973). This naturally brings increased dissipation to the disk surface layers (around the photospheres) at small radii and high luminosities. We find that the local spectrum transitions directly from a modified black body to a saturated Compton scattering spectrum as we increase the effective temperature and orbital frequency while decreasing midplane surface density. Next, we construct annuli models based on the parameters of a L/L_Edd=0.8 disk orbiting a 6.62 solar mass black hole using two modified dissipation profiles that explicitly put more...

  17. Saturation of the MRI in Strongly Radiation Dominated Accretion Disks

    CERN Document Server

    Jiang, Yan-Fei; Davis, Shane W

    2013-01-01

    The saturation level of the magneto-rotational instability (MRI) in a strongly radiation dominated accretion disk is studied using a new Godunov radiation MHD code in the unstratified shearing box approximation. Since vertical gravity is neglected in this work, our focus is on how the MRI saturates in the optically thick mid-plane of the disk. We confirm that turbulence generated by the MRI is very compressible in the radiation dominated regime, as found by previous calculations using the flux-limited diffusion approximation. We also find little difference in the saturation properties in calculations that use a larger horizontal domain (up to four times the vertical scale height in the radial direction). However, in strongly radiation pressure dominated disks (one in which the radiation energy density reaches 1% of the rest mass energy density of the gas), we find Maxwell stress from the MRI turbulence is larger than the value produced when radiation pressure is replaced with the same amount of gas pressure. ...

  18. Observational Signatures of Tilted Black Hole Accretion Disks from Simulations

    Science.gov (United States)

    Dexter, Jason; Fragile, P. Chris

    2011-03-01

    Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer and compare the estimated locations of the radiation edge with expectations from their aligned (untilted) counterparts. The radiation edge in the tilted simulations is independent of black hole spin for a tilt of 15°, in stark contrast to the results for untilted simulations, which agree with the monotonic dependence on spin expected from thin accretion disk theory. Synthetic emission line profiles from the tilted simulations depend strongly on the observer's azimuth and exhibit unique features such as broad "blue wings." Coupled with precession, the azimuthal variation could generate time fluctuations in observed emission lines, which would be a clear "signature" of a tilted accretion flow. Finally, we evaluate the possibility that the observed low- and high-frequency quasi-periodic oscillations (QPOs) from black hole binaries could be produced by misaligned accretion flows. Although low-frequency QPOs from precessing, tilted disks remains a viable option, we find little evidence for significant power in our light curves in the frequency range of high-frequency QPOs.

  19. Evolution of Thick Accretion Disks Produced by Tidal Disruption Events

    CERN Document Server

    Ulmer, A

    1997-01-01

    Geometrically thick disks may form after tidal disruption events, and rapid accretion may lead to short flares followed by long-term, lower-level emission. Using a novel accretion disk code which relies primarily on global conservation laws and the assumption that viscosity is everywhere positive, a broad range of physically allowed evolutionary sequences of thick disks is investigated. The main result is that accretion in the thick disk phase can consume only a fraction of the initial disk material before the disk cools and becomes thin. This fraction is ~0.5-0.9 for disruptions around 10^6 to 10^7 M_ødot black holes and is sensitive to the mean angular momentum of the disk. The residual material will accrete in some form of thin disk over a longer period of time. The initial thick disk phase may reduce the dimming timescale of the disk by a factor of ~2 from estimates based on thin disks alone. Assuming an 0.5 M_ødot initial thick disk, even if the thin disks become advection dominated, the black hole mas...

  20. ACCRETION DISKS WITH A LARGE SCALE MAGNETIC FIELD AROUND BLACK HOLES

    Directory of Open Access Journals (Sweden)

    Gennady Bisnovatyi-Kogan

    2013-12-01

    Full Text Available We consider accretion disks around black holes at high luminosity, and the problem of the formation of a large-scale magnetic field in such disks, taking into account the non-uniform vertical structure of the disk. The structure of advective accretion disks is investigated, and conditions for the formation of optically thin regions in central parts of the accretion disk are found. The high electrical conductivity of the outer layers of the disk prevents outward diffusion of the magnetic field. This implies a stationary state with a strong magnetic field in the inner parts of the accretion disk close to the black hole, and zero radial velocity at the surface of the disk. The problem of jet collimation by magneto-torsion oscillations is investigated.

  1. Relativistic Effects on Neutrino Pair Annihilation above a Kerr Black Hole with the Accretion Disk

    CERN Document Server

    Asano, K; Asano, Katsuaki; Fukuyama, Takeshi

    2001-01-01

    Using idealized models of the accretion disk we investigate the relativistic effects on the energy deposition rate via neutrino pair annihilation near the rotation axis of a Kerr black hole. Neutrinos are emitted from the accretion disk. The bending of neutrino trajectories and the redshift due to the disk rotation and gravitation are taken into consideration. The Kerr parameter, $a$, affects not only neutrinos' behavior but also the inner radius of the accretion disk. When the deposition energy is mainly contributed by the neutrinos coming from the central part, the redshift effect becomes dominant as $a$ becomes large and the energy deposition rate is reduced compared with that neglecting the relativistic effects. On the other hand, for small $a$ the bending effect gets dominant and makes energy increase by factor 2 compared with that neglecting the relativistic effects. For the disk with temperature gradient, the energy deposition rate for a small inner radius of the accretion disk is smaller than that est...

  2. The effect of gaseous accretion disk on dynamics of the stellar cluster in AGN

    CERN Document Server

    Shukirgaliyev, Bekdaulet

    2016-01-01

    There is a supermassive black hole, a gaseous accretion disk and compact star cluster in the center of active galactic nuclei, as known today. So the activity of AGN can be represented as the result of interaction of these three subsystems. In this work we investigate the dynamical interaction of a central star cluster surrounding a supermassive black hole and a central accretion disk. The dissipative force acting on stars in the disk leads to an asymmetry in the phase space distribution of the central star cluster due to the rotating accretion disk. In our work we present some results of Stardisk model, where we see some changes in density and phase space of central star cluster due to influence of rotating gaseous accretion disk.

  3. Emission-Line Profiles of Accretion Disks with a Non-Axisymmetric Pattern

    OpenAIRE

    SANBUICHI, Kiyotaka; FUKUE, Jun; Kojima, Yasufumi

    1994-01-01

    In several cases, accretion disks may have non-axisymmetric patterns, such as one-armed oscillations and spiral shock waves. In such cases the line emissivity may also become non-axisymmetric. We examined the emission-line profiles for geometrically thin/thick, (non-) relativistic accretion disks while taking acount of the non-axisymmetric emissivity. The emission-line profiles were calculated numerically using a code based on the ray-tracing method. The emission-line profiles are usually ...

  4. Inner edge of accretion disks in low mass X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    李向东; 汪珍如

    1995-01-01

    The magnitude of the inner edge of accretion disks in low mass X-ray binaries is controversial in theoretical considerations and observations. Using the inner boundary conditions of accretion disks the inner disk radius has been calculated by taking into account the effect of feedback radiation and the deviation of disk rotation from Keplerian. Results have been applied to the observations and possible interpretations have been proposed for the X-ray spectra and quasiperiodic oscillations.

  5. VARIABILITY OF THE ACCRETION DISK OF V926 Sco INFERRED FROM TOMOGRAPHIC ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, S. D. [University of Southampton, Highfield, Southampton, S017 1BJ (United Kingdom); Peris, C. S. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Vrtilek, S. D., E-mail: sdc1g08@soton.ac.u, E-mail: peris.c@husky.neu.edu, E-mail: cperis@cfa.harvard.edu, E-mail: svrtilek@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2013-11-10

    We present phase-resolved spectroscopic observations of the low-mass X-ray binary V926 Sco (4U 1735-44), covering the orbital period of 0.23 days, obtained with the Walter Baade 6.5 m Magellan Telescope at the Las Campanas Observatory in 2010 June and 2011 June. We use Hα radial velocities to derive a systemic velocity of –109 ± 4 km s{sup –1}. The FWHM of the lines observed in common with previous authors are significantly lower during our observations suggesting much reduced velocities in the system. The equivalent width of the Bowen fluorescence lines with respect to He II λ4686 are factors of two or more lower during our observations in comparison to those previously reported for the system, suggesting reduced irradiation of the secondary. Doppler and modulation tomography of Hα and He II λ4686 show asymmetric emission that can be attributed to a bulge in the accretion disk, as inferred from He II observations by previous authors. The X-ray fluxes from the source at times concurrent with the optical observations are significantly lower during our observations than during optical observations taken in 2003. We suggest that the system is in a lower accretion state compared to earlier observations; this explains both the lower velocities observed from the disk and the reduction of emission due to Bowen fluorescence detected from the secondary.

  6. Constraints on Accretion Disk Physics in Low Luminosity Radio Galaxies

    Science.gov (United States)

    Baum, Stefi; Noel-Storr, Jacob; O'Dea, Christopher

    2008-03-01

    It is currently believed that essentially all galaxies harbor a massive black hole in their nuclei. If this is true, then it becomes hard to understand why we do not see the luminosity released by the inevitable accretion of the galaxy ISM onto the black hole in all galaxies. The differences in AGN output between the two classes of narrow-line radio galaxies (FRI and FRII) may hold the vital clue. High radio luminosity FRIIs generally show strong high-excitation narrow lines and are believed to be the obscured counterparts of radio loud quasars. Low radio luminosity FRIs by contrast have weaker, low-ionization lines and low ratios of optical to radio luminosities. A large difference in accretion rate and radiative efficiency between FRI and FRIIs would explain the difference in the optical properties and also provide a new unification between different classes of active galaxies in which the dominant parameter is accretion rate. Spitzer IRAC and MIPS observations already exist for most of a well defined sample of FRIs. However, the previously observed objects are the 'famous' ones, e.g., M87, M84, NGC315, 3C264, 3C31. Thus, the existing datasets are highly selected. Here we propose a very small request to complete the sample. We propose IRAC observations in all 4 bands, and MIPS photometry at 24 and 70 microns of 8, and 7 sources, respectively, for a total request of 1.7 hrs. These observations will complete the sample at very little cost in observing time. The large amount of existing complmentary data at multiple wavebands will greatly enhance the legacy value of the proposed observations. By completing the sample, the proposed IRAC and MIPS observations will produce a well defined and very well studied sample of nearby low luminosity radio galaxies. We will use the completed sample to investigate the properties of the accretion disk radiation, and the circumnuclear obscuring material.

  7. Advection of magnetic flux by accretion disks around neutron stars

    Science.gov (United States)

    Flores-Tulian, S.; Reisenegger, A.

    The aim of our research is to address why millisecond pulsars have relatively weak surface magnetic fields, of about 10^8 G, with a narrow spread. We propose that the accretion of plasma from the companion star fully screens the original neutron star field, but the accretion disk carries additional magnetic flux from the companion star, or itself can generate field by means of dynamo processes. For a strongly magnetized star, the field prevents the disk from approaching the star. The accretion is along the field lines and deposits the matter on the polar cap. Then, the accreted plasma flows, dragging with itself the magnetic field lines, from the pole to the equator (Payne & Melatos 2004). In a following stage, when the star becomes non-magnetic, because the field has been buried, the disk touches the star. We suggest that some effective mechanism of magnetic flux transport such as that proposed by Spruit & Uzdensky 2005 (or Bisnovatyi-Kogan & Lovelace 2007), operates and necessarily leads to a "strongly magnetized disk''. It becomes laminar because the magneto-rotational instability saturates (it is considered to be responsible for turbulence in the disk), and the magnetic difussivity is negligible. Then, the loss of angular momentum allowing the accretion is only caused by the magneto-centrifugal disk-wind (Blandford & Payne 1982). Meanwhile, the wind-driven transport of the magnetic flux by the disk re-magnetizes the star. This process continues until the Lorentz force due to the star's magnetic field forbids any further accretion of matter and magnetic flux, in the Ideal Magneto-Hydro-Dynamics approach. Additional of material can fall onto the star (but at lower rate) if some instability process sets in, allowing the diffusion of mass through the magnetic field lines (e.g the Interchange Instability, Spruit & Taam 1990). All these processes might lead to an asymptotic magnetic field of 10^8 G,as is inferred from observations. We are developing a self

  8. Time dependent models of accretion disks with nuclear burning following the tidal disruption of a white dwarf by a neutron star

    CERN Document Server

    Margalit, Ben

    2016-01-01

    We construct time-dependent one-dimensional (vertically averaged) models of accretion disks produced by the tidal disruption of a white dwarf (WD) by a binary neutron star (NS) companion. Nuclear reactions in the disk midplane burn the WD matter to increasingly heavier elements at sequentially smaller radii, releasing substantial energy which can impact the disk dynamics. A model for disk outflows is employed, by which cooling from the outflow balances other sources of heating (viscous, nuclear) in regulating the Bernoulli parameter of the midplane to a fixed value $\\lesssim 0$. We perform a comprehensive parameter study of the compositional yields and velocity distributions of the disk outflows for WDs of different initial compositions. For C/O WDs, the radial composition profile of the disk evolves self-similarly in a quasi-steady-state manner, and is remarkably robust to model parameters. The nucleosynthesis in helium WD disks does not exhibit this behavior, which instead depends sensitively on factors con...

  9. Evidence for Large Temperature Fluctuations in Quasar Accretion Disks From Spectral Variability

    CERN Document Server

    Ruan, John J; Dexter, Jason; Agol, Eric

    2014-01-01

    The well-known bluer-when-brighter trend observed in quasar variability is a signature of the complex processes in the accretion disk, and can be a probe of the quasar variability mechanism. Using a sample of 604 variable quasars with repeat spectra in SDSS-I/II, we construct difference spectra to investigate the physical causes of this bluer-when-brighter trend. The continuum of our composite difference spectrum is well-fit by a power-law, with a spectral index in excellent agreement with previous results. We measure the spectral variability relative to the underlying spectra of the quasars, which is independent of any extinction, and compare to model predictions. We show that our SDSS spectral variability results cannot be produced by global accretion rate fluctuations in a thin disk alone. However, we find that a simple model of a inhomogeneous disk with localized temperature fluctuations will produce power-law spectral variability over optical wavelengths. We show that the inhomogeneous disk will provide ...

  10. STRONG FIELD EFFECTS ON EMISSION LINE PROFILES: KERR BLACK HOLES AND WARPED ACCRETION DISKS

    International Nuclear Information System (INIS)

    If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.

  11. Strong Field Effects on Emission Line Profiles: Kerr Black Holes and Warped Accretion Disks

    Science.gov (United States)

    Wang, Yan; Li, Xiang-Dong

    2012-01-01

    If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.

  12. Alignments Of Black Holes with Their Warped Accretion Disks and Episodic Lifetimes of Active Galactic Nuclei

    Science.gov (United States)

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2015-05-01

    Warped accretion disks have attracted intense attention because of their critical role in shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen-Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of active galactic nuclei (AGNs) that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing us to determine the gravitomagnetic torque that drives the alignments in a simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to the lifetimes. We therefore propose that the spin distribution of SMBHs can place constraints on the episodic lifetimes of AGNs and vice versa. The applications of our results on the observed spin distributions of SMBHs and the observed episodic lifetimes of AGNs are discussed, although both measurements at present are too ambiguous for us to draw a firm conclusion. Our prescription can be easily incorporated into semi-analytic models for black hole growth and spin evolution.

  13. Quasi-periodic oscillations as global hydrodynamic modes in the boundary layers of viscous accretion disks

    CERN Document Server

    Erkut, M Hakan; Alpar, M Ali

    2008-01-01

    The observational characteristics of quasi-periodic oscillations (QPOs) from accreting neutron stars strongly indicate the oscillatory modes in the innermost regions of accretion disks as a likely source of the QPOs. The inner regions of accretion disks around neutron stars can harbor very high frequency modes related to the radial epicyclic frequency $\\kappa $. The degeneracy of $\\kappa $ with the orbital frequency $\\Omega $ is removed in a non-Keplerian boundary or transition zone near the magnetopause between the disk and the compact object. We show, by analyzing the global hydrodynamic modes of long wavelength in the boundary layers of viscous accretion disks, that the fastest growing mode frequencies are associated with frequency bands around $\\kappa $ and $\\kappa \\pm \\Omega $. The maximum growth rates are achieved near the radius where the orbital frequency $\\Omega $ is maximum. The global hydrodynamic parameters such as the surface density profile and the radial drift velocity determine which modes of ...

  14. Black hole accretion disks in brane gravity via a confining potential

    Energy Technology Data Exchange (ETDEWEB)

    Heydari-Fard, Malihe, E-mail: heydarifard@qom.ac.i, E-mail: m.heydarifard@mail.sbu.ac.i [Department of Physics, University of Qom, PO Box 37185-359, Qom (Iran, Islamic Republic of)

    2010-12-07

    Accretion disks are among the most luminous and ubiquitous sources in astrophysics and they have drawn a good deal of attention from the observational and theoretical communities. In this paper, we study the process of matter forming thin accretion disks around black hole solutions in the context of the brane-world scenario where our universe is a three-brane embedded in an m-dimensional bulk and localization of matter on the brane is achieved by means of a confining potential. The physical properties of thin accretion disks including the time averaged energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and the results are compared with the DMPR, CFM and BMD brane black holes and the standard general relativistic Schwarzschild solution.

  15. Magnetically elevated accretion disks in active galactic nuclei: broad emission line regions and associated star formation

    CERN Document Server

    Begelman, Mitchell C

    2016-01-01

    We propose that the accretion disks fueling active galactic nuclei are supported vertically against gravity by a strong toroidal ($\\phi-$direction) magnetic field that develops naturally as the result of an accretion disk dynamo. The magnetic pressure elevates most of the gas carrying the accretion flow at $R$ to large heights $z > 0.1 R$ and low densities, while leaving a thin dense layer containing most of the mass --- but contributing very little accretion --- around the equator. We show that such a disk model leads naturally to the formation of a broad emission line region through thermal instability. Extrapolating to larger radii, we demonstrate that local gravitational instability and associated star formation are strongly suppressed compared to standard disk models for AGN, although star formation in the equatorial zone is predicted for sufficiently high mass supply rates. This new class of accretion disk models thus appears capable of resolving two longstanding puzzles in the theory of AGN fueling: th...

  16. A truncated accretion disk in the galactic black hole candidate source H1743-322

    Institute of Scientific and Technical Information of China (English)

    Kandulapati Sriram; Vivek Kumar Agrawal; Arikkala Raghurama Rao

    2009-01-01

    To investigate the geometry of the accretion disk in the source H1743-322, we have carded out a detailed X-ray temporal and spectral study using RXTE pointed observations. We have selected all data pertaining to the Steep Power Law (SPL) state during the 2003 outburst of this source. We find anti-correlated hard X-ray lags in three of the observations and the changes in the spectral and timing parameters (like the QPO fre-quency) confirm the idea of a truncated accretion disk in this source. Compiling data from similar observations of other sources, we find a correlation between the fractional change in the QPO frequency and the observed delay. We suggest that these observations indicate a definite size scale in the inner accretion disk (the radius of the truncated disk) and we explain the observed correlation using various disk parameters like Compton cooling time scale, viscous time scale etc..

  17. Can neutron stars have auroras ? : electromagnetic coupling process between neutron star and magnetized accretion disk

    Science.gov (United States)

    Kimura, T.; Iwakiri, W. B.; Enoto, T.; Wada, T.; Tao, C.

    2015-12-01

    In the binary neutron star system, angular momentum transfer from accretion disk to a star is essential process for spin-up/down of stars. The angular momentum transfer has been well formulated for the accretion disk strongly magnetized by the neutron star [e.g., Ghosh and Lamb, 1978, 1979a, b]. However, the electromagnetic (EM) coupling between the neutron star and accretion disk has not been self-consistently solved in the previous studies although the magnetic field lines from the star are strongly tied with the accretion disk. In this study, we applied the planet-magnetosphere coupling process established for Jupiter [Hill, 1979] to the binary neutron star system. Angular momentum distribution is solved based on the torque balance between the neutron star's surface and accretion disk coupled by the magnetic field tensions. We found the EM coupling can transfer significantly larger fraction of the angular momentum from the magnetized accretion disk to the star than the unmagnetized case. The resultant spin-up rate is estimated to ~10^-14 [sec/sec] for the nominal binary system parameters, which is comparable with or larger than the other common spin-down/up processes: e.g., the magnetic dipole radiation spin-down. The Joule heating energy dissipated in the EM coupling is estimated to be up to ~10^36 [erg/sec] for the nominal binary system parameters. The release is comparable to that of gravitation energy directly caused by the matters accreting onto the neutron star. This suggests the EM coupling at the neutron star can accompany the observable radiation as auroras with a similar manner to those at the rotating planetary magnetospheres like Jupiter, Saturn, and other gas giants.

  18. Optical Microlensing and Accretion Disk Structure in the Lensed Quasar SDSS 1520+530

    Science.gov (United States)

    Manickam, Vigneshwar; Grinaski, Ian; MacLeod, Chelsea; Morgan, Christopher W.; Harris, Hugh C.; Kennington, James

    2015-01-01

    We analyze uncorrelated variability in seven seasons of SDSS r-band monitoring data from the doubly-imaged gravitationally lensed quasar SBS 1520+530 to yield a measurement of the size of the near-UV continuum emission region in this quasar. Photometry in the SBS 1520+530 system is complicated significantly by the proximity of a very bright star whose diffraction spike blends with the the lens, so we employed a mirror-flip subtraction technique to correct for this contamination. We conclude by testing our accretion disk measurement against the Quasar Accretion Disk Size - Black Hole Mass Relation.

  19. Strong field effects on emission line profiles: Kerr black holes and warped accretion disks

    CERN Document Server

    Wang, Yan

    2011-01-01

    If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, ...

  20. The Orientation of Accretion Disks Relative to Dust Disks in Radio Galaxies

    CERN Document Server

    Schmitt, H R

    2002-01-01

    We study the orientation of accretion disks, traced by the position angle of the jet, relative to the dust disk major axis in a sample of 20 nearby Radio Galaxies. We find that the observed distribution of angles between the jet and dust disk major axis is consistent with jets homogeneously distributed over a polar cap of 77 degrees.

  1. Structure analysis of solution to equations of quasi 3-D accretion disk model

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper we discuss the problems contained in the solution to the equations of quasi 3-D accretion disk model, and point out that the angular momentum equation should not be integrated directly. Finally, we develop a criterion of the existence of a disconnected solution to this model.

  2. H2O megamasers : Accretion disks, jet interaction, outflows or massive star formation?

    NARCIS (Netherlands)

    Henkel, C; Braatz, JA; Tarchi, A; Peck, AB; Nagar, NM; Greenhill, LJ; Hagiwara, Y

    2005-01-01

    The 25 years following the serendipitous discovery of megamasers have seen tremendous progress in the study of luminous extragalactic H2O emission. Single-dish monitoring and high-resolution interferometry have been used to identify sites of massive star formation, to study the interaction of nuclea

  3. THE CENTRAL ENGINE STRUCTURE OF 3C120: EVIDENCE FOR A RETROGRADE BLACK HOLE OR A REFILLING ACCRETION DISK

    International Nuclear Information System (INIS)

    The broad-line radio galaxy 3C120 is a powerful source of both X-ray and radio emission including superluminal jet outflows. We report on our reanalysis of 160 ks of Suzaku data taken in 2006, previously examined by Kataoka et al. Spectral fits to the X-ray Imaging Spectrometer and Hard X-ray Detector/positive intrinsic negative data over a range of 0.7-45 keV reveal a well-defined iron K line complex with a narrow Kα core and relativistically broadened features consistent with emission from the inner regions of the accretion disk. Furthermore, the inner region of the disk appears to be truncated, with an inner radius of rin = 11.7+3.5–5.2 rg . If we assume that fluorescent iron line features terminate at the inner-most stable circular orbit (ISCO), then we measure a black hole spin of a-hat 0.8) can be ruled out at the 99% confidence level. Alternatively, the disk may be truncated well outside of the ISCO of a rapid prograde hole. The most compelling scenario is the possibility that the inner regions of the disk were destroyed/ejected by catastrophic instabilities just prior to the time these observations were made.

  4. Line shifts in accretion disks - the case of Fe K$\\alpha$

    CERN Document Server

    Jovanović, P; Borka, D; Popović, L Č

    2016-01-01

    Here we present a short overview and main results of our investigations of several effects which can induce shifts in the broad Fe K$\\alpha$ line emitted from relativistic accretion disks around single and binary supermassive black holes. We used numerical simulations based on ray-tracing method in the Kerr metric to study the role of classical Doppler shift, special relativistic transverse Doppler shift and Doppler beaming, general relativistic gravitational redshift, and perturbations of the disk emissivity in the formation of the observed Fe K$\\alpha$ line profiles. Besides, we also investigated whether the observed line profiles from the binary systems of supermassive black holes could be affected by the Doppler shifts due to dynamics of such systems. The presented results demonstrate that all these effects could have a significant influence on the observed profiles of the broad Fe K$\\alpha$ line emitted from relativistic accretion disks around single and binary supermassive black holes.

  5. Iron Opacity Bump Changes the Stability and Structure of Accretion Disks in Active Galactic Nuclei

    CERN Document Server

    Jiang, Yan-Fei; Stone, James

    2016-01-01

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be much larger than the electron scattering opacity primarily due to the large number of bound-bound transitions in iron. We study the effects of this iron opacity "bump" on the thermal stability and vertical structure of radiation pressure dominated accretion disks, utilizing three dimensional radiation magneto-hydrodynamic simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a $5\\times 10^8$ solar mass black hole with $\\sim 3\\%$ of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than $10$ thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free-free opacity are included as ...

  6. Magnetorotational dynamo chimeras. The missing link to turbulent accretion disk dynamo models?

    CERN Document Server

    Riols, A; Cossu, C; Lesur, G; Ogilvie, G I; Longaretti, P-Y

    2016-01-01

    In Keplerian accretion disks, turbulence and magnetic fields may be jointly excited through a subcritical dynamo process involving the magnetorotational instability (MRI). High-resolution simulations exhibit a tendency towards statistical self-organization of MRI dynamo turbulence into large-scale cyclic dynamics. Understanding the physical origin of these structures, and whether they can be sustained and transport angular momentum efficiently in astrophysical conditions, represents a significant theoretical challenge. The discovery of simple periodic nonlinear MRI dynamo solutions has recently proven useful in this respect, and has notably served to highlight the role of turbulent magnetic diffusion in the seeming decay of the dynamics at low magnetic Prandtl number Pm (magnetic diffusivity larger than viscosity), a common regime in accretion disks. The connection between these simple structures and the statistical organization reported in turbulent simulations remained elusive, though. Here, we report the n...

  7. Tomographic simulations of accretion disks in Cataclysmic Variables - flickering and wind

    CERN Document Server

    Ribeiro, F M A; Ribeiro, Fabiola Mariana A.; Diaz, Marcos P.

    2006-01-01

    Cataclysmic Variables (CVs) are close binary systems where mass is transferred from a red dwarf star to a white dwarf star via an accretion disk. The flickering is observed as stochastic variations in the emitted radiation both in the continuum and in the emission line profiles. The main goal of our simulations is to compare synthetic Doppler maps with observed ones, aiming to constrain the flickering properties and wind parameters. A code was developed which generates synthetic emission line profiles of a geometrically thin and optically thick accretion disk. The simulation allows us to include flares in a particular disk region. The emission line flares may be integrated over arbitrary ``exposure'' times, producing the synthetic line profiles. Flickering Doppler maps are created using such synthetic time series. The presence of a wind inside the Roche lobe was also implemented. Radiative transfer effects in the lines where taken into account in order to reproduce the single peaked line profiles frequently s...

  8. General-relativistic magnetohydrodynamics simulations of black hole accretion disks: Dynamics and radiative properties

    Science.gov (United States)

    Shiokawa, Hotaka

    The goal of the series of studies in this thesis is to understand the black hole accretion process and predict its observational properties. The highly non-linear process involves a turbulent magnetized plasma in a general relativistic regime, thus making it hard to study analytically. We use numerical simulations, specifically general relativistic magnetohydrodynamics (GRMHD), to construct a realistic dynamical and radiation model of accretion disks. Our simulations are for black holes in low luminous regimes that probably possesses a hot and thick accretion disk. Flows in this regime are called radiatively inefficient accretion flows (RIAF). The most plausible mechanism for transporting angular momentum is turbulence induced by magnetorotational instability (MRI). The RIAF model has been used to model the supermassive black hole at the center of our Milky Way galaxy, Sagittarius A* (Sgr A*). Owing to its proximity, rich observational data of Sgr A* is available to compare with the simulation results. We focus mainly on four topics. First, we analyse numerical convergence of 3D GRMHD global disk simulations. Convergence is one of the essential factors in deciding quantitative outcomes of the simulations. We analyzed dimensionless shell-averaged quantities such as plasma beta, the azimuthal correlation length (angle) of fluid variables, and spectra of the source for four different resolutions. We found that all the variables converged with the highest resolution (384x384x256 in radial, poloidal, and azimuthal directions) except the magnetic field correlation length. It probably requires another factor of 2 in resolution to achieve convergence. Second, we studied the effect of equation of state on dynamics of GRMHD simulation and radiative transfer. Temperature of RIAF gas is high, and all the electrons are relativistic, but not the ions. In addition, the dynamical time scale of the accretion disk is shorter than the collisional time scale of electrons and ions

  9. Testing the Propagating Fluctuations Model with a Long, Global Accretion Disk Simulation

    CERN Document Server

    Hogg, J Drew

    2015-01-01

    The broad-band variability of many accreting systems displays characteristic structure; log-normal flux distributions, RMS-flux relations, and long inter-band lags. These characteristics are usually interpreted as inward propagating fluctuations in an accretion disk driven by stochasticity of the angular momentum transport mechanism. We present the first analysis of propagating fluctuations in a long-duration, high-resolution, global three-dimensional magnetohydrodynamic (MHD) simulation of a geometrically-thin ($h/r\\approx0.1$) accretion disk around a black hole. While the dynamical-timescale turbulent fluctuations in the Maxwell stresses are too rapid to drive radially-coherent fluctuations in the accretion rate, we find that the low-frequency quasi-periodic dynamo action introduces low-frequency fluctuations in the Maxwell stresses which then drive the propagating fluctuations. Examining both the mass accretion rate and emission proxies, we recover log-normality, linear RMS-flux relations, and radial coher...

  10. On the Relative Surface Density Change of Thermally Unstable Accretion Disks

    OpenAIRE

    Wu, Xue-Bing

    1997-01-01

    The relations among the relative changes of surface density, temperature, disk height and vertical integrated pressure in three kinds of thermally unstable accretion disks were quantitatively investigated by assuming local perturbations. The surface density change was found to be very small in the long perturbation wavelength case but can not be ignored in the short wavelength case. It becomes significant in an optically thin, radiative cooling dominated disk when the perturbation wavelength ...

  11. Hydrodynamic stability in accretion disks under the combined influence of shear and density stratification

    OpenAIRE

    Rüdiger, G.; Arlt, R.; Shalybkov, D.

    2002-01-01

    The hydrodynamic stability of accretion disks is considered. The particular question is whether the combined action of a (stable) vertical density stratification and a (stable) radial differential rotation gives rise to a new instability for nonaxisymmetric modes of disturbances. The existence of such an instability is not suggested by the well-known Solberg-Hoiland criterion. It is also not suggested by a local analysis for disturbances in general stratifications of entropy and angular momen...

  12. Abbott Wave-Triggered Runaway in Line-Driven Winds from Stars and Accretion Disks

    OpenAIRE

    Feldmeier, Achim; Shlosman, Isaac

    2001-01-01

    Line-driven winds from stars and accretion disks are accelerated by scattering in numerous line transitions. The wind is believed to adopt a unique critical solution, out of the infinite variety of shallow and steep solutions. We study the inherent dynamics of the transition towards the critical wind. A new runaway wind mechanism is analyzed in terms of radiative-acoustic (Abbott) waves which are responsible for shaping the wind velocity law and fixing the mass loss. Three different flow type...

  13. Novel mechanism for vorticity generation in black-hole accretion disks

    CERN Document Server

    Bhattacharjee, Chinmoy; Mahajan, Swadesh M

    2015-01-01

    Vorticity generation in accretion disks around Schwarzschild and Kerr black holes is investigated in the context of magnetofluid dynamics derived for both General Relativity (GR), and modified gravity formulations. In both cases, the Kerr geometry leads to a "stronger" generation of vorticity than its Schwarzschild counterpart. Of the two principal sources, the relativistic drive peaks near the innermost stable circular orbit (isco), whereas the baroclinic drive dominates at larger distances. Consequences of this new relativistic vorticity source are discussed in several astrophysical settings.

  14. Probing Outflows in z= 1~2 Galaxies through FeII/FeII* Multiplets

    CERN Document Server

    Tang, Yuping; Guo, Yicheng; Kurk, Jaron

    2014-01-01

    We report on a study of the 2300-2600\\AA FeII/FeII* multiplets in the rest-UV spectra of star-forming galaxies at 1.01.5 \\AA and of the FeII* emission lines to W_r>0.5 \\AA. Whenever we can measure the systemic redshift of the galaxies from the [OII] emission line, we find that both the FeII and MgII absorption lines are blueshifted, indicative that both species trace gaseous outflows. We also find, however, that the FeII gas has generally lower outflow velocity relative to that of MgII. We investigate the variation of FeII line profiles as a function of the radiative transfer properties of the lines, and find that transitions with higher oscillator strengths are more blueshifted in terms of both line centroids and line wings. We discuss the possibility that FeII lines are suppressed by stellar absorptions. The lower velocities of the FeII lines relative to the MgII doublet, as well as the absence of spatially extended FeII* emission in 2D stacked spectra, suggest that most clouds responsible for the FeII abso...

  15. Modified viscosity in accretion disks. Application to Galactic black hole binaries, intermediate mass black holes and AGN

    CERN Document Server

    Grzędzielski, Mikołaj; Czerny, Bożena; Wu, Qingwen

    2016-01-01

    Black holes surrounded by accretion disks are present in the Universe in different scales of masses, from microquasars up to the Active Galactic Nuclei. The current picture of the accretion disk theory remains still ad hoc, due the complexity of the magnetic field action. In addition, the accretion disks at high Eddington rates can be radiation-pressure dominated and, according to some of the heating prescriptions, thermally unstable. The observational verification of their resulting variability patterns may shed the light on both the role of radiation pressure and magnetic field in the accretion process. We compute the structure and time evolution of an accretion disk. We supplement this model with a modified viscosity prescription, which can to some extent describe the magnetization of the disk. We study the results for a large grid of models and derive conclusions separately for different scales of black hole masses. We show the dependences between the flare, or outburst, duration, its amplitude and period...

  16. Vertical Convection in Turbulent Accretion Disks and Light Curves of the A0620-00 1975 Outburst

    CERN Document Server

    Malanchev, Konstantin

    2015-01-01

    We present a model of the non-stationary $\\alpha$-disk with account for the irradiation and the vertical convection in the outer accretion disk where hydrogen is partially ionized. We include the viscous energy generation in the mix-length convection equations in accretion disks. The optical and X-ray light curves of X-ray nova A0620-00 are investigated in terms of this model. The turbulent viscosity parameter of the accretion disk is estimated, $\\alpha = 0.5 \\div 0.6$, which is necessary to explain the luminosity decay rate on the descending branch of the X-ray light curve for the A0620-00 1975 outburst. The secondary luminosity maximum on the light curves is explained by assuming an additional injection of matter into the accretion disk from the optical companion.

  17. Occurrence of instability through the protostellar accretion disks by landing of low-mass condensations

    CERN Document Server

    Elyasi, Mahjubeh

    2016-01-01

    Low-mass condensations (LMCs) are observed inside the envelope of the collapsing molecular cloud cores. In this research, we investigate the effects of landing LMCs for occurrence of instability through the protostellar accretion disks. We consider some regions of the disk where duration of infalling and landing of the LMCs are shorter than the orbital period. In this way, we can consider the landing LMCs as density bumps and grooves in the azimuthal direction of an initial thin axisymmetric steady state self-gravitating protostellar accretion disk (nearly Keplerian). Using the linear effects of the bump quantities, we obtain a characteristic equation for growth/decay rate of bumps; we numerically solve it to find occurrence of instability. We also evaluate the minimum-growth-time-scale (MGTS) and the enhanced mass accretion rate. The results show that infalling and landing of the LMCs in the inner regions of the protostellar accretion disks can cause faster unstable modes and less enhanced accretion rates re...

  18. FORMATION OF BLACK HOLE AND ACCRETION DISK IN A MASSIVE HIGH-ENTROPY STELLAR CORE COLLAPSE

    International Nuclear Information System (INIS)

    We present the first numerical result of fully general relativistic axisymmetric simulations for the collapse of a rotating high-entropy stellar core to a black hole and an accretion disk. The simulations are performed taking into account the relevant microphysics. We adopt as initial conditions a spherical core with constant electron fraction (Ye = 0.5) and entropy per baryon s = 8 kB , and angular velocity is superimposed. In the early phase, the core collapses in a homologous manner. Then it experiences a weak bounce due to the gas pressure of free nucleons. Because the bounce is weak, the core eventually collapses to a black hole. Subsequent evolution depends on initial angular velocity. When the rotation is not fast, a geometrically thin (but optically thick) accretion disk is formed, and shock waves are formed in the inner part of the disk. For the moderately rotating case, the thin accretion disk eventually expands to become a geometrically thick torus after sufficient accumulation of the thermal energy is generated at the shocks. Furthermore, convection occurs inside the torus. Neutrino luminosities vary violently with time because of the convective motion. For the rapidly rotating case, by contrast, a geometrically thick torus is formed soon after the black hole formation, and the convective activity is weak due to the presence of an epicyclic mode.

  19. Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105.

    Science.gov (United States)

    Neilsen, Joseph; Lee, Julia C

    2009-03-26

    Stellar-mass black holes with relativistic jets, also known as microquasars, mimic the behaviour of quasars and active galactic nuclei. Because timescales around stellar-mass black holes are orders of magnitude smaller than those around more distant supermassive black holes, microquasars are ideal nearby 'laboratories' for studying the evolution of accretion disks and jet formation in black-hole systems. Whereas studies of black holes have revealed a complex array of accretion activity, the mechanisms that trigger and suppress jet formation remain a mystery. Here we report the presence of a broad emission line in the faint, hard states and narrow absorption lines in the bright, soft states of the microquasar GRS 1915+105. ('Hard' and 'soft' denote the character of the emitted X-rays.) Because the hard states exhibit prominent radio jets, we argue that the broad emission line arises when the jet illuminates the inner accretion disk. The jet is weak or absent during the soft states, and we show that the absorption lines originate when the powerful radiation field around the black hole drives a hot wind off the accretion disk. Our analysis shows that this wind carries enough mass away from the disk to halt the flow of matter into the radio jet. PMID:19325629

  20. Modelling the orientation of accretion disks in quasars using H-alpha emission

    CERN Document Server

    Down, E J; Sivia, D S; Baker, J C

    2009-01-01

    Infrared spectroscopy of the H-alpha emission lines of a sub-sample of 19 high-redshift (0.8 < z < 2.3) Molonglo quasars, selected at 408 MHz, is presented. These emission lines are fitted with composite models of broad and narrow emission, which include combinations of classical broad-line regions of fast-moving gas clouds lying outside the quasar nucleus, and/or a theoretical model of emission from an optically-thick, flattened, rotating accretion disk. All bar one of the nineteen sources are found to have emission consistent with the presence of an optically-emitting accretion disk, with the exception appearing to display complex emission including at least three broad components. Ten of the quasars have strong Bayesian evidence for broad-line emission arising from an accretion disk together with a standard broad-line region, selected in preference to a model with two simple broad lines. Thus the best explanation for the complexity required to fit the broad H-alpha lines in this sample is optical emi...

  1. Angular Momentum Transport in Accretion Disk Boundary Layers Around Weakly Magnetized Stars

    Directory of Open Access Journals (Sweden)

    Pessah Martin E.

    2013-04-01

    Full Text Available The standard model for turbulent shear viscosity in accretion disks is based on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. This implies that the turbulent stress must be negative and thus transport angular momentum inwards, in the boundary layer where the accretion disk meets the surface of a weakly magnetized star. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. Motivated by the need of a deeper understanding of the behavior of an MHD fluid in a differentially rotating background that deviates from a Keplerian profile, we study the dynamics of MHD waves in configurations that are stable to the standard MRI. Employing the shearing-sheet framework, we show that transient amplification of shearing MHD waves can generate magnetic energy without leading to a substantial generation of hydromagnetic stresses. While these results are in agreement with numerical simulations, they emphasize the need to better understand the mechanism for angular momentum transport in the inner disk regions on more solid grounds.

  2. Magnetically elevated accretion disks in active galactic nuclei: broad emission line regions and associated star formation

    Science.gov (United States)

    Begelman, Mitchell C.; Silk, Joseph

    2016-10-01

    We propose that the accretion disks fueling active galactic nuclei are supported vertically against gravity by a strong toroidal (φ -direction) magnetic field that develops naturally as the result of an accretion disk dynamo. The magnetic pressure elevates most of the gas carrying the accretion flow at R to large heights z ˜ 0.1 R and low densities, while leaving a thin dense layer containing most of the mass - but contributing very little accretion - around the equator. We show that such a disk model leads naturally to the formation of a broad emission line region through thermal instability. Extrapolating to larger radii, we demonstrate that local gravitational instability and associated star formation are strongly suppressed compared to standard disk models for AGN, although star formation in the equatorial zone is predicted for sufficiently high mass supply rates. This new class of accretion disk models thus appears capable of resolving two longstanding puzzles in the theory of AGN fueling: the formation of broad emission line regions and the suppression of fragmentation thought to inhibit accretion at the required rates. We show that the disk of stars that formed in the Galactic Center a few million years ago could have resulted from an episode of magnetically elevated accretion at ˜0.1 of the Eddington limit.

  3. X-ray iron line variability constraints on the inner accretion disk

    CERN Document Server

    Reynolds, C S

    2000-01-01

    After reviewing the basic physics of X-ray reflection in AGN, we present three case studies which illustrate the current state of X-ray reflection studies. For the low-luminosity AGN NGC4258, we find that the iron line is much narrower than is typically found in higher luminosity AGN. We argue that this is evidence for either a truncated cold accretion disk (possibly due to a transition to an advection dominate accretion flow at r ~ 100GM/c^2) or a large r ~ 100GM/c^2 X-ray emitting corona surrounding the accretion disk. We also present results for the higher luminosity Seyfert nuclei in NGC5548 and MCG-6-30-15. In both of these sources, RXTE shows that the iron line equivalent width decreases with increasing luminosity. Furthermore, the iron line equivalent width is found to be anticorrelated with the relative strength of the reflection continuum, contrary to all simple reflection models. It is proposed that continuum-flux correlated changes in the ionization of the accretion disk surface can explain this sp...

  4. Tidally-Driven Transport in Accretion Disks in Close Binary Systems

    CERN Document Server

    Blondin, J M

    1999-01-01

    The effects of binary tidal forces on transport within an accretion disk are studied with a time-dependent hydrodynamical model of a two-dimensional isothermal accretion disk. Tidal forces quickly truncate the accretion disk to radii of order half the average radius of the Roche lobe, and excite a two-armed spiral wave that remains stationary in the rotating reference frame of the binary system. We measure an effective alpha of order 0.1 near the outer edge of the disk in all of our models, independent of the mass ratio, Mach number, and radial density profile. However, in cold disks with high Mach number, the effective alpha drops rapidly with decreasing radius such that it falls below our threshold of measurement (roughly .001) at a radius of only one third the tidal radius. In warmer disks where the Mach numbers remain below 20, we can measure an effective alpha down to radii 10 times smaller than the maximum size of the disk.

  5. Dynamics of accretion disks in a constant curvature f(R)-gravity

    Science.gov (United States)

    Alipour, N.; Khesali, A. R.; Nozari, K.

    2016-07-01

    So far the basic physical properties of matter forming a thin accretion disc in the static and spherically symmetric space-time metric of the vacuum f(R) modified gravity models (Pun et al. in Phys. Rev. D 78:024043, 2008) and building radiative models of thin accretion disks for both Schwarzschild and Kerr black holes in f(R) gravity (Perez et al. in Astron. Astrophys. 551:4, 2013) were addressed properly. Also von Zeipel surfaces and convective instabilities in f(R)-Schwarzschild(Kerr) background have been investigated recently (Alipour et al. in Mon. Not. R. Astron. Soc. 454:1992, 2015). In this streamline, here we study the effects of radial and angular pressure gradients on thick accretion disks in Schwarzschild geometries in a constant curvature f(R) modified gravity. Since thick accretion disks have high accretion rate, we study configuration and structure of thick disks by focusing on the effect of pressure gradient on formation of the disks. We clarify our study by assuming two types of equation of state: polytropic and Clapeyron equation of states.

  6. The S2 star as a probe of the accretion disk of Sgr A*

    CERN Document Server

    Giannios, Dimitrios

    2013-01-01

    How accretion proceeds around the massive black hole in the Galactic center and other highly sub-Eddington accretors remains poorly understood. The orbit of the S2 star in the Galactic center passes through the accretion disk of the massive black hole and any observational signature from such interaction may be used as an accretion probe. Because of its early stellar type, S2 is expected to possess a fairly powerful wind. We show here that the ram pressure of the accretion disk shocks the stellar wind fairly close to the star. The shocked fluid reaches a temperature of ~ 1 keV and cools efficiently through optically thin, thermal bremsstrahlung emission. The radiation from the shocked wind peaks around the epoch of the pericenter passage of the star at a luminosity potentially comparable to the quiescent emission detected from Sgr A*. Detection of shocked wind radiation can constrain the density of the accretion disk at a distance of several thousands of gravitational radii from the black hole.

  7. Testing the Propagating Fluctuations Model with a Long, Global Accretion Disk Simulation

    Science.gov (United States)

    Hogg, J. Drew; Reynolds, Christopher S.

    2016-07-01

    The broadband variability of many accreting systems displays characteristic structures; log-normal flux distributions, root-mean square (rms)-flux relations, and long inter-band lags. These characteristics are usually interpreted as inward propagating fluctuations of the mass accretion rate in an accretion disk driven by stochasticity of the angular momentum transport mechanism. We present the first analysis of propagating fluctuations in a long-duration, high-resolution, global three-dimensional magnetohydrodynamic (MHD) simulation of a geometrically thin (h/r ≈ 0.1) accretion disk around a black hole. While the dynamical-timescale turbulent fluctuations in the Maxwell stresses are too rapid to drive radially coherent fluctuations in the accretion rate, we find that the low-frequency quasi-periodic dynamo action introduces low-frequency fluctuations in the Maxwell stresses, which then drive the propagating fluctuations. Examining both the mass accretion rate and emission proxies, we recover log-normality, linear rms-flux relations, and radial coherence that would produce inter-band lags. Hence, we successfully relate and connect the phenomenology of propagating fluctuations to modern MHD accretion disk theory.

  8. Binary Black Holes, Accretion Disks and Relativistic Jets: Photocenters of Nearby AGN and Quasars

    Science.gov (United States)

    Wehrle, Ann E.; Jones, Dayton L.; Meier, David L.; Piner, B. Glenn; Unwin, Stephen C.

    2004-01-01

    One of the most challenging questions in astronomy today is to understand the origin, structure, and evolution of the central engines in the nuclei of quasars and active galaxies (AGNs). The favoured theory involves the activation of relativistic jets from the fueling of a supermassive black hole through an accretion disk. In some AGN an outer optically thick, dusty torus is seen orbiting the black hole system. This torus is probably related to an inner accretion disk - black hole system that forms the actual powerhouse of the AGN. In radio-loud AGN two oppositely-directed radio jets are ejected perpendicular to the torus/disk system. Although there is a wealth of observational data on AGN, some very basic questions have not been definitively answered. The Space Interferometry Mission (SIM) will address the following three key questions about AGN. 1) Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? 2) Does the separation of the radio core and optical photocenter of the quasars used for the reference frame tie, change on the timescales of their photometric variability, or is the separation stable at the level of a few microarcseconds? 3) Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers? It is not known whether such mergers are common, and whether binaries would persist for a significant time.

  9. Protostellar Outflows and Radiative Feedback from Massive Stars. II. Feedback, Star Formation Efficiency, and Outflow Broadening

    CERN Document Server

    Kuiper, Rolf; Yorke, Harold W

    2016-01-01

    We perform two-dimensional axially symmetric radiation-hydrodynamic simulations to assess the impact of outflows and radiative force feedback from massive protostars by varying when the protostellar outflow starts, the ratio of ejection to accretion rates, and the strength of the wide angle disk wind component. The star formation efficiency, i.e. the ratio of final stellar mass to initial core mass, is dominated by radiative forces and the ratio of outflow to accretion rates. Increasing this ratio has three effects: First, the protostar grows slower with a lower luminosity at any given time, lowering radiative feedback. Second, bipolar cavities cleared by the outflow are larger, further diminishing radiative feedback on disk and core scales. Third, the higher momentum outflow sweeps up more material from the collapsing envelope, decreasing the protostar's potential mass reservoir via entrainment. The star formation efficiency varies with the ratio of ejection to accretion rates from 50% in the case of very we...

  10. An Extreme, Blueshifted Iron-Line Profile in the Narrow-Line Seyfert 1 PG 1402+261: An Edge-on Accretion Disk or Highly Ionized Absorption?

    Science.gov (United States)

    Reeves, J. N.; Porquet, D.; Turner, T. J.

    2004-11-01

    We report on a short XMM-Newton observation of the radio-quiet narrow-line Seyfert 1 galaxy PG 1402+261. The EPIC X-ray spectrum of PG 1402+261 shows a strong excess of counts between 6 and 9 keV in the rest frame. This feature can be modeled by an unusually strong (equivalent width 2 keV) and very broad (FWHM velocity of 110,000 km s-1) iron K-shell emission line. The line centroid energy at 7.3 keV appears blueshifted with respect to the iron Kα emission band between 6.4 and 6.97 keV, while the blue wing of the line extends to 9 keV in the quasar rest frame. The line profile can be fitted by reflection from the inner accretion disk, but an inclination angle of >60° is required to model the extreme blue wing of the line. Furthermore, the extreme strength of the line requires a geometry whereby the hard X-ray emission from PG 1402+261 above 2 keV is dominated by the pure-reflection component from the disk, while little or none of the direct hard power law is observed. Alternatively, the spectrum above 2 keV may be explained by an ionized absorber, if the column density is sufficiently high (NH>3×1023 cm-2) and if the matter is ionized enough to produce a deep (τ~1) iron K-shell absorption edge at 9 keV. This absorber could originate in a large column density, high-velocity outflow, perhaps similar to those that appear to be observed in several other high accretion rate active galactic nuclei. Further observations, especially at higher spectral resolution, are required to distinguish between the accretion disk reflection and outflow scenarios.

  11. Magnetic propeller outflows

    OpenAIRE

    Lovelace, R. V. E.; Romanova, M. M.; Bisnovatyi-Kogan, G. S.

    1998-01-01

    A model is developed for magnetic `propeller'-driven outflows which cause a rapidly rotating magnetized star accreting from a disk to spin-down. Energy and angular momentum lost by the star goes into expelling most of the accreting disk matter. The theory gives an expression for the effective Alfven radius $R_A$ (where the inflowing matter is effectively stopped) which depends on the mass accretion rate, the star's mass and magnetic moment, and the star's rotation rate. The model points to a ...

  12. Magnetospheric outflows in young stellar objects

    Directory of Open Access Journals (Sweden)

    Zanni Claudio

    2014-01-01

    Full Text Available Different classes of outflows are associated with the magnetospheric activity of accreting T Tauri protostars. Stellar winds are accelerated along the open field lines anchored in the stellar surface; disk winds (extended or X-type can be launched along the open magnetic surfaces threading the accretion disk; another type of ejection can arise from the region of interaction of the closed magnetosphere with the accretion disk (magnetospheric ejections, conical winds, where the magnetic surfaces undergo quasiperiodic episodes of inflation and reconnection. In this chapter I will present the main dynamical properties of these different types of outflow. Two main issues will be addressed. First, I will try to understand if these ejection phenomena can account for the origin of the jets often observed in young forming stellar systems. Second, I will evaluate the impact of these outflows on the angular momentum evolution of the central protostar.

  13. The Prevalence of Gas Outflows in Type 2 AGNs. II. 3D Biconical Outflow Models

    Science.gov (United States)

    Bae, Hyun-Jin; Woo, Jong-Hak

    2016-09-01

    We present 3D models of biconical outflows combined with a thin dust plane for investigating the physical properties of the ionized gas outflows and their effect on the observed gas kinematics in type 2 active galactic nuclei (AGNs). Using a set of input parameters, we construct a number of models in 3D and calculate the spatially integrated velocity and velocity dispersion for each model. We find that three primary parameters, i.e., intrinsic velocity, bicone inclination, and the amount of dust extinction, mainly determine the simulated velocity and velocity dispersion. Velocity dispersion increases as the intrinsic velocity or the bicone inclination increases, while velocity (i.e., velocity shifts with respect to systemic velocity) increases as the amount of dust extinction increases. Simulated emission-line profiles well reproduce the observed [O iii] line profiles, e.g., narrow core and broad wing components. By comparing model grids and Monte Carlo simulations with the observed [O iii] velocity-velocity dispersion distribution of ˜39,000 type 2 AGNs, we constrain the intrinsic velocity of gas outflows ranging from ˜500 to ˜1000 km s-1 for the majority of AGNs, and up to ˜1500-2000 km s-1 for extreme cases. The Monte Carlo simulations show that the number ratio of AGNs with negative [O iii] velocity to AGNs with positive [O iii] velocity correlates with the outflow opening angle, suggesting that outflows with higher intrinsic velocity tend to have wider opening angles. These results demonstrate the potential of our 3D models for studying the physical properties of gas outflows, applicable to various observations, including spatially integrated and resolved gas kinematics.

  14. Iron Opacity Bump Changes the Stability and Structure of Accretion Disks in Active Galactic Nuclei

    Science.gov (United States)

    Jiang, Yan-Fei; Davis, Shane W.; Stone, James M.

    2016-08-01

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be larger than the electron scattering opacity due to the large number of bound–bound transitions in iron. We study the effects of this iron opacity “bump” on the thermal stability and vertical structure of radiation-pressure-dominated accretion disks, utilizing three-dimensional radiation magnetohydrodynamic (MHD) simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a 5 × 108 solar mass black hole with ˜3% of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than 10 thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free–free opacity are included as in the standard thin disk model, the disk collapses on the thermal timescale. The difference is caused by a combination of (1) an anti-correlation between the total optical depth and the midplane pressure, and (2) enhanced vertical advective energy transport. These results suggest that the iron opacity bump may have a strong impact on the stability and structure of active galactic nucleus (AGN) accretion disks, and may contribute to a dependence of AGN properties on metallicity. Since this opacity is relevant primarily in UV emitting regions of the flow, it may help to explain discrepancies between observation and theory that are unique to AGNs.

  15. Nonlinear calculations of the time evolution of black hole accretion disks

    Science.gov (United States)

    Luo, C.

    1994-01-01

    Based on previous works on black hole accretion disks, I continue to explore the disk dynamics using the finite difference method to solve the highly nonlinear problem of time-dependent alpha disk equations. Here a radially zoned model is used to develop a computational scheme in order to accommodate functional dependence of the viscosity parameter alpha on the disk scale height and/or surface density. This work is based on the author's previous work on the steady disk structure and the linear analysis of disk dynamics to try to apply to x-ray emissions from black candidates (i.e., multiple-state spectra, instabilities, QPO's, etc.).

  16. Annihilation luminosity of a neutrino-cooled accretion disk in a gamma-ray burst

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We discuss how the annihilation luminosity of a neutrino-cooled accretion disk in a gamma-ray burst, Lνν, is determined by the disk’s fundamental parameters, namely, the mass of the central black hole M, the mass accretion rate M, and the viscosity parameter α. It is shown that Lνν depends mainly on M in evidence, and decreases with increasing M, but is almost independent of α. This result argues additionally that the central black hole in a gamma-ray burst must be with a stellar mass.

  17. High energy neutrinos produced in the accretion disks by neutrons from nuclei disintegrated in the AGN jets

    CERN Document Server

    Bednarek, W

    2016-01-01

    We investigate the consequences of acceleration of nuclei in jets of active galaxies not far from the surface of an accretion disk. The nuclei can be accelerated in the re-connection regions in the jet and/or at the jet boundary, between the relativistic jet and its cocoon. It is shown that the relativistic nuclei can efficiently fragment onto specific nucleons in collisions with the disk radiation. Neutrons, directed towards the accretion disk, take a significant part of energy from the relativistic nuclei. These neutrons develop a cascade in the dense accretion disk. We calculate the neutrino spectra produced in such hadronic cascade within the accretion disk. We propose that the neutrinos produced in such scenario from the whole population of super-massive black holes in active galaxies can explain the extragalactic neutrino background recently measured by the IceCube neutrino detector, provided that $5\\%$ fraction of galaxies is AGN and a few percent of neutrons reach the accretion disk. It is predicted t...

  18. Radiation Pressure-supported Accretion Disks: Vertical Structure, Energy Advection, and Convective Stability

    CERN Document Server

    Gu, Wei-Min

    2012-01-01

    By taking into account the local energy balance per unit volume between the viscous heating and the advective cooling plus the radiative cooling, we investigate the vertical structure of radiation pressure-supported accretion disks in spherical coordinates. Our solutions show that the photosphere of the disk is close to the polar axis and therefore the disk seems to be extremely thick. However, the profile of density implies that most of the accreted matter exists in a moderate range around the equatorial plane. We show that the well-known polytropic relation between the pressure and the density is unsuitable for describing the vertical structure of radiation pressure-supported disks. More importantly, we find that the energy advection is significant even for slightly sub-Eddington accretion disks. We argue that the non-negligible advection may help to understand why the standard thin disk model is likely to be inaccurate above \\sim 0.3 Eddington luminosity, which was found by some works on the black hole spi...

  19. Accretion disk signatures in Type I X-ray Bursts: prospects for future missions

    CERN Document Server

    Keek, L; Ballantyne, D R

    2016-01-01

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will give insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, NICER, Athena, and LOFT. Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and through-put of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes $\\ge 10^{-7.5}$ erg cm$^{-2}$ s$^{-1}$, and also effectively constrain ...

  20. Time-dependent X-ray emission from unstable accretion disks around black holes

    Science.gov (United States)

    Mineshige, Shin; Kim, Soon-Wook; Wheeler, J. Craig

    1990-01-01

    The spectral evolution of accretion disks in X-ray binaries containing black holes is studied, based on the disk instability model. The thermal transition of the outer portions of the disk controls the mass flow rate into the inner portions of the disk, thus modulating the soft X-ray flux which is thought to arise from the inner disk. Calculated soft X-ray spectra are consistent with the observations of the X-ray transient A0620 - 00 and especially ASM 2000 + 25, the soft X-ray spectra of which are well fitted by blackbody radiation with a fixed inner edge of the disk, Rin, and with monotonically decreasing temperature at Rin with time. Since the gas pressure is always dominant over the radiation pressure during the decay in these models, a two-temperature region is difficult to create. Instead, it is suggested that hard X-rays are generated in a hot (kT greater than 10 keV) accretion disk corona above the cool (kT less than 1 keV) disk.

  1. The Effect of a Time-Varying Accretion Disk Size on Quasar Microlensing Light Curves

    CERN Document Server

    Blackburne, Jeffrey A

    2010-01-01

    Microlensing perturbations to the magnification of gravitationally lensed quasar images are dependent on the angular size of the quasar. If quasar variability at visible wavelengths is caused by a change in the area of the accretion disk, it will affect the microlensing magnification. We derive the expected signal, assuming that the luminosity scales with some power of the disk area, and estimate its amplitude using simulations. We discuss the prospects for detecting the effect in real-world data and for using it to estimate the logarithmic slope of the luminosity's dependence on disk area. Such an estimate would provide a direct test of the standard thin accretion disk model. We tried fitting 6 seasons of the light curves of the lensed quasar HE 0435-1223 including this effect as a modification to the Kochanek et al. (2006) approach to estimating time delays. We find a dramatic improvement in the goodness of fit and relatively plausible parameters, but a robust estimate will require a full numerical calculat...

  2. What Kinds of Accretion Disks Are There in the Nuclei of Radio Galaxies?

    CERN Document Server

    Kaburaki, Osamu; Tamura, Naoya; Wajima, Kiyoaki

    2010-01-01

    It seems to be a widely accepted opinion that the types of accretion disks (or flows) generally realized in the nuclei of radio galaxies and in further lower mass-accretion rate nuclei are inner, hot, optically thin, radiatively inefficient accretion flows (RIAFs) surrounded by outer, cool, optically thick, standard type accretion disks. However, observational evidence for the existence of such outer cool disks in these nuclei is rather poor. Instead, recent observations sometimes suggest the existence of inner cool disks of non-standard type, which develop in the region very close to their central black holes. Taking NGC 4261 as a typical example of such light eating nuclei, for which both flux data ranging from radio to X-ray and data for the counterjet occultation are available, we examine the plausibility of such a picture for the accretion states as mentioned above, based on model predictions. It is shown that the explanation of the gap seen in the counterjet emission in terms of the free-free absorption...

  3. The existence of warm and optically thick dissipative coronae above accretion disks

    CERN Document Server

    Rozanska, A; Belmont, R; Czerny, B; Petrucci, P -O

    2015-01-01

    In the past years, several observations of AGN and X-ray binaries have suggested the existence of a warm T around 0.5-1 keV and optically thick, \\tau ~ 10-20, corona covering the inner parts of the accretion disk. These properties are directly derived from spectral fitting in UV to soft-X-rays using Comptonization models. However, whether such a medium can be both in radiative and hydrostatic equilibrium with an accretion disk is still uncertain. We investigate the properties of such warm, optically thick coronae and put constraints on their existence. We solve the radiative transfer equation for grey atmosphere analytically in a pure scattering medium, including local dissipation as an additional heating term in the warm corona. The temperature profile of the warm corona is calculated assuming it is cooled by Compton scattering, with the underlying dissipative disk providing photons to the corona. Our analytic calculations show that a dissipative thick, (\\tau_{cor} ~ 10-12) corona on the top of a standard ac...

  4. Quasi-static model of collimated jets and radio lobes. I. Accretion disk and jets

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, Stirling A.; Li, Hui [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fowler, T. Kenneth [University of California, Berkeley, CA 94720 (United States); Pino, Jesse [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2014-07-10

    This is the first of a series of papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetic helix that could explain both the observed radio jet/lobe structures on very large scales and ultimately the enormous power inferred from the observed ultra-high-energy cosmic rays. In this work, we solve a set of one-dimensional equations similar to the steady-state standard accretion disk model, but now including the large-scale magnetic fields giving rises to jets. We find that the frequently made assumption that large-scale fields are frozen into the disk is fundamentally incorrect, due to the necessity for current and the accreting mass to flow perpendicular to magnetic flux surfaces. A correct treatment greatly simplifies the calculations, yielding fields that leave the disk nearly vertically with magnetic profiles uniquely determined by disk angular momentum conservation. Representative solutions of the magnetic fields in different radial regions of the disk surface are given, and they determine the overall key features in the jet structure and its dissipation, which will be the subjects of later papers.

  5. LARGE-SCALE AZIMUTHAL STRUCTURES OF TURBULENCE IN ACCRETION DISKS: DYNAMO TRIGGERED VARIABILITY OF ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Flock, M.; Dzyurkevich, N.; Klahr, H.; Turner, N.; Henning, Th. [Max Planck Institute for Astronomy, Koenigstuhl 17, 69117 Heidelberg (Germany)

    2012-01-10

    We investigate the significance of large-scale azimuthal, magnetic, and velocity modes for the magnetorotational instability (MRI) turbulence in accretion disks. We perform three-dimensional global ideal MHD simulations of global stratified protoplanetary disk models. Our domains span azimuthal angles of {pi}/4, {pi}/2, {pi}, and 2{pi}. We observe up to 100% stronger magnetic fields and stronger turbulence for the restricted azimuthal domain models {pi}/2 and {pi}/4 compared to the full 2{pi} model. We show that for those models the Maxwell stress is larger due to strong axisymmetric magnetic fields generated by the {alpha}{Omega} dynamo. Large radial extended axisymmetric toroidal fields trigger temporal magnification of accretion stress. All models display a positive dynamo-{alpha} in the northern hemisphere (upper disk). The parity is distinct in each model and changes on timescales of 40 local orbits. In model 2{pi}, the toroidal field is mostly antisymmetric with respect to the midplane. The eddies of the MRI turbulence are highly anisotropic. The major wavelengths of the turbulent velocity and magnetic fields are between one and two disk scale heights. At the midplane, we find magnetic tilt angles around 8 Degree-Sign -9 Degree-Sign increasing up to 12 Degree-Sign -13 Degree-Sign in the corona. We conclude that an azimuthal extent of {pi} is sufficient to reproduce most turbulent properties in three-dimensional global stratified simulations of magnetized accretion disks.

  6. Angular momentum transport and particle acceleration during magnetorotational instability in a kinetic accretion disk.

    Science.gov (United States)

    Hoshino, Masahiro

    2015-02-13

    Angular momentum transport and particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk are investigated using three-dimensional particle-in-cell simulation. We show that the kinetic MRI can provide not only high-energy particle acceleration but also enhancement of angular momentum transport. We find that the plasma pressure anisotropy inside the channel flow with p(∥)>p(⊥) induced by active magnetic reconnection suppresses the onset of subsequent reconnection, which, in turn, leads to high-magnetic-field saturation and enhancement of the Maxwell stress tensor of angular momentum transport. Meanwhile, during the quiescent stage of reconnection, the plasma isotropization progresses in the channel flow and the anisotropic plasma with p(⊥)>p(∥) due to the dynamo action of MRI outside the channel flow contribute to rapid reconnection and strong particle acceleration. This efficient particle acceleration and enhanced angular momentum transport in a collisionless accretion disk may explain the origin of high-energy particles observed around massive black holes.

  7. Line Emission from an Accretion Disk around a Black hole Effects of Disk Structure

    CERN Document Server

    Pariev, V I; Pariev, Vladimir I.; Bromley, Benjamin C.

    1998-01-01

    The observed iron K-alpha fluorescence lines in Seyfert-1 galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the line emission. These lines serve as powerful probes for examining the structure of inner regions of accretion disks. Previous studies of line emission have considered geometrically thin disks only, where the gas moves along geodesics in the equatorial plane of a black hole. Here we extend this work to consider effects on line profiles from finite disk thickness, radial accretion flow and turbulence. We adopt the Novikov and Thorne (1973) solution, and find that within this framework, turbulent broadening is the dominant new effect. The most prominent change in the skewed, double-horned line profiles is a substantial reduction in the maximum flux at both red and blue peaks. The effect is most pronounced when the inclination angle is large, and when the accretion rate is high. Thus, the effects discussed here may be important for future detailed model...

  8. Line emission from an accretion disk around black hole effects of the disk structure

    CERN Document Server

    Pariev, V I; Bromley, Benjamin C.; Pariev, Vladimir I.

    1998-01-01

    The observed iron K-alpha fluorescence lines in Seyfert galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the line emission. Previous studies of line emission have considered only geometrically thin disks, where the gas moves along geodesics in the equatorial plane of a black hole. Here we extend this work to include effects on line profiles from finite disk thickness, radial accretion flow and turbulence. We adopt the Novikov-Thorne solution, and find that within this framework, turbulent broadening is the most significant effect. The most prominent changes in the skewed, double-horned line profiles is a substantial reduction in the maximum flux at both red and blue peaks. We show that at the present level of signal-to-noise in X-ray spectra, proper treatment of the actual structure of the accretion disk can change estimates of the inclination angle of the disk. Thus these effects will be important for future detailed modeling of high quality observational d...

  9. V3885 SAGITTARIUS: A COMPARISON WITH A RANGE OF STANDARD MODEL ACCRETION DISKS

    International Nuclear Information System (INIS)

    A χ-tilde2 analysis of standard model accretion disk synthetic spectrum fits to combined Far Ultraviolet Spectroscopic Explorer and Space Telescope Imaging Spectrograph spectra of V3885 Sagittarius, on an absolute flux basis, selects a model that accurately represents the observed spectral energy distribution. Calculation of the synthetic spectrum requires the following system parameters. The cataclysmic variable secondary star period-mass relation calibrated by Knigge in 2006 and 2007 sets the secondary component mass. A mean white dwarf (WD) mass from the same study, which is consistent with an observationally determined mass ratio, sets the adopted WD mass of 0.7 M sun, and the WD radius follows from standard theoretical models. The adopted inclination, i = 65 deg., is a literature consensus, and is subsequently supported by χ-tilde2 analysis. The mass transfer rate is the remaining parameter to set the accretion disk T eff profile, and the Hipparcos parallax constrains that parameter to M-dot=(5.0±2.0) x 10-9 M odot yr-1 by a comparison with observed spectra. The fit to the observed spectra adopts the contribution of a 57, 000 ± 5000 K WD. The model thus provides realistic constraints on M-dot and T eff for a large M-dot system above the period gap.

  10. Can self-organized critical accretion disks generate a log-normal emission variability in AGN?

    Science.gov (United States)

    Kunjaya, C.; Mahasena, P.; Vierdayanti, K.; Herlie, S.

    2011-12-01

    Active Galactic Nuclei (AGN), such as Seyfert galaxies, quasars, etc., show light variations in all wavelength bands, with various amplitude and in many time scales. The variations usually look erratic, not periodic nor purely random. Many of these objects also show lognormal flux distribution and RMS-flux relation and power law frequency distribution. So far, the lognormal flux distribution of black hole objects is only observational facts without satisfactory explanation about the physical mechanism producing such distribution in the accretion disk. One of the most promising models based on cellular automaton mechanism has been successful in reproducing PSD (Power Spectral Density) of the observed objects but could not reproduce lognormal flux distribution. Such distribution requires the existence of underlying multiplicative process while the existing SOC models are based on additive processes. A modified SOC model based on cellular automaton mechanism for producing lognormal flux distribution is presented in this paper. The idea is that the energy released in the avalanche and diffusion in the accretion disk is not entirely emitted instantaneously as in the original cellular automaton model. Some part of the energy is kept in the disk and thus increase its energy content so that the next avalanche will be in higher energy condition and will release more energy. The later an avalanche occurs, the more amount of energy is emitted to the observers. This can provide multiplicative effects to the flux and produces lognormal flux distribution.

  11. Towards Bayesian Machine Learning for Estimating Parameters of Accretion Disk Models for SPH Simulations

    Science.gov (United States)

    Goel, Amit; Montgomery, Michele; Wiegand, Paul

    2016-01-01

    Accretion disks are ubiquitous in Active Galactic Nuclei, in protostellar systems forming protoplanets, and in close binary star systems such as X-ray binaries, Cataclysmic Variables, and Algols, for example. Observations such as disk tilt are found in all of these different accreting system types, suggesting a common physics must be present. To understand the common connections between these different system types, which can help us understand their unique evolutions, we need to better understand the physics of accretion. For example, viscosity is typically a constant value in the disk of a system that is in a specific state such as a quiescent state. However, viscosity can't be constant throughout the disk, especially at the boundaries. To learn more about viscosity and other common parameters in these disk, we use Bayesian Inference and Markov Chain Monte Carlo techniques to make predictions of events to come in the numerical simulations of these accreting disks. In this work, we present our techniques and initial findings.

  12. Properties of Obliquely Illuminated Accretion Disks. I. Two-Dimensional Radiative Transfer

    CERN Document Server

    Psaltis, D

    2002-01-01

    The illumination of an accretion disk around a black hole or neutron star by the central compact object or the disk itself often determines its spectrum, stability, and dynamics. The transport of radiation within the disk is in general a multi-dimensional, non-axisymmetric problem, which is challenging to solve. Here, I present a method of decomposing the two-dimensional radiative transfer equation that describes absorption, emission, and Compton scattering in an obliquely illuminated disk into a set of four one-dimensional transfer equations. I show that the exact calculation of the ionization balance and radiation heating of the accretion disk requires the solution of only one of the one-dimensional equations, which can be solved using existing numerical methods. I present a variant of the Feautrier method for solving the full set of equations, which accounts for the fact that the scattering kernels in the individual transfer equations are not forward-backward symmetric. I then apply this method in calculat...

  13. Evidence of the Link between Broad Emission Line Regions and Accretion Disks in Active Galactic Nuclei

    Institute of Scientific and Technical Information of China (English)

    Yun Xu; Xin-Wu Cao

    2007-01-01

    There is observational evidence that broad-line regions (BLRs) exist in most active galactic nuclei (AGNs), but their origin is still unclear. One scenario is that the BLRs originate from winds accelerated from the hot coronae of the disks, and the winds are suppressed when the black hole is accreting at low rates. This model predicts a relation between (m) ((m) = (M)/(M)Edd) and the FWHM of broad emission lines. We estimate the central black hole masses for a sample of bright AGNs by using their broad Hβ line-widths and optical luminosities. The dimensionless accretion rates (m) = (M)/(M)Edd are derived from the optical continuum luminosities by using two different models: using an empirical relation between the bolometric luminosity Lbol and the optical luminosity ((m) = Lbol/LEdd, a fixed radiative efficiency is adopted); and calculating the optical spectra of accretion disks as a function of (m). We find a significant correlation between the derived (m) and the observed line width of Hβ,FWHM∝ (m)-0.37, which almost overlaps the disk-corona model calculations, if the viscosity α≈ 0.1 - 0.2 is adopted. Our results provide strong evidence for the physical link between the BLRs and accretion disks in AGNs.

  14. Emergence of nonlinearity and plausible turbulence in accretion disks via hydromagnetic transient growth faster than magnetorotational instability

    CERN Document Server

    Nath, Sujit K

    2016-01-01

    We investigate the evolution of hydromagnetic perturbations in a small section of accretion disks. It is known that molecular viscosity is negligible in accretion disks. Hence, it has been argued that Magnetorotational Instability (MRI) is responsible for transporting matter in the presence of weak magnetic field. However, there are some shortcomings, which question effectiveness of MRI. Now the question arises, whether other hydromagnetic effects, e.g. transient growth (TG), can play an important role to bring nonlinearity in the system, even at weak magnetic fields. Otherwise, whether MRI or TG, which is primarily responsible to reveal nonlinearity to make the flow turbulent? Our results prove explicitly that the flows with high Reynolds number (Re), which is the case of realistic astrophysical accretion disks, exhibit nonlinearity by best TG of perturbation modes faster than that by best modes producing MRI. For a fixed wavevector, MRI dominates over transient effects, only at low Re, lower than its value ...

  15. The Launch Region of the SVS13 Outflow

    Science.gov (United States)

    Hodapp, Klaus

    2013-07-01

    We present the results of Keck Telescope laser adaptive optics integral field spectroscopy with OSIRIS of the innermost regions of the NGC1333 SVS13 jet that drives the system of Herbig-Haro objects 7-11. We find a 0.4" long micro-jet traced by the emission of shock-excited [FeII]. Beyond the extent of this jet, we find a series of near-spherical bubbles traced in the lower excitation H 2 1-0 S(1) line. While this most recent outflow activity is directed almost precisely (PA 170°) to the south of SVS13, the older bubbles show a different direction of motion and orientation more towards the south-east, connecting the recent outflow activity to the well-known, poorly collimated HH 7-11 system of Herbig-Haro objects. We postulate that the creation of a series of bubbles and the changes in outflow direction are indicative of a precessing disk. Our velocity-resolved observations of the microjet in the [FeII] emission line at 1.644μm, as well as the HI12-4 and 13-4 (Brackett series) emission lines originating from the accretion disk or jet launch region clearly show the kinematic signature of disk and jet rotation.

  16. The Prevalence of Ionized Gas Outflows in Type 2 AGNs II. 3-D Biconical Outflow Models

    CERN Document Server

    Bae, Hyun-Jin

    2016-01-01

    We present 3-D models of biconical outflows combined with a thin dust plane for investigating the physical properties of the ionized gas outflows and their effect on the observed gas kinematics in type 2 active galactic nuclei (AGNs). Using a set of input parameters, we construct a number of models in 3-D and calculate the spatially integrated velocity and velocity dispersion for each model. We find that three primary parameters, i.e., intrinsic velocity, bicone inclination, and the amount of dust extinction, mainly determine the simulated velocity and velocity dispersion. Velocity dispersion increases as the intrinsic velocity or the bicone inclination increases, while velocity (i.e., velocity shift with respect to systemic velocity) increases as the amount of dust extinction increases. Simulated emission-line profiles well reproduce the observed [O III] line profiles, e.g., a narrow core and a broad wing components. By comparing model grids and Monte Carlo simulations with the observed [O III] velocity-velo...

  17. 1H 1752 + 081: an eclipsing cataclysmic variable with a small accretion disk

    Science.gov (United States)

    Silber, Andrew D.; Remillard, Ronald A.; Horne, Keith; Bradt, Hale V.

    1994-04-01

    We announce the discovery of an eclipsing nova-like cataclysmic variable (CV) as the optical counterpart to the HEAO 1 X-ray source 1H1752 + 081. This CV has an orbital period of 1.882801 hr, a high equivalent width of H-beta, and an average mv of 16.4 out of the eclipse. A geometric model is constructed from observations of the eclipse ingress and egress in many optical bandpasses. The broad-band emission originates primarily in two regions; the disk/accretion stream 'hot spot' and a compact central component, which may be a spot on the white dwarf surface, the entire white dwarf surface or the boundary layer between the accretion disk and the white dwarf surface. Based on the durations and offsets of the two eclipses we determined the mass ratio q = 2.5 +/- 0.6 and the angle of inclination i = 77 deg +/- 2 deg. If the central component is the entire white dwarf surface the masses of the stars are M1 = 0.80 +/- 0.06 solar masses and M2 = 0.32 +/- 0.06 solar masses. The disk is faint and small (RD = 0.25 +/- 0.05 rL1, where rL1 is the distance from the primary to the L1 point), compared to other eclipsing CVs. The small disk may result from the removal of angular momentum from the accretion disk by the magnetic field of the white dwarf; this CV may be a DQ Her type with a slowly rotating white dwarf. The emission-line velocities do not show the 'Z-wave' expected from the eclipse of a Keplerian accretion disk, nor do they have the correct phasing to originate near the white dwarf. The most likely origin of the line emission is the hot spot. The secondary star is visible at wavelengths greater than or equal to 6000 A during eclipse. We estimate a spectral type approximately M6 which, together with the observed m1 = 16.94 during eclipse, results in a distance estimate of 150 +/- 27 pc.

  18. Fueling AGN II: Spatially Resolved Molecular Inflows and Outflows

    CERN Document Server

    Davies, R I; Hicks, E K S; Emsellem, E; Erwin, P; Burtscher, L; Dumas, G; Lin, M; Malkan, M A; Mueller-Sanchez, F; de Xivry, G Orban; Rosario, D J; Schnorr-Mueller, A; Tran, A

    2014-01-01

    We analyse the 2-dimensional distribution and kinematics of the stars as well as molecular and ionised gas in the central few hundred parsecs of 5 active and 5 matched inactive galaxies. The equivalent widths of the Br-gamma line indicate there is no on-going star formation in their nuclei, although recent (terminated) starbursts are possible in the active galaxies. The stellar velocity fields show no signs of non-circular motions, while the 1-0S(1) H_2 kinematics exhibit significant deviations from simple circular rotation. In the active galaxies the H_2 kinematics reveal inflow and outflow superimposed on disk rotation. Steady-state circumnuclear inflow is seen in three AGN, and hydrodynamical models indicate it can be driven by a large scale bar. In three of the five AGN, molecular outflows are spatially resolved. The outflows are oriented such that they intersect, or have an edge close to, the disk - which may be the source of molecular gas in the outflow. The relatively low speeds imply the gas will fall...

  19. Nucleosynthesis in Outflows from the Inner Regions of Collapsars

    CERN Document Server

    Pruet, J; Hoffman, R D; Pruet, Jason; Thompson, Todd

    2004-01-01

    We consider nucleosynthesis in outflows originating from the inner regions of viscous accretion disks formed after the collapse of a rotating massive star. We show that wind-like outflows driven by viscous and neutrino heating can efficiently synthesize Fe-group elements moving at near-relativistic velocities. The mass of 56Ni synthesized and the asymptotic velocities attained in our calculations are in accord with those inferred from observations of SN1998bw and SN2003dh. These steady wind-like outflows are generally proton rich, characterized by only modest entropies, and consequently synthesize essentially nothing heavier than the Fe-group elements. We also discuss bubble-like outflows resulting from rapid energy deposition in localized regions near or in the accretion disk. These intermittent ejecta emerge with low electron fraction and are a promising site for the synthesis of the A=130 r-process peak elements.

  20. Ultraluminous X-ray sources as super-Eddington accretion disks

    CERN Document Server

    Fabrika, Sergei; Atapin, Kirill

    2016-01-01

    The origin of Ultraluminous X-ray sources (ULXs) in external galaxies whose X-ray luminosities exceed those of the brightest black holes in our Galaxy by hundreds and thousands of times is mysterious. The most popular models for the ULXs involve either intermediate mass black holes (IMBHs) or stellar-mass black holes accreting at super-Eddington rates. Here we review the ULX properties, their X-ray spectra indicate a presence of hot winds in their accretion disks supposing the supercritical accretion. However, the strongest evidences come from optical spectroscopy. The spectra of the ULX counterparts are very similar to that of SS 433, the only known supercritical accretor in our Galaxy.

  1. VADER: A Flexible, Robust, Open-Source Code for Simulating Viscous Thin Accretion Disks

    CERN Document Server

    Krumholz, Mark R

    2014-01-01

    The evolution of thin axisymmetric viscous accretion disks is a classic problem in astrophysics. While such models provide only approximations to the true processes of instability-driven mass and angular momentum transport, their simplicity makes them invaluable tools for both semi-analytic modeling and simulations of long-term evolution where two- or three-dimensional calculations are too computationally costly. Despite the utility of these models, there is no publicly-available framework for simulating them. Here we describe a highly flexible, general numerical method for simulating viscous thin disks with arbitrary rotation curves, viscosities, boundary conditions, grid spacings, equations of state, and rates of gain or loss of mass (e.g., through winds) and energy (e.g., through radiation). Our method is based on a conservative, finite-volume, second-order accurate discretization of the equations, which we solve using an unconditionally-stable implicit scheme. We implement Anderson acceleration to speed c...

  2. Accretion disk dynamo as the trigger for X-ray binary state transitions

    CERN Document Server

    Begelman, Mitchell C; Reynolds, Christopher S

    2015-01-01

    Magnetohydrodynamic accretion disk simulations suggest that much of the energy liberated by the magnetorotational instability (MRI) can be channeled into large-scale toroidal magnetic fields through dynamo action. Under certain conditions, this field can dominate over gas and radiation pressure in providing vertical support against gravity, even close to the midplane. Using a simple model for the creation of this field, its buoyant rise, and its coupling to the gas, we show how disks could be driven into this magnetically dominated state and deduce the resulting vertical pressure and density profiles. Applying an established criterion for MRI to operate in the presence of a toroidal field, we show that magnetically supported disks can have two distinct MRI-active regions, separated by a "dead zone" where local MRI is suppressed, but where magnetic energy continues to flow upward from the dynamo region below. We suggest that the relative strengths of the MRI zones, and the local poloidal flux, determine the sp...

  3. Beltrami state in black-hole accretion disk: A magnetofluid approach

    CERN Document Server

    Bhattacharjee, Chinmoy; Stark, David J; Mahajan, S M

    2015-01-01

    Using the magnetofluid unification framework, we show that the accretion disk plasma (embedded in the background geometry of a blackhole) can relax to a class of states known as the Beltrami-Bernoulli (BB) equilibria. Modeling the disk plasma as a Hall MHD system, we find that the space-time curvature can significantly alter the magnetic/velocity decay rate as we move away from the compact object; the velocity profiles in BB states, for example, deviate substantially from the predicted corresponding geodesic velocity profiles. These departures imply a rich interplay of plasma dynamics and general relativity revealed by examining the corresponding Bernoulli condition representing "homogeneity" of total energy. The relaxed states have their origin in the constraints provided by the two helicity invariants of Hall MHD. These helicities conspire to introduce a new oscillatory length scale into the system that is strongly influenced by relativistic and thermal effects.

  4. Hydrodynamic stability in accretion disks under the combined influence of shear and density stratification

    CERN Document Server

    Rüdiger, G; Shalybkov, D A

    2002-01-01

    The hydrodynamic stability of accretion disks is considered. The particular question is whether the combined action of a (stable) vertical density stratification and a (stable) radial differential rotation gives rise to a new instability for nonaxisymmetric modes of disturbances. The existence of such an instability is not suggested by the well-known Solberg-Hoiland criterion. It is also not suggested by a local analysis for disturbances in general stratifications of entropy and angular momentum which is presented in our Section 2 confirming the results of the Solberg-Hoiland criterion also for nonaxisymmetric modes within the frame of ideal hydrodynamics but only in the frame of a short-wave approximation for small m. As a necessary condition for stability we find that only conservative external forces are allowed to influence the stable disk. As magnetic forces are never conservative, linear disk instabilities should only exist in the magnetohydrodynamical regime which indeed contains the magnetorotational ...

  5. Instability of Non-uniform Toroidal Magnetic Fields in Accretion Disks

    CERN Document Server

    Hirabayashi, Kota

    2016-01-01

    A new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk is presented. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to a magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of this growing eigenmode, to which we give a name "magneto-gradient driven instability", is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to...

  6. Relativistic X-ray Lines from the Inner Accretion Disks Around Black Holes

    CERN Document Server

    Miller, J M

    2007-01-01

    Relativistic X-ray emission lines from the inner accretion disk around black holes are reviewed. Recent observations with the Chandra X-ray Observatory, X-ray Multi-Mirror Mission-Newton, and Suzaku are revealing these lines to be good probes of strong gravitational effects. A number of important observational and theoretical developments are highlighted, including evidence of black hole spin and effects such as gravitational light bending, the detection of relativistic lines in stellar-mass black holes, and evidence of orbital-timescale line flux variability. In addition, the robustness of the relativistic disk lines against absorption, scattering, and continuum effects is discussed. Finally, prospects for improved measures of black hole spin and understanding the spin history of supermassive black holes in the context of black hole-galaxy co-evolution are presented. The best data and most rigorous results strongly suggest that relativistic X-ray disk lines can drive future explorations of General Relativiti...

  7. Local and global aspects of the linear MRI in accretion disks

    CERN Document Server

    Latter, Henrik N; Faure, Julien

    2015-01-01

    We revisit the linear MRI in a cylindrical model of an accretion disk and uncover a number of attractive results overlooked in previous treatments. In particular, we elucidate the connection between local axisymmetric modes and global modes, and show that a local channel flow corresponds to the evanescent part of a global mode. In addition, we find that the global problem reproduces the local dispersion relation without approximation, a result that helps explain the success the local analysis enjoys in predicting global growth rates. MRI channel flows are nonlinear solutions to the governing equations in the local shearing box. However, only a small subset of MRI modes share the same property in global disk models, providing further evidence that the prominence of channels in local boxes is artificial. Finally, we verify our results via direct numerical simulations with the Godunov code RAMSES.

  8. Two-Dimensional Hydrodynamic Simulations of Convection in Radiation-Dominated Accretion Disks

    CERN Document Server

    Agol, E; Turner, N; Stone, J; Agol, Eric; Krolik, Julian; Turner, Neal; Stone, James

    2001-01-01

    The standard equilibrium for radiation-dominated accretion disks has long been known to be viscously, thermally, and convectively unstable, but the nonlinear development of these instabilities---hence the actual state of such disks---has not yet been identified. By performing local two-dimensional hydrodynamic simulations of disks, we demonstrate that convective motions can release heat sufficiently rapidly as to substantially alter the vertical structure of the disk. If the dissipation rate within a vertical column is proportional to its mass, the disk settles into a new configuration thinner by a factor of two than the standard radiation-supported equilibrium. If, on the other hand, the vertically-integrated dissipation rate is proportional to the vertically-integrated total pressure, the disk is subject to the well-known thermal instability. Convection, however, biases the development of this instability toward collapse. The end result of such a collapse is a gas pressure-dominated equilibrium at the origi...

  9. Variabilities of Gamma-ray Bursts from Black Hole Hyper-accretion Disks

    CERN Document Server

    Lin, Da-Bin; Mu, Hui-Jun; Liu, Tong; Hou, Shu-Jin; Lv, Jing; Gu, Wei-Min; Liang, En-Wei

    2016-01-01

    The emission from black hole binaries (BHBs) and active galactic nuclei (AGNs) displays significant aperiodic variabilities. The most promising explanation for these variabilities is the propagating fluctuations in the accretion flow. It is natural to expect that the mechanism driving variabilities in BHBs and AGNs may operate in a black hole hyper-accretion disk, which is believed to power gamma-ray bursts (GRBs). We study the variabilities of jet power in GRBs based on the model of propagating fluctuations. It is found that the variabilities of jet power and the temporal profile of erratic spikes in this scenario are similar to those in observed light curves of prompt gamma-ray emission of GRBs. Our results show that the mechanism driving X-ray variabilities in BHBs and AGNs may operate in the central engine to drive the variabilities of GRBs.

  10. Are broad optical balmer lines from central accretion disk in PG 1613+658?

    CERN Document Server

    Zhang, XueGuang

    2014-01-01

    In this letter, we report positive correlations between broad line width and broad line flux for the broad balmer lines of the long-term observed AGN PG 1613+658. Rather than the expected negative correlations under the widely accepted virialization assumption for AGN BLRs, the positive correlations indicate much different BLR structures of PG 1613+658 from the commonly considered BLR structures which are dominated by the equilibrium between radiation pressure and gas pressure. Therefore, accretion disk origin is preferred for the observed broad single-peaked optical balmer lines of PG 1613+658, because of the mainly gravity dominated disk-like BLRs with radial structures having few effects from radiation pressure.

  11. Can Self Organized Critical Accretion Disks Generate a Log-normal Emission Variability in AGN?

    CERN Document Server

    Kunjaya, Chatief; Vierdayanti, Kiki; Herlie, Stefani

    2011-01-01

    Active Galactic Nuclei (AGN), such as Seyfert galaxies, quasars, etc., show light variations in all wavelength bands, with various amplitude and in many time scales. The variations usually look erratic, not periodic nor purely random. Many of these objects also show lognormal flux distribution and RMS - flux relation and power law frequency distribution. So far, the lognormal flux distribution of black hole objects is only observational facts without satisfactory explanation about the physical mechanism producing such distribution in the accretion disk. One of the most promising models based on cellular automaton mechanism has been successful in reproducing PSD (Power Spectral Density) of the observed objects but could not reproduce lognormal flux distribution. Such distribution requires the existence of underlying multiplicative process while the existing SOC models are based on additive processes. A modified SOC model based on cellular automaton mechanism for producing lognormal flux distribution is present...

  12. Global transient dynamics of three-dimensional hydrodynamical disturbances in a thin viscous accretion disk

    CERN Document Server

    Rebusco, Paola; Kluzniak, Wlodek; Regev, Oded

    2009-01-01

    Thin viscous Keplerian accretion disks are considered asymptotically stable, even though they can show significant dynamic activity on short timescales. In this paper the dynamics of non-axisymmetric hydrodynamical disturbances of disks are investigated analytically building upon the steady state three-dimensional structure and evolution of axisymmetric perturbations explored in previous work. Assuming a polytropic equation of state solutions are found by means of an asymptotic expansion in the small parameter measuring the ratio of the disk thickness to characteristic radius. In-depth analysis shows that every perturbation that disturbs the radial velocity induces significant transient growth in the (acoustic) energy of the evolving disturbance. This effect is most evident in the density and vertical velocity. The transient growth observed is tied to the non-separable nature of the solutions where, in particular, pattern evolution is controlled by a similarity variable composed of the radial coordinate and t...

  13. Global MHD Simulations of Accretion Disks in Cataclysmic Variables (CVs): I. The Importance of Spiral Shocks

    CERN Document Server

    Ju, Wenhua; Zhu, Zhaohuan

    2016-01-01

    We present results from the first global 3D MHD simulations of accretion disks in Cataclysmic Variable (CV) systems in order to investigate the relative importance of angular momentum transport via turbulence driven by the magnetorotational instability (MRI) compared to that driven by spiral shock waves. Remarkably, we find that even with vigorous MRI turbulence, spiral shocks are an important component to the overall angular momentum budget, at least when temperatures in the disk are high (so that Mach numbers are low). In order to understand the excitation, propagation, and damping of spiral density waves in our simulations more carefully, we perform a series of 2D global hydrodynamical simulations with various equation of states and both with and without mass inflow via the Lagrangian point (L1). Compared with previous similar studies, we find the following new results. 1) Linear wave dispersion relation fits the pitch angles of spiral density waves very well. 2) We demonstrate explicitly that mass accreti...

  14. Coronae as Consequence of Large Scale Magnetic Fields in Turbulent Accretion Disks

    DEFF Research Database (Denmark)

    G. Blackman, Eric; Pessah, Martin Elias

    2009-01-01

    Non-thermal X-ray emission in compact accretion engines can be interpreted to result from magnetic dissipation in an optically thin magnetized corona above an optically thick accretion disk. If coronal magnetic field originates in the disk and the disk is turbulent, then only magnetic structures...... large enough for their turbulent shredding time to exceed their buoyant rise time survive the journey to the corona. We use this concept and a physical model to constrain the minimum fraction of magnetic energy above the critical scale for buoyancy as a function of the observed coronal to bolometric...... AGN, for which of order 30 per cent of the bolometric flux is in the X-ray band, we find that more than 20 per cent of the magnetic energy must be of large enough scale to rise and dissipate in the corona....

  15. Relativistic Accretion Disk Models of High State Black Hole X-ray Binary Spectra

    CERN Document Server

    Davis, S W; Hubeny, I; Turner, N J; Davis, Shane W.; Blaes, Omer M.; Hubeny, Ivan; Turner, Neal J.

    2004-01-01

    We present calculations of non-LTE, relativistic accretion disk models applicable to the high/soft state of black hole X-ray binaries. We include the effects of thermal Comptonization and bound-free and free-free opacities of all abundant ion species. We present spectra calculated for a variety of accretion rates, black hole spin parameters, disk inclinations, and stress prescriptions. We also consider nonzero inner torques on the disk, and explore different vertical dissipation profiles, including some which are motivated by recent radiation MHD simulations of magnetorotational turbulence. Bound-free metal opacity generally produces significantly less spectral hardening than previous models which only considered Compton scattering and free-free opacity. It also tends to keep the effective photosphere near the surface, resulting in spectra which are remarkably independent of the stress prescription and vertical dissipation profile, provided little dissipation occurs above the effective photosphere. We provide...

  16. The Formation and Structure of a Strongly Magnetized Corona above Weakly Magnetized Accretion Disks

    CERN Document Server

    Miller, K A

    1999-01-01

    We use three-dimensional magnetohydrodynamical (MHD) simulations to study the formation of a corona above an initially weakly magnetized, isothermal accretion disk. We also describe a modification to time-explicit numerical algorithms for MHD which enables us to evolve highly stratified disks for many orbital times. We find that MHD turbulence driven by the magnetorotational instability (MRI) produces strong amplification of weak fields within two scale heights of the disk midplane in a few orbital times. About 25 % of the magnetic energy generated by the MRI within two scale heights escapes due to buoyancy, producing a strongly magnetized corona above the disk. Most of the buoyantly rising magnetic energy is dissipated between 3 and 5 scale heights, suggesting the corona will also be hot. The average vertical disk structure consists of a weakly magnetized turbulent core below a strongly magnetized corona which is stable to the MRI. The largescale field structure in both the disk and corona is toroidal. The f...

  17. A pure hydrodynamic instability in shear flows and its application to astrophysical accretion disks

    CERN Document Server

    Nath, Sujit Kumar

    2016-01-01

    We provide the possible resolution for the century old problem of hydrodynamic shear flows, which are apparently stable in linear analysis but shown to be turbulent in astrophysically observed data and experiments. This mismatch is noticed in a variety of systems, from laboratory to astrophysical flows. There are so many uncountable attempts made so far to resolve this mismatch, beginning with the early work of Kelvin, Rayleigh, and Reynolds towards the end of the nineteenth century. Here we show that the presence of stochastic noise, whose inevitable presence should not be neglected in the stability analysis of shear flows, leads to pure hydrodynamic linear instability therein. This explains the origin of turbulence, which has been observed/interpreted in astrophysical accretion disks, laboratory experiments and direct numerical simulations. This is, to the best of our knowledge, the first solution to the long standing problem of hydrodynamic instability of Rayleigh stable flows.

  18. Beltrami state in black-hole accretion disk: A magnetofluid approach.

    Science.gov (United States)

    Bhattacharjee, Chinmoy; Das, Rupam; Stark, David J; Mahajan, S M

    2015-12-01

    Using the magnetofluid unification framework, we show that the accretion disk plasma (embedded in the background geometry of a black hole) can relax to a class of states known as the Beltrami-Bernoulli (BB) equilibria. Modeling the disk plasma as a Hall magnetohydrodynamics (MHD) system, we find that the space-time curvature can significantly alter the magnetic (velocity) decay rates as we move away from the compact object; the velocity profiles in BB states, for example, deviate substantially from the predicted corresponding geodesic velocity profiles. These departures imply a rich interplay of plasma dynamics and general relativity revealed by examining the corresponding Bernoulli condition representing "homogeneity" of total energy. The relaxed states have their origin in the constraints provided by the two helicity invariants of Hall MHD. These helicities conspire to introduce an oscillatory length scale into the system that is strongly influenced by relativistic and thermal effects. PMID:26764835

  19. Generalized Langevin equation with colored noise description of the stochastic oscillations of accretion disks

    CERN Document Server

    Harko, Tiberiu; Mocanu, Gabriela

    2014-01-01

    We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise, which accounts for the general memory and retarded effects of the frictional force, and on the fluctuation-dissipation theorem. The presence of the memory effects influences the response of the disk to external random interactions, and modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The Power Spectral Distribution (PSD) of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the Intra...

  20. Three Dimensional MHD Simulation of Circumbinary Accretion Disks -2. Net Accretion Rate

    CERN Document Server

    Shi, Ji-Ming

    2015-01-01

    When an accretion disk surrounds a binary rotating in the same sense, the binary exerts strong torques on the gas. Analytic work in the 1D approximation indicated that these torques sharply diminish or even eliminate accretion from the disk onto the binary. However, recent 2D and 3D simulational work has shown at most modest diminution. We present new MHD simulations demonstrating that for binaries with mass ratios of 1 and 0.1 there is essentially no difference between the accretion rate at large radius in the disk and the accretion rate onto the binary. To resolve the discrepancy with earlier analytic estimates, we identify the small subset of gas trajectories traveling from the inner edge of the disk to the binary and show how the full accretion rate is concentrated onto them.

  1. Beltrami state in black-hole accretion disk: A magnetofluid approach.

    Science.gov (United States)

    Bhattacharjee, Chinmoy; Das, Rupam; Stark, David J; Mahajan, S M

    2015-12-01

    Using the magnetofluid unification framework, we show that the accretion disk plasma (embedded in the background geometry of a black hole) can relax to a class of states known as the Beltrami-Bernoulli (BB) equilibria. Modeling the disk plasma as a Hall magnetohydrodynamics (MHD) system, we find that the space-time curvature can significantly alter the magnetic (velocity) decay rates as we move away from the compact object; the velocity profiles in BB states, for example, deviate substantially from the predicted corresponding geodesic velocity profiles. These departures imply a rich interplay of plasma dynamics and general relativity revealed by examining the corresponding Bernoulli condition representing "homogeneity" of total energy. The relaxed states have their origin in the constraints provided by the two helicity invariants of Hall MHD. These helicities conspire to introduce an oscillatory length scale into the system that is strongly influenced by relativistic and thermal effects.

  2. Equilibrium disks, MRI mode excitation, and steady state turbulence in global accretion disk simulations

    CERN Document Server

    Parkin, E R

    2012-01-01

    Global three dimensional magnetohydrodynamic (MHD) simulations of turbulent accretion disks are presented which start from fully equilibrium initial conditions in which the magnetic forces are accounted for and the induction equation is satisfied. The local linear theory of the magnetorotational instability (MRI) is used as a predictor of the growth of magnetic field perturbations in the global simulations. The linear growth estimates and global simulations diverge when non-linear motions - perhaps triggered by the onset of turbulence - upset the velocity perturbations used to excite the MRI. The saturated state is found to be independent of the initially excited MRI mode, showing that once the disk has expelled the initially net flux field and settled into quasi-periodic oscillations in the toroidal magnetic flux, the dynamo cycle regulates the global saturation stress level. Furthermore, time-averaged measures of converged turbulence, such as the ratio of magnetic energies, are found to be in agreement with...

  3. Measuring the Direction and Angular Velocity of a Black Hole Accretion Disk via Lagged Interferometric Covariance

    CERN Document Server

    Johnson, Michael D; Shiokawa, Hotaka; Chael, Andrew A; Doeleman, Sheperd S

    2015-01-01

    We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. We demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the flow. Importantly, measuring the direction of the flow as clockwise or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy using three-dimensional, general relativistic magnetohydrodynamic (GRMHD) simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT is capable of determining the direction and angular velocity of the emitting material near Sgr A*, even for highly-inclined flows, and they suggest that...

  4. Accretion Disk Model of Short-Timescale Intermittent Activity in Young Radio Sources

    CERN Document Server

    Czerny, Bozena; Janiuk, Agnieszka; Nikiel-Wroczynski, Blazej; Stawarz, Lukasz

    2009-01-01

    We associate the existence of short-lived compact radio sources with the intermittent activity of the central engine caused by a radiation pressure instability within an accretion disk. Such objects may constitute a numerous sub-class of Giga-Hertz Peaked Spectrum sources, in accordance with the population studies of radio-loud active galaxies, as well as detailed investigations of their radio morphologies. We perform the model computations assuming the viscosity parametrization as proportional to a geometrical mean of the total and gas pressure. The implied timescales are consistent with the observed ages of the sources. The duration of an active phase for a moderate accretion rate is short enough (< 10^3-10^4 years) that the ejecta are confined within the host galaxy and thus these sources cannot evolve into large size radio galaxies unless they are close to the Eddington limit.

  5. Accretion Disk Signatures in Type I X-Ray Bursts: Prospects for Future Missions

    Science.gov (United States)

    Keek, L.; Wolf, Z.; Ballantyne, D. R.

    2016-07-01

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, Neutron Star Interior Composition Explorer (NICER), Athena, and Large Observatory For X-ray Timing (LOFT). Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes ≳10-7.5 erg cm-2 s-1 and also effectively constrain the reflection parameters for bright bursts with fluxes of ˜10-7 erg cm-2 s-1 in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.

  6. Ultra-fast outflows (aka UFOs) from AGNs and QSOs

    CERN Document Server

    Cappi, M; Giustini, M

    2013-01-01

    During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

  7. Ultra-fast outflows (aka UFOs) from AGNs and QSOs

    Science.gov (United States)

    Cappi, M.; Tombesi, F.; Giustini, M.

    During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

  8. Collapse and Outflow Towards an Integrated Theory of Star Formation

    CERN Document Server

    Pudritz, R E; Ouyed, R

    1997-01-01

    Observational advances over the last decade reveal that star formation is associated with the simultaneous presence of gravitationally collapsing gas, bipolar outflow, and an accretion disk. Two theoretical views of star formation suppose that either stellar mass is determined from the outset by gravitational instability, or by the outflow which sweeps away the collapsing envelope of initially singular density distributions. Neither picture appears to explain all of the facts. This contribution examines some of the key issues facing star formation theory.

  9. Evolutionary processes in protoplanetary accretion disks: the propagation of axisymmetric shock waves

    Science.gov (United States)

    Willerding, Eugen

    1998-12-01

    In this paper we investigate both the global and the local hydrodynamics of axisymmetric accretion disks around young stellar objects under the simultaneous action of viscosity, self-gravity and pressure forces. For simplicity, we take for the global model a polytropic equation of state, make the infinitely thin disk approximation and characterize the surface density and temperature profiles in the disk as power laws in the radial distance r from the protostar. We solve the problem of the general density profile of a Keplerian disk showing that self-gravity could not be an important factor for the fast formation of the rocky cores of giant gaseous planets in our solar system. Under the hypothesis that the unperturbed rotation curve of the disk is nearly Keplerian throughout the radial extent, we can estimate with our polytropic model a lower limit for the resulting masses Md( r) of stable disks up to 100 AU. These masses are in the range of the so-called minimum mass solar nebular ( d/M s ≈ 0.01-0.02 ). By adopting a simplified viscosity model, where the height-integrated turbulent dynamical viscosity ν is a function of the surface density σ like η ∝ σΓ, we derive in the local shearing sheet model linearized evolution equations for small density perturbations describing both a diffusion process and the propagation of acoustic density waves. We solve a special initial value problem and calculate the appropriate Green's function. The analytical solutions so obtained describe in the case Γ Γc the density wave equation describes the propagation of an "overstable" ring-shaped acoustic density wavelet to the outer ranges of the accretion disk. Whereas the group velocity of the wave packet is subsonic, the phase velocities of individual wave crests in the wave packet are supersonic. The mode of maximum instability, the growth rate and the number of growing waves in the wavelet are controlled by Γ and α. Our present knowledge concerning turbulent viscosity in

  10. Shocks in nova outflows. II. Synchrotron radio emission

    Science.gov (United States)

    Vlasov, Andrey; Vurm, Indrek; Metzger, Brian D.

    2016-08-01

    The discovery of GeV gamma-rays from classical novae indicates that shocks and relativistic particle acceleration are energetically key in these events. Further evidence for shocks comes from thermal keV X-ray emission and an early peak in the radio light curve on a timescale of months with a brightness temperature which is too high to result from freely expanding photo-ionized gas. Paper I developed a one dimensional model for the thermal emission from nova shocks. This work concluded that the shock-powered radio peak cannot be thermal if line cooling operates in the post-shock gas at the rate determined by collisional ionization equilibrium. Here we extend this calculation to include non-thermal synchrotron emission. Applying our model to three classical novae, we constrain the amplification of the magnetic field ɛB and the efficiency ɛe of accelerating relativistic electrons of characteristic Lorentz factor γ ˜ 100. If the shocks are radiative (low velocity v_sh ≲ 1000 km s-1) and cover a large solid angle of the nova outflow, as likely characterize those producing gamma-rays, then values of ɛe ˜ 0.01 - 0.1 are required to achieve the peak radio brightness for ɛB = 10-2. Such high efficiencies exclude secondary pairs from pion decay as the source of the radio-emitting particles, instead favoring the direct acceleration of electrons at the shock. If the radio-emitting shocks are instead adiabatic (high velocity), as likely characterize those responsible for the thermal X-rays, then much higher brightness temperatures are possible, allowing the radio-emitting shocks to cover a smaller outflow solid angle.

  11. A High-Frequency Doppler Feature in the Power Spectra of Simulated GRMHD Black Hole Accretion Disks

    CERN Document Server

    Wellons, Sarah; Psaltis, Dimitrios; Narayan, Ramesh; McClintock, Jeffrey E

    2013-01-01

    Black hole binaries exhibit a wide range of variability phenomena, from large-scale state changes to broadband noise and quasi-periodic oscillations, but the physical nature of much of this variability is poorly understood. We examine the variability properties of three GRMHD simulations of thin accretion disks around black holes of varying spin, producing light curves and power spectra as would be seen by observers. We find that the simulated power spectra show a broad feature at high frequency, which increases in amplitude with the inclination of the observer. We show that this high-frequency feature is a product of the Doppler effect and that its location is a function of the mass and spin of the black hole. This Doppler feature demonstrates that power spectral properties of the accretion disk can be tied to, and potentially used to determine, physical properties of the black hole.

  12. Effects of Compton Cooling on outflows in a Two Component Accretion Flow around a Black Hole: Results of a Coupled Monte Carlo-TVD Simulation

    CERN Document Server

    Garain, Sudip K

    2013-01-01

    The effect of cooling on the outflow rate from an accretion disk around a black hole is investigated using a coupled Monte Carlo Total Variation Diminishing code. A correlation between the spectral states and the outflow rates is found as a consequence.

  13. Effects of Compton Cooling on Outflows in a Two Component Accretion Flow around a Black Hole: Results of a Coupled Monte Carlo-Tvd Simulation

    Science.gov (United States)

    Garain, Sudip K.; Ghosh, Himadri; Chakrabarti, Sandip K.

    2015-01-01

    The effect of cooling on the outflow rate from an accretion disk around a black hole is investigated using a coupled Monte Carlo Total Variation Diminishing code. A correlation between the spectral states and the outflow rates is found as a consequence.

  14. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    CERN Document Server

    Ghosh, Arindam

    2016-01-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. By the time the flow reaches the inner edge, the variation in X-rays needs not reflect the true variation of the rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale also to spread around a mean value. In HMXBs, the size of the viscous Keplerian disk is smaller & thus such a spread could be lower as compared to the LMXBs. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a full knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales when there is an ellipticity in the orbit. We study a few compact binaries using long term RXTE/ASM(1.5-12 keV) & Swift/BAT(15-50keV) data to look for such effects & to infer what the...

  15. Application of the Cubed-Sphere Grid to Tilted Black-Hole Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Fragile, P C; Lindner, C C; Anninos, P; Salmonson, J D

    2008-09-24

    In recent work we presented the first results of global general relativistic magnetohydrodynamic (GRMHD) simulations of tilted (or misaligned) accretion disks around rotating black holes. The simulated tilted disks showed dramatic differences from comparable untilted disks, such as asymmetrical accretion onto the hole through opposing 'plunging streams' and global precession of the disk powered by a torque provided by the black hole. However, those simulations used a traditional spherical-polar grid that was purposefully underresolved along the pole, which prevented us from assessing the behavior of any jets that may have been associated with the tilted disks. To address this shortcoming we have added a block-structured 'cubed-sphere' grid option to the Cosmos++ GRMHD code, which will allow us to simultaneously resolve the disk and polar regions. Here we present our implementation of this grid and the results of a small suite of validation tests intended to demonstrate that the new grid performs as expected. The most important test in this work is a comparison of identical tilted disks, one evolved using our spherical-polar grid and the other with the cubed-sphere grid. We also demonstrate an interesting dependence of the early-time evolution of our disks on their orientation with respect to the grid alignment. This dependence arises from the differing treatment of current sheets within the disks, especially whether they are aligned with symmetry planes of the grid or not.

  16. An ALMA Constraint on the GSC 6214-210 B Circum-Substellar Accretion Disk Mass

    CERN Document Server

    Bowler, Brendan P; Kraus, Adam L; Ireland, Michael J; Herczeg, Gregory; Ricci, Luca; Carpenter, John; Brown, Michael E

    2015-01-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of GSC 6214-210 A and B, a solar-mass member of the 5-10 Myr Upper Scorpius association with a 15 $\\pm$ 2 Mjup companion orbiting at $\\approx$330 AU (2.2"). Previous photometry and spectroscopy spanning 0.3-5 $\\mu$m revealed optical and thermal excess as well as strong H$\\alpha$ and Pa~$\\beta$ emission originating from a circum-substellar accretion disk around GSC 6214-210 B, making it the lowest mass companion with unambiguous evidence of a subdisk. Despite ALMA's unprecedented sensitivity and angular resolution, neither component was detected in our 880 $\\mu$m (341 GHz) continuum observations down to a 3-$\\sigma$ limit of 0.22 mJy/beam. The corresponding constraints on the dust mass and total mass are <0.15 Mearth and <0.05 Mjup, respectively, or <0.003% and <0.3% of the mass of GSC 6214-210 B itself assuming a 100:1 gas-to-dust ratio and characteristic dust temperature of 10-20 K. If the host star possesses a putative c...

  17. Hybrid viscosity and the magnetoviscous instability in hot, collisionless accretion disks

    CERN Document Server

    Subramanian, Prasad; Kafatos, Menas

    2008-01-01

    We aim to illustrate the role of hot protons in enhancing the magnetorotational instability (MRI) via the ``hybrid'' viscosity, which is due to the redirection of protons interacting with static magnetic field perturbations, and to establish that it is the only relevant mechanism in this situation. It has recently been shown by Balbus \\cite{PBM1} and Islam & Balbus \\cite{PBM11} using a fluid approach that viscous momentum transport is key to the development of the MRI in accretion disks for a wide range of parameters. However, their results do not apply in hot, advection-dominated disks, which are collisionless. We develop a fluid picture using the hybrid viscosity mechanism, that applies in the collisionless limit. We demonstrate that viscous effects arising from this mechanism can significantly enhance the growth of the MRI as long as the plasma $\\beta \\gapprox 80$. Our results facilitate for the first time a direct comparison between the MHD and quasi-kinetic treatments of the magnetoviscous instabilit...

  18. Modelling Accretion Disk and Stellar Wind Interactions: the Case of Sgr A*

    CERN Document Server

    Christie, I M; Mimica, P; Giannios, D

    2016-01-01

    Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disk, the ram and thermal pressures of the disk terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geometry of the termination shock formed in the wind. With the employment of numerical hydrodynamic simulations, this model is both verified and extended to a region prone to Kelvin-Helmholtz instabilities. Because the characteristic wind and stellar velocities are in $\\sim10^{8}$ cm s$^{-1}$ range, the shocked wind may produce detectable X-rays via thermal bremsstrahlung emission. The application of this model to the pericenter passage of S2, the brightest member of the S-cluster, shows that the shocked wind produces roughly ...

  19. Large Scale Azimuthal Structures Of Turbulence In Accretion Disks - Dynamo triggered variability of accretion

    CERN Document Server

    Flock, M; Klahr, H; Turner, N; Henning, Th

    2011-01-01

    We investigate the significance of large scale azimuthal, magnetic and velocity modes for the MRI turbulence in accretion disks. We perform 3D global ideal MHD simulations of global stratified proto-planetary disk models. Our domains span azimuthal angles of \\pi/4, \\pi/2, \\pi and 2\\pi. We observe up to 100% stronger magnetic fields and stronger turbulence for the restricted azimuthal domain models \\pi/2 and \\pi/4 compared to the full 2\\pi model. We show that for those models, the Maxwell Stress is larger due to strong axisymmetric magnetic fields, generated by the \\alpha \\Omega dynamo. Large radial extended axisymmetric toroidal fields trigger temporal magnification of accretion stress. All models display a positive dynamo-\\alpha in the northern hemisphere (upper disk). The parity is distinct in each model and changes on timescales of 40 local orbits. In model 2\\pi, the toroidal field is mostly antisymmetric in respect to the midplane. The eddies of the MRI turbulence are highly anisotropic. The major wavelen...

  20. Turbulence and Steady Flows in 3D Global Stratified MHD Simulations of Accretion Disks

    CERN Document Server

    Flock, M; Klahr, H; Turner, N J; Henning, Th

    2011-01-01

    We present full 2 Pi global 3-D stratified MHD simulations of accretion disks. We interpret our results in the context of proto-planetary disks. We investigate the turbulence driven by the magneto-rotational instability (MRI) using the PLUTO Godunov code in spherical coordinates with the accurate and robust HLLD Riemann solver. We follow the turbulence for more than 1500 orbits at the innermost radius of the domain to measure the overall strength of turbulent motions and the detailed accretion flow pattern. We find that regions within two scale heights of the midplane have a turbulent Mach number of about 0.1 and a magnetic pressure two to three orders of magnitude less than the gas pressure, while outside three scale heights the magnetic pressure equals or exceeds the gas pressure and the turbulence is transonic, leading to large density fluctuations. The strongest large-scale density disturbances are spiral density waves, and the strongest of these waves has m=5. No clear meridional circulation appears in t...

  1. A Hot and Massive Accretion Disk around the High-Mass Protostar IRAS 20126+4104

    CERN Document Server

    Chen, Huei-Ru Vivien; Zhang, Qizhou; Sridharan, T K; Liu, Sheng-Yuan; Su, Yu-Nung

    2016-01-01

    We present new spectral line observations of the CH3CN molecule in the accretion disk around the massive protostar IRAS 20126+4104 with the Submillimeter Array that for the first time measure the disk density, temperature, and rotational velocity with sufficient resolution (0.37", equivalent to ~600 AU) to assess the gravitational stability of the disk through the Toomre-Q parameter. Our observations resolve the central 2000 AU region that shows steeper velocity gradients with increasing upper state energy, indicating an increase in the rotational velocity of the hotter gas nearer the star. Such spin-up motions are characteristics of an accretion flow in a rotationally supported disk. We compare the observed data with synthetic image cubes produced by three-dimensional radiative transfer models describing a thin flared disk in Keplerian motion enveloped within the centrifugal radius of an angular-momentum-conserving accretion flow. Given a luminosity of 1.3x10^4 Lsun, the optimized model gives a disk mass of ...

  2. Integrated accretion disk angular momentum removal and astrophysical jet acceleration mechanism

    Science.gov (United States)

    Bellan, Paul

    2015-11-01

    A model has been developed for how accretion disks discard angular momentum while powering astrophysical jets. The model depends on the extremely weak ionization of disks. This causes disk ions to be collisionally locked to adjacent disk neutrals so a clump of disk ions and neutrals has an effective cyclotron frequency αωci where α is the fractional ionization. When αωci is approximately twice the Kepler orbital frequency, conservation of canonical momentum shows that the clump spirals radially inwards producing a radially inward disk electric current as electrons cannot move radially in the disk. Upon reaching the jet radius, this current then flows axially away from the disk plane along the jet, producing a toroidal magnetic field that drives the jet. Electrons remain frozen to poloidal flux surfaces everywhere and electron motion on flux surfaces in the ideal MHD region outside the disk completes the current path. Angular momentum absorbed from accreting material in the disk by magnetic counter-torque -JrBz is transported by the electric circuit and ejected at near infinite radius in the disk plane. This is like an electric generator absorbing angular momentum and wired to a distant electric motor that emits angular momentum. Supported by USDOE/NSF Partnership in Plasma Science.

  3. Numerical relativity simulations of thick accretion disks around tilted Kerr black holes

    CERN Document Server

    Mewes, Vassilios; Galeazzi, Filippo; Montero, Pedro J; Stergioulas, Nikolaos

    2015-01-01

    In this work we present 3D numerical relativity simulations of thick accretion disks around {\\it tilted} Kerr black holes. We investigate the evolution of three different initial disk models with a range of initial black hole spin magnitudes and tilt angles. For all the disk-to-black hole mass ratios considered ($0.044-0.16$) we observe significant black hole precession and nutation during the evolution. This indicates that for such mass ratios, neglecting the self-gravity of the disks by evolving them in a fixed background black hole spacetime is not justified. We find that the two more massive models are unstable against the Papaloizou-Pringle (PP) instability and that those PP-unstable models remain unstable for all initial spins and tilt angles considered, showing that the development of the instability is a very robust feature of such PP-unstable disks. The tilt between the black hole spin and the disk is strongly modulated during the growth of the PP instability, causing a partial global realignment of ...

  4. The evolution of a supermassive retrograde binary embedded in an accretion disk

    CERN Document Server

    Ivanov, P B; Paardekooper, S -J; Polnarev, A G

    2016-01-01

    In this note we discuss the main results of a study of a massive binary with unequal mass ratio, q, embedded in an accretion disk, with its orbital rotation being opposed to that of the disk. When the mass ratio is sufficiently large, a gap opens in the disk, but the mechanism of gap formation is very different from the prograde case. Inward migration occurs on a timescale of t_ev ~ M_p/(dot M), where M_p is the mass of the less massive component (the perturber), and dot M is the accretion rate. When q<< 1, the accretion takes place mostly onto the more massive component, with the accretion rate onto the perturber being smaller than, or of order of, q^(1/3)M. However, this rate increases when supermassive binary black holes are considered and gravitational wave emission is important. We estimate a typical duration of time for which the accretion onto the perturber and gravitational waves could be detected.

  5. The Effects of Photon Bubble Instability in Radiation-Dominated Accretion Disks

    CERN Document Server

    Turner, N J; Socrates, A; Begelman, M C; Davis, S W

    2005-01-01

    We examine the effects of photon bubble instability in radiation-dominated accretion disks such as those found around black holes in active galactic nuclei and X-ray binary star systems. Two- and 3-D numerical radiation MHD calculations of small patches of disk are used. Modes with wavelengths shorter than the gas pressure scale height grow faster than the orbital frequency in the surface layers. The fastest growth rate observed is five times the orbital frequency and occurs on nearly-vertical magnetic fields. The spectrum of linear modes agrees with a WKB analysis indicating still faster growth at unresolved scales, with a maximum proportional to the gravity and inversely proportional to the gas sound speed. Disturbances reaching non-linear amplitudes steepen into trains of shocks similar to a 1-D periodic non-linear analytic solution. Variations in propagation speed result in merging of adjacent fronts, and over time the shock spacing and amplitude increase. Growth is limited by the strength of the field, a...

  6. Anisotropy of X-ray bursts from neutron stars with concave accretion disks

    CERN Document Server

    He, Chong-Chong

    2015-01-01

    Emission from neutron stars and accretion disks in low-mass X-ray binaries is not isotropic. The non-spherical shape of the disk as well as blocking of the neutron star by the disk and vice versa cause the observed flux to depend on the inclination angle of the disk with respect to the line of sight. This is of special importance for the interpretation of Type I X-ray bursts, which are powered by the thermonuclear burning of matter accreted onto the neutron star. Because part of the X-ray burst is reflected off the disk, the observed burst flux depends on the anisotropies for both direct emission from the neutron star and reflection off the disk. This influences measurements of source distance, mass accretion rate, and constraints on the neutron star equation of state. Previous studies made predictions of the anisotropy factor for the total burst flux, assuming a geometrically flat disk. Recently, detailed observations of two exceptionally long bursts (so-called superbursts) allowed for the first time for the...

  7. Stronger Reflection from Black Hole Accretion Disks in Soft X-ray States

    CERN Document Server

    Steiner, James F; Garcia, Javier A; McClintock, Jeffrey E

    2016-01-01

    We analyze 15,000 spectra of 29 stellar-mass black hole candidates collected over the 16-year mission lifetime of RXTE using a simple phenomenological model. As these black holes vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: The Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe-K line as measured with respect to the power law. A key distinction of our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe-K line, namely the Compton power law. We find that reflection is several times more pronounced (~3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which ...

  8. Dissipation and Vertical Energy Transport in Radiation-Dominated Accretion Disks

    CERN Document Server

    Blaes, Omer; Hirose, Shigenobu; Shabaltas, Natalia

    2011-01-01

    Standard models of radiation supported accretion disks generally assume that diffusive radiation flux is solely responsible for vertical heat transport. This requires that heat must be generated at a critical rate per unit volume if the disk is to be in hydrostatic and thermal equilibrium. This raises the question of how heat is generated and how energy is transported in MHD turbulence. By analysis of a number of radiation/MHD stratified shearing-box simulations, we show that the divergence of the diffusive radiation flux is indeed capped at the critical rate, but deep inside the disk, substantial vertical energy flux is also carried by advection of radiation. Work done by radiation pressure is a significant part of the energy budget, and much of this work is dissipated later through damping by radiative diffusion. We show how this damping can be measured in the simulations, and identify its physical origins. Radiative damping accounts for as much as tens of percent of the total dissipation, and is the only r...

  9. Detection of the Orbital Motions of Material in the Inner Accretion Disk of Mrk 766

    Science.gov (United States)

    Turner, T. J.; Miller, L.; George, I. M.; Reeves, J. N.

    2004-12-01

    Time-resolved X-ray spectroscopy has been obtained for the Seyfert galaxy Mrk 766 from XMM-Newton observations. Fe Kα emission has been detected with multiple peaks in energy that vary with time. The time variations appear as sinusoidally varying trails on the spectral-time plane, and provide direct evidence for the existence of matter orbiting a supermassive black hole. Fitting orbit models to the variations strongly indicates that the observed Fe emission originates in a small number of hotspots that are in coplanar orbits consistent with arising on an accretion disk. Taking the independently-determined value for the black hole mass of 4.3 × 106 M⊙ implies the disk is inclined at 26 ± 1o to the line of sight and emission is seen at a distance ˜ 100 gravitational radii ( ˜ 4 A.U.) from the black hole. The period and amplitude of the orbits yield a lower limit for the black hole mass of M BH > 3.6 × 105 M⊙ within a radius of 1.8 A.U.

  10. X-ray Reflection from Inhomogeneous Accretion Disks: I. Toy Models and Photon Bubbles

    CERN Document Server

    Ballantyne, D R; Blaes, Omer M

    2004-01-01

    Numerical simulations of the interiors of radiation dominated accretion disks show that significant density inhomogeneities can be generated in the gas. Here, we present the first results of our study on X-ray reflection spectra from such heterogeneous density structures. We consider two cases: first, we produce a number of toy models where a sharp increase or decrease in density of variable width is placed at different depths in a uniform slab. Comparing the resulting reflection spectra to those from an unaltered slab shows that the inhomogeneity can affect the emission features, in particular the Fe K and O VIII Lyalpha lines. The magnitude of any differences depends on both the parameters of the density change and the ionizing power of the illuminating radiation, but the inhomogeneity is required to be within ~2 Thomson depths of the surface to cause an effect. However, only relatively small variations in density (on the order of a few) are necessary for significant changes in the reflection features to be...

  11. Measuring the Direction and Angular Velocity of a Black Hole Accretion Disk via Lagged Interferometric Covariance

    Science.gov (United States)

    Johnson, Michael D.; Loeb, Abraham; Shiokawa, Hotaka; Chael, Andrew A.; Doeleman, Sheperd S.

    2015-11-01

    We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. For a flow viewed close to face-on, we demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the emission pattern from the flow. Even for moderately inclined flows, the covariance robustly estimates the flow direction, although the estimated angular velocity can be significantly biased. Importantly, measuring the direction of the flow as clockwise or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy of our technique using three-dimensional, general relativistic magnetohydrodynamic simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT may be capable of estimating the direction and angular velocity of the emitting material near Sgr A*, and they suggest that a rotating flow may even be utilized to improve imaging capabilities.

  12. Abbott Wave-Triggered Runaway in Line-Driven Winds from Stars and Accretion Disks

    CERN Document Server

    Feldmeier, A; Feldmeier, Achim; Shlosman, Isaac

    2001-01-01

    Line-driven winds from stars and accretion disks are accelerated by scattering in numerous line transitions. The wind is believed to adopt a unique critical solution, out of the infinite variety of shallow and steep solutions. We study the inherent dynamics of the transition towards the critical wind. A new runaway wind mechanism is analyzed in terms of radiative-acoustic (Abbott) waves which are responsible for shaping the wind velocity law and fixing the mass loss. Three different flow types result, depending on the location of perturbations. First, if the shallow solution is perturbed sufficiently far downstream, a single critical point forms in the flow, which is a barrier for Abbott waves, and the solution tends to the critical one. Second, if the shallow solution is perturbed upstream from this critical point, mass overloading results, and the critical point is shifted inwards. This wind exhibits a broad, stationary region of decelerating flow and its velocity law has kinks. Third, for perturbations eve...

  13. Radial mixing in protoplanetary accretion disks VII. 2-dimensional transport of tracers

    CERN Document Server

    Wehrstedt, Michael

    2008-01-01

    The detection of significant concentrations of crystalline silicates in comets indicates an extensive radial mixing in the primordial solar nebula. In studying the radial transport of matter within protoplanetary disks by numerical model calculations it is essential to resolve the vertical disk structure since matter is mixed radially inward and outward by a complex 2-dimensional flow pattern that is superposed on the global inward directed accretion flow. A numerical model calculation for a protoplanetary accretion disks with radial and vertical mixing is performed in the 1+1-dimensional approximation. The global 2D velocity field of the disk is calculated from an analytical solution for the meridional flow pattern, that exhibits an inward drift in the upper layers and an outward drift in the midplane in most parts of the disk. The disk model is based on the $\\beta$-prescription of viscosity and considers vertical self-gravitation of the disk. The mixing processes are studied for the following species: amorp...

  14. Generalized Langevin equation with colored noise description of the stochastic oscillations of accretion disks

    Science.gov (United States)

    Harko, Tiberiu; Leung, Chun Sing; Mocanu, Gabriela

    2014-05-01

    We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise and on the fluctuation-dissipation theorems. The former accounts for the general memory and retarded effects of the frictional force. The presence of the memory effects influences the response of the disk to external random interactions, and it modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities, and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The power spectral distribution of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the intra-day variability of the active galactic nuclei may be due to the stochastic disk instabilities. The perturbations due to colored/nontrivially correlated noise induce a complicated disk dynamics, which could explain some astrophysical observational features related to disk variability.

  15. THERMAL EQUILIBRIA OF OPTICALLY THIN, MAGNETICALLY SUPPORTED, TWO-TEMPERATURE, BLACK HOLE ACCRETION DISKS

    International Nuclear Information System (INIS)

    We obtained thermal equilibrium solutions for optically thin, two-temperature black hole accretion disks incorporating magnetic fields. The main objective of this study is to explain the bright/hard state observed during the bright/slow transition of galactic black hole candidates. We assume that the energy transfer from ions to electrons occurs via Coulomb collisions. Bremsstrahlung, synchrotron, and inverse Compton scattering are considered as the radiative cooling processes. In order to complete the set of basic equations, we specify the magnetic flux advection rate instead of β = pgas/pmag. We find magnetically supported (low-β), thermally stable solutions. In these solutions, the total amount of the heating via the dissipation of turbulent magnetic fields goes into electrons and balances the radiative cooling. The low-β solutions extend to high mass accretion rates (∼>α2M-dotEdd) and the electron temperature is moderately cool (Te ∼ 108-109.5 K). High luminosities (∼>0.1LEdd) and moderately high energy cutoffs in the X-ray spectrum (∼50-200 keV) observed in the bright/hard state can be explained by the low-β solutions.

  16. Stronger Reflection from Black Hole Accretion Disks in Soft X-Ray States

    Science.gov (United States)

    Steiner, James F.; Remillard, Ronald A.; García, Javier A.; McClintock, Jeffrey E.

    2016-10-01

    We analyze 15,000 spectra of 29 stellar-mass black hole (BH) candidates collected over the 16 year mission lifetime of Rossi X-ray Timing Explorer using a simple phenomenological model. As these BHs vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: the Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe-K line as measured with respect to the power law. A key distinction of our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe-K line, namely, the Compton power law. We find that reflection is several times more pronounced (˜3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which has a higher optical depth in hard states. Alternatively, this could be explained by a more compact corona in soft (compared to hard) states, which would result in a higher reflection fraction.

  17. Characterising anomalous transport in accretion disks from X-ray observations

    CERN Document Server

    Greenhough, J; Chaty, S; Dendy, R O; Rowlands, G

    2002-01-01

    Whilst direct observations of internal transport in accretion disks are not yet possible, measurement of the energy emitted from accreting astrophysical systems can provide useful information on the physical mechanisms at work. Here we examine the unbroken multi-year time variation of the total X-ray flux from three sources: Cygnus X-1, the microquasar GRS1915+105, and for comparison the nonaccreting Crab nebula. To complement previous analyses, we demonstrate that the application of advanced statistical methods to these observational time-series reveals important contrasts in the nature and scaling properties of the transport processes operating within these sources. We find the Crab signal resembles Gaussian noise; the Cygnus X-1 signal is a leptokurtic random walk whose self-similar properties persist on timescales up to three years; and the GRS1915+105 signal is similar to that from Cygnus X-1, but with self-similarity extending possibly to only a few days. This evidence of self-similarity provides a robu...

  18. AGN Unification, X-Ray Absorbers and Accretion Disk MHD Winds

    Science.gov (United States)

    Kazanas, Demos

    2011-01-01

    We present the 2D photoionization structure of the MHD winds of AGN accretion disks. We focus our attention on a specific subset of winds, those with poloidal currents that lead to density profiles n(r) \\propto 1/r. We employ the code XSTAR to compute the local ionization balance, emissivities and opacity which are then used in the self-consistent transfer of radiation and ionization of a host of ionic species of a large number of elements over then entire poloidal plane. Particular attention is paid to the Absorption Measure Distribution (AMD), namely their hydrogen-equivalent column of these ions per logarithmic 7 interval, dN_H/dlog ? (? = L/n(r)r(sup 2) is the ionization parameter), which provides a measure of the winds' radial density profiles. For the given density profile, AMD is found to be independent of ?, in good agreement with analyses of Chandra and XMM data, suggesting the specific profile as a fundamental AGN property. Furthermore, the ratio of equatorial to polar column densities of these winds is \\simeq 10(exp 4); as such, it is shown they serve as the "torus" necessary for AGN unification with phenomenology consistent with the observations. The same winds are also shown to reproduce the observed columns and velocities of C IV and Fe XXV of SAL QSOs once the proper ionizing spectra and inclination angles are employed.

  19. Angular Momentum Transport in Protoplanetary and Black Hole Accretion Disks: The Role of Parasitic Modes in the Saturation of MHD Turbulence

    DEFF Research Database (Denmark)

    Pessah, Martin Elias

    2010-01-01

    The magnetorotational instability (MRI) is considered a key process for driving efficient angular momentum transport in astrophysical disks. Understanding its nonlinear saturation constitutes a fundamental problem in modern accretion disk theory. The large dynamical range in physical conditions...

  20. Morphology of the Interaction Between the Stream and Cool Accretion Disk in a Semi-detached Binary Systems

    CERN Document Server

    Bisikalo, D V; Kaygorodov, P V; Kuznetsov, O A; 10.1134/1.1618992

    2012-01-01

    We analyze heating and cooling processes in accretion disks in binaries. For realistic parameters of the accretion disks in close binaries (with accretion rates from 1e-12 to 1e-7 Msun/year and \\alpha from 0.1 to 0.01), the gas temperature in the outer parts of the disk is from 1e4 to 1e6 K. Our previous gas-dynamical studies of mass transfer in close binaries indicate that, for hot disks (with temperatures for the outer parts of the disk of several hundred thousand K), the interaction between the stream from the inner Lagrange point and the disk is shockless. To study the morphology of the interaction between the stream and a cool accretion disk, we carried out three-dimensional modeling of the flow structure in a binary for the case when the gas temperature in the outer parts of the forming disk does not exceed 13600 K. The flow pattern indicates that the interaction is again shockless. The computations provide evidence that, as is the case for hot disks, the zone of enhanced energy release (the "hot line")...

  1. Connection between accretion disk and superluminal radio jets and the role of radio plateau state in GRS 1915+105

    CERN Document Server

    Yadav, J S

    2006-01-01

    We investigate the association between the accretion disk during radio plateau state and the following superluminal relativistic radio jets with peak intensity varies from 200 mJy to 1000 mJy observed over a period of five years and present the evidences of direct accretion disc-jet connection in microquasar GRS 1915+105. We have analysed RXTE PCA/HEXTE X-ray data and have found that the accretion rate, $\\dot{m}_{accr}$, as inferred from the X-ray flux, is very high during the radio plateaux. We suggest that the accretion disk during the radio plateaux always associated with radiation-driven wind which is manifested in the form of enhanced absorption column density for X-ray and the depleted IR emission. We find that the wind density increases with the accretion disk luminosity during the radio plateaux. The wind density is similar to the density of the warm absorber proposed in extragalactic AGNs and Quasars. We suggest a simple model for the origin of superluminal relativistic jets. Finally, We discuss the ...

  2. 2.5-dimensional solution of the advective accretion disk:a self-similar approach

    Institute of Scientific and Technical Information of China (English)

    Shubhrangshu Ghosh; Banibrata Mukhopadhyay

    2009-01-01

    We provide a 2.5-dimensional solution to a complete set of viscous hydrodynamical equations describing accretion-induced outflows and plausible jets around black holes/compact objects. We prescribe a self-consistent advective disk-outflow coupling model, which explicitly includes the information of vertical flux. Inter-connecting dynamics of an inflow-outflow system essentially upholds the conservation laws. We provide a set of analytical family of solutions through a self-similar approach. The flow parameters of the disk-outflow system depend strongly on the viscosity parameter α and the cooling factor f.

  3. A Hot and Massive Accretion Disk around the High-mass Protostar IRAS 20126+4104

    Science.gov (United States)

    Chen, Huei-Ru Vivien; Keto, Eric; Zhang, Qizhou; Sridharan, T. K.; Liu, Sheng-Yuan; Su, Yu-Nung

    2016-06-01

    We present new spectral line observations of the CH3CN molecule in the accretion disk around the massive protostar IRAS 20126+4104 with the Submillimeter Array, which, for the first time, measure the disk density, temperature, and rotational velocity with sufficient resolution (0.″37, equivalent to ∼600 au) to assess the gravitational stability of the disk through the Toomre-Q parameter. Our observations resolve the central 2000 au region that shows steeper velocity gradients with increasing upper state energy, indicating an increase in the rotational velocity of the hotter gas nearer the star. Such spin-up motions are characteristics of an accretion flow in a rotationally supported disk. We compare the observed data with synthetic image cubes produced by three-dimensional radiative transfer models describing a thin flared disk in Keplerian motion enveloped within the centrifugal radius of an angular-momentum-conserving accretion flow. Given a luminosity of 1.3 × 104 L ⊙, the optimized model gives a disk mass of 1.5 M ⊙ and a radius of 858 au rotating about a 12.0 M ⊙ protostar with a disk mass accretion rate of 3.9 × 10‑5 M ⊙ yr‑1. Our study finds that, in contrast to some theoretical expectations, the disk is hot and stable to fragmentation with Q > 2.8 at all radii which permits a smooth accretion flow. These results put forward the first constraints on gravitational instabilities in massive protostellar disks, which are closely connected to the formation of companion stars and planetary systems by fragmentation.

  4. Structure analysis of solution to equations of quasi 3-D accretion disk model

    Institute of Scientific and Technical Information of China (English)

    WU; Mei

    2001-01-01

    [1]Frank, J., King, A., Raine, K., Accretion Power in Astrophysics, Cambridge: Cambridge University Press, 1992.[2]Lu Jufu, Abramowicz, M. A., Bimodel characteristic of accrection of black hole, Acta Astrophysica Sinica, 1988, 8(1): 1—13.[3]Shakura, N. I., Sunyaev, R. A., Black holes in binary systems: Observational appearance, A& A, 1973, 24: 337—355.[4]Spruit, H., Matsuda, T., Inoue, M. et al., Spiral shocks and accretion in discs, MNRAS, 1987, 229: 517—527.[5]Yang, R. X., Kafatos, M., Shock study in fully relativistic isothermal flows, 2, A& A, 1995, 295: 238—244.[6]Kafatos, M., Yang, R. X., Transonic inviscid disc flows in the schwarzschild metric-I, MNRAS, 1994, 268 (4): 925—937.[7]Fortner, B., Lamb, F. K., Miller, G. S., Origin of ‘normal-branch’ quasiperiodic oscillations in low-mass X-ray binary systems, Nature, 1989, 342 (14): 775—777.[8]Narayan, R., Kato, S., Honma, F., Global structure and dynamics of advection-dominated accretion flows around black holes, ApJ, 1997, 476: 49—60.[9]Chakrabarti, S., Titarchuk, L. G., Spectral properties of accretion disks around galactic and extragalactic black holes, ApJ, 1995, 455: 623—639.[10]Landu, L. D., Lifshitz, E. M., Fluid Mechanics, Bristol: f. W. Arrowsmith Ltd., 1959, 514—515.

  5. THE STRUCTURE OF THE ACCRETION DISK IN THE LENSED QUASAR SBS 0909+532

    International Nuclear Information System (INIS)

    We derive the size and temperature profile of the accretion disk of the lensed quasar SBS 0909+532 by measuring the wavelength dependence (chromaticity) of the microlensing magnification produced by the stars in the lens galaxy. After correcting for extinction using the flux ratios of 14 emission lines, we observe a marked change in the B-A flux ratio with wavelength, varying from -0.67 ± 0.05 mag at (rest frame) ∼1460 A to -0.24 ± 0.07 mag at ∼6560 A. For λ ∼> 7000 A both effects, extinction and microlensing, look minimal. Simulations indicate that image B rather than A is strongly microlensed. If we model the change in disk size from 1460 A to 6560 A using a Gaussian source (I ∝ exp(-R 2/2r 2s)) with a disk size scaling with wavelength as rs ∝ λp, we find rs = 7+5-3 light-days at 1460 A and p = 0.9+0.6-0.3 for uniform priors on rs and p, and rs = 4+3-3 light-days and p = 1.0+0.6-0.4 for a logarithmic prior on rs . The disk temperature profile T ∝ R-1/p is consistent with thin disk theory (T ∝ R-3/4), given the uncertainties. The estimates of rs are also in agreement with the size inferred from thin disk theory using the estimated black hole mass (MBH ≅ 2 x 109 Msun) but not with the smaller size estimated from thin disk theory and the optical flux. We also use the flux ratios of the unmicrolensed emission lines to determine the extinction curve of the dust in the lens galaxy, finding that it is similar to that of the LMC2 Supershell.

  6. The Structure of the Accretion Disk in the Lensed Quasar SBS 0909+532

    Science.gov (United States)

    Mediavilla, E.; Muñoz, J. A.; Kochanek, C. S.; Guerras, E.; Acosta-Pulido, J.; Falco, E.; Motta, V.; Arribas, S.; Manchado, A.; Mosquera, A.

    2011-03-01

    We derive the size and temperature profile of the accretion disk of the lensed quasar SBS 0909+532 by measuring the wavelength dependence (chromaticity) of the microlensing magnification produced by the stars in the lens galaxy. After correcting for extinction using the flux ratios of 14 emission lines, we observe a marked change in the B-A flux ratio with wavelength, varying from -0.67 ± 0.05 mag at (rest frame) ~1460 Å to -0.24 ± 0.07 mag at ~6560 Å. For λ >~ 7000 Å both effects, extinction and microlensing, look minimal. Simulations indicate that image B rather than A is strongly microlensed. If we model the change in disk size from 1460 Å to 6560 Å using a Gaussian source (I vprop exp(-R 2/2r 2 s )) with a disk size scaling with wavelength as rs vprop λ p , we find rs = 7+5 -3 light-days at 1460 Å and p = 0.9+0.6 -0.3 for uniform priors on rs and p, and rs = 4+3 -3 light-days and p = 1.0+0.6 -0.4 for a logarithmic prior on rs . The disk temperature profile T vprop R -1/p is consistent with thin disk theory (T vprop R -3/4), given the uncertainties. The estimates of rs are also in agreement with the size inferred from thin disk theory using the estimated black hole mass (M BH ~= 2 × 109 M sun) but not with the smaller size estimated from thin disk theory and the optical flux. We also use the flux ratios of the unmicrolensed emission lines to determine the extinction curve of the dust in the lens galaxy, finding that it is similar to that of the LMC2 Supershell.

  7. WAVE-VORTEX MODE COUPLING IN ASTROPHYSICAL ACCRETION DISKS UNDER COMBINED RADIAL AND VERTICAL STRATIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Salhi, A. [Departement de Physique, Faculte des Sciences de Tunis, 1060 Tunis (Tunisia); Lehner, T. [LUTH, UMR 8102 CNRS, Observatoire de Paris-Meudon, 5 place de Janssen, F-92195 Meudon (France); Godeferd, F.; Cambon, C. [Laboratoire de Mecanique des Fluides et d' Acoustique, Ecole Centrale de Lyon, Universite de Lyon, UMR 5509, CNRS, INSA, UCB, F-69134 Ecully Cedex (France)

    2013-07-10

    We examine accretion disk flow under combined radial and vertical stratification utilizing a local Cartesian (or ''shearing box'') approximation. We investigate both axisymmetric and nonaxisymmetric disturbances with the Boussinesq approximation. Under axisymmetric disturbances, a new dispersion relation is derived. It reduces to the Solberg-Hoieland criterion in the case without vertical stratification. It shows that, asymptotically, stable radial and vertical stratification cannot induce any linear instability; Keplerian flow is accordingly stable. Previous investigations strongly suggest that the so-called bypass concept of turbulence (i.e., that fine-tuned disturbances of any inviscid smooth shear flow can reach arbitrarily large transient growth) can also be applied to Keplerian disks. We present an analysis of this process for three-dimensional plane-wave disturbances comoving with the shear flow of a general rotating shear flow under combined stable radial and vertical rotation. We demonstrate that large transient growth occurs for K{sub 2}/k{sub 1} >> 1 and k{sub 3} = 0 or k{sub 1} {approx} k{sub 3}, where k{sub 1}, K{sub 2}, and k{sub 3} are the azimuthal, radial, and vertical components of the initial wave vector, respectively. By using a generalized ''wave-vortex'' decomposition of the disturbance, we show that the large transient energy growth in a Keplerian disk is mainly generated by the transient dynamics of the vortex mode. The analysis of the power spectrum of total (kinetic+potential) energy in the azimuthal or vertical directions shows that the contribution coming from the vortex mode is dominant at large scales, while the contribution coming from the wave mode is important at small scales. These findings may be confirmed by appropriate numerical simulations in the high Reynolds number regime.

  8. THE TORQUING OF CIRCUMNUCLEAR ACCRETION DISKS BY STARS AND THE EVOLUTION OF MASSIVE BLACK HOLES

    International Nuclear Information System (INIS)

    An accreting massive black hole (MBH) in a galactic nucleus is surrounded by a dense stellar cluster. We analyze and simulate numerically the evolution of a thin accretion disk due to its internal viscous torques, due to the frame-dragging torques of a spinning MBH (the Bardeen-Petterson effect), and due to the orbit-averaged gravitational torques by the stars (resonant relaxation). We show that the evolution of the MBH mass accretion rate, the MBH spin growth rate, and the covering fraction of the disk relative to the central ionizing continuum source, are all strongly coupled to the stochastic fluctuations of the stellar potential via the warps that the stellar torques excite in the disk. These lead to fluctuations by factors of up to a few in these quantities over a wide range of timescales, with most of the power on timescales ∼> (M./Md )P(Rd ), where M. and Md are the masses of the MBH and disk, and P is the orbital period at the disk's mass-weighted mean radius Rd. The response of the disk is stronger the lighter it is and the more centrally concentrated the stellar cusp. As proof of concept, we simulate the evolution of the low-mass maser disk in NGC 4258 and show that its observed O(10°) warp can be driven by the stellar torques. We also show that the frame dragging of a massive active galactic nucleus disk couples the stochastic stellar torques to the MBH spin and can excite a jitter of a few degrees in its direction relative to that of the disk's outer regions.

  9. An accretion disk swept up by a powerful thermonuclear X-ray burst

    Science.gov (United States)

    Degenaar, Nathalie

    Type-I X-ray bursts are thermonuclear explosions occurring in the surface layers of accreting neutron stars. These events are powerful probes of the physics of neutron stars and their surrounding accretion flow. Swift recently caught a very energetic type-I X-ray burst from the neutron star IGR J17062-6143 that displayed exceptional features. Firstly, the light curve of the 18 minute long X-ray burst tail shows an episode of 10 minutes with wild X-ray intensity fluctuations. Secondly, X-ray spectral analysis revealed a highly significant emission line around 1 keV, which can be interpreted as an Fe-L shell line caused by the irradiation of cold gas. Finally, the detection of significant absorption lines and edges in the Fe-K band are strongly suggestive of the presence of hot, highly ionized gas along the line of sight. None of these features are present in the persistent emission of the source. The X-ray burst of IGR J17062-6143 shows the first unambiguous detection of atomic features at CCD resolution. The timescale of the strong intensity variations, the velocity width of the Fe-L emission line, and photo-ionization modeling of the Fe-K absorption features each independently point to swept-up gas at a radius of ~1000 km from the neutron star. The unusual X-ray light curve and spectral properties could have plausibly been caused by a disruption of the accretion disk due to the super-Eddington fluxes reached during the X-ray burst.

  10. The Mg II line profile in the Seyfert galaxy NGC 4151: a new outflowing component

    International Nuclear Information System (INIS)

    The paper examines the Mg II lambdalambda2795, 2802 doublet in the Seyfert galaxy NGC 4151 at a higher resolution than has previously been used, searching for velocity systems in absorption and emission. Evidence is presented for a new, narrow, outflowing absorption system in Mg II having a velocity of 825 km s-1 relative to the Sun, - 165 km s-1 relative to the systemic velocity of NGC 4151. For the Mg II and C IV lines a model decomposition of the line profile is presented. (author)

  11. Angiotensin II--nitric oxide interactions in the control of sympathetic outflow in heart failure.

    Science.gov (United States)

    Zucker, I H; Liu, J L

    2000-03-01

    Activation of the sympathetic nervous system is a compensatory mechanism which initially provides support for the circulation in the face of a falling cardiac output. It has been recognized for some time that chronic elevation of sympathetic outflow with the consequent increase in plasma norepinephrine, is counterproductive to improving cardiac function. Indeed, therapeutic targeting to block excessive sympathetic activation in heart failure is becoming a more accepted modality. The mechanism(s) by which sympathetic excitation occurs in the heart failure state are not completely understood. Components of abnormal cardiovascular reflex regulation most likely contribute to this sympatho-excitation. However, central mechanisms which relate to the elaboration of angiotensin II (Ang II) and nitric oxide (NO) may also play an important role. Ang II has been shown to be a sympatho-excitatory peptide in the central nervous system while NO is sympatho-inhibitory. Recent studies have demonstrated that blockade of Ang II receptors of the AT(1) subtype augments arterial baroreflex control of sympathetic nerve activity in the heart failure state, thereby predisposing to a reduction in sympathetic tone. Ang II and NO interact to regulate sympathetic outflow. Blockade of NO production in normal conscious rabbits was only capable of increasing sympathetic outflow when accompanied by a background infusion of Ang II. Conversely, providing a source of NO to rabbits with heart failure reduced sympathetic nerve activity when accompanied by blockade of AT(1) receptors. Chronic heart failure is also associated with a decrease in NO synthesis in the brain as indicated by a reduction in the mRNA for the neuronal isoform (nNOS). Chronic blockade of Ang II receptors can up regulate nNOS expression. In addition, exercise training of rabbits with developing heart failure has been shown to reduce sympathetic tone, decrease plasma Ang II, improve arterial baroreflex function and increase n

  12. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    Science.gov (United States)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  13. Constraints on jets and accretion disks in low luminosity radio galaxies

    Science.gov (United States)

    Tilak, Avanti

    Multiwavelength data has greatly advanced our understanding of AGN and their environments. I study a sample of 21 nearby low luminosity radio galaxies, selected on the basis of distance, radio luminosity, size and Hubble type from the Uppsala Galactic Catalog. I present 1 new and 12 archival Chandra datasets. X-ray imaging of all sources shows nuclear X-ray emission from the AGN. 11 out of these 13 sources also show diffuse emission associated with the host galaxy. I discovered three new X-ray jets. In conjunction with the six known X-ray jets, nine out of the thirteen galaxies exhibit X-ray jet emission. Thus X-ray jets are fairly ubiquitous in low luminosity radio galaxies. The nuclear X-ray spectra are best described by a combination of hot gas and powerlaw models. The nuclear flux and luminosity densities seem well-correlated with their optical and radio counterparts. The correlation is stronger if the contribution from the powerlaw component to the X-ray emission is isolated. Thus the powerlaw component may be the true description of emission from the central region (either from the accretion disk or parsec-scale jet). I investigate the nature of core emission by fitting synchrotron models as well as by comparing disk models with broad-band spectral energy distributions of the AGN. In general, the core emission seems consistent with a synchrotron-jet model. I present VLBA imaging and polarization data for 10 sources in our sample. All 10 sources show corejet morphology, consistent with relativistic jet velocities on parsec scales. The jets are expected to decelerate on scales similar to the extent of the X-ray jets. Assuming synchrotron emission, it is possible that some fraction of the bulk kinetic energy of the jets is being channeled for reacceleration of electrons within the jet, necessary to produce the observed X-ray emission. In the VLBA data, 5 out of 10 sources show polarization. The polarization observations are broadly consistent with unification

  14. Hot accretion disks with pairs: Effects of magnetic field and thermal cyclocsynchrotron radiation

    Science.gov (United States)

    Kusunose, Masaaki; Zdziarski, Andrzej A.

    1994-01-01

    We show the effects of thermal cyclosynchrotron radiation and magnetic viscosity on the structure of hot, two-temperature accretion disks. Magnetic field, B, is assumed to be randomly oriented and the ratio of magnetic pressure to either gas pressure, alpha = P(sub mag)/P(sub gas), or the sum of the gas and radiation pressures, alpha = (P(sub mag)/P(sub gas) + P(sub rad)), is fixed. We find those effects do not change the qualitative properties of the disks, i.e., there are still two critical accretion rates related to production of e(sup +/-) pairs, (M dot)((sup U)(sub cr)) and (M dot)((sup L)(sub cr)), that affect the number of local and global disk solutions, as recently found by Bjoernsson and Svensson for the case with B = 0. However, a critical value of the alpha-viscosity parameter above which those critical accretion rates disappear becomes smaller than alpha(sub cr) = 1 found in the case of B = 0, for P(sub mag) = alpha(P(sub gas) + P(sub rad)). If P(sub mag) = alpha P(sub gas), on the other hand, alpha(sub cr) is still about unity. Moreover, when Comptonized cyclosynchrotron radiation dominates Comptonized bremsstrahlung, radiation from the disk obeys a power law with the energy spectral index of approximately 0.5, in a qualitative agreement with X-ray observations of active galactic nuclei (AGNS) and Galactic black hole candidates. We also extend the hot disk solutions for P(sub mag) = alpha(P(sub gas) + P(sub rad)) to the effectively optically thick region, where they merge with the standard cold disk solutions. We find that the mapping method by Bjoernsson and Svensson gives a good approximation to the disk structure in the hot region and show where it breaks in the transition region. Finally, we find a region in the disk parameter space with no solutions due to the inability of Coulomb heating to supply enough energy to electrons.

  15. Magnetic viscosity by localized shear flow instability in magnetized accretion disks

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, R.; Tajima, T.

    1995-01-01

    Differentially rotating disks are subject to the axisymmetric instability for perfectly conducting plasma in the presence of poloidal magnetic fields. For nonaxisymmetric perturbations, the authors find localized unstable eigenmodes whose eigenfunction is confined between two Alfven singularities at {omega}{sub d} = {+-} {omega}{sub A}, where {omega}{sub d} is the Doppler-shifted wave frequency, and {omega}{sub A} = k{parallel}v{sub A} is the Alfven frequency. The radial width of the unstable eigenfunction is {Delta}x {approximately} {omega}{sub A}/(Ak{sub y}), where A is the Oort`s constant, and k{sub y} is the azimuthal wave number. The growth rate of the fundamental mode is larger for smaller value of k{sub y}/k{sub z}. The maximum growth rate when k{sub y}/k{sub z} {approximately} 0.1 is {approximately} 0.2{Omega} for the Keplerian disk with local angular velocity {Omega}. It is found that the purely growing mode disappears when k{sub y}/k{sub z} > 0.12. In a perfectly conducting disk, the instability grows even when the seed magnetic field is infinitesimal. Inclusion of the resistivity, however, leads to the appearance of an instability threshold. When the resistivity {eta} depends on the instability-induced turbulent magnetic fields {delta}B as {eta}([{delta}B{sup 2}]), the marginal stability condition self-consistently determines the {alpha} parameter of the angular momentum transport due to the magnetic stress. For fully ionized disks, the magnetic viscosity parameter {alpha}{sub B} is between 0.001 and 1. The authors` three-dimensional MHD simulation confirms these unstable eigenmodes. It also shows that the {alpha} parameter observed in simulation is between 0.01 and 1, in agreement with theory. The observationally required smaller {alpha} in the quiescent phase of accretion disks in dwarf novae may be explained by the decreased ionization due to the temperature drop.

  16. Computations of Photon Orbits Emitted by Flares at the ISCO of Accretion Disks Around Rotating Black Holes

    Science.gov (United States)

    Kazanas, Demosthenes; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the ISCO of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. $a > 0.94 M$, following a flare at ISCO, a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of $\\Delta T \\simeq 14 M$. This constant time delay, then, leads to the presence of a QPO in the source power spectrum at a frequency $\

  17. High-Resolution X-Ray Spectroscopy of the Accretion Disk Corona Source 4U 1822-37

    CERN Document Server

    Cottam, J; Kahn, S M; Paerels, F B S; Liedahl, D A; Cottam, Jean; Sako, Masao; Kahn, Steven M.; Paerels, Frits; Liedahl, Duane A.

    2001-01-01

    We present a preliminary analysis of the X-ray spectrum of the accretion disk corona source, 4U 1822-37, obtained with the High Energy Transmission Grating Spectrometer onboard the Chandra X-ray Observatory. We detect discrete emission lines from photoionized iron, silicon, magnesium, neon, and oxygen, as well as a bright iron fluorescence line. Phase-resolved spectroscopy suggests that the recombination emission comes from an X-ray illuminated bulge located at the predicted point of impact between the disk and the accretion stream. The fluorescence emission originates in an extended region on the disk that is illuminated by light scattered from the corona.

  18. Disk-Driven Outflows in AGNs

    CERN Document Server

    Koenigl, A

    2003-01-01

    Analysis of spectral absorption features has led to the identification of several distinct outflow components in AGNs. The outflowing gas is evidently photoionized by the nuclear continuum source and originates in the accretion flow toward the central black hole. The most likely driving mechanisms are continuum and line radiation pressure and magnetic stresses. The theoretical modeling of these outflows involves such issues as: (1) Which of the above mechanisms actually contributes in each case? (2) How is the gas uplifted from the underlying accretion disk? (3) How can the intense central continuum radiation be shielded to allow efficient radiative driving? (4) Is the outflow continuous or clumpy, and, if clumpy, what is the nature and dynamical state of the ``clouds''? This review summarizes recent theoretical and observational results that bear on these questions and outlines prospects for further progress.

  19. A New Paradigm for Gamma Ray Bursts: Long Term Accretion Rate Modulation by an External Accretion Disk

    Science.gov (United States)

    Cannizzo, John; Gehrels, Neil

    2009-01-01

    We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.

  20. Non-LTE, Relativistic Accretion Disk Fits to 3C~273 and the Origin of the Lyman Limit Spectral Break

    CERN Document Server

    Blaes, Omer M; Agol, E; Krolik, J H; Blaes, Omer; Hubeny, Ivan; Agol, Eric; Krolik, Julian H.

    2001-01-01

    We fit general relativistic, geometrically thin accretion disk models with non-LTE atmospheres to near simultaneous multiwavelength data of 3C~273, extending from the optical to the far ultraviolet. Our model fits show no flux discontinuity associated with a hydrogen Lyman edge, but they do exhibit a spectral break which qualitatively resembles that seen in the data. This break arises from relativistic smearing of Lyman emission edges which are produced locally at tens of gravitational radii in the disk. We discuss the possible effects of metal line blanketing on the model spectra, as well as the substantial Comptonization required to explain the observed soft X-ray excess. Our best fit accretion disk model underpredicts the near ultraviolet emission in this source, and also has an optical spectrum which is too red. We discuss some of the remaining physical uncertainties, and suggest in particular that an extension of our models to the slim disk regime and/or including nonzero magnetic torques across the inne...

  1. Testing the "no-hair" property of black holes with X-ray observations of accretion disks

    CERN Document Server

    Moore, Christopher J

    2015-01-01

    Accretion disks around black holes radiate a significant fraction of the rest mass of the accreting material in the form of thermal radiation from within a few gravitational radii of the black hole ($ r \\lesssim 20 G M / c^{2}$). In addition, the accreting matter may also be illuminated by hard X-rays from the surrounding plasma which adds fluorescent transition lines to the emission. This radiation is emitted by matter moving along geodesics in the metric, therefore the strong Doppler and gravitational redshifts observed in the emission encode information about the strong gravitational field around the black hole. In this paper the possibility of using the X-ray emission as a strong field test of General Relativity is explored by calculating the spectra for both the transition line and thermal emission from a thin accretion disk in a series of parametrically deformed Kerr metrics. In addition the possibility of constraining a number of known black hole spacetimes in alternative theories of gravity is conside...

  2. Numerical Simulation of Interaction between an L1 Stream and an Accretion Disk in a Close Binary System

    CERN Document Server

    Fujiwara, H; Nagae, T; Matsuda, T; Fujiwara, Hidekazu; Makita, Makoto; Nagae, Takizo; Matsuda, Takuya

    2001-01-01

    The hydrodynamic behavior of an accretion disk in a close binary system is numerically simulated. Calculation is made for a region including the compact star and the gas-supplying companion. The equation of state is that of an ideal gas characterized by the specific heat ratio $\\gamma$. Two cases with $\\gamma$ of 1.01 and 1.2 are studied. Our calculations show that the gas, flowing from the companion via a Lagrangian L1 point towards the accretion disk, forms a fine gas beam (L1 stream), which penetrates into the disk. No hot spot therefore forms in these calculations. Another fact discovered is that the gas rotating with the disk forms, on collision with the L1 stream, a bow shock wave, which may be called an L1 shock. The disk becomes hot because the L1 shock heats the disk gas in the outer parts of the disk, so that the spiral shocks wind loosely even with $\\gamma=1.01$. The L1 shock enhances the non-axisymmetry of the density distribution in the disk, and therefore the angular momentum transfer by the tid...

  3. Nustar and Suzaku X-Ray Spectroscopy Of Ngc 4151: Evidence For Reflection From The Inner Accretion Disk

    DEFF Research Database (Denmark)

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.;

    2015-01-01

    We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN......) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity...... the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. We discuss various physical scenarios for the IDR model and we find that a compact...

  4. Dynamical evolution of neutrino--cooled accretion disks: detailed microphysics, lepton-driven convection, and global energetics

    CERN Document Server

    Lee, W H; Page, D; Lee, William H.; Ramirez-Ruiz, Enrico; Page, Dany

    2005-01-01

    We present a detailed, two dimensional numerical study of the microphysical conditions and dynamical evolution of accretion disks around black holes when neutrino emission is the main source of cooling. Such structures are likely to form after the gravitational collapse of massive rotating stellar cores, or the coalescence of two compact objects in a binary (e.g., the Hulse--Taylor system). The physical composition is determined self consistently by considering two regimes: neutrino--opaque and neutrino--transparent, with a detailed equation of state which takes into account neutronization, nuclear statistical equilibrium of a gas of free nucleons and alpha particles, blackbody radiation and a relativistic Fermi gas of arbitrary degeneracy. Various neutrino emission processes are considered, with electron/positron capture onto free nucleons providing the dominant contribution to the cooling rate. We find that important temporal and spatial scales, related to the optically thin/optically thick transition are p...

  5. NuSTAR and XMM-Newton observations of NGC 1365: Extreme absorption variability and a constant inner accretion disk

    DEFF Research Database (Denmark)

    Walton, D. J.; Risaliti, G.; Harrison, F. A.;

    2014-01-01

    , partially covering absorption to account for the vastly different absorption states that were observed. Each of the four observations is treated independently to test the consistency of the results obtained for the black hole spin and the disk inclination, which should not vary on observable timescales. We...... find both the spin and the inclination determined from the reflection spectrum to be consistent, confirming that NGC 1365 hosts a rapidly rotating black hole; in all cases the dimensionless spin parameter is constrained to be a* > 0.97 (at 90% statistical confidence or better)....... time. Despite the diverse range of absorption states, each of the observations displays the same characteristic signatures of relativistic reflection from the inner accretion disk. Through time-resolved spectroscopy, we find that the strength of the relativistic iron line and the Compton reflection...

  6. Relativistic iron lines in accretion disks: the contribution of higher order images in the strong deflection limit

    CERN Document Server

    Aldi, G F

    2016-01-01

    The shape of relativistic iron lines observed in spectra of candidate black holes carry the signatures of the strong gravitational fields in which the accretion disks lie. These lines result from the sum of the contributions of all images of the disk created by gravitational lensing, with the direct and first-order images largely dominating the overall shapes. Higher order images created by photons tightly winding around the black holes are often neglected in the modeling of these lines, since they require a substantially higher computational effort. With the help of the strong deflection limit, we present the most accurate semi-analytical calculation of these higher order contributions to the iron lines for Schwarzschild black holes. We show that two regimes exist depending on the inclination of the disk with respect to the line of sight. Many useful analytical formulae can be also derived in this framework.

  7. Effects of the energy equation in studies of limit-cycle behaviors of black hole accretion disks

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The inconsistency of the energy equation used in the literature is pointed out and a new consistent energy equation is given. With this new energy equation, calculations are made for the limit-cycle behaviors of thermally unstable accretion disks around black holes. From the comparison of our numerical results with those obtained using the inconsistent energy equation, it is found that the inconsistent energy equation undervalues the temperature and overvalues the effective optical depth when the accreted gas becomes effectively optically thin. Thus, it is dangerous if the inconsistent energy equation is used in the studies of very hot and optically thin accretion flows such as advection-dominated accretion flows (ADAFs), and our new energy equation is likely to be a better alternative.

  8. Multi-epoch Sub-arcsecond [Fe II] Spectroimaging of the DG Tau Outflows with NIFS. II. On the Nature of the Bipolar Outflow Asymmetry

    CERN Document Server

    White, Marc C; McGregor, Peter J; Salmeron, Raquel

    2014-01-01

    The origin of bipolar outflow asymmetry in young stellar objects (YSOs) remains poorly understood. It may be due to an intrinsically asymmetric outflow launch mechanism, or it may be caused by the effects of the ambient medium surrounding the YSO. Answering this question is an important step in understanding outflow launching. We have investigated the bipolar outflows driven by the T Tauri star DG Tauri on scales of hundreds of AU, using the Near-infrared Integral Field Spectrograph (NIFS) on Gemini North. The approaching outflow consists of a well-collimated jet, nested within a lower-velocity disc wind. The receding outflow is composed of a single-component bubble-like structure. We analyse the kinemat- ics of the receding outflow using kinetic models, and determine that it is a quasi-stationary bubble with an expanding internal velocity field. We propose that this bubble forms because the receding counterjet from DG Tau is obstructed by a clumpy ambient medium above the circumstellar disc surface, based on...

  9. X-ray Insights into the Nature of PHL 1811 Analogs and Weak Emission-line Quasars: Unification with a Geometrically Thick Accretion Disk?

    Science.gov (United States)

    Luo, B.; Brandt, W. N.; Hall, P. B.; Wu, Jianfeng; Anderson, S. F.; Garmire, G. P.; Gibson, R. R.; Plotkin, R. M.; Richards, G. T.; Schneider, D. P.; Shemmer, O.; Shen, Yue

    2015-06-01

    We present an X-ray and multiwavelength study of 33 weak emission-line quasars (WLQs) and 18 quasars that are analogs of the extreme WLQ, PHL 1811, at z≈ 0.5-2.9. New Chandra 1.5-9.5 ks exploratory observations were obtained for 32 objects while the others have archival X-ray observations. Significant fractions of these luminous type 1 quasars are distinctly X-ray weak compared to typical quasars, including 16 (48%) of the WLQs and 17 (94%) of the PHL 1811 analogs with average X-ray weakness factors of 17 and 39, respectively. We measure a relatively hard ({Γ }=1.16-0.32+0.37) effective power-law photon index for a stack of the X-ray weak subsample, suggesting X-ray absorption, and spectral analysis of one PHL 1811 analog, J1521+5202, also indicates significant intrinsic X-ray absorption. We compare composite Sloan Digital Sky Survey spectra for the X-ray weak and X-ray normal populations and find several optical-UV tracers of X-ray weakness, e.g., Fe ii rest-frame equivalent width (REW) and relative color. We describe how orientation effects under our previously proposed “shielding-gas” scenario can likely unify the X-ray weak and X-ray normal populations. We suggest that the shielding gas may naturally be understood as a geometrically thick inner accretion disk that shields the broad line region from the ionizing continuum. If WLQs and PHL 1811 analogs have very high Eddington ratios, the inner disk could be significantly puffed up (e.g., a slim disk). Shielding of the broad emission-line region by a geometrically thick disk may have a significant role in setting the broad distributions of C iv REW and blueshift for quasars more generally.

  10. Self-shadowing effects of slim accretion disks in active galactic nuclei: the diverse appearance of the broad-line region

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian-Min; Qiu, Jie; Du, Pu [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100875 (China)

    2014-12-10

    Supermassive black holes in active galactic nuclei (AGNs) undergo a wide range of accretion rates, which lead to diversity of appearance. We consider the effects of anisotropic radiation from accretion disks on the broad-line region (BLR) from the Shakura-Sunyaev regime to slim disks with super-Eddington accretion rates. The geometrically thick funnel of the inner region of slim disks produces strong self-shadowing effects that lead to very strong anisotropy of the radiation field. We demonstrate that the degree of anisotropy of the radiation fields grows with increasing accretion rate. As a result of this anisotropy, BLR clouds receive different spectral energy distributions depending on their location relative to the disk, resulting in the diverse observational appearance of the BLR. We show that the self-shadowing of the inner parts of the disk naturally produces two dynamically distinct regions of the BLR, depending on accretion rate. These two regions manifest themselves as kinematically distinct components of the broad Hβ line profile with different line widths and fluxes, which jointly account for the Lorentzian profile generally observed in narrow-line Seyfert 1 galaxies. In the time domain, these two components are expected to reverberate with different time lags with respect to the varying ionizing continuum, depending on the accretion rate and the viewing angle of the observer. The diverse appearance of the BLR due to the anisotropic ionizing energy source can be tested by reverberation mapping of Hβ and other broad emission lines (e.g., Fe II), providing a new tool to diagnose the structure and dynamics of the BLR. Other observational consequences of our model are also explored.

  11. MOSFIRE and LDSS3 spectroscopy for an [O II] Blob at z = 1.18: gas outflow and energy source

    Energy Technology Data Exchange (ETDEWEB)

    Harikane, Yuichi; Ouchi, Masami; Yuma, Suraphong; Ono, Yoshiaki [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Rauch, Michael [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Nakajima, Kimihiko, E-mail: hari@icrr.u-tokyo.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2014-10-20

    We report our Keck/MOSFIRE and Magellan/Low-Dispersion Survey Spectrograph spectroscopy for an [O II] Blob, O II B 10, that is a high-z galaxy with spatially extended [O II] λλ3726, 3729 emission over 30 kpc recently identified by a Subaru large-area narrowband survey. The systemic redshift of O II B 10 is z = 1.18 securely determined with [O III] λλ4959, 5007 and Hβ emission lines. We identify Fe II λ2587 and Mg II λλ2796, 2804 absorption lines blueshifted from the systemic redshift by 80 ± 50 and 260 ± 40 km s{sup –1}, respectively, which indicates gas outflow from O II B 10 with the velocity of ∼80-260 km s{sup –1}. This outflow velocity is comparable with the escape velocity, 250 ± 140 km s{sup –1}, estimated under the assumption of a singular isothermal halo potential profile. Some fraction of the outflowing gas could escape from the halo of O II B 10, suppressing O II B 10's star-formation (SF) activity. We estimate a mass loading factor, η, that is a ratio of mass outflow rate to SF rate, and obtain η > 0.8 ± 0.1, which is relatively high compared with low-z starbursts including U/LIRGs and active galactic nuclei (AGNs). The major energy source of the outflow is unclear with the available data. Although no signature of AGNs is found in the X-ray data, O II B 10 falls in the AGN/star-forming composite region in the line diagnostic diagrams. It is possible that the outflow is powered by SF and a type-2 AGN with narrow FWHM emission line widths of 70-130 km s{sup –1}. This is the first detailed spectroscopic study of oxygen-line blobs that includes analyses of the escape velocity, the mass loading factor, and the presence of an AGN, and is a significant step to understanding the nature of oxygen-line blobs and the relation between gas outflow and SF quenching at high redshift.

  12. Study on the accretion of massive young stellar objects using the outflow features around ultracompact H II regions

    Science.gov (United States)

    Shinn, Jong-Ho; Hoare, Melvin; Lumsden, Stuart

    2014-02-01

    The formation process of massive stars (M > 8 Ms) is still unclear in many aspects. One topic is the accretion process of massive young stellar objects (MYSO). The infalling material must lose its angular momentum to be accreted onto the central object. If not, the angular momentum is piled up on the central object, and it would rotate ever-increasing velocity. The outflow enables the removal of angular momentum, and hence it visualizes the accretion history. By investigating these "footprint" outflow features around "late-stage" MYSO, we can study the accretion process of MYSO. Such outflow features were imaged in [Fe II] 1.64 um around the "late-stage" MYSO, known as ultracompact H II region (UCHII). However, the low imaging resolution (0.8') limits detailed study of accretion process. Here we propose imaging observations of seven selected UCHIIs in [Fe II] 1.64 um, J, H, and K, with NIRI equipped with ALTAIR LGS AO, expecting the imaging resolution of 0.1". These data would help to clarify the accretion process of MYSO, e.g. the outflow morphology (jet-like or wide-open), the outflow mass loss rate, the stellar content and multiplicity of the target UCHII, etc.

  13. Evidence for Ultra-fast Outflows in Radio-quiet Active Galactic Nuclei. II. Detailed Photoionization Modeling of Fe K-shell Absorption Lines

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.

    2011-11-01

    provide important clues on the connection between accretion disks, winds, and jets.

  14. Stratified magnetically driven accretion-disk winds and their relations to jets

    Energy Technology Data Exchange (ETDEWEB)

    Fukumura, Keigo [University of Maryland, Baltimore County (UMBC/CRESST), Baltimore, MD 21250 (United States); Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Behar, Ehud [Department of Physics, Technion, Haifa 32000 (Israel); Contopoulos, Ioannis, E-mail: fukumukx@jmu.edu [Research Center for Astronomy, Academy of Athens, Athens 11527 (Greece)

    2014-01-10

    We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, θ), ionization parameter ξ(r, θ), and velocity structure v(r, θ) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvénic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfvén surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, ξ, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.

  15. Stratified Magnetically Driven Accretion-disk Winds and Their Relations to Jets

    Science.gov (United States)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2014-01-01

    We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, θ), ionization parameter ξ(r, θ), and velocity structure v(r, θ) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvénic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfvén surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, ξ, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.

  16. Rotational Structure and Outflow in the Infrared Dark Cloud 18223-3

    OpenAIRE

    Fallscheer, C.; Beuther, H.; Zhang, Q; Keto, E; Sridharan, T. K.

    2009-01-01

    We examine an Infrared Dark Cloud (IRDC) at high spatial resolution as a means to study rotation, outflow, and infall at the onset of massive star formation. Submillimeter Array observations combined with IRAM 30 meter data in 12CO(2--1) reveal the outflow orientation in the IRDC 18223-3 region, and PdBI 3 mm observations confirm this orientation in other molecular species. The implication of the outflow's presence is that an accretion disk is feeding it, so using high density tracers such as...

  17. Research on the Radiation of Active Galactic Nuclei Accretion Disk%活动星系核吸积盘辐射的研究

    Institute of Scientific and Technical Information of China (English)

    李刚; 刘兴俊; 伍林

    2013-01-01

    This paper considers effects of the accretion disks radiation with different mass accretion rate,different dimensionless rotate parameters a (central black hole is Kerr black hole),the constraints of the minimum stable orbit radius (produces a torque),the magnetic field existing on the surface of accretion disk (the coupling of jets radiation and the accretion disks radiation) based on the standard radiation accretion disk model.It can be concluded that black hole type,mass accretion rate,dimensionless black hole rotating parameters,the radio of jet radiation energy and accretion disk radiation energy,and radiation efficiency parameters have certain effect on accretion disks radiation through theory graphs.%在标准吸积盘辐射模型的基础上,考虑了不同的质量吸积率、不同的无量纲旋转参数a(中心黑洞为克尔黑洞)、最小稳定轨道半径处存在的约束(产生一个矩)和吸积盘表面磁场的存在(喷流辐射与吸积盘辐射之间存在一定的耦合)对吸积盘辐射的影响.结果表明,中心黑洞为正旋转的克尔黑洞比史瓦西黑洞辐射的峰值及峰值频率大,负旋转的克尔黑洞比史瓦西黑洞辐射的峰值及峰值频率小,质量吸积率越大峰值和峰值频率变大,无量纲黑洞旋转参数a越大峰值与峰值频率越大,喷流辐射能量和吸积盘辐射能量之比越大峰值和峰值频率越小,辐射效率越大峰值和峰值频率越大.

  18. Stratified Magnetically-Driven Accretion-Disk Winds and Their Relations to Jets

    CERN Document Server

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2013-01-01

    We explore the poloidal structure of two-dimensional (2D) MHD winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly-ionized ultra-fast outflows (UFOs) in AGN, in a single unifying approach. We present the density $n(r,\\theta)$, ionization parameter $\\xi(r,\\theta)$, and velocity structure $v(r,\\theta)$ of such ionized winds for typical values of their fluid-to-magnetic flux ratio, $F$, and specific angular momentum, $H$, for which wind solutions become super-\\Alfvenic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller $H$ show a poloidal geometry of narrower opening angles with their \\Alfven\\ surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes ...

  19. Advection/Diffusion of Large-Scale B-Field in Accretion Disks

    CERN Document Server

    Lovelace, R V E; Bisnovatyi-Kogan, G S

    2009-01-01

    Activity of the nuclei of galaxies and stellar mass systems involving disk accretion to black holes is thought to be due to (1) a small-scale turbulent magnetic field in the disk (due to the magneto-rotational instability or MRI) which gives a large viscosity enhancing accretion, and (2) a large-scale magnetic field which gives rise to matter outflows and/or electromagnetic jets from the disk which also enhances accretion. An important problem with this picture is that the enhanced viscosity is accompanied by an enhanced magnetic diffusivity which acts to prevent the build up of a significant large-scale field. Recent work has pointed out that the disk's surface layers are non-turbulent and thus highly conducting (or non-diffusive) because the MRI is suppressed high in the disk where the magnetic and radiation pressures are larger than the thermal pressure. Here, we calculate the vertical ($z$) profiles of the stationary accretion flows (with radial and azimuthal components), and the profiles of the large-sca...

  20. Advection/diffusion of large scale magnetic field in accretion disks

    Directory of Open Access Journals (Sweden)

    R. V. E. Lovelace

    2009-02-01

    Full Text Available Activity of the nuclei of galaxies and stellar mass systems involving disk accretion to black holes is thought to be due to (1 a small-scale turbulent magnetic field in the disk (due to the magneto-rotational instability or MRI which gives a large viscosity enhancing accretion, and (2 a large-scale magnetic field which gives rise to matter outflows and/or electromagnetic jets from the disk which also enhances accretion. An important problem with this picture is that the enhanced viscosity is accompanied by an enhanced magnetic diffusivity which acts to prevent the build up of a significant large-scale field. Recent work has pointed out that the disk's surface layers are non-turbulent and thus highly conducting (or non-diffusive because the MRI is suppressed high in the disk where the magnetic and radiation pressures are larger than the thermal pressure. Here, we calculate the vertical (z profiles of the stationary accretion flows (with radial and azimuthal components, and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity due to the MRI and the fact that the turbulence vanishes at the surface of the disk. We derive a sixth-order differential equation for the radial flow velocity vr(z which depends mainly on the midplane thermal to magnetic pressure ratio β>1 and the Prandtl number of the turbulence P=viscosity/diffusivity. Boundary conditions at the disk surface take into account a possible magnetic wind or jet and allow for a surface current in the highly conducting surface layer. The stationary solutions we find indicate that a weak (β>1 large-scale field does not diffuse away as suggested by earlier work.

  1. Stochastic Resonance of Accretion Disk and the Persistent Low-Frequency Quasi-Periodic Oscillations in Black Hole X-ray Binaries

    Indian Academy of Sciences (India)

    Z. Y. Wang; P. J. Chen; D. X. Wang; L. Y. Zhang

    2013-03-01

    In this paper, we use a Langevin type equation with a damping term and stochastic force to describe the stochastic oscillations on the vertical direction of the accretion disk around a black hole, and calculate the luminosity and power spectral density (PSD) for an oscillating disk. Then we discuss the stochastic resonance (SR) phenomenon in PSD curves for different parameter values of viscosity coefficient, accretion rate, mass of black hole and outer radius of the disk. The results show that our simulated PSD curves of luminosity for disk oscillation have the same profile as the observed PSD of black hole X-ray binaries (BHXBs) in the lowhard state, and the SR of accretion disk oscillation may be an alternative interpretation of the persistent low-frequency quasi-periodic oscillations (LFQPOs).

  2. High-order Godunov schemes for global 3D MHD simulations of accretion disks. I. Testing the linear growth of the magneto-rotational instability

    Science.gov (United States)

    Flock, M.; Dzyurkevich, N.; Klahr, H.; Mignone, A.

    2010-06-01

    We assess the suitability of various numerical MHD algorithms for astrophysical accretion disk simulations with the PLUTO code. The well-studied linear growth of the magneto-rotational instability is used as the benchmark test for a comparison between the implementations within PLUTO and against the ZeusMP code. The results demonstrate the importance of using an upwind reconstruction of the electro-motive force (EMF) in the context of a constrained transport scheme, which is consistent with plane-parallel, grid-aligned flows. In contrast, constructing the EMF from the simple average of the Godunov fluxes leads to a numerical instability and the unphysical growth of the magnetic energy. We compare the results from 3D global calculations using different MHD methods against the analytical solution for the linear growth of the MRI, and discuss the effect of numerical dissipation. The comparison identifies a robust and accurate code configuration that is vital for realistic modeling of accretion disk processes.

  3. A high-order Godunov scheme for global 3D MHD accretion disks simulations. I. The linear growth regime of the magneto-rotational instability

    CERN Document Server

    Flock, M; Klahr, H; Mignone, A

    2009-01-01

    We employ the PLUTO code for computational astrophysics to assess and compare the validity of different numerical algorithms on simulations of the magneto-rotational instability in 3D accretion disks. In particular we stress on the importance of using a consistent upwind reconstruction of the electro-motive force (EMF) when using the constrained transport (CT) method to avoid the onset of numerical instabilities. We show that the electro-motive force (EMF) reconstruction in the classical constrained transport (CT) method for Godunov schemes drives a numerical instability. The well-studied linear growth of magneto-rotational instability (MRI) is used as a benchmark for an inter-code comparison of PLUTO and ZeusMP. We reproduce the analytical results for linear MRI growth in 3D global MHD simulations and present a robust and accurate Godunov code which can be used for 3D accretion disk simulations in curvilinear coordinate systems.

  4. The Effect of X-ray Irradiation on the Time Dependent Behaviour of Accretion Disks with Stochastic Perturbations

    CERN Document Server

    Maqbool, Bari; Iqbal, Naseer; Ahmad, Naveel

    2015-01-01

    The UV emission from X-ray binaries, is more likely to be produced by reprocessing of X-rays by the outer regions of an accretion disk. The structure of the outer disk may be altered due to the presence of X-ray irradiation and we discuss the physical regimes where this may occur and point out certain X-ray binaries where this effect may be important. The long term X-ray variability of these sources is believed to be due to stochastic fluctuations in the outer disk, which propagate inwards giving rise to accretion rate variation in the X-ray producing inner regions. The X-ray variability will induce structural variations in the outer disk which in turn may affect the inner accretion rate. To understand the qualitative behaviour of the disk in such a scenario, we adopt simplistic assumptions that the disk is fully ionised and is not warped. We develop and use a time dependent global hydrodynamical code to study the effect of a sinusoidal accretion rate perturbation introduced at a specific radius. The response...

  5. Probing the accretion disk and central engine structure of NGC4258 with Suzaku and XMM-Newton observations

    CERN Document Server

    Reynolds, Christopher S; Markoff, Sera; Tueller, Jack; Wilms, Joern; Young, Andrew J

    2008-01-01

    [abridged] We present an X-ray study of the low-luminosity active galactic nucleus (AGN) in NGC4258 using data from Suzaku, XMM-Newton, and the Swift/BAT survey. We find that signatures of X-ray reprocessing by cold gas are very weak in the spectrum of this Seyfert-2 galaxy; a weak, narrow fluorescent-Kalpha emission line of cold iron is robustly detected in both the Suzaku and XMM-Newton spectra but at a level much below that of most other Seyfert-2 galaxies. We conclude that the circumnuclear environment of this AGN is very "clean" and lacks the Compton-thick obscuring torus of unified Seyfert schemes. From the narrowness of the iron line, together with evidence for line flux variability between the Suzaku and XMM-Newton observations, we constrain the line emitting region to be between $3\\times 10^3r_g$ and $4\\times 10^4r_g$ from the black hole. We show that the observed properties of the iron line can be explained if the line originates from the surface layers of a warped accretion disk. In particular, we ...

  6. Applying a Hydrodynamical Treatment of Stream Flow and Accretion Disk Formation in WASP-12/b Exoplanetary System

    Science.gov (United States)

    Weaver, Ian; Lopez, Aaron; Macias, Phil

    2016-01-01

    WASP-12b is a hot Jupiter orbiting dangerously close to its parent star WASP-12 at a radius 1/44th the distance between the Earth and the Sun, or roughly 16 times closer than Mercury. WASP-12's gravitational influence at this incredibly close proximity generates tidal forces on WASP-12b that distort the planet into an egg-like shape. As a result, the planet's surface overflows its Roche lobe through L1, transferring mass to the host star at a rate of 270 million metric tonnes per second. This mass transferring stream forms an accretion disk that transits the parent star, which aids sensitive instruments, such as the Kepler spacecraft, whose role is to examine the periodic dimming of main sequence stars in order to detect ones with orbiting planets. The quasi-ballistic stream trajectory is approximated by that of a massless point particle released from analogous initial conditions in 2D. The particle dynamics are shown to deviate negligibly across a broad range of initial conditions, indicating applicability of our model to "WASP-like" systems in general. We then apply a comprehensive fluid treatment by way of hydrodynamical code FLASH in order to directly model the behavior of mass transfer in a non-inertial reference frame and subsequent disk formation. We hope to employ this model to generate virtual spectroscopic signatures and compare them against collected light curve data from the Hubble Space Telescope's Cosmic Origins Spectrograph (COS).

  7. X-Ray Reflected Spectra from Accretion Disk Models. III. A Complete Grid of Ionized Reflection Calculations

    Science.gov (United States)

    García, J.; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Wilms, J.; Eikmann, W.

    2013-05-01

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code XILLVER that incorporates new routines and a richer atomic database. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Γ of the illuminating radiation, the ionization parameter ξ at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A Fe relative to the solar value. The ranges of the parameters covered are 1.2 law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file (http://hea-www.cfa.harvard.edu/~javier/xillver/) suitable for the analysis of X-ray observations via the atable model in XSPEC. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of XILLVER.

  8. X-ray Reflected Spectra from Accretion Disk Models. III. A Complete Grid of Ionized Reflection Calculations

    Science.gov (United States)

    Garcia, J.; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Wilms, J.; Ekmann, W.

    2013-01-01

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code xillver that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Gamma of the illuminating radiation, the ionization parameter zeta at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A(sub Fe) relative to the solar value. The ranges of the parameters covered are: 1.2 reflection spectra are provided in a single FITS file suitable for the analysis of X-ray observations via the atable model in xspec. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of xillver.

  9. The accretion disk in the post period-minimum cataclysmic variable SDSS J080434.20+510349.2

    CERN Document Server

    Zharikov, S; Aviles, A; Michel, R; Gonzalez-Buitrago, D; Garcia-Diaz, Ma T

    2012-01-01

    This study of SDSS0804 is primarily concerned with the double-hump shape in the light curve and its connection with the accretion disk in this bounce-back system. Time-resolved photometric and spectroscopic observations were obtained to analyze the behavior of the system between superoutbursts. A geometric model of a binary system containing a disk with two outer annuli spiral density waves was applied to explain the light curve and the Doppler tomography. Observations were carried out during 2008-2009, after the object's magnitude decreased to V~17.7(0.1) from the March 2006 eruption. The light curve clearly shows a sinusoid-like variability with a 0.07 mag amplitude and a 42.48 min periodicity, which is half of the orbital period of the system. In Sept. 2010, the system underwent yet another superoutburst and returned to its quiescent level by the beginning of 2012. This light curve once again showed a double-humps, but with a significantly smaller ~0.01mag amplitude. Other types of variability like a "mini...

  10. THE ROLE OF THE ACCRETION DISK, DUST, AND JETS IN THE IR EMISSION OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Mason, R. E. [Gemini Observatory, Northern Operations Center, 670 N. A' ohoku Place, Hilo, HI 96720 (United States); Ramos Almeida, C. [Instituto de Astrofísica de Canarias, C/Vía Láctea, s/n, E-38205 La Laguna, Tenerife (Spain); Levenson, N. A. [Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena (Chile); Nemmen, R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Alonso-Herrero, A., E-mail: rmason@gemini.edu [Instituto de Física de Cantabria, CSIC-UC, Avenida de los Castros s/n, E-39005 Santander (Spain)

    2013-11-10

    We use recent high-resolution infrared (IR; 1-20 μm) photometry to examine the origin of the IR emission in low-luminosity active galactic nuclei (LLAGN). The data are compared with published model fits that describe the spectral energy distribution (SED) of LLAGN in terms of an advection-dominated accretion flow, truncated thin accretion disk, and jet. The truncated disk in these models is usually not luminous enough to explain the observed IR emission, and in all cases its spectral shape is much narrower than the broad IR peaks in the data. Synchrotron radiation from the jet appears to be important in very radio-loud nuclei, but the detection of strong silicate emission features in many objects indicates that dust must also contribute. We investigate this point by fitting the IR SED of NGC 3998 using dusty torus and optically thin (τ{sub mid-IR} ∼ 1) dust shell models. While more detailed modeling is necessary, these initial results suggest that dust may account for the nuclear mid-IR emission of many LLAGN.

  11. A Low-Mass Main-Sequence Star and Accretion Disk in the Very Faint Transient M15 X-3

    CERN Document Server

    Arnason, Robin; Heinke, Craig; Cohn, Haldan; Lugger, Phyllis

    2015-01-01

    We present near-simultaneous Chandra/HST observations of the very faint ($L_{x} < 10^{36}$ erg s$^{-1}$) X-ray transient source M15 X-3, as well as unpublished archival Chandra observations of M15 X-3. The Chandra observations constrain the luminosity of M15 X-3 to be $< 10^{34}$ erg s$^{-1}$ in all observed epochs. The X-ray spectrum shows evidence of curvature, and prefers a fit to a broken power-law with break energy $E_{\\rm break} = 2.7^{+0.4}_{-0.6}$ keV, and power law indices of $\\Gamma_{1} = 1.3^{+0.1}_{-0.2}$ and $\\Gamma_{2} = 1.9^{+0.2}_{-0.2}$ over a single power law. We fit our new F438W ($B$), F606W (broad $V$), and F814W ($I$) HST data on the blue optical counterpart with a model for an accretion disk and a metal-poor main sequence star. From this fit, we determine the companion to be consistent with a main sequence star of mass $0.440^{+0.035}_{-0.060}$ $M_{\\odot}$ in a $\\sim$4-hour orbit. X-ray irradiation of the companion is likely to be a factor in the optical emission from the system, ...

  12. A possible origin of viscosity in Keplerian accretion disks due to secondary perturbation: Turbulent transport without magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Banibrata Mukhopadhyay; Kanak Saha

    2011-01-01

    The origin of hydrodynamic turbulence in rotating shear flow is a long standing puzzle.Resolving it is especially important in astrophysics when the flow's angular momentum profile is Keplerian which forms an accretion disk having negligible molecular viscosity.Hence, any viscosity in such systems must be due to turbulence, arguably governed by magnetorotational instability, especially when temperature T (≥)105.However, such disks around quiescent cataclysmic variables, protoplanetary and star-forming disks, and the outer regions of disks in active galactic nuclei are practically neutral in charge because of their low temperature, and thus are not expected to be coupled with magnetic fields enough to generate any transport due to the magnetorotational instability.This flow is similar to plane Couette flow including the Coriolis force, at least locally.What drives their turbulence and then transport,when such flows do not exhibit any unstable mode under linear hydrodynamic perturbation? We demonstrate that the three-dimensional secondary disturbance to the primarily perturbed flow that triggers elliptical instability may generate significant turbulent viscosity in the range 0.0001 (≤) vt (≤) 0.1, which can explain transport in accretion flows.

  13. An extended scheme for fitting X-ray data with accretion disk spectra in the strong gravity regime

    CERN Document Server

    Dovciak, M; Yaqoob, T

    2003-01-01

    Accreting black holes are believed to emit X-rays which then mediate information about strong gravity in the vicinity of the emission region. We report on a set of new routines for the Xspec package for analysing X-ray spectra of black-hole accretion disks. The new computational tool significantly extends the capabilities of the currently available fitting procedures that include the effects of strong gravity, and allows one to systematically explore the constraints on more model parameters than previously possible (for example black-hole angular momentum). Moreover, axial symmetry of the disk intrinsic emissivity is not assumed, although it can be imposed to speed up the computations. The new routines can be used also as a stand-alone and flexible code with the capability of handling time-resolved spectra in the regime of strong gravity. We have used the new code to analyse the mean X-ray spectrum from the long XMM--Newton 2001 campaign of the Seyfert 1 galaxy MCG--6-30-15. Consistent with previous findings,...

  14. Reconstruction of the Structure of Accretion Disks in Dwarf Novae from the Multi-Band Light Curves of Early Superhumps

    CERN Document Server

    Uemura, M; Ohshima, T; Maehara, H

    2012-01-01

    We propose a new method to reconstruct the structure of accretion disks in dwarf novae using multi-band light curves of early superhumps. Our model assumes that early superhumps are caused by the rotation effect of non-axisymmetrically flaring disks. We have developed a Bayesian model for this reconstruction, in which a smoother disk-structure tends to have a higher prior probability. We analyzed simultaneous optical and near-infrared photometric data of early superhumps of the dwarf nova, V455 And using this technique. The reconstructed disk has two flaring parts in the outermost region of the disk. These parts are responsible for the primary and secondary maxima of the light curves. The height-to-radius ratio is h/r=0.20---0.25 in the outermost region. In addition to the outermost flaring structures, flaring arm-like patterns can be seen in an inner region of the reconstructed disk. The overall profile of the reconstructed disk is reminiscent of the disk structure which is deformed by the tidal effect. Howe...

  15. Three-dimensional simulations of super-critical black hole accretion disks --- luminosities, photon trapping and variability

    CERN Document Server

    Sadowski, Aleksander

    2015-01-01

    We present a set of four three-dimensional, general relativistic, radiation MHD simulations of black hole accretion at super-critical mass accretion rates, $\\dot{M} > \\dot{M}_{\\rm Edd}$. We use these simulations to study how disk properties are modified when we vary the black hole mass, the black hole spin, or the mass accretion rate. In the case of a non-rotating black hole, we find that the total efficiency is of order $3\\%\\dot M c^2$, approximately a factor of two less than the efficiency of a standard thin accretion disk. The radiation flux in the funnel along the axis is highly super-Eddington, but only a small fraction of the energy released by accretion escapes in this region. The bulk of the $3\\%\\dot M c^2$ of energy emerges farther out in the disk, either in the form of photospheric emission or as a wind. In the case of a black hole with a spin parameter of 0.7, we find a larger efficiency of about $8\\%\\dot M c^2$. By comparing the relative importance of advective and diffusive radiation transport, w...

  16. X-ray reflected spectra from accretion disk models. III. A complete grid of ionized reflection calculations

    CERN Document Server

    Garcia, J; Reynolds, C S; Kallman, T R; McClintock, J E; Wilms, J; Eikmann, W

    2013-01-01

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code XILLVER that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index \\Gamma of the illuminating radiation, the ionization parameter \\xi at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A_{Fe} relative to the solar value. The ranges of the parameters covered are: 1.2 \\leq \\Gamma \\leq 3.4, 1 \\leq \\xi \\leq 10^4, and 0.5 \\leq A_{Fe} \\leq 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compa...

  17. [Fe II] 1.64 um Features of Jets and Outflows from Young Stellar Objects in the Carina Nebula

    CERN Document Server

    Shinn, Jong-Ho; Lee, Jae-Joon; Lee, Ho-Gyu; Kim, Hyun-Jeong; Koo, Bon-Chul; Sung, Hwankyung; Chun, Moo Young; Lyo, A -Ran; Moon, Dae-Sik; Kyeong, Jaemann; Park, Byeong-Gon; Hur, Hyeonoh; Lee, Yong-Hyun

    2013-01-01

    We present [Fe II] 1.64 {\\mu}m imaging observations for jets and outflows from young stellar objects (YSOs) over the northern part (~ 24'x45') of the Carina Nebula, a massive star forming region. The observations were performed with IRIS2 of Anglo-Australian Telescope and the seeing was ~1.5"+-0.5". Eleven jet and outflow features are detected at eight different regions, and are named as Ionized Fe Objects (IFOs). One Herbig-Haro object candidate missed in Hubble Space Telescope H{\\alpha} observations is newly identified as HHc-16, referring our [Fe II] images. IFOs have knotty or longish shapes, and the detection rate of IFOs against previously identified YSOs is 1.4 %, which should be treated as a lower limit. Four IFOs show an anti-correlated peak intensities in [Fe II] and H{\\alpha}, where the ratio I([Fe II])/I(H{\\alpha}) is higher for longish IFOs than for knotty IFOs. We estimate the outflow mass loss rate from the [Fe II] flux, using two different methods. The jet-driving objects are identified for th...

  18. Waves In Accretion Disks, Observed With Fresno State'S Station At Sierra Remote Observatories: Hv Andromedae, Lq Pegasi, And Ln Ursae Majoris

    Science.gov (United States)

    Rude, Gerald; Ringwald, F. A.

    2012-01-01

    We present observations of three cataclysmic variable stars: HV Andromedae, LQ Pegasi, and LN Ursae Majoris. A cataclysmic variable star is a binary star system composed of a red dwarf orbiting a white dwarf. These stars orbit closely, typically in 3-4 hours. Due to this close orbit, gas spills from the red dwarf into orbit around the white dwarf. This forms an accretion disk. Accretion disks are found throughout the Universe: from planetary formation, Saturn's rings, black holes that swallow stars, to the Milky Way's spiral structure. Our goal in studying these three cataclysmic variables was to search for evidence of waves, warping, or bending of their accretion disks. Photometry is the study of how the brightness of an object changes over time. With cataclysmic variables much of the fluctuation in brightness is from the accretion disk. We collected time-resolved differential photometry of three cataclysmic variables using Fresno State's remotely controlled telescope at Sierra Remote Observatories. After measuring our photometry, we searched for waves in the data. We have surprising results for each of the stars studied. All of these objects have prominent low-frequency periodicities not seen in the literature. This can be attributed to Fresno State's Remote Observatory's ability to observe stars for extended periods of time. We found strong evidence for both warping and bending waves in LQ Pegasi. In LN Ursae Majoris, we discovered apparently chaotic behavior, with the low-frequency wave changing significantly in just under a month. We also see clear evidence for short-period waves in HV Andromedae, also with some rumbling at low frequencies. Our observations of these three cataclysmic variables, especially of LN Ursae Majoris, warrant further study in the form of radial-velocity studies.

  19. Self-Consistent Thermal Accretion Disk Corona Models for Compact Objects. I: Properties of the Corona and the Spectrum of Escaping Radiation

    Science.gov (United States)

    Dove, James B.; Wilms, Jorn; Begelman, Mitchell C.

    1997-01-01

    We present the properties of accretion disk corona (ADC) models in which the radiation field, the temperature, and the total opacity of the corona are determined self-consistently. We use a nonlinear Monte Carlo code to perform the calculations. As an example, we discuss models in which the corona is situated above and below a cold accretion disk with a plane-parallel (slab) geometry, similar to the model of Haardt & Maraschi. By Comptonizing the soft radiation emitted by the accretion disk, the corona is responsible for producing the high-energy component of the escaping radiation. Our models include the reprocessing of radiation in the accretion disk. Here the photons either are Compton-reflected or photoabsorbed, giving rise to fluorescent line emission and thermal emission. The self- consistent coronal temperature is determined by balancing heating (due to viscous energy dissipation) with Compton cooling, determined using the fully relativistic, angle-dependent cross sections. The total opacity is found by balancing pair productions with annihilations. We find that, for a disk temperature kT(sub BB) approx. less than 200 eV, these coronae are unable to have a self-consistent temperature higher than approx. 140 keV if the total optical depth is approx. less than 0.2, regardless of the compactness parameter of the corona and the seed opacity. This limitation corresponds to the angle-averaged spectrum of escaping radiation having a photon index approx. greater than 1.8 within the 5-30 keV band. Finally, all models that have reprocessing features also predict a large thermal excess at lower energies. These constraints make explaining the X-ray spectra of persistent black hole candidates with ADC models very problematic.

  20. Revealing the Evolving Accretion Disk Corona in AGNs with Multi-Epoch X-ray Spectroscopy: the case of Mrk 335

    Science.gov (United States)

    Ballantyne, David R.; Keek, Laurens

    2016-04-01

    Active galactic nuclei host an accretion disk with an X-ray producing corona around a supermassive black hole. In bright sources, such as the Seyfert 1 galaxy Mrk 335, reflection of the coronal emission off the accretion disk has been observed. Reflection produces numerous spectral features, such as the Fe Kα emission line and absorption edge, which allow various properties of the inner accretion disk and corona to be constrained. We perform a multi-epoch spectral analysis of a dozen XMM-Newton, Suzaku, and NuSTAR observations of Mrk 335, and optimize the fitting procedure to unveil correlations between the Eddington ratio and multiple spectral parameters. We find that the ionization parameter of the accretion disk correlates strongly with the Eddington ratio: the inner disk is more strongly ionized at higher flux. Interestingly, the slope of the correlation is less steep than previously predicted. Furthermore, the cut-off of the power-law spectrum increases in energy with the Eddington ratio, whereas the reflection fraction exhibits a decrease. We interpret this behaviour as geometrical changes of the corona as a function of the accretion rate. Below ~10% of the Eddington limit, the compact and optically thick corona is located close to the inner disk, whereas at higher accretion rates the corona is likely optically thin and extends vertically further away from the disk surface. Compared to previous work that considered individual spectra, we find that multi-epoch spectroscopy is essential for breaking degeneracies in the spectral fits and for obtaining accurate spectral parameters. Furthermore, we show that this method provides a powerful tool to study coronal evolution. The rich archives of XMM-Newton, Suzaku, and NuSTAR provide the opportunity to extend this investigation to include several other bright AGN, which will reveal whether the behaviour that we found is common or unique to Mrk 335.

  1. Coupled HBO and NBO variations in the Z source GX 5-1: inner accretion disk as the location of QPOs

    CERN Document Server

    Sriram, K; Choi, C S

    2011-01-01

    The simultaneous and coupled evolution of horizontal branch oscillation (HBO) and normal branch oscillation (NBO) in Z-type sources suggests that the production of HBO is connected to NBO and is caused by changes in the physical/radiative properties of the inner accretion disk, although there is a lack of substantial spectral evidence to support this. In this {\\it Letter}, we present the results of an analysis of a RXTE observation of a Z source GX~5-1, where the 6 Hz NBO is simultaneously detected along with a HBO at 51 Hz. The variations in the intensity and the associated power density spectrum indicate that the HBO and NBO are strongly coupled, originating from the same location in the inner accretion disk. The absence of HBO and NBO in the lower energy bands, an increase in the rms amplitude with energy and a smooth transition among them suggest that they are produced in the hot inner regions of the accretion disk. Based on a spectral analysis, we found a signature of changing or physically modified inne...

  2. The SW Sex-type star 2MASS J01074282+4845188: an unusual bright accretion disk with non-steady emission and a hot white dwarf

    CERN Document Server

    Khruzina, T; Kjurkchieva, D; 10.1051/0004-6361/201220385

    2013-01-01

    We present new photometric and spectral observations of the newly discovered nova-like eclipsing star 2MASS J01074282+4845188. To obtain a light curve solution we used model of a nova-like star whose emission sources are a white dwarf surrounded by an accretion disk, a secondary star filling its Roche lobe, a hot spot and a hot line. 2MASS J01074282+4845188 shows the deepest permanent eclipse among the known nova-like stars. It is reproduced by covering the very bright accretion disk by the secondary component. The luminosity of the disk is much bigger than that of the rest light sources. The determined high temperature of the disk is typical for that observed during the outbursts of CVs. The primary of 2MASS J01074282+4845188 is one of the hottest white dwarfs in CVs. The temperature of 5090 K of its secondary is also quite high and more appropriate for a long-period SW Sex star. It might be explained by the intense heating from the hot white dwarf and the hot accretion disk of the target. The high mass accr...

  3. Further Evidence for the Accretion Disk Origination of the Double-Peaked Broad H$\\alpha$ of 3C390.3

    CERN Document Server

    Zhang, XueGuang

    2013-01-01

    In the letter, under the widely accepted theoretical accretion disk model for the double-peaked emitter 3C390.3, the extended disk-like BLR can be well split into ten rings, and then the time lags between the lines from the rings and the continuum emission are estimated, based on the observed spectra around 1995. We can find one much strong correlation between the determined time lags (in unit of light-day) and the flux weighted radii (in unit of ${\\rm R_G}$) of the rings, which is well consistent with the expected results through the theoretical accretion disk model. Moreover, through the strong correlation, the black hole masses of 3C390.3 are independently estimated as $\\sim10^9{\\rm M_{\\odot}}$, the same as the reported black hole masses in the literature. The consistencies provide further evidence to strongly support the accretion disk origination of the double-peaked broad balmer lines of 3C390.3.

  4. HH 666: Different kinematics from H{\\alpha} and [Fe II] emission provide a missing link between jets and outflows

    CERN Document Server

    Reiter, Megan; Kiminki, Megan M; Bally, John

    2015-01-01

    HH 666 is an externally irradiated protostellar outflow in the Carina Nebula for which we present new near-IR [Fe II] spectra obtained with the FIRE spectrograph at Magellan Observatory. Earlier H{\\alpha} and near-IR [Fe II] imaging revealed that the two emission lines trace substantially different morphologies in the inner ~40" of the outflow. H{\\alpha} traces a broad cocoon that surrounds the collimated [Fe II] jet that extends throughout the parent dust pillar. New spectra show that this discrepancy extends to their kinematics. Near-IR [Fe II] emission traces steady, fast velocities of +/- 200 km/s from the eastern and western limbs of the jet. We compare this to a previously published H{\\alpha} spectrum that reveals a Hubble-flow velocity structure near the jet-driving source. New, second-epoch HST/ACS H{\\alpha} images reveal the lateral spreading of the H{\\alpha} outflow lobe away from the jet axis. H{\\alpha} proper motions also indicate a sudden increase in the mass-loss rate ~1000 yr ago, while steady ...

  5. On the relevance of subcritical hydrodynamic turbulence to accretion disk transport

    CERN Document Server

    Lesur, G

    2005-01-01

    Hydrodynamic unstratified keplerian flows are known to be linearly stable at all Reynolds numbers, but may nevertheless become turbulent through nonlinear mechanisms. However, in the last ten years, conflicting points of view have appeared on this issue. We have revisited the problem through numerical simulations in the shearing sheet limit. It turns out that the effect of the Coriolis force in stabilizing the flow depends on whether the flow is cyclonic (cooperating shear and rotation vorticities) or anticyclonic (competing shear and rotation vorticities); keplerian flows are anticyclonic. We have obtained the following results: i/ The Coriolis force does not quench turbulence in subcritical flows; ii/ The resolution demand, when moving away from the marginal stability boundary, is much more severe for anticyclonic flows than for cyclonic ones. Presently available computer resources do not allow numerical codes to reach the keplerian regime. iii/ The efficiency of turbulent transport is directly correlated t...

  6. Unravelling the complex structure of AGN-driven outflows: II. Photoionization and energetics

    CERN Document Server

    Karouzos, Marios; Bae, Hyun-Jin

    2016-01-01

    Outflows have been shown to be prevalent in galaxies hosting luminous active galactic nuclei (AGNs) and present a physically plausible way to couple the AGN energy output with the interstellar medium of their hosts. Despite their prevalence, accurate characterization of these outflows has been challenging. In the second of a series of papers, we use Gemini Multi-Object Spectrograph IFU data of 6 local (z<0.1) and moderate-luminosity Type 2 AGNs to study the ionization properties and energetics of AGN-driven outflows. We find strong evidence that connect the extreme kinematics of the ionized gas with the AGN photoionization. The kinematic component related to the AGN-driven outflow is clearly separated from other kinematic components, such as virial motions or rotation, on the velocity and velocity dispersion diagram. Our spatially resolved kinematic analysis reveals that from 30% up to 90% of the total mass and kinetic energy of the outflow is contained within the central kpc of the galaxy. The spatially i...

  7. Space Telescope and Optical Reverberation Mapping Project. II. Swift and HST Reverberation Mapping of the Accretion Disk of NGC 5548

    CERN Document Server

    Edelson, R; Horne, K; McHardy, I M; Peterson, B M; Arevalo, P; Breeveld, A A; DeRosa, G; Evans, P A; Goad, M R; Kriss, G A; Brandt, W N; Gehrels, N; Grupe, D; Kennea, J A; Kochanek, C S; Nousek, J A; Papadakis, I; Siegel, M; Starkey, D; Uttley, P; Vaughan, S; Young, S; Barth, A J; Bentz, M C; Brewer, B J; Crenshaw, D M; Bonta, E Dalla; De Lorenzo-Caceres, A; Denney, K D; Dietrich, M; Ely, J; Fausnaugh, M M; Grier, C J; Hall, P B; Kaastra, J; Kelly, B C; Korista, K T; Lira, P; Mathur, S; Netzer, H; Pancoast, A; Pei, L; Pogge, R W; Schimoia, J S; Treu, T; Vestergaard, M; Villforth, C; Yan, H; Zu, Y

    2015-01-01

    Recent intensive Swift monitoring of the Seyfert 1 galaxy NGC 5548 yielded 282 usable epochs over 125 days across six UV/optical bands and the X-rays. This is the densest extended AGN UV/optical continuum sampling ever obtained, with a mean sampling rate < 0.5-day. Approximately daily HST UV sampling was also obtained. The UV/optical light curves show strong correlations (r_max = 0.57 - 0.90) and the clearest measurement to date of interband lags. These lags are well-fit by a lambda^4/3 wavelength dependence, with a normalization that indicates an unexpectedly large disk size of ~0.35 +/- 0.05 lt-day at 1367 A, assuming a simple face-on model. The U-band shows a marginally larger lag than expected from the fit and surrounding bands, which could be due to Balmer continuum emission from the broad-line region as suggested by Korista and Goad. The UV/X-ray correlation is weaker (r_max < 0.45) and less consistent over time. This indicates that while Swift is beginning to measure UV/optical lags in agreement ...

  8. Accretion, winds and outflows in young stars

    Science.gov (United States)

    Günther, H. M.

    2013-02-01

    Young stars and planetary systems form in molecular clouds. After the initial radial infall an accretion disk develops. For classical T Tauri stars (CTTS, F-K type precursors) the accretion disk does not reach down to the central star, but it is truncated near the co-rotation radius by the stellar magnetic field. The inner edge of the disk is ionized by the stellar radiation, so that the accretion stream is funneled along the magnetic field lines. On the stellar surface an accretion shock develops, which is observed over a wide wavelength range as X-ray emission, UV excess, optical veiling and optical and IR emission lines. Some of the accretion tracers, e.g. Hα, can be calibrated to measure the accretion rate. This accretion process is variable on time scales of hours to years due to changing accretion rates, stellar rotation and reconfiguration of the magnetic field. Furthermore, many (if not all) accreting systems also drive strong outflows which are ultimately powered by accretion. However, the exact driving mechanism is still unclear. Several components could contribute to the outflows: slow, wide-angle disk winds, X-winds launched close to the inner disk rim, and thermally driven stellar winds. In any case, the outflows contain material of very different temperatures and speeds. The disk wind is cool and can have a molecular component with just a few tens of km s-1, while the central component of the outflow can reach a few 100 km s-1. In some cases the inner part of the outflow is collimated to a small-angle jet. These jets have an onion-like structure, where the inner components are consecutively hotter and faster. The jets can contain working surfaces, which show up as Herbig-Haro knots. Accretion and outflows in the CTTS phase do not only determine stellar parameters like the rotation rate on the main-sequence, they also can have a profound impact on the environment of young stars. This review concentrates on CTTS in near-by star forming regions where

  9. Outflow and Infall in a Sample of Massive Star Forming Regions II: Large Scale Kinematics

    CERN Document Server

    Klaassen, P D

    2008-01-01

    We present maps of seven sources selected from Klaassen & Wilson (2007a) in SiO (J=8-7) and HCO$^+$ and H$^{13}$CO$^+$ (J=4-3) which were obtained using HARP-B on the James Clerk Maxwell Telescope. We find that four out of our seven sources have infall signatures based on their HCO$^+$ emission profiles. From our maps, we have determined the extent of both the outflowing and infalling regions towards these sources, and constrained the amount of infalling and outflowing mass as well as the mass infall rate for each massive star forming region. From our SiO observations, we estimate the source luminosity required to shock the surroundings of these massive star forming regions and find luminosities similar to those of the HII regions themselves. We find that the ratio between our infall and outflow masses is less than one, suggesting high mass entrainment rates in the molecular outflows. We also find that the large scale molecular infall rate towards G10.6-0.4 is comparable to the small scale molecular infal...

  10. Multi-epoch Sub-arcsecond [Fe II] Spectroimaging of the DG Tau Outflows with NIFS. I. First data epoch

    CERN Document Server

    White, Marc C; Bicknell, Geoffrey V; Salmeron, Raquel; Beck, Tracy L

    2014-01-01

    Investigating the outflows emanating from young stellar objects (YSOs) on sub-arcsecond scales provides important clues to the nature of the underlying accretion-ejection process occurring near the central protostar. We have investigated the structures and kinematics of the outflows driven by the YSO DG Tauri, using the Near-infrared Integral Field Spectrograph (NIFS) on Gemini North. The blueshifted outflow shows two distinct components in [Fe II] 1.644 micron emission, which are separated using multi-component line fitting. A stationary recollimation shock is observed, in agreement with previous X-ray and FUV observations. The presence of this shock indicates that the innermost streamlines of the high-velocity component are launched at a very small radius, 0.01-0.15 AU, from the central star. The jet accelerates and expands downstream of the recollimation shock; the 'acceleration' is likely a sign of velocity variations in the jet. No evidence of rotation is found, and we compare this non-detection to previ...

  11. Accretion, Outflows, and Winds of Magnetized Stars

    CERN Document Server

    Romanova, M M

    2016-01-01

    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars...

  12. Investigating the structure of the accretion disk in WZ Sge from multi-wave-band, time-resolved spectroscopic observations, 2

    CERN Document Server

    Mason, E; Howell, S B; Ciardi, D R; Littlefair, S P; Dhillon, V S

    2000-01-01

    We present our second paper describing multi-wave-band, time-resolved spectroscopy of WZ Sge. We analyze the evolution of both optical and IR emission lines throughout the orbital period and find evidence, in the Balmer lines, for an optically thin accretion disk and an optically thick hot-spot. Optical and IR emission lines are used to compute radial velocity curves. Fits to our radial velocity measurements give an internally inconsistent set of values for K1, gamma, and the phase of red-to-blue crossing. We present a probable explanation for these discrepancies and provide evidence for similar behaviour in other short orbital period dwarf-novae. Selected optical and IR spectra are measured to determine the accretion disk radii. Values for the disk radii are found to be strongly dependent on the assumed WD mass and binary orbital inclination. However, the separation of the peaks in the optical emission line (i.e. an indication of the outer disk radius) has been found to be constant during all phases of the s...

  13. Characterizing the Velocity Profile of a Swirling Gas Experiment by Particle Imaging Velocimetry to Study Angular Momentum Transport in Accretion Disks

    Science.gov (United States)

    Greess, Samuel; Ji, Hantao; Merino, Enrique; Berrios, William

    2013-10-01

    The method by which angular momentum transfers between different sections of accretion disks is a matter of ongoing debate. One suggested answer is Magnetorotational instability (MRI), which would facilitate this transfer through the magnetic interactions between particles at different distances from the center of the disk. While ongoing experiments with MRI have focused on the use of liquid metals to test the effects of magnetic fields, we are developing a swirling gas experiment to study effects beyond incompressible hydrodynamics, including compressible gas dynamics and plasma effects when gas is ionized. A second-generation prototype swirling gas experiment has been built to test the principle and to establish favorable rotation profiles using a chamber of swirling fog to simulate the formation and movement of accretion disks about some gravitational center. The paths of the visible fog particles can then be analyzed with Particle Imaging Velocimetry (PIV) techniques; these velocity measurements can then be organized by a Python program. Anticipated results include a radial profile of velocities at different times during the gas injection process, as well as further refinement of the fog chamber design to improve the accuracy in controlling the profile.

  14. The Launching of Cold Clouds by Galaxy Outflows. II. The Role of Thermal Conduction

    Science.gov (United States)

    Brüggen, Marcus; Scannapieco, Evan

    2016-05-01

    We explore the impact of electron thermal conduction on the evolution of radiatively cooled cold clouds embedded in flows of hot and fast material as it occurs in outflowing galaxies. Performing a parameter study of three-dimensional adaptive mesh refinement hydrodynamical simulations, we show that electron thermal conduction causes cold clouds to evaporate, but it can also extend their lifetimes by compressing them into dense filaments. We distinguish between low column-density clouds, which are disrupted on very short times, and high-column density clouds with much longer disruption times that are set by a balance between impinging thermal energy and evaporation. We provide fits to the cloud lifetimes and velocities that can be used in galaxy-scale simulations of outflows in which the evolution of individual clouds cannot be modeled with the required resolution. Moreover, we show that the clouds are only accelerated to a small fraction of the ambient velocity because compression by evaporation causes the clouds to present a small cross-section to the ambient flow. This means that either magnetic fields must suppress thermal conduction, or that the cold clouds observed in galaxy outflows are not formed of cold material carried out from the galaxy.

  15. Observing the onset of outflow collimation in a massive protostar

    CERN Document Server

    Carrasco-González, C; Cantó, J; Curiel, S; Surcis, G; Vlemmings, W H T; van Langevelde, H J; Goddi, C; Anglada, G; Kim, S -W; Kim, J -S; Gómez, J F

    2015-01-01

    The current paradigm of star formation through accretion disks, and magnetohydrodynamically driven gas ejections, predicts the development of collimated outflows, rather than expansion without any preferential direction. We present radio continuum observations of the massive protostar W75N(B)-VLA 2, showing that it is a thermal, collimated ionized wind and that it has evolved in 18 years from a compact source into an elongated one. This is consistent with the evolution of the associated expanding water-vapor maser shell, which changed from a nearly circular morphology, tracing an almost isotropic outflow, to an elliptical one outlining collimated motions. We model this behavior in terms of an episodic, short-lived, originally isotropic, ionized wind whose morphology evolves as it moves within a toroidal density stratification.

  16. X-ray Evidence for Ultra-Fast Outflows in Local AGNs

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Sambruna, R. M.; Reeves, J. N.; Reynolds, C. S.; Braito, V.; Dadina, M.

    2012-08-01

    X-ray evidence for ultra-fast outflows (UFOs) has been recently reported in a number of local AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 Broad-Line Radio Galaxies (BLRGs) observed with XMM-Newton and Suzaku. We detect UFOs in ga 40% of the sources. Their outflow velocities are in the range ˜ 0.03-0.3c, with a mean value of ˜ 0.14c. The ionization is high, in the range logℰ ˜3-6rm erg s-1 cm, and also the associated column densities are large, in the interval ˜ 1022-1024rm cm-2. Overall, these results point to the presence of highly ionized and massive outflowing material in the innermost regions of AGNs. Their variability and location on sub-pc scales favor a direct association with accretion disk winds/outflows. This also suggests that UFOs may potentially play a significant role in the AGN cosmological feedback besides jets, and their study can provide important clues on the connection between accretion disks, winds, and jets.

  17. On the Thermal Line Emission from the Outflows in Ultraluminous X-Ray Sources

    Science.gov (United States)

    Xu, Ya-Di; Cao, Xinwu

    2016-08-01

    The atomic features in the X-ray spectra of ultraluminous X-ray sources (ULXs) may be associated with the outflow, which may provide a way to explore the physics of the ULXs. We construct a conical outflow model and calculate the thermal X-ray Fe emission lines from the outflows. Our results show that thermal line luminosity decreases with increasing outflow velocity and/or opening angle of the outflow for a fixed kinetic power of the outflows. Assuming the kinetic power of the outflows to be comparable with the accretion power in the ULXs, we find that the equivalent width can be several eV for the thermal X-ray Fe emission line from the outflows in the ULXs with stellar-mass black holes. The thermal line luminosity is proportional to 1/M bh (M bh is the black hole mass of the ULX). The equivalent width decreases with the black hole mass, which implies that the Fe line emission from the outflows can hardly be detected if the ULXs contain intermediate-mass black holes. Our results suggest that the thermal X-ray Fe line emission should be preferentially be detected in the ULXs with high kinetic power slowly moving outflows from the accretion disks surrounding stellar-mass black holes/neutron stars. The recently observed X-ray atomic features of the outflows in a ULX may imply that it contains a stellar-mass black hole.

  18. The Launching of Cold Clouds by Galaxy Outflows II: The Role of Thermal Conduction

    CERN Document Server

    Brüggen, Marcus

    2016-01-01

    We explore the impact of electron thermal conduction on the evolution of radiatively-cooled cold clouds embedded in flows of hot and fast material, as occur in outflowing galaxies. Performing a parameter study of three-dimensional adaptive mesh refinement hydrodynamical simulations, we show that electron thermal conduction causes cold clouds to evaporate, but it can also extend their lifetimes by compressing them into dense filaments. We distinguish between low column-density clouds, which are disrupted on very short times, and high-column density clouds with much-longer disruption times that are set by a balance between impinging thermal energy and evaporation. We provide fits to the cloud lifetimes and velocities that can be used in galaxy-scale simulations of outflows, in which the evolution of individual clouds cannot be modeled with the required resolution. Moreover, we show that the clouds are only accelerated to a small fraction of the ambient velocity because compression by evaporation causes the clou...

  19. CSO and CARMA Observations of L1157. II. Chemical Complexity in the Shocked Outflow

    CERN Document Server

    Burkhardt, Andrew M; Corby, Joanna F; Carroll, P Brandon; Shingledecker, Christopher N; Loomis, Ryan A; Booth, Shawn Thomas; Blake, Geoffrey A; Herbst, Eric; Remijan, Anthony J; McGuire, Brett A

    2016-01-01

    L1157, a molecular dark cloud with an embedded Class 0 protostar possessing a bipolar outflow, is an excellent source for studying shock chemistry, including grain-surface chemistry prior to shocks, and post-shock, gas-phase processing. The L1157-B1 and B2 positions experienced shocks at an estimated ~2000 and 4000 years ago, respectively. Prior to these shock events, temperatures were too low for most complex organic molecules to undergo thermal desorption. Thus, the shocks should have liberated these molecules from the ice grain-surfaces en masse, evidenced by prior observations of SiO and multiple grain mantle species commonly associated with shocks. Grain species, such as OCS, CH3OH, and HNCO, all peak at different positions relative to species that are preferably formed in higher velocity shocks or repeatedly-shocked material, such as SiO and HCN. Here, we present high spatial resolution (~3") maps of CH3OH, HNCO, HCN, and HCO+ in the southern portion of the outflow containing B1 and B2, as observed with...

  20. CSO and CARMA Observations of L1157. II. Chemical Complexity in the Shocked Outflow

    Science.gov (United States)

    Burkhardt, Andrew M.; Dollhopf, Niklaus M.; Corby, Joanna F.; Carroll, P. Brandon; Shingledecker, Christopher N.; Loomis, Ryan A.; Booth, Shawn Thomas; Blake, Geoffrey A.; Herbst, Eric; Remijan, Anthony J.; McGuire, Brett A.

    2016-08-01

    L1157, a molecular dark cloud with an embedded Class 0 protostar possessing a bipolar outflow, is an excellent source for studying shock chemistry, including grain-surface chemistry prior to shocks, and post-shock, gas-phase processing. The L1157-B1 and B2 positions experienced shocks at an estimated ˜2000 and 4000 years ago, respectively. Prior to these shock events, temperatures were too low for most complex organic molecules to undergo thermal desorption. Thus, the shocks should have liberated these molecules from the ice grain-surfaces en masse, evidenced by prior observations of SiO and multiple grain mantle species commonly associated with shocks. Grain species, such as OCS, CH3OH, and HNCO, all peak at different positions relative to species that are preferably formed in higher-velocity shocks or repeatedly shocked material, such as SiO and HCN. Here, we present high spatial resolution (˜3″) maps of CH3OH, HNCO, HCN, and HCO+ in the southern portion of the outflow containing B1 and B2, as observed with Combined Array for Research in Millimeter-Wave Astronomy. The HNCO maps are the first interferometric observations of this species in L1157. The maps show distinct differences in the chemistry within the various shocked regions in L1157B. This is further supported through constraints of the molecular abundances using the non-LTE code radex. We find that the east/west chemical differentiation in C2 may be explained by the contrast of the shock’s interaction with either cold, pristine material or warm, previously shocked gas, as seen in enhanced HCN abundances. In addition, the enhancement of the HNCO abundance toward the the older shock, B2, suggests the importance of high-temperature O-chemistry in shocked regions.

  1. Uncovering the Outflow Driven by the Brown Dwarf LS-RCr A1: H-alpha as a Tracer of Outflow Activity in Brown Dwarfs

    CERN Document Server

    Whelan, E T; Bacciotti, F

    2009-01-01

    It is now apparent that classical T Tauri-like outflows commonly accompany the formation of young brown dwarfs. To date two optical outflows have been discovered and results presented in this paper increase this number to three. Using spectro-astrometry the origin of the LS-RCrA 1 forbidden emission lines in a blue-shifted outflow is confirmed. The non-detection of the red-shifted component of the outflow in forbidden lines, along with evidence for some separation between low and high velocity outflow components, do not support the hypothesis that LS-RCrA 1 has an edge-on accretion disk. The key result of this analysis is the discovery of an outflow component to the H-alpha line. The H-alpha line profile has blue and red-shifted features in the wings which spectro-astrometry reveals to also originate in the outflow. The discovery that H-alpha emission in BDs can have a significant contribution from an outflow suggests the use of H-alpha line widths as a proxy of mass accretion in BDs is not clear-cut. This me...

  2. Rotational structure and outflow in the infrared dark cloud 18223-3

    Science.gov (United States)

    Fallscheer, C.; Beuther, H.; Zhang, Q.; Keto, E.; Sridharan, T. K.

    2009-09-01

    Aims: We examine an Infrared Dark Cloud (IRDC) at high spatial resolution as a means to study rotation, outflow, and infall at the onset of massive star formation. Methods: The IRDC 18223-3 was observed at 1.1 mm and 1.3 mm with the Submillimeter Array (SMA) and follow-up short spacing information was obtained with the IRAM 30 m telescope. Additional data were taken at 3 mm with the IRAM Plateau de Bure interferometer (PdBI). Results: Submillimeter Array observations combined with IRAM 30 m data in 12CO(2-1) reveal the outflow orientation in the IRDC 18223-3 region, and PdBI 3 mm observations confirm this orientation in other molecular species. The implication of the outflow's presence is that an accretion disk is feeding it, so using line data for high density tracers such as C18O, N2H^+, and CH3OH, we looked for indications of a velocity gradient perpendicular to the outflow direction. Surprisingly, this gradient turns out to be most apparent in CH3OH. The large size (28 000 AU) of the flattened rotating object detected indicates that this velocity gradient cannot be due solely to a disk, but rather from inward spiraling gas within which a Keplerian disk likely exists. The rotational signatures can be modeled via rotationally infalling gas. From the outflow parameters, we derive properties of the source such as an outflow dynamical age of ~37 000 years, outflow mass of ~13 M⊙, and outflow energy of ˜1.7 × 1046 erg. While the outflow mass and energy are clearly consistent with a high-mass star forming region, the outflow dynamical age indicates a slightly more evolved evolutionary stage than previous spectral energy distribution (SED) modeling indicates. Conclusions: The orientation of the molecular outflow associated with IRDC 18223-3 is in the northwest-southeast direction and velocity gradients orthogonal to the outflow reveal a large rotating structure likely harboring an accretion disk within. We also present a model of the observed methanol velocity

  3. A fast and long-lived outflow from the supermassive black hole in NGC 5548

    Science.gov (United States)

    Kaastra, J. S.; Kriss, G. A.; Cappi, M.; Mehdipour, M.; Petrucci, P.-O.; Steenbrugge, K. C.; Arav, N.; Behar, E.; Bianchi, S.; Boissay, R.; Branduardi-Raymont, G.; Chamberlain, C.; Costantini, E.; Ely, J. C.; Ebrero, J.; Di Gesu, L.; Harrison, F. A.; Kaspi, S.; Malzac, J.; De Marco, B.; Matt, G.; Nandra, K.; Paltani, S.; Person, R.; Peterson, B. M.; Pinto, C.; Ponti, G.; Nuñez, F. Pozo; De Rosa, A.; Seta, H.; Ursini, F.; de Vries, C. P.; Walton, D. J.; Whewell, M.

    2014-07-01

    Supermassive black holes in the nuclei of active galaxies expel large amounts of matter through powerful winds of ionized gas. The archetypal active galaxy NGC 5548 has been studied for decades, and high-resolution x-ray and ultraviolet (UV) observations have previously shown a persistent ionized outflow. An observing campaign in 2013 with six space observatories shows the nucleus to be obscured by a long-lasting, clumpy stream of ionized gas not seen before. It blocks 90% of the soft x-ray emission and causes simultaneous deep, broad UV absorption troughs. The outflow velocities of this gas are up to five times faster than those in the persistent outflow, and, at a distance of only a few light days from the nucleus, it may likely originate from the accretion disk.

  4. A fast and long-lived outflow from the supermassive black hole in NGC 5548

    CERN Document Server

    Kaastra, J S; Cappi, M; Mehdipour, M; Petrucci, P -O; Steenbrugge, K C; Arav, N; Behar, E; Bianchi, S; Boissay, R; Branduardi-Raymont, G; Chamberlain, C; Costantini, E; Ely, J C; Ebrero, J; Di Gesu, L; Harrison, F A; Kaspi, S; Malzac, J; De Marco, B; Matt, G; Nandra, K; Paltani, S; Person, R; Peterson, B M; Pinto, C; Ponti, G; Nuñez, F Pozo; De Rosa, A; Seta, H; Ursini, F; de Vries, C P; Walton, D J; Whewell, M

    2014-01-01

    Supermassive black holes in the nuclei of active galaxies expel large amounts of matter through powerful winds of ionized gas. The archetypal active galaxy NGC 5548 has been studied for decades, and high-resolution X-ray and UV observations have previously shown a persistent ionized outflow. An observing campaign in 2013 with six space observatories shows the nucleus to be obscured by a long-lasting, clumpy stream of ionized gas never seen before. It blocks 90% of the soft X-ray emission and causes simultaneous deep, broad UV absorption troughs. The outflow velocities of this gas are up to five times faster than those in the persistent outflow, and at a distance of only a few light days from the nucleus, it may likely originate from the accretion disk.

  5. Collimated Outflow Formation via Binary Stars. 3-D Simulations of AGB Wind and Disk Wind Interactions

    CERN Document Server

    García-Arredondo, F; Frank, Adam

    2004-01-01

    We present three-dimensional hydrodynamic simulations of the interaction of a slow wind from an asymptotic giant branch(AGB) star and a jet blown by an orbiting companion. The jet or "Collimated Fast Wind" is assumed to originate from an accretion disk which forms via Bondi accretion of the AGB wind or Roche lobe overflow. We present two distinct regimes in the wind-jet interaction determined by the ratio of the AGB wind to jet momentum flux. Our results show that when the wind momentum flux overwhelms the flux in the jet a more dis-ordered outflow outflow results with the jet assuming a corkscrew pattern and multiple shock structures driven into the AGB wind. In the opposite regime the jet dominates and will drive a highly collimated narrow waisted outflow. We compare our results with scenarios described by Soker & Rappaport (2000) and extrapolate the structures observed in PNe and Symbiotic stars.

  6. Tracing Outflows and Accretion: A Bimodal Azimuthal Dependence of MgII Absorption

    CERN Document Server

    Kacprzak, G G; Nielsen, N M

    2012-01-01

    We report a bimodality in the azimuthal angle distribution of gas around galaxies as traced by MgII absorption: Halo gas prefers to exist near the projected galaxy major and minor axes. The bimodality is demonstrated by computing the mean azimuthal angle probability distribution function using 88 spectroscopically confirmed MgII absorption-selected galaxies [W_r(2796)> 0.1A] and 35 spectroscopically confirmed non-absorbing galaxies [W_r(2796)<0.1A] imaged with HST and SDSS. The azimuthal angle distribution for non-absorbers is flat, indicating no azimuthal preference for gas characterized by W_r(2796)<0.1A. We find that blue star-forming galaxies clearly drive the bimodality. We compute an azimuthal angle dependent MgII absorption covering fraction and find that it is enhanced by as much as 20-30% along the major and minor axes. The equivalent width distribution for gas along the major axis is likely skewed toward weaker MgII absorption than for gas along the projected minor axis. These combined results...

  7. Accretion, winds and outflows in young stars

    CERN Document Server

    Günther, Hans Moritz

    2012-01-01

    Young stars and planetary systems form in molecular clouds. For classical T Tauri stars (CTTS, F-K type precursors) the accretion disk does not reach down to the central star, but it is truncated near the co-rotation radius. The inner edge of the disk is ionized by the stellar radiation, so that the accretion stream is funneled along the magnetic field lines. On the stellar surface an accretion shock develops, which is observed over a wide wavelength range as X-ray emission, UV excess, optical veiling and optical and IR emission lines. Some of the accretion tracers, e.g. H\\alpha, can be calibrated to measure the accretion rate. This accretion process is variable on time scales of hours to years due to changing accretion rates, stellar rotation and reconfiguration of the magnetic field. Furthermore, many accreting systems also drive strong outflows which are ultimately powered by accretion. Several components could contribute to the outflows: slow, wide-angle disk winds, X-winds launched close to the inner dis...

  8. On the disappearance of broad-line region in low-luminosity active galactic nuclei: the role of the outflows from advection dominated accretion flows

    CERN Document Server

    Cao, Xinwu

    2010-01-01

    The broad-line region (BLR) disappears in many low-luminosity AGNs, the reason of which is still controversial. The BLRs in AGNs are believed to be associated with the outflows from the accretion disks. Most of the low-luminosity AGNs (LLAGNs) contain advection dominated accretion flows (ADAFs), which are very hot and have a positive Bernoulli parameter. ADAFs are therefore associated with strong outflows. We estimate the cooling of the outflows from the ADAFs, and find that the gases in such hot outflows always cannot be cooled efficiently by bremsstrahlung radiation. The ADAF may co-exist with the standard disk, i.e., the inner ADAF connects to the outer thin accretion disk at radius R_tr, in the sources accreting at slightly lower than the critical rate. For the ADAFs with >0.001 L_edd, a secondary small inner cold disk is suggested to co-exist with the ADAF due to the condensation process. We estimate the Compton cooling of the outflow, of which the soft seed photons either come from the outer cold disk o...

  9. Revealing a Cool Accretion Disk in the Ultraluminous X-ray Source M81 X-9 (Holmberg IX X-1): Evidence for an Intermediate Mass Black Hole

    CERN Document Server

    Miller, J M; Miller, M C

    2003-01-01

    We report the results of an analysis of two XMM-Newton/EPIC-pn spectra of the bright ultraluminous X-ray source M81 X-9 (Holmberg IX X-1), obtained in snapshot observations. Soft thermal emission is clearly revealed in spectra dominated by hard power-law components. Depending on the model used, M81 X-9 was observed at a luminosity of L_X = 1.0-1.6 E+40 erg/s (0.3-10.0 keV). The variability previously observed in this source signals that it is an accreting source which likely harbors a black hole. Remarkably, accretion disk models for the soft thermal emission yield very low inner disk temperatures (kT = 0.17-0.29 keV, including 90 per cent confidence errors and variations between observations and disk models), and improve the fit statistic over any single-component continuum model at the 6 sigma level of confidence. This represents much stronger evidence for a cool disk than prior evidence which combined spectra from different observatories, and the strongest evidence of a cool disk in an ultraluminous X-ray ...

  10. On the lack of X-ray iron line reverberation in MCG-6-30-15 Implications for the black hole mass and accretion disk structure

    CERN Document Server

    Reynolds, C S

    1999-01-01

    We use the method of Press, Rybicki & Hewitt (1992) to search for time lags and time leads between different energy bands of the RXTE data for MCG-6-30-15. We tailor our search in order to probe any reverberation signatures of the fluorescent iron Kalpha line that is thought to arise from the inner regions of the black hole accretion disk. In essence, an optimal reconstruction algorithm is applied to the continuum band (2-4keV) light curve which smoothes out noise and interpolates across the data gaps. The reconstructed continuum band light curve can then be folded through trial transfer functions in an attempt to find lags or leads between the continuum band and the iron line band (5-7keV). We find reduced fractional variability in the line band. The spectral analysis of Lee et al. (1999) reveals this to be due to a combination of an apparently constant iron line flux (at least on timescales of few x 10^4s), and flux correlated changes in the photon index. We also find no evidence for iron line reverbera...

  11. Non-LTE Models and Theoretical Spectra of Accretion Disks in Active Galactic Nuclei. IV. Effects of Compton Scattering and Metal Opacities

    CERN Document Server

    Hubeny, I; Krolik, J H; Agol, E; Hubeny, Ivan; Blaes, Omer; Krolik, Julian H.

    2001-01-01

    We extend our models of the vertical structure and emergent radiation field of accretion disks around supermassive black holes described in previous papers of this series. Our models now include both a self-consistent treatment of Compton scattering and the effects of continuum opacities of the most important metal species (C, N, O, Ne, Mg, Si, S, Ar, Ca, Fe, Ni). With these new effects incorporated, we compute the predicted spectrum from black holes accreting at nearly the Eddington luminosity (L/L_Edd = 0.3) and central masses of 10^6, 10^7, and 10^8 M_sun. We also consider two values of the Shakura-Sunyaev alpha parameter, 0.1 and 0.01. Although it has little effect when M > 10^8 M_sun, Comptonization grows in importance as the central mass decreases and the central temperature rises. It generally produces an increase in temperature with height in the uppermost layers of hot atmospheres. Compared to models with coherent electron scattering, Comptonized models have enhanced EUV/soft X-ray emission, but they...

  12. Raman Scattered O VI $\\lambda$ 6825 and the Accretion Disk Emission Model in the Symbiotic Stars V1016 Cygni and HM Sagittae

    CERN Document Server

    Lee, Hee-Won

    2007-01-01

    We present the high resolution spectra of the D type symbiotic stars V1016 Cygni and HM Sagittae obtained with the Bohyunsan Optical Echelle Spectrograph (BOES), and investigate the double-peaked asymmetric profiles of the Raman scattered O VI 6825. By adopting a wind accretion disk model, we assume that the O VI emission region is described by a Keplerian thin disk. The Raman scattering occurs in a neutral region near the giant, taking in the form of a slow stellar wind, part of which is ionized by the strong UV radiation from the hot white dwarf. Using a Monte Carlo technique, we compute the line profiles that are modulated by the slow spherical stellar wind from the giant component with the ionization front approximated by a hyperboloid. In order to account for the asymmetry and the existence of a central dip in the profiles, we add an O VI resonance scattering region between the hot white dwarf and the giant star which hinders the incidence of slightly blue O VI photons upon the H I region. Overall good f...

  13. Size of the accretion disk in the gravitationally lensed quasar SDSS J1004+4112 from the statistics of microlensing magnifications

    CERN Document Server

    Fian, C; Hanslmeier, A; Oscoz, A; Serra-Ricart, M; Muñoz, J A; Jiménez-Vicente, J

    2016-01-01

    We present eight monitoring seasons of the four brightest images of the gravitational lens SDSS J1004+4112 observed between December 2003 and October 2010. Using measured time delays for the images A, B and C and the model predicted time delay for image D we have removed the intrinsic quasar variability, finding microlensing events of about 0.5 and 0.7 mag of amplitude in the images C and D. From the statistics of microlensing amplitudes in images A, C, and D, we have inferred the half-light radius (at {\\lambda} rest = 2407 {\\AA}) for the accretion disk using two different methods, $R_{1/2}=8.7^{+18.5}_{-5.5} \\sqrt{M/0.3 M_\\odot}$ (histograms product) and $R_{1/2} = 4.2^{+3.2}_{-2.2} \\sqrt{M/0.3 M_\\odot}$ light-days ($\\chi^2$). The results are in agreement within uncertainties with the size predicted from the black hole mass in SDSS J1004+4112 using the thin disk theory.

  14. An extreme, blueshifted iron line profile in the Narrow Line Seyfert 1 PG 1402+261; an edge-on accretion disk or highly ionized absorption?

    CERN Document Server

    Reeves, J N; Turner, T J

    2004-01-01

    We report on a short XMM-Newton observation of the radio-quiet Narrow Line Seyfert 1 PG 1402+261. The EPIC X-ray spectrum of PG 1402+261 shows a strong excess of counts between 6-9 keV in the rest frame. This feature can be modeled by an unusually strong (equivalent width 2 keV) and very broad (FWHM velocity of 110000 km/s) iron K-shell emission line. The line centroid energy at 7.3 keV appears blue-shifted with respect to the iron Kalpha emission band between 6.4-6.97 keV, while the blue-wing of the line extends to 9 keV in the quasar rest frame. The line profile can be fitted by reflection from the inner accretion disk, but an inclination angle of >60 deg is required to model the extreme blue-wing of the line. Furthermore the extreme strength of the line requires a geometry whereby the hard X-ray emission from PG 1402+261 above 2 keV is dominated by the pure-reflection component from the disk, while little or none of the direct hard power-law is observed. Alternatively the spectrum above 2 keV may instead b...

  15. Determination of the turbulent parameter in the accretion disks: effects of self-irradiation in 4U 1543-47 during the 2002 outburst

    CERN Document Server

    Lipunova, G V

    2016-01-01

    The accretion disk around black hole in 4U 1543-47, a binary system with the orbital period of 1.116 day, can have the size of about $4 \\mathrm{R}_\\odot$. An outburst of 4U 1543-47 in 2002 has a characteristic exponential decay time of about 15 days. Such fast decay cannot be explained by the viscous evolution in the whole disk, and the evolution of the inner hot disk with changing size should be considered. Accretion rate evolution of this burst is obtained from spectral modelling of the archival RXTE/PCA data. Estimates on $\\alpha$ are derived by fitting observed $\\dot M(t)$ to the numerical results of the code Freddi for a range of black hole masses and Kerr parameters. If the self-irradiation of the disk by the emission from its center, which is parametrized by factor $C_\\mathrm{irr}$, was as high as suggested for other X-ray transients then the disk was completely ionized and the short time of the decay required huge $\\alpha$. Different scenarios are possible depending on the degree of irradiation. If ir...

  16. Discovery of an outflow of the very low-mass star ISO 143

    CERN Document Server

    Joergens, V; Pohl, A

    2012-01-01

    We discover that the very young very low-mass star ISO143 (M5) is driving an outflow based on spectro-astrometry of forbidden [SII] emission lines at 6716A and 6731A observed in UVES/VLT spectra. ISO143 is only one of a handful of brown dwarfs and very low-mass stars (M5-M8) for which an outflow has been detected and that show that the T Tauri phase continues at very low masses. We have found the outflow of ISO143 to be intrinsically asymmetric and the accretion disk to not obscure the outflow, as solely the red outflow component is visible in the [SII] lines. ISO143 is only the third T Tauri object showing a stronger red outflow component in spectro-astrometry, after RW Aur (G5) and ISO217 (M6.25). We show here that including ISO143 two out of seven outflows confirmed in the very low-mass regime (M5-M8) are intrinsically asymmetric. We measure a spatial extension of the outflow in [SII] of up to 200-300 mas (about 30-50 AU) and velocities of up to 50-70 km/s. We detect furthermore line emission of ISO143 in ...

  17. The triggering mechanism and properties of ionized outflows in the nearest obscured quasars

    CERN Document Server

    Martin, M Villar; Humphrey, A; Lavers, A Cabrera; Binette, L

    2014-01-01

    We have identified ionized outflows in the narrow line region of all but one SDSS type 2 quasars (QSO2) at z1000 cm-3) and covers a region the size of a few kpc. This implies ionized outflow masses M~(0.3-2.4)x1e6 Msun and mass outflow rates M(dot)outflows is related to the nuclear activity. The QSO2 can be classified in two groups according to the behavior and properties of the outflowing gas. QSO2 in Group 1 (5/20 objects) show the most extreme turbulence, they have on average higher radio luminosities and higher excess of radio emission. QSO2 in Group 2 (15/20 objects) show less extreme turbulence, they have lower radio luminosities and, on average, lower or no radio excess. We propose that two competing outflow mechanisms are at work: radio jets and accretion disk winds. Radio jet induced outflows are dominant in Group 1, while disk winds dominate in Group 2. We find that the radio jet mode is capable of producing more extreme outflows. To test this inter...

  18. Large resistivity in numerical simulations of radially self-similar outflows

    CERN Document Server

    Čemeljić, Miljenko; Tsinganos, Kanaris

    2014-01-01

    We investigate the differences between an outflow in a highly-resistive accretion disk corona, and the results with smaller or vanishing resistivity. For the first time, we determine conditions at the base of a two-dimensional radially self-similar outflow in the regime of very large resistivity. We performed simulations using the {\\sc pluto} magnetohydrodynamics code, and found three modes of solutions. The first mode, with small resistivity, is similar to the ideal-MHD solutions. In the second mode, with larger resistivity, the geometry of the magnetic field changes, with a "bulge" above the super-fast critical surface. At even larger resistivities, the third mode of solutions sets in, in which the magnetic field is no longer collimated, but is pressed towards the disk. This third mode is also the final one: it does not change with further increase of resistivity. These modes describe topological change in a magnetic field above the accretion disk because of the uniform, constant Ohmic resistivity.

  19. Emission Line Profiles and Images of Geometrically Thin and Optically Thick Accretion Disks%几何薄光学厚吸积盘谱线轮廓及成像研究

    Institute of Scientific and Technical Information of China (English)

    潘彩娟

    2009-01-01

    假设位于黑洞赤道面上做圆形轨道运动的吸积盘是几何薄、光学厚的.利用光子追踪法计算在Kerr度规下的光子运动轨迹,通过数值计算研究薄吸积盘的相对论谱线轮廓及成像.在大角度观测时,吸积盘下表面的光子对谱线轮廓及成像的影响是显著的.%In the paper, it is programmed to get relativistic iron lines profile and flux images of accretion disks. The simplest case of a geometrically thin, optically thick accretion disk around a Kerr(spinning) black hole is focused.Ray tracing method is used in the trajectory of the photon in the Kerr metric, by numerical calculation to model theoretical emission line profiles and disk images. We get relativistic iron lines profile which is about flux varies as frequency varies and images of accretion disks. Viewing at large inclinations,because of contribution of the photons under the surface of the disk,the line profile appear double-peaked profile and the images are significantly changed.

  20. SPECTROSCOPY ALONG MULTIPLE, LENSED SIGHT LINES THROUGH OUTFLOWING WINDS IN THE QUASAR SDSS J1029+2623

    International Nuclear Information System (INIS)

    We study the origin of absorption features on the blue side of the C IV broad emission line of the large-separation lensed quasar SDSS J1029+2623 at zem ∼ 2.197. The quasar images, produced by a foreground cluster of galaxies, have a maximum separation angle of θ ∼ 22.''5. The large angular separation suggests that the sight lines to the quasar central source can go through different regions of outflowing winds from the accretion disk of the quasar, providing a unique opportunity to study the structure of outflows from the accretion disk, a key ingredient for the evolution of quasars as well as for galaxy formation and evolution. Based on medium- and high-resolution spectroscopy of the two brightest images conducted at the Subaru telescope, we find that each image has different intrinsic levels of absorptions, which can be attributed either to variability of absorption features over the time delay between the lensed images, Δt ∼ 744 days, or to the fine structure of quasar outflows probed by the multiple sight lines toward the quasar. While both these scenarios are consistent with the current data, we argue that they can be distinguished with additional spectroscopic monitoring observations.

  1. Numerical Simulation of Hot Accretion Flows (II): Nature, Origin, and Properties of Outflow and Their Possible Observational Applications

    CERN Document Server

    Yuan, Feng; Wu, Maochun

    2012-01-01

    Previous hydrodynamical (HD) and magnetohydrodynamical (MHD) numerical simulations of hot accretion flows have shown that the mass accretion rate decreases with decreasing radius. Two models have been proposed to explain this result. In the ADIOS model, the inward decrease of accretion rate is because of the loss of gas in the outflow. In the CDAF model, the gas is assumed to be locked in convective eddies, which results in the inward decrease of the accretion rate. We investigate the nature of inward decrease of accretion rate using HD and MHD simulations. We calculate various properties of inflow and outflow, including the mass flux, radial and rotational velocities, temperature, and the Bernoulli parameter ($Be$). Systematic and significant differences between inflow and outflow are found. These results suggest that the inflow and outflow are not dominated by convective turbulence, but are systematic inward and outward motion. We have also analyzed the convective stability of MHD accretion flow and found t...

  2. Rotational Structure and Outflow in the Infrared Dark Cloud 18223-3

    CERN Document Server

    Fallscheer, C; Zhang, Q; Keto, E; Sridharan, T K

    2009-01-01

    We examine an Infrared Dark Cloud (IRDC) at high spatial resolution as a means to study rotation, outflow, and infall at the onset of massive star formation. Submillimeter Array observations combined with IRAM 30 meter data in 12CO(2--1) reveal the outflow orientation in the IRDC 18223-3 region, and PdBI 3 mm observations confirm this orientation in other molecular species. The implication of the outflow's presence is that an accretion disk is feeding it, so using high density tracers such as C18O, N2H+, and CH3OH, we looked for indications of a velocity gradient perpendicular to the outflow direction. Surprisingly, this gradient turns out to be most apparent in CH3OH. The large size (28,000 AU) of the flattened rotating object detected indicates that this velocity gradient cannot be due solely to a disk, but rather from inward spiraling gas within which a Keplerian disk likely exists. From the outflow parameters, we derive properties of the source such as an outflow dynamical age of ~37,000 years, outflow ma...

  3. Fe XXV and Fe XXVI Diagnostics of the Black Hole and Accretion Disk in Active Galaxies: Chandra Time-Resolved Spectroscopy of NGC 7314

    Science.gov (United States)

    Yaqoob, Tahir; George, Ian M.; Kallman, Timothy R.; Padmanabhan, Urmila; Weaver, Kimberly A.; Turner, T. Jane

    2003-01-01

    We report the detection of Fe xxv and Fe XXVI Ka emission lines from a Chandra High Energy Grating Spectrometer (HETGS) observation of the narrow-line Seyfert 1 galaxy NGC 7314, made simultaneously with RXTE. The lines are redshifted (cz approximately 1500 kilometers per second) relative to the systemic velocity and unresolved by the gratings. We argue that the lines originate in a near face-on (less than 7 deg) disk having a radial line emissivity flatter than r(exp -2). Line emission from ionization states of Fe in the range approximately Fe I a up to Fe XXVI is observed. The ionization balance of Fe responds to continuum variations on timescales less than 12.5 ks, supporting an origin of the lines close to the X-ray source. We present additional, detailed diagnostics from this rich data set. These results identify NGC 7314 as a key source to study in the future if we are to pursue reverberation mapping of space-time near black-hole event horizons. This is because it is first necessary to understand the ionization structure of accretion disks and the relation between the X-ray continuum and Fe Ka line emission. However, we also describe how our results are suggestive of a means of measuring black-hole spin without a knowledge of the relation between the continuum and line emission. Finally, these data emphasize that one can study strong gravity with narrow (as opposed to very broad) disk lines. In fact narrow lines offer higher precision, given sufficient energy resolution.

  4. Search for Orbital Motion of the Pulsar 4U 1626-67: Candidate for a Neutron Star with a Supernova Fall-back Accretion Disk

    Indian Academy of Sciences (India)

    Chetana Jain; Biswajit Paul; Kaustubh Joshi; Anjan Dutta; Harsha Raichur

    2007-12-01

    We report here results from a new search for orbital motion of the accretion powered X-ray pulsar 4U 1626-67 using two different analysis techniques. X-ray light curve obtained with the Proportional Counter Array of the Rossi X-ray Timing Explorer during a long observation carried out in February 1996, was used in this work. The spin period and the local period derivative were first determined from the broad 2–60 keV energy band light curve and these were used for all subsequent timing analysis. In the first technique, the orbital phase dependent pulse arrival times were determined for different trial orbital periods in the range of 500 to 10,000 s. We have determined a 3 upper limit of 13 lt-ms on the projected semimajor axis of the orbit of the neutron star for most of the orbital period range, while in some narrow orbital period ranges, covering about 10% of the total orbital period range, it is 20 lt-ms. In the second method, we have measured the pulse arrival times at intervals of 100 s over the entire duration of the observation. The pulse arrival time data were used to put an upper limit on any periodic arrival time delay using the Lomb–Scargle periodogram. We have obtained a similar upper limit of 10 lt-ms using the second method over the orbital period range of 500–10,000 s. This puts very stringent upper limits for the mass of the compact object except for the unlikely case of a complete face-on orientation of the binary system with respect to our line-of-sight. In the light of this measurement and the earlier reports, we discuss the possibility of this system being a neutron star with a supernovae fall-back accretion disk.

  5. Active galaxies. A fast and long-lived outflow from the supermassive black hole in NGC 5548.

    Science.gov (United States)

    Kaastra, J S; Kriss, G A; Cappi, M; Mehdipour, M; Petrucci, P-O; Steenbrugge, K C; Arav, N; Behar, E; Bianchi, S; Boissay, R; Branduardi-Raymont, G; Chamberlain, C; Costantini, E; Ely, J C; Ebrero, J; Di Gesu, L; Harrison, F A; Kaspi, S; Malzac, J; De Marco, B; Matt, G; Nandra, K; Paltani, S; Person, R; Peterson, B M; Pinto, C; Ponti, G; Pozo Nuñez, F; De Rosa, A; Seta, H; Ursini, F; de Vries, C P; Walton, D J; Whewell, M

    2014-07-01

    Supermassive black holes in the nuclei of active galaxies expel large amounts of matter through powerful winds of ionized gas. The archetypal active galaxy NGC 5548 has been studied for decades, and high-resolution x-ray and ultraviolet (UV) observations have previously shown a persistent ionized outflow. An observing campaign in 2013 with six space observatories shows the nucleus to be obscured by a long-lasting, clumpy stream of ionized gas not seen before. It blocks 90% of the soft x-ray emission and causes simultaneous deep, broad UV absorption troughs. The outflow velocities of this gas are up to five times faster than those in the persistent outflow, and, at a distance of only a few light days from the nucleus, it may likely originate from the accretion disk.

  6. Accretion and Outflow Traced by Water Masers in the Circinus AGN

    CERN Document Server

    Greenhill, L J; Booth, R S; Ellingsen, S P; McCulloch, P M; Jauncey, D L; Norris, R P; Reynolds, J E; Tzioumis, A K; Herrnstein, J R

    2000-01-01

    The first VLBI images of water maser emission in the Circinus Galaxy AGN show both a warped, edge-on accretion disk and an outflow 0.1 to 1 pc from the central engine. The inferred central mass is 1.3 million suns, while the disk mass may be on the order of 0.1 million suns, based on a nearly Keplerian rotation curve. The bipolar, wide-angle outflow appears to contain ``bullets'' ejected from within <0.1 pc of the central mass. The positions of filaments and bullets observed in the AGN ionization cone on kpc-scales suggest that the disk channels the flow to a radius of about 0.4 pc, at which the flow appears to disrupt the disk.

  7. X-ray evidence for ultra-fast outflows in AGNs

    Science.gov (United States)

    Tombesi, Francesco; Sambruna, Rita; Braito, Valentina; Reeves, James; Reynolds, Christopher; Cappi, Massimo

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 radio galaxies observed with XMM-Newton and Suzaku. We assessed the global detection significance of the absorption lines and performed a detailed photo-ionization modeling. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1} and the associated mechanical power is high, in the range ˜10^{43}--10^{45} erg/s. Therefore, UFOs are capable to provide a significant contribution to the AGN cosmological feedback and their study can provide important clues on the connection between accretion disks, winds and jets.

  8. Spin Properties of Supermassive Black Holes with Powerful Outflows

    CERN Document Server

    Daly, Ruth A

    2016-01-01

    Relationships between beam power and accretion disk luminosity are studied for a sample of 55 HERG, 13 LERG, and 29 RLQ with powerful outflows. The ratio of beam power to disk luminosity tends to be high for LERG, low for RLQ, and spans the full range of values for HERG. Writing general expressions for the disk luminosity and beam power and applying the empirically determined relationships allows a function that parameterizes the spins of the holes to be estimated. Interestingly, one of the solutions that is consistent with the data has a functional form that is remarkably similar to that expected in the generalized Blandford-Znajek model with a magnetic field that is similar in form to that expected in MAD and ADAF models. Values of the spin function, obtained independent of specific outflow models, suggest that spin and AGN type are not related for these types of sources. The spin function can be used to solve for black hole spin in the context of particular outflow models, and one example is provided.

  9. Characterizing the Youngest Herschel-detected Protostars II. Molecular Outflows from the Millimeter and the Far-infrared

    CERN Document Server

    Tobin, John J; Manoj, P; Megeath, S Thomas; Karska, Agata; Nagy, Zsofia; Wyrowski, Friedrich; Fischer, William; Watson, Dan M; Stanke, Thomas

    2016-01-01

    We present CARMA CO (J=1-0) observations and Herschel PACS spectroscopy, characterizing the outflow properties toward extremely young and deeply embedded protostars in the Orion molecular clouds. The sample comprises a subset of the Orion protostars known as the PACS Bright Red Sources (PBRS) (Stutz et al. 2013). We observed 14 PBRS with CARMA and 8 of these 14 with Herschel, acquiring full spectral scans from 55 micron to 200 micron. Outflows are detected in CO (J=1-0) from 8 of 14 PBRS, with two additional tentative detections; outflows are also detected from the outbursting protostar HOPS 223 (V2775 Ori) and the Class I protostar HOPS 68. The outflows have a range of morphologies, some are spatially compact, i > 20 deg). This confirms the interpretation of the very red 24 micron to 70 micron colors of the PBRS as a signpost of high envelope densities, with only one (possibly two) cases of the red colors resulting from edge-on inclinations. We detect high-J (J_up > 13) CO lines and/or H_2O lines from 5 of ...

  10. On the interplay between the heartbeat oscillations and wind outflow in the microquasar IGR J17091-3624

    CERN Document Server

    Capitanio, Fiamma

    2014-01-01

    During the 2011 bright outburst, the black hole candidate IGR J17091-3624 exhibited, in some characteristic states, strong quasi-periodic flare-like events (on timescales of tens of seconds), so called as the 'heartbeat state'. From the theoretical point of view, such oscillations may be modeled by the process of accretion disk instability, driven by the domination of radiation pressure and enhanced heating of the plasma. Despite that the mean accretion rate in this source is probably below the Eddington limit, such oscillations will still have large amplitudes. As the observations show, the source can exhibit, during the soft state, strong wind outflow. Such wind may help partially or even completely stabilize the heartbeat. Using our hydro-dynamical code GLADIS, we modeled the evolution of an accretion disk responsible for X-ray emission of the source. We accounted for a variable wind outflow from the disk surface. We examined the data archive from Chandra and XMM-Newton satellites to find the observed limi...

  11. Toward a Complete Picture of Quasar Outflows: from BALs to mini-BALs

    Science.gov (United States)

    Moravec, Emily; Hamann, Fred; Capellupo, Daniel M.; McGraw, Sean; Shields, Joseph C.; Rodriguez Hidalgo, Paola

    2016-01-01

    Accretion disk outflows are important for galaxy evolution and an integral part of the quasar phenomenon, but they remain poorly understood. In order to construct a more complete picture of the quasar phenomenon, we need to understand the full range of different types of quasar outflows and how they correlate with one another. We examine seven SDSS quasars with CIV 1548,1551 Å outflow lines that span a range from strong BALs to weak mini-BALs. They have moderate redshifts (1.68 based spectra obtained at the MDM and Kitt Peak observatories to measure a variety of ions across the rest UV wavelength range. Our preliminary analysis shows OVI is present and stronger than CIV in all seven quasars. In one case, we detect an OVI mini-BAL with no accompanying CIV, requiring a highly-ionized outflow. In the strongest BAL quasar, we detect resolved PV doublet absorption that requires PV optical depths > 3 and in outflow gas with a line-of-sight covering fraction of only 0.27. Thus, the total column density in this outflow component might exceed N_H > 1023 cm-2 which has important consequences for the outflow kinetic energies and feedback. The multi-epoch CIV data reveal CIV outflow variability in all seven quasars; four become weaker, one becomes stronger, and two become both stronger and weaker over the different epochs. This variability happens across time scales of ~1-12 years in the quasar rest frames which is consistent with outflow locations close to the central quasar engines. We use these and other results to constrain the ionization, column density, and location of the absorbers with the broader goals of understanding accretion physics, the integrated structure of quasar outflows, and the impact a quasar has on its host galaxy.

  12. Proper Motions of Young Stellar Outflows in the Mid-Infrared with Spitzer. II. HH 377/Cep E

    CERN Document Server

    Noriega-Crespo, A; Moro-Martin, A; Flagey, N; Carey, S J

    2014-01-01

    We have used multiple mid-infrared observations at 4.5 micron obtained with the Infrared Array Camera, of the compact (~1.4 arcmin) young stellar bipolar outflow Cep E to measure the proper motion of its brightest condensations. The images span a period of ~6 yr and have been reprocessed to achieve a higher angular resolution (~0.8 arcsec) than their normal beam (2 arcsec). We found that for a distance of 730 pc, the tangential velocities of the North and South outflow lobes are 62+/-29 and 94+/-6 km/s respectively, and moving away from the central source roughly along the major axis of the flow. A simple 3D hydrodynamical simulation of the H2 gas in a precessing outflow supports this idea. Observations and model confirm that the molecular Hydrogen gas, traced by the pure rotational transitions, moves at highly supersonic velocities without being dissociated. This suggests either a very efficient mechanism to reform H2 molecules along these shocks or the presence of some other mechanism (e.g. strong magnetic ...

  13. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs: III - Location and Energetics

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-01-01

    Using the results of a previous X-ray photo-ionization modelling of blue-shifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval approx.0.0003-0.03pc (approx.10(exp 2)-10(exp 4)tau(sub s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are constrained between approx.0.01- 1 Stellar Mass/y, corresponding to approx. or >5-10% of the accretion rates. The average lower-upper limits on the mechanical power are logE(sub K) approx. or = 42.6-44.6 erg/s. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN r.osmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyferts galaxies .

  14. Discovery of Ultra-fast Outflows in a Sample of Broad-line Radio Galaxies Observed with Suzaku

    Science.gov (United States)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Ballo, L.; Gofford, J.; Cappi, M.; Mushotzky, R. F.

    2010-08-01

    We present the results of a uniform and systematic search for blueshifted Fe K absorption lines in the X-ray spectra of five bright broad-line radio galaxies observed with Suzaku. We detect, for the first time in radio-loud active galactic nuclei (AGNs) at X-rays, several absorption lines at energies greater than 7 keV in three out of five sources, namely, 3C 111, 3C 120, and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blueshifted Fe XXV and Fe XXVI K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range v ~= 0.04-0.15c. A fit with specific photoionization models gives ionization parameters in the range log ξ ~= 4-5.6 erg s-1 cm and column densities of N H ~= 1022-1023 cm-2. These characteristics are very similar to those of the ultra-fast outflows (UFOs) previously observed in radio-quiet AGNs. Their estimated location within ~0.01-0.3 pc of the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN to the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGNs.

  15. The Complete Ultraviolet Spectrum of the Archetypal "Wind-dominated" Quasar Mrk 231: Absorption and Emission from a High-speed Dusty Nuclear Outflow

    Science.gov (United States)

    Veilleux, S.; Meléndez, M.; Tripp, T. M.; Hamann, F.; Rupke, D. S. N.

    2016-07-01

    New near- and far-ultraviolet (NUV and FUV) Hubble Space Telescope spectra of Mrk 231, the nearest quasar known, are combined with ground-based optical spectra to study the remarkable dichotomy between the FUV and NUV-optical spectral regions in this object. The FUV emission-line features are faint, broad, and highly blueshifted (up to ˜7000 km s-1), with no significant accompanying absorption. In contrast, the profiles of the NUV absorption features resemble those of the optical Na i D, He i, and Ca ii H and K lines, exhibiting broad blueshifted troughs that overlap in velocity space with the FUV emission-line features and indicate a dusty, high-density and patchy broad absorption line (BAL) screen covering ˜90% of the observed continuum source at a distance ≲2-20 pc. The FUV continuum emission does not show the presence of any obvious stellar features and is remarkably flat compared with the steeply declining NUV continuum. The NUV (FUV) features and continuum emission have not varied significantly over the past ˜22 (3) years and are unresolved on scales ˜40 (170) pc. These results favor an active galactic nucleus origin for the NUV-FUV line and continuum emission. The observed FUV line emission is produced in the outflowing BAL cloud system, while the Balmer lines arise primarily from the standard broad line region seen through the dusty BAL screen. Our data are inconsistent with the recently proposed binary black hole model. We argue instead that Mrk 231 is the nearest example of weak-lined “wind-dominated” quasars with high Eddington ratios and geometrically thick (“slim”) accretion disks; these quasars are likely more common in the early universe.

  16. Kilonova Light Curves from the Disk Wind Outflows of Compact Object Mergers

    CERN Document Server

    Kasen, Daniel; Metzger, Brian

    2014-01-01

    We study the radioactively-powered transients produced by accretion disk winds following a compact object merger. Starting with the outflows generated in two-dimensional hydrodynamical disk models, we use wavelength-dependent radiative transfer calculations to generate synthetic light curves and spectra. We show that the brightness and color of the resulting kilonova transients carry information about the merger physics. In the regions of the wind where neutrino irradiation raises the electron fraction to Ye > 0.25, r-process nucleosynthesis halts before producing high-opacity, complex ions (the lanthanides). The kilonova light curves thus show two distinct components: a brief (~2 day) blue optical transient produced in the outer lanthanide-free ejecta, and a longer (~10 day) infrared transient produced in the inner, lanthanide line-blanketed region. Mergers producing a longer-lived neutron star, or a more rapidly spinning black hole, have stronger neutrino irradiation, generate more lanthanide-free ejecta, a...

  17. Raman-scattered O VI λ1032 and He II λ1025 and Bipolar Outflow in the Symbiotic Star V455 Sco

    Science.gov (United States)

    Heo, Jeong-Eun; Angeloni, Rodolfo; Di Mille, Francesco; Palma, Tali; Chang, Seok-Jun; Hong, Chae-Lin; Lee, Hee-Won

    2016-07-01

    Raman-scattering by atomic hydrogen is a unique spectroscopic process that may probe the mass transfer and mass loss phenomena in symbiotic stars(SSs). In the optical high- resolution spectra of the S-type SS V455 Sco, we note the presence of two Raman-scattered features, one at around 6825 Å with a triple-peak profile formed from Raman-scattering of O VI λ1032 and the other Raman-scattered He II λ1025 at around 6545 Å. Adopting an accretion flow model with additional contribution from a collimated bipolar outflow, we propose that the blue and central peaks are contributed from the accretion flow and the bipolar flow is responsible for the remaining red peak. With the absence of [N II] λ6548, the Raman-scattered He II λ1025 at around 6545 Å is immersed in the broad Ha wings that appear to be formed by Raman-scattering of far-UV continuum near Lyman series.

  18. Evidence for ultra-fast outflows in radio-quiet AGNs: III - location and energetics

    CERN Document Server

    Tombesi, F; Reeves, J N; Braito, V

    2012-01-01

    Using the results of a previous X-ray photo-ionization modelling of blue-shifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this letter we estimate the location and energetics of the associated ultra-fast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval ~0.0003-0.03pc (~10^2-10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are constrained between ~0.01-1 M_{\\odot} yr^{-1}, corresponding to >5-10% of the accretion rates. The average lower-upper limits on the mechanical power are log\\dot{E}_K~42.6-44.6 erg s^{-1}. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs ...

  19. X-ray evidence for ultra-fast outflows in local AGNs

    CERN Document Server

    Tombesi, F; Sambruna, R M; Reeves, J N; Reynolds, C S; Braito, V; Dadina, M

    2012-01-01

    X-ray evidence for ultra-fast outflows (UFOs) has been recently reported in a number of local AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 Broad-Line Radio Galaxies (BLRGs) observed with XMM-Newton and Suzaku. We detect UFOs in >40% of the sources. Their outflow velocities are in the range 0.03-0.3c, with a mean value of ~0.14c. The ionization is high, in the range logxi~3-6 erg s^{-1} cm, and also the associated column densities are large, in the interval ~10^{22}-10^{24} cm^{-2}. Overall, these results point to the presence of highly ionized and massive outflowing material in the innermost regions of AGNs. Their variability and location on sub-pc scales favor a direct association with accretion disk winds/outflows. This also suggests that UFOs may potentially play a significant role in the AGN cosmological feedback besides jets and their study can provide important clues on th...

  20. X-ray evidence for ultra-fast outflows in Seyfert galaxies

    Science.gov (United States)

    Tombesi, Francesco; Braito, Valentina; Reeves, James; Cappi, Massimo; Dadina, Mauro

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts observed with XMM-Newton. Similar results are also obtained from a Suzaku analysis of 5 radio galaxies. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1}. The associated mechanical power is also high, in the range ˜10^{43}--10^{45} erg/s, which indicates that UFOs are capable to provide a significant contribution to the AGN cosmological feedback.

  1. The Suzaku view of highly-ionised outflows in AGN: II -- Location, energetics and scalings with Bolometric Luminosity

    CERN Document Server

    Gofford, J; McLaughlin, D E; Braito, V; Turner, T J; Tombesi, F; Cappi, M

    2015-01-01

    Ongoing studies with XMM-Newton have shown that powerful accretion disc winds, as revealed through highly-ionised Fe\\,K-shell absorption at E>=6.7 keV, are present in a significant fraction of Active Galactic Nuclei (AGN) in the local Universe (Tombesi et al. 2010). In Gofford et al. (2013) we analysed a sample of 51 Suzaku-observed AGN and independently detected Fe K absorption in ~40% of the sample, and we measured the properties of the absorbing gas. In this work we build upon these results to consider the properties of the associated wind. On average, the fast winds (v_out>0.01c) are located ~10^{15-18} cm (typically ~10^{2-4} r_s) from their black hole, their mass outflow rates are of the order ~0.01-1 Msun/yr or ~(0.01-1) M_edd and kinetic power is constrained to ~10^{43-45} erg/s, equivalent to ~(0.1-10%) L_edd. We find a fundamental correlation between the source bolometric luminosity and the wind velocity, with v_out \\propto L_bol^{\\alpha} and \\alpha=0.4^{+0.3}_{-0.2}$ (90% confidence), which indica...

  2. The HH34 outflow as seen in [FeII]1.64um by LBT-LUCI

    CERN Document Server

    Antoniucci, S; Nisini, B; Giannini, T; Lorenzetti, D; Paris, D; Sani, E

    2014-01-01

    Dense atomic jets from young stars copiously emit in [FeII] IR lines, which can, therefore, be used to trace the immediate environments of embedded protostars. We want to investigate the morphology of the bright [FeII] 1.64um line in the jet of the source HH34 IRS and compare it with the most commonly used optical tracer [SII]. We analyse a 1.64um narrow-band filter image obtained with the Large Binocular Telescope (LBT) LUCI instrument, which covers the HH34 jet and counterjet. A Point Spread Function (PSF) deconvolution algorithm was applied to enhance spatial resolution and make the IR image directly comparable to a [SII] HST image of the same source. The [FeII] emission is detected from both the jet, the (weak) counter-jet, and from the HH34-S and HH34-N bow shocks. The deconvolved image allows us to resolve jet knots close to about 1\\arcsec from the central source. The morphology of the [FeII] emission is remarkably similar to that of the [SII] emission, and the relative positions of [FeII] and [SII] pea...

  3. Accretion and outflow in the proplyd-like objects near Cygnus OB2

    Energy Technology Data Exchange (ETDEWEB)

    Guarcello, M. G. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Drake, J. J.; Wright, N. J. [Smithsonian Astrophysical Observatory, MS-67, 60 Garden Street, Cambridge, MA 02138 (United States); García-Alvarez, D. [Dpto. de Astrofísica, Universidad de La Laguna, E-38206 E-La Laguna, Tenerife (Spain); Kraemer, K. E. [Institute for Scientific Research, Boston College, Kenny Cottle L106B, Newton, MA 02459-1161 (United States)

    2014-09-20

    Cygnus OB2 is the most massive association within 2 kpc from the Sun, hosting hundreds of massive stars, thousands of young low mass members, and some sights of active star formation in the surrounding cloud. Recently, 10 photoevaporating proplyd-like objects with tadpole-shaped morphology were discovered in the outskirts of the OB association, approximately 6-14 pc away from its center. The classification of these objects is ambiguous, being either evaporating residuals of the parental cloud that are hosting a protostar inside or disk-bearing stars with an evaporating disk, such as the evaporating proplyds observed in the Trapezium Cluster in Orion. In this paper, we present a study based on low-resolution optical spectroscopic observations made with the Optical System for Imaging and low Resolution Integrated Spectroscopy, mounted on the 10.4 m Gran Telescopio CANARIAS, of two of these protostars. The spectrum of one of the objects shows evidence of accretion but not of outflows. In the latter object, the spectra show several emission lines indicating the presence of an actively accreting disk with outflow. We present estimates of the mass loss rate and the accretion rate from the disk, showing that the former exceeds the latter as observed in other known objects with evaporating disks. We also show evidence of a strong variability in the integrated flux observed in these objects as well as in the accretion and outflow diagnostics.

  4. Extreme-Velocity Quasar Outflows and the Role of X-ray Shielding

    CERN Document Server

    Hamann, Fred; McGraw, Sean; Hidalgo, Paola Rodriguez; Shields, Joseph; Capellupo, Daniel; Charlton, Jane; Eracleous, Michael

    2013-01-01

    Quasar accretion disk winds observed via broad absorption lines (BALs) in the UV produce strong continuous absorption in X-rays. The X-ray absorber is believed to serve critically as a radiative shield to enable radiative driving. However, "mini-BAL" and narrow absorption line outflows have dramatically less X-ray absorption than BALs. Here we examine X-ray and rest-frame UV spectra of 8 mini-BAL quasars with outflow speeds in the range 0.1c to 0.2c to test whether extreme speeds require a strong shield. We find that the X-ray absorption is weak or moderate, with neutral-equivalent column densities N_H ~ 8 x 10^15 cm (based on measured line depths), the outflows have shapes like thin "pancakes" viewed face-on, or they occupy larger volumes like a spray of many dense clouds with a small volume filling factor. These results favor models with magnetic confinement in magnetic disk winds.

  5. Dynamics of stellar wind in a Roche potential: implications for (i) outflows & periodicities relevant to astronomical masers, and (ii) generation of baroclinicity

    CERN Document Server

    Singh, Nishant K

    2015-01-01

    We study the dynamics of stellar wind from one of the bodies in the binary system, where the other body interacts only gravitationally. We focus on following three issues: (i) we explore the origin of observed periodic variations in maser intensity; (ii) we address the nature of bipolar molecular outflows; and (iii) we show generation of baroclinicity in the same model setup. From direct numerical simulations and further numerical modelling, we find that the maser intensity along a given line of sight varies periodically due to periodic modulation of material density. This modulation period is of the order of the binary period. Another feature of this model is that the velocity structure of the flow remains unchanged with time in late stages of wind evolution. Therefore the location of the masing spot along the chosen sightline stays at the same spatial location, thus naturally explaining the observational fact. This also gives an appearance of bipolar nature in the standard position-velocity diagram, as has ...

  6. Modeling the [Fe II]{\\lambda}1.644{\\mu}m outflow and comparison with H$_2$ and H$^+$ kinematics in the inner 200 pc of NGC 1068

    CERN Document Server

    Barbosa, F K B; McGregor, P; Vale, T B

    2014-01-01

    We map the kinematics of the inner (200 pc) narrow-line region (NLR) of the Seyfert 2 galaxy NGC 1068 using the instrument NIFS and adaptative optics at the Gemini North Telescope. Channel maps and position-velocity diagrams are presented at a spatial resolution of $\\sim$ 10 pc and spectral resolution $\\sim$ 5300 in the emission lines [Fe II] {\\lambda} 1.644 {\\mu}m, H$_2$ {\\lambda} 2.122 {\\mu}m and Br{\\gamma}. The [Fe II] emission line provides a better coverage of the NLR outflow than the previously used [O III] {\\lambda} 5007 emission line, extending beyond the area of the bi-polar cone observed in Br{\\gamma} and [O III]. This is mainly due to the contribution of the redshifted channels to the NE of the nucleus, supporting its origin in a partial ionized zone with additional contribution from shocks of the outflowing gas with the galactic disc. We modeled the kinematics and geometry of the [Fe II] emitting gas finding good agreement with the data for outflow models with conical and lemniscate (or hourglass)...

  7. Absorbing Outflows in AGN

    Science.gov (United States)

    Mathur, Smita

    2002-01-01

    The goal of this program was a comprehensive multiwavelength study of absorption phenomena in active galactic nuclei (AGN). These include a variety of associated absorption systems: X-ray warm absorbers, X-ray cold absorbers. UV absorbers with high ionization lines, MgII absorbers, red quasars and BALQSOs. The aim is to determine the physical conditions in the absorbing outflows, study their inter-relations and their role in AGN. We designed several observing programs to achieve this goal: X-ray spectroscopy, UV spectroscopy, FLAY spectroscopy and X-ray imaging. We were very successful towards achieving the goal over the five year period as shown through following observing programs and papers. Copies of a few papers are attached with this report.

  8. VLT spectroscopy and non-LTE modeling of the C/O-dominated accretion disks in two ultracompact X-ray binaries

    CERN Document Server

    Werner, K; Hammer, N J; Nagel, T; Rauch, T

    2006-01-01

    We present new medium-resolution high-S/N optical spectra of the ultracompact low-mass X-ray binaries 4U0614+091 and 4U1626-67, taken with the ESO Very Large Telescope. They are pure emission line spectra and the lines are identified as due to C II-IV and O II-III Line identification is corroborated by first results from modeling the disk spectra with detailed non-LTE radiation transfer calculations. Hydrogen and helium lines are lacking in the observed spectra. Our models confirm the deficiency of H and He in the disks. The lack of neon lines suggests an Ne abundance of less than about 10 percent (by mass), however, this result is uncertain due to possible shortcomings in the model atom. These findings suggest that the donor stars are eroded cores of C/O white dwarfs with no excessive neon overabundance. This would contradict earlier claims of Ne enrichment concluded from X-ray observations of circumbinary material, which was explained by crystallization and fractionation of the white dwarf core.

  9. X-ray Insights into the Nature of PHL 1811 Analogs and Weak Emission-Line Quasars: Unification with a Geometrically Thick Accretion Disk?

    CERN Document Server

    Luo, B; Hall, P B; Wu, Jianfeng; Anderson, S F; Garmire, G P; Gibson, R R; Plotkin, R M; Richards, G T; Schneider, D P; Shemmer, O; Shen, Yue

    2015-01-01

    We present an X-ray and multiwavelength study of 33 weak emission-line quasars (WLQs) and 18 quasars that are analogs of the extreme WLQ, PHL 1811, at z ~ 0.5-2.9. New Chandra 1.5-9.5 ks exploratory observations were obtained for 32 objects while the others have archival X-ray observations. Significant fractions of these luminous type 1 quasars are distinctly X-ray weak compared to typical quasars, including 16 (48%) of the WLQs and 17 (94%) of the PHL 1811 analogs with average X-ray weakness factors of 17 and 39, respectively. We measure a relatively hard ($\\Gamma=1.16_{-0.32}^{+0.37}$) effective power-law photon index for a stack of the X-ray weak subsample, suggesting X-ray absorption, and spectral analysis of one PHL 1811 analog, J1521+5202, also indicates significant intrinsic X-ray absorption. We compare composite SDSS spectra for the X-ray weak and X-ray normal populations and find several optical-UV tracers of X-ray weakness; e.g., Fe II rest-frame equivalent width and relative color. We describe how ...

  10. Evolution of Mass Outflow in Protostars

    CERN Document Server

    Watson, Dan M; Fischer, William J; Forrest, W J; Manoj, P; Megeath, S Thomas; Melnick, Gary J; Najita, Joan; Neufeld, David A; Sheehan, Patrick D; Stutz, Amelia M; Tobin, John J

    2015-01-01

    We have surveyed 84 Class 0, Class I, and flat-spectrum protostars in mid-infrared [Si II], [Fe II] and [S I] line emission, and 11 of these in far-infrared [O I] emission. We use the results to derive their mass outflow rates. Thereby we observe a strong correlation of mass outflow rates with bolometric luminosity, and with the inferred mass accretion rates of the central objects, which continues through the Class 0 range the trend observed in Class II young stellar objects. Along this trend from large to small mass-flow rates, the different classes of young stellar objects lie in the sequence Class 0 -- Class I/flat-spectrum -- Class II, indicating that the trend is an evolutionary sequence in which mass outflow and accretion rates decrease together with increasing age, while maintaining rough proportionality. The survey results include two which are key tests of magnetocentrifugal outflow-acceleration mechanisms: the distribution of the outflow/accretion branching ratio b, and limits on the distribution of...

  11. The SILCC (SImulating the LifeCycle of molecular Clouds) project - II. Dynamical evolution of the supernova-driven ISM and the launching of outflows

    Science.gov (United States)

    Girichidis, Philipp; Walch, Stefanie; Naab, Thorsten; Gatto, Andrea; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Peters, Thomas; Derigs, Dominik; Baczynski, Christian

    2016-03-01

    The SILCC project (SImulating the Life-Cycle of molecular Clouds) aims at a more self-consistent understanding of the interstellar medium (ISM) on small scales and its link to galaxy evolution. We present three-dimensional (magneto)hydrodynamic simulations of the ISM in a vertically stratified box including self-gravity, an external potential due to the stellar component of the galactic disc, and stellar feedback in the form of an interstellar radiation field and supernovae (SNe). The cooling of the gas is based on a chemical network that follows the abundances of H+, H, H2, C+, and CO and takes shielding into account consistently. We vary the SN feedback by comparing different SN rates, clustering and different positioning, in particular SNe in density peaks and at random positions, which has a major impact on the dynamics. Only for random SN positions the energy is injected in sufficiently low-density environments to reduce energy losses and enhance the effective kinetic coupling of the SNe with the gas. This leads to more realistic velocity dispersions (σ _H I≈ 0.8σ _{300{-}8000 K}˜ 10-20 km s^{-1}, σ _H α ≈ 0.6σ _{8000-3× 10^5 K}˜ 20-30 km s^{-1}), and strong outflows with mass loading factors (ratio of outflow to star formation rate) of up to 10 even for solar neighbourhood conditions. Clustered SNe abet the onset of outflows compared to individual SNe but do not influence the net outflow rate. The outflows do not contain any molecular gas and are mainly composed of atomic hydrogen. The bulk of the outflowing mass is dense (ρ ˜ 10-25-10-24 g cm-3) and slow (v ˜ 20-40 km s-1) but there is a high-velocity tail of up to v ˜ 500 km s-1 with ρ ˜ 10-28-10-27 g cm-3.

  12. Evidence for ultra-fast outflows in radio-quiet AGNs: II - detailed photo-ionization modeling of Fe K-shell absorption lines

    CERN Document Server

    Tombesi, F; Reeves, J N; Palumbo, G G C; Braito, V; Dadina, M

    2011-01-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet AGNs. In the previous paper of this series we defined UFOs as those absorbers with an outflow velocity higher than 10,000km/s and assessed the statistical significance of the associated blueshifted FeK absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. In the present paper we report a detailed curve of growth analysis and directly model the FeK absorbers with the Xstar photo-ionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35%. The outflow velocity distribution spans from \\sim10,000km/s (\\sim0.03c) up to \\sim100,000km/s (\\sim0.3c), with a peak and mean value of \\sim42,000km/s (\\sim0.14c). The ionization parameter is very high and in the range log\\xi 3-6erg s^{-1} cm, with a mean value of log\\xi 4.2 erg s^{-1} cm. The associated column densities are also large, in the range N_H\\sim10^{22}-10^{24...

  13. The relationship between accretion disks and jets

    Directory of Open Access Journals (Sweden)

    Julian H. Krolik

    2007-01-01

    Full Text Available Presentamos resultados recientes de una serie de simulaciones de acreción y flujos colimados realizados con un código tridimensional MHD en Relatividad General. Los ujos son producto directo de la acreción y poseen una forma geométrica genérica: un embudo de baja densidad e intensos campos magnéticos helicoidales se forma a lo largo del eje de rotación del agujero negro. Este está rodeado a su vez por una pared de flujo con mucha mayor densidad de masa. Como consecuencia de la acreción, y a pesar de la ausencia de un campo magnético intenso en la condición inicial, se crea espontáneamente un campo a gran escala dentro del embudo. El flujo de la pared del embudo es acelerado y colimado por presión coronal. Todas las cantidades asociadas al flujo colimado dependen fuertemente de la rotación del agujero negro, a través del parámetro de momento angular adimensional, a/M. En términos de eficiencia energética con respecto a la masa en reposo, las componentes material y electromagnética son comparables con la radiativa, proveniente del disco.

  14. Angular Momentum Transport in Accretion Disks

    DEFF Research Database (Denmark)

    E. Pessah, Martin; Chan, Chi-kwan; Psaltis, Dimitrios;

    2007-01-01

    if the resolution were set equal to the natural dissipation scale in astrophysical disks. We conclude that, in order for MRI-driven turbulent angular momentum transport to be able to account for the large value of the effective alpha viscosity inferred observationally, the disk must be threaded by a significant...

  15. Reconnection in Marginally Collisionless Accretion Disk Coronae

    OpenAIRE

    Goodman, J.; Uzdensky, D.

    2008-01-01

    We point out that a conventional construction placed upon observations of accreting black holes, in which their nonthermal X-ray spectra are produced by inverse comptonization in a coronal plasma, suggests that the plasma is marginally collisionless. Recent developments in plasma physics indicate that fast reconnection takes place only in collisionless plasmas. As has recently been suggested for the Sun's corona, such marginal states may result from a combination of energy balance and the req...

  16. Magnetic flux stabilizing thin accretion disks

    CERN Document Server

    Sadowski, Aleksander

    2016-01-01

    We calculate the minimal amount of large-scale poloidal magnetic field that has to thread the inner, radiation-over-gas pressure dominated region of a thin disk for its thermal stability. Such a net field amplifies the magnetization of the saturated turbulent state and makes it locally stable. For a $10 M_\\odot$ black hole the minimal magnetic flux is $10^{24}(\\dot M/\\dot M_{\\rm Edd})^{20/21}\\,\\rm G\\cdot cm^{2}$. This amount is compared with the amount of uniform magnetic flux that can be provided by the companion star -- estimated to be in the range $10^{22}-10^{24}\\,\\rm G\\cdot cm^2$. If accretion rate is large enough, the companion is not able to provide the required amount and such a system, if still sub-Eddington, must be thermally unstable. The peculiar variability of GRS 1915+105, an X-ray binary with the exceptionally high BH mass and near-Eddington luminosity, may result from the shortage of large scale poloidal field of uniform polarity.

  17. Turbulent Comptonization in Relativistic Accretion Disks

    CERN Document Server

    Socrates, A; Blaes, Omer M; Socrates, Aristotle; Davis, Shane W.; Blaes, Omer

    2006-01-01

    Turbulent Comptonization, a potentially important damping and radiation mechanism in relativistic accretion flows, is discussed. Particular emphasis is placed on the physical basis, relative importance, and thermodynamics of turbulent Comptonization. The effects of metal-absorption opacity on the spectral component resulting from turbulent Comptonization is considered as well.

  18. QPOs and Resonance in Accretion Disks

    Directory of Open Access Journals (Sweden)

    W. Kluzniak

    2007-01-01

    Full Text Available Hacemos una revisión de los argumentos que indican que la variabilidad en escalas de milisegundos en el flujo en rayos X observado en binarias de baja masa, se debe a oscilaciones en el disco de acreción. Las oscilaciones cuasi periódicas (OCPs en el rango de kHz observadas en microcuasares parecen estar relacionadas con los mismos picos observados en sistemas con estrellas de neutrones. Es probable que ambos fenómenos sean el resultado de una resonancia no lineal en el disco de acreción, y que ésta sea posible sólo en el régimen gravitacional de campo fuerte. Una resonancia 3:2 entre los modos en cuestión corresponde con el cociente de frecuencias 3:2 observado en sistemas con agujeros negros, así como a la distribución más compleja de pares de OCPs en estrellas de neutrones.

  19. Analytical models of relativistic accretion disks

    CERN Document Server

    Zhuravlev, Viacheslav V

    2015-01-01

    We present not a literature review but a description, as detailed and consistent as possible, of two analytic models of disk accretion onto a rotating black hole: a standard relativistic disk and a twisted relativistic disk. Although one of these models is much older than the other, both are of topical current interest for black hole studies. The way the exposition is presented, the reader with only a limited knowledge of general relativity and relativistic hydrodynamics can --- with little or no use of additional sources -- gain good insight into many technical details lacking in the original papers.

  20. Bulk Comptonization by Turbulence in Accretion Disks

    CERN Document Server

    Kaufman, J

    2016-01-01

    Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent "wave" temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, ra...

  1. Anatomy of the AGN in NGC 5548: II. The Spatial, Temporal and Physical Nature of the Outflow from HST/COS Observations

    CERN Document Server

    Arav, N; Kriss, G A; Kaastra, J S; Cappi, M; Mehdipour, M; Petrucci, P -O; Steenbrugge, K C; Behar, E; Bianchi, S; Boissay, R; Branduardi-Raymont, G; Costantini, E; Ely, J C; Ebrero, J; di Gesu, L; Harrison, F A; Kaspi, S; Malzac, J; De Marco, B; Matt, G; Nandra, K P; Paltani, S; Peterson, B M; Pinto, C; Ponti, G; Nuñez, F Pozo; De Rosa, A; Seta, H; Ursini, F; de Vries, C P; Walton, D J; Whewel, M

    2014-01-01

    (Abridged) Our deep multiwavelength campaign on NGC 5548 revealed an unusually strong X-ray obscuration. The resulting dramatic decrease in incident ionizing flux allowed us to construct a comprehensive physical, spatial and temporal picture for the long-studied AGN wind in this object. Here we analyze the UV spectra of the outflow acquired during the campaign as well as from four previous epochs. We find that a simple model based on a fixed total column-density absorber, reacting to changes in ionizing illumination, matches the very different ionization states seen in five spectroscopic epochs spanning 16 years. Absorption troughs from C III* appeared for the first time during our campaign. From these troughs, we infer that the main outflow component is situated at 3.5+-1 pc from the central source. Three other components are situated between 5-70 pc and two are further than 100 pc. The wealth of observational constraints and the disparate relationship of the observed X-ray and UV flux between different epoc...

  2. Global Structure of Three Distinct Accretion Flows and Outflows around Black Holes through Two-Dimensional Radiation-Magnetohydrodynamic Simulations

    CERN Document Server

    Ohsuga, Ken

    2011-01-01

    We present the detailed global structure of black hole accretion flows and outflows through newly performed two-dimensional radiation-magnetohydrodynamic simulations. By starting from a torus threaded with weak toroidal magnetic fields and by controlling the central density of the initial torus, rho_0, we can reproduce three distinct modes of accretion flow. In model A with the highest central density, an optically and geometrically thick supercritical accretion disk is created. The radiation force greatly exceeds the gravity above the disk surface, thereby driving a strong outflow (or jet). Because of the mild beaming, the apparent (isotropic) photon luminosity is ~22L_E (where L_E is the Eddington luminosity) in the face-on view. Even higher apparent luminosity is feasible if we increase the flow density. In model B with a moderate density, radiative cooling of the accretion flow is so efficient that a standard-type, cold, and geometrically thin disk is formed at radii greater than ~7R_S (where R_S is the S...

  3. An Extreme High-Velocity Bipolar Outflow in the Pre-Planetary Nebula IRAS 08005-2356

    CERN Document Server

    Sahai, R

    2015-01-01

    We report interferometric mapping of the bipolar pre-planetary nebula IRAS 08005-2356 with an angular-resolution of ~1"-5", using the Submillimeter Array (SMA), in the 12CO J=2-1, 3-2, 13CO J=2-1 and SiO J=5-4 (v=0) lines. Single-dish observations, using the SMT 10-m, were made in these lines as well as in the CO J=4-3 and SiO J-6-5 (v=0) lines. The lines profiles are very broad, showing the presence of a massive (>0.1 Msun), extreme high-velocity outflow (V~200 km/s) directed along the nebular symmetry axis derived from the HST imaging of this object. The outflow's scalar momentum far exceeds that available from radiation pressure of the central post-AGB star, and it may be launched from an accretion disk around a main-sequence companion. We provide indirect evidence for such a disk from its previously published, broad H-alpha emission profile, which we propose results from Ly-beta emission generated in the disk followed by Raman-scattering in the innermost regions of a fast, neutral wind.

  4. Ultra-Fast Outflows in Radio-Loud AGN: New Constraints on Jet-Disk Connection

    Science.gov (United States)

    Sambruna, Rita

    There is strong observational and theoretical evidence that outflows/jets are coupled to accretion disks in black hole accreting systems, from Galactic to extragalactic sizes. While in radio-quiet AGN there is ample evidence for the presence of Ultra-Fast Outflows (UFOs) from the presence of blue-shifted absorption features in their 4-10~keV spectra, sub-relativistic winds are expected on theoretical basis in radio-loud AGN but have not been observed until now. Our recent Suzaku observations of 5 bright Broad- Line Radio Galaxies (BLRGs, the radio-loud counterparts of Seyferts) has started to change this picture. We found strong evidence for UFOs in 3 out of 5 BLRGs, with ionization parameters, column densities, and velocities of the absorber similar to Seyferts. Moreover, the outflows in BLRGs are likely to be energetically very significant: from the Suzaku data of the three sources, outflow masses similar to the accretion masses and kinetic energies of the wind similar to the X-ray luminosity and radio power of the jet are inferred. Clearly, UFOs in radio-loud AGN represent a new key ingredient to understand their central engines and in particular, the jet-disk linkage. Our discovery of UFOs in a handful of BLRGs raises the questions of how common disk winds are in radio-loud AGN, what the absorber physical and dynamical characteristics are, and what is the outflow role in broader picture of galaxy-black hole connection for radio sources, i.e., for large-scale feedback models. To address these and other issues, we propose to use archival XMM-Newton and Suzaku spectra to search for Ultra-Fast Outflows in a large number of radio sources. Over a period of two years, we will conduct a systematic, uniform analysis of the archival X-ray data, building on our extensive experience with a similar previous project for Seyferts, and using robust analysis and statistical methodologies. As an important side product, we will also obtain accurate, self- consistent measurements

  5. Radiation Hydrodynamic Simulations of Line-Driven Disk Winds for Ultra Fast Outflows

    CERN Document Server

    Nomura, Mariko; Takahashi, Hiroyuki R; Wada, Keiichi; Yoshida, Tessei

    2015-01-01

    Using two-dimensional radiation hydrodynamic simulations, we investigate origin of the ultra fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (~30 Schwarzschild radii). A wide range of black hole masses ($M_{\\rm BH}$) and Eddington ratios ($\\varepsilon$) was investigated to study conditions for causing the line-driven winds. For $M_{\\rm BH} = 10^6-10^9 M_\\odot$ and $\\varepsilon = 0.1-0.7$, funnel-shaped disk winds appear, in which dense matter is accelerated outward with an opening angle of 70-80 deg and with 10% of the light speed. If we observe the wind along its direction, the velocity, the column density, and the ionization state are consistent with those of the observed UFOs. As long as the obscuration by the torus does not affect the observations of X-ray bands, the UFOs could be statistically observe...

  6. Radiation hydrodynamic simulations of line-driven disk winds for ultra-fast outflows

    Science.gov (United States)

    Nomura, Mariko; Ohsuga, Ken; Takahashi, Hiroyuki R.; Wada, Keiichi; Yoshida, Tessei

    2016-02-01

    Using two-dimensional radiation hydrodynamic simulations, we investigate the origin of the ultra-fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (˜30 Schwarzschild radii). A wide range of black hole masses (MBH) and Eddington ratios (ε) was investigated to study the conditions causing the line-driven winds. For MBH = 106-109 M⊙ and ε = 0.1-0.7, funnel-shaped disk winds appear, in which dense matter is accelerated outward with an opening angle of 70°-80° and with 10% of the speed of light. If we observe the wind along its direction, the velocity, the column density, and the ionization state are consistent with those of the observed UFOs. As long as obscuration by the torus does not affect the observation of X-ray bands, the UFOs could be statistically observed in about 13%-28% of the luminous AGNs, which is not inconsistent with the observed ratio (˜40%). We also found that the results are insensitive to the X-ray luminosity and the density of the disk surface. Thus, we can conclude that UFOs could exist in any luminous AGNs, such as narrow-line Seyfert 1s and quasars with ε > 0.1, with which fast line-driven winds are associated.

  7. Effects of Compton Cooling on Outflow in a Two Component Accretion Flow around a Black Hole: Results of a Coupled Monte Carlo-TVD Simulation

    CERN Document Server

    Garain, Sudip K; Chakrabarti, Sandip K; 10.1088/0004-637X/758/2/114

    2012-01-01

    We wish to investigate the effects of cooling of the Compton cloud on the outflow formation rate in an accretion disk around a black hole. We carry out a time dependent numerical simulation where both the hydrodynamics and the radiative transfer processes are coupled together. We consider a two-component accretion flow in which the Keplerian disk is immersed into an accreting low-angular momentum flow (halo) around a black hole. The soft photons which originate from the Keplerian disk are inverse-Comptonized by the electrons in the halo and the region between the centrifugal pressure supported shocks and the horizon. We run several cases by changing the rate of the Keplerian disk and see the effects on the shock location and properties of the outflow and the spectrum. We show that as a result of Comptonization of the Compton cloud, the cloud becomes cooler with the increase in the Keplerian disk rate. As the resultant thermal pressure is reduced, the post-shock region collapses and the outflow rate is also re...

  8. MHD simulations of accretion onto a dipolar magnetosphere. II. Magnetospheric ejections and stellar spin-down

    CERN Document Server

    Zanni, Claudio

    2012-01-01

    This paper examines the outflows associated with the interaction of a stellar magnetosphere with an accretion disk. In particular, we investigate the magnetospheric ejections (MEs) due to the expansion and reconnection of the field lines connecting the star with the disk. Our aim is to study the dynamical properties of the outflows and evaluate their impact on the angular momentum evolution of young protostars. Our models are based on axisymmetric time-dependent magneto-hydrodynamic simulations of the interaction of the dipolar magnetosphere of a rotating protostar with a viscous and resistive disk, using alpha prescriptions for the transport coefficients. Our simulations are designed in order to model: the accretion process and the formation of accretion funnels; the periodic inflation/reconnection of the magnetosphere and the associated MEs; the stellar wind. Similarly to a magnetic slingshot, MEs can be powered by the rotation of both the disk and the star so that they can efficiently remove angular moment...

  9. Massive molecular outflows

    OpenAIRE

    Beuther, H.; Schilke, P.; Menten, K. M.; Walmsley, C. M.; Sridharan, T. K.; Wyrowski, F.

    2001-01-01

    We present a mapping study of massive molecular outflows in 26 high-mass star-forming regions at 11'' spatial resolution. Bipolar morpholgy is found in 80% of the sources and the collimation is higher than previously thought. Additionally, we find that well known low-mass correlations continue up to the high-mass regime, and accretion rates are around 10^(-4) Msun/yr rising as high as 10^(-3) Msun/yr. A tight correlation between the outflow and the core mass is established, implying that the ...

  10. FEEDBACK FROM MASS OUTFLOWS IN NEARBY ACTIVE GALACTIC NUCLEI. I. ULTRAVIOLET AND X-RAY ABSORBERS

    Energy Technology Data Exchange (ETDEWEB)

    Crenshaw, D. M. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, One Park Place South SE, Suite 700, Atlanta, GA 30303 (United States); Kraemer, S. B., E-mail: crenshaw@chara.gsu.edu [Institute for Astrophysics and Computational Sciences, Department of Physics, Catholic University of America, Washington, DC 20064 (United States)

    2012-07-01

    We present an investigation into the impact of feedback from outflowing UV and X-ray absorbers in nearby (z < 0.04) active galactic nuclei (AGNs). From studies of the kinematics, physical conditions, and variability of the absorbers in the literature, we calculate the possible ranges in the total mass outflow rate (M-dot{sub out}) and kinetic luminosity (L{sub KE}) for each AGN, summed over all of its absorbers. These calculations make use of values (or limits) for the radial locations of the absorbers determined from variability, excited-state absorption, and other considerations. From a sample of 10 Seyfert 1 galaxies with detailed photoionization models for their absorbers, we find that 7 have sufficient constraints on the absorber locations to determine M-dot{sub out} and L{sub KE}. For the low-luminosity AGN NGC 4395, these values are low, although we do not have sufficient constraints on the X-ray absorbers to make definitive conclusions. At least five of the six Seyfert 1s with moderate bolometric luminosities (L{sub bol} = 10{sup 43} - 10{sup 45} erg s{sup -1}) have mass outflow rates that are 10-1000 times the mass accretion rates needed to generate their observed luminosities, indicating that most of the mass outflow originates from outside the inner accretion disk. Three of these (NGC 4051, NGC 3516, and NGC 3783) have L{sub KE} in the range 0.5%-5% L{sub bol}, which is the range typically required by feedback models for efficient self-regulation of black hole and galactic bulge growth. At least two of the other three (NGC 5548, NGC 4151, and NGC 7469) have L{sub KE} {approx}> 0.1%L{sub bol}, although these values may increase if radial locations can be determined for more of the absorbers. We conclude that the outflowing UV and X-ray absorbers in moderate-luminosity AGNs have the potential to deliver significant feedback to their environments.

  11. Ionized Outflows in 3-D Insights from Herbig-Haro Objects and Applications to Nearby AGN

    Science.gov (United States)

    Cecil, Gerald

    1999-01-01

    HST shows that the gas distributions of these objects are complex and clump at the limit of resolution. HST spectra have lumpy emission-line profiles, indicating unresolved sub-structure. The advantages of 3D over slits on gas so distributed are: robust flux estimates of various dynamical systems projected along lines of sight, sensitivity to fainter spectral lines that are physical diagnostics (reddening-gas density, T, excitation mechanisms, abundances), and improved prospects for recovery of unobserved dimensions of phase-space. These advantages al- low more confident modeling for more profound inquiry into underlying dynamics. The main complication is the effort required to link multi- frequency datasets that optimally track the energy flow through various phases of the ISM. This tedium has limited the number of objects that have been thoroughly analyzed to the a priori most spectacular systems. For HHO'S, proper-motions constrain the ambient B-field, shock velocity, gas abundances, mass-loss rates, source duty-cycle, and tie-ins with molecular flows. If the shock speed, hence ionization fraction, is indeed small then the ionized gas is a significant part of the flow energetics. For AGN'S, nuclear beaming is a source of ionization ambiguity. Establishing the energetics of the outflow is critical to determining how the accretion disk loses its energy. CXO will provide new constraints (especially spectral) on AGN outflows, and STIS UV-spectroscopy is also constraining cloud properties (although limited by extinction). HHO's show some of the things that we will find around AGN'S. I illustrate these points with results from ground-based and HST programs being pursued with collaborators.

  12. Metallicity and Quasar Outflows

    CERN Document Server

    Wang, Huiyuan; Yuan, Weimin; Wang, Tinggui

    2012-01-01

    Correlations are investigated of the outflow strength of quasars, as measured by the blueshift and asymmetry index (BAI) of the CIV line (Wang et al. 2011), with intensities and ratios of broad emission lines, based on composite quasar spectra built from the Sloan Digital Sky Survey. We find that most of the line ratios of other ions to CIV prominently increases with BAI. These behaviors can be well understood in the context of increasing metallicity with BAI. The strength of dominant coolant, CIV line, decreases and weak collisionally excited lines increase with gas metallicity as a result of the competition between different line coolants. Using SiIV+OIV]/CIV as an indicator of gas metallicity, we present, for the first time, a strong correlation between the metallicitiy and the outflow strength of quasars over a wide range of 1.7 to 6.9 times solar abundance. Our result implies that the metallicity plays an important role in the formation of quasar outflows, likely via affecting outflow acceleration. This ...

  13. Outflows and Shock Chemistry

    Science.gov (United States)

    Tafalla, M.

    2016-05-01

    Bipolar outflows result from the supersonic ejection of material by a protostar, and constitute one of the most characteristic signposts of stellar birth. They also provide ideal targets to test chemical models, and can serve as templates for more complex systems of galactic and extragalactic astronomy where supersonic interactions between gas components take place.

  14. Are molecular outflows around high-mass stars driven by ionization feedback?

    CERN Document Server

    Peters, Thomas; Mac Low, Mordecai-Mark; Klessen, Ralf S; Banerjee, Robi

    2012-01-01

    The formation of massive stars exceeding 10 solar masses usually results in large-scale molecular outflows. Numerical simulations, including ionization, of the formation of such stars show evidence for ionization-driven molecular outflows. We here examine whether the outflows seen in these models reproduce the observations. We compute synthetic ALMA and CARMA maps of CO emission lines of the outflows, and compare their signatures to existing single-dish and interferometric data. We find that the ionization-driven models can only reproduce weak outflows around high-mass star-forming regions. We argue that expanding H II regions probably do not represent the dominant mechanism for driving observed outflows. We suggest instead that observed outflows are driven by the collective action of the outflows from the many lower-mass stars that inevitably form around young massive stars in a cluster.

  15. ARE MOLECULAR OUTFLOWS AROUND HIGH-MASS STARS DRIVEN BY IONIZATION FEEDBACK?

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Thomas; Klessen, Ralf S. [Institut fuer Theoretische Astrophysik, Universitaet Heidelberg, Zentrum fuer Astronomie, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Klaassen, Pamela D. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Mac Low, Mordecai-Mark [Department of Astrophysics, American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024-5192 (United States); Banerjee, Robi, E-mail: tpeters@physik.uzh.ch [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2012-11-20

    The formation of massive stars exceeding 10 M {sub Sun} usually results in large-scale molecular outflows. Numerical simulations, including ionization, of the formation of such stars show evidence for ionization-driven molecular outflows. Here we examine whether the outflows seen in these models reproduce the observations. We compute synthetic ALMA and CARMA maps of CO emission lines of the outflows, and compare their signatures to existing single-dish and interferometric data. We find that the ionization-driven models can only reproduce weak outflows around high-mass star-forming regions. We argue that expanding H II regions probably do not represent the dominant mechanism for driving observed outflows. We suggest instead that observed outflows are driven by the collective action of the outflows from the many lower-mass stars that inevitably form around young massive stars in a cluster.

  16. Galaxy Outflows Without Supernovae

    CERN Document Server

    Sur, Sharanya; Ostriker, Eve C

    2016-01-01

    High surface density, rapidly star-forming galaxies are observed to have $\\approx 50-100\\,{\\rm km\\,s^{-1}}$ line-of-sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae. We find that such motions lead to strong global outflows in the highly-compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds $\\approx 35\\,{\\rm km\\...

  17. Resolving the Clumpy Structure of the Outflow Winds in the Gravitationally Lensed Quasar SDSS J1029+2623

    Science.gov (United States)

    Misawa, Toru; Inada, Naohisa; Oguri, Masamune; Gandhi, Poshak; Horiuchi, Takashi; Koyamada, Suzuka; Okamoto, Rina

    2014-10-01

    We study the geometry and the internal structure of the outflowing wind from the accretion disk of a quasar by observing multiple sightlines with the aid of strong gravitational lensing. Using Subaru/High Dispersion Spectrograph, we performed high-resolution (R ~ 36,000) spectroscopic observations of images A and B of the gravitationally lensed quasar SDSS J1029+2623 (at z em ~ 2.197) whose image separation angle, θ ~ 22.''5, is the largest among those discovered so far. We confirm that the difference in absorption profiles in images A and B discovered by Misawa et al. has remained unchanged since 2010, implying the difference is not due to time variability of the absorption profiles over the delay between the images, Δt ~ 744 days, but rather due to differences along the sightlines. We also discovered a time variation of C IV absorption strength in both images A and B due to a change in the ionization condition. If a typical absorber's size is smaller than its distance from the flux source by more than five orders of magnitude, it should be possible to detect sightline variations among images of other smaller separation, galaxy-scale gravitationally lensed quasars. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  18. RESOLVING THE CLUMPY STRUCTURE OF THE OUTFLOW WINDS IN THE GRAVITATIONALLY LENSED QUASAR SDSS J1029+2623

    International Nuclear Information System (INIS)

    We study the geometry and the internal structure of the outflowing wind from the accretion disk of a quasar by observing multiple sightlines with the aid of strong gravitational lensing. Using Subaru/High Dispersion Spectrograph, we performed high-resolution (R ∼ 36,000) spectroscopic observations of images A and B of the gravitationally lensed quasar SDSS J1029+2623 (at z em ∼ 2.197) whose image separation angle, θ ∼ 22.''5, is the largest among those discovered so far. We confirm that the difference in absorption profiles in images A and B discovered by Misawa et al. has remained unchanged since 2010, implying the difference is not due to time variability of the absorption profiles over the delay between the images, Δt ∼ 744 days, but rather due to differences along the sightlines. We also discovered a time variation of C IV absorption strength in both images A and B due to a change in the ionization condition. If a typical absorber's size is smaller than its distance from the flux source by more than five orders of magnitude, it should be possible to detect sightline variations among images of other smaller separation, galaxy-scale gravitationally lensed quasars

  19. RESOLVING THE CLUMPY STRUCTURE OF THE OUTFLOW WINDS IN THE GRAVITATIONALLY LENSED QUASAR SDSS J1029+2623

    Energy Technology Data Exchange (ETDEWEB)

    Misawa, Toru [School of General Education, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Inada, Naohisa [Department of Physics, Nara National College of Technology, Yamatokohriyama, Nara 639-1080 (Japan); Oguri, Masamune [Research Center for the Early Universe, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Gandhi, Poshak [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Horiuchi, Takashi; Koyamada, Suzuka; Okamoto, Rina, E-mail: misawatr@shinshu-u.ac.jp [Department of Physics, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2014-10-20

    We study the geometry and the internal structure of the outflowing wind from the accretion disk of a quasar by observing multiple sightlines with the aid of strong gravitational lensing. Using Subaru/High Dispersion Spectrograph, we performed high-resolution (R ∼ 36,000) spectroscopic observations of images A and B of the gravitationally lensed quasar SDSS J1029+2623 (at z {sub em} ∼ 2.197) whose image separation angle, θ ∼ 22.''5, is the largest among those discovered so far. We confirm that the difference in absorption profiles in images A and B discovered by Misawa et al. has remained unchanged since 2010, implying the difference is not due to time variability of the absorption profiles over the delay between the images, Δt ∼ 744 days, but rather due to differences along the sightlines. We also discovered a time variation of C IV absorption strength in both images A and B due to a change in the ionization condition. If a typical absorber's size is smaller than its distance from the flux source by more than five orders of magnitude, it should be possible to detect sightline variations among images of other smaller separation, galaxy-scale gravitationally lensed quasars.

  20. Resolving the Clumpy Structure of the Outflow Winds in the Gravitationally Lensed Quasar SDSS J1029+2623

    CERN Document Server

    Misawa, Toru; Oguri, Masamune; Gandhi, Poshak; Horiuchi, Takashi; Koyamada, Suzuka; Okamoto, Rina

    2014-01-01

    We study the geometry and the internal structure of the outflowing wind from the accretion disk of a quasar by observing multiple sightlines with the aid of strong gravitational lensing. Using Subaru/HDS, we performed high-resolution ($R$ $\\sim$ 36,000) spectroscopic observations of images A and B of the gravitationally lensed quasar SDSS J1029+2623 (at $z_{em}$ $\\sim$ 2.197) whose image separation angle, $\\theta$ $\\sim$ 22$^{\\prime\\prime}\\!\\!$.5, is the largest among those discovered so far. We confirm that the difference in absorption profiles in the images A and B discovered by Misawa et al. (2013) remains unchanged since 2010, implying the difference is not due to time variability of the absorption profiles over the delay between the images, $\\Delta t$ $\\sim$ 744 days, but rather due to differences along the sightlines. We also discovered time variation of C IV absorption strength in both images A and B, due to change of ionization condition. If a typical absorber's size is smaller than its distance from ...

  1. Searching for Brown Dwarf Outflows

    CERN Document Server

    Whelan, E T; Bacciotti, F; Randich, S; Natta, A

    2009-01-01

    As outflow activity in low mass protostars is strongly connected to ac- cretion it is reasonable to expect accreting brown dwarfs to also be driving out- flows. In the last three years we have searched for brown dwarf outflows using high quality optical spectra obtained with UVES on the VLT and the technique of spectro-astrometry. To date five brown dwarf outflows have been discovered. Here the method is discussed and the results to date outlined.

  2. The Resolved Outflow from 3C 48

    Science.gov (United States)

    Shih, Hsin-Yi; Stockton, Alan

    2014-10-01

    We investigate the properties of the high-velocity outflow driven by the young radio jet of 3C 48, a compact-steep-spectrum source. We use the Space Telescope Imaging Spectrograph on board the Hubble Space Telecope to obtain (1) low-resolution UV and optical spectra and (2) multi-slit medium-resolution spectra of the ionized outflow. With supporting data from ground-based spectrographs, we are able to accurately measure the ratios of diagnostic emission lines such as [O III] λ5007, [O III] λ3727, [N II] λ6548, Hα, Hβ, [Ne V] λ3425, and [Ne III] λ3869. We fit the observed emission-line ratios using a range of ionization models, powered by active galactic nucleus (AGN) radiation and shocks, produced by the MAPPINGS code. We have determined that AGN radiation is likely the dominant ionization source. The outflow's density is estimated to be in the range n = 103-104 cm-3, the mass is ~6 × 106 M ⊙, and the metallicity is likely equal to or higher than solar. Compared with the typical outflows associated with more evolved radio jets, this young outflow is denser, less massive, and more metal rich. Multi-slit observations allow us to construct a two-dimensional velocity map of the outflow that shows a wide range of velocities with distinct velocity components, suggesting a wide-angle clumpy outflow. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-11574. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Some of the

  3. Scaling ultraviolet outflows in Seyferts

    OpenAIRE

    Stoll, R.; S Mathur; Krongold, Y.; Nicastro, F.

    2009-01-01

    X-ray and UV absorbing outflows are frequently seen in AGN and have been cited as a possible feedback mechanism. Whether or not they can provide adequate feedback depends on how massive they are and how much energy they carry, but it depends in a more fundamental way upon whether they escape the potential of the black hole. If the outflows have reached their asymptotic velocity when we observe them, then all of these properties critically depend on the radius of the outflow: a value which is ...

  4. MOS Mapping of the NIR Outflow HH 223

    Science.gov (United States)

    López, R.; Acosta-Pulido, J. A.; Estalella, R.; Gómez, G.; García-Lorenzo, B.

    2016-10-01

    The Multi-Object-Spectroscopy (MOS) mode of LIRIS was used to map the near-IR stellar outflow HH 223, in the dark cloud Lynds 723 (L723). HH 223 spatially coincides with the east-west component of the L723 quadrupolar CO outflow. The radio continuum source SMA2, towards the center of the quadrupolar CO outflow, hides the YSO that seems to power both the near-IR and the CO outflows. To map the S-shaped, near-IR emission of HH 223, extending ˜ 5', an appropriate mask was designed, with 16 rectangular slitlets. J, H and K-band spectra (R ˜eq 2500) were obtained through the mask. The kinematics of the neutral (H2) and ionized ([FeII]) gas outflow was derived from these data. The results confirm that both the near-IR and the CO outflows have a common driving source. To our knowledge, this is the first use of the MOS-LIRIS observing mode with the mask designed ad hoc to fit several extended, nonaligned targets.

  5. Energy exchanges in reconnection outflows

    CERN Document Server

    Lapenta, Giovanni; Newman, Davd L; Markidis, Stefano

    2016-01-01

    Reconnection outflows are highly energetic directed flows that interact with the ambient plasma or with flows from other reconnection regions. Under these conditions the flow becomes highly unstable and chaotic, as any flow jets interacting with a medium. We report here massively parallel simulations of the two cases of interaction between outflow jets and between a single outflow with an ambient plasma. We find in both case the development of a chaotic magnetic field, subject to secondary reconnection events that further complicate the topology of the field lines. The focus of the present analysis is on the energy balance. We compute each energy channel (electromagnetic, bulk, thermal, for each species) and find where the most energy is exchanged and in what form. The main finding is that the largest energy exchange is not at the reconnection site proper but in the regions where the outflowing jets are destabilized.

  6. Nature of the soft ULX in NGC 247: super-Eddington outflow and transition between the supersoft and soft ultraluminous regimes

    CERN Document Server

    Feng, Hua; Kaaret, Philip; Grise, Fabien

    2016-01-01

    We report on XMM-Newton/Chandra/Swift/HST observations of the ultraluminous X-ray source (ULX) in NGC 247, which is found to make transitions between the supersoft ultraluminous (SSUL) regime with a spectrum dominated by a cool ($\\sim 0.1$ keV) blackbody component and the soft ultraluminous (SUL) regime with comparable luminosities shared by the blackbody and power-law components. Multi-epoch observations revealed an anti-correlation between the blackbody radius and temperature, $R_{\\rm bb} \\propto T_{\\rm bb}^{-2.8 \\pm 0.3}$, ruling out a standard accretion disk as the origin of the soft X-ray emission. The soft X-ray emission is much more variable on both short and long timescales in the SSUL regime than in the SUL regime. We suggest that the SSUL regime may be an extension of the ultraluminous state toward the high accretion end, being an extreme case of the SUL regime, with the blackbody emission arising from the photosphere of thick outflows and the hard X-rays being emission leaked from the embedded accr...

  7. Mediterranean Outflow Mixing and Dynamics

    Science.gov (United States)

    Price, James F.; O'Neil Baringer, Molly; Lueck, Rolf G.; Johnson, Gregory C.; Ambar, Isabel; Parrilla, Gregorio; Cantos, Alain; Kennelly, Maureen A.; Sanford, Thomas B.

    1993-02-01

    The Mediterranean Sea produces a salty, dense outflow that is strongly modified by entrainment as it first begins to descend the continental slope in the eastern Gulf of Cadiz. The current accelerates to 1.3 meters per second, which raises the internal Froude number above 1, and is intensely turbulent through its full thickness. The outflow loses about half of its density anomaly and roughly doubles its volume transport as it entrains less saline North Atlantic Central water. Within 100 kilometers downstream, the current is turned by the Coriolis force until it flows nearly parallel to topography in a damped geostrophic balance. The mixed Mediterranean outflow continues westward, slowly descending the continental slope until it becomes neutrally buoyant in the thermocline where it becomes an important water mass.

  8. Millimeter- and Submillimeter-Wave Observations of the OMC-2/3 Region. II. Observational Evidence for Outflow-Triggered Star Formation in the OMC-2 FIR 3/4 Region

    CERN Document Server

    Shimajiri, Yoshito; Takakuwa, Shigehisa; Saito, Masao; Kawabe, Ryohei

    2008-01-01

    We have carried out the observations of the OMC-2 FIR 3/4 region with the NMA and ASTE in the H$^{13}$CO$^{+}$ (1--0), $^{12}$CO (3--2, 1--0), SiO ($v$=0, $J$=2--1), CS (2--1), and CH$_3$OH ($J_K$=7$_K$--6$_K$) lines and in the 3.3 mm continuum emission. Our NMA observations in the H$^{13}$CO$^{+}$ emission have revealed 0.07 pc-scale dense gas associated with FIR 4. The $^{12}$CO (3--2,1--0) emission shows high-velocity blue and red shifted components at the both north-east and south-west of FIR 3, suggesting a molecular outflow nearly along the plane of the sky driven by FIR 3. The SiO and the CH$_{3}$OH emission are detected around the interface between the outflow and the dense gas. Furthermore, the $^{12}$CO (1--0) emission shows an L-shaped structure in the P-V diagram. These results imply presence of the shock due to the interaction between the molecular outflow driven by FIR 3 and the dense gas associated with FIR 4. Moreover, our high angular-resolution observations of FIR 4 in the 3.3 mm continuum e...

  9. An in-depth study of a neutron star accreting at low Eddington rate: On the possibility of a truncated disk and an outflow

    Science.gov (United States)

    Degenaar, N.; Pinto, C.; Miller, J. M.; Wijnands, R.; Altamirano, D.; Paerels, F.; Fabian, A. C.; Chakrabarty, D.

    2016-09-01

    Due to observational challenges our knowledge of low-level accretion flows around neutron stars is limited. We present NuSTAR, Swift and Chandra observations of the low-mass X-ray binary IGR J17062-6143, which has been persistently accreting at ≃0.1 per cent of the Eddington limit since 2006. Our simultaneous NuSTAR/Swift observations show that the 0.5-79 keV spectrum can be described by a combination of a power law with a photon index of Γ≃2, a black body with a temperature of kTbb≃0.5 keV (presumably arising from the neutron star surface), and disk reflection. Modeling the reflection spectrum suggests that the inner accretion disk was located at Rin≳100~GM/c2 (≳225 km) from the neutron star. The apparent truncation may be due to evaporation of the inner disk into a radiatively-inefficient accretion flow, or due to the pressure of the neutron star magnetic field. Our Chandra gratings data reveal possible narrow emission lines near 1 keV that can be modeled as reflection or collisionally-ionized gas, and possible low-energy absorption features that could point to the presence of an outflow. We consider a scenario in which this neutron star has been able to sustain its low accretion rate through magnetic inhibition of the accretion flow, which gives some constraints on its magnetic field strength and spin period. In this configuration, IGR J17062-6143 could exhibit a strong radio jet as well as a (propeller-driven) wind-like outflow.

  10. Molecular outflows in starburst nuclei

    Science.gov (United States)

    Roy, Arpita; Nath, Biman B.; Sharma, Prateek; Shchekinov, Yuri

    2016-08-01

    Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with NOB ≥ 105 (corresponding to a star formation rate (SFR)≥1 M⊙ yr-1 in the nuclear region), in a stratified disk with mid-plane density n0 ˜ 200-1000 cm-3 and scale height z0 ≥ 200(n0/102 cm-3)-3/5 pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is ≥107 M⊙ at a distance of a few hundred pc, with a speed of several tens of km s-1. We show that a SFR surface density of 10 ≤ ΣSFR ≤ 50 M⊙ yr-1 kpc-2 favours the production of molecular outflows, consistent with observed values.

  11. Knowledge Outflows from Foreign Subsidiaries

    DEFF Research Database (Denmark)

    Perri, Alessandra; Andersson, Ulf

    the value of the subsidiary’s knowledge stock is very high, the need for knowledge protection restrains reciprocity mechanisms in knowledge exchanges, thus reducing the extent of knowledge outflows to the host location. This study contributes to the literature on the firm-level antecedents of FDI...

  12. Protostellar Outflows in L1340

    CERN Document Server

    Walawender, Josh; Smutko, Michael; O'Linger-Luscusk, JoAnn; Moriarty-Schieven, Gerald

    2016-01-01

    We have searched the L1340 A, B, and C clouds for shocks from protostellar outflows using the H$_2$ 2.122 $\\mu$m near-IR line as a shock tracer. Substantial outflow activity has been found in each of the three regions of the cloud (L1340 A, L1340 B, & L1340 C). We find 42 distinct shock complexes (16 in L1340 A, 11 in L1340 B, and 15 in L1340 C). We were able to link 17 of those shock complexes in to 12 distinct outflows and identify candidate source stars for each. We examine the properties (A$_{V}$, T$_{bol}$, and L$_{bol}$) of the source protostars and compare that to the properties of the general population of Class 0/I and flat SED protostars and find that there is an indication, albeit at low statistical significance, that the outflow driving protostars are drawn from a population with lower A$_{V}$, higher L$_{bol}$, and lower T$_{bol}$ than the general population of protostars.

  13. Molecular outflows in starburst nuclei

    CERN Document Server

    Roy, Arpita; Sharma, Prateek; Shchekinov, Yuri

    2016-01-01

    Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with $N_{OB}\\ge 10^5$ (corresponding to a star formation rate (SFR)$\\ge 1$ M$_{\\odot}$ yr$^{-1}$ in the nuclear region), in a stratified disk with mid-plane density $n_0\\sim 200\\hbox{--}1000$ cm$^{-3}$ and scale height $z_0\\ge 200 (n_0/10^2 \\, {\\rm cm}^{-3})^{-3/5}$ pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is $\\ge 10^7$ M$_\\odot$ at a distance of a few hundred pc, with a speed of several tens of km s$^{-1}$. We show that a SFR surface density of $10 \\le \\Sigma_{SFR} \\le 50$ M$_\\odot$ yr$^{-1}$ kpc$^{-2}$ favours the production of molecular outflows, consistent with observed values.

  14. Outflow forces in intermediate mass star formation

    CERN Document Server

    van Kempen, T A; van Dishoeck, E F; Kristensen, L E; Belloche, A; Klaassen, P D; Leurini, S; Jose-Garcia, I San; Aykutalp, A; Choi, Y; Endo, A; Frieswijk, W; Harsono, D; Karska, A; Koumpia, E; van der Marel, N; Nagy, Z; Perez-Beaupuits, J P; Risacher, C; van Weeren, R J; Wyrowski, F; Yildiz, U A; Guesten, R; Boland, W; Baryshev, A

    2015-01-01

    Intermediate mass protostarsprovide a bridge between theories of low- and high-mass star formation. Emerging molecular outflows can be used to determine the influence of fragmentation and multiplicity on protostellar evolution through the correlation of outflow forces of intermediate mass protostars with the luminosity. The aim of this paper is to derive outflow forces from outflows of six intermediate mass protostellar regions and validate the apparent correlation between total luminosity and outflow force seen in earlier work, as well as remove uncertainties caused by different methodology. By comparing CO 6--5 observations obtained with APEX with non-LTE radiative transfer model predictions, optical depths, temperatures, densities of the gas of the molecular outflows are derived. Outflow forces, dynamical timescales and kinetic luminosities are subsequently calculated. Outflow parameters, including the forces, were derived for all sources. Temperatures in excess of 50 K were found for all flows, in line wi...

  15. Cosmic ray driven outflows

    CERN Document Server

    Hanasz, Michal; Naab, Thorsten; Gawryszczak, Artur; Kowalik, Kacper; Wóltański, Dominik

    2013-01-01

    We present simulations of the magnetized interstellar medium (ISM) in models of massive star forming (40 Msun / yr) disk galaxies with high gas surface densities (~100 Msun / pc^2) similar to observed star forming high-redshift disks. We assume that type II supernovae deposit 10 per cent of their energy into the ISM as cosmic rays and neglect the additional deposition of thermal energy or momentum. With a typical Galactic diffusion coefficient for CRs (3e28 cm^2 / s) we demonstrate that this process alone can trigger the local formation of a strong low density galactic wind maintaining vertically open field lines. Driven by the additional pressure gradient of the relativistic fluid the wind speed can exceed 1000 km/s, much higher than the escape velocity of the galaxy. The global mass loading, i.e. the ratio of the gas mass leaving the galactic disk in a wind to the star formation rate becomes of order unity once the system has settled into an equilibrium. We conclude that relativistic particles accelerated i...

  16. STAR FORMATION IN SELF-GRAVITATING DISKS IN ACTIVE GALACTIC NUCLEI. II. EPISODIC FORMATION OF BROAD-LINE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    WangJianmin; Du Pu; Ge Junqiang; Hu Chen [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China); Baldwin, Jack A. [Physics and Astronomy Department, 3270 Biomedical Physical Sciences Building, Michigan State University, East Lansing, MI 48824 (United States); Ferland, Gary J., E-mail: wangjm@mail.ihep.ac.cn [Department of Physics and Astronomy, 177 Chemistry/Physics Building, University of Kentucky, Lexington, KY 40506 (United States)

    2012-02-20

    This is the second in a series of papers discussing the process and effects of star formation in the self-gravitating disk around the supermassive black holes in active galactic nuclei (AGNs). We have previously suggested that warm skins are formed above the star-forming (SF) disk through the diffusion of warm gas driven by supernova explosions. Here we study the evolution of the warm skins when they are exposed to the powerful radiation from the inner part of the accretion disk. The skins initially are heated to the Compton temperature, forming a Compton atmosphere (CAS) whose subsequent evolution is divided into four phases. Phase I is the duration of pure accumulation supplied by the SF disk. During phase II clouds begin to form due to line cooling and sink to the SF disk. Phase III is a period of preventing clouds from sinking to the SF disk through dynamic interaction between clouds and the CAS because of the CAS overdensity driven by continuous injection of warm gas from the SF disk. Finally, phase IV is an inevitable collapse of the entire CAS through line cooling. This CAS evolution drives the episodic appearance of broad-line regions (BLRs). We follow the formation of cold clouds through the thermal instability of the CAS during phases II and III, using linear analysis. Since the clouds are produced inside the CAS, the initial spatial distribution of newly formed clouds and angular momentum naturally follow the CAS dynamics, producing a flattened disk of clouds. The number of clouds in phases II and III can be estimated, as well as the filling factor of clouds in the BLR. Since the cooling function depends on the metallicity, the metallicity gradients that originate in the SF disk give rise to different properties of clouds in different radial regions. We find from the instability analysis that clouds have column density N{sub H} {approx}< 10{sup 22} cm{sup -2} in the metal-rich regions whereas they have N{sub H} {approx}> 10{sup 22} cm{sup -2} in the

  17. Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Yaqoob, T.; Braito, V.; Dadina, M.

    2010-10-01

    Context. Blue-shifted Fe K absorption lines have been detected in recent years between 7 and 10 keV in the X-ray spectra of several radio-quiet AGNs. The derived blue-shifted velocities of the lines can often reach mildly relativistic values, up to 0.2-0.4c. These findings are important because they suggest the presence of a previously unknown massive and highly ionized absorbing material outflowing from their nuclei, possibly connected with accretion disk winds/outflows. Aims: The scope of the present work is to statistically quantify the parameters and incidence of the blue-shifted Fe K absorption lines through a uniform analysis on a large sample of radio-quiet AGNs. This allows us to assess their global detection significance and to overcome any possible publication bias. Methods: We performed a blind search for narrow absorption features at energies greater than 6.4 keV in a sample of 42 radio-quiet AGNs observed with XMM-Newton. A simple uniform model composed by an absorbed power-law plus Gaussian emission and absorption lines provided a good fit for all the data sets. We derived the absorption lines parameters and calculated their detailed detection significance making use of the classical F-test and extensive Monte Carlo simulations. Results: We detect 36 narrow absorption lines on a total of 101 XMM-Newton EPIC pn observations. The number of absorption lines at rest-frame energies higher than 7 keV is 22. Their global probability to be generated by random fluctuations is very low, less than 3 × 10-8, and their detection have been independently confirmed by a spectral analysis of the MOS data, with associated random probability UFOs) those highly ionized absorbers with outflow velocities higher than 104 km s-1, then the majority of the lines are consistent with being associated to UFOs and the fraction of objects with detected UFOs in the whole sample is at least ~35%. This fraction is similar for type 1 and type 2 sources. The global covering fraction of

  18. Atlas of Tilted Accretion Disks & Source to Negative Superhumps

    CERN Document Server

    Montgomery, M M

    2009-01-01

    Using smoothed particle hydrodynamics, we numerically simulate steady state accretion discs for Cataclysmic Variable Dwarf Novae systems that have a secondary-to-primary mass ratio (0.35 \\le q \\le 0.55). After these accretion discs have come to quasi-equilibrium, we rotate each disc out of the orbital plane by (\\delta = (1, 2, 3, 4, 5,) or (20)^{o}) to induce negative superhumps. For accretion discs tilted $5^{o}$, we generate light curves and associated Fourier transforms for an atlas on negative superhumps and retrograde precession. Our simulation results suggest that accretion discs need to be tilted more than three degrees for negative superhumps to be statistically significant. We also show that if the disc is tilted enough such that the gas stream strikes a disc face, then a dense cooling ring is generated near the radius of impact. In addition to the atlas, we study these artificially tilted accretion discs to find the source to negative superhumps. Our results suggest that the source is additional lig...

  19. Durability of the accretion disk of millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Michel, F.C.; Dessler, A.J.

    1985-05-01

    Pulsars with pulsation periods in the millisecond range are thought to be neutron stars that have acquired an extraordinarily short spin period through the accretion of stellar material spiraling down onto the neutron star from a nearby companion. Nearly all the angular momentum and most of the mass of the companion star is transferred to the neutron star. During this process, wherein the neutron star consumes its companion, it is required that a disk of stellar material be formed around the neutron star. In conventional models it is supposed that the disk is somehow lost when the accretion phase is finished, so that only the rapidly spinning neutron star remains. However, it is possible that, after the accretion phase, a residual disk remains in stable orbit around the neutron star. The end result of such an accretion process is an object that looks much like a miniature (about 100 kilometers), heavy version of Saturn: a central object (the neutron star) surrounded by a durable disk. 10 references.

  20. Durability of the accretion disk of millisecond pulsars.

    Science.gov (United States)

    Michel, F C; Dessler, A J

    1985-05-24

    Pulsars with pulsation periods in the millisecond range are thought to be neutron stars that have acquired an extraordinarily short spin period through the accretion of stellar material spiraling down onto the neutron star from a nearby companion. Nearly all the angular momentum and most of the mass of the companion star is transferred to the neutron star. During this process, wherein the neutron star consumes its companion, it is required that a disk of stellar material be formed around the neutron star. In conventional models it is supposed that the disk is somehow lost when the accretion phase is finished, so that only the rapidly spinning neutron star remains. However, it is possible that, after the accretion phase, a residual disk remains in stable orbit around the neutron star. The end result of such an accretion process is an object that looks much like a miniature (about 100 kilometers), heavy version of Saturn: a central object (the neutron star) surrounded by a durable disk. PMID:17797665

  1. Magnetic Reconnection on Jet-Accretion disk Systems

    CERN Document Server

    Pino, Elisabete M de Gouveia Dal; Kadowaki, Luis H S; Khiali, Behoruz; Kowal, Grzergorz; Mizuno, Yosuke; Singh, Chandra B

    2016-01-01

    Fast Magnetic Reconnection is currently regarded as an important process also beyond the solar system, specially in magnetically dominated regions of galactic and extragalactic sources like the surrounds of black holes and relativistic jets. In this lecture we discuss briefly the theory of fast magnetic reconnection, specially when driven by turbulence which is very frequent in Astrophysical flows, and its implications for relativistic particle acceleration. Then we discuss these processes in the context of the sources above, showing recent analytical and multidimensional numerical MHD studies that indicate that fast reconnection can be a powerful process to accelerate particles to relativistic velocities, produce the associated high energy non-thermal emission, and account for efficient conversion of magnetic into kinetic energy in these flows.

  2. On the Thermal Stability of Radiation Dominated Accretion Disks

    CERN Document Server

    Jiang, Yan-Fei; Davis, Shane

    2013-01-01

    We study the long-term thermal stability of radiation dominated disks in which the vertical structure is determined self-consistently by the balance of heating due to dissipation of MHD turbulence driven by the magneto-rotational instability (MRI), and cooling due to radiation emitted at the photosphere. The calculations adopt the local shearing box approximation, and utilize the recently developed radiation transfer module in the Athena MHD code based on a variable Eddington tensor rather than an assumed local closure. After saturation of the MRI, in many cases the disk maintains a steady vertical structure for many thermal times. However, in every case in which the box size in the horizontal directions is at least one pressure scale height, fluctuations associated with MRI turbulence and dynamo action in the disk eventually trigger a thermal runaway which causes the disk to either expand or contract until the calculation must be terminated. During runaway, the dependence of the heating and cooling rates on ...

  3. The interaction of binary systems with accretion disks

    Directory of Open Access Journals (Sweden)

    Manuel Ortega Rodriguez

    2004-01-01

    Full Text Available Se estudia las uctuaciones (temporales en la radiaci on saliente de discos de acreci on en sistemas binarios, con el objeto de determinar las propiedades de dichos sistemas (comparando con las observaciones, tales como el momento angular de la estrella compacta alojada en el disco. Despu es de una discusi on de los efectos de la estrella compa~nera se presenta una predicci on de la frecuencia de la radiaci on saliente (modulada de rayos X.

  4. Thin accretion disks around cold Bose–Einstein condensate stars

    OpenAIRE

    Dănilă, Bogdan; Harko, Tiberiu; Kovács, Zoltán

    2015-01-01

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein Condensate. Observationally distinguishing between neutron/quark stars and Bose-Einstein Condensate stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing Bose-Einstein Condensate stars from neutron/quark stars is through the study of the thin accretion ...

  5. The Evolution of Gas and Dust in Protoplanetary Accretion Disks

    CERN Document Server

    Birnstiel, T

    2011-01-01

    Dust constitutes only about one percent of the mass of circumstellar disks, yet it is of crucial importance for the modeling of planet formation, disk chemistry, radiative transfer and observations. The initial growth of dust from sub-micron sized grains to planetesimals and also the radial transport of dust in disks around young stars is the topic of this thesis. Circumstellar dust is subject to radial drift, vertical settling, turbulent mixing, collisional growth, fragmentation and erosion. We approach this subject from three directions: analytical calculations, numerical simulations, and comparison to observations. We describe the physical and numerical concepts that go into a model which is able to simulate the radial and size evolution of dust in a gas disk which is viscously evolving over several million years. The resulting dust size distributions are compared to our analytical predictions and a simple recipe for obtaining steady-state dust size distributions is derived. With the numerical model at han...

  6. Patchy Accretion Disks in Ultraluminous X-ray Sources

    CERN Document Server

    Miller, J M; Barret, D; Harrison, F A; Fabian, A C; Webb, N A; Walton, D J; Rana, V

    2014-01-01

    The X-ray spectra of the most extreme ultra-luminous X-ray sources -- those with L > 1 E+40 erg/s -- remain something of a mystery. Spectral roll-over in the 5-10 keV band was originally detected in in the deepest XMM-Newton observations of the brightest sources; this is confirmed in subsequent NuSTAR spectra. This emission can be modeled via Comptonization, but with low electron temperatures (kT_e ~ 2 keV) and high optical depths (tau ~ 10) that pose numerous difficulties. Moreover, evidence of cooler thermal emission that can be fit with thin disk models persists, even in fits to joint XMM-Newton and NuSTAR observations. Using NGC 1313 X-1 as a test case, we show that a patchy disk with a multiple temperature profile may provide an excellent description of such spectra. In principle, a number of patches within a cool disk might emit over a range of temperatures, but the data only require a two-temperature profile plus standard Comptonization, or three distinct blackbody components. A mechanism such as the p...

  7. Tilted Accretion Disk Models of Sgr A* Flares

    Science.gov (United States)

    Dexter, Jason; Fragile, P. C.

    2013-01-01

    Sagittarius A* (Sgr A*), the Galactic center massive black hole candidate, is an unparalleled laboratory for low-luminosity accretion theory. First discovered as a compact radio source, Sgr A* has since been observed to undergo rapid, large amplitude NIR/X-ray flares. The many proposed phenomenological models cannot simultaneously explain both the flaring emission and the peak of the SED in the submillimeter. I will describe flares seen in numerical simulations of black hole accretion flows where the disk angular momentum is misaligned from that of the black hole. Eccentric fluid orbits driven by gravitational torques converge and form strong shocks, which can lead to significant particle heating. The resulting NIR emission can reproduce the observations, and is completely unrelated to the submillimeter emission, which is included in these models and is also in excellent agreement with observations. I will describe the prospects for testing accretion theory and constraining the properties of Sgr A* with exciting ongoing multi-wavelength observations.

  8. Observational Signatures of Tilted Black Hole Accretion Disks from Simulations

    OpenAIRE

    Dexter, Jason; Fragile, P. Chris

    2011-01-01

    Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer, and compare the estimated locatio...

  9. Mhd waves in stellar winds and accretion disks

    Directory of Open Access Journals (Sweden)

    M. J. Vasconcelos

    2000-01-01

    Full Text Available Las ondas de Alfv en han sido usadas para explicar el calentamiento de las coronas estelares y de la producci on de vientos estelares en varias zonas del diagrama Hertzsprung-Russell (HR. Las ondas fueron usadas como un mecanismo importante en la aceleraci on del viento de protoestrellas, de estrellas de tipos tempranos y tard os y del viento solar. Tambi en son importantes en la creaci on de inhomogeneidades, v a las inestabilidades t ermicas, en vientos de estrellas de tipo temprano. Por otro lado, el calentamiento generado por la disipaci on no lineal y turbulenta de las ondas puede ser una fuente importante de energ a para ionizar discos protoestelares, permitiendo el transporte de momento angular mediante la inestabilidad de Balbus-Hawly (BHI. Analizamos el papel de la disipaci on de ondas de Alfv en en las regiones medias e internas de los discos protoestelares (0:1 < R(AU < 1:4. Demostramos que cuando la disipaci on viscosa es insu ciente para mantener la ionizaci on requerida por la BHI, el amortiguamiento de las ondas de Alfv en puede ser una fuente alternativa de energ a para la ionizaci on.

  10. Non-linear resonances in accretion disks and qpos

    Directory of Open Access Journals (Sweden)

    W lodek Kluzniak

    2004-01-01

    Full Text Available Secundamos las oscilaciones no-lineales en el disco de acreci on como una explicaci on de las \\oscilaciones cuasi- peri odicas" de alta frecuencia observadas en las curvas de luz de las binarias de rayos X de baja masa que contienen estrellas de neutrones, agujeros negros o enanas blancas.

  11. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs. 2; Detailed Photoionization Modeling of Fe K-Shell Absorption Lines

    Science.gov (United States)

    Tombesi, Francesco; Clapp, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.

    2011-01-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet AGNs. In the previous paper of this series we defined UFOs as those absorbers with an outflow velocity higher than 10,000km/s and assessed the statistical significance of the associated blue shifted FeK absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. In the present paper we report a detailed curve of growth analysis and directly model the FeK absorbers with the Xstar photo-ionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35%. The outflow velocity distribution spans from \\sim10,000km/s (\\sim0.03c) up to \\siml00,000kmis (\\sim0.3c), with a peak and mean value of\\sim42,000km/s (\\sim0.14c). The ionization parameter is very high and in the range log\\xi 3-6 erg s/cm, with a mean value of log\\xi 4.2 erg s/cm. The associated column densities are also large, in the range N_H\\siml0(exp 22)-10(exp 24)/sq cm, with a mean value of N_H\\siml0(exp23)/sq cm. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can provide important clues on the connection between accretion disks, winds and jets.

  12. Hot Outflows in Galaxy Clusters

    CERN Document Server

    Kirkpatrick, C C

    2015-01-01

    The gas-phase metallicity distribution has been analyzed for the hot atmospheres of 29 galaxy clusters using {\\it Chandra X-ray Observatory} observations. All host brightest cluster galaxies (BCGs) with X-ray cavity systems produced by radio AGN. We find high elemental abundances projected preferentially along the cavities of 16 clusters. The metal-rich plasma was apparently lifted out of the BCGs with the rising X-ray cavities (bubbles) to altitudes between twenty and several hundred kiloparsecs. A relationship between the maximum projected altitude of the uplifted gas (the "iron radius") and jet power is found with the form $R_{\\rm Fe} \\propto P_{\\rm jet}^{0.45}$. The estimated outflow rates are typically tens of solar masses per year but exceed $100 ~\\rm M_\\odot ~yr^{-1}$ in the most powerful AGN. The outflow rates are 10% to 20% of the cooling rates, and thus alone are unable to offset a cooling inflow. Nevertheless, hot outflows effectively redistribute the cooling gas and may play a significant role at ...

  13. The Orion fingers: Near-IR spectral imaging of an explosive outflow

    CERN Document Server

    Youngblood, Allison; Bally, John

    2016-01-01

    We present near-IR (1.1-2.4 micron) position-position-velocity cubes of the 500-year-old Orion BN/KL explosive outflow with spatial resolution 1" and spectral resolution 86 km/s. We construct integrated intensity maps free of continuum sources of 15 H2 and [Fe II] lines while preserving kinematic information of individual outflow features. Included in the detected H2 lines are the 1-0 S(1) and 1-0 Q(3) transitions, allowing extinction measurements across the outflow. Additionally, we present dereddened flux ratios for over two dozen outflow features to allow for the characterization of the true excitation conditions of the BN/KL outflow. All ratios show the dominance of shock excitation of the H2 emission, although some features exhibit signs of fluorescent excitation from stellar radiation or J-type shocks. We also detect tracers of the PDR/ionization front north of the Trapezium stars in [O I] and [Fe II] and analyze other observed outflows not associated with the BN/KL outflow.

  14. Constraining FeLoBAL outflows from absorption line variability

    CERN Document Server

    McGraw, S M; Hamann, F W; Capellupo, D M; Gallagher, S C; Brandt, W N

    2015-01-01

    FeLoBALs are a rare class of quasar outflows with low-ionization broad absorption lines (BALs), large column densities, and potentially large kinetic energies that might be important for `feedback' to galaxy evolution. In order to probe the physical properties of these outflows, we conducted a multiple-epoch, absorption line variability study of 12 FeLoBAL quasars spanning a redshift range between 0.7 and 1.9 over rest frame time-scales of approximately 10 d to 7.6 yr. We detect absorption line variability with greater than 8 sigma confidence in 3 out of the 12 sources in our sample over time-scales of 0.6 to 7.6 yr. Variable wavelength intervals are associated with ground and excited state Fe II multiplets, the Mg II 2796, 2803 doublet, Mg I 2852, and excited state Ni II multiplets. The observed variability along with evidence of saturation in the absorption lines favors transverse motions of gas across the line of sight (LOS) as the preferred scenario, and allows us to constrain the outflow distance from th...

  15. Tracing Inflows and Outflows with Absorption Lines in Circumgalactic Gas

    CERN Document Server

    Ford, Amanda Brady; Oppenheimer, Benjamin D; Katz, Neal; Kollmeier, Juna A; Thompson, Robert; Weinberg, David H

    2013-01-01

    We examine how HI and metal absorption lines within low-redshift galaxy halos trace the dynamical state of circumgalactic gas, using cosmological hydrodynamic simulations that include a well-vetted heuristic model for galactic outflows. We categorize inflowing, outflowing, and ambient gas based on its history and fate as tracked in our simulation. Following our earlier work showing that the ionisation level of absorbers was a primary factor in determining the physical conditions of absorbing gas, we show here that it is also a governing factor for its dynamical state. Low-ionisation metal absorbers (e.g. MgII) tend to arise in gas that will fall onto galaxies within several Gyr, while high-ionisation metal absorbers (e.g. OVI) generally trace material that was deposited by outflows many Gyr ago. Inflowing gas is dominated by enriched material that was previously ejected in an outflow, hence accretion at low redshifts is typically substantially enriched. Recycling wind material is preferentially found closer t...

  16. Worker Inflow, Outflow, and Churning

    OpenAIRE

    Ilmakunnas, Pekka; Maliranta, Mika

    2003-01-01

    Linked employer-employee data from the Finnish business sector is used in an analysis of worker turnover. The data is an unbalanced panel with over 219 000 observations in the years 1991-97. The churning (excess worker turnover), worker inflow (hiring), and worker outflow (separation) rates are explained by various plant and employee characteristics in type 2 Tobit models where the explanatory variables can have a different effect on the probability of the flow rates to be non-zero and on the...

  17. Bipolar Outflows and the Evolution of Stars

    OpenAIRE

    Frank, Adam

    1998-01-01

    Hypersonic bipolar outflows are a ubiquitous phenomena associated with both young and highly evolved stars. Observations of Planetary Nebulae, the nebulae surrounding Luminous Blue Variables such as $\\eta$ Carinae, Wolf Rayet bubbles, the circumstellar environment of SN 1987A and Young Stellar Objects all revealed high velocity outflows with a wide range of shapes. In this paper I review the current state of our theoretical understanding of these outflows. Beginning with Planetary Nebulae con...

  18. Propeller-driven Outflows and Disk Oscillations

    OpenAIRE

    Romanova, M. M.; Ustyugova, G. V.; Koldoba, A. V.; Lovelace, R. V. E.

    2005-01-01

    We report the discovery of propeller-driven outflows in axisymmetric magnetohydrodynamic simulations of disk accretion to rapidly rotating magnetized stars. Matter outflows in a wide cone and is centrifugally ejected from the inner regions of the disk. Closer to the axis there is a strong, collimated, magnetically dominated outflow of energy and angular momentum carried by the open magnetic field lines from the star. The ``efficiency'' of the propeller may be very high in the respect that mos...

  19. Morphologies of protostellar outflows: An ALMA view

    CERN Document Server

    Peters, Thomas; Seifried, Daniel; Banerjee, Robi; Klessen, Ralf S

    2014-01-01

    The formation of stars is usually accompanied by the launching of protostellar outflows. Observations with the Atacama Large Millimetre/sub-millimetre Array (ALMA) will soon revolutionalise our understanding of the morphologies and kinematics of these objects. In this paper, we present synthetic ALMA observations of protostellar outflows based on numerical magnetohydrodynamic collapse simulations. We find significant velocity gradients in our outflow models and a very prominent helical structure within the outflows. We speculate that the disk wind found in the ALMA Science Verification Data of HD 163296 presents a first instance of such an observation.

  20. Warm Absorbers in X-rays (WAX), a comprehensive high resolution grating spectral study of a sample of Seyfert Galaxies: II. Warm Absorber dynamics and feedback to galaxies

    CERN Document Server

    Laha, Sibasish; Chakravorty, Susmita; Dewangan, Gulab C; Kembhavi, Ajit K

    2016-01-01

    This paper is a sequel to the extensive study of warm absorber (WA) in X-rays carried out using high resolution grating spectral data from XMM-Newton satellite (WAX-I). Here we discuss the global dynamical properties as well as the energetics of the WA components detected in the WAX sample. The slope of WA density profile ($n\\propto r^{-\\alpha}$) estimated from the linear regression slope of ionization parameter $\\xi$ and column density $N_H$ in the WAX sample is $\\alpha=1.236\\pm 0.034$. We find that the WA clouds possibly originate as a result of photo-ionised evaporation from the inner edge of the torus (torus wind). They can also originate in the cooling front of the shock generated by faster accretion disk outflows, the ultra-fast outflows (UFO), impinging onto the interstellar medium or the torus. The acceleration mechanism for the WA is complex and neither radiatively driven wind nor MHD driven wind scenario alone can describe the outflow acceleration. However, we find that radiative forces play a signi...

  1. Stellar Populations, Outflows, and Morphologies of High-Redshift Galaxies

    Science.gov (United States)

    Kornei, Katherine Anne

    Understanding the regulation and environment of star formation across cosmic time is critical to tracing the build-up of mass in the Universe and the interplay between the stars and gas that are the constituents of galaxies. Three studies are presented in this thesis, each examining a different aspect of star formation at a specific epoch. The first study presents the results of a photometric and spectroscopic survey of 321 Lyman break galaxies (LBGs) at z ˜ 3 to investigate systematically the relationship between Lyalpha emission and stellar populations. Lyalpha equivalent widths were calculated from rest-frame UV spectroscopy and optical/near-infrared/Spitzer photometry was used in population synthesis modeling to derive the key properties of age, dust extinction, star formation rate (SFR), and stellar mass. Using a variety of statistical tests, we find that Lyalpha equivalent width and age, SFR, and dust extinction, respectively, are significantly correlated in the sense that objects with strong Lyalpha emission also tend to be older, lower in star formation rate, and less dusty than objects with weak Lyalpha emission, or the line in absorption. We accordingly conclude that, within the LBG sample, objects with strong Lyalpha emission represent a later stage of galaxy evolution in which supernovae-induced outflows have reduced the dust covering fraction. The second study focuses specifically on galactic-scale outflowing winds in 72 star-forming galaxies at z ˜ 1 in the Extended Groth Strip. Galaxies were selected from the DEEP2 survey and follow-up LRIS spectroscopy was obtained covering SiII, CIV, FeII, MgII, and MgI lines in the rest-frame ultraviolet. Using GALEX, HST, and Spitzer imaging available for the Extended Groth Strip, we examine galaxies on a per-object basis in order to better understand both the prevalence of galactic outflows at z ˜ 1 and the star-forming and structural properties of objects experiencing outflows. Gas velocities, measured from

  2. Outflow structure within 1000 au of high-mass YSOs. I. First results from a combined study of maser and radio continuum emission

    Science.gov (United States)

    Moscadelli, L.; Sánchez-Monge, Á.; Goddi, C.; Li, J. J.; Sanna, A.; Cesaroni, R.; Pestalozzi, M.; Molinari, S.; Reid, M. J.

    2016-01-01

    Context. In high-mass (≥7 M⊙) star formation (SF) studies, high-angular resolution is crucial for resolving individual protostellar outflows (and possibly accretion disks) from the complex contribution of nearby (high- and low-mass) young stellar objects (YSO). Previous interferometric studies have focused mainly on single objects. Aims: A sensitive survey at high angular resolution is required to investigate outflow processes in a statistically significant sample of high-mass YSOs and on spatial scales relevant to testing theories. Methods: We selected a sample of 40 high-mass YSOs from water masers observed within the BeSSeL Survey. We investigated the 3D velocity and spatial structures of the molecular component of massive outflows at milli-arcsecond angular resolution using multi-epoch Very Long Baseline Array (VLBA) observations of 22 GHz water masers. We also characterize the ionized component of the flows using deep images of the radio continuum emission with resolutions of ~0."2, at 6, 13, and 22 GHz with the Jansky Very Large Array (JVLA). Results: We report the first results obtained for a subset of 11 objects from the sample. The water maser measurements provide us with a very accurate description of the molecular gas kinematics. This in turn enables us to estimate the momentum rate of individual outflows, varying in the range 10-3-100M⊙ yr-1 km s-1, among the highest values reported in the literature. In all the observed objects, the continuum emission at 13 and 22 GHz has a compact structure, with its position coincident with that of the water masers. The 6 GHz continuum consists of either compact components (mostly well aligned with the 13 and/or 22 GHz sources) or extended emission (either highly elongated or approximately spherical), which can be offset by up to a few arcseconds from the water masers. The unresolved continuum emission associated with the water masers likely points to the YSO location. The comparison of the radio continuum

  3. DENSE CLUMPS AND CANDIDATES FOR MOLECULAR OUTFLOWS IN W40

    Energy Technology Data Exchange (ETDEWEB)

    Shimoikura, Tomomi; Dobashi, Kazuhito [Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Nakamura, Fumitaka; Hara, Chihomi; Kawabe, Ryohei [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Tanaka, Tomohiro [Department of Physical Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Shimajiri, Yoshito [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service d’Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Sugitani, Kouji, E-mail: ikura@u-gakugei.ac.jp [Graduate School of Natural Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-8501 (Japan)

    2015-06-20

    We report the results of the {sup 12}CO (J = 3−2) and HCO{sup +} (J = 4−3) observations of the W40 H ii region with the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope (HPBW ≃ 22″) to search for molecular outflows and dense clumps. We found that the velocity field in the region is highly complex, consisting of at least four distinct velocity components at V{sub LSR} ≃ 3, 5, 7, and 10 km s{sup −1}. The ∼7 km s{sup −1} component represents the systemic velocity of cold gas surrounding the entire region, and causes heavy absorption in the {sup 12}CO spectra over the velocity range 6 ≲ V{sub LSR} ≲ 9 km s{sup −1}. The ∼5 and ∼10 km s{sup −1} components exhibit high {sup 12}CO temperature (≳40 K) and are found mostly around the H ii region, suggesting that these components are likely to be tracing dense gas interacting with the expanding shell around the H ii region. Based on the {sup 12}CO data, we identified 13 regions of high velocity gas, which we interpret as candidate outflow lobes. Using the HCO{sup +} data, we also identified six clumps and estimated their physical parameters. On the basis of the ASTE data and near-infrared images from 2MASS, we present an updated three-dimensional model of this region. In order to investigate molecular outflows in W40, the SiO (J = 1−0, v = 0) emission line and some other emission lines at 40 GHz were also observed with the 45 m telescope at the Nobeyama Radio Observatory, but they were not detected at the present sensitivity.

  4. HiRes Deconvolved Spitzer Images of 89 Protostellar Jets and Outflows: New Data on Evolution of Outflow Morphology

    CERN Document Server

    Velusamy, T; Thompson, T

    2013-01-01

    To study the role of protosellar jets and outflows in the time evolution of the parent cores and the protostars, the astronomical community needs a large enough data base of infrared images of protostars at the highest spatial resolution possible, to reveal the details of their morphology. Spitzer provides unprecedented sensitivity in the infrared to study both the jet and outflow features, however its spatial resolution is limited by its 0.85m mirror. Here we use a high resolution deconvolution algorithm, "HiRes", to improve the visualization of spatial morphology by enhancing resolution (to sub-arcsecond levels in the IRAC bands) and removing the contaminating sidelobes from bright sources in a sample of 89 protostellar objects. These reprocessed images are useful to detect: (i) wide angle outflow seen in scattered light; (ii) morphological details of H2 emission in jets and bow shocks; and (iii) compact features in MIPS 24 micron images as protostar/ disk and atomic/ionic line emissions associated with the...

  5. SPATIALLY RESOLVED OBSERVATIONS OF THE BIPOLAR OPTICAL OUTFLOW FROM THE BROWN DWARF 2MASS J12073347-3932540

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, E. T.; Ray, T. P. [Dublin Institute for Advanced Studies, School of Cosmic Physics, 31 Fitzwilliam Place, Dublin 2 (Ireland); Comeron, F. [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Bacciotti, F. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Kavanagh, P. J. [Institut fuer Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Eberhard Karls Universitaet, D-72076 Tuebingen (Germany)

    2012-12-20

    Studies of brown dwarf (BD) outflows provide information pertinent to questions on BD formation, as well as allowing outflow mechanisms to be investigated at the lowest masses. Here new observations of the bipolar outflow from the 24 M{sub JUP} BD 2MASS J12073347-3932540 are presented. The outflow was originally identified through the spectro-astrometric analysis of the [O I]{lambda}6300 emission line. Follow-up observations consisting of spectra and [S II], R-band and I-band images were obtained. The new spectra confirm the original results and are used to constrain the outflow position angle (P.A.) at {approx}65 Degree-Sign . The [O I]{lambda}6300 emission line region is spatially resolved and the outflow is detected in the [S II] images. The detection is firstly in the form of an elongation of the point-spread function (PSF) along the direction of the outflow P.A. Four faint knot-like features (labeled A-D) are also observed to the southwest of 2MASS J12073347-3932540 along the same P.A. suggested by the spectra and the elongation in the PSF. Interestingly, D, the feature furthest from the source, is bow shaped with the apex pointing away from 2MASS J12073347-3932540. A color-color analysis allows us to conclude that at least feature D is part of the outflow under investigation while A is likely a star or galaxy. Follow-up observations are needed to confirm the origin of B and C. This is a first for a BD, as BD optical outflows have to date only been detected using spectro-astrometry. This result also demonstrates for the first time that BD outflows can be collimated and episodic.

  6. Outflows from neutron star merger remnant disks: nucleosynthesis and kilonovae

    Science.gov (United States)

    Fernandez, Rodrigo; Lippuner, Jonas; Roberts, Luke; Tchekhovskoy, Alexander; Foucart, Francois; Metzger, Brian; Kasen, Daniel; Quataert, Eliot

    2016-03-01

    The accretion disk formed in a neutron star merger can drive powerful winds on timescales of 100ms to seconds after coalescence. The wind material is more strongly irradiated by neutrinos than the dynamical ejecta, and hence has a less neutron-rich composition, with implications for r-process element synthesis and the radioactively-powered kilonova transient. This talk will present preliminary results from projects aimed at quantifying (1) the nucleosynthesis yield from disks around hypermassive neutron stars, (2) the effect of MHD turbulence on mass ejection when a black hole sits at the center, and (3) the interaction between disk wind and dynamical ejecta when the relative masses of these components vary.

  7. Accretion and plasma outflow from dissipationless discs

    OpenAIRE

    Bogovalov, Sergei; Kelner, Stanislav

    2008-01-01

    We consider an extreme case of disc accretion onto a gravitating centre when the viscosity in the disc is negligible. The angular momentum and the rotational energy of the accreted matter is carried out by a magnetized wind outflowing from the disc. The outflow of matter from the disc occurs due to the Blandford & Payne(1982) centrifugal mechanism. The disc is assumed to be cold. Accretion and outflow are connected by the conservation of the energy, mass and the angular momentum. The basic pr...

  8. AGN outflow feedback: Constraints from variability

    CERN Document Server

    Detmers, R G

    2009-01-01

    We present an overview on how variability can be used to constrain the location of the ionized outflow in nearby Active Galactic Nuclei using high-resolution X-ray spectroscopy. Without these constraints on the location of the outflow, the kinetic luminosity and mass loss rate can not be determined. We focus on the Seyfert 1 galaxy NGC 5548, which is arguably the best studied AGN on a timescale of 10 years. Our results show that frequent observations combined with long term monitoring, such as with the \\textit{Rossi X-ray Timing Explorer (RXTE)} satellite, are crucial to investigate the effects of these outflows on their surroundings.

  9. Metal enrichment of the CGM through outflows

    Science.gov (United States)

    Christensen, Charlotte

    2016-01-01

    Galactic outflows enrich the circumgalactic medium through the redistribution of metals from the disks of galaxies. We examine the history of this enrichment by analyzing the outflows of twenty high-resolution simulated galaxies spanning two and a half orders of magnitude in halo mass. These simulations match many observed trends, including the mass-metallicity relation. By tracking particles in the simulations, we follow the removal and reaccretion of metals between redshift 3.5 and 0. We also determine the enrichment of the outflowing gas compared to the local interstellar media. Finally we compare the redshift zero metal census to observed values.

  10. Outflows in Sodium Excess Objects

    CERN Document Server

    Park, Jongwon; Yi, Sukyoung K

    2015-01-01

    van Dokkum and Conroy revisited the unexpectedly strong Na I lines at 8200 A found in some giant elliptical galaxies and interpreted it as evidence for unusually bottom-heavy initial mass function. Jeong et al. later found a large population of galaxies showing equally-extraordinary Na D doublet absorption lines at 5900 A (Na D excess objects: NEOs) and showed that their origins can be different for different types of galaxies. While a Na D excess seems to be related with the interstellar medium (ISM) in late-type galaxies, smooth-looking early-type NEOs show little or no dust extinction and hence no compelling sign of ISM contributions. To further test this finding, we measured the doppler components in the Na D lines. We hypothesized that ISM would have a better (albeit not definite) chance of showing a blueshift doppler departure from the bulk of the stellar population due to outflow caused by either star formation or AGN activities. Many of the late-type NEOs clearly show blueshift in their Na D lines, wh...

  11. Disks, accretion and outflows of brown dwarfs

    CERN Document Server

    Joergens, V; Liu, Y; Pascucci, I; Whelan, E; Alcala, J; Biazzo, K; Costigan, G; Gully-Santiago, M; Henning, Th; Natta, A; Rigliaco, E; Rodriguez-Ledesma, V; Sicilia-Aguilar, A; Tottle, J; Wolf, S

    2012-01-01

    Characterization of the properties of young brown dwarfs are important to constraining the formation of objects at the extreme low-mass end of the IMF. While young brown dwarfs share many properties with solar-mass T Tauri stars, differences may be used as tests of how the physics of accretion/outflow and disk chemistry/dissipation depend on the mass of the central object. This article summarizes the presentations and discussions during the splinter session on 'Disks, accretion and outflows of brown dwarfs' held at the CoolStars17 conference in Barcelona in June 2012. Recent results in the field of brown dwarf disks and outflows include the determination of brown dwarf disk masses and geometries based on Herschel far-IR photometry (70-160 um), accretion properties based on X-Shooter spectra, and new outflow detections in the very low-mass regime.

  12. Magnetosphere sawtooth oscillations induced by ionospheric outflow.

    Science.gov (United States)

    Brambles, O J; Lotko, W; Zhang, B; Wiltberger, M; Lyon, J; Strangeway, R J

    2011-06-01

    The sawtooth mode of convection of Earth's magnetosphere is a 2- to 4-hour planetary-scale oscillation powered by the solar wind-magnetosphere-ionosphere (SW-M-I) interaction. Using global simulations of geospace, we have shown that ionospheric O(+) outflows can generate sawtooth oscillations. As the outflowing ions fill the inner magnetosphere, their pressure distends the nightside magnetic field. When the outflow fluence exceeds a threshold, magnetic field tension cannot confine the accumulating fluid; an O(+)-rich plasmoid is ejected, and the field dipolarizes. Below the threshold, the magnetosphere undergoes quasi-steady convection. Repetition and the sawtooth period are controlled by the strength of the SW-M-I interaction, which regulates the outflow fluence. PMID:21636770

  13. Herbig-Haro Objects and Mid-infrared Outflows in the Vela C Molecular Cloud

    Science.gov (United States)

    Zhang, Miaomiao; Wang, Hongchi; Henning, Thomas

    2014-08-01

    We have performed a deep [S II] λλ6717/6731 wide field Herbig-Haro (HH) object survey toward the Vela C molecular cloud with a sky coverage of about 2 deg2. In total, 18 new HH objects, HH 1090-1107, are discovered and the two previously known HH objects, HH 73-74, are also detected in our [S II] images. We also present an investigation of mid-infrared outflows in the Vela C molecular cloud using the Wide-field Infrared Survey Explorer images taken from AllWISE data release. Using the method suggested by Zhang & Wang, 11 extended green objects (EGOs) are identified to be the mid-infrared outflows, including 6 new mid-infrared outflows that have not been detected previously at other wavelengths and 5 mid-infrared counterparts of the HH objects detected in this work. Using the AllWISE Source Catalog and the source classification scheme suggested by Koenig et al., we have identified 56 young stellar object (YSO) candidates in the Vela C molecular cloud. The possible driving sources of the HH objects and EGOs are discussed based on the morphology of HH objects and EGOs and the locations of HH objects, EGOs and YSO candidates. Finally we associate 12 HH objects and 5 EGOs with 10 YSOs and YSO candidates. The median length of the outflows in Vela C is 0.35 pc and the outflows seem to be oriented randomly.

  14. Fast cold gas in hot AGN outflows

    CERN Document Server

    Costa, Tiago; Haehnelt, Martin

    2014-01-01

    Observations of the emission from spatially extended cold gas around bright high-redshift QSOs reveal surprisingly large velocity widths exceeding 2000 km s^(-1), out to projected distances as large as 30 kpc. The high velocity widths have been interpreted as the signature of powerful AGN-driven outflows. Naively, these findings appear in tension with hydrodynamic models in which AGN-driven outflows are energy-driven and thus very hot with typical temperatures T = 10^6-7 K. Using the moving-mesh code Arepo, we perform 'zoom-in' cosmological simulations of a z = 6 QSO and its environment, following black hole growth and feedback via energy-driven outflows. In the simulations, the QSO host galaxy is surrounded by a clumpy circum-galactic medium pre-enriched with metals due to supernovae-driven galactic outflows. As a result, part of the AGN-driven hot outflowing gas can cool radiatively, leading to large amounts (> 10^9 M_sun) of cold gas comoving with the hot bipolar outflow. This results in velocity widths of...

  15. Molecular Outflows From the Protocluster, Serpens South

    CERN Document Server

    Nakamura, Fumitaka; Shimajiri, Yoshito; Tsukagoshi, Takashi; Higuchi, Aya E; Nishiyama, Shogo; Kawabe, Ryohei; Takami, Michihiro; Karr, Jennifer L; Gutermuth, Robert A; Wilson, Grant

    2011-01-01

    We present the results of CO ($J=3-2$) and HCO$^+$ ($J=4-3$) mapping observations toward a nearby embedded cluster, Serpens South, using the ASTE 10 m telescope. Our CO ($J=3-2$) map reveals that many outflows are crowded in the dense cluster-forming clump that can be recognized as a HCO$^+$ clump with a size of $\\sim$ 0.2 pc and mass of $\\sim$ 80 M$_\\odot$. The clump contains several subfragments with sizes of $\\sim$ 0.05 pc. By comparing the CO ($J=3-2$) map with the 1.1 mm dust continuum image taken by AzTEC on ASTE, we find that the spatial extents of the outflow lobes are sometimes anti-correlated with the distribution of the dense gas and some of the outflow lobes apparently collide with the dense gas. The total outflow mass, momentum, and energy are estimated at 0.6 $M_\\odot$, 8 $M_\\odot$ km s$^{-1}$, and 64 $M_\\odot$ km$^2$ s$^{-2}$, respectively. The energy injection rate due to the outflows is comparable to the turbulence dissipation rate in the clump, implying that the protostellar outflows can mai...

  16. Theory of photospheric emission from relativistic outflows

    CERN Document Server

    Ruffini, R; Vereshchagin, G V

    2013-01-01

    (shortened) In this paper we reexamine the optical depth of ultrarelativistic spherically symmetric outflows and reevaluate the photospheric radius for each model during both the acceleration and coasting phases. It is shown that for both the wind and the shell models there are two asymptotic solutions for the optical depth during the coasting phase of the outflow. In particular we show that quite counterintuitively a geometrically thin shell may appear as a thick wind for photons propagating inside it. For this reason we introduce notions of photon thick and photon thin outflows, which appear more general and better physically motivated with respect to winds and shells. Photosphere of relativistic outflow is a dynamic surface. We study its geometry and find that the photosphere of photon thin outflow has always a convex shape, while in the photon thick one it is initially convex (there is always a photon thin layer in any outflow) and then it becomes concave asymptotically approaching the photosphere of an i...

  17. Quantifying Supernovae-Driven Multiphase Galactic Outflows

    CERN Document Server

    Li, Miao; Ostriker, Jeremiah P

    2016-01-01

    Galactic outflows are ubiquitously observed in star-forming disk galaxies and are critical for galaxy formation. Supernovae (SNe) play the key role in driving the outflows, but there is no consensus as to how much energy, mass and metal they can launch out of the disk. We perform 3D, high-resolution hydrodynamic simulations to study SNe-driven outflows from stratified media. Assuming SN rate scales with gas surface density $\\Sigma_{\\rm{gas}}$ as in the Kennicutt-Schmidt (KS) relation, we find the mass loading factor, defined as the mass outflow flux divided by the star formation surface density, decreases with increasing $\\Sigma_{\\rm{gas}}$ as $\\propto \\Sigma^{-0.61}_{\\rm{gas}}$. Approximately $\\Sigma_{\\rm{gas}} \\lesssim$ 50 $M_\\odot/pc^2$ marks when the mass loading factor $\\gtrsim$1. About 10-50\\% of the energy and 40-80\\% of the metals produced by SNe end up in the outflows. The tenuous hot phase ($T>3\\times 10^5$ K) carries the majority of the energy and metals in outflows. We discuss how various physical...

  18. Classical T Tauri-like Outflow Activity in the Brown Dwarf Mass Regime

    Science.gov (United States)

    Whelan, E. T.; Ray, T. P.; Podio, L.; Bacciotti, F.; Randich, S.

    2009-12-01

    Over the last number of years, spectroscopic studies have strongly supported the assertion that protostellar accretion and outflow activity persist to the lowest masses. Indeed, previous to this work, the existence of three brown dwarf (BD) outflows had been confirmed by us. In this paper, we present the results of our latest investigation of BD outflow activity and report on the discovery of two new outflows. Observations to date have concentrated on studying the forbidden emission line (FEL) regions of young BDs and in all cases data have been collected using the UV-Visual Echelle Spectrometer (UVES) on the ESO Very Large Telescope. Offsets in the FEL regions are recovered using spectro-astrometry. Here, ISO-Oph 32 is shown to drive a blueshifted outflow with a radial velocity of 10-20 km s-1 and spectro-astrometric analysis constrains the position angle of this outflow to 240° ± 7°. The BD candidate, ISO-ChaI 217 is found to have a bipolar outflow bright in several key forbidden lines (VRAD = -20 km s-1, +40 km s-1) and with a P.A. of 193°-209°. A striking feature of the ISO-ChaI 217 outflow is the strong asymmetry between the red- and blueshifted lobes. This asymmetry is revealed in the relative brightness of the two lobes (redshifted lobe is brighter), the factor of 2 difference in radial velocity (the redshifted lobe is faster) and the difference in the electron density (again higher in the red lobe). Such asymmetries are common in jets from low-mass protostars and the observation of a marked asymmetry at such a low mass (Bacciotti & Eislöffel technique is used to study the ionization fraction, electron temperature, and total density. For LS-RCrA 1, ISO-ChaI 217 and ISO-Oph 102 \\dot{M}_out are measured to be in the range 10-10 to 10-9 M ⊙ yr-1 using a method based on the luminosity of the [O I]λ6300 and [S II]λ6731 lines. Mass loss rates for our sample of BD outflows are found to be comparable to the mass accretion rates. Overall, as our results

  19. A Robust Measurement of the Mass Outflow Rate of the Galactic Outflow from NGC 6090

    Science.gov (United States)

    Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei

    2016-08-01

    To evaluate the impact of stellar feedback, it is critical to estimate the mass outflow rates of galaxies. Past estimates have been plagued by uncertain assumptions about the outflow geometry, metallicity, and ionization fraction. Here we use Hubble Space Telescope ultraviolet spectroscopic observations of the nearby starburst NGC 6090 to demonstrate that many of these quantities can be constrained by the data. We use the Si IV absorption lines to calculate the scaling of velocity (v), covering fraction (Cf), and density with distance from the starburst (r), assuming the Sobolev optical depth and a velocity law of the form: v~∝(1 - Ri/r)β (where Ri is the inner outflow radius). We find that the velocity (β=0.43) is consistent with an outflow driven by an r-2 force with the outflow radially accelerated, while the scaling of the covering fraction (Cf∝r-0.82) suggests that cool clouds in the outflow are in pressure equilibrium with an adiabatically expanding medium. We use the column densities of four weak metal lines and CLOUDY photoionization models to determine the outflow metallicity, the ionization correction, and the initial density of the outflow. Combining these values with the profile fitting, we find Ri = 63 pc, with most of the mass within 300 pc of the starburst. Finally, we find that the maximum mass outflow rate is 2.3 M⊙ yr-1 and the mass loading factor (outflow divided by the star formation rate) is 0.09, a factor of 10 lower than the value calculated using common assumptions for the geometry, metallicity and ionization structure of the outflow.

  20. Disk-outflow models as applied to high mass star forming regions through methanol and water maser observations

    CERN Document Server

    Farmer, Hontas

    2013-01-01

    As the recent publication by Breen et al (2013) found Class II methanol masers are exclusively associated with high mass star forming regions. Based on the positions of the Class I and II methanol and H$_{2}$O masers, UC H II regions and 4.5 $\\mu$m infrared sources, and the center velocities ($v_{\\text{LSR}}$) of the Class I methanol and H$_{2}$O masers, compared to the $v_{\\text{LSR}}$ of the Class II methanol masers, we propose three disk-outflow models that may be traced by methanol masers. In all three models, we have located the Class II methanol maser near the protostar, and the Class I methanol maser in the outflow, as is known from observations during the last twenty years. In our first model, the H$_{2}$O masers trace the linear extent of the outflow. In our second model, the H$_{2}$O masers are located in a circumstellar disk. In our third model, the H$_{2}$O masers are located in one or more outflows near the terminating shock where the outflow impacts the ambient interstellar medium. Together, the...