WorldWideScience

Sample records for accretion powered spin-up

  1. The Accretion Powered Spin-up of GRO 1750–27

    DEFF Research Database (Denmark)

    Kretschmar, P.; Shaw, S.; Hill, A. B.;

    2009-01-01

    have been confirmed and improved and a clear spin-up measured.For the first time the broad-band spectrum and pulse profile have been obtained, making it possible to estimate the source distance and the magnetic field strength. We discuss the evolution of the spectrum and pulse profiles over...

  2. The accretion powered spin-up of GRO J1750-27

    DEFF Research Database (Denmark)

    Shaw, S.E.; Hill, A.B.; Kuulkers, E.;

    2009-01-01

    outburst of the system in 1995. Correcting the effects of the Doppler shifting of the period, due to the orbital motion of the pulsar, leads to the detection of an intrinsic spin-up that is well described by a simple model including. P and P terms of - 7.5 x 10(-10) s s(-1) and 1 x 10(-16) s s(-2...

  3. NuSTAR discovers a cyclotron line and reveals the spinning up of the accreting X-ray pulsar IGR J16393-4643

    Science.gov (United States)

    Bodaghee, Arash; Tomsick, John; Fornasini, Francesca; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E.; Christensen, Finn; Craig, William W.; Hailey, Charles James; Harrison, Fiona; Zhang, William

    2016-04-01

    After several misclassifications, IGR J16393-4643 is now known to be a high-mass X-ray binary consisting of a heavily-absorbed pulsar that is likely paired with a massive and distant B star. It was observed for 50-ks by NuSTAR in the 3--79 keV energy band, complemented by a contemporaneous 2-ks observation with Swift-XRT. These observations enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of 29.3(+1.1/-1.3) keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5±0.1)×1012 G. The known pulsation period is now observed at 904.0±0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of dP/dt = -2×10-8 s s-1 (-0.6 s per year, or a frequency derivative of dν/dt = 3×10-14 Hz s-1). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly in corotation with the neutron star whose magnetospheric radius is around 2×108 cm.

  4. Formation of millisecond pulsars with CO white dwarf companions - II. Accretion, spin-up, true ages and comparison to MSPs with He white dwarf companions

    CERN Document Server

    Tauris, Thomas M; Kramer, Michael

    2012-01-01

    Millisecond pulsars (MSPs) are mainly characterised by their spin periods, B-fields and masses - quantities which are largely affected by previous interactions with a companion star in a binary system. In this paper, we investigate the formation mechanism of MSPs by considering the pulsar recycling process in both intermediate-mass X-ray binaries (IMXBs) and low-mass X-ray binaries (LMXBs). The IMXBs mainly lead to the formation of binary MSPs with a massive carbon-oxygen (CO) or an oxygen-neon-magnesium white dwarf (ONeMg WD) companion, whereas the LMXBs form recycled pulsars with a helium white dwarf (He WD) companion. We discuss the accretion physics leading to the spin-up line in the PPdot-diagram and demonstrate that such a line cannot be uniquely defined. We derive a simple expression for the amount of accreted mass needed for any given pulsar to achieve its equilibrium spin and apply this to explain the observed differences of the spin distributions of recycled pulsars with different types of companion...

  5. Rotation and Accretion Powered Pulsars

    International Nuclear Information System (INIS)

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you

  6. Observational Limits on the Spin-down Torque of Accretion Powered Stellar Winds

    Science.gov (United States)

    Zanni, Claudio; Ferreira, Jonathan

    2011-01-01

    The rotation period of classical T Tauri stars (CTTS) represents a longstanding puzzle. While young low-mass stars show a wide range of rotation periods, many CTTS are slow rotators, spinning at a small fraction of breakup, and their rotation period does not seem to shorten, despite the fact that they are actively accreting and contracting. Matt & Pudritz proposed that the spin-down torque of a stellar wind powered by a fraction of the accretion energy would be strong enough to balance the spin-up torque due to accretion. Since this model establishes a direct relation between accretion and ejection, the observable stellar parameters (mass, radius, rotation period, magnetic field) and the accretion diagnostics (accretion shock luminosity) can be used to constrain the wind characteristics. In particular, since the accretion energy powers both the stellar wind and the shock emission, we show in this Letter how the accretion shock luminosity L UV can provide upper limits to the spin-down efficiency of the stellar wind. It is found that luminous sources with L UV >= 0.1 L sun and typical dipolar field components UV Lt 0.1 L sun) are compatible with a zero-torque condition, but the corresponding stellar winds are still very demanding in terms of mass and energy flux. We therefore conclude that accretion powered stellar winds are unlikely to be the sole mechanism to provide an efficient spin-down torque for accreting CTTS.

  7. Observational limits on the spin-down torque of Accretion Powered Stellar Winds

    CERN Document Server

    Zanni, C

    2010-01-01

    The rotation period of classical T Tauri stars (CTTS) represents a longstanding puzzle. While young low-mass stars show a wide range of rotation periods, many CTTS are slow rotators, spinning at a small fraction of break-up, and their rotation period does not seem to shorten, despite the fact that they are actively accreting and contracting. Matt & Pudritz (2005) proposed that the spin-down torque of a stellar wind powered by a fraction of the accretion energy would be strong enough to balance the spin-up torque due to accretion. Since this model establishes a direct relation between accretion and ejection, the observable stellar parameters (mass, radius, rotation period, magnetic field) and the accretion diagnostics (accretion shock luminosity), can be used to constraint the wind characteristics. In particular, since the accretion energy powers both the stellar wind and the shock emission, we show in this letter how the accretion shock luminosity L_UV can provide upper limits to the spin-down efficiency ...

  8. Supernova Light Curves Powered by Fallback Accretion

    OpenAIRE

    Dexter, Jason; Kasen, Daniel

    2012-01-01

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time (> days) power associated with the accretion of this "fallback" material may significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of pro...

  9. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, Jason; Kasen, Daniel, E-mail: jdexter@berkeley.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2013-07-20

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time ({approx}>days) power potentially associated with the accretion of this 'fallback' material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as M-dot {proportional_to}t{sup -5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous ({approx}> 10{sup 44} erg s{sup -1}) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  10. Supernova Light Curves Powered by Fallback Accretion

    Science.gov (United States)

    Dexter, Jason; Kasen, Daniel

    2013-07-01

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time (gsimdays) power potentially associated with the accretion of this "fallback" material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as \\dot{M} \\propto t^{-5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous (gsim 1044 erg s-1) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  11. Supernova Light Curves Powered by Fallback Accretion

    CERN Document Server

    Dexter, Jason

    2012-01-01

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time (> days) power associated with the accretion of this "fallback" material may significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as Mdot ~ t^-5/3 at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse o...

  12. Self consistent modeling of accretion columns in accretion powered pulsars

    Science.gov (United States)

    Falkner, Sebastian; Schwarm, Fritz-Walter; Wolff, Michael Thomas; Becker, Peter A.; Wilms, Joern

    2016-04-01

    We combine three physical models to self-consistently derive the observed flux and pulse profiles of neutron stars' accretion columns. From the thermal and bulk Comptonization model by Becker & Wolff (2006) we obtain seed photon continua produced in the dense inner regions of the accretion column. In a thin outer layer these seed continua are imprinted with cyclotron resonant scattering features calculated using Monte Carlo simulations. The observed phase and energy dependent flux corresponding to these emission profiles is then calculated, taking relativistic light bending into account. We present simulated pulse profiles and the predicted dependency of the observable X-ray spectrum as a function of pulse phase.

  13. BOOK REVIEW: Rotation and Accretion Powered Pulsars

    Science.gov (United States)

    Kaspi, V. M.

    2008-03-01

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Mészáros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you

  14. The Efficiency of Using Accretion Power of Kerr Black Holes

    OpenAIRE

    Dutan, Ioana; Biermann, Peter

    2004-01-01

    The efficiency of a rapidly spinning Kerr black hole to turn accretion power into observable power can attain 32 percent for the photon emission from the disk, as is well known, following the work of Novikov-Page-Thorne. But many accretion disks are now understood to be underluminous ($L

  15. Power Spectrum Density of Stochastic Oscillating Accretion Disk

    Indian Academy of Sciences (India)

    G. B. Long; J. W. Ou; Y. G. Zheng

    2016-06-01

    In this paper, we employ a stochastic oscillating accretion disk model for the power spectral index and variability of BL Lac object S5 0716+714. In the model, we assume that there is a relativistic oscillation of thin accretion disks and it interacts with an external thermal bath through a friction force and a random force. We simulate the light curve and the power spectrum density (PSD) at (i) over-damped, (ii) critically damped and (iii) under-damped cases, respectively. Our results show that the simulated PSD curves depend on the intrinsic property of the accretion disk, and it could be produced in a wide interval ranging from 0.94 to 2.05 by changing the friction coefficient in a stochastic oscillating accretion disk model. We argue that accretion disk stochastic oscillating could be a possible interpretation for observed PSD variability.

  16. Are Radio AGN Powered by Accretion or Black Hole Spin?

    CERN Document Server

    McNamara, B R; Nulsen, P E J

    2010-01-01

    We compare accretion and black hole spin as potential energy sources for outbursts from AGN in brightest cluster galaxies (BCGs). We find that the distribution of AGN power estimated from X-ray cavities is consistent with a broad range of both spin parameter and accretion rate. Sufficient quantities of molecular gas are available in most BCGs to power their AGN by accretion alone. However, we find no correlation between AGN power and molecular gas mass. For a given AGN power, the BCG's gas mass and accretion efficiency vary by more than two orders of magnitude. Most of the molecular gas in BCGs is apparently consumed by star formation or is driven out of the nucleus by the AGN before it reaches the nuclear black hole. Bondi accretion from hot atmospheres is generally unable to fuel powerful AGN, unless their black holes are more massive than their bulge luminosities imply. We identify several powerful AGN that reside in relatively gas-poor galaxies, indicating an unusually efficient mode of accretion, or that...

  17. Spin Evolution of Accreting Young Stars. II. Effect of Accretion-Powered Stellar Winds

    CERN Document Server

    Matt, Sean P; Greene, Thomas P; Pudritz, Ralph E

    2011-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind. For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1--10 days in the age range of 1--3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to s...

  18. Ice Accretion Prediction on Wind Turbines and Consequent Power Losses

    Science.gov (United States)

    Yirtici, Ozcan; Tuncer, Ismail H.; Ozgen, Serkan

    2016-09-01

    Ice accretion on wind turbine blades modifies the sectional profiles and causes alteration in the aerodynamic characteristic of the blades. The objective of this study is to determine performance losses on wind turbines due to the formation of ice in cold climate regions and mountainous areas where wind energy resources are found. In this study, the Blade Element Momentum method is employed together with an ice accretion prediction tool in order to estimate the ice build-up on wind turbine blades and the energy production for iced and clean blades. The predicted ice shapes of the various airfoil profiles are validated with the experimental data and it is shown that the tool developed is promising to be used in the prediction of power production losses of wind turbines.

  19. Accretion and jet power in active galactic nuclei

    Institute of Scientific and Technical Information of China (English)

    Luigi Foschini

    2011-01-01

    The classical diagrams of radio loudness and jet power as a function of mass and accretion rate of the central spacetime singularity in active galactic nuclei are reanalyzed by including the data of the recently discovered powerful relativistic jets in Narrow-Line Seyfert 1 Galaxies.The results are studied in the light of the known theories of relativistic jets,indicating that,although the Blandford-Znajek mechanism is sufficient to explain the power radiated by BL Lac Objects,it fails to completely account for the power from quasars and Narrow-Line Seyfert 1 Galaxies.This favors the scenario outlined by Cavaliere & D' Elia of a composite jet,with a magnetospheric core plus a hydromagnetic component emerging when the accretion power increases and the disk becomes radiation-pressure dominated.A comparison with Galactic compact objects is also made,finding some striking similarities,indicating that since neutron stars are low-mass jet systems analogous to black holes,Narrow-Line Seyfert 1 Galaxies are low-mass counterparts of blazars.

  20. Modeling Asteroid Spin-up with Cohesion

    Science.gov (United States)

    Walsh, Kevin J.; Richardson, D. C.; Michel, P.

    2008-09-01

    Recent work has shown that the gradual spin-up of cohesionless gravitational aggregates produces a wide range of outcomes depending on the specific configuration of the body, such as particle size distribution. One important outcome is the creation of binary asteroids, which requires bodies that can maintain spherical/oblate shapes as the body is spun to rapid rotation (Walsh et al., 2008, Nature, 454, 188-191). Our recent work includes a similar model which also models cohesion within the gravitational aggregate by way of a spring-like restoring force between neighboring particles that vanishes under high strain. We will present early results of gradual spin-up tests on gravitational aggregates covering a large range of starting conditions including the initial body shape and size, as well as varying configurations for the cohesion properties. These results will be compared to previous spin-up work as well as analytical theory. KJW and PM had the support of the French Programme National de Planétologie and the ACT Team of ESA and Ariadna Study 07/4111"Asteroid Rotational Fragmentation". KJW is also supported by the Henri Poincaré fellowship at the Observatoire de la Côte d'Azur, Nice, France, and Rotary International -- District 1730. DCR acknowledges support from the National Science Foundation under grant AST0708110 and the National Aeronautics and Space Administration under Grant No. NNX08AM39G.

  1. Black hole mass, jet power and accretion in AGN

    CERN Document Server

    Chen, Yong-Yun; Xiong, Dingrong; Yu, Xiaoling

    2015-01-01

    We study the relation between accretion, black hole mass and jet power in AGN, by using a large group of blazars detected by the Fermi Large Area Telescope and radio galaxies. Our main results are as follows. (i) The jet power of FSRQs and FRII-HEG depends on the black hole mass, which suggests that the FSRQs and FRII-HEG are in Radiation-Pressure Dominated regime. The jet power of BL Lacs and FRI-LEG depends on the accretion, which suggests that the BL Lacs and FRI-LEG are in the Gas-Pressure Dominated regime. (ii) We find that most of FSRQs and BL Lacs have $\\rm{P_{jet}>L_{BZ}^{max}}$, which suggests that the Blandford-Znajek mechanism is insufficient to explain the jet power of these objects. (iii) The FSRQs are roughly separated from BL Lacs by the Ledlow-Owen's dividing line in the $\\rm{\\log P_{jet}-\\log M}$ plane, which supports the unified scheme of AGN. (iv) The FSRQs and BL Lacs have a clear division at $\\rm{L_{bol}/L_{Edd}\\sim0.01}$, and the distribution of Eddington ratios of BL Lacs and FSRQs exhi...

  2. On the release of binding energy and accretion power in core collapse-like environments

    CERN Document Server

    Socrates, Aristotle

    2008-01-01

    All accretion models of gamma-ray bursts share a common assumption: accretion power and gravitational binding energy is released and then dissipated locally, with the mass of its origin. This is equivalent to the Shakura-Sunyaev 1973 (SS73) prescription for the dissipation of accretion power and subsequent conversion into radiate output. Since their seminal paper, broadband observations of quasars and black hole X-ray binaries insist that the SS73 prescription cannot wholly describe their behavior. In particular, optically thick black hole accretion flows are almost universally accompanied by coronae whose relative power by far exceeds anything seen in studies of stellar chromospheric and coronal activity. In this note, we briefly discuss the possible repercussions of freeing accretion models of GRBs from the SS73 prescription. Our main conclusion is that the efficiency of converting gravitational binding energy into a GRB power can be increased by an order of magnitude or more.

  3. Spin-Up/Spin-Down models for Type Ia Supernovae

    CERN Document Server

    Di Stefano, R; Claeys, J S W

    2011-01-01

    In the single degenerate scenario for Type Ia supernova (SNeIa), a white dwarf (WD) must gain a significant amount of matter from a companion star. Because the accreted mass carries angular momentum, the WD is likely to achieve fast spin periods, which can increase the critical mass, $M_{crit}$, needed for explosion. When $M_{crit}$ is higher than the maximum mass achieved by the WD, the WD must spin down before it can explode. This introduces a delay between the time at which the WD has completed its epoch of mass gain and the time of the explosion. Matter ejected from the binary during mass transfer therefore has a chance to become diffuse, and the explosion occurs in a medium with a density similar to that of typical regions of the interstellar medium. Also, either by the end of the WD's mass increase or else by the time of explosion, the donor may exhaust its stellar envelope and become a WD. This alters, generally diminishing, explosion signatures related to the donor star. Nevertheless, the spin-up/spin...

  4. The power of relativistic jets is larger than the luminosity of their accretion disks

    CERN Document Server

    Ghisellini, G; Maraschi, L; Celotti, A; Sbarrato, T

    2014-01-01

    Theoretical models for the production of relativistic jets from active galactic nuclei predict that jet power arises from the spin and mass of the central black hole, as well as the magnetic field near the event horizon. The physical mechanism mechanism underlying the contribution from the magnetic field is the torque exerted on the rotating black hole by the field amplified by the accreting material. If the squared magnetic field is proportional to the accretion rate, then there will be a correlation between jet power and accretion luminosity. There is evidence for such a correlation, but inadequate knowledge of the accretion luminosity of the limited and inhomogeneous used samples prevented a firm conclusion. Here we report an analysis of archival observations of a sample of blazars (quasars whose jets point towards Earth) that overcomes previous limitations. We find a clear correlation between jet power as measured through the gamma-ray luminosity, and accretion luminosity as measured by the broad emission...

  5. NuSTAR discovery of an unusually steady long-term spin-up of the Be binary 2RXP J130159.6-635806

    CERN Document Server

    Krivonos, Roman A; Lutovinov, Alexander A; Tomsick, John A; Chakrabarty, Deepto; Bachetti, Matteo; Boggs, Steven E; Chernyakova, Masha; Christensen, Finn E; Craig, William W; Fuerst, Felix; Hailey, Charles J; Harrison, Fiona A; Lansbury, George B; Rahoui, Farid; Stern, Daniel; Zhang, William W

    2015-01-01

    We present spectral and timing analysis of NuSTAR observations of the accreting X-ray pulsar 2RXP J130159.6-635806. The source was serendipitously observed during a campaign focused on the gamma-ray binary PSR B1259-63 and was later targeted for a dedicated observation. The spectrum has a typical shape for accreting X-ray pulsars, consisting of a simple power law with an exponential cutoff starting at ~7 keV with a folding energy of E_fold=~18 keV. There is also an indication of the presence of a 6.4 keV iron line in the spectrum at the ~3 sigma significance level. NuSTAR measurements of the pulsation period reveal that the pulsar has undergone a strong and steady spin-up for the last 20 years. The pulsed fraction is estimated to be ~80%, and is constant with energy up to 40 keV. The power density spectrum shows a break towards higher frequencies relative to the current spin period. This, together with steady persistent luminosity, points to a long-term mass accretion rate high enough to bring the pulsar out ...

  6. Powerful jets from accreting black holes: evidence from the optical and infrared

    NARCIS (Netherlands)

    D.M. Russell; R.P. Fender

    2010-01-01

    A common consequence of accretion onto black holes is the formation of powerful, relativistic jets that escape the system. In the case of supermassive black holes at the centres of galaxies this has been known for decades, but for stellar-mass black holes residing within galaxies like our own, it ha

  7. Powerful jets from accreting black holes: evidence from the optical and infrared

    OpenAIRE

    Russell, D. M.; Fender, R. P.

    2010-01-01

    A common consequence of accretion onto black holes is the formation of powerful, relativistic jets that escape the system. In the case of supermassive black holes at the centres of galaxies this has been known for decades, but for stellar-mass black holes residing within galaxies like our own, it has taken recent advances to arrive at this conclusion. Here, a review is given of the evidence that supports the existence of jets from accreting stellar-mass black holes, from observations made at ...

  8. Super-Eddington Mechanical Power of an Accreting Black Hole in M83

    Science.gov (United States)

    Soria, R.; Long, K. S.; Blair, W. P.; Godfrey, L.; Kuntz, K. D.; Lenc, E.; Stockdale, C.; Winkler, P. F.

    2014-01-01

    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(exp 40) erg second(exp -1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.

  9. Super-Eddington mechanical power of an accreting black hole in M83.

    Science.gov (United States)

    Soria, R; Long, K S; Blair, W P; Godfrey, L; Kuntz, K D; Lenc, E; Stockdale, C; Winkler, P F

    2014-03-21

    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(40) erg second(-1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.

  10. Extremes of the jet-accretion power relation of blazars, as explored by NuSTAR

    CERN Document Server

    Sbarrato, T; Tagliaferri, G; Perri, M; Madejski, G M; Stern, D; Boggs, S E; Christensen, F E; Craig, W W; Hailey, C J; Harrison, F A; Zhang, W W

    2015-01-01

    Hard X-ray observations are crucial to study the non-thermal jet emission from high-redshift, powerful blazars. We observed two bright z>2 flat spectrum radio quasars (FSRQs) in hard X-rays to explore the details of their relativistic jets and their possible variability. S5 0014+81 (at z=3.366) and B0222+185 (at z=2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/XRT, showing different variability behaviours. We found that NuSTAR is instrumental to explore the variability of powerful high-redshift blazars, even when no gamma-ray emission is detected. The two sources have proven to have respectively the most luminous accretion disk and the most powerful jet among known blazars. They are located at the extreme end of the jet-accretion disk relation previously found for gamma-ray detected blazars.

  11. Swinging between rotation and accretion power in a binary millisecond pulsar

    CERN Document Server

    Papitto, A; Bozzo, E; Rea, N

    2013-01-01

    We present the discovery of IGR J18245-2452, the first millisecond pulsar observed to swing between a rotation-powered, radio pulsar state, and an accretion-powered X-ray pulsar state (Papitto et al. 2013, Nature, 501, 517). This transitional source represents the most convincing proof of the evolutionary link shared by accreting neutron stars in low mass X-ray binaries, and radio millisecond pulsars. It demonstrates that swings between these two states take place on the same time-scales of luminosity variations of X-ray transients, and are therefore most easily interpreted in terms of changes in the rate of mass in-flow. While accreting mass, the X-ray emission of IGR J18245-2452 varies dramatically on time-scales ranging from a second to a few hours. We interpret a state characterised by a lower flux and pulsed fraction, and by sudden increases of the hardness of the X-ray emission, in terms of the onset of a magnetospheric centrifugal inhibition of the accretion flow. Prospects of finding new members of th...

  12. Accretion-caused deceleration of a gravitationally powerful compact stellar object moving within a dense Fermi gas

    Science.gov (United States)

    Tito, E. P.; Pavlov, V. I.

    2016-07-01

    We consider accretion-caused deceleration of a gravitationally-powerful compact stellar object traveling within a cold Fermi-gas medium. We provide analytical and numerical estimates of the effect manifestation.

  13. Accretion-caused deceleration of a gravitationally powerful compact stellar object moving within a dense Fermi gas

    CERN Document Server

    Tito, Elizabeth P

    2016-01-01

    We consider accretion-caused deceleration of a gravitationally-powerful compact stellar object traveling within a cold Fermi-gas medium. We provide analytical and numerical estimates of the effect manifestation.

  14. Are some of the luminous high-latitude stars accretion-powered runaways?

    International Nuclear Information System (INIS)

    It is well known that (1) runaway stars can be produced via supernova explosions in close binary systems, (2) most of such runaways should possess neutron star companions, and (3) neutron stars receive randomly oriented kicks of ≅ 100 to 200 km s-1 at birth. We find that this kick sometimes has the right amplitude and direction to make the neutron star fall into the runaway. Accretion onto a neutron star is a source of energy that is roughly an order of magnitude more mass efficient than nuclear burning. Thus, runaways containing neutron stars may live much longer than would normally be expected, which would allow them to travel great distances from their birthplaces during their lifetimes. Some of the early B-type stars far from the Galactic plane and the high-latitude F and G-type supergiants may be accretion-powered runaway stars

  15. Revitalizing Physics Departments: The Spin-UP Reports

    Science.gov (United States)

    Hehn, J. G.; Czujko, R.; Hilborn, R.

    2007-12-01

    The American Institute of Physics (AIP) has carefully measured education trends in the physics and related sciences community for nearly five decades. During the 1990s, the community realized that the number of undergraduate physics majors was declining significantly. A number of efforts were launched in the physics community intending to reverse that decline and the number of bachelor's degrees has been rebounding for the last 7 years. The National Task Force on Undergraduate Physics (NTFUP) was one such effort that identified thriving physics departments and analyzed strategies shared among those departments. In 2003 NTFUP issued a report entitled: Strategic Programs for Innovations in Undergraduate Physics, referred to as Spin-UP. A subsequent study of physics programs in two-year colleges, Spin-UP TYC, produced many similar findings published in 2005. Lessons learned as stated in the Spin-UP reports and several conferences will be reviewed. Some lessons learned include: A thriving department demonstrated (1) a widespread attitude among the faculty that the department has the primary responsibility for maintaining or improving the undergraduate program; (2) a challenging, but supportive and encouraging undergraduate program that includes a well-developed curriculum, advising and mentoring, an undergraduate research participation program, and many opportunities for informal student-faculty interactions, enhanced by a strong sense of community among the students and faculty; (3) strong and sustained leadership within the department and a clear sense of the mission of its undergraduate program; and (4) a strong disposition toward continuous evaluation of and experimentation with the undergraduate program. In short, thriving departments paid attention to undergraduates and made majors feel like members of their physics department and members of a physics community.

  16. The Early History of Stellar Spin: the Theory of Accretion onto Young Stellar Objects

    Directory of Open Access Journals (Sweden)

    Pudritz Ralph E.

    2014-01-01

    Full Text Available The interaction of the magnetospheres of forming stars with their surrounding protostellar disks results in magnetospheric accretion flow onto the star. How is the associated angular momentum of accreting material channelled? The resolution of this issue is crucial for understanding the origin of the spins of pre main sequence stars. A significant fraction of these rotate very slowly, which indicates that an efficient angular momentum transport mechanism is at work to counteract the strong accretion spin up torques. We review the observational, theoretical, and computational advances in the field and argue that an accretion powered stellar winds together with highly time variable mass ejections from the disk/magnetosphere interface is a likely solution.

  17. Spin-up/spin-down of neutron star in Be-X-ray binary system GX 304-1

    Science.gov (United States)

    Postnov, K. A.; Mironov, A. I.; Lutovinov, A. A.; Shakura, N. I.; Kochetkova, A. Yu.; Tsygankov, S. S.

    2015-01-01

    We analyse spin-up/spin-down of the neutron star in Be-X-ray binary system GX 304-1 observed by Swift/X-ray telescope (XRT) and Fermi/gamma-ray burst monitor (GBM) instruments in the period of the source activity from 2010 April to 2013 January and discuss possible mechanisms of angular momentum transfer to/from the neutron star. We argue that the neutron star spin-down at quiescent states of the source with an X-ray luminosity of Lx ˜ 1034 erg s-1 between a series of Type I outbursts and spin-up during the outbursts can be explained by quasi-spherical settling accretion on to the neutron star. The outbursts occur near the neutron star periastron passages, where the density is enhanced due to the presence of an equatorial Be-disc tilted to the orbital plane. We also propose an explanation to the counterintuitive smaller spin-up rate observed at higher luminosity in a double-peak Type I outburst due to lower value of the specific angular momentum of matter captured from the quasi-spherical wind from the Be-star by the neutron star moving in an elliptical orbit with eccentricity e ≳ 0.5.

  18. Spin-up/spin-down of neutron star in Be-X-ray binary system GX 304-1

    CERN Document Server

    Postnov, K A; Lutovinov, A A; Shakura, N I; Kochetkova, A Yu; Tsygankov, S S

    2014-01-01

    We analyze spin-up/spin-down of the neutron star in Be X-ray binary system GX\\,304-1 observed by \\textit{Swift}/XRT and \\textit{Fermi}/GBM instruments in the period of the source activity from April 2010 to January 2013 and discuss possible mechanisms of angular momentum transfer to/from the neutron star. We argue that the neutron star spin-down at quiescent states of the source with an X-ray luminosity of $L_x\\sim 10^{34}$~erg s$^{-1}$ between a series of Type I outbursts and spin-up during the outbursts can be explained by quasi-spherical settling accretion onto the neutron star. The outbursts occur near the neutron star periastron passages where the density is enhanced due to the presence of an equatorial Be-disc tilted to the orbital plane. We also propose an explanation to the counterintuitive smaller spin-up rate observed at higher luminosity in a double-peak Type I outburst due to lower value of the specific angular momentum of matter captured from the quasi-spherical wind from the Be-star by the neutr...

  19. SUPERNOVAE POWERED BY COLLAPSAR ACCRETION IN GAMMA-RAY BURST SOURCES

    International Nuclear Information System (INIS)

    The association of long-duration gamma-ray bursts (LGRBs) with Type Ic supernovae presents a challenge to supernova explosion models. In the collapsar model for LGRBs, gamma rays are produced in an ultrarelativistic jet launching from the magnetosphere of the black hole that forms in the aftermath of the collapse of a rotating progenitor star. The jet is collimated along the star's rotation axis, but the concomitant luminous supernova should be relatively—though certainly not entirely—spherical, and should synthesize a substantial mass of 56Ni. Our goal is to provide a qualitative assessment of the possibility that accretion of the progenitor envelope onto the black hole, which powers the LGRB, could also deposit sufficient energy and nickel mass in the envelope to produce a luminous supernova. For this, the energy dissipated near the black hole during accretion must be transported outward, where it can drive a supernova-like shock wave. Here we suggest that the energy is transported by convection and develop an analytical toy model, relying on global mass and energy conservation, for the dynamics of stellar collapse. The model suggests that a ∼10 000 km s–1 shock can be driven into the envelope and that ∼1051 erg explosions are possible. The efficiency with which the accretion energy is being transferred to the envelope is governed by the competition of advection and convection at distances ∼100-1000 km from the black hole and is sensitive to the values of the convective mixing length, the magnitude of the effective viscous stress, and the specific angular momentum of the infalling envelope. Substantial masses of 56Ni may be synthesized in the convective accretion flow over the course of tens of seconds from the initial circularization of the infalling envelope around the black hole. The synthesized nickel is convectively mixed with a much larger mass of unburned ejecta.

  20. Hard X-ray Detection and Timing of Accretion-Powered Pulsars with BATSE

    OpenAIRE

    Chakrabarty, Deepto; Prince, Thomas A.

    1996-01-01

    The BATSE all-sky monitor on the Compton Gamma Ray Observatory is a superb tool for the study of accretion-powered pulsars. In the first part of this thesis, I describe its capabilities for hard X-ray observations above 20 keV, present techniques for timing analysis of the BATSE data, and discuss general statistical issues for the detection of pulsed periodic signals in both the time and frequency domains. BATSE’s 1-day pulsed sensitivity in the 20–60 keV ...

  1. Simulations of the magnetospheres of accreting millisecond pulsars

    CERN Document Server

    Parfrey, Kyle; Beloborodov, Andrei M

    2016-01-01

    Accreting pulsars power relativistic jets, and display a complex spin phenomenology. These behaviours may be closely related to the large-scale configuration of the star's magnetic field. The total torque experienced by the pulsar comprises spin-up and spin-down contributions from different bundles of magnetic field lines; the spin-down `braking' torque is applied both by closed stellar field lines which enter the disc beyond the corotation radius, and those which are open and not loaded with disc material. The rates of energy and angular momentum extraction on these open field lines have lower bounds in the relativistic, magnetically dominated limit, due to the effective inertia of the electromagnetic field itself. Here we present the first relativistic simulations of the interaction of a pulsar magnetosphere with an accretion flow. Our axisymmetric simulations, with the pseudospectral PHAEDRA code, treat the magnetospheric, or coronal, regions using a resistive extension of force-free electrodynamics. The m...

  2. An accretion disk swept up by a powerful thermonuclear X-ray burst

    Science.gov (United States)

    Degenaar, Nathalie

    Type-I X-ray bursts are thermonuclear explosions occurring in the surface layers of accreting neutron stars. These events are powerful probes of the physics of neutron stars and their surrounding accretion flow. Swift recently caught a very energetic type-I X-ray burst from the neutron star IGR J17062-6143 that displayed exceptional features. Firstly, the light curve of the 18 minute long X-ray burst tail shows an episode of 10 minutes with wild X-ray intensity fluctuations. Secondly, X-ray spectral analysis revealed a highly significant emission line around 1 keV, which can be interpreted as an Fe-L shell line caused by the irradiation of cold gas. Finally, the detection of significant absorption lines and edges in the Fe-K band are strongly suggestive of the presence of hot, highly ionized gas along the line of sight. None of these features are present in the persistent emission of the source. The X-ray burst of IGR J17062-6143 shows the first unambiguous detection of atomic features at CCD resolution. The timescale of the strong intensity variations, the velocity width of the Fe-L emission line, and photo-ionization modeling of the Fe-K absorption features each independently point to swept-up gas at a radius of ~1000 km from the neutron star. The unusual X-ray light curve and spectral properties could have plausibly been caused by a disruption of the accretion disk due to the super-Eddington fluxes reached during the X-ray burst.

  3. Supernovae Powered by Collapsar Accretion in Gamma-Ray Burst Sources

    CERN Document Server

    Milosavljevic, Milos; Shen, Rongfeng; Kumar, Pawan

    2010-01-01

    The association of long-duration gamma-ray bursts (LGRBs) with Type Ibc supernovae (SN) presents a challenge to supernova explosion models. In the collapsar model for LGRBs, gamma rays are produced in an ultrarelativistic jet launching from the magnetosphere of the black hole (BH) that forms in the aftermath of the collapse of a rotating progenitor star. The jet is collimated along the star's rotation axis, but the concomitant luminous SN should be relatively--though perhaps not entirely--spherical, and should synthesize a substantial mass of 56Ni. Our goal is to provide a qualitative assessment of the possibility that accretion of the progenitor envelope onto the BH, which powers the LGRB, could also deposit sufficient energy and nickel mass in the envelope to produce a luminous SN. For this, the energy dissipated near the BH during accretion must be transported outward, where it can drive a SN-like shockwave. Here we suggest that the energy is transported by convection and develop an analytical toy model, r...

  4. New insights on the spin-up of a neutron star during core-collapse

    CERN Document Server

    Kazeroni, Rémi; Foglizzo, Thierry

    2015-01-01

    The spin of a neutron star at birth may be impacted by the asymmetric character of the explosion of its massive progenitor. During the first second after bounce, the spiral mode of the Standing Accretion Shock Instability (SASI) is able to redistribute angular momentum and spin-up a neutron star born from a non-rotating progenitor. Our aim is to assess the robustness of this process. We perform 2D numerical simulations of a simplified setup in cylindrical geometry to investigate the timescale over which the dynamics is dominated by a spiral or a sloshing mode. We observe that the spiral mode prevails only if the ratio of the initial shock radius to the neutron star radius exceeds a critical value. In that regime, both the degree of asymmetry and the average expansion of the shock induced by the spiral mode increase monotonously with this ratio, exceeding the values obtained when a sloshing mode is artificially imposed. With a timescale of the order of 2-3 SASI oscillations, the dynamics of SASI is able to tak...

  5. Application of the Ghosh & Lamb Relation to the Spin-up/down Behavior in the X-ray Binary Pulsar 4U 1626-67

    CERN Document Server

    Takagi, Toshihiro; Sugizaki, Mutsumi; Makishima, Kazuo; Morii, Mikio

    2016-01-01

    We analyzed continuous MAXI/GSC data of the X-ray binary pulsar 4U 1626-67 from 2009 October to 2013 September, and determined the pulse period and the pulse-period derivative for every 60-d interval by the epoch folding method. The obtained periods are consistent with those provided by the Fermi/GBM pulsar project. In all the 60-d intervals, the pulsar was observed to spin up, with the spin-up rate positively correlated with the 2-20 keV flux. We applied the accretion torque model proposed by Ghosh & Lamb (1979, ApJ, 234, 296) to the MAXI/GSC data, as well as the past data including both spin-up and spin-down phases. The Ghosh & Lamb relation was confirmed to successfully explain the observed relation between the spin-up/down rate and the flux. By comparing the model-predicted luminosity with the observed flux, the source distance was constrained as 5-13 kpc, which is consistent with that by Chakrabarty (1998, ApJ, 492, 342). Conversely, if the source distance is assumed, the data can constrain the m...

  6. Tectonics of Vesta: Indication of Spin-up and Reorientation?

    Science.gov (United States)

    Schmidt, B. E.

    2011-12-01

    The first publicly released images of Vesta taken by the Dawn spacecraft reveal in detail both that which was expected based on Hubble Space Telescope studies -a probable south polar impact basin-and unexpected-large, continuous equatorial "grooves" (possible extensional graben) and ridges near the south pole. I will demonstrate based on numerical models why we may not be so surprised: that impact-induced changes to Vesta's shape and spin state can in fact produce such seemingly enigmatic features. It has been suggested that the impact event that formed the basin might have been sufficient to cause significant reorientation of Vesta's spin axis [1-3]. Such a process affects the asteroid's spin state, and can drive changes in shape that produce strains and surface tectonics. Because Vesta is silicate body and likely cooled quickly, unless the impact was early or created a significant thermal perturbation, it is difficult to produce surface tectonics that are not dominated by thermal contraction [2,3]. That at first glance Vesta's surface appears to be tectonically rich implies a significant change in Vesta's shape that may not be readily explained by an elastic response, since viscous relaxation of the body and the crater may give rise to additional strain as well as distort the feature [2]. I will show that because Vesta's equatorial bulge at its current rotation rate is so large a component of its shape (HST-derived) [1], it stabilizes the body's rotation even after a large impact. This would seem to imply that the location of the impact was indeed near to the south pole and the associated small reorientation has had little effect on Vesta's shape [2,3]. However, such an impact produces equatorial compression and polar extension, inconsistent with first images released by Dawn. De-spinning only enhances equatorial compression [3]. Reorientation and spin-up, however, CAN create the tectonic patterns observed on Vesta [2]. In this presentation I will demonstrate how

  7. Properties and observability of glitches and anti-glitches in accreting pulsars

    CERN Document Server

    Ducci, L; Doroshenko, V; Santangelo, A; Mereghetti, S; Ferrigno, C

    2015-01-01

    Several glitches have been observed in young, isolated radio pulsars, while a clear detection in accretion-powered X-ray pulsars is still lacking. We use the "snowplow" model for pulsar glitches of Pizzochero (2011) and starquake models to determine for the first time the expected properties of glitches in accreting pulsars and their observability. Since some accreting pulsars show accretion-induced long-term spin-up, we also investigate the possibility that anti-glitches occur in these stars. We find that glitches caused by quakes in a slow accreting neutron star are very rare and their detection extremely unlikely. On the contrary, glitches and anti-glitches caused by a transfer of angular momentum between the superfluid neutron vortices and the non-superfluid component may take place in accreting pulsars more often. We calculate the maximum jump in angular velocity of an anti-glitch and we find that it is expected to be about 1E-5 - 1E-4 rad/s. We also note that since accreting pulsars usually have rotatio...

  8. The Luminosity and Energy Dependence of Pulse Phase Lags in the Accretion-powered Millisecond Pulsar SAX J1808.4-3658

    CERN Document Server

    Hartman, Jacob M; Chakrabarty, Deepto

    2008-01-01

    Soft phase lags, in which X-ray pulses in lower energy bands arrive later than pulses in higher energy bands, have been observed in nearly all accretion-powered millisecond pulsars, but their origin remains an open question. In a study of the 2.5 ms accretion-powered pulsar SAX J1808.4-3658, we report that the magnitude of these lags is strongly dependent on the accretion rate. During the brightest stage of the outbursts from this source, the lags increase in magnitude as the accretion rate drops; when the outbursts enter their dimmer flaring-tail stage, the relationship reverses. We evaluate this complex dependence in the context of two theoretical models for the lags, one relying on the scattering of photons by the accretion disk and the other invoking a two-component model for the photon emission. In both cases, the turnover suggests that we are observing the source transitioning into the "propeller" accretion regime.

  9. A large spin-up rate measured with INTEGRAL in the High Mass X-ray Binary Pulsar SAXJ2103.5+4545

    CERN Document Server

    Sidoli, L; Larsson, S; Chernyakova, M; Kreykenbohm, I; Kretschmar, P; Paizis, A; Santangelo, A; Ferrigno, C; Falanga, M

    2005-01-01

    The High Mass X-ray Binary Pulsar SAXJ2103.5+4545 has been observed with INTEGRAL several times during the last outburst in 2002-2004. We report a comprehensive study of all INTEGRAL observations, allowing a study of the pulse period evolution during the recent outburst. We measured a very rapid spin-up episode, lasting 130days, which decreased the pulse period by 1.8s. The spin-up rate, pdot=-1.5e-7 s/s, is the largest ever measured for SAXJ2103.5+4545, and it is among the fastest for an accreting pulsar. The pulse profile shows evidence for temporal variability, apparently not related to the source flux or to the orbital phase. The X-ray spectrum is hard and there is significant emission up to 150keV. A new derivation of the orbital period, based on RXTE data, is also reported.

  10. An ultraluminous X-ray source powered by an accreting neutron star

    DEFF Research Database (Denmark)

    Bachetti, M.; Harrison, F. A.; Walton, D. J.;

    2014-01-01

    the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects....

  11. A High-Frequency Doppler Feature in the Power Spectra of Simulated GRMHD Black Hole Accretion Disks

    CERN Document Server

    Wellons, Sarah; Psaltis, Dimitrios; Narayan, Ramesh; McClintock, Jeffrey E

    2013-01-01

    Black hole binaries exhibit a wide range of variability phenomena, from large-scale state changes to broadband noise and quasi-periodic oscillations, but the physical nature of much of this variability is poorly understood. We examine the variability properties of three GRMHD simulations of thin accretion disks around black holes of varying spin, producing light curves and power spectra as would be seen by observers. We find that the simulated power spectra show a broad feature at high frequency, which increases in amplitude with the inclination of the observer. We show that this high-frequency feature is a product of the Doppler effect and that its location is a function of the mass and spin of the black hole. This Doppler feature demonstrates that power spectral properties of the accretion disk can be tied to, and potentially used to determine, physical properties of the black hole.

  12. Latest results of pulse phase resolved spectroscopy of cyclotron lines in accretion powered pulsars

    CERN Document Server

    Maitra, Chandreyee

    2013-01-01

    We have performed pulse phase resolved spectroscopy of the Cyclotron Resonance Scattering Features (CRSF) of some bright accretion powered X-ray pulsars like 1A 1118-61, Vela X-1, A0535+26, XTE J1946+274, 4U 1907+09, 4U 1626-67 and GX 301-2 using Suzaku observations with long exposures. We have performed the study using different spectral models for the continuum and have obtained similar patterns of variations of the CRSF in all the cases, thus demonstrating the robustness of our results. Pulse phase dependence of the CRSF in XTE J1946+274 has been obtained for the first time, and phase resolved variations of the CRSF in 4U 1907+09 has been compared at factor of ~ 2 difference in luminosity. We have also studied the pulse profiles of these objects near the CRSF energy, and have noticed an increased pulse fraction and/or a change in the pulse shape near the CRSF energy for some sources. The implications of the results are discussed.

  13. Latest results of pulse phase resolved spectroscopy of cyclotron lines in accretion powered pulsars

    Directory of Open Access Journals (Sweden)

    Maitra Chandreyee

    2014-01-01

    Full Text Available We have performed pulse phase resolved spectroscopy of the Cyclotron Resonance Scattering Features (CRSF of some bright accretion powered X-ray pulsars like 1A 1118-61, Vela X-1, A0535+26, XTE J1946+274, 4U 1907+09, 4U 1626-67 and GX 301-2 using Suzaku observations with long exposures. We have performed the study using different spectral models for the continuum and have obtained similar patterns of variations of the CRSF in all the cases, thus demonstrating the robustness of our results. Pulse phase dependence of the CRSF in XTE J1946+274 has been obtained for the first time, and phase resolved variations of the CRSF in 4U 1907+09 has been compared at factor of ~ 2 difference in luminosity. We have also studied the pulse profiles of these objects near the CRSF energy, and have noticed an increased pulse fraction and/or a change in the pulse shape near the CRSF energy for some sources. The implications of the results are discussed.

  14. An Ultraluminous X-ray Source Powered by An Accreting Neutron Star

    CERN Document Server

    Bachetti, M; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-01-01

    Ultraluminous X-ray sources (ULX) are off-nuclear point sources in nearby galaxies whose X-ray luminosity exceeds the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their luminosity ranges from $10^{40}$ erg s$^{-1} $10^{40}$ erg s$^{-1}$), which require black hole masses MBH >50 solar masses and/or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries. Here we report broadband X-ray observations of the nuclear region of the galaxy M82, which contains two bright ULXs. The observations reveal pulsations of average period 1.37 s with a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to $L_X$(3 - 30 keV) = $4.9 \\times 10^{39}$ erg s$^{-1}$. The pulsating source is spatially coincident with a variable ULX which can reach $L_X$ (0.3 - 10 keV) = $1.8 \\times 10^{40}$ erg s$^{-1}$. This ...

  15. EXPERIMENTAL INVESTIGATION ON VORTEX BREAKDOWN IN SPIN-UP AND SPIN-DOWN PROCESSES VIA PIV

    Institute of Scientific and Technical Information of China (English)

    Liu Ying-zheng; Koyama Hide S.; Chen Han-ping

    2003-01-01

    The whole field measurements of swirling flow in spin-up and spin-down processes via PIV are presented in the paper. Investigation of the flow patterns at H/R=1.50 was experimentally carried out for the first time in both processes. By means of symmetry analysis, it is found that the overall flow structure in the spin-up process still keep axisymmetric to a great extent, but deteriorated very fast in the spin-down process. The time to settle to the state of rest in the spin-down process is found to be greatly shorter than the time to achieve the steady state in the spin-up process. Temporarily oscillatory vortex breakdown was discovered during the spin-up process, although no breakdown in the steady state at the same Reynolds number is found in precious researches.

  16. Mixing in thermally stratified nonlinear spin-up with sources and sinks

    OpenAIRE

    Baghdasarian, Meline; Pacheco-Vega, Arturo; Pacheco, J. Rafael; Verzicco, Roberto

    2013-01-01

    Stratified spin-up experiments in enclosed cylinders have reported the presence of small pockets of well-mixed fluids but quantitative measurements of the mixedness of the fluid has been lacking. Previous numerical simulations have not addressed these measurements. Here we present numerical simulations that address how the combined effect of spin-up and thermal boundary conditions enhances or hinders mixing of a fluid in a cylinder. Measurements of efficiency of mixing are based on the varian...

  17. Episodic jet power extracted from a spinning black hole surrounded by a neutrino-dominated accretion flow in gamma-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xinwu [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Liang, En-Wei [Department of Physics and GXU-NAOC Center for Astrophysics and Space Sciences, Guangxi University, Nanning 530004 (China); Yuan, Ye-Fei, E-mail: cxw@shao.ac.cn, E-mail: lew@gxu.edu.cn, E-mail: yfyuan@ustc.edu.cn [Department of Astronomy, University of Sciences and Technology of China, Hefei, Anhui 230026 (China)

    2014-07-10

    It was suggested that the relativistic jets in gamma-ray bursts (GRBs) are powered via the Blandford-Znajek (BZ) mechanism or the annihilation of neutrinos and anti-neutrinos from a neutrino cooling-dominated accretion flow (NDAF). The advection and diffusion of the large-scale magnetic field of an NDAF is calculated, and the external magnetic field is found to be dragged inward efficiently by the accretion flow for a typical magnetic Prandtl number P{sub m}=η/ν∼1. The maximal BZ jet power can be ∼10{sup 53}-10{sup 54} erg s{sup –1} for an extreme Kerr black hole, if an external magnetic field with 10{sup 14} Gauss is advected by the NDAF. This is roughly consistent with the field strength of the disk formed after a tidal disrupted magnetar. The accretion flow near the black hole horizon is arrested by the magnetic field if the accretion rate is below than a critical value for a given external field. The arrested accretion flow fails to drag the field inward and the field strength decays, and then the accretion re-starts, which leads to oscillating accretion. The typical timescale of such episodic accretion is of an order of one second. This can qualitatively explain the observed oscillation in the soft extended emission of short-type GRBs.

  18. Application of the Ghosh & Lamb relation to the spin-up/down behavior in the X-ray binary pulsar 4U 1626-67

    Science.gov (United States)

    Takagi, Toshihiro; Mihara, Tatehiro; Sugizaki, Mutsumi; Makishima, Kazuo; Morii, Mikio

    2016-06-01

    We analyzed continuous Monitor of All-sky X-ray Image/Gas Slit Camera (MAXI/GSC) data of the X-ray binary pulsar 4U 1626-67 from 2009 October to 2013 September, and determined the pulse period and the pulse-period derivative for every 60-d interval by the epoch folding method. The obtained periods are consistent with those provided by the Fermi/Gamma-ray Burst Monitor pulsar project. In all the 60-d intervals, the pulsar was observed to spin up, with the spin-up rate positively correlated with the 2-20 keV flux. We applied the accretion torque model proposed by Ghosh and Lamb (1979, ApJ, 234, 296) to the MAXI/GSC data, as well as the past data including both spin-up and spin-down phases. The "Ghosh & Lamb" relation was confirmed to successfully explain the observed relation between the spin-up/down rate and the flux. By comparing the model-predicted luminosity with the observed flux, the source distance was constrained as 5-13 kpc, which is consistent with that found by Chakrabarty (1998, ApJ, 492, 342). Conversely, if the source distance is assumed, the data can constrain the mass and radius of the neutron star, because the Ghosh & Lamb model depends on these parameters. We attempted this idea, and found that an assumed distance of, e.g., 10 kpc gives a mass in the range of 1.81-1.90 solar mass, and a radius of 11.4-11.5 km, although these results are still subject to considerable systematic uncertainties, other than distance.

  19. Inconsistent strategies to spin up models in CMIP5: implications for ocean biogeochemical model performance assessment

    Science.gov (United States)

    Séférian, Roland; Gehlen, Marion; Bopp, Laurent; Resplandy, Laure; Orr, James C.; Marti, Olivier; Dunne, John P.; Christian, James R.; Doney, Scott C.; Ilyina, Tatiana; Lindsay, Keith; Halloran, Paul R.; Heinze, Christoph; Segschneider, Joachim; Tjiputra, Jerry; Aumont, Olivier; Romanou, Anastasia

    2016-05-01

    During the fifth phase of the Coupled Model Intercomparison Project (CMIP5) substantial efforts were made to systematically assess the skill of Earth system models. One goal was to check how realistically representative marine biogeochemical tracer distributions could be reproduced by models. In routine assessments model historical hindcasts were compared with available modern biogeochemical observations. However, these assessments considered neither how close modeled biogeochemical reservoirs were to equilibrium nor the sensitivity of model performance to initial conditions or to the spin-up protocols. Here, we explore how the large diversity in spin-up protocols used for marine biogeochemistry in CMIP5 Earth system models (ESMs) contributes to model-to-model differences in the simulated fields. We take advantage of a 500-year spin-up simulation of IPSL-CM5A-LR to quantify the influence of the spin-up protocol on model ability to reproduce relevant data fields. Amplification of biases in selected biogeochemical fields (O2, NO3, Alk-DIC) is assessed as a function of spin-up duration. We demonstrate that a relationship between spin-up duration and assessment metrics emerges from our model results and holds when confronted with a larger ensemble of CMIP5 models. This shows that drift has implications for performance assessment in addition to possibly aliasing estimates of climate change impact. Our study suggests that differences in spin-up protocols could explain a substantial part of model disparities, constituting a source of model-to-model uncertainty. This requires more attention in future model intercomparison exercises in order to provide quantitatively more correct ESM results on marine biogeochemistry and carbon cycle feedbacks.

  20. Inconsistent Strategies to Spin up Models in CMIP5: Implications for Ocean Biogeochemical Model Performance Assessment

    Science.gov (United States)

    Seferian, Roland; Gehlen, Marion; Bopp, Laurent; Resplandy, Laure; Orr, James C.; Marti, Olivier; Dunne, John P.; Christian, James R.; Doney, Scott C.; Ilyina, Tatiana; Romanou, Anastasia

    2015-01-01

    During the fifth phase of the Coupled Model Intercomparison Project (CMIP5) substantial efforts were made to systematically assess the skill of Earth system models. One goal was to check how realistically representative marine biogeochemical tracer distributions could be reproduced by models. In routine assessments model historical hindcasts were compared with available modern biogeochemical observations. However, these assessments considered neither how close modeled biogeochemical reservoirs were to equilibrium nor the sensitivity of model performance to initial conditions or to the spin-up protocols. Here, we explore how the large diversity in spin-up protocols used for marine biogeochemistry in CMIP5 Earth system models (ESMs) contributes to model-to-model differences in the simulated fields. We take advantage of a 500-year spin-up simulation of IPSL-CM5A-LR to quantify the influence of the spin-up protocol on model ability to reproduce relevant data fields. Amplification of biases in selected biogeochemical fields (O2, NO3, Alk-DIC) is assessed as a function of spin-up duration. We demonstrate that a relationship between spin-up duration and assessment metrics emerges from our model results and holds when confronted with a larger ensemble of CMIP5 models. This shows that drift has implications for performance assessment in addition to possibly aliasing estimates of climate change impact. Our study suggests that differences in spin-up protocols could explain a substantial part of model disparities, constituting a source of model-to- model uncertainty. This requires more attention in future model intercomparison exercises in order to provide quantitatively more correct ESM results on marine biogeochemistry and carbon cycle feedbacks.

  1. Study of luminosity and spin-up relation in X-ray binary pulsars with long-term monitoring by MAXI/GSC and Fermi/GBM

    CERN Document Server

    Sugizaki, Mutsumi; Nakajima, Motoki; Yamaoka, Kazutaka

    2015-01-01

    We study the relation between luminosity and spin-period change in X-ray binary pulsars using long-term light curve obtained by the MAXI/GSC all-sky survey and pulse period data from the Fermi/GBM pulsar project. X-ray binaries, consisting of a highly magnetized neutron star and a stellar companion, originate X-ray emission according to the energy of the accretion matter onto the neutron star. The accretion matter also transfers the angular momentum at the Alfven radius, and then spin up the neutron star. Therefore, the X-ray luminosity and the spin-up rate are supposed to be well correlated. We analyzed the luminosity and period-change relation using the data taken by continuous monitoring of MAXI/GSC and Fermi/GBM for Be/X-ray binaries, GX 304$-$1, A 0535$+$26, GRO J1008$-$57, KS 1947$+$300, and 2S 1417$-$624, which occurred large outbursts in the last four years. We discuss the results comparing the obtained observed relation with that of the theoretical model by Ghosh \\& Lamb (1979).

  2. DISCOVERY OF BURST OSCILLATIONS IN THE INTERMITTENT ACCRETION-POWERED MILLISECOND PULSAR HETE J1900.1-2455

    International Nuclear Information System (INIS)

    We report the discovery of burst oscillations from the intermittent accretion-powered millisecond pulsar (AMP) HETE J1900.1-2455, with a frequency ∼1 Hz below the known spin frequency. The burst oscillation properties are far more similar to those of the non-AMPs and Aql X-1 (an intermittent AMP with a far lower duty cycle), than those of the AMPs SAX J1808.4-3658 and XTE J1814-338. We discuss the implications for models of the burst oscillation and intermittency mechanisms.

  3. Numerical Experiments on the Spin-up Time for Seasonal-Scale Regional Climate Modeling

    Institute of Scientific and Technical Information of China (English)

    ZHONG Zhong; HU Yijia; MIN Jinzhong; XU Honglei

    2007-01-01

    In this paper, the numerical experiments on the issue of spin-up time for seasonal-scale regional climate modeling were conducted with the newly Regional Climate Model (RegCM3), in the case of the abnormal climate event during the summer of 1998 in China. To test the effect of spin-up time on the regional climate simulation results for such abnormal climate event, a total of 11 experiments were performed with different spin-up time from 10 days to 6 months, respectively. The simulation results show that, for the meteorological variables in the atmosphere, the model would be running in "climate mode" after 4-8-day spin-up time, then,it is independent of the spin-up time basically, and the simulation errors are mainly caused by the model's failure in describing the atmospheric processes over the model domain. This verifies again that the regional climate modeling is indeed a lateral boundary condition problem as demonstrated by earlier research work.The simulated mean precipitation rate over each subregion is not sensitive to the spin-up time, but the precipitation scenario is somewhat different for the experiment with different spin-up time, which shows that there exists the uncertainty in the simulation to precipitation scenario, and such a uncertainty exhibits more over the areas where heavy rainfall happened. Generally, for monthly-scale precipitation simulation, aspin-up time of 1 month is enough, whereas a spin-up time of 2 months is better for seasonal-scale one.Furthermore, the relationship between the precipitation simulation error and the advancement/withdrawal of East Asian summer monsoon was analyzed. It is found that the variability of correlation coefficient for precipitation is more significant over the areas where the summer monsoon is predominant. Therefore, the model's capability in reproducing precipitation features is related to the heavy rainfall processes associated with the advancement/withdrawal of East Asian summer monsoon, which suggests

  4. Deformations of Accreting Neutron Star Crusts and Gravitational Wave Emission

    OpenAIRE

    Ushomirsky, Greg; Cutler, Curt; Bildsten, Lars

    2000-01-01

    Motivated by the narrow range of spin frequencies of nearly 20 accreting neutron stars, Bildsten (1998) conjectured that their spin-up had been halted by the emission of gravitational waves. He also pointed out that small nonaxisymmetric temperature variations in the accreted crust will lead to "wavy" electron capture layers, whose horizontal density variations naturally create a mass quadrupole moment. We present a full calculation of the crust's elastic adjustment to these density perturbat...

  5. Episodic jet power extracted from a spinning black hole surrounded by a neutrino-dominated accretion flow in gamma-ray bursts

    CERN Document Server

    Cao, Xinwu; Yuan, Ye-Fei

    2014-01-01

    It was suggested that the relativistic jets in gamma-ray bursts (GRBs) are powered via the Blandford-Znajek (BZ) mechanism or the annihilation of neutrinos and anti-neutrinos from a neutrino cooling-dominated accretion flow (NDAF). The advection and diffusion of the large-scale magnetic field of a NDAF is calculated, and the external magnetic field is found to be dragged inward efficiently by the accretion flow for a typical magnetic Prandtl number P_m=1. The maximal BZ jet power can be ~10^53-10^54 erg/sec for an extreme Kerr black hole, if an external magnetic field with 10^14 Gauss is advected by the NDAF. This is roughly consistent with the field strength of the disk formed after a tidal disrupted magnetar. The accretion flow near the black hole horizon is arrested by the magnetic field if the accretion rate is below than a critical value for a given external field. The arrested accretion flow fails to drag the field inward and the field strength decays, and then the accretion re-starts, which leads to os...

  6. A method to reduce the spin-up time of ocean models

    NARCIS (Netherlands)

    Bernsen, Erik; Dijkstra, Henk A.; Wubs, Fred W.

    2008-01-01

    The spin-up timescale in large-scale ocean models, i.e., the time it takes to reach an equilibrium state, is determined by the slow processes in the deep ocean and is usually in the order of a few thousand years. As these equilibrium states are taken as initial states for many calculations, much com

  7. Porting marine ecosystem model spin-up using transport matrices to GPUs

    Directory of Open Access Journals (Sweden)

    E. Siewertsen

    2012-07-01

    Full Text Available We have ported an implementation of the spin-up for marine ecosystem models based on the "Transport Matrix Method" to graphics processing units (GPUs. The original implementation was designed for distributed-memory architectures and uses the PETSc library that is based on the "Message Passing Interface (MPI" standard. The spin-up computes a steady seasonal cycle of the ecosystem tracers with climatological ocean circulation data as forcing. Since the transport is linear with respect to the tracers, the resulting operator is represented in so-called "transport matrices". Each iteration of the spin-up involves two matrix-vector multiplications and the evaluation of the used biogeochemical model. The original code was written in C and Fortran. On the GPU, we use the CUDA standard, a specialized version of the PETSc toolkit and a CUDA Fortran compiler. We describe the extensions to PETSc and the modifications of the original C and Fortran codes that had to be done. Here we make use of freely available libraries for the GPU. We analyze the computational effort of the main parts of the spin-up for two exemplary ecosystem models and compare the overall computational time to those necessary on different CPUs. The results show that a consumer GPU can beat a significant number of cluster CPUs without further code optimization.

  8. Ultraluminous X-ray Sources Powered by Radiatively Efficient Two-Phased Super-Eddington Accretion onto Stellar Mass Black holes

    CERN Document Server

    Socrates, A; Socrates, Aristotle; Davis, Shane W.

    2005-01-01

    The radiation spectra of many of the brightest ultraluminous X-ray sources (ULXs) are dominated by a hard power law component, likely powered by a hot, optically thin corona that Comptonizes soft seed photons emitted from a cool, optically thick black hole accretion disk. Before its dissipation and subsequent conversion into coronal photon power, the randomized gravitational binding energy responsible for powering ULX phenomena must separate from the mass of its origin by a means other than, and quicker than, electron scattering-mediated radiative diffusion. Therefore, the release of accretion power in ULXs is not necessarily subject to Eddington-limited photon trapping, as long as it occurs in a corona. Motivated by these basic considerations, we present a model of ULXs powered by geometrically thin accretion onto stellar mass black holes. We argue that the radiative efficiency of the flow remains high if the corona is magnetized or optically thin and the majority of the accretion power escapes in the form o...

  9. The accretion history of dark matter halos II: The connections with the mass power spectrum and the density profile

    CERN Document Server

    Correa, Camila A; Schaye, Joop; Duffy, Alan R

    2015-01-01

    We explore the relation between the structure and mass accretion histories of dark matter halos using a suite of cosmological simulations. We confirm that the formation time, defined as the time when the virial mass of the main progenitor equals the mass enclosed within the scale radius, correlates strongly with concentration. We provide a semi-analytic model for halo mass history that combines analytic relations with fits to simulations. This model has the functional form, $M(z) = M_{0}(1+z)^{\\alpha}e^{\\beta z}$, where the parameters $\\alpha$ and $\\beta$ are directly correlated with concentration. We then combine this model for the halo mass history with the analytic relations between $\\alpha$, $\\beta$ and the linear power spectrum derived by Correa et al. (2014) to establish the physical link between halo concentration and the initial density perturbation field. Finally, we provide fitting formulas for the halo mass history as well as numerical routines, we derive the accretion rate as a function of halo ma...

  10. Mixing in thermally stratified nonlinear spin-up with sources and sinks

    CERN Document Server

    Baghdasarian, Meline; Pacheco, J Rafael; Verzicco, Roberto

    2013-01-01

    Stratified spin-up experiments in enclosed cylinders have reported the presence of small pockets of well-mixed fluids but quantitative measurements of the mixedness of the fluid has been lacking. Previous numerical simulations have not addressed these measurements. Here we present numerical simulations that address how the combined effect of spin-up and thermal boundary conditions enhances or hinders mixing of a fluid in a cylinder. Measurements of efficiency of mixing are based on the variance of temperature and explained in terms of the potential energy available. The numerical simulations of the Navier--Stokes equations for the problem with different sets of thermal boundary conditions at the horizontal walls helped shed some light on the physical mechanisms of mixing, for which a clear explanation was lacking.

  11. Technical Note: Reducing the spin-up time of integrated surface water–groundwater models

    KAUST Repository

    Ajami, H.

    2014-12-12

    One of the main challenges in the application of coupled or integrated hydrologic models is specifying a catchment\\'s initial conditions in terms of soil moisture and depth-to-water table (DTWT) distributions. One approach to reducing uncertainty in model initialization is to run the model recursively using either a single year or multiple years of forcing data until the system equilibrates with respect to state and diagnostic variables. However, such "spin-up" approaches often require many years of simulations, making them computationally intensive. In this study, a new hybrid approach was developed to reduce the computational burden of the spin-up procedure by using a combination of model simulations and an empirical DTWT function. The methodology is examined across two distinct catchments located in a temperate region of Denmark and a semi-arid region of Australia. Our results illustrate that the hybrid approach reduced the spin-up period required for an integrated groundwater–surface water–land surface model (ParFlow.CLM) by up to 50%. To generalize results to different climate and catchment conditions, we outline a methodology that is applicable to other coupled or integrated modeling frameworks when initialization from an equilibrium state is required.

  12. Technical Note: Reducing the spin-up time of integrated surface water–groundwater models

    KAUST Repository

    Ajami, H.

    2014-06-26

    One of the main challenges in catchment scale application of coupled/integrated hydrologic models is specifying a catchment\\'s initial conditions in terms of soil moisture and depth to water table (DTWT) distributions. One approach to reduce uncertainty in model initialization is to run the model recursively using a single or multiple years of forcing data until the system equilibrates with respect to state and diagnostic variables. However, such "spin-up" approaches often require many years of simulations, making them computationally intensive. In this study, a new hybrid approach was developed to reduce the computational burden of spin-up time for an integrated groundwater-surface water-land surface model (ParFlow.CLM) by using a combination of ParFlow.CLM simulations and an empirical DTWT function. The methodology is examined in two catchments located in the temperate and semi-arid regions of Denmark and Australia respectively. Our results illustrate that the hybrid approach reduced the spin-up time required by ParFlow.CLM by up to 50%, and we outline a methodology that is applicable to other coupled/integrated modelling frameworks when initialization from equilibrium state is required.

  13. Technical Note: Reducing the spin-up time of integrated surface water–groundwater models

    Directory of Open Access Journals (Sweden)

    H. Ajami

    2014-06-01

    Full Text Available One of the main challenges in catchment scale application of coupled/integrated hydrologic models is specifying a catchment's initial conditions in terms of soil moisture and depth to water table (DTWT distributions. One approach to reduce uncertainty in model initialization is to run the model recursively using a single or multiple years of forcing data until the system equilibrates with respect to state and diagnostic variables. However, such "spin-up" approaches often require many years of simulations, making them computationally intensive. In this study, a new hybrid approach was developed to reduce the computational burden of spin-up time for an integrated groundwater-surface water-land surface model (ParFlow.CLM by using a combination of ParFlow.CLM simulations and an empirical DTWT function. The methodology is examined in two catchments located in the temperate and semi-arid regions of Denmark and Australia respectively. Our results illustrate that the hybrid approach reduced the spin-up time required by ParFlow.CLM by up to 50%, and we outline a methodology that is applicable to other coupled/integrated modelling frameworks when initialization from equilibrium state is required.

  14. The neutron star transient and millisecond pulsar in M28: from sub-luminous accretion to rotation-powered quiescence

    CERN Document Server

    Linares, Manuel; Heinke, Craig; Wijnands, Rudy; Patruno, Alessandro; Altamirano, Diego; Homan, Jeroen; Bogdanov, Slavko; Pooley, David

    2013-01-01

    The X-ray transient IGR J18245-2452 in the globular cluster M28 contains the first neutron star (NS) seen to switch between rotation-powered and accretion-powered pulsations. We analyse its 2013 March-April 25d-long outburst as observed by Swift, which had a peak bolometric luminosity of ~6% of the Eddington limit (L$_{E}$), and give detailed properties of the thermonuclear burst observed on 2013 April 7. We also present a detailed analysis of new and archival Chandra data, which we use to study quiescent emission from IGR J18245-2452 between 2002 and 2013. Together, these observations cover almost five orders of magnitude in X-ray luminosity (L$_X$, 0.5-10 keV). The Swift spectrum softens during the outburst decay (photon index $\\Gamma$ from 1.3 above L$_X$/L$_{E}$=10$^{-2}$ to ~2.5 at L$_X$/L$_{E}$=10$^{-4}$), similar to other NS and black hole (BH) transients. At even lower luminosities, deep Chandra observations reveal hard ($\\Gamma$=1-1.5), purely non-thermal and highly variable X-ray emission in quiesce...

  15. A relation of jet power to the central black hole and its accretion

    Directory of Open Access Journals (Sweden)

    Liu Xiang

    2013-12-01

    Full Text Available We have developed an integrated jet power formula in the context of the Blandford-Znajek and Blandford-Payne models, and applied this model to the Foschini sample. The result suggests that there is a positive correlation of the jet power versus the product of the disk luminosity and black hole mass within each type of source, and the di↵erent linear correlation slopes imply that the disk emissivity efficiency and/or the SMBH spin are quite di↵erent for FSRQs, BL Lacs and γ – NLS 1s.

  16. A new approach to the spin-up problem in ocean-climate models

    Science.gov (United States)

    Bernsen, E.

    2010-12-01

    The spin-up timescale in large-scale ocean models, i.e., the time it takes to reach an equilibrium state, is determined by the slow processes in the deep ocean and is usually in the order of a few thousand years. As these equilibrium states are taken as initial states for many calculations, much computer time is spent in the spin-up phase of ocean model computations. In this thesis, we propose a new approach which can lead to a reduction in spin-up time for quite a broad class of existing ocean models. Our approach is based on so-called Jacobian-Free Newton-Krylov (JFNK) methods which combine Newton's method for solving non-linear systems with Krylov subspace methods for solving large systems of linear equations. As there is no need to construct the Jacobian matrices explicitly the method can in principle be applied to existing explicit time-stepping codes. To illustrate the method we first apply it to a 3D planetary geostrophic ocean model with prognostic equations only for temperature and salinity. We compare the new method to the 'ordinary' spin-up run for several model resolutions and find a considerable reduction of spin-up time, on the order of a factor 100. The next step is to apply the JFNK methodology to the Modular Ocean Model Version 4 (MOM4), a state-of-the-art ocean model. We present the implementation of the JFNK method in MOM4 but restrict the preconditioning technique to the case for which temperature and salinity distributions are prescribed, resulting in a prescribed density field. We show that for this case the JFNK method can reduce the spin-up time to a steady equilibrium in MOM4 considerably if an accurate solution is required. A spin-off of the use of the JFNK methodology is the application of bifurcation analysis and we present bifurcation diagrams for the wind-driven ocean circulation. We also used the JFNK method (with prescribed density field) in a paleo configuration for the Oligocene and Miocene epochs. In both epochs continental

  17. Hot-spot model for accretion disc variability as random process - II. Mathematics of the power-spectrum break frequency

    CERN Document Server

    Pechacek, Tomas; Karas, Vladimir; Czerny, Bozena; Dovciak, Michal

    2013-01-01

    We study some general properties of accretion disc variability in the context of stationary random processes. In particular, we are interested in mathematical constraints that can be imposed on the functional form of the Fourier power-spectrum density (PSD) that exhibits a multiply broken shape and several local maxima. We develop a methodology for determining the regions of the model parameter space that can in principle reproduce a PSD shape with a given number and position of local peaks and breaks of the PSD slope. Given the vast space of possible parameters, it is an important requirement that the method is fast in estimating the PSD shape for a given parameter set of the model. We generated and discuss the theoretical PSD profiles of a shot-noise-type random process with exponentially decaying flares. Then we determined conditions under which one, two, or more breaks or local maxima occur in the PSD. We calculated positions of these features and determined the changing slope of the model PSD. Furthermor...

  18. SPIN-UP and Preparing Undergraduate Physics Majors for Careers in Industry

    Science.gov (United States)

    Howes, Ruth

    2011-03-01

    Seven years ago, the Strategic Programs for Innovations in Undergraduate Physics (SPIN-UP) Report produced by the National Task Force on Undergraduate Physics identified several key characteristics of thriving undergraduate physics departments including steps these departments had taken to prepare students better for careers in industry. Today statistical data from AIP shows that almost 40% of students graduating with a degree in physics seek employment as soon as they graduate. Successful undergraduate physics programs have taken steps to adapt their rigorous physics programs to ensure that graduating seniors have the skills they need to enter the industrial workplace as well as to go on to graduate school in physics. Typical strategies noted during a series of SPIN-UP workshops funded by a grant from NSF to APS, AAPT, and AIP include flexible curricula, early introduction of undergraduates to research techniques, revised laboratory experiences that provide students with skills they need to move directly into jobs, and increased emphasis on ``soft'' skills such as communication and team work. Despite significant success, undergraduate programs face continuing challenges in preparing students to work in industry, most significantly the fact that there is no job called ``physicist'' at the undergraduate level. supported by grant NSF DUE-0741560.

  19. Helium accreting CO white dwarfs with rotation: helium novae instead of double detonation

    OpenAIRE

    Yoon, S.-C.; Langer, N.

    2004-01-01

    We present evolutionary models of helium accreting carbon-oxygen white dwarfs in which we include the effects of the spin-up of the accreting star induced by angular momentum accretion, rotationally induced chemical mixing and rotational energy dissipation. Initial masses of 0.6 Msun and 0.8 Msun and constant accretion rates of a few times 10^{-8} Msun/yr of helium rich matter have been considered, which is typical for the sub-Chandrasekhar mass progenitor scenario for Type Ia supernovae. It ...

  20. A Solution to the Protostellar Accretion Problem

    CERN Document Server

    Padoan, P; Norman, M L; Nordlund, A; Padoan, Paolo; Kritsuk, Alexei; Norman, Michael L.; Nordlund, Ake

    2005-01-01

    Accretion rates of order 10^-8 M_\\odot/yr are observed in young protostars of approximately a solar mass with evidence of circumstellar disks. The accretion rate is significantly lower for protostars of smaller mass, approximately proportional to the second power of the stellar mass, \\dot{M}_accr\\propto M^2. The traditional view is that the observed accretion is the consequence of the angular momentum transport in isolated protostellar disks, controlled by disk turbulence or self--gravity. However, these processes are not well understood and the observed protostellar accretion, a fundamental aspect of star formation, remains an unsolved problem. In this letter we propose the protostellar accretion rate is controlled by accretion from the large scale gas distribution in the parent cloud, not by the isolated disk evolution. Describing this process as Bondi--Hoyle accretion, we obtain accretion rates comparable to the observed ones. We also reproduce the observed dependence of the accretion rate on the protostel...

  1. Accelerating the spin-up of the coupled carbon and nitrogen cycle model in CLM4

    Directory of Open Access Journals (Sweden)

    Y. Fang

    2014-12-01

    Full Text Available The commonly adopted biogeochemistry spin-up process in earth system model is to run the model for hundreds to thousands of years subject to periodic atmospheric forcing to reach dynamic steady state of the carbon-nitrogen (CN models. A variety of approaches have been proposed to reduce the computation time of the spin-up process. Significant improvement in computational efficiency has been made recently. However, a long simulation time is still required to reach the common convergence criteria of the coupled carbon/nitrogen model. A gradient projection method was proposed and used to further reduce the computation time after examining the trend of the dominant carbon pools. The Community Land Model version 4 (CLM4 with carbon and nitrogen component was used in this study. From point scale simulations we found that the method can reduce the computation time by 20–69% compared to the fastest approach in the literature. We also found that the cyclic stability of total carbon for some cases differs from that of the periodic atmospheric forcing, and some cases even showed instability. Close examination showed that one case has a carbon periodicity much longer than that of the atmospheric forcing due to the annual fire disturbance that is longer than half a year. The rest was caused by the instability of water table calculation in the hydrology model of CLM4. The instability issue is resolved after we replaced the hydrology scheme in CLM4 with a low model for variably saturated porous media.

  2. Rotating Stars and the Formation of Bipolar Planetary Nebulae. II. Tidal Spin-up

    Science.gov (United States)

    García-Segura, G.; Villaver, E.; Manchado, A.; Langer, N.; Yoon, S.-C.

    2016-06-01

    We present new binary stellar evolution models that include the effects of tidal forces, rotation, and magnetic torques with the goal of testing planetary nebulae (PNs) shaping via binary interaction. We explore whether tidal interaction with a companion can spin-up the asymptotic giant brach (AGB) envelope. To do so, we have selected binary systems with main-sequence masses of 2.5 M ⊙ and 0.8 M ⊙ and evolve them allowing initial separations of 5, 6, 7, and 8 au. The binary stellar evolution models have been computed all the way to the PNs formation phase or until Roche lobe overflow (RLOF) is reached, whatever happens first. We show that with initial separations of 7 and 8 au, the binary avoids entering into RLOF, and the AGB star reaches moderate rotational velocities at the surface (∼3.5 and ∼2 km s‑1, respectively) during the inter-pulse phases, but after the thermal pulses it drops to a final rotational velocity of only ∼0.03 km s‑1. For the closest binary separations explored, 5 and 6 au, the AGB star reaches rotational velocities of ∼6 and ∼4 km s‑1, respectively, when the RLOF is initiated. We conclude that the detached binary models that avoid entering the RLOF phase during the AGB will not shape bipolar PNs, since the acquired angular momentum is lost via the wind during the last two thermal pulses. This study rules out tidal spin-up in non-contact binaries as a sufficient condition to form bipolar PNs.

  3. NuSTAR Discovery of a Cyclotron Line in the Accreting X-Ray Pulsar IGR J16393-4643

    Science.gov (United States)

    Bodaghee, Arash; Tomsick, John A.; Fornasini, Francesca M.; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Zhang, William W.

    2016-06-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by the Nuclear Spectroscope Telescope Array in the 3–79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of {29.3}-1.3+1.1 keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5 ± 0.1) × 1012 G. The known pulsation period is now observed at 904.0 ± 0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of \\dot{P}=-2× {10}-8 s s‑1 (‑0.6 s per year, or a frequency derivative of \\dot{ν }=3× {10}-14 Hz s‑1). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly in corotation with the neutron star whose magnetospheric radius is around 2 × 108 cm.

  4. NuSTAR discovery of a cyclotron line in the accreting X-ray pulsar IGR J16393-4643

    CERN Document Server

    Bodaghee, Arash; Fornasini, Francesca A; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E; Christensen, Finn E; Craig, William W; Hailey, Charles J; Harrison, Fiona A; Zhang, William W

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by NuSTAR in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of 29.3(+1.1/-1.3) keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5+/-0.1)e12 G. The known pulsation period is now observed at 904.0+/-0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of P' = -2e-8 s/s (-0.6 s per year, or a frequency derivative of nu' = 3e-14 Hz/s ). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly i...

  5. Failure modes and conditions of a cohesive, spherical body due to YORP spin-up

    CERN Document Server

    Hirabayashi, Masatoshi

    2015-01-01

    This paper presents transition of the failure mode of a cohesive, spherical body due to YORP spin-up. On the assumption that the distribution of materials in the body is homogeneous, failed regions first appearing in the body at different spin rates are predicted by comparing the yield condition of an elastic stress in the body. It is found that as the spin rate increases, the locations of the failed regions move from the equatorial surface to the central region. To avoid such failure modes, the body should have higher cohesive strength. The results by this model are consistent with those by a plastic finite element model. Then, this model and a two-layered-cohesive model first proposed by Hirabayashi et al. are used to classify possible evolution and disruption of a spherical body. There are three possible pathways to disruption. First, because of a strong structure, failure of the central region is dominant and eventually leads to a breakup into multiple components. Second, a weak surface and a weak interio...

  6. Rotating Stars and the Formation of Bipolar Planetary Nebulae II: Tidal Spin-up

    CERN Document Server

    Garcia-Segura, G; Manchado, A; Langer, N; Yoon, S -C

    2016-01-01

    We present new binary stellar evolution models that include the effects of tidal forces, rotation, and magnetic torques with the goal of testing Planetary Nebulae (PNe) shaping via binary interaction. We explore whether tidal interaction with a companion can spin up the AGB envelope. To do so we have selected binary systems with main sequence masses of 2.5 \\Mo and of 0.8 \\Mo and evolve them allowing initial separations of 5, 6, 7, and 8 AU. The binary stellar evolution models have been computed all the way to the PNe formation phase or until Roche lobe overflow (RLOF) is reached, whatever happens first. We show that with initial separations of 7 and 8 AU, the binary avoids entering into RLOF, and the AGB star reaches moderate rotational velocities at the surface ($\\sim 3.5 $ and $\\sim 2 $ \\kms respectively) during the inter-pulse phases, but after the thermal pulses it drops to a final rotational velocity of only $\\sim 0.03 $ \\kms. For the closest binary separations explored, 5 and 6 AU, the AGB star reaches ...

  7. HATS-18 b: An Extreme Short--Period Massive Transiting Planet Spinning Up Its Star

    CERN Document Server

    Penev, Dr Kaloyan M; Bakos, Dr Gaspar A; Ciceri, Ms Simona; Brahm, Dr Rafael; Bayliss, Dr Daniel; Bento, Joao; Jord'an, Andr'es; Csubry, Mr Zoltan; Bhatti, W; de Val-Borro, Miguel; Espinoza, Mr Néstor; Zhou, Dr George; Mancini, Dr Luigi; Rabus, Dr Markus; Suc, Vincent; Henning, Thomas; Schmidt, Prof Brian P; Noyes, Dr Robert W; L'az'ar, J; Papp, Istvan; S'ari, P

    2016-01-01

    We report the discovery by the HATSouth network of HATS-18 b: a 1.980 +/- 0.077 Mj, 1.337 +0.102 -0.049 Rj planet in a 0.8378 day orbit, around a solar analog star (mass 1.037 +/- 0.047 Msun, and radius 1.020 +0.057 -0.031 Rsun) with V=14.067 +/- 0.040 mag. The high planet mass, combined with its short orbital period, implies strong tidal coupling between the planetary orbit and the star. In fact, given its inferred age, HATS-18 shows evidence of significant tidal spin up, which together with WASP-19 (a very similar system) allows us to constrain the tidal quality factor for Sun-like stars to be in the range 6.5 <= lg(Q*/k_2) <= 7 even after allowing for extremely pessimistic model uncertainties. In addition, the HATS-18 system is among the best systems (and often the best system) for testing a multitude of star--planet interactions, be they gravitational, magnetic or radiative, as well as planet formation and migration theories.

  8. The Orbital Period of the Accreting Pulsar GX1+4

    CERN Document Server

    Pereira, M G; Jablonski, F J; Pereira, Marildo G.; Braga, Joao; Jablonski, Francisco J.

    1999-01-01

    We report strong evidence for a ~304-day periodicity in the spin history of the accretion-powered pulsar GX1+4 that is most probably associated with the orbital period of the system. We have used data from the Burst and Transient Source Experiment on the Compton Gamma Ray Observatory to show a clear periodic modulation of the pulsar frequency from 1991 to date, in excellent agreement with the ephemeris proposed by Cutler, Dennis & Dolan (1986). Our results indicate that the orbital period of GX1+4 is 303.8 +- 1.1 days, making it the widest known low-mass X-ray binary system by more than one order of magnitude and putting this long-standing question to rest. A likely scenario for this system is an elliptical orbit in which the neutron star decreases its spin-down rate (or even exhibits a momentary spin-up behavior) at periastron passages due to the higher torque exerted by the accretion disk onto the magnetosphere of the neutron star. These results are not inconsistent with both the X-ray pulsed flux light...

  9. HATS-18b: An Extreme Short-period Massive Transiting Planet Spinning Up Its Star

    Science.gov (United States)

    Penev, K.; Hartman, J. D.; Bakos, G. Á.; Ciceri, S.; Brahm, R.; Bayliss, D.; Bento, J.; Jordán, A.; Csubry, Z.; Bhatti, W.; de Val-Borro, M.; Espinoza, N.; Zhou, G.; Mancini, L.; Rabus, M.; Suc, V.; Henning, T.; Schmidt, B.; Noyes, R. W.; Lázár, J.; Papp, I.; Sári, P.

    2016-11-01

    We report the discovery by the HATSouth network of HATS-18b: a 1.980+/- 0.077 {M}{{J}}, {1.337}-0.049+0.102 {R}{{J}} planet in a 0.8378 day orbit, around a solar analog star (mass 1.037+/- 0.047 {M}ȯ and radius {1.020}-0.031+0.057 {R}ȯ ) with V=14.067+/- 0.040 mag. The high planet mass, combined with its short orbital period, implies strong tidal coupling between the planetary orbit and the star. In fact, given its inferred age, HATS-18 shows evidence of significant tidal spin up, which together with WASP-19 (a very similar system) allows us to constrain the tidal quality factor for Sun-like stars to be in the range of 6.5≲ {{log}}10({Q}* /{k}2)≲ 7 even after allowing for extremely pessimistic model uncertainties. In addition, the HATS-18 system is among the best systems (and often the best system) for testing a multitude of star–planet interactions, be they gravitational, magnetic, or radiative, as well as planet formation and migration theories. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. This paper includes data gathered with the MPG 2.2 m telescope at the ESO Observatory in La Silla. This paper uses observations obtained with facilities of the Las Cumbres Observatory Global Telescope.

  10. NuSTAR discovery of an unusually steady long-term spin-up of the Be binary 2RXP J130159.6-635806

    OpenAIRE

    Krivonos, Roman A.; Tsygankov, Sergey S.; Lutovinov, Alexander A.; Tomsick, John A.; Chakrabarty, Deepto; Bachetti, Matteo; Boggs, Steven E.; Chernyakova, Masha; Christensen, Finn Erland; Craig, William W.; Fürst, Felix; Hailey, Charles J.; Harrison, Fiona A.; Lansbury, George B.; Rahoui, Farid

    2015-01-01

    We present spectral and timing analyses of Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the accreting X-ray pulsar 2RXP J130159.6–635806. The source was serendipitously observed during a campaign focused on the gamma-ray binary PSR B1259–63 and was later targeted for a dedicated observation. The spectrum has a typical shape for accreting X-ray pulsars, consisting of a simple power law with an exponential cutoff starting at ~7 keV with a folding energy of E_(fold) ≃ 18 keV. T...

  11. Accretion flows govern black hole jet properties

    Science.gov (United States)

    Koljonen, K.; Russell, D.; Fernández Ontiveros, J.; Miller-Jones, J.; Russell, T.; Curran, P.; Soria, R.; Markoff, S.; van der Horst, A.; Casella, P.

    2015-07-01

    The process of jet formation in accreting black holes, and the conditions under which it occurs is currently hotly debated, with competing models predicting the jet power to be governed by black hole spin, the magnetic field strength, the location of the jet base, the mass accretion rate and/or the properties of the inner accretion flow. We present new results that show empirical correlations between the accretion flow properties and the spectral energy distribution of the jets launched from accreting black holes. The X-ray power law is directly related to the particle energy distribution in the hot accretion flow. We find that the photon index of this power law correlates with the characteristic break frequency in the jet spectrum emitted near the jet base, and the jet luminosity up to the break frequency. The observed correlations can be explained by the energy distribution of electrons in the hot accretion flow being subsequently channeled into the jet. These correlations represent a new inflow--outflow connection in accreting black holes, and demonstrate that the spectral properties of the jet rely most critically on the conditions in the inner accretion flow, rather than other parameters such as the black hole mass or spin.

  12. Separated spin-up and spin-down quantum hydrodynamics of degenerated electrons: Spin-electron acoustic wave appearance

    Science.gov (United States)

    Andreev, Pavel A.

    2015-03-01

    The quantum hydrodynamic (QHD) model of charged spin-1/2 particles contains physical quantities defined for all particles of a species including particles with spin-up and with spin-down. Different populations of states with different spin directions are included in the spin density (the magnetization). In this paper I derive a QHD model, which separately describes spin-up electrons and spin-down electrons. Hence electrons with different projections of spins on the preferable direction are considered as two different species of particles. It is shown that the numbers of particles with different spin directions do not conserve. Hence the continuity equations contain sources of particles. These sources are caused by the interactions of the spins with the magnetic field. Terms of similar nature arise in the Euler equation. The z projection of the spin density is no longer an independent variable. It is proportional to the difference between the concentrations of the electrons with spin-up and the electrons with spin-down. The propagation of waves in the magnetized plasmas of degenerate electrons is considered. Two regimes for the ion dynamics, the motionless ions and the motion of the degenerate ions as the single species with no account of the spin dynamics, are considered. It is shown that this form of the QHD equations gives all solutions obtained from the traditional form of QHD equations with no distinction of spin-up and spin-down states. But it also reveals a soundlike solution called the spin-electron acoustic wave. Coincidence of most solutions is expected since this derivation was started with the same basic equation: the Pauli equation. Solutions arise due to the different Fermi pressures for the spin-up electrons and the spin-down electrons in the magnetic field. The results are applied to degenerate electron gas of paramagnetic and ferromagnetic metals in the external magnetic field. The dispersion of the spin-electron acoustic waves in the partially spin

  13. Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model

    KAUST Repository

    Ajami, Hoori

    2014-03-01

    Integrated land surface-groundwater models are valuable tools in simulating the terrestrial hydrologic cycle as a continuous system and exploring the extent of land surface-subsurface interactions from catchment to regional scales. However, the fidelity of model simulations is impacted not only by the vegetation and subsurface parameterizations, but also by the antecedent condition of model state variables, such as the initial soil moisture, depth to groundwater, and ground temperature. In land surface modeling, a given model is often run repeatedly over a single year of forcing data until it reaches an equilibrium state: the point at which there is minimal artificial drift in the model state or prognostic variables (most often the soil moisture). For more complex coupled and integrated systems, where there is an increased computational cost of simulation and the number of variables sensitive to initialization is greater than in traditional uncoupled land surface modeling schemes, the challenge is to minimize the impact of initialization while using the smallest spin-up time possible. In this study, multicriteria analysis was performed to assess the spin-up behavior of the ParFlow.CLM integrated groundwater-surface water-land surface model over a 208 km2 subcatchment of the Ringkobing Fjord catchment in Denmark. Various measures of spin-up performance were computed for model state variables such as the soil moisture and groundwater storage, as well as for diagnostic variables such as the latent and sensible heat fluxes. The impacts of initial conditions on surface water-groundwater interactions were then explored. Our analysis illustrates that the determination of an equilibrium state depends strongly on the variable and performance measure used. Choosing an improper initialization of the model can generate simulations that lead to a misinterpretation of land surface-subsurface feedback processes and result in large biases in simulated discharge. Estimated spin-up

  14. Faint AGN in z>~6 Lyman-break Galaxies Powered by Cold Accretion and Rapid Angular Momentum Transport

    CERN Document Server

    Munoz, Joseph A

    2012-01-01

    We develop a radiation pressure-balanced model for the interstellar medium of high-redshift galaxies that describes many facets of galaxy formation at z>~6, including star formation rates and distributions and gas accretion onto central black holes. We first show that the vertical gravitational force in the disk of such a model is dominated by the disk self-gravity but that both radiation pressure on dust grains and turbulent pressure from dense clumps and disk instabilities are negligible compared with the radiation pressure of starlight on gas. Constraining our model to reproduce the UV luminosity function of Lyman-break galaxies (LBGs), we limit the available parameter-space to wind mass-loading factors 1--4 times the canonical value for momentum-driven winds. We then focus our study by exploring the effects of different angular momentum transport mechanisms in the galactic disk and find that viscosity driven by gravitational torques, such as from linear spiral waves or non-linear orbit crossings, can buil...

  15. Settling accretion onto slowly rotating X-ray pulsars

    CERN Document Server

    Shakura, N I; Kochetkova, A Yu; Hjalmarsdotter, L

    2013-01-01

    Quasi-spherical subsonic accretion onto slowly rotating magnetized NS is considered, when the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasi-static shell. The shell mediates the angular momentum transfer to/from the rotating NS magnetosphere by large-scale convective motions, which lead to an almost iso-angular-momentum rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability while taking cooling into account. The settling regime of accretion is possible for moderate X-ray luminosities L <4 10^36 erg/s. At higher luminosities a free-fall gap above the NS magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of spin-up/spin-down rates of wind accreting equilibrium XPSRs with known orbital periods (GX 301-2, Vela X-1), the main dimensionless parameters of the model and be determin...

  16. Theory of wind accretion

    OpenAIRE

    Shakura N.I.; Postnov K.A.; Kochetkova A.Yu.; Hjalmarsdotter L.

    2013-01-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about $4\\...

  17. Spatial spin-up of fine scales in a regional climate model simulation driven by low-resolution boundary conditions

    Science.gov (United States)

    Matte, Dominic; Laprise, René; Thériault, Julie M.; Lucas-Picher, Philippe

    2016-09-01

    In regional climate modelling, it is well known that domains should be neither too large to avoid a large departure from the driving data, nor too small to provide a sufficient distance from the lateral inflow boundary to allow the full development of the small-scale (SS) features permitted by the finer resolution. Although most practitioners of dynamical downscaling are well aware that the jump of resolution between the lateral boundary condition (LBC) driving data and the nested regional climate model affects the simulated climate, this issue has not been fully investigated. In principle, as the jump of resolution becomes larger, the region of interest in the limited-area domain should be located further away from the lateral inflow boundary to allow the full development of the SS features. A careless choice of domain might result in a suboptimal use of the full finer resolution potential to develop fine-scale features. To address this issue, regional climate model (RCM) simulations using various resolution driving data are compared following the perfect-prognostic Big-Brother protocol. Several experiments were carried out to evaluate the width of the spin-up region (i.e. the distance between the lateral inflow boundary and the domain of interest required for the full development of SS transient eddies) as a function of the RCM and LBC resolutions, as well as the resolution jump. The spin-up distance turns out to be a function of the LBC resolution only, independent of the RCM resolution. When varying the RCM resolution for a given resolution jump, it is found that the spin-up distance corresponds to a fixed number of RCM grid points that is a function of resolution jump only. These findings can serve a useful purpose to guide the choice of domain and RCM configuration for an optimal development of the small scales allowed by the increased resolution of the nested model.

  18. Accretion, winds and outflows in young stars

    CERN Document Server

    Günther, Hans Moritz

    2012-01-01

    Young stars and planetary systems form in molecular clouds. For classical T Tauri stars (CTTS, F-K type precursors) the accretion disk does not reach down to the central star, but it is truncated near the co-rotation radius. The inner edge of the disk is ionized by the stellar radiation, so that the accretion stream is funneled along the magnetic field lines. On the stellar surface an accretion shock develops, which is observed over a wide wavelength range as X-ray emission, UV excess, optical veiling and optical and IR emission lines. Some of the accretion tracers, e.g. H\\alpha, can be calibrated to measure the accretion rate. This accretion process is variable on time scales of hours to years due to changing accretion rates, stellar rotation and reconfiguration of the magnetic field. Furthermore, many accreting systems also drive strong outflows which are ultimately powered by accretion. Several components could contribute to the outflows: slow, wide-angle disk winds, X-winds launched close to the inner dis...

  19. The Accreting Millisecond X-ray Pulsar IGR J00291+5934: Evidence for a Long Timescale Spin Evolution

    CERN Document Server

    Patruno, Alessandro

    2010-01-01

    Accreting Millisecond X-ray Pulsars like IGR J00291+5934 are important because it is possible to test theories of pulsar formation and evolution. They give also the possibility to constrain gravitational wave emission theories and the equation of state of ultra dense matter. Particularly crucial to our understanding is the measurement of the long term spin evolution of the accreting neutron star. An open question is whether these accreting pulsars are spinning up during an outburst and spinning down in quiescence as predicted by the recycling scenario. Until now it has been very difficult to measure torques, due to the presence of fluctuations in the pulse phases that compromise their measurements with standard coherent timing techniques. By applying a new method, I am now able to measure a spin up during an outburst and a spin down during quiescence. I ascribe the spin up (Fdot=5.1(3)x10^{-13}\\Hz/s) to accretion torques and the spin down (Fdot=-3.0(8)x10^{-15} Hz/s) to magneto dipole torques, as those observ...

  20. Plasma physics of accreting neutron stars

    Science.gov (United States)

    Ghosh, Pranab; Lamb, Frederick K.

    1991-01-01

    Plasma concepts and phenomena that are needed to understand X- and gamma-ray sources are discussed. The capture of material from the wind or from the atmosphere or envelope of a binary companion star is described and the resulting types of accretion flows discussed. The reasons for the formation of a magnetosphere around the neutron star are explained. The qualitative features of the magnetospheres of accreting neutron stars are then described and compared with the qualitative features of the geomagnetosphere. The conditions for stable flow and for angular and linear momentum conservation are explained in the context of accretion by magnetic neutron stars and applied to obtain rough estimates of the scale of the magnetosphere. Accretion from Keplerian disks is then considered in some detail. The radial structure of geometrically thin disk flows, the interaction of disk flows with the neutron star magnetosphere, and models of steady accretion from Keplerian disks are described. Accretion torques and the resulting changes in the spin frequencies of rotating neutron stars are considered. The predicted behavior is then compared with observations of accretion-powered pulsars. Magnetospheric processes that may accelerate particles to very high energies, producing GeV and, perhaps, TeV gamma-rays are discussed. Finally, the mechanisms that decelerate and eventually stop accreting plasma at the surfaces of strongly magnetic neutron stars are described.

  1. Impact of Spin-up Forcing on Vegetation States Simulated by a Dynamic Global Vegetation Model Coupledwith a Land Surface Model

    Institute of Scientific and Technical Information of China (English)

    LI Fang; ZENG Xiaodong; SONG Xiang; TIAN Dongxiao; SHAO Pu; ZHANG Dongling

    2011-01-01

    A dynamic global vegetation model (DGVM) coupled with a land surface model (LSM) is generally initialized using a spin-up process to derive a physically-consistent initial condition. Spin-up forcing, which is the atmospheric forcing used to drive the coupled model to equilibrium solutions in the spin-up process,varies across earlier studies. In the present study, the impact of the spin-up forcing in the initialization stage on the fractional coverages (FCs) of plant functional type (PFT) in the subsequent simulation stage are assessed in seven classic climate regions by a modified Community Land Model's Dynamic Global Vegetation Model (CLM-DGVM). Results show that the impact of spin-up forcing is considerable in all regions except the tropical rainforest climate region (TR) and the wet temperate climate region (WM). In the tropical monsoon climate region (TM), the TR and TM transition region (TR-TM), the dry temperate climate region (DM), the highland climate region (H), and the boreal forest climate region (BF), where FCs are affected by climate non-negligibly, the discrepancies in initial FCs, which represent long-term cumulative response of vegetation to different climate anomalies, are large. Moreover, the large discrepancies in initial FCs usually decay slowly because there are trees or shrubs in the five regions. The intrinsic growth timescales of FCs for tree PFTs and shrub PFTs are long, and the variation of FCs of tree PFTs or shrub PFTs can affect that of grass PFTs.

  2. Perturbation growth in accreting filaments

    Science.gov (United States)

    Clarke, S. D.; Whitworth, A. P.; Hubber, D. A.

    2016-05-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long filaments as they form and grow by accretion. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length-scale which is roughly four times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multiwavelength density power spectrum, there exists a clear preferred core separation equal to the largest peak in the dispersion relation. Our results allow one to estimate a minimum age for a filament which is breaking up into regularly spaced fragments, as well as an average accretion rate. We apply the model to observations of filaments in Taurus by Tafalla & Hacar and find accretion rates consistent with those estimated by Palmeirim et al.

  3. Wind accretion in symbiotic X-ray binaries

    CERN Document Server

    Postnov, K; González-Galán, A; Kuulkers, E; Kretschmar, P; Larsson, S; Finger, M H; Kochetkova, A; Lü, G; Yungelson, L

    2011-01-01

    The properties of wind accretion in symbiotic X-ray binaries (SyXBs) consisting of red-giant and magnetized neutron star (NS) are discussed. The spin-up/spin-down torques applied to NS are derived based on a hydrodynamic theory of quasi-spherical accretion onto magnetized NSs. In this model, a settling subsonic accretion proceeds through a hot shell formed around the NS magnetosphere. The accretion rate onto the NS is determined by the ability of the plasma to enter the magnetosphere.Due to large Reynolds numbers in the shell, the interaction of the rotating magnetosphere with plasma initiates a subsonic turbulence. The convective motions are capable of carrying the angular momentum through the shell. We carry out a population synthesis of SyXBs in the Galaxy with account for the spin evolution of magnetized NS. The Galactic number of SyXBs with bright (M_v<1) low-mass red-giant companion is found to be from \\sim 40 to 120, and their birthrate is \\sim 5\\times 10^{-5}-10^{-4} per year. According to our mode...

  4. Hydrodynamics and Thermodynamics of Ice Particle Accretion

    OpenAIRE

    Kintea, Daniel Martin

    2016-01-01

    Icing in warm environments, e.g. in aircraft engines or heated measurement probes, occurs if airplanes fly through areas with high amounts of atmospheric ice crystals. Ingested into the warm engine, they start to melt, resulting in an airflow laden with mixed-phase particles consisting of water and ice. Liquid water deposits on component surfaces, which enables ice particles to adhere to them, forming ice accretion of considerable thickness. Such an accretion reduces reliability, power and ef...

  5. Can neutron stars have auroras ? : electromagnetic coupling process between neutron star and magnetized accretion disk

    Science.gov (United States)

    Kimura, T.; Iwakiri, W. B.; Enoto, T.; Wada, T.; Tao, C.

    2015-12-01

    In the binary neutron star system, angular momentum transfer from accretion disk to a star is essential process for spin-up/down of stars. The angular momentum transfer has been well formulated for the accretion disk strongly magnetized by the neutron star [e.g., Ghosh and Lamb, 1978, 1979a, b]. However, the electromagnetic (EM) coupling between the neutron star and accretion disk has not been self-consistently solved in the previous studies although the magnetic field lines from the star are strongly tied with the accretion disk. In this study, we applied the planet-magnetosphere coupling process established for Jupiter [Hill, 1979] to the binary neutron star system. Angular momentum distribution is solved based on the torque balance between the neutron star's surface and accretion disk coupled by the magnetic field tensions. We found the EM coupling can transfer significantly larger fraction of the angular momentum from the magnetized accretion disk to the star than the unmagnetized case. The resultant spin-up rate is estimated to ~10^-14 [sec/sec] for the nominal binary system parameters, which is comparable with or larger than the other common spin-down/up processes: e.g., the magnetic dipole radiation spin-down. The Joule heating energy dissipated in the EM coupling is estimated to be up to ~10^36 [erg/sec] for the nominal binary system parameters. The release is comparable to that of gravitation energy directly caused by the matters accreting onto the neutron star. This suggests the EM coupling at the neutron star can accompany the observable radiation as auroras with a similar manner to those at the rotating planetary magnetospheres like Jupiter, Saturn, and other gas giants.

  6. Theory of quasi-spherical accretion in X-ray pulsars

    CERN Document Server

    Shakura, N; Kochetkova, A; Hjalmarsdotter, L

    2011-01-01

    A theoretical model for quasi-spherical subsonic accretion onto slowly rotating magnetized neutron stars is constructed. In this model the accreting matter subsonically settles down onto the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere. The settling regime of accretion can be realized for moderate accretion rates $\\dot M< \\dot M_*\\simeq 4\\times 10^{16}$ g/s. At higher accretion rates a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of the spin-up/spin-down rates (the angular rotation frequency derivative $\\dot \\omega^*$, and $\\partial\\dot\\omega^*/\\partial\\dot M$ near the torque reversal) of X-ray pulsars with known orbital perio...

  7. Perturbation growth in accreting filaments

    CERN Document Server

    Clarke, Seamus D; Hubber, David A

    2016-01-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long, initially sub-critical but accreting filaments. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length scale which is roughly 4 times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multi-wavelength density power spectrum there exists a clear preferred core separation equal to the largest peak in the dispe...

  8. Accretion flows in elliptical galaxies

    International Nuclear Information System (INIS)

    A steady-state infall model of gas in elliptical galaxies is developed to investigate the properties and structure of the X-ray-emitting gas observed in these systems. Models have been computed for galaxies with an external pressure (as might be important for ellipticals in clusters), and for varying supernova heating rates. All the models exhibit cooling flows, with mass accretion rates of 0.1 - 0.5 solar mass/yr. A correlation between the radio luminosity and the X-ray luminosity of elliptical galaxies is examined which, in the context of the infall models, may suggest that the radio emission arises from nuclear sources that are powered by the gas accretion flow. These radio sources may also be confined effectively by the X-ray emitting gas. 26 references

  9. Spin-up and Tuning of the Global Carbon Cycle Model Inside the GISS ModelE2 GCM

    Science.gov (United States)

    Aleinov, I. D.; Kiang, N. Y.; Romanou, A.

    2015-12-01

    Planetary carbon cycle involves multiple phenomena, acting at varietyof temporal and spacial scales. The typical times range from minutesfor leaf stomata physiology to centuries for passive soil carbon poolsand deep ocean layers. So, finding a satisfactory equilibrium statebecomes a challenging and computationally expensive task. Here wepresent the spin-up processes for different configurations of theGISS Carbon Cycle model from the model forced with MODIS observed LeafArea Index (LAI) and prescribed ocean to the prognostic LAI and to themodel fully coupled to the dynamic ocean and ocean biology. Weinvestigate the time it takes the model to reach the equilibrium anddiscuss the ways to speed up this process. NASA Goddard Institute for Space Studies General Circulation Model(GISS ModelE2) is currently equipped with all major algorithms necessary forthe simulation of the Global Carbon Cycle. The terrestrial part ispresented by Ent Terrestrial Biosphere Model (Ent TBM), which includesleaf biophysics, prognostic phenology and soil biogeochemistry module(based on Carnegie-Ames-Stanford model). The ocean part is based onthe NASA Ocean Biogeochemistry Model (NOBM). The transport ofatmospheric CO2 is performed by the atmospheric part of ModelE2, whichemploys quadratic upstream algorithm for this purpose.

  10. Coronal Neutrino Emission in Hypercritical Accretion Flows

    CERN Document Server

    Kawabata, R; Kawanaka, N

    2007-01-01

    Hypercritical accretion flows onto stellar mass black holes (BHs) are commonly considered as a promising model of central engines of gamma-ray bursts (GRBs). In this model a certain fraction of gravitational binding energy of accreting matter is deposited to the energy of relativistic jets via neutrino annihilation and/or magnetic fields. However, some recent studies have indicated that the energy deposition rate by neutrino annihilation is somewhat smaller than that needed to power a GRB. To overcome this difficulty, Ramirez-Ruiz & Socrates (2005) proposed that high energy neutrinos from hot corona above the accretion disk might enhance the efficiency of energy deposition. We elucidate the disk corona model in the context of hypercritical accretion flows. From the energy balance in the disk and the corona, we can calculate the disk and coronal temperature, Td and Tc, and neutrino spectra, taking into account the neutrino cooling processes by neutrino-electron scatterings and neutrino pair productions. Th...

  11. Theory of wind accretion

    Directory of Open Access Journals (Sweden)

    Shakura N.I.

    2014-01-01

    Full Text Available A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg/s. In the subsonic case, which sets in at low luminosities, a hot quasi-spherical shell must be formed around the magnetosphere, and the actual accretion rate onto NS is determined by ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. We calculate the rate of plasma entry the magnetopshere and the angular momentum transfer in the shell due to turbulent viscosity appearing in the convective differentially rotating shell. We also discuss and calculate the structure of the magnetospheric boundary layer where the angular momentum between the rotating magnetosphere and the base of the differentially rotating quasi-spherical shell takes place. We show how observations of equilibrium X-ray pulsars Vela X-1 and GX 301-2 can be used to estimate dimensionless parameters of the subsonic settling accretion theory, and obtain the width of the magnetospheric boundary layer for these pulsars.

  12. Theory of wind accretion

    Science.gov (United States)

    Shakura, N. I.; Postnov, K. A.; Kochetkova, A. Yu.; Hjalmarsdotter, L.

    2014-01-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg/s. In the subsonic case, which sets in at low luminosities, a hot quasi-spherical shell must be formed around the magnetosphere, and the actual accretion rate onto NS is determined by ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. We calculate the rate of plasma entry the magnetopshere and the angular momentum transfer in the shell due to turbulent viscosity appearing in the convective differentially rotating shell. We also discuss and calculate the structure of the magnetospheric boundary layer where the angular momentum between the rotating magnetosphere and the base of the differentially rotating quasi-spherical shell takes place. We show how observations of equilibrium X-ray pulsars Vela X-1 and GX 301-2 can be used to estimate dimensionless parameters of the subsonic settling accretion theory, and obtain the width of the magnetospheric boundary layer for these pulsars.

  13. Spinning-up: the case of the symbiotic X-ray binary 3A 1954+319

    OpenAIRE

    Fürst, F.; Marcu, D. M.; Pottschmidt, K.; Grinberg, V.; Wilms, J.; Bel, M. Cadolle

    2011-01-01

    We present a timing and spectral analysis of the variable X-ray source 3A 1954+319. Our analysis is mainly based on an outburst serendipitously observed during INTEGRAL Key Program observations of the Cygnus region in 2008 fall and on the Swift/BAT longterm light curve. Previous observations, though sparse, have identified the source to be one of only nine known symbiotic X-ray binaries, i.e., systems composed of an accreting neutron star orbiting in a highly inhomogeneous medium around an M-...

  14. Magnetically controlled accretion onto a black hole

    CERN Document Server

    Ikhsanov, N R; Beskrovnaya, N G; 10.1088/1742-6596/372/1/012062

    2012-01-01

    An accretion scenario in which the material captured by a black hole from its environment is assumed to be magnetized (\\beta ~ 1) is discussed. We show that the accretion picture in this case is strongly affected by the magnetic field of the flow itself. The accretion power within this Magnetically Controlled Accretion (MCA) scenario is converted predominantly into the magnetic energy of the accretion flow. The rapidly amplified field prevents the accretion flow from forming a homogeneous Keplerian disk. Instead, the flow is decelerated by its own magnetic field at a large distance (Shvartsman radius) from the black hole and switches into a non-Keplerian dense magnetized slab. The material in the slab is confined by the magnetic field and moves towards the black hole on the time scale of the magnetic field annihilation. The basic parameters of the slab are evaluated. Interchange instabilities in the slab may lead to a formation of Z-pinch type configuration of the magnetic field over the slab in which the acc...

  15. Theory of wind accretion

    CERN Document Server

    Shakura, N I; Kochetkova, A Yu; Hjalmarsdotter, L

    2013-01-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about $4\\times10^{36}$ erg/s. In the subsonic case, which sets in at low luminosities, a hot quasi-spherical shell must be formed around the magnetosphere, and the actual accretion rate onto NS is determined by ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. We calculate the rate of plasma entry the magnetopshere and the angular momentum transfer in the shell due to turbulent viscosity appearing in the convective differentially rotating shell. We also discuss and calculate the structure of the ...

  16. Experimental study of snow accretion on overhead transmission lines using a wind tunnel and a high-speed camera

    Science.gov (United States)

    Yasui, Mitsuru; Kagami, Jun; Ando, Hitoshi; Hamada, Yutaka

    1995-05-01

    The experimental study of snow accretion on overhead power transmission lines was carried out to obtain data on accretion rates using the artificial snow accretion test equipment and a high speed camera. We evaluated the accretion rate relative to temperature and wind velocity under simulated conditions of natural snowing and strong winds.

  17. Signs of Magnetic Accretion in the X-ray Pulsar Binary GX 301-2

    CERN Document Server

    Ikhsanov, N R

    2012-01-01

    Observations of the cyclotron resonance scattering feature in the X-ray spectrum of GX 301-2 suggest that the surface field of the neutron star is B_CRSF ~ 4 x 10^{12}G. The same value has been derived in modelling the rapid spin-up episodes in terms of the Keplerian disk accretion scenario. However, the spin-down rate observed during the spin-down trends significantly exceeds the value expected in currently used spin-evolution scenarios. This indicates that either the surface field of the star exceeds 50 x B_CRSF, or a currently used accretion scenario is incomplete. We show that the above discrepancy can be avoided if the accreting material is magnetized. The magnetic pressure in the accretion flow increases more rapidly than its ram pressure and, under certain conditions, significantly affects the accretion picture. The spin-down torque applied to the neutron star in this case is larger than that evaluated within a non-magnetized accretion scenario. We find that the observed spin evolution of the pulsar ca...

  18. Accretion, winds and outflows in young stars

    Science.gov (United States)

    Günther, H. M.

    2013-02-01

    Young stars and planetary systems form in molecular clouds. After the initial radial infall an accretion disk develops. For classical T Tauri stars (CTTS, F-K type precursors) the accretion disk does not reach down to the central star, but it is truncated near the co-rotation radius by the stellar magnetic field. The inner edge of the disk is ionized by the stellar radiation, so that the accretion stream is funneled along the magnetic field lines. On the stellar surface an accretion shock develops, which is observed over a wide wavelength range as X-ray emission, UV excess, optical veiling and optical and IR emission lines. Some of the accretion tracers, e.g. Hα, can be calibrated to measure the accretion rate. This accretion process is variable on time scales of hours to years due to changing accretion rates, stellar rotation and reconfiguration of the magnetic field. Furthermore, many (if not all) accreting systems also drive strong outflows which are ultimately powered by accretion. However, the exact driving mechanism is still unclear. Several components could contribute to the outflows: slow, wide-angle disk winds, X-winds launched close to the inner disk rim, and thermally driven stellar winds. In any case, the outflows contain material of very different temperatures and speeds. The disk wind is cool and can have a molecular component with just a few tens of km s-1, while the central component of the outflow can reach a few 100 km s-1. In some cases the inner part of the outflow is collimated to a small-angle jet. These jets have an onion-like structure, where the inner components are consecutively hotter and faster. The jets can contain working surfaces, which show up as Herbig-Haro knots. Accretion and outflows in the CTTS phase do not only determine stellar parameters like the rotation rate on the main-sequence, they also can have a profound impact on the environment of young stars. This review concentrates on CTTS in near-by star forming regions where

  19. The Magnetic Field Evolution of ULX NuSTAR J095551+6940.8 in M82--A Legacy of Accreting Magnetar

    CERN Document Server

    Pan, Y Y; Zhang, C M; Tong, H

    2015-01-01

    Ultra luminous X-ray sources (ULXs) are usually believed to be black holes with mass about 10^{2--3}M_{sun}. However, the recent discovery of ULX NuSTAR J095551+6940.8 in M82 with the spin period P=1.37s and period derivation P_{dot}=-2*10^{-10} ss^{-1} provides a strong evidence that some ULXs are accreting neutron stars (NSs). To investigate such a particular accreting neutron star, we ascribe it as an evolved magnetar in the accretion binary system. By means of the model of accretion induced the NS magnetic evolution and standard spinup torque, we calculate the magnetic field decay and spin-up of M82 X-2, and show that its magnetic field is now 4.5*10^{12} G, which is evolved from a magnetar in a high mass Xray binary system (HMXB) with the initial values of magnetic field B~10^{14.5} G and spin period P~100 s by accreting ~10^{-3}M_{sun}, while the mass accretion rate for spin-up is set as 5.0*10^{18} gs^{-1}. The evolutionary track of magnetic field and spin period of M82 X-2 is simulated and plotted in ...

  20. The magnetic field evolution of ULX NuSTAR J095551+6940.8 in M82 - a legacy of accreting magnetar

    Science.gov (United States)

    Pan, Y. Y.; Song, L. M.; Zhang, C. M.; Tong, H.

    2016-09-01

    Ultraluminous X-ray sources are usually believed to be black holes with mass about 102-3 M⊙. However, the recent discovery of NuSTAR J095551+6940.8 in M82 by Bachetti et al. shows that it holds the spin period P = 1.37 s and period derivative dot{P}≈ -2× 10^{-10} s s^{-1}, which provides a strong evidence that some ultraluminous X-ray sources could be neutron stars. We obtain that the source may be an evolved magnetar according to our simulation by employing the model of accretion induced the polar magnetic field decay and standard spin-up torque of an accreting neutron star. The results show that NuSTAR J095551+6940.8 is still in the spin-up process, and the polar magnetic field decays to about 4.5 × 1012 G after accreting ˜10-2.5 M⊙, while the strong magnetic field exists in the out-polar region, which could be responsible for the observed low field magnetar. The ultra luminosity of the source can be explained by the beaming effect and two kinds of accretion-radial random accretion and disc accretion. Since the birth rate of magnetars is about ten per cent of the normal neutron stars, we guess that several ultraluminous X-ray sources should share the similar properties to that of NuSTAR J095551+6940.8.

  1. The application of Jacobian-free Newton-Krylov methods to reduce the spin-up time of ocean general circulation models

    Science.gov (United States)

    Bernsen, Erik; Dijkstra, Henk A.; Thies, Jonas; Wubs, Fred W.

    2010-10-01

    In present-day forward time stepping ocean-climate models, capturing both the wind-driven and thermohaline components, a substantial amount of CPU time is needed in a so-called spin-up simulation to determine an equilibrium solution. In this paper, we present methodology based on Jacobian-Free Newton-Krylov methods to reduce the computational time for such a spin-up problem. We apply the method to an idealized configuration of a state-of-the-art ocean model, the Modular Ocean Model version 4 (MOM4). It is shown that a typical speed-up of a factor 10-25 with respect to the original MOM4 code can be achieved and that this speed-up increases with increasing horizontal resolution.

  2. Subhalo Accretion through Filaments

    Science.gov (United States)

    González, Roberto E.; Padilla, Nelson D.

    2016-09-01

    We track subhalo orbits of galaxy- and group-sized halos in cosmological simulations. We identify filamentary structures around halos and use these to define a sample of subhalos accreted from filaments, as well as a control sample of subhalos accreted from other directions. We use these samples to study differences in satellite orbits produced by filamentary accretion. Our results depend on host halo mass. We find that for low masses, subhalos accreted from filaments show ∼10% shorter lifetimes compared to the control sample, show a tendency toward more radial orbits, reach halo central regions earlier, and are more likely to merge with the host. For higher-mass halos this lifetime difference dissipates and even reverses for cluster-sized halos. This behavior appears to be connected to the fact that more massive hosts are connected to stronger filaments with higher velocity coherence and density, with slightly more radial subhalo orbits. Because subhalos tend to follow the coherent flow of the filament, it is possible that such thick filaments are enough to shield the subhalo from the effect of dynamical friction at least during their first infall. We also identify subhalo pairs/clumps that merge with one another after accretion. They survive as a clump for only a very short time, which is even shorter for higher subhalo masses, suggesting that the Magellanic Clouds and other Local group satellite associations may have entered the Milky Way virial radius very recently and probably are in their first infall.

  3. Ringed accretion disks: instabilities

    CERN Document Server

    Pugliese, D

    2016-01-01

    We analyze the possibility that several instability points may be formed, due to the Paczy\\'nski mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider recently proposed model of ringed accretion disk, made up by several tori (rings) which can be corotating or counterrotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  4. Constraining the dipolar magnetic field of M82 X-2 by the accretion model

    CERN Document Server

    Chen, Wen-Cong

    2016-01-01

    Recently, ultraluminous X-ray source (ULX) M82 X-2 has been identified to be an accreting neutron star, which has a $P=1.37$ s spin period, and is spinning up at a rate $\\dot{P}=-2.0\\times 10^{-10}~\\rm s\\,s^{-1}$. Interestingly, its isotropic X-ray luminosity $L_{\\rm iso}=1.8\\times 10^{40}~\\rm erg\\,s^{-1}$ during outbursts is 100 times the Eddington limit for a $1.4~\\rm M_{\\odot}$ neutron star. In this Letter, based on the standard accretion model we attempt to constrain the dipolar magnetic field of the pulsar in ULX M82 X-2. Our calculations indicate that the accretion rate at the magnetospheric radius must be super-Eddington during outbursts. To support such a super-Eddington accretion, a relatively high multipole field ($\\ga 10^{13}$ G) near the surface of the accretor is invoked to produce an accreting gas column. However, our constraint shows that the surface dipolar magnetic field of the pulsar should be in the range of $1.0-3.5\\times 10^{12}$ G. Therefore, our model supports that the neutron star in U...

  5. Wind accretion: Theory and Observations

    OpenAIRE

    Shakura, N. I.; Postnov, K. A.; Kochetkova, A. Yu.; Hjalmarsdotter, L.; Sidoli, L.; Paizis, A.

    2014-01-01

    A review of wind accretion in HMXB is presented. We focus on different regimes of quasi-spherical accretion onto a NS: supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically towards the NS magnetosphere, and subsonic (settling) accretion which occurs when the plasma remains hot until it meets the magnetospheric boundary. The two regimes are separated by a limit in X-ray luminosity at about 4 10^{36} erg/s. In subsonic accretion, wh...

  6. Magnetospheric accretion in EX Lupi

    Science.gov (United States)

    Abraham, Peter; Kospal, Agnes; Bouvier, Jerome

    2016-08-01

    We propose to observe EX Lup, the prototype of the EXor class of young eruptive stars, in order to understand how the accretion process works in the quiescent system. Here, we request 2.6 hours of telescope time on Spitzer, to carry out a mid-infrared photometric monitoring, which we will supplement with simultaneous ground-based optical and near-infrared data. The multi-wavelength light curves will allow us to reliably separate the effects of fluctuating accretion rate from the rotation of the star. By analyzing the variations of the accretion rate we will determine whether EX Lup accretes through a few stable accretion columns or several short-lived random accretion streams. With this campaign, EX Lup will become one of the T Tauri systems where the accretion process is best understood.

  7. Massive star formation by accretion. I. Disc accretion

    Science.gov (United States)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2016-01-01

    Context. Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the Hertzsprung-Russell (HR) diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. Aims: We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the HR diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. Methods: We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. We compare them with previously published equivalent models. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the accretion history of most of the intermediate-mass stars. Results: In the numerical computation of the time derivative of the entropy, some treatment leads to an artificial loss of entropy and thus reduces the inflation that the accreting star undergoes along the birthline. In the case of cold disc accretion, the existence of a significant swelling during the accretion phase, which leads to radii ≳ 100 R⊙ and brings the star back to the red part of the HR diagram, depends sensitively on the initial conditions. For an accretion rate of 10-3M⊙ yr-1, only models starting from a core with a significant radiative region evolve back to the red part of the HR diagram. We also obtain that, in order to reproduce the observed upper envelope of pre-MS stars in the HR diagram with an accretion law deduced from the observed mass outflows in ultra-compact HII regions, the fraction of the

  8. Accretion disk electrodynamics

    Science.gov (United States)

    Coroniti, F. V.

    1985-01-01

    Accretion disk electrodynamic phenomena are separable into two classes: (1) disks and coronas with turbulent magnetic fields; (2) disks and black holes which are connected to a large-scale external magnetic field. Turbulent fields may originate in an alpha-omega dynamo, provide anomalous viscous transport, and sustain an active corona by magnetic buoyancy. The large-scale field can extract energy and angular momentum from the disk and black hole, and be dynamically configured into a collimated relativistic jet.

  9. Quasar Accretion Disks are Strongly Inhomogeneous

    Science.gov (United States)

    Dexter, Jason; Agol, Eric

    2011-01-01

    Active galactic nuclei have been observed to vary stochastically with 10%-20% rms amplitudes over a range of optical wavelengths where the emission arises in an accretion disk. Since the accretion disk is unlikely to vary coherently, local fluctuations may be significantly larger than the global rms variability. We investigate toy models of quasar accretion disks consisting of a number of regions, n, whose temperatures vary independently with an amplitude of σ T in dex. Models with large fluctuations (σ T = 0.35-0.50) in 102-103 independently fluctuating zones for every factor of two in radius can explain the observed discrepancy between thin accretion disk sizes inferred from microlensing events and optical luminosity while matching the observed optical variability. For the same range of σ T , inhomogeneous disk spectra provide excellent fits to the Hubble Space Telescope quasar composite without invoking global Compton scattering atmospheres to explain the high levels of observed UV emission. Simulated microlensing light curves for the Einstein cross from our time-varying toy models are well fit using a time-steady power-law temperature disk and produce magnification light curves that are consistent with current microlensing observations. Deviations due to the inhomogeneous, time-dependent disk structure should occur above the 1% level in the light curves, detectable in future microlensing observations with millimagnitude sensitivity.

  10. Jet Luminosity from Neutrino-Dominated Accretion Flows in GRBs

    OpenAIRE

    Kawanaka, Norita

    2013-01-01

    A hyperaccretion disk around a stellar-mass black hole is a plausible model for the central engine that powers gamma-ray bursts (GRBs). We estimate the luminosity of a jet driven by magnetohydrodynamic processes such as the Blandford-Znajek (BZ) mechanism as a function of mass accretion rate, the black hole mass, and other accretion parameters. We show that the jet is most efficient when the accretion flow is cooled via optically-thin neutrino emission, and that its luminosity is much larger ...

  11. Evolution and precession of accretion disk in tidal disruption events

    Directory of Open Access Journals (Sweden)

    Matzner C.D.

    2012-12-01

    Full Text Available In a supermassive black hole (BH tidal disruption event (TDE, the tidally disrupted star feeds the BH via an accretion disk. Most often it is assumed that the accretion rate history, hence the emission light curve, tracks the rate at which new debris mass falls back onto the disk, notably the t−5/3 power law. But this is not the case when the disk evolution due to viscous spreading - the driving force for accretion - is carefully considered. We construct a simple analytical model that comprehensively describes the accretion rate history across 4 different phases of the disk evolution, in the presence of mass fallback and disk wind loss. Accretion rate evolves differently in those phases which are governed by how the disk heat energy is carried away, early on by advection and later by radiation. The accretion rate can decline as steeply as t−5/3 only if copious disk wind loss is present during the early advection-cooled phase. Later, the accretion rate history is t−8/7 or shallower. These have great implications on the TDE flare light curve. A TDE accretion disk is most likely misaligned with the equatorial plane of the spinning BH. Moreover, in the TDE the accretion rate is super- or near-Eddington thus the disk is geometrically thick, for which case the BH’s frame dragging effect may cause the disk precess as a solid body, which may manifest itself as quasi-periodic signal in the TDE light curve. Our disk evolution model predicts the disk precession period increases with time, typically as ∝ t. The results are applied to the recently jetted TDE flare Swift transient J1644 + 57 which shows numerous, quasi-periodic dips in its long-term X-ray light curve. As the current TDE sample increases, the identification of the disk precession signature provides a unique way of measuring BH spin and studying BH accretion physics.

  12. Quasi-spherical accretion in low-luminosity X-ray pulsars: Theory vs. observations

    CERN Document Server

    Postnov, K; Kochetkova, A; Hjalmarsdotter, L

    2012-01-01

    Quasi-spherical subsonic accretion can be realized in slowly rotating wind-fed X-ray pulsars (XPSRs) at X-ray luminosities <4 10^{36} erg/s. In this regime the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasi-static shell. The shell mediates the angular momentum removal from the rotating NS magnetosphere by shear turbulent viscosity in the boundary layer or via large-scale convective motions. In the last case the differential rotation law in the shell is close to iso-angular-momentum rotation. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities while taking cooling into account. Measurements of spin-up/spin-down rates of quasi-spherically wind accreting XPSRs in equilibrium with known orbital periods (like e.g. GX 301-2 and Vela X-1) enable determination of the main dimensionless parameters of the model and the NS magnetic field. For equilibrium pulsars with indep...

  13. Cold, clumpy accretion onto an active supermassive black hole

    OpenAIRE

    Tremblay, Grant R.; Oonk, J. B. Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P.; Baum, Stefi A.; Voit, G. Mark; Donahue, Megan; McNamara, Brian R.; Davis, Timothy A.; McDonald, Michael A.; Edge, Alastair C.; Clarke, Tracy E.; Galván-Madrid, Roberto; Bremer, Malcolm N.

    2016-01-01

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecul...

  14. Interbasin exchanges and their roles in global ocean circulation:A study based on 1 400 years’ spin up of MOM4p1

    Institute of Scientific and Technical Information of China (English)

    ZHU Yaohua; WEI Zexun; FANG Guohong; WANG Yonggang; GUAN Yuping

    2014-01-01

    A global prognostic model based on MOM4p1, which is a primitive equation nonBoussinesq numerical model, has been integrated with 1 400 years from the state of rest based on the realistic topography to study the long-term pattern of combined wind-driven and thermodynamically-driven general circulation. The model is driven by monthly climatological mean forces and includes 192×189 horizontal grids and 31 pressure-based vertical levels. The main objective is to investigate the mass and heat transports at inter-basin passages and their compensations and roles in the global ocean circulation under equilibrium state of long-term spin up. The kinetic energy analysis divides the spin up process into three stages:the quasi-stable state of wind driven current, the growing phase of thermodynamical circulation and the equilibrium state of thermohaline circulation. It is essential to spin up over a thousand years in order to reach the thermohaline equilibrium state from a state of rest. The Arctic Throughflow from the Bering Strait to the Greenland Sea and the Indonesian Throughflow (ITF) are captured and examined with their compensations and existing data. Analysis reveals that the slope structures of sea surface height are the dynamical driving mechanism of the Pacific-Arctic-Atlantic throughflow and ITF. The analysis denotes, in spite of O (1.4×106 m3/s) of the southward volume transport in the northern Atlantic, that there is still O (1 PW ) of heat transported north-ward since the northward currents in the upper layer carry much higher temperature water than the south-ward flowing northern Atlantic deep water (NADW ). Meridional volume and heat transports are focused on the contributions to NADW renewals and Atlantic meridional overturning circulation (AMOC). Quantitative descriptions of the interbasin exchanges are explained by meridional compensations and supported by pre-vious observations and numerical modeling results. Analysis indicates that the volume and heat

  15. Massive star formation by accretion I. Disc accretion

    CERN Document Server

    Haemmerlé, Lionel; Meynet, Georges; Maeder, André; Charbonnel, Corinne

    2016-01-01

    Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the HR diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the Hertzsprung-Russell (HR) diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the acc...

  16. The fundamental plane of accretion onto black holes with dynamical masses

    NARCIS (Netherlands)

    K. Gültekin; E.M. Cackett; J.M. Miller; T. Di Matteo; S. Markoff; D.O. Richstone

    2009-01-01

    Black hole accretion and jet production are areas of intensive study in astrophysics. Recent work has found a relation between radio luminosity, X-ray luminosity, and black hole mass. With the assumption that radio and X-ray luminosities are suitable proxies for jet power and accretion power, respec

  17. A computer model of glaze accretion on wires

    Energy Technology Data Exchange (ETDEWEB)

    Draganoiu, G.; Lamarche, L.; McComber, P. [Univ. of Quebec, Montreal, Quebec (Canada). Dept. of Mechanical Engineering

    1996-05-01

    The design of power transmission lines requires a knowledge of combined wind and ice loading and of the dynamic behavior of wires loaded with ice accretion. The calculation of the wind forces, in turn, imposes a need for a more detailed computer model for determining glaze accretion shape. For this purpose, a computer model of glaze accretion on wires was developed. It is based on experimental results in the area of ice accretion on wires, as well as on results in the related field of the glaze ice accretion on airfoils. The model incorporates the time dependent on feedback between the growing accretion and the air stream, the variation of the heat transfer coefficient around the cylinder, and the surface runback of water. The main components of the model are the computation of the air flow field, the computation of the impingement water at the control volume level, the solving of the heat balance equation, and the computation of the accretion shape on the wire. The surface air velocity is obtained through the solution of the potential flow around the iced wire and wake, followed by the integration on the surface of the laminar boundary layer. The water flux is computed in each control volume down to the separation point. The heat balance equation derived from the energy equation is solved to determine the freezing fraction and the resulting modified ice surface geometry.

  18. Signature of a spin-up magnetar from multi-band afterglow rebrightening of GRB 100814A

    CERN Document Server

    Yu, Y B; Wu, X F; Xu, M; Geng, J J

    2015-01-01

    In recent years, more and more gamma-ray bursts with late rebrightenings in multi-band afterglows unveil the late-time activities of the central engines. GRB 100814A is a special one among the well-sampled events, with complex temporal and spectral evolution. The single power-law shallow decay index of the optical light curve observed by GROND between 640 s and 10 ks is $\\alpha_{\\rm opt} = 0.57 \\pm 0.02$, which apparently conflicts with the simple external shock model expectation. Especially, there is a remarkable rebrightening in the optical to near infrared bands at late time, challenging the external shock model with synchrotron emission coming from the interaction of the blast wave with the surrounding interstellar medium. In this paper, we invoke a magnetar with spin evolution to explain the complex multi-band afterglow emission of GRB 100814A. The initial shallow decay phase in optical bands and the plateau in X-ray can be explained as due to energy injection from a spin-down magnetar. At late time, wit...

  19. Protostellar accretion traced with chemistry

    DEFF Research Database (Denmark)

    Frimann, Søren; Jørgensen, Jes K.; Padoan, Paolo;

    2016-01-01

    Context. Understanding how protostars accrete their mass is a centralquestion of star formation. One aspect of this is trying to understandwhether the time evolution of accretion rates in deeply embedded objectsis best characterised by a smooth decline from early to late stages orby intermittent ...

  20. Relativistic Accretion Mediated by Turbulent Comptonization

    CERN Document Server

    Socrates, Aristotle

    2008-01-01

    Black hole and neutron star accretion flows display unusually high levels of hard coronal emission in comparison to all other optically thick, gravitationally bound, turbulent astrophysical systems. Since these flows sit in deep relativistic gravitational potentials, their random bulk motions approach the speed of light, therefore allowing turbulent Comptonization to be an important effect. We show that the inevitable production of hard X-ray photons results from turbulent Comptonization in the limit where the turbulence is trans-sonic and the accretion power approaches the Eddington Limit. In this regime, the turbulent Compton y-parameter approaches unity and the turbulent Compton temperature is a significant fraction of the electron rest mass energy, in agreement with the observed phenomena.

  1. Snow accretion on overhead wires

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Y. [Meteorological Research Inst. for Technology Co. Ltd., Tokyo (Japan); Tachizaki, S.; Sudo, N. [Tohoku Electric Power Co. Ltd., Miyagi (Japan)

    2005-07-01

    Wet snow accretion can cause extensive damage to transmission systems. This paper reviewed some of the difficulties faced by researchers in the study of wet snow accretion on overhead lines in Japan. The study of snow accretion phenomena is complicated by the range of phase changes in water. Snowflakes produced in an upper atmospheric layer with a temperature below freezing do not melt when they go through a lower atmospheric layer with a temperature above freezing, but are in a mixed state of solid and liquid due to the latent heat of melting. The complicated properties of water make studies of snow accretion difficult, as well as the fact that snow changes its physical properties rapidly, due to the effects of ambient temperature, rainfall, and solar radiation. The adhesive forces that cause snow accretion include freezing; bonding through freezing; sintering; condensation and freezing of vapor in the air; mechanical intertwining of snowflakes; capillary action due to liquids; coherent forces between ice particles and water formed through the metamorphosis of snowflakes. In addition to these complexities, differences in laboratory room environments and natural snow environments can also pose difficulties for researchers. Equations describing the relationship between the density of accreted snow and the meteorological parameters involved were presented, as well as empirical equations which suggested that snow accretion efficiency has a dependency on air temperature. An empirical model for estimating snow loads in Japan was outlined, as well as various experiments observing show shedding. Correlations for wet snow accretion included precipitation intensity; duration of precipitation; air temperature; wind speed and wind direction in relation to the overhead line. Issues concerning topography and wet snow accretion were reviewed. It was concluded that studies of snow accretion will benefit by the collection of data in each matrix of the relevant parameters. 12 refs

  2. Binary interactions with high accretion rates onto main sequence stars

    Science.gov (United States)

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10-2 M ⊙ yr-1 for solar type stars, and up to ≈ 1 M ⊙ yr-1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  3. Cold, clumpy accretion onto an active supermassive black hole

    CERN Document Server

    Tremblay, Grant R; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen L; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael

    2016-01-01

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds - a departure from the "hot mode" accretion model - although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z=0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities can precipitate from this hot gas, producing a rain of c...

  4. Current required for preventing wet snow accretion on transmission lines. Kaku sodensen no bosetsu denryu

    Energy Technology Data Exchange (ETDEWEB)

    Kawanishi, Seiichi; Sakamoto, Yukichi; Shimada, Yoshihiro; Josho, Misao; Kawaguchi, Mamoru; Mizushima, Kazuo

    1988-07-01

    On the snow accretion due to capillarity which occures by wet snow at a temperature of around 1/sup 0/C caused by the extratropical cyclone, artificial snow accretion tests using wind tunnel facility were performed. Electric current required for preventing wet snow accretion on wires were presented based on an analysis of heat balance. Relationship between melting current of wet snow accretion and its melting ratio were derived from the calculated results using the formula of the current required for melting accreted snow on wires. As a result, it was shown numerically that a live current on the line prior to the initiation of snow accretion is effective to prevent wet snow accretion. When liquid water content of accreted snow arrived over about 30%, snow accreted on wires were spontaneously dropped. The equation to define the current required for preventing wet snow accretion are derived on the basis of heat balance analysis of accreted snow. For preventing wet snow damages on power lines, in the case of wet snow with liquid water contents of 10% and the snowintensity of 5cm/h under the wind velocity of 5-10m/s and a temperature of around 1/sup 0/C, it is required that current exceeding 30-50% of rated permissble current should be applied prior to the beginning of wet snow sleeve developed. (8 figs, 1 tab, 7 refs)

  5. Wind accretion: Theory and Observations

    CERN Document Server

    Shakura, N I; Kochetkova, A Yu; Hjalmarsdotter, L; Sidoli, L; Paizis, A

    2014-01-01

    A review of wind accretion in HMXB is presented. We focus on different regimes of quasi-spherical accretion onto a NS: supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically towards the NS magnetosphere, and subsonic (settling) accretion which occurs when the plasma remains hot until it meets the magnetospheric boundary. The two regimes are separated by a limit in X-ray luminosity at about 4 10^{36} erg/s. In subsonic accretion, which works a hot quasi-spherical shell must form around the magnetosphere, and the actual accretion rate onto the NS is determined by the ability of the plasma to enter the magnetosphere due to the Rayleigh-Taylor instability. Two regimes of subsonic accretion are possible, depending on the plasma cooling mechanism (Compton or radiative) near the magnetopshere. The transition from the high-luminosity regime with Compton cooling to the low-luminosity (L_x < 3\\times 10^35 erg/s) regime with radiative cooling can be respon...

  6. NuSTAR discovery of an unusually steady long-term spin-up of the Be binary 2RXP J130159.6-635806

    DEFF Research Database (Denmark)

    Krivonos, Roman A.; Tsygankov, Sergey S.; Lutovinov, Alexander A.;

    2015-01-01

    We present spectral and timing analysis of NuSTAR observations of the accreting X-ray pulsar 2RXP J130159.6-635806. The source was serendipitously observed during a campaign focused on the gamma-ray binary PSR B1259-63 and was later targeted for a dedicated observation. The spectrum has a typical...

  7. Spherical Accretion in a Uniformly Expanding Universe

    Science.gov (United States)

    Colpi, Monica; Shapiro, Stuart L.; Wasserman, Ira

    1996-10-01

    We consider spherically symmetric accretion of material from an initially homogeneous, uniformly expanding medium onto a Newtonian point mass M. The gas is assumed to evolve adiabatically with a constant adiabatic index F, which we vary over the range Γ ɛ [1, 5/3]. We use a one-dimensional Lagrangian code to follow the spherical infall of material as a function of time. Outflowing shells gravitationally bound to the point mass fall back, giving rise to a inflow rate that, after a rapid rise, declines as a power law in time. If there were no outflow initially, Bondi accretion would result, with a characteristic accretion time-scale ta,0. For gas initially expanding at a uniform rate, with a radial velocity U = R/t0 at radius R, the behavior of the flow at all subsequent times is determined by ta,0/t0. If ta,0/t0 ≫ 1, the gas has no time to respond to pressure forces, so the fluid motion is nearly collisionless. In this case, only loosely bound shells are influenced by pressure gradients and are pushed outward. The late-time evolution of the mass accretion rate Mdot is close to the result for pure dust, and we develop a semianalytic model that accurately accounts for the small effect of pressure gradients in this limit. In the opposite regime, ta,0/t0 ≪ 1, pressure forces significantly affect the motion of the gas. At sufficiently early times, t ≤ ttr, the flow evolved along a sequence of quasi-stationary, Bondi-like states, with a time-dependent Mdot determined by the slowly varying gas density at large distances. However, at later times, t ≥ ttr, the fluid flow enters a dustllke regime; ttr is the time when the instantaneous Bondi accretion radius reaches the marginally bound radius. The transition time ttr depends sensitively on ta,0/t0 for a given Γ and can greatly exceed t0. We show that there exists a critical value Γ = 11/9, below which the transition from fluid to ballistic motion disappears. As one application of our calculations, we consider the

  8. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    Science.gov (United States)

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  9. Wind accretion: Theory and observations

    Science.gov (United States)

    Shakura, N. I.; Postnov, K. A.; Kochetkova, A. Yu.; Hjalmarsdotter, L.; Sidoli, L.; Paizis, A.

    2015-07-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus on different regimes of quasi-spherical accretion onto the neutron star (NS): the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically towards the NS magnetosphere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. These two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg s-1. In the subsonic case, which sets in at lower luminosities, a hot quasi-spherical shell must form around the magnetosphere, and the actual accretion rate onto NS is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. In turn, two regimes of subsonic accretion are possible, depending on plasma cooling mechanism (Compton or radiative) near the magnetopshere. The transition from the high-luminosity with Compton cooling to the lowluminosity (Lx ≲ 3 × 1035 erg s-1) with radiative cooling can be responsible for the onset of the off states repeatedly observed in several low-luminosity slowly accreting pulsars, such as Vela X-1, GX 301-2, and 4U 1907+09. The triggering of the transitionmay be due to a switch in the X-ray beam pattern in response to a change in the optical depth in the accretion column with changing luminosity. We also show that in the settling accretion theory, bright X-ray flares (~1038-1040 erg) observed in supergiant fast X-ray transients (SFXT) can be produced by sporadic capture of magnetized stellar wind plasma. At sufficiently low accretion rates, magnetic reconnection can enhance the magnetospheric plasma entry rate, resulting in copious production of X-ray photons, strong Compton cooling and ultimately in unstable accretion of the entire shell. A bright flare develops on the free-fall time scale in the shell, and the typical energy released in an SFXT bright flare corresponds to the mass

  10. STRONG C+ EMISSION IN GALAXIES AT z ∼ 1-2: EVIDENCE FOR COLD FLOW ACCRETION POWERED STAR FORMATION IN THE EARLY UNIVERSE

    International Nuclear Information System (INIS)

    We have recently detected the [C II] 157.7 μm line in eight star-forming galaxies at redshifts 1 to 2 using the redshift (z) Early Universe Spectrometer (ZEUS). Our sample targets star formation dominant sources detected in PAH emission. This represents a significant addition to [C II] observations during the epoch of peak star formation. We have augmented this survey with observations of the [O I] 63 μm line and far infrared photometry from the PACS and SPIRE Herschel instruments as well as Spitzer IRS spectra from the literature showing PAH features. Our sources exhibit above average gas heating efficiency, many with both [O I]/FIR and [C II]/FIR of ∼1% or more. The relatively strong [C II] emission is consistent with our sources being dominated by star formation powered photo-dissociation regions, extending to kiloparsec scales. We suggest that the star formation mode in these systems follows a Schmidt-Kennicutt law similar to local systems, but at a much higher rate due to molecular gas surface densities 10-100 times that of local star-forming systems. The source of the high molecular gas surface densities may be the infall of neutral gas from the cosmic web. In addition to the high [C II]/FIR values, we also find high [C II]/PAH ratios and, in at least one source, a cool dust temperature. This source, SWIRE 4-5, bears a resemblance in these diagnostics to shocked regions of Stephan's Quintet, suggesting that another mode of [C II] excitation in addition to normal photoelectric heating may be contributing to the observed [C II] line

  11. STRONG C{sup +} EMISSION IN GALAXIES AT z ∼ 1-2: EVIDENCE FOR COLD FLOW ACCRETION POWERED STAR FORMATION IN THE EARLY UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Brisbin, Drew [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Ferkinhoff, Carl; Nikola, Thomas; Parshley, Stephen; Spoon, Henrik [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States); Stacey, Gordon J. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Hailey-Dunsheath, Steven [California Institute of Technology, Mail Code 301-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Verma, Aprajita, E-mail: dbrisbin@nrao.edu [University of Oxford, Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom)

    2015-01-20

    We have recently detected the [C II] 157.7 μm line in eight star-forming galaxies at redshifts 1 to 2 using the redshift (z) Early Universe Spectrometer (ZEUS). Our sample targets star formation dominant sources detected in PAH emission. This represents a significant addition to [C II] observations during the epoch of peak star formation. We have augmented this survey with observations of the [O I] 63 μm line and far infrared photometry from the PACS and SPIRE Herschel instruments as well as Spitzer IRS spectra from the literature showing PAH features. Our sources exhibit above average gas heating efficiency, many with both [O I]/FIR and [C II]/FIR of ∼1% or more. The relatively strong [C II] emission is consistent with our sources being dominated by star formation powered photo-dissociation regions, extending to kiloparsec scales. We suggest that the star formation mode in these systems follows a Schmidt-Kennicutt law similar to local systems, but at a much higher rate due to molecular gas surface densities 10-100 times that of local star-forming systems. The source of the high molecular gas surface densities may be the infall of neutral gas from the cosmic web. In addition to the high [C II]/FIR values, we also find high [C II]/PAH ratios and, in at least one source, a cool dust temperature. This source, SWIRE 4-5, bears a resemblance in these diagnostics to shocked regions of Stephan's Quintet, suggesting that another mode of [C II] excitation in addition to normal photoelectric heating may be contributing to the observed [C II] line.

  12. He-Accreting WDs: accretion regimes and final outcomes

    CERN Document Server

    Piersanti, L; Yungelson, L R

    2014-01-01

    The behaviour of carbon-oxygen white dwarfs (WDs) subject to direct helium accretion is extensively studied. We aim to analyze the thermal response of the accreting WD to mass deposition at different time scales. The analysis has been performed for initial WDs masses and accretion rates in the range (0.60 - 1.02) Msun and 1.e-9 - 1.e-5 Msun/yr, respectively. Thermal regimes in the parameters space M_{WD} - dot{M}_{He}, leading to formation of red-giant-like structure, steady burning of He, mild, strong and dynamical flashes have been identified and the transition between those regimes has been studied in detail. In particular, the physical properties of WDs experiencing the He-flash accretion regime have been investigated in order to determine the mass retention efficiency as a function of the accretor total mass and accretion rate. We also discuss to what extent the building-up of a He-rich layer via H-burning could be described according to the behaviour of models accreting He-rich matter directly. Polynomi...

  13. Dynamics of continental accretion.

    Science.gov (United States)

    Moresi, L; Betts, P G; Miller, M S; Cayley, R A

    2014-04-10

    Subduction zones become congested when they try to consume buoyant, exotic crust. The accretionary mountain belts (orogens) that form at these convergent plate margins have been the principal sites of lateral continental growth through Earth's history. Modern examples of accretionary margins are the North American Cordilleras and southwest Pacific subduction zones. The geologic record contains abundant accretionary orogens, such as the Tasmanides, along the eastern margin of the supercontinent Gondwana, and the Altaïdes, which formed on the southern margin of Laurasia. In modern and ancient examples of long-lived accretionary orogens, the overriding plate is subjected to episodes of crustal extension and back-arc basin development, often related to subduction rollback and transient episodes of orogenesis and crustal shortening, coincident with accretion of exotic crust. Here we present three-dimensional dynamic models that show how accretionary margins evolve from the initial collision, through a period of plate margin instability, to re-establishment of a stable convergent margin. The models illustrate how significant curvature of the orogenic system develops, as well as the mechanism for tectonic escape of the back-arc region. The complexity of the morphology and the evolution of the system are caused by lateral rollback of a tightly arcuate trench migrating parallel to the plate boundary and orthogonally to the convergence direction. We find geological and geophysical evidence for this process in the Tasmanides of eastern Australia, and infer that this is a recurrent and global phenomenon. PMID:24670638

  14. The quiescent state of the accreting X-ray pulsar SAX J2103.5+4545

    CERN Document Server

    Reig, P; Zezas, A

    2014-01-01

    We present an X-ray timing and spectral analysis of the Be/X-ray binary SAX J2103.5+4545 at a time when the Be star's circumstellar disk had disappeared and thus the main reservoir of material available for accretion had extinguished. In this very low optical state, pulsed X-ray emission was detected at a level of L_X~10^{33} erg/s. This is the lowest luminosity at which pulsations have ever been detected in an accreting pulsar. The derived spin period is 351.13 s, consistent with previous observations. The source continues its overall long-term spin-up, which reduced the spin period by 7.5 s since its discovery in 1997. The X-ray emission is consistent with a purely thermal spectrum, represented by a blackbody with kT=1 keV. We discuss possible scenarios to explain the observed quiescent luminosity and conclude that the most likely mechanism is direct emission resulting from the cooling of the polar caps, heated either during the most recent outburst or via intermittent accretion in quiescence.

  15. A Hot and Massive Accretion Disk around the High-Mass Protostar IRAS 20126+4104

    CERN Document Server

    Chen, Huei-Ru Vivien; Zhang, Qizhou; Sridharan, T K; Liu, Sheng-Yuan; Su, Yu-Nung

    2016-01-01

    We present new spectral line observations of the CH3CN molecule in the accretion disk around the massive protostar IRAS 20126+4104 with the Submillimeter Array that for the first time measure the disk density, temperature, and rotational velocity with sufficient resolution (0.37", equivalent to ~600 AU) to assess the gravitational stability of the disk through the Toomre-Q parameter. Our observations resolve the central 2000 AU region that shows steeper velocity gradients with increasing upper state energy, indicating an increase in the rotational velocity of the hotter gas nearer the star. Such spin-up motions are characteristics of an accretion flow in a rotationally supported disk. We compare the observed data with synthetic image cubes produced by three-dimensional radiative transfer models describing a thin flared disk in Keplerian motion enveloped within the centrifugal radius of an angular-momentum-conserving accretion flow. Given a luminosity of 1.3x10^4 Lsun, the optimized model gives a disk mass of ...

  16. A Hot and Massive Accretion Disk around the High-mass Protostar IRAS 20126+4104

    Science.gov (United States)

    Chen, Huei-Ru Vivien; Keto, Eric; Zhang, Qizhou; Sridharan, T. K.; Liu, Sheng-Yuan; Su, Yu-Nung

    2016-06-01

    We present new spectral line observations of the CH3CN molecule in the accretion disk around the massive protostar IRAS 20126+4104 with the Submillimeter Array, which, for the first time, measure the disk density, temperature, and rotational velocity with sufficient resolution (0.″37, equivalent to ∼600 au) to assess the gravitational stability of the disk through the Toomre-Q parameter. Our observations resolve the central 2000 au region that shows steeper velocity gradients with increasing upper state energy, indicating an increase in the rotational velocity of the hotter gas nearer the star. Such spin-up motions are characteristics of an accretion flow in a rotationally supported disk. We compare the observed data with synthetic image cubes produced by three-dimensional radiative transfer models describing a thin flared disk in Keplerian motion enveloped within the centrifugal radius of an angular-momentum-conserving accretion flow. Given a luminosity of 1.3 × 104 L ⊙, the optimized model gives a disk mass of 1.5 M ⊙ and a radius of 858 au rotating about a 12.0 M ⊙ protostar with a disk mass accretion rate of 3.9 × 10‑5 M ⊙ yr‑1. Our study finds that, in contrast to some theoretical expectations, the disk is hot and stable to fragmentation with Q > 2.8 at all radii which permits a smooth accretion flow. These results put forward the first constraints on gravitational instabilities in massive protostellar disks, which are closely connected to the formation of companion stars and planetary systems by fragmentation.

  17. A Systems-Level Perspective on Engine Ice Accretion

    Science.gov (United States)

    May, Ryan D.; Guo, Ten-Huei; Simon, Donald L.

    2013-01-01

    The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation sector. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. This work focuses on developing an accurate and reliable algorithm for detecting the accretion of ice in the low pressure compressor of a generic 40,000 lbf thrust class engine. The algorithm uses only the two shaft speed sensors and works regardless of engine age, operating condition, and power level. In a 10,000-case Monte Carlo simulation, the detection approach was found to have excellent capability at determining ice accretion from sensor noise with detection occurring when ice blocks an average of 6.8% of the low pressure compressor area. Finally, an initial study highlights a potential mitigation strategy that uses the existing engine actuators to raise the temperature in the low pressure compressor in an effort to reduce the rate at which ice accretes.

  18. How do accretion discs break?

    Science.gov (United States)

    Dogan, Suzan

    2016-07-01

    Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. In this study, we first calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. We compare the disc precession torque with the disc viscous torque to determine whether the disc should warp or break. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. To check our analytical findings, we perform 3D hydrodynamical numerical simulations using the PHANTOM smoothed particle hydrodynamics code, and confirm that disc breaking is widespread and enhances accretion on to the central object. For some inclinations, the disc goes through strong Kozai cycles. Disc breaking promotes markedly enhanced and variable accretion and potentially produces high-energy particles or radiation through shocks. This would have significant implications for all binary systems: e.g. accretion outbursts in X-ray binaries and fuelling supermassive black hole (SMBH) binaries. The behaviour we have discussed in this work is relevant to a variety of astrophysical systems, for example X-ray binaries, where the disc plane may be tilted by radiation warping, SMBH binaries, where accretion of misaligned gas can create effectively random inclinations and protostellar binaries, where a disc may be misaligned by a variety of effects such as binary capture/exchange, accretion after binary formation.

  19. Analyzing the Spectra of Accreting X-Ray Pulsars

    Science.gov (United States)

    Wolff, Michael

    This proposal seeks funding for the analysis of accretion-powered X-ray pulsar spectra from NASA/ HEASARC archived X-ray data. Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near high mass X-ray binary systems. Such systems have accretion flows where plasma is initially channeled from an accretion disk by the strong neutron star magnetic field, eventually falling onto the magnetic polar cap of the neutron star compact object. Many of these accreting X-ray pulsars have X-ray spectra that consist of broad power-law continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. The energies of these cyclotron line features have recently been shown to vary with X-ray luminosity in a number of sources such as Her X-1 and V 0332+53, a phenomenon not well understood. Another recent development is the relatively new analytic model for the spectral continuum formation in accretion-powered pulsar systems developed by Becker & Wolff. In their formalism the accretion flows are assumed to go through radiation- dominated radiative shocks and settle onto the neutron star surface. The radiation field consists of strongly Comptonized bremsstrahlung emission from the entire plasma, Comptonized cyclotron emission from the de-excitations of Landau-excited electrons in the neutron star magnetic field, and Comptonized black-body emission from a thermal mound near the neutron star surface. We seek to develop the data analysis tools to apply this model framework to the X-ray data from a wide set of sources to make progress characterizing the basic accretion properties (e.g., magnetic field strength, plasma temperatures, polar cap size, accretion rate per unit area, dominance of bulk vs. thermal Comptonization) as well as understanding the variations of the cyclotron line energies with X-ray luminosity. The three major goals of our proposed work are as follows: In the first year

  20. Inner disk radius, accretion and the propeller effect in the spin-down phase of neutron stars

    CERN Document Server

    Ertan, Unal

    2015-01-01

    We have investigated the critical conditions required for an efficient steady propeller mechanism in the spin-down phases of magnetized neutron stars with optically thick accretion disks. We have shown through simple analytical calculations that: (1) the strength of the dipole field at the Alfven radius is not sufficient to sustain an efficient mass-outflow even when the magnetic dipole field lines rotate much faster than the escape speed, (2) in the spin-down phase, mass accretion onto the star could persist above a minimum disk mass-flow rate that is orders of magnitude lower than the rate corresponding to the transition between the spin-up and the spin-down states, (3) below this critical mass-flow rate, a steady propeller state could be established with a maximum inner disk radius about 25 times smaller than the Alfven radius. Our results indicate that only for spherical accretion, the inner disk radius is likely to approach the Alfven radius, and for all realistic cases, the accretion-propeller transitio...

  1. Ultrasound velocimetry of ferrofluid spin-up flow measurements using a spherical coil assembly to impose a uniform rotating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Khushrushahi, Shahriar [Massachusetts Institute of Technology, Cambridge 02139, MA (United States); Zahn, Markus, E-mail: zahn@mit.ed [Massachusetts Institute of Technology, Cambridge 02139, MA (United States)

    2011-05-15

    Ferrofluid spin-up flow is studied within a sphere subjected to a uniform rotating magnetic field from two surrounding spherical coils carrying sinusoidally varying currents at right angles and 90{sup o} phase difference. Ultrasound velocimetry measurements in a full sphere of ferrofluid shows no measureable flow. There is significant bulk flow in a partially filled sphere (1-14 mm/s) of ferrofluid or a finite height cylinder of ferrofluid with no cover (1-4 mm/s) placed in the spherical coil apparatus. The flow is due to free surface effects and the non-uniform magnetic field associated with the shape demagnetizing effects. Flow is also observed in the fully filled ferrofluid sphere (1-20 mm/s) when the field is made non-uniform by adding a permanent magnet or a DC or AC excited small solenoidal coil. This confirms that a non-uniform magnetic field or a non-uniform distribution of magnetization due to a non-uniform magnetic field are causes of spin-up flow in ferrofluids with no free surface, while tangential magnetic surface stress contributes to flow in the presence of a free surface. Recent work has fitted velocity flow measurements of ferrofluid filled finite height cylinders with no free surface, subjected to uniform rotating magnetic fields, neglecting the container shape effects which cause non-uniform demagnetizing fields, and resulting in much larger non-physical effective values of spin viscosity {eta}'{approx}10{sup -8}-10{sup -12} N s than those obtained from theoretical spin diffusion analysis where {eta}'{<=}10{sup -18} N s. COMSOL Multiphysics finite element computer simulations of spherical geometry in a uniform rotating magnetic field using non-physically large experimental fit values of spin viscosity {eta}'{approx}10{sup -8}-10{sup -12} N s with a zero spin-velocity boundary condition at the outer wall predicts measureable flow, while simulations setting spin viscosity to zero ({eta}'=0) results in negligible flow, in

  2. Jets from magnetized accretion disks

    Science.gov (United States)

    Matsumoto, Ryoji

    When an accretion disk is threaded by large scale poloidal magnetic fields, the injection of magnetic helicity from the accretion disk drives bipolar outflows. We present the results of global magnetohydrodynamic (MHD) simulations of jet formation from a torus initially threaded by vertical magnetic fields. After the torsional Alfvén waves generated by the injected magnetic twists propagate along the large-scale magnetic field lines, magnetically driven jets emanate from the surface of the torus. Due to the magnetic pinch effect, the jets are collimated along the rotation axis. Since the jet formation process extracts angular momentum from the disk, it enhances the accretion rate of the disk material. Through three-dimensional (3D) global MHD simulations, we confirmed previous 2D results that the magnetically braked surface of the disk accretes like an avalanche. Owing to the growth of non-axisymmetric perturbations, the avalanche flow breaks up into spiral channels. Helical structure also appears inside the jet. When magnetic helicity is injected into closed magnetic loops connecting the central object and the accretion disk, it drives recurrent magnetic reconnection and outflows.

  3. Preheated Advection Dominated Accretion Flow

    CERN Document Server

    Park, M G; Park, Myeong-Gu; Ostriker, Jeremiah P.

    2001-01-01

    All high temperature accretion solutions including ADAF are physically thick, so outgoing radiation interacts with the incoming flow, sharing as much or more resemblance with classical spherical accretion flows as with disk flows. We examine this interaction for the popular ADAF case. We find that without allowance for Compton preheating, a very restricted domain of ADAF solution is permitted and with Compton preheating included a new high temperature PADAF branch appears in the solution space. In the absence of preheating, high temperature flows do not exist when the mass accretion rate mdot == Mdot c^2 / L_E >~ 10^-1.5. Below this mass accretion rate, a roughly conical region around the hole cannot sustain high temperature ions and electrons for all flows having mdot >~ 10^-4, which may lead to a funnel possibly filled with a tenuous hot outgoing wind. If the flow starts at large radii with the usual equilibrium temperature ~10^4 K, the critical mass accretion rate is much lower, mdot exist. However, above ...

  4. Bulk Comptonization by turbulence in accretion discs

    Science.gov (United States)

    Kaufman, J.; Blaes, O. M.

    2016-06-01

    Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent `wave' temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, radiation viscous dissipation is suppressed, and the evolution of local photon spectra can be understood in terms of compression and expansion of the strongly coupled photon and gas fluids. We discuss the consequences of these effects for self-consistently resolving and interpreting turbulent Comptonization in spectral calculations in radiation magnetohydrodynamic simulations of high luminosity accretion flows.

  5. Black hole accretion disc impacts

    Science.gov (United States)

    Pihajoki, P.

    2016-04-01

    We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength λ = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.

  6. Black hole accretion disc impacts

    CERN Document Server

    Pihajoki, Pauli

    2015-01-01

    We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength {\\lambda} = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.

  7. Eclipse mapping of accretion discs

    CERN Document Server

    Baptista, R

    2000-01-01

    The eclipse mapping method is an inversion technique that makes use of the information contained in eclipse light curves to probe the structure, the spectrum and the time evolution of accretion discs. In this review I present the basics of the method and discuss its different implementations. I summarize the most important results obtained to date and discuss how they have helped to improve our understanding of accretion physics, from testing the theoretical radial brightness temperature distribution and measuring mass accretion rates to showing the evolution of the structure of a dwarf novae disc through its outburst cycle, from isolating the spectrum of a disc wind to revealing the geometry of disc spiral shocks. I end with an outline of the future prospects.

  8. Bulk Comptonization by Turbulence in Accretion Disks

    CERN Document Server

    Kaufman, J

    2016-01-01

    Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent "wave" temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, ra...

  9. Accretion Disk Outflows from Compact Object Mergers

    Science.gov (United States)

    Metzger, Brian

    Nuclear reactions play a key role in the accretion disks and outflows associated with the merger of binary compact objects and the central engines of gamma-ray bursts and supernovae. The proposed research program will investigate the impact of nucleosynthesis on these events and their observable signatures by means of analytic calculations and numerical simulations. One focus of this research is rapid accretion following the tidal disruption of a white dwarf (WD) by a neutron star (NS) or black hole (BH) binary companion. Tidal disruption shreds the WD into a massive torus composed of C, O, and/or He, which undergoes nuclear reactions and burns to increasingly heavier elements as it flows to smaller radii towards the central compact object. The nuclear energy so released is comparable to that released gravitationally, suggesting that burning could drastically alter the structure and stability of the accretion flow. Axisymmetric hydrodynamic simulations of the evolution of the torus including nuclear burning will be performed to explore issues such as the mass budget of the flow (accretion vs. outflows) and its thermal stability (steady burning and accretion vs. runaway explosion). The mass, velocity, and composition of outflows from the disk will be used in separate radiative transfer calculations to predict the lightcurves and spectra of the 56Ni-decay powered optical transients from WD-NS/WD-BH mergers. The possible connection of such events to recently discovered classes of sub-luminous Type I supernovae will be assessed. The coalescence of NS-NS/NS-BH binaries also results in the formation of a massive torus surrounding a central compact object. Three-dimensional magnetohydrodynamic simulations of the long-term evolution of such accretion disks will be performed, which for the first time follow the effects of weak interactions and the nuclear energy released by Helium recombination. The nucleosynthetic yield of disk outflows will be calculated using a detailed

  10. Accretion Disks and Dynamos: Toward a Unified Mean Field Theory

    CERN Document Server

    Blackman, Eric G

    2012-01-01

    Conversion of gravitational energy into radiation near stars and compact objects in accretion disks the origin of large scale magnetic fields in astrophysical rotators have long been distinct topics of active research in astrophysics. In semi-analytic work on both problems it has been useful to presume large scale symmetries, which necessarily results in mean field theories; magnetohydrodynamic turbulence makes the underlying systems locally asymmetric and highly nonlinear. Synergy between theory and simulations should aim for the development of practical, semi-analytic mean field models that capture the essential physics and can be used for observational modeling. Mean field dynamo (MFD) theory and alpha-viscosity accretion disc theory have exemplified such distinct pursuits. Both are presently incomplete, but 21st century MFD theory has nonlinear predictive power compared to 20th century MFD. in contrast, alpha-viscosity accretion theory is still in a 20th century state. In fact, insights from MFD theory ar...

  11. Peculiarities of the Accretion Flow in the System HL CMa

    CERN Document Server

    Semena, Andrey; Buckley, David; Lutovinov, Alexander; Breytenbach, Hannes

    2016-01-01

    The properties of the aperiodic brightness variability for the dwarf nova HL CMa are considered. The variability of the system HL CMa is shown to be suppressed at frequencies above $7\\times10^{-3}$Hz. Different variability suppression mechanisms related to the radiation reprocessing time, partial disk evaporation, and characteristic variability formation time are proposed. It has been found that the variability suppression frequency does not change when the system passes from the quiescent state to the outburst one, suggesting that the accretion flow geometry is invariable. It is concluded from the optical and X-ray luminosities of the system that the boundary layer on the white dwarf surface is optically thick in both quiescent and outburst states. The latter implies that the optically thick part of the accretion flow (disk) reaches the white dwarf surface. The accretion rate in the system, the flow geometry and temperature have been estimated from the variability power spectra and spectral characteristics i...

  12. Glancing through the accretion column of EXO 2030+375

    Science.gov (United States)

    Ferrigno, C.; Pjanka, P.; Bozzo, E.; Klochkov, D.; Ducci, L.; Zdziarski, A.

    2016-06-01

    The current generation of X-ray instruments is revealing more and more details about the complex magnetic field topology and the geometry of the accretion flows in highly magnetized accretion powered pulsars. We took advantage of the large collecting area and timing capabilities of the EPIC cameras to investigate the accretion geometry onto the magnetized neutron star in the high mass X-ray binary EXO 2030+375 during the rise of one of the source outburst. The X-ray luminosity was 2×10^{36} erg/s and the timing analysis revealed the presence of a narrow dip-like feature in its pulse profile that was never reported before. The width of this feature corresponds to about one hundredth of the neutron star spin period. From the results of the phase-resolved spectral analysis we suggest that this feature can be ascribed to the self-obscuration of the accretion stream passing in front of the observer line of sight. We inferred from Suzaku observation carried out in 2007 that the self-obscuration of the accretion stream might produce a significantly wider feature in the neutron star pulsed profile at higher luminosities (>˜2×10^{37} erg/s). The presence of such feature is so far unique among all known high mass X-ray binaries hosting strongly magnetized neutron stars.

  13. Relativistic reflection X-ray spectra of accretion disks

    Institute of Scientific and Technical Information of China (English)

    Khee-Gan Lee; Kinwah Wu; Steven V. Fuerst; Graziella Branduardi-Raymont; Oliver Crowley

    2009-01-01

    We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow, and the gravity and rotation of the central black hole. The absorption edges in the spectra suffer severe en- ergy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be a powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the re- flection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.

  14. OBSERVATIONAL SIGNATURES OF TILTED BLACK HOLE ACCRETION DISKS FROM SIMULATIONS

    International Nuclear Information System (INIS)

    Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer and compare the estimated locations of the radiation edge with expectations from their aligned (untilted) counterparts. The radiation edge in the tilted simulations is independent of black hole spin for a tilt of 15 deg., in stark contrast to the results for untilted simulations, which agree with the monotonic dependence on spin expected from thin accretion disk theory. Synthetic emission line profiles from the tilted simulations depend strongly on the observer's azimuth and exhibit unique features such as broad 'blue wings'. Coupled with precession, the azimuthal variation could generate time fluctuations in observed emission lines, which would be a clear 'signature' of a tilted accretion flow. Finally, we evaluate the possibility that the observed low- and high-frequency quasi-periodic oscillations (QPOs) from black hole binaries could be produced by misaligned accretion flows. Although low-frequency QPOs from precessing, tilted disks remains a viable option, we find little evidence for significant power in our light curves in the frequency range of high-frequency QPOs.

  15. Observational Signatures of Tilted Black Hole Accretion Disks from Simulations

    Science.gov (United States)

    Dexter, Jason; Fragile, P. Chris

    2011-03-01

    Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer and compare the estimated locations of the radiation edge with expectations from their aligned (untilted) counterparts. The radiation edge in the tilted simulations is independent of black hole spin for a tilt of 15°, in stark contrast to the results for untilted simulations, which agree with the monotonic dependence on spin expected from thin accretion disk theory. Synthetic emission line profiles from the tilted simulations depend strongly on the observer's azimuth and exhibit unique features such as broad "blue wings." Coupled with precession, the azimuthal variation could generate time fluctuations in observed emission lines, which would be a clear "signature" of a tilted accretion flow. Finally, we evaluate the possibility that the observed low- and high-frequency quasi-periodic oscillations (QPOs) from black hole binaries could be produced by misaligned accretion flows. Although low-frequency QPOs from precessing, tilted disks remains a viable option, we find little evidence for significant power in our light curves in the frequency range of high-frequency QPOs.

  16. The Influence of Black Hole Mass and Accretion Rate on the FRI/FRII Radio Galaxy Dichotomy

    Science.gov (United States)

    Wold, M.; Lacy, M.; Armus, L.

    We use medium resolution optical spectra of 3CR radio galaxies to estimate their black hole masses and accretion rates. Black hole masses are found from central stellar velocity dispersions, and accretion rates are derived from narrow emission-line luminosities. The sample covers both Fanaroff-Riley (FR) classes; the more powerful FRIIs and the less powerful FRIs. We find that FRIs and FRIIs separate in diagrams of radio luminosity and narrow-line luminosity versus black hole mass. This suggests that, at a given black hole mass, the FRIIs accrete more efficiently, or accrete more matter, than FRIs.

  17. Instabilities of advection-dominated accretion flows

    CERN Document Server

    Chen, X

    1996-01-01

    Accretion disk instabilities are briefly reviewed. Some details are given to the short-wavelength thermal instabilities and the convective instabilities. Time-dependent calculations of two-dimensional advection-dominated accretion flows are presented.

  18. Hoyle-Lyttleton Accretion in Three Dimensions

    CERN Document Server

    Blondin, John M

    2012-01-01

    We investigate the stability of gravitational accretion of an ideal gas onto a compact object moving through a uniform medium at Mach 3. Previous three-dimensional simulations have shown that such accretion is not stable, and that strong rotational 'disk-like' flows are generated and accreted on short time scales. We re-address this problem using overset spherical grids that provide a factor of seven improvement in spatial resolution over previous simulations. With our higher spatial resolution we found these 3D accretion flows remained remarkably axisymmetric. We examined two cases of accretion with different sized accretors. The larger accretor produced very steady flow, with the mass accretion rate varying by less than 0.02% over 30 flow times. The smaller accretor exhibited an axisymmetric breathing mode that modulated the mass accretion rate by a constant 20%. Nonetheless, the flow remained highly axisymmetric with only negligible accretion of angular momentum in both cases.

  19. Episodic Accretion in Young Stars

    CERN Document Server

    Audard, Marc; Dunham, Michael M; Green, Joel D; Grosso, Nicolas; Hamaguchi, Kenji; Kastner, Joel H; Kóspál, Ágnes; Lodato, Giuseppe; Romanova, Marina; Skinner, Stephen L; Vorobyov, Eduard I; Zhu, Zhaohuan

    2014-01-01

    In the last twenty years, the topic of episodic accretion has gained significant interest in the star formation community. It is now viewed as a common, though still poorly understood, phenomenon in low-mass star formation. The FU Orionis objects (FUors) are long-studied examples of this phenomenon. FUors are believed to undergo accretion outbursts during which the accretion rate rapidly increases from typically $10^{-7}$ to a few $10^{-4}$ $M_\\odot$ yr$^{-1}$, and remains elevated over several decades or more. EXors, a loosely defined class of pre-main sequence stars, exhibit shorter and repetitive outbursts, associated with lower accretion rates. The relationship between the two classes, and their connection to the standard pre-main sequence evolutionary sequence, is an open question: do they represent two distinct classes, are they triggered by the same physical mechanism, and do they occur in the same evolutionary phases? Over the past couple of decades, many theoretical and numerical models have been dev...

  20. Constraining the Accretion Mode in LINER 1.9s

    Science.gov (United States)

    Sabra, Bassem; Der Sahaguian, Elias; Badr, Elie

    2016-01-01

    The accretion mode and the dominant power source in low-ionization nuclear emission-line regions (LINERs), a class of active galactic nuclei (AGN), are still elusive. We focus on a sample of 22 LINER 1.9s (Ho et al. 1997), a subclass of LINERs that show broad Halpha lines, a signature of blackhole-powered accretion, to test the hypothesis that the ionizing continuum emitted by a radiatively inefficient accretion flow (RIAF) could lead to the LINER ultraviolet (UV) emission-line ratios. Optical line-ratio diagrams are a weak diagnostic tool in distinguishing between possible power sources (Sabra et al. 2003). We search the Mikulski Archive for Space Telescopes (MAST) for UV spectra of the objects in the above sample and also perform photoionization simulations using CLOUDY (Ferland et al. 2013). Unfortunately, only one object (NGC 1052; Gabel et al. 2000) of the 22 LINER 1.9s has UV spectra that cover many emission lines; the rest of the objects either do not have any UV spectra, the spectral coverage is in-adequate, or the spectra have very low signal-to-noise ratios. Our photoionization simulations set up two identical grids of clouds with a range of densities and ionization parameters. We illuminate one grid with radiation emitted by a thin accretion disk (AD) and we illuminate the other grid with radiation from a RIAF. We overplot the UV emission-line ratio predictions for AD and RIAF illumination, together with the available line ratios for NGC 1052. Initial results show that UV lines could be used as diagnostics for the accretion mode in AGN. More UV spectral coverage of LINER 1.9s is needed in order to more fully utilize the diagnostic powers of UV emission line ratios.

  1. Non-Radiative Accretion and Thermodynamics

    OpenAIRE

    Gruzinov, Andrei

    2002-01-01

    It has been suggested that the laws of thermodynamics are violated by what we have called a convection-dominated accretion flow (or a 1/2-law accretion flow) -- an accretion flow characterized by a constant outflow of energy. We show that both the 1/2-law flow and the Bondi flow (also known as ADAF, advection dominated accretion flow) are thermodynamically admissible.

  2. Fundamental Ice Crystal Accretion Physics Studies

    Science.gov (United States)

    Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan

    2012-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component

  3. The lamppost model of accreting black holes

    Science.gov (United States)

    Zdziarski, A.

    2016-06-01

    Niedzwiecki, Zdziarski & Szanecki (2016, ApJL, submitted) have studied the lamppost model, in which the X-ray source in accreting black-hole systems is located on the rotation axis close to the horizon. We point out a number of inconsistencies in the widely used lamppost model relxilllp. They appear to invalidate those model fitting results for which the source distances from the horizon are within several gravitational radii. Furthermore, we note that if those results were correct, most of the photons produced in the lamppost would be trapped by the black hole, and the source luminosity as measured at infinity would be much larger than that observed. This appears to be in conflict with the observed smooth state transitions between the hard and soft states of X-ray binaries. The required increase of the accretion rate and the associated efficiency reduction present also a problem for AGNs. Then, those models imply the luminosity measured in the local frame much higher than the dissipated power due to time dilation and redshift, and the electron temperature significantly higher than that observed. We show that these conditions imply that the fitted sources would be out of the pair equilibrium.

  4. Evolution of Massive Protostars via Disk Accretion

    CERN Document Server

    Hosokawa, Takashi; Omukai, Kazuyuki

    2010-01-01

    Mass accretion onto (proto-)stars at high accretion rates > 10^-4 M_sun/yr is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper we examine the evolution via disk accretion. We consider a limiting case of "cold" disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10^-3 M_sun/yr the radius of a protostar is initially small, about a few R_sun. After several solar masses have accreted, the protostar...

  5. Thermal radiation from an accretion disk

    OpenAIRE

    Prigara, F. V.

    2003-01-01

    An effect of stimulated radiation processes on thermal radiation from an accretion disk is considered. The radial density waves triggering flare emission and producing quasi-periodic oscillations in radiation from an accretion disk are discussed. It is argued that the observational data suggest the existence of the weak laser sources in a two-temperature plasma of an accretion disk.

  6. The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08 field experiment – Part 3: Dynamics of low-level spin-up during the genesis

    Directory of Open Access Journals (Sweden)

    L. L. Lussier III

    2013-10-01

    Full Text Available Aircraft reconnaissance data collected during the Tropical Cyclone Structure 2008 field campaign are used to examine further kinematical, dynamical and thermodynamical aspects of the genesis of Typhoon Nuri. Data from the first two missions into the pre-Nuri disturbance document the transition from a tropical wave to a tropical depression. Dropwindsonde-derived tangential wind profiles at several radii from the low-level circulation center indicate that the magnitude of low-level circulation increases and that the corresponding tangential velocity maximum moves inward from the first to second reconnaissance mission. To compliment these findings, a three-dimensional variational analysis incorporating both dropwindsonde and aircraft Doppler radar data is conducted. These data are used to perform circulation tendency calculations at multiple distances from the low-level circulation center. The results demonstrate a net spin-up of the system-scale circulation in the low-levels near the center and in the outer regions of the recirculating Kelvin cat's eye circulation. In these regions, the spin-up tendency due to the influx of cyclonic absolute vorticity exceeds the frictional spin-down tendency for both Nuri missions. The system-scale spin up is found to be accompanied by areas of low-level vorticity concentration through vortex-tube stretching associated with cumulus convection. The areal coverage and intensity of these high-vorticity regions increase between the first and second Nuri missions. The findings of this study are consistent in some respects to the Nuri observational analysis carried out by Raymond and Lopez (2011, but differ in their suggested key result and related scientific implication that the pre-Nuri disturbance was spinning down on the first day of observations. The findings herein strongly support a recent tropical cyclogenesis model positing that the Kelvin cat's eye circulation of the parent wave-like disturbance provides a

  7. Wind accretion in binary stars - I. Mass accretion ratio

    CERN Document Server

    Nagae, T; Matsuda, T; Fujiwara, H; Hachisu, I; Boffin, H M J

    2004-01-01

    Three-dimensional hydrodynamic calculations are performed in order to investigate mass transfer in a close binary system, in which one component undergoes mass loss through a wind. The mass ratio is assumed to be unity. The radius of the mass-losing star is taken to be about a quarter of the separation between the two stars. Calculations are performed for gases with a ratio of specific heats gamma=1.01 and 5/3. Mass loss is assumed to be thermally driven so that the other parameter is the sound speed of the gas on the mass-losing star. Here, we focus our attention on two features: flow patterns and mass accretion ratio, which we define as the ratio of the mass accretion rate onto the companion to the mass loss rate from the mass-losing primary star. We characterize the flow by the mean normal velocity of wind on the critical Roche surface of the mass-losing star, Vr. When Vr0.7 A Omega we observe wind accretion. We find very complex flow patterns in between these two extreme cases. We derive an empirical form...

  8. Structures of magnetized thin accretion disks

    Institute of Scientific and Technical Information of China (English)

    LI; xiaoqing(李晓卿); JI; Haisheng(季海生)

    2002-01-01

    We investigate the magnetohydrodynamic (MHD) process in thin accretion disks. Therelevant momentum as well as magnetic reduction equations in the thin disk approximation areincluded. On the basis of these equations, we examine numerically the stationary structures, includingdistributions of the surface mass density, temperature and flow velocities of a disk around a youngstellar object (YSO). The numerical results are as follows: (i) There should be an upper limit to themagnitude of magnetic field, such an upper limit corresponds to the equipartition field. For relevantmagnitude of magnetic field of the disk's interior the disk remains approximately Keplerian. (ii) Thedistribution of effective temperature T(r) is a smoothly decreasing function of radius with power 1 corresponding to the observed radiation flux density, provided that the magnetic fieldindex γ= -1/2,is suitably chosen.

  9. Ringed accretion disks: equilibrium configurations

    CERN Document Server

    Pugliese, D

    2015-01-01

    We investigate a model of ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the General Relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can be then determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We pr...

  10. Accretion Discs Show Their True Colours

    Science.gov (United States)

    2008-07-01

    Quasars are the brilliant cores of remote galaxies, at the hearts of which lie supermassive black holes that can generate enough power to outshine the Sun a trillion times. These mighty power sources are fuelled by interstellar gas, thought to be sucked into the hole from a surrounding 'accretion disc'. A paper in this week's issue of the journal Nature, partly based on observations collected with ESO's Very Large Telescope, verifies a long-standing prediction about the intensely luminous radiation emitted by these accretion discs. Uncovering the disc ESO PR Photo 21/08 Uncovering the inner disc "Astronomers were puzzled by the fact that the best models of these discs couldn't quite be reconciled with some of the observations, in particular, with the fact that these discs did not appear as blue as they should be," explains lead-author Makoto Kishimoto. Such a discrepancy could be the signal that there was something very wrong with the models. With his colleagues, he investigated this discrepancy by studying the polarised light from six quasars. This enabled them to demonstrate that the disc spectrum is as blue as predicted. "The crucial observational difficulty here has been that the disc is surrounded by a much larger torus containing hot dust, whose light partly outshines that of the disc," says Kishimoto. "Because the light coming from the disc is scattered in the disc vicinity and thus polarised, by observing only polarised light from the quasars, one can uncover the buried light from the disc." In a similar way that a fisherman would wear polarised sunglasses to help get rid of the glare from the water surface and allow him to see more clearly under the water, the filter on the telescope allowed the astronomers to see beyond surrounding clouds of dust and gas to the blue colour of the disc in infrared light. The observations were done with the FORS and ISAAC instruments on one of the 8.2-m Unit Telescopes of ESO's Very Large Telescope, located in the Atacama

  11. Revealing accretion onto black holes through X-ray reflection

    Science.gov (United States)

    Plant, D.; Fender, R.; Ponti, G.; Munoz-Darias, T.; Coriat, M.

    2014-07-01

    Understanding the dynamics behind black hole state transitions and the changes they reflect in outbursts has become long-standing problem. The X-ray reflection spectrum describes the interaction between the hard X-ray source (the power-law continuum) and the cool accretion disc it illuminates, and thus permits an indirect view of how the two evolve. We present a systematic analysis of the reflection spectrum throughout three outbursts (500+ RXTE observations) of the black hole binary GX 339-4, representing the largest study applying a self-consistent treatment of reflection to date. Particular attention is payed to the coincident evolution of the power-law and reflection, which can be used to determine the accretion geometry. The hard state is found to be distinctly reflection weak, however the ratio of reflection to power-law gradually increases as the source luminosity rises. In contrast the reflection is found dominate the power-law throughout most of the soft state, with increasing supremacy as the source decays. Using results from archival and AO-12 observations of GX 339-4 with XMM-Newton we reveal the dynamics driving this evolution and the nature of accretion onto black holes in outburst.

  12. A Simple test for the existence of two accretion modes in active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Jester, Sebastian; /Fermilab

    2005-02-01

    By analogy to the different accretion states observed in black-hole X-ray binaries (BHXBs), it appears plausible that accretion disks in active galactic nuclei (AGN) undergo a state transition between a radiatively efficient and inefficient accretion flow. If the radiative efficiency changes at some critical accretion rate, there will be a change in the distribution of black hole masses and bolometric luminosities at the corresponding transition luminosity. To test this prediction, the author considers the joint distribution of AGN black hole masses and bolometric luminosities for a sample taken from the literature. The small number of objects with low Eddington-scaled accretion rates m < 0.01 and black hole masses M{sub BH} < 10{sup 9} M{sub {circle_dot}} constitutes tentative evidence for the existence of such a transition in AGN. Selection effects, in particular those associated with flux-limited samples, systematically exclude objects in particular regions of the (M{sub BH}, L{sub bol}) plane. Therefore, they require particular attention in the analysis of distributions of black hole mass, bolometric luminosity, and derived quantities like the accretion rate. The author suggests further observational tests of the BHXB-AGN unification scheme which are based on the jet domination of the energy output of BHXBs in the hard state, and on the possible equivalence of BHXB in the very high (or steep power-law) state showing ejections and efficiently accreting quasars and radio galaxies with powerful radio jets.

  13. Hadronic models of blazars require a change of the accretion paradigm

    CERN Document Server

    Zdziarski, Andrzej A

    2015-01-01

    We study hadronic models of broad-band emission of jets in radio-loud active galactic nuclei, and their implications for the accretion in those sources. We show that the models that account for broad-band spectra of blazars emitting in the GeV range in the sample of Boettcher et al. have highly super-Eddington jet powers. Furthermore, the ratio of the jet power to the radiative luminosity of the accretion disc is ~3000 on average and can be as high as ~10^5. We then show that the measurements of the radio core shift for the sample imply low magnetic fluxes threading the black hole, which rules out the Blandford-Znajek mechanism to produce powerful jets. These results require that the accretion rate necessary to power the modelled jets is extremely high, and the average radiative accretion efficiency is ~4 10^-5. Thus, if the hadronic model is correct, the currently prevailing picture of accretion in AGNs needs to be significantly revised. Also, the obtained accretion mode cannot be dominant during the lifetim...

  14. Radio Loud AGN Unification: Connecting Jets and Accretion

    Directory of Open Access Journals (Sweden)

    Meyer Eileen T.

    2013-12-01

    Full Text Available While only a fraction of Active Galactic Nuclei are observed to host a powerful relativistic jet, a cohesive picture is emerging that radio-loud AGN may represent an important phase in the evolution of galaxies and the growth of the central super-massive black hole. I will review my own recent observational work in radio-loud AGN unification in the context of understanding how and why jets form and their the connection to different kinds of accretion and growing the black hole, along with a brief discussion of possible connections to recent modeling work in jet formation. Starting from the significant observational advances in our understanding of jetted AGN as a population over the last decade thanks to new, more sensitive instruments such as Fermi and Swift as well as all-sky surveys at all frequencies, I will lay out the case for a dichotomy in the jetted AGN population connected to accretion mode onto the black hole. In recent work, we have identified two sub-populations of radio-loud AGN which appear to be distinguished by jet structure, where low-efficiency accreting systems produce ‘weak’ jets which decelerate more rapidly than the ’strong’ jets of black holes accreting near the Eddington limit. The two classes are comprised of: (1The weak jet sources, corresponding to the less collimated, edge-darkened FR Is, with a decelerating or spine-sheath jet with velocity gradients, and (2 The strong jet sources, having fast, collimated jets, and typically displaying strong emission lines. The dichotomy in the vp-Lp plane can be understood as a "broken power sequence" in which jets exist on one branch or the other based on the particular accretion mode (Georganopolous 2011.We suggest that the intrinsic kinetic power (as measured by low-frequency, isotropic radio emission, the orientation, and the accretion rate of the SMBH system are the the fundamental axes needed for unification of radio-loud AGN by studying a well-characterized sample

  15. Understanding X-ray reflection as a probe of accreting black holes

    OpenAIRE

    Wilkins, Daniel Richard

    2013-01-01

    The reflection of the X-rays emitted from a corona of energetic particles surrounding an accreting black hole from the accretion disc is investigated in the context of probing the structure of the central regions as well as the physical processes that power some of the brightest objects seen in the Universe. A method is devised to measure the emissivity profile of the accretion disc, that is the reflected flux as a function of radius in the disc. This method exploits the variation in the D...

  16. The influence of accretion rate and metallicity on thermonuclear bursts: predictions from KEPLER models

    CERN Document Server

    Lampe, Nathanael; Galloway, Duncan K

    2015-01-01

    Using the KEPLER hydrodynamics code, 464 models of thermonuclear X-ray bursters were performed across a range of accretion rates and compositions. We present the library of simulated burst profiles from this sample, and examine variations in the simulated lightcurve for different model conditions. We find that the recurrence time varies as a power law against accretion rate, and measure its slope while mixed H/He burning is occurring for a range of metallicities, finding the power law gradient to vary from $\\eta = 1.1$ to $1.24$. We also identify the accretion rates at which mixed H/He burning stops and a transition occurs to different burning regimes. We also explore how varying the accretion rate and metallicity affects burst morphology in both the rise and tail.

  17. Black hole feedback from thick accretion discs

    CERN Document Server

    Sadowski, Aleksander; Abramowicz, Marek A; Narayan, Ramesh

    2015-01-01

    We study energy flows in geometrically thick accretion discs, both optically thick and thin, using general relativistic, three-dimensional simulations of black hole accretion flows. We find that for non-rotating black holes the efficiency of the total feedback from thick accretion discs is $3\\%$ - roughly half of the thin disc efficiency. This amount of energy is ultimately distributed between outflow and radiation, the latter scaling weakly with the accretion rate for super-critical accretion rates, and returned to the interstellar medium. Accretion on to rotating black holes is more efficient because of the additional extraction of rotational energy. However, the jet component is collimated and likely to interact only weakly with the environment, whereas the outflow and radiation components cover a wide solid angle.

  18. How Dim Accreting Black Holes Could Be?

    CERN Document Server

    Abramowicz, M A; Abramowicz, Marek Artur; Igumenshchev, Igor V.

    2001-01-01

    Recent hydrodynamical simulations of radiatively inefficient black hole accretion flows with low viscosity have demonstrated that these flows differ significantly from those described by an advection-dominated model. The black hole flows are advection-dominated only in their inner parts, but convectively dominated at radii R>100R_g. In such flows, the radiative output comes mostly from the convection part, and the radiative efficiency is independent of accretion rate and equals ~0.001. This value gives a limit for how dim an accreting black hole could be. It agrees with recent Chandra observations which indicate that accreting black holes in low-mass X-ray binaries are by factor about 100 dimmer that neutron stars accreting with the same accretion rates.

  19. Interpreting MAD within multiple accretion regimes

    CERN Document Server

    Mocz, Philip

    2014-01-01

    General relativistic magnetohydrodynamic (GRMHD) simulations of accreting black holes in the radiatively inefficient regime show that systems with sufficient magnetic poloidal flux become magnetically arrested disc (MAD) systems, with a well-defined relationship between the magnetic flux and the mass accretion rate. Recently, Zamaninasab (2014) report that the jet magnetic flux and accretion disc luminosity are tightly correlated over 7 orders of magnitude for a sample of 76 radio-loud active galaxies, concluding that the data are explained by the MAD mode of accretion. Their analysis assumes radiatively efficient accretion, and their sample consists primarily of radiatively efficient sources, while GRMHD simulations of MAD thus far have been carried out in the radiatively inefficient regime. We propose a model to interpret MAD systems in the context of multiple accretion regimes, and apply it to the sample in Zamaninasab (2014), along with additional radiatively inefficient sources from archival data. We sho...

  20. Quasar Accretion Disks Are Strongly Inhomogeneous

    OpenAIRE

    Dexter, Jason; Agol, Eric

    2010-01-01

    Active galactic nuclei (AGN) have been observed to vary stochastically with 10-20 rms amplitudes over a range of optical wavelengths where the emission arises in an accretion disk. Since the accretion disk is unlikely to vary coherently, local fluctuations may be significantly larger than the global rms variability. We investigate toy models of quasar accretion disks consisting of a number of regions, n, whose temperatures vary independently with an amplitude of \\sigma_T in dex. Models with l...

  1. Inhomogeneous accretion discs and the soft states of black hole X-ray binaries

    OpenAIRE

    Dexter, Jason; Quataert, Eliot

    2012-01-01

    Observations of black hole binaries (BHBs) have established a rich phenomenology of X-ray states. The soft states range from the low variability, accretion disc dominated thermal state (TD) to the higher variability, non-thermal steep power law state (SPL). The disc component in all states is typically modeled with standard thin disc accretion theory. However, this theory is inconsistent with optical/UV spectral, variability, and gravitational microlensing observations of active galactic nucl...

  2. Spin current contribution in the spectrum of collective excitations of degenerate partially polarized spin-1/2 fermions at separate dynamics of spin-up and spin-down fermions

    OpenAIRE

    Andreev, Pavel A.

    2016-01-01

    The spectrum of collective excitations of degenerate partially polarized spin-1/2 fermions is considered. The spin-up fermions and the spin-down fermions are considered as different fluids. Corresponding two-fluid hydrodynamics consistent with a non-linear Pauli equation is suggested. An equation of state for the "thermal part" of the spin current is suggested for the degenerate regime, where the spin current is caused by the Pauli blocking. Spectrum of three waves is found as a solution of t...

  3. 星载静电加速度计加转回路建模与分析%Modeling and analysis for a spin-up loop of electrostatic space accelerometer

    Institute of Scientific and Technical Information of China (English)

    韩丰田; 付荔; 贺晓霞

    2011-01-01

    Two rotating bodies with the same material but quite different spin angular momentum are utilized to conduct a free fall experiment for testing a novel equivalence principle in space. A conceptual differential electrostatic accelerometer with a variable-capacitance motor based spin-up loop is proposed to meet the demand of the scientific objective in this space mission. The analytical torque model is obtained by calculating the capacitance between the stator electrodes and rotor. The dynamics of the spin-up loop is developed by further estimating the effects of slide-film air damping and magnetic damping on the rotor in an effort to stimulate the start-up response. The simulated results indicate that it will experience a time of 9.8 days to spin up the rotor speed from 0 to 10 000 rpm. The proposed spin-up scheme behaves compact electrode structure by integrated in levitation electrode cylinder, and is superior to the traditional scheme in ground applications by eliminating inherent electromagnetic disturbance.%新型等效原理实验通过检验两个相同材料但自旋运动有显著差异的宏观物体的自由落体运动来验证等效原理可能存在的破坏.根据新型等效原理空间实验的科学目标,提出了一种星载差分静电加速度计方案,设计了基于可变电容式电机原理的静电加转回路;在分析了作用于转子上的静电加转力矩、残余气体阻尼及磁场阻尼的基础上,建立了转子加转回路的动力学模型并进行了仿真分析;仿真结果表明,启动过程使转子达到目标转速(10000 rpm)的启动时间为9.8天.静电加转方法可在电极筒上同时配置加转电极与悬浮电极,结构紧凑,同时避免了传统的异步电机加转产生的电磁干扰.

  4. The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment - Part 3: Dynamics of low-level spin-up during the genesis

    Science.gov (United States)

    Lussier, L. L., III; Montgomery, M. T.; Bell, M. M.

    2014-08-01

    Aircraft reconnaissance data collected during the Tropical Cyclone Structure 2008 field campaign are used to examine further kinematical, dynamical, and thermodynamical aspects of the genesis of Typhoon Nuri. Data from the first two missions into the pre-Nuri disturbance document the transition from a tropical wave to a tropical depression. Dropwindsonde-derived tangential wind profiles at several radii from the low-level circulation center indicate that the magnitude of low-level circulation increases and that the corresponding tangential velocity maximum moves inward from the first to second reconnaissance mission. To compliment these findings, a three-dimensional variational analysis incorporating both dropwindsonde and aircraft Doppler radar data is conducted. These data are used to perform circulation tendency calculations at multiple distances from the low-level circulation center. The results demonstrate a net spin-up of the system-scale circulation in the low levels near the center and in the outer regions of the recirculating Kelvin cat's eye circulation. In these regions, the spin-up tendency due to the influx of cyclonic absolute vorticity exceeds the frictional spin-down tendency for both Nuri missions. The system-scale spin-up is found to be accompanied by areas of low-level vorticity concentration through vortex-tube stretching associated with cumulus convection. The areal coverage and intensity of these high-vorticity regions increase between the first and second Nuri missions. The findings of this study are consistent in some respects to the Nuri observational analysis carried out by Raymond and López-Carrillo (2011), but differ in their suggested key results and related scientific implications that the pre-Nuri disturbance was spinning down in the planetary boundary layer on the first day of observations. The findings herein strongly support a recent tropical cyclogenesis model positing that the Kelvin cat's eye circulation of the parent wave

  5. Cold, clumpy accretion onto an active supermassive black hole

    Science.gov (United States)

    Tremblay, Grant R.; Oonk, J. B. Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P.; Baum, Stefi A.; Voit, G. Mark; Donahue, Megan; McNamara, Brian R.; Davis, Timothy A.; McDonald, Michael A.; Edge, Alastair C.; Clarke, Tracy E.; Galván-Madrid, Roberto; Bremer, Malcolm N.; Edwards, Louise O. V.; Fabian, Andrew C.; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R.; Quillen, Alice C.; Urry, C. Megan; Sanders, Jeremy S.; Wise, Michael W.

    2016-06-01

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds—a departure from the ‘hot mode’ accretion model—although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy’s centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing ‘shadows’ cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  6. Cold, clumpy accretion onto an active supermassive black hole.

    Science.gov (United States)

    Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W

    2016-06-01

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it. PMID:27279215

  7. Cold, clumpy accretion onto an active supermassive black hole.

    Science.gov (United States)

    Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W

    2016-06-08

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  8. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  9. Interpreting the radio/X-ray correlation of black hole sources based on the accretion-jet model

    CERN Document Server

    Xie, Fu-Guo

    2015-01-01

    Two types of correlations between the radio and X-ray luminosities ($L_R$ and $L_X$) of black hole sources has been found. For the traditional type of sources, the correlation can be described by a single power-law. For the other type of sources, while the correlation can still be described by power-law forms, it consists three branches according to the X-ray luminosity, with different power-law indexes. In this paper, we try to explain these correlations in the framework of the coupled accretion-jet model. We attribute the difference between these two types of sources to the difference in the value of viscous parameter $\\alpha$. For the "single power-law" sources, their $\\alpha$ is high; so their accretion is always in the mode of ADAF (advection-dominated accretion flow) for the whole range of X-ray luminosity. For those "hybrid power-law" sources, the value of $\\alpha$ is small so their accretion modes change from ADAF to LHAF (luminous hot accretion flow) to two-phase accretion as the accretion rate incre...

  10. Relativistic reverberation in the accretion flow of a tidal disruption event.

    Science.gov (United States)

    Kara, Erin; Miller, Jon M; Reynolds, Chris; Dai, Lixin

    2016-07-21

    Our current understanding of the curved space-time around supermassive black holes is based on actively accreting black holes, which make up only ten per cent or less of the overall population. X-ray observations of that small fraction reveal strong gravitational redshifts that indicate that many of these black holes are rapidly rotating; however, selection biases suggest that these results are not necessarily reflective of the majority of black holes in the Universe. Tidal disruption events, where a star orbiting an otherwise dormant black hole gets tidally shredded and accreted onto the black hole, can provide a short, unbiased glimpse at the space-time around the other ninety per cent of black holes. Observations of tidal disruptions have hitherto revealed the formation of an accretion disk and the onset of an accretion-powered jet, but have failed to reveal emission from the inner accretion flow, which enables the measurement of black hole spin. Here we report observations of reverberation arising from gravitationally redshifted iron Kα photons reflected off the inner accretion flow in the tidal disruption event Swift J1644+57. From the reverberation timescale, we estimate the mass of the black hole to be a few million solar masses, suggesting an accretion rate of 100 times the Eddington limit or more. The detection of reverberation from the relativistic depths of this rare super-Eddington event demonstrates that the X-rays do not arise from the relativistically moving regions of a jet, as previously thought. PMID:27338795

  11. Unification of Radio Galaxies and their Accretion Jet Properties

    Indian Academy of Sciences (India)

    Qingwen Wu; Ya-Di Xu; Xinwu Cao

    2011-03-01

    We investigate the relation between black hole mass, bh, and jet power, jet, for a sample of BL Lacs and radio quasars. We find that BL Lacs are separated from radio quasars by the FR I/II dividing line in bh-jet plane, which strongly supports the unification scheme of FR I/BL Lac and FR II/radio quasar. The Eddington ratio distribution of BL Lacs and radio quasars exhibits a bimodal nature with a rough division at bol/Edd ∼ 0.01, which imply that they may have different accretion modes. We calculate the jet power extracted from advection-dominated accretion flow (ADAF), and find that it requires dimensionless angular momentum of black hole ≃ 0.9 - 0.99 to reproduce the dividing line between FR I/II or BL Lac/radio quasar if dimensionless accretion rate $\\dot{m} = 0.01$ is adopted, which is required by the above bimodal distribution of Eddington ratios. Our results suggest that black holes in radio galaxies are rapidly spinning.

  12. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni

    Science.gov (United States)

    Muñoz-Darias, T.; Casares, J.; Mata Sánchez, D.; Fender, R. P.; Armas Padilla, M.; Linares, M.; Ponti, G.; Charles, P. A.; Mooley, K. P.; Rodriguez, J.

    2016-06-01

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10‑8 solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.

  13. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni.

    Science.gov (United States)

    Muñoz-Darias, T; Casares, J; Mata Sánchez, D; Fender, R P; Armas Padilla, M; Linares, M; Ponti, G; Charles, P A; Mooley, K P; Rodriguez, J

    2016-06-01

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10(-8) solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes. PMID:27251277

  14. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni.

    Science.gov (United States)

    Muñoz-Darias, T; Casares, J; Mata Sánchez, D; Fender, R P; Armas Padilla, M; Linares, M; Ponti, G; Charles, P A; Mooley, K P; Rodriguez, J

    2016-05-09

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10(-8) solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.

  15. Accretion, Primordial Black Holes and Standard Cosmology

    OpenAIRE

    Nayak, Bibekananda; Singh, Lambodar Prasad

    2009-01-01

    Primordial Black Holes evaporate due to Hawking radiation. We find that the evaporation time of primordial black holes increase when accretion of radiation is included.Thus depending on accretion efficiency more and more number of primordial black holes are existing today, which strengthens the idea that the primordial black holes are the proper candidate for dark matter.

  16. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    B Nayak; P Singh

    2011-01-01

    Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes are the proper candidates for dark matter.

  17. Foundations of Black Hole Accretion Disk Theory

    Directory of Open Access Journals (Sweden)

    Marek A. Abramowicz

    2013-01-01

    Full Text Available This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks, Shakura-Sunyaev (thin disks, slim disks, and advection-dominated accretion flows (ADAFs. After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs.

  18. Retrograde versus Prograde Models of Accreting Black Holes

    Directory of Open Access Journals (Sweden)

    David Garofalo

    2013-01-01

    Full Text Available There is a general consensus that magnetic fields, accretion disks, and rotating black holes are instrumental in the generation of the most powerful sources of energy in the known universe. Nonetheless, because magnetized accretion onto rotating black holes involves both the complications of nonlinear magnetohydrodynamics that currently cannot fully be treated numerically, and uncertainties about the origin of magnetic fields that at present are part of the input, the space of possible solutions remains less constrained. Consequently, the literature still bears witness to the proliferation of rather different black hole engine models. But the accumulated wealth of observational data is now sufficient to meaningfully distinguish between them. It is in this light that this critical paper compares the recent retrograde framework with standard “spin paradigm” prograde models.

  19. Oscillations of Thick Accretion Discs Around Black Holes - II

    CERN Document Server

    Rubio-Herrera, E; Rubio-Herrera, Eduardo; Lee, William H.

    2005-01-01

    We present a numerical study of the global modes of oscillation of thick accretion discs around black holes. We have previously studied the case of constant distributions of specific angular momentum. In this second paper, we investigate (i) how the size of the disc affects the oscillation eigenfrequencies, and (ii) the effect of power-law distributions of angular momentum on the oscillations. In particular, we compare the oscillations of the disc with the epicyclic eigenfrequencies of a test particle with different angular momentum distributions orbiting around the central object. We find that there is a frequency shift away from the epicyclic eigenfrequency of the test particle to lower values as the size of the tori is increased. We have also studied the response of a thick accretion disc to a localized external perturbation using non constant specific angular momentum distributions within the disc. We find that in this case it is also possible (as reported previously for constant angular momentum distribu...

  20. Dark Matter Accretion into Supermassive Black Holes

    CERN Document Server

    Peirani, Sébastien

    2008-01-01

    The relativistic accretion rate of dark matter by a black hole is revisited. Under the assumption that the phase space density indicator, $Q=\\rho_{\\infty}/\\sigma^3_{\\infty}$, remains constant during the inflow, the derived accretion rate can be higher up to five orders of magnitude than the classical accretion formula, valid for non-relativistic and non-interacting particles, when typical dark halo conditions are considered. For these typical conditions, the critical point of the flow is located at distances of about 30-150 times the horizon radius. Application of our results to black hole seeds hosted by halos issued from cosmological simulations indicate that dark matter contributes to no more than ~10% of the total accreted mass, confirming that the bolometric quasar luminosity is related to the baryonic accretion history of the black hole.

  1. Toward a New Paradigm for the Unification of Radio Loud AGN and its Connection to Accretion

    Science.gov (United States)

    Georganpoulos, Markos; Meyer, Eileen T.; Fossati, Giovanni; Lister, Matthew L.

    2012-01-01

    We recently argued [21J that the collective properties. of radio loud active galactic nuclei point to the existence of two families of sources, one of powerful sources with single velocity jets and one of weaker jets with significant velocity gradients in the radiating plasma. These families also correspond to different accretion modes and therefore different thermal and emission line intrinsic properties: powerful sources have radiatively efficient accretion disks, while in weak sources accretion must be radiatively inefficient. Here, after we briefly review of our recent work, we present the following findings that support our unification scheme: (i) along the broken sequence of aligned objects, the jet kinetic power increases. (ii) in the powerful branch of the sequence of aligned objects the fraction of BLLs decreases with increasing jet power. (iii) for powerful sources, the fraction of BLLs increases for more un-aligned objects, as measured by the core to extended radio emission. Our results are also compatible with the possibility that a given accretion power produces jets of comparable kinetic power.

  2. Accretion by a Neutron Star Moving at a High Kick Velocity in the Supernova Ejecta

    Institute of Scientific and Technical Information of China (English)

    Xu Zhang; Ye Lu; Yong-Heng Zhao

    2007-01-01

    We suggest a two-dimensional time dependent analytic model to describe the accretion of matter onto a neutron star moving at a high speed across the ejecta left in the aftermath of a supernova explosion. The formation of a strange star resulting from the accretion is also addressed. The newborn neutron star is assumed to move outward at a kick velocity of vns ~ 103 km s-1, and the accretion flow is treated as a dust flow. When the neutron star travels across the ejecta with high speed, it sweeps up material, and when the accreted mass has reached a critical value, the neutron star will undergo a phase transition,for instance, to become a strange star. Our results show that the accretion rate decreases in a complicated way in time, not just a power law dependence: it drops much faster than the power law derived by Colpi et al. We also found that the total accreted mass and the phase transition of the neutron star depend sensitively on the velocity of supernova ejecta.

  3. Rapid growth of seed black holes in the early universe by supra-exponential accretion.

    Science.gov (United States)

    Alexander, Tal; Natarajan, Priyamvada

    2014-09-12

    Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang.

  4. Rapid growth of seed black holes in the early universe by supra-exponential accretion.

    Science.gov (United States)

    Alexander, Tal; Natarajan, Priyamvada

    2014-09-12

    Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang. PMID:25103410

  5. Rapid growth of seed black holes in the early universe by supra-exponential accretion

    CERN Document Server

    Alexander, Tal

    2014-01-01

    Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t_E ~ few x 0.01 Gyr, is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 Gyr old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is trapped in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly-draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang.

  6. Magnetically Accreting Isolated Old Neutron Stars

    CERN Document Server

    Rutledge, R E

    2001-01-01

    Previous work on the emission from isolated old neutron stars (IONS) accreting the inter-stellar medium (ISM) focussed on gravitational capture - Bondi accretion. We propose a new class of sources which accrete via magnetic interaction with the ISM. While for the Bondi mechanism, the accretion rate decreases with increasing NS velocity, in magnetic accretors (MAGACs="magics") the accretion rate increases with increasing NS velocity. MAGACs will be produced among high velocity (~> 100 km s-1) high magnetic field (B> 1e14 G) radio pulsars - the ``magnetars'' - after they have evolved first through magnetic dipole spin-down, followed by a ``propeller'' phase (when the object sheds angular momentum on a timescale ~1e14 G; minimum velocities relative to the ISM of >25-100 km s-1, depending on B, well below the median in the observed radio-pulsar population; spin-periods of >days to years; accretion luminosities of 1e28- 1e31 ergs s-1 ; and effective temperatures kT=0.3 - 2.5 keV if they accrete onto the magnetic p...

  7. Pulsed Accretion in a Variable Protostar

    CERN Document Server

    Muzerolle, James; Flaherty, Kevin; Balog, Zoltan; Gutermuth, Robert

    2013-01-01

    Periodic increases in luminosity arising from variable accretion rates have been predicted for some close pre-main sequence binary stars as they grow from circumbinary disks. The phenomenon is known as "pulsed accretion" and can affect the orbital evolution and mass distribution of young binaries, as well as the potential for planet formation in the circumbinary environment. Accretion variability is a common feature of young stars, with a large range of amplitudes and timescales as measured from multi-epoch observations at optical and infrared wavelengths. Periodic variations consistent with pulsed accretion have been seen in only a few young binaries via optical accretion tracers, albeit intermittently with accretion luminosity variations ranging from 0-50 percent from orbit to orbit. Here we report on a young protostar (age ~10^5 yr) that exhibits periodic variability in which the infrared luminosity increases by a factor of 10 in roughly one week every 25.34 days. We attribute this to pulsed accretion asso...

  8. Power

    OpenAIRE

    Samuel Bowles; Herbert Gintis

    2007-01-01

    We consider the exercise of power in competitive markets for goods, labour and credit. We offer a definition of power and show that if contracts are incomplete it may be exercised either in Pareto-improving ways or to the disadvantage of those without power. Contrasting conceptions of power including bargaining power, market power, and consumer sovereignty are considered. Because the exercise of power may alter prices and other aspects of exchanges, abstracting from power may miss essential a...

  9. Braking down an accreting protostar: disc-locking, disc winds, stellar winds, X-winds and Magnetospheric Ejecta

    CERN Document Server

    Ferreira, Jonathan

    2013-01-01

    Classical T Tauri stars are low mass young forming stars that are surrounded by a circumstellar accretion disc from which they gain mass. Despite this accretion and their own contraction that should both lead to their spin up, these stars seem to conserve instead an almost constant rotational period as long as the disc is maintained. Several scenarios have been proposed in the literature in order to explain this puzzling "disc-locking" situation: either deposition in the disc of the stellar angular momentum by the stellar magnetosphere or its ejection through winds, providing thereby an explanation of jets from Young Stellar Objects. In this lecture, these various mechanisms will be critically detailed, from the physics of the star-disc interaction to the launching of self-confined jets (disc winds, stellar winds, X-winds, conical winds). It will be shown that no simple model can account alone for the whole bulk of observational data and that "disc locking" requires a combination of some of them.

  10. Glancing through the accretion column of EXO 2030+375

    Science.gov (United States)

    Ferrigno, Carlo; Pjanka, Patryk; Bozzo, Enrico; Klochkov, Dmitry; Ducci, Lorenzo; Zdziarski, Andrzej A.

    2016-09-01

    Context. The current generation of X-ray instruments progressively reveals more and more details about the complex magnetic field topology and the geometry of the accretion flows in highly magnetized accretion-powered pulsars. Aims: We took advantage of the large collecting area and good timing capabilities of the EPIC cameras onboard XMM-Newton to investigate the accretion geometry onto the magnetized neutron star hosted in the high-mass X-ray binary EXO 2030+375 during the rise of a source type I outburst in 2014. Methods: We carried out a timing and spectral analysis of the XMM-Newton observation as a function of the neutron star spin phase. We used a phenomenological spectral continuum model comprising the required fluorescence emission lines. Two neutral absorption components are present: one covering the source fully, one only partially. The same analysis was also carried out on two Suzaku observations of the source performed during outbursts in 2007 and 2012, to search for possible spectral variations at different luminosities. Results: The XMM-Newton data caught the source at an X-ray luminosity of 2 × 1036 erg s-1 and revealed a narrow dip-like feature in its pulse profile that was never reported before. The width of this feature corresponds to about one hundredth of the neutron star spin period. Based on the results of the phase-resolved spectral analysis we suggest that this feature can be ascribed to the self-obscuration of the accretion stream passing in front of the observer line of sight. We inferred from the Suzaku observation carried out in 2007 that the self-obscuration of the accretion stream might produce a significantly wider feature in the neutron star pulsed profile at higher luminosities (≳2 × 1037 erg s-1). Conclusions: This discovery allowed us to derive additional constraints on the physical properties of the accretion flow in this object at relatively small distances from the neutron star surface. The narrow dip-like feature in the

  11. Accretion and plasma outflow from dissipationless discs

    OpenAIRE

    Bogovalov, Sergei; Kelner, Stanislav

    2008-01-01

    We consider an extreme case of disc accretion onto a gravitating centre when the viscosity in the disc is negligible. The angular momentum and the rotational energy of the accreted matter is carried out by a magnetized wind outflowing from the disc. The outflow of matter from the disc occurs due to the Blandford & Payne(1982) centrifugal mechanism. The disc is assumed to be cold. Accretion and outflow are connected by the conservation of the energy, mass and the angular momentum. The basic pr...

  12. Magnetohydrodynamic turbulence in warped accretion discs

    CERN Document Server

    Torkelsson, U; Brandenburg, A; Pringle, J E; Nordlund, A A; Stein, R F; Nordlund, AA.

    2001-01-01

    Warped, precessing accretion discs appear in a range of astrophysical systems, for instance the X-ray binary Her X-1 and in the active nucleus of NGC4258. In a warped accretion disc there are horizontal pressure gradients that drive an epicyclic motion. We have studied the interaction of this epicyclic motion with the magnetohydrodynamic turbulence in numerical simulations. We find that the turbulent stress acting on the epicyclic motion is comparable in size to the stress that drives the accretion, however an important ingredient in the damping of the epicyclic motion is its parametric decay into inertial waves.

  13. Ice accretion modeling for wind turbine rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, D.; Brahimi, T.; Paraschivoiu, I.; Bombardier, J.A. [Ecole Polytechnique de Montreal (Canada)

    1997-12-31

    The increasing application of wind energy in northern climates implies operation of wind turbines under severe atmospheric icing conditions. Such conditions are well known in the Scandinavian countries, Canada and most of Eastern European countries. An extensive study to develop a procedure for the prediction of ice accretion on wind turbines rotor blades appears to be essential for the safe and economic operation of wind turbines in these cold regions. The objective of the present paper is to develop a computer code capable of simulating the shape and amount of ice which may accumulate on horizontal axis wind turbine blades when operating in icing conditions. The resulting code is capable to predict and simulate the formation of ice in rime and glaze conditions, calculate the flow field and particle trajectories and to perform thermodynamic analysis. It also gives the possibility of studying the effect of different parameters that influence ice formation such as temperature, liquid water content, droplet diameter and accretion time. The analysis has been conducted on different typical airfoils as well as on NASA/DOE Mod-0 wind turbine. Results showed that ice accretion on wind turbines may reduce the power output by more than 20%.

  14. Observational evidence for matter propagation in accretion flows

    CERN Document Server

    Revnivtsev, M; Kniazev, A; Burenin, R; Buckley, D A H; Churazov, E

    2010-01-01

    We study simultaneous X-ray and optical observations of three intermediate polars EX Hya, V1223 Sgr and TV Col with the aim to understand the propagation of matter in their accretion flows. We show that in all cases the power spectra of flux variability of binary systems in X-rays and in optical band are similar to each other and the majority of X-ray and optical fluxes are correlated with time lag <1 sec. These findings support the idea that optical emission of accretion disks, in these binary systems,largely originates as reprocessing of X-ray luminosity of their white dwarfs. In the best obtained dataset of EX Hya we see that the optical lightcurve unambiguously contains some component, which leads the X-ray emission by ~7 sec. We interpret this in the framework of the model of propagating fluctuations and thus deduce the time of travel of the matter from the innermost part of the truncated accretion disk to the white dwarf surface. This value agrees very well with the time expected for matter threaded ...

  15. X-ray reverberation around accreting black holes

    CERN Document Server

    Uttley, P; Fabian, A C; Kara, E; Wilkins, D R

    2014-01-01

    Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time-delays between changes in the direct coronal emission and corresponding variations in its reflection from the accretion flow. Reverberation is detectable using light curves made in different X-ray energy bands, since the direct and reflected components have different spectral shapes. Larger, lower frequency, lags are also seen and are identified with propagation of fluctuations through the accretion flow and associated corona. We review the evidence for X-ray reverberation in active galactic nuclei and black hole X-ray binaries, showing how it can be best measured and how it may be modelled. The timescales and energy-dependence of the high frequency reverberation lags show that much of the signal is originating from very close to the black hole in some objects, within a few gravitational radii of the event horizon. We cons...

  16. Active galactic nuclei at z ˜ 1.5: III. Accretion discs and Black Hole Spin

    Science.gov (United States)

    Capellupo, D. M.; Netzer, H.; Lira, P.; Trakhtenbrot, B.; Mejía-Restrepo, J.

    2016-04-01

    This is the third paper in a series describing the spectroscopic properties of a sample of 39 AGN at z ˜ 1.5, selected to cover a large range in black hole mass (MBH) and Eddington ratio (L/LEdd). In this paper, we continue the analysis of the VLT/X-shooter observations of our sample with the addition of 9 new sources. We use an improved Bayesian procedure, which takes into account intrinsic reddening, and improved MBH estimates, to fit thin accretion disc (AD) models to the observed spectra and constrain the spin parameter (a★) of the central black holes. We can fit 37 out of 39 AGN with the thin AD model, and for those with satisfactory fits, we obtain constraints on the spin parameter of the BHs, with the constraints becoming generally less well defined with decreasing BH mass. Our spin parameter estimates range from ˜-0.6 to maximum spin for our sample, and our results are consistent with the "spin-up" scenario of BH spin evolution. We also discuss how the results of our analysis vary with the inclusion of non-simultaneous GALEX photometry in our thin AD fitting. Simultaneous spectra covering the rest-frame optical through far-UV are necessary to definitively test the thin AD theory and obtain the best constraints on the spin parameter.

  17. Active galactic nuclei at z ~ 1.5: III. Accretion discs and black hole spin

    CERN Document Server

    Capellupo, Daniel M; Lira, Paulina; Trakhtenbrot, Benny; Mejía-Restrepo, Julián

    2016-01-01

    This is the third paper in a series describing the spectroscopic properties of a sample of 39 AGN at $z \\sim 1.5$, selected to cover a large range in black hole mass ($M_{BH}$) and Eddington ratio ($L/L_{Edd}$). In this paper, we continue the analysis of the VLT/X-shooter observations of our sample with the addition of 9 new sources. We use an improved Bayesian procedure, which takes into account intrinsic reddening, and improved $M_{BH}$ estimates, to fit thin accretion disc (AD) models to the observed spectra and constrain the spin parameter ($a_*$) of the central black holes. We can fit 37 out of 39 AGN with the thin AD model, and for those with satisfactory fits, we obtain constraints on the spin parameter of the BHs, with the constraints becoming generally less well defined with decreasing BH mass. Our spin parameter estimates range from $\\sim$$-$0.6 to maximum spin for our sample, and our results are consistent with the "spin-up" scenario of BH spin evolution. We also discuss how the results of our anal...

  18. Active galactic nuclei at z ˜ 1.5 - III. Accretion discs and black hole spin

    Science.gov (United States)

    Capellupo, D. M.; Netzer, H.; Lira, P.; Trakhtenbrot, B.; Mejía-Restrepo, J.

    2016-07-01

    This is the third paper in a series describing the spectroscopic properties of a sample of 39 AGN at z ˜ 1.5, selected to cover a large range in black hole mass (MBH) and Eddington ratio (L/LEdd). In this paper, we continue the analysis of the VLT/X-shooter observations of our sample with the addition of nine new sources. We use an improved Bayesian procedure, which takes into account intrinsic reddening, and improved MBH estimates, to fit thin accretion disc (AD) models to the observed spectra and constrain the spin parameter (a*) of the central black holes. We can fit 37 out of 39 AGN with the thin AD model, and for those with satisfactory fits, we obtain constraints on the spin parameter of the BHs, with the constraints becoming generally less well defined with decreasing BH mass. Our spin parameter estimates range from ˜-0.6 to maximum spin for our sample, and our results are consistent with the `spin-up' scenario of BH spin evolution. We also discuss how the results of our analysis vary with the inclusion of non-simultaneous GALEX photometry in our thin AD fitting. Simultaneous spectra covering the rest-frame optical through far-UV are necessary to definitively test the thin AD theory and obtain the best constraints on the spin parameter.

  19. Diagnosing the Black Hole Accretion Physics of Sgr A*

    Science.gov (United States)

    Fazio, Giovanni; Ashby, Matthew; Baganoff, Frederick; Becklin, Eric; Carey, Sean; Gammie, Charles; Ghez, Andrea; Glaccum, William; Gurwell, Mark; Haggard, Daryl; Hora, Joseph; Ingalls, James; Marrone, Daniel; Meyer, Leo; Morris, Mark; Smith, Howard; Willner, Steven; Witzel, Gunther

    2016-08-01

    The Galactic center offers the closest opportunity for studying accretion onto supermassive black holes. The fluctuating source, Sgr A*, is detected across the electromagnetic spectrum and may originate in the accretion flow or jet. Recent general relativistic magneto-hydrodynamic (GRMHD) models indicate that variability can be produced by a tilted inner disk, gravitational lensing of bright spots in the disk by the hole, or particle acceleration in reconnection events. These models produce different flare characteristics, and in particular better characterization of flares may enable us to distinguish between strong and weakly magnetized disks. Disentangling the power source and emission mechanisms of the flares is a central challenge to our understanding of the Sgr A* accretion flow. Following our successful observations of the variability of Sgr A* with IRAC in 2013 and 2014, we propose simultaneous IRAC (4.5 micron) and Chandra (2-10 keV) observations to (1) probe the accretion physics of Sgr A* on event-horizon scales and (2) detect any effect of the object G2 on Sgr A*. Specifically, we propose six additional epochs of observation, each of 24 uninterrupted hours; four in 2017 July and two in 2018 July. In this proposal we request two 24-hour (86.4 ks) Chandra periods, and are requesting another four through the Chandra TAC to have simultaneous X-ray observations in each of the six Spitzer epochs. Independent of this proposal we will also request NuSTAR (3-79 keV), SMA/ALMA/APEX (0.8 mm), and Keck/Magellan NIR (2.2 micron) observations during the IRAC/Chandra epochs. Only such long-duration, continuous, multi-wavelength observations can achieve a comprehensive view of the dominant emission process(es) and quantify the physical properties near the event horizon. Theoretical models are increasing in physical sophistication, and our study will provide essential constraints for the next generation of models.

  20. A New Paradigm for Gamma Ray Bursts: Long Term Accretion Rate Modulation by an External Accretion Disk

    Science.gov (United States)

    Cannizzo, John; Gehrels, Neil

    2009-01-01

    We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.

  1. Time lag in transient cosmic accreting sources

    CERN Document Server

    Bisnovatyi-Kogan, G S

    2016-01-01

    We develop models for time lag between maxima of the source brightness in different wavelengths during a transient flash of luminosity connected with a short period of increase of the mass flux onto the central compact object. We derive a simple formula for finding the time delay among events in different wavelengths, valid in general for all disk accreting cosmic sources, and discuss quantitatively a model for time lag formation in AGNs. In close binaries with accretion disks the time lag is connected with effects of viscosity defining a radial motion of matter in the accretion disk. In AGN flashes, the falling matter has a low angular momentum, and the time lag is defined by the free fall time to the gravitating center. We show the validity of these models by means of several examples of galactic and extragalactic accreting sources.

  2. Radiatively inefficient MHD accretion-ejection structures

    CERN Document Server

    Casse, F; Casse, Fabien; Keppens, Rony

    2004-01-01

    We present magnetohydrodynamic simulations of a resistive accretion disk continuously launching transmagnetosonic, collimated jets. We time-evolve the full set of magnetohydrodynamic equations, but neglect radiative losses in the energetics (radiatively inefficient). Our calculations demonstrate that a jet is self-consistently produced by the interaction of an accretion disk with an open, initially bent large-scale magnetic field. A constant fraction of heated disk material is launched in the inner equipartition disk regions, leading to the formation of a hot corona and a bright collimated, super-fastmagnetosonic jet. We illustrate the complete dynamics of the ``hot'' near steady-state outflow (where thermal pressure $\\simeq$ magnetic pressure) by showing force balance, energy budget and current circuits. The evolution to this near stationary state is analyzed in terms of the temporal variation of energy fluxes controlling the energetics of the accretion disk. We find that unlike advection-dominated accretion...

  3. Launching of Poynting Jets from Accretion Disks

    CERN Document Server

    Lovelace, R V E

    2009-01-01

    The jets observed to emanate from many compact accreting objects may arise from the twisting of the magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, hydromagnetic outflows, which have a significant mass flux and have energy and angular momentum carried by both matter and electromagnetic field and, Poynting outflows, where the mass flux is negligible and energy and angular momentum are carried predominantly by the electromagnetic field. We describe recent theoretical work on the formation of relativistic Poynting jets from magnetized accretion disks and new relativistic, fully-electromagnetic, particle-in-cell simulations of the formation of jets from accretion disks.

  4. Gravitational Radiation from Accreting Millisecond Pulsars

    CERN Document Server

    Vigelius, Matthias; Melatos, Andrew

    2008-01-01

    It is widely assumed that the observed reduction of the magnetic field of millisecond pulsars can be connected to the accretion phase during which the pulsar is spun up by mass accretion from a companion. A wide variety of reduction mechanisms have been proposed, including the burial of the field by a magnetic mountain, formed when the accreted matter is confined to the poles by the tension of the stellar magnetic field. A magnetic mountain effectively screens the magnetic dipole moment. On the other hand, observational data suggests that accreting neutron stars are sources of gravitational waves, and magnetic mountains are a natural source of a time-dependent quadrupole moment. We show that the emission is sufficiently strong to be detectable by current and next generation long-baseline interferometers. Preliminary results from fully three-dimensional magnetohydrodynamic (MHD) simulations are presented. We find that the initial axisymmetric state relaxes into a nearly axisymmetric configuration via toroidal ...

  5. Quasar Accretion Disks Are Strongly Inhomogeneous

    CERN Document Server

    Dexter, Jason

    2010-01-01

    Active galactic nuclei (AGN) have been observed to vary stochastically with 10-20 rms amplitudes over a range of optical wavelengths where the emission arises in an accretion disk. Since the accretion disk is unlikely to vary coherently, local fluctuations may be significantly larger than the global rms variability. We investigate toy models of quasar accretion disks consisting of a number of regions, n, whose temperatures vary independently with an amplitude of \\sigma_T in dex. Models with large fluctuations (\\sigma_T=0.35-0.50) in 100-1000 independently fluctuating zones for every factor of two in radius can explain the observed discrepancy between thin accretion disk sizes inferred from microlensing events and optical luminosity while matching the observed optical variability. For the same range of \\sigma_T, inhomogeneous disk spectra provide excellent fits to the HST quasar composite without invoking global Compton scattering atmospheres to explain the high levels of observed UV emission. Simulated microl...

  6. Accretion-induced variability links young stellar objects, white dwarfs, and black holes.

    Science.gov (United States)

    Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C

    2015-10-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies. PMID:26601307

  7. Application of a physical continuum model to recent X-ray observations of accreting pulsars

    Science.gov (United States)

    Marcu-Cheatham, Diana Monica; Pottschmidt, Katja; Wolff, Michael Thomas; Becker, Peter A.; Wood, Kent S.; Wilms, Joern; Britton Hemphill, Paul; Gottlieb, Amy; Fuerst, Felix; Schwarm, Fritz-Walter; Ballhausen, Ralf

    2016-04-01

    We present a uniform spectral analysis in the 0.5-50 keV energy range of a sample of accreting pulsars by applying an empirical broad-band continuum cut-off power-law model. We also apply the newly implemented physical continuum model developed by Becker and Wolff (2007, ApJ 654, 435) to a number of high-luminosity sources. The X-ray spectral formation process in this model consists of the Comptonization of bremsstrahlung, cyclotron, and black body photons emitted by the hot, magnetically channeled, accreting plasma near the neutron star surface. This model describes the spectral formation in high-luminosity accreting pulsars, where the dominant deceleration mechanism is via a radiation-dominated radiative shock. The resulting spectra depend on five physical parameters: the mass accretion rate, the radius of the accretion column, the electron temperature and electron scattering cross-sections inside the column, and the magnetic field strength. The empirical model is fitted to Suzaku data of a sample of high-mass X-ray binaries covering a broad luminosity range (0.3-5 x 10 37 erg/s). The physical model is fitted to Suzaku data from luminous sources: LMC X-4, Cen X-3, GX 304-1. We compare the results of the two types of modeling and summarize how they can provide new insight into the process of accretion onto magnetized neutron stars.

  8. Accretion-induced variability links young stellar objects, white dwarfs, and black holes.

    Science.gov (United States)

    Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C

    2015-10-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.

  9. Some Interesting Behaviour of Accreting Particles in the Gap Region of Black Hole Accretion Discs

    Institute of Scientific and Technical Information of China (English)

    WANG Ding-Xiong; XIAO Kan; LEI Wei-Hua

    2001-01-01

    Some interesting behaviour of accreting particles in the gap region between the horizon of the Kerr black hole and the inner edge of the surrounding disc is investigated. The following results are obtained. (i) Spacetime coincidence of the maximum of angular velocity of accreting particles and that of the black hole horizon is extended to the more general disc-accretion. (ii) The possibility is discussed of negative energy of accreting particles in prograde orbit inside the ergosphere of the Kerr black hole, which is surrounded by strong enough magnetic field.

  10. A Note on Bimodal Accretion Disks

    OpenAIRE

    Dullemond, C.P.; Turolla, R.

    1998-01-01

    The existence of bimodal disks is investigated. Following a simple argument based on energetic considerations we show that stationary, bimodal accretion disk models in which a Shakura--Sunyaev disk (SSD) at large radii matches an advection dominated accretion flow (ADAF) at smaller radii are never possible using the standard slim disk approach, unless some extra energy flux is present. The same argument, however, predicts the possibility of a transition from an outer Shapiro--Lightman--Eardle...

  11. The observational appearance of slim accretion disks

    CERN Document Server

    Szuszkiewicz, E; Abramowicz, M A; Szuszkiewicz, Ewa; Malkan, Matthew A; Abramowicz, Marek Artur

    1995-01-01

    We reexamine the hypothesis that the optical/UV/soft X-ray continuum of Active Galactic Nuclei is thermal emission from an accretion disk. Previous studies have shown that fitting the spectra with the standard, optically thick and geometrically thin accretion disk models often led to luminosities which contradict the basic assumptions adopted in the standard model. There is no known reason why the accretion rates in AGN should not be larger than the thin disk limit. In fact, more general, slim accretion disk models are self-consistent even for moderately super-Eddington luminosities. We calculate here spectra from a set of thin and slim, optically thick accretion disks. We discuss the differences between the thin and slim disk models, stressing the implications of these differences for the interpretation of the observed properties of AGN. We found that the spectra can be fitted not only by models with a high mass and a low accretion rate (as in the case of thin disk fitting) but also by models with a low mass...

  12. Bondi accretion in early-type galaxies

    Science.gov (United States)

    Korol, Valeriya; Ciotti, Luca; Pellegrini, Silvia

    2016-08-01

    Accretion on to central massive black holes in galaxies is often modelled with the Bondi solution. In this paper, we study a generalization of the classical Bondi accretion theory, considering the additional effects of the gravitational potential of the host galaxy, and of electron scattering in the optically thin limit. We provide a general analysis of the bias in the estimates of the Bondi radius and mass accretion rate, when adopting as fiducial values for the density and temperature at infinity the values of these quantities measured at finite distance from the central black hole. We also give general formulae to compute the correction terms of the critical accretion parameter in relevant asymptotic regimes. A full analytical discussion is presented in the case of a Hernquist galaxy, when the problem reduces to the discussion of a cubic equation, therefore, allowing for more than one critical point in the accretion structure. The results are useful for observational works (especially in the case of systems with a low Eddington ratio), as well as for numerical simulations, where accretion rates are usually defined in terms of the gas properties near the black hole.

  13. A Direct Measurement of the Heat Release in the Outer Crust of the Transiently Accreting Neutron Star XTE J1709-267

    NARCIS (Netherlands)

    N. Degenaar; R. Wijnands; J.M. Miller

    2013-01-01

    The heating and cooling of transiently accreting neutron stars provides a powerful probe of the structure and composition of their crust. Observations of superbursts and cooling of accretion-heated neutron stars require more heat release than is accounted for in current models. Obtaining firm constr

  14. The Hard X-ray Spectral Slope as an Accretion-Rate Indicator in Radio-Quiet Active Galactic Nuclei

    OpenAIRE

    Shemmer, Ohad; Brandt, W. N.; Netzer, Hagai; Maiolino, Roberto; Kaspi, Shai

    2006-01-01

    We present new XMM-Newton observations of two luminous and high accretion-rate radio-quiet active galactic nuclei (AGNs) at z~2. Together with archival X-ray and rest-frame optical spectra of three sources with similar properties as well as 25 moderate-luminosity radio-quiet AGNs at z~2 keV) X-ray power-law photon index on the broad H_beta emission-line width and on the accretion rate across ~3 orders of magnitude in AGN luminosity. Provided the accretion rates of the five luminous sources ca...

  15. Magnetospheric accretion and spin-down of the prototypical classical T Tauri star AATau

    CERN Document Server

    Donati, JF; Bouvier, J; Gregory, SG; Grankin, KN; Jardine, MM; Hussain, GAJ; Menard, F; Dougados, C; Unruh, Y; Mohanty, S; Auriere, M; Morin, J; Fares, R

    2010-01-01

    From observations collected with the ESPaDOnS & NARVAL spectropolarimeters at CFHT and TBL, we report the detection of Zeeman signatures on the prototypical classical TTauri star AATau, both in photospheric lines and accretion-powered emission lines. Using time series of unpolarized and circularly polarized spectra, we reconstruct at two epochs maps of the magnetic field, surface brightness and accretion-powered emission of AATau. We find that AATau hosts a 2-3kG magnetic dipole tilted at ~20deg to the rotation axis, and of presumably dynamo origin. We also show that the magnetic poles of AATau host large cool spots at photospheric level and accretion regions at chromospheric level. The logarithmic accretion rate at the surface of AATau at the time of our observations is strongly variable, ranging from -9.6 to -8.5 and equal to -9.2 in average (in Msun/yr); this is an order of magnitude smaller than the disc accretion rate at which the magnetic truncation radius (below which the disc is disrupted by the s...

  16. Three Dimensional MHD Simulation of Circumbinary Accretion Disks -2. Net Accretion Rate

    CERN Document Server

    Shi, Ji-Ming

    2015-01-01

    When an accretion disk surrounds a binary rotating in the same sense, the binary exerts strong torques on the gas. Analytic work in the 1D approximation indicated that these torques sharply diminish or even eliminate accretion from the disk onto the binary. However, recent 2D and 3D simulational work has shown at most modest diminution. We present new MHD simulations demonstrating that for binaries with mass ratios of 1 and 0.1 there is essentially no difference between the accretion rate at large radius in the disk and the accretion rate onto the binary. To resolve the discrepancy with earlier analytic estimates, we identify the small subset of gas trajectories traveling from the inner edge of the disk to the binary and show how the full accretion rate is concentrated onto them.

  17. Chaotic cold accretion on to black holes

    Science.gov (United States)

    Gaspari, M.; Ruszkowski, M.; Oh, S. Peng

    2013-07-01

    Bondi theory is often assumed to adequately describe the mode of accretion in astrophysical environments. However, the Bondi flow must be adiabatic, spherically symmetric, steady, unperturbed, with constant boundary conditions. Using 3D adaptive mesh refinement simulations, linking the 50 kpc to the sub-parsec (sub-pc) scales over the course of 40 Myr, we systematically relax the classic assumptions in a typical galaxy hosting a supermassive black hole. In the more realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the non-linear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when tcool/tff ≲ 10. The clouds decouple from the hot gas, `raining' on to the centre. Subsonic turbulence of just over 100 km s-1 (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (tturb/tcool ≲ 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. In this study, we do not inject a fixed initial angular momentum, though vorticity is later seeded by turbulence. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for the frequent fluctuations. Since our modelling is fairly general (turbulence/heating due to AGN feedback, galaxy motions, mergers, stellar evolution), chaotic cold accretion may be common in

  18. Optically-thick accretion discs with advection

    Institute of Scientific and Technical Information of China (English)

    陈林红; 吴枚; 尚仁成

    2002-01-01

    The structures of optically-thick accretion discs with radial advection have been investigated by the iteration and integration algorithms. The advective cooling term changes mostly the inner part of disc solution, and even results in an optically-thick advection-dominated accretion flow (ADAF). Three distinct branches-the outer Shakura-Sunyaev disc (SSD), the inner ADAF and the middle transition layer-are found for a super-Eddington disc. The SSD-ADAF transition radius can be estimated as 18(M/ME)RG where RG is the Schwarzschild radius, M is the mass accretion rate and ME is the Eddington accretion rate. SSD solutions calculated with the iteration and integration methods are identical, while ADAF solutions obtained by these two methods differ greatly. Detailed algorithms and their differences have been analysed. The iteration algorithm is not self-consistent, since it implies that the dimensionless advection factor ξ is invariant, but in the inner ADAF region the variation of ξ is not negligible. The integration algorithm is always effective for the whole region of an optically-thick disc if the accretion rate is no smaller than 10-4ME. For optically-thin discs, the validity of these two algorithms is different. We suggest that the integration method be employed to calculate the global solution of a disc model without assuming ξ to be a constant. We also discuss its application to the emergent continuum spectrum in order to explain observational facts.

  19. The accretion of migrating giant planets

    CERN Document Server

    Dürmann, Christoph

    2016-01-01

    Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect each other. We modeled a 2-dimensional disk with a steady accretion flow onto the central star and embed a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant $\\alpha$. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas which comes pred...

  20. Nucleosynthesis in Gamma Ray Burst Accretion Disks

    CERN Document Server

    Pruet, J; Hoffman, R D; Pruet, Jason

    2003-01-01

    We follow the nuclear reactions that occur in the accretion disks of stellar mass black holes that are accreting at a very high rate, 0.01 to 1 solar masses per second, as is realized in many current models for gamma-ray bursts (GRBs). The degree of neutronization in the disk is a sensitive function of the accretion rate, black hole mass, Kerr parameter, and disk viscosity. For high accretion rates and low viscosity, material arriving at the black hole will consist predominantly of neutrons. This degree of neutronization will have important implications for the dynamics of the GRB producing jet and perhaps for the synthesis of the r-process. For lower accretion rates and high viscosity, as might be appropriate for the outer disk in the collapsar model, neutron-proton equality persists allowing the possible synthesis of 56Ni in the disk wind. 56Ni must be present to make any optically bright Type Ib supernova, and in particular those associated with GRBs.

  1. Giant planet formation via pebble accretion

    CERN Document Server

    Guilera, O M

    2015-01-01

    In the standard model of core accretion, the formation of giant planets occurs by two main processes: first, a massive core is formed by the accretion of solid material; then, when this core exceeds a critical value (typically greater than 10 Earth masses) a gaseous runaway growth is triggered and the planet accretes big quantities of gas in a short period of time until the planet achieves its final mass. Thus, the formation of a massive core has to occur when the nebular gas is still available in the disk. This phenomenon imposes a strong time-scale constraint in giant planet formation due to the fact that the lifetimes of the observed protoplanetary disks are in general lower than 10 Myr. The formation of massive cores before 10 Myr by accretion of big planetesimals (with radii > 10 km) in the oligarchic growth regime is only possible in massive disks. However, planetesimal accretion rates significantly increase for small bodies, especially for pebbles, particles of sizes between mm and cm, which are strong...

  2. The Final Fates of Accreting Supermassive Stars

    CERN Document Server

    Umeda, Hideyuki; Omukai, Kazuyuki; Yoshida, Naoki

    2016-01-01

    The formation of supermassive stars (SMSs) via rapid mass accretion and their direct collapse into black holes (BHs) is a promising pathway for sowing seeds of supermassive BHs in the early universe. We calculate the evolution of rapidly accreting SMSs by solving the stellar structure equations including nuclear burning as well as general relativistic (GR) effects up to the onset of the collapse. We find that such SMSs have less concentrated structure than fully-convective counterpart, which is often postulated for non-accreting ones. This effect stabilizes the stars against GR instability even above the classical upper mass limit $\\gtrsim 10^5~M_\\odot$ derived for the fully-convective stars. The accreting SMS begins to collapse at the higher mass with the higher accretion rate. The collapse occurs when the nuclear fuel is exhausted only for cases with $\\dot M \\lesssim 0.1~M_\\odot~{\\rm yr}^{-1}$. With $\\dot{M} \\simeq 0.3 - 1~M_\\odot~{\\rm yr}^{-1}$, the star becomes GR-unstable during the helium-burning stage ...

  3. The annual mean sketches and climatological variability of the volume and heat transports through the inter-basin passages:A study based on 1 400-year spin up of MOM4p1

    Institute of Scientific and Technical Information of China (English)

    ZHU Yaohua; WEI Zexun; WANG Yonggang; GUAN Yuping; WANG Xinyi

    2014-01-01

    The annual mean volume and heat transport sketches through the inter-basin passages and transoceanic sections have been constructed based on 1 400-year spin up results of the MOM4p1. The spin up starts from a state of rest, driven by the monthly climatological mean force from the NOAA World Ocean Atlas (1994). The volume transport sketch reveals the northward transport throughout the Pacific and southward trans-port at all latitudes in the Atlantic. The annual mean strength of the Pacific-Arctic-Atlantic through flow is 0.63×106 m3/s in the Bering Strait. The majority of the northward volume transport in the southern Pacific turns into the Indonesian through flow (ITF) and joins the Indian Ocean equatorial current, which subse-quently flows out southward from the Mozambique Channel, with its majority superimposed on the Ant-arctic Circumpolar Current (ACC). This anti-cyclonic circulation around Australia has a strength of 11×106 m3/s according to the model-produced result. The atmospheric fresh water transport, known as P-E+R (pre-cipitation minus evaporation plus runoff ), constructs a complement to the horizontal volume transport of the ocean. The annual mean heat transport sketch exhibits a northward heat transport in the Atlantic and poleward heat transport in the global ocean. The surface heat flux acts as a complement to the horizontal heat transport of the ocean. The climatological volume transports describe the most important features through the inter-basin passages and in the associated basins, including:the positive P-E+R in the Arctic substantially strengthening the East Greenland Current in summer;semiannual variability of the volume transport in the Drake Passage and the southern Atlantic-Indian Ocean passage;and annual transport vari-ability of the ITF intensifying in the boreal summer. The climatological heat transports show heat storage in July and heat deficit in January in the Arctic;heat storage in January and heat deficit in July in the

  4. Accretion disks in Algols: progenitors and evolution

    CERN Document Server

    Van Rensbergen, W

    2016-01-01

    There are only a few Algols with measured accretion disk parameters. These measurements provide additional constraints for tracing the origin of individual systems, narrowing down the initial parameter space. We investigate the origin and evolution of 6 Algol systems with accretion disks to find the initial parameters and evolutionary constraints for them. With a modified binary evolution code, series of close binary evolution are calculated to obtain the best match for observed individual systems. Initial parameters for 6 Algol systems with accretion disks were determined matching both the present system parameters and the observed disk characteristics. When RLOF starts during core hydrogen burning of the donor, the disk lifetime was found to be short. The disk luminosity is comparable to the luminosity of the gainer during a large fraction of the disk lifetime.

  5. Strongly magnetized accretion discs require poloidal flux

    CERN Document Server

    Salvesen, Greg; Simon, Jacob B; Begelman, Mitchell C

    2016-01-01

    Motivated by indirect observational evidence for strongly magnetized accretion discs around black holes, and the novel theoretical properties of such solutions, we investigate how a strong magnetization state can develop and persist. To this end, we perform local simulations of accretion discs with an initially purely toroidal magnetic field of equipartition strength. We demonstrate that discs with zero net vertical magnetic flux and realistic boundary conditions cannot sustain a strong toroidal field. However, a magnetic pressure-dominated disc can form from an initial configuration with a sufficient amount of net vertical flux and realistic boundary conditions. Our results suggest that poloidal flux is a necessary prerequisite for the sustainability of strongly magnetized accretion discs.

  6. Earth, Moon, Sun, and CV Accretion Disks

    CERN Document Server

    Montgomery, M M

    2009-01-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting Cataclysmic Variable (CV) Dwarf Novae systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths' equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar and black hole systems. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our a...

  7. Spherical Accretion in Nearby Weakly Active Galaxies

    CERN Document Server

    Moscibrodzka, M A

    2005-01-01

    We consider the sample of weakly active galaxies situated in 'Local Universe' collected in the paper of Pellegrini (2005) with inferred accretion efficiencies from $10^{-2}$ to $10^{-7}$. We apply a model of spherically symmetrical Bondi accretion for given parameters ($M_{BH}$,$T_{\\infty}$,$\\rho_{\\infty}$,) taken from observation. We calculate spectra emitted by the gas accreting onto its central objects using Monte Carlo method including synchrotron and bremsstrahlung photons as seed photons. We compare our results with observed nuclear X-ray luminosities $L_{X,nuc}$ (0.3-10 keV) of the sample. Model is also tested for different external medium parameters ($\\rho_{\\infty}$ and $T_{\\infty}$) and different free parameters of the model. Our model is able to explain most of the observed nuclear luminosities $L_X$ under an assumption that half of the compresion energy is transfered directly to the electrons.

  8. Global Models for Embedded, Accreting Protostellar Disks

    CERN Document Server

    Kratter, Kaitlin M; Krumholz, Mark R

    2007-01-01

    Most analytic work to date on protostellar disks has focused on disks in isolation from their environments. However, observations are now beginning to probe the earliest, most embedded phases of star formation, during which disks are rapidly accreting from their parent cores and cannot be modeled in isolation. We present a simple, one-zone model of protostellar accretion disks with high mass infall rates. Our model combines a self-consistent calculation of disk temperatures with an approximate treatment of angular momentum transport via several mechanisms. We use this model to survey the properties of protostellar disks across a wide range of stellar masses and evolutionary times, and make predictions for disks' masses, sizes, spiral structure, and fragmentation that will be directly testable by future large-scale surveys of deeply embedded disks. We define a dimensionless accretion-rotation parameter which, in conjunction with the disk's temperature, controls the disk evolution. We track the dominant mode of...

  9. Disks, accretion and outflows of brown dwarfs

    CERN Document Server

    Joergens, V; Liu, Y; Pascucci, I; Whelan, E; Alcala, J; Biazzo, K; Costigan, G; Gully-Santiago, M; Henning, Th; Natta, A; Rigliaco, E; Rodriguez-Ledesma, V; Sicilia-Aguilar, A; Tottle, J; Wolf, S

    2012-01-01

    Characterization of the properties of young brown dwarfs are important to constraining the formation of objects at the extreme low-mass end of the IMF. While young brown dwarfs share many properties with solar-mass T Tauri stars, differences may be used as tests of how the physics of accretion/outflow and disk chemistry/dissipation depend on the mass of the central object. This article summarizes the presentations and discussions during the splinter session on 'Disks, accretion and outflows of brown dwarfs' held at the CoolStars17 conference in Barcelona in June 2012. Recent results in the field of brown dwarf disks and outflows include the determination of brown dwarf disk masses and geometries based on Herschel far-IR photometry (70-160 um), accretion properties based on X-Shooter spectra, and new outflow detections in the very low-mass regime.

  10. Strongly magnetized accretion discs require poloidal flux

    Science.gov (United States)

    Salvesen, Greg; Armitage, Philip J.; Simon, Jacob B.; Begelman, Mitchell C.

    2016-08-01

    Motivated by indirect observational evidence for strongly magnetized accretion discs around black holes, and the novel theoretical properties of such solutions, we investigate how a strong magnetization state can develop and persist. To this end, we perform local simulations of accretion discs with an initially purely toroidal magnetic field of equipartition strength. We demonstrate that discs with zero net vertical magnetic flux and realistic boundary conditions cannot sustain a strong toroidal field. However, a magnetic pressure-dominated disc can form from an initial configuration with a sufficient amount of net vertical flux and realistic boundary conditions. Our results suggest that poloidal flux is a necessary prerequisite for the sustainability of strongly magnetized accretion discs.

  11. Minidisks in Binary Black Hole Accretion

    CERN Document Server

    Ryan, Geoffrey

    2016-01-01

    Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole ("minidisks"), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using two-dimensional hydrodynamical simulations performed with a new general relativistic version of the moving mesh code Disco. We introduce a co-moving energy variable which enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the ISCO providing a Reynolds stress which causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov-Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling....

  12. The Cosmic Battery in Astrophysical Accretion Disks

    CERN Document Server

    Contopoulos, Ioannis; Katsanikas, Matthaios

    2015-01-01

    The aberrated radiation pressure at the inner edge of the accretion disk around an astrophysical black hole imparts a relative azimuthal velocity on the electrons with respect to the ions which gives rise to a ring electric current that generates large scale poloidal magnetic field loops. This is the Cosmic Battery established by Contopoulos and Kazanas in 1998. In the present work we perform realistic numerical simulations of this important astrophysical mechanism in advection-dominated accretion flows-ADAF. We confirm the original prediction that the inner parts of the loops are continuously advected toward the central black hole and contribute to the growth of the large scale magnetic field, whereas the outer parts of the loops are continuously diffusing outward through the turbulent accretion flow. This process of inward advection of the axial field and outward diffusion of the return field proceeds all the way to equipartition, thus generating astrophysically significant magnetic fields on astrophysicall...

  13. Accretion disks in luminous young stellar objects

    CERN Document Server

    Beltran, M T

    2015-01-01

    An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and therefore predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.

  14. Generalized Similarity for Accretion/Decretion Disks

    Science.gov (United States)

    Rafikov, Roman R.

    2016-10-01

    Decretion (or external) disks are gas disks freely expanding to large radii due to their internal stresses. They are expected to naturally arise in tidal disruption events, around Be stars, in mass-losing post-main-sequence binaries, as a result of supernova fallback, etc. Their evolution is theoretically understood in two regimes: when the central object does not exert torque on the disk (a standard assumption for conventional accretion disks) or when no mass inflow (or outflow) occurs at the disk center. However, many astrophysical objects—circumbinary disks, Be stars, neutron stars accreting in a propeller regime, etc.—feature non-zero torque simultaneously with the non-zero accretion (or ejection of mass) at the disk center. We provide a general description for the evolution of such disks (both linear and nonlinear) in the self-similar regime, to which the disk should asymptotically converge with time. We identify a similarity parameter λ, which is uniquely related to the degree, to which the central mass accretion is suppressed by the non-zero central torque. The known decretion disk solutions correspond to the two discrete values of λ, while our new solutions cover a continuum of its physically allowed values, corresponding to either accretion or mass ejection by the central object. A direct relationship between λ and central \\dot{M} and torque is also established. We describe the time evolution of the various disk characteristics for different λ, and show that the observable properties (spectrum and luminosity evolution) of the decretion disks, in general, are different from the standard accretion disks with no central torque.

  15. Maximal possible accretion rates for slim disks

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    It was proved in the previous work that there must be a maximal possible accretion rate Mmax for a slim disk. Here we discuss how the value of Mmax depends on the two fundamental parameters of the disk,namely the mass of the central black hole M and the viscosity parameter α. It is shown that Mmax increases with decreasing α,but is almost independent of M if Mmax is measured by the Eddington accretion rate MEdd ,which is in turn proportional to M.

  16. Massive Star Formation: Accreting from Companion

    Indian Academy of Sciences (India)

    X. Chen; J. S. Zhang

    2014-09-01

    We report the possible accretion from companion in the massive star forming region (G350.69–0.49). This region seems to be a binary system composed of a diffuse object (possible nebulae or UC HII region) and a Massive Young Stellar Object (MYSO) seen in Spitzer IRAC image. The diffuse object and MYSO are connected by the shock-excited 4.5 m emission, suggesting that the massive star may form through accreting material from the companion in this system.

  17. Power

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård; Fogsgaard, Morten

    2016-01-01

    In this chapter, we will explore the dynamics of power in processes of creativity, and show its paradoxical nature as both a bridge and a barrier to creativity in organisations. Recent social psychological experimental research (Slighte, de Dreu & Nijstad, 2011) on the relation between power...... and creativity suggests that when managers give people the opportunity to gain power and explicate that there is reason to be more creative, people will show a boost in creative behaviour. Moreover, this process works best in unstable power hierarchies, which implies that power is treated as a negotiable...... and floating source for empowering people in the organisation. We will explore and discuss here the potentials, challenges and pitfalls of power in relation to creativity in the life of organisations today. The aim is to demonstrate that power struggles may be utilised as constructive sources of creativity...

  18. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.

    Science.gov (United States)

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S

    2015-03-26

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows). PMID:25810204

  19. Alignment of magnetized accretion disks and relativistic jets with spinning black holes.

    Science.gov (United States)

    McKinney, Jonathan C; Tchekhovskoy, Alexander; Blandford, Roger D

    2013-01-01

    Accreting black holes (BHs) produce intense radiation and powerful relativistic jets, which are affected by the BH's spin magnitude and direction. Although thin disks might align with the BH spin axis via the Bardeen-Petterson effect, this does not apply to jet systems with thick disks. We used fully three-dimensional general relativistic magnetohydrodynamical simulations to study accreting BHs with various spin vectors and disk thicknesses and with magnetic flux reaching saturation. Our simulations reveal a "magneto-spin alignment" mechanism that causes magnetized disks and jets to align with the BH spin near BHs and to reorient with the outer disk farther away. This mechanism has implications for the evolution of BH mass and spin, BH feedback on host galaxies, and resolved BH images for the accreting BHs in SgrA* and M87.

  20. MHD simulations of accretion onto a dipolar magnetosphere. II. Magnetospheric ejections and stellar spin-down

    CERN Document Server

    Zanni, Claudio

    2012-01-01

    This paper examines the outflows associated with the interaction of a stellar magnetosphere with an accretion disk. In particular, we investigate the magnetospheric ejections (MEs) due to the expansion and reconnection of the field lines connecting the star with the disk. Our aim is to study the dynamical properties of the outflows and evaluate their impact on the angular momentum evolution of young protostars. Our models are based on axisymmetric time-dependent magneto-hydrodynamic simulations of the interaction of the dipolar magnetosphere of a rotating protostar with a viscous and resistive disk, using alpha prescriptions for the transport coefficients. Our simulations are designed in order to model: the accretion process and the formation of accretion funnels; the periodic inflation/reconnection of the magnetosphere and the associated MEs; the stellar wind. Similarly to a magnetic slingshot, MEs can be powered by the rotation of both the disk and the star so that they can efficiently remove angular moment...

  1. Jittering-jets explosion triggered by the standing accretion shock instability

    CERN Document Server

    Papish, Oded; Soker, Noam

    2015-01-01

    We show that the standing accretion shock instability (SASI) that has been used to ease the shock revival in core collapse supernovae (CCSNe) neutrino-driven explosion models, might play a much more decisive role in supplying the stochastic angular momentum required to trigger an explosion with jittering jets. To play a minor role in neutrino-based explosion models, the kinetic energy of the gas inside the stalled shock associated with the transverse (non-radial) motion should be about more than ten percent of the energy of the accreted gas. We find that this implies a stochastic angular momentum that can reach about five percent of the Keplerian specific angular momentum around the newly born neutron star. Such an accretion flow leaves an open conical region along the poles with an average opening angle of about 5 degrees. The outflow from the open polar region powers an explosion according to the jittering-jets model.

  2. A truncated accretion disk in the galactic black hole candidate source H1743-322

    Institute of Scientific and Technical Information of China (English)

    Kandulapati Sriram; Vivek Kumar Agrawal; Arikkala Raghurama Rao

    2009-01-01

    To investigate the geometry of the accretion disk in the source H1743-322, we have carded out a detailed X-ray temporal and spectral study using RXTE pointed observations. We have selected all data pertaining to the Steep Power Law (SPL) state during the 2003 outburst of this source. We find anti-correlated hard X-ray lags in three of the observations and the changes in the spectral and timing parameters (like the QPO fre-quency) confirm the idea of a truncated accretion disk in this source. Compiling data from similar observations of other sources, we find a correlation between the fractional change in the QPO frequency and the observed delay. We suggest that these observations indicate a definite size scale in the inner accretion disk (the radius of the truncated disk) and we explain the observed correlation using various disk parameters like Compton cooling time scale, viscous time scale etc..

  3. Relativistic reverberation in the accretion flow of a tidal disruption event

    CERN Document Server

    Kara, Erin; Reynolds, Chris; Dai, Lixin

    2016-01-01

    Our current understanding of the curved space-time around supermassive black holes is based on actively accreting black holes, which make up only ten per cent or less of the overall population. X-ray observations of that small fraction reveal strong gravitational redshifts that indicate that many of these black holes are rapidly rotating; however, selection biases suggest that these results are not necessarily reflective of the majority of black holes in the Universe. Tidal disruption events, where a star orbiting an otherwise dormant black hole gets tidally shredded and accreted onto the black hole, can provide a short, unbiased glimpse at the space-time around the other ninety per cent of black holes. Observations of tidal disruptions have hitherto revealed the formation of an accretion disk and the onset of an accretion-powered jet, but have failed to reveal emission from the inner accretion flow, which enables the measurement of black hole spin. Here we report observations of reverberation arising from gr...

  4. The S2 star as a probe of the accretion disk of Sgr A*

    CERN Document Server

    Giannios, Dimitrios

    2013-01-01

    How accretion proceeds around the massive black hole in the Galactic center and other highly sub-Eddington accretors remains poorly understood. The orbit of the S2 star in the Galactic center passes through the accretion disk of the massive black hole and any observational signature from such interaction may be used as an accretion probe. Because of its early stellar type, S2 is expected to possess a fairly powerful wind. We show here that the ram pressure of the accretion disk shocks the stellar wind fairly close to the star. The shocked fluid reaches a temperature of ~ 1 keV and cools efficiently through optically thin, thermal bremsstrahlung emission. The radiation from the shocked wind peaks around the epoch of the pericenter passage of the star at a luminosity potentially comparable to the quiescent emission detected from Sgr A*. Detection of shocked wind radiation can constrain the density of the accretion disk at a distance of several thousands of gravitational radii from the black hole.

  5. Mass Accretion Processes in Young Stellar Objects: Role of Intense Flaring Activity

    CERN Document Server

    Orlando, S; Peres, G; Mignone, A

    2014-01-01

    According to the magnetospheric accretion scenario, young low-mass stars are surrounded by circumstellar disks which they interact with through accretion of mass. The accretion builds up the star to its final mass and is also believed to power the mass outflows, which may in turn have a significant role in removing the excess angular momentum from the star-disk system. Although the process of mass accretion is a critical aspect of star formation, some of its mechanisms are still to be fully understood. On the other hand, strong flaring activity is a common feature of young stellar objects (YSOs). In the Sun, such events give rise to perturbations of the interplanetary medium. Similar but more energetic phenomena occur in YSOs and may influence the circumstellar environment. In fact, a recent study has shown that an intense flaring activity close to the disk may strongly perturb the stability of circumstellar disks, thus inducing mass accretion episodes (Orlando et al. 2011). Here we review the main results ob...

  6. Energy, momentum and mass outflows and feedback from thick accretion discs around rotating black holes

    CERN Document Server

    Sadowski, A; Penna, R; Zhu, Y

    2013-01-01

    A set of long-duration general relativistic magnetohydrodynamic simulations of radiatively inefficient accretion discs around rotating black holes are presented, and are used to estimate the energy, mass and momentum outflow rates from such systems. Outflows occur via two fairly distinct modes: a relativistic jet and a sub-relativistic wind. The jet power depends strongly on the black hole spin and on the magnetic flux at the horizon. Unless these are very small, the energy output in the jet dominates over that in the wind. In the limit of a rapidly spinning black hole accreting in the magnetically arrested limit, when the magnetic flux at the black hole is maximum, the jet power exceeds the total rate of accretion of rest mass energy. However, because of strong collimation, the jet probably does not have a significant effect on its surrounding. In the case of an accreting supermassive black hole, external feedback via a jet is likely important only on the largest galaxy cluster scales. The power in the wind ...

  7. Power

    OpenAIRE

    Hafford-Letchfield, Trish

    2015-01-01

    This chapter looks at the concept of power in social work by focusing on what this means as a ‘professional’ and theorizes competing discourses of empowerment in social work and its key concepts, drawing in particular on the explanatory powers of critical theorist Michel Foucault (1991). The chapter problematizes the concept of power by explicitly drawing on both users’ and carers’ accounts from the literature to demonstrate different external and internal influences on the root causes of dis...

  8. Seeing to the Event Horizon: Probing Accretion Physics with X-ray Reflection

    Science.gov (United States)

    Wilkins, Dan

    2015-09-01

    Accretion onto supermassive black holes in active galactic nuclei is known to power some of the most luminous objects we see in the Universe, which through their vast energy outputs must have played an important role in shaping the large scale structure of the Universe we see today. Much remains unknown, however, about the fine details of this process; exactly how energy is liberated from accretion flows onto black holes, how the 'corona' that produces the intense X-ray continuum is formed and what governs this process over time. I will outline how the detection of X-rays reflected from the discs of accreting material around black holes by the present generation of large X-ray observatories, shifted in energy and blurred by relativistic effects in the strong gravitational field close to the black hole, has enabled measurements of the inner regions of the accretion flow in unprecedented detail. In particular, exploiting the shift in energy of atomic emission lines by relativistic effects as a function of location on the disc has enabled the measurement of the illumination pattern of the accretion flow by the X-ray continuum from which the geometry of the emitting region can be inferred and how the detection of time lags between the primary and reflected X-rays owing to the additional path the reflected rays must travel between the corona and the disc places further constraints on the nature of the emitting corona. These techniques allow the evolution of the corona that accompanies transitions from high to low X-ray flux to be studied, giving clues to the physical process that forms and powers the intense X-ray source and uncovering evidence for the potential launching of jets. I will discuss the great steps forward in understanding accretion physics that can be made with the Athena X-ray observatory, combining detailed analysis of observations with predictions and models from general relativistic ray tracing simulations. In particular, I will discuss how high

  9. Spin equilibrium in strongly-magnetized accreting stars

    CERN Document Server

    D'Angelo, Caroline

    2016-01-01

    The spin rate of a strongly-magnetized accreting star is regulated by the interaction between the star's magnetic field and the accreting gas. These systems are often hypothesized to be in `spin equilibrium' with their surrounding accretion flows such that the net spin change of the star as a result of accretion is very small. This condition requires that the accretion rate changes more slowly than it takes the star to reach spin equilibrium. However, this is not true for most magnetically accreting stars, which have strongly variable accretion outbursts (by one to many orders of magnitude) on timescales much shorter than the time it would take to reach spin equilibrium. This paper examines how accretion outbursts affect the time a star takes to reach spin equilibrium and its final equilibrium spin period. I consider several different models for angular momentum loss -- where angular momentum is carried away in an outflow (the standard `propeller', centrifugally-launched outflow), where most angular momentum ...

  10. Bondi Accretion in Trumpet Geometries

    CERN Document Server

    Miller, August J

    2016-01-01

    The Bondi solution, which describes the radial inflow of a gas onto a non-rotating black hole, provides a powerful test for numerical relativistic codes. However, the Bondi solution is usually derived in Schwarzschild coordinates, which are not well suited for dynamical spacetime evolutions. Instead, many current numerical relativistic codes adopt moving-puncture coordinates, which render black holes in trumpet geometries. Here we transform the Bondi solution into trumpet coordinates, which result in regular expressions for the fluid flow extending into the black-hole interior. We also evolve these solutions numerically and demonstrate their usefulness for testing and calibrating numerical codes.

  11. Gravitational waves from accreting neutron stars

    OpenAIRE

    Bonazzola, S.; Gourgoulhon, E.

    1996-01-01

    We show that accreting neutron stars in binary systems or in Landau-Thorne-Zytkow objects are good candidates for continuous gravitational wave emission. Their gravitational radiation is strong enough to be detected by the next generation of detectors having a typical noise of 10^{-23} Hz^{-1/2}.

  12. Stability of black hole accretion disks

    Directory of Open Access Journals (Sweden)

    Czerny B.

    2012-12-01

    Full Text Available We discuss the issues of stability of accretion disks that may undergo the limit-cycle oscillations due to the two main types of thermal-viscous instabilities. These are induced either by the domination of radiation pressure in the innermost regions close to the central black hole, or by the partial ionization of hydrogen in the zone of appropriate temperatures. These physical processes may lead to the intermittent activity in AGN on timescales between hundreds and millions of years. We list a number of observational facts that support the idea of the cyclic activity in high accretion rate sources. We conclude however that the observed features of quasars may provide only indirect signatures of the underlying instabilities. Also, the support from the sources with stellar mass black holes, whose variability timescales are observationally feasible, is limited to a few cases of the microquasars. Therefore we consider a number of plausible mechanisms of stabilization of the limit cycle oscillations in high accretion rate accretion disks. The newly found is the stabilizing effect of the stochastic viscosity fluctuations.

  13. Realizability of stationary spherically symmetric transonic accretion

    CERN Document Server

    Ray, A K; Ray, Arnab K.

    2002-01-01

    The spherically symmetric stationary transonic (Bondi) flow is considered a classic example of an accretion flow. This flow, however, is along a separatrix, which is usually not physically realizable. We demonstrate, using a pedagogical example, that it is the dynamics which selects the transonic flow.

  14. Turbulent Comptonization in Relativistic Accretion Disks

    CERN Document Server

    Socrates, A; Blaes, Omer M; Socrates, Aristotle; Davis, Shane W.; Blaes, Omer

    2006-01-01

    Turbulent Comptonization, a potentially important damping and radiation mechanism in relativistic accretion flows, is discussed. Particular emphasis is placed on the physical basis, relative importance, and thermodynamics of turbulent Comptonization. The effects of metal-absorption opacity on the spectral component resulting from turbulent Comptonization is considered as well.

  15. Probing thermonuclear burning on accreting neutron stars

    NARCIS (Netherlands)

    Keek, L.

    2008-01-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes

  16. Gravitational Instability in Neutrino Dominated Accretion Disks

    Institute of Scientific and Technical Information of China (English)

    刘彤; 薛力

    2011-01-01

    We revisit the vertical structure of neutrino-dominated accretion flows (NDAFs) in spherical coordinates under a boundary condition based on a mechanical equilibrium. The solutions show that the NDAF is significantly geometrically thick. The Toomre parameter is determined by the mass accretion rate and the viscosity parameter, which is defined as Q = csΩ/πGΣ, where cs, Ω and Σ are the sound speed, angular velocity and surface density, respectively. According to the distribution of the Toomre parameter, the possible fragments of the disk may appear near the disk surface in the outer region. These possible outflows originating from the gravitational instability of the disk may account for the late-time flares in gamma-ray bursts.%We revisit the vertical structure of neutrino-dominated accretion flows(NDAFs)in spherical coordinates under a boundary condition based on a mechanical equilibrium.The solutions show that the NDAF is significantly geometrically thick.The Toomre parameter is determined by the mass accretion rate and the viscosity parameter,which is defined as Q =csΩ/πG∑,where cs,Ω and ∑ are the sound speed,angular velocity and surface density,respectively.According to the distribution of the Toomre parameter,the possible fragments of the disk may appear near the disk surface in the outer region.These possible outflows originating from the gravitational instability of the disk may account for the late-time flares in gamma-ray bursts.

  17. Gravitational Waves from Fallback Accretion onto Neutron Stars

    CERN Document Server

    Piro, Anthony L

    2012-01-01

    Massive stars generally end their lives as neutron stars (NSs) or black holes (BHs), with NS formation typically occurring at the low mass end and collapse to a BH more likely at the high mass end. In an intermediate regime, with a mass range that depends on the uncertain details of rotation and mass loss during the star's life, a NS is initially formed which then experiences fallback accretion and collapse to a BH. The electromagnetic consequence of such an event is not clear. Depending on the progenitor's structure, possibilities range from a long gamma-ray burst to a Type II supernova (that may or may not be jet-powered) to a collapse with a weak electromagnetic signature. Gravitational waves (GWs) provide the exciting opportunity to peer through the envelope of a dying massive star and directly probe what is occurring inside. We explore whether fallback onto young NSs can be detected by ground-based interferometers. When the incoming material has sufficient angular momentum to form a disk, the accretion s...

  18. Variabilities of Gamma-ray Bursts from Black Hole Hyper-accretion Disks

    CERN Document Server

    Lin, Da-Bin; Mu, Hui-Jun; Liu, Tong; Hou, Shu-Jin; Lv, Jing; Gu, Wei-Min; Liang, En-Wei

    2016-01-01

    The emission from black hole binaries (BHBs) and active galactic nuclei (AGNs) displays significant aperiodic variabilities. The most promising explanation for these variabilities is the propagating fluctuations in the accretion flow. It is natural to expect that the mechanism driving variabilities in BHBs and AGNs may operate in a black hole hyper-accretion disk, which is believed to power gamma-ray bursts (GRBs). We study the variabilities of jet power in GRBs based on the model of propagating fluctuations. It is found that the variabilities of jet power and the temporal profile of erratic spikes in this scenario are similar to those in observed light curves of prompt gamma-ray emission of GRBs. Our results show that the mechanism driving X-ray variabilities in BHBs and AGNs may operate in the central engine to drive the variabilities of GRBs.

  19. New Insights on the Accretion Disk-Winds Connection in Radio-Loud AGNs from Suzaku

    Science.gov (United States)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Cappi, M.; Reynolds, S.; Mushotzky, R. F.

    2011-01-01

    From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ,,approx.0.1 c in three of them, namely 3C III, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C III to monitor its outflow on approx.7 days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disc-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/jets.

  20. Stellar and Quasar Feedback in Concert: Effects on AGN Accretion, Obscuration, and Outflows

    CERN Document Server

    Hopkins, Philip F; Faucher-Giguere, Claude-Andre; Quataert, Eliot; Murray, Norman

    2015-01-01

    We use hydrodynamic simulations to study the interaction of realistic active galactic nucleus (AGN) feedback mechanisms (accretion-disk winds & Compton heating) with a multi-phase interstellar medium (ISM). Our ISM model includes radiative cooling and explicit stellar feedback from multiple processes. We simulate radii ~0.1-100 pc around an isolated (non-merging) black hole. These are the scales where the accretion rate onto the black hole is determined and where AGN-powered winds and radiation couple to the ISM. Our primary results include: (1) The black hole accretion rate on these scales is determined by exchange of angular momentum between gas and stars in gravitational instabilities. This produces accretion rates of ~0.03-1 Msun/yr, sufficient to power a luminous AGN. (2) The gas disk in the galactic nucleus undergoes an initial burst of star formation followed by several Myrs where stellar feedback suppresses the star formation rate per dynamical time. (3) AGN winds injected at small radii with mome...

  1. Theory of disk accretion onto supermassive black holes

    CERN Document Server

    Armitage, P J

    2004-01-01

    Accretion onto supermassive black holes produces both the dramatic phenomena associated with active galactic nuclei and the underwhelming displays seen in the Galactic Center and most other nearby galaxies. I review selected aspects of the current theoretical understanding of black hole accretion, emphasizing the role of magnetohydrodynamic turbulence and gravitational instabilities in driving the actual accretion and the importance of the efficacy of cooling in determining the structure and observational appearance of the accretion flow. Ongoing investigations into the dynamics of the plunging region, the origin of variability in the accretion process, and the evolution of warped, twisted, or eccentric disks are summarized.

  2. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    Science.gov (United States)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  3. Accretion and Orbital Inspiral in Gas-assisted Supermassive Black Hole Binary Mergers

    Science.gov (United States)

    Rafikov, Roman R.

    2016-08-01

    Many galaxies are expected to harbor binary supermassive black holes (SMBHs) in their centers. Their interaction with the surrounding gas results in the accretion and exchange of angular momentum via tidal torques, facilitating binary inspiral. Here, we explore the non-trivial coupling between these two processes and analyze how the global properties of externally supplied circumbinary disks depend on the binary accretion rate. By formulating our results in terms of the angular momentum flux driven by internal stresses, we come up with a very simple classification of the possible global disk structures, which differ from the standard constant \\dot{M} accretion disk solution. The suppression of accretion by the binary tides, leading to a significant mass accumulation in the inner disk, accelerates binary inspiral. We show that once the disk region strongly perturbed by the viscously transmitted tidal torque exceeds the binary semimajor axis, the binary can merge in less than its mass-doubling time due to accretion. Thus, unlike the inspirals driven by stellar scattering, the gas-assisted merger can occur even if the binary is embedded in a relatively low-mass disk (lower than its own mass). This is important for resolving the “last parsec” problem for SMBH binaries and understanding powerful gravitational wave sources in the universe. We argue that the enhancement of accretion by the binary found in some recent simulations cannot persist for a long time and should not affect the long-term orbital inspiral. We also review existing simulations of SMBH binary–disk coupling and propose a numerical setup which is particularly well suited to verifying our theoretical predictions.

  4. The role of Compton heating in radiation-regulated accretion on to black holes

    Science.gov (United States)

    Park, KwangHo; Ricotti, Massimo; Di Matteo, Tiziana; Reynolds, Christopher S.

    2014-12-01

    We investigate the role of Compton heating in radiation-regulated accretion on to black holes (BHs) from a neutral dense medium using 1D radiation-hydrodynamic simulations. We focus on the relative effects of Compton-heating and photoheating as a function of the spectral slope α, assuming a power-law spectrum in the energy range of 13.6 eV-100 keV. While Compton heating is dominant only close to the BH, it can reduce the accretion rate to 0.1 (l ∝ dot{m}^2 model)-0.01 per cent (l ∝ dot{m} model) of the Bondi accretion rate when the BH radiation is hard (α ˜ 1), where l and dot{m} are the luminosity and accretion rate normalized by Eddington rates, respectively. The oscillatory behaviour otherwise typically seen in simulations with α > 1, become suppressed when α ˜ 1 only for the l ∝ dot{m} model. The relative importance of the Compton heating over photoheating decreases and the oscillatory behaviour becomes stronger as the spectrum softens. When the spectrum is soft (α > 1.5), photoheating prevails regardless of models making the effect of Compton heating negligible. On the scale of the ionization front, where the gas supply into the Strömgren sphere from large scale is regulated, photoheating dominates. Our simulations show consistent results with the advection-dominated accretion flow (l ∝ dot{m}^2) where the accretion is inefficient and the spectrum is hard (α ˜ 1).

  5. The mass accretion rate of galaxy clusters: a measurable quantity

    CERN Document Server

    De Boni, Cristiano; Diaferio, Antonaldo; Giocoli, Carlo; Baldi, Marco

    2015-01-01

    We explore the possibility of measuring the mass accretion rate of galaxy clusters by using dense galaxy redshift surveys of their outer regions. By approximating the accretion with the infall of a spherical shell, the mass accretion rate only depends on the mass profile of the cluster in a thin shell at radii larger than $R_{200}$. This approximation is rather crude in hierarchical clustering scenarios, where both smooth accretion and aggregation of smaller dark matter haloes contribute to the mass accretion of clusters. Nevertheless, in the redshift range $z=[0,1]$, our prescription returns an average mass accretion rate within $20 \\%$ of the average rate derived with the more realistic merger trees of dark matter haloes extracted from $N$-body simulations. The mass accretion rate of galaxy clusters has been the topic of numerous detailed numerical and theoretical investigations, but so far it has remained inaccessible to measurements in the real Universe. Our result suggests that measuring the mass accreti...

  6. Effects of ice accretion on the aerodynamics of bridge cables

    DEFF Research Database (Denmark)

    Demartino, C.; Koss, Holger; Georgakis, Christos T.;

    2015-01-01

    Undesirable wind induced vibrations of bridge cables can occur when atmospheric conditions are such to generate ice accretion. This paper contains the results of an extensive investigation of the effects of ice accretion due to in-cloud icing, on the aerodynamic characteristics of bridge hangers...... of temperature, wind speed and yaw angle of accretion, were reproduced in a climatic wind tunnel, giving rise to different types of accretion. These were chosen such to generate the most common natural ice formations expected to produce bridge cable vibrations. A description of the geometric characteristics...... and stay cables. The aim of this paper is twofold; first, it was investigated the ice accretion process and the final shape of the ice accreted; then the aerodynamics of the ice accreted bridge cables was characterized, and related to the ice shape. Different climatic conditions, i.e. combinations...

  7. MHD Simulations of Global Accretion Disks with Vertical Magnetic Fields

    CERN Document Server

    Suzuki, Takeru K

    2013-01-01

    (Abridged) We report results of three dimensional MHD simulations of global accretion disks threaded with weak vertical magnetic fields. We perform the simulations in the spherical coordinates with different temperature profiles and accordingly different rotation profiles. In the cases with a spatially constant temperature, because the rotation frequency is vertically constant in the equilibrium condition, general properties of the turbulence are quantitatively similar to those obtained in local shearing box simulations. On the other hand, in the cases with a radially variable temperature profile, the vertical differential rotation, which is inevitable in the equilibrium condition, winds up the magnetic field lines, in addition to the usual radial differential rotation. As a result, the coherent wound magnetic fields contribute to the Maxwell stress in the surface regions. We obtain nondimensional density and velocity fluctuations ~0.1-0.2 at the midplane. The azimuthal power spectra of the magnetic fields sh...

  8. Variable protostellar accretion with episodic bursts

    CERN Document Server

    Vorobyov, Eduard I

    2015-01-01

    We present the latest development of the disk gravitational instability and fragmentation model, originally introduced by us to explain episodic accretion bursts in the early stages of star formation. Using our numerical hydrodynamics model with improved disk thermal balance and star-disk interaction, we computed the evolution of protostellar disks formed from the gravitational collapse of prestellar cores. In agreement with our previous studies, we find that cores of higher initial mass and angular momentum produce disks that are more favorable to gravitational instability and fragmentation, while a higher background irradiation and magnetic fields moderate the disk tendency to fragment. The protostellar accretion in our models is time-variable, thanks to the nonlinear interaction between different spiral modes in the gravitationally unstable disk, and can undergo episodic bursts when fragments migrate onto the star owing to the gravitational interaction with other fragments or spiral arms. Most bursts occur...

  9. On the Stability of Cubic Galileon Accretion

    CERN Document Server

    Bergliaffa, Santiago P E

    2016-01-01

    We examine the stability of steady-state galileon accretion for the case of a Schwarzshild black hole. Considering the galileon action up to the cubic term in a static and spherically symmetric background we obtain the general solution for the equation of motion which is divided in two branches. By perturbing this solution we define an effective metric which determines the propagation of fluctuations. In this general picture we establish the position of the sonic horizon together with the matching condition of the two branches on it. Restricting to the case of a Schwarzschild background, we show, via the analysis of the energy of the perturbations and its time derivative, that the accreting field is linearly stable.

  10. Magnetohydrodynamic simulations of black hole accretion

    CERN Document Server

    Reynolds, C S; Chiang, J; Reynolds, Christopher S; Armitage, Philip J.; Chiang, James

    2001-01-01

    We discuss the results of three-dimensional magnetohydrodynamic simulations, using a pseudo-Newtonian potential, of thin disk (h/r ~ 0.1) accretion onto black holes. We find (i) that magnetic stresses persist within the marginally stable orbit, and (ii) that the importance of those stresses for the dynamics of the flow depends upon the strength of magnetic fields in the disk outside the last stable orbit. Strong disk magnetic fields (alpha > 0.1) lead to a gross violation of the zero-torque boundary condition at the last stable orbit, while weaker fields (alpha ~ 0.01) produce results more akin to traditional models for thin disk accretion onto black holes. Fluctuations in the magnetic field strength in the disk could lead to changes in the radiative efficiency of the flow on short timescales.

  11. Accretion disk structure in SS Cygni

    Science.gov (United States)

    Hessman, F. V.

    1987-02-01

    High-resolution coude observations of nonaxisymmetric line emission from the dwarf nova SS Cygni are presented. By subtracting the constant line component, the asymmetric line emission responsible for the observed phase shift between the absorption and emission line radial velocity curves can be isolated. The extra emission is a large fraction of the total line emission and extends to large velocities (of about 1500 km/sec). The phase stability of the emission demands a large-scale structure which is fixed in the frame of the binary. A magnetic origin of the excitation cannot be ruled out but is implausible. A simple explanation is that the accretion stream from the companion star is able to spill over the edge of the disk, introducing emission at noncircular velocities and most likely disturbing the upper layers of the accretion disk.

  12. Ice Accretion on Wind Turbine Blades

    DEFF Research Database (Denmark)

    Hudecz, Adriána; Koss, Holger; Hansen, Martin Otto Laver

    2013-01-01

    In this paper, both experimental and numerical simulations of the effects of ice accretion on a NACA 64-618 airfoil section with 7° angle of attack are presented. The wind tunnel tests were conducted in a closed-circuit climatic wind tunnel at Force Technology in Denmark. The changes of aerodynamic...... forces were monitored as ice was building up on the airfoil for glaze, rime and mixed ice. In the first part of the numerical analysis, the resulted ice profiles of the wind tunnel tests were compared to profiles estimated by using the 2D ice accretion code TURBICE. In the second part, Ansys Fluent...... of the rime iced ice profile follows the streamlines quite well, disturbing the flow the least. The TURBICE analysis agrees fairly with the profiles produced during the wind tunnel testing....

  13. Eclipse Mapping: Astrotomography of Accretion Discs

    CERN Document Server

    Baptista, Raymundo

    2015-01-01

    The Eclipse Mapping Method is an indirect imaging technique that transforms the shape of the eclipse light curve into a map of the surface brightness distribution of the occulted regions. Three decades of application of this technique to the investigation of the structure, the spectrum and the time evolution of accretion discs around white dwarfs in cataclysmic variables have enriched our understanding of these accretion devices with a wealth of details such as (but not limited to) moving heating/cooling waves during outbursts in dwarf novae, tidally-induced spiral shocks of emitting gas with sub-Keplerian velocities, elliptical precessing discs associated to superhumps, and measurements of the radial run of the disc viscosity through the mapping of the disc flickering sources. This chapter reviews the principles of the method, discusses its performance, limitations, useful error propagation procedures, as well as highlights a selection of applications aimed at showing the possible scientific problems that ha...

  14. Turbulent Comptonization in Black Hole Accretion Disks

    CERN Document Server

    Socrates, A; Blaes, Omer M; Socrates, Aristotle; Davis, Shane W.; Blaes, Omer

    2004-01-01

    In the inner-most regions of radiation pressure supported accretion disks, the turbulent magnetic pressure may greatly exceed that of the gas. If this is the case, it is possible for bulk Alfvenic motions driven by the magnetorotational instability (MRI) to surpass the electron thermal velocity. Bulk rather than thermal Comptonization may then be the dominant radiative process which mediates gravitational energy release. For sufficiently large turbulent stresses, we show that turbulent Comptonization produces a significant contribution to the far-UV and X-ray emission of black hole accretion disks. The existence of this spectral component provides a means of obtaining direct observational constraints on the nature of the turbulence itself. We describe how this component may affect the spectral energy distributions and variability properties of X-ray binaries and active galactic nuclei.

  15. General Overview of Black Hole Accretion Theory

    CERN Document Server

    Blaes, Omer

    2013-01-01

    I provide a broad overview of the basic theoretical paradigms of black hole accretion flows. Models that make contact with observations continue to be mostly based on the four decade old alpha stress prescription of Shakura & Sunyaev (1973), and I discuss the properties of both radiatively efficient and inefficient models, including their local properties, their expected stability to secular perturbations, and how they might be tied together in global flow geometries. The alpha stress is a prescription for turbulence, for which the only existing plausible candidate is that which develops from the magnetorotational instability (MRI). I therefore also review what is currently known about the local properties of such turbulence, and the physical issues that have been elucidated and that remain uncertain that are relevant for the various alpha-based black hole accretion flow models.

  16. Magnetised accretion discs in Kerr spacetimes

    CERN Document Server

    Ranea-Sandoval, Ignacio F

    2014-01-01

    We study the effect caused by external magnetic fields on the observed thermal spectra and iron line profiles of thin accretion discs formed around Kerr black holes and naked singularities. We aim to provide a tool that can be used to estimate the presence of magnetic fields in the neighbourhood of a compact object and to probe the cosmic censorship conjecture in these particular astrophysical environments. We developed a numerical scheme able to calculate thermal spectra of magnetised Page-Thorne accretion discs formed around rotating black holes and naked singularities as seen by an arbitrary distant observer. We incorporated two different magnetic field configurations: uniform and dipolar, using a perturbative scheme in the coupling constant between matter and magnetic field strength. Under the same assumptions, we obtained observed synthetic line profiles of the 6.4 keV fluorescent iron line. We show that an external magnetic field produces potentially observable modifications on the thermal energy spectr...

  17. Compositional evolution during rocky protoplanet accretion

    CERN Document Server

    Carter, Philip J; Elliott, Tim; Walter, Michael J; Stewart, Sarah T

    2015-01-01

    The Earth appears non-chondritic in its abundances of refractory lithophile elements, posing a significant problem for our understanding of its formation and evolution. It has been suggested that this non-chondritic composition may be explained by collisional erosion of differentiated planetesimals of originally chondritic composition. In this work, we present N-body simulations of terrestrial planet formation that track the growth of planetary embryos from planetesimals. We simulate evolution through the runaway and oligarchic growth phases under the Grand Tack model and in the absence of giant planets. These simulations include a state-of-the-art collision model which allows multiple collision outcomes, such as accretion, erosion, and bouncing events, that enables tracking of the evolving core mass fraction of accreting planetesimals. We show that the embryos grown during this intermediate stage of planet formation exhibit a range of core mass fractions, and that with significant dynamical excitation, enoug...

  18. Satellites in discs regulating the accretion luminosity

    CERN Document Server

    Syer, D; Syer, Dave; Clarke, Cathie

    1995-01-01

    We demonstrate, using a simple analytic model, that the presence of a massive satellite can globally modify the structure and emission properties of an accretion disc to which it is tidally coupled. We show, using two levels of numerical approximation, that the analytic model gives reasonable results. The results are applicable to two astrophysical situations. In the case of an active galactic nucleus, we consider the case of a \\sim 10^3\\Msun compact companion to the central black-hole and show that it could modulate the emitted spectrum on a timescale of \\sim10^5 years. In the case of a T Tauri accretion disc, a satellite such as a sub-dwarf or giant planet could modify the disc spectral energy distribution over a substantial fraction of the T Tauri star lifetime.

  19. Accretion onto black holes and relativistic jets

    CERN Document Server

    Belloni, Tomaso

    2007-01-01

    Relativistic jets from Active Galactic Nuclei are known since decades, but the study of the connection between accretion and ejection in these systems is hampered by the long time scales associated to these events. The past decade has seen a rapid advancement due to the observation of similar radio jets in galactic X-ray binaries, where the time scales are much shorter. A clear connection between accretion and ejection has been found for these systems, together with a solid characterization of the phenomenological properties of their outbursts. This wealth of new results has led to a detailed comparison between X-ray binaries and AGN, from which a number of correlations and scaling laws has been established. Here I briefly review the current observational status.

  20. Radiative efficiency, variability and Bondi accretion onto massive black holes: from mechanical to quasar feedback in brightest cluster galaxies

    CERN Document Server

    Russell, H R; Edge, A C; Hogan, M T; Main, R A; Vantyghem, A N

    2012-01-01

    We examine unresolved nuclear X-ray sources in 57 brightest cluster galaxies to study the relationship between nuclear X-ray emission and accretion onto supermassive black holes (SMBHs). The majority of the clusters in our sample have prominent X-ray cavities embedded in the surrounding hot atmospheres, which we use to estimate mean jet power and average accretion rate onto the SMBHs over the past several hundred Myr. We find that ~50% of the sample have detectable nuclear X-ray emission. The nuclear X-ray luminosity is correlated with average accretion rate determined using X-ray cavities, which is consistent with the hypothesis that nuclear X-ray emission traces ongoing accretion. The results imply that jets in systems that have experienced recent AGN outbursts, in the last ~10^7yr, are `on' at least half of the time. Nuclear X-ray sources become more luminous with respect to the mechanical jet power as the mean accretion rate rises. We show that nuclear radiation exceeds the jet power when the mean accreti...

  1. Accreting Neutron Stars and Radioactive Beam Experiments

    International Nuclear Information System (INIS)

    The nuclear processes on accreting neutron stars in X-ray binaries are related to a number of open astrophysical questions. I review these open questions, their relation to the α p, rp and crust processes, and the nuclear data needed to solve the problems. Data on very unstable proton and neutron rich nuclei are most critical, and therefore radioactive beam experiments together with progress in the theoretical understanding of nuclei far from stability are needed. (author)

  2. Interaction of Accretion Shocks with Winds

    Indian Academy of Sciences (India)

    Kinsuk Acharya; Sandip K. Chakrabarti; D. Molteni

    2002-03-01

    Accretion shocks are known to oscillate in presence of cooling processes in the disk. This oscillation may also cause quasi-periodic oscillations of black holes. In the presence of strong winds, these shocks have oscillations in vertical direction as well.We show examples of shock oscillations under the influence of both the effects. When the shocks are absent and the flow is cooler, the wind becomes weaker and the vertical oscillation becomes negligible.

  3. Reconnection in Marginally Collisionless Accretion Disk Coronae

    OpenAIRE

    Goodman, J.; Uzdensky, D.

    2008-01-01

    We point out that a conventional construction placed upon observations of accreting black holes, in which their nonthermal X-ray spectra are produced by inverse comptonization in a coronal plasma, suggests that the plasma is marginally collisionless. Recent developments in plasma physics indicate that fast reconnection takes place only in collisionless plasmas. As has recently been suggested for the Sun's corona, such marginal states may result from a combination of energy balance and the req...

  4. Relativistic Accretion Mediated by Turbulent Comptonization

    OpenAIRE

    Socrates, Aristotle

    2008-01-01

    Black hole and neutron star accretion flows display unusually high levels of hard coronal emission in comparison to all other optically thick, gravitationally bound, turbulent astrophysical systems. Since these flows sit in deep relativistic gravitational potentials, their random bulk motions approach the speed of light, therefore allowing turbulent Comptonization to be an important effect. We show that the inevitable production of hard X-ray photons results from turbulent Comptonization in t...

  5. Virial theorem for radiating accretion discs

    OpenAIRE

    Mach, Patryk

    2011-01-01

    A continuum version of the virial theorem is derived for a radiating self-gravitating accretion disc around a compact object. The central object is point-like, but we can avoid the regularization of its gravitational potential. This is achieved by applying a modified Pohozaev-Rellich identity to the gravitational potential of the disk only. The theorem holds for general stationary configurations, including discontinuous flows (shock waves, contact discontinuities). It is used to test numerica...

  6. Disk Instability vs. Core Accretion: Observable Discriminants

    Science.gov (United States)

    Jang-Condell, H.

    2007-06-01

    I will discuss ways to distinguish between disk instability and core accretion, the two competing paradigms for giant planet formation. Disk instability happens when a massive disk fragments into planet-sized self-gravitating clumps. Scattered light from these disks will illuminate high altitude density variations that result from stirring of the disk by the forming planet. These variations will evolve quickly, within several years, but do not correlate with the position of the planet itself. Alternatively, core accretion happens when solid particles collide and coagulate into larger and larger bodies until a body large enough to accrete a gaseous envelope forms -- around 10-20 Earth masses. This process is thought to be more quiescent than gravitational instability, so the disk should appear smooth. Although a 10-20 Earth mass core is insufficiently massive to fully clear an annular gap in the disk, it does perturb the disk material immediately in its vicinity, creating shadows and brightenings at the protoplanet's location. The planet may also begin to clear a partial gap. Shadowing and illumination on this partial gap can alter the thermal structure at the upper layers of the disk on a sufficiently large scale to be observable. Observing the signatures of either disk instability or core accretion requires milliarcsecond resolution and high contrast imaging. Advances in coronography, adaptive optics, and interferometry are bringing us ever closer to begin able to make these detections. Observational confirmation of either process taking place in a young circumstellar disk will help resolve the long-standing debate over how giant planets form.

  7. Magnetically driven accretion in protoplanetary discs

    CERN Document Server

    Simon, Jacob B; Kunz, Matthew W; Armitage, Philip J

    2015-01-01

    We characterize magnetically driven accretion at radii between 1 au and 100 au in protoplanetary discs, using a series of local non-ideal magnetohydrodynamic (MHD) simulations. The simulations assume a Minimum Mass Solar Nebula (MMSN) disc that is threaded by a net vertical magnetic field of specified strength. Confirming previous results, we find that the Hall effect has only a modest impact on accretion at 30 au, and essentially none at 100 au. At 1-10 au the Hall effect introduces a pronounced bi-modality in the accretion process, with vertical magnetic fields aligned to the disc rotation supporting a strong laminar Maxwell stress that is absent if the field is anti-aligned. In the anti-aligned case, we instead find evidence for bursts of turbulent stress at 5-10 au, which we tentatively identify with the non-axisymmetric Hall-shear instability. The presence or absence of these bursts depends upon the details of the adopted chemical model, which suggests that appreciable regions of actual protoplanetary di...

  8. Generalized Similarity for Accretion/Decretion Disks

    CERN Document Server

    Rafikov, Roman R

    2016-01-01

    Decretion (or external) disks are gas disks freely expanding to large radii due to their internal stresses. They are expected to naturally arise in tidal disruption events, around Be stars, in mass-losing post main sequence binaries, as a result of supernova fallback, etc. Their evolution is theoretically understood in two regimes: when the central object does not exert torque on the disk (a standard assumption for conventional accretion disks) or when no mass inflow (or outflow) occurs at the disk center. However, many astrophysical objects - circumbinary disks, Be stars, neutron stars accreting in a propeller regime, etc. - feature non-zero torque simultaneously with the non-zero accretion (or ejection of mass) at the disk center. We provide a general description for the evolution of such disks (both linear and non-linear) in the self-similar regime, to which the disk should asymptotically converge with time. We identify a similarity parameter $\\lambda$, which is uniquely related to the degree, to which the...

  9. Terrane accretion: Insights from numerical modelling

    Science.gov (United States)

    Vogt, Katharina; Gerya, Taras

    2016-04-01

    The oceanic crust is not homogenous, but contains significantly thicker crust than norm, i.e. extinct arcs, spreading ridges, detached continental fragments, volcanic piles or oceanic swells. These (crustal) fragments may collide with continental crust and form accretionary complexes, contributing to its growth. We analyse this process using a thermo-mechanical computer model (i2vis) of an ocean-continent subduction zone. In this model the oceanic plate can bend spontaneously under the control of visco-plastic rheologies. It moreover incorporates effects such as mineralogical phase changes, fluid release and consumption, partial melting and melt extraction. Based on our 2-D experiments we suggest that the lithospheric buoyancy of the downgoing slab and the rheological strength of crustal material may result in a variety of accretionary processes. In addition to terrane subduction, we are able to identify three distinct modes of terrane accretion: frontal accretion, basal accretion and underplating plateaus. We show that crustal fragments may dock onto continental crust and cease subduction, be scrapped off the downgoing plate, or subduct to greater depth prior to slab break off and subsequent exhumation. Direct consequences of these processes include slab break off, subduction zone transference, structural reworking, formation of high-pressure terranes, partial melting and crustal growth.

  10. Chaotic cold accretion onto black holes

    CERN Document Server

    Gaspari, M; Oh, S Peng

    2013-01-01

    Using 3D AMR simulations, linking the 50 kpc to the sub-pc scales over the course of 40 Myr, we systematically relax the classic Bondi assumptions in a typical galaxy hosting a SMBH. In the realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the nonlinear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when t_cool/t_ff 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (t_turb/t_cool < 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions, shearing and tidal motions between clouds, filaments and the central torus cause a significant reduction of angular momentum, boosting accretion. ...

  11. Study of the reflection spectrum of the accreting neutron star GX 3+1 using XMM-Newton and INTEGRAL

    Science.gov (United States)

    Pintore, F.; Di Salvo, T.; Bozzo, E.; Sanna, A.; Burderi, L.; D'Aì, A.; Riggio, A.; Scarano, F.; Iaria, R.

    2015-06-01

    Broad emission features of abundant chemical elements, such as iron, are commonly seen in the X-ray spectra of accreting compact objects and their studies can provide useful information about the geometry of the accretion processes. In this work, we focus our attention on GX 3+1, a bright, persistent accreting low-mass X-ray binary, classified as an atoll source. Its spectrum is well described by an accretion disc plus a stable Comptonizing, optically thick corona which dominates the X-ray emission in the 0.3-20 keV energy band. In addition, four broad emission lines are found and we associate them with reflection of hard photons from the inner regions of the accretion disc, where Doppler and relativistic effects are important. We used self-consistent reflection models to fit the spectra of the 2010 XMM-Newton observation and the stacking of the whole data sets of 2010 INTEGRAL observations. We conclude that the spectra are consistent with reflection produced at ˜10 gravitational radii by an accretion disc with an ionization parameter of ξ ˜ 600 erg cm s-1 and viewed under an inclination angle of the system of ˜35°. Furthermore, we detected for the first time for GX 3+1, the presence of a power-law component dominant at energies higher than 20 keV, possibly associated with an optically thin component of non-thermal electrons.

  12. Current required for preventing wet snow accretion on transmission lines (Part 2). Kaku sodensen no bosetsu denryu (2)

    Energy Technology Data Exchange (ETDEWEB)

    Kawanishi, Seiichi; Mizushima, Kazuo; Tachizaki, Shuji; Yamada, Hisashige; Sakamoto, Yukichi.

    1989-11-01

    Electric current required to prevent wet snow accretion on transmission lines was examined, based on experimental results of artificial snow accretion in a wind tunnel facility, and observational results on existing transmission lines. The water content of accreted snow increased with its partial melting by current or atmosphere until most snow dropped at 20-30% in water content. Accreted snow on conductors spontaneously dropped without any snow damages, as power current exceeded 30-50% of the allowable current in the winter season under such conditions as 5-10m/s in wind speed, 1 {degree} C in air temperature and 2.5-5.0cm/h in snowfall intensity. However, 70% of the allowable current was required under a severe condition of 10cm/h in snowfall intensity. Since larger current was also required as snow cylinders were formed around conductors before dropping, it was necessary to flow preventive current before snow accretion, and a corporative operation with a snow accretion forecasting system was hence desirable. 8 refs., 9 figs., 3 tabs.

  13. AS ABOVE, SO BELOW: EXPLOITING MASS SCALING IN BLACK HOLE ACCRETION TO BREAK DEGENERACIES IN SPECTRAL INTERPRETATION

    Energy Technology Data Exchange (ETDEWEB)

    Markoff, Sera; Silva, Catia V. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, 1098 XH Amsterdam (Netherlands); Nowak, Michael A. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics, Cambridge, MA 02139 (United States); Gallo, Elena; Plotkin, Richard M. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109-1042 (United States); Hynes, Robert [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Wilms, Jörn [Dr. Karl Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, D-96049 Bamberg (Germany); Maitra, Dipankar [Department of Physics and Astronomy, Wheaton College, Norton, MA 02766 (United States); Drappeau, Samia, E-mail: S.B.Markoff@uva.nl, E-mail: C.V.DeJesusSilva@uva.nl, E-mail: mnowak@space.mit.edu, E-mail: egallo@umich.edu, E-mail: rih@redstick.phys.lsu.edu, E-mail: joern.wilms@sternwarte.uni-erlangen.de, E-mail: maitra_dipankar@wheatoncollege.edu, E-mail: samia.drappeau@irap.omp.eu [CNRS, IRAP, BP 44346, F-31028 Toulouse cedex 4 (France)

    2015-10-20

    Over the past decade, evidence has mounted that several aspects of black hole (BH) accretion physics proceed in a mass-invariant way. One of the best examples of this scaling is the empirical “fundamental plane of BH accretion” relation linking mass, radio, and X-ray luminosity over eight orders of magnitude in BH mass. The currently favored theoretical interpretation of this relation is that the physics governing power output in weakly accreting BHs depends more on relative accretion rate than on mass. In order to test this theory, we explore whether a mass-invariant approach can simultaneously explain the broadband spectral energy distributions from two BHs at opposite ends of the mass scale but that are at similar Eddington accretion fractions. We find that the same model, with the same value of several fitted physical parameters expressed in mass-scaling units to enforce self-similarity, can provide a good description of two data sets from V404 Cyg and M81*, a stellar and supermassive BH, respectively. Furthermore, only one of several potential emission scenarios for the X-ray band is successful, suggesting it is the dominant process driving the fundamental plane relation at this accretion rate. This approach thus holds promise for breaking current degeneracies in the interpretation of BH high-energy spectra and for constructing better prescriptions of BH accretion for use in various local and cosmological feedback applications.

  14. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni

    CERN Document Server

    Muñoz-Darias, T; Sánchez, D Mata; Fender, R P; Padilla, M Armas; Linares, M; Ponti, G; Charles, P A; Mooley, K P; Rodriguez, J

    2016-01-01

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black hole transients show outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disc encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient black hole transient V404 Cyg, and interpreted as disrupted mass flow into the inner regions of its large accretion disc. Here, we report on the discovery of a sustained outer accretion disc wind in V404 Cyg, which is unlike any seen previously. We find that the outflowing wind is neutral, has a large covering factor, expands at 1% of the speed of light and triggers a nebular phase once accretion sharply drops and the ejecta become optically thin. The large expelled mass (> 10^-8 Msun) indicates that the outburst was prematurely ended when a sizeable fracti...

  15. Short-Term Variability of X-rays from Accreting Neutron Star Vela X-1: II. Monte-Carlo Modeling

    CERN Document Server

    Odaka, Hirokazu; Tanaka, Yasuyuki T; Watanabe, Shin; Takahashi, Tadayuki; Makishima, Kazuo

    2013-01-01

    We develop a Monte Carlo Comptonization model for the X-ray spectrum of accretion-powered pulsars. Simple, spherical, thermal Comptonization models give harder spectra for higher optical depth, while the observational data from Vela X-1 show that the spectra are harder at higher luminosity. This suggests a physical interpretation where the optical depth of the accreting plasma increases with mass accretion rate. We develop a detailed Monte-Carlo model of the accretion flow, including the effects of the strong magnetic field ($\\sim 10^{12}$ G) both in geometrically constraining the flow into an accretion column, and in reducing the cross section. We treat bulk-motion Comptonization of the infalling material as well as thermal Comptonization. These model spectra can match the observed broad-band {\\it Suzaku} data from Vela X-1 over a wide range of mass accretion rates. The model can also explain the so-called "low state", in which the uminosity decreases by an order of magnitude. Here, thermal Comptonization sh...

  16. Evidence on the Origin of Ergospheric Disk Field Line Topology in Simulations of Black Hole Accretion

    CERN Document Server

    Punsly, Brian

    2011-01-01

    This Letter investigates the origin of the asymmetric magnetic field line geometry in the ergospheric disk (and the corresponding asymmetric powerful jet) in 3-D perfect magnetohydrodynamic (MHD) numerical simulations of a rapidly rotating black hole accretion system reported in \\citet{pun10}. Understanding, why and how these unexpected asymmetric structures form is of practical interest because an ergospheric disk jet can boost the black hole driven jet power many-fold possibly resolving a fundamental disconnect between the energy flux estimates of powerful quasar jets and simulated jet power \\citep{pun11}. The new 3-D simulations of \\citet{bec09} that were run with basically the same code that was used in the simulation discussed in \\citet{pun10} describe the "coronal mechanism" of accreting poliodal magnetic flux towards the event horizon. It was determined that reconnection in the inner accretion disk is a "necessary" component for this process. The coronal mechanism seems to naturally explain the asymmet...

  17. Core Forensics: Earth's Accretion and Differentiation

    Science.gov (United States)

    Badro, J.; Brodholt, J. P.; Siebert, J.; Piet, H.; Ryerson, F. J.

    2013-12-01

    Earth's accretion and its primitive differentiation are intimately interlinked processes. One way to constrain accretionary processes is by looking at the major differentiation event that took place during accretion: core formation. Understanding core formation and core composition can certainly shed a new light on early and late accretionary processes. On the other hand, testing certain accretionary models and hypothesis (fluxes, chemistries, timing) allows -short of validating them- at the very least to unambiguously refute them, through the 'filter'' of core formation and composition. Earth's core formed during accretion as a result of melting, phase-separation, and segregation of accretionary building blocks (from meteorites to planetesimals). The bulk composition of the core and mantle depends on the evolution (pressure, temperature, composition) of core extraction during accretion. The entire process left a compositional imprint on both reservoirs: (1) in the silicate Earth, in terms of siderophile trace-element (Ni, Co, V, Cr, among others) concentrations and isotopic fractionation (Si, Cu, among others), a record that is observed in present-day mantle rocks; and (2) on the core, in terms of major element composition and light elements dissolved in the metal, a record that is observed by seismology through the core density-deficit. This imprint constitutes actually a fairly impressive set of evidence (siderophile element concentration and fractionation, volatile and siderophile element isotopic fractionation), can be used today to trace back the primordial processes that occurred 4.5 billion years ago. We are seeking to provide an overhaul of the standard core formation/composition models, by using a new rationale that bridges geophysics and geochemistry. The new ingredients are (1) new laser-heated diamond anvil cell partitioning data, dramatically extending the previous P-T conditions for experimental work, (2) ab initio molecular dynamics calculations to

  18. Multi-dimensional structure of accreting young stars

    Science.gov (United States)

    Geroux, C.; Baraffe, I.; Viallet, M.; Goffrey, T.; Pratt, J.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.

    2016-04-01

    This work is the first attempt to describe the multi-dimensional structure of accreting young stars based on fully compressible time implicit multi-dimensional hydrodynamics simulations. One major motivation is to analyse the validity of accretion treatment used in previous 1D stellar evolution studies. We analyse the effect of accretion on the structure of a realistic stellar model of the young Sun. Our work is inspired by the numerical work of Kley & Lin (1996, ApJ, 461, 933) devoted to the structure of the boundary layer in accretion disks, which provides the outer boundary conditions for our simulations. We analyse the redistribution of accreted material with a range of values of specific entropy relative to the bulk specific entropy of the material in the accreting object's convective envelope. Low specific entropy accreted material characterises the so-called cold accretion process, whereas high specific entropy is relevant to hot accretion. A primary goal is to understand whether and how accreted energy deposited onto a stellar surface is redistributed in the interior. This study focusses on the high accretion rates characteristic of FU Ori systems. We find that the highest entropy cases produce a distinctive behaviour in the mass redistribution, rms velocities, and enthalpy flux in the convective envelope. This change in behaviour is characterised by the formation of a hot layer on the surface of the accreting object, which tends to suppress convection in the envelope. We analyse the long-term effect of such a hot buffer zone on the structure and evolution of the accreting object with 1D stellar evolution calculations. We study the relevance of the assumption of redistribution of accreted energy into the stellar interior used in the literature. We compare results obtained with the latter treatment and those obtained with a more physical accretion boundary condition based on the formation of a hot surface layer suggested by present multi

  19. Stellar and quasar feedback in concert: effects on AGN accretion, obscuration, and outflows

    Science.gov (United States)

    Hopkins, Philip F.; Torrey, Paul; Faucher-Giguère, Claude-André; Quataert, Eliot; Murray, Norman

    2016-05-01

    We study the interaction of feedback from active galactic nuclei (AGN) and a multiphase interstellar medium (ISM), in simulations including explicit stellar feedback, multiphase cooling, accretion-disc winds, and Compton heating. We examine radii ˜0.1-100 pc around a black hole (BH), where the accretion rate on to the BH is determined and where AGN-powered winds and radiation couple to the ISM. We conclude: (1) the BH accretion rate is determined by exchange of angular momentum between gas and stars in gravitational instabilities. This produces accretion rates ˜0.03-1 M⊙ yr-1, sufficient to power luminous AGN. (2) The gas disc in the galactic nucleus undergoes an initial burst of star formation followed by several million years where stellar feedback suppresses the star formation rate (SFR). (3) AGN winds injected at small radii with momentum fluxes ˜LAGN/c couple efficiently to the ISM and have dramatic effects on ISM properties within ˜100 pc. AGN winds suppress the nuclear SFR by factors ˜10-30 and BH accretion rate by factors ˜3-30. They increase the outflow rate from the nucleus by factors ˜10, consistent with observational evidence for galaxy-scale AGN-driven outflows. (4) With AGN feedback, the predicted column density distribution to the BH is consistent with observations. Absent AGN feedback, the BH is isotropically obscured and there are not enough optically thin sightlines to explain type-I AGN. A `torus-like' geometry arises self-consistently as AGN feedback evacuates gas in polar regions.

  20. Phantom Accretion onto the Schwarzschild de-Sitter Black Hole

    Institute of Scientific and Technical Information of China (English)

    M Sharif; G Abbas

    2011-01-01

    We deal with phantom energy accretion onto the Schwarzschild de-Sitter black hole. The energy flux conservation, relativistic Bernoulli equation and mass Bux conservation equation are formulated to discuss the phantom accretion. We discuss the conditions for critical accretion. It is found that the mass of the black hole decreases due to phantom accretion. There exist two critical points which lie in the exterior of horizons (black hole and cosmological horizons). The results for the phantom energy accretion onto the Schwarzschild black hole can be recovered by taking A → 0.%@@ We deal with phantom energy accretion onto the Schwarzschild de-Sitter black hole.The energy flux conserva-tion,relativistic Bernoulli equation and mass flux conservation equation are formulated to discuss the phantom accretion.We discuss the conditions for critical accretion.It is found that the mass of the black hole decreases due to phantom accretion.There exist two critical points which lie in the exterior of horizons(black hole and cosmological horizons).The results for the phantom energy accretion onto the Schwarzschild black hole can be recovered by taking ∧→0.

  1. Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105.

    Science.gov (United States)

    Neilsen, Joseph; Lee, Julia C

    2009-03-26

    Stellar-mass black holes with relativistic jets, also known as microquasars, mimic the behaviour of quasars and active galactic nuclei. Because timescales around stellar-mass black holes are orders of magnitude smaller than those around more distant supermassive black holes, microquasars are ideal nearby 'laboratories' for studying the evolution of accretion disks and jet formation in black-hole systems. Whereas studies of black holes have revealed a complex array of accretion activity, the mechanisms that trigger and suppress jet formation remain a mystery. Here we report the presence of a broad emission line in the faint, hard states and narrow absorption lines in the bright, soft states of the microquasar GRS 1915+105. ('Hard' and 'soft' denote the character of the emitted X-rays.) Because the hard states exhibit prominent radio jets, we argue that the broad emission line arises when the jet illuminates the inner accretion disk. The jet is weak or absent during the soft states, and we show that the absorption lines originate when the powerful radiation field around the black hole drives a hot wind off the accretion disk. Our analysis shows that this wind carries enough mass away from the disk to halt the flow of matter into the radio jet. PMID:19325629

  2. The self-regulated AGN feedback loop: the role of chaotic cold accretion

    CERN Document Server

    Gaspari, M

    2015-01-01

    Supermassive black hole accretion and feedback play central role in the evolution of galaxies, groups, and clusters. I review how AGN feedback is tightly coupled with the formation of multiphase gas and the newly probed chaotic cold accretion (CCA). In a turbulent and heated atmosphere, cold clouds and kpc-scale filaments condense out of the plasma via thermal instability and rain toward the black hole. In the nucleus, the recurrent chaotic collisions between the cold clouds, filaments, and central torus promote angular momentum cancellation or mixing, boosting the accretion rate up to 100 times the Bondi rate. The rapid variability triggers powerful AGN outflows, which quench the cooling flow and star formation without destroying the cool core. The AGN heating stifles the formation of multiphase gas and accretion, the feedback subsides and the hot halo is allowed to cool again, restarting a new cycle. Ultimately, CCA creates a symbiotic link between the black hole and the whole host via a tight self-regulate...

  3. The nuclear accretion in the FR I radio galaxy IC4296 from CHANDRA and VLBA observations

    CERN Document Server

    Pellegrini, S; Comastri, A; Fabbiano, G; Fiore, F; Vignali, C; Morganti, R; Trinchieri, G

    2003-01-01

    A high angular resolution study of the nucleus of the FR I galaxy IC4296 using Chandra ACIS-S and VLBA observations is presented, with the aim of studying the nature of the accretion process. Pointlike and hard X-ray emission is found, well described by a moderately absorbed power law of Gamma=1.48^{+0.42}_{-0.34}; no iron fluorescence line from cold material is detected. The 0.3-10 keV luminosity is 2.4\\times 10^{41} erg/s, that is \\sim 400 times lower than the accretion luminosity resulting from the estimated Bondi mass accretion rate and a radiative efficiency of 10%. On the parsec scale a jet and a counter-jet extend out from a central unresolved ``core'' in the 8.4 GHz image. Their orientation is in good agreement with that of the large scale jets and their bulk speed is relativistic. The parsec scale spectrum is convex over 2-22 GHz. The observed nuclear luminosity is not likely to be reconciled with the accretion luminosity by assuming that Compton thick material surrounds the nucleus. Low radiative ef...

  4. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    CERN Document Server

    Bozzo, E; Feldmeier, A; Falanga, M

    2016-01-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the non-stationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total time scale of several hours), the transition of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the non-stationary wind. Th...

  5. Line Emission from an Accretion Disk around a Black hole Effects of Disk Structure

    CERN Document Server

    Pariev, V I; Pariev, Vladimir I.; Bromley, Benjamin C.

    1998-01-01

    The observed iron K-alpha fluorescence lines in Seyfert-1 galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the line emission. These lines serve as powerful probes for examining the structure of inner regions of accretion disks. Previous studies of line emission have considered geometrically thin disks only, where the gas moves along geodesics in the equatorial plane of a black hole. Here we extend this work to consider effects on line profiles from finite disk thickness, radial accretion flow and turbulence. We adopt the Novikov and Thorne (1973) solution, and find that within this framework, turbulent broadening is the dominant new effect. The most prominent change in the skewed, double-horned line profiles is a substantial reduction in the maximum flux at both red and blue peaks. The effect is most pronounced when the inclination angle is large, and when the accretion rate is high. Thus, the effects discussed here may be important for future detailed model...

  6. Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole

    CERN Document Server

    Tchekhovskoy, Alexander; McKinney, Jonathan C

    2011-01-01

    We describe global, 3D, time-dependent, non-radiative, general-relativistic, magnetohydrodynamic simulations of accreting black holes (BHs). The simulations are designed to transport a large amount of magnetic flux to the center, more than the BH can swallow. The excess magnetic flux remains outside the BH, impedes accretion, and leads to a magnetically arrested disc. We find powerful outflows. For a BH with spin parameter a = 0.5, the efficiency with which the accretion system generates outflowing energy in jets and winds is eta ~ 30%. For a = 0.99, we find eta ~ 140%, which means that more energy flows out of the BH than flows in. Thus, the gravitational mass of the BH decreases with time. This simulation represents an unambiguous demonstration, within an astrophysically plausible scenario, of the extraction of net energy from a spinning BH via the Penrose-Blandford-Znajek mechanism. We suggest that magnetically arrested accretion might explain observations of AGN with apparent eta ~ few x 100%.

  7. Inhomogeneous accretion discs and the soft states of black hole X-ray binaries

    Science.gov (United States)

    Dexter, Jason; Quataert, Eliot

    2012-10-01

    Observations of black hole binaries (BHBs) have established a rich phenomenology of X-ray states. The soft states range from the low variability, accretion disc dominated thermal (TD) state to the higher variability, non-thermal steep power law (SPL) state. The disc component in all states is typically modelled with standard thin disc accretion theory. However, this theory is inconsistent with optical/UV spectral, variability and gravitational microlensing observations of active galactic nuclei (AGNs), the supermassive analogues of BHBs. An inhomogeneous disc (ID) model with large (≃0.4 dex) temperature fluctuations in each radial annulus can qualitatively explain all of these AGN observations. The inhomogeneity may be a consequence of instabilities in radiation-dominated discs, and therefore may be present in BHBs as well. We show that ID models can explain many features of the TD and SPL states of BHBs. The observed relationships between spectral hardness, disc fraction and rms variability amplitude in BHBs are reproduced with temperature fluctuations similar to those inferred in AGNs, suggesting a unified picture of luminous accretion discs across orders of magnitude in black hole mass. This picture can be tested with spectral fitting of ID models, X-ray polarization observations and radiation magnetohydrodynamic simulations. If BHB accretion discs are indeed inhomogeneous, only the most disc-dominated states (disc fraction ≳0.95) can be used to robustly infer black hole spin using current continuum fitting methods.

  8. Looking into the Theory of Pulsar Accretion: Cen X-3 and XTE J1946+274

    CERN Document Server

    Marcu, Diana M; Gottlieb, Amy M; Wolff, Michael T; Becker, Peter A; Wilms, Joern; Ferrigno, Carlo; Wood, Kent S

    2015-01-01

    This is an overview of pulsar accretion modeling. The physics of pulsar accretion, i.e., the process of plasma flow onto the neutron star surface, can be constrained from the spectral properties of the X-ray source. We discuss a new implementation of the physical continuum model developed by Becker and Wolff (2007, ApJ 654, 435). The model incorporates Comptonized blackbody, bremsstrahlung, and cyclotron emission. We discuss preliminary results of applying the new tool to the test cases of Suzaku data of Cen X-3 and XTE J1946+274. Cen X-3 is a persistent accreting pulsar with an O-star companion observed during a bright period. XTE J1946+274 is a transient accreting pulsar with a Be companion observed during a dim period. Both sources show spectra that are well described with an empirical Fermi Dirac cutoff power law model. We extend the spectral analysis by making the first steps towards a physical description of Cen X-3 and XTE J1946+274.

  9. The role of Compton heating on radiation-regulated accretion on to black holes

    CERN Document Server

    Park, KwangHo; Di Matteo, Tiziana; Reynolds, Christopher S

    2014-01-01

    We investigate the role of Compton heating in radiation-regulated accretion on to black holes from a neutral dense medium using 1D radiation-hydrodynamic simulations. We focus on the relative effects of Compton-heating and photo-heating as a function of the spectral slope {\\alpha}, assuming a power-law spectrum in the energy range of 13.6 eV--100 keV. While Compton heating is dominant only close to the black hole, it can reduce the accretion rate to 0.1 % ($l \\propto \\dot{m}^2$ model)--0.01 % ($l \\propto \\dot{m}$ model) of the Bondi accretion rate when the BH radiation is hard ({\\alpha} ~ 1), where $l$ and $\\dot{m}$ are the luminosity and accretion rate normalised by Eddington rates, respectively. The oscillatory behaviour otherwise typically seen in simulations with {\\alpha} > 1, become suppressed when {\\alpha} ~ 1 only for the $l \\propto \\dot{m}$ model. The relative importance of the Compton heating over photo-heating decreases and the oscillatory behaviour becomes stronger as the spectrum softens. When the...

  10. The Ultraviolet/optical variability of steep-spectrum radio quasars: the change in accretion rate ?

    OpenAIRE

    Gu, Minfeng; Li, Shuang-Liang

    2013-01-01

    Context. The steep-spectrum radio quasars (SSRQs) are powerful radio sources, with thermal emission from accretion disk and jet nonthermal emission likely both contributing in the Ultraviolet (UV)/optical luminosity, however the former may play a dominant role. While the UV/optical variability of SSRQs has been poorly studied, little is known on the mechanism of their variability. Aims. We investigate the mechanism of the UV/optical variability of SSRQs. Methods. A sample of eighteen SSRQs ha...

  11. Hyper-accreting black hole as GRB central engine. I: Baryon loading in GRB jets

    OpenAIRE

    Lei, Wei-Hua; Zhang, Bing; Liang, En-Wei

    2012-01-01

    A hyper-accreting stellar-mass black hole has been long speculated as the best candidate of central engine of gamma-ray bursts (GRBs). Recent rich observations of GRBs by space missions such as Swift and Fermi pose new constraints on GRB central engine models. In this paper, we study the baryon loading processes of a GRB jet launched from a black hole central engine. We consider a relativistic jet powered by $\

  12. Convection in radiatively inefficient black hole accretion flows

    CERN Document Server

    Igumenshchev, I V; Igumenshchev, Igor V.; Abramowicz, Marek Artur

    2001-01-01

    Recent numerical simulations of radiatively inefficient accretion flows onto compact objects have shown that convection is a general feature in such flows. Dissipation of rotational and gravitational energies in the accretion flows results in inward increase of entropy and development of efficient convective motions. Convection-dominated accretion flows (CDAFs) have a structure that is modified significantly in comparison with the canonical advection-dominated and Bondi-like accretion flows. The flows are characterized by the flattened radial density profiles, ~R^{-1/2}, and have reduced mass accretion rates. Convection transports outward a significant amount of the released binding energy of the accretion flow. We discuss basic dynamical and observational properties of ADAFs using numerical models and self-similar analytical solutions.

  13. Cold Accretion from the Cosmic Web

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    The cosmic web is a vast, foam-like network of filaments and voids stretching throughout the universe. How did the first galaxies form within the cosmic web, at the intersections of filaments? New observations of a protodisk a galaxy in the early stages of formation may provide a clue.Models for Galaxy FormationNarrowband image of the candidate protodisk (marked with a white ellipse) and filaments (outlined in white). [Adapted from Martin et al. 2016]The standard model for galaxy formation, known as the hot accretion model, argues that galaxies form out of collapsing, virialized gas that forms a hot halo and then slowly cools, fueling star and galaxy formation at its center.But what if galaxies are actually formed from cool gas? In this contrasting picture, the cold accretion model, cool (temperature of ~104 K) unshocked gas from cosmic web filaments flows directly onto galactic disks forming at the filamentary intersections. The narrow streams of cold gas deliver fuel for star formation.A signature of the cold accretion model is that the streams of cold gas form a disk as the gas spirals inward, sinking toward the central protogalaxy. Detecting these cold-flow disks could be strong evidence in support of this model and last year, a team of authors reported just such a detection! This year theyre back again with a second object that may provide confirmation of cold accretion from the cosmic web.A Candidate ProtodiskThe team, led by Christopher Martin (California Institute of Technology), made the discovery using the Palomar Cosmic Web Imager, an instrument designed to observe faint emission from the intergalactic medium. Martin and collaborators found a large (R 100 kpc, more than six times the radius of the Milky Way), rotating structure of hydrogen gas, illuminated by the nearby quasi-stellar object QSO HS1549+1919. The system is located at a redshift of z~2.8.The authors testthree potential kinematic models of the candidate protodisk and filaments. In (a) two

  14. The Fundamental Plane of Accretion Onto Black Holes with Dynamical Masses

    CERN Document Server

    Gultekin, Kayhan; Miller, Jon M; Di Matteo, Tiziana; Markoff, Sera; Richstone, Douglas O; Rupen, Michael

    2009-01-01

    Black hole accretion and jet production are areas of intensive study in astrophysics. Recent work has found a relation between radio luminosity, X-ray luminosity, and black hole mass. With the assumption that radio and X-ray luminosity are suitable proxies for jet power and accretion power, respectively, a broad fundamental connection between accretion and jet production is implied. In an effort to refine these links and enhance their power, we have explored the above relations exclusively among black holes with direct, dynamical mass-measurements. This approach not only eliminates systematic errors incurred through the use of secondary mass measurements, but also effectively restricts the range of distances considered to a volume-limited sample. Further, we have exclusively used archival data from the Chandra X-ray Observatory to best isolate nuclear sources. We find log(L_R) = (4.03 +/- 0.22) + (0.78 +/- 0.24) log(M_BH) + (0.68 +/- 0.11) log(L_X), in broad agreement with prior efforts. Owing to the nature o...

  15. Wind from black hole accretion disk as the driver of a molecular outflow in a galaxy

    CERN Document Server

    Tombesi, F; Veilleux, S; Reeves, J N; Gonzalez-Alfonso, E; Reynolds, C S

    2015-01-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. Recent observations of large-scale molecular outflows in ultra-luminous infrared galaxies (ULIRGs) have provided the evidence to support these studies, as they directly trace the gas out of which stars form. Theoretical models suggest an origin of these outflows as energy-conserving flows driven by fast AGN accretion disk winds. Previous claims of a connection between large-scale molecular outflows and AGN activity in ULIRGs were incomplete because they were lacking the detection of the putative inner wind. Conversely, studies of powerful AGN accretion disk winds to date have focused only on X-ray observations of local Seyferts and a few higher redshift quasars. Here we show the clear detection of a powerful AGN accretion disk wind with a mildly relativistic ...

  16. The Photoionized Accretion Disk in Her X-1

    Science.gov (United States)

    Ji, L.; Schulz, N.; Nowak, M.; Marshall, H. L.; Kallman, T.

    2009-08-01

    We present an analysis of several high-resolution Chandra grating observations of the X-ray binary pulsar Her X-1. With a total exposure of 170 ks, the observations are separated by years and cover three combinations of orbital and superorbital phases. Our goal is to determine distinct properties of the photoionized emission and its dependence on phase-dependent variations of the continuum. We find that the continua can be described by a partial covering model which above 2 keV is consistent with recent results from Rossi X-Ray Timing Explorer studies and at low energies is consistent with recent XMM-Newton and BeppoSAX studies. Besides a power law with fixed index, an additional thermal blackbody of 114 eV is required to fit wavelengths above 12 Å (~1 keV). We find that likely all the variability is caused by highly variable absorption columns in the range (1-3) × 1023 cm-2. Strong Fe K line fluorescence in almost all observations reveals that dense, cool material is present not only in the outer regions of the disk but interspersed throughout the disk. Most spectra show strong line emission stemming from a photoionized accretion disk corona (ADC). We model the line emission with generic thermal plasma models as well as with the photoionization code XSTAR and investigate changes of the ionization balance with orbital and superorbital phases. Most accretion disk coronal properties such as disk radii, temperatures, and plasma densities are consistent with previous findings for the low state. We find that these properties change negligibly with respect to orbital and superorbital phases. A couple of the higher energy lines exhibit emissivities that are significantly in excess of expectations from a static ADC.

  17. THE PHOTOIONIZED ACCRETION DISK IN HER X-1

    International Nuclear Information System (INIS)

    We present an analysis of several high-resolution Chandra grating observations of the X-ray binary pulsar Her X-1. With a total exposure of 170 ks, the observations are separated by years and cover three combinations of orbital and superorbital phases. Our goal is to determine distinct properties of the photoionized emission and its dependence on phase-dependent variations of the continuum. We find that the continua can be described by a partial covering model which above 2 keV is consistent with recent results from Rossi X-Ray Timing Explorer studies and at low energies is consistent with recent XMM-Newton and BeppoSAX studies. Besides a power law with fixed index, an additional thermal blackbody of 114 eV is required to fit wavelengths above 12 A (∼1 keV). We find that likely all the variability is caused by highly variable absorption columns in the range (1-3) x 1023 cm-2. Strong Fe K line fluorescence in almost all observations reveals that dense, cool material is present not only in the outer regions of the disk but interspersed throughout the disk. Most spectra show strong line emission stemming from a photoionized accretion disk corona (ADC). We model the line emission with generic thermal plasma models as well as with the photoionization code XSTAR and investigate changes of the ionization balance with orbital and superorbital phases. Most accretion disk coronal properties such as disk radii, temperatures, and plasma densities are consistent with previous findings for the low state. We find that these properties change negligibly with respect to orbital and superorbital phases. A couple of the higher energy lines exhibit emissivities that are significantly in excess of expectations from a static ADC.

  18. Dynamical structure of magnetized dissipative accretion flow around black holes

    OpenAIRE

    Sarkar, Biplob; Das, Santabrata

    2016-01-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion t...

  19. Stability properties of an isothermal accretion disk

    International Nuclear Information System (INIS)

    A local stability analysis of an isothermal, transonic accretion disk around a non-rotating black hole is used to infer the time-dependent behaviour of linear perturbations. The three modes in the problem are one viscous Lightman-Eardley mode, which is always stable, and two acoustic modes, which are always overstable. If the growth rate is required to be greater than the escape rate, then the acoustic modes become stable in the outer region, and unstable in the innermost region, if the viscosity parameter α is greater than 0.5. (orig.)

  20. Alfvenic Heating of Protostellar Accretion Disks

    OpenAIRE

    Vasconcelos, M. J.; Jatenco-Pereira, V.; R. Opher

    1999-01-01

    We investigate the effects of heating generated by damping of Alfven waves on protostellar accretion disks. Two mechanisms of damping are investigated, nonlinear and turbulent, which were previously studied in stellar winds (Jatenco-Pereira & Opher 1989a, b). For the nominal values studied, f=delta v/v_{A}=0.002 and F=varpi/Omega_{i}=0.1, where delta v, v_{A} and varpi are the amplitude, velocity and average frequency of the Alfven wave, respectively, and Omega_{i} is the ion cyclotron freque...

  1. Analytical models of relativistic accretion disks

    CERN Document Server

    Zhuravlev, Viacheslav V

    2015-01-01

    We present not a literature review but a description, as detailed and consistent as possible, of two analytic models of disk accretion onto a rotating black hole: a standard relativistic disk and a twisted relativistic disk. Although one of these models is much older than the other, both are of topical current interest for black hole studies. The way the exposition is presented, the reader with only a limited knowledge of general relativity and relativistic hydrodynamics can --- with little or no use of additional sources -- gain good insight into many technical details lacking in the original papers.

  2. Accretion rates and accretion tracers of Herbig Ae/Be stars

    CERN Document Server

    Mendigutía, I; Montesinos, B; Mora, A; Muzerolle, J; Eiroa, C; Oudmaijer, R D; Merín, B

    2011-01-01

    This work aims to derive accretion rates for a sample of 38 HAeBe stars. We apply magnetospheric accretion (MA) shock modelling to reproduce the observed Balmer excesses. We look for possible correlations with the strength of the Halpha, [OI]6300, and Brgamma emission lines. The median mass accretion rate is 2 x 10^-7 Msun yr^-1 in our sample. The model fails to reproduce the large Balmer excesses shown by the four hottest stars (T* > 12000 K). We derive Macc propto M*^5 and Lacc propto L*^1.2 for our sample, with scatter. Empirical calibrations relating the accretion and the Halpha, [OI]6300, and Brgamma luminosities are provided. The slopes in our expressions are slightly shallower than those for lower mass stars, but the difference is within the uncertainties, except for the [OI]6300 line. The Halpha 10% width is uncorrelated with Macc, unlike for the lower mass regime. The mean Halpha width shows higher values as the projected rotational velocities of HAe stars increase, which agrees with MA. The accretio...

  3. Deceleration Effect of Magnetic Field on Black Hole Accretion Disks

    Institute of Scientific and Technical Information of China (English)

    WANG Ding-Xiong

    2000-01-01

    The deceleration effect of magnetic field near the horizon of a spinning black hole (BH) of accretion disk is investigated in the Blandford-Znajek (BZ) process. It is shown that rates of change with respect to time for both the angular velocities of BH horizon and accreting particles at the inner edge of an accretion disk are reduced in the BZ process, behaving with non-monotonous evolution characteristics. This result implies that the magnetic field near the BH horizon has & deceleration effect not only on the spinning BH but also on the surrounding accretion disk.

  4. Accretion and evaporation of modified Hayward black hole

    International Nuclear Information System (INIS)

    We assume the most general static spherically symmetric black hole metric. The accretion of any general kind of fluid flow around the black hole is investigated. The accretion of the fluid flow around the modified Hayward black hole is analyzed, and we then calculate the critical point, the fluid's four-velocity, and the velocity of sound during the accretion process. Also the nature of the dynamical mass of the black hole during accretion of the fluid flow, taking into consideration Hawking radiation from the black hole, i.e., evaporation of the black hole, is analyzed. (orig.)

  5. Accretion and evaporation of modified Hayward black hole

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, Ujjal [Indian Institute of Engineering Science and Technology, Department of Mathematics, Howrah (India)

    2015-03-01

    We assume the most general static spherically symmetric black hole metric. The accretion of any general kind of fluid flow around the black hole is investigated. The accretion of the fluid flow around the modified Hayward black hole is analyzed, and we then calculate the critical point, the fluid's four-velocity, and the velocity of sound during the accretion process. Also the nature of the dynamical mass of the black hole during accretion of the fluid flow, taking into consideration Hawking radiation from the black hole, i.e., evaporation of the black hole, is analyzed. (orig.)

  6. Waves and Instabilities in Accretion Disks MHD Spectroscopic Analysis

    CERN Document Server

    Keppens, R; Goedbloed, J P

    2002-01-01

    A complete analytical and numerical treatment of all magnetohydrodynamic waves and instabilities for radially stratified, magnetized accretion disks is presented. The instabilities are a possible source of anomalous transport. While recovering results on known hydrodynamicand both weak- and strong-field magnetohydrodynamic perturbations, the full magnetohydrodynamic spectra for a realistic accretion disk model demonstrates a much richer variety of instabilities accessible to the plasma than previously realized. We show that both weakly and strongly magnetized accretion disks are prone to strong non-axisymmetric instabilities.The ability to characterize all waves arising in accretion disks holds great promise for magnetohydrodynamic spectroscopic analysis.

  7. Accretion onto a charged higher-dimensional black hole

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Iftikhar, Sehrish [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  8. Accretion Onto a Charged Higher-Dimensional Black Hole

    CERN Document Server

    Sharif, M

    2016-01-01

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstr$\\ddot{o}$m black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding critical radius, critical sound velocity and critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for Schwarzschild black hole are recovered when $q=0$ in four dimensions. We conclude that accretion process in higher dimensions becomes slower in the presence of charge.

  9. Convection-Dominated Accretion Flows with Radiative Cooling

    Institute of Scientific and Technical Information of China (English)

    LI Shuang-Liang; XUE Li; LU Ju-Fu

    2007-01-01

    @@ By numerically solving the set of basic equations describing black hole accretion flows with low accretion rates,we show that although the dynamical structure of these flows is essentially unaffected by radiative processes in comparison with the case in which the radiation is not considered, the radiative cooling can be more important than the advective cooling in the flow's convection-dominated zone, and this result may have implications to distinguish observationally convection-dominated accretion flows from advection-dominated accretion flows.

  10. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    Science.gov (United States)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of

  11. Discovery of an Accretion-Fed Corona in an Accreting Young Star

    Science.gov (United States)

    Wolk, Scott J.; Brickhouse, N.; Cranmer, S.; Dupree, A.; Luna, G. J. M.

    2010-01-01

    A deep (489 ks) Chandra High Energy Transmission Grating spectrum of the classical T Tauri star TW Hydrae shows a new type of coronal structure that is produced by the accretion process. In the standard model for a stellar dipole, the magnetic field truncates the disk and channels the accreting material onto the star. The He-like diagnostic lines of Ne IX provide excellent agreement with the shock conditions predicted by this model, with an electron temperature of 2.5 MK and electron density of 3 times 1012 cm-3 (see also Kastner et al. 2002). However, the standard model completely fails to predict the post-shock conditions, significantly overpredicting both the density and absorption observed at O VII. Instead the observations require a second "post-shock" component with 30 times more mass and 1000 times larger volume than found at the shock itself. We note that in the standard model, the shocked plasma is conveniently located near both closed (coronal) and open (stellar wind) magnetic structures, as the magnetic field connecting the star and disk also separates the open and closed field regions on the stellar surface. The shocked plasma thus can provide the energy to heat not only the post-shock plasma, but also adjacent regions (i.e. an "accretion-fed corona") and drive stellar material into surrounding coronal structures. These observations provide new clues to the puzzling soft X-ray excess found in accreting systems, which depends on both the presence of accretion and the level of coronal activity (Guedel and Telleschi 2007). This work is partially supported by CXO grant G07-8018X.

  12. Accretion Disk Signatures in Type I X-Ray Bursts: Prospects for Future Missions

    Science.gov (United States)

    Keek, L.; Wolf, Z.; Ballantyne, D. R.

    2016-07-01

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, Neutron Star Interior Composition Explorer (NICER), Athena, and Large Observatory For X-ray Timing (LOFT). Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes ≳10-7.5 erg cm-2 s-1 and also effectively constrain the reflection parameters for bright bursts with fluxes of ˜10-7 erg cm-2 s-1 in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.

  13. On the effect of injection of gas in the numerical simulation of accretion flows

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We investigate the effects of various ways of injection of gas at the outer boundary in the numerical simulations of non-viscous accretion flows.We study three models.In Model A,we inject material around the equatorial plane.In Models B and C,fullrange θ injection is used(we employ spherical coordinates).In all three models,the injected material has the same density distribution with polar angle θ.From the equatorial region to the polar regions,angular momentum of the injected material of Model B decreases faster than that in Model C.For all of the models,after a transient episode of infall at the beginning of the simulations,the gas piles up in the equatorial regions outside the black hole and forms a thick torus bounded by a centrifugal barrier.We find that the accretion rates of Models B and C are more than ten times higher than that in Model A.In Model A,there is weak accretion only in the torus and outflows are found on the surface of the torus.In Model B,we find strong inflows on the surface of its torus,and the accretion in the torus is weak.In Model C,strong inflows also occur on the surface of its torus,but the accretion regions are narrower and there are strong outflows in its torus.In all of our models,the time-averaged density,pressure and angular momentum in the equatorial region can be described by a radial power law,with P ∝r-3/2,P ∝r-2 and l∝r0.

  14. Broken discs: warp propagation in accretion discs

    Science.gov (United States)

    Nixon, Christopher J.; King, Andrew R.

    2012-04-01

    We simulate the viscous evolution of an accretion disc around a spinning black hole. In general, any such disc is misaligned, and warped by the Lense-Thirring effect. Unlike previous studies, we use effective viscosities constrained to be consistent with the internal fluid dynamics of the disc. We find that non-linear fluid effects, which reduce the effective viscosities in warped regions, can promote breaking of the disc into two distinct planes. This occurs when the Shakura & Sunyaev dimensionless viscosity parameter α is ≲0.3 and the initial angle of misalignment between the disc and hole is ≳45°. The break can be a long-lived feature, propagating outwards in the disc on the usual alignment time-scale, after which the disc is fully co-aligned or counter-aligned with the hole. Such a break in the disc may be significant in systems where we know the inclination of the outer accretion disc to the line of sight, such as some X-ray binaries: the inner disc, and so any jets, may be noticeably misaligned with respect to the orbital plane.

  15. Seismology of Rapidly Rotating Accreting White Dwarfs

    CERN Document Server

    Townsley, Dean M; Bildsten, Lars

    2016-01-01

    A number of White Dwarfs (WDs) in cataclysmic binaries have shown brightness variations consistent with non-radial oscillations as observed in isolated WDs. A few objects have been well-characterized with photometric campaigns in the hopes of gleaning information about the mass, spin, and possibly internal structural characteristics. The novel aspect of this work is the possiblity to measure or constrain the interior structure and spin rate of WDs which have spent gigayears accreting material from their companion, undergoing thousands of nova outbursts in the process. In addition, variations in the surface temperature affect the site of mode driving, and provide unique and challenging tests for mode driving theories previously applied to isolated WD's. Having undergone long-term accretion, these WDs are expected to have been spun up. Spin periods in the range 60-100 seconds have been measured by other means for two objects, GW Lib and V455 And. Compared to typical mode frequencies, the spin frequency may be s...

  16. Modeling quasar accretion disc temperature profiles

    CERN Document Server

    Hall, Patrick B; Chajet, L S; Weiss, E; Nixon, C J

    2013-01-01

    Microlensing observations indicate that quasar accretion discs have half-light radii larger than expected from standard theoretical predictions based on quasar fluxes or black hole masses. Blackburne and colleagues have also found a very weak wavelength dependence of these half-light radii. We consider disc temperature profile models that might match these observations. Nixon and colleagues have suggested that misaligned accretion discs around spinning black holes will be disrupted at radii small enough for the Lense-Thirring torque to overcome the disc's viscous torque. Gas in precessing annuli torn off a disc will spread radially and intersect with the remaining disc, heating the disc at potentially large radii. However, if the intersection occurs at an angle of more than a degree or so, highly supersonic collisions will shock-heat the gas to a Compton temperature of T~10^7 K, and the spectral energy distributions (SEDs) of discs with such shock-heated regions are poor fits to observations of quasar SEDs. T...

  17. Magnetic fields in primordial accretion disks

    CERN Document Server

    Latif, Muhammad A

    2016-01-01

    Magnetic fields are considered as a vital ingredient of contemporary star formation, and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations, and are subsequently amplified by the small-scale dynamo, leading to a strong tangled magnetic field. Here we explore how the magnetic field provided by the small-scale dynamo is further amplified via the $\\alpha-\\Omega$ dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop.~III star with $10$~M$_\\odot$ and an accretion rate of $10^{-3}$~M$_\\odot$~yr$^{-1}$, and a supermassive star with $10^5$~M$_\\odot$ and an accretion rate of $10^{-1}$~M$_\\odot$~yr$^{-1}$. For the $10$~M$_\\odot$ Pop.~III star, we find that coherent magnetic fields can be produced on scales of at least $100$~AU, which are sufficient to drive a jet with a luminosity of $100$~L$_\\odot$ and a mass outflow ra...

  18. NUMERICAL SIMULATION OF ICE ACCRETION ON AIRFOIL

    Directory of Open Access Journals (Sweden)

    Nicusor ALEXANDRESCU

    2009-09-01

    Full Text Available This work consists in the simulation of the ice accretion in the leading edge of aerodynamic profiles and our proposed model encompasses: geometry generation, calculation of the potential flow around the body, boundary layer thickness computation, water droplet trajectory computation, heat and mass balances and the consequent modification of the geometry by the ice growth. The flow calculation is realized with panel methods, using only segments defined over the body contour. The viscous effects are considered using the Karman-Pohlhausen method for the laminar boundary layer. The local heat transfer coefficient is obtained by applying the Smith-Spalding method for the thermal boundary layer. The ice accretion limits and the collection efficiency are determined by computing water droplet trajectories impinging the surface. The heat transfer process is analyzed with an energy and a mass balance in each segment defining the body. Finally, the geometry is modified by the addition of the computed ice thickness to the respective panel. The process by repeating all the steps. The model validation is done using a selection of problems with experimental solution, CIRA (the CESAR project. Hereinafter, results are obtained for different aerodynamic profiles, angles of attack and meteorological parameters

  19. Accretion, Outflows, and Winds of Magnetized Stars

    CERN Document Server

    Romanova, M M

    2016-01-01

    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars...

  20. A Wind Accretion Model for HLX-1

    CERN Document Server

    Miller, M Coleman; Maccarone, Thomas J

    2014-01-01

    The brightest ultraluminous X-ray source currently known, HLX-1, has been observed to undergo five outburst cycles. The periodicity of these outbursts, and their high inferred maximum accretion rates of $\\sim{\\rm few}\\times 10^{-4} M_\\odot {\\rm yr}^{-1}$, naturally suggest Roche lobe overflow at the pericenter of an eccentric orbit. It is, however, difficult for the Roche lobe overflow model to explain the apparent trend of decreasing decay times over the different outbursts while the integrated luminosity also drops. Thus if the trend is real rather than simply being a reflection of the complex physics of accretion disks, a different scenario may be necessary. We present a speculative model in which, within the last decade, a high-mass giant star had most of its envelope tidally stripped by the $\\sim 10^{4-5} M_\\odot$ black hole in HLX-1, and the remaining core plus low-mass hydrogen envelope now feeds the hole with a strong wind. This model can explain the short decay time of the disk, and could explain the...

  1. Spiral waves in accretion discs - observations

    CERN Document Server

    Steeghs, D

    2000-01-01

    I review the observational evidence for spiral structure in the accretion discs of cataclysmic variables (CVs). Doppler tomography is ideally suited to resolve and map such co-rotating patterns and allows a straightforward comparison with theory. The dwarf nova IP Pegasi presents the best studied case, carrying two spiral arms in a wide range of emission lines throughout its outbursts. Both arms appear at the locations where tidally driven spiral waves are expected, with the arm closest to the gas stream weaker in the lines compared to the arm closest to the companion. Eclipse data indicates sub-Keplerian velocities in the outer disc. The dramatic disc structure changes in dwarf novae on timescales of days to weeks, provide unique opportunities for our understanding of angular momentum transport and the role of density waves on the structure of accretion discs. I present an extension to the Doppler tomography technique that relaxes one of the basic assumptions of tomography, and is able to map modulated emiss...

  2. Formation of redbacks via accretion induced collapse

    CERN Document Server

    Smedley, Sarah L; Ferrario, Lilia; Wickramasinghe, Dayal T

    2014-01-01

    We examine the growing class of binary millisecond pulsars known as redbacks. In these systems the pulsar's companion has a mass between 0.1 and about 0.5 solar masses in an orbital period of less than 1.5 days. All show extended radio eclipses associated with circumbinary material. They do not lie on the period-companion mass relation expected from the canonical intermediate-mass X-ray binary evolution in which the companion filled its Roche lobe as a red giant and has now lost its envelope and cooled as a white dwarf. The redbacks lie closer to, but usually at higher period than, the period-companion mass relation followed by cataclysmic variables and low-mass X-ray binaries. In order to turn on as a pulsar mass accretion on to a neutron star must be sufficiently weak, considerably weaker than expected in systems with low-mass main-sequence companions driven together by magnetic braking or gravitational radiation. If a neutron star is formed by accretion induced collapse of a white dwarf as it approaches th...

  3. Magnetic fields in primordial accretion disks

    Science.gov (United States)

    Latif, M. A.; Schleicher, D. R. G.

    2016-01-01

    Magnetic fields are considered a vital ingredient of contemporary star formation and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations and are subsequently amplified by the small-scale dynamo, leading to a strong, tangled magnetic field. We explore how the magnetic field provided by the small-scale dynamo is further amplified via the α-Ω dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop. III star with 10M⊙ and an accretion rate of 10-3M⊙ yr-1, and a supermassive star with 105M⊙ and an accretion rate of 10-1M⊙ yr-1. For the 10M⊙ Pop. III star, we find that coherent magnetic fields can be produced on scales of at least 100 AU, which are sufficient to drive a jet with a luminosity of 100L⊙ and a mass outflow rate of 10-3.7M⊙ yr-1. For the supermassive star, the dynamical timescales in its environment are even shorter, implying smaller orbital timescales and an efficient magnetization out to at least 1000 AU. The jet luminosity corresponds to ~106.0L⊙ and a mass outflow rate of 10-2.1M⊙ yr-1. We expect that the feedback from the supermassive star can have a relevant impact on its host galaxy.

  4. Quantifying Rapid Variability in Accreting Compact Objects

    CERN Document Server

    Van der Klis, M

    1997-01-01

    I discuss some practical aspects of the analysis of millisecond time variability X-ray data obtained from accreting neutron stars and black holes. First I give an account of the statistical methods that are at present commonly applied in this field. These are mostly based on Fourier techniques. To a large extent these methods work well: they give astronomers the answers they need. Then I discuss a number of statistical questions that astronomers don't really know how to solve properly and that statisticians may have ideas about. These questions have to do with the highest and the lowest frequency ranges accessible in the Fourier analysis: how do you determine the shortest time scale present in the variability, how do you measure steep low-frequency noise. The point is stressed that in order for any method that resolves these issues to become popular, it is necessary to retain the capabilities the current methods already have in quantifying the complex, concurrent variability processes characteristic of accret...

  5. Sporadically Torqued Accretion Disks Around Black Holes

    CERN Document Server

    Garofalo, D; Garofalo, David; Reynolds, Christopher S.

    2005-01-01

    The assumption that black hole accretion disks possess an untorqued inner boundary, the so-called zero torque boundary condition, has been employed by models of black hole disks for many years. However, recent theoretical and observational work suggests that magnetic forces may appreciably torque the inner disk. This raises the question of the effect that a time-changing magnetic torque may have on the evolution of such a disk. In particular, we explore the suggestion that the ``Deep Minimum State'' of the Seyfert galaxy MCG--6-30-15 can be identified as a sporadic inner disk torquing event. This suggestion is motivated by detailed analyses of changes in the profile of the broad fluorescence iron line in XMM-Newton spectra. We find that the response of such a disk to a torquing event has two phases; an initial damming of the accretion flow together with a partial draining of the disk interior to the torque location, followed by a replenishment of the inner disk as the system achieves a new (torqued) steady-st...

  6. The Chaotic Light Curves of Accreting Black Holes

    Science.gov (United States)

    Kazanas, Demosthenes

    2007-01-01

    We present model light curves for accreting Black Hole Candidates (BHC) based on a recently developed model of these sources. According to this model, the observed light curves and aperiodic variability of BHC are due to a series of soft photon injections at random (Poisson) intervals and the stochastic nature of the Comptonization process in converting these soft photons to the observed high energy radiation. The additional assumption of our model is that the Comptonization process takes place in an extended but non-uniform hot plasma corona surrounding the compact object. We compute the corresponding Power Spectral Densities (PSD), autocorrelation functions, time skewness of the light curves and time lags between the light curves of the sources at different photon energies and compare our results to observation. Our model reproduces the observed light curves well, in that it provides good fits to their overall morphology (as manifest by the autocorrelation and time skewness) and also to their PSDs and time lags, by producing most of the variability power at time scales 2 a few seconds, while at the same time allowing for shots of a few msec in duration, in accordance with observation. We suggest that refinement of this type of model along with spectral and phase lag information can be used to probe the structure of this class of high energy sources.

  7. Interference as an origin of the peaked noise in accreting X-ray binaries

    CERN Document Server

    Veledina, Alexandra

    2016-01-01

    We propose a physical model for the peaked noise in the X-ray power density spectra of accreting X-ray binaries. We interpret its appearance as an interference of two Comptonization continua: one coming from the up-scattering of seed photons from the cold thin disk and the other fed by the synchrotron emission of the hot flow. Variations of both X-ray components are caused by fluctuations in mass accretion rate, but there is a delay between them corresponding to the propagation timescale from the disk Comptonization radius to the region of synchrotron Comptonization. If the disk and synchrotron Comptonization are correlated, the humps in the power spectra are harmonically related and the dips between them appear at frequencies related as odd numbers 1:3:5. If they are anti-correlated, the humps are related as 1:3:5, but the dips are harmonically related. Similar structures are expected to be observed in accreting neutron star binaries and supermassive black holes. The delay can be easily recovered from the fr...

  8. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    Science.gov (United States)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2012-01-01

    We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  9. Quasi-static model of collimated jets and radio lobes. I. Accretion disk and jets

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, Stirling A.; Li, Hui [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fowler, T. Kenneth [University of California, Berkeley, CA 94720 (United States); Pino, Jesse [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2014-07-10

    This is the first of a series of papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetic helix that could explain both the observed radio jet/lobe structures on very large scales and ultimately the enormous power inferred from the observed ultra-high-energy cosmic rays. In this work, we solve a set of one-dimensional equations similar to the steady-state standard accretion disk model, but now including the large-scale magnetic fields giving rises to jets. We find that the frequently made assumption that large-scale fields are frozen into the disk is fundamentally incorrect, due to the necessity for current and the accreting mass to flow perpendicular to magnetic flux surfaces. A correct treatment greatly simplifies the calculations, yielding fields that leave the disk nearly vertically with magnetic profiles uniquely determined by disk angular momentum conservation. Representative solutions of the magnetic fields in different radial regions of the disk surface are given, and they determine the overall key features in the jet structure and its dissipation, which will be the subjects of later papers.

  10. New solution to viscous evolution of accretion disks in binary systems

    CERN Document Server

    Lipunova, G V

    2000-01-01

    Analytical investigation of time-dependent accretion in disks is carried out. We consider a time-dependent disk in a binary system at outburst which has a fixed tidally-truncated outer radius. The standard Shakura-Sunyaev model of the disk is considered. The vertical structure of the disk is accurately described in two regimes of opacity: Thomson and free-free. Fully analytical solutions are obtained, characterized by power-law variations of accretion rate with time. The solutions supply asymptotic description of disk evolution in flaring sources in the periods after outbursts while the disk is fully ionized. The X-ray flux of multicolor (black-body) alpha-disk is obtained as varying quasi-exponentially. Application to X-ray novae is briefly discussed concerning the observed faster-than-power decays of X-ray light curves. The case of time-dependent advective disk when the exponential variations of accretion rate can occur is discussed.

  11. Testing black hole neutrino-dominated accretion discs for long-duration gamma-ray bursts

    CERN Document Server

    Song, Cui-Ying; Gu, Wei-Min; Tian, Jian-Xiang

    2016-01-01

    Long-duration gamma-ray bursts (LGRBs) are generally considered to originate from the massive collapsars. It is believed that the central engine of gamma-ray bursts (GRBs) is a neutrino-dominated accretion flow (NDAF) around a rotating stellar-mass black hole (BH). The neutrino annihilation above the NDAF is a feasible mechanism to power GRB. In this work, we analyse the distributions of the isotropic gamma-ray radiated energy and jet kinetic energy of 48 LGRBs. According to the NDAF and fireball models, we estimate the mean accreted masses of LGRBs in our sample to investigate whether the NDAFs can power LGRBs with the reasonable BH parameters and conversion efficiency of neutrino annihilation. The results indicate that most of the values of the accreted masses are less than $5~M_\\odot$ for the extreme Kerr BHs and high conversion efficiency. It suggests that the NDAFs may be suitable for most of LGRBs except for some extremely high energy sources.

  12. Discovery of the Onset of Rapid Accretion by a Dormant Massive Black Hole

    CERN Document Server

    Burrows, D N; Ghisellini, G; Mangano, V; Zhang, B; Page, K L; Eracleous, M; Romano, P; Sakamoto, T; Falcone, A D; Osborne, J P; Campana, S; Beardmore, A P; Breeveld, A A; Chester, M M; Corbet, R; Covino, S; Cummings, J R; D'Avanzo, P; D'Elia, V; Esposito, P; Evans, P A; Fugazza, D; Gelbord, J M; Hiroi, K; Holland, S T; Huang, K Y; Im, M; Israel, G; Jeon, Y; Jeon, Y -B; Kawai, N; Krimm, H A; Mészáros, P; Negoro, H; Omodei, N; Park, W -K; Perkins, J S; Sugizaki, M; Sung, H -I; Tagliaferri, G; Troja, E; Ueda, Y; Urata, Y; Usui, R; Antonelli, L A; Barthelmy, S D; Cusumano, G; Giommi, P; Marshall, F E; Melandri, A; Perri, M; Racusin, J L; Sbarufatti, B; Siegel, M H; Gehrels, N

    2011-01-01

    Massive black holes are believed to reside at the centres of most galaxies. They can be- come detectable by accretion of matter, either continuously from a large gas reservoir or impulsively from the tidal disruption of a passing star, and conversion of the gravitational energy of the infalling matter to light. Continuous accretion drives Active Galactic Nuclei (AGN), which are known to be variable but have never been observed to turn on or off. Tidal disruption of stars by dormant massive black holes has been inferred indirectly but the on- set of a tidal disruption event has never been observed. Here we report the first discovery of the onset of a relativistic accretion-powered jet in the new extragalactic transient, Swift J164449.3+573451. The behaviour of this new source differs from both theoretical models of tidal disruption events and observations of the jet-dominated AGN known as blazars. These differences may stem from transient effects associated with the onset of a powerful jet. Such an event in th...

  13. Evidence for large temperature fluctuations in quasar accretion disks from spectral variability

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, John J.; Anderson, Scott F.; Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Dexter, Jason, E-mail: jruan@astro.washington.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2014-03-10

    The well-known bluer-when-brighter trend observed in quasar variability is a signature of the complex processes in the accretion disk and can be a probe of the quasar variability mechanism. Using a sample of 604 variable quasars with repeat spectra in the Sloan Digital Sky Survey-I/II (SDSS), we construct difference spectra to investigate the physical causes of this bluer-when-brighter trend. The continuum of our composite difference spectrum is well fit by a power law, with a spectral index in excellent agreement with previous results. We measure the spectral variability relative to the underlying spectra of the quasars, which is independent of any extinction, and compare to model predictions. We show that our SDSS spectral variability results cannot be produced by global accretion rate fluctuations in a thin disk alone. However, we find that a simple model of an inhomogeneous disk with localized temperature fluctuations will produce power-law spectral variability over optical wavelengths. We show that the inhomogeneous disk will provide good fits to our observed spectral variability if the disk has large temperature fluctuations in many independently varying zones, in excellent agreement with independent constraints from quasar microlensing disk sizes, their strong UV spectral continuum, and single-band variability amplitudes. Our results provide an independent constraint on quasar variability models and add to the mounting evidence that quasar accretion disks have large localized temperature fluctuations.

  14. Chaotic and stochastic processes in the accretion flows of the black hole X-ray binaries revealed by recurrence analysis

    CERN Document Server

    Suková, Petra; Janiuk, Agnieszka

    2015-01-01

    The black hole candidates exhibit fast variability of their X-ray emission on a wide range of timescales. The short, coherent variations, with frequencies above 1 Hz, are referred to as quasi-periodic oscillations, and are generally explained by resonant effects in the black hole accretion flow. The purely stochastic variability that occurs due to turbulent conditions in the plasma, is quantified by the power density spectra and appears practically in all types of sources and their spectral states. The specific kind of quasi-periodic flares is expected, when the global structure of the accretion flow, governed by the nonlinear hydrodynamics, induces fluctuations around a fixed point solution. These conditions, which occur at high accretion rates, lead to the variability in the sense of deterministic chaos. We study the nonlinear behaviour of X-ray sources using the recurrence analysis method. We estimate quantitatively the indications for deterministic chaos, such as the Renyi's entropy, for the observed time...

  15. Transient jet formation and state transitions from large-scale magnetic reconnection in black hole accretion discs

    CERN Document Server

    Dexter, Jason; Markoff, Sera; Tchekhovskoy, Alexander

    2013-01-01

    Magnetically arrested accretion discs (MADs), where the magnetic pressure in the inner disc is dynamically important, provide an alternative mechanism for regulating accretion to what is commonly assumed in black hole systems. We show that a global magnetic field inversion in the MAD state can destroy the jet, significantly increase the accretion rate, and move the effective inner disc edge in to the marginally stable orbit. Reconnection of the MAD field in the inner radii launches a new type of transient outflow containing hot plasma generated by magnetic dissipation. This transient outflow can be as powerful as the steady magnetically-dominated Blandford-Znajek jet in the MAD state. The field inversion qualitatively describes many of the observational features associated with the high luminosity hard to soft state transition in black hole X-ray binaries: the jet line, the transient ballistic jet, and the drop in rms variability. These results demonstrate that the magnetic field configuration can influence t...

  16. Outflows from dynamo-active protostellar accretion discs

    CERN Document Server

    Von Rekowski, B; Dobler, W; Shukurov, A M; Brandenburg, Axel; Dobler, Wolfgang; Rekowski, Brigitta von; Shukurov, Anvar

    2003-01-01

    An axisymmetric model of a cool, dynamo-active accretion disc is applied to protostellar discs. Thermally and magnetically driven outflows develop that are not collimated within 0.1 AU. In the presence of a central magnetic field from the protostar, accretion onto the protostar is highly episodic, which is in agreement with earlier work.

  17. The ins and outs of emission from accreting black holes

    NARCIS (Netherlands)

    S. Drappeau

    2013-01-01

    The most extreme physical conditions of space-time in the Universe happen in the vicinity of accreting black holes, which make them the perfect laboratory for testing extreme physics theories. The present thesis investigates accretion processes using radiation as a tracer of the physics occurring ve

  18. Multi-dimensional structure of accreting young stars

    CERN Document Server

    Geroux, C; Viallet, M; Goffrey, T; Pratt, J; Constantino, T; Folini, D; Popov, M V; Walder, R

    2016-01-01

    This work is the first attempt to describe the multi-dimensional structure of accreting young stars based on fully compressible time implicit multi-dimensional hydrodynamics simulations. One major motivation is to analyse the validity of accretion treatment used in previous 1D stellar evolution studies. We analyse the effect of accretion on the structure of a realistic stellar model of the young Sun. Our work is inspired by the numerical work of Kley \\& Lin (1996, ApJ, 461, 933) devoted to the structure of the boundary layer in accretion disks. We analyse the redistribution of accreted material with a range of values of specific entropy relative to the bulk specific entropy of the material in the accreting object's convective envelope. A primary goal is to understand whether and how accreted energy deposited onto a stellar surface is redistributed in the interior. This study focusses on the high accretion rates characteristic of FU Ori systems. We find that the highest entropy cases produce a distinctive ...

  19. X-ray Photoevaporation-starved T Tauri Accretion

    CERN Document Server

    Drake, Jeremy J; Flaccomio, Ettore; Micela, Giusi

    2009-01-01

    X-ray luminosities of accreting T Tauri stars are observed to be systematically lower than those of non-accretors. There is as yet no widely accepted physical explanation for this effect, though it has been suggested that accretion somehow suppresses, disrupts or obscures coronal X-ray activity. Here, we suggest that the opposite might be the case: coronal X-rays modulate the accretion flow. We re-examine the X-ray luminosities of T Tauri stars in the Orion Nebula Cluster and find that not only are accreting stars systematically fainter, but that there is a correlation between mass accretion rate and stellar X-ray luminosity. We use the X-ray heated accretion disk models of Ercolano et al. to show that protoplanetary disk photoevaporative mass loss rates are strongly dependent on stellar X-ray luminosity and sufficiently high to be competitive with accretion rates. X-ray disk heating appears to offer a viable mechanism for modulating the gas accretion flow and could be at least partially responsible for the o...

  20. Dynamic processes during accretion into a black hole

    Directory of Open Access Journals (Sweden)

    G. S. Bisonvatyi-kogan

    2001-01-01

    Full Text Available Accretion disc theory was first developed as a theory with the local heat balance, where the whole energy produced by a viscous heating was emitted to the sides of the disc. One of the most important new invention of this theory was a phenomenological treatment of the turbulent viscosity, known as “alpha” prescription, when the (rϕ component of the stress tensor was approximated by (αP with a unknown constant α This prescription played the role in the accretion disc theory as well important as the mixing-length theory of convection for stellar evolution. Sources of turbulence in the accretion disc are discussed, including nonlinear hydrodynamic turbulence, convection and magnetic filed role. In parallel to the optically thick geometrically thin accretion disc models, a new branch of the optically thin accretion disc models was discovered, with a larger thickness for the same total luminosity. The choice between these solutions should be done of the base of stability analysis. The ideas underlying the necessity to include advection into the accretion disc theory are presented and first models with advection are reviewed. The present status of the solution for a low-luminous optically thin accretion disc model with advection is discussed and the limits for an advection dominated accretion flows (ADAF imposed by the presence of magnetic field are analyzed.

  1. Measuring Mass Accretion Rate onto the Supermassive Black Hole in M 87 Using Faraday Rotation Measure with the Submillimeter Array

    CERN Document Server

    Kuo, C Y; Rao, R; Nakamura, M; Algaba, J C; Liu, H B; Inoue, M; Koch, P M; Ho, P T P; Matsushita, S; Pu, H -Y; Akiyama, K; Nishioka, H; Pradel, N

    2014-01-01

    We present the first constraint on Faraday rotation measure (RM) at submillimeter wavelengths for the nucleus of M 87. By fitting the polarization position angles ($\\chi$) observed with the SMA at four independent frequencies around $\\sim$230 GHz and interpreting the change in $\\chi$ as a result of \\emph{external} Faraday rotation associated with accretion flow, we determine the rotation measure of the M 87 core to be between $-$7.5$\\times$10$^{5}$ and 3.4$\\times$10$^{5}$ rad/m$^{2}$. Assuming a density profile of the accretion flow that follows a power-law distribution and a magnetic field that is ordered, radial, and has equipartition strength, the limit on the rotation measure constrains the mass accretion rate $\\dot{M}$ to be below 9.2$\\times$10$^{-4}$ M$_{\\odot}$~yr$^{-1}$ at a distance of 21 Schwarzchild radii from the central black hole. This value is at least two orders of magnitude smaller than the Bondi accretion rate, suggesting significant suppression of the accretion rate in the inner region of t...

  2. Resolving the Bondi Accretion Flow toward the Supermassive Black Hole of NGC 3115 with Chandra

    Science.gov (United States)

    Wong, Ka-Wah; Irwin, J.; Million, E.; Yukita, M.; Mathews, W.; Bregman, J.

    2011-09-01

    Gas undergoing Bondi accretion on to a supermassive black hole (SMBH) becomes hotter toward smaller radii. We searched for this signature with a Chandra observation of the hot gas in NGC 3115, which optical observation show has a very massive SMBH. Our observations show that the gas temperature rises toward the galaxy center as expected in all accretion models in which the black hole is gravitationally capturing the ambient gas. The data support that the Bondi radius is at least about 4-5 arcsec (188-235 pc), suggesting a supermassive blackhole of two billion solar masses that is consistent with the upper end of the optical results. The density profile within the Bondi radius has a power law index of 1.03, and we will discuss the interpretations of the results.

  3. Simulations of flux variability of oscillating accretion fluid tori around Kerr black holes

    CERN Document Server

    Bakala, Pavel; Šrámková, Eva; Kotrlová, Andrea; Török, Gabriel; Vincent, Frederic H; Abramowicz, Marek A

    2014-01-01

    High frequency quasi-periodic oscillations (HF QPOs) are observed in the X-ray power-density spectra (PDS) of several microquasars and low mass X-ray binaries. Many proposed QPO models are based on oscillations of accretion toroidal fluid structures orbiting in the vicinity of a compact object. We study oscillating accretion tori orbiting in the vicinity of a Kerr black hole. We demonstrate that significant variation of the observed flux can be caused by the combination of radial and vertical oscillation modes of a slender, polytropic, perfect fluid, non-self-graviting torus with constant specific angular momentum. We investigate two combinations of the oscillating modes corresponding to the direct resonance QPO model and the modified relativistic precession QPO model.

  4. Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback

    CERN Document Server

    Tombesi, Francesco

    2016-01-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this "quasar mode" feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been dir...

  5. The jets-accretion relation, mass-luminosity relation in Fermi blazars

    Science.gov (United States)

    Yu, Xiaoling; Zhang, Xiong; Zhang, Haojing; Xiong, Dingrong; Li, Bijun; Cha, Yongjuan; Chen, Yongyun; Huang, Xia; Wang, Yuwei

    2015-05-01

    A sample of 111 Fermi blazars each with a well-established radio core luminosity, broad-line luminosity, bolometric luminosity and black hole mass has been compiled from the literatures. We present a significant correlation between radio core and broad-line emission luminosities that supports a close link between accretion processes and relativistic jets. Analysis reveals a relationship of which is consistant with theoretical predicted coefficient and supports that blazar jets are powered by energy extraction from a rapidly spinning Kerr black hole through the magnetic field provided by the accretion disk. Through studying the correlation between the intrinsic bolometric luminosity and the black hole mass, we find a relationship of which supports mass-luminosity relation for Fermi blazars derived in this work is a powerlaw relation similar to that for main-sequence stars. Finally, EVOLUTIONARY SEQUENCE OF BLAZARS is discussed.

  6. Signatures of Accretion Shocks in Broadband Spectrum of Advective Flows Around Black Holes

    CERN Document Server

    Mandal, S; Mandal, Samir; Chakrabarti, Sandip K.

    2005-01-01

    We compute the effects of the centrifugal pressure supported shock waves on the emitted spectrum from an accretion disk primarily consisting of low angular momentum matter. Electrons are very efficiently accelerated by the accretion shock and acquire power-law distribution. The accelerated particles in turn emit synchrotron radiation in presence of a stochastic magnetic field in equipartition with the gas. Efficient cooling of the electrons by these soft photons reduces its temperature in comparison to the protons. We explore the nature of the broadband spectra by using Comptonization, bremsstrahlung and synchrotron emission. We then show that there could be two crossing points in a broadband spectrum, one near $\\sim 10 keV$ and the other $\\sim 300-400$KeV.

  7. Signature of Accretion Shocks in Emitted Radiation From a Two Temperature Advective Flows Around Black Holes

    CERN Document Server

    Mandal, S; Mandal, Samir; Chakrabarti, Sandip K.

    2005-01-01

    Centrifugal barrier supported boundary layer (CENBOL) of a black hole affects the spectrum exactly in the same way the boundary layer of a neutron star does. The CENBOL is produced due to standing or oscillating shock waves and these shocks accelerate electrons very efficiently and produce a power-law distribution. The accelerated particles in turn emit synchrotron radiation in presence of the magnetic field. We study the spectral properties of an accretion disk as a function of the shock strength, compression ratio, flow accretion rate and flow geometry. In the absence of a satisfactory description of magnetic fields inside the advective disk, we consider the presence of only stochastic fields and use the ratio of the field energy density to the gravitational energy density to be a parameter. Not surprisingly, stronger fields produce stronger humps due to synchrotron radiation. We not only include `conventional' synchrotron emission and Comptonization due to Maxwell-Bolzmann electrons in the gas, we also com...

  8. Inhomogeneous accretion discs and the soft states of black hole X-ray binaries

    CERN Document Server

    Dexter, Jason

    2012-01-01

    Observations of black hole binaries (BHBs) have established a rich phenomenology of X-ray states. The soft states range from the low variability, accretion disc dominated thermal state (TD) to the higher variability, non-thermal steep power law state (SPL). The disc component in all states is typically modeled with standard thin disc accretion theory. However, this theory is inconsistent with optical/UV spectral, variability, and gravitational microlensing observations of active galactic nuclei (AGNs), the supermassive analogs of BHBs. An inhomogeneous disc (ID) model with large (~0.4 dex) temperature fluctuations in each radial annulus can qualitatively explain all of these AGN observations. The inhomogeneity may be a consequence of instabilities in radiation dominated discs, and therefore may be present in BHBs as well. We show that ID models can explain many features of the TD and SPL states of BHBs. The observed relationships between spectral hardness, disc fraction, and rms variability amplitude in BHBs ...

  9. Rotating Accretion Flows: From Infinity to the Black Hole

    CERN Document Server

    Li, Jason; Sunyaev, Rashid

    2012-01-01

    Accretion onto a supermassive black hole of a rotating inflow is a particularly difficult problem to study because of the wide range of length scales involved. There has been some analytic and numerical treatment of the global properties of accretion flows, but detailed numerical simulations are required to address certain critical aspects. We use the ZEUS code to run hydrodynamical simulations of rotating, axisymmetric accretion flows with Bremsstrahlung cooling, considering solutions with and without viscous angular momentum transport, and also electron thermal conduction. Infalling gas is followed from well beyond R_Bondi down to the vicinity of the black hole. Absent viscous transport, when the centrifugal balance radius significantly exceeds R_Schwarzschild, the accretion rate is zero and the flow approaches a stationary solution in which pressure impedes inflow from large radii. With viscosity, we find two general classes of solutions: low inflow rate, hot, vertically extended disks with very low accret...

  10. Three-dimensional MHD Simulations of Radiatively Inefficient Accretion Flows

    CERN Document Server

    Igumenshchev, I V; Abramowicz, M A; Igumenshchev, Igor V.; Narayan, Ramesh; Abramowicz, Marek A.

    2003-01-01

    We present three-dimensional MHD simulations of rotating radiatively inefficient accretion flows onto black holes. In the simulations, we continuously inject magnetized matter into the computational domain near the outer boundary, and we run the calculations long enough for the resulting accretion flow to reach a quasi-steady state. We have studied two limiting cases for the geometry of the injected magnetic field: pure toroidal field and pure poloidal field. In the case of toroidal field injection, the accreting matter forms a nearly axisymmetric, geometrically-thick, turbulent accretion disk. The disk resembles in many respects the convection-dominated accretion flows found in previous numerical and analytical investigations of viscous hydrodynamic flows. Models with poloidal field injection evolve through two distinct phases. In an initial transient phase, the flow forms a relatively flattened, quasi-Keplerian disk with a hot corona and a bipolar outflow. However, when the flow later achieves steady state,...

  11. Accreting planets as dust dams in `transition' discs

    CERN Document Server

    Owen, James E

    2014-01-01

    We investigate under what circumstances an embedded planet in a protoplanetary disc may sculpt the dust distribution such that it observationally presents as a `transition' disc. We concern ourselves with `transition' discs that have large holes ($\\gtrsim 10$ AU) and high accretion rates ($\\sim 10^{-9}-10^{-8}$ M$_\\odot$ yr$^{-1}$). Particularly, those discs which photoevaporative models struggle to explain. Assuming the standard picture for how massive planets sculpt their parent discs, along with the observed accretion rates in `transition' discs, we find that the accretion luminosity from the forming planet is significant, and can dominate over the stellar luminosity at the gap edge. This planetary accretion luminosity can apply a significant radiation pressure to small ($s\\lesssim 1\\mu$m) dust particles provided they are suitably decoupled from the gas. Secular evolution calculations that account for the evolution of the gas and dust components in a disc with an embedded, accreting planet, show that only ...

  12. Magnetohydrodynamic stability of stochastically driven accretion flows

    CERN Document Server

    Nath, Sujit K; Chattopadhyay, Amit K

    2013-01-01

    We investigate the evolution of magnetohydrodynamic/hydromagnetic perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable, but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations/experiments. The mismatch seems to have been resolved, atleast in certain regimes, in the presence of weak magnetic field revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It ...

  13. Magnetic field structure in accretion columns on HMXB and effects on CRSF

    OpenAIRE

    Mukherjee Dipanjan; Bhattacharya Dipankar; Mignone Andrea

    2013-01-01

    In accreting neutron star binaries, matter is channelled by the magnetic fields from the accretion disc to the poles of neutron stars forming an accretion mound. We model such mounds by numerically solving the Grad-Shafranov equation for axisymmetric static MHD equilibria. From our solutions we infer local distortion of field lines due to the weight of accreted matter. Variation in mass loading at the accretion disc will alter the shape of the accretion mound which will also affect the local ...

  14. LARGE-SCALE AZIMUTHAL STRUCTURES OF TURBULENCE IN ACCRETION DISKS: DYNAMO TRIGGERED VARIABILITY OF ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Flock, M.; Dzyurkevich, N.; Klahr, H.; Turner, N.; Henning, Th. [Max Planck Institute for Astronomy, Koenigstuhl 17, 69117 Heidelberg (Germany)

    2012-01-10

    We investigate the significance of large-scale azimuthal, magnetic, and velocity modes for the magnetorotational instability (MRI) turbulence in accretion disks. We perform three-dimensional global ideal MHD simulations of global stratified protoplanetary disk models. Our domains span azimuthal angles of {pi}/4, {pi}/2, {pi}, and 2{pi}. We observe up to 100% stronger magnetic fields and stronger turbulence for the restricted azimuthal domain models {pi}/2 and {pi}/4 compared to the full 2{pi} model. We show that for those models the Maxwell stress is larger due to strong axisymmetric magnetic fields generated by the {alpha}{Omega} dynamo. Large radial extended axisymmetric toroidal fields trigger temporal magnification of accretion stress. All models display a positive dynamo-{alpha} in the northern hemisphere (upper disk). The parity is distinct in each model and changes on timescales of 40 local orbits. In model 2{pi}, the toroidal field is mostly antisymmetric with respect to the midplane. The eddies of the MRI turbulence are highly anisotropic. The major wavelengths of the turbulent velocity and magnetic fields are between one and two disk scale heights. At the midplane, we find magnetic tilt angles around 8 Degree-Sign -9 Degree-Sign increasing up to 12 Degree-Sign -13 Degree-Sign in the corona. We conclude that an azimuthal extent of {pi} is sufficient to reproduce most turbulent properties in three-dimensional global stratified simulations of magnetized accretion disks.

  15. Thin accretion disks in stationary axisymmetric wormhole spacetimes

    International Nuclear Information System (INIS)

    In this paper, we study the physical properties and the equilibrium thermal radiation emission characteristics of matter forming thin accretion disks in stationary axially symmetric wormhole spacetimes. The thin disk models are constructed by taking different values of the wormhole's angular velocity, and the time averaged energy flux, the disk temperature, and the emission spectra of the accretion disks are obtained. Comparing the mass accretion in a rotating wormhole geometry with the one of a Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for wormholes than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating wormholes provide a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Therefore specific signatures appear in the electromagnetic spectrum of thin disks around rotating wormholes, thus leading to the possibility of distinguishing wormhole geometries by using astrophysical observations of the emission spectra from accretion disks.

  16. Migration of accreting planets in radiative discs from dynamical torques

    CERN Document Server

    Pierens, Arnaud

    2016-01-01

    We present the results of hydrodynamical simulations of the orbital evolution of planets undergoing runaway gas accretion in radiative discs. We consider accreting disc models with constant mass flux through the disc, and where radiative cooling balances the effect of viscous heating and stellar irradiation. We assume that 20-30 $M_\\oplus$ giant planet cores are formed in the region where viscous heating dominates and migrate outward under the action of a strong corotation torque. In the case where gas accretion is neglected, we find evidence for strong dynamical torques in accreting discs with accretion rates ${\\dot M}\\gtrsim 7\\times 10^{-8} \\;M_\\odot/yr$. Their main effect is to increase outward migration rates by a factor of $\\sim 2$ typically. In the presence of gas accretion, however, runaway outward migration is observed with the planet passing through the zero-torque radius and the transition between the viscous heating and stellar heating dominated regimes. The ability for an accreting planet to enter...

  17. Formation of primordial supermassive stars by burst accretion

    CERN Document Server

    Sakurai, Y; Yoshida, N; Yorke, H W

    2015-01-01

    A promising formation channel of SMBHs at redshift 6 is the so-called DC model, which posits that a massive seed BH forms through gravitational collapse of a $\\sim 10^5~M_\\odot$ SMS. We study the evolution of such a SMS growing by rapid mass accretion. In particular, we examine the impact of time-dependent mass accretion of repeating burst and quiescent phases that are expected to occur with a self-gravitating circumstellar disk. We show that the stellar evolution with such episodic accretion differs qualitatively from that expected with a constant accretion rate, even if the mean accretion rate is the same. Unlike the case of constant mass accretion, whereby the star expands roughly following $R_* \\simeq 2.6 \\times 10^3 R_\\odot (M_*/100~M_\\odot)^{1/2}$, the protostar can substantially contract during the quiescent phases between accretion bursts. The stellar effective temperature and ionizing photon emissivity increase accordingly as the star contracts, which can cause strong ionizing feedback and halt the m...

  18. Magnetised Accretion Discs in Kerr Spacetimes II: Hot Spots

    CERN Document Server

    García, Federico; Johannsen, Tim

    2015-01-01

    Context. Quasi-periodic variability has been observed in a number of X-ray binaries harboring black hole candidates. In general relativity, black holes are uniquely described by the Kerr metric and, according to the cosmic censorship conjecture, curvature singularities always have to be clothed by an event horizon. Aims. In this paper, we study the effect of an external magnetic field on the observed light curves of orbiting hot spots in thin accretion discs around Kerr black holes and naked singularities. Methods. We employ a ray-tracing algorithm to calculate the light curves and power spectra of such hot spots as seen by a distant observer for uniform and dipolar magnetic field configurations assuming a weak coupling between the magnetic field and the disc matter. Results. We show that the presence of an external dipolar magnetic field leads to potentially observable modifications of these signals for both Kerr black holes and naked singularities, while an external uniform magnetic field has practically no...

  19. Black hole masses and accretion states in ULXs

    CERN Document Server

    Soria, Roberto

    2008-01-01

    We summarize indirect empirical arguments used for estimating black hole (BH) masses in ultraluminous X-ray sources (ULXs). The interpretation of the X-ray data is still too model-dependent to provide tight constraints, but masses <~ 100 Msun seem the most likely. It is getting clearer that ULXs do not show the same evolutionary sequence between canonical spectral states as stellar-mass BHs, nor the same timescale for state transitions. Most ULX spectra are consistent either with a power-law-dominated state (apparently identical to the canonical low/hard state), or with a very high state (or slim-disk state). Despite often showing luminosity variability, there is little evidence of ULXs settling into a canonical high/soft state, dominated by a standard disk (disk-blackbody spectrum). It is possible that the mass accretion rate (but not necessarily the luminosity) is always higher than Eddington; but there may be additional physical differences between stellar-mass BHs and ULXs, which disfavour transitions ...

  20. Stability of stagnation via an expanding accretion shock wave

    Science.gov (United States)

    Velikovich, A. L.; Murakami, M.; Taylor, B. D.; Giuliani, J. L.; Zalesak, S. T.; Iwamoto, Y.

    2016-05-01

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.

  1. Stability of stagnation via an expanding accretion shock wave

    CERN Document Server

    Velikovich, A L; Taylor, B D; Giuliani, J L; Zalesak, S T; Iwamoto, Y

    2016-01-01

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Y. Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [H. Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); M. Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic...

  2. X-ray spectra of hot accretion flows

    CERN Document Server

    Niedzwiecki, Andrzej; Stepnik, Agnieszka

    2014-01-01

    We study radiative properties of hot accretion flows in a general relativistic model with an exact treatment of global Comptonization, developed in our recent works. We note a strong dependence of electron temperature on the strength of magnetic field and we clarify that the underlying mechanism involves the change of the flow structure, with more strongly magnetised flows approaching the slab geometry more closely. We find that the model with thermal synchrotron radiation being the main source of seed photons agrees with the spectral index vs Eddington ratio relation observed in black hole transients below 1 per cent of the Eddington luminosity, LEdd, and models with a weak direct heating of electrons (small delta) are more consistent with observations. Models with large delta predict slightly too soft spectra, furthermore, they strongly overpredict electron temperatures at ~0.01 LEdd. The low-luminosity spectra, at <0.001 LEdd, deviate from a power-law shape in the soft X-ray range and we note that the f...

  3. Accretion-disc precession in UX Ursae Majoris

    Science.gov (United States)

    de Miguel, E.; Patterson, J.; Cejudo, D.; Ulowetz, J.; Jones, J. L.; Boardman, J.; Barret, D.; Koff, R.; Stein, W.; Campbell, T.; Vanmunster, T.; Menzies, K.; Slauson, D.; Goff, W.; Roberts, G.; Morelle, E.; Dvorak, S.; Hambsch, F.-J.; Starkey, D.; Collins, D.; Costello, M.; Cook, M. J.; Oksanen, A.; Lemay, D.; Cook, L. M.; Ogmen, Y.; Richmond, M.; Kemp, J.

    2016-04-01

    We report the results of a long campaign of time series photometry on the nova-like variable UX Ursae Majoris during 2015. It spanned 150 nights, with ˜ 1800 h of coverage on 121 separate nights. The star was in its normal `high state' near magnitude V = 13, with slow waves in the light curve and eclipses every 4.72 h. Remarkably, the star also showed a nearly sinusoidal signal with a full amplitude of 0.44 mag and a period of 3.680 ± 0.007 d. We interpret this as the signature of a retrograde precession (wobble) of the accretion disc. The same period is manifest as a ±33 s wobble in the timings of mid-eclipse, indicating that the disc's centre of light moves with this period. The star also showed strong `negative superhumps' at frequencies ωorb + N and 2ωorb + N, where ωorb and N are, respectively, the orbital and precession frequencies. It is possible that these powerful signals have been present, unsuspected, throughout the more than 60 yr of previous photometric studies.

  4. Accretion-disc precession in UX Ursae Majoris

    CERN Document Server

    de Miguel, E; Cejudo, D; Ulowetz, J; Jones, J L; Boardman, J; Barret, D; Koff, R; Stein, W; Campbell, T; Vanmunster, T; Menzies, K; Slauson, D; Goff, W; Roberts, G; Morelle, E; Dvorak, S; Hambsch, F -J; Starkey, D; Collins, D; Costello, M; Cook, M J; Oksanen, A; Lemay, D; Cook, L M; Ogmen, Y; Richmond, M; Kemp, J

    2015-01-01

    We report the results of a long campaign of time-series photometry on the nova-like variable UX Ursae Majoris during 2015. It spanned 150 nights, with ~1800 hours of coverage on 121 separate nights. The star was in its normal `high state' near magnitude V=13, with slow waves in the light curve and eclipses every 4.72 hours. Remarkably, the star also showed a nearly sinusoidal signal with a full amplitude of 0.44 mag and a period of 3.680 +/- 0.007 d. We interpret this as the signature of a retrograde precession (wobble) of the accretion disc. The same period is manifest as a +/-33 s wobble in the timings of mid-eclipse, indicating that the disc's centre of light moves with this period. The star also showed strong `negative superhumps' at frequencies w_orb+N and 2w_orb+N, where w_orb and N are respectively the orbital and precession frequencies. It is possible that these powerful signals have been present, unsuspected, throughout the more than 60 years of previous photometric studies.

  5. "Propeller" Regime of Disk Accretion to Rapidly Rotating Stars

    CERN Document Server

    Ustyugova, G V; Lovelace, R V E; Romanova, M M

    2006-01-01

    We present results of axisymmetic magnetohydrodynamic simulations of the interaction of a rapidly-rotating, magnetized star with an accretion disk. The disk is considered to have a finite viscosity and magnetic diffusivity. The main parameters of the system are the star's angular velocity and magnetic moment, and the disk's viscosity, diffusivity. We focus on the "propeller" regime where the inner radius of the disk is larger than the corotation radius. Two types of magnetohydrodynamic flows have been found as a result of simulations: "weak" and "strong" propellers. The strong propeller is characterized by a powerful disk wind and a collimated magnetically dominated outflow or jet from the star. The weak propeller have only weak outflows. We investigated the time-averaged characteristics of the interaction between the main elements of the system, the star, the disk, the wind from the disk, and the jet. Rates of exchange of mass and angular momentum between the elements of the system are derived as a function ...

  6. The geochemical constraints on Earth's accretion and core formation (Invited)

    Science.gov (United States)

    Rudge, J. F.; Kleine, T.; Bourdon, B.

    2010-12-01

    There are now a wide range of geochemical observations that can be used to place constraints on Earth's first hundred million years. During this time the Earth accreted through collisions between numerous planetary embryos, and these collisions are thought to have caused significant melting and segregation of metal, forming the Earth's core. Information on the pressure, temperature, and oxygen fugacity conditions of core formation can be obtained from the abundances of siderophile elements in Earth's mantle and high pressure partitioning experiments. Timing information can be obtained from isotopic measurements, notably Hf-W and U-Pb. Here we present a simple geochemical box model that can be used to provide constraints on Earth's accretion and core formation. A key parameter in the model is the degree of equilibration during metal-silicate segregation. Existing models have shown that the siderophile element abundances are consistent with full equilibration in a deep magma ocean, with an increase in oxygen fugacity during accretion. Here we show that the siderophile element abundances are equally consistent with scenarios involving partial equilibration. The Hf-W isotopic observations constrain the degree of equilibration to be at least 36%. The timing constraints depend strongly on the degree of equilibration, but nevertheless bounds can be placed on the timing of Earth's accretion. With full equilibration, the Hf-W observations imply a rapid early accretion stage (at least 80% of Earth accreting within 35 Myr), but with partial equilibration accretion may be much more protracted. If Pb partitions into Earth’s core, the U-Pb observations can be used to constrain the late stages of accretion, and are consistent with the final 10% of Earth’s accretion occurring during the Moon-forming giant impact at ~4.45Ga.

  7. Lambda Boo Abundance Patterns: Accretion from Orbiting Sources

    CERN Document Server

    Jura, M

    2015-01-01

    The abundance anomalies in lambda Boo stars are popularly explained by element-specific mass inflows at rates that are much greater than empirically-inferred bounds for interstellar accretion. Therefore, a lambda Boo star's thin outer envelope must derive from a companion star, planet, analogs to Kuiper Belt Objects or a circumstellar disk. Because radiation pressure on gas-phase ions might selectively allow the accretion of carbon, nitrogen, and oxygen and inhibit the inflow of elements such as iron, the source of the acquired matter need not contain dust. We propose that at least some lambda Boo stars accrete from the winds of hot Jupiters.

  8. Time-dependent models of accretion discs with nuclear burning following the tidal disruption of a white dwarf by a neutron star

    Science.gov (United States)

    Margalit, Ben; Metzger, Brian D.

    2016-09-01

    We construct time-dependent one-dimensional (vertically averaged) models of accretion discs produced by the tidal disruption of a white dwarf (WD) by a binary neutron star (NS) companion. Nuclear reactions in the disc mid-plane burn the WD matter to increasingly heavier elements at sequentially smaller radii, releasing substantial energy which can impact the disc dynamics. A model for disc outflows is employed, by which cooling from the outflow balances other sources of heating (viscous, nuclear) in regulating the Bernoulli parameter of the mid-plane to a fixed value ≲0. We perform a comprehensive parameter study of the compositional yields and velocity distributions of the disc outflows for WDs of different initial compositions. For C/O WDs, the radial composition profile of the disc evolves self-similarly in a quasi-steady-state manner, and is remarkably robust to model parameters. The nucleosynthesis in helium WD discs does not exhibit this behaviour, which instead depends sensitively on factors controlling the disc mid-plane density (e.g. the strength of the viscosity, α). By the end of the simulation, a substantial fraction of the WD mass is unbound in outflows at characteristic velocities of ˜109 cm s-1. The outflows from WD-NS merger discs contain 10-4-3 × 10-3 M⊙ of radioactive 56Ni, resulting in fast (˜ week long) dim (˜1040 erg s-1) optical transients; shock heating of the ejecta by late-time outflows may increase the peak luminosity to ˜1043 erg s-1. The accreted mass on to the NS is probably not sufficient to induce gravitational collapse, but may be capable of spinning up the NS to periods of ˜10 ms, illustrating the feasibility of this channel in forming isolated millisecond pulsars.

  9. Accretion disk signatures in Type I X-ray Bursts: prospects for future missions

    CERN Document Server

    Keek, L; Ballantyne, D R

    2016-01-01

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will give insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, NICER, Athena, and LOFT. Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and through-put of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes $\\ge 10^{-7.5}$ erg cm$^{-2}$ s$^{-1}$, and also effectively constrain ...

  10. Global Time Dependent Solutions of Stochastically Driven Standard Accretion Disks: Development of Hydrodynamical Code

    Science.gov (United States)

    Wani, Naveel; Maqbool, Bari; Iqbal, Naseer; Misra, Ranjeev

    2016-07-01

    X-ray binaries and AGNs are powered by accretion discs around compact objects, where the x-rays are emitted from the inner regions and uv emission arise from the relatively cooler outer parts. There has been an increasing evidence that the variability of the x-rays in different timescales is caused by stochastic fluctuations in the accretion disc at different radii. These fluctuations although arise in the outer parts of the disc but propagate inwards to give rise to x-ray variability and hence provides a natural connection between the x-ray and uv variability. There are analytical expressions to qualitatively understand the effect of these stochastic variabilities, but quantitative predictions are only possible by a detailed hydrodynamical study of the global time dependent solution of standard accretion disc. We have developed numerical efficient code (to incorporate all these effects), which considers gas pressure dominated solutions and stochastic fluctuations with the inclusion of boundary effect of the last stable orbit.

  11. GX~3+1: the stability of spectral index as a function of mass accretion rate

    CERN Document Server

    Seifina, Elena

    2012-01-01

    We present an analysis of the spectral and timing properties observed in X-rays from neutron star binary GX~3+1. We analyze all observations of this source obtained with the RXTE and BeppoSAX satellites. We find that the X-ray broad-band energy spectra during these spectral transitions can be adequately reproduced by a composition of a low-temperature blackbody component, a Comptonized component (COMPTB) and Gaussian component. We argue that the electron temperature kT_e of the Compton cloud monotonically increases from 2.3 keV to 4.5 keV, when GX~3+1 makes a spectral transition. Using a disk seed photon normalization of COMPTB, which is proportional to mass accretion rate, we find that the photon power-law index Gamma is almost constant (Gamma=2.00+/- 0.02) when mass accretion rate changes by factor 4. We interpret this quasi-stability of the index Gamma and a particular form of the spectrum in the framework of a model in which the energy release in the transition layer located between the accretion disk and...

  12. The Ultraviolet/optical variability of steep-spectrum radio quasars: the change of accretion rate ?

    CERN Document Server

    Gu, Minfeng

    2013-01-01

    Context. The steep-spectrum radio quasars (SSRQs) are powerful radio sources, with thermal emission from accretion disk and jet nonthermal emission likely both contributing in the Ultraviolet (UV)/optical luminosity, however the former may play a dominant role. While the UV/optical variability of SSRQs has been poorly studied, little is known on the mechanism of their variability. Aims. We investigate the mechanism of the UV/optical variability of SSRQs. Methods. A sample of eighteen SSRQs has been established in SDSS Stripe 82 region in our previous works, in which the flux and spectral variability have been studied. In this work, we construct the flux-flux diagram using SDSS u and i multi-epoch data for these eighteen SSRQs. The standard accretion disk model is used to fit the flux-flux variations, in order to explore the variability mechanism. Results. The model fit to flux-flux diagram are tuned with fixed black hole mass and varying accretion rate. We found that the flux-flux diagram of all our SSRQs can...

  13. The accretion rate independence of horizontal branch oscillation in XTE J1701-462

    CERN Document Server

    Li, Zhaosheng; Qu, Jinlu; Bu, Qingcui; Wang, Dehua; Xu, Renxin

    2014-01-01

    We study the temporal and energy spectral properties of the unique neutron star low-mass X-ray binary XTE J1701-462. After assuming the HB/NB vertex as a reference position of accretion rate, the horizontal branch oscillation (HBO) of the HB/NB vertex is roughly 50 Hz. It indicates that the HBO is independent with the accretion rate or the source intensity. The spectral analysis shows $R_{\\rm{in}}\\propto\\dot{M}_{\\rm{Disk}}^{2.9\\pm0.09}$ in the HB/NB vertex and $R_{\\rm{in}}\\propto\\dot{M}_{\\rm{Disk}}^{1.7\\pm0.06}$ in the NB/FB vertex, which implies that different accretion rate may be produced in the HB/NB vertex and the NB/FB vertex. The Comptonization component could be fitted by constrained broken power law (CBPL) or nthComp. Different with GX 17+2, the frequencies of HBO positively correlate with the inner disk radius, which contradict with the prediction of Lense-Thirring precession model. XTE J1701-462, both in the Cyg-like phase and in the Sco-like phase, follows a positive correlation between the break ...

  14. Carbon production on accreting neutron stars in a new regime of stable nuclear burning

    CERN Document Server

    Keek, L

    2015-01-01

    Accreting neutron stars exhibit Type I X-ray bursts from both frequent hydrogen/helium flashes as well as rare carbon flashes. The latter (superbursts) ignite in the ashes of the former. Hydrogen/helium bursts, however, are thought to produce insufficient carbon to power superbursts. Stable burning could create the required carbon, but this was predicted to only occur at much larger accretion rates than where superbursts are observed. We present models of a new steady-state regime of stable hydrogen and helium burning that produces pure carbon ashes. Hot CNO burning of hydrogen heats the neutron star envelope and causes helium to burn before the conditions of a helium flash are reached. This takes place when the mass accretion rate is around 10% of the Eddington limit: close to the rate where most superbursts occur. We find that increased heating at the base of the envelope sustains steady-state burning by steepening the temperature profile, which increases the amount of helium that burns before a runaway can...

  15. Lithium and oxygen in globular cluster dwarfs and the early disc accretion scenario

    CERN Document Server

    Salaris, M

    2014-01-01

    A new scenario --early disc accretion-- has been recently proposed to explain the discovery of multiple stellar populations in Galactic globular clusters. According to this model, the existence of well defined (anti)-correlations amongst light element abundances (i.e. C, N, O, Na) in the photospheres of stars belonging to the same cluster (and the associated helium enrichment), is caused by accretion of the ejecta of short lived interacting massive binary systems (and single fast rotating massive stars) on fully convective pre-main sequence low- and very low-mass stars, during the early stages of the cluster evolution. We investigated the constraints provided by considering simultaneously the observed spread of lithium and oxygen (and when possible also sodium) abundances for samples of turn-off stars in NGC6752, NGC6121 (M4), and NGC104 (47Tuc), and the helium abundance of their multiple main sequences. These observations provide a very powerful test for the accretion scenario, because the observed O, Li and...

  16. Anisotropy of X-ray bursts from neutron stars with concave accretion disks

    CERN Document Server

    He, Chong-Chong

    2015-01-01

    Emission from neutron stars and accretion disks in low-mass X-ray binaries is not isotropic. The non-spherical shape of the disk as well as blocking of the neutron star by the disk and vice versa cause the observed flux to depend on the inclination angle of the disk with respect to the line of sight. This is of special importance for the interpretation of Type I X-ray bursts, which are powered by the thermonuclear burning of matter accreted onto the neutron star. Because part of the X-ray burst is reflected off the disk, the observed burst flux depends on the anisotropies for both direct emission from the neutron star and reflection off the disk. This influences measurements of source distance, mass accretion rate, and constraints on the neutron star equation of state. Previous studies made predictions of the anisotropy factor for the total burst flux, assuming a geometrically flat disk. Recently, detailed observations of two exceptionally long bursts (so-called superbursts) allowed for the first time for the...

  17. On the Accretion Rates and Radiative Efficiencies of the Highest Redshift Quasars

    CERN Document Server

    Trakhtenbrot, Benny; Natarajan, Priyamvada

    2016-01-01

    We estimate the accretion rates onto the super-massive black holes powering 20 of the highest-redshift quasars, at z>5.8, including the quasar with the highest redshift known to date -- ULAS J1120 at z=7.09. The analysis is based on the observed (rest-frame) optical luminosities and reliable "virial" estimates of the BH masses (M_BH) of the sources, and utilizing scaling relations derived from thin accretion disk theory. The mass accretion rates through the postulated disks cover a wide range, dM_disk/dt~4-190 Msol/yr, with most of the objects (80%) having dM_disk/dt~10-65 Msol/yr. By combining our estimates of dM_disk/dt with conservative estimates of the bolometric luminosities of the quasars in our sample, we investigate which alternative values of \\eta\\ best account for all the available data. We find that the vast majority of quasars (~85%) can be explained with radiative efficiencies in the range \\eta~0.03-0.3. In particular, we find conservative estimates of \\eta>0.14 for ULAS J1120 and SDSS J0100 (at ...

  18. Tracing the incidence of X-ray AGN and their distribution of accretion rates across the galaxy population

    Science.gov (United States)

    Aird, James; Coil, Alison; Georgakakis, Antonis; Nandra, Kirpal

    2016-08-01

    X-ray selection provides a powerful method of identifying AGN across a variety of host galaxies and with a wide range of accretion rates. However, careful consideration of the underlying selection biases are vital to reveal the true underlying distribution of accretion rates and determine how the incidence of AGN is related to the properties of the galaxies that host them. I will present new measurements of the distribution of specific accretion rates (scaled relative to the total host galaxy mass, roughly tracing the Eddington ratio) within both star-forming and quiescent galaxy populations. We combine near-infrared selected samples of galaxies from the CANDELS/3D-HST and UltraVISTA surveys with deep Chandra X-ray data and use an advanced Bayesian technique to constrain the underlying distribution of specific accretion rates as a function of stellar mass and redshift. Our results reveal a broad distribution of accretion rates (reflecting long-term variability in the level of AGN fuelling) in both galaxy types. The probability of a star-forming galaxy hosting an AGN (above a fixed specific accretion rate) has a strong stellar mass dependence - revealing an intrinsically higher incidence of AGN in massive star-forming galaxies - and undergoes a stellar-mass-dependent evolution with redshift. The probability of a quiescent galaxy hosting an AGN is generally lower but does not depend on stellar mass and evolves differently with redshift. These results provide vital insights into the relationship between the growth of black hole and the physical properties of their host galaxies.

  19. Structure analysis of solution to equations of quasi 3-D accretion disk model

    Institute of Scientific and Technical Information of China (English)

    WU; Mei

    2001-01-01

    [1]Frank, J., King, A., Raine, K., Accretion Power in Astrophysics, Cambridge: Cambridge University Press, 1992.[2]Lu Jufu, Abramowicz, M. A., Bimodel characteristic of accrection of black hole, Acta Astrophysica Sinica, 1988, 8(1): 1—13.[3]Shakura, N. I., Sunyaev, R. A., Black holes in binary systems: Observational appearance, A& A, 1973, 24: 337—355.[4]Spruit, H., Matsuda, T., Inoue, M. et al., Spiral shocks and accretion in discs, MNRAS, 1987, 229: 517—527.[5]Yang, R. X., Kafatos, M., Shock study in fully relativistic isothermal flows, 2, A& A, 1995, 295: 238—244.[6]Kafatos, M., Yang, R. X., Transonic inviscid disc flows in the schwarzschild metric-I, MNRAS, 1994, 268 (4): 925—937.[7]Fortner, B., Lamb, F. K., Miller, G. S., Origin of ‘normal-branch’ quasiperiodic oscillations in low-mass X-ray binary systems, Nature, 1989, 342 (14): 775—777.[8]Narayan, R., Kato, S., Honma, F., Global structure and dynamics of advection-dominated accretion flows around black holes, ApJ, 1997, 476: 49—60.[9]Chakrabarti, S., Titarchuk, L. G., Spectral properties of accretion disks around galactic and extragalactic black holes, ApJ, 1995, 455: 623—639.[10]Landu, L. D., Lifshitz, E. M., Fluid Mechanics, Bristol: f. W. Arrowsmith Ltd., 1959, 514—515.

  20. Accretion of Supersonic Winds on Boson Stars

    CERN Document Server

    Gracia-Linares, M

    2016-01-01

    We present the evolution of a supersonic wind interacting with a Boson Star (BS) and compare the resulting wind density profile with that of the shock cone formed when the wind is accreted by a non-rotating Black Hole (BH) of the same mass. The physical differences between these accretors are that a BS, unlike a BH has no horizon, it does not have a mechanical surface either and thus the wind is expected to trespass the BS. Despite these conditions, on the BS space-time the gas achieves a stationary flux with the gas accumulating in a high density elongated structure comparable to the shock cone formed behind a BH. The highest density resides in the center of the BS whereas in the case of the BH it is found on the downstream part of the BH near the event horizon. The maximum density of the gas is smaller in the BS than in the BH case. Our results indicate that the highest density of the wind is more similar on the BS to that on the BH when the BS has high self-interaction, when it is more compact and when the...

  1. Probing the Environment of Accreting Compact Objects

    Science.gov (United States)

    Hanke, Manfred

    2011-04-01

    X-ray binaries are the topic of this thesis. They consist of a compact object -- a black hole or a neutron star -- and an ordinary star, which loses matter to the compact object. The gravitational energy released through this process of mass accretion is largely converted into X-rays. The latter are used in the present work to screen the environment of the compact object. The main focus in the case of a massive star is on its wind, which is not homogeneous, but may display structures in form of temperature and density variations. Since great importance is, in multiple respects, attached to stellar winds in astrophysics, there is large interest in general to understand these structures more thoroughly. In particular for X-ray binaries, whose compact object obtains matter from the wind of its companion star, the state of the wind can decisively influence mass accretion and its related radiation processes. A detailed introduction to the fundamentals of stellar winds, compact objects, accretion and radiation processes in X-ray binaries, as well as to the employed instruments and analysis methods, is given in chapter 1. The focus of this investigation is on Cygnus X-1, a binary system with a black hole and a blue supergiant, which form a persistently very bright X-ray source because of accretion from the stellar wind. It had been known for a long time that this source -- when the black hole is seen through the dense stellar wind -- often displays abrupt absorption events whose origin is suspected to be in clumps in the wind. More detailed physical properties of these clumps and of the wind in general are explored in this work. Observations that were specifically acquired for this study, as well as archival data from different satellite observatories, are analyzed in view of signatures of the wind and its fine structures. These results are presented in chapter 2. In a first part of the analysis, the statistical distribution of the brightness of Cyg X-1, as measured since

  2. Magnetohydrodynamic stability of stochastically driven accretion flows.

    Science.gov (United States)

    Nath, Sujit Kumar; Mukhopadhyay, Banibrata; Chattopadhyay, Amit K

    2013-07-01

    We investigate the evolution of magnetohydrodynamic (or hydromagnetic as coined by Chandrasekhar) perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations and experiments. The mismatch seems to have been resolved, at least in certain regimes, in the presence of a weak magnetic field, revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It is found that such stochastically driven flows exhibit large temporal and spatial autocorrelations and cross-correlations of perturbation and, hence, large energy dissipations of perturbation, which generate instability. Interestingly, autocorrelations and cross-correlations appear independent of background angular velocity profiles, which are Rayleigh stable, indicating their universality. This work initiates our attempt to understand the evolution of three-dimensional hydromagnetic perturbations in rotating shear flows in the presence of stochastic noise.

  3. Local Magnetohydrodynamical Models of Layered Accretion Disks

    CERN Document Server

    Fleming, T; Fleming, Timothy; Stone, James M.

    2003-01-01

    Using numerical MHD simulations, we have studied the evolution of the magnetorotational instability in stratified accretion disks in which the ionization fraction (and therefore resistivity) varies substantially with height. This model is appropriate to dense, cold disks around protostars or dwarf nova systems which are ionized by external irradiation of cosmic rays or high-energy photons. We find the growth and saturation of the MRI occurs only in the upper layers of the disk where the magnetic Reynolds number exceeds a critical value; in the midplane the disk remains queiscent. The vertical Poynting flux into the "dead", central zone is small, however velocity fluctuations in the dead zone driven by the turbulence in the active layers generate a significant Reynolds stress in the midplane. When normalized by the thermal pressure, the Reynolds stress in the midplane never drops below about 10% of the value of the Maxwell stress in the active layers, even though the Maxwell stress in the dead zone may be orde...

  4. Vertical structure of Advection dominated Accretion Flows

    CERN Document Server

    Zeraatgari, Fateme Zahra

    2015-01-01

    We solve the set of hydrodynamic (HD) equations for optically thin Advection Dominated Accretion Flows (ADAFs) by assuming radially self-similar in spherical coordinate system $ (r, \\theta, \\phi) $. The disk is considered to be steady state and axi-symmetric. We define the boundary conditions at the pole and the equator of the disk and to avoid singularity at the rotation axis, the disk is taken to be symmetric with respect to this axis. Moreover, only the $ \\tau_{r \\phi} $ component of viscous stress tensor is assumed and we have set $ v_{\\theta} = 0 $. The main purpose of this study is to investigate the variation of dynamical quantities of the flow in the vertical direction by finding an analytical solution. As a consequence, we found that the advection parameter, $ f^{adv} $, varies along the $ \\theta $ direction and reaches to its maximum near the rotation axis. Our results also show that, in terms of no-outflow solution, thermal equilibrium still exists and consequently advection cooling can balance vis...

  5. Magnetic flux stabilizing thin accretion disks

    CERN Document Server

    Sadowski, Aleksander

    2016-01-01

    We calculate the minimal amount of large-scale poloidal magnetic field that has to thread the inner, radiation-over-gas pressure dominated region of a thin disk for its thermal stability. Such a net field amplifies the magnetization of the saturated turbulent state and makes it locally stable. For a $10 M_\\odot$ black hole the minimal magnetic flux is $10^{24}(\\dot M/\\dot M_{\\rm Edd})^{20/21}\\,\\rm G\\cdot cm^{2}$. This amount is compared with the amount of uniform magnetic flux that can be provided by the companion star -- estimated to be in the range $10^{22}-10^{24}\\,\\rm G\\cdot cm^2$. If accretion rate is large enough, the companion is not able to provide the required amount and such a system, if still sub-Eddington, must be thermally unstable. The peculiar variability of GRS 1915+105, an X-ray binary with the exceptionally high BH mass and near-Eddington luminosity, may result from the shortage of large scale poloidal field of uniform polarity.

  6. Magnetohydrodynamic Origin of Jets from Accretion Disks

    Science.gov (United States)

    Lovelace, R. V. E.; Romanova, M. M.

    1998-01-01

    A review is made of magnetohydrodynamic (MHD) theory and simulation of outflows from disks for different distributions of magnetic field threading the disk. In one limit of a relatively weak, initially diverging magnetic field, both thermal and magnetic pressure gradients act to drive matter to an outflow, while a toroidal magnetic field develops which strongly collimates the outflow. The collimation greatly reduces the field divergence and the mass outflow rate decreases after an initial peak. In a second limit of a strong magnetic field, the initial field configuration was taken with the field strength on the disk decreasing outwards to small values so that collimation was reduced. As a result, a family of stationary solutions was discovered where matter is driven mainly by the strong magnetic pressure gradient force. The collimation in this case depends on the pressure of an external medium. These flows are qualitatively similar to the analytic solutions for magnetically driven outflows. The problem of the opening of a closed field line configuration linking a magnetized star and an accretion disk is also discussed.

  7. Evolution of transonicity in an accretion disc

    CERN Document Server

    Ray, A K; Ray, Arnab K.; Bhattacharjee, Jayanta K.

    2007-01-01

    For inviscid, rotational accretion flows driven by a general pseudo-Newtonian potential on to a Schwarzschild black hole, the only possible fixed points are saddle points and centre-type points. For the specific choice of the Newtonian potential, the flow has only two critical points, of which the outer one is a saddle point while the inner one is a centre-type point. A restrictive upper bound is imposed on the admissible range of values of the angular momentum of sub-Keplerian flows through a saddle point. These flows are very unstable to any deviation from a necessarily precise boundary condition. The difficulties against the physical realisability of a solution passing through the saddle point have been addressed through a temporal evolution of the flow, which gives a non-perturbative mechanism for selecting a transonic solution passing through the saddle point. An equation of motion for a real-time perturbation about the stationary flows reveals a very close correspondence with the metric of an acoustic b...

  8. Dynamically important magnetic fields near accreting supermassive black holes.

    Science.gov (United States)

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A

    2014-06-01

    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.

  9. Accretion of radiation and rotating primordial black holes

    Science.gov (United States)

    Mahapatra, S.; Nayak, B.

    2016-02-01

    We consider rotating primordial black holes (PBHs) and study the effect of accretion of radiation in the radiation-dominated era. The central part of our analysis deals with the role of the angular momentum parameter on the evolution of PBHs. We find that both the accretion and evaporation rates decrease with an increase in the angular momentum parameter, but the rate of evaporation decreases more rapidly than the rate of accretion. This shows that the evaporation time of PBHs is prolonged with an increase in the angular momentum parameter. We also note that the lifetime of rotating PBHs increases with an increase in the accretion efficiency of radiation as in the case of nonrotating PBHs.

  10. Dynamically important magnetic fields near accreting supermassive black holes.

    Science.gov (United States)

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A

    2014-06-01

    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets. PMID:24899311

  11. Impact-induced melting during accretion of the Earth

    CERN Document Server

    de Vries, Jellie; Melosh, H Jay; Jacobson, Seth A; Morbidelli, Alessandro; Rubie, David C

    2016-01-01

    Because of the high energies involved, giant impacts that occur during planetary accretion cause large degrees of melting. The depth of melting in the target body after each collision determines the pressure and temperature conditions of metal-silicate equilibration and thus geochemical fractionation that results from core-mantle differentiation. The accretional collisions involved in forming the terrestrial planets of the inner Solar System have been calculated by previous studies using N-body accretion simulations. Here we use the output from such simulations to determine the volumes of melt produced and thus the pressure and temperature conditions of metal-silicate equilibration, after each impact, as Earth-like planets accrete. For these calculations a parametrised melting model is used that takes impact velocity, impact angle and the respective masses of the impacting bodies into account. The evolution of metal-silicate equilibration pressures (as defined by evolving magma ocean depths) during Earth's ac...

  12. On Hydromagnetic Stresses in Accretion Disk Boundary Layers

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan

    2012-01-01

    viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where...

  13. Aerodynamic instability of a cylinder with thin ice accretion

    DEFF Research Database (Denmark)

    Gjelstrup, Henrik; Georgakis, Christos

    2009-01-01

    The present work is motivated by a hanger vibration event on the Great Belt East Bridge, involving hanger ice accretion from March 27-31, 2001. The paper outlines a series of icing tests performed on a cylinder at the NRC Altitude Icing Wind Tunnel in March 2009 and the wind tunnel tests thereafter......, leading to a description of the mechanism behind the hanger motional instability. Transmission line vibrations due to ice accretion have received considerable interest in recent years [1-5]. Although much work has been done on the wind-induced vibrations of bridge cables e.g. [6-8], little or no research...... on ice-accreted bridge cables exists. Figure 1 shows a typical section of ice accretion as has been found on a vertical hanger of the Great Belt East Bridge, with a diameter of approximately 115mm. This ice shape is not from the specific aforementioned vibration event, but it illustrates that a fairly...

  14. Dynamical structure of magnetized dissipative accretion flow around black holes

    CERN Document Server

    Sarkar, Biplob

    2016-01-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accret...

  15. Wind-driven Accretion in Transitional Protostellar Disks

    CERN Document Server

    Wang, Lile

    2016-01-01

    Transitional protostellar disks have inner cavities heavily depleted in dust and gas, yet most show signs of ongoing accretion, often at rates comparable to full disks. We show that recent constraints on the gas surface density in a few well-studied disk cavities imply that the accretion speed is at least transsonic. We propose that this is the natural result of accretion driven by magnetized winds. Typical physical conditions of the gas inside such cavities are estimated for plausible X-ray and FUV radiation fields. The gas is molecular and predominantly neutral, with a dimensionless ambipolar parameter in the right general range for wind solutions of the type developed by K\\"onigl, Wardle, and others. That is to say, the density of ions and electrons is sufficient for moderately good coupling to the magnetic field, but not so good that the magnetic flux need be dragged inward by the accreting neutrals.

  16. Polarized X-rays from accreting neutron stars

    Science.gov (United States)

    Bhattacharya, Dipankar

    2016-07-01

    Accreting neutron stars span a wide range in X-ray luminosity and magnetic field strength. Accretion may be wind-fed or disk-fed, and the dominant X-ray flux may originate in the disk or a magnetically confined accretion column. In all such systems X-ray polarization may arise due to Compton or Magneto-Compton scattering, and on some occasions polarization of non-thermal emission from jet-like ejection may also be detectable. Spectral and temporal behaviour of the polarized X-rays would carry information regarding the radiation process, as well as of the matter dynamics - and can assist the detection of effects such as the Lense-Thirring precession. This talk will review our current knowledge of the expected X-ray polarization from accreting neutron stars and explore the prospects of detection with upcoming polarimetry missions.

  17. The Magnetohydrodynamics of Convection-Dominated Accretion Flows

    CERN Document Server

    Narayan, R; Igumenshchev, I V; Abramowicz, M A; Narayan, Ramesh; Quataert, Eliot; Igumenshchev, Igor V.; Abramowicz, Marek A.

    2002-01-01

    Radiatively inefficient accretion flows onto black holes are unstable due to both an outwardly decreasing entropy (``convection'') and an outwardly decreasing rotation rate (the ``magnetorotational instability'', MRI). Using a linear magnetohydrodynamic stability analysis, we show that long-wavelength modes are primarily destabilized by the entropy gradient and that such ``convective'' modes transport angular momentum inwards. Moreover, the stability criteria for the convective modes are the standard Hoiland criteria of hydrodynamics. By contrast, shorter wavelength modes are primarily destabilized by magnetic tension and differential rotation. These ``MRI'' modes transport angular momentum outwards. The convection-dominated accretion flow (CDAF) model, which has been proposed for radiatively inefficient accretion onto a black hole, posits that inward angular momentum transport and outward energy transport by long-wavelength convective fluctuations are crucial for determining the structure of the accretion fl...

  18. Variability and Stability in Radiation Hydrodynamic Accretion Flows

    CERN Document Server

    Miller, G S; Miller, Guy S.; Park, Myeong-Gu

    1997-01-01

    In this paper we examine time-dependent and three-dimensional perturbations of spherical accretion flow onto a neutron star close to its Eddington limit. Our treatment assumes a Schwarzschild geometry for the spacetime outside the neutron star and is fully general relativistic. At all the accretion rates studied, the response of the accretion flow to perturbations includes weakly damped oscillatory modes. At sufficiently high luminosities --- but still well below the Eddington limit --- the flows become unstable to aspherical perturbations. These unstable radiation hydrodynamic modes resemble the onset of convection, and allow accretion to occur preferentially through more rapidly descending columns of gas, while the radiation produced escapes through neighboring columns in which the gas descends more slowly.

  19. Accretion Does Not Drive the Turbulence in Galactic Disks

    CERN Document Server

    Hopkins, Philip F; Murray, Norman

    2013-01-01

    Rapid accretion of cold gas plays a crucial role in getting gas into galaxies. It has been suggested that this accretion proceeds along narrow streams that might also directly drive the turbulence in galactic gas, dynamical disturbances, and bulge formation. In cosmological simulations, however, it is impossible to isolate and hence disentangle the effect of accretion from internal instabilities and mergers. Moreover, in most cosmological simulations, the phase structure and turbulence in the ISM arising from stellar feedback are treated in a sub-grid manner, so that feedback cannot generate ISM turbulence. In this paper we therefore test the effects of cold streams in extremely high-resolution simulations of otherwise isolated galaxy disks using detailed models for star formation and feedback; we then include or exclude mock cold flows falling onto the galaxies with accretion rates, velocities and geometry set to maximize their effect on the disk. We find: (1) Turbulent velocity dispersions in gas disks are ...

  20. On the growth of pebble-accreting planetesimals

    CERN Document Server

    Visser, Rico G

    2015-01-01

    Pebble accretion is a new mechanism to quickly grow the cores of planets. In pebble accretion, gravity and gas drag conspire to yield large collisional cross sections for small particles in protoplanetary disks. However, before pebble accretion commences, aerodynamical deflection may act to prevent planetesimals from becoming large, because particles tend to follow gas streamlines. We derive the planetesimal radius where pebble accretion is initiated and determine the growth timescales of planetesimals by sweepup of small particles. We obtain the collision efficiency factor as the ratio of the numerically-obtained collisional cross section to the planetesimal surface area, from which we obtain the growth timescales. Integrations are conducted in the potential flow limit (steady, inviscid) and in the Stokes flow regime (steady, viscid). Only particles of stopping time $t_s \\ll t_X$ where $t_X\\approx10^3$ s experience aerodynamic deflection. Even in that case, the planetesimal's gravity always ensures positive ...

  1. Accretion to a Magnetized Neutron Star in the "Propeller" Regime

    CERN Document Server

    Toropina, O D; Lovelace, R V E

    2006-01-01

    We investigate spherical accretion to a rotating magnetized star in the "propeller" regime using axisymmetric resistive magnetohydrodynamic simulations. The regime is predicted to occur if the magnetospheric radius is larger than the corotation radius and smaller than the light cylinder radius. The simulations show that accreting matter is expelled from the equatorial region of the magnetosphere and that it moves away from the star in a supersonic, disk-shaped outflow. At larger radial distances the outflow slows down and becomes subsonic. The equatorial matter outflow is initially driven by the centrifugal force, but at larger distances the pressure gradient force becomes significant. We find the fraction of the Bondi accretion rate which accretes to the surface of the star.

  2. Photon Bubbles and the Vertical Structure of Accretion Disks

    CERN Document Server

    Begelman, M C

    2006-01-01

    We consider the effects of "photon bubble" shock trains on the vertical structure of radiation pressure-dominated accretion disks. These density inhomogeneities are expected to develop spontaneously in radiation-dominated accretion disks where magnetic pressure exceeds gas pressure, even in the presence of magnetorotational instability. They increase the rate at which radiation escapes from the disk, and may allow disks to exceed the Eddington limit by a substantial factor. We first generalize the theory of photon bubbles to include the effects of finite optical depths and radiation damping. Modifications to the diffusion law at low optical depth tend to fill in the low-density regions of photon bubbles, while radiation damping inhibits the formation of photon bubbles at large radii, small accretion rates, and small heights above the equatorial plane. Accretion disks dominated by photon bubble transport may reach luminosities of 10 to >100 times the Eddington limit (L_E), depending on the mass of the central ...

  3. TLUSTY: Stellar Atmospheres, Accretion Disks, and Spectroscopic Diagnostics

    Science.gov (United States)

    Hubeny, Ivan; Lanz, Thierry

    2011-09-01

    TLUSTY is a user-oriented package written in FORTRAN77 for modeling stellar atmospheres and accretion disks and wide range of spectroscopic diagnostics. In the program's maximum configuration, the user may start from scratch and calculate a model atmosphere of a chosen degree of complexity, and end with a synthetic spectrum in a wavelength region of interest for an arbitrary stellar rotation and an arbitrary instrumental profile. The user may also model the vertical structure of annuli of an accretion disk.

  4. A New Approach to Evolution of Black Hole Accretion Disks

    Institute of Scientific and Technical Information of China (English)

    WANG Ding-Xiong; LEI Wei-Hua; XIAO Kan

    2000-01-01

    Evolution of black hole (BH) accretion disks is investigated by a new approach, in which the evolution of the central BH can be derived in terms of BH spin directly, and the evolution characteristics of the concerning BH parameters are shown more easily and obviously. As an example, the unusual evolution characteristics of angular velocity of BH horizon and that of accreting particles at the inner edge of the disk are derived by considering the Blandford-Znajek process.

  5. Numerical models of rotating accretion flows around black holes

    CERN Document Server

    Igumenshchev, I V

    1999-01-01

    Numerical, two-dimensional, time-dependent hydrodynamical models of geometrically thick accretion discs around black holes are presented. Accretion flows with non-effective radiation cooling (ADAFs) can be both convectively stable or unstable depending on the value of the viscosity parameter \\alpha. The high viscosity flows (\\alpha~1) are stable and have a strong equatorial inflow and bipolar outflows. The low viscosity flows (\\alpha<0.1) are convectively unstable and this induces quasi-periodic variability.

  6. Line emission from optically thick relativistic accretion tori

    OpenAIRE

    Fuerst, Steven V.; Wu, Kinwah

    2007-01-01

    We calculate line emission from relativistic accretion tori around Kerr black holes and investigate how the line profiles depend on the viewing inclination, spin of the central black hole, parameters describing the shape of the tori, and spatial distribution of line emissivity on the torus surface. We also compare the lines with those from thin accretion disks. Our calculations show that lines from tori and lines from thin disks share several common features. In particular, at low and moderat...

  7. Black hole accretion discs and screened scalar hair

    CERN Document Server

    Davis, Anne-Christine; Jha, Rahul

    2016-01-01

    We present a novel way to investigate scalar field profiles around black holes with an accretion disc for a range of models where the Compton wavelength of the scalar is large compared to other length scales. By analysing the problem in "Weyl" coordinates, we are able to calculate the scalar profiles for accretion discs in the static Schwarzschild, as well as rotating Kerr, black holes. We comment on observational effects.

  8. Standing Shocks in Viscous Accretion Flows around Black Holes

    Institute of Scientific and Technical Information of China (English)

    GU Wei-Min; LU Ju-Fu

    2005-01-01

    @@ We study the problem of standing shocks in viscous accretion flows around black holes.We parameterize such a flow with two physical constants, namely the specific angular momentum accreted by the black hole j and the energy quantity K.By providing the global dependence of shock formation in the j - K parameter space, we show that a significant parameter region can ensure solutions with shocks of different types, namely Rankine-Hugoniot shocks, isothermal shocks, and more realistically, mixed shocks.

  9. Type I migration in optically thick accretion discs

    OpenAIRE

    Yamada, K; Inaba, S.

    2012-01-01

    We study the torque acting on a planet embedded in an optically thick accretion disc, using global two-dimensional hydrodynamic simulations. The temperature of an optically thick accretion disc is determined by the energy balance between the viscous heating and the radiative cooling. The radiative cooling rate depends on the opacity of the disc. The opacity is expressed as a function of the temperature. We find the disc is divided into three regions that have different temperature distributio...

  10. Black hole accretion discs and screened scalar hair

    Science.gov (United States)

    Davis, Anne-Christine; Gregory, Ruth; Jha, Rahul

    2016-10-01

    We present a novel way to investigate scalar field profiles around black holes with an accretion disc for a range of models where the Compton wavelength of the scalar is large compared to other length scales. By analysing the problem in ``Weyl" coordinates, we are able to calculate the scalar profiles for accretion discs in the static Schwarzschild, as well as rotating Kerr, black holes. We comment on observational effects.

  11. The Event Horizon Telescope: exploring strong gravity and accretion physics

    OpenAIRE

    Ricarte, Angelo; Dexter, Jason

    2014-01-01

    The Event Horizon Telescope (EHT), a global sub-millimeter wavelength very long baseline interferometry array, is now resolving the innermost regions around the supermassive black holes Sgr A* and M87. Using black hole images from both simple geometric models and relativistic magnetohydrodynamical accretion flow simulations, we perform a variety of experiments to assess the promise of the EHT for studying strong gravity and accretion physics during the stages of its development. We find that ...

  12. Observational Signatures of Tilted Black Hole Accretion Disks from Simulations

    OpenAIRE

    Dexter, Jason; Fragile, P. Chris

    2011-01-01

    Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer, and compare the estimated locatio...

  13. Close stars and accretion in Low Luminosity Active Galactic Nuclei

    CERN Document Server

    Nayakshin, S

    2004-01-01

    Quasar accretion disks are believed to form stars by self-gravity. Low Luminosity Active Galactic Nuclei (LLAGN) are much dimmer galactic centers, and are often believed to be quasars that ran out of gaseous fuel. LLAGN accretion disks should thus co-exist with thousands to millions of stars or proto-stars left from the previous stronger accretion activity. In principle, these stars may produce several important effects: (i) contribute to the optical/UV spectra of some LLAGN; (ii) reprocessing of the stellar radiation in the dusty disks could dominate the LLAGN infra-red spectra; (iii) deplete the (accretion) gas disk much faster than it can accrete onto the supper-massive black hole (SMBH); (iv) stars, individually or in groups, may slow down and modulate the accretion flow significantly due to their inertia. In this way they may produce the LLAGN cut-off disks; (v) alternatively, frequent enough stellar collisions and resulting stellar disruptions could keep the inner disk empty. Here we explore these ideas...

  14. Phantom Energy Accretion by a Stringy Charged Black Hole

    Institute of Scientific and Technical Information of China (English)

    M.Sharif; G.Abbas

    2012-01-01

    We investigate the dynamical behavior of phantom energy near a stringy magnetically charged black hole. For this purpose, we derive equations of motion for steady-state spherically symmetric Row of phantom energy onto the stringy magnetically charged black hole. It is found that phantom energy accreting onto a black hole decreases its mass. Further, the location of the critical points of accretion is explored, which yields a mass to charge ratio. This ratio implies that accretion process cannot transform a black hole into an extremal black hole or a naked singularity, hence cosmic censorship hypothesis remains valid here.%We investigate the dynamical behavior of phantom energy near a stringy magnetically charged black hole.For this purpose,we derive equations of motion for steady-state spherically symmetric flow of phantom energy onto the stringy magnetically charged black hole.It is found that phantom energy accreting onto a black hole decreases its mass.Further,the location of the critical points of accretion is explored,which yields a mass to charge ratio.This ratio implies that accretion process cannot transform a black hole into an extremal black hole or a naked singularity,hence cosmic censorship hypothesis remains valid here.

  15. Growth of massive black holes during radiatively inefficient accretion phases

    CERN Document Server

    Cao, X

    2006-01-01

    The massive black holes in most faint active galactic nuclei (AGNs) and even normal galaxies are still accreting gases, though their accretion rates are very low. Radiatively inefficient accretion flows (RIAFs) are supposed in these faint sources, which should radiate mostly in the hard X-ray band. We calculate the contribution to the X-ray background from both the bright AGNs and the RIAFs in faint AGNs/normal galaxies. Our calculations show that both the observed intensity and spectral shape of the XRB with an energy peak at ~30$ keV can be well reproduced without including the emission of Compton-thick AGNs, if the massive black holes in faint AGNs/normal galaxies are spinning rapidly with a~0.9 and accreting at rates ~1.0-3.0\\times 10^{-4}. It indicates that less than ~5 per cent of local massive black hole mass density was accreted during radiatively inefficient accretion phases, which is obviously only an upper limit, because Compton-thick AGNs have not been considered. If the same number of the Compton...

  16. Rapidly Accreting Supergiant Protostars: Embryos of Supermassive Black Holes?

    CERN Document Server

    Hosokawa, Takashi; Yorke, Harold W

    2012-01-01

    Direct collapse of supermassive stars (SMSs) is a possible pathway for generating supermassive black holes in the early universe. It is expected that an SMS could form via very rapid mass accretion with Mdot ~ 0.1 - 1 Msun/yr during the gravitational collapse of an atomic-cooling primordial gas cloud. In this paper we study how stars would evolve under such extreme rapid mass accretion, focusing on the early evolution until the stellar mass reaches 1000 Msun. To this end we numerically calculate the detailed interior structure of accreting stars with primordial element abundances. Our results show that for accretion rates higher than 0.01 Msun/yr, stellar evolution is qualitatively different from that expected at lower rates. While accreting at these high rates the star always has a radius exceeding 100 Rsun, which increases monotonically with the stellar mass. The mass-radius relation for stellar masses exceeding ~ 100 Msun follows the same track with R_* \\propto M_*^0.5 in all cases with accretion rates > 0...

  17. X-Shooter study of accretion in Chamaeleon I

    Science.gov (United States)

    Manara, C. F.; Fedele, D.; Herczeg, G. J.; Teixeira, P. S.

    2016-01-01

    We present the analysis of 34 new VLT/X-Shooter spectra of young stellar objects in the Chamaeleon I star-forming region, together with four more spectra of stars in Taurus and two in Chamaeleon II. The broad wavelength coverage and accurate flux calibration of our spectra allow us to estimate stellar and accretion parameters for our targets by fitting the photospheric and accretion continuum emission from the Balmer continuum down to ~700 nm. The dependence of accretion on stellar properties for this sample is consistent with previous results from the literature. The accretion rates for transitional disks are consistent with those of full disks in the same region. The spread of mass accretion rates at any given stellar mass is found to be smaller than in many studies, but is larger than that derived in the Lupus clouds using similar data and techniques. Differences in the stellar mass range and in the environmental conditions between our sample and that of Lupus may account for the discrepancy in scatter between Chamaeleon I and Lupus. Complete samples in Chamaeleon I and Lupus are needed to determine whether the difference in scatter of accretion rates and the lack of evolutionary trends are not influenced by sample selection. This work is based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 084.C-1095 and 094.C-0913.

  18. Evolution of Accretion Disks in Tidal Disruption Events

    CERN Document Server

    Shen, Rong-Feng

    2013-01-01

    In a stellar tidal disruption event (TDE), an accretion disk forms as the stellar debris returns and circularizes. Rather than being confined within the circularizing radius, the disk can spread to larger radii to conserve angular momentum. An outer spreading disk is a source of matter for re-accretion at rates which can exceed the later stellar fall-back rate, although a disk wind can suppress its contribution to the central black hole accretion rate. A spreading disk is detectible through a break in the central accretion rate history, or, at longer wavelengths, by its own emission. Moreover, as an angular momentum reservoir, it can broadcast its existence by affecting the disk precession rate. Because these features depend on the disk's internal viscosity and the nature of wind produced in its early, advection-dominated phase, they are useful probes of transient disk physics. To model the evolution of TDE disk size and accretion rate, we account for the possibility of thermal instability for accretion rates...

  19. A dynamical model for radiatively inefficient accretion flows with convection

    International Nuclear Information System (INIS)

    We explore the time evolution of radiatively-inefficient accretion flows. Since these types of accretion flows are convectively unstable, we also study the effects of convection in the present model. The effects of convection are applied to equations describing angular momentum and energy. In analogy to the traditional α-prescription, we introduce the convection parameter αc to study the influences of convection on physical quantities. The model is studied in two cases: the transport of angular momentum due to convection inward and outward. We found the physical variables are sensitive to the parameter αc and are also dependent on the direction of angular momentum that is transported by convection. As for angular momentum transfer inward, the accretion flow can be convectively dominated and radial infall velocity becomes zero. Moreover, we found the radial dependence of the density and radial velocity takes an intermediate place between steady state radiatively-inefficient accretion flow and steady state advection-dominated accretion flow. This property is in accord with direct numerical simulation of radiatively-inefficient accretion flows

  20. The accretion rate dependence of burst oscillation amplitude

    CERN Document Server

    Ootes, Laura S; Galloway, Duncan K; Wijnands, Rudy

    2016-01-01

    Neutron stars in low mass X-ray binaries exhibit oscillations during thermonuclear bursts, attributed to asymmetric brightness patterns on the burning surfaces. All models that have been proposed to explain the origin of these asymmetries (spreading hotspots, surface waves, and cooling wakes) depend on the accretion rate. By analysis of archival RXTE data of six oscillation sources, we investigate the accretion rate dependence of the amplitude of burst oscillations. This more than doubles the size of the sample analysed previously by Muno et al. (2004), who found indications for a relationship between accretion rate and oscillation amplitudes. We find that burst oscillation signals can be detected at all observed accretion rates. Moreover, oscillations at low accretion rates are found to have relatively small amplitudes ($A_\\text{rms}\\leq0.10$) while oscillations detected in bursts observed at high accretion rates cover a broad spread in amplitudes ($0.05\\leq A_\\text{rms}\\leq0.20$). In this paper we present t...

  1. High mass accretion disks: ATCA's potential for deep impact II

    Science.gov (United States)

    Walsh, Andrew; Beuther, Henrik; Longmore, Steven; Fallscheer, Cassandra

    2010-10-01

    The understanding of accretion processes and in particular of massive accretion disks is one of the most important topics in high-mass star formation. Based on our successful ATCA disk studies of high mass star formation, we now propose to investigate higher J inversion transitions of NH3 at high angular resolution (~1'') to complement our NH3 (4,4) and (5,5) data obtained last year. Last year's data showed a number of regions with clear rotational profiles, but no flattened structures that would indicate an edge-on accretion disk. We interpret our results to show rotating surrounding envelopes of any accretion disks. We were not able to see the accretion disks themselves because the (4,4) and (5,5) lines are optically thick. With observations of NH3 (7,7) and (8,8), which occur under even more extreme conditions than (4,4) or (5,5), we hope to peer through the surrounding envelope to see the accretion disks.

  2. Azimuthal Stress and Heat Flux In Radiatively Inefficient Accretion Flows

    Science.gov (United States)

    Devlen, Ebru

    2016-07-01

    Radiatively Inefficient Accretion Flows (RIAFs) have low radiative efficiencies and/or low accretion rates. The accreting gas may retain most of its binding energy in the form of heat. This lost energy for hot RIAFs is one of the problems heavily worked on in the literature. RIAF observations on the accretion to super massive black holes (e.g., Sagittarius A* in the center of our Galaxy) have shown that the observational data are not consistent with either advection-dominated accretion flow (ADAF) or Bondi models. For this reason, it is very important to theoretically comprehend the physical properties of RIAFs derived from observations with a new disk/flow model. One of the most probable candidates for definition of mass accretion and the source of excess heat energy in RIAFs is the gyroviscous modified magnetorotational instability (GvMRI). Dispersion relation is derived by using MHD equations containing heat flux term based on viscosity in the energy equation. Numerical solutions of the disk equations are done and the growth rates of the instability are calculated. This additional heat flux plays an important role in dissipation of energy. The rates of the angular momentum and heat flux which are obtained from numerical calculations of the turbulence brought about by the GVMRI are also discussed.

  3. Evolution of Gas Giant Entropy During Formation by Runaway Accretion

    CERN Document Server

    Berardo, David; Marleau, Gabriel-Dominique

    2016-01-01

    We calculate the evolution of gas giant planets during the runaway gas accretion phase of formation, to understand how the luminosity of young giant planets depends on the accretion conditions. We construct steady-state envelope models, and run time-dependent simulations of accreting planets with the Modules for Experiments in Stellar Astrophysics (MESA) code. We show that the evolution of the internal entropy depends on the contrast between the internal adiabat and the entropy of the accreted material, parametrized by the shock temperature $T_0$ and pressure $P_0$. At low temperatures ($T_0\\lesssim 300$--$1000\\ {\\rm K}$, depending on model parameters), the accreted material has a lower entropy than the interior. The convection zone extends to the surface and can drive a large luminosity, leading to rapid cooling and cold starts. For higher temperatures, the accreted material has a larger entropy than the interior, giving a radiative zone that stalls cooling. For $T_0\\gtrsim 2000\\ {\\rm K}$, the surface--inter...

  4. Observations on the Formation of Massive Stars by Accretion

    CERN Document Server

    Keto, E; Keto, Eric; Wood, Kenneth

    2006-01-01

    Observations of the H66a recombination line from the ionized gas in the cluster of newly formed massive stars, G10.6-0.4, show that most of the continuum emission derives from the dense gas in an ionized accretion flow that forms an ionized disk or torus around a group of stars in the center of the cluster. The inward motion observed in the accretion flow suggests that despite the equivalent luminosity and ionizing radiation of several O stars, neither radiation pressure nor thermal pressure has reversed the accretion flow. The observations indicate why the radiation pressure of the stars and the thermal pressure of the HII region are not effective in reversing the accretion flow. The observed rate of the accretion flow, 0.001 solar masses/yr, is sufficient to form massive stars within the time scale imposed by their short main sequence lifetimes. A simple model of disk accretion relates quenched HII regions, trapped hypercompact HII regions, and photo-evaporating disks in an evolutionary sequence.

  5. Multiphase, non-spherical gas accretion onto a black hole

    CERN Document Server

    Barai, Paramita; Nagamine, Kentaro

    2011-01-01

    (Abridged) We investigate non-spherical behavior of gas accreting onto a central supermassive black hole performing simulations using the SPH code GADGET-3 including radiative cooling and heating by the central X-ray source. As found in earlier 1D studies, our 3D simulations show that the accretion mode depends on the X-ray luminosity (L_X) for a fixed density at infinity and accretion efficiency. In the low L_X limit, gas accretes in a stable, spherically symmetric fashion. In the high L_X limit, the inner gas is significantly heated up and expands, reducing the central mass inflow rate. The expanding gas can turn into a strong enough outflow capable of expelling most of the gas at larger radii. For some intermediate L_X, the accretion flow becomes unstable developing prominent non-spherical features, the key reason for which is thermal instability (TI) as shown by our analyses. Small perturbations of the initially spherically symmetric accretion flow that is heated by the intermediate L_X quickly grow to fo...

  6. Probing neutron star physics using accreting neutron stars

    Directory of Open Access Journals (Sweden)

    Patruno A.

    2010-10-01

    Full Text Available We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars during quiescence. In the first part of this overview we show that the X-ray pulses are contaminated by a large amount of noise of uncertain origin, and that all these neutron stars do not show evidence of spin variations during the outburst. We present also some recent developments on the presence of intermittency in three accreting millisecond X-ray pulsars and investigate the reason why only a small number of accreting neutron stars show X-ray pulsations and why none of these pulsars shows sub-millisecond spin periods. In the second part of the overview we introduce the observational technique that allows the study of neutron star cooling in accreting systems as probes of neutron star internal composition and equation of state. We explain the phenomenon of the deep crustal heating and present some recent developments on several quasi persistent X-ray sources where a cooling neutron star has been observed.

  7. A magnetic accretion switch in pre-cataclysmic binaries?

    CERN Document Server

    Drake, Jeremy J; Takei, Dai; Gaensicke, Boris

    2014-01-01

    We have investigated the mass accretion rate implied by published surface abundances of Si and C in the white dwarf component of the 3.62 hr period pre-cataclysmic binary and planet host candidate QS Vir (DA+M2-4). Diffusion timescales for gravitational settling imply $\\dot{M} \\sim 10^{-16}M_\\odot$ yr$^{-1}$ for the 1999 epoch of the observations, which is three orders of magnitude lower than measured from a 2006 {\\it XMM-Newton} observation. This is the first time that large accretion rate variations have been seen in a detached pre-CV. A third body in a 14 yr eccentric orbit suggested in a recent eclipse timing study is too distant to perturb the central binary sufficiently to influence accretion. A hypothetical coronal mass ejection just prior to the {\\it XMM-Newton} observation might explain the higher accretion rate, but the implied size and frequency of such events appear too great. We suggest accretion is most likely modulated by a magnetic cycle on the secondary acting as a wind "accretion switch", a ...

  8. The accretion of galaxies into groups and clusters

    CERN Document Server

    McGee, Sean L; Bower, Richard G; Font, Andreea S; McCarthy, Ian G

    2009-01-01

    We use the galaxy stellar mass and halo merger tree information from the semi-analytic model galaxy catalogue of Font et al. (2009) to examine the accretion of galaxies into a large sample of groups and clusters, covering a wide range in halo mass (10E12.9 to 10E15.3 Msun/h), and selected from each of four redshift epochs (z=0, 0.5, 1.0 and 1.5). We find that clusters at all examined redshifts have accreted a significant fraction of their final galaxy populations through galaxy groups. A 10E14.5 Msun/h mass cluster at z=0 has, on average, accreted ~ 40% of its galaxies (Mstellar > 10E9 Msun/h) from halos with masses greater than 10E13 Msun/h. Further, the galaxies which are accreted through groups are more massive, on average, than galaxies accreted through smaller halos or from the field population. We find that at a given epoch, the fraction of galaxies accreted from isolated environments is independent of the final cluster or group mass. In contrast, we find that observing a cluster of the same halo mass a...

  9. Binary accretion rates: dependence on temperature and mass-ratio

    CERN Document Server

    Young, Matthew D

    2015-01-01

    We perform a series of 2D smoothed particle hydrodynamics (SPH) simulations of gas accretion onto binaries via a circumbinary disc, for a range of gas temperatures and binary mass ratios ($q$). We show that increasing the gas temperature increases the accretion rate onto the primary for all values of the binary mass ratio: for example, for $q=0.1$ and a fixed binary separation, an increase of normalised sound speed by a factor of $5$ (from our "cold" to "hot" simulations) changes the fraction of the accreted gas that flows on to the primary from $ 10\\%$ to $\\sim40\\%$. We present a simple parametrisation for the average accretion rate of each binary component accurate to within a few percent and argue that this parametrisation (rather than those in the literature based on warmer simulations) is relevant to supermassive black hole accretion and all but the widest stellar binaries. We present trajectories for the growth of $q$ during circumbinary disc accretion and argue that the period distribution of stellar "...

  10. Global Compton heating and cooling in hot accretion flows

    CERN Document Server

    Yuan, Feng; Ostriker, Jeremiah P

    2008-01-01

    The hot accretion flow (such as advection-dominated accretion flow) is usually optically thin in the radial direction, therefore the photons produced at one radius can travel for a long distance without being absorbed and heat or cool electrons at other radii via Compton scattering. This effect has been ignored in most previous works on hot accretion flows and is the focus of this paper. If the mass accretion rate is described by $\\dot{M}=\\dot{M}_0(r/r_{\\rm out})^{0.3}$ with $r_{\\rm out}=10^4 r_s$ and $r_s=2GM/c^2$, we find that when $\\dot{M}_0>0.1L_{\\rm Edd}/c^2$, the rates of Compton heating (at $r\\ga 10^3 r_s$) or cooling (at $r\\la 10^3 r_s$) are larger than the local heating rate of electrons; therefore the effect is important. We can obtain the self-consistent steady solution with this effect included only if the accretion rate $\\dot{M}_0\\la L_{\\rm Edd}/c^2$ which corresponds to $L\\la 0.01L_{\\rm Edd}$. Above this accretion rate the equilibrium temperature of electrons at $r_{\\rm out}=10^4r_s$ is higher t...

  11. Shenanigans at the black hole horizon: pair creation or Boulware accretion?

    CERN Document Server

    Israel, Werner

    2015-01-01

    The current scenario of black hole evaporation holds that the Hawking energy flux $F$ is powered by pair creation at the horizon. However, pair creation produces entanglements, some of which must necessarily be broken before the black hole evaporates completely. That leads to loss of information and violation of unitarity. In this paper, an alternative scenario is suggested that reproduces the essential features of Hawking evaporation, but does not invoke pair creation with its attendant problems. In this "accreting Boulware" scenario, a positive flux $F$ is still an outflux at infinity, but near the horizon it becomes an influx of negative energy. This negative energy flux (marginally) satisfies the Flanagan energy inequality.

  12. Dynamo generated magnetic configurations in accretion discs and the nature of quasi-periodic oscillations in accreting binary systems

    CERN Document Server

    Moss, David; Suleimanov, Valery

    2016-01-01

    Magnetic fields are important for accretion disc structure. Magnetic fields in a disc system may be transported with the accreted matter. They can be associated with either the central body and/or jet, and be fossil or dynamo excited in situ. We consider dynamo excitation of magnetic fields in accretion discs of accreting binary systems in an attempt to clarify possible configurations of dynamo generated magnetic fields. We first model the entire disc with realistic radial extent and thickness using an alpha-quenching non-linearity. We then study the simultaneous effect of feedback from the Lorentz force from the dynamo-generated field. We perform numerical simulations in the framework of a relatively simple mean-field model which allows the generation of global magnetic configurations. We explore a range of possibilities for the dynamo number, and find quadrupolar-type solutions with irregular temporal oscillations that might be compared to observed rapid luminosity fluctuations. The dipolar symmetry models ...

  13. Large Scale Azimuthal Structures Of Turbulence In Accretion Disks - Dynamo triggered variability of accretion

    CERN Document Server

    Flock, M; Klahr, H; Turner, N; Henning, Th

    2011-01-01

    We investigate the significance of large scale azimuthal, magnetic and velocity modes for the MRI turbulence in accretion disks. We perform 3D global ideal MHD simulations of global stratified proto-planetary disk models. Our domains span azimuthal angles of \\pi/4, \\pi/2, \\pi and 2\\pi. We observe up to 100% stronger magnetic fields and stronger turbulence for the restricted azimuthal domain models \\pi/2 and \\pi/4 compared to the full 2\\pi model. We show that for those models, the Maxwell Stress is larger due to strong axisymmetric magnetic fields, generated by the \\alpha \\Omega dynamo. Large radial extended axisymmetric toroidal fields trigger temporal magnification of accretion stress. All models display a positive dynamo-\\alpha in the northern hemisphere (upper disk). The parity is distinct in each model and changes on timescales of 40 local orbits. In model 2\\pi, the toroidal field is mostly antisymmetric in respect to the midplane. The eddies of the MRI turbulence are highly anisotropic. The major wavelen...

  14. Fractionation and Accretion of Meteorite Parent Bodies

    Science.gov (United States)

    Weidenschilling, Stuart J.

    2005-01-01

    Senior Scientist Stuart J. Weidenschilling presents his final administrative report for the research program on which he was the Principal Investigator. The research program resulted in the following publications: 1) Particle-gas dynamics and primary accretion. J. N. Cuzzi and S. J . Weidenschilling. To appear in Meteorites and the Early Solar System 11 (D. Lauretta et a]., Eds.), Univ. Arizona Press. 2005; 2) Timescales of the solar protoplanetary disk. S. Russell, L. Hartmann, J . N. Cuzzi, A. Krot, M. Gounelle and S. J. Weidenschilling. To appear in Meteorites and the Early Solar System II (D. Lauretta et al., Eds.), Univ. Arizona Press, 2005; 3) Nebula evolution of thermally processed solids: Reconciling astrophysical models and chondritic meteorites. J. N. Cuzzi, F. J. Ciesla, M. I. Petaev, A. N. Krot, E. R. D. Scott and S . J. Weidenschilling. To appear in Chondrites and the Protoplanetary Disk (A. Krot et a]., Eds.), ASP Conference Series, 2005; 4) Possible chondrule formation in planetesimal bow shocks: Physical processes in the near vicinity of the planetesimal. L. L. Hood, F. J. Ciesla and S. J. Weidenschilling. To appear in Chondrites and the Protoplanetary Disk (A. Krot et al., Eds.), ASP Conference Series, 2005; 5) From icy grains to comets. In Comets II (M. Festou et al., Eds.), Univ. Arizona Press, pp. 97- 104, 2005; 6) Evaluating planetesimal bow shocks as sites for chondrule formation. F. J . Ciesla, L. L. Hood and S. J. Weidenschilling. Meteoritics & Planetary Science 39, 1809-1 821, 2004; and 7) Radial drift of particles in the solar nebula: Implications for planetesimal formation. Icarus 165, 438-442, 2003.

  15. Forming an O Star via Disk Accretion?

    Science.gov (United States)

    Qiu, Keping; Zhang, Qizhou; Beuther, Henrik; Fallscheer, Cassandra

    2012-09-01

    We present a study of outflow, infall, and rotation in a ~105 L ⊙ star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of ~80 M ⊙ and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 ± 50 K and a mass of ~13 M ⊙. The outflow has a gas mass of 54 M ⊙ and a dynamical timescale of 8 × 103 yr. The kinematics of the HMC are probed by high-excitation CH3OH and CH3CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 × 10-3 M ⊙ yr-1, is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the 13CO and C18O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass ~10 M ⊙ embedded within MM1 will develop into an O star via disk accretion and envelope infall.

  16. FORMING AN O STAR VIA DISK ACCRETION?

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Keping [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Zhang Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Beuther, Henrik; Fallscheer, Cassandra, E-mail: kqiu@mpifr-bonn.mpg.de [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-09-10

    We present a study of outflow, infall, and rotation in a {approx}10{sup 5} L{sub Sun} star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of {approx}80 M{sub Sun} and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 {+-} 50 K and a mass of {approx}13 M{sub Sun }. The outflow has a gas mass of 54 M{sub Sun} and a dynamical timescale of 8 Multiplication-Sign 10{sup 3} yr. The kinematics of the HMC are probed by high-excitation CH{sub 3}OH and CH{sub 3}CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 Multiplication-Sign 10{sup -3} M{sub Sun} yr{sup -1}, is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the {sup 13}CO and C{sup 18}O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass {approx}10 M{sub Sun} embedded within MM1 will develop into an O star via disk accretion and envelope infall.

  17. Phantom energy accretion and primordial black holes evolution in Brans-Dicke theory

    OpenAIRE

    Nayak, B; Singh, L. P.

    2011-01-01

    In this work, we study the evolution of primordial black holes within the context of Brans-Dicke theory by considering the presence of a dark energy component with a super-negative equation of state called phantom energy as a background. Besides Hawking evaporation, here we consider two type of accretions - radiation accretion and phantom energy accretion. We found that radiation accretion increases the lifetime of primordial black holes whereas phantom accretion decreases the lifespan of pri...

  18. Pouring 'Cold Water' on Hot Accretion

    Science.gov (United States)

    Rubin, A. E.

    1995-09-01

    The extensive recrystallization of type-6 OC has been interpreted as having resulted either from prograde thermal metamorphism of initially cold, unequilibrated material [1,2] or from autometamorphism due to slow cooling of material that accreted while still hot (1000-1200 K). Although the physical implausibility of hot accretion has been addressed [3], no comprehensive evaluation has been made of arguments in its favor. As shown below, these arguments are based on incomplete data, flawed experiments or improbable interpretations. Correlation between petrologic type and Ca in low-Ca pyroxene. Models of prograde metamorphism assume that, with increasing temperature, opx acquires Ca at the expense of diopside. Analyses of pyroxene in 10 H chondrites showed no correlation between Ca in pyroxene cores and increasing petrologic type [4], but more extensive data sets show such correlations [1,5,6]. A review of data for 51 OC [7] shows a progressive increase in the Wo content of low-Ca pyroxene with petrologic type: Wo 0.4-1.2 in type-3 and -4; Wo 1.2-1.6 in type-5; and Wo 1.6-2.2 in type-6. Striated opx. Undeformed striated opx were interpreted as having formed from inverted protopyroxene during slow cooling [8]; striated opx from H4 Quenggouk were found to convert into normal opx within 1 week during annealing at 1100 K [9]. Because prograde metamorphism probably lasted ~60 Ma [10], there should be no striated opx remaining in type-4 or -5 OC. However, samples of 99% twinned clinopyroxene (analogous to that in chondrules in type-3 OC) annealed for >3 weeks at Conquista could not have formed during single stage cooling as expected in autometamorphism; a two-stage cooling history involving rapid cooling during chondrule formation followed by parent-body annealing is more plausible. Polycrystalline taenite. Polycrystalline taenite in H/L3 Tieschitz was interpreted as a relict solidification structure that failed to anneal into monocrystalline taenite because of rapid

  19. Chaotic and stochastic processes in the accretion flows of the black hole X-ray binaries revealed by recurrence analysis

    OpenAIRE

    Suková, Petra; Grzedzielski, Mikolaj; Janiuk, Agnieszka

    2015-01-01

    The black hole candidates exhibit fast variability of their X-ray emission on a wide range of timescales. The short, coherent variations, with frequencies above 1 Hz, are referred to as quasi-periodic oscillations, and are generally explained by resonant effects in the black hole accretion flow. The purely stochastic variability that occurs due to turbulent conditions in the plasma, is quantified by the power density spectra and appears practically in all types of sources and their spectral s...

  20. Implications of the β Lyrae accretion disk rim Teff

    Science.gov (United States)

    Linnell, A. P.

    2000-12-01

    Photometric evidence indicates that the massive gainer in the β Lyrae system is hidden from the observer by a thick accretion disk (Linnell, Hubeny, & Harmanec, 1998, ApJ, 509, 379). It is believed that the gainer approximates a main sequence star of Teff= 30000K. Spectroscopic analysis by Balachrandan et al. (1986, MNRAS, 219, 479) establishes a Teff of 13,300K for the donor. System synthetic spectra, fitted via the BINSYN suite to spectrophotometric scan data and IUE spectra, establish a mean rim Teff of 9000K. Assuming conservative mass transfer, Harmanec & Scholz (1993, A&A, 279, 131) use the rate of period change to derive a mass transfer rate of 20x10-6M⊙ yr-1. Connecting the rim Teff to the accretion disk face Teff with the Hubeny theory (Hubeny & Plavec 1991, AJ, 102, 1156) and using the standard accretion disk relations (Frank, King & Raine), the adopted mass transfer rate predicts a rim Teff of 4500K. The BINSYN-derived 9000K rim Teff would require a mass transfer rate 30 times larger than the adopted value. The observed rate of period change excludes such a large mass transfer rate. The bolometric luminosity of the rim, from the BINSYN model, is 5.6x1036erg sec-1. The bolometric luminosity of the gainer, on the adopted model, is 9.8x1037erg sec-1. Thus, the luminosity of the rim is 6% of the luminosity of the gainer. On the BINSYN model, the accretion disk covers 26% of the sky, as seen by the gainer. Absorption of radiation from the gainer, and its reradiation by the accretion disk, could explain the derived Teff of the rim. The conclusion is that the β Lyrae accretion disk structure must be strongly affected by radiation from the hot gainer (unseen by the observer) at the center of the accretion disk.