Sample records for accretion disks

  1. Heating of protostellar accretion disks (United States)

    de Campos, R. R.; Jatenco-Pereira, V.


    The magneto-rotational instability (MRI) is believed to be the mechanism responsible for a magneto-hydrodynamic turbulence that could lead to the accretion observed in protoplanetary disks. The need of a minimum amount of ionization in protostellar accretion disks is necessary for the MRI to take place. There are in the literature several studies that include the damping of Alfvén waves as an additional heating source besides the viscous heating mechanism in a geometrically thin and optically thick disk. The damping of the waves transfers energy to the disk increasing the temperature and consequently its ionization fraction, making possible the presence of the MRI in a large part of the disk. We analyzed the contribution of non-ideal effects such as Ohmic and ambipolar diffusion for the disk heating and compare these heating rates with those obtained by damping of Alfvén waves. In order to study these non-ideal effects, we have estimated the radiation emission of each effect through the energy conservation equation, and associated each emission with a black body radiation, which enabled us to assign a temperature contribution of each effect. Using the ATHENA code we were able to simulate the disk at different radial distances, and estimate the electric current density needed to calculate the radiation emission associated with each effect. Once we have those data, we were able to compare the results with other heating sources, like viscosity and Alfvén waves damping, and we concluded that the Ohmic and ambipolar diffusions do not heat the disk in any significant way.

  2. Theory of Disk Accretion onto Magnetic Stars

    Directory of Open Access Journals (Sweden)

    Lai Dong


    Full Text Available Disk accretion onto magnetic stars occurs in a variety of systems, including accreting neutron stars (with both high and low magnetic fields, white dwarfs, and protostars. We review some of the key physical processes in magnetosphere-disk interaction, highlighting the theoretical uncertainties. We also discuss some applications to the observations of accreting neutron star and protostellar systems, as well as possible connections to protoplanetary disks and exoplanets.

  3. Foundations of Black Hole Accretion Disk Theory. (United States)

    Abramowicz, Marek A; Fragile, P Chris


    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  4. Foundations of Black Hole Accretion Disk Theory

    Directory of Open Access Journals (Sweden)

    Marek A. Abramowicz


    Full Text Available This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks, Shakura-Sunyaev (thin disks, slim disks, and advection-dominated accretion flows (ADAFs. After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs.

  5. Ultraviolet Echoes of Quasar Accretion Disks (United States)

    Trump, Jonathan


    We propose a novel ultraviolet monitoring campaign with WFC3/UVIS to measure quasar accretion disk structure. The bulk of supermassive black hole growth occurs in luminous quasar phases of rapid accretion, yet the governing physics remains poorly understood. Continuum reverberation mapping (RM) measures the accretion disk size via the time lag between short- and long-wavelength emission: the proposed UV monitoring forms the foundation for simultaneous optical observations (expected to continue for our quasars through 2019). Currently only 4 Seyfert AGNs have UV/optical RM accretion-disk sizes, all low-luminosity and at z<0.02. We propose to monitor 5 new quasars, spanning an order of magnitude higher accretion rate and out to z 1. The 5 quasar targets are drawn from SDSS-RM, a pioneering multi-object spectroscopic RM campaign, and have been monitored with optical photometry and spectroscopy since 2014. The higher luminosity and accurate RM masses of our sample enable the first measurements of accretion-rate effects on accretion-disk size, with UV monitoring directly probing changes in the inner disk suggested by theory and previous indirect observations. Our proposed HST monitoring campaign is unusually efficient, targeting 5 quasars per orbit using the DASH method with UVIS subarray readouts. We use simulations to demonstrate that our 2-day cadence over 32 epochs will accurately measure continuum lags and accretion-disk structure. Ultraviolet monitoring of these 5 quasars will enable critical new measurements of accretion-disk structure during the rapid accretion mode that dominates black hole growth.

  6. Foundations of Black Hole Accretion Disk Theory

    National Research Council Canada - National Science Library

    Abramowicz, Marek A; Fragile, P. Chris


    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves...

  7. Reverberation Mapping of AGN Accretion Disks (United States)

    Fausnaugh, Michael; AGN STORM Collaboration


    I will discuss new reverberation mapping results that allow us to investigate the temperature structure of AGN accretion disks. By measuring time-delays between broad-band continuum light curves, we can determine the size of the disk as a function of wavelength. I will discuss the detection of continuum lags in NGC 5548 reported by the AGN STORM project and implications for the accretion disk. I will also present evidence for continuum lags in two other AGN for which we recently measured black hole masses from continuum-Hbeta reverberations. The mass measurements allow us to compare the continuum lags to predictions from standard thin disk theory, and our results indicate that the accretion disks are larger than the simplest expectations.

  8. Continuum Reverberation Mapping of AGN Accretion Disks

    Directory of Open Access Journals (Sweden)

    Michael M. Fausnaugh


    Full Text Available We show recent detections of inter-band continuum lags in three AGN (NGC 5548, NGC 2617, and MCG+08-11-011, which provide new constraints on the temperature profiles and absolute sizes of the accretion disks. We find lags larger than would be predicted for standard geometrically thin, optically thick accretion disks by factors of 2.3–3.3. For NGC 5548, the data span UV through optical/near-IR wavelengths, and we are able to discern a steeper temperature profile than the T ~ R−3/4 expected for a standard thin disk. Using a physical model, we are also able to estimate the inclinations of the disks for two objects. These results are similar to those found from gravitational microlensing of strongly lensed quasars, and provide a complementary approach for investigating the accretion disk structure in local, low luminosity AGN.

  9. Disk accretion onto a magnetized star

    Directory of Open Access Journals (Sweden)

    Istomin Ya. N.


    Full Text Available The problem of interaction of the rotating magnetic field, frozen to a star, with a thin well conducting accretion disk is solved exactly. It is shown that a disk pushes the magnetic field lines towards a star, compressing the stellar dipole magnetic field. At the point of corotation, where the Keplerian rotation frequency coincides with the frequency of the stellar rotation, the loop of the electric current appears. The electric currents flow in the magnetosphere only along two particular magnetic surfaces, which connect the corotation region and the inner edge of a disk with the stellar surface. It is shown that the closed current surface encloses the magnetosphere. Rotation of a disk is stopped at some distance from the stellar surface, which is 0.55 of the corotation radius. Accretion from a disk spins up the stellar rotation. The angular momentum transferred to the star is determined.

  10. Numerical simulations of dissipationless disk accretion (United States)

    Bogovalov, S. V.; Tronin, I. V.


    Our goal is to study the regime of disk accretion in which almost all of the angular momentum and energy is carried away by the wind outflowing from the disk in numerical experiments. For this type of accretion the kinetic energy flux in the outflowing wind can exceed considerably the bolometric luminosity of the accretion disk, what is observed in the plasma flow from galactic nuclei in a number of cases. In this paper we consider the nonrelativistic case of an outflow from a cold Keplerian disk. All of the conclusions derived previously for such a system in the self-similar approximation are shown to be correct. The numerical results agree well with the analytical predictions. The inclination angle of the magnetic field lines in the disk is less than 60°, which ensures a free wind outflow from the disk, while the energy flux per wind particle is greater than the particle rotation energy in its Keplerian orbit by several orders of magnitude, provided that the ratio r A/ r ≫ 1, where r A is the Alfvénic radius and r is the radius of the Keplerian orbit. In this case, the particle kinetic energy reaches half the maximum possible energy in the simulation region. The magnetic field collimates the outflowing wind near the rotation axis and decollimates appreciably the wind outflowing from the outer disk periphery.

  11. Simulating a Thin Accretion Disk Using PLUTO (United States)

    Phillipson, Rebecca; Vogeley, Michael S.; Boyd, Patricia T.


    Accreting black hole systems such as X-ray binaries and active galactic nuclei exhibit variability in their luminosity on many timescales ranging from milliseconds to tens of days, and even hundreds of days. The mechanism(s) driving this variability and the relationship between short- and long-term variability is poorly understood. Current studies on accretion disks seek to determine how the changes in black hole mass, the rate at which mass accretes onto the central black hole, and the external environment affect the variability on scales ranging from stellar-mass black holes to supermassive black holes. Traditionally, the fluid mechanics equations governing accretion disks have been simplified by considering only the kinematics of the disk, and perhaps magnetic fields, in order for their phenomenological behavior to be predicted analytically. We seek to employ numerical techniques to study accretion disks including more complicated physics traditionally ignored in order to more accurately understand their behavior over time. We present a proof-of-concept three dimensional, global simulation using the astrophysical hydrodynamic code PLUTO of a simplified thin disk model about a central black hole which will serve as the basis for development of more complicated models including external effects such as radiation and magnetic fields. We also develop a tool to generate a synthetic light curve that displays the variability in luminosity of the simulation over time. The preliminary simulation and accompanying synthetic light curve demonstrate that PLUTO is a reliable code to perform sophisticated simulations of accretion disk systems which can then be compared to observational results.

  12. Thermal continua of AGN accretion disks (United States)

    Shields, G. A.; Coleman, H. H.


    We have computed the thermal continuum energy distribution of thermal radiation from the atmospheres of supermassive accretion disks around supermassive black holes. Non-LTE radiative transfer is combined with a model of the vertical structure at each radius appropriate to the low effective gravities of these disks. Locally, the Lyman edge of H can be in emission or absorption. When the emission is summed over the disk with Doppler and gravitational redshifts taken into account, the observed continuum typically shows little sign of a discontinuity near the Lyman edge. For relatively cool disks, the Lyman edge is in absorption, but it appears as a slope change extending over several hundred angstroms, rather than an abrupt discontinuity. Disks around Kerr black holes can explain the observed range of soft X-ray luminosities of AGN, but disks around Schwarzschild holes are much too faint in soft X-rays.

  13. Stability of black hole accretion disks

    Directory of Open Access Journals (Sweden)

    Czerny B.


    Full Text Available We discuss the issues of stability of accretion disks that may undergo the limit-cycle oscillations due to the two main types of thermal-viscous instabilities. These are induced either by the domination of radiation pressure in the innermost regions close to the central black hole, or by the partial ionization of hydrogen in the zone of appropriate temperatures. These physical processes may lead to the intermittent activity in AGN on timescales between hundreds and millions of years. We list a number of observational facts that support the idea of the cyclic activity in high accretion rate sources. We conclude however that the observed features of quasars may provide only indirect signatures of the underlying instabilities. Also, the support from the sources with stellar mass black holes, whose variability timescales are observationally feasible, is limited to a few cases of the microquasars. Therefore we consider a number of plausible mechanisms of stabilization of the limit cycle oscillations in high accretion rate accretion disks. The newly found is the stabilizing effect of the stochastic viscosity fluctuations.

  14. Power Spectrum Density of Stochastic Oscillating Accretion Disk

    Indian Academy of Sciences (India)

    Keywords. Accretion; accretion disks; black hole physics; instabilities. ... In the model, we assume that there is a relativistic oscillation of thin accretion disks and it interacts with an external thermal bath through a friction force and a random force. ... Department of Physics, Yunnan Normal University, Kunming 650500, China.

  15. Dead Zone Accretion Flows in Protostellar Disks (United States)

    Turner, Neal; Sano, T.


    Planets form inside protostellar disks in a dead zone where the electrical resistivity of the gas is too high for magnetic forces to drive turbulence. We show that much of the dead zone nevertheless is active and flows toward the star while smooth, large-scale magnetic fields transfer the orbital angular momentum radially outward. Stellar X-ray and radionuclide ionization sustain a weak coupling of the dead zone gas to the magnetic fields, despite the rapid recombination of free charges on dust grains. Net radial magnetic fields are generated in the magnetorotational turbulence in the electrically conducting top and bottom surface layers of the disk, and reach the midplane by ohmic diffusion. A toroidal component to the fields is produced near the midplane by the orbital shear. The process is similar to the magnetization of the solar tachocline. The result is a laminar, magnetically driven accretion flow in the region where the planets form.

  16. Evolution and precession of accretion disk in tidal disruption events

    Directory of Open Access Journals (Sweden)

    Matzner C.D.


    Full Text Available In a supermassive black hole (BH tidal disruption event (TDE, the tidally disrupted star feeds the BH via an accretion disk. Most often it is assumed that the accretion rate history, hence the emission light curve, tracks the rate at which new debris mass falls back onto the disk, notably the t−5/3 power law. But this is not the case when the disk evolution due to viscous spreading - the driving force for accretion - is carefully considered. We construct a simple analytical model that comprehensively describes the accretion rate history across 4 different phases of the disk evolution, in the presence of mass fallback and disk wind loss. Accretion rate evolves differently in those phases which are governed by how the disk heat energy is carried away, early on by advection and later by radiation. The accretion rate can decline as steeply as t−5/3 only if copious disk wind loss is present during the early advection-cooled phase. Later, the accretion rate history is t−8/7 or shallower. These have great implications on the TDE flare light curve. A TDE accretion disk is most likely misaligned with the equatorial plane of the spinning BH. Moreover, in the TDE the accretion rate is super- or near-Eddington thus the disk is geometrically thick, for which case the BH’s frame dragging effect may cause the disk precess as a solid body, which may manifest itself as quasi-periodic signal in the TDE light curve. Our disk evolution model predicts the disk precession period increases with time, typically as ∝ t. The results are applied to the recently jetted TDE flare Swift transient J1644 + 57 which shows numerous, quasi-periodic dips in its long-term X-ray light curve. As the current TDE sample increases, the identification of the disk precession signature provides a unique way of measuring BH spin and studying BH accretion physics.

  17. Equilibrium and stability of tokamak plasmas and accretion disks

    NARCIS (Netherlands)

    Blokland, J.W.S.


    In both fusion research as well in astrophysics, plasmas are widely studied. These plasmas can be found in different geometric configurations, such as in a tokamak, stellarator or in astrophysical jets, accretion disks, etc. In this thesis we focus on plasmas found in tokamaks or accretion disks. In


    Energy Technology Data Exchange (ETDEWEB)

    Qiu Keping [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Zhang Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Beuther, Henrik; Fallscheer, Cassandra, E-mail: [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)


    We present a study of outflow, infall, and rotation in a {approx}10{sup 5} L{sub Sun} star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of {approx}80 M{sub Sun} and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 {+-} 50 K and a mass of {approx}13 M{sub Sun }. The outflow has a gas mass of 54 M{sub Sun} and a dynamical timescale of 8 Multiplication-Sign 10{sup 3} yr. The kinematics of the HMC are probed by high-excitation CH{sub 3}OH and CH{sub 3}CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 Multiplication-Sign 10{sup -3} M{sub Sun} yr{sup -1}, is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the {sup 13}CO and C{sup 18}O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass {approx}10 M{sub Sun} embedded within MM1 will develop into an O star via disk accretion and envelope infall.

  19. Freddi: Fast Rise Exponential Decay accretion Disk model Implementation (United States)

    Malanchev, K. L.; Lipunova, G. V.


    Freddi (Fast Rise Exponential Decay: accretion Disk model Implementation) solves 1-D evolution equations of the Shakura-Sunyaev accretion disk. It simulates fast rise exponential decay (FRED) light curves of low mass X-ray binaries (LMXBs). The basic equation of the viscous evolution relates the surface density and viscous stresses and is of diffusion type; evolution of the accretion rate can be found on solving the equation. The distribution of viscous stresses defines the emission from the source. The standard model for the accretion disk is implied; the inner boundary of the disk is at the ISCO or can be explicitely set. The boundary conditions in the disk are the zero stress at the inner boundary and the zero accretion rate at the outer boundary. The conditions are suitable during the outbursts in X-ray binary transients with black holes. In a binary system, the accretion disk is radially confined. In Freddi, the outer radius of the disk can be set explicitely or calculated as the position of the tidal truncation radius.

  20. Grinding Down Stars and Stellar Remnants Into Accretion Disks (United States)

    Sadika Nasim, Syeda; Fabj, Gaia; McKernan, Barry; Ford, K. E. Saavik


    Active galactic nuclei (AGN) are powered by the accretion of matter onto supermassive black holes (SMBH). Most accretion models take the form of disks of gas around the SMBH. Stars and stellar remnants also orbit the SMBH. Orbiting objects plunging through the disk experience a drag force, and through repeated passage, orbiters can have their orbits ground-down into the plane of the disk. Using two different accretion disk models, TQM (Thompson, Quataert & Murray), and SG (Sirko & Goodman), we determine the grind-down time for stars and stellar remnants, as a function of initial inclination angle, and initial radius. Orbital grind-down time is important because stellar-mass black holes (sBH) within AGN disks are likely to merge at a higher rate than in the field. Accurate estimates of orbital grind-down time can help constrain predictions of the AGN channel for LIGO.

  1. Stochastic Resonance of Accretion Disk and the Persistent Low ...

    Indian Academy of Sciences (India)

    In this paper, we use a Langevin type equation with a damping term and stochastic force to describe the stochastic oscillations on the vertical direction of the accretion disk around a black hole, and calculate the luminosity and power spectral density (PSD) for an oscillating disk. Then we discuss the stochastic resonance ...

  2. 1 Hz Flaring in the Accreting Millisecond Pulsar NGC 6440 X-2: Disk Trapping and Accretion Cycles

    NARCIS (Netherlands)

    Patruno, A.; D'Angelo, C.


    The dynamics of the plasma in the inner regions of an accretion disk around accreting millisecond X-ray pulsars (AMXPs) is controlled by the magnetic field of the neutron star. The interaction between an accretion disk and a strong magnetic field is not well understood, particularly at low accretion

  3. Disk Accretion of Tidally Disrupted Rocky Bodies onto White Dwarfs (United States)

    Feng, W.; Desch, S.


    The prevailing model for the pollution of white dwarf photospheres invokes accretion from a disk of gas and solid particles, fed by tidal disruption of rocky bodies inside the Roche radius. Current models can successfully explain the accretion rates of metals onto white dwarfs, provided the gaseous disks viscously spread at rates consistent with a partially suppressed magnetorotational instability (Metzger et al. 2012); however, these models do not explore the extent of the magnetorotational instability in disks by calculating the degree of ionization. We present ionization fractions for thermal and non-thermal processes to assess the extent of the magnetorotational instability in white dwarf disks. We determine that the disk viscosity parameter α can be as high as 0.1 in white disks, implying that the magnetorotational instability must be carefully modeled.

  4. On Hydromagnetic Stresses in Accretion Disk Boundary Layers

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan


    Detailed calculations of the physical structure of accretion disk boundary layers, and thus their inferred observational properties, rely on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear...... viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where......, as expected in boundary layers, the angular frequency increases with radius. In order to shed light on physically viable mechanisms for angular momentum transport in this inner disk region, we examine the generation of hydromagnetic stresses and energy density in differentially rotating backgrounds...

  5. Angular Momentum Transport in Accretion Disks

    DEFF Research Database (Denmark)

    E. Pessah, Martin; Chan, Chi-kwan; Psaltis, Dimitrios


    if the resolution were set equal to the natural dissipation scale in astrophysical disks. We conclude that, in order for MRI-driven turbulent angular momentum transport to be able to account for the large value of the effective alpha viscosity inferred observationally, the disk must be threaded by a significant...

  6. Black-Hole Accretion Disks --- Towards a New Paradigm --- (United States)

    Kato, S.; Fukue, J.; Mineshige, S.


    Part I: Concepts of Accretion Disks: Chap. 1: Introduction, 1.1 Accretion Energy - Historical Origin, { Accretion-Disk Paradigm - Active Universe, 1.3 Accretion-Powered Objects - Observational Reviews, 1.4 X-Ray Binaries and Ultra-Luminous X-Ray Sources, 1.5 Active Galactic Nuclei, 1.6 Present Paradigm, Chap. 2: Physical Processes Related to Accretion, 2.1 Eddington Luminosity, 2.2 Bondi Accretion, 2.3 Viscous Process, 2.4 Magnetic Instabilities, 2.5 Relativistic Effects Part II: Classical Picture: Chap. 3: Classical Models, 3.1 Viscous Accretion Disks, 3.2 Standard Disks, 3.3 Optically Thin Disks, 3.4 Accretion Disk Coronae, 3.5 Relativistic Standard Disks, 3.6 Relativistic Tori Chap. 4: Secular and Thermal Instabilities, 4.1 Secular Instability, 4.2 Thermal Instability, 4.3 Stability Examination on dot{M}-Σ and T-Σ Planes, 4.4 Mathematical Derivation of the Stability Criterion, Chap. 5: Dwarf-Nova Type Instability, 5.1 Thermal-Ionization Instability, 5.2 Time Evolution of Disks in X-Ray Novae Chap. 6: Observability of Relativistic Effects, 6.1 Ray Tracing, 6.2 Imaging - Black Hole Silhouette, 6.3 Spectroscopy - Continuum and Line, 6.4 Photometry - Light Curve Diagnosis, 6.5 Other Effects - Lensing and Jets, Part III: Modern Picture: Chap. 7: Equations to Construct Generalized Models, 7.1 Basic Equations and Importance of Advection, 7.2 One-Temperature Disks, 7.3 Two-Temperature Disks, 7.4 Time-Dependent Equations Chap. 8: Transonic Nature of Accretion Flows, 8.1 Topology of Black-Hole Accretion, 8.2 Regularity Condition at a Critical Radius, 8.3 Topology around the Critical Radius in Isothermal Disks, 8.4 Numerical Examples of Transonic Flows, 8.5 Transonic Flows with Standing Shocks Chap. 9: Radiatively Inefficient Accretion Flows, 9.1 Advection-Dominated Accretion Flow, 9.2 Radial Structure of Advection-Dominated Flow, 9.3 Radiation Spectra of Advection-Dominated Flow, 9.4 Stability of Advection-Dominated Flow, 9.5 Multi-Dimensional Effects, Chap. 10: Slim

  7. Self-gravity in Magnetized Neutrino-dominated Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Shahamat, Narjes; Abbassi, Shahram, E-mail: [Department of Physics, School of Science, Ferdowsi University of Mashhad, Mashhad, P.O. Box 91775-1436 (Iran, Islamic Republic of)


    In the present work we study self-gravity effects on the vertical structure of a magnetized neutrino-dominated accretion disk as a central engine for gamma-ray bursts (GRBs). Some of the disk physical timescales that are supposed to play a pivotal role in the late-time evolutions of the disk, such as viscous, cooling, and diffusion timescales, have been studied. We are interested in investigating the possibility of the occurrence of X-ray flares, observed in late-time GRBs’ extended emission through the “magnetic barrier” and “fragmentation” processes in our model. The results lead us to interpret self-gravity as an amplifier for Blandford–Payne luminosity (BP power) and the generated magnetic field, but a suppressor for neutrino luminosity and magnetic barrier processes via highlighting the fragmentation mechanism in the outer disk, especially for the higher mass accretion rates.

  8. CMB bounds on disk-accreting massive primordial black holes (United States)

    Poulin, Vivian; Serpico, Pasquale D.; Calore, Francesca; Clesse, Sébastien; Kohri, Kazunori


    Stellar-mass primordial black holes (PBH) have been recently reconsidered as a dark matter (DM) candidate after the aLIGO discovery of several binary black hole (BH) mergers with masses of tens of M⊙ . Matter accretion on such massive objects leads to the emission of high-energy photons, capable of altering the ionization and thermal history of the universe. This, in turn, affects the statistical properties of the cosmic microwave background (CMB) anisotropies. Previous analyses have assumed spherical accretion. We argue that this approximation likely breaks down and that an accretion disk should form in the dark ages. Using the most up-to-date tools to compute the energy deposition in the medium, we derive constraints on the fraction of DM in PBH. Provided that disks form early on, even under conservative assumptions for accretion, these constraints exclude a monochromatic distribution of PBH with masses above ˜2 M⊙ as the dominant form of DM. The bound on the median PBH mass gets more stringent if a broad, log-normal mass function is considered. A deepened understanding of nonlinear clustering properties and BH accretion disk physics would permit an improved treatment and possibly lead to more stringent constraints.

  9. Durability of the accretion disk of millisecond pulsars. (United States)

    Michel, F C; Dessler, A J


    Pulsars with pulsation periods in the millisecond range are thought to be neutron stars that have acquired an extraordinarily short spin period through the accretion of stellar material spiraling down onto the neutron star from a nearby companion. Nearly all the angular momentum and most of the mass of the companion star is transferred to the neutron star. During this process, wherein the neutron star consumes its companion, it is required that a disk of stellar material be formed around the neutron star. In conventional models it is supposed that the disk is somehow lost when the accretion phase is finished, so that only the rapidly spinning neutron star remains. However, it is possible that, after the accretion phase, a residual disk remains in stable orbit around the neutron star. The end result of such an accretion process is an object that looks much like a miniature (about 100 kilometers), heavy version of Saturn: a central object (the neutron star) surrounded by a durable disk.

  10. Angular Momentum Transport in Quasi-Keplerian Accretion Disks

    Indian Academy of Sciences (India)

    We reexamine arguments advanced by Hayashi & Matsuda (2001), who claim that several simple, physically motivated derivations based on mean free path theory for calculating the viscous torque in a quasi-Keplerian accretion disk ... School of Computational Sciences, George Mason University, Fairfax, VA 22030, USA.

  11. Magnetically Regulated Gas Accretion in High-Redshift Galactic Disks (United States)

    Birnboim, Yuval


    Disk galaxies are in hydrostatic equilibrium along their vertical axis. The pressure allowing for this configuration consists of thermal, turbulent, magnetic, and cosmic-ray components. For the Milky Way the thermal pressure contributes ~10% of the total pressure near the plane, with this fraction dropping toward higher altitudes. Out of the rest, magnetic fields contribute ~1/3 of the pressure to distances of ~3 kpc above the disk plane. In this Letter, we attempt to extrapolate these local values to high-redshift, rapidly accreting, rapidly star-forming disk galaxies and study the effect of the extra pressure sources on the accretion of gas onto the galaxies. In particular, magnetic field tension may convert a smooth cold-flow accretion to clumpy, irregular star formation regions and rates. The infalling gas accumulates on the edge of the magnetic fields, supported by magnetic tension. When the mass of the infalling gas exceeds some threshold mass, its gravitational force cannot be balanced by magnetic tension anymore, and it falls toward the disk's plane, rapidly making stars. Simplified estimations of this threshold mass are consistent with clumpy star formation observed in SINS, UDF, GOODS, and GEMS surveys. We discuss the shortcomings of pure hydrodynamic codes in simulating the accretion of cold flows into galaxies, and emphasize the need for magnetohydrodynamic simulations.

  12. Structure and Spectroscopy of Black Hole Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Liedahl, D; Mauche, C


    The warped spacetime near black holes is one of the most exotic observable environments in the Universe. X-ray spectra from active galaxies obtained with the current generation of X-ray observatories reveal line emission that is modified by both special relativistic and general relativistic effects. The interpretation is that we are witnessing X-ray irradiated matter orbiting in an accretion disk around a supermassive black hole, as it prepares to cross the event horizon. This interpretation, however, is based upon highly schematized models of accretion disk structure. This report describes a project to design a detailed computer model of accretion disk atmospheres, with the goal of elucidating the high radiation density environments associated with mass flows in the curved spacetime near gravitationally collapsed objects. We have evolved the capability to generate realistic theoretical X-ray line spectra of accretion disks, thereby providing the means for a workable exploration of the behavior of matter in the strong-field limit of gravitation.

  13. Power Spectrum Density of Stochastic Oscillating Accretion Disk GB ...

    Indian Academy of Sciences (India)

    Power Spectrum Density of Stochastic Oscillating Accretion Disk. G. B. Long, J. W. Ou & Y. G. Zheng. ∗. Department of Physics, Yunnan Normal University, Kunming 650500, China. ∗ e-mail: Received 5 September 2015; accepted 24 November 2015. DOI: 10.1007/s12036-016-9372-2. Abstract.

  14. Accretion outbursts in self-gravitating protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jaehan; Hartmann, Lee [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48105 (United States); Zhu, Zhaohuan [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Nelson, Richard P., E-mail:, E-mail:, E-mail:, E-mail: [Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)


    We improve on our previous treatments of the long-term evolution of protostellar disks by explicitly solving disk self-gravity in two dimensions. The current model is an extension of the one-dimensional layered accretion disk model of Bae et al. We find that gravitational instability (GI)-induced spiral density waves heat disks via compressional heating (i.e., PdV work), and can trigger accretion outbursts by activating the magnetorotational instability (MRI) in the magnetically inert disk dead zone. The GI-induced spiral waves propagate well inside of the gravitationally unstable region before they trigger outbursts at R ≲ 1 AU where GI cannot be sustained. This long-range propagation of waves cannot be reproduced with the previously used local α treatments for GI. In our standard model where zero dead-zone residual viscosity (α{sub rd}) is assumed, the GI-induced stress measured at the onset of outbursts is locally as large as 0.01 in terms of the generic α parameter. However, as suggested in our previous one-dimensional calculations, we confirm that the presence of a small but finite α{sub rd} triggers thermally driven bursts of accretion instead of the GI + MRI-driven outbursts that are observed when α{sub rd} = 0. The inclusion of non-zero residual viscosity in the dead zone decreases the importance of GI soon after mass feeding from the envelope cloud ceases. During the infall phase while the central protostar is still embedded, our models stay in a 'quiescent' accretion phase with M-dot {sub acc}∼10{sup −8}--10{sup −7} M{sub ⊙} yr{sup −1} over 60% of the time and spend less than 15% of the infall phase in accretion outbursts. While our models indicate that episodic mass accretion during protostellar evolution can qualitatively help explain the low accretion luminosities seen in most low-mass protostars, detailed tests of the mechanism will require model calculations for a range of protostellar masses with some constraint on the

  15. Accretion Disks and Coronae in the X-Ray Flashlight (United States)

    Degenaar, Nathalie; Ballantyne, David R.; Belloni, Tomaso; Chakraborty, Manoneeta; Chen, Yu-Peng; Ji, Long; Kretschmar, Peter; Kuulkers, Erik; Li, Jian; Maccarone, Thomas J.; Malzac, Julien; Zhang, Shu; Zhang, Shuang-Nan


    Plasma accreted onto the surface of a neutron star can ignite due to unstable thermonuclear burning and produce a bright flash of X-ray emission called a Type-I X-ray burst. Such events are very common; thousands have been observed to date from over a hundred accreting neutron stars. The intense, often Eddington-limited, radiation generated in these thermonuclear explosions can have a discernible effect on the surrounding accretion flow that consists of an accretion disk and a hot electron corona. Type-I X-ray bursts can therefore serve as direct, repeating probes of the internal dynamics of the accretion process. In this work we review and interpret the observational evidence for the impact that Type-I X-ray bursts have on accretion disks and coronae. We also provide an outlook of how to make further progress in this research field with prospective experiments and analysis techniques, and by exploiting the technical capabilities of the new and concept X-ray missions ASTROSAT, NICER, Insight-HXMT, eXTP, and STROBE-X.

  16. Hydrodynamical processes in planet-forming accretion disks (United States)

    Lin, Min-Kai

    Understanding the physics of accretion flows in circumstellar disk provides the foundation to any theory of planet formation. The last few years have witnessed dramatic a revision in the fundamental fluid dynamics of protoplanetary accretion disks. There is growing evidence that the key to answering some of the most pressing questions, such as the origin of disk turbulence, mass transport, and planetesimal formation, may lie within, and intimately linked to, purely hydrodynamical processes in protoplanetary disks. Recent studies, including those from the proposal team, have discovered and highlighted the significance of several new hydrodynamical instabilities in the planet-forming regions of these disks. These include, but not limited to: the vertical shear instability, active between 10 to 100 AU; the zombie vortex instability, operating in regions interior to about 1AU; and the convective over-stability at intermediate radii. Secondary Rossbywave and elliptic instabilities may also be triggered, feeding off the structures that emerge from the above primary instabilities. The result of these hydrodynamic processes range from small-scale turbulence that transports angular momentum, to large-scale vortices that concentrate dust particles and enhance planetesimal formation. Hydrodynamic processes pertain to a wide range of disk conditions, meaning that at least one of these processes are active at any given disk location and evolutionary epoch. This remains true even after planet formation, which affects their subsequent orbital evolution. Hydrodynamical processes also have direct observable consequences. For example, vortices have being invoked to explain recent ALMA images of asymmetric `dust-traps' in transition disks. Hydrodynamic activities thus play a crucial role at every stage of planet formation and disk evolution. We propose to develop theoretical models of the above hydrodynamic processes under physical disk conditions by properly accounting for disk

  17. Disk-Jet Connection in Active Supermassive Black Holes in the Standard Accretion Disk Regime (United States)

    Inoue, Yoshiyuki; Doi, Akihiro; Tanaka, Yasuyuki T.; Sikora, Marek; Madejski, Grzegorz M.


    We study the disk-jet connection in supermassive black holes by investigating the properties of their optical and radio emissions utilizing the SDSS DR7 and the NVSS catalogs. Our sample contains 7017 radio-loud quasars with detection both at 1.4 GHz and SDSS optical spectra. Using this radio-loud quasar sample, we investigate the correlation among the jet power ({P}{jet}), the bolometric disk luminosity ({L}{disk}), and the black hole mass ({M}{BH}) in the standard accretion disk regime. We find that the jet powers correlate with the bolometric disk luminosities as {log}{P}{jet}=(0.96+/- 0.012){log}{L}{disk}+(0.79+/- 0.55). This suggests the jet production efficiency of {η }{jet}≃ {1.1}-0.76+2.6 × {10}-2 assuming the disk radiative efficiency of 0.1, implying low black hole spin parameters and/or low magnetic flux for radio-loud quasars. But it can be also due to the dependence of this efficiency on the geometrical thickness of the accretion flow, which is expected to be small for quasars accreting at the disk Eddington ratios 0.01≲ λ ≲ 0.3. This low jet production efficiency does not significantly increase even if we set the disk radiative efficiency to be 0.3. We also investigate the fundamental plane in our samples among {P}{jet}, {L}{disk}, and {M}{BH}. We could not find a statistically significant fundamental plane for radio-loud quasars in the standard accretion regime.

  18. Bulk viscosity of accretion disks around non rotating black holes (United States)

    Moeen Moghaddas, M.


    In this paper, we study the Keplerian, relativistic accretion disks around the non rotating black holes with the bulk viscosity. Many of authors studied the relativistic accretion disks around the black holes, but they ignored the bulk viscosity. We introduce a simple method to calculate the bulk in these disks. We use the simple form for the radial component of the four velocity in the Schwarzschild metric, then the other components of the four velocity and the components of the shear and the bulk tensor are calculated. Also all components of the bulk viscosity, the shear viscosity and stress tensor are calculated. It is seen that some components of the bulk tensor are comparable with the shear tensor. We calculate some of the thermodynamic quantities of the relativistic disks. Comparison of thermodynamic quantities shows that in some states influences of the bulk viscosity are important, especially in the inner radiuses. All calculations are done analytically and we do not use the boundary conditions. Finally, we find that in the relativistic disks around the black holes, the bulk viscosity is non-negligible in all the states.

  19. Anchoring Polar Magnetic Field in a Stationary Thick Accretion Disk (United States)

    Samadi, Maryam; Abbassi, Shahram


    We investigate the properties of a hot accretion flow bathed in a poloidal magnetic field. We consider an axisymmetric viscous-resistive flow in the steady-state configuration. We assume that the dominant mechanism of energy dissipation is due to turbulence viscosity and magnetic diffusivity. A certain fraction of that energy can be advected toward the central compact object. We employ the self-similar method in the radial direction to find a system of ODEs with just one varible, θ in the spherical coordinates. For the existence and maintenance of a purely poloidal magnetic field in a rotating thick disk, we find that the necessary condition is a constant value of angular velocity along a magnetic field line. We obtain an analytical solution for the poloidal magnetic flux. We explore possible changes in the vertical structure of the disk under the influences of symmetric and asymmetric magnetic fields. Our results reveal that a polar magnetic field with even symmetry about the equatorial plane makes the disk vertically thin. Moreover, the accretion rate decreases when we consider a strong magnetic field. Finally, we notice that hot magnetized accretion flows can be fully advected even in a slim shape.

  20. An accretion disk model for periodic timing variations of pulsars (United States)

    Qiao, G. J.; Xue, Y. Q.; Xu, R. X.; Wang, H. G.; Xiao, B. W.


    The long-term, highly periodic and correlated variations in both the pulse shape and the rate of slow-down of two isolated pulsars (PSRs) PSR B1828-11 and PSR B1642-03 were discovered recently. This phenomenon may provide evidence for ``free precession'' as suggested in the literature. Some authors presented various kinds of models to explain this phenomenon within the framework of free precession. Here we present an accretion disk model for this precession phenomenon instead. Under reasonable parameters, the observed phenomenon can be explained by an isolated pulsar with a fossil disk. This may link radio pulsars and anomalous X-ray pulsars (AXPs) and present an indirect evidence for the existence of the fossil disk in nature.

  1. Advection-dominated Inflow/Outflows from Evaporating Accretion Disks. (United States)

    Turolla; Dullemond


    In this Letter we investigate the properties of advection-dominated accretion flows (ADAFs) fed by the evaporation of a Shakura-Sunyaev accretion disk (SSD). In our picture, the ADAF fills the central cavity evacuated by the SSD and extends beyond the transition radius into a coronal region. We find that, because of global angular momentum conservation, a significant fraction of the hot gas flows away from the black hole, forming a transsonic wind, unless the injection rate depends only weakly on radius (if r2sigma&d2;~r-xi, xiradius is less, similar100 Schwarzschild radii, so matter falling into the hole is gravitationally bound. The ratio of inflowing to outflowing mass is approximately 1/2, so in these solutions the accretion rate is of the same order as in standard ADAFs and much larger than in advection-dominated inflow/outflow models. The possible relevance of evaporation-fed solutions to accretion flows in black hole X-ray binaries is briefly discussed.

  2. Accretion Disks around Black Holes: Twenty Five Years Later (United States)

    Chakrabarti, Sandip K.

    After the revolutionary model of Shakura and Sunyaev in 1973, a quarter of a century has passed by. Has our understanding of the physics of black hole accretion improved? We make a critical review on the development of various models and emphasize on the advective disks solutions. We briefly compare the predictions of both the time independent and time dependent solutions of this model with the observational results. Some of the spin-offs of this model to other branches of astrophysics such as nuclear astrophysics, gravity wave astronomy, physics of jets, etc. are also mentioned ^{1-2}.

  3. Equilibrium configuration of a stratus floating above accretion disks: Full-disk calculation (United States)

    Itanishi, Yusuke; Fukue, Jun


    We examine floating strati above a luminous accretion disk, supported by the radiative force from the entire disk, and calculate the equilibrium locus, which depends on the disk luminosity and the optical depth of the stratus. Due to the radiative transfer effect (albedo effect), the floating height of the stratus with a finite optical depth generally becomes high, compared with the particle case. In contrast to the case of the near-disk approximation, moreover, the floating height becomes yet higher in the present full-disk calculation, since the intense radiation from the inner disk is taken into account. As a result, when the disk luminosity normalized by the Eddington luminosity is ˜0.3 and the stratus optical depth is around unity, the stable configuration disappears at around r ˜ 50 rg, rg being the Schwarzschild radius, and the stratus would be blown off as a cloudy wind consisting of many strati with appropriate conditions. This luminosity is sufficiently smaller than the Eddington one, and the present results suggest that the radiation-driven cloudy wind can be easily blown off from the sub-Eddington disk, and this can explain various outflows observed in ultra-fast outflow objects as well as in broad-absorption-line quasars.

  4. MHD simulations of jet acceleration from Keplerian accretion disks. The effects of disk resistivity (United States)

    Zanni, C.; Ferrari, A.; Rosner, R.; Bodo, G.; Massaglia, S.


    Context: Accretion disks and astrophysical jets are used to model many active astrophysical objects, such as young stars, relativistic stars, and active galactic nuclei. However, existing proposals for how these structures may transfer angular momentum and energy from disks to jets through viscous or magnetic torques do not yet provide a full understanding of the physical mechanisms involved. Thus, global stationary solutions have not explained the stability of these structures; and global numerical simulations that include both the disk and jet physics have so far been limited to relatively short time scales and narrow (and possibly astrophysically unlikely) ranges of viscosity and resistivity parameters that may be crucial to defining the coupling of the inflow-outflow dynamics. Aims: We present self-consistent, time-dependent simulations of supersonic jets launched from magnetized accretion disks, using high-resolution numerical techniques. In particular we study the effects of the disk's magnetic resistivity, parametrized through an α-prescription, in determining the properties of the inflow-outflow system. Moreover we analyze under which conditions steady state solutions of the type proposed in the self-similar models of Blandford & Payne can be reached and maintained in a self-consistent nonlinear stage. Methods: We used the resistive MHD FLASH code with adaptive mesh refinement (AMR), allowing us to follow the evolution of the structure on a long enough time scale to reach steady state. A detailed analysis of the initial configuration state is given. Results: We obtain the expected solutions within the axisymmetric (2.5 D) limit. Assuming a magnetic field around equipartition with the thermal pressure of the disk, we show how the characteristics of the disk-jet system, such as the ejection efficiency and the energetics, are affected by the anomalous resistivity acting inside the disk.

  5. Imprint of accretion disk-induced migration on gravitational waves from extreme mass ratio inspirals. (United States)

    Yunes, Nicolás; Kocsis, Bence; Loeb, Abraham; Haiman, Zoltán


    We study the effects of a thin gaseous accretion disk on the inspiral of a stellar-mass black hole into a supermassive black hole. We construct a phenomenological angular momentum transport equation that reproduces known disk effects. Disk torques modify the gravitational wave phase evolution to detectable levels with LISA for reasonable disk parameters. The Fourier transform of disk-modified waveforms acquires a correction with a different frequency trend than post-Newtonian vacuum terms. Such inspirals could be used to detect accretion disks with LISA and to probe their physical parameters. © 2011 American Physical Society

  6. Spectrally resolved eclipse maps of the accretion disk in UX Ursae Majoris (United States)

    Rutten, Rene G. M.; Dhillon, V. S.; Horne, Keith; Kuulkers, E.; Van Paradijs, J.


    An effort is made to observationally constrain accretion disks on the basis of light curves from the eclipsing cataclysmic variable UX Ursae Majoris, reconstructing the spectral energy distribution across the face of an accretion disk. The spectral resolution obtained suffices to reveal not only the radial dependence of absorption and emission line features within the disk, but also the spectral details of the bright spot that is formed where the accretion stream from the secondary star collides with the disk. The importance of such constraints for theoretical models is noted.

  7. The Dynamics of Truncated Black Hole Accretion Disks. I. Viscous Hydrodynamic Case (United States)

    Hogg, J. Drew; Reynolds, Christopher S.


    Truncated accretion disks are commonly invoked to explain the spectro-temporal variability in accreting black holes in both small systems, i.e., state transitions in galactic black hole binaries (GBHBs), and large systems, i.e., low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the dynamics of truncated disks is lacking. We present a well-resolved viscous, hydrodynamic simulation that uses an ad hoc cooling prescription to drive a thermal instability and, hence, produce the first sustained truncated accretion disk. With this simulation, we perform a study of the dynamics, angular momentum transport, and energetics of a truncated disk. We find that the time variability introduced by the quasi-periodic transition of gas from efficient cooling to inefficient cooling impacts the evolution of the simulated disk. A consequence of the thermal instability is that an outflow is launched from the hot/cold gas interface, which drives large, sub-Keplerian convective cells into the disk atmosphere. The convective cells introduce a viscous θ - ϕ stress that is less than the generic r - ϕ viscous stress component, but greatly influences the evolution of the disk. In the truncated disk, we find that the bulk of the accreted gas is in the hot phase.

  8. Variability of young stellar objects: Accretion, disks, outflows, and magnetic activity (United States)

    Stelzer, B.


    Variability is a key characteristic of young stars. Two major origins may be distinguished: a scaled-up version of the magnetic activity seen on main-sequence stars and various processes related to circumstellar disks, accretion, and outflows.

  9. Angular momentum transport in accretion disk boundary layers around weakly magnetized stars

    DEFF Research Database (Denmark)

    Pessah, M.E.; Chan, C.-K.


    , in the boundary layer where the accretion disk meets the surface of a weakly magnetized star. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI......) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. Motivated by the need of a deeper understanding of the behavior of an MHD fluid in a differentially rotating background that deviates from a Keplerian profile, we study the dynamics of MHD waves...

  10. A New Paradigm for Gamma Ray Bursts: Long Term Accretion Rate Modulation by an External Accretion Disk (United States)

    Cannizzo, John; Gehrels, Neil


    We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.

  11. Weakly Accreting Circumplanetary Disks and Satellites in Resonant Orbits (United States)

    Fujii, Yuri I.; Kobayashi, Hiroshi; Takahashi, Sanemichi Z.; Gressel, Oliver


    During the formation phase of gas giants, circumplanetary gaseous disks form around the planets. Circumplanetary disks are important not only for mass supply to gas giants but also for formation of regular satellites. The size-scale of circumplanetary disks is smaller than that of protoplanetary disks and this makes magnetic diffusion quicker. Thus, it is more difficult to sustain the magnetorotational instability (MRI) in circumplanetary disks. In the absence of significant angular momentum transport, continuous mass flow from the parental protoplanetary disk leads to the formation of a massive circumplanetary disk. We have developed an evolutionary disk model for this scenario and have estimated the orbital evolution of moons within the disk. In a certain temperature range, we find that inward migration of a satellite can be stopped by a disk structure resulting from the opacity transitions. We also find that the second and third migrating satellites can be captured in mean motion resonances. In this way, a compact system in Laplace resonance, which are similar to inner three bodies of Galilean satellites, can be formed in our disk models.

  12. Orbital Evolution of Moons in Weakly Accreting Circumplanetary Disks (United States)

    Fujii, Yuri I.; Kobayashi, Hiroshi; Takahashi, Sanemichi Z.; Gressel, Oliver


    We investigate the formation of hot and massive circumplanetary disks (CPDs) and the orbital evolution of satellites formed in these disks. Because of the comparatively small size-scale of the sub-disk, quick magnetic diffusion prevents the magnetorotational instability (MRI) from being well developed at ionization levels that would allow MRI in the parent protoplanetary disk. In the absence of significant angular momentum transport, continuous mass supply from the parental protoplanetary disk leads to the formation of a massive CPD. We have developed an evolutionary model for this scenario and have estimated the orbital evolution of satellites within the disk. We find, in a certain temperature range, that inward migration of a satellite can be stopped by a change in the structure due to the opacity transitions. Moreover, by capturing second and third migrating satellites in mean motion resonances, a compact system in Laplace resonance can be formed in our disk models.

  13. Cold Dark Matter Substructure and Galactic Disks. II. Dynamical Effects of Hierarchical Satellite Accretion (United States)

    Kazantzidis, Stelios; Zentner, Andrew R.; Kravtsov, Andrey V.; Bullock, James S.; Debattista, Victor P.


    We perform a set of fully self-consistent, dissipationless N-body simulations to elucidate the dynamical response of thin galactic disks to bombardment by cold dark matter (CDM) substructure. Our method combines (1) cosmological simulations of the formation of Milky Way (MW)-sized CDM halos to derive the properties of substructure, and (2) controlled numerical experiments of consecutive subhalo impacts onto an initially thin, fully formed MW-type disk galaxy. The present study is the first to account for the evolution of satellite populations over cosmic time in such an investigation of disk structure. In contrast to what can be inferred from statistics of the z = 0 surviving substructure, we find that accretions of massive subhalos onto the central regions of host halos, where the galactic disks reside, since z ~ 1 should be common. One host halo accretion history is used to initialize the controlled simulations of satellite-disk encounters. The specific merger history involves six dark matter substructures, with initial masses in the range ~20%-60% of the disk mass and of comparable size to the disk, crossing the central regions of their host in the past ~8 Gyr. We show that these accretion events severely perturb the thin galactic disk and produce a wealth of distinctive dynamical signatures on its structure and kinematics. These include (1) considerable thickening and heating at all radii, with the disk thickness and velocity ellipsoid nearly doubling at the solar radius; (2) prominent flaring associated with an increase in disk thickness greater than a factor of 4 in the disk outskirts; (3) surface density excesses at large radii, beyond ~5 disk scale lengths, resembling those of the observed antitruncated disks; (4) long-lived, lopsidedness at levels similar to those measured in observational samples of disk galaxies; and (5) substantial tilting. The interaction with the most massive subhalo in the simulated accretion history drives the disk response while

  14. Integrated accretion disk angular momentum removal and astrophysical jet acceleration mechanism (United States)

    Bellan, Paul


    A model has been developed for how accretion disks discard angular momentum while powering astrophysical jets. The model depends on the extremely weak ionization of disks. This causes disk ions to be collisionally locked to adjacent disk neutrals so a clump of disk ions and neutrals has an effective cyclotron frequency αωci where α is the fractional ionization. When αωci is approximately twice the Kepler orbital frequency, conservation of canonical momentum shows that the clump spirals radially inwards producing a radially inward disk electric current as electrons cannot move radially in the disk. Upon reaching the jet radius, this current then flows axially away from the disk plane along the jet, producing a toroidal magnetic field that drives the jet. Electrons remain frozen to poloidal flux surfaces everywhere and electron motion on flux surfaces in the ideal MHD region outside the disk completes the current path. Angular momentum absorbed from accreting material in the disk by magnetic counter-torque -JrBz is transported by the electric circuit and ejected at near infinite radius in the disk plane. This is like an electric generator absorbing angular momentum and wired to a distant electric motor that emits angular momentum. Supported by USDOE/NSF Partnership in Plasma Science.

  15. Disorder in the Disk: The Influence of Accretion Disk Thickness on the Large-scale Magnetic Dynamo. (United States)

    Hogg, J. Drew; Reynolds, Christopher S.


    The evolution of the magnetic field from the enigmatic large-scale dynamo is often considered a central feature of the accretion disk around a black hole. The resulting low-frequency oscillations introduced from the growth and decay of the field strength, along with the change in field orientation, are thought to be intimately tied to variability from the disk. Several factors are at play, but the dynamo can either be directly tied to observable signatures through modulation of the heating rate, or indirectly as the source of quasiperiodic oscillations, the driver of nonlinear structure from propagating fluctuations in mass accretion rate, or even the trigger of state transitions. We present a selection of results from a recent study of this process using a suite of four global, high-resolution, MHD accretion disk simulations. We systematically vary the scale height ratio and find the large-scale dynamo fails to develop above a scale height ratio of h/r ≥ 0.2. Using “butterfly” diagrams of the azimuthal magnetic field, we show the large-scale dynamo exists in the thinner accretion disk models, but fails to excite when the scale height ratio is increased, a feature which is also reflected in 2D Fourier transforms. Additionally, we calculate the dynamo α-parameter through correlations in the averaged magnetic field and turbulent electromotive force, and also generate synthetic light curves from the disk cooling. Using our emission proxy, we find the disks have markedly different characters as photometric fluctuations are larger and less ordered when the disk is thicker and the dynamo is absent.

  16. Evidence for accreted component in the Galactic disks (United States)

    Xing, Q. F.; Zhao, G.


    We analyze the distribution of [Mg/Fe] abundance in the Galactic disks with F- and G-type dwarf stars selected from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) archive. The sample stars are assigned into different stellar populations by using kinematic criteria. Our analysis reveals the chemical inhomogeneities in the Galactic thick disk. A few of metal-poor stars in the thick disk exhibit relatively low [Mg/Fe] abundance in respect to the standard thick-disk sample. The orbital eccentricities and maximum Galactocentric radii of low-α metal-poor stars are apparently greater than that of high-α thick-disk stars. The orbital parameters and chemical components of low-α stars in the thick disk suggests that they may have been formed in regions with low star formation rate that were located at large distances from the Galactic center, such as infalling dwarf spheroidal galaxies.

  17. The Effects of Accretion Disk Thickness on the Black Hole Reflection Spectrum (United States)

    Taylor, Corbin; Reynolds, Christopher S.


    Despite being the gravitational engines that power galactic-scale winds and mega parsec-scale jets in active galaxies, black holes are remarkably simple objects, typically being fully described by their angular momenta (spin) and masses. The modelling of AGN X-ray reflection spectra has proven fruitful in estimating the spin of AGN, as well as giving insight into their accretion histories and into the properties of plasmas in the strong gravity regime. However, current models make simplifying assumptions about the geometry of the reflecting material in the accretion disk and the irradiating X-ray corona, approximating the disk as an optically thick, infinitely thin disk of material in the orbital plane. We present results from the new relativistic raytracing suite, Fenrir, that explore the effects that disk thickness may have on the reflection spectrum and the accompanying reverberation signatures. Approximating the accretion disk as an optically thick, geometrically thin, radiation pressure dominated disk (Shakura & Sunyaev 1973), one finds that the disk geometry is non-negligible in many cases, with significant changes in the broad Fe K line profile. Finally, we explore the systematic errors inherent in other contemporary models that approximate that disk as having negligible vertical extent.

  18. FUV Irradiation and the Heat Signature of Accretion in Protoplanetary Disk Atmospheres (United States)

    Najita, Joan R.; Ádámkovics, Máté


    Although stars accrete mass throughout the first few million years of their lives, the physical mechanism that drives disk accretion in the T Tauri phase is uncertain, and diagnostics that probe the nature of disk accretion have been elusive, particularly in the planet formation region of the disk. Here we explore whether an accretion process such as the magnetorotational instability (MRI) could be detected through its “heat signature,” the energy it deposits in the disk atmosphere. To examine this possibility, we investigate the impact of accretion-related mechanical heating and energetic stellar irradiation (FUV and X-rays) on the thermal-chemical properties of disk atmospheres at planet formation distances. We find that stellar FUV irradiation ({Ly}α and continuum), through its role in heating and photodissociation, affects much of the upper warm (400-2000 K) molecular layer of the atmosphere, and the properties of the layer are generally in good agreement with the observed molecular emission features of disks at UV, near-infrared, and mid-infrared wavelengths. At the same time, the effect of FUV irradiation is restricted to the upper molecular layer of the disk, even when irradiation by {Ly}α is included. The region immediately below the FUV-heated layer is potentially dominated by accretion-related mechanical heating. As cooler (90-400 K) CO, water, and other molecules are potential diagnostics of the mechanically heated layer, emission line studies of these diagnostics might be used to search for evidence of the MRI in action.

  19. Measuring the Accretion Disk Size in Mrk 509 using Continuum Reverberation Mapping (United States)

    Barth, Aaron


    Continuum reverberation mapping from X-rays through optical wavelengths provides a unique probe of accretion disk structure in active galactic nuclei (AGN) on spatial scales of light-days. Recent Swift monitoring campaigns for NGC 5548 and NGC 4151 have provided dramatic evidence that accretion disk sizes are too large to be compatible with standard thin-disk models, requiring a major revision of our understanding of AGN accretion disks. We are currently carrying out an intensive 9-month Swift and ground-based monitoring campaign targeting Mrk 509, an AGN with luminosity an order of magnitude greater than other recent Swift monitoring targets, to map its accretion disk size. The UV and optical filter bands used for photometric monitoring include significant contamination by reprocessed emission from the broad-line region (BLR), including broad emission lines, Balmer continuum, and Fe II emission. In order to quantify the effect of this BLR emission on the accretion disk time delays, we propose to obtain a STIS UV/optical spectrum of the nucleus of Mrk 509 while our Swift campaign is in progress. We will use the STIS spectrum to determine the contribution of broad-line, Balmer continuum, and Fe II emission to each of the UV and optical filters. By correcting for this BLR contamination we will derive wavelength-dependent time delays for the AGN continuum that will provide an accurate measure of the accretion disk size and structure. Our new STIS data will additionally provide new diagnostics of broad-line region and narrow-line region physical conditions and a direct comparison of black hole mass estimates from broad emission lines including H-beta, C IV, and Mg II.

  20. Accretion disks before (?) the main planet formation phase

    NARCIS (Netherlands)

    Dominik, C.


    Protoplanetary disks are the sites of planet formation and therefore one of the foremost targets of future facilities in astronomy. In this review, I will discuss the main options for using JWST and concurrent facilities to study the early, gas-rich, massive phases of protoplanetary disks. We

  1. Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes


    Takahashi, Rohta


    Can we determine a spin parameter of a black hole by observation of a black hole shadow in an accretion disk? In order to answer this question, we make a qualitative analysis and a quantitative analysis of a shape and a position of a black hole shadow casted by a rotating black hole on an optically thick accretion disk and its dependence on an angular momentum of a black hole. We have found black hole shadows with a quite similar size and a shape for largely different black hole spin paramete...

  2. Accretion disk reverberation with Hubble Space Telescope observations of NGC 4593 (United States)

    Cackett, Edward; McHardy, Ian; Horne, Keith D.; Goad, Michael; Edelson, Rick; Korista, Kirk T.; Chiang, Chia-Ying


    Irradiation of the accretion disk by X-ray/EUV photons should lead to wavelength-dependent UV/optical continuum time lags as the hotter, inner parts of the disk will see the variable irradiating flux before the cooler, outer parts of the disk. Recently, there has been a significant improvement in wavelength-dependent lag measurements from high-cadence monitoring and a picture is emerging that the accretion disk sizes are a factor of 2 - 3 larger than predicted by the standard disk model. We obtained Hubble Space Telescope spectroscopy of NGC 4593 as part of a larger multi-wavelength reverberation mapping campaign including monitoring by Swift and Kepler. From 2016 July 12 to 2016 August 6 we performed 26 observations with an approximately daily cadence using the Space Telescope Imaging Spectrograph. The spectra cover a nearly continuous wavelength range from approximately 1150 - 10000Å. The continuum is significantly variable at all wavelengths, with variations at 1150Å leading variations at 8950Å by approximately 1.2 days. In the scenario where X-rays or EUV photons drive variability in the accretion disk the time lags should follow λ4/3. Here, we see a significant deviation from this around the Balmer jump, indicating a large contribution to the lags from diffuse continuum emission in the broad line region. However, even when taking this diffuse continuum lag into account, we still find that the accretion disk lags are a factor of about 3 larger than expected from the standard disk model.

  3. White Dwarf Pollution by Disk Accretion of Tidally Disrupted Rocky Bodies (United States)

    Feng, Wanda; Desch, Steven


    Approximately 30% of cool white dwarfs (WDs) show heavy elements which should otherwise sediment out of their atmospheres (Koester et al. 2014; Zuckerman et al. 2010). The prevailing model for the pollution of white dwarf photospheres invokes the formation of a solid disk upon a rocky body falling within the WD Roche radius, which is then transported inward by Poynting-Robertson drag (e.g., Metzger et al. 2012, Rafikov 2011). At high temperatures close to the WD, solid particles sublimate to gas that accretes onto the WD and viscously spreads outward. This concept is supported by observations of Ca II emission from WD disks (e.g., Manser et al. 2016). The model by Metzger et al. (2012) successfully explains the range in inferred mass accretion rates (10^10 g/s, Farihi et al. 2010), provided the gaseous disks viscously spread at rates consistent with a partially suppressed magnetorotational instability (MRI). However, Metzger et al. (2012) do not consider disk chemistry or dust-to-gas mixing in their model, and do not calculate the degree of ionization to explore the extent of MRI in WD disks.We present a 1-D model of a gaseous WD disk accretion, to assess the extent of the magnetorotational instability in WD disks. The disk composition is considered with changes in sublimation rate by pressure. The degree of ionization is determined by considering UV, X-ray, and high-temperature ionization. We calculate the rate of viscous spreading and accretion rates of metals onto WDs.

  4. Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium (United States)

    Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)


    We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.

  5. Angular Momentum Transport in Accretion Disk Boundary Layers Around Weakly Magnetized Stars

    Directory of Open Access Journals (Sweden)

    Pessah Martin E.


    Full Text Available The standard model for turbulent shear viscosity in accretion disks is based on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. This implies that the turbulent stress must be negative and thus transport angular momentum inwards, in the boundary layer where the accretion disk meets the surface of a weakly magnetized star. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. Motivated by the need of a deeper understanding of the behavior of an MHD fluid in a differentially rotating background that deviates from a Keplerian profile, we study the dynamics of MHD waves in configurations that are stable to the standard MRI. Employing the shearing-sheet framework, we show that transient amplification of shearing MHD waves can generate magnetic energy without leading to a substantial generation of hydromagnetic stresses. While these results are in agreement with numerical simulations, they emphasize the need to better understand the mechanism for angular momentum transport in the inner disk regions on more solid grounds.

  6. Circumbinary ring, circumstellar disks, and accretion in the binary system UY Aurigae

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ya-Wen; Ho, Paul T. P. [Academia Sinica, Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Dutrey, Anne; Guilloteau, Stéphane; Di Folco, Emmanuel [Université de Bordeaux, Observatoire Aquitain des Sciences de l' Univers, CNRS, UMR 5804, Laboratoire d' Astrophysique de Bordeaux, 2 rue de l' Observatoire, BP 89, F-33271 Floirac Cedex (France); Piétu, Vincent; Gueth, Fréderic [IRAM, 300 rue de la piscine, F-38406 Saint Martin d' Hères Cedex (France); Beck, Tracy [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Boehler, Yann [Centro de Radioastronomìa y Astrofìsica, UNAM, Apartado Postal 3-72, 58089 Morelia, Michoacàn (Mexico); Bary, Jeff [Department of Physics and Astronomy, Colgate University, 13 Oak Drive, Hamilton, NY 13346 (United States); Simon, Michal, E-mail: [Stony Brook University, Stony Brook, NY 11794-3800 (United States)


    Recent exo-planetary surveys reveal that planets can orbit and survive around binary stars. This suggests that some fraction of young binary systems which possess massive circumbinary (CB) disks may be in the midst of planet formation. However, there are very few CB disks detected. We revisit one of the known CB disks, the UY Aurigae system, and probe {sup 13}CO 2-1, C{sup 18}O 2-1, SO 5(6)-4(5) and {sup 12}CO 3-2 line emission and the thermal dust continuum. Our new results confirm the existence of the CB disk. In addition, the circumstellar (CS) disks are clearly resolved in dust continuum at 1.4 mm. The spectral indices between the wavelengths of 0.85 mm and 6 cm are found to be surprisingly low, being 1.6 for both CS disks. The deprojected separation of the binary is 1.''26 based on our 1.4 mm continuum data. This is 0.''07 (10 AU) larger than in earlier studies. Combining the fact of the variation of UY Aur B in R band, we propose that the CS disk of an undetected companion UY Aur Bb obscures UY Aur Ba. A very complex kinematical pattern inside the CB disk is observed due to a mixing of Keplerian rotation of the CB disk, the infall and outflow gas. The streaming gas accreting from the CB ring toward the CS disks and possible outflows are also identified and resolved. The SO emission is found to be at the bases of the streaming shocks. Our results suggest that the UY Aur system is undergoing an active accretion phase from the CB disk to the CS disks. The UY Aur B might also be a binary system, making the UY Aur a triple system.

  7. Stochastic Resonance of Accretion Disk and the Persistent Low ...

    Indian Academy of Sciences (India)

    In recent years, some researchers have studied the stochastic oscillations of accre- tion disk subject to stochastic force of the large scales, which represents either internal force of the ... with the Earth's ice age by Benzi et al. (1981). A typical character of SR is that the response of the system is enhanced by the noise due to ...

  8. Quasar Accretion Disk Sizes With Continuum Reverberation Mapping From the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Mudd, D.; et al.


    We present accretion disk size measurements for 15 luminous quasars at $0.7 \\leq z \\leq 1.9$ derived from $griz$ light curves from the Dark Energy Survey. We measure the disk sizes with continuum reverberation mapping using two methods, both of which are derived from the expectation that accretion disks have a radial temperature gradient and the continuum emission at a given radius is well-described by a single blackbody. In the first method we measure the relative lags between the multiband light curves, which provides the relative time lag between shorter and longer wavelength variations. The second method fits the model parameters for the canonical Shakura-Sunyaev thin disk directly rather than solving for the individual time lags between the light curves. Our measurements demonstrate good agreement with the sizes predicted by this model for accretion rates between 0.3-1 times the Eddington rate. These results are also in reasonable agreement with disk size measurements from gravitational microlensing studies of strongly lensed quasars, as well as other photometric reverberation mapping results.

  9. Integrated mechanism that both removes accretion disk angular momentum and drives astrophysical jets (United States)

    Bellan, Paul


    Using concepts from laboratory experiments, Hamiltonian mechanics, Hall MHD, and weakly ionized plasmas, I propose a mechanism that simultaneously drives astrophysical jets and removes accretion disk angular momentum. The mechanism depends on the extreme stratification of ionization between the weakly ionized accretion disk and the highly ionized exterior region. In the exterior region, axisymmetric Hamiltonian mechanics constrain charged particles to move on nested poloidal flux surfaces. In contrast, fluid elements in the weakly ionized, highly collisional accretion disk behave like collisionless meta-particles with effective q / m reduced from than that of an ion by the nominal disk 10-15 - 10-8 fractional ionization; this means that the meta-particle effective cyclotron frequency ωc can be of order of the Kepler frequency ωK =(MG /r3) 1 / 2 . Meta-particles with ωc = - 2ωK have zero canonical angular momentum, experience no centrifugal force and spiral in towards the central body. Because these inward spiraling meta-particles are positive, their accumulation near the central body produces radially and axially outward electric fields. The axial outward electric field drives an out-of-plane poloidal electric current along poloidal flux surfaces in the external region. As in lab experiments, this current and its associated toroidal magnetic field drive astrophysical jets flowing normal to and away from the disk. Supported by NSF/DOE Partnership in Plasma Physics.

  10. Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling (United States)

    Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.


    We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

  11. Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity (United States)

    Tomsick, John A.; Yamoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone


    Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than or equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observations of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35 R(sub g) at i = 0 degrees and R(sub in) greater than 175 R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically dominated accretion flows.

  12. Accretion Disk Signatures in Type I X-Ray Bursts: Prospects for Future Missions (United States)

    Keek, L.; Wolf, Z.; Ballantyne, D. R.


    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, Neutron Star Interior Composition Explorer (NICER), Athena, and Large Observatory For X-ray Timing (LOFT). Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes ≳10-7.5 erg cm-2 s-1 and also effectively constrain the reflection parameters for bright bursts with fluxes of ˜10-7 erg cm-2 s-1 in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.

  13. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy. (United States)

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S


    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).

  14. Coronae as Consequence of Large Scale Magnetic Fields in Turbulent Accretion Disks

    DEFF Research Database (Denmark)

    G. Blackman, Eric; Pessah, Martin Elias


    Non-thermal X-ray emission in compact accretion engines can be interpreted to result from magnetic dissipation in an optically thin magnetized corona above an optically thick accretion disk. If coronal magnetic field originates in the disk and the disk is turbulent, then only magnetic structures...... large enough for their turbulent shredding time to exceed their buoyant rise time survive the journey to the corona. We use this concept and a physical model to constrain the minimum fraction of magnetic energy above the critical scale for buoyancy as a function of the observed coronal to bolometric...... AGN, for which of order 30 per cent of the bolometric flux is in the X-ray band, we find that more than 20 per cent of the magnetic energy must be of large enough scale to rise and dissipate in the corona....

  15. High-energy particle acceleration by explosive electromagnetic interaction in an accretion disk (United States)

    Haswell, C. A.; Tajima, T.; Sakai, J.-I.


    By examining electromagnetic field evolution occurring in an accretion disk around a compact object, we arrive at an explosive mechanism of particle acceleration. Flux-freezing in the differentially rotating disk causes the seed and/or generated magnetic field to wrap up tightly, becoming highly sheared and locally predominantly azimuthal in orientation. We show how asymptotically nonlinear solutions for the electromagnetic fields may arise in isolated plasma blobs as a result of the driving of the fluid equations by the accretion flow. These fields are capable of rapidly accelerating charged particles from the disk. Acceleration through the present mechanism from AGN can give rise to energies beyond 10 exp 20 eV. Such a mechanism may present an explanation for the extragalactic origin of the most energetic observed cosmic rays.

  16. Search for and follow-up imaging of subparsec accretion disks in AGN (United States)

    Kondratko, Paul Thomas

    We report results of several large surveys for water maser emission among Active Galactic Nuclei with the 100-m Green Bank Telescope and the two NASA Deep Space Network 70-m antennas at Tidbinbilla, Australia and at Robledo, Spain. We detected 23 new sources, which resulted in a 60% increase in the number of then known nuclear water maser sources. Eight new detections show the characteristic spectral signature of emission from an edge-on accretion disk and therefore constitute good candidates for the determination of black hole mass and geometric distance. This increase in the number of known sources has enabled us to reconsider statistical properties of the resulting sample. For the 30 water maser sources with available hard X-ray data, we found a possible correlation between unabsorbed X-ray luminosity (2-10 keV) and total isotropic water maser luminosity of the form L 2-10 0([Special characters omitted.] , consistent with the model proposed by Neufeld et al. (1994) in which X-ray irradiation of molecular accretion disk gas by the central engine excites the maser emission. We mapped for the first time with Very Long Baseline Interferomatey (VLBI) the full extent of the pc-scale accretion disk in NGC 3079 as traced by water maser emission. Positions and line-of-sight velocities of maser emission are consistent with a nearly edge-on pc-scale disk and a central mass of ~ 2 x 10^6 [Special characters omitted.] enclosed within ~ 0.4 pc. Based on the kinematics of the system, we propose that the disk is geometrically-thick, massive, subject to gravitational instabilities, and hence most likely clumpy and star- forming. The accretion disk in NGC 3079 is thus markedly different from the compact, thin, warped, differentially rotating disk in the archetypal maser galaxy NGC 4258. We also detect maser emission at high latitudes above the disk and suggest that it traces an inward extension of the kpc-scale bipolar wide- angle outflow previously observed along the galactic

  17. Is the Oort A-value a universal growth rate limit for accretion disk shear instabilities? (United States)

    Balbus, Steven A.; Hawley, John F.


    A weak-field local MHD instability that is of importance to accretion disks is examined. The maximum growth rate of the instability is found to be not only independent of the magnetic field strength but independent of field geometry as well. In particular, all Keplerian disks are unstable in the presence of any weak poloidal field, with the ratio of the maximum growth rate to disk angular velocity given by 3/4. The maximum growth rate of any weak field configuration that is not purely toroidal is given by the local Oort A-value of the disk. The behavior is studied by using a form of the dynamical Hill equations. It is conjectured that the Oort A-value is an upper bound to the growth rate of any instability feeding upon the free energy of differential rotation.

  18. Variability of accretion disks surrounding black holes: The role of inertial-acoustic mode instabilities (United States)

    Chen, Xingming; Taam, Ronald E.


    The global nonlinear time-dependent evolution of the inertial-acoustic mode instability in accretion disks surrounding black holes has been investigated. The viscous stress is assumed to be proportional to the gas pressure only, i.e., tau = alphap(sub g). It is found that an oscillatory nonsteady behavior exists in the inner regions of disks (r is less than 10r(sub g) where r(sub g) is the Schwarzschild radius) for sufficiently large alpha(greater than or approximately equal to 0.2) and for mass accretion rates less than about 0.3 times the Eddington value. The variations of the integrated bolometric luminosity from the disk, Delta L/L, are less than 3%. A power spectrum analysis of these variations reveals a power spectrum which can be fitted to a power-law function of the frequency Pis proportional to f(exp -gamma), with index gamma = 1.4-2.3 and a low-frequency feature at about 4 Hz in one case. In addition, a narrow peak centered at a frequency corresponding to the maximum epicyclic frequency of the disk at approximately 100-130 Hz and its first harmonic is also seen. The low-frequency modulations are remarkably similar to those observed in black hole candidate systems. The possible existence of a scattering corona in the inner region of the disk and/or other processes contributing to the power at high frequencies in the inner region of the accretion disk may make the detection of the high-frequency component difficult.

  19. Large-scale dynamo of accretion disks around supermassive nonrotating black holes

    Directory of Open Access Journals (Sweden)

    Poplavsky A.L.


    Full Text Available In this paper one presents an analytical model of accretion disk magnetosphere dynamics around supermassive nonrotating black holes in the centers of active galactic nuclei. Based on general relativistic equations of magneto hydrodynamics, the nonstationary solutions for time-dependent dynamo action in the accretion disks, spatial and temporal distribution of magnetic field are found. It is shown that there are two distinct stages of dynamo process: the transient and the steady-state regimes, the induction of magnetic field at t > 6:6665 x 1011GM/c3 s becomes stationary, magnetic field is located near the innermost stable circular orbit, and its value rises up to ~ 105 G. Applications of such systems with nonrotating black holes in real active galactic nuclei are discussed.

  20. Model for how an accretion disk drives astrophysical jets and sheds angular momentum (United States)

    Bellan, Paul M.


    Clumps of ions and neutrals in the weakly ionized plasma in an accretion disk are shown to follow trajectories analogous to those of fictitious ‘metaparticles’ having a charge to mass ratio reduced from that of an ion by the ionization fraction. A certain class of meta-particles have zero-canonical angular momentum and so spiral in towards the star. Accumulation of these meta-particles establishes a radial electric field that drives the electric current that flows in bidirectional astrophysical jets lying along the disk axis and provides forces that drive the jets. The entire process converts gravitational potential energy into jet energy while absorbing angular momentum from accreting material and shedding this angular momentum at near infinite radius.

  1. X-ray Reflected Spectra from Accretion Disk Models. I. Constant Density Atmospheres (United States)

    Garcia, Javier; Kallman, Timothy R.


    We present new models for illuminated accretion disks, their structure and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by solving simultaneously the equations of radiative transfer, energy balance and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Ka line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.

  2. On the stream-accretion disk interaction - Response to increased mass transfer rate (United States)

    Dgani, Ruth; Livio, Mario; Soker, Noam


    The time-dependent interaction between the stream of mass from the inner Lagrangian point and the accretion disk, resulting from an increasing mass transfer rate is calculated. The calculation is fully three-dimensional, using a pseudoparticle description of the hydrodynamics. It is demonstrated that the results of such calculations, when combined with specific observations, have the potential of both determining essential parameters, such as the viscosity parameter alpha, and can distinguish between different models of dwarf nova eruptions.

  3. On the Calculation of the Fe K-alpha Line Emissivity of Black Hole Accretion Disks (United States)

    Krawczynski, H.; Beheshtipour, B.


    Observations of the fluorescent Fe Kα emission line from the inner accretion flows of stellar mass black holes in X-ray binaries and supermassive black holes in active galactic nuclei have become an important tool to study the magnitude and inclination of the black hole spin, and the structure of the accretion flow close to the event horizon of the black hole. Modeling spectral, timing, and soon also X-ray polarimetric observations of the Fe Kα emission requires the calculation of the specific intensity in the rest frame of the emitting plasma. We revisit the derivation of the equation used for calculating the illumination of the accretion disk by the corona. We present an alternative derivation leading to a simpler equation, and discuss the relation to previously published results.

  4. Disentangling Accretion Disk and Dust Emissions in the Infrared Spectrum of Type 1 AGN

    Directory of Open Access Journals (Sweden)

    Antonio Hernán-Caballero


    Full Text Available We use a semi-empirical model to reproduce the 0.1–10 μm spectral energy distribution (SED of a sample of 85 luminous quasars. In the model, the continuum emission from the accretion disk as well as the nebular lines are represented by a single empirical template (disk, where differences in the optical spectral index are reproduced by varying the amount of extinction. The near- and mid-infrared emission of the AGN-heated dust is modeled as the combination of two black-bodies (dust. The model fitting shows that the disk and dust components are remarkably uniform among individual quasars, with differences in the observed SED largely accounted for by varying levels of obscuration in the disk as well as differences in the relative luminosity of the disk and dust components. By combining the disk-subtracted SEDs of the 85 quasars, we generate a template for the 1–10 μm emission of the AGN-heated dust. Additionally, we use a sample of local Seyfert 1 galaxies with full spectroscopic coverage in the 0.37–39 μm range to demonstrate a method for stitching together spectral segments obtained with different PSF and extraction apertures. We show that the disk and dust templates obtained from luminous quasars also reproduce the optical-to-mid-infrared spectra of local Seyfert 1s when the contribution from the host galaxy is properly subtracted.

  5. Gamma-ray bursts from stellar mass accretion disks around black holes (United States)

    Woosley, S. E.


    A cosmological model for gamma-ray bursts is explored in which the radiation is produced as a broadly beamed pair fireball along the rotation axis of an accreting black hole. The black hole may be a consequence of neutron star merger or neutron star-black hole merger, but for long complex bursts, it is more likely to come from the collapse of a single Wolf-Rayet star endowed with rotation ('failed' Type Ib supernova). The disk is geometrically thick and typically has a mass inside 100 km of several tenths of a solar mass. In the failed supernova case, the disk is fed for a longer period of time by the collapsing star. At its inner edge the disk is thick to its own neutrino emission and evolves on a viscous time scale of several seconds. In a region roughly 30 km across, interior to the accretion disk and along its axis of rotation, a pair fireball is generated by neutrino annihilation and electron-neutrino scattering which deposit approximately 10 exp 50 ergs/s.

  6. Spectral eclipse mapping of the accretion disk in the nova-like variable UX Ursae Majoris (United States)

    Rutten, R. G. M.; Dhillon, V. S.; Horne, K.; Kuulkers, E.


    We analyze narrow-band eclipse light curves of the nova-like cataclysmic variable UX UMa, obtained from low-resolution spectra spanning lambda lambda 3600-9800 A . The light curves for narrow bands in the continuum as well as those for individual spectral lines are treated independently, and are used to construct images of the accretion disk's brightness distribution using the maximum-entropy eclipse-mapping technique. Particular attention is paid to the propagation of statistical uncertainties in the data and to how the analysis may introduce systematic errors in the final result. From the many narrrow band images we have reconstructed the spectra from isolated parts of the accretion disk. These spectra reveal that the inner disk radiates a continuum spectrum which peaks in the near UV and has the hydrogen Balmer lines in absorption (with the exception of H-alpha), whereas the outer disk is much fainter, has a much redder spectrum, and has Balmer emission lines. Our analysis reveals the presence of an uneclipsed component of the total light, whose spectrum is very red and has Balmer lines in emission. This unexpected feature of the eclipse mapping technique offers a new tool for an independent assessment of the secondary star's spectrum in eclipsing cataclysmic variables.

  7. Probing the connection between the accretion disk, outflows and the jet in 3C111 (United States)

    Tombesi, Francesco


    Recent XMM-Newton and Suzaku observations of 3C111 demonstrated the presence of ultra-fast outflows (UFOs) with v~0.1c and their relation with the accretion disk. Independent studies found that X-ray dips are followed by ejection of superluminal radio knots, therefore providing a proof of the disk-jet connection. We acquired evidence that UFOs are preferentially present between X-ray dips and new knots, possibly indicating also a link between disk outflows and the jet. The goal of this XMM-Newton proposal is to confirm this evidence. Given the strong correlation with X-rays, we will use an ongoing optical monitoring campaign to trigger a 90ks observation within two days of a dip to detect a UFO and we request a possible additional 60ks >15 days after to compare with the non-dipped state.

  8. Non-LTE effects on the strength of the Lyman edge in quasar accretion disks (United States)

    Stoerzer, H.; Hauschildt, P. H.; Allard, F.


    We have calculated UV/EUV (300 A which is less than or equal to lambda which is less than or equal to 1500 A) continuous energy distributions of accretion disks in the centers of active galactic nuclei (AGNs) for disk luminosities in the range 0.1 L(sub Edd) less than or equal to L(sub acc) less than 1.0 L(sub Edd) and central masses ranging from 10(exp 8) solar mass to 10(exp 9) solar mass. The vertical gas pressure structure of the disk and the disk height are obtained analytically; the temperature stratification and the resulting continuum radiation fields are calculated numerically. We have included non-Local Thermodynamic Equilibrium (LTE) effects of both the ionization equilibrium and the level populations of hydrogen and helium. We show that these non-LTE effects reduce the strength of the Lyman edge when comapred to the LTE case. In non-LTE we find that the edge can be weakly in emission or absorption for disks seen face-on, depending on the disk parameters.

  9. 1H 1752 + 081: an eclipsing cataclysmic variable with a small accretion disk (United States)

    Silber, Andrew D.; Remillard, Ronald A.; Horne, Keith; Bradt, Hale V.


    We announce the discovery of an eclipsing nova-like cataclysmic variable (CV) as the optical counterpart to the HEAO 1 X-ray source 1H1752 + 081. This CV has an orbital period of 1.882801 hr, a high equivalent width of H-beta, and an average mv of 16.4 out of the eclipse. A geometric model is constructed from observations of the eclipse ingress and egress in many optical bandpasses. The broad-band emission originates primarily in two regions; the disk/accretion stream 'hot spot' and a compact central component, which may be a spot on the white dwarf surface, the entire white dwarf surface or the boundary layer between the accretion disk and the white dwarf surface. Based on the durations and offsets of the two eclipses we determined the mass ratio q = 2.5 +/- 0.6 and the angle of inclination i = 77 deg +/- 2 deg. If the central component is the entire white dwarf surface the masses of the stars are M1 = 0.80 +/- 0.06 solar masses and M2 = 0.32 +/- 0.06 solar masses. The disk is faint and small (RD = 0.25 +/- 0.05 rL1, where rL1 is the distance from the primary to the L1 point), compared to other eclipsing CVs. The small disk may result from the removal of angular momentum from the accretion disk by the magnetic field of the white dwarf; this CV may be a DQ Her type with a slowly rotating white dwarf. The emission-line velocities do not show the 'Z-wave' expected from the eclipse of a Keplerian accretion disk, nor do they have the correct phasing to originate near the white dwarf. The most likely origin of the line emission is the hot spot. The secondary star is visible at wavelengths greater than or equal to 6000 A during eclipse. We estimate a spectral type approximately M6 which, together with the observed m1 = 16.94 during eclipse, results in a distance estimate of 150 +/- 27 pc.

  10. The Accretion Disk Wind in the Black Hole GRS 1915 + 105 (United States)

    Miller, J.M.; Raymond, J.; Fabian, A. C.; Gallo, E.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Reynolds, C. S.; Zoghbi, A.


    We report on a 120 kiloseconds Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in 2015 June. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lower sensitivity in 2007. The very high resolution of the third-order spectrum reveals four components to the disk wind in the Fe K band alone; the fastest has a blueshift of v = 0.03 c (velocity equals 0.03 the speed of light). Broadened reemission from the wind is also detected in the first-order spectrum, giving rise to clear accretion disk P Cygni profiles. Dynamical modeling of the re-emission spectrum gives wind launching radii of r approximately equal to 10 (sup 2-4) GM (Gravitational constant times Mass) divided by c (sup 2) (the speed of light squared). Wind density values of n approximately equal to 10 (sup 13-16) per cubic centimeter are then required by the ionization parameter formalism. The small launching radii, high density values, and inferred high mass outflow rates signal a role for magnetic driving. With simple, reasonable assumptions, the wind properties constrain the magnitude of the emergent magnetic field to be B approximately equal to 10 (sup 3-4) G (Gravitational constant) if the wind is driven via magnetohydrodynamic (MHD) pressure from within the disk and B approximately equal to 10 (sup 4-5) G (Gravitational constant) if the wind is driven by magnetocentrifugal acceleration. The MHD estimates are below upper limits predicted by the canonical alpha-disk model. We discuss these results in terms of fundamental disk physics and black hole accretion modes.

  11. Constraining Accretion Signatures of Exoplanets in the TW Hya Transitional Disk (United States)

    Uyama, Taichi; Tanigawa, Takayuki; Hashimoto, Jun; Tamura, Motohide; Aoyama, Yuhiko; Brandt, Timothy D.; Ishizuka, Masato


    We present a near-infrared direct imaging search for accretion signatures of possible protoplanets around the young stellar object (YSO) TW Hya, a multi-ring disk exhibiting evidence of planet formation. The Paβ line (1.282 μm) is an indication of accretion onto a protoplanet, and its intensity is much higher than that of blackbody radiation from the protoplanet. We focused on the Paβ line and performed Keck/OSIRIS spectroscopic observations. Although spectral differential imaging (SDI) reduction detected no accretion signatures, the results of the present study allowed us to set 5σ detection limits for Paβ emission of 5.8 × 10-18 and 1.5 × 10-18 erg-1 s-1 cm-2 at 0.″4 and 1.″6, respectively. We considered the mass of potential planets using theoretical simulations of circumplanetary disks and hydrogen emission. The resulting masses were 1.45 ± 0.04 M J and {2.29}-0.04+0.03 {M}{{J}} at 25 and 95 au, respectively, which agree with the detection limits obtained from previous broadband imaging. The detection limits should allow for the identification of protoplanets as small as ˜1 M J, which may assist in direct imaging searches around faint YSOs for which extreme adaptive optics instruments are unavailable.

  12. The Accretion Disk of the Lithium-Depleted Young Binary St 34 (United States)

    Hartmann, Lee; Calvet, Nuria; Watson, Dan M.; D'Alessio, P.; Furlan, E.; Sargent, B.; Forrest, W. J.; Uchida, K. I.; Green, J. D.; Sloan, G. C.; hide


    We presented the infrared spectrum of the young binary system St 34 obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope. The IRS spectrum clearly shows excess dust emission, consistent with the suggestion of White & Hillenbrand that St 34 is accreting from a circumbinary disk. The disk emission of St 34 is low in comparison with the levels observed in typical T Tauri stars; silicate features at 10 and 20 microns are much weaker than typically seen in T Tauri stars; and excess emission is nearly absent at the shortest wavelengths observed. These features of the infrared spectrum suggest substantial grain growth (to eliminate silicate features) and possible settling of dust to the disk midplane (to reduce the continuum excess emission levels), along with a relatively evacuated inner disk, as expected due to gravitational perturbations by the binary system. Although the position of St 34 in the H-R diagram suggests an age of 8f Myr, assuming that it lies at the distance of the Taurus-Auriga molecular clouds, White & Hillenbrand could not detect any Li I absorption, which would indicate a Li depletion age of roughly 25 Myr or more. We suggest that St 34 is closer than the Taurus clouds by about 30-40 pc and has an age roughly consistent with Li depletion models. Such an advanced age would make St 34 the oldest known low-mass pre-main-sequence object with a dusty accretion disk. The persistence of optically thick dust emission well outside the binary orbit may indicate a failure to make giant planets that could effectively remove dust particles.

  13. Roe-Einfeldt-Osher scheme as applied to the mathematical simulation of accretion disks on parallel computers (United States)

    Lugovsky, A. Yu.; Popov, Yu. P.


    The Roe-Einfeldt-Osher scheme is considered, which has the third order of accuracy. Its advantages over the first-order accurate Roe scheme are demonstrated, and its choice for the simulation of accretion disk flows is justified. The Roe-Einfeldt-Osher scheme is shown to be efficient as applied to the simulation of real-world problems on parallel computers. Results of simulation of flows in accretion disks in two and three dimensions are presented. Limited capabilities of two-dimensional disk models are noted.

  14. X-ray Reflected Spectra from Accretion Disk Models: A Complete Grid of Ionized Reflection Calculations (United States)

    Garcia, Javier; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Narayan, R.; Wilms, J.; Eikmann, W.


    We present a new and complete library of synthetic spectra to model the reprocessed and reflected X-ray radiation from illuminated accretion disks, using an updated version of our code XILLVER. Several improvements have been implemented to both the routines and the atomic data, allowing the production a large grid of reflection models covering a wide range of parameters. Each model is characterized by the photon index Γ of the illuminating radiation (assumed to be a power-law), the ionization parameter ξ at the surface of the disk (i.e., the ratio of the X-ray flux over the gas density), and the iron abundance AFe with respect to the solar value. The ranges of the parameters covered are: 1.2 ≤ Γ ≤ 3.4, 1 ≤ ξ ≤ 104, and 0.5 ≤ AFe ≤ 10. This choice is motivated to represent the physical conditions typically observed in most active galactic nuclei, as well as in some galactic black holes. This library is particularly intended to model reflection from accreting sources where the thermal disk emission is small compared to the incident power-law spectrum. A total of 720 reflection spectra are provided in a single FITS file suitable for the analysis of X-ray observations via the atable model in XSPEC. A detailed comparison with previous models highlights the improvements achieved in the present calculations, and their implications on the analysis of X-ray spectra is discussed.

  15. Consequences of Relativistic Neutron Outflow beyond the Accretion Disks of Active Galaxies (United States)

    Ekejiuba, I. E.; Okeke, P. N.


    Three channels of relativistic electron injection in the jets of extragalactic radio sources (EGRSs) are discussed. With the assumption that an active galactic nucleus (AGN) is powered by a spinning supermassive black hole of mass ~ 10(8) M_⊙ which sits at the center of the nucleus and ingests matter and energy through an accretion disk, a model for extracting relativistic neutrons from the AGN is forged. In this model, the inelastic proton--proton and proton--photon interactions within the accretion disk, of relativistic protons with background thermal protons and photons, respectively, produce copious amounts of relativistic neutrons. These neutrons travel ballistically for ~ 10(3gamma_n ) seconds and escape from the disk before they decay. The secondary particles produced from the neutron decays then interact with the ambient magnetic field and/or other particles to produce the radio emissions observed in the jets of EGRSs. IEE acknowledges the support of the World Bank and the Federal University of Technology, Yola, Nigeria as well as the hospitality of Georgia State University.


    Energy Technology Data Exchange (ETDEWEB)

    Bednarek, W., E-mail: [Department of Astrophysics, The University of Lodz, 90-236 Lodz, ul. Pomorska 149/153 (Poland)


    We investigate the consequences of acceleration of nuclei in jets of active galaxies not far from the surface of an accretion disk. The nuclei can be accelerated in the re-connection regions in the jet and/or at the jet boundary, between the relativistic jet and its cocoon. It is shown that the relativistic nuclei can efficiently fragment onto specific nucleons in collisions with the disk radiation. Neutrons, directed toward the accretion disk, take a significant part of energy from the relativistic nuclei. These neutrons develop a cascade in the dense accretion disk. We calculate the neutrino spectra produced in such a hadronic cascade within the accretion disk. We propose that the neutrinos produced in such a scenario, from the whole population of super-massive black holes in active galaxies, can explain the extragalactic neutrino background recently measured by the IceCube neutrino detector, provided that a 5% fraction of galaxies have an active galactic nucleus and a few percent of neutrons reach the accretion disk. We predict that the neutrino signals in the present neutrino detectors, produced in terms of such a model, will not be detectable even from the nearby radio galaxies similar to M87.

  17. The response of relativistic outflowing gas to the inner accretion disk of a black hole. (United States)

    Parker, Michael L; Pinto, Ciro; Fabian, Andrew C; Lohfink, Anne; Buisson, Douglas J K; Alston, William N; Kara, Erin; Cackett, Edward M; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C; Garcia, Javier; Harrison, Fiona A; King, Ashley L; Middleton, Matthew J; Miller, Jon M; Miniutti, Giovanni; Reynolds, Christopher S; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J; Wilkins, Daniel R; Zoghbi, Abderahmen


    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different

  18. Reprocessing of Soft X-ray Emission Lines in Black Hole Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Mauche, C W; Liedahl, D A; Mathiesen, B F; Jimenez-Garate, M A; Raymond, J C


    By means of a Monte Carlo code that accounts for Compton scattering and photoabsorption followed by recombination, we have investigated the radiation transfer of Ly{alpha}, He{alpha}, and recombination continua photons of H- and He-like C, N, O, and Ne produced in the photoionized atmosphere of a relativistic black hole accretion disk. We find that photoelectric opacity causes significant attenuation of photons with energies above the O VIII K-edge; that the conversion efficiencies of these photons into lower-energy lines and recombination continua are high; and that accounting for this reprocessing significantly (by factors of 21% to 105%) increases the flux of the Ly{alpha} and He{alpha} emission lines of H- and He-like C and O escaping the disk atmosphere.

  19. Boundary-layer behavior of the flow at the inner edge of black hole accretion disks (United States)

    Stoeger, W. R.


    The flow of accreting material into black holes from Keplerian disks surrounding them is studied. Solving the system of radial structure equations in Schwarzschild geometry for the case where the kinematic viscosity is constant, the paper discovers a boundary layer at the disk's inner edge, where the flow becomes non-Keplerian. It is also shown that, despite the operation of viscous stresses across this inner edge and the presence of the boundary layer there, very little extra energy or angular momentum is radiated or transported outward from inside that radius - a result many have often assumed but no one has carefully demonstrated. These results constitute a solution to the problem of adequately describing the flow across the inner edge and properly setting the boundary conditions there and at the event horizon.

  20. Modified viscosity in accretion disks. Application to Galactic black hole binaries, intermediate mass black holes, and active galactic nuclei (United States)

    Grzędzielski, Mikołaj; Janiuk, Agnieszka; Czerny, Bożena; Wu, Qingwen


    Aims: Black holes (BHs) surrounded by accretion disks are present in the Universe at different scales of masses, from microquasars up to the active galactic nuclei (AGNs). Since the work of Shakura & Sunyaev (1973, A&A, 24, 337) and their α-disk model, various prescriptions for the heat-production rate are used to describe the accretion process. The current picture remains ad hoc due the complexity of the magnetic field action. In addition, accretion disks at high Eddington rates can be radiation-pressure dominated and, according to some of the heating prescriptions, thermally unstable. The observational verification of their resulting variability patterns may shed light on both the role of radiation pressure and magnetic fields in the accretion process. Methods: We compute the structure and time evolution of an accretion disk, using the code GLADIS (which models the global accretion disk instability). We supplement this model with a modified viscosity prescription, which can to some extent describe the magnetisation of the disk. We study the results for a large grid of models, to cover the whole parameter space, and we derive conclusions separately for different scales of black hole masses, which are characteristic for various types of cosmic sources. We show the dependencies between the flare or outburst duration, its amplitude, and period, on the accretion rate and viscosity scaling. Results: We present the results for the three grids of models, designed for different black hole systems (X-ray binaries, intermediate mass black holes, and galaxy centres). We show that if the heating rate in the accretion disk grows more rapidly with the total pressure and temperature, the instability results in longer and sharper flares. In general, we confirm that the disks around the supermassive black holes are more radiation-pressure dominated and present relatively brighter bursts. Our method can also be used as an independent tool for the black hole mass determination

  1. Interaction of the accretion flows in corona and disk near the black hole in active galactic nuclei (United States)

    Meyer-Hofmeister, E.; Liu, B. F.; Qiao, E.


    Context. Accretion flows toward black holes can be of a quite different nature, described as an optically thick cool gas flow in a disk for high accretion rates or as a hot coronal optically thin gas flow for low accretion rates, possibly affected by outflowing gas. Aims: The detection of broad iron emission lines in active galactic nuclei (AGN) indicates the coexistence of corona and disk. The appearance and relative strength of such flows essentially depends on their interaction. Liu et al. suggested that condensation of gas from the corona to the disk allows to understand accretion flows of comparable strength of emission. Matter inflow due to gravitational capture of gas is important for the condensation process. We discuss observational features predicted by the model. Methods: Data from simultaneous observations of AGN with Swift's X-ray and UV-optical telescopes are compared with the theoretical predictions. Results: The frequent detection of broad iron Kα emission lines and the dependence of the emitted spectra on the Eddington ratio, described by the values of the photon index Γ and the two-point spectral index αox are in approximate agreement with the predictions of the condensation model; the latter, however, with a large scatter. The model further yields a coronal emission concentrated in a narrow inner region as is also deduced from the analysis of emissivity profiles. Conclusions: The accretion flows in bright AGN could be described by the accretion of stellar wind or interstellar medium and its condensation into a thin disk.

  2. Photoionization Models for the Inner Gaseous Disks of Herbig Be Stars: Evidence against Magnetospheric Accretion?

    Energy Technology Data Exchange (ETDEWEB)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D., E-mail: [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)


    We investigate the physical properties of the inner gaseous disks of three hot Herbig B2e stars, HD 76534, HD 114981, and HD 216629, by modeling CFHT-ESPaDOns spectra using non-LTE radiative transfer codes. We assume that the emission lines are produced in a circumstellar disk heated solely by photospheric radiation from the central star in order to test whether the optical and near-infrared emission lines can be reproduced without invoking magnetospheric accretion. The inner gaseous disk density was assumed to follow a simple power-law in the equatorial plane, and we searched for models that could reproduce observed lines of H i (H α and H β ), He i, Ca ii, and Fe ii. For the three stars, good matches were found for all emission line profiles individually; however, no density model based on a single power-law was able to reproduce all of the observed emission lines. Among the single power-law models, the one with the gas density varying as ∼10{sup −10}( R {sub *}/ R ){sup 3} g cm{sup −3} in the equatorial plane of a 25 R {sub *} (0.78 au) disk did the best overall job of representing the optical emission lines of the three stars. This model implies a mass for the H α -emitting portion of the inner gaseous disk of ∼10{sup −9} M {sub *}. We conclude that the optical emission line spectra of these HBe stars can be qualitatively reproduced by a ≈1 au, geometrically thin, circumstellar disk of negligible mass compared to the central star in Keplerian rotation and radiative equilibrium.

  3. A Steady-state Alignment Front in an Accretion Disk Subjected to Lense-thirring Torques (United States)

    Krolik, Julian H.; Hawley, John F.


    Using only physical mechanisms, i.e., 3D magnetohydrodynamics (MHD) with no phenomenological viscosity, we have simulated the dynamics of a moderately thin accretion disk subject to torques whose radial scaling mimics those produced by lowest-order post-Newtonian gravitomagnetism. In this simulation, we have shown how, in the presence of MHD turbulence, a time-steady transition can be achieved between an inner disk region aligned with the equatorial plane of the central mass’s spin and an outer region orbiting in a different plane. The position of the equilibrium orientation transition is determined by a balance between gravitomagnetic torque and warp-induced inward mixing of misaligned angular momentum from the outer disk. If the mixing is interpreted in terms of diffusive transport, the implied diffusion coefficient is ≃(0.6-0.8)cs2/{Ω } for sound speed cs and orbital frequency Ω. This calibration permits estimation of the orientation transition’s equilibrium location given the central mass, its spin parameter, and the disk’s surface density and scaleheight profiles. However, the alignment front overshoots before settling into an equilibrium, signaling that a diffusive model does not fully represent the time-dependent properties of alignment fronts under these conditions. Because the precessional torque on the disk at the alignment front is always comparable to the rate at which misaligned angular momentum is brought inward to the front by warp-driven radial motions, no break forms between the inner and outer portions of the disk in our simulation. Our results also raise questions about the applicability to MHD warped disks of the traditional distinction between “bending wave” and “diffusive” regimes.

  4. V3885 Sagittarius: A Comparison With a Range of Standard Model Accretion Disks (United States)

    Linnell, Albert P.; Godon, Patrick; Hubeny, Ivan; Sion, Edward M; Szkody, Paula; Barrett, Paul E.


    A chi-squared analysis of standard model accretion disk synthetic spectrum fits to combined Far Ultraviolet Spectroscopic Explorer and Space Telescope Imaging Spectrograph spectra of V3885 Sagittarius, on an absolute flux basis, selects a model that accurately represents the observed spectral energy distribution. Calculation of the synthetic spectrum requires the following system parameters. The cataclysmic variable secondary star period-mass relation calibrated by Knigge in 2006 and 2007 sets the secondary component mass. A mean white dwarf (WD) mass from the same study, which is consistent with an observationally determined mass ratio, sets the adopted WD mass of 0.7M(solar mass), and the WD radius follows from standard theoretical models. The adopted inclination, i = 65 deg, is a literature consensus, and is subsequently supported by chi-squared analysis. The mass transfer rate is the remaining parameter to set the accretion disk T(sub eff) profile, and the Hipparcos parallax constrains that parameter to mas transfer = (5.0 +/- 2.0) x 10(exp -9) M(solar mass)/yr by a comparison with observed spectra. The fit to the observed spectra adopts the contribution of a 57,000 +/- 5000 K WD. The model thus provides realistic constraints on mass transfer and T(sub eff) for a large mass transfer system above the period gap.

  5. The X-Ray Polarization of the Accretion Disk Coronae of Active Galactic Nuclei (United States)

    Beheshtipour, Banafsheh; Krawczynski, Henric; Malzac, Julien


    Hard X-rays observed in Active Galactic Nuclei (AGNs) are thought to originate from the Comptonization of the optical/UV accretion disk photons in a hot corona. Polarization studies of these photons can help to constrain the corona geometry and the plasma properties. We have developed a ray-tracing code that simulates the Comptonization of accretion disk photons in coronae of arbitrary shapes, and use it here to study the polarization of the X-ray emission from wedge and spherical coronae. We study the predicted polarization signatures for the fully relativistic and various approximate treatments of the elemental Compton scattering processes. We furthermore use the code to evaluate the impact of nonthermal electrons and cyclo-synchrotron photons on the polarization properties. Finally, we model the NuSTAR observations of the Seyfert I galaxy Mrk 335 and predict the associated polarization signal. Our studies show that X-ray polarimetry missions such as NASA’s Imaging X-ray Polarimetry Explorer and the X-ray Imaging Polarimetry Explorer proposed to ESA will provide valuable new information about the physical properties of the plasma close to the event horizon of AGN black holes.

  6. Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback (United States)

    Tombesi, F.


    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this ``quasar mode'' feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been directly compared to X-ray spectra, providing important insights into the wind physics. However, fundamental improvements on these studies will come only from the unprecedented energy resolution and sensitivity of the upcoming X-ray observatories, namely ASTRO-H (launch date early 2016) and Athena (2028).

  7. Continuum Reverberation Mapping of the Accretion Disks in Two Seyfert 1 Galaxies (United States)

    Fausnaugh, M. M.; Starkey, D. A.; Horne, Keith; Kochanek, C. S.; Peterson, B. M.; Bentz, M. C.; Denney, K. D.; Grier, C. J.; Grupe, D.; Pogge, R. W.; De Rosa, G.; Adams, S. M.; Barth, A. J.; Beatty, Thomas G.; Bhattacharjee, A.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brown, Jacob E.; Brown, Jonathan S.; Brotherton, M. S.; Coker, C. T.; Crawford, S. M.; Croxall, K. V.; Eftekharzadeh, Sarah; Eracleous, Michael; Joner, M. D.; Henderson, C. B.; Holoien, T. W.-S.; Hutchison, T.; Kaspi, Shai; Kim, S.; King, Anthea L.; Li, Miao; Lochhaas, Cassandra; Ma, Zhiyuan; MacInnis, F.; Manne-Nicholas, E. R.; Mason, M.; Montuori, Carmen; Mosquera, Ana; Mudd, Dale; Musso, R.; Nazarov, S. V.; Nguyen, M. L.; Okhmat, D. N.; Onken, Christopher A.; Ou-Yang, B.; Pancoast, A.; Pei, L.; Penny, Matthew T.; Poleski, Radosław; Rafter, Stephen; Romero-Colmenero, E.; Runnoe, Jessie; Sand, David J.; Schimoia, Jaderson S.; Sergeev, S. G.; Shappee, B. J.; Simonian, Gregory V.; Somers, Garrett; Spencer, M.; Stevens, Daniel J.; Tayar, Jamie; Treu, T.; Valenti, Stefano; Van Saders, J.; Villanueva, S., Jr.; Villforth, C.; Weiss, Yaniv; Winkler, H.; Zhu, W.


    We present optical continuum lags for two Seyfert 1 galaxies, MCG+08-11-011 and NGC 2617, using monitoring data from a reverberation mapping campaign carried out in 2014. Our light curves span the ugriz filters over four months, with median cadences of 1.0 and 0.6 days for MCG+08-11-011 and NGC 2617, respectively, combined with roughly daily X-ray and near-UV data from Swift for NGC 2617. We find lags consistent with geometrically thin accretion-disk models that predict a lag-wavelength relation of τ ∝ λ 4/3. However, the observed lags are larger than predictions based on standard thin-disk theory by factors of 3.3 for MCG+08-11-011 and 2.3 for NGC 2617. These differences can be explained if the mass accretion rates are larger than inferred from the optical luminosity by a factor of 4.3 in MCG+08-11-011 and a factor of 1.3 in NGC 2617, although uncertainty in the SMBH masses determines the significance of this result. While the X-ray variability in NGC 2617 precedes the UV/optical variability, the long (2.6 day) lag is problematic for coronal reprocessing models.

  8. Angular momentum transport and particle acceleration during magnetorotational instability in a kinetic accretion disk. (United States)

    Hoshino, Masahiro


    Angular momentum transport and particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk are investigated using three-dimensional particle-in-cell simulation. We show that the kinetic MRI can provide not only high-energy particle acceleration but also enhancement of angular momentum transport. We find that the plasma pressure anisotropy inside the channel flow with p(∥)>p(⊥) induced by active magnetic reconnection suppresses the onset of subsequent reconnection, which, in turn, leads to high-magnetic-field saturation and enhancement of the Maxwell stress tensor of angular momentum transport. Meanwhile, during the quiescent stage of reconnection, the plasma isotropization progresses in the channel flow and the anisotropic plasma with p(⊥)>p(∥) due to the dynamo action of MRI outside the channel flow contribute to rapid reconnection and strong particle acceleration. This efficient particle acceleration and enhanced angular momentum transport in a collisionless accretion disk may explain the origin of high-energy particles observed around massive black holes.

  9. Disk-accreting magnetic neutron stars as high-energy particle accelerators (United States)

    Hamilton, Russell J.; Lamb, Frederick K.; Miller, M. Coleman


    Interaction of an accretion disk with the magnetic field of a neutron star produces large electromotive forces, which drive large conduction currents in the disk-magnetosphere-star circuit. Here we argue that such large conduction currents will cause microscopic and macroscopic instabilities in the magnetosphere. If the minimum plasma density in the magnetosphere is relatively low is less than or aproximately 10(exp 9)/cu cm, current-driven micro-instabilities may cause relativistic double layers to form, producing voltage differences in excess of 10(exp 12) V and accelerating charged particles to very high energies. If instead the plasma density is higher (is greater than or approximately = 10(exp 9)/cu cm, twisting of the stellar magnetic field is likely to cause magnetic field reconnection. This reconnection will be relativistic, accelerating plasma in the magnetosphere to relativistic speeds and a small fraction of particles to very high energies. Interaction of these high-energy particles with X-rays, gamma-rays, and accreting plasma may produce detectable high-energy radiation.

  10. Angular Momentum Transport in Protoplanetary and Black Hole Accretion Disks: The Role of Parasitic Modes in the Saturation of MHD Turbulence

    DEFF Research Database (Denmark)

    Pessah, Martin Elias


    The magnetorotational instability (MRI) is considered a key process for driving efficient angular momentum transport in astrophysical disks. Understanding its nonlinear saturation constitutes a fundamental problem in modern accretion disk theory. The large dynamical range in physical conditions i...

  11. A Global Three-Dimensional Radiation Hydrodynamic Simulation of a Self-Gravitating Accretion Disk (United States)

    Phillipson, Rebecca; Vogeley, Michael S.; McMillan, Stephen; Boyd, Patricia


    We present three-dimensional, radiation hydrodynamic simulations of initially thin accretion disks with self-gravity using the grid-based code PLUTO. We produce simulated light curves and spectral energy distributions and compare to observational data of X-ray binary (XRB) and active galactic nuclei (AGN) variability. These simulations are of interest for modeling the role of radiation in accretion physics across decades of mass and frequency. In particular, the characteristics of the time variability in various bandwidths can probe the timescales over which different physical processes dominate the accretion flow. For example, in the case of some XRBs, superorbital periods much longer than the companion orbital period have been observed. Smoothed particle hydrodynamics (SPH) calculations have shown that irradiation-driven warping could be the mechanism underlying these long periods. In the case of AGN, irradiation-driven warping is also predicted to occur in addition to strong outflows originating from thermal and radiation pressure driving forces, which are important processes in understanding feedback and star formation in active galaxies. We compare our simulations to various toy models via traditional time series analysis of our synthetic and observed light curves.

  12. Nustar and Suzaku X-Ray Spectroscopy Of Ngc 4151: Evidence For Reflection From The Inner Accretion Disk

    DEFF Research Database (Denmark)

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.


    We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN......) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity...... profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spin accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which...

  13. Magnetorotational dynamo chimeras. The missing link to turbulent accretion disk dynamo models? (United States)

    Riols, A.; Rincon, F.; Cossu, C.; Lesur, G.; Ogilvie, G. I.; Longaretti, P.-Y.


    In Keplerian accretion disks, turbulence and magnetic fields may be jointly excited through a subcritical dynamo mechanisminvolving magnetorotational instability (MRI). This dynamo may notably contribute to explaining the time-variability of various accreting systems, as high-resolution simulations of MRI dynamo turbulence exhibit statistical self-organization into large-scale cyclic dynamics. However, understanding the physics underlying these statistical states and assessing their exact astrophysical relevance is theoretically challenging. The study of simple periodic nonlinear MRI dynamo solutions has recently proven useful in this respect, and has highlighted the role of turbulent magnetic diffusion in the seeming impossibility of a dynamo at low magnetic Prandtl number (Pm), a common regime in disks. Arguably though, these simple laminar structures may not be fully representative of the complex, statistically self-organized states expected in astrophysical regimes. Here, we aim at closing this seeming discrepancy by reporting the numerical discovery of exactly periodic, yet semi-statistical "chimeral MRI dynamo states" which are the organized outcome of a succession of MRI-unstable, non-axisymmetric dynamical stages of different forms and amplitudes. Interestingly, these states, while reminiscent of the statistical complexity of turbulent simulations, involve the same physical principles as simpler laminar cycles, and their analysis further confirms the theory that subcritical turbulent magnetic diffusion impedes the sustainment of an MRI dynamo at low Pm. Overall, chimera dynamo cycles therefore offer an unprecedented dual physical and statistical perspective on dynamos in rotating shear flows, which may prove useful in devising more accurate, yet intuitive mean-field models of time-dependent turbulent disk dynamos. Movies associated to Fig. 1 are available at


    Energy Technology Data Exchange (ETDEWEB)

    Haga, Takafumi; Doi, Akihiro; Murata, Yasuhiro [Department of Space and Astronautical Science, The Graduate University for Advanced Studies (SOKENDAI), 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa, 252-5210 (Japan); Sudou, Hiroshi [Department of Mathematical and Design Engineering, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu City 5011-1193 (Japan); Kameno, Seiji [Joint ALMA Observatory, Alonso de Córdova 3107 Vitacura, Santiago (Chile); Hada, Kazuhiro, E-mail: [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)


    We report multifrequency phase-referenced observations of the nearby radio galaxy NGC 4261, which has prominent two-sided jets, using the Very Long Baseline Array at 1.4–43 GHz. We measured radio core positions showing observing frequency dependences (known as “core shift”) in both approaching jets and counterjets. The limit of the core position as the frequency approaches infinity, which suggests a jet base, is separated by 82 ± 16 μas upstream in projection, corresponding to (310 ± 60)R{sub s} (R{sub s}: Schwarzschild radius) as a deprojected distance, from the 43 GHz core in the approaching jet. In addition, the innermost component at the counterjet side appeared to approach the same position at infinity of the frequency, indicating that cores on both sides are approaching the same position, suggesting a spatial coincidence with the central engine. Applying a phase-referencing technique, we also obtained spectral index maps, which indicate that emission from the counterjet is affected by free–free absorption (FFA). The result of the core shift profile on the counterjet also requires FFA because the core positions at 5–15 GHz cannot be explained by a simple core shift model based on synchrotron self-absorption (SSA). Our result is apparently consistent with the SSA core shift with an additional disk-like absorber over the counterjet side. Core shift and opacity profiles at the counterjet side suggest a two-component accretion: a radiatively inefficient accretion flow at the inner region and a truncated thin disk in the outer region. We proposed a possible solution about density and temperature profiles in the outer disk on the basis of the radio observation.

  15. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds (United States)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.


    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  16. The gravitomagnetic dynamo effect in accretion disks of rotating black holes (United States)

    Khanna, Ramon; Camenzind, Max


    We present a previously unknown dynamo effect that arises from the coupling of the gravitomagnetic field of a Kerr black hole with electromagnetic fields. The axisymmetric dynamo equations are derived in the 3 + 1 split of Kerr spacetime. They are formally identical to their equivalents in flat space, augmented by a general relativistic source term for the poloidal magnetic field provided by the gravitomagnetic field. There is no need for any particular small-scale plasma motions. The effect does, however, require finite conductivity and is enhanced by anomalous or turbulent magnetic diffusivity. The results of our time-dependent numerical simulations of the mean field dyanmo in a turbulent accretion disk prove that the gravitomagnetic dynamo has growing modes in the vicinity of a rotating black hole.

  17. Accretion Disk Spectra of the Ultra-Luminous X-Ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, T


    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (> 300 M{sub solar}). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super-Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and that their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  18. Accretion Disk Spectra of the Ultra-luminous X-ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources (United States)

    White, Nicholas E. (Technical Monitor); Ebisawa, Ken; Zycki, Piotr; Kubota, Aya; Mizuno, Tsunefumi; Watarai, Ken-ya


    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (greater than or approximately equal to 300 Solar Mass). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super- Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and their X-ray emission is from the slim disk shining at super-Eddington luminosities.


    Energy Technology Data Exchange (ETDEWEB)

    Fukumura, Keigo [James Madison University, Harrisonburg, VA 22807 (United States); Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Behar, Ehud [Department of Physics, Technion, Haifa 32000 (Israel); Contopoulos, Ioannis, E-mail: [Research Center for Astronomy, Academy of Athens, Athens 11527 (Greece)


    We present a study of X-ray ionization of MHD accretion-disk winds in an effort to constrain the physics underlying the highly ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption-line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an XMM-Newton/EPIC spectrum of the narrow-line Seyfert, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log (ξ{sub c}[erg cm s{sup −1}]) ≃ 5–6 and a column density on the order of N{sub H} ≃ 10{sup 23} cm{sup −2} outflowing at a characteristic velocity of v{sub c}/c ≃ 0.1–0.2 (where c is the speed of light). The best-fit model favors its radial location at r{sub c} ≃ 200 R{sub o} (R{sub o} is the black hole’s innermost stable circular orbit), with an inner wind truncation radius at R{sub t} ≃ 30 R{sub o}. The overall K-shell feature in the data is suggested to be dominated by Fe xxv with very little contribution from Fe xxvi and weakly ionized iron, which is in good agreement with a series of earlier analyses of the UFOs in various AGNs, including PG 1211+143.

  20. Accretion (United States)

    Murdin, P.


    The process by which a celestial body increases its mass by aggregating smaller objects which collide with it. Several types of object grow by accretion. In binary stars in which mass transfer is taking place, one member grows at the expense of the other; black holes, including supermassive black holes believed to be present in active galactic nuclei, also increase their mass by accretion. In bot...


    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Rodríguez, Manuel; Solís-Sánchez, Hugo; Arguedas-Leiva, J. Agustín [Escuela de Física and Centro de Investigaciones Geofísicas, Universidad de Costa Rica, 11501-2060 San José (Costa Rica); Wagoner, Robert V.; Levine, Adam, E-mail: [Department of Physics, Stanford University, Stanford, CA 94305-4060 (United States)


    Diskoseismology, the theoretical study of normal-mode oscillations in geometrically thin, optically thick accretion disks, is a strong candidate for explaining some quasi-periodic oscillations in the power spectra of many black hole X-ray binary systems. The existence of g-modes, presumably the most robust and visible of the modes, depends on general relativistic gravitational trapping in the hottest part of the disk. As the existence of the required cavity in the presence of magnetic fields has been put into doubt by theoretical calculations, we will explore in greater generality what effect the inclusion of magnetic fields has on the existence of g-modes. We use an analytical perturbative approach on the equations of MHD to assess the impact of such effects. Our main conclusion is that there appears to be no compelling reason to discard g-modes. In particular, the inclusion of a non-zero radial component of the magnetic field enables a broader scenario for cavity non-destruction, especially taking into account recent simulations’ saturation values for the magnetic field.

  2. A Newly Forming Cold Flow Protogalactic Disk, a Signature of Cold Accretion from the Cosmic Web (United States)

    Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D.; Moore, Anna; Steidel, Charles C.; Trainor, Ryan


    How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows—relatively cool (T ˜ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentary intersections. We earlier reported a bright, Lyα emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous (R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 1012 M ⊙ halo. The orbital time of the outer part of the what we term a “protodisk” is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic web.

  3. Magnetic viscosity by localized shear flow instability in magnetized accretion disks

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, R.; Tajima, T.


    Differentially rotating disks are subject to the axisymmetric instability for perfectly conducting plasma in the presence of poloidal magnetic fields. For nonaxisymmetric perturbations, the authors find localized unstable eigenmodes whose eigenfunction is confined between two Alfven singularities at {omega}{sub d} = {+-} {omega}{sub A}, where {omega}{sub d} is the Doppler-shifted wave frequency, and {omega}{sub A} = k{parallel}v{sub A} is the Alfven frequency. The radial width of the unstable eigenfunction is {Delta}x {approximately} {omega}{sub A}/(Ak{sub y}), where A is the Oort`s constant, and k{sub y} is the azimuthal wave number. The growth rate of the fundamental mode is larger for smaller value of k{sub y}/k{sub z}. The maximum growth rate when k{sub y}/k{sub z} {approximately} 0.1 is {approximately} 0.2{Omega} for the Keplerian disk with local angular velocity {Omega}. It is found that the purely growing mode disappears when k{sub y}/k{sub z} > 0.12. In a perfectly conducting disk, the instability grows even when the seed magnetic field is infinitesimal. Inclusion of the resistivity, however, leads to the appearance of an instability threshold. When the resistivity {eta} depends on the instability-induced turbulent magnetic fields {delta}B as {eta}([{delta}B{sup 2}]), the marginal stability condition self-consistently determines the {alpha} parameter of the angular momentum transport due to the magnetic stress. For fully ionized disks, the magnetic viscosity parameter {alpha}{sub B} is between 0.001 and 1. The authors` three-dimensional MHD simulation confirms these unstable eigenmodes. It also shows that the {alpha} parameter observed in simulation is between 0.01 and 1, in agreement with theory. The observationally required smaller {alpha} in the quiescent phase of accretion disks in dwarf novae may be explained by the decreased ionization due to the temperature drop.


    Energy Technology Data Exchange (ETDEWEB)

    Salhi, A. [Departement de Physique, Faculte des Sciences de Tunis, 1060 Tunis (Tunisia); Lehner, T. [LUTH, UMR 8102 CNRS, Observatoire de Paris-Meudon, 5 place de Janssen, F-92195 Meudon (France); Godeferd, F.; Cambon, C. [Laboratoire de Mecanique des Fluides et d' Acoustique, Ecole Centrale de Lyon, Universite de Lyon, UMR 5509, CNRS, INSA, UCB, F-69134 Ecully Cedex (France)


    We examine accretion disk flow under combined radial and vertical stratification utilizing a local Cartesian (or ''shearing box'') approximation. We investigate both axisymmetric and nonaxisymmetric disturbances with the Boussinesq approximation. Under axisymmetric disturbances, a new dispersion relation is derived. It reduces to the Solberg-Hoieland criterion in the case without vertical stratification. It shows that, asymptotically, stable radial and vertical stratification cannot induce any linear instability; Keplerian flow is accordingly stable. Previous investigations strongly suggest that the so-called bypass concept of turbulence (i.e., that fine-tuned disturbances of any inviscid smooth shear flow can reach arbitrarily large transient growth) can also be applied to Keplerian disks. We present an analysis of this process for three-dimensional plane-wave disturbances comoving with the shear flow of a general rotating shear flow under combined stable radial and vertical rotation. We demonstrate that large transient growth occurs for K{sub 2}/k{sub 1} >> 1 and k{sub 3} = 0 or k{sub 1} {approx} k{sub 3}, where k{sub 1}, K{sub 2}, and k{sub 3} are the azimuthal, radial, and vertical components of the initial wave vector, respectively. By using a generalized ''wave-vortex'' decomposition of the disturbance, we show that the large transient energy growth in a Keplerian disk is mainly generated by the transient dynamics of the vortex mode. The analysis of the power spectrum of total (kinetic+potential) energy in the azimuthal or vertical directions shows that the contribution coming from the vortex mode is dominant at large scales, while the contribution coming from the wave mode is important at small scales. These findings may be confirmed by appropriate numerical simulations in the high Reynolds number regime.

  5. Thermodynamic model of MHD turbulence and some of its applications to accretion disks (United States)

    Kolesnichenko, A. V.; Marov, M. Ya.


    Within the framework of the main problem of cosmogony related to the reconstruction of the evolution of the protoplanetary gas-dust cloud that surrounded the proto-Sun at an early stage of its existence, we have derived a closed system of magnetohydrodynamic equations for the scale of mean motion in the approximation of single-fluid magnetohydrodynamics designed to model the shear and convective turbulent flows of electrically conducting media in the presence of a magnetic field. These equations are designed for schematized formulations and the numerical solution of special problems to interconsistently model intense turbulent flows of cosmic plasma in accretion disks and associated coronas, in which the magnetic field noticeably affects the dynamics of astrophysical processes. In developing the model of a conducting turbulized medium, apart from the conventional probability-theoretical averaging of the MHD equations, we systematically use the weighted Favre averaging. The latter allows us to considerably simplify the writing of the averaged equations of motion for a compressible fluid and the analysis of the mechanisms of macroscopic field amplification by turbulent flows. To clearly interpret the individual components of the plasma and field-energy balance, we derive various energy equations that allow us to trace the possible energy conversions from one form into another, in particular, to understand the transfer mechanisms of the gravitational and kinetic energies of the mean motion into magnetic energy. Special emphasis is placed on the method for obtaining the closure relations for the total (with allowance made for the magnetic field) kinetic turbulent stress tensor in an electrically conducting medium and the turbulent electromotive force (or the so-called magnetic Reynolds tensor). This method also makes it possible to analyze the constraints imposed on the turbulent transport coefficients by the entropy growth condition. As applied to the problem of

  6. NUSTAR and Suzaku x-ray spectroscopy of NGC 4151: Evidence for reflection from the inner accretion disk

    Energy Technology Data Exchange (ETDEWEB)

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Dauser, T.; Elvis, M.; Fabian, A. C.; Fuerst, F.; García, J.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Madejski, G.; Marinucci, A.; Matt, G.; Reynolds, C. S.; Stern, D.; Walton, D. J.; Zoghbi, A.


    We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spin $a\\gt 0.9$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. We discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.

  7. The Accretion Disk and the Boundary Layer of the Symbiotic Recurrent Nova T Corona Borealis (United States)

    Mukai, Koji; Luna, Gerardo; Nelson, Thomas; Sokoloski, Jennifer L.; Lucy, Adrian; Nuñez, Natalia


    T Corona Borealis is one of four known Galactic recurrent symbiotic novae, red giant-white dwarf binaries from which multiple thermonuclear runaway (TNR) events, or nova eruptions, have been observed. TNR requires high pressure at the base of the accreted envelope, and a recurrence time of less than a century almost certainly requires both high white dwarf mass and high accretion rate. The eruptions of T CrB were observed in 1866 and 1946; if the 80 year interval is typical, the next eruption would be expected within the next decade or two. Optical observations show that T CrB has entered a super-active state starting in 2015, similar to that seen in 1938, 8 years before the last eruption. In quiescence, T CrB is a known, bright hard X-ray source that has been detected in the Swift/BAT all-sky survey. Here we present the result of our NuSTAR observation of T CrB in 2015, when it had started to brighten but had not yet reached the peak of the super-active state. We were able to fit the spectrum with an absorbed cooling flow model with reflection, with a reflection amplitude of 1.0. We also present recent Swift and XMM-Newton observations during the peak of the super-active state, when T CrB had faded dramatically in the BAT band. T CrB is found to be much more luminous in the UV, while the X-ray spectrum became complex including a soft, optically thick component. We present our interpretation of the overall variability as due to instability of a large disk, and of the X-rays as due to emission from the boundary layer. In our view, the NuSTAR observation was performed when the boundary layer was optically thin, and the reflection was only from the white dwarf surface that subtended 2π steradian of the sky as seen from the emission region. With these assumptions, we infer the white dwarf in the T CrB system to have a mass of ~1.2 Msun. During the very active state, the boundary layer had turned partially optically thick and produced the soft X-ray component, while

  8. AGN Unification, X-Ray Absorbers and Accretion Disk MHD Winds (United States)

    Kazanas, Demos


    We present the 2D photoionization structure of the MHD winds of AGN accretion disks. We focus our attention on a specific subset of winds, those with poloidal currents that lead to density profiles n(r) \\propto 1/r. We employ the code XSTAR to compute the local ionization balance, emissivities and opacity which are then used in the self-consistent transfer of radiation and ionization of a host of ionic species of a large number of elements over then entire poloidal plane. Particular attention is paid to the Absorption Measure Distribution (AMD), namely their hydrogen-equivalent column of these ions per logarithmic 7 interval, dN_H/dlog ? (? = L/n(r)r(sup 2) is the ionization parameter), which provides a measure of the winds' radial density profiles. For the given density profile, AMD is found to be independent of ?, in good agreement with analyses of Chandra and XMM data, suggesting the specific profile as a fundamental AGN property. Furthermore, the ratio of equatorial to polar column densities of these winds is \\simeq 10(exp 4); as such, it is shown they serve as the "torus" necessary for AGN unification with phenomenology consistent with the observations. The same winds are also shown to reproduce the observed columns and velocities of C IV and Fe XXV of SAL QSOs once the proper ionizing spectra and inclination angles are employed.

  9. Testing Accretion Disk Wind Models of Broad Absorption Line Quasars with SDSS Spectra (United States)

    Lindgren, Sean; Gabel, Jack


    We present an investigation of a large sample of broad absorption line (BAL) quasars (QSO) from the Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5). Properties of the BALs, such as absorption equivalent width, outflow velocities, and depth of BAL, are obtained from analysis by Gibson et al. We perform correlation analysis on these data to test the predictions made by the radiation driven, accretion disk streamline model of Murray and Chiang. We find the CIV BAL maximum velocity and the continuum luminosity are correlated, consistent with radiation driven models. The mean minimum velocity of CIV is lower in low ionization BALs (LoBALs), than highly ionized BALs (HiBALS), suggesting an orientation effect consistent with the Murray and Chiang model. Finally, we find that HiBALs greatly outnumber LoBALs in the general BAL population, supporting prediction of the Murray and Chiang model that HiBALs have a greater global covering factor than LoBALs.

  10. Cosmic Rays and Non-thermal Emission Induced by Accretion of Cool Gas onto the Galactic Disk (United States)

    Inoue, Susumu; Uchiyama, Yasunobu; Arakawa, Masanori; Renaud, Matthieu; Wada, Keiichi


    On both observational and theoretical grounds, the disk of our Galaxy should be accreting cool gas with temperature ≲ {10}5 K via the halo at a rate ˜1 {{M}⊙ {yr}}-1. At least some of this accretion is mediated by high-velocity clouds (HVCs), observed to be traveling in the halo with velocities of a few 100 km s-1 and occasionally impacting the disk at such velocities, especially in the outer regions of the Galaxy. We address the possibility of particle acceleration in shocks triggered by such HVC accretion events, and the detectability of consequent non-thermal emission in the radio to gamma-ray bands and high-energy neutrinos. For plausible shock velocities ˜ 300 {km} {{{s}}}-1 and magnetic field strengths ˜ 0.3{--}10 μ {{G}}, electrons and protons may be accelerated up to ˜1-10 TeV and ˜ 30{--}{10}3 TeV, respectively, in sufficiently strong adiabatic shocks during their lifetime of ˜ {10}6 {{yr}}. The resultant pion decay and inverse Compton gamma-rays may be the origin of some unidentified Galactic GeV-TeV sources, particularly the “dark” source HESS J1503-582 that is spatially coincident with the anomalous H I structure known as “forbidden-velocity wings.” Correlation of their locations with star-forming regions may be weak, absent, or even opposite. Non-thermal radio and X-ray emission from primary and/or secondary electrons may be detectable with deeper observations. The contribution of HVC accretion to Galactic cosmic rays is subdominant, but could be non-negligible in the outer Galaxy. As the thermal emission induced by HVC accretion is likely difficult to detect, observations of such phenomena may offer a unique perspective on probing gas accretion onto the Milky Way and other galaxies.

  11. The accretion disk of a rare jet-driving symbiotic binary during its brightest outburst in a century (United States)

    Lucy, Adrian


    The current optical outburst (ATel#8653) of the symbiotic star (interacting white dwarf [WD] + red giant) MWC 560, its brightest in >87 years, provides a rare opportunity to examine the physics of jet production in the otherwise well-understood context of WD accretion. This proposal's goal is to use X-ray emission from the accretion-disk boundary layer to characterize changes in the disk associated with strong jet production/acceleration. MWC 560 drives a jet, and optical spectra taken over 2 months during the peak of the last outburst, 26 years ago, showed Balmer absorption velocities increasing from 3000 km/s to their record velocity of 6000 km/s (Tomov et al. 1990). 300-2800 km/s Balmer troughs have just been observed, suggesting the early phase of jet acceleration. Chandra will reveal whether the jet-driving disk remains intact and brightens in X-rays (we expect the boundary layer to remain optically thin) or the degree to which the inner disk is evacuated (as in X-ray binaries).

  12. On the production of heavy axion-like particles in the accretion disks of gamma-ray bursts (United States)

    Reynoso, Matías M.


    Heavy axion-like particles have been introduced in several scenarios beyond the Standard Model and their production should be possible in some astrophysical systems. In this study, we re-examine the possibility that this type of particle can be generated in the accretion disks of gamma-ray bursts (GRB), which are the most powerful events in the universe. If the produced axions decay into photons or e+e- pairs at the correct distances, a fireball is generated. We calculate the structure of transient accretion disks in GRBs (density, temperature and thickness profiles) considering the effect of heavy axion emission as well as the rest of the relevant standard cooling processes. This allows us to obtain the values of the coupling constant gaN such that the axions do not become trapped, and we also compute the heavy axion luminosity emitted from the entire disk. We show that for the couplings within the ranges found, the mechanism for powering GRBs based on heavy axion production and decay is an alternative to the standard picture based on magnetohydrodynamic processes and neutrino-antineutrino annihilation. Alternatively, the mechanism fails if heavy axions are produced in the disk but their decay takes place further away. Still, the decay products (gamma rays or electrons and positrons) should leave observable signatures, which are not observed for different ranges of values of the coupling constants, depending on the mass of the heavy axion.

  13. Spinning Unmagnetized Plasma for Laboratory Studies of Astrophysical Accretion Disks & Dynamos (United States)

    Collins, Cami


    A technique for creating a large, fast-flowing, unmagnetized plasma has been demonstrated experimentally. This marks an important first step towards laboratory studies of phenomenon such as magnetic field generation through self-excited dynamos, or the magnetorotational instability (MRI), the mechanism of interest for its role in the efficient outward transport of angular momentum in accretion disks. In the Plasma Couette Experiment (PCX), a sufficiently hot, steady-state plasma is confined in a cylindrical, axisymmetric multicusp magnetic field, with Tetorque using toroidally localized, biased hot cathodes in the magnetized edge region. Measurements show that momentum couples viscously from the magnetized edge to the unmagnetized core, and the core rotates when collisional ion viscosity overcomes the drag due to ion-neutral collisions. Torque can be applied at the inner or outer boundaries, resulting in controlled, differential rotation. Maximum speeds are observed (He ~ 12 km/s, Ne ~ 4 km/s, Ar ~ 3.2 km/s, Xe ~ 1.4 km/s), consistent with a critical ionization velocity limit reported to occur in partially ionized plasmas. PCX has achieved magnetic Reynolds numbers of Rm ~ 65 and magnetic Prandtl numbers of Pm ~ 0.2-10, which are approaching regimes shown to excite the MRI in a global Hall-MHD stability analysis. Ion-neutral collisions effectively add a body force that undesirably changes the flow profile shape. Recent upgrades have increased the ionization fraction with an additional 6 kW of microwave heating power and stronger magnets that reduce loss area and increase plasma volume by 150%. In addition, an alternative scheme using volume-applied JxB force will maintain the shear profile and destabilize the MRI at more easily achievable plasma parameters.

  14. Quasar Rain: The Broad Emission Line Region as Condensations in the Warm Accretion Disk Wind (United States)

    Elvis, Martin


    The origin of the broad emission line region (BELR) in quasars and active galactic nuclei is still unclear. I propose that condensations form in the warm, radiation-pressure-driven, accretion disk wind of quasars creating the BEL clouds and uniting them with the other two manifestations of cool (˜104 K) gas in quasars, the low ionization phase of the warm absorbers (WAs) and the clouds causing X-ray eclipses. The cool clouds will condense quickly (days to years), before the WA outflows reach escape velocity (which takes months to centuries). Cool clouds form in equilibrium with the warm phase of the wind because the rapidly varying X-ray quasar continuum changes the force multiplier, causing pressure waves to move gas into stable locations in pressure-temperature space. The narrow range of two-phase equilibrium densities may explain the (luminosity){}1/2 scaling of the BELR size, while the scaling of cloud formation timescales could produce the Baldwin effect. These dense clouds have force multipliers of order unity and so cannot be accelerated to escape velocity. They fall back on a dynamical timescale (months to centuries), producing an inflow that rains down toward the central black hole. As they soon move at Mach ˜10-100 with respect to the WA outflow, these “raindrops” will be rapidly destroyed within months. This rain of clouds may produce the elliptical BELR orbits implied by velocity-resolved reverberation mapping in some objects and can explain the opening angle and destruction timescale of the narrow “cometary” tails of the clouds seen in X-ray eclipse observations. Some consequences and challenges of this “quasar rain” model are presented, along with several avenues for theoretical investigation.

  15. Disk-Planet Torques from Radiation-Hydrodynamics Calculations with Spatially-Resolved Planetary Envelopes Undergoing Solids' Accretion (United States)

    D'Angelo, G.


    D'Angelo & Bodenheimer (2013, ApJ, 778, 77) performed global 3D radiation-hydrodynamics disk-planet simulations aimed at studying envelope formation around planetary cores, during the phase of sustained planetesimal accretion. The calculations modeled cores of 5, 10, and 15 Earth masses orbiting a sun-like star in a protoplanetary disk extending from ap/2 to 2ap in radius, ap=5 or 10 AU being the core's orbital radius. The gas equation of state - for a solar mixture of H2, H, He - accounted for translational, rotational, and vibrational states, for molecular dissociation and atomic ionization, and for radiation energy. Dust opacity calculations applied the Mie theory to multiple grain species whose size distributions ranged from 5e-6 to 1 mm. Mesh refinement via grid nesting allowed the planets' envelopes to be resolved at the core-radius length scale. Passive tracers were used to determine the volume of gas bound to a core, defining the envelope, and resulting in planet radii comparable to the Bondi radius. The energy budjet included contributions from the accretion of solids on the cores, whose rates were self-consistently computed with a 1D planet formation code. At this stage of the planet's growth, gravitational energy released in the envelope by solids' accretion far exceeds that released by gas accretion. These models are used to determine the gravitational torques exerted by the disk's gas on the planet and the resulting orbital migration rates. Since the envelope radius is a direct product of the models, they allow for a non-ambiguous assessment of the torques exerted by gas not bound to the planet. Additionally, since planets' envelopes are fully resolved, thermal and dynamical effects on the surrounding disk's gas are accurately taken into account. The computed migration rates are compared to those obtained from existing semi-analytical formulations for planets orbiting in isothermal and adiabatic disks. Because these formulations do not account for

  16. Line Emission from an Accretion Disk Around a Rotating Black Hole: Toward a Measurement of Frame Dragging (United States)

    Bromley, Benjamin C.; Chen, Kaiyou; Miller, Warner A.


    Line emission from an accretion disk and a corotating hot spot about a rotating black hole are considered for possible signatures of the frame-dragging effect. We explicitly compare integrated line profiles from a geometrically thin disk about a Schwarzschild and an extreme Kerr black hole, and show that the line profile differences are small if the inner radius of the disk is near or above the Schwarzschild stable-orbit limit of radius 6GM/sq c. However, if the inner disk radius extends below this limit, as is Possible in the extreme Kerr spacetime, then differences can become significant, especially if the disk emissivity is stronger near the inner regions. We demonstrate that the first three moments of a line profile define a three-dimensional space in which the presence of material at small radii becomes quantitatively evident in broad classes of disk models. In the context of the simple, thin disk paradigm, this moment-mapping scheme suggests formally that the iron line detected by the Advanced Satellite,for Cosmology and Astrophysics mission from MCG --6-30-15 (Tanaka et al.) is approximately 3 times more likely to originate from a disk about a rotating black hole than from a Schwarzschild system. A statistically significant detection of black hole rotation in this way may be achieved after only modest improvements in the quality of data. We also consider light curves and frequency shifts in line emission as a function of time for corotating hot spots in extreme Kerr and Schwarzschild geometries. The frequency-shift profile is a valuable measure of orbital parameters and might possibly be used to detect frame dragging even at radii approaching 6GM/sq c if the inclination angle of the orbital plane is large. The light curve from a hot spot shows differences as well, although these too are pronounced only at large inclination angles.

  17. Accretion disks and magnetic fields in astrophysics; Proceedings of the European Physical Society Study Conference, Noto, Italy, June 16-21, 1988 (United States)

    Belvedere, G.

    Various papers on accretion disks (ADs) and magnetic fields in astrophysics are presented. Individual topics addressed include: relevance of magnetic fields to stars and ADs, nonlinear breakup of the sun's toroidal field, accretion and particle acceleration by spiral shock wages, MHD flows in ADs and jets, slender flux tubes in ADs, magnetic fields in the ADs of cataclysmic variables (CVs), accretion disks and magnetic CVs, radio emission of dwarf novae, jets and magnetic fields, early stages of star formation, ADs and jets in protostellar systems, Monte Carlo simulation of H2 formation by cosmic rays, magnetic field generation during galaxy formation, numerical simulation of weakly magnetized propagating slab jets, numerical simulation of mass outflows from star-forming regions, outflows from AGN, relativistic radiative transfer using moment formalism, fluid models for relativistic warm plasmas, time variability of the X-ray emission from Seyfert galaxies, slim accretion disks.

  18. Computations of Photon Orbits Emitted by Flares at the ISCO of Accretion Disks Around Rotating Black Holes (United States)

    Kazanas, Demosthenes; Fukumura, K.


    We present detailed computations of photon orbits emitted by flares at the ISCO of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. $a > 0.94 M$, following a flare at ISCO, a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of $\\Delta T \\simeq 14 M$. This constant time delay, then, leads to the presence of a QPO in the source power spectrum at a frequency $\

  19. X-Ray Reflected Spectra from Accretion Disk Models. III. A Complete Grid of Ionized Reflection Calculations (United States)

    García, J.; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Wilms, J.; Eikmann, W.


    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code XILLVER that incorporates new routines and a richer atomic database. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Γ of the illuminating radiation, the ionization parameter ξ at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A Fe relative to the solar value. The ranges of the parameters covered are 1.2 XSPEC. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of XILLVER.

  20. On the production of heavy axion-like particles in the accretion disks of gamma-ray bursts

    Directory of Open Access Journals (Sweden)

    Matías M. Reynoso


    Full Text Available Heavy axion-like particles have been introduced in several scenarios beyond the Standard Model and their production should be possible in some astrophysical systems. In this study, we re-examine the possibility that this type of particle can be generated in the accretion disks of gamma-ray bursts (GRB, which are the most powerful events in the universe. If the produced axions decay into photons or e+e− pairs at the correct distances, a fireball is generated. We calculate the structure of transient accretion disks in GRBs (density, temperature and thickness profiles considering the effect of heavy axion emission as well as the rest of the relevant standard cooling processes. This allows us to obtain the values of the coupling constant gaN such that the axions do not become trapped, and we also compute the heavy axion luminosity emitted from the entire disk. We show that for the couplings within the ranges found, the mechanism for powering GRBs based on heavy axion production and decay is an alternative to the standard picture based on magnetohydrodynamic processes and neutrino–antineutrino annihilation. Alternatively, the mechanism fails if heavy axions are produced in the disk but their decay takes place further away. Still, the decay products (gamma rays or electrons and positrons should leave observable signatures, which are not observed for different ranges of values of the coupling constants, depending on the mass of the heavy axion. Keywords: New physics, Axions, Gamma-ray bursts


    Energy Technology Data Exchange (ETDEWEB)

    Meng, Huan Y. A.; Plavchan, Peter; Ciardi, David [Infrared Processing and Analysis Center, California Institute of Technology, MC 100-22, 770 S. Wilson Ave., Pasadena, CA 91125 (United States); Rieke, George H. [Lunar and Planetary Laboratory and Department of Planetary Sciences, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721 (United States); Cody, Ann Marie [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Güth, Tina [Department of Physics, New Mexico Institute of Mining and Technology, 801 Leroy Pl., Socorro, NM 87801 (United States); Stauffer, John; Carey, Sean; Rebull, Luisa M. [Infrared Science Archive and Spitzer Science Center, Infrared Processing and Analysis Center, California Institute of Technology, MC 314-6, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Covey, Kevin [Department of Physics and Astronomy, MS-9164, Western Washington University, 516 High St., Bellingham, WA 98225 (United States); Duran-Rojas, Maria C. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 106, 22800, Ensenada, Baja California, México (Mexico); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Morales-Calderón, María, E-mail: [Centro de Astrobiología, Departamento de Astrofísica, INTA-CSIC, P.O. Box 78, E-28691, ESAC Campus, Villanueva de la Cañada, Madrid (Spain); and others


    Theoretical models and spectroscopic observations of newborn stars suggest that protoplantary disks have an inner “wall” at a distance set by the disk interaction with the star. Around T Tauri stars, the size of this disk hole is expected to be on a 0.1 au scale that is unresolved by current adaptive optics imaging, though some model-dependent constraints have been obtained by near-infrared interferometry. Here we report the first measurement of the inner disk wall around a solar-mass young stellar object, YLW 16B in the ρ Ophiuchi star-forming region, by detecting the light-travel time of the variable radiation from the stellar surface to the disk. Consistent time lags were detected on two nights, when the time series in H (1.6 μ m) and K (2.2 μ m) bands were synchronized while the 4.5 μ m emission lagged by 74.5 ± 3.2 s. Considering the nearly edge-on geometry of the disk, the inner rim should be 0.084 au from the protostar on average, with an error of order 0.01 au. This size is likely larger than the range of magnetospheric truncations and consistent with an optically and geometrically thick disk front at the dust sublimation radius at ∼1500 K. The widths of the cross-correlation functions between the data in different wavebands place possible new constraints on the geometry of the disk.

  2. Jet creation in post-AGB binaries: the circum-companion accretion disk around BD+46°442 (United States)

    Bollen, Dylan; Van Winckel, Hans; Kamath, Devika


    Aims: We aim at describing and understanding binary interaction processes in systems with very evolved companions. Here, we focus on understanding the origin and determining the properties of the high-velocity outflow observed in one such system. Methods: We present a quantitative analysis of BD+46°442, a post-AGB binary that shows active mass transfer that leads to the creation of a disk-driven outflow or jet. We obtained high-resolution optical spectra from the HERMES spectrograph, mounted on the 1.2 m Flemish Mercator Telescope. By performing a time-series analysis of the Hα profile, we identified the different components of the system. We deduced the jet geometry by comparing the orbital phased data with our jet model. In order to image the accretion disk around the companion of BD+46°442, we applied the technique of Doppler tomography. Results: The orbital phase-dependent variations in the Hα profile can be related to an accretion disk around the companion, from which a high-velocity outflow or jet is launched. Our model shows that there is a clear correlation between the inclination angle and the jet opening angle. The latitudinally dependent velocity structure of our jet model shows a good correspondence to the data, with outflow velocities higher than at least 400 km s-1. The intensity peak in the Doppler map might be partly caused by a hot spot in the disk, or by a larger asymmetrical structure in the disk. Conclusions: We show that BD+46°442 is a result of a binary interaction channel. The origin of the fast outflow in this system might be to a gaseous disk around the secondary component, which is most likely a main-sequence star. Our analysis suggests that the outflow has a rather wide opening angle and is not strongly collimated. Our time-resolved spectral monitoring reveals the launching site of the jet in the binary BD+46°442. Similar orbital phase-dependent Hα profiles are commonly observed in post-AGB binaries. Post-AGB binaries provide ideal

  3. CSI 2264: Investigating rotation and its connection with disk accretion in the young open cluster NGC 2264 (United States)

    Venuti, L.; Bouvier, J.; Cody, A. M.; Stauffer, J. R.; Micela, G.; Rebull, L. M.; Alencar, S. H. P.; Sousa, A. P.; Hillenbrand, L. A.; Flaccomio, E.


    Context. The low spin rates measured for solar-type stars at an age of a few Myr ( 10% of the break-up velocity) indicate that some mechanism of angular momentum regulation must be at play in the early pre-main sequence. This may be associated with magnetospheric accretion and star-disk interaction, as suggested by observations that disk-bearing objects (CTTS) are slower rotators than diskless sources (WTTS) in young star clusters. Aims: We characterize the rotation properties for members of the star-forming region NGC 2264 ( 3 Myr) as a function of mass, and investigate the accretion-rotation connection at an age where about 50% of the stars have already lost their disks. Methods: We examined a sample of 500 cluster members (40% with disks, 60% without disks), distributed in mass between 0.15 and 2 M⊙, whose photometric variations were monitored in the optical for 38 consecutive days with the CoRoT space observatory. Light curves were analyzed for periodicity using three different techniques: the Lomb-Scargle periodogram, the autocorrelation function and the string-length method. Periods were searched in the range between 0.17 days (i.e., 4 h, twice the data sampling adopted) and 19 days (half the total time span). Period detections were confirmed using a variety of statistical tools (false alarm probability, Q-statistics), as well as visual inspection of the direct and phase-folded light curves. Results: About 62% of sources in our sample were found to be periodic; the period detection rate is 70% among WTTS and 58% among CTTS. The vast majority of periodic sources exhibit rotational periods shorter than 13 d. The period distribution obtained for the cluster consists of a smooth distribution centered around P = 5.2 d with two peaks, located respectively at P = 1-2 d and at P = 3-4 d. A separate analysis of the rotation properties for CTTS and WTTS indicates that the P = 1-2 d peak is associated with the latter, while both groups contribute to the P = 3-4 d peak

  4. Probing the Accretion Disk and Central Engine Structure of the NGC 4258 with Suzaku and XMM-Newton Observations (United States)

    Reynolds, Christopher S.; Nowak, Michael A.; Markoff, Sera; Tueller, Jack; Wilms, Joern; Young, Andrew


    We present an X-ray study of the low-luminosity active galactic nucleus (AGN) in NGC 4258 using data from Suzaku, XMM-Newton, and the Swift/Burst Alert Telescope survey. We find that signatures of X-ray reprocessing by cold gas are very weak in the spectrum of this Seyfert-2 galaxy; a weak, narrow fluorescent K(alpha) emission line of cod iron is robustly detected in both the Suzaku and XMM-Newton spectra but at a level much below that of most other Seyfert-2 galaxies. We conclude that the circumnuclear environment of this AGN is very "clean" and lacks the Compton-thick obscuring torus of unified Seyfert schemes. From the narrowness of the iron line, together with evidence of line flux variability between the Suzaku and XMM-Newton observations, we constrain the line emitting region to be between 3 x 10(exp 3)r(sub g) and 4 x 10(exp 4)r(sub g), from the black hole. We show that the observed properties of the iron line can be explained if the line originates from the surface layers of a warped accretion disk. In particular, we present explicit calculations of the expected iron line from a disk warped by Lens-Thirring precession from a misaligned central black hole. Finally, the Suzaku data reveal clear evidence of large amplitude 2-10 keV variability on timescales of 50 ksec and smaller amplitude flares on timescales as short as 5-10 ksec. If associated with accretion disk processes, such rapid variability requires an origin in the innermost regions of the disk (r approx. equals 10(r(sub g) or less). Analysis of the difference spectrum between a high- and low-flux states suggests that the variable component of the X-ray emission is steeper and more absorbed than the average AGN emission, suggesting that the primary X-ray source and absorbing screen have a spatial structure on comparable scales. We note the remarkable similarity between the circumnuclear environment of NGC 4258 and another well studied low-luminosity AGN, M81*.

  5. Applying a Hydrodynamical Treatment of Stream Flow and Accretion Disk Formation in WASP-12/b Exoplanetary System (United States)

    Weaver, Ian; Lopez, Aaron; Macias, Phil


    WASP-12b is a hot Jupiter orbiting dangerously close to its parent star WASP-12 at a radius 1/44th the distance between the Earth and the Sun, or roughly 16 times closer than Mercury. WASP-12's gravitational influence at this incredibly close proximity generates tidal forces on WASP-12b that distort the planet into an egg-like shape. As a result, the planet's surface overflows its Roche lobe through L1, transferring mass to the host star at a rate of 270 million metric tonnes per second. This mass transferring stream forms an accretion disk that transits the parent star, which aids sensitive instruments, such as the Kepler spacecraft, whose role is to examine the periodic dimming of main sequence stars in order to detect ones with orbiting planets. The quasi-ballistic stream trajectory is approximated by that of a massless point particle released from analogous initial conditions in 2D. The particle dynamics are shown to deviate negligibly across a broad range of initial conditions, indicating applicability of our model to "WASP-like" systems in general. We then apply a comprehensive fluid treatment by way of hydrodynamical code FLASH in order to directly model the behavior of mass transfer in a non-inertial reference frame and subsequent disk formation. We hope to employ this model to generate virtual spectroscopic signatures and compare them against collected light curve data from the Hubble Space Telescope's Cosmic Origins Spectrograph (COS).


    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J.; McClintock, J. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dauser, T.; Wilms, J.; Eikmann, W. [Dr. Karl Remeis-Observatory and Erlangen Centre for Astroparticle Physics, Sternwartstr. 7, D-96049 Bamberg (Germany); Reynolds, C. S. [Department of Astronomy, University of Maryland, College Park, MD (United States); Kallman, T. R., E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)


    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code XILLVER that incorporates new routines and a richer atomic database. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index {Gamma} of the illuminating radiation, the ionization parameter {xi} at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A{sub Fe} relative to the solar value. The ranges of the parameters covered are 1.2 {<=} {Gamma} {<=} 3.4, 1 {<=} {xi} {<=} 10{sup 4}, and 0.5 {<=} A{sub Fe} {<=} 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file ({approx}javier/xillver/) suitable for the analysis of X-ray observations via the atable model in XSPEC. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of XILLVER.

  7. High Performance Simulations of Accretion Disk Dynamics and Jet Formations Around Kerr Black Holes (United States)

    Nishikawa, Ken-Ichi; Mizuno, Yosuke; Watson, Michael


    We investigate jet formation in black-hole systems using 3-D General Relativistic Particle-In-Cell (GRPIC) and 3-D GRMHD simulations. GRPIC simulations, which allow charge separations in a collisionless plasma, do not need to invoke the frozen condition as in GRMHD simulations. 3-D GRPIC simulations show that jets are launched from Kerr black holes as in 3-D GRMHD simulations, but jet formation in the two cases may not be identical. Comparative study of black hole systems with GRPIC and GRMHD simulations with the inclusion of radiate transfer will further clarify the mechanisms that drive the evolution of disk-jet systems.

  8. Molecular diagnostics of FUV and accretion-related heating in protoplanetary disks (United States)

    Adamkovics, Mate; Najita, Joan R.


    Emission lines from the terrestrial planet forming regions of disks are diagnostic of both the physical processes that heat the gas and the chemistry that determines the inventory of nebular material available during the epoch of planet formation. Interpreting emission spectra is informed by models of radiative, thermal, physical, and chemical processes, such as: (i) the radiation transfer of X-rays and FUV --- both continuum and Ly-alpha, (ii) direct and indirect heating processes such as the photoelectric effect and photochemical heating, (iii) heating related to turbulent processes and viscous dissipation, and (iv) gas phase chemical reaction kinetics. Many of these processes depend on a the spatial distribution of dust grains and their properties, which temporally evolve during the lifetime of the disk and the formation of planets. Studies of disks atmospheres often predict a layered structure of hot (a few thousand K) atomic gas overlying warm (a few hundred K) molecular gas, which is generally consistent with the isothermal slab emission models that are used to interpret emission spectra. However, detailed comparison between observed spectra and models (e.g., comparing the total columns and the radial extent of warm emitting species) is rare.We present results including the implementation of Ly-alpha scattering, which is an important part of the photochemical heating and FUV heating radiation budget. By including these processes we find a new component of the disk atmosphere; hot molecular gas at ~2000K within radial distances of ~0.5AU, which is consistent with observations of UV-fluorescent H2 emission (Ádámkovics, Najita & Glassgold, 2016). Constraining the most optimistic contribution of radiative heating mechanisms via X-rays and FUV together with a favorable comparison to observations, allows us to explore and evaluate additional heating mechanisms. We find that the total columns of warm (90-400K) emitting molecules such as CO, arising directly below

  9. Parsec-Scale Obscuring Accretion Disk with Large-Scale Magnetic Field in AGNs (United States)

    Dorodnitsyn, A.; Kallman, T.


    A magnetic field dragged from the galactic disk, along with inflowing gas, can provide vertical support to the geometrically and optically thick pc (parsec) -scale torus in AGNs (Active Galactic Nuclei). Using the Soloviev solution initially developed for Tokamaks, we derive an analytical model for a rotating torus that is supported and confined by a magnetic field. We further perform three-dimensional magneto-hydrodynamic simulations of X-ray irradiated, pc-scale, magnetized tori. We follow the time evolution and compare models that adopt initial conditions derived from our analytic model with simulations in which the initial magnetic flux is entirely contained within the gas torus. Numerical simulations demonstrate that the initial conditions based on the analytic solution produce a longer-lived torus that produces obscuration that is generally consistent with observed constraints.

  10. Stratified magnetically driven accretion-disk winds and their relations to jets

    Energy Technology Data Exchange (ETDEWEB)

    Fukumura, Keigo [University of Maryland, Baltimore County (UMBC/CRESST), Baltimore, MD 21250 (United States); Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Behar, Ehud [Department of Physics, Technion, Haifa 32000 (Israel); Contopoulos, Ioannis, E-mail: [Research Center for Astronomy, Academy of Athens, Athens 11527 (Greece)


    We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, θ), ionization parameter ξ(r, θ), and velocity structure v(r, θ) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvénic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfvén surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, ξ, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.

  11. Stratified Magnetically Driven Accretion-Disk Winds and Their Relations To Jets (United States)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis


    We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, theta), ionization parameter xi(r, theta), and velocity structure v(r, theta) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvenic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfv´en surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, xi, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.

  12. Using Near-IR Imaging to Probe Accretion-Disk Physics in Powerful Radio Sources (United States)

    Koekemoer, Anton; O'Dea, Chris; Baum, Stefi


    An intriguing question in the study of powerful radio galaxies concerns the reason for their wide diversity of properties: is this related predominantly to external environmental effects, or to intrinsic differences in their central engines and accretion processes? We propose to address this question by using the 2.1m + ONIS to obtain J, H and K imaging of two samples of FR I and FR II radio galaxies, to measure the luminosity and colors of warm circumnuclear dust and determine the near- IR structure and environment of the surrounding host galaxies. The dust absorbs radiation from the AGN and re-radiates it in the near-IR, which can thus be used as a diagnostic of the AGN radiant energy output. This will be compared with the AGN kinetic energy output in the form of radio jets. Our two samples are statistically well-matched in both radio power and redshift space, allowing us to carry out statistical comparisons between AGN properties such as the radiant / kinetic energy conversion, as well as large-scale host galaxy properties. This will indicate whether differences between these classes of active galaxies are related primarily to the central engine, or instead dominated by the large-scale properties of the host galaxy and its environment.

  13. Time Delay and Accretion Disk Size Measurements in the Lensed Quasar SBS 0909+532 from Multiwavelength Microlensing Analysis (United States)

    Hainline, Laura J.; Morgan, Christopher W.; MacLeod, Chelsea L.; Landaal, Zachary D.; Kochanek, C. S.; Harris, Hugh C.; Tilleman, Trudy; Goicoechea, L. J.; Shalyapin, V. N.; Falco, Emilio E.


    We present three complete seasons and two half-seasons of Sloan Digital Sky Survey (SDSS) r-band photometry of the gravitationally lensed quasar SBS 0909+532 from the U.S. Naval Observatory, as well as two seasons each of SDSS g-band and r-band monitoring from the Liverpool Robotic Telescope. Using Monte Carlo simulations to simultaneously measure the system's time delay and model the r-band microlensing variability, we confirm and significantly refine the precision of the system's time delay to \\Delta t_{AB} = 50^{+2}_{-4}\\,{days}, where the stated uncertainties represent the bounds of the formal 1σ confidence interval. There may be a conflict between the time delay measurement and a lens consisting of a single galaxy. While models based on the Hubble Space Telescope astrometry and a relatively compact stellar distribution can reproduce the observed delay, the models have somewhat less dark matter than we would typically expect. We also carry out a joint analysis of the microlensing variability in the r and g bands to constrain the size of the quasar's continuum source at these wavelengths, obtaining log {(r s, r /cm)[cos i/0.5]1/2} = 15.3 ± 0.3 and log {(r s, g /cm)[cos i/0.5]1/2} = 14.8 ± 0.9, respectively. Our current results do not formally constrain the temperature profile of the accretion disk but are consistent with the expectations of standard thin disk theory.

  14. Constraining the Physics of AM Canum Venaticorum Systems with the Accretion Disk Instability Model (United States)

    Cannizzo, John K.; Nelemans, Gijs


    Recent work by Levitan et al. has expanded the long-term photometric database for AM CVn stars. In particular, their outburst properties are well correlated with orbital period and allow constraints to be placed on the secular mass transfer rate between secondary and primary if one adopts the disk instability model for the outbursts. We use the observed range of outbursting behavior for AM CVn systems as a function of orbital period to place a constraint on mass transfer rate versus orbital period. We infer a rate approximately 5 x 10(exp -9) solar mass yr(exp -1) ((P(sub orb)/1000 s)(exp -5.2)). We show that the functional form so obtained is consistent with the recurrence time-orbital period relation found by Levitan et al. using a simple theory for the recurrence time. Also, we predict that their steep dependence of outburst duration on orbital period will flatten considerably once the longer orbital period systems have more complete observations.

  15. Testing the Performance and Accuracy of the RELXILL Model for the Relativistic X-Ray Reflection from Accretion Disks (United States)

    Choudhury, Kishalay; García, Javier A.; Steiner, James F.; Bambi, Cosimo


    The reflection spectroscopic model RELXILL is commonly implemented in studying relativistic X-ray reflection from accretion disks around black holes. We present a systematic study of the model’s capability to constrain the dimensionless spin and ionization parameters from ∼6000 Nuclear Spectroscopic Telescope Array (NuSTAR) simulations of a bright X-ray source employing the lamp-post geometry. We employ high-count spectra to show the limitations in the model without being confused with limitations in signal-to-noise. We find that both parameters are well-recovered at 90% confidence with improving constraints at higher reflection fraction, high spin, and low source height. We test spectra across a broad range—first at 106–107 and then ∼105 total source counts across the effective 3–79 keV band of NuSTAR, and discover a strong dependence of the results on how fits are performed around the starting parameters, owing to the complexity of the model itself. A blind fit chosen over an approach that carries some estimates of the actual parameter values can lead to significantly worse recovery of model parameters. We further stress the importance to span the space of nonlinear-behaving parameters like {log} ξ carefully and thoroughly for the model to avoid misleading results. In light of selecting fitting procedures, we recall the necessity to pay attention to the choice of data binning and fit statistics used to test the goodness of fit by demonstrating the effect on the photon index Γ. We re-emphasize and implore the need to account for the detector resolution while binning X-ray data and using Poisson fit statistics instead while analyzing Poissonian data.

  16. Can the 62 Day X-ray Period of ULX M82 X-1 Be Due to a Precessing Accretion Disk? (United States)

    Pasham, Dheeraj R.; Strohmayer, Tod E.


    We have analyzed all the archival RXTE/PCA monitoring observations of the ultraluminous X-ray source (ULX) M82 X-1 in order to study the properties of its previously discovered 62 day X-ray period (Kaaret & Feng 2007). Based on the high coherence of the modulation it has been argued that the observed period is the orbital period of the binary. Utilizing a much longer data set than in previous studies we find: (1) The phase-resolved X-ray (3-15 keV) energy spectra - modeled with a thermal accretion disk and a power-law corona - suggest that the accretion disk's contribution to the total flux is responsible for the overall periodic modulation while the power-law flux remains approximately constant with phase. (2) Suggestive evidence for a sudden phase shift-of approximately 0.3 in phase (20 days)-between the first and the second halves of the light curve separated by roughly 1000 days. If confirmed, the implied timescale to change the period is approx. = 10 yrs, which is exceptionally fast for an orbital phenomenon. These independent pieces of evidence are consistent with the 62 day period being due to a precessing accretion disk, similar to the so-called super-orbital periods observed in systems like Her X-1, LMC X-4, and SS433. However, the timing evidence for a change in the period needs to be confirmed with additional observations. This should be possible with further monitoring of M82 with instruments such as the X-ray telescope (XRT) on board Swift.

  17. Occultations from an Active Accretion Disk in a 72-day Detached Post-Algol System Detected by K2

    DEFF Research Database (Denmark)

    Zhou, G.; Rappaport, S.; Nelson, L.


    Disks in binary systems can cause exotic eclipsing events. MWC 882 (BD –22 4376, EPIC 225300403) is such a disk-eclipsing system identified from observations during Campaign 11 of the K2 mission. We propose that MWC 882 is a post-Algol system with a B7 donor star of mass in a 72-day orbit around ...


    Energy Technology Data Exchange (ETDEWEB)

    Webb, N. A.; Godet, O.; Barret, D. [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Wiersema, K. [University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Lasota, J.-P. [Institut d' Astrophysique de Paris, UMR 7095, CNRS, UPMC Université Paris 06, 98bis Boulevard Arago, F-75014 Paris (France); Farrell, S. A. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia); Maccarone, T. J. [Department of Physics, Box 41051, Texas Tech University, Lubbock TX 79409-1051 (United States); Servillat, M., E-mail: [Laboratoire AIM (CEA/DSM/IRFU/SAp, CNRS, Université Paris Diderot), CEA Saclay, Bat. 709, F-91191 Gif-sur-Yvette (France)


    We present dedicated quasi-simultaneous X-ray (Swift) and optical (Very Large Telescope, V-, and R-band) observations of the intermediate-mass black hole candidate HLX-1 before and during the 2012 outburst. We show that the V-band magnitudes vary with time, thus proving that a portion of the observed emission originates in the accretion disk. Using the first quiescent optical observations of HLX-1, we show that the stellar population surrounding HLX-1 is fainter than V ∼ 25.1 and R ∼ 24.2. We show that the optical emission may increase before the X-ray emission consistent with the scenario proposed by Lasota et al. in which the regular outbursts could be related to the passage at periastron of a star circling the intermediate-mass black hole in an eccentric orbit, which triggers mass transfer into a quasi-permanent accretion disk around the black hole. Further, if there is indeed a delay in the X-ray emission we estimate the mass-transfer delivery radius to be ∼10{sup 11} cm.

  19. Accretion Processes in Astrophysics (United States)

    González Martínez-País, Ignacio; Shahbaz, Tariq; Casares Velázquez, Jorge


    List of contributors; List of participants; Preface; Acknowledgments; Abbreviations; 1. Accretion disks Henk Spruit; 2. The evolution of binary systems Philipp Podsiadlowski; 3. Accretion onto white dwarfs Brian Warner; 4. Accretion in X-ray binary systems Robert I. Hynes; 5. X-ray binary populations in galaxies Giuseppina Fabbiano; 6. Observational characteristics of accretion onto black holes I Chris Done; 7. Observational characteristics of accretion onto black holes II Rob Fender; 8. Computing black hole accretion John F. Hawley; Appendix: Piazzi Smyth, the Cape of Good Hope, Tenerife and the siting of large telescopes Brian Warner.

  20. Three-Dimensional General-Relativistic Magnetohydrodynamic Simulations of Remnant Accretion Disks from Neutron Star Mergers: Outflows and r-Process Nucleosynthesis. (United States)

    Siegel, Daniel M; Metzger, Brian D


    The merger of binary neutron stars, or of a neutron star and a stellar-mass black hole, can result in the formation of a massive rotating torus around a spinning black hole. In addition to providing collimating media for γ-ray burst jets, unbound outflows from these disks are an important source of mass ejection and rapid neutron capture (r-process) nucleosynthesis. We present the first three-dimensional general-relativistic magnetohydrodynamic (GRMHD) simulations of neutrino-cooled accretion disks in neutron star mergers, including a realistic equation of state valid at low densities and temperatures, self-consistent evolution of the electron fraction, and neutrino cooling through an approximate leakage scheme. After initial magnetic field amplification by magnetic winding, we witness the vigorous onset of turbulence driven by the magnetorotational instability (MRI). The disk quickly reaches a balance between heating from MRI-driven turbulence and neutrino cooling, which regulates the midplane electron fraction to a low equilibrium value Y_{e}≈0.1. Over the 380-ms duration of the simulation, we find that a fraction ≈20% of the initial torus mass is unbound in powerful outflows with asymptotic velocities v≈0.1c and electron fractions Y_{e}≈0.1-0.25. Postprocessing the outflows through a nuclear reaction network shows the production of a robust second- and third-peak r process. Though broadly consistent with the results of previous axisymmetric hydrodynamical simulations, extrapolation of our results to late times suggests that the total ejecta mass from GRMHD disks is significantly higher. Our results provide strong evidence that postmerger disk outflows are an important site for the r process.

  1. Accreting White Dwarfs as Universal Accretion Laboratories (United States)

    Knigge, Christian

    Accreting white dwarfs (AWDs) are numerous, bright and nearby, making them excellent laboratories for the study of accretion physics. Since their accretion flows are unaffected by relativistic effects or ultra-strong magnetic fields, they provide a crucial "control" group for efforts to understand more complex/compact systems, such as accreting neutron stars (NSs) and black holes (BHs). Here, I will review recent work on AWDs, which has revealed that these superficially simple systems actually exhibit the full range of accretion-related phenomenology seen in accreting NSs and BHs. For example, (i) AWDs undergo mass loss in the form of both disk winds and radio jets; (ii) their disk winds are only seen in high-Mdot states, similar to what is observed in accreting BHs; (iii) they exhibit (possibly hysteretic) outbursts produced by disk instabilities, as also seen in NS and BH transients; and (iv) they produce accretion-induced stochastic variability ("flickering") that exhibits the same rms-flux relation as observed in low-mass X-ray binaries and AGN. Based on this rich and shared phenomenology, it is reasonable to hope that much of accretion physics is universal. In this context, AWDs hold great promise as observational testing grounds for attempts to model and understand these physics.

  2. Predictions for the reverberating spectral line signal from a newly formed black hole accretion disk: case of tidal disruption flares

    Czech Academy of Sciences Publication Activity Database

    Zhang, W.; Yu, W.; Karas, Vladimír; Dovčiak, Michal


    Roč. 807, č. 89 (2015), s. 1-12 ISSN 0004-637X R&D Projects: GA MŠk(CZ) LH14049; GA ČR(CZ) GC13-00070J Institutional support: RVO:67985815 Keywords : black hole s * accretion discs Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015

  3. Truncation of the Accretion Disk at One-third of the Eddington Limit in the Neutron Star Low-mass X-Ray Binary Aquila X-1 (United States)

    Ludlam, R. M.; Miller, J. M.; Degenaar, N.; Sanna, A.; Cackett, E. M.; Altamirano, D.; King, A. L.


    We perform a reflection study on a new observation of the neutron star (NS) low-mass X-ray binary Aquila X-1 taken with NuSTAR during the 2016 August outburst and compare with the 2014 July outburst. The source was captured at ˜32% L Edd, which is over four times more luminous than the previous observation during the 2014 outburst. Both observations exhibit a broadened Fe line profile. Through reflection modeling, we determine that the inner disk is truncated {R}{in,2016}={11}-1+2 {R}g (where R g = GM/c 2) and {R}{in,2014}=14+/- 2 {R}g (errors quoted at the 90% confidence level). Fiducial NS parameters (M NS = 1.4 M ⊙, R NS = 10 km) give a stellar radius of R NS = 4.85 R g ; our measurements rule out a disk extending to that radius at more than the 6σ level of confidence. We are able to place an upper limit on the magnetic field strength of B ≤ 3.0-4.5 × 109 G at the magnetic poles, assuming that the disk is truncated at the magnetospheric radius in each case. This is consistent with previous estimates of the magnetic field strength for Aquila X-1. However, if the magnetosphere is not responsible for truncating the disk prior to the NS surface, we estimate a boundary layer with a maximum extent of {R}{BL,2016}˜ 10 {R}g and {R}{BL,2014}˜ 6 {R}g. Additionally, we compare the magnetic field strength inferred from the Fe line profile of Aquila X-1 and other NS low-mass X-ray binaries to known accreting millisecond X-ray pulsars.

  4. CSI 2264: Simultaneous optical and X-ray variability in pre-main sequence stars. I. Time resolved X-ray spectral analysis during optical dips and accretion bursts in stars with disks (United States)

    Guarcello, M. G.; Flaccomio, E.; Micela, G.; Argiroffi, C.; Sciortino, S.; Venuti, L.; Stauffer, J.; Rebull, L.; Cody, A. M.


    Context. Pre-main sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray-active regions. In stars with disks, this variability is related to the morphology of the inner circumstellar region (≤0.1 AU) and that of the photosphere and corona, all impossible to be spatially resolved with present-day techniques. This has been the main motivation for the Coordinated Synoptic Investigation of NGC 2264, a set of simultaneous observations of NGC 2264 with 15 different telescopes. Aims: In this paper, we focus on the stars with disks. We analyze the X-ray spectral properties extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars without disks are studied in a companion paper. Methods: We analyze simultaneous CoRoT and Chandra/ACIS-I observations to search for coherent optical and X-ray flux variability in stars with disks. Then, stars are analyzed in two different samples. In stars with variable extinction, we look for a simultaneous increase of optical extinction and X-ray absorption during the optical dips; in stars with accretion bursts, we search for soft X-ray emission and increasing X-ray absorption during the bursts. Results: We find evidence for coherent optical and X-ray flux variability among the stars with variable extinction. In 9 of the 24 stars with optical dips, we observe a simultaneous increase of X-ray absorption and optical extinction. In seven dips, it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5 of the 20 stars with optical accretion bursts, we observe increasing soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts, since favorable geometric configurations are

  5. Can massive stars be formed by accretion? (United States)

    Yorke, H. W.


    Radiative effects strongly hinder the formation of massive stars. A necessary condition for accretion growth of a hydrostatic object up to high masses is the formation of and accretion through a circumstellar disk.

  6. The Pairing of Accreting Massive Black Holes in Multiphase Circumnuclear Disks: the Interplay Between Radiative Cooling, Star Formation, and Feedback Processes (United States)

    Souza Lima, Rafael; Mayer, Lucio; Capelo, Pedro R.; Bellovary, Jillian M.


    We study the orbital decay of a pair of massive black holes (BHs) with masses 5× {10}5 and 107 {M}⊙ , using hydrodynamical simulations of circumnuclear disks (CNDs) with the alternating presence of sub-grid physics, such as radiative cooling, star formation, supernova feedback, BH accretion, and BH feedback. In the absence of such processes, the orbit of the secondary BH decays over timescales of ˜ 10 {Myr} to the center of the CND, where the primary BH resides. When strong dissipation operates in CNDs, fragmentation into massive objects the size of giant molecular clouds with densities in the range 104-107 amu cm-3 occurs, causing stochastic torques and hits that can eject the secondary BH from the midplane. Outside the plane, the low-density medium provides only weak drag, and the BH return is governed by inefficient dynamical friction. In rare cases, clump-BH interactions can lead to a faster decay. Feedback processes lead to outflows, but do not significantly change the overall density of the CND midplane. However, with a spherically distributed BH feedback, a hot bubble is generated behind the secondary, which almost shuts off dynamical friction. We dub this phenomenon “wake evacuation.” It leads to delays in the decay, possibly of ˜ 0.3 {Gyr}. We discuss the non-trivial implications on the discovery space of the eLISA telescope. Our results suggest that the largest uncertainty in predicting BH merger rates lies in the potentially wide variety of galaxy host systems, with different degrees of gas dissipation and heating, yielding decay timescales from ˜ 10 to ˜ 300 {Myr}.

  7. Probing the Broad-Line Region and the Accretion Disk in the Lensed Quasars HE 0435-1223, WFI 2033-4723, and HE 2149-2745 Using Gravitational Microlensing (United States)

    Motta, V.; Mediavilla, E.; Rojas, K.; Falco, E. E.; Jiménez-Vicente, J.; Muñoz, J. A.


    We use single-epoch spectroscopy of three gravitationally lensed quasars, HE 0435-1223, WFI 2033-4723, and HE 2149-2745, to study their inner structure (broad-line region [BLR] and continuum source). We detect microlensing-induced magnification in the wings of the broad emission lines of two of the systems (HE 0435-1223 and WFI 2033-4723). In the case of WFI 2033-4723, microlensing affects two “bumps” in the spectra that are almost symmetrically arranged on the blue (coincident with an Al III emission line) and red wings of C III]. These match the typical double-peaked profile that follows from disk kinematics. The presence of microlensing in the wings of the emission lines indicates the existence of two different regions in the BLR: a relatively small one with kinematics possibly related to an accretion disk, and another one that is substantially more extended and insensitive to microlensing. There is good agreement between the estimated size of the region affected by microlensing in the emission lines, {r}s={10}-7+15\\sqrt{M/{M}⊙ } lt-day (red wing of C IV in HE 0435-1223) and {r}s={11}-7+28\\sqrt{M/{M}⊙ } lt-day (C III] bumps in WFI 2033-4723), and the sizes inferred from the continuum emission, {r}s={13}-4+5\\sqrt{M/{M}⊙ } lt-day (HE 0435-1223) and {r}s={10}-2+3\\sqrt{M/{M}⊙ } lt-day (WFI 2033-4723). For HE 2149-2745 we measure an accretion disk size {r}s={8}-5+11\\sqrt{M/{M}⊙ } lt-day. The estimates of p, the exponent of the size versus wavelength ({r}s\\propto {λ }p), are 1.2 ± 0.6, 0.8 ± 0.2, and 0.4 ± 0.3 for HE 0435-1223, WFI 2033-4723, and HE 2149-2745, respectively. In conclusion, the continuum microlensing amplitude in the three quasars and chromaticity in WFI 2033-4723 and HE 2149-2745 are below expectations for the thin-disk model. The disks are larger and their temperature gradients are flatter than predicted by this model.

  8. Achromatic late-time variability in thermonuclear X-ray bursts - an accretion disk disrupted by a nova-like shell?


    Zand, J. J. M. in 't; Galloway, D. K.; Ballantyne, D. R.


    An unusual Eddington-limited thermonuclear X-ray burst was detected from the accreting neutron star in 2S 0918-549 with the Rossi X-ray Timing Explorer. The burst commenced with a brief (40 ms) precursor and maintained near-Eddington fluxes during the initial 77 s. These characteristics are indicative of a nova-like expulsion of a shell from the neutron star surface. Starting 122 s into the burst, the burst shows strong (87 +/- 1% peak-to-peak amplitude) achromatic fluctuations for 60 s. We s...


    Energy Technology Data Exchange (ETDEWEB)

    Zschaechner, Laura K. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Rand, Richard J. [Department of Physics and Astronomy, University of New Mexico, 1919 Lomas Boulevard NE, Albuquerque, NM 87131 (United States); Walterbos, Rene, E-mail:, E-mail:, E-mail: [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003 (United States)


    To further understand the origins of and physical processes operating in extra-planar gas, we present observations and kinematic models of H I in the two nearby, edge-on spiral galaxies NGC 3044 and NGC 4302. We model NGC 3044 as a single, thick disk. Substantial amounts of extra-planar H I are also detected. We detect a decrease in rotation speed with height (a lag) that shallows radially, reaching zero at approximately R {sub 25}. The large-scale kinematic asymmetry of the approaching and receding halves suggests a recent disturbance. The kinematics and morphology of NGC 4302, a Virgo Cluster member, are greatly disturbed. We model NGC 4302 as a combination of a thin disk and a second, thicker disk, the latter having a hole near the center. We detect lagging extra-planar gas, with indications of shallowing in the receding half, although its characteristics are difficult to constrain. A bridge is detected between NGC 4302 and its companion, NGC 4298. We explore trends involving the extra-planar H I kinematics of these galaxies, as well as galaxies throughout the literature, as well as possible connections between lag properties with star formation and environment. Measured lags are found to be significantly steeper than those modeled by purely ballistic effects, indicating additional factors. Radial shallowing of extra-planar lags is typical and occurs between 0.5R {sub 25} and R {sub 25}, suggesting internal processes are important in dictating extra-planar kinematics.

  10. Was the Milky Way Bulge Formed from the Buckling Disk Instability, Hierarchical Collapse, Accretion of Clumps, or All of the Above? (United States)

    Nataf, David M.


    The assembly of the Milky Way bulge is an old topic in astronomy, one now in a period of renewed and rapid development. That is due to tremendous advances in observations of bulge stars, motivating observations of both local and high-redshift galaxies, and increasingly sophisticated simulations. The dominant scenario for bulge formation is that of the Milky Way as a nearly pure disk galaxy, with the inner disk having formed a bar and buckled. This can potentially explain virtually all bulge stars with [Fe/H] ≳ -1.0, which comprise 95% of the stellar population. The evidence is the incredible success in N-body models of this type in making non-trivial, non-generic predictions, such as the rotation curve and velocity dispersion measured from radial velocities, and the spatial morphologies of the peanut/X-shape and the long bar. The classical bulge scenario, whereby the bulge formed from early dissipative collapse and mergers, remains viable for stars with [Fe/H] ≲ -1.0 and potentially a minority of the other stars. A classical bulge is expected from Λ-CDM cosmological simulations, can accentuate the properties of an existing bar in a hybrid system, and is most consistent with the bulge abundance trends such as [Mg/Fe], which are elevated relative to both the thin and thick disks. Finally, the clumpy-galaxy scenario is considered, as it is the correct description of most Milky Way precursors given observations of high-redshift galaxies. Simulations predict that these star-forming clumps will sometimes migrate to the centres of galaxies where they may form a bulge, and galaxies often include a bulge clump as well. They will possibly form a bar with properties consistent with those of the Milky Way, such as the exponential profile and metallicity gradient. Given the relative successes of these scenarios, the Milky Way bulge is plausibly of composite origin, with a classical bulge and/or inner halo numerically dominant for stars with [Fe/H] ≲ -1.0, a buckling

  11. Exploring Disks Around Planets (United States)

    Kohler, Susanna


    Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and

  12. Accretion Processes in Star Formation

    DEFF Research Database (Denmark)

    Küffmeier, Michael

    that the accretion process of stars is heterogeneous in space, time and among different protostars. In some cases, disks form a few thousand years after stellar birth, whereas in other cases disk formation is suppressed due to efficient removal of angular momentum. Angular momentum is mainly transported outward......Stars and their corresponding protoplanetary disks form in different environments of Giant Molecular Clouds. By carrying state-of-the art zoom-simulations with the magnetohydrodynamical code ramses, I investigated the accretion process around young stars that are embedded in such different...... for short-lived radionuclides that enrich the cloud as a result of supernova explosions of the massive stars allows us to analyze the distribution of the short-lived radionuclides around young forming stars. In contradiction to results from highly-idealized models, we find that the discrepancy in 26 Al...

  13. Dynamically important magnetic fields near accreting supermassive black holes. (United States)

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A


    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.

  14. Protostellar accretion traced with chemistry

    DEFF Research Database (Denmark)

    Frimann, Søren; Jørgensen, Jes Kristian; Padoan, Paolo


    used foranalysing the observations. Methods: Simple freeze-out andsublimation chemistry is added to the simulation, and syntheticC18O line cubes are created for a large number of simulatedprotostars. The spatial extent of C18O is measured for thesimulated protostars and compared directly to a sample...... by infall from the larger scales of the molecular cloud, anddo not include any disk physics. The discrepancy between simulation andobservations is taken as support for the necessity of disks, even indeeply embedded objects, to produce episodic accretion events ofsufficient frequency and amplitude....

  15. Accretion processes in magnetically and tidally perturbed Schwarzschild black holes

    CERN Document Server

    Kovács, Zoltán; Vasúth, Mátyás


    We study the accretion process in the region of the Preston-Poisson space-time describing a Schwarzschild black hole perturbed by asymptotically uniform magnetic field and axisymmetric tidal structures. We find that the accretion disk shrinks and the marginally stable orbit shifts towards the black hole with the perturbation. The radiation intensity of the accretion disk increases, while the radius where radiation is maximal remains unchanged. The spectrum is blue-shifted. Finally, the conversion efficiency of accreting mass into radiation is decreased by both the magnetic and the tidal perturbations.

  16. Astrophysical disks Collective and Stochastic Phenomena

    CERN Document Server

    Fridman, Alexei M; Kovalenko, Ilya G


    The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.

  17. Stability of disformally coupled accretion disks (United States)

    Koivisto, Tomi S.; Nyrhinen, Hannu J.


    The no-hair theorem postulates that the only externally observable properties of a black hole are its mass, its electric charge, and its angular momentum. In scalar-tensor theories of gravity, a matter distribution around a black hole can lead to the so called ‘spontaneous scalarisation’ instability that triggers the development of scalar hair. In the Brans-Dicke type theories, this effect can be understood as a result of tachyonic effective mass of the scalar field. Here we consider the instability in the generalised class of scalar-theories that feature non-conformal, i.e. ‘disformal’, couplings to matter. Such theories have gained considerable interest in the recent years and have been studied in a wide variety of systems, both cosmological and astrophysical. In view of the prospects of gravitational wave astronomy, it is relevant to explore the implications of the theories in the strong-gravity regime. In this article, we concentrate on the spontaneous scalarisation of matter configurations around Schwarzschild and Kerr black holes. We find that in the more generic scalar-tensor theories, the instability of the Brans-Dicke theory can be enhanced, suggesting violations of the no-hair theorem. On the other hand, we find that, especially if the coupling is very strong, or if the gradients in the matter distribution are negligible, the disformal coupling tends to stabilise the system.

  18. Early Results from NICER Observations of Accreting Neutron Stars (United States)

    Chakrabarty, Deepto; Ozel, Feryal; Arzoumanian, Zaven; Gendreau, Keith C.; Bult, Peter; Cackett, Ed; Chenevez, Jerome; Fabian, Andy; Guillot, Sebastien; Guver, Tolga; Homan, Jeroen; Keek, Laurens; Lamb, Frederick; Ludlam, Renee; Mahmoodifar, Simin; Markwardt, Craig B.; Miller, Jon M.; Psaltis, Dimitrios; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael T.


    The Neutron Star Interior Composition Explorer (NICER) offers significant new capabilities for the study of accreting neuton stars relative to previous X-ray missions including large effective area, low background, and greatly improved low-energy response. The NICER Burst and Accretion Working Group has designed a 2 Ms observation program to study a number of phenomena in accreting neutron stars including type-I X-ray bursts, superbursts, accretion-powered pulsations, quasi-periodic oscillations, and accretion disk reflection spectra. We present some early results from the first six months of the NICER mission.

  19. Why Do Disks Form Jets? (United States)

    Lynden-Bell, D.

    It is argued that jet modelers have given insufficient study to the natural magneto-static configurations of field wound up in the presence of a confining general pressure. Such fields form towers whose height grows with each twist at a velocity comparable to the circular velocity of the accretion disk that turns them. A discussion of the generation of such towers is preceded by a brief history of the idea that quasars, active galaxies, and galactic nuclei contain giant black holes with accretion disks.

  20. The Tilt between Acretion Disk and Stellar Disk

    Indian Academy of Sciences (India)

    ... large sample of Type 2 AGNs selected from Sloan Digital Sky Survey (SDSS, York et al. 2000) to a control galaxy sample. Given that the Type 2 AGN fraction is in the range of 70–90 percent for low luminosity AGNs as a priori, we find that the mean tilt between the accretion disk and stellar disk is ∼ 30 degrees (Shen et al.

  1. Effects of Black Hole Spin on the Limit-Cycle Behaviour of Accretion ...

    Indian Academy of Sciences (India)

    We present a spatially 1.5-dimensional, time-dependent numerical study of accretion disks around Kerr black holes. Our study focuses on the limit-cycle behavior of thermally unstable accretion disks. We find that maximal luminosity may be a more appropriate probe of black hole spin than the cycle duration and influence ...

  2. Dissecting disks around B-type protostars

    NARCIS (Netherlands)

    Sanchez-Monge, Alvaro; Cesaroni, Riccardo; Beltran, Maite; Kumar, M. S. Nanda; Stanke, Thomas; Zinnecker, Hans; Etoka, Sandra; Galli, Daniele; Hummel, Christian A.; Moscadelli, Luca; Preibisch, Thomas; Ratzka, Thorsten; van der Tak, Floris; Vig, Sarita; Walmsley, C. Malcolm; Wang, Kuo-Song

    Recent theoretical models indicate that OB-type stars could form through disk-mediated accretion, like their low mass counterparts. However, on the observational side, circumstellar disks appear still elusive, especially around the most massive (proto)stars. As for early B-type (proto)stars, an ever

  3. Exploring Our Galaxy's Thick Disk (United States)

    Kohler, Susanna


    What is the structure of the Milky Ways disk, and how did it form? A new study uses giant stars to explore these questions.A View from the InsideSchematic showing an edge-on, not-to-scale view of what we think the Milky Ways structurelookslike. The thick disk is shown in yellow and the thin disk is shown in green. [Gaba p]Spiral galaxies like ours are often observed to have disks consisting of two components: a thin disk that lies close to the galactic midplane, and a thick disk that extends above and below this. Past studies have suggested that the Milky Ways disk hosts the same structure, but our position embedded in the Milky Way makes this difficult to confirm.If we can measure the properties of a broad sample of distant tracer stars and use this to better understand the construction of the Milky Ways disk, then we can start to ask additional questions like, how did the disk components form? Formation pictures for the thick disk generally fall into two categories:Stars in the thick disk formed within the Milky Way either in situ or by migrating to their current locations.Stars in the thick disk formed in satellite galaxies around the Milky Way and then accreted when the satellites were disrupted.Scientists Chengdong Li and Gang Zhao (NAO Chinese Academy of Sciences, University of Chinese Academy of Sciences) have now used observations of giant stars which can be detected out to great distances due to their brightness to trace the properties of the Milky Ways thick disk and address the question of its origin.Best fits for the radial (top) and vertical (bottom) metallicity gradients of the thick-disk stars. [Adapted from Li Zhao 2017]Probing OriginsLi and Zhao used data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) in China to examine a sample of 35,000 giant stars. The authors sorted these stars into different disk components halo, thin disk, and thick disk based on their kinematic properties, and then explored how the orbital and

  4. Gas Accretion and Star Formation Rates (United States)

    Sánchez Almeida, Jorge

    Cosmological numerical simulations of galaxy evolution show that accretion of metal-poor gas from the cosmic web drives the star formation in galaxy disks. Unfortunately, the observational support for this theoretical prediction is still indirect, and modeling and analysis are required to identify hints as actual signs of star formation feeding from metal-poor gas accretion. Thus, a meticulous interpretation of the observations is crucial, and this observational review begins with a simple theoretical description of the physical process and the key ingredients it involves, including the properties of the accreted gas and of the star formation that it induces. A number of observations pointing out the connection between metal-poor gas accretion and star formation are analyzed, specifically, the short gas-consumption time-scale compared to the age of the stellar populations, the fundamental metallicity relationship, the relationship between disk morphology and gas metallicity, the existence of metallicity drops in starbursts of star-forming galaxies, the so-called G dwarf problem, the existence of a minimum metallicity for the star-forming gas in the local universe, the origin of the α-enhanced gas forming stars in the local universe, the metallicity of the quiescent BCDs, and the direct measurements of gas accretion onto galaxies. A final section discusses intrinsic difficulties to obtain direct observational evidence, and points out alternative observational pathways to further consolidate the current ideas.

  5. The formation of rings and gaps in protoplanetary disks by magnetic disk winds (United States)

    Suriano, Scott; Li, Zhi-Yun; Krasnopolsky, Ruben; Shang, Hsien


    ALMA observations of protoplanetary disks have revealed previously unresolved radial substructure. These observations, along with the need to fully understand the effects of magnetic fields on the angular momentum transport and global evolution of disks, motivate the study of radial substructure formation in protoplanetary disks. Through 2D-axisymmetric, resistive MHD simulations, we show that rings and gaps can be formed in disks purely through MHD processes in one of two ways: (1) from the removal of angular momentum via a disk wind if the wind torque (and, therefore, the wind-driven mass accretion rate) varies as a function of disk radius, and (2) via the transport of mass through so-called “avalanche accretion streams,” which are a manifestation of the magnetorotational instability (MRI) channel flows in two dimensions. When including ambipolar diffusion (AD), we find that the bulk of the accretion in AD-dominated regions of the disk is concentrated in a thin current sheet near the midplane. Accretion through this current sheet drags magnetic field lines inward with the flow, resulting in a pronounced radial pinch of the magnetic field. Eventually, this radial pinch becomes elongated enough for the magnetic field to reconnect, forming a poloidal magnetic field loop where mass can be concentrated into a dense ring. These mechanisms provide plausible explanations for the radial substructure observed in protoplanetary disks on the tens of au scale.

  6. The Tilt between Acretion Disk and Stellar Disk Shiyin Shen1,2 ...

    Indian Academy of Sciences (India)

    to a control galaxy sample. Given that the Type 2 AGN fraction is in the range of 70–90 percent for low luminosity AGNs as a priori, we find that the mean tilt between the accretion disk and stellar disk is ∼ 30 degrees. (Shen et al. 2010). Key words. Galaxies: statistics—galaxies: Seyfert—galaxies: nuclei— galaxies: spiral. 1.

  7. Herniated disk (United States)

    ... pulposus Herniated disk repair Lumbar spinal surgery - series Herniated lumbar disk References Gardocki RJ, Park AL. Lower back pain and disorders of intervertebral discs. In: Canale ST, Beaty JH, eds. Campbell's Operative ...

  8. Galaxy Disks

    NARCIS (Netherlands)

    van der Kruit, P. C.; Freeman, K. C.

    The disks of disk galaxies contain a substantial fraction of their baryonic matter and angular momentum, and much of the evolutionary activity in these galaxies, such as the formation of stars, spiral arms, bars and rings, and the various forms of secular evolution, takes place in their disks. The


    Energy Technology Data Exchange (ETDEWEB)

    Espaillat, C.; Andrews, S.; Qi, C.; Wilner, D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States); Ingleby, L.; Calvet, N. [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Hernandez, J. [Centro de Investigaciones de Astronomia (CIDA), Merida 5101-A (Venezuela, Bolivarian Republic of); Furlan, E. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); D' Alessio, P. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, 58089 Morelia, Michoacan (Mexico); Muzerolle, J., E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Space Telescope Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)


    Two decades ago 'transitional disks' (TDs) described spectral energy distributions (SEDs) of T Tauri stars with small near-IR excesses, but significant mid- and far-IR excesses. Many inferred this indicated dust-free holes in disks possibly cleared by planets. Recently, this term has been applied disparately to objects whose Spitzer SEDs diverge from the expectations for a typical full disk (FD). Here, we use irradiated accretion disk models to fit the SEDs of 15 such disks in NGC 2068 and IC 348. One group has a 'dip' in infrared emission while the others' continuum emission decreases steadily at all wavelengths. We find that the former have an inner disk hole or gap at intermediate radii in the disk and we call these objects 'transitional disks' and 'pre-transitional disks' (PTDs), respectively. For the latter group, we can fit these SEDs with FD models and find that millimeter data are necessary to break the degeneracy between dust settling and disk mass. We suggest that the term 'transitional' only be applied to objects that display evidence for a radical change in the disk's radial structure. Using this definition, we find that TDs and PTDs tend to have lower mass accretion rates than FDs and that TDs have lower accretion rates than PTDs. These reduced accretion rates onto the star could be linked to forming planets. Future observations of TDs and PTDs will allow us to better quantify the signatures of planet formation in young disks.

  10. Features of the accretion in the EX Hydrae system: Results of numerical simulation (United States)

    Isakova, P. B.; Zhilkin, A. G.; Bisikalo, D. V.; Semena, A. N.; Revnivtsev, M. G.


    A two-dimensional numerical model in the axisymmetric approximation that describes the flow structure in the magnetosphere of the white dwarf in the EX Hya system has been developed. Results of simulations show that the accretion in EX Hya proceeds via accretion columns, which are not closed and have curtain-like shapes. The thickness of the accretion curtains depends only weakly on the thickness of the accretion disk. This thickness developed in the simulations does not agree with observations. It is concluded that the main reason for the formation of thick accretion curtains in the model is the assumption that the magnetic field penetrates fully into the plasma of the disk. An analysis based on simple estimates shows that a diamagnetic disk that fully or partially shields the magnetic field of the star may be a more attractive explanation for the observed features of the accretion in EX Hya.

  11. Magnetically gated accretion in an accreting ‘non-magnetic’ white dwarf (United States)

    Scaringi, S.; Maccarone, T. J.; D’Angelo, C.; Knigge, C.; Groot, P. J.


    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 106 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as ‘non-magnetic’, because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the ‘non-magnetic’ accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 104 gauss and 1 × 105 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  12. Winds from disks in compact binaries

    Energy Technology Data Exchange (ETDEWEB)

    Mauche, C.W.


    We herein present an observational and theoretical review of the winds of compact binaries. After a brief consideration of the accretion disk coronae and winds of X-ray binaries, the review concentrates on the winds of cataclysmic variables (CVs). Specifically, we consider the related problems of the geometry and mass-loss rate of the winds of CVs, their ionization state and variability, and the results from studies of eclipsing CVs. Finally, the properties of bona fide accretion disk wind models are reviewed.

  13. Relativistic dust accretion of charged particles in Kerr-Newman spacetime (United States)

    Schroven, Kris; Hackmann, Eva; Lämmerzahl, Claus


    We describe a new analytical model for the accretion of particles from a rotating and charged spherical shell of dilute collisionless plasma onto a rotating and charged black hole. By assuming a continuous injection of particles at the spherical shell and by treating the black hole and a featureless accretion disk located in the equatorial plane as passive sinks of particles, we build a stationary accretion model. This may then serve as a toy model for plasma feeding an accretion disk around a charged and rotating black hole. Therefore, our new model is a direct generalization of the analytical accretion model introduced by E. Tejeda, P. A. Taylor, and J. C. Miller [Mon. Not. R. Astron. Soc. 429, 925 (2013), 10.1093/mnras/sts316]. We use our generalized model to analyze the influence of a net charge of the black hole, which will in general be very small, on the accretion of plasma. Within the assumptions of our model we demonstrate that already a vanishingly small charge of the black hole may in general still have a non-negligible effect on the motion of the plasma, as long as the electromagnetic field of the plasma is still negligible. Furthermore, we argue that the inner and outer edges of the forming accretion disk strongly depend on the charge of the accreted plasma. The resulting possible configurations of accretion disks are analyzed in detail.


    Energy Technology Data Exchange (ETDEWEB)

    Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry; Ford, K. E. Saavik [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, NY 10024 (United States)


    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign, trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.

  15. Observational constraints on Acrretion disk formation (United States)

    Harsono, Daniel; Jørgensen, Jes; van Dishoeck, Ewine; Hogerheijde, Michiel; Bruderer, Simon; Persson, Magnus; Mottram, Joseph


    Stable rotationally supported disks (RSDs) are important for the star and planet formation process. The structure and stability of the RSDs are linked to the accretion process onto the star and the evolution of the protostellar system. Additionally, these disks are composed of infalling material that encounter a wide range of physical conditions. The history of these changes affect the chemical structure and evolution of the accretion disk and, thus, the material out of which planets are formed. The formation of RSDs is not well understood and it is unclear from the existing data at which stage the young disks are rotationally supported. Here, we present new PdBI observations of 13CO and C18O toward 4 Class I YSOs with higher spatial resolution and significantly higher sensitivity than previously possible. The high quality data allow us to constrain the physical structure of the young embedded disks which are rotationally supported within the inner 100 AU radius. Furthermore, the extent of the RSD is smaller than that of the dust disk. The observed physical structure of embedded disks are compared to semi-analytical disk formation models which suggests that the formation process is consistent with inside-out formation. ALMA is needed to confirm the extent of the rotationally supported structure.

  16. MHD Simulations of Magnetospheric Accretion, Ejection and Plasma-field Interaction

    Directory of Open Access Journals (Sweden)

    Romanova M. M.


    Full Text Available We review recent axisymmetric and three-dimensional (3D magnetohydrodynamic (MHD numerical simulations of magnetospheric accretion, plasma-field interaction and outflows from the disk-magnetosphere boundary.

  17. Diagnostics of disk-magnetosphere interaction in neutron star binaries (United States)

    Ghosh, Pranab; Lamb, Frederick K.


    The interaction between the magnetospheres of accreting neutron stars and accretion disks plays at key role in determining the properties of many accretion-powered neutron star X-ray sources and the recycled binary and millisecond rotation-powered pulsars. Here we show that the behavior of the horizontal branch quasi-periodic intensity oscillations in low mass X-ray binaries and the correlation between the magnetic fields and periods of binary and millisecond pulsars are sensitive probes of the state of the inner disk.


    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. H. [Korea Astronomy and Space Science Institute (KASI), 776, Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Watson, Dan M.; Manoj, P.; Forrest, W. J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Furlan, Elise [Infrared Processing and Analysis Center, Caltech, 770 S. Wilson Avenue, Pasadena, CA 91125 (United States); Najita, Joan [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Sargent, Benjamin [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Dr., Rochester, NY 14623 (United States); Hernández, Jesús [Centro de Investigaciones de Astronomía, Apdo. Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of); Calvet, Nuria [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Adame, Lucía [Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad S/N, San Nicolás de los Garza, Nuevo León, C.P. 66451, México (Mexico); Espaillat, Catherine [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Megeath, S. T. [Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606 (United States); Muzerolle, James, E-mail: [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others


    We present our investigation of 319 Class II objects in Orion A observed by Spitzer /IRS. We also present the follow-up observations of 120 of these Class II objects in Orion A from the Infrared Telescope Facility/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks with those of Taurus disks with respect to position within Orion A (Orion Nebular Cluster [ONC] and L1641) and with the subgroups by the inferred radial structures, such as transitional disks (TDs) versus radially continuous full disks (FDs). Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) The mass accretion rates of TDs and those of radially continuous FDs are statistically significantly displaced from each other. The median mass accretion rate of radially continuous disks in the ONC and L1641 is not very different from that in Taurus. (3) Less grain processing has occurred in the disks in the ONC compared to those in Taurus, based on analysis of the shape index of the 10 μ m silicate feature ( F {sub 11.3}/ F {sub 9.8}). (4) The 20–31 μ m continuum spectral index tracks the projected distance from the most luminous Trapezium star, θ {sup 1} Ori C. A possible explanation is UV ablation of the outer parts of disks.

  19. An expanding disk around the young massive star AFGL 2591

    NARCIS (Netherlands)

    Wang, K. S.; van der Tak, F.; Hogerheijde, M.

    Recent detections of disks around young high-mass stars indicate their formation through accretion rather than coalescence, but the physical properties of these disks are poorly known. In this study, we used Plateau de Bure interferometric images to probe the environment of the nearby (˜1 kpc) and

  20. Line-Driven Ablation of Circumstellar Disks (United States)

    Kee, Nathaniel Dylan; Owocki, Stan; Kuiper, Rolf; Sundqvist, Jon


    Mass is a key parameter in understanding the evolution and eventual fate of hot, luminous stars. Mass loss through a wind driven by UV-scattering forces is already known to reduce the mass of such stars by 10-10 - 10-4 M⊙/yr over the course of their lifetimes. However, high-mass stars already drive such strong winds while they are still in their accretion epoch. Therefore, stellar UV-scattering forces will efficiently ablate material off the surface of their circumstellar disks, perhaps even shutting off the final accretion through the last several stellar radii and onto a massive protostar. By using a three-dimensional UV-scattering prescription, we here quantify the role of radiative ablation in controlling the disk's accretion rate onto forming high-mass stars. Particular emphasis is given to the potential impact of this process on the stellar upper mass limit.

  1. Cold Accretion from the Cosmic Web (United States)

    Kohler, Susanna


    The cosmic web is a vast, foam-like network of filaments and voids stretching throughout the universe. How did the first galaxies form within the cosmic web, at the intersections of filaments? New observations of a protodisk a galaxy in the early stages of formation may provide a clue.Models for Galaxy FormationNarrowband image of the candidate protodisk (marked with a white ellipse) and filaments (outlined in white). [Adapted from Martin et al. 2016]The standard model for galaxy formation, known as the hot accretion model, argues that galaxies form out of collapsing, virialized gas that forms a hot halo and then slowly cools, fueling star and galaxy formation at its center.But what if galaxies are actually formed from cool gas? In this contrasting picture, the cold accretion model, cool (temperature of ~104 K) unshocked gas from cosmic web filaments flows directly onto galactic disks forming at the filamentary intersections. The narrow streams of cold gas deliver fuel for star formation.A signature of the cold accretion model is that the streams of cold gas form a disk as the gas spirals inward, sinking toward the central protogalaxy. Detecting these cold-flow disks could be strong evidence in support of this model and last year, a team of authors reported just such a detection! This year theyre back again with a second object that may provide confirmation of cold accretion from the cosmic web.A Candidate ProtodiskThe team, led by Christopher Martin (California Institute of Technology), made the discovery using the Palomar Cosmic Web Imager, an instrument designed to observe faint emission from the intergalactic medium. Martin and collaborators found a large (R 100 kpc, more than six times the radius of the Milky Way), rotating structure of hydrogen gas, illuminated by the nearby quasi-stellar object QSO HS1549+1919. The system is located at a redshift of z~2.8.The authors testthree potential kinematic models of the candidate protodisk and filaments. In (a) two

  2. Interaction of Accretion Shocks with Winds Kinsuk Acharya , Sandip ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Accretion shocks are known to oscillate in presence of cool- ing processes in the disk. This oscillation may also cause quasi-periodic oscillations of black holes. In the presence of strong winds, these shocks have oscillations in vertical direction as well. We show examples of shock oscillations under the influence of ...

  3. Eclipsing the innermost accretion disc regions in AGN

    Czech Academy of Sciences Publication Activity Database

    Sanfrutos, M.; Miniutti, G.; Dovčiak, Michal; Agis-Gonzalez, B.


    Roč. 337, 4-5 (2016), s. 546-551 ISSN 0004-6337 Institutional support: RVO:67985815 Keywords : accretion disks * black hole physics * relativistic effects Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.916, year: 2016

  4. Theory of wind accretion

    Directory of Open Access Journals (Sweden)

    Shakura N.I.


    Full Text Available A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg/s. In the subsonic case, which sets in at low luminosities, a hot quasi-spherical shell must be formed around the magnetosphere, and the actual accretion rate onto NS is determined by ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. We calculate the rate of plasma entry the magnetopshere and the angular momentum transfer in the shell due to turbulent viscosity appearing in the convective differentially rotating shell. We also discuss and calculate the structure of the magnetospheric boundary layer where the angular momentum between the rotating magnetosphere and the base of the differentially rotating quasi-spherical shell takes place. We show how observations of equilibrium X-ray pulsars Vela X-1 and GX 301-2 can be used to estimate dimensionless parameters of the subsonic settling accretion theory, and obtain the width of the magnetospheric boundary layer for these pulsars.

  5. The formation of massive star systems by accretion. (United States)

    Krumholz, Mark R; Klein, Richard I; McKee, Christopher F; Offner, Stella S R; Cunningham, Andrew J


    Massive stars produce so much light that the radiation pressure they exert on the gas and dust around them is stronger than their gravitational attraction, a condition that has long been expected to prevent them from growing by accretion. We present three-dimensional radiation-hydrodynamic simulations of the collapse of a massive prestellar core and find that radiation pressure does not halt accretion. Instead, gravitational and Rayleigh-Taylor instabilities channel gas onto the star system through nonaxisymmetric disks and filaments that self-shield against radiation while allowing radiation to escape through optically thin bubbles. Gravitational instabilities cause the disk to fragment and form a massive companion to the primary star. Radiation pressure does not limit stellar masses, but the instabilities that allow accretion to continue lead to small multiple systems.


    Energy Technology Data Exchange (ETDEWEB)

    Guenther, H. M.; Wolk, S. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Wolter, U.; Robrade, J., E-mail: [Universitaet Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany)


    Young T Tauri stars (TTS) are surrounded by an accretion disk, which over time disperses due to photoevaporation, accretion, and possibly planet formation. The accretion shock on the central star produces an UV/optical veiling continuum, line emission, and X-ray signatures. As the accretion rate decreases, the impact on the central star must change. In this article we study MN Lup, a young star where no indications of a disk are seen in IR observations. We present XMM-Newton and VLT/UVES observations, some of them taken simultaneously. The X-ray data show that MN Lup is an active star with L{sub X} /L{sub bol} close to the saturation limit. However, we find high densities (n{sub e} > 3 Multiplication-Sign 10{sup 10} cm{sup -3}) in the X-ray grating spectrum. This can be well fitted using an accretion shock model with an accretion rate of 2 Multiplication-Sign 10{sup -11} M{sub Sun} yr{sup -1}. Despite the simple H{alpha} line profile which has a broad component, but no absorption signatures as typically seen on accreting TTS, we find rotational modulation in Ca II K and in photospheric absorption lines. These line profile modulations do not clearly indicate the presence of a localized hot accretion spot on the star. In the H{alpha} line we see a prominence in absorption about 2R{sub *} above the stellar surface-the first of its kind on a TTS. MN Lup is also the only TTS where accretion is seen, but no dust disk is detected that could fuel it. We suggest that MN Lup presents a unique and short-lived state in the disk evolution. It may have lost its dust disk only recently and is now accreting the remaining gas at a very low rate.

  7. Kinematics of the inner thousand AU region around the young massive star AFGL 2591-VLA3: a massive disk candidate?

    NARCIS (Netherlands)

    Wang, K. -S.; van der Tak, F. F. S.; Hogerheijde, M. R.

    Context. Recent detections of disks around young high-mass stars support the idea of massive star formation through accretion rather than coalescence, but the detailed kinematics in the equatorial region of the disk candidates is not well known, which limits our understanding of the accretion


    Energy Technology Data Exchange (ETDEWEB)

    Rigliaco, Elisabetta; Pascucci, I.; Mulders, G. D. [Department of Planetary Science, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85719 (United States); Duchene, G. [Astronomy Department, University of California, Berkeley, Hearst Field Annex B-20, Berkeley, CA 94720-3411 (United States); Edwards, S. [Five College Astronomy Department, Smith College, Northampton, MA 01063 (United States); Ardila, D. R. [NASA Herschel Science Center, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States); Grady, C. [Eureka Scientific, 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017 (United States); Mendigutía, I. [School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Montesinos, B. [Departamento de Astrofísica, Centro de Astrobiología, ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Najita, J. R. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Carpenter, J. [Department of Astronomy, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Furlan, E. [Infrared Processing and Analysis Center, California Institute of Technology, 770 S. Wilson Ave., Pasadena, CA 91125 (United States); Gorti, U. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Meijerink, R. [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Meyer, M. R., E-mail:, E-mail: [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland)


    In this paper we investigate the origin of the mid-infrared (IR) hydrogen recombination lines for a sample of 114 disks in different evolutionary stages (full, transitional, and debris disks) collected from the Spitzer archive. We focus on the two brighter H I lines observed in the Spitzer spectra, the H I (7-6) at 12.37 μm and the H I (9-7) at 11.32 μm. We detect the H I (7-6) line in 46 objects, and the H I (9-7) in 11. We compare these lines with the other most common gas line detected in Spitzer spectra, the [Ne II] at 12.81 μm. We argue that it is unlikely that the H I emission originates from the photoevaporating upper surface layers of the disk, as has been found for the [Ne II] lines toward low-accreting stars. Using the H I (9-7)/H I (7-6) line ratios we find these gas lines are likely probing gas with hydrogen column densities of 10{sup 10}-10{sup 11} cm{sup –3}. The subsample of objects surrounded by full and transitional disks show a positive correlation between the accretion luminosity and the H I line luminosity. These two results suggest that the observed mid-IR H I lines trace gas accreting onto the star in the same way as other hydrogen recombination lines at shorter wavelengths. A pure chromospheric origin of these lines can be excluded for the vast majority of full and transitional disks. We report for the first time the detection of the H I (7-6) line in eight young (<20 Myr) debris disks. A pure chromospheric origin cannot be ruled out in these objects. If the H I (7-6) line traces accretion in these older systems, as in the case of full and transitional disks, the strength of the emission implies accretion rates lower than 10{sup –10} M {sub ☉} yr{sup –1}. We discuss some advantages of extending accretion indicators to longer wavelengths, and the next steps required pinning down the origin of mid-IR hydrogen lines.


    Energy Technology Data Exchange (ETDEWEB)

    Romero, Gisela A.; Schreiber, Matthias R.; Rebassa-Mansergas, Alberto [Departamento de Fisica y Astronomia, Universidad de Valparaiso, Valparaiso (Chile); Cieza, Lucas A. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Merin, Bruno [Herschel Science Centre, ESAC (ESA), P.O. Box 78, 28691 Villanueva de la Canada, Madrid (Spain); Smith Castelli, Analia V. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Allen, Lori E. [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Morrell, Nidia [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile)


    Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and accretion rate for each object in our sample in order to identify the mechanism potentially responsible for its inner hole. We find that our transition disks show a rich diversity in their spectral energy distribution morphology, have disk masses ranging from {approx}<1 to 10 M{sub JUP}, and accretion rates ranging from {approx}<10{sup -11} to 10{sup -7.7} M{sub Sun} yr{sup -1}. Of the 17 bona fide transition disks in our sample, three, nine, three, and two objects are consistent with giant planet formation, grain growth, photoevaporation, and debris disks, respectively. Two disks could be circumbinary, which offers tidal truncation as an alternative origin of the inner hole. We find the same heterogeneity of the transition disk population in Lupus III, IV, and Corona Australis as in our previous analysis of transition disks in Ophiuchus while all transition disk candidates selected in Lupus V, VI turned out to be contaminating background asymptotic giant branch stars. All transition disks classified as photoevaporating disks have small disk masses, which indicates that photoevaporation must be less efficient than predicted by most recent models. The three systems that are excellent candidates for harboring giant planets potentially represent invaluable laboratories to study planet formation with the Atacama Large Millimeter/Submillimeter Array.

  10. Why Do Disks Form Jets?


    Lynden-Bell, D.


    It is argued that jet modelers have given insufficient study to the natural magneto-static configurations of field wound up in the presence of a confining general pressure. Such fields form towers whose height grows with each twist at a velocity comparable to the circular velocity of the accretion disk that turns them. A discussion of the generation of such towers is preceded by a brief history of the idea that quasars, active galaxies, and galactic nuclei contain giant black holes with accre...

  11. Improving the thin-disk models of circumstellar disk evolution. The 2+1-dimensional model (United States)

    Vorobyov, Eduard I.; Pavlyuchenkov, Yaroslav N.


    Context. Circumstellar disks of gas and dust are naturally formed from contracting pre-stellar molecular cores during the star formation process. To study various dynamical and chemical processes that take place in circumstellar disks prior to their dissipation and transition to debris disks, the appropriate numerical models capable of studying the long-term disk chemodynamical evolution are required. Aims: We improve the frequently used 2D hydrodynamical model for disk evolution in the thin-disk limit by employing a better calculation of the disk thermal balance and adding a reconstruction of the disk vertical structure. Together with the hydrodynamical processes, the thermal evolution is of great importance since it influences the strength of gravitational instability and the chemical evolution of the disk. Methods: We present a new 2+1-dimensional numerical hydrodynamics model of circumstellar disk evolution, where the thin-disk model is complemented with the procedure for calculating the vertical distributions of gas volume density and temperature in the disk. The reconstruction of the disk vertical structure is performed at every time step via the solution of the time-dependent radiative transfer equations coupled to the equation of the vertical hydrostatic equilibrium. Results: We perform a detailed comparison between circumstellar disks produced with our previous 2D model and with the improved 2+1D approach. The structure and evolution of resulting disks, including the differences in temperatures, densities, disk masses, and protostellar accretion rates, are discussed in detail. Conclusions: The new 2+1D model yields systematically colder disks, while the in-falling parental clouds are warmer. Both effects act to increase the strength of disk gravitational instability and, as a result, the number of gravitationally bound fragments that form in the disk via gravitational fragmentation as compared to the purely 2D thin-disk simulations with a simplified

  12. Gas accretion onto galaxies

    CERN Document Server

    Davé, Romeel


    This edited volume presents the current state of gas accretion studies from both observational and theoretical perspectives, and charts our progress towards answering the fundamental yet elusive question of how galaxies get their gas. Understanding how galaxies form and evolve has been a central focus in astronomy for over a century. These studies have accelerated in the new millennium, driven by two key advances: the establishment of a firm concordance cosmological model that provides the backbone on which galaxies form and grow, and the recognition that galaxies grow not in isolation but within a “cosmic ecosystem” that includes the vast reservoir of gas filling intergalactic space. This latter aspect in which galaxies continually exchange matter with the intergalactic medium via inflows and outflows has been dubbed the “baryon cycle”. The topic of this book is directly related to the baryon cycle, in particular its least well constrained aspect, namely gas accretion. Accretion is a rare area of ast...

  13. Dust in protoplanetary disks: observations*

    Directory of Open Access Journals (Sweden)

    Waters L.B.F.M.


    Full Text Available Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness, the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution, a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014.

  14. Testing slim-disk models on the thermal spectra of LMC X-3 (United States)

    Straub, O.; Bursa, M.; Sądowski, A.; Steiner, J. F.; Abramowicz, M. A.; Kluźniak, W.; McClintock, J. E.; Narayan, R.; Remillard, R. A.


    Slim-disk models describe advective accretion flows at high luminosities, while reducing to the standard thin disk form in the low luminosity limit. We have developed a new spectral model, slimbb, within the framework of XSPEC, which describes fully relativistic slim-disk accretion and includes photon ray-tracing that starts from the disk photosphere, rather than the equatorial plane. We demonstrate the features of this model by applying it to RXTE spectra of the persistent black-hole X-ray binary LMC X-3. LMC X-3 has the virtues of exhibiting large intensity variations while maintaining itself in soft spectral states which are well described using accretion-disk models, making it an ideal candidate to test the aptness of slimbb. Our results demonstrate consistency between the low-luminosity (thin-disk) and high luminosity (slim-disk) regimes. The results also illustrate that advection alone does not solve the problem of the origin of the surprisingly soft high-luminosity spectra in LMC X-3. We show that X-ray continuum-fitting in the high accretion rate regime can powerfully test black-hole accretion disk models.

  15. General Relativistic Radiation MHD Simulations of Supercritical Accretion onto a Magnetized Neutron Star: Modeling of Ultraluminous X-Ray Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroyuki R. [Center for Computational Astrophysics, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan); Ohsuga, Ken, E-mail:, E-mail: [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan)


    By performing 2.5-dimensional general relativistic radiation magnetohydrodynamic simulations, we demonstrate supercritical accretion onto a non-rotating, magnetized neutron star, where the magnetic field strength of dipole fields is 10{sup 10} G on the star surface. We found the supercritical accretion flow consists of two parts: the accretion columns and the truncated accretion disk. The supercritical accretion disk, which appears far from the neutron star, is truncated at around ≃3 R {sub *} ( R {sub *} = 10{sup 6} cm is the neutron star radius), where the magnetic pressure via the dipole magnetic fields balances with the radiation pressure of the disks. The angular momentum of the disk around the truncation radius is effectively transported inward through magnetic torque by dipole fields, inducing the spin up of a neutron star. The evaluated spin-up rate, ∼−10{sup −11} s s{sup −1}, is consistent with the recent observations of the ultraluminous X-ray pulsars. Within the truncation radius, the gas falls onto a neutron star along the dipole fields, which results in a formation of accretion columns onto the northern and southern hemispheres. The net accretion rate and the luminosity of the column are ≃66 L {sub Edd}/ c {sup 2} and ≲10 L {sub Edd}, where L {sub Edd} is the Eddington luminosity and c is the light speed. Our simulations support a hypothesis whereby the ultraluminous X-ray pulsars are powered by the supercritical accretion onto the magnetized neutron stars.

  16. Probing circumplanetary disks with MagAO and ALMA (United States)

    Wu, Ya-Lin


    The dedication of the Magellan Adaptive Optics (MagAO) on the 6.5 m Clay Telescope has opened a new era in high-contrast imaging. Its unique diffraction-limited wavelengths of 0.6 to 1 micron helps to probe circumplanetary disks by measuring the amount of dust reddening as well as by searching for the strongest gas accretion indicator H-alpha (0.65 micron). Using MagAO, I found that two wide-orbit planetary-mass companions CT Cha B and 1RXS 1609 B have a significant dust extinction of Av ~ 3 to 5 mag likely from their disks. For GQ Lup B, I found that it is actively accreting material from its disk and emitting strong H-alpha emission. My research with MagAO demonstrates that circumplanetary disks could be ubiquitous among young giant planets. I later carried out a survey using ALMA to image accretion disks around several wide planet-mass companions at 1.3 mm continuum and CO (2-1). This is the first systematic study aiming to measure the size, mass, and structure of planetary disks. However, except for FW Tau C (which was shown to actually be a low-mass star from the dynamical mass measurement) no disks around the companions were found in my ALMA survey. This surprising null result implies that circumplanetary disks are much more compact and denser than expected, so they are faint and optically thick in the radio wavelengths. Therefore, mid- to far-infrared may be more favorable to characterize disk properties. The MIRI camera on the JWST can test this compact optically-thick disk hypothesis by probing disk thermal emission between 10 and 25 micron.

  17. Zooming in on the formation of protoplanetary disks

    DEFF Research Database (Denmark)

    Nordlund, Åke; Haugbølle, Troels; Küffmeier, Michael


    . The accretion rate from a 1.5 solar mass envelope peaks near $10^{-4}$ $\\mspy$ about 6 kyr after sink particle formation and then decays approximately exponentially, reaching $10^{-6}$ $\\mspy$ in 100 kyr. The models suggest universal scalings of physical properties with radius during the main accretion phase...... to less than 1 mG at 100 AU, and drives a time dependent bipolar outflow, with a collimated jet and a broader disk wind....

  18. Accretion by the Galaxy

    NARCIS (Netherlands)

    Binney, J.; Fraternali, F.; Reylé, C.; Robin, A.; Schultheis, M.

    Cosmology requires at least half of the baryons in the Universe to be in the intergalactic medium, much of which is believed to form hot coronae around galaxies. Star-forming galaxies must be accreting from their coronae. Hi observations of external galaxies show that they have Hi halos associated

  19. AGN Variability: Probing Black Hole Accretion (United States)

    Moreno, Jackeline; O'Brien, Jack; Vogeley, Michael S.; Richards, Gordon T.; Kasliwal, Vishal P.


    We combine the long temporal baseline of Sloan Digital Sky Survey (SDSS) for quasars in Stripe 82 with the high precision photometry of the Kepler/K2 Satellite to study the physics of optical variability in the accretion disk and supermassive black hole engine. We model the lightcurves directly as Continuous-time Auto Regressive Moving Average processes (C-ARMA) with the Kali analysis package (Kasliwal et al. 2016). These models are extremely robust to irregular sampling and can capture aperiodic variability structure on various timescales. We also estimate the power spectral density and structure function of both the model family and the data. A Green's function kernel may also be estimated for the resulting C-ARMA parameter fit, which may be interpreted as the response to driving impulses such as hotspots in the accretion disk. We also examine available spectra for our AGN sample to relate observed and modelled behavior to spectral properties. The objective of this work is twofold: to explore the proper physical interpretation of different families of C-ARMA models applied to AGN optical flux variability and to relate empirical characteristic timescales of our AGN sample to physical theory or to properties estimated from spectra or simulations like the disk viscosity and temperature. We find that AGN with strong variability features on timescales resolved by K2 are well modelled by a low order C-ARMA family while K2 lightcurves with weak amplitude variability are dominated by outliers and measurement errors which force higher order model fits. This work explores a novel approach to combining SDSS and K2 data sets and presents recovered characteristic timescales of AGN variability.

  20. Angular Momentum Transport in Quasi-Keplerian Accretion Disks ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The specific angular momentum (angular momentum per unit mass) carried by a parcel of gas ... have used the Einstein summation convention in equation (2). For the .... incorrect. 3.3 Correction proposed by HM. HM claim that this is because Frank et al. (1992) have used an incorrect expression for vrel (i.e., equation (10)).

  1. Power spectrum density of stochastic oscillating accretion disk

    Indian Academy of Sciences (India)



    Nov 11, 2015 ... Section 2.1, paragraph 1. Reviewer's recommendations and referee's points. 2. In the manuscript the numerical values of γ and ω are not presented. The authors should indicate the considered range of values of these parameters. Response: We are in agreement with the referee's comment. In this vision ...

  2. Zoom-in Simulations of Protoplanetary Disks Starting from GMC Scales (United States)

    Kuffmeier, Michael; Haugbølle, Troels; Nordlund, Åke


    We investigate the formation of protoplanetary disks around nine solar-mass stars formed in the context of a (40 pc)3 Giant Molecular Cloud model, using ramses adaptive mesh refinement simulations extending over a scale range of about 4 million, from an outer scale of 40 pc down to cell sizes of 2 au. Our most important result is that the accretion process is heterogeneous in multiple ways: in time, in space, and among protostars of otherwise similar mass. Accretion is heterogeneous in time, in the sense that accretion rates vary during the evolution, with generally decreasing profiles, whose slopes vary over a wide range, and where accretion can increase again if a protostar enters a region with increased density and low speed. Accretion is heterogeneous in space, because of the mass distribution, with mass approaching the accreting star-disk system in filaments and sheets. Finally, accretion is heterogeneous among stars, since the detailed conditions and dynamics in the neighborhood of each star can vary widely. We also investigate the sensitivity of disk formation to physical conditions and test their robustness by varying numerical parameters. We find that disk formation is robust even when choosing the least favorable sink particle parameters, and that turbulence cascading from larger scales is a decisive factor in disk formation. We also investigate the transport of angular momentum, finding that the net inward mechanical transport is compensated for mainly by an outward-directed magnetic transport, with a contribution from gravitational torques usually subordinate to the magnetic transport.

  3. The Early History of Stellar Spin: the Theory of Accretion onto Young Stellar Objects

    Directory of Open Access Journals (Sweden)

    Pudritz Ralph E.


    Full Text Available The interaction of the magnetospheres of forming stars with their surrounding protostellar disks results in magnetospheric accretion flow onto the star. How is the associated angular momentum of accreting material channelled? The resolution of this issue is crucial for understanding the origin of the spins of pre main sequence stars. A significant fraction of these rotate very slowly, which indicates that an efficient angular momentum transport mechanism is at work to counteract the strong accretion spin up torques. We review the observational, theoretical, and computational advances in the field and argue that an accretion powered stellar winds together with highly time variable mass ejections from the disk/magnetosphere interface is a likely solution.


    Energy Technology Data Exchange (ETDEWEB)

    Hyodo, Ryuki; Ohtsuki, Keiji [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Takeda, Takaaki, E-mail:, E-mail: [VASA Entertainment Co. Ltd. (Japan)


    Circumplanetary particle disks would be created in the late stage of planetary formation either by impacts of planetary bodies or disruption of satellites or passing bodies, and satellites can be formed by accretion of disk particles spreading across the Roche limit. Previous N-body simulation of lunar accretion focused on the formation of single-satellite systems from disks with large disk-to-planet mass ratios, while recent models of the formation of multiple-satellite systems from disks with smaller mass ratios do not take account of gravitational interaction between formed satellites. In the present work, we investigate satellite accretion from particle disks with various masses, using N-body simulation. In the case of accretion from somewhat less massive disks than the case of lunar accretion, formed satellites are not massive enough to clear out the disk, but can become massive enough to gravitationally shepherd the disk outer edge and start outward migration due to gravitational interaction with the disk. When the radial location of the 2:1 mean motion resonance of the satellite reaches outside the Roche limit, the second satellite can be formed near the disk outer edge, and then the two satellites continue outward migration while being locked in the resonance. Co-orbital satellites are found to be occasionally formed on the orbit of the first satellite. Our simulations also show that stochastic nature involved in gravitational interaction and collision between aggregates in the tidal environment can lead to diversity in the final mass and orbital architecture, which would be expected in satellite systems of exoplanets.

  5. Formulas for Radial Transport in Protoplanetary Disks (United States)

    Desch, Steven J.; Estrada, Paul R.; Kalyaan, Anusha; Cuzzi, Jeffrey N.


    The quantification of the radial transport of gaseous species and solid particles is important to many applications in protoplanetary disk evolution. An especially important example is determining the location of the water snow lines in a disk, which requires computing the rates of outward radial diffusion of water vapor and the inward radial drift of icy particles; however, the application is generalized to evaporation fronts of all volatiles. We review the relevant formulas using a uniform formalism. This uniform treatment is necessary because the literature currently contains at least six mutually exclusive treatments of radial diffusion of gas, only one of which is correct. We derive the radial diffusion equations from first principles using Fick's law. For completeness, we also present the equations for radial transport of particles. These equations may be applied to studies of diffusion of gases and particles in protoplanetary and other accretion disks.

  6. WFPC2 Studies of the Disk and Jet of HH 30 (United States)

    Watson, A.; Stapelfeldt, K.


    Hubble Space Telescope imaging of HH 30 has revealed this object to be a prototype young stellar object (YSO) accretion disk system. An optically thick circumstellar absorption disk, 450 AU in diameter, is seen extending perpendicular to highly collimated bipolar jets.

  7. Accretion and outflow in the proplyd-like objects near Cygnus OB2

    Energy Technology Data Exchange (ETDEWEB)

    Guarcello, M. G. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Drake, J. J.; Wright, N. J. [Smithsonian Astrophysical Observatory, MS-67, 60 Garden Street, Cambridge, MA 02138 (United States); García-Alvarez, D. [Dpto. de Astrofísica, Universidad de La Laguna, E-38206 E-La Laguna, Tenerife (Spain); Kraemer, K. E. [Institute for Scientific Research, Boston College, Kenny Cottle L106B, Newton, MA 02459-1161 (United States)


    Cygnus OB2 is the most massive association within 2 kpc from the Sun, hosting hundreds of massive stars, thousands of young low mass members, and some sights of active star formation in the surrounding cloud. Recently, 10 photoevaporating proplyd-like objects with tadpole-shaped morphology were discovered in the outskirts of the OB association, approximately 6-14 pc away from its center. The classification of these objects is ambiguous, being either evaporating residuals of the parental cloud that are hosting a protostar inside or disk-bearing stars with an evaporating disk, such as the evaporating proplyds observed in the Trapezium Cluster in Orion. In this paper, we present a study based on low-resolution optical spectroscopic observations made with the Optical System for Imaging and low Resolution Integrated Spectroscopy, mounted on the 10.4 m Gran Telescopio CANARIAS, of two of these protostars. The spectrum of one of the objects shows evidence of accretion but not of outflows. In the latter object, the spectra show several emission lines indicating the presence of an actively accreting disk with outflow. We present estimates of the mass loss rate and the accretion rate from the disk, showing that the former exceeds the latter as observed in other known objects with evaporating disks. We also show evidence of a strong variability in the integrated flux observed in these objects as well as in the accretion and outflow diagnostics.

  8. Cosmological Evolution of the Central Engine in High-Luminosity, High-Accretion Rate AGN

    Directory of Open Access Journals (Sweden)

    Matteo Guainazzi


    Full Text Available In this paper I discuss the status of observational studies aiming at probing the cosmological evolution of the central engine in high-luminosity, high-accretion rate Active Galactic Nuclei (AGN. X-ray spectroscopic surveys, supported by extensive multi-wavelength coverage, indicate a remarkable invariance of the accretion disk plus corona system, and of their coupling up to redshifts z≈6. Furthermore, hard X-ray (E >10 keV surveys show that nearby Seyfert Galaxies share the same central engine notwithstanding their optical classication. These results suggest that the high-luminosity, high accretion rate quasar phase of AGN evolution is homogeneous over cosmological times.

  9. Formation of Extrasolar Giant Planets by Core Nucleated Accretion (United States)

    Bodenheimer, Peter

    Central objectives: Improving our understanding of extra-solar gas giant planet formation through the Core-Nucleated Accretion model, based on constraints derived from extrasolar planet observations. More specifically, we will determine: (1) the physical conditions in a protoplanetary disk, at various distances from the star, that may lead to the formation of gas giant planets; (2) the effects of planetary migration, due to resonant torques, on realistic planet formation models, when disk evolution is taken into account; (3) luminosities, surface temperatures, and other observable properties of giant planets formed through core-nucleated accretion, which will help in the characterization of young planet candidates detected via imaging techniques. Methods and techniques: We will pursue these objectives mainly by means of numerical modeling. A number of state-of-the-art codes will be employed to model in detail different processes at various stages of the planet's growth. (1) A multi-zone accretion code will be used to model accretion of planetesimals onto the solid core. This approach will allow us to account for the evolution of the size distribution of the planetesimals, the variations of their velocity distribution relative to the planet's core, the orbital spacing of potential competing cores, and a time variable rate of accretion of small planetesimals with a range of sizes as well as of stochastic impacts of larger bodies. All these effects will provide a more accurate determination of the time scales for the growth of a giant planet's solid core. (2) A planet formation code that includes a large number of physical effects, calculated in a detailed manner, will be used to model the planet evolution until gas accretion ends. The code computes the interaction of the planetesimals with the protoplanet's envelope and determines whether the planetesimals reach the core or are dissolved in the envelope. The calculation of the thermal structure of the envelope takes


    Energy Technology Data Exchange (ETDEWEB)

    Krasnopolsky, Ruben; Shang, Hsien [Academia Sinica, Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Li Zhiyun; Zhao Bo [University of Virginia, Astronomy Department, Charlottesville (United States)


    Magnetic flux redistribution lies at the heart of the problem of star formation in dense cores of molecular clouds that are magnetized to a realistic level. If all of the magnetic flux of a typical core were to be dragged into the central star, the stellar field strength would be orders of magnitude higher than the observed values. This well-known magnetic flux problem can in principle be resolved through non-ideal MHD effects. Two-dimensional (axisymmetric) calculations have shown that ambipolar diffusion, in particular, can transport magnetic flux outward relative to matter, allowing material to enter the central object without dragging the field lines along. We show through simulations that such axisymmetric protostellar accretion flows are unstable in three dimensions to magnetic interchange instability in the azimuthal direction. The instability is driven by the magnetic flux redistributed from the matter that enters the central object. It typically starts to develop during the transition from the prestellar phase of star formation to the protostellar mass accretion phase. In the latter phase, the magnetic flux is transported outward mainly through advection by strongly magnetized low-density regions that expand against the collapsing inflow. The tussle between the gravity-driven infall and magnetically driven expansion leads to a highly filamentary inner accretion flow that is more disordered than previously envisioned. The efficient outward transport of magnetic flux by advection lowers the field strength at small radii, making the magnetic braking less efficient and the formation of rotationally supported disks easier in principle. However, we find no evidence for such disks in any of our rotating collapse simulations. We conclude that the inner protostellar accretion flow is shaped to a large extent by the flux redistribution-driven magnetic interchange instability. How disks form in such an environment is unclear.

  11. Maximum mass of planetary embryos that formed in core-accretion models (United States)

    Alibert, Y.


    Context. In the core-accretion model, the typical size of solids that are accreted to form planetary embryos and planetary cores is debated. First, models assumed that the main part of planetary cores came from large-sized planetesimals, but other more recent models are based on the accretion of small-sized pebbles. Aims: The goal of this paper is to compute the maximum mass a growing planetary embryo can reach depending on the size of accreted planetesimals or pebbles, and to infer the possibility of growing the cores of giant planets and giant planets themselves. Methods: We computed the internal structure of the gas envelope of planetary embryos to determine the core mass that is necessary to bind an envelope large enough to destroy planetesimals or pebbles while they are gravitationally captured. We also considered the effect of the advection wind originating from the protoplanetary disk, following the results of Ormel et al. (2015, MNRAS, 447, 3512). Results: We show that for low-mass pebbles the envelope is large enough to destroy and vaporize pebbles completely before they can reach the core once the planetary embryo is larger than a fraction of the Earth mass. The material constituting pebbles is therefore released in the planetary envelope and is later on dispersed in the protoplanetary disk if the advection wind is strong enough. As a consequence, the growth of the planetary embryo is stopped at a mass that is so low that Kelvin-Helmholtz accretion cannot lead to the accretion of significant amounts of gas. For larger planetesimals, a similar process occurs but at much higher mass, on the order of ten Earth masses, and it is followed by rapid accretion of gas. Conclusions: If the effect of the advection wind is as efficient as described in Ormel et al. (2015), the combined effect of the vaporization of accreted solids in the envelope of forming planetary embryos and of this advection wind prevents the growth of the planets at masses lower than or similar


    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Andrew J.; Klein, Richard I. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McKee, Christopher F. [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720 (United States); Krumholz, Mark R. [Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA 94560 (United States); Teyssier, Romain, E-mail: [Service d' Astrophysique, CEA Saclay, 91191 Gif-sur-Yvette (France)


    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of {approx}2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of {approx}0.2 {beta}{sup 1/2} compared to the Bondi value, where {beta} is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  13. How much mass and angular momentum can the progenitors of carbon-enriched stars accrete? (United States)

    Matrozis, E.; Abate, C.; Stancliffe, R. J.


    The chemically peculiar barium stars, CH stars, and most carbon-enhanced metal-poor (CEMP) stars are all believed to be the products of mass transfer in binary systems from a now extinct asymptotic giant branch (AGB) primary star. The mass of the AGB star and the orbital parameters of the system are the key factors usually considered when determining how much mass is transferred onto the lower-mass main-sequence companion. What is usually neglected, however, is the angular momentum of the accreted material, which should spin up the accreting star. If the star reaches critical rotation, further accretion should cease until the excess angular momentum is somehow dealt with. If the star cannot redistribute or lose the angular momentum while the primary is on the AGB, the amount of mass accreted could be much lower than otherwise expected. Here we present calculations, based on detailed stellar evolution models, of the mass that can be accreted by putative progenitors of Ba and CEMP stars before they reach critical rotation under the assumption that no angular momentum loss occurs during the mass transfer. We consider different accretion rates and values of specific angular momentum. The most stringent limits on the accreted masses result from considering accretion from a Keplerian accretion disk, which is likely present during the formation of most extrinsically-polluted carbon-enriched stars. Our calculations indicate that in this scenario only about 0.05 M⊙ of material can be added to the accreting star before it reaches critical rotation, which is much too low to explain the chemical enrichment of many Ba and CEMP stars. Either the specific angular momentum of the accreted material has to effectively be lower by about a factor of ten than the Keplerian value, or significant angular momentum losses must occur for substantial accretion to take place.

  14. Dissecting disks around B-type protostars (United States)

    Sanchez-Monge, Alvaro; Cesaroni, Riccardo; Beltran, Maite; Kumar, M. S. Nanda; Stanke, Thomas; Zinnecker, Hans; Etoka, Sandra; Galli, Daniele; Hummel, Christian A.; Moscadelli, Luca; Preibisch, Thomas; Ratzka, Thorsten; van der Tak, Floris F. S.; Vig, Sarita; Walmsley, C. Malcolm; Wang, Kuo-Song


    Recent theoretical models indicate that OB-type stars could form through disk-mediated accretion, like their low mass counterparts. However, on the observational side, circumstellar disks appear still elusive, especially around the most massive (proto)stars. As for early B-type (proto)stars, an ever growing number of disk candidates has been proposed, but only very few of these present evidence for Keplerian rotation. The advent of ALMA provides us with the necessary sensitivity and angular resolution to assess the existence of such disks and possibly establish their rotation curves. With this in mind, we have performed ALMA observations with the highest possible resolution (~0.4") at 350 GHz to search for circumstellar disks in a couple of presumably massive young stellar objects with luminosities of ~10000 Lsun and associated with bipolar nebulosities suggestive of the presence of disk/outflow systems. By observing simultaneously core and jet tracers, we could reveal molecular cores with velocity gradients perpendicular to the corresponding jets. In at least one case (G35.20-0.74 N), the core structure appears resolved and the velocity field can be fitted with an almost edge-on Keplerian disk rotating about a central mass of 18 Msun. This finding is consistent with the results of a recent study of the CO first overtone bandhead emission at 2.3mum towards G35.20-0.74 N. The disk radius and mass are >2500 au and 3 Msun. To reconcile the observed bolometric luminosity (3x10^4 Lsun) with the estimated stellar mass of 18 Msun, we propose that the latter is the total mass of a binary system.

  15. Constraining the structure of the transition disk HD 135344B (SAO 206462) by simultaneous modeling of multi-wavelength gas and dust observations

    NARCIS (Netherlands)

    Carmona, Andres; Christophe, Pinte; Thi, Wing Fai; Myriam, Benisty; Menard, Francois; Grady, Carol; Kamp, Inga; Peter, Woitke; Olofsson, Johan; Roberge, Aki; Brittain, Sean; Duchene, Gaspard; Meeus, Gwendolyn; Martin-Zaïdi, Claire; Dent, Bill; Le Bouquin, Jean Baptiste; Berger, Jean Philippe

    Constraining the gas and dust disk structure of transition disks, particularly in the inner dust cavity, is a crucial step towards understanding the link between them and planet formation. HD 135344B is an accreting (pre-) transition disk that displays emission of warm CO inside its dust cavity. We

  16. Evolution of migrating protoplanets heated by pebble accretion (United States)

    Chrenko, Ondrej; Broz, Miroslav; Lambrechts, Michiel


    We study the interactions in a protoplanetary system consisting of a gas disk, a pebble disk and embedded low-mass protoplanets. The hydrodynamic simulations are performed using a new code based on 2D FARGO (Masset 2000) which we call FARGO_THORIN ( The code treats the hydrodynamics of gas and pebbles within a two-fluid approximation, accounts for the heating and cooling processes in the gaseous component (including heating due to pebble accretion) and propagates the planets in 3D using a high-order integration scheme (IAS15; Rein & Spiegel 2015). Our aim is to investigate how pebble accretion alters the orbital evolution of protoplanets undergoing Type-I migration.First, we demonstrate that pebble accretion can heat the protoplanets so that their luminosity induces the heating torque (Benítez-Llambay et al. 2015) and the hot-trail effect (Chrenko et al. 2017; Eklund & Masset 2017). The heating torque is always positive and alters the migration rates and directions profoundly, thus changing the position of planet traps and deserts. The hot-trail effect, on the other hand, pumps the eccentricity of initially circular orbits up to e ~ h. After becoming eccentric, the protoplanets exhibit reduced probability of resonant locking during the migration and moreover, their close encounters become more frequent and provide more opportunities for scattering or merger events. The mergers can be massive enough to become giant planet cores. We discuss the importance of the excited eccentricities and violent orbital evolution for the extrasolar planet population synthesis. Finally, we present an extended model with flux-mean opacities caused by a coupled disk of coagulating dust grains with a realistic size distribution. The aim of this model is to constrain possible pathways of migrating planets towards the inner rim of the protoplanetary disk.

  17. Protostellar accretion traced with chemistry

    DEFF Research Database (Denmark)

    Frimann, Søren; Jørgensen, Jes Kristian; Padoan, Paolo


    Context. Understanding how protostars accrete their mass is a centralquestion of star formation. One aspect of this is trying to understandwhether the time evolution of accretion rates in deeply embedded objectsis best characterised by a smooth decline from early to late stages orby intermittent...

  18. CN rings in full protoplanetary disks around young stars as probes of disk structure (United States)

    Cazzoletti, P.; van Dishoeck, E. F.; Visser, R.; Facchini, S.; Bruderer, S.


    Aims: Bright ring-like structure emission of the CN molecule has been observed in protoplanetary disks. We investigate whether such structures are due to the morphology of the disk itself or if they are instead an intrinsic feature of CN emission. With the intention of using CN as a diagnostic, we also address to which physical and chemical parameters CN is most sensitive. Methods: A set of disk models were run for different stellar spectra, masses, and physical structures via the 2D thermochemical code DALI. An updated chemical network that accounts for the most relevant CN reactions was adopted. Results: Ring-shaped emission is found to be a common feature of all adopted models; the highest abundance is found in the upper outer regions of the disk, and the column density peaks at 30-100 AU for T Tauri stars with standard accretion rates. Higher mass disks generally show brighter CN. Higher UV fields, such as those appropriate for T Tauri stars with high accretion rates or for Herbig Ae stars or for higher disk flaring, generally result in brighter and larger rings. These trends are due to the main formation paths of CN, which all start with vibrationally excited H_2^* molecules, that are produced through far ultraviolet (FUV) pumping of H2. The model results compare well with observed disk-integrated CN fluxes and the observed location of the CN ring for the TW Hya disk. Conclusions: CN rings are produced naturally in protoplanetary disks and do not require a specific underlying disk structure such as a dust cavity or gap. The strong link between FUV flux and CN emission can provide critical information regarding the vertical structure of the disk and the distribution of dust grains which affects the UV penetration, and could help to break some degeneracies in the SED fitting. In contrast with C2H or c-C3H2, the CN flux is not very sensitive to carbon and oxygen depletion.

  19. Black Hole Accretion in Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Agnieszka Janiuk


    Full Text Available We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of matter powers the relativistic jets, responsible for the gamma ray prompt emission. The significant number density of neutrons in the disk and outflowing material will cause subsequent formation of heavier nuclei. We study the process of nucleosynthesis and its possible observational consequences. We also apply our scenario to the recent observation of the gravitational wave signal, detected on 14 September 2015 by the two Advanced LIGO detectors, and related to an inspiral and merger of a binary black hole system. A gamma ray burst that could possibly be related with the GW150914 event was observed by the Fermi satellite. It had a duration of about 1 s and appeared about 0.4 s after the gravitational-wave signal. We propose that a collapsing massive star and a black hole in a close binary could lead to the event. The gamma ray burst was powered by a weak neutrino flux produced in the star remnant’s matter. Low spin and kick velocity of the merged black hole are reproduced in our simulations. Coincident gravitational-wave emission originates from the merger of the collapsed core and the companion black hole.

  20. Accretion by the Galaxy

    Directory of Open Access Journals (Sweden)

    Binney J.


    Full Text Available Cosmology requires at least half of the baryons in the Universe to be in the intergalactic medium, much of which is believed to form hot coronae around galaxies. Star-forming galaxies must be accreting from their coronae. Hi observations of external galaxies show that they have Hi halos associated with star formation. These halos are naturally modelled as ensembles of clouds driven up by supernova bubbles. These models can fit the data successfully only if clouds exchange mass and momentum with the corona. As a cloud orbits, it is ablated and forms a turbulent wake where cold high-metallicity gas mixes with hot coronal gas causing the prompt cooling of the latter. As a consequence the total mass of Hi increases. This model has recently been used to model the Leiden-Argentina-Bonn survey of Galactic Hi. The values of the model’s parameters that are required to model NGC 891, NGC 2403 and our Galaxy show a remarkable degree of consistency, despite the very different natures of the two external galaxies and the dramatic difference in the nature of the data for our Galaxy and the external galaxies. The parameter values are also consistent with hydrodynamical simulations of the ablation of individual clouds. The model predicts that a galaxy that loses its cool-gas disc for instance through a major merger cannot reform it from its corona; it can return to steady star formation only if it can capture a large body of cool gas, for example by accreting a gas-rich dwarf. Thus the model explains how major mergers can make galaxies “red and dead.”

  1. Oscillations of disks

    CERN Document Server

    Kato, Shoji


    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  2. Galactic Black Holes in the Hard State: A Multi-Wavelength View of Accretion and Ejection (United States)

    Kalemci; Tomsick, John A.; Migliari; Corbel; Markoff


    The canonical hard state is associated with emission from all three fundamental accretion components: the accretion disk, the hot accretion disk corona and the jet. On top of these, the hard state also hosts very rich temporal variability properties (low frequency QPOs in the PDS, time lags, long time scale evolution). Our group has been working on the major questions of the hard state both observationally (with mult i-wavelength campaigns using RXTE, Swift, Suzaku, Spitzer, VLA, ATCA, SMARTS) and theoretically (through jet models that can fit entire SEDs). Through spectral and temporal analysis we seek to determine the geometry of accretion components, and relate the geometry to the formation and emission from a jet. In this presentation I will review the recent contributions of our group to the field, including the Swift results on the disk geometry at low accretion rates, the jet model fits to the hard state SEDs (including Spitzer data) of GRO J1655-40, and the final results on the evolution of spectral (including X-ray, radio and infrared) and temporal properties of elected black holes in the hard states. I will also talk about impact of ASTROSAT to the science objective of our group.

  3. Effect of accretion on the pre-main-sequence evolution of low-mass stars and brown dwarfs (United States)

    Vorobyov, Eduard I.; Elbakyan, Vardan; Hosokawa, Takashi; Sakurai, Yuya; Guedel, Manuel; Yorke, Harold


    Aims: The pre-main-sequence evolution of low-mass stars and brown dwarfs is studied numerically starting from the formation of a protostellar or proto-brown dwarf seed and taking into account the mass accretion onto the central object during the initial several Myr of evolution. Methods: The stellar evolution was computed using the STELLAR evolution code with recent modifications. The mass accretion rates were taken from numerical hydrodynamics models by computing the circumstellar disk evolution starting from the gravitational collapse of prestellar cloud cores of various mass and angular momentum. The resulting stellar evolution tracks were compared with the isochrones and isomasses calculated using non-accreting models. Results: We find that mass accretion in the initial several Myr of protostellar evolution can have a strong effect on the subsequent evolution of young stars and brown dwarfs. The disagreement between accreting and non-accreting models in terms of the total stellar luminosity L∗, stellar radius R∗, and effective temperature Teff depends on the thermal efficiency of accretion, that is, on the fraction of accretion energy that is absorbed by the central object. The largest mismatch is found for the cold accretion case, in which essentially all accretion energy is radiated away. The relative deviations in L∗ and R∗ in this case can reach 50% for objects 1.0 Myr old, and they remain notable even for objects 10 Myr old. In the hot and hybrid accretion cases, in which a constant fraction of accretion energy is absorbed, the disagreement between accreting and non-accreting models becomes less pronounced, but still remains notable for objects 1.0 Myr old. These disagreements may lead to an incorrect age estimate for objects of (sub-)solar mass when using the isochrones that are based on non-accreting models, as has also been noted previously. We find that objects with strong luminosity bursts exhibit notable excursions in the L∗-Teff diagram

  4. Analyzing the Spectra of Accreting X-Ray Pulsars (United States)

    Wolff, Michael

    This proposal seeks funding for the analysis of accretion-powered X-ray pulsar spectra from NASA/ HEASARC archived X-ray data. Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near high mass X-ray binary systems. Such systems have accretion flows where plasma is initially channeled from an accretion disk by the strong neutron star magnetic field, eventually falling onto the magnetic polar cap of the neutron star compact object. Many of these accreting X-ray pulsars have X-ray spectra that consist of broad power-law continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. The energies of these cyclotron line features have recently been shown to vary with X-ray luminosity in a number of sources such as Her X-1 and V 0332+53, a phenomenon not well understood. Another recent development is the relatively new analytic model for the spectral continuum formation in accretion-powered pulsar systems developed by Becker & Wolff. In their formalism the accretion flows are assumed to go through radiation- dominated radiative shocks and settle onto the neutron star surface. The radiation field consists of strongly Comptonized bremsstrahlung emission from the entire plasma, Comptonized cyclotron emission from the de-excitations of Landau-excited electrons in the neutron star magnetic field, and Comptonized black-body emission from a thermal mound near the neutron star surface. We seek to develop the data analysis tools to apply this model framework to the X-ray data from a wide set of sources to make progress characterizing the basic accretion properties (e.g., magnetic field strength, plasma temperatures, polar cap size, accretion rate per unit area, dominance of bulk vs. thermal Comptonization) as well as understanding the variations of the cyclotron line energies with X-ray luminosity. The three major goals of our proposed work are as follows: In the first year

  5. A Pulsar and a Disk (United States)

    Kohler, Susanna


    V appeared.Hong and collaborators were then left with the task of piecing together this strange behavior into a picture of what was happening with this binary system.The authors proposed model for SXP 214. Here the binary has a ~30-day orbit tilted at 15 to the circumstellar disk. The pulsar passes through the circumstellar disk of its companion once per orbit. The interval marked A (orange line) is suggested as the period of time corresponding to the Chandra observations in this study: just as the neutron star is emerging from the disk after passing through it. [Hong et al. 2016]Passing Through a DiskIn the model the authors propose, the pulsar is on a ~30-day eccentric orbit that takes it through the circumstellar disk of its companion once per orbit.In this picture, the authors Chandra detections must have been made just as the pulsar was emerging from the circumstellar disk. The disk had initially hidden the soft X-ray emission from the pulsar, but as the pulsar emerged, that component became brighter, causing both the overall rise in X-ray counts and the shift in the spectrum to lower energies.Since the pulsars accretion is fueled by material picked up as it passes through the circumstellar disk, the accretion from a recent passage through the disk likely also caused the observed spin-up to the shorter period.If the authors model is correct, this series of observations of the pulsar as it emerges from the disk provides a rare opportunity to examine what happens to X-ray emission during this passage. More observations of this intriguing system can help us learn about the properties of the disk and the emission geometry of the neutron star surface.CitationJaeSub Hong et al 2016 ApJ 826 4. doi:10.3847/0004-637X/826/1/4

  6. Wobbling and Precessing Jets from Warped Disks in Binary Systems (United States)

    Sheikhnezami, Somayeh; Fendt, Christian


    We present results of the first ever three-dimensional (3D) magnetohydrodynamic (MHD) simulations of the accretion-ejection structure. We investigate the 3D evolution of jets launched symmetrically from single stars but also jets from warped disks in binary systems. We have applied various model setups and tested them by simulating a stable and bipolar symmetric 3D structure from a single star-disk-jet system. Our reference simulation maintains a good axial symmetry and also a bipolar symmetry for more than 500 rotations of the inner disk, confirming the quality of our model setup. We have then implemented a 3D gravitational potential (Roche potential) due by a companion star and run a variety of simulations with different binary separations and mass ratios. These simulations show typical 3D deviations from axial symmetry, such as jet bending outside the Roche lobe or spiral arms forming in the accretion disk. In order to find indications of precession effects, we have also run an exemplary parameter setup, essentially governed by a small binary separation of only ≃200 inner disk radii. This simulation shows a strong indication that we observe the onset of a jet precession caused by the wobbling of the jet-launching disk. We estimate the opening angle of the precession cone defined by the lateral motion of the jet axis to be about 4° after about 5000 dynamical time steps.

  7. Galactic fountains and gas accretion


    Marinacci, F.; Binney, J.; Fraternali, F.; Nipoti, C.; Ciotti, L.; Londrillo, P.


    Star-forming disc galaxies such as the Milky Way need to accrete $\\gsim$ 1 $M_{\\odot}$ of gas each year to sustain their star formation. This gas accretion is likely to come from the cooling of the hot corona, however it is still not clear how this process can take place. We present simulations supporting the idea that this cooling and the subsequent accretion are caused by the passage of cold galactic-fountain clouds through the hot corona. The Kelvin-Helmholtz instability strips gas from th...

  8. Protostellar accretion traced with chemistry

    DEFF Research Database (Denmark)

    Frimann, Søren; Jørgensen, Jes Kristian; Dunham, Michael M.


    Context. Understanding how accretion proceeds is a key question of star formation, with important implications for both the physical and chemical evolution of young stellar objects. In particular, very little is known about the accretion variability in the earliest stages of star formation. Aims....... Our aim is to characterise protostellar accretion histories towards individual sources by utilising sublimation and freeze-out chemistry of CO. Methods. A sample of 24 embedded protostars are observed with the Submillimeter Array (SMA) in context of the large program "Mass Assembly of Stellar Systems...

  9. Space Telescope and Optical Reverberation Mapping Project. VI. Reverberating Disk Models for NGS 5548 (United States)

    Starkey, D.; Gehrels, Cornelis; Horne, Keith; Fausnaugh, M. M.; Peterson, B. M.; Bentz, M. C.; Kochanek, C. S.; Denney, K. D.; Edelson, R.; Goad, M. R.; hide


    We conduct a multi-wavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 Angstrom to 9157 Angstrom) combine simultaneous Hubble Space Telescope, Swift, and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination i = 36deg +/- 10deg, temperature T(sub 1) = (44+/-6) times 10 (exp 3)K at 1 light day from the black hole, and a temperature radius slope (T proportional to r (exp -alpha)) of alpha = 0.99 +/- 0.03. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L/L(sub Edd) = 0.1.

  10. Space Telescope and Optical Reverberation Mapping Project.VI. Reverberating Disk Models for NGC 5548 (United States)

    Starkey, D.; Horne, Keith; Fausnaugh, M. M.; Peterson, B. M.; Bentz, M. C.; Kochanek, C. S.; Denney, K. D.; Edelson, R.; Goad, M. R.; De Rosa, G.; Anderson, M. D.; Arévalo, P.; Barth, A. J.; Bazhaw, C.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Cackett, E. M.; Carini, M. T.; Croxall, K. V.; Crenshaw, D. M.; Dalla Bontà, E.; De Lorenzo-Cáceres, A.; Dietrich, M.; Efimova, N. V.; Ely, J.; Evans, P. A.; Filippenko, A. V.; Flatland, K.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Gonzalez, L.; Gorjian, V.; Grier, C. J.; Grupe, D.; Hall, P. B.; Hicks, S.; Horenstein, D.; Hutchison, T.; Im, M.; Jensen, J. J.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kennea, J. A.; Kim, S. C.; Kim, M.; Klimanov, S. A.; Korista, K. T.; Kriss, G. A.; Lee, J. C.; Leonard, D. C.; Lira, P.; MacInnis, F.; Manne-Nicholas, E. R.; Mathur, S.; McHardy, I. M.; Montouri, C.; Musso, R.; Nazarov, S. V.; Norris, R. P.; Nousek, J. A.; Okhmat, D. N.; Pancoast, A.; Parks, J. R.; Pei, L.; Pogge, R. W.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Saylor, D. A.; Schimoia, J. S.; Schnülle, K.; Sergeev, S. G.; Siegel, M. H.; Spencer, M.; Sung, H.-I.; Teems, K. G.; Turner, C. S.; Uttley, P.; Vestergaard, M.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Zheng, W.; Zu, Y.


    We conduct a multiwavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 \\mathringA to 9157 \\mathringA ) combine simultaneous Hubble Space Telescope, Swift, and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination I=36^\\circ +/- 10^\\circ , temperature {T}1=(44+/- 6)× {10}3 K at 1 light day from the black hole, and a temperature-radius slope (T\\propto {r}-α ) of α =0.99+/- 0.03. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L/{L}{Edd}=0.1.

  11. Disks around merging binary black holes: From GW150914 to supermassive black holes (United States)

    Khan, Abid; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart L.


    We perform magnetohydrodynamic simulations in full general relativity of disk accretion onto nonspinning black hole binaries with mass ratio q =29 /36 . We survey different disk models which differ in their scale height, total size and magnetic field to quantify the robustness of previous simulations on the initial disk model. Scaling our simulations to LIGO GW150914 we find that such systems could explain possible gravitational wave and electromagnetic counterparts such as the Fermi GBM hard x-ray signal reported 0.4 s after GW150915 ended. Scaling our simulations to supermassive binary black holes, we find that observable flow properties such as accretion rate periodicities, the emergence of jets throughout inspiral, merger and postmerger, disk temperatures, thermal frequencies, and the time delay between merger and the boost in jet outflows that we reported in earlier studies display only modest dependence on the initial disk model we consider here.

  12. Temperature fluctuations driven by magnetorotational instability in protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    McNally, Colin P. [Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Hubbard, Alexander; Low, Mordecai-Mark Mac [Department of Astrophysics, American Museum of Natural History, New York, NY 10024-5192 (United States); Yang, Chao-Chin, E-mail:, E-mail:, E-mail:, E-mail: [Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, SE-22100 Lund (Sweden)


    The magnetorotational instability (MRI) drives magnetized turbulence in sufficiently ionized regions of protoplanetary disks, leading to mass accretion. The dissipation of the potential energy associated with this accretion determines the thermal structure of accreting regions. Until recently, the heating from the turbulence has only been treated in an azimuthally averaged sense, neglecting local fluctuations. However, magnetized turbulence dissipates its energy intermittently in current sheet structures. We study this intermittent energy dissipation using high resolution numerical models including a treatment of radiative thermal diffusion in an optically thick regime. Our models predict that these turbulent current sheets drive order-unity temperature variations even where the MRI is damped strongly by Ohmic resistivity. This implies that the current sheet structures where energy dissipation occurs must be well-resolved to correctly capture the flow structure in numerical models. Higher resolutions are required to resolve energy dissipation than to resolve the magnetic field strength or accretion stresses. The temperature variations are large enough to have major consequences for mineral formation in disks, including melting chondrules, remelting calcium-aluminum-rich inclusions, and annealing silicates; and may drive hysteresis: current sheets in MRI active regions could be significantly more conductive than the remainder of the disk.


    Energy Technology Data Exchange (ETDEWEB)

    Canto, J.; Sanchez-Salcedo, F. J. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Ap. 70-468, 04510 D.F. (Mexico); Esquivel, A.; Raga, A. C., E-mail:, E-mail:, E-mail: [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510 Mexico D.F. (Mexico)


    We develop an analytical model for the accretion and gravitational drag on a point mass that moves hypersonically in the midplane of a gaseous disk with a Gaussian vertical density stratification. Such a model is of interest for studying the interaction between a planet and a protoplanetary disk, as well as the dynamical decay of massive black holes in galactic nuclei. The model assumes that the flow is ballistic, and gives fully analytical expressions for both the accretion rate onto the point mass and the gravitational drag it suffers. The expressions are further simplified by taking the limits of a thick and of a thin disk. The results for the thick disk reduce correctly to those for a uniform density environment. We find that for a thin disk (small vertical scaleheight compared to the gravitational radius), the accretion rate is proportional to the mass of the moving object and to the surface density of the disk, while the drag force is independent of the velocity of the object. The gravitational deceleration of the hypersonic perturber in a thin disk was found to be independent of its parameters (i.e., mass or velocity) and depends only on the surface mass density of the disk. The predictions of the model are compared to the results of three-dimensional hydrodynamical simulations, with reasonable agreement.

  14. Jets, black holes and disks in blazars

    Directory of Open Access Journals (Sweden)

    Ghisellini Gabriele


    Full Text Available The Fermi and Swift satellites, together with ground based Cherenkov telescopes, has greatly improved our knowledge of blazars, namely Flat Spectrum Radio Quasars and BL Lac objects, since all but the most powerful emit most of their electro–magnetic output at γ–ray energies, while the very powerful blazars emit mostly in the hard X–ray region of the spectrum. Often they show coordinated variability at different frequencies, suggesting that in these cases the same population of electrons is at work, in a single zone of the jet. The location of this region along the jet is a matter of debate. The jet power correlates with the mass accretion rate, with jets existing at all values of disk luminosities, measured in Eddington units, sampled so far. The most powerful blazars show clear evidence of the emission from their disks, and this has revived methods of finding the black hole mass and accretion rate by modelling a disk spectrum to the data. Being so luminous, blazars can be detected also at very high redshift, and therefore are a useful tool to explore the far universe. One interesting line of research concerns how heavy are their black holes at high redshifts. If we associate the presence of a relativistic jets with a fastly spinning black hole, then we naively expect that the accretion efficiency is larger than for non–spinning holes. As a consequence, the black hole mass in jetted systems should grow at a slower rate. In turn, this would imply that, at high redshifts, the heaviest black holes should be in radio–quiet quasars. We instead have evidences of the opposite, challenging our simple ideas of how a black hole grows.

  15. Strong disk winds traced throughout outbursts in black-hole X-ray binaries. (United States)

    Tetarenko, B E; Lasota, J-P; Heinke, C O; Dubus, G; Sivakoff, G R


    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1-0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2-1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  16. Strong disk winds traced throughout outbursts in black-hole X-ray binaries (United States)

    Tetarenko, B. E.; Lasota, J.-P.; Heinke, C. O.; Dubus, G.; Sivakoff, G. R.


    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1–0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2–1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  17. Disk Storage Server

    CERN Multimedia

    This model was a disk storage server used in the Data Centre up until 2012. Each tray contains a hard disk drive (see the 5TB hard disk drive on the main disk display section - this actually fits into one of the trays). There are 16 trays in all per server. There are hundreds of these servers mounted on racks in the Data Centre, as can be seen.

  18. Retrograde versus Prograde Models of Accreting Black Holes

    Directory of Open Access Journals (Sweden)

    David Garofalo


    Full Text Available There is a general consensus that magnetic fields, accretion disks, and rotating black holes are instrumental in the generation of the most powerful sources of energy in the known universe. Nonetheless, because magnetized accretion onto rotating black holes involves both the complications of nonlinear magnetohydrodynamics that currently cannot fully be treated numerically, and uncertainties about the origin of magnetic fields that at present are part of the input, the space of possible solutions remains less constrained. Consequently, the literature still bears witness to the proliferation of rather different black hole engine models. But the accumulated wealth of observational data is now sufficient to meaningfully distinguish between them. It is in this light that this critical paper compares the recent retrograde framework with standard “spin paradigm” prograde models.

  19. Probing the Accretion Geometry of Black Holes with X-Ray Polarization (United States)

    Schnitman, Jeremy D.


    In the coming years, new space missions will be able to measure X-ray polarization at levels of 1% or better in the approx.1-10 keV energy band. In particular, X-ray polarization is an ideal tool for determining the nature of black hole (BH) accretion disks surrounded by hot coronae. Using a Monte Carlo radiation transport code in full general relativity, we calculate the spectra and polarization features of these BH systems. At low energies, the signal is dominated by the thermal flux coming directly from the optically thick disk. At higher energies, the thermal seed photons have been inverse-Compton scattered by the corona, often reflecting back off the disk before reaching the observer, giving a distinctive polarization signature. By measuring the degree and angle of this X-ray polarization, we can infer the BH inclination, the emission geometry of the accretion flow, and also determine the spin of the black hole.

  20. Observability of characteristic binary-induced structures in circumbinary disks (United States)

    Avramenko, R.; Wolf, S.; Illenseer, T. F.


    Context. A substantial fraction of protoplanetary disks form around stellar binaries. The binary system generates a time-dependent non-axisymmetric gravitational potential, inducing strong tidal forces on the circumbinary disk. This leads to a change in basic physical properties of the circumbinary disk, which should in turn result in unique structures that are potentially observable with the current generation of instruments. Aims: The goal of this study is to identify these characteristic structures, constrain the physical conditions that cause them, and evaluate the feasibility of observing them in circumbinary disks. Methods: To achieve this, first we perform 2D hydrodynamic simulations. The resulting density distributions are post-processed with a 3D radiative transfer code to generate re-emission and scattered light maps. Based on these distributions, we study the influence of various parameters, such as the mass of the stellar components, mass of the disk, and binary separation on observable features in circumbinary disks. Results: We find that the Atacama Large (sub-)Millimetre Array (ALMA) as well as the European Extremely Large Telescope (E-ELT) are capable of tracing asymmetries in the inner region of circumbinary disks, which are affected most by the binary-disk interaction. Observations at submillimetre/millimetre wavelengths allow the detection of the density waves at the inner rim of the disk and inner cavity. With the E-ELT one can partially resolve the innermost parts of the disk in the infrared wavelength range, including the disk's rim, accretion arms, and potentially the expected circumstellar disks around each of the binary components.

  1. Rethinking Black Hole Accretion Discs (United States)

    Salvesen, Greg

    Accretion discs are staples of astrophysics. Tapping into the gravitational potential energy of the accreting material, these discs are highly efficient machines that produce copious radiation and extreme outflows. While interesting in their own right, accretion discs also act as tools to study black holes and directly influence the properties of the Universe. Black hole X-ray binaries are fantastic natural laboratories for studying accretion disc physics and black hole phenomena. Among many of the curious behaviors exhibited by these systems are black hole state transitions -- complicated cycles of dramatic brightening and dimming. Using X-ray observations with high temporal cadence, we show that the evolution of the accretion disc spectrum during black hole state transitions can be described by a variable disc atmospheric structure without invoking a radially truncated disc geometry. The accretion disc spectrum can be a powerful diagnostic for measuring black hole spin if the effects of the disc atmosphere on the emergent spectrum are well-understood; however, properties of the disc atmosphere are largely unconstrained. Using statistical methods, we decompose this black hole spin measurement technique and show that modest uncertainties regarding the disc atmosphere can lead to erroneous spin measurements. The vertical structure of the disc is difficult to constrain due to our ignorance of the contribution to hydrostatic balance by magnetic fields, which are fundamental to the accretion process. Observations of black hole X-ray binaries and the accretion environments near supermassive black holes provide mounting evidence for strong magnetization. Performing numerical simulations of accretion discs in the shearing box approximation, we impose a net vertical magnetic flux that allows us to effectively control the level of disc magnetization. We study how dynamo activity and the properties of turbulence driven by the magnetorotational instability depend on the

  2. The Magnetospheres of (Accreting Neutron Stars

    Directory of Open Access Journals (Sweden)

    Wilms J.


    Full Text Available I give an overview of the most important observational tools to study the magnetospheres of accreting neutron stars, with a focus on accreting neutron stars in high mass X-ray binary systems. Topics covered are the different types of accretion onto neutron stars and the structure of the accretion column, and how models for these can be tested with observations.

  3. The Soft State of Cygnus X-1 Observed With NuSTAR: A Variable Corona and a Stable Inner Disk

    DEFF Research Database (Denmark)

    Walton, D. J.; Tomsick, J. A.; Madsen, K. K.


    , we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin and the iron abundance...

  4. Rapid growth of seed black holes in the early universe by supra-exponential accretion. (United States)

    Alexander, Tal; Natarajan, Priyamvada


    Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang. Copyright © 2014, American Association for the Advancement of Science.


    Energy Technology Data Exchange (ETDEWEB)

    Graninger, Dawn; Öberg, Karin I.; Qi, Chunhua [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kastner, Joel, E-mail: [Center for Imaging Science, School of Physics and Astronomy, and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)


    The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3–2 toward the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3–2 and IRAM 30 m observations of HCN and HNC 1–0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1–0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. However, to realize the full potential of HNC as a disk tracer requires a combination of high SNR spatially resolved observations of HNC and HCN and disk-specific HNC chemical modeling.

  6. Disk Emission from Magnetohydrodynamic Simulations of Spinning Black Holes (United States)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.


    We present the results of a new series of global, three-dimensional, relativistic magnetohydrodynamic (MHD) simulations of thin accretion disks around spinning black holes. The disks have aspect ratios of H/R approx. 0.05 and spin parameters of a/M = 0, 0.5, 0.9, and 0.99. Using the ray-tracing code Pandurata, we generate broadband thermal spectra and polarization signatures from the MHD simulations. We find that the simulated spectra can be well fit with a simple, universal emissivity profile that better reproduces the behavior of the emission from the inner disk, compared to traditional analyses carried out using a Novikov-Thorne thin disk model. Finally, we show how spectropolarization observations can be used to convincingly break the spin-inclination degeneracy well known to the continuum-fitting method of measuring black hole spin.

  7. Magnetospheric Accretion in Close Pre-main-sequence Binaries (United States)

    Ardila, David R.; Jonhs-Krull, Christopher; Herczeg, Gregory J.; Mathieu, Robert D.; Quijano-Vodniza, Alberto


    The transfer of matter between a circumbinary disk and a young binary system remains poorly understood, obscuring the interpretation of accretion indicators. To explore the behavior of these indicators in multiple systems, we have performed the first systematic time-domain study of young binaries in the ultraviolet. We obtained far- and near-ultraviolet HST/COS spectra of the young spectroscopic binaries DQ Tau and UZ Tau E. Here we focus on the continuum from 2800 to 3200 Å and on the C iv doublet (λλ1548.19, 1550.77 Å) as accretion diagnostics. Each system was observed over three or four consecutive binary orbits, at phases ∼0, 0.2, 0.5, and 0.7. Those observations are complemented by ground-based U-band measurements. Contrary to model predictions, we do not detect any clear correlation between accretion luminosity and phase. Further, we do not detect any correlation between C iv flux and phase. For both stars the appearance of the C iv line is similar to that of single Classical T Tauri Stars (CTTSs), despite the lack of stable long-lived circumstellar disks. However, unlike the case in single CTTSs, the narrow and broad components of the C iv lines are uncorrelated, and we argue that the narrow component is powered by processes other than accretion, such as flares in the stellar magnetospheres and/or enhanced activity in the upper atmosphere. We find that both stars contribute equally to the narrow component C iv flux in DQ Tau, but the primary dominates the narrow component C iv emission in UZ Tau E. The C iv broad component flux is correlated with other accretion indicators, suggesting an accretion origin. However, the line is blueshifted, which is inconsistent with its origin in an infall flow close to the star. It is possible that the complicated geometry of the region, as well as turbulence in the shock region, are responsible for the blueshifted line profiles.

  8. Childhood to adolescence: dust and gas clearing in protoplanetary disks (United States)

    Brown, Joanna Margaret

    Disks are ubiquitous around young stars. Over time, disks dissipate, revealing planets that formed hidden by their natal dust. Since direct detection of young planets at small orbital radii is currently impossible, other tracers of planet formation must be found. One sign of disk evolution, potentially linked to planet formation, is the opening of a gap or inner hole in the disk. In this thesis, I have identified and characterized several cold disks with large inner gaps but retaining massive primordial outer disks. While cold disks are not common, with ~5% of disks showing signs of inner gaps, they provide proof that at least some disks evolve from the inside-out. These large gaps are equivalent to dust clearing from inside the Earth's orbit to Neptune's orbit or even the inner Kuiper belt. Unlike more evolved systems like our own, the central star is often still accreting and a large outer disk remains. I identified four cold disks in Spitzer 5-40 μm spectra and modeled these disks using a 2-D radiative transfer code to determine the gap properties. Outer gap radii of 20-45 AU were derived. However, spectrophotometric identification is indirect and model-dependent. To validate this interpretation, I observed three disks with a submillimeter interferometer and obtained the first direct images of the central holes. The images agree well with the gap sizes derived from the spectrophotometry. One system, LkH&alpha 330, has a very steep outer gap edge which seems more consistent with gravitational perturbation rather than gradual processes, such as grain growth and settling. Roughly 70% of cold disks show CO v=1&rarr 0 gas emission from the inner 1 AU and therefore are unlikely to have evolved due to photoevaporation. The derived rotation temperatures are significantly lower for the cold disks than disks without gaps. Unresolved (sub)millimeter photometry shows that cold disks have steeper colors, indicating that they are optically thin at these wavelengths, unlike

  9. Relativistic reverberation in the accretion flow of a tidal disruption event. (United States)

    Kara, Erin; Miller, Jon M; Reynolds, Chris; Dai, Lixin


    Our current understanding of the curved space-time around supermassive black holes is based on actively accreting black holes, which make up only ten per cent or less of the overall population. X-ray observations of that small fraction reveal strong gravitational redshifts that indicate that many of these black holes are rapidly rotating; however, selection biases suggest that these results are not necessarily reflective of the majority of black holes in the Universe. Tidal disruption events, where a star orbiting an otherwise dormant black hole gets tidally shredded and accreted onto the black hole, can provide a short, unbiased glimpse at the space-time around the other ninety per cent of black holes. Observations of tidal disruptions have hitherto revealed the formation of an accretion disk and the onset of an accretion-powered jet, but have failed to reveal emission from the inner accretion flow, which enables the measurement of black hole spin. Here we report observations of reverberation arising from gravitationally redshifted iron Kα photons reflected off the inner accretion flow in the tidal disruption event Swift J1644+57. From the reverberation timescale, we estimate the mass of the black hole to be a few million solar masses, suggesting an accretion rate of 100 times the Eddington limit or more. The detection of reverberation from the relativistic depths of this rare super-Eddington event demonstrates that the X-rays do not arise from the relativistically moving regions of a jet, as previously thought.

  10. Star and protoplanetary disk properties in Orion's suburbs (United States)

    Fang, M.; van Boekel, R.; Wang, W.; Carmona, A.; Sicilia-Aguilar, A.; Henning, Th.


    Context: Knowledge of the evolution of circumstellar accretion disks is pivotal to our understanding of star and planet formation; and yet despite intensive theoretical and observational studies, the disk dissipation process is not well understood. Infrared observations of large numbers of young stars, as performed by the Spitzer Space Telescope, may advance our knowledge of this inherently complex process. While infrared data reveal the evolutionary status of the disk, they hold little information on the properties of the central star and the accretion characteristics. Aims: Existing 2MASS and Spitzer archive data of the Lynds 1630N and 1641 clouds in the Orion GMC provide disk properties of a large number of young stars. We wish to complement these data with optical data that provide the physical stellar parameters and accretion characteristics. Methods: We performed a large optical spectroscopic and photometric survey of the aforementioned clouds. Spectral types, as well as accretion and outflow characteristics, are derived from our VLT/VIMOS spectra. Optical SDSS and CAHA/LAICA imaging was combined with 2MASS, Spitzer IRAC, and MIPS imaging to obtain spectral energy distributions from 0.4 to 24 μm. Reddened model atmospheres were fitted to the optical/NIR photometric data, keeping Teff fixed at the spectroscopic value. Mass and age estimates of individual objects were made through placement in the HR diagram and comparison to several sets of pre-main sequence evolutionary tracks. Results: We provide a catalog of 132 confirmed young stars in L1630N and 267 such objects in L1641. We identify 28 transition disk systems, 20 of which were previously unknown, as well as 42 new transition disk candidates for which we have broad-band photometry but no optical spectroscopy. We give mass and age estimates for the individual stars, as well as equivalent widths of optical emission lines, the extinction, and measures of the evolutionary state of the circumstellar dusty

  11. Inclusion of TCAF model in XSPEC to study accretion flow dynamics around black hole candidates (United States)

    Debnath, Dipak; Chakrabarti, Sandip Kumar; Mondal, Santanu

    Spectral and Temporal properties of black hole candidates can be well understood with the Chakrabarti-Titarchuk solution of two component advective flow (TCAF). This model requires two accretion rates, namely, the Keplerian disk accretion rate and the sub-Keplerian halo accretion rate, the latter being composed of a low angular momentum flow which may or may not develop a shock. In this solution, the relevant parameter is the relative importance of the halo (which creates the Compton cloud region) rate with respect to the Keplerian disk rate (soft photon source). Though this model has been used earlier to manually fit data of several black hole candidates quite satisfactorily, for the first time we are able to create a user friendly version by implementing additive Table model FITS file into GSFC/NASA's spectral analysis software package XSPEC. This enables any user to extract physical parameters of accretion flows, such as two accretion rates, shock location, shock strength etc. for any black hole candidate. Most importantly, unlike any other theoretical model, we show that TCAF is capable of predicting timing properties from spectral fits, since in TCAF, a shock is responsible for deciding spectral slopes as well as QPO frequencies.

  12. Accreted oceanic materials in Japan (United States)

    Isozaki, Y.; Maruyama, S.; Furuoka, F.


    The Phanerozoic circum-Pacific orogenic belts contain numerous ocean-derived materials accreted through plate converging processes. Japanese Islands, in particular, display various kinds of oceanic materials of different origins including fragments of seamounts, oceanic reef limestone, MORB-like rocks and oceanic mantle, and pelagic sediments. The compilation of these rocks in many subduction complexes of Late Permian to the present, led to following conclusions. Accretion processes work effectively only for materials primarily composing the upper portion of subducting oceanic crust, i.e. Layer 1 and Layer 2. Many fragments of seamount with alkali basalt (600), hot-spot seamount (26), oceanic reef limestone (291), MORB-like basalt (200), and numerous cherts (more than 1000) are recognized as ancient oceanic materials accreted to the Japanese Islands. However, gabbros and mantle materials of Layer 3 and lower parts of the oceanic lithosphere, scarcely occur in subduction-accretion complexes except for a few examples of back-arc basin or fore-arc origin. Accretion occurs episodically. In Southwest Japan, oceanic materials were accreted intermittently in (a) end-Permian, (b) Middle-Late Jurassic, (c) Late Cretaceous times, (d) at ca. 50 Ma, and (e) in Miocene times, while in Northeast Japan and Hokkaido this occurred in (b) Middle-Late Jurassic, (c) Late Cretaceous, and (f) Early Cretaceous times. In contrast to the general belief on accretion of younger oceanic plates, the majority of Japanese subduction-accretion complexes were formed during the subduction of plates, up to 160 Ma old. The accretionary events in end-Permian and Middle-Late Jurassic times coincide with northward collision of ancient island arcs, oceanic rises or seamount chains (of hot-spot origin) with the Asian continent. Accretion relevant to subduction of older plates may be controlled by the collision-subduction process of these topographic reliefs on an oceanic plate. In addition, the

  13. Tracking the Disk Wind Behavior of MAXI J1305-704 (United States)

    Sinclair, Kimberly Poppy; Miller, Jon M.


    There is still much to be understood about black hole accretion disks and their relationship to black hole disk winds. In an attempt to better understand these relationships, we have analyzed the x-ray transient black hole binary MAXI J1305-704 during its outburst in 2012 in order to draw conclusions about the parameters of its disk. The source showed strong absorption signs, as detected by Chandra, on April 21, 2012. From this date on, we analyzed SWIFT observations of the source, using XSPEC from HEASOFT, in order to find strong signals of absorption. By modeling 67 successive observations over the period of 74 days, we were able to closely track the evolution of various disk properties, from inner disk temperature, to power law index, to column density. We could also analyze various parameter relationships in order to determine if there is a statistically significant correlation between any of the properties of a disk. We found that there are strong linear relationships between disk temperature & ionization, photon index & disk temperature, and photon index & ionization. These relationships seem to imply that the corona, in addition to the disk, may be driving the wind properties. Additionally, the counterintuitive relationship between disk temperature and ionization, where disk temperature increases as ionization decreases, seems to imply that there are mechanisms at play in the disk system that are not yet fully understood.

  14. Isolated unilateral disk edema

    Directory of Open Access Journals (Sweden)

    Varner P


    Full Text Available Paul VarnerJohn J Pershing VAMC, Poplar Bluff, MO, USAAbstract: Isolated unilateral disk edema is a familiar clinical presentation with myriad associations. Related, non-consensus terminology is a barrier to understanding a common pathogenesis. Mechanisms for the development of disk edema are reviewed, and a new framework for clinical differentiation of medical associations is presented.Keywords: disk edema, axoplasmic flow, clinical multiplier, optic neuritis, ischemic optic neuropathy, papilledema

  15. Ice accretion simulations on airfoils (United States)

    Özgen, S.; Uğur, N.; Görgülü, I.; Tatar, V.


    Ice shape predictions for a NACA0012 airfoil and collection efficiency predictions for the Twin Otter airfoil are obtained and presented. The results are validated with reference numerical and experimental data. Ice accretion modeling mainly consists of four steps: flow field solution; droplet trajectory calculations; thermodynamic analyses; and ice accretion simulation with the Extended Messinger Model. The models are implemented in a FORTRAN code to perform icing analyses for twodimensional (2D) geometries. The results are in good agreement with experimental and numerical reference data. It is deduced that increasing computational layers in calculations improves the ice shape predictions. The results indicate that collection efficiencies and impingement zone increase with increasing droplet diameter.

  16. High star formation rates as the origin of turbulence in early and modern disk galaxies. (United States)

    Green, Andrew W; Glazebrook, Karl; McGregor, Peter J; Abraham, Roberto G; Poole, Gregory B; Damjanov, Ivana; McCarthy, Patrick J; Colless, Matthew; Sharp, Robert G


    Observations of star formation and kinematics in early galaxies at high spatial and spectral resolution have shown that two-thirds are massive rotating disk galaxies, with the remainder being less massive non-rotating objects. The line-of-sight-averaged velocity dispersions are typically five times higher than in today's disk galaxies. This suggests that gravitationally unstable, gas-rich disks in the early Universe are fuelled by cold, dense accreting gas flowing along cosmic filaments and penetrating hot galactic gas halos. These accreting flows, however, have not been observed, and cosmic accretion cannot power the observed level of turbulence. Here we report observations of a sample of rare, high-velocity-dispersion disk galaxies in the nearby Universe where cold accretion is unlikely to drive their high star formation rates. We find that their velocity dispersions are correlated with their star formation rates, but not their masses or gas fractions, which suggests that star formation is the energetic driver of galaxy disk turbulence at all cosmic epochs.

  17. Timing the accretion flow around accreting millisecond pulsars

    NARCIS (Netherlands)

    Linares, M.


    At present, ten years after they were first discovered, ten accreting millisecond pulsars are known. I present a study of the aperiodic X-ray variability in three of these systems, which led to the discovery of simultaneous kHz quasi periodic oscillations in XTE J1807—294 and extremely strong

  18. Pebble Accretion at the Origin of Water in Europa (United States)

    Ronnet, Thomas; Mousis, Olivier; Vernazza, Pierre


    Despite the fact that the observed gradient in water content among the Galilean satellites is globally consistent with a formation in a circum-Jovian disk on both sides of the snowline, the mechanisms that led to a low water mass fraction in Europa (˜8%) are not yet understood. Here, we present new modeling results of solids transport in the circum-Jovian disk accounting for aerodynamic drag, turbulent diffusion, surface temperature evolution, and sublimation of water ice. We find that the water mass fraction of pebbles (e.g., solids with sizes of 10-2-1 m) as they drift inward is globally consistent with the current water content of the Galilean system. This opens the possibility that each satellite could have formed through pebble accretion within a delimited region whose boundaries were defined by the position of the snowline. This further implies that the migration of the forming satellites was tied to the evolution of the snowline so that Europa fully accreted from partially dehydrated material in the region just inside of the snowline.

  19. Boundary Between Stable and Unstable Regimes of Accretion

    Directory of Open Access Journals (Sweden)

    Blinova A. A.


    Full Text Available We investigated the boundary between stable and unstable regimes of accretion and its dependence on different parameters. Simulations were performed using a “cubed sphere" code with high grid resolution (244 grid points in the azimuthal direction, which is twice as high as that used in our earlier studies. We chose a very low viscosity value, with alpha-parameter α=0.02. We observed from the simulations that the boundary strongly depends on the ratio between magnetospheric radius rm (where the magnetic stress in the magnetosphere matches the matter stress in the disk and corotation radius rcor (where the Keplerian velocity in the disk is equal to the angular velocity of the star. For a small misalignment angle of the dipole field, Θ = 5°, accretion is unstable if rcor/rm> 1.35, and is stable otherwise. In cases of a larger misalignment angle of the dipole, Θ = 20°, instability occurs at slightly larger values, rcor/rm> 1.41

  20. A giant protogalactic disk linked to the cosmic web. (United States)

    Martin, D Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D; Moore, Anna; Cantalupo, Sebastiano; Prochaska, J Xavier; Chang, Daphne


    The specifics of how galaxies form from, and are fuelled by, gas from the intergalactic medium remain uncertain. Hydrodynamic simulations suggest that 'cold accretion flows'--relatively cool (temperatures of the order of 10(4) kelvin), unshocked gas streaming along filaments of the cosmic web into dark-matter halos--are important. These flows are thought to deposit gas and angular momentum into the circumgalactic medium, creating disk- or ring-like structures that eventually coalesce into galaxies that form at filamentary intersections. Recently, a large and luminous filament, consistent with such a cold accretion flow, was discovered near the quasi-stellar object QSO UM287 at redshift 2.279 using narrow-band imaging. Unfortunately, imaging is not sufficient to constrain the physical characteristics of the filament, to determine its kinematics, to explain how it is linked to nearby sources, or to account for its unusual brightness, more than a factor of ten above what is expected for a filament. Here we report a two-dimensional spectroscopic investigation of the emitting structure. We find that the brightest emission region is an extended rotating hydrogen disk with a velocity profile that is characteristic of gas in a dark-matter halo with a mass of 10(13) solar masses. This giant protogalactic disk appears to be connected to a quiescent filament that may extend beyond the virial radius of the halo. The geometry is strongly suggestive of a cold accretion flow.

  1. Long-Wavelength Excesses of FU Orionis Objects: Flared Outer Disks or Infalling Envelopes? (United States)

    Zhu, Zhaohuan; Hartmann, Lee; Calvet, Nuria; Hernandez, Jesus; Tannirkulam, Ajay-Kumar; D'Alessio, Paola


    The mid- to far-infrared emission of the outbursting FU Orionis objects has been attributed either to a flared outer disk or to an infalling envelope. We revisit this issue using detailed radiative transfer calculations to model the recent, high signal-to-noise ratio data from the IRS instrument on the Spitzer Space Telescope. In the case of FU Ori, we find that a physically plausible flared disk irradiated by the central accretion disk matches the observations. Building on our previous work, our accretion disk model with outer disk irradiation by the inner disk reproduces the spectral energy distribution between ~4000 Å and ~40 μm. Our model is consistent with near-infrared interferometry, but there are some inconsistencies with mid-infrared interferometric results. Including the outer disk allows us to refine our estimate of the outer radius of the outbursting, high mass accretion rate disk in FU Ori as ~0.5 AU, which is a crucial parameter in assessing theories of the FU Orionis phenomenon. We are able to place an upper limit on the mass infall rate of any remnant envelope infall rate to ~7 × 10-7 M⊙ yr -1 assuming a centrifugal radius of 200 AU. The FUor BBW 76 is also well modeled by a 0.6 AU inner disk and a flared outer disk. However, V1515 Cyg requires an envelope with an outflow cavity to adequately reproduce the IRS spectrum. In contrast with the suggestion by Green et al., we do not require a flattened envelope to match the observations; the inferred cavity shape is qualitatively consistent with typical protostellar envelopes. This variety of dusty structures suggests that the FU Orionis phase can be present at either early or late stages of protostellar evolution.

  2. Constraints on the Size of the Circumplanetary Gas Disk (United States)

    Mosqueira, I.; Estrada, P. R.


    Based on the dynamical properties of the irregular satellites of Jupiter (Saha and Tremaine 1993; Cuk and Burns 2001) and the separation between the regular and irregular satellites of the giant planets of Jupiter, Saturn, and Uranus, Mosqueira and Estrada (a,b 2003, in press in Icarus) argued that the regular satellites of the giant planets formed in a disk extending out to the position of the irregulars at ˜ RH/5, where RH is the Hill radius of the planet, thus irregular satellites with smaller semi-major axis would have been lost due to gas drag. The recent discovery of irregular satellites of Neptune between 0.17-0.19 RH (Nicholson, personal communication) fits with this view (though observational issues cloud the picture to some extent). But what sets the size of the outer gas disk? One possibility is that the specific angular momentum of gas accreted by Jupiter determines it. Here we explore the alternative possibility that the circumplanetary gas disk once extended farther out, but the resonant tidal torque of the Sun on the circumplanetary gas disk reduced its size. If so, some of the angular momentum of accretion may end up in Jupiter's orbit instead of its spin angular momentum or the angular momentum of the gas-augmented satellite disk. To make progress we need to ask whether any resonant locations of the Sun fall within the disk. Due to the low frequency of the Sun's orbit the m = 2 horizontal Lindblad resonance falls far from the location of the irregulars at ˜ RH. An m = 2 vertical resonance (Lubow 1981) is located at ˜ RH/2, which may set the maximum allowable size for the circumplanetary gas disk, but is still well outside the location of the innermost irregulars. This leads us to consider resonances that arise from the eccentricity of the binary orbit, allowing for the possibility that the eccentricities of the giant planets were significantly larger in the past.

  3. The Black Hole Accretion Code

    CERN Document Server

    Porth, Oliver; Mizuno, Yosuke; Younsi, Ziri; Rezzolla, Luciano; Moscibrodzka, Monika; Falcke, Heino; Kramer, Michael


    We present the black hole accretion code (BHAC), a new multidimensional general-relativistic magnetohydrodynamics module for the MPI-AMRVAC framework. BHAC has been designed to solve the equations of ideal general-relativistic magnetohydrodynamics in arbitrary spacetimes and exploits adaptive mesh refinement techniques with an efficient block-based approach. Several spacetimes have already been implemented and tested. We demonstrate the validity of BHAC by means of various one-, two-, and three-dimensional test problems, as well as through a close comparison with the HARM3D code in the case of a torus accreting onto a black hole. The convergence of a turbulent accretion scenario is investigated with several diagnostics and we find accretion rates and horizon-penetrating fluxes to be convergent to within a few percent when the problem is run in three dimensions. Our analysis also involves the study of the corresponding thermal synchrotron emission, which is performed by means of a new general-relativistic radi...

  4. Studies of Young, Star-forming Circumstellar Disks (United States)

    Bae, Jaehan


    Disks of gas and dust around forming stars - circumstellar disks - last only a few million years. This is a very small fraction of the entire lifetime of Sun-like stars, several billion years. Nevertheless, by the time circumstellar disks dissipate stars complete building up their masses, giant planets finish accreting gas, and terrestrial bodies are nearly fully grown and ready for their final assembly to become planets. Understanding the evolution of circumstellar disks are thus crucial in many contexts. Using numerical simulations as the primary tool, my thesis has focused on the studies of various physical processes that can occur throughout the lifetime of circumstellar disks, from their formation to dispersal. Chapters 2, 3, and 4 emphasize the importance of early evolution, during which time a forming star-disk system obtains mass from its natal cloud: the infall phase. In Chapter 2 and 3, I have modeled episodic outbursts of accretion in protostellar systems resulting from disk instabilities - gravitational instability and magnetorotational instability. I showed that outbursts occur preferentially during the infall phase, because the mass addition provides more favorable conditions for gravitational instability to initiate the outburst cycle, and that forming stars build up a significant fraction of their masses through repeated short-lived, episodic outbursts. The infall phase can also be important for the formation of planets. Recent ALMA observations revealed sets of bright and dark rings in circumstellar disks of young, forming stars, potentially indicating early formation of planets. In Chapter 4, I showed that infall streams can create radial pressure bumps near the outer edge of the mass landing on the disk, from which vortices can form, collecting solid particles very efficiently to make initial seeds of planets. The next three chapters highlight the role of planets in setting the observational appearance and the evolution of circumstellar disks

  5. disk historie

    DEFF Research Database (Denmark)

    Feldt, Jakob Egholm


    Review essay om nye værker indenfor jødisk kulturhistorie. Diskussion af værker af Jay Geller, Boaz Neumann og Daniel Greene......Review essay om nye værker indenfor jødisk kulturhistorie. Diskussion af værker af Jay Geller, Boaz Neumann og Daniel Greene...

  6. Accretion onto a Kiselev black hole

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Lei [Hebei University, College of Physical Science and Technology, Baoding (China); Yang, Rongjia [Hebei University, College of Physical Science and Technology, Baoding (China); Hebei University, Hebei Key Lab of Optic-Electronic Information and Materials, Baoding (China)


    We consider accretion onto a Kiselev black hole. We obtain the fundamental equations for accretion without the back-reaction. We determine the general analytic expressions for the critical points and the mass accretion rate and find the physical conditions the critical points should fulfill. The case of a polytropic gas are discussed in detail. It turns out that the quintessence parameter plays an important role in the accretion process. (orig.)

  7. Secular Evolution in Disk Galaxies (United States)

    Kormendy, John


    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  8. Observable Signatures of Classical T Tauri Stars Accreting in an Unstable Regime

    Directory of Open Access Journals (Sweden)

    Kurosawa Ryuichi


    Full Text Available We discuss key observational signatures of Classical T Tauri stars (CTTSs accreting through Rayleigh-Taylor instability, which occurs at the interface between an accretion disk and a stellar magnetosphere. In this study, the results of global 3-D MHD simulations of accretion flows, in both stable and unstable regimes, are used to predict the variability of hydrogen emission lines and light curves associated with those two distinctive accretion flow patterns. In the stable regime, a redshifted absorption component (RAC periodically appears in some hydrogen lines, but only during a fraction of a stellar rotation period. In the unstable regime, the RAC is present rather persistently during a whole stellar rotation period, and its strength varies non-periodically. The latter is caused by multiple accreting streams, formed randomly due to the instability, passing across the line of sight to an observer during one stellar rotation. This results in the quasi-stationarity appearance of the RAC because at least one of the accretion stream is almost always in the line of sight to an observer. In the stable regime, two stable hot spots produce a smooth and periodic light curve that shows only one or two peaks per stellar rotation. In the unstable regime, multiple hot spots formed on the surface of the star, produce the stochastic light curve with several peaks per rotation period.

  9. Is Episodic Accretion Necessary to Resolve the Luminosity Problem in Low-Mass Protostars? (United States)

    Sevrinsky, Raymond Andrew; Dunham, Michael


    In this contribution, we compare the results of protostellar accretion simulations for scenarios both containing and lacking episodic accretion activity. We determine synthetic observational signatures for collapsing protostars by taking hydrodynamical simulations predicting highly variable episodic accretion events, filtering out the stochastic behavior by applying power law fits to the mass accretion rates onto the disk and central star, and using the filtered rates as inputs to two-dimensional radiative transfer calculations. The spectral energy distributions generated by these calculations are used to calculate standard observational signatures of Lbol and Tbol, and compared directly to a sample of 230 embedded protostars. We explore the degree to which these continually declining accretion models successfully reproduce the observed spread of protostellar luminosities, and examine their consistency with the prior variable models to investigate the degree to which episodic accretion bursts are necessary in protostellar formation theories to match observations of field protostars. The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  10. Thick Disks of Lenticular Galaxies


    Pohlen, M.; Balcells, M.; Luetticke, R.; Dettmar, R. -J.


    Thick disks are faint and extended stellar components found around several disk galaxies including our Milky Way. The Milky Way thick disk, the only one studied in detail, contains mostly old disk stars (~10 Gyr), so that thick disks are likely to trace the early stages of disk evolution. Previous detections of thick disk stellar light in external galaxies have been originally made for early-type, edge-on galaxies but detailed 2D thick/thin disk decompositions have been reported for only a sc...

  11. Capture of Planetesimals by Gas Drag from Circumplanetary Disks (United States)

    Fujita, Tetsuya; Ohtsuki, K.; Tanigawa, T.


    The regular satellites of the giant planets (e.g. Galilean satellites) have nearly circular and coplanar prograde orbits, and are thought to have formed by accretion of solid particles in the circumplanetary disk. Because a significant amount of gas and solids are likely to be supplied to growing giant planets through the circumplanetary disk, the amount of solid material in circumplanetary disks is important not only for satellite formation but also for the growth and the origin of the heavy element content of giant planets. Solid particles smaller than meter-scale are strongly coupled with the gas flow from the protoplanetary disk and delivered into the disk with the gas. On the other hand, trajectories of large planetesimals are decoupled from the gas. When these large planetesimals approach a growing giant planet, their orbits can be perturbed by gas drag from the circumplanetary disk depending on their size and random velocity, and some of them would be captured by the disk. In the present work, we examine orbital evolution of planetesimals approaching a growing giant planet with a circumplanetary disks by integrating Hill’s equation including the gas drag term. We assume that the gas in the disk rotates in circular orbits around the planet. We found that the condition for capture of planetesimals approaching in the prograde direction (i.e., trajectory in the same direction as the circular motion of the gas) is different from that for those approaching in the retrograde trajectories. We obtained analytic expressions for energy dissipation, critical approach distance from the planet for capture, and capture probability for prograde and retrograde orbits in the coplanar case. We will discuss results of orbital integration for capture rates, including the cases of inclined orbits of planetesimals.

  12. Hydrodynamic Stability and Magnetic Reconnection in Disks and Stars (United States)

    Goodman, Jeremy; Kulsrud, Russell


    The purpose of this grant is to study parametric instability. The simplest example of parametric instability is a harmonic oscillator with a periodic modulation of the spring constant. If the modulation frequency is close to twice the natural frequency of the oscillator, the amplitude of oscillation tends to grow exponentially. The growth rate is proportional to the strength of the modulation, but it also depends upon the closeness to resonance of the two frequencies, and upon natural damping rate or "Q" of the oscillator. Parametric instabilities are very common in physics. A familiar example is a jogger's ponytail--normally a very strongly damped pendulum, it can be destabilized by the variation in effective gravity during the jogger's stride. Observation confirms that the period of the pendulum is half that of the jogger's vertical motion. In astrophysics, parametric instability may occur by external tidal forcing, or by interaction among eigenmodes. In the latter case, an energetic eigenmode may destabilize modes of half its frequency, provided some weak nonlinearity exists to couple them. Under a previous Astrophysical Theory grant (NAGW-2419), the PI discovered a parametric instability of tidally forced disks such as the accretion disks in cataclysmic variables and X ray binaries [2]. The destabilized modes are tightly-wound, incompressible, three-dimensional waves analogous to g-modes and r-modes in stars. Later work has confirmed our analysis [4]. It was hoped that these modes might provide a source of turbulence and angular momentum transport in accretion disks. However, a follow-up investigation of this instability by local numerical simulations, although confirming the analytically estimated growth rates, found negligible angular momentum flux [3]. Other work, partly supported by the ATP, now strongly indicates that the transport mechanism in such disks is magnetohydrodynamic turbulence [6]. Nevertheless, the parametric mechanism may truncate the outer


    Energy Technology Data Exchange (ETDEWEB)

    McClure, M. K.; Calvet, N.; Bergin, E.; Cleeves, L. I. [Department of Astronomy, The University of Michigan, 500 Church Street, 830 Dennison Bldg., Ann Arbor, MI 48109 (United States); Espaillat, C. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); D' Alessio, P. [Centro de Radioastronomía y Astrofísica, Universidad NacionalAUtónoma de México, 58089 Morelia, Michoacán (Mexico); Watson, D. M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Manoj, P. [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Sargent, B., E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)


    We present Herschel Space Observatory PACS spectra of T Tauri stars, in which we detect amorphous and crystalline water ice features. Using irradiated accretion disk models, we determine the disk structure and ice abundance in each of the systems. Combining a model-independent comparison of the ice feature strength and disk size with a detailed analysis of the model ice location, we estimate that the ice emitting region is at disk radii >30 AU, consistent with a proto-Kuiper belt. Vertically, the ice emits most below the photodesorption zone, consistent with Herschel observations of cold water vapor. The presence of crystallized water ice at a disk location (1) colder than its crystallization temperature and (2) where it should have been re-amorphized in ∼1 Myr suggests that localized generation is occurring; the most likely cause appears to be micrometeorite impact or planetesimal collisions. Based on simple tests with UV models and different ice distributions, we suggest that the SED shape from 20 to 50 μm may probe the location of the water ice snowline in the disk upper layers. This project represents one of the first extra-solar probes of the spatial structure of the cometary ice reservoir thought to deliver water to terrestrial planets.

  14. Radial migration of preplanetary material - Implications for the accretion time scale problem (United States)

    Hourigan, K.; Ward, W. R.


    Radial drift of planetesimals due to density wave interaction with the solar nebula is considered. The mechanism is most effective for large masses and provides mobility over a size range where aerodynamic drag is unimportant. The process could shorten accretion time scales to O(100,000-1,000,000 years) throughout the solar system. Accumulation stalls down when growing objects are massive enough to open gaps in the gas disk. Implications of this process for current cosmogonic models are discussed.

  15. Constraining the Inner Accretion Flow onto Black Holes with X-ray Polarimetry Observations (United States)

    Beheshtipour, Banafsheh; Krawczynski, Henric


    Spectropolarimetric observations, can be used to explore the structure of the inner accretion flow on to astrophysical stellar mass and supermassive black holes. The recent NASA granted X-ray polarimetry mission, Imaging X-ray Polarimetry Explorer (IXPE) and the X-ray Imaging Polarimetry Explorer (XIPE) proposed to ESA will provide valuable new information from astrophysical sources. In this talk, I will present results from general relativistic ray tracing studies showing reflection spectra and polarization signatures of the inner accretion flow of active galactic nuclei. Combining polarimetric with spectral and timing results will allow us to understand the physical properties of the accretion disk and corona with higher accuracy. I will present the potential of X-ray polarization observations and reflection spectra in distinguishing among different corona models. Our results show that the future IXPE and XIPE missions will provide new insights into the physical properties of the plasma close to the event horizon of black holes.

  16. Physical Environment of Accreting Neutron Stars

    Directory of Open Access Journals (Sweden)

    J. Wang


    Full Text Available Neutron stars (NSs powered by accretion, which are known as accretion-powered NSs, always are located in binary systems and manifest themselves as X-ray sources. Physical processes taking place during the accretion of material from their companions form a challenging and appealing topic, because of the strong magnetic field of NSs. In this paper, we review the physical process of accretion onto magnetized NS in X-ray binary systems. We, firstly, give an introduction to accretion-powered NSs and review the accretion mechanism in X-ray binaries. This review is mostly focused on accretion-induced evolution of NSs, which includes scenario of NSs both in high-mass binaries and in low-mass systems.

  17. Merger Histories of Galaxy Halos and Implications for Disk Survival

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kyle R.; Bullock, James S.; Wechsler, Risa H.; Maller, Ariyeh H.; Zentner, Andrew R.


    The authors study the merger histories of galaxy dark matter halos using a high resolution {Lambda}CDM N-body simulation. The merger trees follow {approx} 17,000 halos with masses M{sub 0} = (10{sup 11} - 10{sup 13})h{sup -1}M{sub {circle_dot}} at z = 0 and track accretion events involving objects as small as m {approx_equal} 10{sup 10} h{sup -1}M{sub {circle_dot}}. They find that mass assembly is remarkably self-similar in m/M{sub 0}, and dominated by mergers that are {approx}10% of the final halo mass. While very large mergers, m {approx}> 0.4 M{sub 0}, are quite rare, sizeable accretion events, m {approx} 0.1 M{sub 0}, are common. Over the last {approx} 10 Gyr, an overwhelming majority ({approx} 95%) of Milky Way-sized halos with M{sub 0} = 10{sup 12} h{sup -1}M{sub {circle_dot}} have accreted at least one object with greater total mass than the Milky Way disk (m > 5 x 10{sup 10} h{sup -1}M{sub {circle_dot}}), and approximately 70% have accreted an object with more than twice that mass (m > 10{sup 11} h{sup -1}M{sub {circle_dot}}). The results raise serious concerns about the survival of thin-disk dominated galaxies within the current paradigm for galaxy formation in a {Lambda}CDM universe. in order to achieve a {approx} 70% disk-dominated fraction in Milky Way-sized {Lambda}CDM halos, mergers involving m {approx_equal} 2 x 10{sup 11} h{sup -1}M{sub {circle_dot}} objects must not destroy disks. Considering that most thick disks and bulges contain old stellar populations, the situation is even more restrictive: these mergers must not heat disks or drive gas into their centers to create young bulges.

  18. On the Anisotropic Nature of MRI-driven Turbulence in Astrophysical Disks

    DEFF Research Database (Denmark)

    Murphy, Gareth; Pessah, Martin E.


    The magnetorotational instability (MRI) is thought to play an important role in enabling accretion in sufficiently ionized astrophysical disks. The rate at which MRI-driven turbulence transports angular momentum is intimately related to both the strength of the amplitudes of the fluctuations...

  19. X-ray Ionization of Heavy Elements Applied to Protoplanetary Disks

    NARCIS (Netherlands)

    Ádámkovics, Máté; Glassgold, Alfred E.; Meijerink, Rowin

    The consequences of the Auger effect on the population of heavy-element ions are analyzed for the case of relatively cool gas irradiated by keV X-rays with intended applications to the accretion disks of young stellar objects. Highly charged ions are rapidly reduced to the doubly charged state in

  20. Binary black-hole mergers in magnetized disks: simulations in full general relativity. (United States)

    Farris, Brian D; Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B; Shapiro, Stuart L


    We present results from the first fully general relativistic, magnetohydrodynamic (MHD) simulations of an equal-mass black-hole binary (BHBH) in a magnetized, circumbinary accretion disk. We simulate both the pre- and postdecoupling phases of a BHBH-disk system and both "cooling" and "no-cooling" gas flows. Prior to decoupling, the competition between the binary tidal torques and the effective viscous torques due to MHD turbulence depletes the disk interior to the binary orbit. However, it also induces a two-stream accretion flow and mildly relativistic polar outflows from the BHs. Following decoupling, but before gas fills the low-density "hollow" surrounding the remnant, the accretion rate is reduced, while there is a prompt electromagnetic luminosity enhancement following merger due to shock heating and accretion onto the spinning BH remnant. This investigation, though preliminary, previews more detailed general relativistic, MHD simulations we plan to perform in anticipation of future, simultaneous detections of gravitational and electromagnetic radiation from a merging BHBH-disk system.

  1. X-Ray Spectra from MHD Simulations of Accreting Black Holes (United States)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.


    We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  2. General relativistic hydrodynamic flows around a static compact object in final stages of accretion flow

    Directory of Open Access Journals (Sweden)

    J Ghanbari


    Full Text Available Dynamics of stationary axisymmetric configuration of the viscous accreting fluids surrounding a non-rotating compact object in final stages of accretion flow is presented here. For the special case of thin disk approximation, the relativistic fluid equations ignoring self-gravity of the disk are derived in Schwarzschild geometry. For two different state equations, two sets of self-consistent analytical solutions of fully relativistic fluid equations are obtained separately. The effect of bulk viscosity coefficient on the physical functions are investigated for each state equation, as well as the bounds that exert on the free parameters due to the condition of accretion flow in the last stages. The solutions found show that the radial and azimuthal velocities, density and pressure of the fluid increase inwards for both state equations. Also, viscosity has no effect on the velocities and density distributions in both state equations. Two state equations show different types of behavior with respect to the bulk viscosity coefficient. For p=K state equation, if there is no bulk viscosity, the pressure remains constant throughout the disk, whereas with increasing bulk viscosity the pressure falls off in the inner regions but soon stabilizes at an almost constant value. However, for p=ρc2 state equation, the pressure is never constant, even in the absence of bulk viscosity. The larger the value of ηb, the higher the value of pressure in the inner regions.

  3. Radial mixing and Ru-Mo isotope systematics under different accretion scenarios (United States)

    Fischer, Rebecca A.; Nimmo, Francis; O'Brien, David P.


    The Ru-Mo isotopic compositions of inner Solar System bodies may reflect the provenance of accreted material and how it evolved with time, both of which are controlled by the accretion scenario these bodies experienced. Here we use a total of 116 N-body simulations of terrestrial planet accretion, run in the Eccentric Jupiter and Saturn (EJS), Circular Jupiter and Saturn (CJS), and Grand Tack scenarios, to model the Ru-Mo anomalies of Earth, Mars, and Theia analogues. This model starts by applying an initial step function in Ru-Mo isotopic composition, with compositions reflecting those in meteorites, and traces compositional evolution as planets accrete. The mass-weighted provenance of the resulting planets reveals more radial mixing in Grand Tack simulations than in EJS/CJS simulations, and more efficient mixing among late-accreted material than during the main phase of accretion in EJS/CJS simulations. We find that an extensive homogeneous inner disk region is required to reproduce Earth's observed Ru-Mo composition. EJS/CJS simulations require a homogeneous reservoir in the inner disk extending to ≥3-4 AU (≥74-98% of initial mass) to reproduce Earth's composition, while Grand Tack simulations require a homogeneous reservoir extending to ≥3-10 AU (≥97-99% of initial mass), and likely to ≥6-10 AU. In the Grand Tack model, Jupiter's initial location (the most likely location for a discontinuity in isotopic composition) is ∼3.5 AU; however, this step location has only a 33% likelihood of producing an Earth with the correct Ru-Mo isotopic signature for the most plausible model conditions. Our results give the testable predictions that Mars has zero Ru anomaly and small or zero Mo anomaly, and the Moon has zero Mo anomaly. These predictions are insensitive to wide variations in parameter choices.

  4. Gas in Protoplanetary Disks (United States)

    Roberge, Aki


    Gas makes up the bulk of the mass in a protoplanetary disk, but it is much more difficult to observe than the smaller dust component. The l ifetime of gas in a disk has far-reaching consequences. including lim iting the time available for giant planet formation and controlling t he migration of planetary bodies of all sizes, from Jupiters to meter-sized planetesimals. Here I will discuss what is known about the gas component of protoplanetary disks, highlighting recent results from i nfrared studies with the Spitzer Space Telescope. Exciting upcoming o pportunities for gas studies will also be discussed. In particular, the first large far-IR survey of gas tracers from young disks will be p erformed using the Herschel Space Observatory, as part of the "Gas in Protoplanetary Systems" (GASPS) Open Time Key Project.

  5. Disk Defect Data (United States)

    National Aeronautics and Space Administration — How Data Was Acquired: The data presented is from a physical simulator that simulated engine disks. Sample Rates and Parameter Description: All parameters are...

  6. Verbatim Floppy Disk

    CERN Multimedia


    Introduced under the name "Verbatim", Latin for "literally", these disks that sized more than 5¼ inches have become almost universal on dedicated word processing systems and personal computers. This format was replaced more slowly by the 3½-inch format, introduced for the first time in 1982. Compared to today, these large format disks stored very little data. In reality, they could only contain a few pages of text.


    Energy Technology Data Exchange (ETDEWEB)

    Theado, Sylvie; Vauclair, Sylvie, E-mail: [Institut de Recherches en Astrophysique et Planetologie, Universite de Toulouse, CNRS, 14 avenue Edouard Belin, 31400 Toulouse (France)


    The early evolution of planetary systems is expected to depend on various periods of disk matter accretion onto the central star, which may include the accretion of metal-rich matter after the star settles on the main sequence. When this happens, the accreted material is rapidly mixed within the surface convective zone and induces an inverse mean-molecular-weight gradient, unstable for thermohaline convection. The induced mixing, which dilutes the metal excess, may also have important consequences on the light elements abundances. We model and analyze this process, and present the results according to various possible accretion scenarios. We give a detailed discussion of the different ways of treating thermohaline mixing, as proposed by previous authors, and converge on a consistent view, including the most recent numerical simulations. We show how the observations of light elements in stars can be used as tracers of such events.

  8. Debris disks in open stellar clusters (United States)

    Gorlova, Nadiya Igorivna

    Indirect searches for planets (such as radial velocity studies) show that their formation may be quite common. The planets are however too small and faint to be seen against the glare of their host stars; therefore, their direct detection is limited to the nearest systems. Alternatively one can study planets by studying their "by-product"---dust. We see raw material available for planets around young stars, and debris dust around old stars betraying planet-induced activity. Dust has a larger surface area per unit mass compared with a large body; it can be spread over a larger solid angle, intercepting more starlight and emitting much more light via reprocessing. By studying dusty disks we can infer the presence of planets at larger distances. Here we present results of a survey conducted with the Spitzer Space Telescope of debris disks in three open clusters. With ages of 30--100 Myrs, these clusters are old enough that the primordial dust should have accreted into planetesimals, fallen onto the star, or been blown away due to a number of physical processes. The dust we observe must come from collisions or sublimation of larger bodies. The purpose of this study is to investigate the dust evolution in the terrestrial planet zone, analogous to the Zodiacal cloud in our Solar system. We are most sensitive to this zone because the peak of a 125 K black body radiation falls into the primary pass-band of our survey---24mm. We investigate the fraction and amount of the infra-red excesses around intermediate- to solar-mass stars in open stellar clusters with well defined ages. The results are analyzed in the context of disk studies at other wavelengths and ages, providing an understanding of the time-scale for disk dissipation and ultimately planet building and frequency.

  9. 2TB hard disk drive

    CERN Multimedia

    This particular object was used up until 2012 in the Data Centre. It slots into one of the Disk Server trays. Hard disks were invented in the 1950s. They started as large disks up to 20 inches in diameter holding just a few megabytes (link is external). They were originally called "fixed disks" or "Winchesters" (a code name used for a popular IBM product). They later became known as "hard disks" to distinguish them from "floppy disks (link is external)." Hard disks have a hard platter that holds the magnetic medium, as opposed to the flexible plastic film found in tapes and floppies.


    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tong; Gu, Wei-Min [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China); Lin, Yi-Qing [School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian 361024 (China); Hou, Shu-Jin, E-mail: [Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China)


    Stellar-mass black holes (BHs) surrounded by neutrino-dominated accretion flows (NDAFs) are plausible sources of power for gamma-ray bursts (GRBs) via neutrino emission and their annihilation. The progenitors of short-duration GRBs (SGRBs) are generally considered to be compact binary mergers. According to the simulation results, the disk mass of the NDAF is limited after merger events. We can estimate such disk masses using the current SGRB observational data and fireball model. The results show that the disk mass of a certain SGRB mainly depends on its output energy, jet opening angle, and central BH characteristics. Even for the extreme BH parameters, some SGRBs require massive disks, which approach or exceed the limits in simulations. We suggest that there may exist alternative MHD processes or mechanisms that increase the neutrino emission to produce SGRBs with reasonable BH parameters and disk masses.

  11. Protostellar accretion traced with chemistry

    DEFF Research Database (Denmark)

    Frimann, Søren; Jørgensen, Jes Kristian; Dunham, Michael M.


    . Our aim is to characterise protostellar accretion histories towards individual sources by utilising sublimation and freeze-out chemistry of CO. Methods. A sample of 24 embedded protostars are observed with the Submillimeter Array (SMA) in context of the large program "Mass Assembly of Stellar Systems...... and their Evolution with the SMA" (MASSES). The size of the C18O-emitting region, where CO has sublimated into the gas-phase, is measured towards each source and compared to the expected size of the region given the current luminosity. The SMA observations also include 1.3 mm continuum data, which are used...

  12. Eccentricity excitation and merging of planetary embryos heated by pebble accretion (United States)

    Chrenko, O.; Brož, M.; Lambrechts, M.


    Context. Planetary embryos can continue to grow by pebble accretion until they become giant planet cores. Simultaneously, these embryos mutually interact and also migrate due to torques arising from the protoplanetary disk. Aims: Our aim is to study how pebble accretion alters the orbital evolution of embryos undergoing Type-I migration. In particular, we try to determine whether or not the embryos establish resonant chains, and if so, whether or not these chains are prone to instabilities. Further, we investigate the possibility that giant planet cores form through embryo merging which can be more rapid than pebble accretion alone. Methods: For the first time, we perform self-consistent global-scale radiative hydrodynamic simulations of a two-fluid protoplanetary disk consisting of gas and pebbles, the latter being accreted by embedded embryos. Accretion heating, along with other radiative processes, is accounted for to correctly model the Type-I migration. Results: We track the evolution of four super-Earth-like embryos, initially located in a region where the disk structure allows for a convergent migration. Generally, embryo merging is facilitated by rapidly increasing embryo masses and breaks the otherwise oligarchic growth. Moreover, we find that the orbital eccentricity of each embryo is considerably excited (≃0.03) due to the presence of an asymmetric under-dense lobe of gas - a so-called "hot trail" - produced by accretion heating of the embryo's vicinity. Eccentric orbits lead the embryos to frequent close encounters and make resonant locking more difficult. Conclusions: Embryo merging typically produces one massive core (≳10 ME) in our simulations, orbiting near 10 AU. Pebble accretion is naturally accompanied by the occurrence of eccentric orbits which should be considered in future efforts to explain the structure of exoplanetary systems. The code is publicly available at chrenko/, and also at the CDS via anonymous

  13. Bare AGN: an Unobscured View of the Innermost Accretion Geometry (United States)

    Fink, M.; Dauser, T.; Beuchert, T.; Jeffreson, S.; Tawabutr, J.; Wilms, J.; Garcia, J.; Walton, D.


    In a systematic study of the relativistic reflection spectra and coronal properties for a sample of bare AGN we analyze high signal-to-noise spectra obtained with the XMM-Newton and NuSTAR observatories utilizing state-of-the-art reflection codes. Features of blurred reflection off an ionized accretion disk are modelled using different flavors of the relativistic ray-tracing code Relxill. We show that the more physically motivated and self-consistent lamp-post geometry is largely consistent with fits of broken power-law emissivity profiles. We provide good constraints on parameters describing the compact reprocessing corona, i.e., the reflection fraction and the lamp-post height. The latter are found to be prevalent within 1-10 r_{g}, while our models generally find close-to-maximal black hole spins. These results are discussed and compared with previous studies by Walton et al. (2013).

  14. Free precession in quasi-periodic oscillators. [In accreting neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Shaham, J.


    The recent discoveries of quasi-periodic oscillations (QPOs) brought about a surge of theoretical work concerned with the disk-magnetosphere boundary in accreting neutron stars. Much of the detailed theoretical discussion deals with the beat-frequency model (BFM). The beat frequency (BF) spectrum resulting from applying the BFM to the most general freely rotating neutron star, i.e., a freely precessing neutron star whose angular momentum vector is, in addition, not perpendicular to the disk, is considered. It is found that in the course of free precession, the BF spectrum usually changes, with the various QPO lines changing in intensity. This allows, in principle, phenomena of frequency changing not due to changes in luminosity such as those observed in Cyg X-2 and, perhaps, in other QPOs. Such mode changes may, in turn, reflect the nature of the disk-magnetosphere coupling in QPOs. 37 references.

  15. Inner Warm Disk of ESO Hα 279a Revealed by NA I and CO Overtone Emission Lines (United States)

    Lyo, A.-Ran; Kim, Jongsoo; Lee, Jae-Joon; Kim, Kyoung-Hee; Kang, Jihyun; Byun, Do-Young; Mace, Gregory; Sokal, Kimberly R.; Park, Chan; Chun, Moo-Young; Oh, Heeyoung; Yu, Young Sam; Sok Oh, Jae; Jeong, Ueejeong; Kim, Hwihyun; Pak, Soojong; Hwang, Narae; Park, Byeong-Gon; Lee, Sungho; Kaplan, Kyle; Lee, Hye-In; Nguyen Le, Huynh Anh; Jaffe, Daniel; Friends of AASTeX Collaboration


    We present an analysis of near-infrared, high-resolution spectroscopy toward the flat-spectrum young stellar object (YSO) ESO Hα 279a (˜1.5M ⊙) in the Serpens star-forming region at a distance of 429 pc. Using the Immersion GRating INfrared Spectrometer (IGRINS; R ≈ 45,000), we detect emission lines originating from the accretion channel flow, jet, and inner disk. Specifically, we identify hydrogen Brackett series recombination, [Fe II], [Fe III], [Fe IV], Ca I, Na I, H2, H2O, and CO overtone emission lines. By modeling five bands of CO overtone emission lines and the symmetric double-peaked line profile for Na I emission lines, we find that ESO Hα 279a has an actively accreting Keplerian disk. From our Keplerian disk model, we find that Na I emission lines originate between 0.04 and 1.00 au, while the CO overtone emission lines are from the outer part of the disk, in the range between 0.22 and 3.00 au. The model reveals that the neutral atomic Na gas is a good tracer of the innermost region of the actively accreting disk. We derive a mass accretion rate of 2-10× 10-7 M ⊙ yr-1 from the measured Brγ emission luminosity of 1.78(±0.31) × 1031 erg s-1.

  16. Bondi accretion onto cosmological black holes

    CERN Document Server

    Karkowski, Janusz


    In this paper we investigate a steady accretion within the Einstein-Straus vacuole, in the presence of the cosmological constant. The dark energy damps the mass accretion rate and --- above certain limit --- completely stops the steady accretion onto black holes, which in particular is prohibited in the inflation era and after (roughly) $10^{12}$ years from Big Bang (assuming the presently known value of the cosmological constant). Steady accretion would not exist in the late phases of the Penrose's scenario - known as the Weyl curvature hypothesis - of the evolution of the Universe.

  17. Bondi accretion onto cosmological black holes (United States)

    Karkowski, Janusz; Malec, Edward


    In this paper we investigate a steady accretion within the Einstein-Straus vacuole, in the presence of the cosmological constant. The dark energy damps the mass accretion rate and—above a certain limit—completely stops the steady accretion onto black holes, which, in particular, is prohibited in the inflation era and after (roughly) 1012 years from the big bang (assuming the presently known value of the cosmological constant). Steady accretion would not exist in the late phases of the Penrose’s scenario—known as the Weyl curvature hypothesis—of the evolution of the Universe.

  18. Toward a New Spectral Modeling Capability for Accreting X-Ray Pulsars (United States)

    Wolff, Michael T.; Becker, P. A.; Marcu, D.; Pottschmidt, K.; Wilms, J.; Wood, K. S.


    Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near the neutron star compact objects in high mass X-ray binary systems. In such systems the accreting plasma is initially channeled from an accretion disk by the strong neutron star magnetic field into a funneled supersonic flow onto the magnetic polar cap of the neutron star. Many of these accreting X-ray pulsars have X-ray spectra that consist of broadband Comptonized power-law X-ray continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. We are undertaking a new program to develop a spectral analysis tool based on the analytical work of Becker & Wolff (2007) for accreting X-ray pulsar spectra inside the XSPEC spectral analysis framework. We will apply this new analysis tool to the large amount of data on numerous bright accreting X-ray pulsars currently residing in the HEASARC archive. In this presentation we discuss the physical processes that are likely to occur in such a flow and how one might self-consistently model the broadband pulsar X-ray spectrum. A previous attempt at developing such a modeling capability made significant contributions to the understanding of one source in particular, namely, 4U0115+634 (Ferrigno et al. 2010) and we expect to build on that success. Our models will incorporate bremsstrahlung emission, black body emission, and cyclotron emission, all in a strongly Comptonizing environment inside the shock-heated accreting plasma. We will discuss how we will include these physical processes in the calculations as well as the algorithm such a tool will use to converge to a solution. This program is both feasible and timely in light of the expected launch of the LOFT X-ray timing mission. This research is supported by the NASA Astrophysical Data Analysis Program and the Office of Naval Research.

  19. Two-component jets from 3-dimensional magnetohydrodynamic jet simulations of disk winds at sub-parsec scales

    Directory of Open Access Journals (Sweden)

    Staff Jan


    Full Text Available We explore the effect of large scale magnetic field on the formation of two-component jets in magnetohydrodynamic disk winds simulations. Our simulations show a one-component and two-component jets develop depending on the magnetic field distribution along the surface of the accretion disk. Magnetic field configurations with the least steep gradient along the disk lead to a well defined two-component jet with the self-similar (Blandford-Payne configuration separating the two regimes. Our results have direct implications to jets models of AGN and GRBs if indeed two-component jets emanate directly from the accretion disk. Our findings imply that a three-component jets may exist in AGN jets if one takes into account a Blandford-Znajek component in the innermost, relativistic, regions.


    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, Allyson A.; Johnston, Kathryn V. [Department of Astronomy, Columbia University, Mail Code 5246, New York, NY 10027 (United States); Majewski, Steven R., E-mail:, E-mail:, E-mail: [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); and others


    We present a medium-resolution spectroscopic survey of late-type giant stars at mid-Galactic latitudes of (30 Degree-Sign < |b| < 60 Degree-Sign ), designed to probe the properties of this population to distances of {approx}9 kpc. Because M giants are generally metal-rich and we have limited contamination from thin disk stars by the latitude selection, most of the stars in the survey are expected to be members of the thick disk (([Fe/H]) {approx} -0.6) with some contribution from the metal-rich component of the nearby halo. Here we report first results for 1799 stars. The distribution of radial velocity (RV) as a function of l for these stars shows (1) the expected thick disk population and (2) local metal-rich halo stars moving at high speeds relative to the disk, which in some cases form distinct sequences in RV-l space. High-resolution echelle spectra taken for 34 of these ''RV outliers'' reveal the following patterns across the [Ti/Fe]-[Fe/H] plane: 17 of the stars have abundances reminiscent of the populations present in dwarf satellites of the Milky Way, 8 have abundances coincident with those of the Galactic disk and a more metal-rich halo, and 9 of the stars fall on the locus defined by the majority of stars in the halo. The chemical abundance trends of the RV outliers suggest that this sample consists predominantly of stars accreted from infalling dwarf galaxies. A smaller fraction of stars in the RV outlier sample may have been formed in the inner Galaxy and subsequently kicked to higher eccentricity orbits, but the sample is not large enough to distinguish conclusively between this interpretation and the alternative that these stars represent the tail of the velocity distribution of the thick disk. Our data do not rule out the possibility that a minority of the sample could have formed from gas in situ on their current orbits. These results are consistent with scenarios where the stellar halo, at least as probed by M giants, arises

  1. Local expansions and accretive mappings

    Directory of Open Access Journals (Sweden)

    W. A. Kirk


    Full Text Available Let X and Y be complete metric spaces with Y metrically convex, let D⊂X be open, fix u0∈X, and let d(u=d(u0,u for all u∈D. Let f:X→2Y be a closed mapping which maps open subsets of D onto open sets in Y, and suppose f is locally expansive on D in the sense that there exists a continuous nonincreasing function c:R+→R+ with ∫+∞c(sds=+∞ such that each point x∈D has a neighborhood N for which dist(f(u,f(v≥c(max{d(u,d(v}d(u,v for all u,v∈N. Then, given y∈Y, it is shown that y∈f(D iff there exists x0∈D such that for x∈X\\D, dist(y,f(x0≤dist(u,f(x. This result is then applied to the study of existence of zeros of (set-valued locally strongly accretive and ϕ-accretive mappings in Banach spaces

  2. Premixed direct injection disk (United States)

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho


    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  3. Evidence of Cosmic Accretion in Local Tadpole Galaxies (United States)

    Elmegreen, Debra M.; Elmegreen, Bruce; Sanchez Almeida, Jorge; Munoz-Tunon, Casiana; Rafelski, Marc; Gallagher, John S.; Mendez-Abreu, Jairo; Amorin, R.; Filho, M.; Ascasibar, Y.; Papaderos, P.; Vilchez, J.; Perez-Montero, E.


    Star formation in galaxies over cosmic time may be driven by gas accretion from the cosmic web. Spectra of local extremely metal-poor galaxies (XMPs), obtained using the Gran Telescopio Canarias, show oxygen abundances that decrease by a factor of 5 to 10 in the main star-forming regions compared with the disks in 9 of 10 observed galaxies. The results suggest that the galaxies have accreted metal-poor gas in the starburst regions. Tadpole galaxies, which have a main star-forming head and a tail, are common at high redshift but rare locally. Local tadpoles tend to be XMPs. We present multiband HST WFC3 observations of Kiso 5639, one of the tadpole XMPs in our GTC sample. There are faint extended H alpha filaments, and dense star clusters in the midst of a powerful starburst. The clusters, with log masses of 4 to 5, are reminiscent of those found in other dwarf irregular galaxies where impacting gas streams have been suggested.

  4. Growth of Accreting Supermassive Black Hole Seeds and Neutrino Radiation

    Directory of Open Access Journals (Sweden)

    Gagik Ter-Kazarian


    Full Text Available In the framework of microscopic theory of black hole (MTBH, which explores the most important processes of rearrangement of vacuum state and spontaneous breaking of gravitation gauge symmetry at huge energies, we have undertaken a large series of numerical simulations with the goal to trace an evolution of the mass assembly history of 377 plausible accreting supermassive black hole seeds in active galactic nuclei (AGNs to the present time and examine the observable signatures today. Given the redshifts, masses, and luminosities of these black holes at present time collected from the literature, we compute the initial redshifts and masses of the corresponding seed black holes. For the present masses MBH/M⊙≃1.1×106 to 1.3×1010 of 377 black holes, the computed intermediate seed masses are ranging from MBHSeed/M⊙≃26.4 to 2.9×105. We also compute the fluxes of ultrahigh energy (UHE neutrinos produced via simple or modified URCA processes in superdense protomatter nuclei. The AGNs are favored as promising pure UHE neutrino sources, because the computed neutrino fluxes are highly beamed along the plane of accretion disk, peaked at high energies, and collimated in smaller opening angle (θ≪1.

  5. The diversity of quasars unified by accretion and orientation (United States)

    Shen, Yue; Ho, Luis C.


    Quasars are rapidly accreting supermassive black holes at the centres of massive galaxies. They display a broad range of properties across all wavelengths, reflecting the diversity in the physical conditions of the regions close to the central engine. These properties, however, are not random, but form well-defined trends. The dominant trend is known as `Eigenvector 1', in which many properties correlate with the strength of optical iron and [O III] emission. The main physical driver of Eigenvector 1 has long been suspected to be the quasar luminosity normalized by the mass of the hole (the `Eddington ratio'), which is an important parameter of the black hole accretion process. But a definitive proof has been missing. Here we report an analysis of archival data that reveals that the Eddington ratio indeed drives Eigenvector 1. We also find that orientation plays a significant role in determining the observed kinematics of the gas in the broad-line region, implying a flattened, disk-like geometry for the fast-moving clouds close to the black hole. Our results show that most of the diversity of quasar phenomenology can be unified using two simple quantities: Eddington ratio and orientation.


    Energy Technology Data Exchange (ETDEWEB)

    Russo, Matthew [Department of Physics, University of Toronto, 60 St. George St., Toronto, ON M5S 1A7 (Canada); Thompson, Christopher [Canadian Institute for Theoretical Astrophysics, 60 St. George St., Toronto, ON M5S 3H8 (Canada)


    We consider the inner ∼1 AU of a protoplanetary disk (PPD) at a stage where angular momentum transport is driven by the mixing of a radial magnetic field into the disk from a T Tauri wind. Because the radial profile of the imposed magnetic field is well constrained, a constrained calculation of the disk mass flow becomes possible. The vertical disk profiles obtained in Paper I imply a stronger magnetization in the inner disk, faster accretion, and a secular depletion of the disk material. Inward transport of solids allows the disk to maintain a broad optical absorption layer even when the grain abundance becomes too small to suppress its ionization. Thus, a PPD may show a strong mid- to near-infrared spectral excess even while its mass profile departs radically from the minimum-mass solar nebula. The disk surface density is buffered at ∼30 g cm{sup −2}; below this, X-rays trigger magnetorotational turbulence at the midplane strong enough to loft millimeter- to centimeter-sized particles high in the disk, followed by catastrophic fragmentation. A sharp density gradient bounds the inner depleted disk and propagates outward to ∼1–2 AU over a few megayears. Earth-mass planets migrate through the inner disk over a similar timescale, whereas the migration of Jupiters is limited by the supply of gas. Gas-mediated migration must stall outside 0.04 AU, where silicates are sublimated and the disk shifts to a much lower column. A transition disk emerges when the dust/gas ratio in the MRI-active layer falls below X{sub d} ∼ 10{sup −6} (a{sub d}/μm), where a{sub d} is the grain size.


    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, C.; Garufi, A.; Quanz, S. P.; Daemgen, S.; Engler, N. [ETH Zurich, Institute for Astronomy, Wolfgang-Pauli-Strasse 27, 8093 Zurich (Switzerland); Janson, M. [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Boccaletti, A. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Sorbonne Paris Cité, UPMC Paris 6, Sorbonne Université, 5 place Jules Janssen, F-92195 Meudon CEDEX (France); Sissa, E.; Gratton, R.; Desidera, S. [INAF–Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Salter, G.; Langlois, M. [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Benisty, M.; Bonnefoy, M.; Chauvin, G.; Lagrange, A.-M.; Lannier, J. [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France); Dominik, C. [Anton Pannekoek Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Feldt, M.; Henning, T., E-mail: [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); and others


    LkCa 15 hosts a pre-transitional disk as well as at least one accreting protoplanet orbiting in its gap. Previous disk observations have focused mainly on the outer disk, which is cleared inward of ∼50 au. The planet candidates, on the other hand, reside at orbital radii around 15 au, where disk observations have been unreliable until recently. Here, we present new J -band imaging polarimetry of LkCa 15 with SPHERE IRDIS, yielding the most accurate and detailed scattered-light images of the disk to date down to the planet-hosting inner regions. We find what appear to be persistent asymmetric structures in the scattering material at the location of the planet candidates, which could be responsible at least for parts of the signals measured with sparse-aperture masking. These images further allow us to trace the gap edge in scattered light at all position angles and search the inner and outer disks for morphological substructure. The outer disk appears smooth with slight azimuthal variations in polarized surface brightness, which may be due to shadowing from the inner disk or a two-peaked polarized phase function. We find that the near-side gap edge revealed by polarimetry matches the sharp crescent seen in previous ADI imaging very well. Finally, the ratio of polarized disk to stellar flux is more than six times larger in the J -band than in the RI bands.

  8. Fragment Production and Survival in Irradiated Disks: A Comprehensive Cooling Criterion (United States)

    Kratter, Kaitlin M.; Murray-Clay, Ruth A.


    Accretion disks that become gravitationally unstable can fragment into stellar or substellar companions. The formation and survival of these fragments depends on the precarious balance between self-gravity, internal pressure, tidal shearing, and rotation. Disk fragmentation depends on two key factors: (1) whether the disk can get to the fragmentation boundary of Q = 1 and (2) whether fragments can survive for many orbital periods. Previous work suggests that to reach Q = 1, and have fragments survive, a disk must cool on an orbital timescale. Here we show that disks heated primarily by external irradiation always satisfy the standard cooling time criterion. Thus, even though irradiation heats disks and makes them more stable in general, once they reach the fragmentation boundary, they fragment more easily. We derive a new cooling criterion that determines fragment survival and calculate a pressure-modified Hill radius, which sets the maximum size of pressure-supported objects in a Keplerian disk. We conclude that fragmentation in protostellar disks might occur at slightly smaller radii than previously thought and recommend tests for future simulations that will better predict the outcome of fragmentation in real disks.

  9. Lupus Alma Disk Survey (United States)

    Ansdell, Megan


    We present the first unbiased ALMA survey of both dust and gas in a large sample of protoplanetary disks. We surveyed 100 sources in the nearby (150-200 pc), young (1-2 Myr) Lupus region to constrain M_dust to 2 M_Mars and M_gas to 1 M_Jup. Most disks have masses < MMSN and gas-to-dust ratios < ISM. Such rapid gas depletion may explain the prevalence of super-Earths in the exoplanet population.

  10. Studying the accretion geometry of EXO 2030+375 at luminosities close to the propeller regime (United States)

    Fürst, F.; Kretschmar, P.; Kajava, J. J. E.; Alfonso-Garzón, J.; Kühnel, M.; Sanchez-Fernandez, C.; Blay, P.; Wilson-Hodge, C. A.; Jenke, P.; Kreykenbohm, I.; Pottschmidt, K.; Wilms, J.; Rothschild, R. E.


    The Be X-ray binary EXO 2030+375was in an extended low-luminosity state during most of 2016. We observed this state with NuSTARand Swift, supported by INTEGRALobservations and optical spectroscopy with the Nordic Optical Telescope (NOT). We present a comprehensive spectral and timing analysis of these data here to study the accretion geometry and investigate a possible onset of the propeller effect. The Hα data show that the circumstellar disk of the Be-star is still present. We measure equivalent widths similar to values found during more active phases in the past, indicating that the low-luminosity state is not simply triggered by a smaller Be disk. The NuSTARdata, taken at a 3-78 keV luminosity of 6.8 × 1035 erg s-1 (for a distance of 7.1 kpc), are nicely described by standard accreting pulsar models such as an absorbed power law with a high-energy cutoff. We find that pulsations are still clearly visible at these luminosities, indicating that accretion is continuing despite the very low mass transfer rate. In phase-resolved spectroscopy we find a peculiar variation of the photon index from 1.5 to 2.5 over only about 3% of the rotational period. This variation is similar to that observed with XMM-Newtonat much higher luminosities. It may be connected to the accretion column passing through our line of sight. With Swift/XRT we observe luminosities as low as 1034 erg s-1 where the data quality did not allow us to search for pulsations, but the spectrum is much softer and well described by either a blackbody or soft power-law continuum. This softer spectrum might be due to the accretion being stopped by the propeller effect and we only observe the neutron star surface cooling.

  11. Testing Models of Circum-Binary-AGN Accretion for PSO J334.2028+01.4075 (United States)

    Foord, Adi; Gultekin, Kayhan; Reynolds, Mark


    We present analysis of new Chandra data of PSO J334.2028+01.4075 (PSO J334 hereafter), a strong binary AGN candidate discovered by Liu et al. (2015) based on periodic variation of the optical flux. Recent radio coverage presented in Mooley et al. (2017) further supports that PSO J334 is a binary black hole system, as the quasar was found to be lobe-dominated with a twisted radio structure, possibly due to a precessing jet. With no prior X-ray coverage for PSO J334, our new 50 ksec Chandra observation allows for the unique opportunity to differentiate between a single or binary-AGN system, and if a binary, can characterize the mode of accretion. The two most basic sets of predictions via simulations of circum-binary accretion model are a “cavity”, where the inner region of the accretion disk is mostly empty and emission is truncated blueward of the wavelength associated with the temperature of the innermost ring, or “minidisks”, where there is substantial accretion onto one or both of the members of the binary, each with their own shock-heated thin-disk accretion system. We find the X-ray emission to be well-fit with a heavily absorbed power-law, incompatible with the cavity scenario. Further, we construct an SED of PSO J334 by combining radio through X-ray observations and compare it to standard QSO SEDs. We discuss the implications of the comparison between the SED of PSO J334 and that of a single AGN, and assess the likelihood of the binary model for PSO J334.

  12. Accretion Flow Dynamics of MAXI J1836-194 During Its 2011 Outburst from TCAF Solution (United States)

    Jana, Arghajit; Debnath, Dipak; Chakrabarti, Sandip K.; Mondal, Santanu; Molla, Aslam Ali


    The Galactic transient X-ray binary MAXI J1836-194 was discovered on 2011 August 29. Here we make a detailed study of the spectral and timing properties of its 2011 outburst using archival data from the RXTE Proportional Counter Array instrument. The evolution of accretion flow dynamics of the source during the outburst through spectral analysis with Chakrabarti-Titarchuk’s two-component advective flow (TCAF) solution as a local table model in XSPEC. We also fitted spectra with combined disk blackbody and power-law models and compared it with the TCAF model fitted results. The source is found to be in hard and hard-intermediate spectral states only during the entire phase of this outburst. No soft or soft-intermediate spectral states are observed. This could be due to the fact that this object belongs to a special class of sources (e.g., MAXI J1659-152, Swift J1753.5-0127, etc.) that have very short orbital periods and that the companion is profusely mass-losing or the disk is immersed inside an excretion disk. In these cases, flows in the accretion disk are primarily dominated by low viscous sub-Keplerian flow and the Keplerian rate is not high enough to initiate softer states. Low-frequency quasi-periodic oscillations (QPOs) are observed sporadically although as in normal outbursts of transient black holes, monotonic evolutions of QPO frequency during both rising and declining phases are observed. From the TCAF fits, we find the mass of the black hole in the range of 7.5-11 M⊙, and from time differences between peaks of the Keplerian and sub-Keplerian accretion rates we obtain a viscous timescale for this particular outburst, ˜10 days.

  13. Type I planet migration in nearly laminar disks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Laboratory; Li, Shengtai [Los Alamos National Laboratory; Lubow, S H [STSI; Lin, D [UCSC


    We describe two-dimensional hydrodynamic simulations of the migration of low-mass planets ({<=}30 M{sub {circle_plus}}) in nearly laminar disks (viscosity parameter {alpha} < 10{sup -3}) over timescales of several thousand orbit periods. We consider disk masses of 1, 2, and 5 times the minimum mass solar nebula, disk thickness parameters of H/r = 0.035 and 0.05, and a variety of {alpha} values and planet masses. Disk self-gravity is fully included. Previous analytic work has suggested that Type I planet migration can be halted in disks of sufficiently low turbulent viscosity, for {alpha} {approx} 10{sup -4}. The halting is due to a feedback effect of breaking density waves that results in a slight mass redistribution and consequently an increased outward torque contribution. The simulations confirm the existence of a critical mass (M{sub {alpha}} {approx} 10M{sub {circle_plus}}) beyond which migration halts in nearly laminar disks. For {alpha} {approx}> 10{sup -3}, density feedback effects are washed out and Type I migration persists. The critical masses are in good agreement with the analytic model of Rafikov. In addition, for {alpha} {approx}> 10{sup -4} steep density gradients produce a vortex instability, resulting in a small time-varying eccentricity in the planet's orbit and a slight outward migration. Migration in nearly laminar disks may be sufficiently slow to reconcile the timescales of migration theory with those of giant planet formation in the core accretion model.

  14. Water vapour and hydrogen in the terrestrial-planet-forming region of a protoplanetary disk. (United States)

    Eisner, J A


    Planetary systems (ours included) formed in disks of dust and gas around young stars. Disks are an integral part of the star and planet formation process, and knowledge of the distribution and temperature of inner-disk material is crucial for understanding terrestrial planet formation, giant planet migration, and accretion onto the central star. Although the inner regions of protoplanetary disks in nearby star-forming regions subtend only a few nano-radians, near-infrared interferometry has recently enabled the spatial resolution of these terrestrial zones. Most observations have probed only dust, which typically dominates the near-infrared emission. Here I report spectrally dispersed near-infrared interferometric observations that probe the gas (which dominates the mass and dynamics of the inner disk), in addition to the dust, within one astronomical unit (1 au, the Sun-Earth distance) of the young star MWC 480. I resolve gas, including water vapour and atomic hydrogen, interior to the edge of the dust disk; this contrasts with results of previous spectrally dispersed interferometry observations. Interactions of this accreting gas with migrating planets may lead to short-period exoplanets like those detected around main-sequence stars. The observed water vapour is probably produced by the sublimation of migrating icy bodies, and provides a potential reservoir of water for terrestrial planets.

  15. Episodic accretion on to strongly magnetic stars

    NARCIS (Netherlands)

    D'Angelo, C.R.; Spruit, H.C.


    Some accreting neutron stars and young stars show unexplained episodic flares in the form of quasi-periodic oscillations or recurrent outbursts. In a series of two papers, we present new work on an instability that can lead to episodic outbursts when the accretion disc is truncated by the star's

  16. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes ...

  17. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    Abstract. Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the con- jecture that the primordial ...

  18. Star/disk interaction and angular momentum evolution model for solar-like stars

    Directory of Open Access Journals (Sweden)

    Gallet Florian


    Full Text Available The magnetic field in young stellar object is undoubtedly the most important component when one dealing with the angular momentum evolution. It controls this latter one from the pre-main sequence, during the so-called disk locking phase where the stars magnetically interact with their surrounding disk, to the main-sequence through powerful stellar winds that remove angular momentum from the stellar surface. We present new models for the rotational evolution of solar-like stars between 1 Myr and 10 Gyr with the aim to reproduce the distributions of rotational periods observed for star forming regions and young open clusters within this age range. We based our simulation on a recent model dedicated to the study of the angular momentum evolution of solar-type stars. This model include a new wind braking law based on recent numerical simulations of magnetized stellar winds and a specific dynamo and mass-loss prescription are used to link the angular momentum loss-rate to angular velocity evolution. The model additionally allows for a core/envelope decoupling with an angular momentum transfer between these two regions. Since this former model didn’t include any physical star/disk interaction description, two star/disk interaction processes are eventually added to it in order to reproduce the apparent small angular velocities to which the stellar surface is subject during the disk accretion phase. We have developed rotational evolution models for slow, median and fast rotators including two star/disk interaction scenarios that are the magnetospheric ejection and the accretion powered stellar winds processes. The models appear to fail at reproducing the rotational behaviour of solar-type stars except when a more intense magnetic field is used during the disk accretion phase.

  19. Accretion and gas flows near Sagittarius A*: Toward an understanding of the central parsec of the Milky Way (United States)

    Coker, Robert Francis


    The strong radio emission from Sgr A*, an object located at the dynamical center of the Milky Way, has been attributed to accretion of interstellar gas by a supermassive compact object or dense cluster of objects. We show that any dynamically stable cluster of objects cannot compress the ambient magnetic field or heat the accreting gas sufficiently to reproduce the spectrum of Sgr A*, reaffirming the paradigm that Sgr A* is a single supermassive black hole. We investigate how such a black hole would interact with its surroundings and attempt to determine observational consequences of this interaction. The complexity of the gas, dust, and stellar dynamics of the central parsec of the Galaxy complicates this problem, however. Focusing our attention on the black hole itself but being constrained by observations of the surrounding gas and stars, we have constructed models of the accretion process. We examine two types of accretion models. The first, involving a cold, massive, fossilized accretion disk, is found to generate too much infrared radiation as infalling gas impacts the disk. The second model is spherical accretion, in which the radio emission from Sgr A* is dominated by magnetic bremsstrahlung. Such a model requires accurate emissivities for a wide range of temperatures and field strengths. In this work, we derive the magnetic bremsstrahlung emissivities and apply them to the spherical accretion model, yielding a spectrum that is fully consistent with the radio emission from Sgr A*. We empirically determine a magnetic field profile that suggests the presence of other phenomena, such as a central magnetic dynamo. In addition, the model predicts that the observed high energy emission from the Galactic Center region is not dominated by emission from the central black hole and its environs.


    Energy Technology Data Exchange (ETDEWEB)

    Santos-Lima, R.; De Gouveia Dal Pino, E. M. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, R. do Matao, 1226, Sao Paulo, SP 05508-090 (Brazil); Lazarian, A. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States)


    The formation of protostellar disks out of molecular cloud cores is still not fully understood. Under ideal MHD conditions, the removal of angular momentum from the disk progenitor by the typically embedded magnetic field may prevent the formation of a rotationally supported disk during the main protostellar accretion phase of low-mass stars. This has been known as the magnetic braking problem and the most investigated mechanism to alleviate this problem and help remove the excess of magnetic flux during the star formation process, the so-called ambipolar diffusion (AD), has been shown to be not sufficient to weaken the magnetic braking at least at this stage of the disk formation. In this work, motivated by recent progress in the understanding of magnetic reconnection in turbulent environments, we appeal to the diffusion of magnetic field mediated by magnetic reconnection as an alternative mechanism for removing magnetic flux. We investigate numerically this mechanism during the later phases of the protostellar disk formation and show its high efficiency. By means of fully three-dimensional MHD simulations, we show that the diffusivity arising from turbulent magnetic reconnection is able to transport magnetic flux to the outskirts of the disk progenitor at timescales compatible with the collapse, allowing the formation of a rotationally supported disk around the protostar of dimensions {approx}100 AU, with a nearly Keplerian profile in the early accretion phase. Since MHD turbulence is expected to be present in protostellar disks, this is a natural mechanism for removing magnetic flux excess and allowing the formation of these disks. This mechanism dismisses the necessity of postulating a hypothetical increase of the ohmic resistivity as discussed in the literature. Together with our earlier work which showed that magnetic flux removal from molecular cloud cores is very efficient, this work calls for reconsidering the relative role of AD in the processes of star

  1. Star–Disk Interactions in Multiband Photometric Monitoring of the Classical T Tauri Star GI Tau (United States)

    Guo, Zhen; Herczeg, Gregory J.; Jose, Jessy; Fu, Jianning; Chiang, Po-Shih; Grankin, Konstantin; Michel, Raúl; Kesh Yadav, Ram; Liu, Jinzhong; Chen, Wen-ping; Li, Gang; Xue, Huifang; Niu, Hubiao; Subramaniam, Annapurni; Sharma, Saurabh; Prasert, Nikom; Flores-Fajardo, Nahiely; Castro, Angel; Altamirano, Liliana


    The variability of young stellar objects is mostly driven by star–disk interactions. In long-term photometric monitoring of the accreting T Tauri star GI Tau, we detect extinction events with typical depths of {{Δ }}V∼ 2.5 mag that last for days to months and often appear to occur stochastically. In 2014–2015, extinctions that repeated with a quasi-period of 21 days over several months are the first empirical evidence of slow warps predicted by magnetohydrodynamic simulations to form at a few stellar radii away from the central star. The reddening is consistent with {R}V=3.85+/- 0.5 and, along with an absence of diffuse interstellar bands, indicates that some dust processing has occurred in the disk. The 2015–2016 multiband light curve includes variations in spot coverage, extinction, and accretion, each of which results in different traces in color–magnitude diagrams. This light curve is initially dominated by a month-long extinction event and a return to the unocculted brightness. The subsequent light curve then features spot modulation with a 7.03 day period, punctuated by brief, randomly spaced extinction events. The accretion rate measured from U-band photometry ranges from 1.3× {10}-8 to 1.1× {10}-10 M ⊙ yr‑1 (excluding the highest and lowest 5% of high- and low- accretion rate outliers), with an average of 4.7 × {10}-9 M ⊙ yr‑1. A total of 50% of the mass is accreted during bursts of > 12.8× {10}-9 M ⊙ yr{}-1, which indicates limitations on analyses of disk evolution using single-epoch accretion rates.

  2. Disks around young stellar objects

    Indian Academy of Sciences (India)

    ... large groundbased telescopes, mm and radiowave interferometry have been used to image disks around a large number of YSOs revealing disk structure with ever-increasing detail and variety. The disks around YSOs are believed to be the sites of planet formation and a few such associations have now been confirmed.

  3. An Upper Limit on the Mass of the Circumplanetary Disk for DH Tau b (United States)

    Wolff, Schuyler G.; Ménard, François; Caceres, Claudio; Lefèvre, Charlene; Bonnefoy, Mickael; Cánovas, Héctor; Maret, Sébastien; Pinte, Christophe; Schreiber, Matthias R.; van der Plas, Gerrit


    DH Tau is a young (˜1 Myr) classical T Tauri star. It is one of the few young PMS stars known to be associated with a planetary mass companion, DH Tau b, orbiting at large separation and detected by direct imaging. DH Tau b is thought to be accreting based on copious {{H}}α emission and exhibits variable Paschen Beta emission. NOEMA observations at 230 GHz allow us to place constraints on the disk dust mass for both DH Tau b and the primary in a regime where the disks will appear optically thin. We estimate a disk dust mass for the primary, DH Tau A of 17.2+/- 1.7 {M}\\oplus , which gives a disk to star mass ratio of 0.014 (assuming the usual gas to dust mass ratio of 100 in the disk). We find a conservative disk dust mass upper limit of 0.42 M ⊕ for DH Tau b, assuming that the disk temperature is dominated by irradiation from DH Tau b itself. Given the environment of the circumplanetary disk, variable illumination from the primary or the equilibrium temperature of the surrounding cloud would lead to even lower disk mass estimates. A MCFOST radiative transfer model, including heating of the circumplanetary disk by DH Tau b and DH Tau A, suggests that a mass-averaged disk temperature of 22 K is more realistic, resulting in a dust disk mass upper limit of 0.09 M ⊕ for DH Tau b. We place DH Tau b in context with similar objects and discuss the consequences for planet formation models. This work is based on observations carried out under project D15AC with the IRAM NOEMA Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).


    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Luis F.; Zapata, Luis A.; Ortiz-León, Gisela N.; Loinard, Laurent [Centro de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico); Dzib, Sergio A. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Macías, Enrique; Anglada, Guillem, E-mail: [Instituto de Astrofísica de Andalucía (CSIC), Apartado 3004, E-18080 Granada (Spain)


    AB Aur is a Herbig Ae star with a transitional disk. Transitional disks present substantial dust clearing in their inner regions, most probably because of the formation of one or more planets, although other explanations are still viable. In transitional objects, accretion is found to be about an order of magnitude smaller than in classical full disks. Since accretion is believed to be correlated with outflow activity, centimeter free-free jets are expected to be present in association with these systems, at weaker levels than in classical protoplanetary (full) systems. We present new observations of the centimeter radio emission associated with the inner regions of AB Aur and conclude that the morphology, orientation, spectral index, and lack of temporal variability of the centimeter source imply the presence of a collimated, ionized outflow. The radio luminosity of this radio jet is, however, about 20 times smaller than that expected for a classical system of similar bolometric luminosity. We conclude that centimeter continuum emission is present in association with stars with transitional disks, but at levels than are becoming detectable only with the upgraded radio arrays. On the other hand, assuming that the jet velocity is 300 km s{sup –1}, we find that the ratio of mass loss rate to accretion rate in AB Aur is ∼0.1, similar to that found for less evolved systems.

  5. Physics of the Compact Debris Disks Around Metal Rich White Dwarfs (United States)

    Rafikov, Roman


    Significant fraction of the white dwarfs are known to have metal polluted atmospheres, with a much smaller fraction (of order several per cent) also exhibiting near-infrared excesses, indicative of the presence of the dense debris disks in their immediate vicinity. Such disks are believed to originate from tidal disruption of the minor objects originally orbiting these white dwarfs, thus shedding light on the properties of the planetary systems hosted by these stellar remnants. They also provide an obvious mass reservoir to explain the observed metal contamination of the white dwarf atmospheres. In my talk I'll focus on the physical processes affecting the evolution of the debris disks and affecting the rate, at which they accrete onto their central stars. I will demonstrate the key role of the Poynting-Robertson drag in setting the minimum metal accretion rate onto the white dwarf. I will also show how the coupling between the particulate and gaseous debris disks can naturally give rise to much higher accretion rates of metals. Better understanding of these processes will help us illuminate accreton history of minor planets by the white dwarfs.

  6. Identifying Likely Disk-hosting M dwarfs with Disk Detective (United States)

    Silverberg, Steven; Wisniewski, John; Kuchner, Marc J.; Disk Detective Collaboration


    M dwarfs are critical targets for exoplanet searches. Debris disks often provide key information as to the formation and evolution of planetary systems around higher-mass stars, alongside the planet themselves. However, less than 300 M dwarf debris disks are known, despite M dwarfs making up 70% of the local neighborhood. The Disk Detective citizen science project has identified over 6000 new potential disk host stars from the AllWISE catalog over the past three years. Here, we present preliminary results of our search for new disk-hosting M dwarfs in the survey. Based on near-infrared color cuts and fitting stellar models to photometry, we have identified over 500 potential new M dwarf disk hosts, nearly doubling the known number of such systems. In this talk, we present our methodology, and outline our ongoing work to confirm systems as M dwarf disks.

  7. HST Spatially Resolved Spectra of the Accretion Disc and Gas Stream of the Nova-Like Variable UX Ursae Majoris (United States)

    Baptista, Raymundo; Horne, Keith; Wade, Richard A.; Hubeny, Ivan; Long, Knox S.; Rutten, Rene G. M.


    Time-resolved eclipse spectroscopy of the nova-like variable UX UMa obtained with the Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) on 1994 August and November is analysed with eclipse mapping techniques to produce spatially resolved spectra of its accretion disk and gas stream as a function of distance from the disk centre. The inner accretion disk is characterized by a blue continuum filled with absorption bands and lines, which cross over to emission with increasing disk radius, similar to that reported at optical wavelengths. The comparison of spatially resolved spectra at different azimuths reveals a significant asymmetry in the disk emission at ultraviolet (UV) wavelengths, with the disk side closest to the secondary star showing pronounced absorption by an 'iron curtain' and a Balmer jump in absorption. These results suggest the existence of an absorbing ring of cold gas whose density and/or vertical scale increase with disk radius. The spectrum of the infalling gas stream is noticeably different from the disc spectrum at the same radius suggesting that gas overflows through the impact point at the disk rim and continues along the stream trajectory, producing distinct emission down to 0.1 R(sub LI). The spectrum of the uneclipsed light shows prominent emission lines of Lyalpha, N v lambda1241, SiIV Lambda 1400, C IV Lambda 1550, HeII Lambda 1640, and MgII Lambda 2800, and a UV continuum rising towards longer wavelengths. The Balmer jump appears clearly in emission indicating that the uneclipsed light has an important contribution from optically thin gas. The lines and optically thin continuum emission are most probably emitted in a vertically extended disk chromosphere + wind. The radial temperature profiles of the continuum maps are well described by a steady-state disc model in the inner and intermediate disk regions (R greater than or equal to 0.3R(sub LI) ). There is evidence of an increase in the mass accretion rate from August to November

  8. Sensitivities of Earth's core and mantle compositions to accretion and differentiation processes (United States)

    Fischer, Rebecca A.; Campbell, Andrew J.; Ciesla, Fred J.


    The Earth and other terrestrial planets formed through the accretion of smaller bodies, with their core and mantle compositions primarily set by metal-silicate interactions during accretion. The conditions of these interactions are poorly understood, but could provide insight into the mechanisms of planetary core formation and the composition of Earth's core. Here we present modeling of Earth's core formation, combining results of 100 N-body accretion simulations with high pressure-temperature metal-silicate partitioning experiments. We explored how various aspects of accretion and core formation influence the resulting core and mantle chemistry: depth of equilibration, amounts of metal and silicate that equilibrate, initial distribution of oxidation states in the disk, temperature distribution in the planet, and target:impactor ratio of equilibrating silicate. Virtually all sets of model parameters that are able to reproduce the Earth's mantle composition result in at least several weight percent of both silicon and oxygen in the core, with more silicon than oxygen. This implies that the core's light element budget may be dominated by these elements, and is consistent with ≤1-2 wt% of other light elements. Reproducing geochemical and geophysical constraints requires that Earth formed from reduced materials that equilibrated at temperatures near or slightly above the mantle liquidus during accretion. The results indicate a strong tradeoff between the compositional effects of the depth of equilibration and the amounts of metal and silicate that equilibrate, so these aspects should be targeted in future studies aiming to better understand core formation conditions. Over the range of allowed parameter space, core and mantle compositions are most sensitive to these factors as well as stochastic variations in what the planet accreted as a function of time, so tighter constraints on these parameters will lead to an improved understanding of Earth's core composition.

  9. Characterising the global accretion inflow variability for PSR J1023+0038 (United States)

    Hernandez Santisteban, Juan


    PSR J1023+0038 is one of the first discovered transitional millisecond pulsars. These systems switch between a low-mass X-ray binary and a radio millisecond pulsar state and link these two source classes, in turn, confirming the pulsar recycling mechanism. Observation of PSR J1023+0038 and other tMSPs shown that this recycling occurs at luminosity levels usually considered as quiescent for other LMXBs. Hence, tMSPs also serve as unique avenues to test low level accretion onto neutron star surface, and interaction between accretion inflow and the pulsar magnetosphere. This low-level accretion regime has remained highly stable for the last 3.75 yr as evidenced by steady X-ray light curves characterised by 'low' and 'high' modes and rapid switches between the two. Recently, we have also seen similar moding behaviour at longer wavelengths including UV and optical. This is very intriguing as the X-ray moding originates in an inner accretion flow closer to the neutron star and constrained within the light cylinder. Whereas, UV variability is thought to emanate from colder, outer parts of the accretion disk. We request HST/NUV coverage to complement our XMM-Newton observation in order to search and characterise lags between and X-ray and UV emission. This simultaneity will allow us to probe two distinct regions of the system that seem to share a common variability. Ultimately we aim to understand what controls the accretion flow and state transitions in tMSPs.

  10. Super-Eddington Accreting Tidal Disruption Events (United States)

    Lin, Dacheng; Guillochon, James; Komossa, St.; Ramirez-Ruiz, Enrico; Irwin, Jimmy; Maksym, W. Peter; Grupe, Dirk; Godet, Olivier; Webb, Natalie; Barret, Didier; Zauderer, Bevin; Duc, Pierre-Alain; Carrasco, Eleazar R.; Gwyn, Stephen


    Multiwavelength flares from tidal disruption and subsequent accretion of stars are important for study of otherwise dormant massive black holes in galactic nuclei. Previous well-monitored candidate flares were short-lived, with most emission confined to within ~1 year. Here, we report our discovery of a well observed super-long (>11 years) luminous X-ray flare from the nuclear region of a dwarf starburst galaxy. After an apparently fast rise within ~4 months a decade ago, the X-ray luminosity, though showing a weak trend of decay, has been persistently high at around the Eddington limit. The X-ray spectra are soft and can be described with Comptonized emission from an optically thick low-temperature corona, a super-Eddington accretion signature often observed in accreting stellar-mass black holes. Dramatic spectral softening was also caught in one recent observation, implying either a temporary transition from the super-Eddington accretion state to the standard thermal state, or the presence of a transient highly blueshifted (~0.36c) warm absorber. All these properties in concert suggest a tidal disruption event with an unusually long super-Eddington accretion phase that has never before been observed. We also found two additional events showing similar X-ray spectra characteristic of super-Eddington accretion from two otherwise quiescent galaxies. Therefore these events seem to form a new, super-Eddington accreting class of tidal disruption events.

  11. The Evolution of the Galactic Thick Disk with the LAMOST Survey (United States)

    Li, Chengdong; Zhao, Gang


    We select giant stars from LAMOST data release 3 (hereafter DR3) based on their spectral properties and atmospheric parameters in order to detect the structure and kinematic properties of the Galactic thick disk. The spatial motions of our sample stars are calculated. We obtain 2035 thick-disk giant stars by using a kinematic criterion. We confirm the existence of the metal-weak thick disk. The most metal-deficient star in our sample has [{Fe}/{{H}}]=-2.34. We derive the radial and vertical metallicity gradients, which are +0.035 ± 0.010 and ‑0.164 ± 0.010 dex kpc‑1respectively. Then we estimate the scale length and scale height of the thick disk using the Jeans equation, and the results are {h}R=3.0+/- 0.1 {kpc} and {h}Z=0.9+/- 0.1 {kpc}. The scale length of the thick disk is approximately equal to that of the thin disk from several previous works. Finally, we calculate the orbital parameters of our sample stars, and discuss the formation scenario of the thick disk. Our result for the distribution of stellar orbital eccentricity excludes the accretion scenario. We conclude that the thick disk stars are mainly born inside the Milky Way.

  12. Veiling and Accretion Around the Young Binary Stars S and VV Corona Australis (United States)

    Sullivan, Kendall; Prato, Lisa; Avilez, Ian


    S CrA and VV CrA are two young binary star systems with separations of 170 AU and 250 AU, respectively, in the southern star-forming region Corona Australis. The spectral types of the four stars in these two systems are similar, approximately K7 to M1, hence the stellar masses are also similar. The study of young stars just emerging from their natal cloud cores at the very limits of observability allows us to probe the extreme environments in which planet formation begins to occur. Stars in this early evolutionary stage can have circumstellar or circumbinary disks, and sometimes remnants of the envelopes which surrounded them during the protostellar stage. Envelopes accrete onto disks and disks in turn accrete onto the central stars, triggering elevated continuum emission, line emission, outflows, and stellar winds. This violent stage marks the onset of the epoch of planet formation. Using high-resolution near-infrared, H-band spectroscopy from the Keck II telescope using the NIRSPEC instrument over 4-6 epochs, we are probing the chaotic environment surrounding the four stars in these systems. We determine the spectral types for VV CrA A and B for the first time, and examine the variable veiling and emission occurring around each of these stars. This research was supported in part by NSF grants AST-1461200 and AST-1313399.

  13. Cervical Total Disk Arthroplasty. (United States)

    Roberts, Timothy T; Filler, Ryan J; Savage, Jason W; Benzel, Edward C


    In the United States, cervical total disk arthroplasty (TDA) is US Federal Drug Administration (FDA) approved for use in both 1 and 2-level constructions for cervical disk disease resulting in myelopathy and/or radiculopathy. TDA designs vary in form, function, material composition, and even performance in?vivo. However, the therapeutic goals are the same: to remove the painful degenerative/damaged elements of the intervertebral discoligamenous joint complex, to preserve or restore the natural range of spinal motion, and to mitigate stresses on adjacent spinal segments, thereby theoretically limiting adjacent segment disease (ASDis). Cervical vertebrae exhibit complex, coupled motions that can be difficult to artificially replicate. Commonly available TDA designs include ball-and-socket rotation-only prostheses, ball-and-trough rotation and anterior-posterior translational prostheses, as well as unconstrained elastomeric disks that can rotate and translate freely in all directions. Each design has its respective advantages and disadvantages. At this time, available clinical evidence does not favor 1 design philosophy over another. The superiority of cervical TDA over the gold-standard anterior cervical discectomy and fusion is a subject of great controversy. Although most studies agree that cervical TDA is at least as effective as anterior cervical discectomy and fusion at reducing or eliminating preoperative pain and neurological symptoms, the clinical benefits of motion preservation- that is, reduced incidence of ASDis-are far less clear. Several short-to-mid-term studies suggest that disk arthroplasty reduces the radiographic incidence of adjacent segment degeneration; however, the degree to which this is clinically significant is disputed. At this time, TDA has not been clearly demonstrated to reduce symptomatic?ASDis.

  14. Brown dwarf disks with ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, L.; Isella, A. [Department of Astronomy, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Testi, L.; De Gregorio-Monsalvo, I. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Natta, A. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Scholz, A., E-mail: [School of Cosmic Physics, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)


    We present Atacama Large Millimeter/submillimeter Array continuum and spectral line data at 0.89 mm and 3.2 mm for three disks surrounding young brown dwarfs and very low mass stars in the Taurus star forming region. Dust thermal emission is detected and spatially resolved for all the three disks, while CO(J = 3-2) emission is seen in two disks. We analyze the continuum visibilities and constrain the disks' physical structure in dust. The results of our analysis show that the disks are relatively large; the smallest one has an outer radius of about 70 AU. The inferred disk radii, radial profiles of the dust surface density, and disk to central object mass ratios lie within the ranges found for disks around more massive young stars. We derive from our observations the wavelength dependence of the millimeter dust opacity. In all the three disks, data are consistent with the presence of grains with at least millimeter sizes, as also found for disks around young stars, and confirm that the early stages of the solid growth toward planetesimals occur also around very low-mass objects. We discuss the implications of our findings on models of solids evolution in protoplanetary disks, the main mechanisms proposed for the formation of brown dwarfs and very low-mass stars, as well as the potential of finding rocky and giant planets around very low-mass objects.

  15. Dynamics of Line-Driven Winds from Disks in Cataclysmic Variables. I. Solution Topology and Wind Geometry


    Feldmeier, Achim; Shlosman, Isaac


    We analyze the dynamics of 2-D stationary, line-driven winds from accretion disks in cataclysmic variable stars. The driving force is that of line radiation pressure, in the formalism developed by Castor, Abbott & Klein for O stars. Our main assumption is that wind helical streamlines lie on straight cones. We find that the Euler equation for the disk wind has two eigenvalues, the mass loss rate and the flow tilt angle with the disk. Both are calculated self-consistently. The wind is characte...

  16. Vibration of imperfect rotating disk

    Directory of Open Access Journals (Sweden)

    Půst L.


    Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.

  17. Does the Collapse of a Supramassive Neutron Star Leave a Debris Disk? (United States)

    Margalit, Ben; Metzger, Brian D; Beloborodov, Andrei M


    One possible channel for black hole formation is the collapse of a rigidly rotating massive neutron star as it loses its angular momentum or gains excessive mass through accretion. It was proposed that part of the neutron star may form a debris disk around the black hole. Such short-lived massive disks could be the sources of powerful jets emitting cosmological gamma-ray bursts. Whether the collapse creates a disk depends on the equation of state of the neutron star. We survey a wide range of equations of states allowed by observations and find that disk formation is unfeasible. We conclude that this channel of black hole formation is incapable of producing powerful jets, and discuss implications for models of gamma-ray bursts.

  18. Signposts of Planet Formation in the Disk of GM Aur (United States)

    Hornbeck, Jeremy; Grady, Carol; Williger, Gerard; Brown, A.; Perrin, M.; Wisniewski, J.


    Rice et al. noted that transitional disks hosting massive Jovian-mass planets should have suppressed accretion onto the star, while bringing about an absence of silicate emission. Their models also predict systems with less massive planets should permit small grain dust and some gas to filter into the cavity, leaving larger grains confined to the outer disk. Such systems are expected to have polarized light originating within the cavity, silicate emission, and small-grain reflection nebulosity detectable in FUV high-contrast imagery. A further consequence is that molecular gas should be less abundant in the inner disk due to photodissociation by the stellar FUV radiation field. GM Aur is a T-Tauri star/transitional disk system, where both silicate emission and a 24 AU cavity has been detected. We continue the analysis of GM Aur with FUV and optical HST imagery and report the presence of small-grain reflection nebulosity detected from 1400 - 2000 A in the cavity region, as well as a molecular outflow that has an inner radius corresponding to the cavity wall. These data, together with the presence of silicate emission, suggest that GM Aur hosts a planet with likely mass between 1 and 5 Mass of Jupiter

  19. A Monte Carlo study of the spectra from inhomogeneous accretion flow (United States)

    Yu, Xiao-Di; Li, Ya-Ping; Xie, Fu-Guo; Ma, Ren-Yi


    A model of an inhomogeneous accretion flow, in which cold clumps are surrounded by hot gas or corona, has been proposed to explain the spectral features of black hole X-ray binaries. In this work, we try to find possible observational features in the continuum that can indicate the existence of clumps. The spectra of an inhomogeneous accretion flow are calculated via the Monte Carlo method. Since the corresponding accretion flow is unsteady and complex, the accretion flow is described by a set of free parameters, the ranges of which can include the real cases. The influences of the parameters are investigated. It is found that the thermal component of the spectra deviates from multi-color black body spectra in the middle power-law part. On one hand, a warp appears due to the gaps between the clumps and the outer cold disk, and on the other hand, the slope of the line connecting the thermal peaks deviates from 4/3. The warp feature, as well as the correlation between the thermal peak at higher frequency and the spectral index, possibly indicate the existence of clumps, and are worthy of further investigation with more self-consistent models.

  20. Time-Domain Sub-mm Astronomy. Measuring the Accretion Variability of Deeply Embedded Protostars. (United States)

    Johnstone, Douglas


    During the protostellar phase of stellar evolution, accretion is expected to be variable, but this variability has been difficult to detect because protostars are deeply embedded. We have undertaken a 3-year dedicated JCMT/SCUBA-2 monitoring program of eight nearby star-forming regions (Herczeg et al. 2017) to search for sub-mm brightness variations as a proxy of episodic accretion. Here, we describe a sub-mm luminosity burst of the Class I protostar EC 53 in Serpens Main (Yoo et al. 2017). The change in sub-mm brightness of EC 53 is interpreted as dust heating in the envelope, generated by a luminosity increase of the protostar. The sub-mm lightcurve resembles the historical K-band lightcurve, which varies by a factor of ˜6 with a 543 period and is interpreted as accretion variability excited by interactions between the accretion disk and a close binary system. We further compare archival SCUBA-2 observations against the first year of our survey (Mairs et al. 2017) and perform a statistical analysis of the first eighteen months of the survey (Johnstone et al. 2017). We conclude that greater than 5% of the known deeply embedded protostars are found to vary in the sub-mm.

  1. Toward a New Paradigm for the Unification of Radio Loud AGN and its Connection to Accretion (United States)

    Georganpoulos, Markos; Meyer, Eileen T.; Fossati, Giovanni; Lister, Matthew L.


    We recently argued [21J that the collective properties. of radio loud active galactic nuclei point to the existence of two families of sources, one of powerful sources with single velocity jets and one of weaker jets with significant velocity gradients in the radiating plasma. These families also correspond to different accretion modes and therefore different thermal and emission line intrinsic properties: powerful sources have radiatively efficient accretion disks, while in weak sources accretion must be radiatively inefficient. Here, after we briefly review of our recent work, we present the following findings that support our unification scheme: (i) along the broken sequence of aligned objects, the jet kinetic power increases. (ii) in the powerful branch of the sequence of aligned objects the fraction of BLLs decreases with increasing jet power. (iii) for powerful sources, the fraction of BLLs increases for more un-aligned objects, as measured by the core to extended radio emission. Our results are also compatible with the possibility that a given accretion power produces jets of comparable kinetic power.

  2. DVD - digital versatile disks

    Energy Technology Data Exchange (ETDEWEB)

    Gaunt, R.


    An international standard has emerged for the first true multimedia format. Digital Versatile Disk (by its official name), you may know it as Digital Video Disks. DVD has applications in movies, music, games, information CD-ROMS, and many other areas where massive amounts of digital information is needed. Did I say massive amounts of data? Would you believe over 17 gigabytes on a single piece of plastic the size of an audio-CD? That`s the promise, at least, by the group of nine electronics manufacturers who have agreed to the format specification, and who hope to make this goal a reality by 1998. In this major agreement, which didn`t come easily, the manufacturers will combine Sony and Phillip`s one side double-layer NMCD format with Toshiba and Matsushita`s double sided Super-Density disk. By Spring of this year, they plan to market the first 4.7 gigabyte units. The question is: Will DVD take off? Some believe that read-only disks recorded with movies will be about as popular as video laser disks. They say that until the eraseable/writable DVD arrives, the consumer will most likely not buy it. Also, DVD has a good market for replacement of CD- Roms. Back in the early 80`s, the international committee deciding the format of the audio compact disk decided its length would be 73 minutes. This, they declared, would allow Beethoven`s 9th Symphony to be contained entirely on a single CD. Similarly, today it was agreed that playback length of a single sided, single layer DVD would be 133 minutes, long enough to hold 94% of all feature-length movies. Further, audio can be in Dolby`s AC-3 stereo or 5.1 tracks of surround sound, better than CD-quality audio (16-bits at 48kHz). In addition, there are three to five language tracks, copy protection and parental ``locks`` for R rated movies. DVD will be backwards compatible with current CD-ROM and audio CD formats. Added versatility comes by way of multiple aspect rations: 4:3 pan-scan, 4:3 letterbox, and 16:9 widescreen. MPEG

  3. Super-Eddington Mechanical Power of an Accreting Black Hole in M83 (United States)

    Soria, R.; Long, K. S.; Blair, W. P.; Godfrey, L.; Kuntz, K. D.; Lenc, E.; Stockdale, C.; Winkler, P. F.


    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 1040 erg second-1, higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole’s environment.

  4. Super-Eddington Mechanical Power of an Accreting Black Hole in M83 (United States)

    Soria, R.; Long, K. S.; Blair, W. P.; Godfrey, L.; Kuntz, K. D.; Lenc, E.; Stockdale, C.; Winkler, P. F.


    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(exp 40) erg second(exp -1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.

  5. Signature of Plausible Accreting Supermassive Black Holes in Mrk 261/262 and Mrk 266

    Directory of Open Access Journals (Sweden)

    Gagik Ter-Kazarian


    Full Text Available We address the neutrino radiation of plausible accreting supermassive black holes closely linking to the 5 nuclear components of galaxy samples of Mrk 261/262 and Mrk 266. We predict a time delay before neutrino emission of the same scale as the age of the Universe. The ultrahigh energy neutrinos are produced in superdense protomatter medium via simple (quark or pionic reactions or modified URCA processes (G. Gamow was inspired to name the process URCA after the name of a casino in Rio de Janeiro. The resulting neutrino fluxes for quark reactions are ranging from to , where is the opening parameter. For pionic and modified URCA reactions, the fluxes are and , respectively. These fluxes are highly beamed along the plane of accretion disk, peaked at ultrahigh energies, and collimated in smaller opening angle .

  6. General Relativistic Radiative Transfer and General Relativistic MHD Simulations of Accretion and Outflows of Black Holes (United States)

    Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah


    We have calculated the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer, with flow structures obtained by general relativistic magnetohydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features are found protruding (visually) from the accretion disk surface, which are enhancements of synchrotron emission when the magnetic field is roughly aligned with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and location drifts of the features are responsible for certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

  7. Probing the Parsec-scale Accretion Flow of 3C 84 with Millimeter Wavelength Polarimetry (United States)

    Plambeck, R. L.; Bower, G. C.; Rao, Ramprasad; Marrone, D. P.; Jorstad, S. G.; Marscher, A. P.; Doeleman, S. S.; Fish, V. L.; Johnson, M. D.


    We report the discovery of Faraday rotation toward radio source 3C 84, the active galactic nucleus in NGC 1275 at the core of the Perseus Cluster. The rotation measure (RM), determined from polarization observations at wavelengths of 1.3 and 0.9 mm, is (8.7 ± 2.3)× 105 rad m-2, among the largest ever measured. The RM remained relatively constant over a 2 yr period even as the intrinsic polarization position angle wrapped through a span of 300°. The Faraday rotation is likely to originate either in the boundary layer of the radio jet from the nucleus or in the accretion flow onto the central black hole. The accretion flow probably is disk-like rather than spherical on scales of less than a parsec, otherwise the RM would be even larger.

  8. Probing the Physics of Narrow-line Regions in Active Galaxies. III. Accretion and Cocoon Shocks in the LINER NGC 1052 (United States)

    Dopita, Michael A.; Ho, I.-Ting; Dressel, Linda L.; Sutherland, Ralph; Kewley, Lisa; Davies, Rebecca; Hampton, Elise; Shastri, Prajval; Kharb, Preeti; Jose, Jessy; Bhatt, Harish; Ramya, S.; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta


    We present Wide Field Spectrograph integral field spectroscopy and Hubble Space Telescope Faint Object Spectrograph spectroscopy for the low-ionization nuclear emission line region (LINER) galaxy NGC 1052. We infer the presence of a turbulent accretion flow forming a small-scale accretion disk. We find a large-scale outflow and ionization cone along the minor axis of the galaxy. Part of this outflow region is photoionized by the active galactic nucleus and shares properties with the extended narrow-line region of Seyfert galaxies, but the inner (R≲ 1.0″) accretion disk and the region around the radio jet appear shock excited. The emission-line properties can be modeled by a “double-shock” model in which the accretion flow first passes through an accretion shock in the presence of a hard X-ray radiation, and the accretion disk is then processed through a cocoon shock driven by the overpressure of the radio jets. This model explains the observation of two distinct densities (˜104 and ˜106 cm-3) and provides a good fit to the observed emission-line spectrum. We derive estimates for the velocities of the two shock components and their mixing fractions, the black hole mass, and the accretion rate needed to sustain the LINER emission and derive an estimate for the jet power. Our emission-line model is remarkably robust against variation of input parameters and hence offers a generic explanation for the excitation of LINER galaxies, including those of spiral type such as NGC 3031 (M81).

  9. The physics of accretion onto black holes

    CERN Document Server

    Belloni, Tomaso; Casella, Piergiorgio; Gilfanov, Marat; Jonker, Peter; King, Andrew


    This title reviews in-depth research on accretion on all scales, from galactic binaries to intermediate mass and supermassive black holes. Possible future directions of accretion are also discussed. The following main themes are covered: a historical perspective; physical models of accretion onto black holes of all masses; black hole fundamental parameters; and accretion, jets and outflows. An overview and outlook on the topic is also presented.  This volume summarizes the status of the study of astrophysical black hole research and is aimed at astrophysicists and graduate students working in this field.  Originally published in Space Science Reviews, Vol 183/1-4, 2014.

  10. Inferring a Gap in the Group II Disk of the Herbig Ae/Be Star HD 142666 (United States)

    Ezra Rubinstein, Adam; Macías, Enrique; Espaillat, Catherine; Calvet, Nuria; Robinson, Connor; Zhang, Ke


    Disks around Herbig Ae/Be (HAeBe) stars have been classified into Group I or Group II, which are thought to be flared and flat disks respectively. Most Group I disks have been shown to have large gaps, suggesting ongoing planet formation, while no large gaps have been found in Group II disks. We analyzed the Group II disk of HD 142666 using irradiated accretion disk modeling of the broad-band spectral energy distribution along with the 1.3 millimeter spatial brightness distribution traced by Atacama Large Millimeter and Submillimeter Array (ALMA) observations. Our model is able to reproduce the available data, predicting a high degree of settling in the disk, which is consistent with the Group II classification of HD 142666. Although the ALMA observations did not have enough angular resolution to fully resolve the inner parts of the disk, the observed visibilities and synthesized image can only be reproduced when including a gap between ~5 to 12 au in our disk model. In addition, we also infer that the disk has an outer radius of ~65 au, which may be evidence of radial migration of dust or an unseen, low-mass companion that is truncating the outer disk. These results may suggest that Group II disks around HAeBe stars have gaps, possibly carved by young giant planets in the disk. Further ALMA observations of HD 142666 and other Group II disks are needed to discern if gaps are common in this class of objects, as well as to reveal their possible origin.


    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, Morgan; Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)


    This paper examines flows in the immediate vicinity of stars and compact objects dynamically inspiralling within a common envelope (CE). Flow in the vicinity of the embedded object is gravitationally focused, leading to drag and potentially to gas accretion. This process has been studied numerically and analytically in the context of Hoyle–Lyttleton accretion (HLA). Yet, within a CE, accretion structures may span a large fraction of the envelope radius, and in so doing sweep across a substantial radial gradient of density. We quantify these gradients using detailed stellar evolution models for a range of CE encounters. We provide estimates of typical scales in CE encounters that involve main sequence stars, white dwarfs, neutron stars, and black holes with giant-branch companions of a wide range of masses. We apply these typical scales to hydrodynamic simulations of three-dimensional HLA with an upstream density gradient. This density gradient breaks the symmetry that defines HLA flow, and imposes an angular momentum barrier to accretion. Material that is focused into the vicinity of the embedded object thus may not be able to accrete. As a result, accretion rates drop dramatically, by one to two orders of magnitude, while drag rates are only mildly affected. We provide fitting formulae to the numerically derived rates of drag and accretion as a function of the density gradient. The reduced ratio of accretion to drag suggests that objects that can efficiently gain mass during CE evolution, such as black holes and neutron stars, may grow less than implied by the HLA formalism.

  12. Dynamo dominated accretion and energy flow: The mechanism of active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, S.A.; Li, H.


    An explanation of the magnetic fields of the universe, the central mass concentration of galaxies, the massive black hole of every galaxy, and the AGN phenomena has been an elusive goal. The authors suggest here the outlines of such a theoretical understanding and point out where the physical understanding is missing. They believe there is an imperative to the sequence of mass flow and hence energy flow in the collapse of a galactic mass starting from the first non-linearity appearing in structure formation following decoupling. This first non-linearity of a two to one density fluctuation, the Lyman-{alpha} clouds, ultimately leads to the emission spectra of the phenomenon of AGN, quasars, blazars, etc. The over-arching physical principle is the various mechanisms for the transport of angular momentum. They believe they have now understood the new physics of two of these mechanisms that have previously been illusive and as a consequence they impose strong constraints on the initial conditions of the mechanisms for the subsequent emission of the gravitational binding energy. The new phenomena described are: (1) the Rossby vortex mechanism of the accretion disk {alpha}-viscosity, and (2) the mechanism of the {alpha}-{Omega} dynamo in the accretion disk. The Rossby vortex mechanism leads to a prediction of the black hole mass and rate of energy release and the {alpha}-{Omega} dynamo leads to the generation of the magnetic flux of the galaxy (and the far greater magnetic flux of clusters) and separately explains the primary flux of energy emission as force-free magnetic energy density. This magnetic flux and magnetic energy density separately are the necessary consequence of the saturation of a dynamo created by the accretion disk with a gain greater than unity.

  13. Centrally Concentrated X-Ray Radiation from an Extended Accreting Corona in Active Galactic Nuclei (United States)

    Liu, B. F.; Taam, Ronald E.; Qiao, Erlin; Yuan, Weimin


    The X-ray emission from bright active galactic nuclei (AGNs) is believed to originate in a hot corona lying above a cold, geometrically thin accretion disk. A highly concentrated corona located within ˜10 gravitational radii above the black hole is inferred from observations. Based on the accretion of interstellar medium/wind, a disk corona model has been proposed in which the corona is well coupled to the disk by radiation, thermal conduction, as well as by mass exchange. Such a model avoids artificial energy input to the corona and has been used to interpret the spectral features observed in AGN. In this work, it is shown that the bulk emission size of the corona is very small for the extended accretion flow in our model. More than 80% of the hard X-ray power is emitted from a small region confined within 10 Schwarzschild radii around a non-spinning black hole, which is expected to be even smaller accordingly for a spinning black hole. Here, the corona emission is more extended at higher Eddington ratios. The compactness parameter of the corona, l=\\tfrac{L}{R}\\tfrac{{σ }{{T}}}{{m}{{e}}{c}3}, is shown to be in the range of 1-33 for Eddington ratios of 0.02-0.1. Combined with the electron temperature in the corona, this indicates that electron-positron pair production is not dominant in this regime. A positive relation between the compactness parameter and photon index is also predicted. By comparing the above model predictions with observational features, we find that the model is in agreement with observations.

  14. A disk-corona model for the low/hard state of black hole X-ray binaries (United States)

    Wang, Jiu-Zhou; Wang, Ding-Xiong; Huang, Chang-Yin


    A disk-corona model for fitting the low/hard (LH) state of the associated steady jet in black hole X-ray binaries (BHXBs) is proposed based on the large-scale magnetic field configuration that arises from the coexistence of the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes, where the magnetic field configuration for the BP process is determined by the requirement of energy conversion from Poynting energy flux into kinetic energy flux in the jet. It is found that corona current is crucial to guarantee the consistency of the jet launching from the accretion disk. The relative importance of the BZ and BP processes in powering jets from black hole accretion disks is discussed, and the LH state of several BHXBs is fitted based on our model. In addition, we suggest that magnetic field configuration can be regarded as the second parameter for governing the state transition of BHXBs.

  15. Audit: Automated Disk Investigation Toolkit

    Directory of Open Access Journals (Sweden)

    Umit Karabiyik


    Full Text Available Software tools designed for disk analysis play a critical role today in forensics investigations. However, these digital forensics tools are often difficult to use, usually task specific, and generally require professionally trained users with IT backgrounds. The relevant tools are also often open source requiring additional technical knowledge and proper configuration. This makes it difficult for investigators without some computer science background to easily conduct the needed disk analysis. In this paper, we present AUDIT, a novel automated disk investigation toolkit that supports investigations conducted by non-expert (in IT and disk technology and expert investigators. Our proof of concept design and implementation of AUDIT intelligently integrates open source tools and guides non-IT professionals while requiring minimal technical knowledge about the disk structures and file systems of the target disk image.

  16. Hydrodynamic modeling of accretion shocks on a star with radiative transport and a chromospheric model (United States)

    de Sá, L.; Chièze, J.-P.; Stehlé, C.; Hubeny, I.; Delahaye, F.; Lanz, T.


    The aim of the project (ANR STARSHOCK) is to understand the dynamics and the radiative properties of accretion columns, linking the circumstellar disk to the surface photosphere of Young Stellar Objects. The hydrodynamics is computed first, using a high resolution hydrodynamic 1D ALE code (ASTROLABE) coupled to radiative transfer and line cooling, along with a model for the acoustic heating of the chromospheric plasma. Spectra are then post-processed with a 1D radiative transfer code (SYNSPEC), using DFE solver and an extended atomic database covering a wavelength range from X rays to visible.

  17. Origin of the water content of Europa : Evidence for pebble accretion ? (United States)

    Ronnet, T.; Mousis, O.; Vernazza, P.


    Despite the fact that the observed gradient in water content among the Galilean satellites is globally consistent with a formation in a circum-Jovian disk on both sides of the snowline, the mechanisms that led to a low water mass fraction in Europa (˜8%) are not yet understood. Here we show that the water mass fraction of pebbles, as they drift inward, is globally consistent with the current water content of the Galilean system. This opens the possibility that each satellite could have formed through pebble accretion within a delimited region whose boundaries were defined by the position of the snowline.

  18. Hiccup accretion in the swinging pulsar IGR J18245-2452 (United States)

    Ferrigno, C.; Bozzo, E.; Papitto, A.; Rea, N.; Pavan, L.; Campana, S.; Wieringa, M.; Filipović, M.; Falanga, M.; Stella, L.


    The source IGR J18245-2452 is the fifteenth discovered accreting millisecond X-ray pulsar and the first neutron star to show direct evidence of a transition between accretion- and rotation-powered emission states. These swings provided the strongest confirmation to date of the pulsar recycling scenario. During the two XMM-Newton observations that were carried out while the source was in outburst in April 2013, IGR J18245-2452 displayed a unique and peculiar X-ray variability. In this work, we report on a detailed analysis of the XMM-Newton data and focus on the timing and spectral variability of the source. In the 0.4-11 keV energy band, IGR J18245-2452 continuously switched between lower and higher intensity states, with typical variations in flux by factor of ~100 on time scales as short as a few seconds. These variations in the source intensity were sometimes accompanied by dramatic spectral hardening, during which the X-ray power-law photon index varied from Γ = 1.7 to Γ = 0.9. The pulse profiles extracted at different count-rates, hardnesses, and energies also showed a complex variability. These phenomena were never observed in accreting millisecond X-ray pulsars, at least not on such a short time-scale. Fast variability was also found in the 5.5 and 9 GHz ATCA radio observations that were carried out for about 6 h during the outburst. We interpret the variability observed from IGR J18245-2452 in terms of a hiccup accretion phase, during which the accretion of material from the inner boundary of the Keplerian disk is reduced by the onset of centrifugal inhibition of accretion, possibly causing the launch of outflows. Changes across accretion and propeller regimes have been long predicted and reproduced by magnetohydrodynamic simulations of accreting millisecond X-ray pulsars, but have never observed to produce as extreme a variability as that shown by IGR J18245-2452.

  19. IBM 3390 Hard Disk Platter

    CERN Multimedia


    The 3390 disks rotated faster than those in the previous model 3380. Faster disk rotation reduced rotational delay (ie. the time required for the correct area of the disk surface to move to the point where data could be read or written). In the 3390's initial models, the average rotational delay was reduced to 7.1 milliseconds from 8.3 milliseconds for the 3380 family.

  20. Multifrequency emission from hot ion disks (United States)

    Maisack, Michael; Becker, Peter A.; Kafatos, Menas


    The discovery of a large number of gamma-emitting active galactic nuclei (AGNs) by the EGRET instrument on the Compton Gamma Ray Observatory (CGRO) has spawned a lot of theoretical interest in the high-energy and multifrequency emission from these objects. Since most of them show evidence for relativistic outflow, jet models have received most of the attention so far. However, the presence of soft photons at the center of the active nucleus and the resulting Compton drag make it difficult to produce the observed amount of MeV/GeV emission. We explore hot, two-temperature accretion disks around Kerr black holes as an alternative to relativistic beam models for the production of the high-enerty emission. The decay of neutral pions created in the hot region produces photons with energies up to several hundred MeV. Relativistic pairs created as a result of charged pion decays produce additional inverse-Compton radiation in the range of approx. 1 keV-4 MeV if the pairs are exposed to UV radiation, or in the range of approx. 40 keV-150 MeV if the pairs are exposed to soft X-rays. This suggests that high-energy flares in AGNs may be triggered by changes in the disk structure (such as phase transitions or the development of electron scattering coronae) that temporarily shield the hot inner region from UV photons emitted at larger radii, thereby reducing the optical depth for MeV/GeV gamma-rays. Stochastic processes may also play a role in accelerating the utrarelativistic electrons responsible for producing the highest energy (GeV) emission.

  1. A rotating protostellar jet launched from the innermost disk of HH 212 (United States)

    Lee, Chin-Fei; Ho, Paul. T. P.; Li, Zhi-Yun; Hirano, Naomi; Zhang, Qizhou; Shang, Hsien


    The central problem in forming a star is the angular momentum in the circumstellar disk, which prevents material from falling into the central stellar core. An attractive solution to the angular momentum problem appears to be the ubiquitous (low-velocity and poorly collimated) molecular outflows and (high-velocity and highly collimated) protostellar jets accompanying the earliest phase of star formation that remove angular momentum at a range of disk radii1. Previous observations have suggested that outflowing material carries away the excess angular momentum via magneto-centrifugally driven winds from the surfaces of circumstellar disks down to ˜10 au scales2,3,4,5,6, allowing the material in the outer disk to be transported to the inner disk. Here we show that highly collimated protostellar jets remove the residual angular momenta at the ˜0.05 au scale, enabling the material in the innermost region of the disk to accrete towards the central protostar. This is supported by the rotation of the jet measured down to ˜10 au from the protostar in the HH 212 protostellar system. The measurement implies a jet launching radius of ˜0.05-0.02+0.05 au on the disk, based on the magneto-centrifugal theory of jet production, which connects the properties of the jet measured at large distances with those at its base through energy and angular momentum conservation7.


    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ke; Bergin, Edwin A.; Schwarz, Kamber R. [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Blake, Geoffrey A. [Division of Geological and Planetary Sciences, California Institute of Technology, MC 150-21, Pasadena, CA 91125 (United States); Cleeves, L. Ilsedore [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hogerheijde, Michiel; Salinas, Vachail, E-mail: [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)


    An unsolved problem in step-wise core-accretion planet formation is that rapid radial drift in gas-rich protoplanetary disks should drive millimeter-/meter-sized particles inward to the central star before large bodies can form. One promising solution is to confine solids within small-scale structures. Here, we investigate dust structures in the (sub)millimeter continuum emission of four disks (TW Hya, HL Tau, HD 163296, and DM Tau), a sample of disks with the highest spatial resolution Atacama Large Millimeter/submillimeter Array observations to date. We retrieve the surface brightness distributions using synthesized images and fitting visibilities with analytical functions. We find that the continuum emission of the four disks is ∼axisymmetric but rich in 10–30 AU-sized radial structures, possibly due to physical gaps, surface density enhancements, or localized dust opacity variations within the disks. These results suggest that small-scale axisymmetric dust structures are likely to be common, as a result of ubiquitous processes in disk evolution and planet formation. Compared with recent spatially resolved observations of CO snow lines in these same disks, all four systems show enhanced continuum emission from regions just beyond the CO condensation fronts, potentially suggesting a causal relationship between dust growth/trapping and snow lines.

  3. Evolution of protoplanetary disks: Constraints from DM Tau and GM Aur (United States)

    Hueso, R.; Guillot, T.


    We present a one-dimensional model of the formation and evolution of protoplanetary disks and we confront it with observational constraints from DM Tau and GM Aur, two classical T-Tauri stars with relatively well characterized disks. The disk early formation is modeled as the result of the gravitational collapse of an isothermal molecular cloud and the disk viscous evolution is integrated according to two parameterizations of turbulence: The classical alpha and a beta parameterization, representative of non-linear turbulence driven by the keplerian shear. We perform a systematic Monte-Carlo exploration of the parameter space (values of the alpha-beta parameters and initial angular momentum of the molecular cloud) to find the values that fit the present disk surface density distribution, star and disk masses, age of the systems and their accretion rates. The large incertitude in the observational data allows only an order of magnitude determination of the key parameters for both systems. We find that DM Tau require viscosities characterized by alpha values of 0.003 < alpha < 0.2 while GM Aur requires 3 times lower viscosities. Both disks are also compatible with viscosities applied under the beta parameterization. We show that the mechanism responsible for turbulent diffusion at large orbital distances most probably cannot be convection because of its suppression at low optical depths.

  4. Disk storage at CERN

    CERN Document Server

    Mascetti, L; Chan, B; Espinal, X; Fiorot, A; Labrador, H Gonz; Iven, J; Lamanna, M; Presti, G Lo; Mościcki, JT; Peters, AJ; Ponce, S; Rousseau, H; van der Ster, D


    CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.


    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhanjoy; Mortlock, Daniel [Imperial College London, 1010 Blackett Lab, Prince Consort Rd., London SW7 2AZ (United Kingdom); Greaves, Jane [SUPA, Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Pascucci, Ilaria; Apai, Daniel [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, Tucson AZ 85721 (United States); Scholz, Aleks [School of Cosmic Physics, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Thompson, Mark [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Lodato, Giuseppe [Dipartimento di Fisica, Universita Degli Studi di Milano, Via Celoria 16, I-20133 Milano (Italy); Looper, Dagny, E-mail: [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States)


    We present SCUBA-2 850 {mu}m observations of seven very low mass stars (VLMS) and brown dwarfs (BDs). Three are in Taurus and four in the TW Hydrae Association (TWA), and all are classical T Tauri (cTT) analogs. We detect two of the three Taurus disks (one only marginally), but none of the TWA ones. For standard grains in cTT disks, our 3{sigma} limits correspond to a dust mass of 1.2 M{sub Circled-Plus} in Taurus and a mere 0.2 M{sub Circled-Plus} in the TWA (3-10 Multiplication-Sign deeper than previous work). We combine our data with other submillimeter/millimeter (sub-mm/mm) surveys of Taurus, {rho} Oph, and the TWA to investigate the trends in disk mass and grain growth during the cTT phase. Assuming a gas-to-dust mass ratio of 100:1 and fiducial surface density and temperature profiles guided by current data, we find the following. (1) The minimum disk outer radius required to explain the upper envelope of sub-mm/mm fluxes is {approx}100 AU for intermediate-mass stars, solar types, and VLMS, and {approx}20 AU for BDs. (2) While the upper envelope of apparent disk masses increases with M{sub *} from BDs to VLMS to solar-type stars, no such increase is observed from solar-type to intermediate-mass stars. We propose this is due to enhanced photoevaporation around intermediate stellar masses. (3) Many of the disks around Taurus and {rho} Oph intermediate-mass and solar-type stars evince an opacity index of {beta} {approx} 0-1, indicating significant grain growth. Of the only four VLMS/BDs in these regions with multi-wavelength measurements, three are consistent with considerable grain growth, though optically thick disks are not ruled out. (4) For the TWA VLMS (TWA 30A and B), combining our 850 {mu}m fluxes with the known accretion rates and ages suggests substantial grain growth by 10 Myr, comparable to that in the previously studied TWA cTTs Hen 3-600A and TW Hya. The degree of grain growth in the TWA BDs (2M1207A and SSPM1102) remains largely unknown. (5) A

  6. Accreting neutron stars by QFT (United States)

    Chen, Shao-Guang

    layer with thickness of 1 km then q = 1 (N1S1), the gravity from N1S1 inside and exterior will be completely shielded. Because of net nuν _{0} flux is the medium to produce and transmit gravity, q obstructed by the shielding layer lie on the density of layer matter and the section of single nucleon to electronic neutrino obtained by nuclear physics experiments is about 1.1*10 ({-) 43} cm (2) . The mass inside N1S1 for exterior has not gravity interaction, it equivalent to has not inertia as the mass vanish. The neutron star is as a empty shell thereby may rapidly rotating and has not upper limit of mass and radii by the gravity accretion of N1S1, which will influence the mechanisms of pulsars, quasars and X-rays generated. At N1S1 interior the mass for exterior has not gravity which is just we searching dark matter. The mass each part will each other shielding and gravity decrease to less than the pressure of the degenerate neutron gas. The neutron star cannot collapse into a singular point with infinite density, i.e., the black hole with infinite gravity cannot be formed or the neutron star is jest the black hole in observational meaning. By the gravity accrete of N1S1 the neutron star may enlarge its shell radii but thickness keep. Only a shell gravity may be not less than any a observed value which to be deemed as black hole. The neutron star has powerful gravity certainly accompany with great surface negative charge and it may rapidly to rotate, so that there is a powerful magnetic field surround it. The accreting neutron star is as a slowly expand empty shell with fixed thickness of 1 km, its spin period depend on its radii or total accretion mass.

  7. Inner Disk Structure of Dwarf Novae in the Light of X-Ray Observations

    Directory of Open Access Journals (Sweden)

    S. Balman


    Full Text Available Diversity of the X-ray observations of dwarf nova are still not fully understood. I review the X-ray spectral characteristics of dwarf novae during the quiescence in general explained by cooling flow models and the outburst spectra that show hard X-ray emission dominantly with few sources that reveal soft X-ray/EUV blackbody emission. The nature of aperiodic time variability of brightness of dwarf novae shows band limited noise, which can be adequately described in the framework of the model of propagating fluctuations. The frequency of the break (1-6 mHz indicates inner disk truncation of the optically thick disk with a range of radii (3.0-10.0×109 cm. The RXTE and optical (RTT150 data of SS Cyg in outburst and quiescence reveal that the inner disk radius moves towards the white dwarf and receeds as the outburst declines to quiescence. A preliminary analysis of SU UMa indicates a similar behaviour. In addition, I find that the outburst spectra of WZ Sge shows two component spectrum of only hard X-ray emission, one of which may be fitted with a power law suggesting thermal Comptonization occuring in the system. Cross-correlations between the simultaneous UV and X-ray light curves (XMM −Newton of five DNe in quiescence show time lags in the X-rays of 96-181 sec consistent with travel time of matter from a truncated inner disk to the white dwarf surface. All this suggests that dwarf novae and other plausible nonmagnetic systems have truncated accretion disks indicating that the disks may be partially evaporated and the accretion may occur through hot (coronal flows in the disk.


    Energy Technology Data Exchange (ETDEWEB)

    Heinke, C. O.; Ivanova, N.; Engel, M. C.; Pavlovskii, K.; Sivakoff, G. R.; Gladstone, J. C. [Physics Department, University of Alberta, 4-183 CCIS, Edmonton, AB T6G 2E1 (Canada); Cartwright, T. F., E-mail: [International Space University, 1 rue Jean-Dominique Cassini, 67400 Illkirch-Graffenstaden (France)


    We study the mass-transfer rates and disk stability conditions of ultracompact X-ray binaries (UCXBs) using empirical time-averaged X-ray luminosities from Paper I and compiled information from the literature. The majority of UCXBs are consistent with evolutionary tracks for white dwarf donors. Three UCXBs with orbital periods longer than 40 minutes have mass-transfer rates above 10{sup -10} M{sub Sun} yr{sup -1}, inconsistent with white dwarf donor tracks. We show that if helium star donors can retain their initial high entropy, they can explain the observed mass-transfer rates of these UCXBs. Several UCXBs show persistent luminosities apparently below the disk instability limit for irradiated He accretion disks. We point out that a predominantly C and/or O disk (as observed in the optical spectra of several) lowers the disk instability limit, explaining this disagreement. The orbital period and low time-averaged mass-transfer rate of 2S 0918-549 provide evidence that the donor star is a low-entropy C/O white dwarf, consistent with optical spectra. We combine existing information to constrain the masses of the donors in 4U 1916-053 (0.064 {+-} 0.010 M{sub Sun }) and 4U 1626-67 (<0.036 M{sub Sun} for a 1.4 M{sub Sun} neutron star). We show that 4U 1626-67 is indeed persistent, and not undergoing a transient outburst, leaving He star models as the best explanation for the donor.

  9. Molecular Abundances in the Disk of AN Active Galactic Nucleus (United States)

    Harada, N.; Thompson, T. A.; Herbst, E.


    There are galactic nuclei that emit high luminosities L˜1044-46 erg S-1 including luminosity produced by X-rays from high mass accretion onto the central black holes. These nuclei are called active galactic nuclei (AGNs), and they are accompanied by molecular disks. Observations show high abundances of CN and HCN in the disks; the molecules are proposed to be probes of X-ray dominated regions (XDRs) created by the X-rays from AGNs. We have constructed a spatially-dependent chemical-abundance model of the molecular disk in NGC 1068, a typical AGN-dominated galaxy. Recently, new observations of CN and HCN have been made at much higher spatial resolution, and there are also detections of polyatomic molecules such as HC3N, c-C3H2, and C2H. We discuss how these observations and our simulations can help us to better understand the physical conditions, the disk structure, and conditions for star formation within molecular disks, which are still uncertain. We also include a comparison with other types of galaxies such as (ultra-) luminous infrared galaxies. Usero et al.Astronomy and Astrophysics. 419 (897), 2004. Initial results were presented at the International Symposium on Molecular Spectroscopy 2010, RF05 Garcia-Burillo et al. Astronomy and Astrophysics. 519 (2), 2010. Garcia-Burillo et al. Journal of Physics Conference Series, 131 (12031), 2008. Costagliola et al. ArXiv e-print arXiv:1101.2122, 2011. Nakajima et al. Astrophysical Journal Letters 728 (L38), 2008.

  10. Aerodynamic Simulation of Ice Accretion on Airfoils (United States)

    Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel


    This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

  11. Misaligned Disks as Obscurers in Active Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, A.; Elvis, M.; /Edinburgh U., Inst. Astron. /Harvard-Smithsonian Ctr. Astrophys.


    We review critically the evidence concerning the fraction of Active Galactic Nuclei (AGN) which appear as Type 2 AGN, carefully distinguishing strict Type 2 AGN from both more lightly reddened Type 1 AGN, and from low excitation narrow line AGN, which may represent a different mode of activity. Low excitation AGN occur predominantly at low luminosities; after removing these, true Type 2 AGN represent 58{-+}5% of all AGN, and lightly reddened Type 1 AGN a further {approx}15%. Radio, IR, and volume-limited samples all agree in showing no change of Type 2 fraction with luminosity. X-ray samples do show a change with luminosity; we discuss possible reasons for this discrepancy. We test a very simple picture which produces this Type 2 fraction with minimal assumptions. In this picture, infall from large scales occurs in random directions, but must eventually align with the inner accretion flow, producing a severely warped disk on parsec scales. If the re-alignment is dominated by tilt, with minimal twist, a wide range of covering factors is predicted in individual objects, but with an expected mean fraction of Type 2 AGN of exactly 50%. This 'tilted disc' picture predicts reasonable alignment of observed nuclear structures on average, but with distinct misalignments in individual cases. Initial case studies of the few well resolved objects show that such misalignments are indeed present.

  12. Disks around young stellar objects

    Indian Academy of Sciences (India)

    (1734), Immanuel Kant (1755) and by Pierre-Simon Laplace (1796) in the 18th century. 4. The circumstantial evidence for circumstellar disks. Till around early 1980s, the evidence for the existence of circumstellar disks around YSOs had been indirect, based on the interpretation of optical-infrared spectral energy distribu-.

  13. Disk Modeling: Arts and Phenomenology (United States)

    Gayley, K. G.; Porter, J. M.


    This article summarizes the focus session on disk modeling arts and phenomenology, which was devoted to the types of interesting physics a disk modeler may wish to include, and how best to include it. It is assumed that the modeling goal is to guide the process of falsification of various hypotheses with data accessible by existing and planned observations. Appropriate modeling choices depend on the conditions and aspects of the problem under study, but the expectation is that observations will yield to correct interpretation only when the key physics is properly understood, and effectively simulated in the models. This focus review first sketches several potentially relevant phenomena that disk modelers may wish to incorporate, especially in regard to the role of magnetic vs. inertial support of disks, and the source of disk angular momentum. It then concludes with some comments on effective numerical modeling strategies for incorporating these effects.

  14. Accretion-powered Compact Binaries (United States)

    Mauche, Christopher W.


    Preface; The workshop logo; A short history of the CV workshop F. A. Córdova; Part I. Observations: 1. Low mass x-ray binaries A. P. Cowley, P. C. Schmidtke, D. Crampton, J. B. Hutchings, C. A. Haswell, E. L. Robinson, K. D. Horne, H. M. Johnston, S. R. Kulkarni, S. Kitamoto, X. Han, R. M. Hjellming, R. M. Wagner, S. L. Morris, P. Hertz, A. N. Parmar, L. Stella, P. Giommi, P. J. Callanan, T. Naylor, P. A. Charles, C. D. Bailyn, J. N. Imamura, T. Steiman-Cameron, J. Kristian, J. Middleditch, L. Angelini and J. P. Noris; 2. Nonmagnetic cataclysmic variables R. S. Polidan, C. W. Mauche, R. A. Wade, R. H. Kaitchuck, E. M. Schlegel, P. A. Hantzios, R. C. Smith, J. H. Wood, F. Hessman, A. Fiedler, D. H. P. Jones, J. Casares, P. A. Charles, J. van Paradijs, E. Harlaftis, T. Naylor, G. Sonneborn, B. J. M. Hassall, K. Horne, C. A. la Dous, A. W. Shafter, N. A. Hawkins, D. A. H. Buckley, D. J. Sullivan, F. V. Hessman, V. S. Dhillon, T. R. Marsh, J. Singh, S. Seetha, F. Giovannelli, A. Bianchini, E. M. Sion, D. J. Mullan, H. L. Shipman, G. Machin, P. J. Callanan, S. B. Howell, P. Szkody, E. M. Schlegel and R. F. Webbink; 3. Magnetic cataclysmic variables C. Hellier, K. O. Mason, C. W. Mauche, G. S. Miller, J. C. Raymond, F. K. Lamb, J. Patterson, A. J. Norton, M. G. Watson, A. R. King, I. M. McHardy, H. Lehto, J. P. Osborne, E. L. Robinson, A. W. Shafter, S. Balachandran, S. R. Rosen, J. Krautter, W. Buchholz, D. A. H. Buckley, I. R. Tuoly, D. Crampton, B. Warner, R. M. Prestage, B. N. Ashoka, M. Mouchet, J. M. Bonnet-Bidaud, J. M. Hameury, P. Szkody, P. Garnavich, S. Howell, T. Kii, M. Cropper, K. Mason, J. Bailey, D. T. Wickramasinghe, L. Ferrario, K. Beuermann, A. D. Schwope, H.-C. Thomas, S. Jordan, J. Schachter, A. V. Filippenko, S. M. Kahn, F. B. S. Paerels, K. Mukai, M. L. Edgar, S. Larsson, R. F. Jameson, A. R. King, A. Silber, R. Remillard, H. Bradt, M. Ishida, T. Ohashi and G. D. Schmidt; Part II. Accretion Theory: 4. Nonmagnetic W. Kley, F. Geyer, H. Herold, H

  15. Inference on accretion flow dynamics using TCAF solution from the analysis of spectral evolution of H 1743-322 during the 2010 outburst

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Santanu; Debnath, Dipak; Chakrabarti, Sandip K., E-mail:, E-mail:, E-mail: [Indian Center for Space Physics, 43 Chalantika, Garia St. Road, Kolkata 700084 (India)


    We study accretion flow dynamics of the Galactic transient black hole candidate (BHC) H 1743-322 during its 2010 outburst by analyzing spectral data using the two-component advective flow (TCAF; Keplerian and sub-Keplerian) solution after its inclusion in XSPEC as a local model. We compare our TCAF solution fitted results with combined disk blackbody (DBB) and power-law (PL) model fitted results and find a similar smooth variation of thermal (Keplerian or DBB) and non-thermal (PL or sub-Keplerian) fluxes/rates in two types of model fits. For a spectral analysis, 2.5-25 keV spectral data from the Rossi X-Ray Timing Explorer Proportional Counter Array instrument are used. From the TCAF solution fit, accretion flow parameters, such as Keplerian rate, sub-Keplerian rate, location of centrifugal pressure-supported shock, and strength of the shock, are extracted, providing a deeper understanding of the accretion process and properties of accretion disks around BHC H 1743-322 during its X-ray outburst. Based on the halo to disk accretion rate ratio, shock properties, accretion rates, and the nature of the quasi-periodic oscillations' (if observed) entire outburst is classified into four different spectral states: hard, hard-intermediate, soft-intermediate, and soft. From the time variation of intrinsic flow parameters, it appears that their evolutions in the declining phase do not retrace the path of the rising phase. Since our current model does not include magnetic fields, spectral turnover at energies beyond 500-600 keV cannot be explained.

  16. Inference on Accretion Flow Dynamics Using TCAF Solution from the Analysis of Spectral Evolution of H 1743-322 during the 2010 Outburst (United States)

    Mondal, Santanu; Debnath, Dipak; Chakrabarti, Sandip K.


    We study accretion flow dynamics of the Galactic transient black hole candidate (BHC) H 1743-322 during its 2010 outburst by analyzing spectral data using the two-component advective flow (TCAF; Keplerian and sub-Keplerian) solution after its inclusion in XSPEC as a local model. We compare our TCAF solution fitted results with combined disk blackbody (DBB) and power-law (PL) model fitted results and find a similar smooth variation of thermal (Keplerian or DBB) and non-thermal (PL or sub-Keplerian) fluxes/rates in two types of model fits. For a spectral analysis, 2.5-25 keV spectral data from the Rossi X-Ray Timing Explorer Proportional Counter Array instrument are used. From the TCAF solution fit, accretion flow parameters, such as Keplerian rate, sub-Keplerian rate, location of centrifugal pressure-supported shock, and strength of the shock, are extracted, providing a deeper understanding of the accretion process and properties of accretion disks around BHC H 1743-322 during its X-ray outburst. Based on the halo to disk accretion rate ratio, shock properties, accretion rates, and the nature of the quasi-periodic oscillations' (if observed) entire outburst is classified into four different spectral states: hard, hard-intermediate, soft-intermediate, and soft. From the time variation of intrinsic flow parameters, it appears that their evolutions in the declining phase do not retrace the path of the rising phase. Since our current model does not include magnetic fields, spectral turnover at energies beyond 500-600 keV cannot be explained.

  17. Stream-fed accretion in intermediate polars (United States)

    Hellier, C.


    I review the observational evidence for stream-fed accretion in intermediate polars. Recent work on the discless system V2400 Oph confirms the pole-flipping model of stream-fed accretion, but this applies only to a minority of the flow. The bulk of the flow is in the form of blobs circling the white dwarf, a state which might have been a precursor to disc formation in other IPs. I also discuss work on the systems with anomalously long spin periods, V1025 Cen and EX Hya. There are arguments both for and against stream-fed accretion in V1025 Cen, and further work is necessary before reaching a conclusion about this system.

  18. Magnetohydrodynamic Simulations of Black Hole Accretion (United States)

    Avara, Mark J.

    Black holes embody one of the few, simple, solutions to the Einstein field equations that describe our modern understanding of gravitation. In isolation they are small, dark, and elusive. However, when a gas cloud or star wanders too close, they light up our universe in a way no other cosmic object can. The processes of magnetohydrodynamics which describe the accretion inflow and outflows of plasma around black holes are highly coupled and nonlinear and so require numerical experiments for elucidation. These processes are at the heart of astrophysics since black holes, once they somehow reach super-massive status, influence the evolution of the largest structures in the universe. It has been my goal, with the body of work comprising this thesis, to explore the ways in which the influence of black holes on their surroundings differs from the predictions of standard accretion models. I have especially focused on how magnetization of the greater black hole environment can impact accretion systems.

  19. Supermassive blackholes without super Eddington accretion (United States)

    Christian, Damian Joseph; Kim, Matt I.; Garofalo, David; D'Avanzo, Jaclyn; Torres, John


    We explore the X-ray luminosity function at high redshift for active galactic nuclei using an albeit simplified model for mass build-up using a combination of mergers and mass accretion in the gap paradigm (Garofalo et al. 2010). Using a retrograde-dominated configuration we find an interesting low probability channel for the growth of one billion solar mass black holes within hundreds of millions of years of the big bang without appealing to super Eddington accretion (Kim et al. 2016). This result is made more compelling by the connection between this channel and an end product involving active galaxies with FRI radio morphology but weaker jet powers in mildly sub-Eddington accretion regimes. We will discuss our connection between the unexplained paucity of a given family of AGNs and the rapid growth of supermassive black holes, two heretofore seemingly unrelated aspects of the physics of AGNs that will help further understand their properties and evolution.

  20. A Local Model for Angular Momentum Transport in Accretion Disks Driven by the Magnetorotational Instability

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan; Psaltis, Dimitrios


    We develop a local model for the exponential growth and saturation of the Reynolds and Maxwell stresses in turbulent flows driven by the magnetorotational instability. We first derive equations that describe the effects of the instability on the growth and pumping of the stresses. We highlight th...

  1. Accretion timescales and style of asteroidal differentiation in an 26Al-poor protoplanetary disk

    DEFF Research Database (Denmark)

    Larsen, Kirsten Kolbjørn; Schiller, Martin; Bizzarro, Martin


    The decay of radioactive 26Al to 26Mg (half-life of 730,000years) is postulated to have been the main energy source promoting asteroidal melting and differentiation in the nascent solar system. High-resolution chronological information provided by the 26Al-26Mg decay system is, therefore, intrins......The decay of radioactive 26Al to 26Mg (half-life of 730,000years) is postulated to have been the main energy source promoting asteroidal melting and differentiation in the nascent solar system. High-resolution chronological information provided by the 26Al-26Mg decay system is, therefore......, intrinsically linked to the thermal evolution of early-formed planetesimals. In this paper, we explore the timing and style of asteroidal differentiation by combining high-precision Mg isotope measurements of meteorites with thermal evolution models for planetesimals. In detail, we report Mg isotope data...

  2. Stellar Nuclei and Inner Polar Disks in Lenticular Galaxies (United States)

    Sil'chenko, Olga K.


    I analyze statistics of the stellar population properties for stellar nuclei and bulges of nearby lenticular galaxies in different environments by using panoramic spectral data of the integral-field spectrograph SAURON retrieved from the open archive of the Isaac Newton Group. I also estimate the fraction of nearby lenticular galaxies having inner polar gaseous disks by exploring the volume-limited sample of early-type galaxies of the ATLAS-3D survey. By inspecting the two-dimensional velocity fields of the stellar and gaseous components with the running tilted-ring technique, I have found seven new cases of inner polar disks. Together with those, the frequency of inner polar disks in nearby S0 galaxies reaches 10%, which is much higher than the frequency of large-scale polar rings. Interestingly, the properties of the nuclear stellar populations in the inner polar ring hosts are statistically the same as those in the whole S0 sample, implying similar histories of multiple gas-accretion events from various directions.


    Energy Technology Data Exchange (ETDEWEB)

    Sil’chenko, Olga K., E-mail: [Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Moscow, 119992 (Russian Federation); Isaac Newton Institute, Chile, Moscow Branch (Chile)


    I analyze statistics of the stellar population properties for stellar nuclei and bulges of nearby lenticular galaxies in different environments by using panoramic spectral data of the integral-field spectrograph SAURON retrieved from the open archive of the Isaac Newton Group. I also estimate the fraction of nearby lenticular galaxies having inner polar gaseous disks by exploring the volume-limited sample of early-type galaxies of the ATLAS-3D survey. By inspecting the two-dimensional velocity fields of the stellar and gaseous components with the running tilted-ring technique, I have found seven new cases of inner polar disks. Together with those, the frequency of inner polar disks in nearby S0 galaxies reaches 10%, which is much higher than the frequency of large-scale polar rings. Interestingly, the properties of the nuclear stellar populations in the inner polar ring hosts are statistically the same as those in the whole S0 sample, implying similar histories of multiple gas-accretion events from various directions.

  4. Comparison of Multi Disk Exponential Gas Distribution vs. Single Disk (United States)

    Rao, Erica; O'Brien, James


    In fitting galactic rotation curves to data, most standard theories make use of a single exponential disk approximation of the gas distribution to account for the HI synthesis data observed at various radio telescope facilities. We take a sample of surface brightness profiles from The HI Nearby Galaxy Survey (THINGS), and apply both single disk exponentials and Multi-Disk exponentials, and use these various models to see how the modelling procedure changes the Newtonian prediction of the mass of the galaxy. Since the missing mass problem has not been fully explained in large spiral galaxies, different modelling procedures could account for some of the missing matter.

  5. Planet formation in transition disks: Modeling, spectroscopy, and theory (United States)

    Liskowsky, Joseph Paul

    due to either a massive planet accreting the material onto it or via a photoevaporation process whereby the central star's radiation field ejects material from the inner disk out of the bound system in the the interstellar medium. It is presumed that this phase is the last gasp of the planetary disk's evolution before the debris disk stage and before a fully formed solar system evolves. Our work specifically focuses on one object of this transition disk class: HD100546. We add to the understanding of transition disks by showing that a model where ro-vibrational OH emission in the NIR is preferentially emitted along the 'wall' of the disk is consistent with observations, and furthermore that adding an eccentricity to this `wall' component is required to generate the necessary observed line shape. In conjunction with this observation we present supporting material which motivates the usage of such an eccentric wall component in light of predictions of the influence of giant planet formation occurring within the disk.

  6. Measuring the level of interstellar inheritance in the solar protoplanetary disk (United States)

    Alexander, Conel M. O'd.; Nittler, Larry R.; Davidson, Jemma; Ciesla, Fred J.


    The timing and extent to which the initial interstellar material was thermally processed provide fundamental constraints for models of the formation and early evolution of the solar protoplanetary disk. We argue that the nonsolar (solar Δ17O ≈ -29‰) and near-terrestrial (Δ17O ≈ 0‰) O-isotopic compositions of the Earth and most extraterrestrial materials (Moon, Mars, asteroids, and comet dust) were established very early by heating of regions of the disk that were modestly enriched (dust/gas ≥ 5-10 times solar) in primordial silicates (Δ17O ≈ -29‰) and water-dominated ice (Δ17O ≈ 24‰) relative to the gas. Such modest enrichments could be achieved by grain growth and settling of dust to the midplane in regions where the levels of turbulence were modest. The episodic heating of the disk associated with FU Orionis outbursts were the likely causes of this early thermal processing of dust. We also estimate that at the time of accretion the CI chondrite and interplanetary dust particle parent bodies were composed of 5-10% of pristine interstellar material. The matrices of all chondrites included roughly similar interstellar fractions. Whether this interstellar material avoided the thermal processing experienced by most dust during FU Orionis outbursts or was accreted by the disk after the outbursts ceased to be important remains to be established.

  7. The Properties of Reconnection Current Sheets in GRMHD Simulations of Radiatively Inefficient Accretion Flows (United States)

    Ball, David; Özel, Feryal; Psaltis, Dimitrios; Chan, Chi-Kwan; Sironi, Lorenzo


    Non-ideal magnetohydrodynamic (MHD) effects may play a significant role in determining the dynamics, thermal properties, and observational signatures of radiatively inefficient accretion flows onto black holes. In particular, particle acceleration during magnetic reconnection events may influence black hole spectra and flaring properties. We use representative general relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows to identify and explore the structures and properties of current sheets as potential sites of magnetic reconnection. In the case of standard and normal evolution (SANE) disks, we find that in the reconnection sites, the plasma beta ranges from 0.1 to 1000, the magnetization ranges from 10‑4 to 1, and the guide fields are weak compared with the reconnecting fields. In magnetically arrested (MAD) disks, we find typical values for plasma beta from 10‑2 to 103, magnetizations from 10‑3 to 10, and typically stronger guide fields, with strengths comparable to or greater than the reconnecting fields. These are critical parameters that govern the electron energy distribution resulting from magnetic reconnection and can be used in the context of plasma simulations to provide microphysics inputs to global simulations. We also find that ample magnetic energy is available in the reconnection regions to power the fluence of bright X-ray flares observed from the black hole in the center of the Milky Way.

  8. Shadows cast on the transition disk of HD 135344B. Multiwavelength VLT/SPHERE polarimetric differential imaging (United States)

    Stolker, T.; Dominik, C.; Avenhaus, H.; Min, M.; de Boer, J.; Ginski, C.; Schmid, H. M.; Juhasz, A.; Bazzon, A.; Waters, L. B. F. M.; Garufi, A.; Augereau, J.-C.; Benisty, M.; Boccaletti, A.; Henning, Th.; Langlois, M.; Maire, A.-L.; Ménard, F.; Meyer, M. R.; Pinte, C.; Quanz, S. P.; Thalmann, C.; Beuzit, J.-L.; Carbillet, M.; Costille, A.; Dohlen, K.; Feldt, M.; Gisler, D.; Mouillet, D.; Pavlov, A.; Perret, D.; Petit, C.; Pragt, J.; Rochat, S.; Roelfsema, R.; Salasnich, B.; Soenke, C.; Wildi, F.


    have the potential to provide insight into the structure of and processes occurring in the innermost disk regions. Possible explanations for the presence of the shadows include a 22° misaligned inner disk, a warped disk region that connects the inner disk with the outer disk, and variable or transient phenomena such as a perturbation of the inner disk or an asymmetric accretion flow. The spiral arms are best explained by one or multiple protoplanets in the exterior of the disk although no gap is detected beyond the spiral arms up to 1.''0. Based on observations collected at the European Southern Observatory, Chile, ESO No. 095.C-0273(A) and 095.C-0273(D).


    Energy Technology Data Exchange (ETDEWEB)

    Jana, Arghajit; Debnath, Dipak; Chakrabarti, Sandip K.; Mondal, Santanu; Molla, Aslam Ali, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Indian Center for Space Physics, 43 Chalantika, Garia St. Rd., Kolkata, 700084 (India)


    The Galactic transient X-ray binary MAXI J1836-194 was discovered on 2011 August 29. Here we make a detailed study of the spectral and timing properties of its 2011 outburst using archival data from the RXTE Proportional Counter Array instrument. The evolution of accretion flow dynamics of the source during the outburst through spectral analysis with Chakrabarti–Titarchuk’s two-component advective flow (TCAF) solution as a local table model in XSPEC. We also fitted spectra with combined disk blackbody and power-law models and compared it with the TCAF model fitted results. The source is found to be in hard and hard-intermediate spectral states only during the entire phase of this outburst. No soft or soft-intermediate spectral states are observed. This could be due to the fact that this object belongs to a special class of sources (e.g., MAXI J1659-152, Swift J1753.5-0127, etc.) that have very short orbital periods and that the companion is profusely mass-losing or the disk is immersed inside an excretion disk. In these cases, flows in the accretion disk are primarily dominated by low viscous sub-Keplerian flow and the Keplerian rate is not high enough to initiate softer states. Low-frequency quasi-periodic oscillations (QPOs) are observed sporadically although as in normal outbursts of transient black holes, monotonic evolutions of QPO frequency during both rising and declining phases are observed. From the TCAF fits, we find the mass of the black hole in the range of 7.5–11 M{sub ⊙}, and from time differences between peaks of the Keplerian and sub-Keplerian accretion rates we obtain a viscous timescale for this particular outburst, ∼10 days.

  10. Hydrogen Cyanide In Protoplanetary Disks (United States)

    Walker, Ashley L.; Oberg, Karin; Cleeves, L. Ilsedore


    The chemistry behind star and planet formation is extremely complex and important in the formation of habitable planets. Life requires molecules containing carbon, oxygen, and importantly, nitrogen. Hydrogen cyanide, or HCN, one of the main interstellar nitrogen carriers, is extremely dangerous here on Earth. However, it could be used as a vital tool for tracking the chemistry of potentially habitable planets. As we get closer to identifying other habitable planets, we must understand the beginnings of how those planets are formed in the early protoplanetary disk. This project investigates HCN chemistry in different locations in the disk, and what this might mean for forming planets at different distances from the star. HCN is a chemically diverse molecule. It is connected to the formation for other more complex molecules and is commonly used as a nitrogen tracer. Using computational chemical models we look at how the HCN abundance changes at different locations. We use realistic and physically motivated conditions for the gas in the protoplanetary disk: temperature, density, and radiation (UV flux). We analyze the reaction network, formation, and destruction of HCN molecules in the disk environment. The disk environment informs us about stability of habitable planets that are created based on HCN molecules. We reviewed and compared the difference in the molecules with a variety of locations in the disk and ultimately giving us a better understanding on how we view protoplanetary disks.

  11. Linking Signatures of Accretion with Magnetic Field Measurements–Line Profiles are not Significantly Different in Magnetic and Non-magnetic Herbig Ae/Be Stars (United States)

    Reiter, Megan; Calvet, Nuria; Thanathibodee, Thanawuth; Kraus, Stefan; Cauley, P. Wilson; Monnier, John; Rubinstein, Adam; Aarnio, Alicia; Harries, Tim J.


    Herbig Ae/Be stars are young, pre-main-sequence stars that sample the transition in structure and evolution between low- and high-mass stars, providing a key test of accretion processes in higher-mass stars. Few Herbig Ae/Be stars have detected magnetic fields, calling into question whether the magnetospheric accretion paradigm developed for low-mass stars can be scaled to higher masses. We present He I 10830 Å line profiles for 64 Herbig Ae/Be stars with a magnetic field measurement in order to test magnetospheric accretion in the physical regime where its efficacy remains uncertain. Of the five stars with a magnetic field detection, one shows redshifted absorption, indicative of infall, and two show blueshifted absorption, tracing mass outflow. The fraction of redshifted and blueshifted absorption profiles in the non-magnetic Herbig Ae/Be stars is remarkably similar, suggesting that the stellar magnetic field does not affect gas kinematics traced by He I 10830 Å. Line profile morphology does not correlate with the luminosity, rotation rate, mass accretion rate, or disk inclination. Only the detection of a magnetic field and a nearly face-on disk inclination show a correlation (albeit for a few sources). This provides further evidence for weaker dipoles and more complex field topologies as stars develop a radiative envelope. The small number of magnetic Herbig Ae/Be stars has already called into question whether magnetospheric accretion can be scaled to higher masses; accretion signatures are not substantially different in magnetic Herbig Ae/Be stars, casting further doubt that they accrete in the same manner as classical T Tauri stars.

  12. Neutrino-dominated accretion flows as the central engine of gamma-ray bursts (United States)

    Liu, Tong; Gu, Wei-Min; Zhang, Bing


    Neutrino-dominated accretion flows (NDAFs) around rotating stellar-mass black holes (BHs) are plausible candidates for the central engines of gamma-ray bursts (GRBs). NDAFs are hyperaccretion disks with accretion rates in the range of around 0.001-10 M⊙s-1 , which have high density and temperature and therefore are extremely optically thick and geometrically slim or even thick. We review the theoretical progresses in studying the properties of NDAFs as well as their applications to the GRB phenomenology. The topics include: the steady radial and vertical structure of NDAFs and the implications for calculating neutrino luminosity and annihilation luminosity, jet power due to neutrino-antineutrino annihilation and Blandford-Znajek mechanism and their dependences on parameters such as BH mass, spin, and accretion rate, time evolution of NDAFs, effect of magnetic fields, applications of NDAF theories to the GRB phenomenology such as lightcurve variability, extended emission, X-ray flares, kilonovae, etc., as well as probing NDAFs using multi-messenger signals such as MeV neutrinos and gravitational waves.

  13. TCAF model in XSPEC : An efficient tool to understand accretion flow dynamics around black holes (United States)

    Debnath, Dipak; Sarathi Pal, Partha; Chakrabarti, Sandip Kumar; Mondal, Santanu; Jana, Arghajit; Chatterjee, Debjit; Molla, Aslam Ali


    It has been more than two decades of the classic work by Chakrabarti and his collaborators on the two component advective flow (TCAF) model. Recently we successfully been able to include it in HEASARC's spectral analysis software package XSPEC as an additive local model to fit energy spectra from black hole candidates (BHCs) and obtain physical accretion flow parameters, such as, two component (Keplerian disk and sub-Keplerian halo) accretion rates, shock (location, i.e., the size of the Compton cloud, and the compression ratio) parameters. Evolutions of spectral and timing properties are transparent from the TCAF model fitted/derived physical parameters. Reason of different spectral states and their transitions during an outburst of a transient BHC are also clear. One can also predict frequency of the dominating quasi-periodic oscillation (QPO) from TCAF model fitted shock parameters and even predict most preferable mass range of an unknown BHC from TCAF fits. To our knowledge this gives us the most physical tool to investigate the accretion flow dynamics around black hole candidates.

  14. X-ray Pulsars Across the Parameter Space of Luminosity, Accretion Mode, and Spin (United States)

    Laycock, Silas; Yang, Jun; Christodoulou, Dimitris; Coe, Malcolm; Cappallo, Rigel; Zezas, Andreas; Ho, Wynn C. G.; Hong, JaeSub; Fingerman, Samuel; Drake, Jeremy J.; Kretschmar, Peter; Antoniou, Vallia


    We present our multi-satellite library of X-ray Pulsar observations to the community, and highlight recent science results. Available at the library provides a range of high-level data products, including: activity histories, pulse-profiles, phased event files, and a unique pulse-profile modeling interface. The initial release (v1.0) contains some 15 years of RXTE-PCA, Chandra ACIS-I, and XMM-PN observations of the Small Magellanic Cloud, creating a valuable record of pulsar behavior. Our library is intended to enable new progress on fundamental NS parameters and accretion physics. The major motivations are (1) Assemble a large homogeneous sample to enable population statistics. This has so far been used to map the propeller transition, and explore the role of retrograde and pro-grade accretion disks. (2) Obtain pulse-profiles for the same pulsars on many different occasions, at different luminosities and states in order to break model degeneracies. This effort has led to preliminary measurements of the offsets between magnetic and spin axes. With the addition of other satellites, and Galactic pulsars, the library will cover the entire available range of luminosity, variability timescales and accretion regimes.

  15. Super-Eddington accreting massive black holes as long-lived cosmological standards. (United States)

    Wang, Jian-Min; Du, Pu; Valls-Gabaud, David; Hu, Chen; Netzer, Hagai


    Super-Eddington accreting massive black holes (SEAMBHs) reach saturated luminosities above a certain accretion rate due to photon trapping and advection in slim accretion disks. We show that these SEAMBHs could provide a new tool for estimating cosmological distances if they are properly identified by hard x-ray observations, in particular by the slope of their 2-10 keV continuum. To verify this idea we obtained black hole mass estimates and x-ray data for a sample of 60 narrow line Seyfert 1 galaxies that we consider to be the most promising SEAMBH candidates. We demonstrate that the distances derived by the new method for the objects in the sample get closer to the standard luminosity distances as the hard x-ray continuum gets steeper. The results allow us to analyze the requirements for using the method in future samples of active black holes and to demonstrate that the expected uncertainty, given large enough samples, can make them into a useful, new cosmological ruler.

  16. General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.


    Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is

  17. 8-inch IBM floppy disk

    CERN Multimedia


    The 8-inch floppy disk was a magnetic storage disk for the data introduced commercially by IBM in 1971. It was designed by an IBM team as an inexpensive way to load data into the IBM System / 370. Plus it was a read-only bare disk containing 80 KB of data. The first read-write version was introduced in 1972 by Memorex and could contain 175 KB on 50 tracks (with 8 sectors per track). Other improvements have led to various coatings and increased capacities. Finally, it was surpassed by the mini diskette of 5.25 inches introduced in 1976.

  18. A parametric modeling approach to measuring the gas masses of circumstellar disks

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jonathan P.; Best, William M. J., E-mail:, E-mail: [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)


    The disks that surround young stars are mostly composed of molecular gas, which is harder to detect and interpret than the accompanying dust. Disk mass measurements have therefore relied on large and uncertain extrapolations from the dust to the gas. We have developed a grid of models to study the dependencies of isotopologue CO line strengths on disk structure and temperature parameters and find that a combination of {sup 13}CO and C{sup 18}O observations provides a robust measure of the gas mass. We apply this technique to Submillimeter Array observations of nine circumstellar disks and published measurements of six well studied disks. We find evidence for selective photodissociation of C{sup 18}O and determine masses to within a factor of about three. The inferred masses for the nine disks in our survey range from 0.7 to 6 M {sub Jup}, and all are well below the extrapolation from the interstellar medium gas-to-dust ratio of 100. This is consistent with the low masses of planets found around such stars, and may be due to accretion or photoevaporation of a dust-poor upper atmosphere. However, the masses may be underestimated if there are more efficient CO depletion pathways than those known in molecular clouds and cold cores.

  19. Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk. (United States)

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G; Serenelli, Aldo M; Sheffield, Allyson; Li, Ting S; Casagrande, Luca; Johnston, Kathryn V; Laporte, Chervin F P; Price-Whelan, Adrian M; Schönrich, Ralph; Gould, Andrew


    Our Galaxy is thought to have an active evolutionary history, dominated over the past ten billion years or so by star formation, the accretion of cold gas and, in particular, the merging of clumps of baryonic and dark matter. The stellar halo-the faint, roughly spherical component of the Galaxy-reveals rich 'fossil' evidence of these interactions, in the form of stellar streams, substructures and chemically distinct stellar components. The effects of interactions with dwarf galaxies on the content and morphology of the Galactic disk are still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups of stars in our Galaxy, which may have extragalactic origins. There is also mounting evidence that stellar overdensities (regions with greater-than-average stellar density) at the interface between the outer disk and the halo could have been caused by the interaction of a dwarf galaxy with the disk. Here we report a spectroscopic analysis of 14 stars from two stellar overdensities, each lying about five kiloparsecs above or below the Galactic plane-locations suggestive of an association with the stellar halo. We find that the chemical compositions of these two groups of stars are almost identical, both within and between these overdensities, and closely match the abundance patterns of stars in the Galactic disk. We conclude that these stars came from the disk, and that the overdensities that they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.

  20. What Children Tell Us about Their Parents: From Visible Dust to Invisible Planetesimals in Debris Disks (United States)

    Mueller, Sebastian; Krivov, A. V.; Loehne, T.; Mutschke, H.


    Various small body families in the solar system, together with dust they produce through mutual collisions and cometary activity, exemplify a non-planetary component of a planetary system, usually referred to as a "debris disk". Debris disks have been found to be a common phenomenon for main-sequence stars and, similar to the solar system, are believed to comprise planetesimal populations that have accreted at early epochs and survived possible planet formation. However, in contrast to the solar system, observations of extrasolar debris disks only show their dusty portion, whereas the dust-producing planetesimals remain invisible. We show how collisional models of debris disks can be used to "climb up" the ladder of the collisional cascade, from dust towards parent bodies, representing the main mass reservoir of the disks. Applying our approach to five sun-like stars known to harbor dust, we find that the observed excess emission in far-IR to sub-mm is compatible with debris disks collisionally sustained by "large Kuiper belts" of 0.2-50 earth masses (in the bodies up to 100 km in size) with radii of 100-200 AU, larger than thought before. This research has been funded by the Deutsche Forschungsgemeinschaft (DFG), projects Kr 2164/5-1 and Mu 1164/6-1, by the Deutscher Akademischer Austauschdienst (DAAD), project D/0707543, and by the International Space Science Institute (Bern).

  1. Accreting millisecond pulsars: one on each hand

    NARCIS (Netherlands)

    Linares, M.; van der Klis, M.; Wijnands, R.


    We report on the X-ray aperiodic timing analysis of two accreting millisecond pulsars: XTE J1807-294 and IGR J00291+5934. On the one hand, we discovered in XTE J1807-294 seven pairs of simultaneous kilohertz quasi-periodic oscillations (kHz QPOs) separated in frequency by nearly the spin frequency

  2. Millisecond phenomena in mass accreting neutron stars

    NARCIS (Netherlands)

    van der Klis, M.; Cohen, L.


    The past twelve years have seen the discovery, with NASA's Rossi X-ray Timing Explorer (RXTE), of several long-predicted phenomena associated with the accretion of matter onto a neutron star in a binary (double) star system. These phenomena are observed in the strong X-ray emission produced by these

  3. Massive Star Formation: Accreting from Companion

    Indian Academy of Sciences (India)

    We report the possible accretion from companion in the massive star forming region (G350.69–0.49). This region seems to be a binary system composed of a diffuse object (possible nebulae or UC HII region) and a Massive Young Stellar Object (MYSO) seen in Spitzer IRAC image. The diffuse object and MYSO are ...

  4. Numerical Simulation of SLD Ice Accretions

    NARCIS (Netherlands)

    Hospers, Jacco; Hoeijmakers, Hendrik Willem Marie


    In this study, computational methods are presented that compute ice accretion on multiple-element airfoils in specified icing conditions. The ¿Droplerian¿ numerical simulation method used is based on an Eulerian method for predicting droplet trajectories and the resulting droplet catching efficiency

  5. The variability plane of accreting compact objects

    NARCIS (Netherlands)

    Körding, E.G.; Migliari, S.; Fender, R.; Belloni, T.; Knigge, C.; McHardy, I.


    Recently, it has been shown that soft-state black hole X-ray binaries and active galactic nuclei populate a plane in the space defined by the black hole mass, accretion rate and characteristic frequency. We show that this plane can be extended to hard-state objects if one allows a constant offset

  6. The Dusty Accretion of Polluted White Dwarfs (United States)

    Bonsor, A.; Farihi, J.; Wyatt, M. C.; van Lieshout, R.


    Infrared observations of polluted white dwarfs provide key insights into the accretion processes in action. The standard model for the observed infrared excesses is a flat, opaque, dust disc. The infrared observations are inconsistent with the presence of such a disc around all polluted white dwarfs. We discuss potential explanations for the absence of an infrared excess for many polluted white dwarfs.


    Energy Technology Data Exchange (ETDEWEB)

    Godet, O.; Plazolles, B.; Barret, D.; Webb, N. [Institut de Recherche en Astrophysique and Planetologie (IRAP), Universite de Toulouse, UPS, 9 Avenue du colonel Roche, 31028 Toulouse Cedex 4 (France); Kawaguchi, T. [Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Lasota, J.-P. [Institut d' Astrophysique de Paris, UMR 7095 CNRS, UPMC Universite Paris 06, 98bis Boulevard Arago, 75014 Paris (France); Farrell, S. A.; Braito, V. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Servillat, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-67, Cambridge, MA 02138 (United States); Gehrels, N. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)


    The hyperluminous X-ray source HLX-1 in the galaxy ESO 243-49, currently the best intermediate-mass black hole (BH) candidate, displays spectral transitions similar to those observed in Galactic BH binaries, but with a luminosity 100-1000 times higher. We investigated the X-ray properties of this unique source by fitting multi-epoch data collected by Swift, XMM-Newton, and Chandra with a disk model computing spectra for a wide range of sub- and super-Eddington accretion rates assuming a non-spinning BH and a face-on disk (i = 0 Degree-Sign ). Under these assumptions we find that the BH in HLX-1 is in the intermediate-mass range ({approx}2 Multiplication-Sign 10{sup 4} M{sub Sun }) and the accretion flow is in the sub-Eddington regime. The disk radiation efficiency is {eta} = 0.11 {+-} 0.03. We also show that the source does follow the L{sub X} {proportional_to} T{sup 4} relation for our mass estimate. At the outburst peaks, the source radiates near the Eddington limit. The accretion rate then stays constant around 4 Multiplication-Sign 10{sup -4} M{sub Sun} yr{sup -1} for several days and then decreases exponentially. Such 'plateaus' in the accretion rate could be evidence that enhanced mass-transfer rate is the driving outburst mechanism in HLX-1. We also report on the new outburst observed in 2011 August by the Swift X-Ray Telescope. The time of this new outburst further strengthens the {approx}1 year recurrence timescale.

  8. An X-Ray Reprocessing Model of Disk Thermal Emission in Type 1 Seyfert Galaxies (United States)

    Chiang, James; White, Nicholas E. (Technical Monitor)


    Using a geometry consisting of a hot central Comptonizing plasma surrounded by a thin accretion disk, we model the optical through hard X-ray spectral energy distributions of the type 1 Seyfert. galaxies NGC 3516 and NGC 7469. As in the model proposed by Poutanen, Krolik, and Ryde for the X-ray binary Cygnus X-1 and later applied to Seyfert galaxies by Zdziarski, Lubifiski, and Smith, feedback between the radiation reprocessed by the disk and the thermal Comptonization emission from the hot central plasma plays a pivotal role in determining the X-ray spectrum, and as we show, the optical and ultraviolet spectra as well. Seemingly uncorrelated optical/UV and X-ray light curves, similar to those which have been observed from these objects can, in principle, be explained by variations in the size, shape, and temperature of the Comptonizing plasma. Furthermore, by positing a disk mass accretion rate which satisfies a condition for global energy balance between the thermal Comptonization luminosity and the power available from accretion, one can predict the spectral properties of the heretofore poorly measured hard X-ray continuum above approximately 50 keV in type 1 Seyfert galaxies. Conversely, forthcoming measurements of the hard X-ray continuum by more sensitive hard X-ray and soft gamma-ray telescopes, such as those aboard the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) in conjunction with simultaneous optical, UV, and soft X-ray monitoring, will allow the mass accretion rates to be directly constrained for these sources in the context of this model.

  9. Stellar explosions from accreting white dwarfs (United States)

    Moore, Kevin L.

    Unstable thermonuclear burning on accreting white dwarfs (WDs) can lead to a wide variety of outcomes, and induce shock waves in several contexts. In classical and recurrent novae, a WD accreting hydrogen-rich material from a binary companion can experience thermonuclear runaways, ejecting mass into the interstellar/circumbinary environment at ~1000 km/s. This highly supersonic ejecta drives shock waves into the interstellar gas which may be relevant for sweeping out gas from globular clusters or forming circumstellar absorption regions in interacting supernovae. While runaway nuclear burning in novae releases enough energy for these objects to brighten by a factor of ~10 4 over roughly a weeklong outburst, it does not become dynamically unstable. In contrast, certain helium accretion scenarios may allow for dynamical burning modes, in part due to the higher temperature sensitivity of helium burning reactions and larger accreted envelopes. The majority of this thesis involves such dynamical burning modes, specifically detonations - shock waves sustained by nuclear energy release behind the shock front. We investigate when steady-state detonations are realizable in accreted helium layers on WDs, and model their strength and burning products using both semi-analytic and numerical models. We find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically 12 C and 16O. Though gravitationally unbound, the ashes still have unburned helium (~80% in the thinnest cases) and only reach up to heavy elements such as 40Ca, 44Ti, 48Cr, and 52Fe. It is rare for these thin shells to generate large amounts of radioactive isotopes necessary to power light curves, such as 56Ni. This has important implications on whether the unbound helium burning ashes may create faint and fast peculiar supernovae or events with virtually no radioactivity, as well as on off

  10. Probing neutron star physics using accreting neutron stars

    NARCIS (Netherlands)

    Patruno, A.


    We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars

  11. Standing shocks in magnetized dissipative accretion flow around ...

    Indian Academy of Sciences (India)

    We explore the global structure of the accretion flow around a Schwarzschild black hole where the accretion disc is threaded by toroidal magnetic fields. The accretion flow is optically thin and advection dominated. The synchrotron radiation is considered to be the active cooling mechanism in the flow. With this, we obtain ...

  12. Standing shocks in magnetized dissipative accretion flow around ...

    Indian Academy of Sciences (India)



    Feb 9, 2018 ... Abstract. We explore the global structure of the accretion flow around a Schwarzschild black hole where the accretion disc is threaded by toroidal magnetic fields. The accretion flow is optically thin and advection dominated. The synchrotron radiation is considered to be the active cooling mechanism in the ...

  13. Development of 3D Ice Accretion Measurement Method (United States)

    Lee, Sam; Broeren, Andy P.; Addy, Harold E., Jr.; Sills, Robert; Pifer, Ellen M.


    Icing wind tunnels are designed to simulate in-flight icing environments. The chief product of such facilities is the ice accretion that forms on various test articles. Documentation of the resulting ice accretion key piece of data in icing-wind-tunnel tests. Number of currently used options for documenting ice accretion in icing-wind-tunnel testing.

  14. Constraints on the Neutron Star and Inner Accretion Flow in Serpens X-1 Using Nustar (United States)

    Miller, J. M.; Parker, M. L.; Fuerst, F.; Bachetti, M.; Barret, D.; Grefenstette, B. W.; Tendulkar, S.; Harrison, F. A.; Boggs, S. E.; Chakrabarty, D.; hide


    We report on an observation of the neutron star low-mass X-ray binary Serpens X-1, made with NuSTAR. The extraordinary sensitivity afforded by NuSTAR facilitated the detection of a clear, robust, relativistic Fe K emission line from the inner disk. A relativistic profile is required over a single Gaussian line from any charge state of Fe at the 5 sigma level of confidence, and any two Gaussians of equal width at the same confidence. The Compton back-scattering "hump" peaking in the 10-20 keV band is detected for the first time in a neutron star X-ray binary. Fits with relativistically blurred disk reflection models suggest that the disk likely extends close to the innermost stable circular orbit (ISCO) or stellar surface. The best-fit blurred reflection models constrain the gravitational redshift from the stellar surface to be ZnS (is) greater than 0.16. The data are broadly compatible with the disk extending to the ISCO; in that case,ZnS(is) greater than 0.22 and RNS (is) less than12.6 km (assuming MnS = 1.4 solar mass and a = 0, where a = cJ/GM2). If the star is as large or larger than its ISCO, or if the effective reflecting disk leaks across the ISCO to the surface, the redshift constraints become measurements. We discuss our results in the context of efforts to measure fundamental properties of neutron stars, and models for accretion onto compact objects.

  15. Constraining the initial conditions and final outcomes of accretion processes around young stars and supermassive black holes (United States)

    Stone, Jordan M.

    In this thesis I discuss probes of small spatial scales around young stars and protostars and around the supermassive black hole at the galactic center. I begin by describing adaptive optics-fed infrared spectroscopic studies of nascent and newborn binary systems. Binary star formation is a significant mode of star formation that could be responsible for the production of a majority of the galactic stellar population. Better characterization of the binary formation mechanism is important for better understanding many facets of astronomy, from proper estimates of the content of unresolved populations, to stellar evolution and feedback, to planet formation. My work revealed episodic accretion onto the more massive component of the pre-main sequence binary system UY Aur. I also showed changes in the accretion onto the less massive component, revealing contradictory indications of the change in accretion rate when considering disk-based and shock-based tracers. I suggested two scenarios to explain the inconsistency. First, increased accretion should alter the disk structure, puffing it up. This change could obscure the accretion shock onto the central star if the disk is highly inclined. Second, if accretion through the disk is impeded before it makes it all the way onto the central star, then increased disk tracers of accretion would not be accompanied by increased shock tracers. In this case mass must be piling up at some radius in the disk, possibly supplying the material for planet formation or a future burst of accretion. My next project focused on characterizing the atmospheres of very low-mass companions to nearby young stars. Whether these objects form in an extension of the binary-star formation mechanism to very low masses or they form via a different process is an open question. Different accretion histories should result in different atmospheric composition, which can be constrained with spectroscopy. I showed that 3--4mum spectra of a sample of these

  16. The Earliest Stages of Star and Planet Formation: Core Collapse, and the Formation of Disks and Outflows (United States)

    Li, Z.-Y.; Banerjee, R.; Pudritz, R. E.; Jørgensen, J. K.; Shang, H.; Krasnopolsky, R.; Maury, A.

    The formation of stars and planets are connected through disks. Our theoretical understanding of disk formation has undergone drastic changes in recent years, and we are on the brink of a revolution in disk observation enabled by the Atacama Large Millimeter Array (ALMA). Large rotationally supported circumstellar disks, although common around more evolved young stellar objects (YSOs), are rarely detected during the earliest, "class 0" phase; however, a few excellent candidates have been discovered recently around both low- and high-mass protostars. In this early phase, prominent outflows are ubiquitously observed; they are expected to be associated with at least small magnetized disks. Whether the paucity of large Keplerian disks is due to observational challenges or intrinsically different properties of the youngest disks is unclear. In this review, we focus on the observations and theory of the formation of early disks and outflows and their connections with the first phases of planet formation. Disk formation — once thought to be a simple consequence of the conservation of angular momentum during hydrodynamic core collapse — is far more subtle in magnetized gas. In this case, the rotation can be strongly magnetically braked. Indeed, both analytic arguments and numerical simulations have shown that disk formation is suppressed in the strict ideal magnetohydrodynamic (MHD) limit for the observed level of core magnetization. We review what is known about this "magnetic braking catastrophe," possible ways to resolve it, and the current status of early disk observations. Possible resolutions include non-ideal MHD effects (ambipolar diffusion, Ohmic dissipation, and the Hall effect), magnetic interchange instability in the inner part of protostellar accretion flow, turbulence, misalignment between the magnetic field and rotation axis, and depletion of the slowly rotating envelope by outflow stripping or accretion. Outflows are also intimately linked to disk

  17. The Soft State of Cygnus X-1 Observed with NuSTAR: A Variable Corona and a Stable Inner Disk (United States)

    Walton, D. J.; Tomsick, J. A.; Madsen, K. K.; Grinberg, V.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Clavel, M.; Craig, W. W.; Fabian, A. C.; hide


    We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variability, we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin and the iron abundance of the accretion disk, which are expected to remain constant on observational timescales. In particular, we confirm that Cygnus X-1 hosts a rapidly rotating black hole, 0.93 < approx. a* < approx. 0.96, in broad agreement with the majority of prior studies of the relativistic disk reflection and constraints on the spin obtained through studies of the thermal accretion disk continuum. Our work also confirms the apparent misalignment between the inner disk and the orbital plane of the binary system reported previously, finding the magnitude of this warp to be approx.10deg-15deg. This level of misalignment does not significantly change (and may even improve) the agreement between our reflection results and the thermal continuum results regarding the black hole spin. The spectral variability observed by NuSTAR is dominated by the primary continuum, implying variability in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at approx. 6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant companion star.

  18. Spherical Accretion in a Uniformly Expanding Universe (United States)

    Colpi, Monica; Shapiro, Stuart L.; Wasserman, Ira


    We consider spherically symmetric accretion of material from an initially homogeneous, uniformly expanding medium onto a Newtonian point mass M. The gas is assumed to evolve adiabatically with a constant adiabatic index F, which we vary over the range Γ ɛ [1, 5/3]. We use a one-dimensional Lagrangian code to follow the spherical infall of material as a function of time. Outflowing shells gravitationally bound to the point mass fall back, giving rise to a inflow rate that, after a rapid rise, declines as a power law in time. If there were no outflow initially, Bondi accretion would result, with a characteristic accretion time-scale ta,0. For gas initially expanding at a uniform rate, with a radial velocity U = R/t0 at radius R, the behavior of the flow at all subsequent times is determined by ta,0/t0. If ta,0/t0 ≫ 1, the gas has no time to respond to pressure forces, so the fluid motion is nearly collisionless. In this case, only loosely bound shells are influenced by pressure gradients and are pushed outward. The late-time evolution of the mass accretion rate Mdot is close to the result for pure dust, and we develop a semianalytic model that accurately accounts for the small effect of pressure gradients in this limit. In the opposite regime, ta,0/t0 ≪ 1, pressure forces significantly affect the motion of the gas. At sufficiently early times, t ≤ ttr, the flow evolved along a sequence of quasi-stationary, Bondi-like states, with a time-dependent Mdot determined by the slowly varying gas density at large distances. However, at later times, t ≥ ttr, the fluid flow enters a dustllke regime; ttr is the time when the instantaneous Bondi accretion radius reaches the marginally bound radius. The transition time ttr depends sensitively on ta,0/t0 for a given Γ and can greatly exceed t0. We show that there exists a critical value Γ = 11/9, below which the transition from fluid to ballistic motion disappears. As one application of our calculations, we consider the

  19. A possible time-delayed brightening of the Sgr A* accretion flow after the pericenter passage of the G2 cloud (United States)

    Kawashima, Tomohisa; Matsumoto, Yosuke; Matsumoto, Ryoji


    A possibility of time-delayed radio brightenings of Sgr A* triggered by the pericenter passage of the G2 cloud is studied by carrying out global three-dimensional magnetohydrodynamic simulations, taking into account the radiative cooling of the tidal debris of the G2 cloud. Magnetic fields in the accretion flow are strongly perturbed and reorganized after the passage of G2. We have found that the magnetic energy in the accretion flow increased by a factor of 3-4 in 5-10 yr after the passage of G2 through a dynamo mechanism driven by the magneto-rotational instability. Since this B-field amplification enhances the synchrotron emission from the disk and the outflow, the radio and the infrared luminosity of Sgr A* are expected to increase some time, around 2020. The time delay of the radio brightening enables us to determine the rotation axis of the preexisting disk.

  20. Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars (United States)

    Orlando, S.; Bonito, R.; Argiroffi, C.; Reale, F.; Peres, G.; Miceli, M.; Matsakos, T.; Stehlé, C.; Ibgui, L.; de Sa, L.; Chièze, J. P.; Lanz, T.


    Context. According to the magnetospheric accretion model, hot spots form on the surface of classical T Tauri stars (CTTSs) in regions where accreting disk material impacts the stellar surface at supersonic velocity, generating a shock. Aims: We investigate the dynamics and stability of postshock plasma that streams along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. Methods: We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model considers the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction (including the effects of heat flux saturation). We explore different configurations and strengths of the magnetic field. Results: The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic field. In the case of weak magnetic fields (plasma β ≳ 1 in the postshock region), a large component of B may develop perpendicular to the stream at the base of the accretion column, which limits the sinking of the shocked plasma into the chromosphere and perturbs the overstable shock oscillations induced by radiative cooling. An envelope of dense and cold chromospheric material may also develop around the shocked column. For strong magnetic fields (β 106 K lower than when there is uniform magnetic field. Conclusions: The initial magnetic field strength and configuration in the region of impact of the stream are expected to influence the chromospheric absorption and, therefore, the observability of the shock-heated plasma in the X-ray band. In addition, the field strength and configuration also influence the energy balance of the shocked plasma with its emission measure at T > 106 K, which is lower than expected for a uniform field. The above

  1. Circumstellar Disks and Outflows in Turbulent Molecular Cloud Cores: Possible Formation Mechanism for Misaligned Systems (United States)

    Matsumoto, Tomoaki; Machida, Masahiro N.; Inutsuka, Shu-ichiro


    We investigate the formation of circumstellar disks and outflows subsequent to the collapse of molecular cloud cores with the magnetic field and turbulence. Numerical simulations are performed by using an adaptive mesh refinement to follow the evolution up to ˜1000 years after the formation of a protostar. In the simulations, circumstellar disks are formed around the protostars; those in magnetized models are considerably smaller than those in nonmagnetized models, but their size increases with time. The models with stronger magnetic fields tend to produce smaller disks. During evolution in the magnetized models, the mass ratios of a disk to a protostar is approximately constant at ˜1%-10%. The circumstellar disks are aligned according to their angular momentum, and the outflows accelerate along the magnetic field on the 10-100 au scale; this produces a disk that is misaligned with the outflow. The outflows are classified into two types: a magnetocentrifugal wind and a spiral flow. In the latter, because of the geometry, the axis of rotation is misaligned with the magnetic field. The magnetic field has an internal structure in the cloud cores, which also causes misalignment between the outflows and the magnetic field on the scale of the cloud core. The distribution of the angular momentum vectors in a core also has a non-monotonic internal structure. This should create a time-dependent accretion of angular momenta onto the circumstellar disk. Therefore, the circumstellar disks are expected to change their orientation as well as their sizes in the long-term evolutions.

  2. Effects of the Planetary Temperature on the Circumplanetary Disk and on the Gap (United States)

    Szulágyi, J.


    Circumplanetary disks (CPDs) regulate the late accretion to the giant planet and serve as the birthplace for satellites. Understanding their characteristics via simulations also helps to prepare for their observations. Here we study disks around 1, 3, 5, and 10 M Jup planets with 3D global radiative hydrodynamic simulations with sub-planet peak resolution and various planetary temperatures. We found that as the 1 M Jup planet radiates away its formation heat, the circumplanetary envelope transitions to a disk between {T}p=6000 and 4000 K. In the case of 3-10 M Jup planets, a disk always forms. The temperature profile of the CPDs is very steep, the inner 1/6th is higher than the silicate condensation temperature, and the entire disk is higher than the water freezing point, making satellite formation impossible in this early stage (<1 Myr). Satellites might form much later and first in the outer parts of the disk, migrating inwards later on. Our disk masses are 1, 7, and 20 40× {10}-3 {M}{Jup} for the 1, 3, 5, and 10 M Jup gas giants, respectively, and we provide an empirical formula to estimate the subdisk masses based on the planet- and circumstellar disk (CSD) mass. Our finding is that the cooler the planet, the lower the temperature of the subdisk, and the higher the vertical influx velocities. The planetary gap is also both deeper and wider. We also show that the gaps in 2D and 3D are different. The subdisk eccentricity increases with {M}{{p}} and violently interacts with the CSD, making satellite-formation less likely when {M}{{p}}≳ 5{M}{Jup}.

  3. Covering and piercing disks with two centers

    KAUST Repository

    Ahn, Heekap


    We give exact and approximation algorithms for two-center problems when the input is a set D of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in D intersects one of these two disks. Then we study the problem of covering the set D by two smallest congruent disks. © 2012 Elsevier B.V.

  4. Covering and piercing disks with two centers

    KAUST Repository

    Ahn, Heekap


    We consider new versions of the two-center problem where the input consists of a set D of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in intersects one of these two disks. Then we study the problem of covering the set D by two smallest congruent disks. We give exact and approximation algorithms for these versions. © 2011 Springer-Verlag.

  5. Accretion and early evolution of Earth

    DEFF Research Database (Denmark)

    Saji, Nikitha Susan

    The formation of terrestrial planets like Earth represent the end-stages of evolution of a circumstellar disk that start out as a dense core of gas and dust in an interstellar molecular cloud and gravitationally collapse to form a central star and a surrounding protoplanetary disk. Gas and micron......-sized dust, of which the early protoplanetary disk is initially composed of, coalesce over the course of several millions of years to form the precursors to planets that make up the solar system today. The final assembly of Earth-like planets is complete only after a protracted latestage evolution......-stage impacts had to play in determining the bulk composition as well as pace of the chemical dierentiation and internal dynamics of terrestrial planets - is preserved in the form of isotopic signatures in some of the oldest terrestrial and extraterrestrial samples available to us. A potential means to unravel...

  6. Helicopter rotor noise investigation during ice accretion (United States)

    Cheng, Baofeng

    An investigation of helicopter rotor noise during ice accretion is conducted using experimental, theoretical, and numerical methods. This research is the acoustic part of a joint helicopter rotor icing physics, modeling, and detection project at The Pennsylvania State University Vertical Lift Research Center of Excellence (VLRCOE). The current research aims to provide acoustic insight and understanding of the rotor icing physics and investigate the feasibility of detecting rotor icing through noise measurements, especially at the early stage of ice accretion. All helicopter main rotor noise source mechanisms and their change during ice accretion are discussed. Changes of the thickness noise, steady loading noise, and especially the turbulent boundary layer - trailing edge (TBL-TE) noise due to ice accretion are identified and studied. The change of the discrete frequency noise (thickness noise and steady loading noise) due to ice accretion is calculated by using PSU-WOPWOP, an advanced rotorcraft acoustic prediction code. The change is noticeable, but too small to be used in icing detection. The small thickness noise change is due to the small volume of the accreted ice compared to that of the entire blade, although a large iced airfoil shape is used. For the loading noise calculation, two simplified methods are used to generate the loading on the rotor blades, which is the input for the loading noise calculation: 1) compact loading from blade element momentum theory, icing effects are considered by increasing the drag coefficient; and 2) pressure loading from the 2-D CFD simulation, icing effects are considered by using the iced airfoil shape. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand (AERTS) facility at The Pennsylvania State University, and The University of Maryland Acoustic Chamber (UMAC). In both facilities the

  7. An X-ray outburst from the rapidly accreting young star that illuminates McNeil's nebula. (United States)

    Kastner, J H; Richmond, M; Grosso, N; Weintraub, D A; Simon, T; Frank, A; Hamaguchi, K; Ozawa, H; Henden, A


    Young, low-mass stars are luminous X-ray sources whose powerful X-ray flares may exert a profound influence over the process of planet formation. The origin of the X-ray emission is uncertain. Although many (or perhaps most) recently formed, low-mass stars emit X-rays as a consequence of solar-like coronal activity, it has also been suggested that X-ray emission may be a direct result of mass accretion onto the forming star. Here we report X-ray imaging spectroscopy observations which reveal a factor approximately 50 increase in the X-ray flux from a young star that is at present undergoing a spectacular optical/infrared outburst (this star illuminates McNeil's nebula). The outburst seems to be due to the sudden onset of a phase of rapid accretion. The coincidence of a surge in X-ray brightness with the optical/infrared eruption demonstrates that strongly enhanced high-energy emission from young stars can occur as a consequence of high accretion rates. We suggest that such accretion-enhanced X-ray emission from erupting young stars may be short-lived, because intense star-disk magnetospheric interactions are quenched rapidly by the subsequent flood of new material onto the star.

  8. Effects of ice accretion on the aerodynamics of bridge cables

    DEFF Research Database (Denmark)

    Demartino, C.; Koss, Holger; Georgakis, Christos T.


    Undesirable wind induced vibrations of bridge cables can occur when atmospheric conditions are such to generate ice accretion. This paper contains the results of an extensive investigation of the effects of ice accretion due to in-cloud icing, on the aerodynamic characteristics of bridge hangers...... and stay cables. The aim of this paper is twofold; first, it was investigated the ice accretion process and the final shape of the ice accreted; then the aerodynamics of the ice accreted bridge cables was characterized, and related to the ice shape. Different climatic conditions, i.e. combinations...... of the ice accretions is given in the paper. Only for the bridge hanger case, a short description of the evolution of the ice accretions is given. The aerodynamic force coefficients were then measured with varying yaw angle, angle of attack and wind speed, and are presented and discussed in the paper...

  9. Airfoil Ice-Accretion Aerodynamics Simulation (United States)

    Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.


    NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.


    Energy Technology Data Exchange (ETDEWEB)

    Ji, Long; Zhang, Shu; Chen, YuPeng; Zhang, Shuang-Nan; Li, Jian [Laboratory for Particle Astrophysics, Institute of High Energy Physics, Beijing 100049 (China); Torres, Diego F. [Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona (Spain); Kretschmar, Peter [European Space Astronomy Centre (ESA/ESAC), Science Operations Department, Villanueva de la Cañada (Madrid) (Spain)


    We investigated the possible feedback of type I bursts on the accretion process during the spectral evolution of the atoll source 4U 1608-52. By fitting the burst spectrum with a blackbody and an adjustable, persistent spectral component, we found that the latter is significantly state-dependent. In the banana state, the persistent flux increases along the burst evolution, while in the island state this trend holds only when the bursts are less luminous and start to reverse at higher burst luminosities. We speculate that, by taking into account both the Poynting-Robertson drag and radiation pressure, these phenomena may arise from the interactions between the radiation field of the type I burst and the inner region of the accretion disk.


    Energy Technology Data Exchange (ETDEWEB)

    Currie, Thayne [National Astronomical Observatory of Japan, Subaru Telescope (Japan); Cloutier, Ryan [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON (Canada); Brittain, Sean [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States); Grady, Carol; Kuchner, Marc J. [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD (United States); Burrows, Adam [Department of Astrophysics Sciences, Princeton University, Princeton, NJ (United States); Muto, Takayuki [Division of Liberal Arts, Kogakuin University, Tokyo (Japan); Kenyon, Scott J. [Smithsonian Astrophysical Observatory, Cambridge, MA (United States)


    We report Gemini Planet Imager H-band high-contrast imaging/integral field spectroscopy and polarimetry of the HD 100546, a 10 Myr old early-type star recently confirmed to host a thermal infrared (IR) bright (super-)Jovian protoplanet at wide separation, HD 100546 b. We resolve the inner disk cavity in polarized light, recover the thermal IR-bright arm, and identify one additional spiral arm. We easily recover HD 100546 b and show that much of its emission plausibly originates from an unresolved point source. The point-source component of HD 100546 b has extremely red IR colors compared to field brown dwarfs, qualitatively similar to young cloudy super-Jovian planets; however, these colors may instead indicate that HD 100546 b is still accreting material from a circumplanetary disk. Additionally, we identify a second point-source-like peak at r{sub proj} ∼ 14 AU, located just interior to or at the inner disk wall consistent with being a <10–20 M{sub J} candidate second protoplanet—“HD 100546 c”—and lying within a weakly polarized region of the disk but along an extension of the thermal IR-bright spiral arm. Alternatively, it is equally plausible that this feature is a weakly polarized but locally bright region of the inner disk wall. Astrometric monitoring of this feature over the next 2 years and emission line measurements could confirm its status as a protoplanet, rotating disk hot spot that is possibly a signpost of a protoplanet, or a stationary emission source from within the disk.

  12. Highly Accreting Quasars at High Redshift

    Directory of Open Access Journals (Sweden)

    Mary L. Martínez-Aldama


    Full Text Available We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (L/LEdd ~ 1.0 at high redshift, z ~2–3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as Aliiiλ1860, Siiii]λ1892 and Ciii]λ1909. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  13. Accretion on to Magnetic White Dwarfs

    Directory of Open Access Journals (Sweden)

    Wickramasinghe Dayal


    The polars have no counterparts in neutron star systems and their study provides unique insights into the complex nature of the magnetospheric boundary. The observed properties of accretion shocks at the white dwarf surface such as the anomalous soft-X-ray excess and its time variability provide strong support for the hypothesis that under certain circumstances the field channelled funnel flow is “blobby”. This has been attributed to interchange instabilities such as the Magnetic Rayleigh-Taylor instability in the shocked gas at the stream-magnetosphere boundary where the stream fragments into discrete clumps of gas. As the clumps penetrate into the magnetosphere, they are shredded into smaller mass blobs via the Kelvin-Helmholtz instability that then couple on to field lines over an extended inner transition region in the orbital plane. The more massive blobs penetrate deep into the photosphere of the white dwarf releasing their energy as a reprocessed soft-X-ray black body component. Although similar instabilities are expected in the inner transition region in disced accretion albeit on a different scale there has been no direct observational evidence for blobby accretion in the generally lower field and disced IPs.

  14. The Evolution of Disks and Winds in Dwarf Nova Outbursts - FUSE (United States)

    Long, Knox


    This project was a project to study the FUV spectra of two proto-typical dwarf novae, U Gem and SS Cygni, through an outburst cycle. The luminosity of the boundary layer in the two systems, as evidenced by earlier EUVE observations, is different in the two systems. Our intensive study of the two systems was intended to (1) probe the ionization and kinematic structure of the wind as a function of system brightness, (2) isolate the contributions of the disk to the FUV spectra, and (3) examine physical conditions and abundances of material just being accreted onto the disk from the secondary. The U Gem and SS Cyg observations took place in March and October 2000, respectively. The data obtained with FUSE was of excellent quality. Analysis of the both observations is now essentially complete, although some modeling of the SS Cyg spectra is ongoing, as we complete an ApJ manuscript on this object. Our main results for U Gem are as follows: The plateau spectra have continuum shapes and fluxes that are approximated by steady state accretion disk model spectra with an accretion rate 7x10(exp 9) Msolar/yr. The spectra also show numerous absorption lines of H I, He II, and 2-5 times ionized transitions of C, N, O, P, S, and Si. There are no emission features in the spectra, with the possible exception of a weak feature on the red wing of the 0 VI doublet. The absorption lines are narrow (FWHM approx. 50 km/s), too narrow to arise from the disk photosphere, and at low velocities (less than or equal to 700 km/s). The S VI and O VI doublets are optically thick. The absorption lines in the plateau spectra show orbital variability: in spectra obtained at orbital phases between 0.53 and 0.79, low-ionization absorption lines appear and the central depths of the preexisting lines increase. The increase in line absorption occurs at the same orbital phases as previously observed EUV and X-ray light-curve dips. If the absorbing material is in (near-) Keplerian rotation around the disk

  15. Simultaneity on the Rotating Disk (United States)

    Koks, Don


    The disk that rotates in an inertial frame in special relativity has long been analysed by assuming a Lorentz contraction of its peripheral elements in that frame, which has produced widely varying views in the literature. We show that this assumption is unnecessary for a disk that corresponds to the simplest form of rotation in special relativity. After constructing such a disk and showing that observers at rest on it do not constitute a true rotating frame, we choose a "master" observer and calculate a set of disk coordinates and spacetime metric pertinent to that observer. We use this formalism to resolve the "circular twin paradox", then calculate the speed of light sent around the periphery as measured by the master observer, to show that this speed is a function of sent-direction and disk angle traversed. This result is consistent with the Sagnac Effect, but constitutes a finer analysis of that effect, which is normally expressed using an average speed for a full trip of the periphery. We also use the formalism to give a resolution of "Selleri's paradox".

  16. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1. (United States)

    Liu, Ji-Feng; Bregman, Joel N; Bai, Yu; Justham, Stephen; Crowther, Paul


    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 10(39) erg s(-1). They could be intermediate-mass black holes (more than 100-1,000 solar masses, M sun symbol) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 10(39) erg s(-1) and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5 M sun symbol, and more probably a mass of 20 M sun symbol-30 M sun symbol, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  17. Galaxy Evolution with Stellar Disks, Halos, and Streams in Nearby Galaxies (United States)

    Staudaher, Shawn M.

    This thesis begins with a deep-dive into the stellar properties of the nearby spiral galaxy, M 63, a member of the EDGES (Extended Disk Galaxy Exploration Science) survey. Deep ( 28 AB mag arcsec-2) 3.6 mum imaging from the Spitzer Space Telescope reveals that the spiral structure of this galaxy is enveloped by an extended stellar halo, the result of the accretion of smaller galaxies. The mass of this stellar halo agrees well with results from the latest large scale LambdaCDM based galaxy evolution models. M 63 is also host to a tidal stream, an actively accreting satellite. The mass of the progenitor satellite is large enough that only sixteen similarly sized accretion events would account for the mass in the stellar halo. In addition, the majority of satellite accretion must have happened in the past as the average accretion rate derived from the stellar halo is significantly larger than the average accretion rate derived from the more recent tidal stream. The scope of the thesis is then extended to include the full sample of 92 nearby galaxies from EDGES. This is the largest Spitzer Space Telescope survey to probe the extended stellar properties of nearby galaxies. The surface brightness profiles of EDGES galaxies contain an unprecedented number of breaks (transitions from one galactic component to the next) given the sample size of EDGES, proving that studies of break statistics are incomplete without significantly deep imaging. The surface brightness profiles are decomposed into their individual components and the stellar mass for each component is measured. Seven galaxies contain strong evidence for the presence of stellar halos, and the masses of these halos agree with predictions from LambdaCDM based galaxy evolution models. However, the lack of stellar halos in general may be evidence that simulations continue to suffer from the so-called "missing satellite problem", where the number of satellite galaxies is overpredicted compared to observations.

  18. FUSE Spectroscopy of the Accreting Hot Components in Symbiotic Variables. (United States)

    Sion, Edward M; Godon, Patrick; Mikolajewska, Joanna; Sabra, Bassem; Kolobow, Craig


    We have conducted a spectroscopic analysis of the far ultraviolet archival spectra of four symbiotic variables, EG And, AE Ara, CQ Dra and RW Hya. RW Hya and EG And have never had a recorded outburst while CQ Dra and AE Ara have outburst histories. We analyze these systems while they are in quiescence in order to help reveal the physical properties of their hot components via comparisons of the observations with optically thick accretion disk models and NLTE model white dwarf photospheres. We have extended the wavelength coverage down to the Lyman Limit with FUSE spectra. We find that the hot component in RW Hya is a low mass white dwarf with a surface temperature of 160,000K. We re-examine whether or not the symbiotic system CQ Dra is a triple system with a red giant transferring matter to a hot component made up of a cataclysmic variable in which the white dwarf has a surface temperature as low as ∼20,000K. The very small size of the hot component contributing to the shortest wavelengths of the FUSE spectrum of CQ Dra agrees with an optically thick and geometrically thin (∼4% of the WD surface) hot (∼ 120, 000K) boundary layer. Our analysis of EG And reveals that its hot component is a hot, bare, low mass white dwarf with a surface temperature of 80-95,000K, with a surface gravity log( g ) = 7.5. For AE Ara, we also find that a low gravity (log( g ) ∼ 6) hot ( T ∼ 130, 000K) WD accounts for the hot component.

  19. Global Simulations of Dynamo and Magnetorotational Instability in Madison Plasma Experiments and Astrophysical Disks

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Fatima [Univ. of New Hampshire, Durham, NH (United States)


    Large-scale magnetic fields have been observed in widely different types of astrophysical objects. These magnetic fields are believed to be caused by the so-called dynamo effect. Could a large-scale magnetic field grow out of turbulence (i.e. the alpha dynamo effect)? How could the topological properties and the complexity of magnetic field as a global quantity, the so called magnetic helicity, be important in the dynamo effect? In addition to understanding the dynamo mechanism in astrophysical accretion disks, anomalous angular momentum transport has also been a longstanding problem in accretion disks and laboratory plasmas. To investigate both dynamo and momentum transport, we have performed both numerical modeling of laboratory experiments that are intended to simulate nature and modeling of configurations with direct relevance to astrophysical disks. Our simulations use fluid approximations (Magnetohydrodynamics - MHD model), where plasma is treated as a single fluid, or two fluids, in the presence of electromagnetic forces. Our major physics objective is to study the possibility of magnetic field generation (so called MRI small-scale and large-scale dynamos) and its role in Magneto-rotational Instability (MRI) saturation through nonlinear simulations in both MHD and Hall regimes.

  20. Time Evolution of a Viscous Protoplanetary Disk with a Free Geometry: Toward a More Self-consistent Picture (United States)

    Baillié, Kévin; Charnoz, Sébastien


    Observations of protoplanetary disks show that some characteristics seem recurrent, even in star formation regions that are physically distant such as surface mass density profiles varying as r -1 or aspect ratios of about 0.03-0.23. Accretion rates are also recurrently found around 10-8-10-6 M ⊙ yr-1 for disks that have already evolved. Several models have been developed in order to recover these properties. However, most of them usually simplify the disk geometry if not its mid-plane temperature. This has major consequences for modeling the disk evolution over millions of years and consequently planet migration. In the present paper, we develop a viscous evolution hydrodynamical numerical code that simultaneously determines the disk photosphere geometry and the mid-plane temperature. We then compare our results of long-term simulations with similar simulations of disks with a constrained geometry along the Chiang & Goldreich prescription (d lnH/d lnr = 9/7). We find that the constrained geometry models provide a good approximation of the disk surface density evolution. However, they differ significantly regarding the temperature-time evolution. In addition, we find that shadowed regions naturally appear at the transition between viscously dominated and radiation-dominated regions that falls in the region of planetary formation. We show that χ (photosphere height to pressure scale height ratio) cannot be considered a constant, which is consistent with the findings of Watanabe & Lin. Comparisons with observations show that all disks naturally evolve toward a shallow surface density disk (Σvpropr -1). The mass flux across the disk typically stabilizes in about 1 Myr.


    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, J.; Wisniewski, J. [Department of Physics and Astronomy, The University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Tsukagoshi, T. [College of Science, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Brown, J. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Dong, R. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Muto, T. [Division of Liberal Arts, Kogakuin University, 1-24-2, Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan); Zhu, Z. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Ohashi, N.; Kudo, T.; Egner, S.; Guyon, O. [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Kusakabe, N.; Akiyama, E. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Abe, L. [Laboratoire Hippolyte Fizeau, UMR6525, Universite de Nice Sophia-Antipolis, 28, avenue Valrose, F-06108 Nice Cedex 02 (France); Brandner, W.; Carson, J.; Feldt, M. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Brandt, T. [Astrophysics Department, Institute for Advanced Study, Princeton, NJ (United States); Currie, T. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON (Canada); Grady, C. A., E-mail: [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); and others


    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-μm size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum at 1.3 mm and {sup 12}CO J = 2 → 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of ∼65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of ∼80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.

  2. The Disk Mass Project: breaking the disk-halo degeneracy

    NARCIS (Netherlands)

    Verheijen, Marc A. W.; Bershady, Matthew A.; Swaters, Rob A.; Andersen, David R.; Westfall, Kyle B.; DE JONG, R. S.


    Little is known about the content and distribution of dark matter in spiral galaxies. To break the degeneracy in galaxy rotation curve decompositions, which allows a wide range of dark matter halo density profiles, an independent measure of the mass surface density of stellar disks is needed. Here,

  3. Dynamical rearrangement of super-Earths during disk dispersal. I. Outline of the magnetospheric rebound model (United States)

    Liu, Beibei; Ormel, Chris W.; Lin, Douglas N. C.


    Context. The Kepler mission has discovered that close-in super-Earth planets are common around solar-type stars. They are often seen together in multiplanetary systems, but their period ratios do not show strong pile-ups near mean motion resonances (MMRs). One scenario is that super-Earths form early, in the presence of a gas-rich disk. These planets interact gravitationally with the disk gas, inducing their orbital migration. However, for this scenario disk migration theory predicts that planets will end up at resonant orbits due to their differential migration speed. Aims: Motivated by the discrepancy between observation and theory, we seek a mechanism that moves planets out of resonances. We examine the orbital evolution of planet pairs near the magnetospheric cavity during the gas disk dispersal phase. Our study determines the conditions under which planets can escape resonances. Methods: We extend Type I migration theory by calculating the torque a planet experiences at the interface of the empty magnetospheric cavity and the disk, namely the one-sided torque. We perform two-planet N-body simulations with the new Type I expressions, varying the planet masses, stellar magnetic field strengths, disk accretion rates, and gas disk depletion timescales. Results: As planets migrate outwards with the expanding magnetospheric cavity, their dynamical configurations can be rearranged. Migration of planets is substantial (minor) in a massive (light) disk. When the outer planet is more massive than the inner planet, the period ratio of two planets increases through outward migration. On the other hand, when the inner planet is more massive, the final period ratio tends to remain similar to the initial one. Larger stellar magnetic field strengths result in planets stopping their migration at longer periods. We apply this model to two systems, Kepler-170 and Kepler-180. By fitting their present dynamical architectures, the disk and stellar B-field parameters at the time of

  4. HeI lambda 10830 line: a probe of the accretion/ejection activity in RU Lupi . (United States)

    Podio, L.; Garcia, P. J. V.; Bacciotti, F.

    Most of the observed lines and continuum emission excesses from Classical T Tauri Stars (CTTSs) take place at the star-disk interface or in the inner disk region. These regions have a complex emission topology still largely unknown. The HeI lambda 10830 line showed to be a powerful instrument to trace both accreting matter, in emission, and outflowing gas via the frequently detected absorption features. To fully exploit the diagnostic potential of this line we performed a spectro-astrometric analysis of the spectra of the TTS RU Lupi, taken with ISAAC at the VLT. The analysis highlighted a displacement with respect to the source of the region where the absorption feature is generated. This indicates the presence of both an inner stellar wind and a collimated micro-jet in the circumstellar region of RU Lupi.

  5. Importance of fingering convection for accreting white dwarfs in the framework of full evolutionary calculations: the case of the hydrogen-rich white dwarfs GD 133 and G 29-38 (United States)

    Wachlin, F. C.; Vauclair, G.; Vauclair, S.; Althaus, L. G.


    Context. A large fraction of white dwarfs show photospheric chemical composition that is polluted by heavy elements accreted from a debris disk. Such debris disks result from the tidal disruption of rocky planetesimals that have survived to whole stellar evolution from the main sequence to the final white dwarf stage. Determining the accretion rate of this material is an important step toward estimating the mass of the planetesimals and understanding the ultimate fate of the planetary systems. Aims: The accretion of heavy material with a mean molecular weight, μ, higher than the mean molecular weight of the white dwarf outer layers, induces a double-diffusive instability producing the fingering convection and an extra-mixing. As a result, the accreted material is diluted deep into the star. We explore the effect of this extra-mixing on the abundance evolution of Mg, O, Ca, Fe and Si in the cases of the two well-studied polluted DAZ white dwarfs: GD 133 and G 29-38. Methods: We performed numerical simulations of the accretion of material that has a chemical composition similar to the bulk Earth composition. We assumed a continuous and uniform accretion and considered a range of accretion rates from 104 g/s to 1010 g/s. Two cases are simulated, one using the standard mixing length theory (MLT) and one including the double-diffusive instability (fingering convection). Results: The double-diffusive instability develops on a very short timescale. The surface abundance rapidly reaches a stationary value while the depth of the zone mixed by the fingering convection increases. In the case of GD 133, the accretion rate needed to reproduce the observed abundances exceeds by more than two orders of magnitude the rate estimated by neglecting the fingering convection. In the case of G 29-38 the needed accretion rate is increased by approximately 1.7 dex. Conclusions: Our numerical simulations of the accretion of heavy elements on the hydrogen-rich white dwarf GD 133 and G 29

  6. Disk Operating System User's Guide (United States)


    This document serves the purpose of bringing together in one place most of the information a user needs to use the DDP-516 Disk Operating System, (DOS). DOS is a core resident, one user, console-oriented operating system which allows the user to cont...

  7. Three types of galaxy disks

    NARCIS (Netherlands)

    Pohlen, M.; Erwin, P.; Trujillo, I.; Beckman, J. E.; Knapen, JH; Mahoney, TJ; Vazdekis, A


    We present our new scheme for the classification of radial stellar surface brightness profiles for disk galaxies. We summarize the current theoretical attempts to understand their origin and give an example of an application by comparing local galaxies with their counterparts at high redshift (z

  8. Probing the Jet Turnover Frequency Dependence on Mass and Mass Accretion Rate (United States)

    Hammerstein, Erica; Gültekin, Kayhan; King, Ashley


    We have examined a sample of 15 sub-Eddington supermassive black holes (SMBHs) in a variety of galaxy classifications to further understand the proposed fundamental plane of black hole activity and scaling relations between black hole masses and their radio and X-ray luminosities. This plane describes black holes from stellar-mass to supermassive. The physics probed by these sub-Eddington systems is thought to be a radiatively inefficient, jet-dominated accretion flow. By studying black holes in this regime, we can learn important information on the disk-jet connection for accreting black holes.A key factor in studying the fundamental plane is the turnover frequency — the frequency at which emission transitions from optically thick at lower frequencies to optically thin at higher frequencies. This turnover point can be measured by observing the source in both radio and X-ray. Our project aims to test the dependence of the turnover frequency on mass and mass accretion rate.Radio observations of the sample were obtained using the Karl G. Jansky Very Large Array (VLA) in the range of 5-40 GHz across four different frequency bands in A configuration to give the highest spatial resolution to focus on the core emission. Our carefully chosen sample of SMBHs with dynamically measured masses consists of two sub-samples: those with approximately constant mass accretion rate (LX/LEdd ~ 10‑7) and those with approximately constant mass (MBH ~ 108 Msun). X-ray data were obtained from archival Chandra observations. To find the turnover frequency, we used Markov Chain Monte Carlo methods to fit two power laws to the radio data and the archival X-ray data. The intersection of the radio and X-ray fits is the turnover frequency.We present the results for both subsamples of SMBHs and their relationship between the turnover frequency and X-ray luminosity, which we take to scale with mass accretion rate, and jet power derived from both radio and X-ray properties.

  9. Fundamental Ice Crystal Accretion Physics Studies (United States)

    Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan


    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component


    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, Slavko; Halpern, Jules P. [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)


    We present X-ray, ultraviolet, and optical observations of 1RXS J154439.4–112820, the most probable counterpart of the unassociated Fermi-LAT source 3FGL J1544.6–1125. The optical data reveal rapid variability, which is a feature of accreting systems. The X-rays exhibit large-amplitude variations in the form of fast switching (within ∼10 s) between two distinct flux levels that differ by a factor of ≈10. The detailed optical and X-ray behavior is virtually identical to that seen in the accretion-disk-dominated states of the transitional millisecond pulsar (MSP) binaries PSR J1023+0038 and XSS J12270–4859, which are also associated with γ-ray sources. Based on the available observational evidence, we conclude that 1RXS J154439.4–112820 and 3FGL J1544.6–1125 are the same object, with the X-rays arising from intermittent low-luminosity accretion onto an MSP and the γ-rays originating from an accretion-driven outflow. 1RXS J154439.4–112820 is only the fourth γ-ray-emitting low-mass X-ray binary system to be identified and is likely to sporadically undergo transformations to a non-accreting rotation-powered pulsar system.

  11. Investigating SLIM Disk Solutions FOR HLX-1 IN ESO 243-49 (United States)

    Godet, O.; Plazolles, B.; Kawaguchi, T.; Lasota, J.-P; Barret, d.; Farrell, S. A.; Braito, V.; Servillat, M.; Webb, N.; Gehrels, N.


    The hyperluminous X-ray source HLX-1 in the galaxy ESO 243-49, currently the best intermediate-mass blackhole (BH) candidate, displays spectral transitions similar to those observed in Galactic BH binaries, but with aluminosity 100-1000 times higher. We investigated the X-ray properties of this unique source by fitting multiepochdata collected by Swift, XMM-Newton, and Chandra with a disk model computing spectra for a wide rangeof sub- and super-Eddington accretion rates assuming a non-spinning BH and a face-on disk (i=0 deg.). Under theseassumptions we find that the BH in HLX-1 is in the intermediate-mass range (approximately 2 x 10(exp 4) solar mass) and the accretionflow is in the sub-Eddington regime. The disk radiation efficiency is eta = 0.11 plus or minus 0.03. We also show that the source does follow the LX is proportional to T(exp 4) relation for our mass estimate. At the outburst peaks, the source radiates near the Eddington limit. The accretion rate then stays constant around 4 x 10(exp 4) solar mass yr (sup -1) for several days and then decreases exponentially. Such plateaus in the accretion rate could be evidence that enhanced mass-transfer rateis the driving outburst mechanism in HLX-1. We also report on the new outburst observed in 2011 August by theSwift X-Ray Telescope. The time of this new outburst further strengthens the approximately 1 year recurrence timescale.

  12. Mergers of magnetized neutron stars with spinning black holes: disruption, accretion, and fallback. (United States)

    Chawla, Sarvnipun; Anderson, Matthew; Besselman, Michael; Lehner, Luis; Liebling, Steven L; Motl, Patrick M; Neilsen, David


    We investigate the merger of a neutron star in orbit about a spinning black hole in full general relativity with a mass ratio of 5:1, allowing the star to have an initial magnetization of 10(12)  G. We present the resulting gravitational waveform and analyze the fallback accretion as the star is disrupted. We see no significant dynamical effects in the simulations or changes in the gravitational waveform resulting from the initial magnetization. We find that only a negligible amount of matter becomes unbound; 99% of the neutron star material has a fallback time of 10 seconds or shorter to reach the region of the central engine and that 99.99% of the star will interact with the central disk and black hole within 3 hours.

  13. K2 Reveals Pulsed Accretion Driven by the 2 Myr Old Hot Jupiter CI Tau b (United States)

    Biddle, Lauren I.; Johns-Krull, Christopher M.; Llama, Joe; Prato, Lisa; Skiff, Brian A.


    CI Tau is a young (∼2 Myr) classical T Tauri star located in the Taurus star-forming region. Radial velocity observations indicate it hosts a Jupiter-sized planet with an orbital period of approximately 9 days. In this work, we analyze time series of CI Tau’s photometric variability as seen by K2. The light curve reveals the stellar rotation period to be ∼6.6 days. Although there is no evidence that CI Tau b transits the host star, a ∼9 day signature is also present in the light curve. We believe this is most likely caused by planet–disk interactions that perturb the accretion flow onto the star, resulting in a periodic modulation of the brightness with the ∼9 day period of the planet’s orbit.

  14. Infall-driven protostellar accretion and the solution to the luminosity problem

    DEFF Research Database (Denmark)

    Padoan, Paolo; Haugbølle, Troels; Nordlund, Åke


    We investigate the role of mass infall in the formation and evolution of protostars. To avoid ad hoc initial and boundary conditions, we consider the infall resulting self-consistently from modeling the formation of stellar clusters in turbulent molecular clouds. We show that infall rates...... in turbulent clouds are comparable to accretion rates inferred from protostellar luminosities or measured in pre-main-sequence stars. They should not be neglected in modeling the luminosity of protostars and the evolution of disks, even after the embedded protostellar phase. We find large variations of infall...... rates from protostar to protostar, and large fluctuations during the evolution of individual protostars. In most cases, the infall rate is initially of order 10–5 M ☉ yr–1, and may either decay rapidly in the formation of low-mass stars, or remain relatively large when more massive stars are formed...

  15. Optimization of the Processing of Mo Disks

    Energy Technology Data Exchange (ETDEWEB)

    Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, Dominique [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakhtang [Argonne National Lab. (ANL), Argonne, IL (United States); Harvey, James [NorthStar Medical Technologies, LLC, Madison, WI (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)


    The objective of this work is to decrease the processing time for irradiated disks of enriched Mo for the production of 99Mo. Results are given for the dissolution of nonirradiated Mo disks, optimization of the process for large-scale dissolution of sintered disks, optimization of the removal of the main side products (Zr and Nb) from dissolved targets, and dissolution of irradiated Mo disks.

  16. Accretion onto a charged higher-dimensional black hole

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Iftikhar, Sehrish [University of the Punjab, Department of Mathematics, Lahore (Pakistan)


    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  17. Analysis of surface roughness generation in aircraft ice accretion (United States)

    Hansman, R. J., Jr.; Reehorst, Andrew; Sims, James


    Patterns of roughness evolution have been studied analysis of high magnification video observations of accreting ice surfaces provided by the NASA Lewis Research Center. Three distinct patterns of surface roughness generation have been identified within the parametric regions studied. They include: Rime, Multi-Zone Glaze, and Uniform Glaze. Under most icing conditions, a brief period of transient rime ice growth was observed caused by heat conduction into the body. The resulting thin rime layer explains previously observed insensitivity of some ice accretions to substrate insensitivity of some ice accretions to substrate surface chemistry and may provide justification for simplifying assumptions in ice accretion sailing and modeling effects.

  18. Bondi-Hoyle accretion in a turbulent, magnetized medium (United States)

    Burleigh, Kaylan J.; McKee, Christopher F.; Cunningham, Andrew J.; Lee, Aaron T.; Klein, Richard I.


    We present simulations of accretion on to point masses embedded in an isothermal gas that is magnetized and supersonically turbulent, as occurs for protostars in molecular clouds. We use the orion2 adaptive mesh refinement (AMR) code to carry out ideal magnetohydrodynamic simulations for an rms Mach number M_{rms}=5 and a wide range of Alfvén Mach numbers. We find that the probability density functions for accretion rates in all models are very wide (±0.5 dex) and asymmetric, tilted to low accretion rates; the mean accretion rate is about twice the median. We find that the results of Lee et al. for magnetized Bondi-Hoyle accretion with the relative velocity parallel to the field describe our results to within a factor of 2, and we suggest that this should be valid at least for M_{rms}≲ 10. Our results show that turbulent magnetic fields of the strength observed in molecular clouds reduce the accretion rate relative to the classical Bondi-Hoyle rate by a factor of a few for Alfvén Mach numbers of order unity, but this is comparable to the reduction due to supersonic hydrodynamic turbulence alone. This reduction in accretion rates should be taken into account in analytic models of competitive accretion and analytic estimates of the accretion luminosities of young stellar objects in molecular clouds.


    Energy Technology Data Exchange (ETDEWEB)

    McClure, M. K.; Calvet, N.; Hartmann, L.; Ingleby, L. [Department of Astronomy, University of Michigan, 500 Church Street, 830 Dennison Building, Ann Arbor, MI 48109 (United States); Espaillat, C. [Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hernandez, J. [Centro de Investigaciones de Astronomia (CIDA), Merida 5101-A (Venezuela, Bolivarian Republic of); Luhman, K. L. [Department of Astronomy and Astrophysics and the Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); D' Alessio, P. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, 58089 Morelia, Michoacan (Mexico); Sargent, B., E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)


    Using NASA Infrared Telescope Facility SpeX data from 0.8 to 4.5 {mu}m, we determine self-consistently the stellar properties and excess emission above the photosphere for a sample of classical T Tauri stars (CTTS) in the Taurus molecular cloud with varying degrees of accretion. This process uses a combination of techniques from the recent literature as well as observations of weak-line T Tauri stars to account for the differences in surface gravity and chromospheric activity between the T Tauri stars and dwarfs, which are typically used as photospheric templates for CTTS. Our improved veiling and extinction estimates for our targets allow us to extract flux-calibrated spectra of the excess in the near-infrared. We find that we are able to produce an acceptable parametric fit to the near-infrared excesses using a combination of up to three blackbodies. In half of our sample, two blackbodies at temperatures of 8000 K and 1600 K suffice. These temperatures and the corresponding solid angles are consistent with emission from the accretion shock on the stellar surface and the inner dust sublimation rim of the disk, respectively. In contrast, the other half requires three blackbodies at 8000, 1800, and 800 K, to describe the excess. We interpret the combined two cooler blackbodies as the dust sublimation wall with either a contribution from the disk surface beyond the wall or curvature of the wall itself, neither of which should have single-temperature blackbody emission. In these fits, we find no evidence of a contribution from optically thick gas inside the inner dust rim.

  20. Variability of Disk Emission in Pre-main Sequence and Related Stars. IV. Occultation Events from the Innermost Disk Region of the Herbig AE Star HD 163296 = MWC 275 (United States)

    Pikhartova, Monika; Long, Zachary; Fernandes, Rachel; Sitko, Michael; Grady, Carol; Rich, Evan; Wisniewski, John


    We studied the structure and the dynamics of the innermost region of the circumstellar disk around the star HD 163296, MWC 275. We extracted the emission line strengths of Pa beta and Br gamma and calculated the line fluxes, from which we then computed the mass accretion rates onto the star. We investigated the brightness drop at visible wavelengths in 2001 using the Monte Carlo Radiative Transfer Code, hochunk3d. Since the star has bipolar outflows, we looked at whether changes in the outflow, with dust entrained with the gas, could produce such a drop in brightness. We fitted data from 2001 and 2005 onto SED and temperaturedensity models of the disk and generated JHK disk images, then noted the changes in image brightness and in SED plots. Our models succesfully produce the drop in brightness.