WorldWideScience

Sample records for accreting neutron star

  1. Probing neutron star physics using accreting neutron stars

    Directory of Open Access Journals (Sweden)

    Patruno A.

    2010-10-01

    Full Text Available We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars during quiescence. In the first part of this overview we show that the X-ray pulses are contaminated by a large amount of noise of uncertain origin, and that all these neutron stars do not show evidence of spin variations during the outburst. We present also some recent developments on the presence of intermittency in three accreting millisecond X-ray pulsars and investigate the reason why only a small number of accreting neutron stars show X-ray pulsations and why none of these pulsars shows sub-millisecond spin periods. In the second part of the overview we introduce the observational technique that allows the study of neutron star cooling in accreting systems as probes of neutron star internal composition and equation of state. We explain the phenomenon of the deep crustal heating and present some recent developments on several quasi persistent X-ray sources where a cooling neutron star has been observed.

  2. Probing thermonuclear burning on accreting neutron stars

    NARCIS (Netherlands)

    Keek, L.

    2008-01-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes

  3. Plasma physics of accreting neutron stars

    Science.gov (United States)

    Ghosh, Pranab; Lamb, Frederick K.

    1991-01-01

    Plasma concepts and phenomena that are needed to understand X- and gamma-ray sources are discussed. The capture of material from the wind or from the atmosphere or envelope of a binary companion star is described and the resulting types of accretion flows discussed. The reasons for the formation of a magnetosphere around the neutron star are explained. The qualitative features of the magnetospheres of accreting neutron stars are then described and compared with the qualitative features of the geomagnetosphere. The conditions for stable flow and for angular and linear momentum conservation are explained in the context of accretion by magnetic neutron stars and applied to obtain rough estimates of the scale of the magnetosphere. Accretion from Keplerian disks is then considered in some detail. The radial structure of geometrically thin disk flows, the interaction of disk flows with the neutron star magnetosphere, and models of steady accretion from Keplerian disks are described. Accretion torques and the resulting changes in the spin frequencies of rotating neutron stars are considered. The predicted behavior is then compared with observations of accretion-powered pulsars. Magnetospheric processes that may accelerate particles to very high energies, producing GeV and, perhaps, TeV gamma-rays are discussed. Finally, the mechanisms that decelerate and eventually stop accreting plasma at the surfaces of strongly magnetic neutron stars are described.

  4. Gravitational waves from accreting neutron stars

    OpenAIRE

    Bonazzola, S.; Gourgoulhon, E.

    1996-01-01

    We show that accreting neutron stars in binary systems or in Landau-Thorne-Zytkow objects are good candidates for continuous gravitational wave emission. Their gravitational radiation is strong enough to be detected by the next generation of detectors having a typical noise of 10^{-23} Hz^{-1/2}.

  5. Accreting Neutron Stars and Radioactive Beam Experiments

    International Nuclear Information System (INIS)

    The nuclear processes on accreting neutron stars in X-ray binaries are related to a number of open astrophysical questions. I review these open questions, their relation to the α p, rp and crust processes, and the nuclear data needed to solve the problems. Data on very unstable proton and neutron rich nuclei are most critical, and therefore radioactive beam experiments together with progress in the theoretical understanding of nuclei far from stability are needed. (author)

  6. Neutron drip transition in accreting and nonaccreting neutron star crusts

    CERN Document Server

    Chamel, N; Zdunik, J L; Haensel, P

    2015-01-01

    The neutron-drip transition in the dense matter constituting the interior of neutron stars generally refers to the appearance of unbound neutrons as the matter density reaches some threshold density $\\rho_\\textrm{drip}$. This transition has been mainly studied under the cold catalyzed matter hypothesis. However, this assumption is unrealistic for accreting neutron stars. After examining the physical processes that are thought to be allowed in both accreting and nonaccreting neutron stars, suitable conditions for the onset of neutron drip are derived and general analytical expressions for the neutron drip density and pressure are obtained. Moreover, we show that the neutron-drip transition occurs at lower density and pressure than those predicted within the mean-nucleus approximation. This transition is studied numerically for various initial composition of the ashes from X-ray bursts and superbursts using microscopic nuclear mass models.

  7. Magnetically Accreting Isolated Old Neutron Stars

    CERN Document Server

    Rutledge, R E

    2001-01-01

    Previous work on the emission from isolated old neutron stars (IONS) accreting the inter-stellar medium (ISM) focussed on gravitational capture - Bondi accretion. We propose a new class of sources which accrete via magnetic interaction with the ISM. While for the Bondi mechanism, the accretion rate decreases with increasing NS velocity, in magnetic accretors (MAGACs="magics") the accretion rate increases with increasing NS velocity. MAGACs will be produced among high velocity (~> 100 km s-1) high magnetic field (B> 1e14 G) radio pulsars - the ``magnetars'' - after they have evolved first through magnetic dipole spin-down, followed by a ``propeller'' phase (when the object sheds angular momentum on a timescale ~1e14 G; minimum velocities relative to the ISM of >25-100 km s-1, depending on B, well below the median in the observed radio-pulsar population; spin-periods of >days to years; accretion luminosities of 1e28- 1e31 ergs s-1 ; and effective temperatures kT=0.3 - 2.5 keV if they accrete onto the magnetic p...

  8. Can neutron stars have auroras ? : electromagnetic coupling process between neutron star and magnetized accretion disk

    Science.gov (United States)

    Kimura, T.; Iwakiri, W. B.; Enoto, T.; Wada, T.; Tao, C.

    2015-12-01

    In the binary neutron star system, angular momentum transfer from accretion disk to a star is essential process for spin-up/down of stars. The angular momentum transfer has been well formulated for the accretion disk strongly magnetized by the neutron star [e.g., Ghosh and Lamb, 1978, 1979a, b]. However, the electromagnetic (EM) coupling between the neutron star and accretion disk has not been self-consistently solved in the previous studies although the magnetic field lines from the star are strongly tied with the accretion disk. In this study, we applied the planet-magnetosphere coupling process established for Jupiter [Hill, 1979] to the binary neutron star system. Angular momentum distribution is solved based on the torque balance between the neutron star's surface and accretion disk coupled by the magnetic field tensions. We found the EM coupling can transfer significantly larger fraction of the angular momentum from the magnetized accretion disk to the star than the unmagnetized case. The resultant spin-up rate is estimated to ~10^-14 [sec/sec] for the nominal binary system parameters, which is comparable with or larger than the other common spin-down/up processes: e.g., the magnetic dipole radiation spin-down. The Joule heating energy dissipated in the EM coupling is estimated to be up to ~10^36 [erg/sec] for the nominal binary system parameters. The release is comparable to that of gravitation energy directly caused by the matters accreting onto the neutron star. This suggests the EM coupling at the neutron star can accompany the observable radiation as auroras with a similar manner to those at the rotating planetary magnetospheres like Jupiter, Saturn, and other gas giants.

  9. Theoretical Models of Superbursts on Accreting Neutron Stars

    CERN Document Server

    Cooper, R L; Cooper, Randall L.; Narayan, Ramesh

    2004-01-01

    We carry out a general-relativistic global linear stability analysis of the amassed carbon fuel on the surface of an accreting neutron star to determine the conditions under which superbursts occur. By comparing our results with observations, we are able to set constraints on neutron star parameters such as the stellar radius and neutrino cooling mechanism in the core, as well as the composition of the ashes where superbursts are triggered. Specifically, we find that accreting neutron stars with ordered crusts and highly efficient neutrino emission in their cores produce extremely energetic superbursts which are inconsistent with observations. Also, because of pycnonuclear burning of carbon, they do not have superbursts in the range of accretion rates at which superbursts are actually observed. Stars with less efficient neutrino emission produce bursts that agree better with observations. Stars with highly inefficient neutrino emission in their cores produce bursts that agree best with observations. Furthermo...

  10. Detecting gravitational waves from accreting neutron stars

    NARCIS (Netherlands)

    A.L. Watts; B. Krishnan

    2009-01-01

    The gravitational waves emitted by neutron stars carry unique information about their structure and composition. Direct detection of these gravitational waves, however, is a formidable technical challenge. In a recent study we quantified the hurdles facing searches for gravitational waves from the k

  11. Thermonuclear bursts from slowly and rapidly accreting neutron stars

    Science.gov (United States)

    Linares, Manuel

    2012-07-01

    Models of thermonuclear burning on accreting neutron stars predict different ignition regimes, depending mainly on the mass accretion rate per unit area. For more than three decades, testing these regimes observationally has met with only partial success. I will present recent results from the Fermi-GBM all-sky X-ray burst monitor, which is yielding robust measurements of recurrence time of rare and highly energetic thermonuclear bursts at the lowest mass accretion rates. I will also present RXTE observations of thermonuclear bursts at high mass accretion rates, including the discovery of millihertz quasi-periodic oscillations and several bursting regimes in a neutron star transient and 11 Hz X-ray pulsar. This unusual neutron star, with higher magnetic field and slower rotation than any other known burster, showed copious bursting activity when the mass accretion rate varied between 10% and 50% of the Eddington rate. I will discuss the role of fuel composition and neutron star spin in setting the burst properties of this system, and the possible implications for the rest of thermonuclear bursters.

  12. Polarized X-rays from accreting neutron stars

    Science.gov (United States)

    Bhattacharya, Dipankar

    2016-07-01

    Accreting neutron stars span a wide range in X-ray luminosity and magnetic field strength. Accretion may be wind-fed or disk-fed, and the dominant X-ray flux may originate in the disk or a magnetically confined accretion column. In all such systems X-ray polarization may arise due to Compton or Magneto-Compton scattering, and on some occasions polarization of non-thermal emission from jet-like ejection may also be detectable. Spectral and temporal behaviour of the polarized X-rays would carry information regarding the radiation process, as well as of the matter dynamics - and can assist the detection of effects such as the Lense-Thirring precession. This talk will review our current knowledge of the expected X-ray polarization from accreting neutron stars and explore the prospects of detection with upcoming polarimetry missions.

  13. The outer crust of non-accreting cold neutron stars

    CERN Document Server

    Ruster, S B; Schaffner-Bielich, J; Ruster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jurgen

    2006-01-01

    The properties of the outer crust of non-accreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables updating in particular the classic work of Baym, Pethick and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 is used and a thorough comparison of many modern theoretical nuclear models, relativistic and non-relativistic ones, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared in order to check their differences concerning the neutron dripline, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the dripline in the outer crust of non-accreting cold neutron stars.

  14. Deformations of Accreting Neutron Star Crusts and Gravitational Wave Emission

    OpenAIRE

    Ushomirsky, Greg; Cutler, Curt; Bildsten, Lars

    2000-01-01

    Motivated by the narrow range of spin frequencies of nearly 20 accreting neutron stars, Bildsten (1998) conjectured that their spin-up had been halted by the emission of gravitational waves. He also pointed out that small nonaxisymmetric temperature variations in the accreted crust will lead to "wavy" electron capture layers, whose horizontal density variations naturally create a mass quadrupole moment. We present a full calculation of the crust's elastic adjustment to these density perturbat...

  15. Electrodynamics of disk-accreting magnetic neutron stars

    Science.gov (United States)

    Miller, M. Coleman; Lamb, Frederick K.; Hamilton, Russell J.

    1994-01-01

    We have investigated the electrodynamics of magnetic neutron stars accreting from Keplerian disks and the implications for particle acceleration and gamma-ray emission by such systems. We argue that the particle density in the magnetospheres of such stars is larger by orders of magnitude than the Goldreich-Julian density, so that the formation of vacuum gaps is unlikely. We show that even if the star rotates slowly, electromotive forces (EMFs) of order 10(exp 15) V are produced by the interaction of plasma in the accretion disk with the magnetic field of the neutron star. The resistance of the disk-magnetosphere-star circuit is small, and hence these EMFs drive very large conduction currents. Such large currents are likely to produce magnetospheric instabilities, such as relativistic double layers and reconnection events, that can accelerate electrons or ions to very high energies.

  16. Advection of magnetic flux by accretion disks around neutron stars

    Science.gov (United States)

    Flores-Tulian, S.; Reisenegger, A.

    The aim of our research is to address why millisecond pulsars have relatively weak surface magnetic fields, of about 10^8 G, with a narrow spread. We propose that the accretion of plasma from the companion star fully screens the original neutron star field, but the accretion disk carries additional magnetic flux from the companion star, or itself can generate field by means of dynamo processes. For a strongly magnetized star, the field prevents the disk from approaching the star. The accretion is along the field lines and deposits the matter on the polar cap. Then, the accreted plasma flows, dragging with itself the magnetic field lines, from the pole to the equator (Payne & Melatos 2004). In a following stage, when the star becomes non-magnetic, because the field has been buried, the disk touches the star. We suggest that some effective mechanism of magnetic flux transport such as that proposed by Spruit & Uzdensky 2005 (or Bisnovatyi-Kogan & Lovelace 2007), operates and necessarily leads to a "strongly magnetized disk''. It becomes laminar because the magneto-rotational instability saturates (it is considered to be responsible for turbulence in the disk), and the magnetic difussivity is negligible. Then, the loss of angular momentum allowing the accretion is only caused by the magneto-centrifugal disk-wind (Blandford & Payne 1982). Meanwhile, the wind-driven transport of the magnetic flux by the disk re-magnetizes the star. This process continues until the Lorentz force due to the star's magnetic field forbids any further accretion of matter and magnetic flux, in the Ideal Magneto-Hydro-Dynamics approach. Additional of material can fall onto the star (but at lower rate) if some instability process sets in, allowing the diffusion of mass through the magnetic field lines (e.g the Interchange Instability, Spruit & Taam 1990). All these processes might lead to an asymptotic magnetic field of 10^8 G,as is inferred from observations. We are developing a self

  17. Hot Radiative Accretion onto a Spinning Neutron Star

    CERN Document Server

    Medvedev, M V

    2004-01-01

    (Abridged) A new type of self-similar hot viscous radiative accretion flow onto a rapidly spinning neutron star has recently been discovered. This ``hot brake'' flow forms in the two-temperature zone (close to a central object), but at a sufficiently low accretion rate and a high spin it may extend in the radial direction beyond ~300 Schwarzchild radii into a one-temperature zone. When the spin of the star is small enough, the flow transforms smoothly to an advection-dominated accretion flow. All gas parameters (density, angular velocity, temperature, luminosity, angular momentum flux) except for the radial velocity are independent of the mass accretion rate. The radiative efficiency may be arbitrarily large as M-dot -> 0. The gas angular momentum is transported outward under most conditions, hence the central star is nearly always spun-down. The flow is convectively stable. We also find that themal conduction in the flow is strong enough to make the flow thermally stable. The very fact that the density, temp...

  18. Comptonization and QPO Origins in Accreting Neutron Star Systems

    CERN Document Server

    Lee, H C; Lee, Hyong C.; Miller, Guy S.

    1997-01-01

    We develop a simple, time-dependent Comptonization model to probe the origins of spectral variability in accreting neutron star systems. In the model, soft ``seed photons'' are injected into a corona of hot electrons, where they are Compton upscattered before escaping as hard X-rays. The model describes how the hard X-ray spectrum varies when the properties of either the soft photon source or the Comptonizing medium undergo small oscillations. Observations of the resulting spectral modulations can determine whether the variability is due to (i) oscillations in the injection of seed photons, (ii) oscillations in the coronal electron density, or (iii) oscillations in the coronal energy dissipation rate. Identifying the origin of spectral variability should help clarify how the corona operates and its relation to the accretion disk. It will also help in finding the mechanisms underlying the various quasi-periodic oscillations (QPO) observed in the X-ray outputs of many accreting neutron star and black hole syste...

  19. Self-Similar Hot Accretion Flow onto a Neutron Star

    CERN Document Server

    Medvedev, M V; Medvedev, Mikhail V.; Narayan, Ramesh

    2000-01-01

    We consider hot, two-temperature, viscous accretion onto a rotating, unmagnetized neutron star. We assume Coulomb coupling betweenthe protons and electrons, and free-free cooling from the electrons. We show that the accretion flow has an extended settling region which can be described by means of two analytical self-similar solutions: a two-temperature solution which is valid in an inner zone, $r10^{2.5}$. In both zones the density varies as $\\rho\\propto r^{-2}$ and the angular velocity as $\\Omega\\propto r^{-3/2}$. We solve the flow equations numerically and confirm that the analytical solutions are accurate. The self-similar settling solution differs from the advection-dominated accretion flow discussed in the context of black hole accretion. The settling flow radiates the energy dissipated by viscosity; so it is not advection-dominated. Except for the radial velocity, all other gas properties - density, angular velocity, temperature, luminosity, angular momentum flux - are independent of the mass accretion ...

  20. Self-Similar Hot Accretion Flow onto a Neutron Star

    CERN Document Server

    Medvedev, M V

    2001-01-01

    We present analytical and numerical solutions which describe a hot, viscous, two-temperature accretion flow onto a neutron star or any other compact star with a surface. We assume Coulomb coupling between the protons and electrons, and free-free cooling from the electrons. Outside a thin boundary layer, where the accretion flow meets the star, we show that there is an extended settling region which is well-described by two self-similar solutions: (1) a two-temperature solution which is valid in an inner zone $r\\le10^{2.5}$ ($r$ is in Schwarzchild units), and (2) a one-temperature solution at larger radii. In both zones, $\\rho\\propto r^{-2}, \\Omega\\propto r^{-3/2}, v\\propto r^0,\\ T_p\\propto r^{-1}$; in the two-temperature zone, $T_e\\propto r^{-1/2}$. The luminosity of the settling zone arises from the rotational energy of the star as the star is braked by viscosity; hence the luminosity is independent of $\\dot M$. The settling solution is convectively and viscously stable and is unlikely to have strong winds o...

  1. Gravitational Waves from Fallback Accretion onto Neutron Stars

    CERN Document Server

    Piro, Anthony L

    2012-01-01

    Massive stars generally end their lives as neutron stars (NSs) or black holes (BHs), with NS formation typically occurring at the low mass end and collapse to a BH more likely at the high mass end. In an intermediate regime, with a mass range that depends on the uncertain details of rotation and mass loss during the star's life, a NS is initially formed which then experiences fallback accretion and collapse to a BH. The electromagnetic consequence of such an event is not clear. Depending on the progenitor's structure, possibilities range from a long gamma-ray burst to a Type II supernova (that may or may not be jet-powered) to a collapse with a weak electromagnetic signature. Gravitational waves (GWs) provide the exciting opportunity to peer through the envelope of a dying massive star and directly probe what is occurring inside. We explore whether fallback onto young NSs can be detected by ground-based interferometers. When the incoming material has sufficient angular momentum to form a disk, the accretion s...

  2. Compression of matter in the center of accreting neutron stars

    CERN Document Server

    Bejger, M; Haensel, P; Fortin, M

    2011-01-01

    In order to estimate the feasibility of dense-matter phase transition, we study the evolution of central density and baryon chemical potential of accreting neutron stars. The thin-disk accretion with and without the magnetic field torque is compared with the spin-down scenario for a selection of recent equations of state. We compare the prevalent (in the recycled-pulsar context) Keplerian thin-disk model, in which the matter is accreted from the marginally-stable circular orbit, with the recent magnetic-torque model that takes into account the influence of stellar magnetic field on the effective inner boundary of the disk. Calculations are performed using a multi-domain spectral methods code in the framework of General Relativity. We consider three equations of state consistent with recently measured mass of PSR J1614-2230, 1.97+-0.04 Msun (one of them softened by the appearance of hyperons). In the case of no magnetic torque and efficient angular momentum transfer from the disk to the star, substantial centr...

  3. A Survey of Chemical Separation in Accreting Neutron Stars

    Science.gov (United States)

    Mckinven, Ryan; Cumming, Andrew; Medin, Zach; Schatz, Hendrik

    2016-06-01

    The heavy element ashes of rp-process hydrogen and helium burning in accreting neutron stars are compressed to high density where they freeze, forming the outer crust of the star. We calculate the chemical separation on freezing for a number of different nuclear mixtures resulting from a range of burning conditions for the rp-process. We confirm the generic result that light nuclei are preferentially retained in the liquid and heavy nuclei in the solid. This is in agreement with the previous study of a 17-component mixture of rp-process ashes by Horowitz et al., but extends that result to a much larger range of compositions. We also find an alternative phase separation regime for the lightest ash mixtures which does not demonstrate this generic behavior. With a few exceptions, we find that chemical separation reduces the expected {Q}{{imp}} in the outer crust compared to the initial rp-process ash, where {Q}{{imp}} measures the mean-square dispersion in atomic number Z of the nuclei in the mixture. We find that the fractional spread of Z plays a role in setting the amount of chemical separation and is strongly correlated to the divergence between the two/three-component approximations and the full component model. The contrast in Y e between the initial rp-process ashes and the equilibrium liquid composition is similar to that assumed in earlier two-component models of compositionally driven convection, except for very light compositions which produce nearly negligible convective driving. We discuss the implications of these results for observations of accreting neutron stars.

  4. Impact of accretion on the statistics of neutron star masses

    CERN Document Server

    Cheng, Z; Zhao, Y H; 10.1017/S1743921312019588

    2013-01-01

    We have collected the parameter of 38 neutron stars (NSs) in binary systems with spin periods and measured masses. By adopting the Boot-strap method, we reproduced the procedure of mass calculated for each system separately, to determine the truly mass distribution of the NS that obtained from observation. We also applied the Monte-Carlo simulation and introduce the characteristic spin period 20 ms, in order to distinguish between millisecond pulsars (MSPs) and less recycled pulsars. The mass distributions of MSPs and the less recycled pulsars could be fitted by a Gaussian function as $\\rm 1.45\\pm0.42 M_{\\odot}$ and $\\rm 1.31\\pm0.17 M_{\\odot} (\\rm with ~ 1\\sigma)$ respectively. As such, the MSP masses are heavier than those in less recycled systems by factor of $\\rm \\sim 0.13M_{\\odot}$, since the accretion effect during the recycling process.

  5. A Survey of Chemical Separation in Accreting Neutron Stars

    CERN Document Server

    Mckinven, Ryan; Medin, Zach; Schatz, Hendrik

    2016-01-01

    The heavy element ashes of rp-process hydrogen and helium burning in accreting neutron stars are compressed to high density where they freeze, forming the outer crust of the star. We calculate the chemical separation on freezing for a number of different nuclear mixtures resulting from a range of burning conditions for the rp-process. We confirm the generic result that light nuclei are preferentially retained in the liquid and heavy nuclei in the solid. This is in agreement with the previous study of a 17-component mixture of rp-process ashes by Horowitz et al. (2007), but extends that result to a much larger range of compositions. We also find an alternate phase separation regime for the lightest ash mixtures which does not demonstrate this generic behaviour. With a few exceptions, we find that chemical separation reduces the expected $Q_{\\rm imp}$ in the outer crust compared to the initial rp-process ash, where $Q_{\\rm imp}$ measures the mean-square dispersion in atomic number $Z$ of the nuclei in the mixtu...

  6. Accretion to a Magnetized Neutron Star in the "Propeller" Regime

    CERN Document Server

    Toropina, O D; Lovelace, R V E

    2006-01-01

    We investigate spherical accretion to a rotating magnetized star in the "propeller" regime using axisymmetric resistive magnetohydrodynamic simulations. The regime is predicted to occur if the magnetospheric radius is larger than the corotation radius and smaller than the light cylinder radius. The simulations show that accreting matter is expelled from the equatorial region of the magnetosphere and that it moves away from the star in a supersonic, disk-shaped outflow. At larger radial distances the outflow slows down and becomes subsonic. The equatorial matter outflow is initially driven by the centrifugal force, but at larger distances the pressure gradient force becomes significant. We find the fraction of the Bondi accretion rate which accretes to the surface of the star.

  7. Gravitational radiation and gamma-ray bursts from accreting neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera Cuesta, H.J.; Araujo, J.C.N. de; Aguiar, O.D. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Astrofisica]. E-mail: herman@das.inpe.br; jcarlos@das.inpe.br; odylio@das.inpe.br; Horvath, J.E. [Sao Paulo Univ., SP (Brazil). Inst. Astronomico e Geofisico]. E-mail: foton@orion.iagusp.usp.br

    2000-07-01

    It is well known that hydrodynamic instabilities can be induced in rapidly rotating low magnetic field neutron stars, which accrete mass from a companion in both high and low mass X-ray binaries. (author)

  8. Fusion of neutron rich oxygen isotopes in the crust of accreting neutron stars

    CERN Document Server

    Horowitz, C J; Berry, D K

    2007-01-01

    Fusion reactions in the crust of an accreting neutron star are an important source of heat, and the depth at which these reactions occur is important for determining the temperature profile of the star. Fusion reactions depend strongly on the nuclear charge $Z$. Nuclei with $Z\\le 6$ can fuse at low densities in a liquid ocean. However, nuclei with $Z=8$ or 10 may not burn until higher densities where the crust is solid and electron capture has made the nuclei neutron rich. We calculate the $S$ factor for fusion reactions of neutron rich nuclei including $^{24}$O + $^{24}$O and $^{28}$Ne + $^{28}$Ne. We use a simple barrier penetration model. The $S$ factor could be further enhanced by dynamical effects involving the neutron rich skin. This possible enhancement in $S$ should be studied in the laboratory with neutron rich radioactive beams. We model the structure of the crust with molecular dynamics simulations. We find that the crust of accreting neutron stars may contain micro-crystals or regions of phase sep...

  9. Accretion by a Neutron Star Moving at a High Kick Velocity in the Supernova Ejecta

    Institute of Scientific and Technical Information of China (English)

    Xu Zhang; Ye Lu; Yong-Heng Zhao

    2007-01-01

    We suggest a two-dimensional time dependent analytic model to describe the accretion of matter onto a neutron star moving at a high speed across the ejecta left in the aftermath of a supernova explosion. The formation of a strange star resulting from the accretion is also addressed. The newborn neutron star is assumed to move outward at a kick velocity of vns ~ 103 km s-1, and the accretion flow is treated as a dust flow. When the neutron star travels across the ejecta with high speed, it sweeps up material, and when the accreted mass has reached a critical value, the neutron star will undergo a phase transition,for instance, to become a strange star. Our results show that the accretion rate decreases in a complicated way in time, not just a power law dependence: it drops much faster than the power law derived by Colpi et al. We also found that the total accreted mass and the phase transition of the neutron star depend sensitively on the velocity of supernova ejecta.

  10. An ultraluminous X-ray source powered by an accreting neutron star

    DEFF Research Database (Denmark)

    Bachetti, M.; Harrison, F. A.; Walton, D. J.;

    2014-01-01

    the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects....

  11. Thermal conductivity and phase separation of the crust of accreting neutron stars

    OpenAIRE

    Horowitz, C. J.; Caballero, O L; Berry, D. K.

    2008-01-01

    Recently, crust cooling times have been measured for neutron stars after extended outbursts. These observations are very sensitive to the thermal conductivity $\\kappa$ of the crust and strongly suggest that $\\kappa$ is large. We perform molecular dynamics simulations of the structure of the crust of an accreting neutron star using a complex composition that includes many impurities. The composition comes from simulations of rapid proton capture nucleosynthesys followed by electron captures. W...

  12. General relativistic spectra of accretion discs around rapidly rotating neutron stars Effect of light bending

    CERN Document Server

    Bhattacharya, S; Thampan, A V; Bhattacharyya, Sudip; Bhattacharya, Dipankar; Thampan, Arun V.

    2001-01-01

    We present computed spectra, as seen by a distant observer, from the accretion disc around a rapidly rotating neutron star. Our calculations are carried out in a fully general relativistic framework, with exact treatment of rotation. We take into account the Doppler shift, gravitational redshift and light bending effects in order to compute the observed spectrum. We find that light bending significantly modifies the high-energy part of the spectrum. Computed spectra for slowly rotating neutron stars are also presented. These results would be important for modelling the observed X-ray spectra of Low Mass X-ray Binaries containing fast spinning neutron stars.

  13. A strong shallow heat source in the accreting neutron star MAXI J0556-332

    CERN Document Server

    Deibel, Alex; Brown, Edward F; Page, Dany

    2015-01-01

    An accretion outburst in an X-ray transient deposits material onto the neutron star primary; this accumulation of matter induces reactions in the neutron star's crust. During the accretion outburst these reactions heat the crust out of thermal equilibrium with the core. When accretion halts, the crust cools to its long-term equilibrium temperature on observable timescales. Here we examine the accreting neutron star transient MAXI J0556-332, which is the hottest transient, at the start of quiescence, observed to date. Models of the quiescent light curve require a large deposition of heat in the shallow outer crust from an unknown source. The additional heat injected is $\\approx 4\\textrm{-}10\\,\\mathrm{MeV}$ per accreted nucleon; when the observed decline in accretion rate at the end of the outburst is accounted for, the required heating increases to $\\approx 6\\textrm{-}16\\,\\mathrm{MeV}$. This shallow heating is still required to fit the lightcurve even after taking into account a second accretion episode, uncer...

  14. Hypercritical Accretion onto a Newborn Neutron Star and Magnetic Field Submergence

    CERN Document Server

    Bernal, Cristian G; Lee, William H

    2012-01-01

    We present magnetohydrodynamic numerical simulations of the late post-supernova hypercritical accretion to understand its effect on the magnetic field of the new-born neutron star. We consider as an example the case of a magnetic field loop protruding from the star's surface. The accreting matter is assumed to be non magnetized and, due to the high accretion rate, matter pressure dominates over magnetic pressure. We find that an accretion envelope develops very rapidly and once it becomes convectively stable the magnetic field is easily buried and pushed into the newly forming neutron star crust. However, for low enough accretion rates the accretion envelope remains convective for an extended period of time and only partial submergence of the magnetic field occurs due to a residual field that is maintained at the interface between the forming crust and the convective envelope. In this latter case, the outcome should be a weakly magnetized neutron star with a likely complicated field geometry. In our simulatio...

  15. Anisotropy of X-ray bursts from neutron stars with concave accretion disks

    CERN Document Server

    He, Chong-Chong

    2015-01-01

    Emission from neutron stars and accretion disks in low-mass X-ray binaries is not isotropic. The non-spherical shape of the disk as well as blocking of the neutron star by the disk and vice versa cause the observed flux to depend on the inclination angle of the disk with respect to the line of sight. This is of special importance for the interpretation of Type I X-ray bursts, which are powered by the thermonuclear burning of matter accreted onto the neutron star. Because part of the X-ray burst is reflected off the disk, the observed burst flux depends on the anisotropies for both direct emission from the neutron star and reflection off the disk. This influences measurements of source distance, mass accretion rate, and constraints on the neutron star equation of state. Previous studies made predictions of the anisotropy factor for the total burst flux, assuming a geometrically flat disk. Recently, detailed observations of two exceptionally long bursts (so-called superbursts) allowed for the first time for the...

  16. An ultra-relativistic outflow from a neutron star accreting gas from a companion

    NARCIS (Netherlands)

    R.P. Fender; K. Wu; H. Johnston; T. Tzioumis; P.G. Jonker; R. Spencer; M. van der Klis

    2004-01-01

    Collimated relativistic outflows-also known as jets-are amongst the most energetic phenomena in the Universe. They are associated with supermassive black holes in distant active galactic nuclei, accreting stellar-mass black holes and neutron stars in binary systems and are believed to be responsible

  17. Cyclotron line signatures of thermal and magnetic mountains from accreting neutron stars

    CERN Document Server

    Priymak, Maxim; Lasky, Paul

    2014-01-01

    Cyclotron resonance scattering features (CRSFs) in the X-ray spectrum of an accreting neutron star are modified differently by accretion mounds sustained by magnetic and thermocompositional gradients. It is shown that one can discriminate, in principle, between mounds of different physical origins by studying how the line energy, width, and depth of a CRSF depend on the orientation of the neutron star, accreted mass, surface temperature distribution, and equation of state. CRSF signatures including gravitational light bending are computed for both phase-resolved and phase-averaged spectra on the basis of self-consistent Grad-Shafranov mound equilibria satisfying a global flux-freezing constraint. The prospects of multimessenger X-ray and gravitational-wave observations with future instruments are canvassed briefly.

  18. Oceanography of Accreting Neutron Stars Non-Radial Oscillations and Periodic X-Ray Variability

    CERN Document Server

    Bildsten, L; Ushomirsky, G; Cutler, C; Bildsten, Lars; Cumming, Andrew; Ushomirsky, Greg; Cutler, Curt

    1997-01-01

    Observations of quasi-periodic oscillations (QPOs) in the luminosity from many accreting neutron stars (NS) have led us to investigate a source of periodicity prevalent in other stars: non-radial oscillations. After summarizing the structure of the atmosphere and ocean of an accreting NS, we discuss the various low l g-modes with frequencies in the 1-100 Hz range. Successful identification of a non-radial mode with an observed frequency would yield new information about the thermal and compositional makeup of the NS, as well as its radius. We close by discussing how rapid rotation changes the g-mode frequencies.

  19. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    Science.gov (United States)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  20. 3D MHD Simulations of accreting neutron stars: evidence of QPO emission from the surface

    CERN Document Server

    Bachetti, Matteo; Kulkarni, Akshay; Burderi, Luciano; di Salvo, Tiziana; .,

    2009-01-01

    3D Magnetohydrodynamic simulations show that when matter accretes onto neutron stars, in particular if the misalignment angle is small, it does not constantly fall at a fixed spot. Instead, the location at which matter reaches the star moves. These moving hot spots can be produced both during stable accretion, where matter falls near the magnetic poles of the star, and unstable accretion, characterized by the presence of several tongues of matter which fall on the star near the equator, due to Rayleigh-Taylor instabilities. Precise modeling with Monte Carlo simulations shows that those movements could be observed as high frequency Quasi Periodic Oscillations. We performed a number of new simulation runs with a much wider set of parameters, focusing on neutron stars with a small misalignment angle. In most cases we observe oscillations whose frequency is correlated with the mass accretion rate $\\dot{M}$. Moreover, in some cases double QPOs appear, each of them showing the same correlation with $\\dot{M}$.

  1. Mergers of magnetized neutron stars with spinning black holes: disruption, accretion, and fallback.

    Science.gov (United States)

    Chawla, Sarvnipun; Anderson, Matthew; Besselman, Michael; Lehner, Luis; Liebling, Steven L; Motl, Patrick M; Neilsen, David

    2010-09-10

    We investigate the merger of a neutron star in orbit about a spinning black hole in full general relativity with a mass ratio of 5:1, allowing the star to have an initial magnetization of 10(12)  G. We present the resulting gravitational waveform and analyze the fallback accretion as the star is disrupted. We see no significant dynamical effects in the simulations or changes in the gravitational waveform resulting from the initial magnetization. We find that only a negligible amount of matter becomes unbound; 99% of the neutron star material has a fallback time of 10 seconds or shorter to reach the region of the central engine and that 99.99% of the star will interact with the central disk and black hole within 3 hours. PMID:20867561

  2. Mergers of Magnetized Neutron Stars with Spinning Black Holes: Disruption, Accretion and Fallback

    CERN Document Server

    Chawla, Sarvnipun; Besselman, Michael; Lehner, Luis; Liebling, Steven L; Motl, Patrick M; Neilsen, David

    2010-01-01

    We investigate the merger of a neutron star (of compaction ratio $0.1$) in orbit about a spinning black hole in full general relativity with a mass ratio of $5:1$, allowing for the star to have an initial magnetization of $10^{12} {\\rm Gauss}$. We present the resulting gravitational waveform and analyze the fallback accretion as the star is disrupted. The evolutions suggest no significant effects from the initial magnetization. We find that only a negligible amount of matter becomes unbound; $99\\%$ of the neutron star material has a fallback time of 10 seconds or shorter to reach the region of the central engine and that $99.99\\%$ of the star will interact with the central disk and black hole within 3 hours.

  3. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    CERN Document Server

    Bozzo, E; Feldmeier, A; Falanga, M

    2016-01-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the non-stationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total time scale of several hours), the transition of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the non-stationary wind. Th...

  4. Mergers of Magnetized Neutron Stars with Spinning Black Holes: Disruption, Accretion and Fallback

    OpenAIRE

    Chawla, Sarvnipun; Anderson, Matthew; Besselman, Michael; Lehner, Luis; Liebling, Steven L.; Motl, Patrick M; Neilsen, David

    2010-01-01

    We investigate the merger of a neutron star (of compaction ratio $0.1$) in orbit about a spinning black hole in full general relativity with a mass ratio of $5:1$, allowing for the star to have an initial magnetization of $10^{12} {\\rm Gauss}$. We present the resulting gravitational waveform and analyze the fallback accretion as the star is disrupted. The evolutions suggest no significant effects from the initial magnetization. We find that only a negligible amount of matter becomes unbound; ...

  5. A SIGNATURE OF CHEMICAL SEPARATION IN THE COOLING LIGHT CURVES OF TRANSIENTLY ACCRETING NEUTRON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Medin, Zach [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cumming, Andrew, E-mail: zmedin@lanl.gov, E-mail: cumming@physics.mcgill.ca [Department of Physics, McGill University, 3600 rue University, Montreal, QC H3A 2T8 (Canada)

    2014-03-01

    We show that convection driven by chemical separation can significantly affect the cooling light curves of accreting neutron stars after they go into quiescence. We calculate the thermal relaxation of the neutron star ocean and crust including the thermal and compositional fluxes due to convection. After the inward propagating cooling wave reaches the base of the neutron star ocean, the ocean begins to freeze, driving chemical separation. The resulting convection transports heat inward, giving much faster cooling of the surface layers than found assuming the ocean cools passively. The light curves including convection show a rapid drop in temperature weeks after outburst. Identifying this signature in observed cooling curves would constrain the temperature and composition of the ocean as well as offer a real time probe of the freezing of a classical multicomponent plasma.

  6. A signature of chemical separation in the cooling curves of transiently accreting neutron stars

    CERN Document Server

    Medin, Zach

    2013-01-01

    We show that convection driven by chemical separation can significantly affect the cooling curves of accreting neutron stars after they go into quiescence. We calculate the thermal relaxation of the neutron star ocean and crust including the thermal and compositional fluxes due to convection. After the inward propagating cooling wave reaches the base of the neutron star ocean, the ocean begins to freeze, driving chemical separation. The resulting convection transports heat inward, giving much faster cooling of the surface layers than found assuming the ocean cools passively. The light curves including convection show a rapid drop in temperature weeks after outburst. Identifying this signature in observed cooling curves would constrain the temperature and composition of the ocean as well as offer a real time probe of the freezing of a classical multicomponent plasma.

  7. Hypercritical accretion onto a magnetized neutron star surface: a numerical approach

    CERN Document Server

    Bernal, Cristian Giovanny; Page, Dany

    2010-01-01

    The properties of a new-born neutron star, produced in a core-collapse supernova, can be strongly affected by the possible late fallback which occurs several hours after the explosion. This accretion occurs in the regime dominated by neutrino cooling, explored initially in this context by Chevalier (1989). Here we revisit this approach in a 1D spherically symmetric model and carry out numerical simulations in 2D in an accretion column onto a neutron star considering detailed microphysics, neutrino cooling and the presence of magnetic fields in ideal MHD. We compare our numerical results to the analytic solutions and explore how the purely hydrodynamical as well as the MHD solutions differ from them, and begin to explore how this may affect the appearance of the remnant as a typical radio pulsar.

  8. Thermal conductivity and impurity scattering in the accreting neutron star crust

    CERN Document Server

    Roggero, Alessandro

    2016-01-01

    We calculate the thermal conductivity of electrons for the strongly correlated multi-component ion plasma expected in the outer layers of neutron star's crust employing a Path Integral Monte Carlo (PIMC) approach. This allows us to isolate the low energy response of the ions and use it to calculate the electron scattering rate and the electron thermal conductivity. We find that the scattering rate is enhanced by a factor 2-4 compared to earlier calculations based on the simpler electron-impurity scattering formalism. This findings directly impacts the interpretation of thermal relaxation observed in transiently accreting neutron stars and has implications for the composition and nuclear reactions in the crust that occur during accretion.

  9. Thermal conductivity and impurity scattering in the accreting neutron star crust

    Science.gov (United States)

    Roggero, Alessandro; Reddy, Sanjay

    2016-07-01

    We calculate the thermal conductivity of electrons for the strongly correlated multicomponent ion plasma expected in the outer layers of a neutron star's crust, employing a Path Integral Monte Carlo (PIMC) approach. This allows us to isolate the low energy response of the ions and use it to calculate the electron scattering rate and the electron thermal conductivity. We find that the scattering rate is enhanced by a factor 2-4 compared to earlier calculations based on the simpler electron-impurity scattering formalism. This finding impacts the interpretation of thermal relaxation observed in transiently accreting neutron stars, and has implications for the composition and nuclear reactions in the crust that occur during accretion.

  10. Magnetic Field Effect on β+ Decay in the Crusts of Accreting Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jie; LIU Men-Quan; LUO Zhi-Quan

    2007-01-01

    Based on shell model of nuclei,the influence of a high magnetic field on ββ+ decay in the crusts of accreting neutron stars is analyzed.The magnetic field effect on 54Mn is discussed.The results show that a weak magnetic field makes little effect on β+ decay but a strong magnetic field (B > 1011 G) improves β+ decay rates obviously.The conclusion derived will benefit to develop further research on nuclear astrophysics in the future.

  11. Radiation-dominated boundary layer between an accretion disc and the surface of a neutron star: theory and observations

    Science.gov (United States)

    Gilfanov, M. R.; Sunyaev, R. A.

    2014-04-01

    Observations of low-mass X-ray binaries in our Galaxy and external galaxies have drawn attention to the accretion disc boundary layer where the accreting matter slows down from its Keplerian orbital velocity of about half of the speed of light to a neutron star's rotational velocity and in which it releases about half of its gravitational energy. Correspondingly, a hot spectral component appears in the emission of accreting neutron stars, which is absent in accreting black holes. We review different approaches to the problem of the radiation-dominated boundary layer. In particular, we consider the theory of a levitating spreading layer, which assumes that the accreting matter slows down while spreading over the neutron star surface.

  12. High energy signatures of quasi-spherical accretion onto rotating, magnetized neutron star in the ejector-accretor intermediate state

    CERN Document Server

    Bednarek, W

    2015-01-01

    We consider a simple scenario for the accretion of matter onto a neutron star in order to understand processes in the inner pulsar magnetosphere during the transition stage between different accretion modes. A simple quasi-spherical accretion process onto rotating, magnetized compact object is analyzed in order to search for the radiative signatures which could appear during transition between ejecting and accreting modes. It is argued that different accretion modes can be present in a single neutron star along different magnetic field lines for specific range of parameters characterising the pulsar (rotational period, surface magnetic field strength) and the density of surrounding medium. The radiation processes characteristic for the ejecting pulsar, i.e. curvature and synchrotron radiation produced by primary electrons in the pulsar outer gap, are expected to be modified by the presence of additional thermal radiation from the neutron star surface. We predict that during the transition from the pure ejecto...

  13. Time-dependent, compositionally driven convection in the oceans of accreting neutron stars

    CERN Document Server

    Medin, Zach

    2014-01-01

    We discuss the effect of chemical separation as matter freezes at the base of the ocean of an accreting neutron star, and the subsequent enrichment of the ocean in light elements and inward transport of heat through convective mixing. We extend the steady-state results of Medin & Cumming 2011 to transiently accreting neutron stars, by considering the time-dependent cases of heating during accretion outbursts and cooling during quiescence. Convective mixing is extremely efficient, flattening the composition profile in about one convective turnover time (weeks to months at the base of the ocean). During accretion outbursts, inward heat transport has only a small effect on the temperature profile in the outer layers until the ocean is strongly enriched in light elements, a process that takes hundreds of years to complete. During quiescence, however, inward heat transport rapidly cools the outer layers of the ocean while keeping the inner layers hot. We find that this leads to a sharp drop in surface emission...

  14. Production of 56Ni in black hole-neutron star merger accretion disc outflows

    International Nuclear Information System (INIS)

    The likely outcome of a compact object merger event is a central black hole surrounded by a rapidly accreting torus of debris. This disc of debris is a rich source of element synthesis, the outcome of which is needed to predict electromagnetic counterparts of individual events and to understand the contribution of mergers to galactic chemical evolution. Here we study disc outflow nucleosynthesis in the context of a two-dimensional, time-dependent black hole-neutron star merger accretion disc model. We use two time snapshots from this model to examine the impact of the evolution of the neutrino fluxes from the disc on the element synthesis. While the neutrino fluxes from the early-time disc snapshot appear to favor neutron-rich outflows, by the late-time snapshot the situation is reversed. As a result we find copious production of 56Ni in the outflows. (paper)

  15. Low-level accretion in neutron-star X-ray binaries

    CERN Document Server

    Wijnands, R; Padilla, M Armas; Altamirano, D; Cavecchi, Y; Linares, M; Bahramian, A; Heinke, C O

    2014-01-01

    We search the literature for reports on the spectral properties of neutron-star low-mass X-ray binaries when they have accretion luminosities between 1E34 and 1E36 ergs/s. We found that in this luminosity range the photon index (obtained from fitting a simple absorbed power-law in the 0.5-10 keV range) increases with decreasing 0.5-10 keV X-ray luminosity (i.e., the spectrum softens). Such behaviour has been reported before for individual sources, but here we demonstrate that very likely most (if not all) neutron-star systems behave in a similar manner and possibly even follow a universal relation. When comparing the neutron-star systems with black-hole systems, it is clear that most black-hole binaries have significantly harder spectra at luminosities of 1E34 - 1E35 erg/s. Despite a limited number of data points, there are indications that these spectral differences also extend to the 1E35 - 1E36 erg/s range. We note, however, that the system in our sample which has the hardest spectra is in fact a neutron-s...

  16. Carbon production on accreting neutron stars in a new regime of stable nuclear burning

    CERN Document Server

    Keek, L

    2015-01-01

    Accreting neutron stars exhibit Type I X-ray bursts from both frequent hydrogen/helium flashes as well as rare carbon flashes. The latter (superbursts) ignite in the ashes of the former. Hydrogen/helium bursts, however, are thought to produce insufficient carbon to power superbursts. Stable burning could create the required carbon, but this was predicted to only occur at much larger accretion rates than where superbursts are observed. We present models of a new steady-state regime of stable hydrogen and helium burning that produces pure carbon ashes. Hot CNO burning of hydrogen heats the neutron star envelope and causes helium to burn before the conditions of a helium flash are reached. This takes place when the mass accretion rate is around 10% of the Eddington limit: close to the rate where most superbursts occur. We find that increased heating at the base of the envelope sustains steady-state burning by steepening the temperature profile, which increases the amount of helium that burns before a runaway can...

  17. Helium Ignition on Accreting Neutron Stars with a New Triple-α Reaction Rate

    Science.gov (United States)

    Peng, Fang; Ott, Christian D.

    2010-12-01

    We investigate the effect of a new triple-α reaction rate from Ogata et al. on helium ignition conditions on accreting neutron stars and on the properties of the subsequent type I X-ray burst. We find that the new rate leads to significantly lower ignition column density for accreting neutron stars at low accretion rates. We compare the results of our ignition models for a pure helium accretor to observations of bursts in ultracompact X-ray binaries (UCXBs), which are believed to have nearly pure helium donors. For \\dot{m}> 0.001 \\dot{m}_{{Edd}}, the new triple-α reaction rate from Ogata et al. predicts a maximum helium ignition column of ~3 × 109 g cm-2, corresponding to a burst energy of ~4 × 1040 erg. For \\dot{m}˜ 0.01 \\dot{m}_{{Edd}} at which intermediate long bursts occur, the predicted burst energies are at least a factor of 10 too low to explain the observed energies of such bursts in UCXBs. This finding adds to the doubts cast on the triple-α reaction rate of Ogata et al. by the low-mass stellar evolution results of Dotter & Paxton.

  18. Helium Ignition on Accreting Neutron Stars with a New Triple-alpha Reaction Rate

    CERN Document Server

    Peng, Fang

    2010-01-01

    We investigate the effect of a new triple-alpha reaction rate from Ogata et al. (2009) on helium ignition conditions on accreting neutron stars and on the properties of the subsequent type I X-ray burst. We find that the new rate leads to significantly lower ignition column density for accreting neutron stars at low accretion rates. We compare the results of our ignition models for a pure helium accretor to observations of bursts in ultra-compact X-ray binary (UCXBs), which are believed to have nearly pure helium donors. For mdot > 0.001 mdot_Edd, the new triple-alpha reaction rate from Ogata et al. (2009) predicts a maximum helium ignition column of ~ 3 x 10^9 g cm^{-2}, corresponding to a burst energy of ~ 4 x 10^{40} ergs. For mdot ~ 0.01 mdot_Edd at which intermediate long bursts occur, the predicted burst energies are at least a factor of 10 too low to explain the observed energies of such bursts in UCXBs. This finding adds to the doubts cast on the triple-alpha reaction rate of Ogata et al. (2009) by th...

  19. The Ocean and Crust of a Rapidly Accreting Neutron Star Implications for Magnetic Field Evolution and Thermonuclear Flashes

    CERN Document Server

    Brown, E F; Brown, Edward F.; Bildsten, Lars

    1998-01-01

    We investigate the atmosphere, ocean, and crust of neutron stars accreting at rates sufficiently high (typically in excess of the local Eddington limit) to stabilize the burning of accreted hydrogen and helium. For hydrogen-rich accretion at global rates in excess of 10^-8 solar masses per year (typical of a few neutron stars), we discuss the thermal state of the deep ocean and crust and their coupling to the neutron star core, which is heated by conduction (from the crust) and cooled by neutrino emission. We estimate the Ohmic diffusion time in the hot, deep crust and find that it is noticeably shortened (to less than 10^8 yr) from the values characteristic of the colder crusts in slowly accreting neutron stars. We speculate on the implications of these calculations for magnetic field evolution in the bright accreting X-ray sources. We also explore the consequences of rapid compression at local accretion rates exceeding ten times the Eddington rate. This rapid accretion heats the atmosphere/ocean to temperat...

  20. Self-Similar Hot Accretion Flow onto a Rotating Neutron Star Structure and Stability

    CERN Document Server

    Medvedev, M V; Medvedev, Mikhail; Narayan, Ramesh

    2001-01-01

    We present analytical and numerical solutions which describe a hot, viscous, two-temperature accretion flow onto a rotating neutron star or any other rotating compact star with a surface. We assume Coulomb coupling between the protons and electrons, and free-free cooling from the electrons. Outside a thin boundary layer, where the accretion flow meets the star, we show that there is an extended settling region which is well-described by two self-similar solutions: (i) a two-temperature solution which is valid in an inner zone $r\\le10^{2.5}$ ($r$ is in Schwarzchild units), and (ii) a one-temperature solution at larger radii. In both zones, $\\rho\\propto r^{-2}, \\Omega\\propto r^{-3/2}, v\\propto r^0, T_p\\propto r^{-1}$; in the two-temperature zone, $T_e\\propto r^{-1/2}$. The luminosity of the settling zone arises from the rotational energy of the star as the star is braked by viscosity. Hence the luminosity and the flow parameters (density, temperature, angular velocity) are independent of $\\dot M$. The settling ...

  1. Carbon synthesis in steady-state hydrogen and helium burning on accreting neutron stars

    International Nuclear Information System (INIS)

    Superbursts from accreting neutron stars probe nuclear reactions at extreme densities (ρ ≈ 109 g cm–3) and temperatures (T > 109 K). These bursts (∼1000 times more energetic than type I X-ray bursts) are most likely triggered by unstable ignition of carbon in a sea of heavy nuclei made during the rapid proton capture process (rp-process) of regular type I X-ray bursts (where the accumulated hydrogen and helium are burned). An open question is the origin of sufficient amounts of carbon, which is largely destroyed during the rp-process in X-ray bursts. We explore carbon production in steady-state burning via the rp-process, which might occur together with unstable burning in systems showing superbursts. We find that for a wide range of accretion rates and accreted helium mass fractions large amounts of carbon are produced, even for systems that accrete solar composition. This makes stable hydrogen and helium burning a viable source of carbon to trigger superbursts. We also investigate the sensitivity of the results to nuclear reactions. We find that the 14O(α, p)17F reaction rate introduces by far the largest uncertainties in the 12C yield.

  2. A Direct Measurement of the Heat Release in the Outer Crust of the Transiently Accreting Neutron Star XTE J1709-267

    NARCIS (Netherlands)

    N. Degenaar; R. Wijnands; J.M. Miller

    2013-01-01

    The heating and cooling of transiently accreting neutron stars provides a powerful probe of the structure and composition of their crust. Observations of superbursts and cooling of accretion-heated neutron stars require more heat release than is accounted for in current models. Obtaining firm constr

  3. Effects of a New Triple-alpha Reaction on X-ray Bursts of a Helium Accreting Neutron Star

    CERN Document Server

    Matsuo, Y; Noda, T; Saruwatari, M; Ono, M; Hashimoto, M; Fujimoto, M

    2011-01-01

    The effects of a new triple-$\\alpha$ reaction rate (OKK rate) on the helium flash of a helium accreting neutron star in a binary system have been investigated. Since the ignition points determine the properties of a thermonuclear flash of type I X-ray bursts, we examine the cases of different accretion rates, $dM/dt (\\dot{M})$, of helium from $3\\times10^{-10} M_{\\odot} \\rm yr^{-1}$ to $3\\times10^{-8} M_{\\odot} \\rm yr^{-1}$, which could cover the observed accretion rates. We find that for the cases of low accretion rates, nuclear burnings are ignited at the helium layers of rather low densities. As a consequence, helium deflagration would be triggered for all cases of lower accretion rate than $\\dot{M}\\simeq 3\\times10^{-8} M_{\\odot} \\rm yr^{-1}$. We find that OKK rate could be barely consistent with the available observations of the X-ray bursts on the helium accreting neutron star. However this coincidence is found to depend on the properties of crustal heating and the neutron star model.We suggest that OKK r...

  4. Dichotomy Between Black Hole and Neutron Star Accretion: Effect of Hard Surface

    Science.gov (United States)

    Dhang, Prasun; Mukhopadhyay, Banibrata; Sharma, Prateek

    2016-07-01

    Estimates of accretion rate on to compact objects have been explored based on the well-known, spherically symmetric, inviscid, steady-state solution given by Bondi. This solution assumes that there is a sink of mass at the center -- which in case of a black hole (BH) corresponds to the advection of matter across the event horizon. Other stars, such as a neutron star (NS), have surfaces and hence the infalling matter has to come to rest at the surface. We study the initial value problem in which the matter distribution is uniform and at rest at time t=0 with different inner radial boundary conditions for BHs and NSs: inflow boundary condition valid for BHs; and reflective or settling boundary condition for NSs. We obtain a similarity solution for the flow with inner inflow and reflective boundary conditions (assuming a cold ambient medium) and compare with numerical simulations of the Euler equations. One-dimensional simulations show the formation of an outward propagating and a standing shock in NS system for reflective and settling boundary conditions respectively. Two-dimensional simulations show that both these flows are unstable (locally to convection and globally to a standing shock instability). Numerical simulations show that in steady state, spherical accretion rate on to a NS for reflective boundary condition is suppressed by orders of magnitude compared to that on to a BH.

  5. The g-mode Excitation in the Proto Neutron Star by the Standing Accretion Shock Instability

    CERN Document Server

    Yoshida, S; Yamada, S; Yoshida, Shijun; Ohnishi, Naofumi; Yamada, Shoichi

    2007-01-01

    The so-called "acoustic revival mechanism" of core-collapse supernova proposed recently by the Arizona group is an interesting new possibility. Aiming to understand the elementary processes involved in the mechanism, we have calculated the eigen frequencies and eigen functions for the g-mode oscillations of a non-rotating proto neutron star. The possible excitation of these modes by the standing accretion shock instability, or SASI, is discussed based on these eigen functions. We have formulated the forced oscillations of $g$-modes by the external pressure perturbations exerted on the proto neutron star surface. The driving pressure fluctuations have been adopted from our previous computations of the axisymmetric SASI in the non-linear regime. We have paid particular attention to low l modes, since these are the modes that are dominant in SASI and that the Arizona group claimed played an important role in their acoustic revival scenario. Here l is the index of the spherical harmonic functions, $Y_l^m$. Althou...

  6. Delayed outflows from black hole accretion tori following neutron star binary coalescence

    CERN Document Server

    Fernández, Rodrigo

    2013-01-01

    Expulsion of neutron-rich matter following the merger of neutron star (NS) binaries is crucial to the radioactively-powered electromagnetic counterparts of these events and to their relevance as sources of r-process nucleosynthesis. Numerical simulations of NS-NS coalescence find, however, a wide range in the quantity of prompt dynamically-ejected mass. Here we explore the long-term (viscous) evolution of remnant black hole accretion disks formed in such mergers by means of two-dimensional, time-dependent hydrodynamical simulations. The evolution of the electron fraction due to charged-current weak interactions is included, and neutrino self-irradiation is modeled as a lightbulb that accounts for the disk geometry and moderate optical depth effects. Over several viscous times (~1s), a fraction ~10% of the initial disk mass is ejected as a moderately neutron-rich wind (Y_e ~ 0.2) powered by viscous heating and nuclear recombination, with neutrino self-irradiation playing a sub-dominant role. Although the prope...

  7. The de-excited energy of electron capture in accreting neutron star crusts

    International Nuclear Information System (INIS)

    When a daughter nucleus produced by electron capture takes part in a level transition from an excited state to its ground state in accreting neutron star crusts, thermal energy will be released and heat the crust, increasing crust temperature and changing subsequent carbon ignition conditions. Previous studies show that the theoretical carbon ignition depth is deeper than the value inferred from observations because the thermal energy is not sufficient. In this paper, we present the de-excited energy from electron capture of rp-process ash before carbon ignition, especially for the initial evolution stage of rp-process ash, by using a level-to-level transition method. We find the theoretical column density of carbon ignition in the resulting superbursts and compare it with observations. The calculation of the electron capture process is based on a more reliable level-to-level transition, adopting new data from experiments or theoretical models (e.g., large-scale shell model and proton-neutron quasi-particle random phase approximation). The new carbon ignition depth is estimated by fitting from previous results of a nuclear reaction network. Our results show the average de-excited energy from electron capture before carbon ignition is ∼0.026 MeV/u, which is significantly larger than the previous results. This energy is beneficial for enhancing the crust's temperature and decreasing the carbon ignition depth of superbursts. (paper)

  8. Numerical Solution of the Radiative Transfer Equation: X-Ray Spectral Formation from Cylindrical Accretion onto a Magnetized Neutron Star

    Science.gov (United States)

    Fairnelli, R.; Ceccobello, C.; Romano, P.; Titarchuk, L.

    2011-01-01

    Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. This requires developing numerical routines for the solution of the radiative transfer equation according to the expected physical conditions of the systems under study. Aims. We have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. Methods. We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system pi using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. Results. We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar surface and at the top of the accretion column, respectively. In both cases higher values of the electron temperature and of the optical depth pi produce flatter and harder spectra. Other parameters contributing to the spectral formation are the steepness of the vertical velocity profile, the albedo at the star surface, and the radius of the accretion column. The latter parameter modifies the emerging spectra in a specular way for the two assumed accretion profiles. Conclusions. The algorithm has been implemented in the XPEC package for X-ray fitting and is specifically dedicated to the physical framework of accretion at the polar cap of a neutron star with a high magnetic field (approx > 10(exp 12) G). This latter case is expected to be of typical accreting systems such as X

  9. An Ultraluminous X-ray Source Powered by An Accreting Neutron Star

    CERN Document Server

    Bachetti, M; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-01-01

    Ultraluminous X-ray sources (ULX) are off-nuclear point sources in nearby galaxies whose X-ray luminosity exceeds the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their luminosity ranges from $10^{40}$ erg s$^{-1} $10^{40}$ erg s$^{-1}$), which require black hole masses MBH >50 solar masses and/or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries. Here we report broadband X-ray observations of the nuclear region of the galaxy M82, which contains two bright ULXs. The observations reveal pulsations of average period 1.37 s with a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to $L_X$(3 - 30 keV) = $4.9 \\times 10^{39}$ erg s$^{-1}$. The pulsating source is spatially coincident with a variable ULX which can reach $L_X$ (0.3 - 10 keV) = $1.8 \\times 10^{40}$ erg s$^{-1}$. This ...

  10. Numerical Experiments for Nuclear Flashes toward Superbursts in an Accreting Neutron Star

    Directory of Open Access Journals (Sweden)

    Masa-aki Hashimoto

    2014-01-01

    Full Text Available We show that the superburst would be originated from thermonuclear burning ignited by accumulated fuels in the deep layers compared to normal X-ray bursts. Two cases are investigated for models related to superbursts by following thermal evolution of a realistic neutron star: helium flash and carbon flash accompanied with many normal bursts. For a helium flash, the burst shows the long duration when the accretion rate is low compared with the observation. The flash could become a superburst if the burning develops to the deflagration and/or detonation. For a carbon flash accompanied with many normal bursts, after successive 2786 normal bursts during 1.81 × 109 s, the temperature reaches the deflagration temperature. This is due to the produced carbon which amount reaches to ≈0.1 in the mass fraction. The flash will develop to dynamical phenomena of the deflagration and/or detonation, which may lead to a superburst.

  11. Production of all $r$-process nuclides by black hole accretion disk outflows from neutron star mergers

    CERN Document Server

    Wu, Meng-Ru; Martínez-Pinedo, Gabriel; Metzger, Brian D

    2016-01-01

    We consider $r$-process nucleosynthesis in outflows from black hole accretion disks formed in double neutron star and neutron star - black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important -- and in some cases dominant -- contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disk outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second $r$-process peak (mass number $A \\sim 130$), independent of model parameters, with significant production of $A < 130$ nuclei. This implies that dynamical ejecta with high electron fraction may not be required to explain the observed abundances of $r$-process elements in metal poor stars. Disk outflows reach the third peak ($ A \\sim 195$) in most of our simulations, although the amounts produced depend sensitively on the ...

  12. Numerical solution of the radiative transfer equation: X-ray spectral formation from cylindrical accretion onto a magnetized neutron star

    CERN Document Server

    Farinelli, R; Romano, P; Titarchuk, L

    2011-01-01

    Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. To this aim, we have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system tau using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar...

  13. Inner disk radius, accretion and the propeller effect in the spin-down phase of neutron stars

    CERN Document Server

    Ertan, Unal

    2015-01-01

    We have investigated the critical conditions required for an efficient steady propeller mechanism in the spin-down phases of magnetized neutron stars with optically thick accretion disks. We have shown through simple analytical calculations that: (1) the strength of the dipole field at the Alfven radius is not sufficient to sustain an efficient mass-outflow even when the magnetic dipole field lines rotate much faster than the escape speed, (2) in the spin-down phase, mass accretion onto the star could persist above a minimum disk mass-flow rate that is orders of magnitude lower than the rate corresponding to the transition between the spin-up and the spin-down states, (3) below this critical mass-flow rate, a steady propeller state could be established with a maximum inner disk radius about 25 times smaller than the Alfven radius. Our results indicate that only for spherical accretion, the inner disk radius is likely to approach the Alfven radius, and for all realistic cases, the accretion-propeller transitio...

  14. Neutron star crust cooling in KS 1731-260: the influence of accretion outburst variability on the crustal temperature evolution

    Science.gov (United States)

    Ootes, Laura S.; Page, Dany; Wijnands, Rudy; Degenaar, Nathalie

    2016-10-01

    Using a theoretical model, we track the thermal evolution of a cooling neutron star crust after an accretion-induced heating period with the goal of constraining the crustal parameters. We present for the first time a crust cooling model - NSCOOL - that takes into account detailed variability during the full outburst based on the observed light curve. We apply our model to KS 1731-260. The source was in outburst for ˜12 yr during which it was observed to undergo variations on both long (years) and short (days-weeks) time-scales. Our results show that KS 1731-260 does not reach a steady state profile during the outburst due to fluctuations in the derived accretion rate. Additionally, long time-scale outburst variability mildly affects the complete crust cooling phase, while variations in the final months of the outburst strongly influence the first ˜40 d of the calculated cooling curve. We discuss the consequences for estimates of the neutron star crust parameters, and argue that detailed modelling of the final phase of the outburst is key to constraining the origin of the shallow heat source.

  15. Neutron star crust cooling in KS 1731-260: the influence of accretion outburst variability on the crustal temperature evolution

    CERN Document Server

    Ootes, Laura S; Wijnands, Rudy; Degenaar, Nathalie

    2016-01-01

    Using a theoretical model, we track the thermal evolution of a cooling neutron star crust after an accretion induced heating period with the goal of constraining the crustal parameters. We present for the first time a crust cooling model $-\\text{ } NSCool\\text{ } -$ that takes into account detailed variability during the full outburst based on the observed light curve. We apply our model to KS 1731-260. The source was in outburst for $\\sim$12 years during which it was observed to undergo variations on both long (years) and short (days-weeks) timescales. Our results show that KS 1731-260 does not reach a steady state profile during the outburst due to fluctuations in the derived accretion rate. Additionally, long time-scale outburst variability mildly affects the complete crust cooling phase, while variations in the final months of the outburst strongly influence the first $\\sim$40 days of the calculated cooling curve. We discuss the consequences for estimates of the neutron star crust parameters, and argue th...

  16. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    Science.gov (United States)

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  17. An in-depth study of a neutron star accreting at low Eddington rate: On the possibility of a truncated disk and an outflow

    Science.gov (United States)

    Degenaar, N.; Pinto, C.; Miller, J. M.; Wijnands, R.; Altamirano, D.; Paerels, F.; Fabian, A. C.; Chakrabarty, D.

    2016-09-01

    Due to observational challenges our knowledge of low-level accretion flows around neutron stars is limited. We present NuSTAR, Swift and Chandra observations of the low-mass X-ray binary IGR J17062-6143, which has been persistently accreting at ≃0.1 per cent of the Eddington limit since 2006. Our simultaneous NuSTAR/Swift observations show that the 0.5-79 keV spectrum can be described by a combination of a power law with a photon index of Γ≃2, a black body with a temperature of kTbb≃0.5 keV (presumably arising from the neutron star surface), and disk reflection. Modeling the reflection spectrum suggests that the inner accretion disk was located at Rin≳100~GM/c2 (≳225 km) from the neutron star. The apparent truncation may be due to evaporation of the inner disk into a radiatively-inefficient accretion flow, or due to the pressure of the neutron star magnetic field. Our Chandra gratings data reveal possible narrow emission lines near 1 keV that can be modeled as reflection or collisionally-ionized gas, and possible low-energy absorption features that could point to the presence of an outflow. We consider a scenario in which this neutron star has been able to sustain its low accretion rate through magnetic inhibition of the accretion flow, which gives some constraints on its magnetic field strength and spin period. In this configuration, IGR J17062-6143 could exhibit a strong radio jet as well as a (propeller-driven) wind-like outflow.

  18. The Thermal Evolution following a Superburst on an Accreting Neutron Star

    OpenAIRE

    Cumming, Andrew; Macbeth, Jared

    2004-01-01

    Superbursts are very energetic Type I X-ray bursts discovered in recent years by long term monitoring of X-ray bursters, and believed to be due to unstable ignition of carbon in the deep ocean of the neutron star. In this Letter, we follow the thermal evolution of the surface layers as they cool following the burst. The resulting lightcurves agree very well with observations for layer masses and energy releases in the range expected from ignition calculations. At late times, the cooling flux ...

  19. An in-depth study of a neutron star accreting at low Eddington rate: On the possibility of a truncated disk and an outflow

    CERN Document Server

    Degenaar, N; Miller, J M; Wijnands, R; Altamirano, D; Paerels, F; Fabian, A C; Chakrabarty, D

    2016-01-01

    Due to observational challenges our knowledge of low-level accretion flows around neutron stars is limited. We present Nustar, Swift and Chandra observations of the low-mass X-ray binary IGR J17062-6143, which has been persistently accreting at ~0.1 per cent of the Eddington limit since 2006. Our simultaneous Nustar/Swift observations show that the 0.5-79 keV spectrum can be described by a combination of a power law with a photon index of Gamma~2, a black body with a temperature of kT_bb~0.5 keV (presumably arising from the neutron star surface), and disk reflection. Modeling the reflection spectrum suggests that the inner accretion disk was located at R_in>100 GM/c2 (>225 km) from the neutron star. The apparent truncation may be due to evaporation of the inner disk into a radiatively-inefficient accretion flow, or due to the pressure of the neutron star magnetic field. Our Chandra gratings data reveal possible narrow emission lines near 1 keV that can be modeled as reflection or collisionally-ionized gas, an...

  20. Population synthesis of young isolated neutron stars: the effect of fallback disk accretion and magnetic field evolution

    CERN Document Server

    Fu, Lei

    2013-01-01

    The spin evolution of isolated neutron stars (NSs) is dominatd by their magnetic fields. The measured braking indices of young NSs show that the spin-down mechanism due to magnetic dipole radiation with constant magnetic fields is inadequate. Assuming that the NS magnetic field is buried by supernova fallback matter and re-emerges after accretion stops, we carry out Monte-Carlo simulation of the evolution of young NSs, and show that most of the pulsars have the braking indices ranging from -1 to 3. The results are compatible with the observational data of NSs associated with supernova remnants. They also suggest that the initial spin periods of NSs might occupy a relatively wide range.

  1. The imprint of carbon combustion on a superburst from the accreting neutron star 4U 1636-536

    CERN Document Server

    Keek, L; Wolf, Z; Ballantyne, D R; Suleimanov, V F; Kuulkers, E; Strohmayer, T E

    2015-01-01

    Superbursts are hours-long X-ray flares attributed to the thermonuclear runaway burning of carbon-rich material in the envelope of accreting neutron stars. By studying the details of the X-ray light curve, properties of carbon combustion can be determined. In particular, we show that the shape of the rise of the light curve is set by the the slope of the temperature profile left behind by the carbon flame. We analyse RXTE/PCA observations of 4U 1636-536 and separate the direct neutron star emission from evolving photoionized reflection and persistent spectral components. This procedure results in the highest quality light curve ever produced for the superburst rise and peak, and interesting behaviour is found in the tail. The rising light curve between 100 and 1000 seconds is inconsistent with the idea that the fuel burned locally and instantaneously everywhere, as assumed in some previous models. By fitting improved cooling models, we measure for the first time the radial temperature profile of the superburs...

  2. Production of the entire range of r-process nuclides by black hole accretion disk outflows from neutron star mergers

    Science.gov (United States)

    Wu, Meng-Ru; Fernández, Rodrigo; Martínez-Pinedo, Gabriel; Metzger, Brian D.

    2016-08-01

    We consider r-process nucleosynthesis in outflows from black hole accretion disks formed in double neutron star and neutron star - black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important - and in some cases dominant - contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disk outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second r-process peak (mass number A ˜ 130), independent of model parameters, with significant production of A nuclear physics inputs. Some of our models produce an abundance spike at A = 132 that is absent in the Solar System r-process distribution. The spike arises from convection in the disk and depends on the treatment of nuclear heating in the simulations. We conclude that disk outflows provide an important - and perhaps dominant - contribution to the r-process yields of compact binary mergers, and hence must be included when assessing the contribution of these systems to the inventory of r-process elements in the Galaxy.

  3. Simultaneous observations of a pair of kilohertz QPOs and a plausible 1860 Hz QPO from an accreting neutron star system

    CERN Document Server

    Bhattacharyya, Sudip

    2009-01-01

    We report an indication (3.22 sigma) of ~ 1860 Hz quasi-periodic oscillations from a neutron star low-mass X-ray binary 4U 1636-536. If confirmed, this will be by far the highest frequency feature observed from an accreting neutron star system, and hence could be very useful to understand such systems. This plausible timing feature was observed simultaneously with lower (~ 585 Hz) and upper (~ 904 Hz) kilohertz quasi-periodic oscillations. The two kilohertz quasi-periodic oscillation frequencies had the ratio of ~ 1.5, and the frequency of the alleged ~ 1860 Hz feature was close to the triple and the double of these frequencies. This can be useful to constrain the models of all the three features. In particular, the ~ 1860 Hz feature could be (1) from a new and heretofore unknown class of quasi-periodic oscillations, or (2) the first observed overtone of lower or upper kilohertz quasi-periodic oscillations. Finally we note that, although the relatively low significance of the ~ 1860 Hz feature argues for caut...

  4. The Thermal Evolution following a Superburst on an Accreting Neutron Star

    Science.gov (United States)

    Cumming, Andrew; Macbeth, Jared

    2004-03-01

    Superbursts are very energetic type I X-ray bursts discovered in recent years by long-term monitoring of X-ray bursters and are believed to be due to unstable ignition of carbon in the deep ocean of the neutron star. In this Letter, we follow the thermal evolution of the surface layers as they cool following the burst. The resulting light curves agree very well with observations for layer masses in the range 1025-1026 g expected from ignition calculations and for an energy release >~1017 ergs g-1 during the flash. We show that at late times the cooling flux from the layer decays as a power law F~t-4/3, giving timescales for quenching of normal type I bursting of weeks, in good agreement with observational limits. We show that simultaneous modeling of superburst light curves and quenching times promises to constrain both the thickness of the fuel layer and the energy deposited.

  5. The Thermal Evolution following a Superburst on an Accreting Neutron Star

    CERN Document Server

    Cumming, A; Cumming, Andrew; Macbeth, Jared

    2004-01-01

    Superbursts are very energetic Type I X-ray bursts discovered in recent years by long term monitoring of X-ray bursters, and believed to be due to unstable ignition of carbon in the deep ocean of the neutron star. In this Letter, we follow the thermal evolution of the surface layers as they cool following the burst. The resulting lightcurves agree very well with observations for layer masses and energy releases in the range expected from ignition calculations. At late times, the cooling flux from the layer decays as a power law in time, giving timescales for quenching of normal Type I bursting of weeks, in good agreement with observational limits. We show that simultaneous modelling of superburst lightcurves and quenching times promises to constrain both the thickness of the fuel layer and the energy deposited.

  6. Continuous frequency spectrum of the global hydromagnetic oscillations of a magnetically confined mountain on an accreting neutron star

    CERN Document Server

    Vigelius, M

    2009-01-01

    We compute the continuous part of the ideal-magnetohydrodynamic (ideal-MHD) frequency spectrum of a polar mountain produced by magnetic burial on an accreting neutron star. Applying the formalism developed by Hellsten & Spies (1979), extended to include gravity, we solve the singular eigenvalue problem subject to line-tying boundary conditions. This spectrum divides into an Alfv\\'{e}n part and a cusp part. The eigenfunctions are chirped and anharmonic with an exponential envelope, and the eigenfrequencies cover the whole spectrum above a minimum $\\omega_\\mathrm{low}$. For equilibria with accreted mass $1.2 \\times 10^{-6} \\la M_a/M_\\odot \\la 1.7 \\times 10^{-4}$ and surface magnetic fields $10^{11} \\la B_\\ast/\\mathrm{G} \\la 10^{13}$, $\\omega_\\mathrm{low}$ is approximately independent of $B_\\ast$, and increases with $M_a$. The results are consistent with the Alfv\\'{e}n spectrum excited in numerical simulations with the \\textsc{zeus-mp} solver. The spectrum is modified substantially by the Coriolis force in n...

  7. Potential cooling of an accretion-heated neutron star crust in the low-mass X-ray binary 1RXS J180408.9-342058

    CERN Document Server

    Parikh, Aastha S; Degenaar, Nathalie; Ootes, Laura S; Page, Dany; Altamirano, Diego; Cackett, Edward M; Deller, Adam T; Gusinskaia, Nina; Hessels, Jason W T; Homan, Jeroen; Linares, Manuel; Miller, Jon M; Miller-Jones, James C A

    2016-01-01

    We have monitored the transient neutron star low-mass X-ray binary 1RXS J180408.9-342058 in quiescence after the end of its ~4.5 month outburst in 2015. The source has been observed 34 times using Swift and once using XMM-Newton in order to study the cooling of an accretion heated neutron star crust. During both the Swift and the XMM-Newton observations the X-ray spectra were dominated by a thermal component. The thermal evolution showed a gradual decay in the X-ray luminosity from ~18x10^32 to ~4x10^32 (D/5.8 kpc)^2 erg s^{-1} and the inferred neutron star surface temperature (for an observer at infinity) decreased from ~100 to ~72 eV between ~8 to ~379 days after the end of outburst. This can be interpreted as cooling of a neutron star crust that had been heated due to accretion during the preceding outburst. Modeling the observed temperature curve with the thermal evolution code NSCool indicated that the source required ~1.9 MeV per accreted nucleon of shallow heating in addition to the standard deep crust...

  8. Thin accretion disks around cold Bose–Einstein condensate stars

    OpenAIRE

    Dănilă, Bogdan; Harko, Tiberiu; Kovács, Zoltán

    2015-01-01

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein Condensate. Observationally distinguishing between neutron/quark stars and Bose-Einstein Condensate stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing Bose-Einstein Condensate stars from neutron/quark stars is through the study of the thin accretion ...

  9. Time-of-flight mass measurements of neutron-rich chromium isotopes up to N = 40 and implications for the accreted neutron star crust

    CERN Document Server

    Meisel, Z; Ahn, S; Bazin, D; Brown, B A; Browne, J; Carpino, J F; Chung, H; Cyburt, R H; Estradé, A; Famiano, M; Gade, A; Langer, C; Matoš, M; Mittig, W; Montes, F; Morrissey, D J; Pereira, J; Schatz, H; Schatz, J; Scott, M; Shapira, D; Sieja, K; Smith, K; Stevens, J; Tan, W; Tarasov, O; Towers, S; Wimmer, K; Winkelbauer, J R; Yurkon, J; Zegers, R G T

    2016-01-01

    We present the mass excesses of 59-64Cr, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The mass of 64Cr is determined for the first time, with an atomic mass excess of -33.48(44) MeV. We find a significantly different two-neutron separation energy S2n trend for neutron-rich isotopes of chromium, removing the previously observed enhancement in binding at N=38. Additionally, we extend the S2n trend for chromium to N=40, revealing behavior consistent with the previously identified island of inversion in this region. We compare our results to state-of-the-art shell-model calculations performed with a modified Lenzi-Nowacki-Poves-Sieja interaction in the fp shell, including the g9/2 and d5/2 orbits for the neutron valence space. We employ our result for the mass of 64Cr in accreted neutron star crust network calculations and find a reduction in the strength and depth of electron-capture heating from the A=64 isobaric...

  10. The Neutron Star Zoo

    CERN Document Server

    Harding, Alice K

    2013-01-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission.

  11. Testing Rate Dependent corrections on timing mode EPIC-pn spectra of the accreting Neutron Star GX 13+1

    CERN Document Server

    Pintore, F; di Salvo, T; Guainazzi, M; D'Aì, A; Riggio, A; Burderi, L; Iaria, R; Robba, N R

    2014-01-01

    When the EPIC-pn instrument on board XMM-Newton is operated in Timing mode, high count rates (>100 cts/s) of bright sources may affect the calibration of the energy scale, resulting in a modification of the real spectral shape. The corrections related to this effect are then strongly important in the study of the spectral properties. Tests of these calibrations are more suitable in sources which spectra are characterised by a large number of discrete features. Therefore, in this work, we carried out a spectral analysis of the accreting Neutron Star GX 13+1, which is a dipping source with several narrow absorption lines and a broad emission line in its spectrum. We tested two different correction approaches on an XMM-Newton EPIC-pn observation taken in Timing mode: the standard Rate Dependent CTI (RDCTI or epfast) and the new, Rate Dependent Pulse Height Amplitude (RDPHA) corrections. We found that, in general, the two corrections marginally affect the properties of the overall broadband continuum, while hints...

  12. Contrasting behaviour from two Be/X-ray binary pulsars: insights into differing neutron star accretion modes

    CERN Document Server

    Townsend, L J; Hill, A B; Coe, M J; Corbet, R H D; Bird, A J

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4s and 85.4s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and ...

  13. The neutron star transient and millisecond pulsar in M28: from sub-luminous accretion to rotation-powered quiescence

    CERN Document Server

    Linares, Manuel; Heinke, Craig; Wijnands, Rudy; Patruno, Alessandro; Altamirano, Diego; Homan, Jeroen; Bogdanov, Slavko; Pooley, David

    2013-01-01

    The X-ray transient IGR J18245-2452 in the globular cluster M28 contains the first neutron star (NS) seen to switch between rotation-powered and accretion-powered pulsations. We analyse its 2013 March-April 25d-long outburst as observed by Swift, which had a peak bolometric luminosity of ~6% of the Eddington limit (L$_{E}$), and give detailed properties of the thermonuclear burst observed on 2013 April 7. We also present a detailed analysis of new and archival Chandra data, which we use to study quiescent emission from IGR J18245-2452 between 2002 and 2013. Together, these observations cover almost five orders of magnitude in X-ray luminosity (L$_X$, 0.5-10 keV). The Swift spectrum softens during the outburst decay (photon index $\\Gamma$ from 1.3 above L$_X$/L$_{E}$=10$^{-2}$ to ~2.5 at L$_X$/L$_{E}$=10$^{-4}$), similar to other NS and black hole (BH) transients. At even lower luminosities, deep Chandra observations reveal hard ($\\Gamma$=1-1.5), purely non-thermal and highly variable X-ray emission in quiesce...

  14. Thermal structures of accreting neutron stars with neutrino losses due to strong pion condensations

    CERN Document Server

    Matsuo, Yasuhide; Hayashida, Koutarou; Liu, Helei; Noda, Tsuneo; Fujimoto, Masayuki Y

    2016-01-01

    Quiescent X-ray luminosities are presented in low mass X-ray binaries with use of evolutionary calculations. The calculated luminosities are compared with observed ones in terms of timeaveraged mass accretion rate. It is shown that neutrino emission by strong pion condensation can explain quiescent X-ray luminosity of SAX J1808.4-3658 and we do not need direct Urca processes concerning nucleons and/or hyperons.

  15. Atmospheres around Neutron Stars

    Science.gov (United States)

    Fryer, Chris L.; Benz, Willy

    1994-12-01

    Interest in the behavior of atmospheres around neutron stars has grown astronomically in the past few years. Some of this interest arrived in the wake of the explosion of Supernova 1987A and its elusive remnant; spawning renewed interest in a method to insure material ``fall-back'' onto the adolescent neutron star in an effort to transform it into a silent black hole. However, the bulk of the activity with atmospheres around neutron stars is concentrated in stellar models with neutron star, rather than white dwarf, cores; otherwise known as Thorne-Zytkow objects. First a mere seed in the imagination of theorists, Thorne-Zytkow objects have grown into an observational reality with an ever-increasing list of formation scenarios and observational prospects. Unfortunately, the analytic work of Chevalier on supernova fall-back implies that, except for a few cases, the stellar simulations of Thorne-Zytkow objects are missing an important aspect of physics: neutrinos. Neutrino cooling removes the pressure support of these atmospheres, allowing accretion beyond the canonical Eddington rate for these objects. We present here the results of detailed hydrodynamical simulations in one and two dimensions with the additional physical effects of neutrinos, advanced equations of state, and relativity over a range of parameters for our atmosphere including entropy and chemical composition as well as a range in the neutron star size. In agreement with Chevalier, we find, under the current list of formation scenarios, that the creature envisioned by Thorne and Zytkow will not survive the enormous appetite of a neutron star. However, neutrino heating (a physical effect not considered in Chevalier's analysis) can play an important role in creating instabilities in some formation schemes, leading to an expulsion of matter rather than rapid accretion. By placing scrutiny upon the formation methods, we can determine the observational prospects for each.

  16. X-rays from neutron stars

    International Nuclear Information System (INIS)

    The basic theoretical in the models of regularly pulsating X-ray sources are discussed, and put in relation to the observations. The topics covered include physics of the magnetosphere of an accreting neutron star, hydrodynamics of the accretion column, physical processes close to the surface of the neutron star such as proton-electron collisions, photon-electron interactions. (orig.)

  17. HYPERCRITICAL ACCRETION ONTO A MAGNETIZED NEUTRON STAR SURFACE: A NUMERICAL APPROACH

    Directory of Open Access Journals (Sweden)

    C. G. Bernal

    2010-01-01

    Full Text Available La acreción sobre una proto-estrella de neutrones en las horas que siguen al colapso del núcleo de la estrella masiva que le dio origen puede afectar sus propiedades observables. Este fenómeno se da en el régimen denominado hipercrítico (Chevalier 1989, donde el enfriamiento por neutrinos es crucial para la evolución termodin ámica. En este trabajo presentamos un estudio en este contexto en una dimensión con simetría esférica y llevamos a cabo simulaciones numéricas en dos dimensiones dentro de una columna de acreción sobre una estrella de neutrones. Consideramos procesos microfísicos detallados, enfriamiento por neutrinos y la presencia de campos magnéticos en la aproximación de magnetohidrodinámica ideal. Comparamos nuestros resultados numéricos con las soluciones analíticas e investigamos cómo las soluciones, tanto hidrodinámicas como magnetohidrodinámicas, difieren de éstas. Iniciamos también una exploración de cómo este proceso puede afectar la aparición del remanente como un pulsar típico en radio.

  18. A cold neutron star in the transient low-mass X-ray binary HETE J1900.1-2455 after 10 years of active accretion

    CERN Document Server

    Degenaar, N; Reynolds, M T; Wijnands, R; Page, D

    2016-01-01

    The neutron star low-mass X-ray binary and intermittent millisecond X-ray pulsar HETE J1900.1-2455 returned to quiescence in late 2015, after a prolonged accretion outburst of ~10 yr. Using a Chandra observation taken ~180 d into quiescence we detect the source at a luminosity of ~4.5E31 (D/4.7 kpc)^2 erg/s (0.5-10 keV). The X-ray spectrum can be described by a neutron star atmosphere model with a temperature of ~54 eV for an observer at infinity. We perform thermal evolution calculations based on the 2016 quiescent data and a <98 eV temperature upper limit inferred from a Swift observation taken during an unusually brief (<2 weeks) quiescent episode in 2007. We find no evidence in the present data that the thermal properties of the crust, such as the heating rate and thermal conductivity, are different than those of non-pulsating neutron stars. Finding this neutron star so cold after its long outburst imposes interesting constraints on the heat capacity of the stellar core; these become even stronger i...

  19. Testing the deep-crustal heating model using quiescent neutron-star very-faint X-ray transients and the possibility of hybrid crusts in accreting neutron stars

    CERN Document Server

    Wijnands, Rudy; Page, Dany

    2012-01-01

    It is assumed that accreting neutron stars (NSs) in LMXBs are heated due to the compression of the existing crust by the accreted matter which gives rise to nuclear reactions in the crust. It has been shown that most of the energy is released deep in the crust by pycnonuclear reactions involving low-Z elements. We discuss if NSs in very-faint X-ray transients (VFXTs; those which have peak X-ray luminosities < 1E36 erg/s) can be used to test this model. Unfortunately we cannot conclusively answer this because of the large uncertainties in our estimates of the accretion rate history of those VFXTs, both the short-term (less than a few tens of thousands of years) and the one throughout their lifetime. The latter is important because it can be so low that the NSs might not have accreted enough matter to become massive enough that enhanced cooling processes become active. Therefore, they could be relatively warm compared to other systems for which such enhanced cooling processed have been inferred. However, the...

  20. Massive star formation by accretion. I. Disc accretion

    Science.gov (United States)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2016-01-01

    Context. Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the Hertzsprung-Russell (HR) diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. Aims: We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the HR diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. Methods: We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. We compare them with previously published equivalent models. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the accretion history of most of the intermediate-mass stars. Results: In the numerical computation of the time derivative of the entropy, some treatment leads to an artificial loss of entropy and thus reduces the inflation that the accreting star undergoes along the birthline. In the case of cold disc accretion, the existence of a significant swelling during the accretion phase, which leads to radii ≳ 100 R⊙ and brings the star back to the red part of the HR diagram, depends sensitively on the initial conditions. For an accretion rate of 10-3M⊙ yr-1, only models starting from a core with a significant radiative region evolve back to the red part of the HR diagram. We also obtain that, in order to reproduce the observed upper envelope of pre-MS stars in the HR diagram with an accretion law deduced from the observed mass outflows in ultra-compact HII regions, the fraction of the

  1. Episodic Accretion in Young Stars

    CERN Document Server

    Audard, Marc; Dunham, Michael M; Green, Joel D; Grosso, Nicolas; Hamaguchi, Kenji; Kastner, Joel H; Kóspál, Ágnes; Lodato, Giuseppe; Romanova, Marina; Skinner, Stephen L; Vorobyov, Eduard I; Zhu, Zhaohuan

    2014-01-01

    In the last twenty years, the topic of episodic accretion has gained significant interest in the star formation community. It is now viewed as a common, though still poorly understood, phenomenon in low-mass star formation. The FU Orionis objects (FUors) are long-studied examples of this phenomenon. FUors are believed to undergo accretion outbursts during which the accretion rate rapidly increases from typically $10^{-7}$ to a few $10^{-4}$ $M_\\odot$ yr$^{-1}$, and remains elevated over several decades or more. EXors, a loosely defined class of pre-main sequence stars, exhibit shorter and repetitive outbursts, associated with lower accretion rates. The relationship between the two classes, and their connection to the standard pre-main sequence evolutionary sequence, is an open question: do they represent two distinct classes, are they triggered by the same physical mechanism, and do they occur in the same evolutionary phases? Over the past couple of decades, many theoretical and numerical models have been dev...

  2. On the new braking index of PSR B0540-69: further support for magnetic field growth of neutron stars following submergence by fallback accretion

    CERN Document Server

    Ekşi, K Yavuz

    2016-01-01

    The magnetic fields of the nascent neutron stars could be submerged to the crust by rapid fallback accretion and could diffuse to the surface later in life. According to this field burial scenario young pulsars may have growing magnetic fields which is known to result in less-than-three braking indices; larger braking indices implying longer field-growth time-scales. A nascent neutron star with a larger kick velocity would accrete less amount of matter and would have a rapidly growing magnetic field, leading to a larger discrepancy with the braking index expected from a constant field. Such an inverse relation between the field growth time-scale inferred from the braking indices and space velocity of pulsars was claimed in the past as a prediction of the field-burial scenario. With a braking index of $n\\sim 2$ and large space velocity PSR B0540-69 was then an outlier in the claimed relation. The recently measured small braking index of the object as $n \\sim 0.03$ implies a much shorter time-scale for the fiel...

  3. Superfluid neutron stars

    OpenAIRE

    Langlois, David

    2001-01-01

    Neutron stars are believed to contain (neutron and proton) superfluids. I will give a summary of a macroscopic description of the interior of neutron stars, in a formulation which is general relativistic. I will also present recent results on the oscillations of neutron stars, with superfluidity explicitly taken into account, which leads in particular to the existence of a new class of modes.

  4. Massive star formation by accretion I. Disc accretion

    CERN Document Server

    Haemmerlé, Lionel; Meynet, Georges; Maeder, André; Charbonnel, Corinne

    2016-01-01

    Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the HR diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the Hertzsprung-Russell (HR) diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the acc...

  5. Nuclear-dominated accretion and subluminous supernovae from the merger of a white dwarf with a neutron star or black hole

    CERN Document Server

    Metzger, Brian D

    2011-01-01

    We construct one dimensional steady-state models of accretion disks produced by the tidal disruption of a white dwarf (WD) by a neutron star (NS) or stellar mass black hole (BH). At radii r 50-80 per cent of the total WD mass is unbound. The ejecta composition is predominantly O, C, Si, Mg, Ne, Fe, and S [He, C, Si, S, Ar, and Fe], in the case of C-O [He] WDs, respectively, along with a small quantity ~1e-3-1e-2 Msun of radioactive Ni56 and, potentially, a trace amount of H. We use our results to evaluate possible EM counterparts of WD-NS/BH mergers, including optical transients powered by the radioactive decay of Ni56 and radio transients powered by the interaction of the ejecta with the interstellar medium. We address whether recently discovered subluminous Type I supernovae result from WD-NS/BH mergers. Our results also have implications for accretion following the core collapse of massive stars in collapsar models for gamma-ray bursts.

  6. NSCool: Neutron star cooling code

    Science.gov (United States)

    Page, Dany

    2016-09-01

    NSCool is a 1D (i.e., spherically symmetric) neutron star cooling code written in Fortran 77. The package also contains a series of EOSs (equation of state) to build stars, a series of pre-built stars, and a TOV (Tolman- Oppenheimer-Volkoff) integrator to build stars from an EOS. It can also handle “strange stars” that have a huge density discontinuity between the quark matter and the covering thin baryonic crust. NSCool solves the heat transport and energy balance equations in whole GR, resulting in a time sequence of temperature profiles (and, in particular, a Teff - age curve). Several heating processes are included, and more can easily be incorporated. In particular it can evolve a star undergoing accretion with the resulting deep crustal heating, under a steady or time-variable accretion rate. NSCool is robust, very fast, and highly modular, making it easy to add new subroutines for new processes.

  7. Thin accretion disks around cold Bose-Einstein condensate stars

    International Nuclear Information System (INIS)

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars. (orig.)

  8. Thin accretion disks around cold Bose–Einstein condensate stars

    International Nuclear Information System (INIS)

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose–Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars

  9. Thin accretion disks around cold Bose–Einstein condensate stars

    Energy Technology Data Exchange (ETDEWEB)

    Dănilă, Bogdan, E-mail: bogdan.danila22@gmail.com [Department of Physics, Babes-Bolyai University, Kogalniceanu Street, Cluj-Napoca (Romania); Harko, Tiberiu, E-mail: t.harko@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, WC1E 6BT, London (United Kingdom); Kovács, Zoltán, E-mail: kovacsz2013@yahoo.com [Max-Fiedler-Str. 7, 45128, Essen (Germany)

    2015-05-09

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose–Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars.

  10. Thin accretion disks around cold Bose-Einstein condensate stars

    Energy Technology Data Exchange (ETDEWEB)

    Danila, Bogdan [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Kovacs, Zoltan

    2015-05-15

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars. (orig.)

  11. Neutron Skins and Neutron Stars

    OpenAIRE

    Piekarewicz, J

    2013-01-01

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ("PREX") at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in 208Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron be...

  12. Search for a correlation between kHz quasi-periodic oscillation frequencies and accretion-related parameters in the ensemble of neutron star low-mass X-ray binaries

    Science.gov (United States)

    Çatmabacak, Önder; Erkut, M. Hakan; Catmabacak, Onur; Duran, Sivan

    2016-07-01

    The distribution of neutron star sources in the ensemble of low-mass X-ray binaries shows no evidence for a correlation between kHz quasi-periodic oscillation (QPO) frequencies and X-ray luminosity. Sources differing by orders of magnitude in luminosity can exhibit similar range of QPO frequencies. We study the possibility for the existence of a correlation between kHz QPO frequencies and accretion related parameters. The parameters such as the mass accretion rate and the size of the boundary region in the innermost disk are expected to be related to X-ray luminosity. Using the up-to-date data of neutron star low-mass X-ray binaries, we search for a possible correlation between lower kHz QPO frequencies and mass accretion rate through the mass and radius values predicted by different equations of state for the neutron star. The range of mass accretion rate for each source can be estimated if the accretion luminosity is assumed to be represented well by the X-ray luminosity of the source. Although we find no correlation between mass accretion rate and QPO frequencies, the source distribution seems to be in accordance with a correlation between kHz QPO frequencies and the parameter combining the neutron star magnetic field and the mas accretion rate. The model function we employ to descibe the correlation is able to account for the scattering of individual sources around a simple power law. The correlation argues disk-magnetosphere interaction as the origin of these millisecond oscillations.

  13. The Neutron Star Zoo

    Science.gov (United States)

    Harding, Alice K.

    2014-01-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission. XXX Neutron stars are found in a wide variety of sources, displaying an amazing array of behavior. They can be isolated or in binary systems, accreting, heating, cooling, spinning down, spinning up, pulsing, flaring and bursting. The one property that seems to determine their behavior most strongly is their magnetic field strength, structure and evolution. The hot polar caps, bursts and flares of magnetars are likely due to the rapid decay and twisting of their superstrong magnetic fields, whose very existence requires some kind of early dynamo activity. The intermediate-strength magnetic fields of RPPs determines their spin-down behavior and radiation properties. However, the overlap of the magnetar and RPP populations is not understood at present. Why don't high-field RPPs burst or flare? Why don't lower-field magnetars sometimes behave more like RPPs? INS may be old magnetars whose high fields have decayed, but they do not account for the existence of younger RPPs with magnetar-strength fields. Not only the strength of the magnetic field but also its configuration may be important in making a NS a magnetar or a RPP. Magnetic field decay is a critical link between other NS populations as well. "Decay" of the magnetic field is necessary for normal RPPs to evolve into MSPs through accretion and spin up in LMXBs. Some kind of accretion-driven field reduction is the most likely mechanism, but it is controversial since it is not

  14. Time dependent models of accretion disks with nuclear burning following the tidal disruption of a white dwarf by a neutron star

    CERN Document Server

    Margalit, Ben

    2016-01-01

    We construct time-dependent one-dimensional (vertically averaged) models of accretion disks produced by the tidal disruption of a white dwarf (WD) by a binary neutron star (NS) companion. Nuclear reactions in the disk midplane burn the WD matter to increasingly heavier elements at sequentially smaller radii, releasing substantial energy which can impact the disk dynamics. A model for disk outflows is employed, by which cooling from the outflow balances other sources of heating (viscous, nuclear) in regulating the Bernoulli parameter of the midplane to a fixed value $\\lesssim 0$. We perform a comprehensive parameter study of the compositional yields and velocity distributions of the disk outflows for WDs of different initial compositions. For C/O WDs, the radial composition profile of the disk evolves self-similarly in a quasi-steady-state manner, and is remarkably robust to model parameters. The nucleosynthesis in helium WD disks does not exhibit this behavior, which instead depends sensitively on factors con...

  15. Neutrostriction in Neutron stars

    OpenAIRE

    Ignatovich, V. K.

    2003-01-01

    It is demonstrated that not only gravity, but also neutrostriction forces due to optical potential created by coherent elastic neutron-neutron scattering can hold a neutron star together. The latter forces can be stronger than gravitational ones. The effect of these forces on mass, radius and structure of the neutron star is estimated.

  16. Search for Orbital Motion of the Pulsar 4U 1626-67: Candidate for a Neutron Star with a Supernova Fall-back Accretion Disk

    Indian Academy of Sciences (India)

    Chetana Jain; Biswajit Paul; Kaustubh Joshi; Anjan Dutta; Harsha Raichur

    2007-12-01

    We report here results from a new search for orbital motion of the accretion powered X-ray pulsar 4U 1626-67 using two different analysis techniques. X-ray light curve obtained with the Proportional Counter Array of the Rossi X-ray Timing Explorer during a long observation carried out in February 1996, was used in this work. The spin period and the local period derivative were first determined from the broad 2–60 keV energy band light curve and these were used for all subsequent timing analysis. In the first technique, the orbital phase dependent pulse arrival times were determined for different trial orbital periods in the range of 500 to 10,000 s. We have determined a 3 upper limit of 13 lt-ms on the projected semimajor axis of the orbit of the neutron star for most of the orbital period range, while in some narrow orbital period ranges, covering about 10% of the total orbital period range, it is 20 lt-ms. In the second method, we have measured the pulse arrival times at intervals of 100 s over the entire duration of the observation. The pulse arrival time data were used to put an upper limit on any periodic arrival time delay using the Lomb–Scargle periodogram. We have obtained a similar upper limit of 10 lt-ms using the second method over the orbital period range of 500–10,000 s. This puts very stringent upper limits for the mass of the compact object except for the unlikely case of a complete face-on orientation of the binary system with respect to our line-of-sight. In the light of this measurement and the earlier reports, we discuss the possibility of this system being a neutron star with a supernovae fall-back accretion disk.

  17. Hadron star models. [neutron stars

    Science.gov (United States)

    Cohen, J. M.; Boerner, G.

    1974-01-01

    The properties of fully relativistic rotating hadron star models are discussed using models based on recently developed equations of state. All of these stable neutron star models are bound with binding energies as high as about 25%. During hadron star formation, much of this energy will be released. The consequences, resulting from the release of this energy, are examined.

  18. Daily, multiwavelength Swift monitoring of the neutron star low-mass X-ray binary Cen X-4: evidence for accretion and reprocessing during quiescence

    CERN Document Server

    Bernardini, F; Brown, E F; Degenaar, C D'Angelo N; Miller, J M; Reynolds, M; Wijnands, R

    2013-01-01

    The physics of accretion during quiescence in low mass X-ray binaries (LMXBs) is poorly understood, yet there are signs that accretion must be happening. Several LMXBs show variability during quiescence, particularly striking is the case of the nearby neutron star Cen X-4. With the goal of unveiling the real nature of its quiescent variability we conducted the first long-term, multiwavelength simultaneous monitoring of Cen X-4, thanks to 60 observations performed by Swift on a daily basis. During those observations, Cen X-4 is highly variable in all energy bands on timescales from days to months, with the strongest quiescent short-term variability detected in the X-ray band, a factor of 22 drop in only 4 days. The X-ray and the UV and optical emission are correlated on timescales down to less than 110 s. The shape of the correlation is a power law with index 0.2-0.6. The X-ray spectrum is well fitted by a hydrogen NS atmosphere (kT=59-80 eV) and a power law (spectral index 1.4-2.0). The spectral shape remains...

  19. Mass measurement of 56Sc reveals a small A=56 odd-even mass staggering, implying a cooler accreted neutron star crust

    CERN Document Server

    Meisel, Z; Ahn, S; Bazin, D; Brown, B A; Browne, J; Carpino, J F; Chung, H; Cole, A L; Cyburt, R H; Estradé, A; Famiano, M; Gade, A; Langer, C; Matoš, M; Mittig, W; Montes, F; Morrissey, D J; Pereira, J; Schatz, H; Schatz, J; Scott, M; Shapira, D; Smith, K; Stevens, J; Tan, W; Tarasov, O; Towers, S; Wimmer, K; Winkelbauer, J R; Yurkon, J; Zegers, R G T

    2015-01-01

    We present the mass excesses of 52-57Sc, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The masses of 56Sc and 57Sc were determined for the first time with atomic mass excesses of -24.85(59)(+0 -54) MeV and -21.0(1.3) MeV, respectively, where the asymmetric uncertainty for 56Sc was included due to possible contamination from a long-lived isomer. The 56Sc mass indicates a small odd-even mass staggering in the A = 56 mass-chain towards the neutron drip line, significantly deviating from trends predicted by the global FRDM mass model and favoring trends predicted by the UNEDF0 and UNEDF1 density functional calculations. Together with new shell-model calculations of the electron-capture strength function of 56Sc, our results strongly reduce uncertainties in model calculations of the heating and cooling at the 56Ti electron-capture layer in the outer crust of accreting neutron stars. We found that, in contrast to prev...

  20. Old and new neutron stars

    International Nuclear Information System (INIS)

    The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.1038s-1 of 1012 eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, a substantial fraction of the 108 old dead pulsars in the Galaxy are the most probable source for the isotropically distributed γ-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables

  1. Old and new neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Ruderman, M.

    1984-09-01

    The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.10/sup 38/s/sup -1/ of 10/sup 12/ eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, a substantial fraction of the 10/sup 8/ old dead pulsars in the Galaxy are the most probable source for the isotropically distributed ..gamma..-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables.

  2. Isolated Neutron Stars Accretors and Coolers

    CERN Document Server

    Treves, A; Colpi, M; Treves, Aldo; Turolla, Roberto; Colpi, Silvia Zane & Monica

    1999-01-01

    As many as $10^9$ neutron stars populate the Galaxy, but only $\\approx 10^3$ are directly observed as pulsars or as accreting sources in X-ray binaries. In principle also the accretion of the interstellar medium may make isolated neutron stars shine, and their weak luminosity could be detected in soft X-rays. Recent ROSAT observations have convincingly shown that neutron stars accreting from the interstellar medium are extremely rare, if observed at all, in contrast with earlier theoretical predictions. Until now two possible explanations for their elusiveness have been proposed: their velocity distribution may peak at $\\sim 200-400 {\\rm km s}^{-1}$, as inferred from pulsar statistics, and this would severely choke accretion; the magnetic field may decay on timescales $\\sim 10^8-10^9$ yr, preventing a large fraction of neutron stars from entering the accretor stage. The search for accreting neutron stars has produced up to now a handful of promising candidates. While little doubt is left that these objects ar...

  3. Study of the reflection spectrum of the accreting neutron star GX 3+1 using XMM-Newton and INTEGRAL

    Science.gov (United States)

    Pintore, F.; Di Salvo, T.; Bozzo, E.; Sanna, A.; Burderi, L.; D'Aì, A.; Riggio, A.; Scarano, F.; Iaria, R.

    2015-06-01

    Broad emission features of abundant chemical elements, such as iron, are commonly seen in the X-ray spectra of accreting compact objects and their studies can provide useful information about the geometry of the accretion processes. In this work, we focus our attention on GX 3+1, a bright, persistent accreting low-mass X-ray binary, classified as an atoll source. Its spectrum is well described by an accretion disc plus a stable Comptonizing, optically thick corona which dominates the X-ray emission in the 0.3-20 keV energy band. In addition, four broad emission lines are found and we associate them with reflection of hard photons from the inner regions of the accretion disc, where Doppler and relativistic effects are important. We used self-consistent reflection models to fit the spectra of the 2010 XMM-Newton observation and the stacking of the whole data sets of 2010 INTEGRAL observations. We conclude that the spectra are consistent with reflection produced at ˜10 gravitational radii by an accretion disc with an ionization parameter of ξ ˜ 600 erg cm s-1 and viewed under an inclination angle of the system of ˜35°. Furthermore, we detected for the first time for GX 3+1, the presence of a power-law component dominant at energies higher than 20 keV, possibly associated with an optically thin component of non-thermal electrons.

  4. Study of the reflection spectrum of the accreting neutron star GX 3+1 using XMM-Newton and INTEGRAL

    CERN Document Server

    Pintore, Fabio; Bozzo, Enrico; Sanna, Andrea; Burderi, Luciano; D'Aì, Antonino; Riggio, Alessandro; Scarano, Fabiana; Iaria, Rosario

    2015-01-01

    Broad emission features of abundant chemical elements, such as Iron, are commonly seen in the X-ray spectra of accreting compact objects and their studies can provide useful information about the geometry of the accretion processes. In this work, we focus our attention on GX 3+1, a bright, persistent accreting low mass X-ray binary, classified as an atoll source. Its spectrum is well described by an accretion disc plus a stable comptonizing, optically thick corona which dominates the X-ray emission in the 0.3-20 keV energy band. In addition, four broad emission lines are found and we associate them with reflection of hard photons from the inner regions of the accretion disc where doppler and relativistic effects are important. We used self-consistent reflection models to fit the spectra of the 2010 XMM-Newton observation and the stacking of the whole datasets of 2010 INTEGRAL observations. We conclude that the spectra are consistent with reflection produced at ~10 gravitational radii by an accretion disc with...

  5. Short-Term Variability of X-rays from Accreting Neutron Star Vela X-1: II. Monte-Carlo Modeling

    CERN Document Server

    Odaka, Hirokazu; Tanaka, Yasuyuki T; Watanabe, Shin; Takahashi, Tadayuki; Makishima, Kazuo

    2013-01-01

    We develop a Monte Carlo Comptonization model for the X-ray spectrum of accretion-powered pulsars. Simple, spherical, thermal Comptonization models give harder spectra for higher optical depth, while the observational data from Vela X-1 show that the spectra are harder at higher luminosity. This suggests a physical interpretation where the optical depth of the accreting plasma increases with mass accretion rate. We develop a detailed Monte-Carlo model of the accretion flow, including the effects of the strong magnetic field ($\\sim 10^{12}$ G) both in geometrically constraining the flow into an accretion column, and in reducing the cross section. We treat bulk-motion Comptonization of the infalling material as well as thermal Comptonization. These model spectra can match the observed broad-band {\\it Suzaku} data from Vela X-1 over a wide range of mass accretion rates. The model can also explain the so-called "low state", in which the uminosity decreases by an order of magnitude. Here, thermal Comptonization sh...

  6. Meta-stable low-level accretion rate states or neutron star crust cooling in the Be/X-ray transients V0332+53 and 4U 0115+63

    CERN Document Server

    Wijnands, Rudy

    2016-01-01

    The Be/X-ray transients V0332+53 and 4U 0115+63 exhibited giant, type-II outbursts in 2015. Here we present Swift/XRT follow-up observations at the end of those outbursts. Surprisingly, the sources did not decay back to their known quiescent levels but stalled at a (slowly decaying) meta-stable state with luminosities ~10 times that observed in quiescence. The spectra in these states are considerably softer than the outburst spectra and appear to soften in time when the luminosity decreases. The physical mechanism behind these meta-stable states is unclear and they could be due to low-level accretion (either direct accretion onto the neutron stars or on to their magnetospheres) or due to cooling of the accretion-heated neutron star crusts. Based on the spectra, the slowly decreasing luminosities, and the spectral softening, we favour the crust cooling hypothesis but we cannot exclude the accretion scenarios. On top of this meta-stable state, weak accretion events were observed that occurred at periastron pass...

  7. Neutron Stars: Formation and Structure

    OpenAIRE

    Kutschera, Marek

    1998-01-01

    A short introduction is given to astrophysics of neutron stars and to physics of dense matter in neutron stars. Observed properties of astrophysical objects containing neutron stars are discussed. Current scenarios regarding formation and evolution of neutron stars in those objects are presented. Physical principles governing the internal structure of neutron stars are considered with special emphasis on the possible spin ordering in the neutron star matter.

  8. Time-dependent models of accretion discs with nuclear burning following the tidal disruption of a white dwarf by a neutron star

    Science.gov (United States)

    Margalit, Ben; Metzger, Brian D.

    2016-09-01

    We construct time-dependent one-dimensional (vertically averaged) models of accretion discs produced by the tidal disruption of a white dwarf (WD) by a binary neutron star (NS) companion. Nuclear reactions in the disc mid-plane burn the WD matter to increasingly heavier elements at sequentially smaller radii, releasing substantial energy which can impact the disc dynamics. A model for disc outflows is employed, by which cooling from the outflow balances other sources of heating (viscous, nuclear) in regulating the Bernoulli parameter of the mid-plane to a fixed value ≲0. We perform a comprehensive parameter study of the compositional yields and velocity distributions of the disc outflows for WDs of different initial compositions. For C/O WDs, the radial composition profile of the disc evolves self-similarly in a quasi-steady-state manner, and is remarkably robust to model parameters. The nucleosynthesis in helium WD discs does not exhibit this behaviour, which instead depends sensitively on factors controlling the disc mid-plane density (e.g. the strength of the viscosity, α). By the end of the simulation, a substantial fraction of the WD mass is unbound in outflows at characteristic velocities of ˜109 cm s-1. The outflows from WD-NS merger discs contain 10-4-3 × 10-3 M⊙ of radioactive 56Ni, resulting in fast (˜ week long) dim (˜1040 erg s-1) optical transients; shock heating of the ejecta by late-time outflows may increase the peak luminosity to ˜1043 erg s-1. The accreted mass on to the NS is probably not sufficient to induce gravitational collapse, but may be capable of spinning up the NS to periods of ˜10 ms, illustrating the feasibility of this channel in forming isolated millisecond pulsars.

  9. Evolution of Neutron Star Magnetic Fields

    Indian Academy of Sciences (India)

    Dipankar Bhattacharya

    2002-03-01

    This paper reviews the current status of the theoretical models of the evolution of the magnetic fields of neutron stars other than magnetars. It appears that the magnetic fields of neutron stars decay significantly only if they are in binary systems. Three major physical models for this, namely spindown-induced flux expulsion, ohmic evolution of crustal field and diamagnetic screening of the field by accreted plasma, are reviewed.

  10. Accretion, winds and outflows in young stars

    CERN Document Server

    Günther, Hans Moritz

    2012-01-01

    Young stars and planetary systems form in molecular clouds. For classical T Tauri stars (CTTS, F-K type precursors) the accretion disk does not reach down to the central star, but it is truncated near the co-rotation radius. The inner edge of the disk is ionized by the stellar radiation, so that the accretion stream is funneled along the magnetic field lines. On the stellar surface an accretion shock develops, which is observed over a wide wavelength range as X-ray emission, UV excess, optical veiling and optical and IR emission lines. Some of the accretion tracers, e.g. H\\alpha, can be calibrated to measure the accretion rate. This accretion process is variable on time scales of hours to years due to changing accretion rates, stellar rotation and reconfiguration of the magnetic field. Furthermore, many accreting systems also drive strong outflows which are ultimately powered by accretion. Several components could contribute to the outflows: slow, wide-angle disk winds, X-winds launched close to the inner dis...

  11. Are some of the luminous high-latitude stars accretion-powered runaways?

    International Nuclear Information System (INIS)

    It is well known that (1) runaway stars can be produced via supernova explosions in close binary systems, (2) most of such runaways should possess neutron star companions, and (3) neutron stars receive randomly oriented kicks of ≅ 100 to 200 km s-1 at birth. We find that this kick sometimes has the right amplitude and direction to make the neutron star fall into the runaway. Accretion onto a neutron star is a source of energy that is roughly an order of magnitude more mass efficient than nuclear burning. Thus, runaways containing neutron stars may live much longer than would normally be expected, which would allow them to travel great distances from their birthplaces during their lifetimes. Some of the early B-type stars far from the Galactic plane and the high-latitude F and G-type supergiants may be accretion-powered runaway stars

  12. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  13. Wind accretion in binary stars - I. Mass accretion ratio

    CERN Document Server

    Nagae, T; Matsuda, T; Fujiwara, H; Hachisu, I; Boffin, H M J

    2004-01-01

    Three-dimensional hydrodynamic calculations are performed in order to investigate mass transfer in a close binary system, in which one component undergoes mass loss through a wind. The mass ratio is assumed to be unity. The radius of the mass-losing star is taken to be about a quarter of the separation between the two stars. Calculations are performed for gases with a ratio of specific heats gamma=1.01 and 5/3. Mass loss is assumed to be thermally driven so that the other parameter is the sound speed of the gas on the mass-losing star. Here, we focus our attention on two features: flow patterns and mass accretion ratio, which we define as the ratio of the mass accretion rate onto the companion to the mass loss rate from the mass-losing primary star. We characterize the flow by the mean normal velocity of wind on the critical Roche surface of the mass-losing star, Vr. When Vr0.7 A Omega we observe wind accretion. We find very complex flow patterns in between these two extreme cases. We derive an empirical form...

  14. Jets from Merging Neutron Stars

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    radiated away in gravitational waves, the hypermassive neutron star loses its support and collapses to a black hole.Plasma velocities turn around (51.5 ms)Initially the plasma was falling inward, but as the disk of neutron-star debris is accreted onto the black hole, energy is released. This turns the plasma near the black hole poles around and flings it outward.Magnetic field forms a helical funnel (62.5 ms)The fields near the poles of the black hole amplify as they are wound around, creating a funnel that provides the wall of the jet.Jet outflow extends to heights greater than 445 km (64.5 ms)The disk is all accreted and, since the fuel is exhausted, the outflow shuts off (within 100ms)Neutron-Star SuccessPlot showing the gravitational wave signature for one of the authors simulations. The moments of merger of the neutron stars and collapse to a black hole are marked. [Adapted from Ruiz et al. 2016]These simulations show that no initial black hole is needed to launch outflows; a merger of two neutron stars can result in an sGRB-like jet. Another interesting result is that the magnetic field configuration doesnt affect the formation of a jet: neutron stars with magnetic fields confined to their interiors launch jets as effectively as those with pulsar-like magnetic fields. The accretion timescale for both cases is consistent with the duration of an sGRB.While this simulation models milliseconds of real time, its enormously computationally challenging and takes months to simulate. The successes of this simulation represent exciting advances in numerical relativity, as well as in our understanding of the electromagnetic counterparts that may accompany gravitational waves.BonusCheck out this awesome video of the authors simulations. The colors differentiate the plasma density and the white lines depict the pulsar-like magnetic field that initially threads the two merging neutron stars. Watch as the neutron stars evolve through the different stages outlined above, eventually

  15. Temperature of neutron stars

    Science.gov (United States)

    Tsuruta, Sachiko

    2016-07-01

    We start with a brief introduction to the historical background in the early pioneering days when the first neutron star thermal evolution calculations predicted the presence of neutron stars hot enough to be observable. We then report on the first detection of neutron star temperatures by ROSAT X-ray satellite, which vindicated the earlier prediction of hot neutron stars. We proceed to present subsequent developments, both in theory and observation, up to today. We then discuss the current status and the future prospect, which will offer useful insight to the understanding of basic properties of ultra-high density matter beyond the nuclear density, such as the possible presence of such exotic particles as pion condensates.

  16. Accretion, winds and outflows in young stars

    Science.gov (United States)

    Günther, H. M.

    2013-02-01

    Young stars and planetary systems form in molecular clouds. After the initial radial infall an accretion disk develops. For classical T Tauri stars (CTTS, F-K type precursors) the accretion disk does not reach down to the central star, but it is truncated near the co-rotation radius by the stellar magnetic field. The inner edge of the disk is ionized by the stellar radiation, so that the accretion stream is funneled along the magnetic field lines. On the stellar surface an accretion shock develops, which is observed over a wide wavelength range as X-ray emission, UV excess, optical veiling and optical and IR emission lines. Some of the accretion tracers, e.g. Hα, can be calibrated to measure the accretion rate. This accretion process is variable on time scales of hours to years due to changing accretion rates, stellar rotation and reconfiguration of the magnetic field. Furthermore, many (if not all) accreting systems also drive strong outflows which are ultimately powered by accretion. However, the exact driving mechanism is still unclear. Several components could contribute to the outflows: slow, wide-angle disk winds, X-winds launched close to the inner disk rim, and thermally driven stellar winds. In any case, the outflows contain material of very different temperatures and speeds. The disk wind is cool and can have a molecular component with just a few tens of km s-1, while the central component of the outflow can reach a few 100 km s-1. In some cases the inner part of the outflow is collimated to a small-angle jet. These jets have an onion-like structure, where the inner components are consecutively hotter and faster. The jets can contain working surfaces, which show up as Herbig-Haro knots. Accretion and outflows in the CTTS phase do not only determine stellar parameters like the rotation rate on the main-sequence, they also can have a profound impact on the environment of young stars. This review concentrates on CTTS in near-by star forming regions where

  17. Magnetic Field Evolution During Neutron Star Recycling

    CERN Document Server

    Cumming, A

    2004-01-01

    I describe work on two aspects of magnetic field evolution relevant for the "recycling" scenario for making millisecond radio pulsars. First, many of the theoretical ideas for bringing about accretion-induced field decay rely on dissipation of currents in the neutron star crust. I discuss field evolution in the crust due to the Hall effect, and outline when it dominates Ohmic decay. This emphasises the importance of understanding the impurity level in the crust. Second, I briefly discuss the progress that has been made in understanding the magnetic fields of neutron stars currently accreting matter in low mass X-ray binaries. In particular, thermonuclear X-ray bursts offer a promising probe of the magnetic field of these neutron stars.

  18. The violent neutron star

    OpenAIRE

    Watts, Anna L.

    2012-01-01

    Neutron stars enable us to study both the highest densities and the highest magnetic fields in the known Universe. In this article I review what can be learned about such fundamental physics using magnetar bursts. Both the instability mechanisms that trigger the bursts, and the subsequent dynamical and radiative response of the star, can be used to explore stellar and magnetospheric structure and composition.

  19. The Final Fates of Accreting Supermassive Stars

    CERN Document Server

    Umeda, Hideyuki; Omukai, Kazuyuki; Yoshida, Naoki

    2016-01-01

    The formation of supermassive stars (SMSs) via rapid mass accretion and their direct collapse into black holes (BHs) is a promising pathway for sowing seeds of supermassive BHs in the early universe. We calculate the evolution of rapidly accreting SMSs by solving the stellar structure equations including nuclear burning as well as general relativistic (GR) effects up to the onset of the collapse. We find that such SMSs have less concentrated structure than fully-convective counterpart, which is often postulated for non-accreting ones. This effect stabilizes the stars against GR instability even above the classical upper mass limit $\\gtrsim 10^5~M_\\odot$ derived for the fully-convective stars. The accreting SMS begins to collapse at the higher mass with the higher accretion rate. The collapse occurs when the nuclear fuel is exhausted only for cases with $\\dot M \\lesssim 0.1~M_\\odot~{\\rm yr}^{-1}$. With $\\dot{M} \\simeq 0.3 - 1~M_\\odot~{\\rm yr}^{-1}$, the star becomes GR-unstable during the helium-burning stage ...

  20. Massive Star Formation: Accreting from Companion

    Indian Academy of Sciences (India)

    X. Chen; J. S. Zhang

    2014-09-01

    We report the possible accretion from companion in the massive star forming region (G350.69–0.49). This region seems to be a binary system composed of a diffuse object (possible nebulae or UC HII region) and a Massive Young Stellar Object (MYSO) seen in Spitzer IRAC image. The diffuse object and MYSO are connected by the shock-excited 4.5 m emission, suggesting that the massive star may form through accreting material from the companion in this system.

  1. Axion Cooling of Neutron Stars

    CERN Document Server

    Sedrakian, Armen

    2015-01-01

    Cooling simulations of neutron stars and their comparison with the data from thermally emitting X-ray sources puts constraints on the properties of axions, and by extension of any light pseudo-scalar dark matter particles, whose existence has been postulated to solve the strong-CP problem of QCD. We incorporate the axion emission by pair-breaking and formation processes by $S$- and $P$-wave nucleonic condensates in a benchmark code for cooling simulations as well as provide fit formulae for the rates of these processes. Axion cooling of neutron stars has been simulated for 24 models covering the mass range 1 to 1.8 solar masses, featuring non-accreted iron and accreted light element envelopes, and a range of nucleon-axion coupling. The models are based on an equation state predicting conservative physics of superdense nuclear matter that does not allow for onset of fast cooling processes induced by phase transitions to non-nucleonic forms of matter or high proton concentration. The cooling tracks in the tempe...

  2. Accretion, Outflows, and Winds of Magnetized Stars

    CERN Document Server

    Romanova, M M

    2016-01-01

    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars...

  3. A low-level accretion flare during the quiescent state of the neutron-star X-ray transient SAX J1750.8-2900

    NARCIS (Netherlands)

    R. Wijnands; N. Degenaar

    2013-01-01

    We report on a series of Swift/X-ray telescope observations, performed between 2012 February and 22 March, during the quiescent state of the neutron-star X-ray binary SAX J1750.8−2900. In these observations, the source was either just detected or undetected, depending on the exposure length (which r

  4. Uniformly rotating neutron stars

    CERN Document Server

    Boshkayev, Kuantay

    2016-01-01

    In this chapter we review the recent results on the equilibrium configurations of static and uniformly rotating neutron stars within the Hartle formalism. We start from the Einstein-Maxwell-Thomas-Fermi equations formulated and extended by Belvedere et al. (2012, 2014). We demonstrate how to conduct numerical integration of these equations for different central densities ${\\it \\rho}_c$ and angular velocities $\\Omega$ and compute the static $M^{stat}$ and rotating $M^{rot}$ masses, polar $R_p$ and equatorial $R_{\\rm eq}$ radii, eccentricity $\\epsilon$, moment of inertia $I$, angular momentum $J$, as well as the quadrupole moment $Q$ of the rotating configurations. In order to fulfill the stability criteria of rotating neutron stars we take into considerations the Keplerian mass-shedding limit and the axisymmetric secular instability. Furthermore, we construct the novel mass-radius relations, calculate the maximum mass and minimum rotation periods (maximum frequencies) of neutron stars. Eventually, we compare a...

  5. Carbon neutron star atmospheres

    CERN Document Server

    Suleimanov, V F; Pavlov, G G; Werner, K

    2013-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in chemical composition of their atmospheres. For example, atmospheres of thermally - emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in CasA, a pure carbon atmosphere has recently been suggested by Ho & Heinke (2009). To test such a composition for other similar sources, a publicly available detailed grid of carbon model atmosphere spectra is needed. We have computed such a grid using the standard LTE approximation and assuming that the magnetic field does not exceed 10^8 G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra.

  6. Neutron rich nuclei and neutron stars

    OpenAIRE

    Horowitz, C. J.

    2013-01-01

    The PREX experiment at Jefferson Laboratory measures the neutron radius of 208Pb with parity violating electron scattering in a way that is free from most strong interaction uncertainties. The 208Pb radius has important implications for neutron rich matter and the structure of neutron stars. We present first PREX results, describe future plans, and discuss a follow on measurement of the neutron radius of 48Ca. We review radio and X-ray observations of neutron star masses and radii. These cons...

  7. Quark Neutron Layer Stars

    CERN Document Server

    Carinhas, P A

    1993-01-01

    Typical nuclear equations of state and a quark bag model, surprisingly, allow compact stars with alternate layers of neutrons and quarks. One can determine on the basis of the Gibbs free energy which phase, nuclear or quark, is energetically favorable. Using the nuclear equation of state of Wiringa, and a quark equation of state given by Freedman and McLerran, the allowed quark parameter space for such layer stars is searched. This paper differs from past work in that configurations are found in which quark matter is located exterior and interior to shells of nuclear matter, i.e., dependent on quark parameters, a star may contain several alternating layers of quark and nuclear matter. Given the uncertainty in the quark parameter space, one can estimate the probability for finding pure neutron stars, pure quark stars (strange stars), stars with a quark core and a nucleon exterior, or layer stars. Several layer models are presented. The physical characteristics, stability, and results of a thorough search of th...

  8. Forecasting neutron star temperatures: predictability and variability

    CERN Document Server

    Page, Dany

    2013-01-01

    It is now possible to model thermal relaxation of neutron stars after bouts of accretion during which the star is heated out of equilibrium by nuclear reactions in its crust. Major uncertainties in these models can be encapsulated in modest variations of a handful of fudge parameters that change the crustal thermal conductivity, specific heat, and heating rates. Observations of thermal relaxation constrain these fudge parameters and allow us to predict longer term variability in terms of the neutron star core temperature. We demonstrate this explicitly by modeling ongoing thermal relaxation in the neutron star XTE J1701-462. Its future cooling, over the next 5 to 30 years, is strongly constrained and depends mostly on its core temperature, uncertainties in crust physics having essentially been pinned down by fitting to the first three years of observations.

  9. Rotational Deformation of Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    WEN De-Hua; CHEN Wei; LIU Liang-Gang

    2005-01-01

    @@ The rotational deformations of two kinds of neutron stars are calculated by using Hartle's slow-rotation formulism.The results show that only the faster rotating neutron star gives an obvious deformation. For the slow rotating neutron star with a period larger than hundreds of millisecond, the rotating deformation is very weak.

  10. Spin equilibrium in strongly-magnetized accreting stars

    CERN Document Server

    D'Angelo, Caroline

    2016-01-01

    The spin rate of a strongly-magnetized accreting star is regulated by the interaction between the star's magnetic field and the accreting gas. These systems are often hypothesized to be in `spin equilibrium' with their surrounding accretion flows such that the net spin change of the star as a result of accretion is very small. This condition requires that the accretion rate changes more slowly than it takes the star to reach spin equilibrium. However, this is not true for most magnetically accreting stars, which have strongly variable accretion outbursts (by one to many orders of magnitude) on timescales much shorter than the time it would take to reach spin equilibrium. This paper examines how accretion outbursts affect the time a star takes to reach spin equilibrium and its final equilibrium spin period. I consider several different models for angular momentum loss -- where angular momentum is carried away in an outflow (the standard `propeller', centrifugally-launched outflow), where most angular momentum ...

  11. The Violent Neutron Star

    NARCIS (Netherlands)

    A.L. Watts

    2012-01-01

    Neutron stars enable us to study both the highest densities and the highest magnetic fields in the known Universe. In this article I review what can be learned about such fundamental physics using magnetar bursts. Both the instability mechanisms that trigger the bursts, and the subsequent dynamical

  12. ULXs: Neutron stars versus black holes

    Science.gov (United States)

    King, Andrew; Lasota, Jean-Pierre

    2016-05-01

    We consider ultraluminous X-ray systems (ULXs) where the accretor is a neutron star rather than a black hole. We show that the recently discovered example (M82 X-2) fits naturally into the simple picture of ULXs as beamed X-ray sources fed at super-Eddington rates, provided that its magnetic field is weaker (≃1011G) than a new-born X-ray pulsar, as expected if there has been mass gain. Continuing accretion is likely to weaken the field to the point that pulsing stops, and make the system indistinguishable from a ULX containing a black hole. Accordingly we suggest that a significant fraction of all ULXs may actually contain neutron star accretors rather than black holes, reflecting the neutron-star fraction among their X-ray binary progenitors. We emphasize that neutron-star ULXs are likely to have higher apparent luminosities than black hole ULXs for a given mass transfer rate, as their tighter beaming outweighs their lower Eddington luminosities. This further increases the likely proportion of neutron-star accretors among all ULXs. Cygnus X-2 is probably a typical descendant of neutron-star ULXs, which may therefore ultimately end as millisecond pulsar binaries with massive white dwarf companions.

  13. Focused study of thermonuclear bursts on neutron stars

    DEFF Research Database (Denmark)

    Chenevez, Jérôme

    2009-01-01

    X-ray bursters form a class of Low Mass X-Ray Binaries where accreted material from a donor star undergoes rapid thermonuclear burning in the surface layers of a neutron star. The flux released can temporarily exceed the Eddington limit and drive the photosphere to large radii. Such photospheric...... Simbol-X and NuSTAR. A positive detection would thus probe the nuclear burning as well as the gravitational redshift from the neutron star. Moreover, likely observations of atomic X-ray spectral components reflected from the inner accretion disk have been reported. The high spectral resolution...

  14. The spin evolution of nascent neutron stars

    CERN Document Server

    Watts, A L

    2002-01-01

    The loss of angular momentum due to unstable r-modes in hot young neutron stars has been proposed as a mechanism for achieving the spin rates inferred for young pulsars. One factor that could have a significant effect on the action of the r-mode instability is fallback of supernova remnant material. The associated accretion torque could potentially counteract any gravitational-wave induced spin-down, and accretion heating could affect the viscous damping rates and hence the instability. We discuss the effects of various external agents on the r-mode instability scenario within a simple model of supernova fallback on to a hot young magnetized neutron star. We find that the outcome depends strongly on the strength of the star's magnetic field. Our model is capable of generating spin rates for young neutron stars that accord well with initial spin rates inferred from pulsar observations. The combined action of r-mode instability and fallback appears to cause the spin rates of neutron stars born with very differe...

  15. Oxygen neutronization in accreting white dwarfs

    OpenAIRE

    Bravo Guil, Eduardo; Isern Vilaboy, Jordi; Labay, Javier; Canal Masgoret, Ramon

    1983-01-01

    Solid carbon-oxygen white dwarf cores have been shown to be likely initial configurations for collapse to neutron star densities. Solidification seems to entail carbon/oxygen separation, with oxygen settling at the star's center and carbon being confined to more external, lower-density layers. Electron captures on 16O are then the triggering mechanism for collapse. The authors elucidate the outcome of the complete reaction network started by those captures and derive simple expressions for ac...

  16. Neutron stars - cooling and transport

    CERN Document Server

    Potekhin, A Y; Page, Dany

    2015-01-01

    Observations of thermal radiation from neutron stars can potentially provide information about the states of supranuclear matter in the interiors of these stars with the aid of the theory of neutron-star thermal evolution. We review the basics of this theory for isolated neutron stars with strong magnetic fields, including most relevant thermodynamic and kinetic properties in the stellar core, crust, and blanketing envelopes.

  17. The spin evolution of nascent neutron stars

    OpenAIRE

    Watts, Anna L.; Andersson, Nils

    2001-01-01

    The loss of angular momentum due to unstable r-modes in hot young neutron stars has been proposed as a mechanism for achieving the spin rates inferred for young pulsars. One factor that could have a significant effect on the action of the r-mode instability is fallback of supernova remnant material. The associated accretion torque could potentially counteract any gravitational-wave induced spin-down, and accretion heating could affect the viscous damping rates and hence the instability. We di...

  18. Gravitoastronomy with neutron stars

    OpenAIRE

    Woan, G.

    2005-01-01

    Recent advances in gravitational wave detectors mean that we can start to make astrophysically important statements about the physics of neutron stars based on observed upper limits to their gravitational luminosity. Here we consider statements we can already make about a selection of known radio pulsars, based on data from the LIGO and GEO600 detectors, and look forward to what could be learned from the first detections.

  19. Transient Radio Neutron Stars

    OpenAIRE

    Keane, E. F.

    2010-01-01

    Here I will review the high time resolution radio sky, focusing on millisecond scales. This is primarily occupied by neutron stars, the well-known radio pulsars and the recently identified group of transient sources known as Rotating RAdio Transients (RRATs). The RRATs appear to be abundant in the Galaxy, which at first glance may be difficult to reconcile with the observed supernova rate. However, as I will discuss, it seems that the RRATs can be explained as pulsars which are either extreme...

  20. Hyperaccreting Neutron-Star Disks, Magnetized Disks and Gamma-Ray Bursts

    OpenAIRE

    Zhang, Dong

    2009-01-01

    This thesis focuses on the study of the hyperaccreting neutron-star disks and magnetized accretion flows. It is usually proposed that hyperaccreting disks surrounding stellar-mass black holes with a huge accretion rate are central engines of gamma-ray bursts (GRBs). However, hyperaccretion disks around neutron stars may exist in some GRB formation scenarios. We study the structure and neutrino emission of a hyperaccretion disk around a neutron star. We consider a steady-state hyperaccretion d...

  1. Focused study of thermonuclear bursts on neutron stars

    DEFF Research Database (Denmark)

    Chenevez, Jérôme

    X-ray bursters are a class of Low Mass X-Ray Binaries where accreted material from a donor star undergoes rapid thermonuclear burning in the surface layers of a neutron star. The flux released can temporarily exceed the Eddington limit and drive the photosphere to large radii. Such photospheric...... detection would thus probe the nuclear burning as well as the gravitational redshift from the neutron star. Moreover, likely observations of atomic X-ray spectral components reflected from the inner accretion disk have been reported. The high spectral resolution capabilities of Simbol X may therefore make...

  2. A low-level accretion flare during the quiescent state of the neutron-star X-ray transient SAX J1750.8-2900

    OpenAIRE

    R. Wijnands(Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands); Degenaar, N.

    2013-01-01

    We report on a series of Swift/X-ray telescope observations, performed between 2012 February and 22 March, during the quiescent state of the neutron-star X-ray binary SAX J1750.8−2900. In these observations, the source was either just detected or undetected, depending on the exposure length (which ranged from ∼0.3 to ∼3.8 ks). The upper limits for the non-detections were consistent with the detected luminosities (when fitting a thermal model to the spectrum) of ∼1034 erg s−1 (0.5-10 keV). Thi...

  3. Limits on Self-Interacting Dark Matter from Neutron Stars

    DEFF Research Database (Denmark)

    Kouvaris, C.

    2012-01-01

    We impose new severe constraints on the self-interactions of fermionic asymmetric dark matter based on observations of nearby old neutron stars. Weakly interacting massive particle (WIMP) self-interactions mediated by Yukawa-type interactions can lower significantly the number of WIMPs necessary...... for gravitational collapse of the WIMP population accumulated in a neutron star. Even nearby neutron stars located at regions of low dark matter density can accrete a sufficient number of WIMPs that can potentially collapse, form a mini black hole, and destroy the host star. Based on this, we derive constraints...

  4. Axion cooling of neutron stars

    Science.gov (United States)

    Sedrakian, Armen

    2016-03-01

    Cooling simulations of neutron stars and their comparison with the data from thermally emitting x-ray sources put constraints on the properties of axions, and by extension, of any light pseudoscalar dark matter particles, whose existence has been postulated to solve the strong-C P problem of QCD. We incorporate the axion emission by pair-breaking and formation processes by S - and P -wave nucleonic condensates in a benchmark code for cooling simulations, as well as provide fit formulas for the rates of these processes. Axion cooling of neutron stars has been simulated for 24 models covering the mass range 1 to 1.8 solar masses, featuring nonaccreted iron and accreted light-element envelopes, and a range of nucleon-axion couplings. The models are based on an equation state predicting conservative physics of superdense nuclear matter that does not allow for the onset of fast cooling processes induced by phase transitions to non-nucleonic forms of matter or high proton concentration. The cooling tracks in the temperature vs age plane were confronted with the (time-averaged) measured surface temperature of the central compact object in the Cas A supernova remnant as well as surface temperatures of three nearby middle-aged thermally emitting pulsars. We find that the axion coupling is limited to fa/107 GeV ≥(5 - 10 ) , which translates into an upper bound on axion mass ma≤(0.06 - 0.12 ) eV for Peccei-Quinn charges of the neutron |Cn|˜0.04 and proton |Cp|˜0.4 characteristic for hadronic models of axions.

  5. Ocean gravitational-modes in transient neutron stars

    CERN Document Server

    Deibel, Alex

    2015-01-01

    The neutron star ocean is a plasma of ions and electrons that extends from the base of the neutron star's envelope to a depth where the plasma crystallizes into a solid crust. During an accretion outburst in an X-ray transient, material accumulates in the envelope of the neutron star primary. This accumulation compresses the neutron star's outer layers and induces nuclear reactions in the ocean and crust. Accretion-driven heating raises the ocean's temperature and increases the frequencies of g-modes in the ocean; when accretion halts, the ocean cools and ocean g-mode frequencies decrease. If the observed low frequency quasi-periodic oscillations on accreting neutron stars are g-modes in the ocean, the observed quasi-periodic oscillation frequencies will increase during outburst --- reaching a maximum when the ocean temperature reaches steady state --- and subsequently decrease during quiescence. For time-averaged accretion rates during outburst between $\\langle \\dot{M} \\rangle = 0.1 \\textrm{--} 1.0\\, \\dot{\\r...

  6. On Magnetized Neutron Stars

    CERN Document Server

    Lopes, Luiz L

    2014-01-01

    In this work we review the formalism normally used in the literature about the effects of density-dependent magnetic fields on the properties of neutron stars, expose some ambiguities that arise and propose a way to solve the related problem. Our approach uses a different prescription for the calculation of the pressure based on the chaotic field formalism for the stress tensor and also a different way of introducing a variable magnetic field, which depends on the energy density rather than on the baryonic density.

  7. Chandra Spectroscopy of a Remarkable Neutron Star

    Science.gov (United States)

    Miller, Jon

    2013-09-01

    IGR J17062-6143 is one of only 5 sources that have displayed a super-expansion burst. This requires a special mode of continuous low-level accretion that allows material to accumulate on the stellar surface, without triggering smaller bursts. Swift spectroscopy of a super-expansion burst in IGR J17062-6143 revealed the only strong detections of atomic emission and absorption lines in a burst observed at CCD or gratings resolution. Whereas atomic features from the stellar surface have not been detected in other neutron stars, the accretion mode in IGR J17062-6143 may provide the right conditions. To search for lines from the surface, and to better understand the nature of low-level accretion, we request a 100 ksec HETGS observation of IGR J17062-6143.

  8. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  9. Oscillations in neutron stars

    International Nuclear Information System (INIS)

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l → 4) f-modes we were also able to derive a formula that determines IIl+1 from IIl and IIl-1 to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density nc, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  10. Of Mountains and Molehills : Gravitational Waves from Neutron Stars

    CERN Document Server

    Konar, Sushan; Bhattacharya, Dipankar; Sarkar, Prakash

    2016-01-01

    Surface asymmetries of accreting neutron stars are investigated for their mass quadrupole moment content. Though the amplitude of the gravitational waves from such asymmetries seem to be beyond the limit of detectability of the present generation of detectors, it appears that rapidly rotating neutron stars with strong magnetic fields residing in HMXBs would be worth considering for targeted search for continuous gravitational waves with the next generation of instruments.

  11. Physics of Neutron Star Crusts

    Directory of Open Access Journals (Sweden)

    Chamel Nicolas

    2008-12-01

    Full Text Available The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  12. Physics of Neutron Star Crusts

    OpenAIRE

    Chamel Nicolas; Haensel Pawel

    2008-01-01

    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  13. Modeling Binary Neutron Stars

    Science.gov (United States)

    Park, Conner; Read, Jocelyn; Flynn, Eric; Lockett-Ruiz, Veronica

    2016-03-01

    Gravitational waves, predicted by Einstein's Theory of Relativity, are a new frontier in astronomical observation we can use to observe phenomena in the universe. Laser Interferometer Gravitational wave Observatory (LIGO) is currently searching for gravitational wave signals, and requires accurate predictions in order to best extract astronomical signals from all other sources of fluctuations. The focus of my research is in increasing the accuracy of Post-Newtonian models of binary neutron star coalescence to match the computationally expensive Numerical models. Numerical simulations can take months to compute a couple of milliseconds of signal whereas the Post-Newtonian can generate similar signals in seconds. However the Post-Newtonian model is an approximation, e.g. the Taylor T4 Post-Newtonian model assumes that the two bodies in the binary neutron star system are point charges. To increase the effectiveness of the approximation, I added in tidal effects, resonance frequencies, and a windowing function. Using these observed effects from simulations significantly increases the Post-Newtonian model's similarity to the Numerical signal.

  14. Grand unification of neutron stars

    Science.gov (United States)

    Kaspi, Victoria M.

    2010-01-01

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical “grand unification” of this wealth of observational phenomena, and comment on possibilities for Chandra’s next decade in this field. PMID:20404205

  15. Grand Unification in Neutron Stars

    CERN Document Server

    Kaspi, Victoria M

    2010-01-01

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to `isolated neutron stars,' from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-ray Observatory, in celebration of its tenth anniversary. Finally, I describe the current status of efforts at physical `grand unification' of this wealth of observational phenomena, and comment on possibilities for Chandra's next decade in this field.

  16. Observational Constraints on Neutron Star Masses and Radii

    CERN Document Server

    Miller, M Coleman

    2016-01-01

    Precise and reliable measurements of the masses and radii of neutron stars with a variety of masses would provide valuable guidance for improving models of the properties of cold matter with densities above the saturation density of nuclear matter. Several different approaches for measuring the masses and radii of neutron stars have been tried or proposed, including analyzing the X-ray fluxes and spectra of the emission from neutron stars in quiescent low-mass X-ray binary systems and thermonuclear burst sources; fitting the energy-dependent X-ray waveforms of rotation-powered millisecond pulsars, burst oscillations with millisecond periods, and accretion-powered millisecond pulsars; and modeling the gravitational radiation waveforms of coalescing double neutron star and neutron star -- black hole binary systems. We describe the strengths and weaknesses of these approaches, most of which currently have substantial systematic errors, and discuss the prospects for decreasing the systematic errors in each method...

  17. Observational constraints on neutron star masses and radii

    International Nuclear Information System (INIS)

    Precise and reliable measurements of the masses and radii of neutron stars with a variety of masses would provide valuable guidance for improving models of the properties of cold matter with densities above the saturation density of nuclear matter. Several different approaches for measuring the masses and radii of neutron stars have been tried or proposed, including analyzing the X-ray fluxes and spectra of the emission from neutron stars in quiescent low-mass X-ray binary systems and thermonuclear burst sources; fitting the energy-dependent X-ray waveforms of rotation-powered millisecond pulsars, burst oscillations with millisecond periods, and accretion-powered millisecond pulsars; and modeling the gravitational radiation waveforms of coalescing double neutron star and neutron star - black hole binary systems. We describe the strengths and weaknesses of these approaches, most of which currently have substantial systematic errors, and discuss the prospects for decreasing the systematic errors in each method. (orig.)

  18. Observational constraints on neutron star masses and radii

    Energy Technology Data Exchange (ETDEWEB)

    Coleman Miller, M. [University of Maryland, Department of Astronomy and Joint Space-Science Institute, College Park, MD (United States); Lamb, Frederick K. [University of Illinois at Urbana-Champaign, Center for Theoretical Astrophysics and Department of Physics, Urbana, IL (United States); University of Illinois at Urbana-Champaign, Department of Astronomy, Urbana, IL (United States)

    2016-03-15

    Precise and reliable measurements of the masses and radii of neutron stars with a variety of masses would provide valuable guidance for improving models of the properties of cold matter with densities above the saturation density of nuclear matter. Several different approaches for measuring the masses and radii of neutron stars have been tried or proposed, including analyzing the X-ray fluxes and spectra of the emission from neutron stars in quiescent low-mass X-ray binary systems and thermonuclear burst sources; fitting the energy-dependent X-ray waveforms of rotation-powered millisecond pulsars, burst oscillations with millisecond periods, and accretion-powered millisecond pulsars; and modeling the gravitational radiation waveforms of coalescing double neutron star and neutron star - black hole binary systems. We describe the strengths and weaknesses of these approaches, most of which currently have substantial systematic errors, and discuss the prospects for decreasing the systematic errors in each method. (orig.)

  19. Simultaneous Spectral and Timing Observations of Accreting Neuron Stars

    Science.gov (United States)

    Kaaret, P.; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The goal of this proposal is to perform simultaneous x-ray spectral and millisecond timing observations of accreting neutron stars to further our understanding of their accretion dynamics and in the hope of using these systems as probes of the physics of strong gravitational fields. NAG5-9104 is the successor grant to NAG5-8408. Observations using the Rossi X-Ray Timing Explorer (RXTE) and BeppoSAX were performed of 4U1702-429, 4U1735-44, and Cyg X-2. Unfortunately, only a small fraction of the approved observing time was obtained for the first two targets and the data are of limited scientific value. Data analysis has been completed on the observations of Cyg X-2. We discovered a correlation between the frequency of the horizontal branch oscillations (HBO) and a soft, thermal component of the x-ray spectrum likely associated with emission from the accretion disk. This correlation may place constraints on models of the oscillations. A paper based on these results appeared in the Astrophysical Journal.

  20. The LOFT perspective on neutron star thermonuclear bursts

    DEFF Research Database (Denmark)

    in ’t Zand, J.J.M.; Altamirano, D.; Ballantyne, D. R.;

    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of thermonuclear X-ray bursts on accreting neutron stars. For a summary, we refer to the paper.......This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of thermonuclear X-ray bursts on accreting neutron stars. For a summary, we refer to the paper....

  1. ULXs: Neutron Stars vs Black Holes

    CERN Document Server

    King, Andrew

    2016-01-01

    We consider ultraluminous X-ray sources (ULXs) where the accretor is a neutron star rather than a black hole. We show that the recently-discovered example (M82 X-2) fits naturally into the simple picture of ULXs as beamed X-ray sources fed at super-Eddington rates, provided that its magnetic field is weaker ($\\simeq 10^{11}{\\rm G}$) than a new-born X-ray pulsar, as expected if there has been mass gain. Continuing accretion is likely to weaken the field to the point that pulsing stops, and make the system indistinguishable from a ULX containing a black hole. Accordingly we suggest that a significant fraction of all ULXs may actually contain neutron star accretors rather than black holes, reflecting the neutron-star fraction among their X-ray binary progenitors. We emphasize that neutron-star ULXs are likely to have {\\it higher} apparent luminosities than black hole ULXs for a given mass transfer rate, as their tighter beaming outweighs their lower Eddington luminosities. This further increases the likely propo...

  2. Strangeness in Neutron Star Cooling

    CERN Document Server

    Lim, Yeunhwan; Lee, Chang-Hwan

    2016-01-01

    We study the thermal evolution of neutron stars in the presence of hyperons or kaons in the core. Our results indicate that the nucleon and hyperon direct Urca processes play crucial roles for the cooling of neutron stars. The presence of hyperons drives fast cooling mechanisms in two ways: 1) it allows the hyperon direct Urca prior to the nucleon direct Urca, 2) and it makes the nucleon direct Urca more feasible by reducing the neutron Fermi momentum. We found that the neutron star equation of state (EOS) with hyperons can be consistent with both mass and temperature observations. We also found that the neutron star EOS with kaon condensation can be consistent with observations, even though the cooling behavior is seldom useful to identify or isolate the effect of kaon condensation.

  3. Life extinctions by neutron star mergers

    CERN Document Server

    Dar, Arnon; Shaviv, N J; Dar, Arnon; Laor, Ari; Shaviv, Nir J.

    1997-01-01

    High energy cosmic ray jets from nearby mergers or accretion induced collapse (AIC) of neutron stars (NS) that hit the atmosphere can produce lethal fluxes of atmospheric muons at ground level, underground and underwater, destroy the ozone layer and radioactivate the environment. They could have caused most of the massive life extinctions on planet Earth in the past 600 My. Biological mutations due to ionizing radiations could have caused the fast appearance of new species after the massive extinctions. An early warning of future extinctions due to NS mergers may be obtained by identifying, mapping and timing all the nearby binary neutron stars systems. A warning of an approaching cosmic ray burst from a nearby NS merger/AIC may be provided by a very intense gamma ray burst which preceeds it.

  4. Neutron star structure from QCD

    Science.gov (United States)

    Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi

    2016-03-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  5. Neutron star structure from QCD

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil); Kurkela, Aleksi [PH-TH, Case C01600, CERN, Theory Division, Geneva (Switzerland); University of Stavanger, Faculty of Science Technology, Stavanger (Norway); Vuorinen, Aleksi [University of Helsinki, Helsinki Institute of Physics and Department of Physics (Finland)

    2016-03-15

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities. (orig.)

  6. Non-identical neutron star twins

    Energy Technology Data Exchange (ETDEWEB)

    Glendenning, Norman K.; Kettner, Christiane

    1998-07-01

    The work of J. A. Wheeler in the mid 1960's showed that forsmooth equations of state no stable stellar configurations with centraldensities above that corresponding to the limiting mass of 'neutronstars' (in the generic sense) were stable against acoustical vibrationalmodes. A perturbation would cause any such star to collapse to a blackhole or explode. Accordingly, there has been no reason to expect that astable degenerate family of stars with higher density than the knownwhite dwarfs and neutron stars might exist. We have found a class ofexceptions corresponding to certain equations of state that describe afirst order phase transition. We discuss how such a higher density familyof stars could be formed in nature, and how the promising new explorationof oscillations in the X-ray brightness of accreting neutron stars mightprovide a means of identifying them. Our proof of the possible existenceof a third family of degenerate stars is one of principle and rests ongeneral principles like causality, microstability of matter and GeneralRelativity.

  7. Limiting angular velocity of realistic relativistic neutron star models

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K. (California Univ., Berkeley (USA). Div. of Nuclear Science)

    1991-05-01

    The Keplerian velocity as well as those frequencies at which instability against gravitational radiation-reaction sets in are calculated for rotating neutron star models of gravitational mass 1.5 M{sub sun}. The investigation is based on four different, realistic neutron star matter equations of state. Our results indicate that the gravitational radiation instability sets in well below (i.e., 63-71% of) the Keplerian frequency, and that young neutron stars are limited to rotational periods greater than about 1 ms. In young and therefore hot (T {approx equal} 10{sup 10} K) neutron stars the m = 5 (+- 1) modes and in old stars after being spun up and reheated by mass accretion, the m = 4 and/or m = 3 modes may set the limit on stable rotation. (orig.).

  8. Cooling of neutron stars with diffusive envelopes

    CERN Document Server

    Beznogov, M V; Haensel, P; Yakovlev, D G; Zdunik, J L

    2016-01-01

    We study the effects of heat blanketing envelopes of neutron stars on their cooling. To this aim, we perform cooling simulations using newly constructed models of the envelopes composed of binary ion mixtures (H--He, He--C, C--Fe) varying the mass of lighter ions (H, He or C) in the envelope. The results are compared with those calculated using the standard models of the envelopes which contain the layers of lighter (accreted) elements (H, He and C) on top of the Fe layer, varying the mass of accreted elements. The main effect is that the chemical composition of the envelopes influences their thermal conductivity and, hence, thermal insulation of the star. For illustration, we apply these results to estimate the internal temperature of the Vela pulsar and to study the cooling of neutron stars of ages of 0.1 - 1 Myr at the photon cooling stage. The uncertainties of the cooling models associated with our poor knowledge of chemical composition of the heat insulating envelopes strongly complicate theoretical reco...

  9. Children's Literature on Neutron Stars

    Science.gov (United States)

    Struck, James

    Children's literature is simple discussion of complicated issues. Neutron stars are discussed in several children's books. Using libraries in Chicago, I will review children's books on neutron stars and compare the literature to literature from scientific discussions of neutron stars on sites like the Chandra site, Hubble Space Telescope site and NASA site. The result will be a discussion of problems and issues involved in discussion of neutron stars. Do children's books leave material out? Do children's books discuss recent observations? Do children's books discuss anything discredited or wrong? How many children's books are in resources like World Cat, the Library of Congress catalog, and the Chicago Public Library catalog? Could children's books be useful to present some of your findings or observations or projects? Children's books are useful for both children and scientist as they present simplified discussion of topics, although sometimes issues are simplified too much.

  10. Theory of neutron star magnetospheres

    CERN Document Server

    Curtis Michel, F

    1990-01-01

    An incomparable reference for astrophysicists studying pulsars and other kinds of neutron stars, "Theory of Neutron Star Magnetospheres" sums up two decades of astrophysical research. It provides in one volume the most important findings to date on this topic, essential to astrophysicists faced with a huge and widely scattered literature. F. Curtis Michel, who was among the first theorists to propose a neutron star model for radio pulsars, analyzes competing models of pulsars, radio emission models, winds and jets from pulsars, pulsating X-ray sources, gamma-ray burst sources, and other neutron-star driven phenomena. Although the book places primary emphasis on theoretical essentials, it also provides a considerable introduction to the observational data and its organization. Michel emphasizes the problems and uncertainties that have arisen in the research as well as the considerable progress that has been made to date.

  11. Magnetic and spin evolution of neutron stars in close binaries

    CERN Document Server

    Urpin, V; Konenkov, D Y

    1998-01-01

    The evolution of neutron stars in close binary systems with a low-mass companion is considered assuming the magnetic field to be confined within the solid crust. We adopt the standard scenario of the evolution in a close binary system in accordance with which the neutron star passes throughout four evolutionary phases ("isolated pulsar" -- "propeller" -- accretion from the wind of a companion -- accretion due to Roche-lobe overflow). Calculations have been performed for a great variety of parameters characterizing the properties both of the neutron star and low-mass companion. We find that neutron stars with more or less standard magnetic field and spin period being processed in low-mass binaries can evolve to low-field rapidly rotating pulsars. Even if the main-sequence life of a companion is as long as $10^{10}$ yr, the neutron star can maintain a relatively strong magnetic field to the end of the accretion phase. The considered model can well account for the origin of millisecond pulsars.

  12. The Physics of Neutron Stars

    OpenAIRE

    Lattimer, J. M.; M. Prakash

    2004-01-01

    Neutron stars are some of the densest manifestations of massive objects in the universe. They are ideal astrophysical laboratories for testing theories of dense matter physics and provide connections among nuclear physics, particle physics and astrophysics. Neutron stars may exhibit conditions and phenomena not observed elsewhere, such as hyperon-dominated matter, deconfined quark matter, superfluidity and superconductivity with critical temperatures near ${10^{10}}$ kelvin, opaqueness to neu...

  13. The Zoo of Neutron Stars

    CERN Document Server

    Popov, S B

    2006-01-01

    In these lecture notes I briefly discuss the present day situation and new discoveries in astrophysics of neutron stars focusing on isolated objects. The latter include soft gamma repeaters, anomalous X-ray pulsars, central compact objects in supernova remnants, the Magnificent seven, and rotating radio transients. In the last part of the paper I describe available tests of cooling curves of neutron stars and discuss different additional constraints which can help to confront theoretical calculations of cooling with observational data.

  14. Coalescence of Binary Neutron Stars

    OpenAIRE

    Oohara, Ken-ichi; Namamura, Takashi

    1996-01-01

    The most important sources for laser-interferometric gravitational-wave detectors like LIGO or VIRGO are catastrophic events such as coalescence of a neutron-star binary. The final phase, or the last three milliseconds, of coalescence is considered. We describe results of numerical simulations of coalescing binary neutron stars using Newtonian and post-Newtonian hydrodynamics code and then discuss recent development of our 3D GR code.

  15. Neutron star news and puzzles

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Madappa

    2014-08-15

    Gerry Brown has had the most influence on my career in Physics, and my life after graduate studies. This article gives a brief account of some of the many ways in which Gerry shaped my research. Focus is placed on the significant strides on neutron star research made by the group at Stony Brook, which Gerry built from scratch. Selected puzzles about neutron stars that remain to be solved are noted.

  16. Neutron Star News and Puzzles

    CERN Document Server

    Prakash, Madappa

    2014-01-01

    Gerry Brown has had the most influence on my career in Physics, and my life after graduate studies. In this article, I give a brief account of some of the many ways in which Gerry shaped my research. Recent and on-going research on neutron stars in which the group built from scratch by Gerry at Stony Brook has made significant strides are reviewed. Selected puzzles about neutron stars that remain to be solved are noted.

  17. Nuclear Masses and Neutron Stars

    CERN Document Server

    Kreim, Susanne; Lunney, David; Schaffner-Bielich, Jürgen

    2013-01-01

    Precision mass spectrometry of neutron-rich nuclei is of great relevance for astrophysics. Masses of exotic nuclides impose constraints on models for the nuclear interaction and thus affect the description of the equation of state of nuclear matter, which can be extended to describe neutron-star matter. With knowledge of the masses of nuclides near shell closures, one can also derive the neutron-star crustal composition. The Penning-trap mass spectrometer ISOLTRAP at CERN-ISOLDE has recently achieved a breakthrough measuring the mass of 82Zn, which allowed constraining neutron-star crust composition to deeper layers (Wolf et al., PRL 110, 2013). We perform a more detailed study on the sequence of nuclei in the outer crust of neutron stars with input from different nuclear models to illustrate the sensitivity to masses and the robustness of neutron-star models. The dominant role of the N=50 and N=82 closed neutron shells for the crustal composition is confirmed.

  18. Can dark matter explain the braking index of neutron stars?

    DEFF Research Database (Denmark)

    Kouvaris, C.; Perez-Garcia, M. A.

    2014-01-01

    We explore a new mechanism of slowing down the rotation of neutron stars via accretion of millicharged dark matter. We find that this mechanism yields pulsar braking indices that can be substantially smaller than the standard n similar to 3 of the magnetic dipole radiation model for millicharged...... dark matter particles that are not excluded by existing experimental constraints thus accommodating existing observations....

  19. Can Dark Matter explain the Braking Index of Neutron Stars?

    CERN Document Server

    Kouvaris, Chris

    2014-01-01

    We explore a new mechanism of slowing down the rotation of neutron stars via accretion of millicharged dark matter. We find that this mechanism yields pulsar braking indices that can be substantially smaller than the standard $n\\sim 3$ of the magnetic dipole radiation model for millicharged dark matter particles that are not excluded by existing experimental constraints thus accommodating existing observations.

  20. Forming an O Star via Disk Accretion?

    Science.gov (United States)

    Qiu, Keping; Zhang, Qizhou; Beuther, Henrik; Fallscheer, Cassandra

    2012-09-01

    We present a study of outflow, infall, and rotation in a ~105 L ⊙ star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of ~80 M ⊙ and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 ± 50 K and a mass of ~13 M ⊙. The outflow has a gas mass of 54 M ⊙ and a dynamical timescale of 8 × 103 yr. The kinematics of the HMC are probed by high-excitation CH3OH and CH3CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 × 10-3 M ⊙ yr-1, is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the 13CO and C18O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass ~10 M ⊙ embedded within MM1 will develop into an O star via disk accretion and envelope infall.

  1. FORMING AN O STAR VIA DISK ACCRETION?

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Keping [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Zhang Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Beuther, Henrik; Fallscheer, Cassandra, E-mail: kqiu@mpifr-bonn.mpg.de [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-09-10

    We present a study of outflow, infall, and rotation in a {approx}10{sup 5} L{sub Sun} star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of {approx}80 M{sub Sun} and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 {+-} 50 K and a mass of {approx}13 M{sub Sun }. The outflow has a gas mass of 54 M{sub Sun} and a dynamical timescale of 8 Multiplication-Sign 10{sup 3} yr. The kinematics of the HMC are probed by high-excitation CH{sub 3}OH and CH{sub 3}CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 Multiplication-Sign 10{sup -3} M{sub Sun} yr{sup -1}, is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the {sup 13}CO and C{sup 18}O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass {approx}10 M{sub Sun} embedded within MM1 will develop into an O star via disk accretion and envelope infall.

  2. Binary Neutron Star Mergers

    Directory of Open Access Journals (Sweden)

    Joshua A. Faber

    2012-07-01

    Full Text Available We review the current status of studies of the coalescence of binary neutron star systems. We begin with a discussion of the formation channels of merging binaries and we discuss the most recent theoretical predictions for merger rates. Next, we turn to the quasi-equilibrium formalisms that are used to study binaries prior to the merger phase and to generate initial data for fully dynamical simulations. The quasi-equilibrium approximation has played a key role in developing our understanding of the physics of binary coalescence and, in particular, of the orbital instability processes that can drive binaries to merger at the end of their lifetimes. We then turn to the numerical techniques used in dynamical simulations, including relativistic formalisms, (magneto-hydrodynamics, gravitational-wave extraction techniques, and nuclear microphysics treatments. This is followed by a summary of the simulations performed across the field to date, including the most recent results from both fully relativistic and microphysically detailed simulations. Finally, we discuss the likely directions for the field as we transition from the first to the second generation of gravitational-wave interferometers and while supercomputers reach the petascale frontier.

  3. Accretion of Supersonic Winds on Boson Stars

    CERN Document Server

    Gracia-Linares, M

    2016-01-01

    We present the evolution of a supersonic wind interacting with a Boson Star (BS) and compare the resulting wind density profile with that of the shock cone formed when the wind is accreted by a non-rotating Black Hole (BH) of the same mass. The physical differences between these accretors are that a BS, unlike a BH has no horizon, it does not have a mechanical surface either and thus the wind is expected to trespass the BS. Despite these conditions, on the BS space-time the gas achieves a stationary flux with the gas accumulating in a high density elongated structure comparable to the shock cone formed behind a BH. The highest density resides in the center of the BS whereas in the case of the BH it is found on the downstream part of the BH near the event horizon. The maximum density of the gas is smaller in the BS than in the BH case. Our results indicate that the highest density of the wind is more similar on the BS to that on the BH when the BS has high self-interaction, when it is more compact and when the...

  4. Binary interactions with high accretion rates onto main sequence stars

    Science.gov (United States)

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10-2 M ⊙ yr-1 for solar type stars, and up to ≈ 1 M ⊙ yr-1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  5. Thermal and transport properties of the neutron star inner crust

    CERN Document Server

    Page, Dany

    2012-01-01

    We review the nuclear and condensed matter physics underlying the thermal and transport properties of the neutron star inner crust. These properties play a key role in interpreting transient phenomena such as thermal relaxation in accreting neutron stars, superbursts, and magnetar flares. We emphasize simplifications that occur at low temperature where the inner crust can be described in terms of electrons and collective excitations. The heat conductivity and heat capacity of the solid and superfluid phase of matter is discussed in detail and we emphasize its role in interpreting observations of neutron stars in soft X-ray transients. We highlight recent theoretical and observational results, and identify future work needed to better understand a host of transient phenomena in neutron stars.

  6. Neutrino-pair bremsstrahlung in a neutron star crust

    CERN Document Server

    Ofengeim, D D; Yakovlev, D G

    2014-01-01

    Based on the formalism by Kaminker et al. (Astron. Astrophys. 343 (1999) 1009) we derive an analytic approximation for neutrino-pair bremsstrahlung emissivity due to scattering of electrons by atomic nuclei in the neutron star crust of any realistic composition. The emissivity is expressed through generalized Coulomb logarithm which we fit by introducing an effective potential of electron-nucleus scattering. In addition, we study the conditions at which the neutrino bremsstrahlung in the crust is affected by strong magnetic fields. The results can be applied for modelling of many phenomena in neutron stars, such as thermal relaxation in young isolated neutron stars and in accreting neutron stars with overheated crust in soft X-ray transients.

  7. Rapidly rotating neutron star progenitors

    Science.gov (United States)

    Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.

    2016-08-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In the present paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 years. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1 - 1% of the total core collapses, depending on the common envelope efficiency.

  8. Proton Fraction in Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    张丰收; 陈列文

    2001-01-01

    The proton fraction in β-stable neutron stars is investigated within the framework of the Skyrme-Hartree-Fock theory using the extended Skyrme effective interaction for the first time. The calculated results show that the proton fraction disappears at high density, which implies that the pure neutron matter may exist in the interior of neutron stars. The incompressibility of the nuclear equation-of-state is shown to be more important to determine the proton fraction. Meanwhile, it is indicated that the addition of muons in neutron stars will change the proton fraction. It is also found that the higher-order terms of the nuclear symmetry energy have obvious effects on the proton fraction and the parabolic law of the nuclear symmetry energy is not enough to determine the proton fraction.

  9. The Nuclear Physics of Neutron Stars

    CERN Document Server

    Piekarewicz, J

    2013-01-01

    We explore the unique and fascinating structure of neutron stars. Although neutron stars are of interest in many areas of Physics, our aim is to provide an intellectual bridge between Nuclear Physics and Astrophysics. We argue against the naive perception of a neutron star as a uniform assembly of neutrons packed to enormous densities. Rather, by focusing on the many exotic phases that are speculated to exist in a neutron star, we show how the reality is different and far more interesting.

  10. Growth of black holes in the interior of rotating neutron stars

    DEFF Research Database (Denmark)

    Kouvaris, C.; Tinyakov, P.

    2014-01-01

    Mini-black holes made of dark matter that can potentially form in the interior of neutron stars always have been thought to grow by accreting the matter of the core of the star via a spherical Bondi accretion. However, neutron stars have sometimes significant angular velocities that can...... in principle stall the spherical accretion and potentially change the conclusions derived about the time it takes for black holes to destroy a star. We study the effect of the star rotation on the growth of such black holes and the evolution of the black hole spin. Assuming no mechanisms of angular momentum...... evacuation, we find that even moderate rotation rates can in fact destroy spherical accretion at the early stages of the black hole growth. However, we demonstrate that the viscosity of nuclear matter can alleviate the effect of rotation, making it possible for the black hole to maintain spherical accretion...

  11. Star Formation and Gas Accretion in Nearby Galaxies

    CERN Document Server

    Yim, Kijeong

    2016-01-01

    In order to quantify the relationship between gas accretion and star formation, we analyse a sample of 29 nearby galaxies from the WHISP survey which contains galaxies with and without evidence for recent gas accretion. We compare combined radial profiles of FUV (GALEX) and IR 24 {\\mu}m (Spitzer) characterizing distributions of recent star formation with radial profiles of CO (IRAM, BIMA, or CARMA) and HI (WSRT) tracing molecular and atomic gas contents to examine star formation efficiencies in symmetric (quiescent), asymmetric (accreting), and interacting (tidally disturbed) galaxies. In addition, we investigate the relationship between star formation rate and HI in the outer discs for the three groups of galaxies. We confirm the general relationship between gas surface density and star formation surface density, but do not find a significant difference between the three groups of galaxies.

  12. Close stars and accretion in Low Luminosity Active Galactic Nuclei

    CERN Document Server

    Nayakshin, S

    2004-01-01

    Quasar accretion disks are believed to form stars by self-gravity. Low Luminosity Active Galactic Nuclei (LLAGN) are much dimmer galactic centers, and are often believed to be quasars that ran out of gaseous fuel. LLAGN accretion disks should thus co-exist with thousands to millions of stars or proto-stars left from the previous stronger accretion activity. In principle, these stars may produce several important effects: (i) contribute to the optical/UV spectra of some LLAGN; (ii) reprocessing of the stellar radiation in the dusty disks could dominate the LLAGN infra-red spectra; (iii) deplete the (accretion) gas disk much faster than it can accrete onto the supper-massive black hole (SMBH); (iv) stars, individually or in groups, may slow down and modulate the accretion flow significantly due to their inertia. In this way they may produce the LLAGN cut-off disks; (v) alternatively, frequent enough stellar collisions and resulting stellar disruptions could keep the inner disk empty. Here we explore these ideas...

  13. Observations on the Formation of Massive Stars by Accretion

    CERN Document Server

    Keto, E; Keto, Eric; Wood, Kenneth

    2006-01-01

    Observations of the H66a recombination line from the ionized gas in the cluster of newly formed massive stars, G10.6-0.4, show that most of the continuum emission derives from the dense gas in an ionized accretion flow that forms an ionized disk or torus around a group of stars in the center of the cluster. The inward motion observed in the accretion flow suggests that despite the equivalent luminosity and ionizing radiation of several O stars, neither radiation pressure nor thermal pressure has reversed the accretion flow. The observations indicate why the radiation pressure of the stars and the thermal pressure of the HII region are not effective in reversing the accretion flow. The observed rate of the accretion flow, 0.001 solar masses/yr, is sufficient to form massive stars within the time scale imposed by their short main sequence lifetimes. A simple model of disk accretion relates quenched HII regions, trapped hypercompact HII regions, and photo-evaporating disks in an evolutionary sequence.

  14. Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Thomas; /ZAH, Heidelberg; Klessen, Ralf S.; /ZAH, Heidelberg /KIPAC, Menlo Park; Mac Low, Mordecai-Mark; /Amer. Museum Natural Hist.; Banerjee, Robi; /ZAH, Heidelberg

    2010-08-25

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  15. Magnetic fields of neutron stars

    CERN Document Server

    Reisenegger, Andreas

    2013-01-01

    Neutron stars contain the strongest magnetic fields known in the Universe. In this paper, I discuss briefly how these magnetic fields are inferred from observations, as well as the evidence for their time-evolution. I show how these extremely strong fields are actually weak in terms of their effects on the stellar structure, as is also the case for magnetic stars on the upper main sequence and magnetic white dwarfs, which have similar total magnetic fluxes. I propose a scenario in which a stable hydromagnetic equilibrium (containing a poloidal and a toroidal field component) is established soon after the birth of the neutron star, aided by the strong compositional stratification of neutron star matter, and this state is slowly eroded by non-ideal magnetohydrodynamic processes such as beta decays and ambipolar diffusion in the core of the star and Hall drift and breaking of the solid in its crust. Over sufficiently long time scales, the fluid in the neutron star core will behave as if it were barotropic, becau...

  16. Anomalous hydrodynamics kicks neutron stars

    Science.gov (United States)

    Kaminski, Matthias; Uhlemann, Christoph F.; Bleicher, Marcus; Schaffner-Bielich, Jürgen

    2016-09-01

    Observations show that, at the beginning of their existence, neutron stars are accelerated briskly to velocities of up to a thousand kilometers per second. We argue that this remarkable effect can be explained as a manifestation of quantum anomalies on astrophysical scales. To theoretically describe the early stage in the life of neutron stars we use hydrodynamics as a systematic effective-field-theory framework. Within this framework, anomalies of the Standard Model of particle physics as underlying microscopic theory imply the presence of a particular set of transport terms, whose form is completely fixed by theoretical consistency. The resulting chiral transport effects in proto-neutron stars enhance neutrino emission along the internal magnetic field, and the recoil can explain the order of magnitude of the observed kick velocities.

  17. Neutron Stars in the Laboratory

    CERN Document Server

    Graber, Vanessa; Hogg, Michael

    2016-01-01

    Neutron stars are astrophysical laboratories of many extremes of physics. Their rich phenomenology provides insights into the state and composition of matter at densities which cannot be reached in terrestrial experiments. Since the core of a mature neutron star is expected to be dominated by superfluid and superconducting components, observations also probe the dynamics of large-scale quantum condensates. The testing and understanding of the relevant theory tends to focus on the interface between the astrophysics phenomenology and nuclear physics. The connections with low-temperature experiments tend to be ignored. However, there has been dramatic progress in understanding laboratory condensates (from the different phases of superfluid helium to the entire range of superconductors and cold atom condensates). In this review, we provide an overview of these developments, compare and contrast the mathematical descriptions of laboratory condensates and neutron stars and summarise the current experimental state-o...

  18. Nuclear Physics of neutron stars

    Science.gov (United States)

    Piekarewicz, Jorge

    2015-04-01

    One of the overarching questions posed by the recent community report entitled ``Nuclear Physics: Exploring the Heart of Matter'' asks How Does Subatomic Matter Organize Itself and What Phenomena Emerge? With their enormous dynamic range in both density and neutron-proton asymmetry, neutron stars provide ideal laboratories to answer this critical challenge. Indeed, a neutron star is a gold mine for the study of physical phenomena that cut across a variety of disciplines, from particle physics to general relativity. In this presentation--targeted at non-experts--I will focus on the essential role that nuclear physics plays in constraining the dynamics, structure, and composition of neutron stars. In particular, I will discuss some of the many exotic states of matter that are speculated to exist in a neutron star and the impact of nuclear-physics experiments on elucidating their fascinating nature. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FD05-92ER40750.

  19. The Properties of Pure Neutron Star

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; LI Quan-Guo; LIU Liang-Gang

    2001-01-01

    For a given equation of state of neutron matter in the relativistic σ-ω model, including thc vacuum fluctuation of neutron and σ meson, the properties of pure neutron star are studied. We find that the maximum mass of pure neutron star is ~ 2.0M⊙. At the same time, the influence of incompressibility of the nuclear matter to the properties of neutron star is also studied. We also find that the maximum mass of neutron stars decreases as equation of state of neutron matter becomes softer.``

  20. Formation of Primordial Supermassive Stars by Rapid Mass Accretion

    CERN Document Server

    Hosokawa, Takashi; Inayoshi, Kohei; Omukai, Kazuyuki; Yoshida, Naoki

    2013-01-01

    Supermassive stars (SMSs) forming via very rapid mass accretion (Mdot >~ 0.1 Msun/yr) could be precursors of supermassive black holes observed beyond redshift of about 6. Extending our previous work, we here study the evolution of primordial stars growing under such rapid mass accretion until the stellar mass reaches 10^{4 - 5} Msun. Our stellar evolution calculations show that a star becomes supermassive while passing through the "supergiant protostar'' stage, whereby the star has a very bloated envelope and a contracting inner core. The stellar radius increases monotonically with the stellar mass, until =~ 100 AU for M_* >~ 10^4 Msun, after which the star begins to slowly contract. Because of the large radius the effective temperature is always less than 10^4 K during rapid accretion. The accreting material is thus almost completely transparent to the stellar radiation. Only for M_* >~ 10^5 Msun can stellar UV feedback operate and disturb the mass accretion flow. We also examine the pulsation stability of a...

  1. Multi-dimensional structure of accreting young stars

    Science.gov (United States)

    Geroux, C.; Baraffe, I.; Viallet, M.; Goffrey, T.; Pratt, J.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.

    2016-04-01

    This work is the first attempt to describe the multi-dimensional structure of accreting young stars based on fully compressible time implicit multi-dimensional hydrodynamics simulations. One major motivation is to analyse the validity of accretion treatment used in previous 1D stellar evolution studies. We analyse the effect of accretion on the structure of a realistic stellar model of the young Sun. Our work is inspired by the numerical work of Kley & Lin (1996, ApJ, 461, 933) devoted to the structure of the boundary layer in accretion disks, which provides the outer boundary conditions for our simulations. We analyse the redistribution of accreted material with a range of values of specific entropy relative to the bulk specific entropy of the material in the accreting object's convective envelope. Low specific entropy accreted material characterises the so-called cold accretion process, whereas high specific entropy is relevant to hot accretion. A primary goal is to understand whether and how accreted energy deposited onto a stellar surface is redistributed in the interior. This study focusses on the high accretion rates characteristic of FU Ori systems. We find that the highest entropy cases produce a distinctive behaviour in the mass redistribution, rms velocities, and enthalpy flux in the convective envelope. This change in behaviour is characterised by the formation of a hot layer on the surface of the accreting object, which tends to suppress convection in the envelope. We analyse the long-term effect of such a hot buffer zone on the structure and evolution of the accreting object with 1D stellar evolution calculations. We study the relevance of the assumption of redistribution of accreted energy into the stellar interior used in the literature. We compare results obtained with the latter treatment and those obtained with a more physical accretion boundary condition based on the formation of a hot surface layer suggested by present multi

  2. Neutron Star/Supernova Remnant Associations

    OpenAIRE

    Kaspi, V. M.

    1998-01-01

    The evidence for associations between neutron stars and supernova remnants is reviewed. After summarizing the situation for young radio pulsars, I consider the evidence from associations that young neutron stars can have properties very different from those of radio pulsars. This, though still controversial, shakes our simple perception of the Crab pulsar as prototypical of the young neutron star population.

  3. Chandra Observations of Neutron Stars -- An Overview

    OpenAIRE

    Weisskopf, M. C.

    2002-01-01

    We present a brief review of Chandra observations of neutron stars, with a concentration on neutron stars in supernova remnants. The early Chandra results clearly demonstrate how critical the angular resolution has been in order to separate the neutron star emission from the surrounding nebulosity.

  4. Neutrino Processes in Neutron Stars

    Science.gov (United States)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2010-10-01

    The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities). The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong interaction effects can be

  5. Neutrinos in mergers of neutron stars with black holes

    Science.gov (United States)

    Deaton, Michael Brett

    Mergers of a neutron star and a black hole are interesting because of the dual complexity of the black hole's strong gravity and the neutron star's nuclear-density fluid. Mergers can yield short-lived nuclear accretion disks, emitting copious neutrinos. This radiation may change the thermodynamic state of the disk itself, may drive an ultrarelativistic jet of electrons and positrons, may oscillate in its flavor content, may irradiate surrounding matter, playing a role in nucleosynthesis, and may be detected directly. In this thesis I present a model of such a merger, its remnant accretion disk, and its neutrino emission. In particular, we evolve a neutron star---black hole merger through ˜100 ms, solving the full general relativistic hydrodynamics equations, from inspiral through merger and accretion epochs. We treat the neutrinos approximately, using a leakage framework, which accounts for local energy losses and composition drift in the fluid due to escaping neutrinos. We use geodesic ray tracing on a late time slice of the model to calculate the full spatial-, angular-, and energy-dependence of the neutrino distribution function around the accretion disk. This distribution then serves in a computation of the energy available to form a jet via neutrino-antineutrino annihilation in the disk funnel. In this scenario, we find that enough energy is deposited to drive a jet of short-gamma-ray-burst-energy by neutrino processes alone.

  6. Star-disc interaction in galactic nuclei: orbits and rates of accreted stars

    Science.gov (United States)

    Kennedy, Gareth F.; Meiron, Yohai; Shukirgaliyev, Bekdaulet; Panamarev, Taras; Berczik, Peter; Just, Andreas; Spurzem, Rainer

    2016-07-01

    We examine the effect of an accretion disc on the orbits of stars in the central star cluster surrounding a central massive black hole by performing a suite of 39 high-accuracy direct N-body simulations using state-of-the art software and accelerator hardware, with particle numbers up to 128k. The primary focus is on the accretion rate of stars by the black hole (equivalent to their tidal disruption rate for black holes in the small to medium mass range) and the eccentricity distribution of these stars. Our simulations vary not only the particle number, but disc model (two models examined), spatial resolution at the centre (characterized by the numerical accretion radius) and softening length. The large parameter range and physically realistic modelling allow us for the first time to confidently extrapolate these results to real galactic centres. While in a real galactic centre both particle number and accretion radius differ by a few orders of magnitude from our models, which are constrained by numerical capability, we find that the stellar accretion rate converges for models with N ≥ 32k. The eccentricity distribution of accreted stars, however, does not converge. We find that there are two competing effects at work when improving the resolution: larger particle number leads to a smaller fraction of stars accreted on nearly circular orbits, while higher spatial resolution increases this fraction. We scale our simulations to some nearby galaxies and find that the expected boost in stellar accretion (or tidal disruption, which could be observed as X-ray flares) in the presence of a gas disc is about a factor of 10. Even with this boost, the accretion of mass from stars is still a factor of ˜100 slower than the accretion of gas from the disc. Thus, it seems accretion of stars is not a major contributor to black hole mass growth.

  7. Quark matter in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Baldo, Marcello [INFN, and Dipartimento di Fisica dell' Universita' di Catania, via S. Sofia 64, 95123 Catania (Italy)

    2004-02-01

    The density of nuclear matter in the interior of neutron stars can reach values, for the largest masses, which can be compatible with the onset of hadron deconfinement. For the study of this possibility the only viable method at present is the comparison between the available nucleon and quark Equations of State (EoS) at increasing baryon density. It is then possible to trace the transition to the deconfined phase or the appearance of a mixed phase. We present recent results on the structure of neutron stars based on this procedure. For the nucleon matter, the microscopic many-body theory of the Nuclear Equation of State is discussed in the framework of the Bethe-Brueckner-Goldstone method. The expansion is extended up to the three hole-line diagrams contribution. For the quark matter, different models are used to generate the quark EoS. Despite the maximum mass of neutron stars turns out to be only marginally sensitive to the considered quark EoS, it is found that the structure of neutron stars can drastically depend on the adopted model. (orig.)

  8. The masses of neutron stars

    CERN Document Server

    Horvath, J E

    2016-01-01

    We present in this article an overview of the problem of neutron star masses. After a brief appraisal of the methods employed to determine the masses of neutron stars in binary systems, the existing sample of measured masses is presented, with a highlight on some very well-determined cases. We discuss the analysis made to uncover the underlying distribution and a few robust results that stand out from them. The issues related to some particular groups of neutron stars originated from different channels of stellar evolution are shown. Our conclusions are that last century's paradigm that there a single, $1.4 M_{\\odot}$ scale is too simple. A bimodal or even more complex distribution is actually present. It is confirmed that some neutron stars have masses of $\\sim 2 M_{\\odot}$, and, while there is still no firm conclusion on the maximum and minimum values produced in nature, the field has entered a mature stage in which all these and related questions can soon be given an answer.

  9. A propelling neutron star in the enigmatic Be-star $\\gamma$~Cassiopeia

    CERN Document Server

    Postnov, K; Torrejón, J M

    2016-01-01

    The enigmatic X-ray emission from the bright optical star, $\\gamma$ Cassiopeia, is a long-standing problem. $\\gamma$ Cas is known to be a binary system consisting of a Be-type star and a low-mass ($M\\sim 1\\,M_\\odot$) companion of unknown nature orbiting in the Be-disk plane. Here we apply the quasi-spherical accretion theory onto a compact magnetized star and show that if the low-mass companion of $\\gamma$ Cas is a fast spinning neutron star, the key observational signatures of $\\gamma$ Cas are remarkably well reproduced. Direct accretion onto this fast rotating neutron star is impeded by the propeller mechanism. In this case, around the neutron star magnetosphere a hot shell is formed that emits thermal X-rays in qualitative and quantitative agreement with observed properties of the X-ray emission from $\\gamma$ Cas. We suggest that $\\gamma$ Cas and its analogs constitute a new subclass of Be-type X-ray binaries hosting rapidly rotating neutron stars formed in supernova explosions with small kicks. The subseq...

  10. Formation of primordial supermassive stars by burst accretion

    CERN Document Server

    Sakurai, Y; Yoshida, N; Yorke, H W

    2015-01-01

    A promising formation channel of SMBHs at redshift 6 is the so-called DC model, which posits that a massive seed BH forms through gravitational collapse of a $\\sim 10^5~M_\\odot$ SMS. We study the evolution of such a SMS growing by rapid mass accretion. In particular, we examine the impact of time-dependent mass accretion of repeating burst and quiescent phases that are expected to occur with a self-gravitating circumstellar disk. We show that the stellar evolution with such episodic accretion differs qualitatively from that expected with a constant accretion rate, even if the mean accretion rate is the same. Unlike the case of constant mass accretion, whereby the star expands roughly following $R_* \\simeq 2.6 \\times 10^3 R_\\odot (M_*/100~M_\\odot)^{1/2}$, the protostar can substantially contract during the quiescent phases between accretion bursts. The stellar effective temperature and ionizing photon emissivity increase accordingly as the star contracts, which can cause strong ionizing feedback and halt the m...

  11. Spin Evolution of Accreting Young Stars. II. Effect of Accretion-Powered Stellar Winds

    CERN Document Server

    Matt, Sean P; Greene, Thomas P; Pudritz, Ralph E

    2011-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind. For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1--10 days in the age range of 1--3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to s...

  12. Gravitational Wave Heating of Stars and Accretion Disks

    CERN Document Server

    Li, Gongjie; Loeb, Abraham

    2012-01-01

    We investigate the electromagnetic (EM) counterpart of gravitational waves (GWs) emitted by a supermassive black hole binary (SMBHB) through the viscous dissipation of the GW energy in an accretion disk and stars surrounding the SMBHB. We account for the suppression of the heating rate if the forcing period is shorter than the turnover time of the largest turbulent eddies. We find that the viscous heating luminosity in 0.1 solar mass stars can be significantly higher than their intrinsic luminosity. The relative brightening is small for accretion disks.

  13. Multi-dimensional structure of accreting young stars

    CERN Document Server

    Geroux, C; Viallet, M; Goffrey, T; Pratt, J; Constantino, T; Folini, D; Popov, M V; Walder, R

    2016-01-01

    This work is the first attempt to describe the multi-dimensional structure of accreting young stars based on fully compressible time implicit multi-dimensional hydrodynamics simulations. One major motivation is to analyse the validity of accretion treatment used in previous 1D stellar evolution studies. We analyse the effect of accretion on the structure of a realistic stellar model of the young Sun. Our work is inspired by the numerical work of Kley \\& Lin (1996, ApJ, 461, 933) devoted to the structure of the boundary layer in accretion disks. We analyse the redistribution of accreted material with a range of values of specific entropy relative to the bulk specific entropy of the material in the accreting object's convective envelope. A primary goal is to understand whether and how accreted energy deposited onto a stellar surface is redistributed in the interior. This study focusses on the high accretion rates characteristic of FU Ori systems. We find that the highest entropy cases produce a distinctive ...

  14. Single neutron star systems evolving with fallback discs

    Science.gov (United States)

    Ertan, Unal; Caliskan, Sirin; Alpar, Mehmet Ali; Benli, Onur; Trümper, Joachim E.

    2016-07-01

    We have investigated the long-term evolution of the young neutron star systems, namely anomalous X-ray pulsars (AXPs), soft gamma repeaters (SGRs), dim isolated neutron stars (XDINs), and the so-called "high-B radio pulsars" in the frame of the fallback disk disc model. We have shown that the X-ray luminosities and the rotational properties of individual sources in these different populations can be achieved by neutron stars evolving with fallback disks and with conventional dipole magnetic fields of young neutron stars. Presence of small-scale magnetar fields in the higher multi-poles which are likely to be responsible for soft gamma bursts observed from these systems is compatible with the fallback disk model, since the rotational evolution of the star is governed by the interaction between the large-scale dipole field and the disc. The results of our model is self-consistent in that (1) the X-ray luminosity, period and period derivative of individual sources are produced simultaneously, and (2) these results are obtained with very similar set of main disk parameters for all these systems with rather different properties. Our results indicate that all known AXPs, except two sources, are in the accretion phase at present. The 6 XDINs with confirmed period and period derivatives reached their long periods in the accretion epochs in the past. At present, XDINs are evolving in the propeller phase without accretion, but they are still slowing down under effect of the disk torques. For the "high-B radio pulsars", the source properties are obtained in the phases when accretion is not allowed, which is consistent with the radio pulsar property of these sources.

  15. X-Ray Spectroscopy of Accretion Shocks in Young Stars

    Science.gov (United States)

    Brickhouse, Nancy S.

    2011-01-01

    High resolution X-ray spectroscopy of accreting young stars is providing new insights into the physical conditions of the shocked plasma. While young stars exhibit exceedingly active coronae (>10 MK) with highly energetic flares, the relatively low temperature ( 3 MK), high density (>1012 cm-3) accretion shock can only be clearly distinguished at high spectral resolution. The nearby Classical T Tauri star TW Hydrae was the first to show evidence of accretion using 50 ks with the Chandra High Energy Transmission Grating (HETG). More recently a Chandra HETG Large Program (489 ks obtained over the course of one month) on TW Hydrae has found evidence for a new type of coronal structure. In the standard model, the accreting gas shocks near the atmosphere of the star and gently settles onto the surface as it slows down and cools. On TW Hydrae the observed post-shock region is not this predicted settling flow, since its mass is 30 times the mass of material that passes through the shock. Instead the stellar atmosphere must be heated to soft X-ray emitting temperatures. Of the CTTS systems observed with the gratings on Chandra and XMM-Newton not all show the accretion shock signature; however, all of them show excess soft X-ray emission related to accretion. The production of highly charged ions in the proximity of both open and closed magnetic field lines has important implications for coronal heating, winds and jets in the presence of accretion. This work is supported by the Chandra X-ray Observatory through a NASA contract with the Smithsonian Astrophysical Observatory.

  16. Star Formation in Massive Clusters via Bondi Accretion

    Science.gov (United States)

    Murray, Norman; Chang, Philip

    2012-02-01

    Essentially all stars form in giant molecular clouds (GMCs). However, inside GMCs, most of the gas does not participate in star formation; rather, denser gas accumulates in clumps in the GMC, with the bulk of the stars in a given GMC forming in a few of the most massive clumps. In the Milky Way, these clumps have masses M cl ffM_{cl}/\\tau _{cl}, with epsilonff ≈ 0.017). However, after ~2 GMC free-fall times τGMC, the clump accretion rate accelerates rapidly; formally, the clump can accrete the entire GMC in ~3τGMC. At the same time, the star formation rate accelerates, tracking the Bondi accretion rate. If the GMC is disrupted by feedback from the largest clump, half the stars in that clump form in the final τGMC before the GMC is disrupted. The theory predicts that the distribution of effective star formation rates, measured per GMC free-fall time, is broad, ranging from ~0.001 up to 0.1 or larger and that the mass spectrum of star clusters is flatter than that of clumps, consistent with observations.

  17. Fallback Disks, Magnetars and Other Neutron Stars

    OpenAIRE

    Alpar, M. Ali; Caliskan, S.; Ertan, U.

    2012-01-01

    The presence of matter with angular momentum, in the form of a fallback disk around a young isolated neutron star will determine its evolution. This leads to an understanding of many properties of different classes of young neutron stars, in particular a natural explanation for the period clustering of AXPs, SGRs and XDINs. The spindown or spinup properties of a neutron star are determined by the dipole component of the magnetic field. The natural possibility that magnetars and other neutron ...

  18. The neutron radii of Lead and neutron stars

    OpenAIRE

    Horowitz, Charles J.; Piekarewicz, Jorge

    2001-01-01

    A new relation between the neutron skin of a heavy nucleus and the radius of a neutron star is proposed: the larger the neutron skin of the nucleus the larger the radius of the star. Relativistic models that reproduce a variety of ground-state observables can not determine uniquely the neutron skin of a heavy nucleus. Thus, a large range of neutron skins is generated by supplementing the models with nonlinear couplings between isoscalar and isovector mesons. We illustrate how the correlation ...

  19. Quasi-quantized Disk Structure around Rotating Neutron Stars

    CERN Document Server

    Wang, Joan Jing

    2013-01-01

    In accreting neutron star (NS) low-mass X-ray binary (LMXB) systems, NS accretes material from its low-mass companion via a Keplerian disk. In a viscous accretion disk, inflows orbit the NS and spiral in due to dissipative processes, such as the viscous process and collisions of elements. The dynamics of accretion flows in the inner region of an accretion disk is significantly affected by the rotation of NS. The rotation makes NS, thus the space-time metric, deviate from the originally spherical symmetry, and leads to gravitational quadrupole, on one hand. On the other hand, a rotating NS drags the local inertial frame in its vicinity, which is known as the rotational frame-dragging effect. In this paper, we investigate the motion of accretion flows in the inner region of accreting NS/LMXBs and demonstrate that the rotational effects of NS result in a band of quasi-quantized structure in the inner region of the accretion disk, which may account for frequencies seen in X-ray variability, such as quasi-periodic...

  20. Thermonuclear Burning as a Probe of Neutron Star

    Science.gov (United States)

    Strohmayer, Tod

    2008-01-01

    Thermonuclear fusion is a fundamental process taking place in the matter transferred onto neutron stars in accreting binary systems. The heat deposited by nuclear reactions becomes readily visible in the X-ray band when the burning is either unstable or marginally stable, and results in the rich phenomenology of X-ray bursts, superbursts, and mHz quasiperiodic oscillations. Fast X-ray timing observations with NASA's Rossi X-ray Timing Explorer (RXTE) over the past decade have revealed a wealth of new phenomena associated with thermonuclear burning on neutron stars, including the discovery of nuclear powered pulsations during X-ray bursts and superbursts. I will briefly review our current observational and theoretical understanding of these new phenomena, with an emphasis on recent findings, and discuss what they are telling us about the structure of neutron stars.

  1. Neutrino Flavor Evolution in Binary Neutron Star Merger Remnants

    CERN Document Server

    Frensel, Maik; Volpe, Cristina; Perego, Albino

    2016-01-01

    We study the neutrino flavor evolution in the neutrino-driven wind from a binary neutron star merger remnant consisting of a massive neutron star surrounded by an accretion disk. With the neutrino emission characteristics and the hydrodynamical profile of the remnant consistently extracted from a three-dimensional simulation, we compute the flavor evolution by taking into account neutrino coherent forward scattering off ordinary matter and neutrinos themselves. We employ a "single-trajectory" approach to investigate the dependence of the flavor evolution on the neutrino emission location and angle. We also show that the flavor conversion in the merger remnant can affect the (anti-)neutrino absorption rates on free nucleons and may thus impact the $r$-process nucleosynthesis in the wind. We discuss the sensitivity of such results on the change of neutrino emission characteristics, also from different neutron star merger simulations.

  2. Accretion rates and accretion tracers of Herbig Ae/Be stars

    CERN Document Server

    Mendigutía, I; Montesinos, B; Mora, A; Muzerolle, J; Eiroa, C; Oudmaijer, R D; Merín, B

    2011-01-01

    This work aims to derive accretion rates for a sample of 38 HAeBe stars. We apply magnetospheric accretion (MA) shock modelling to reproduce the observed Balmer excesses. We look for possible correlations with the strength of the Halpha, [OI]6300, and Brgamma emission lines. The median mass accretion rate is 2 x 10^-7 Msun yr^-1 in our sample. The model fails to reproduce the large Balmer excesses shown by the four hottest stars (T* > 12000 K). We derive Macc propto M*^5 and Lacc propto L*^1.2 for our sample, with scatter. Empirical calibrations relating the accretion and the Halpha, [OI]6300, and Brgamma luminosities are provided. The slopes in our expressions are slightly shallower than those for lower mass stars, but the difference is within the uncertainties, except for the [OI]6300 line. The Halpha 10% width is uncorrelated with Macc, unlike for the lower mass regime. The mean Halpha width shows higher values as the projected rotational velocities of HAe stars increase, which agrees with MA. The accretio...

  3. Fab Four Neutron Stars

    CERN Document Server

    Maselli, Andrea; Minamitsuji, Masato; Berti, Emanuele

    2016-01-01

    Horndeski's theory of gravity is the most general scalar-tensor theory with a single scalar whose equations of motion contain at most second-order derivatives. A subsector of Horndeski's theory known as "Fab Four" gravity allows for dynamical self-tuning of the quantum vacuum energy, and therefore it has received particular attention in cosmology as a possible alternative to the $\\Lambda$CDM model. Here we study compact stars in Fab Four gravity, which includes as special cases general relativity ("George"), Einstein-dilaton-Gauss-Bonnet gravity ("Ringo"), theories with a nonminimal coupling with the Einstein tensor ("John") and theories involving the double-dual of the Riemann tensor ("Paul"). We generalize and extend previous results in theories of the John class and we show that there are no viable compact star solutions in theories of the Paul class.

  4. Nuclear fusion and carbon flashes on neutron stars

    Science.gov (United States)

    Taam, R. E.; Picklum, R. E.

    1978-01-01

    This paper reports on detailed calculations of the thermal evolution of the carbon-burning shells in the envelopes of accreting neutron stars for mass-accretion rates of 1 hundred-billionth to 2 billionths of a solar mass per yr and neutron-star masses of 0.56 and 1.41 solar masses. The work of Hansen and Van Horn (1975) is extended to higher densities, and a more detailed treatment of nuclear processing in the hydrogen- and helium-burning regions is included. Results of steady-state calculations are presented, and results of time-dependent computations are examined for accretion rates of 3 ten-billionths and 1 billionth of solar mass per yr. It is found that two evolutionary sequences lead to carbon flashes and that the carbon abundance at the base of the helium shell is a strong function of accretion rate. Upper limits are placed on the accretion rates at which carbon flashes will be important.

  5. On the Formation of Massive Stars by Accretion

    CERN Document Server

    Norberg, P; Norberg, Peder; Maeder, Andre

    2000-01-01

    (Abriged) At present, there are two scenarios for the formation of massive stars: 1) The accretion scenario and 2) The coalescence scenario, which implies the merging of intermediate mass stars. We examine here some properties of the first one. We calculate three different sets of birthlines, i.e. tracks followed by a continuously accreting star. First, three models with a constant accretion rate ($\\dot{M}_{\\rm{accr}}$ = $10^{-6}$, $10^{-5}$, $10^{-4}$ M$_{\\odot}$ yr$^{-1}$). Then several birthlines following the accretion models of Bernasconi and Maeder (\\cite{BM96}), which have $\\dot{M}_{\\rm{accr}}$ increasing only slightly with mass. Finally we calculate several birthlines for which $\\dot{M}_{accr} = \\dot{M}_{\\mathrm{ref}} ({\\frac{M}{M_{\\odot}}}) ^{\\phi}$, with values of $\\phi$ equal to 0.5, 1.0 and 1.5 and also for different values of $\\dot{M}_{\\mathrm{ref}}$. The best fit to the observations of PMS stars in the HR diagram is achieved for $\\phi$ between 1.0 or 1.5 and for $\\dot{M}_{\\mathrm{ref}} \\simeq 10...

  6. Genetic selection of neutron star structure matching the X-ray observations

    CERN Document Server

    Stuchlik, Zdenek; Torok, Gabriel; Urbanec, Martin; Bakala, Pavel

    2008-01-01

    Assuming a resonant origin of the quasiperiodic oscillations observed in the X-ray neutron star binary systems, we apply a genetic algorithm method for selection of neutron star models. It was suggested that pairs of kilo-Hertz peaks in the X-ray Fourier power density spectra of some neutron stars reflect a non-linear resonance between two modes of accretion disk oscillations. In several specific models, the two modes are related to physically plausible combinations of Keplerian, vertical and radial frequencies of geodesic orbital motion. We investigate this concept for a specific neutron star source, a fixed pair of modes and various neutron star equations of state. Each neutron star model is characterized by the equation of state (EOS), rotation frequency ($\\Omega$) and central energy density ($\\rho_\\mathrm c$). These determine the spacetime structure governing geodesic motion and position dependent radial and vertical epicyclic oscillations related to the stable circular geodesics. When the parameters of n...

  7. Atmospheres and radiating surfaces of neutron stars

    CERN Document Server

    Potekhin, A Y

    2014-01-01

    The beginning of the 21st century was marked by a breakthrough in the studies of thermal radiation of neutron stars. Observations with modern space telescopes have provided a wealth of valuable information. Being correctly interpreted, this information can elucidate physics of superdense matter in the interiors of these stars. The theory of formation of thermal spectra of neutron stars is based on the physics of plasmas and radiative processes in stellar photospheres. It provides the framework for interpretation of observational data and for extracting neutron-star parameters from these data. This paper presents a review of the current state of the theory of surface layers of neutron stars and radiative processes in these layers, with the main focus on the neutron stars that possess strong magnetic fields. In addition to the conventional deep (semi-infinite) atmospheres, radiative condensed surfaces of neutron stars and "thin" (finite) atmospheres are also considered.

  8. Rapidly rotating neutron star progenitors

    CERN Document Server

    Postnov, K A; Kolesnikov, D A; Popov, S B; Porayko, N K

    2016-01-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In the present paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, $\\tau_c$. The validity of this approach is checked by direct MESA calculations ...

  9. Neutrino Processes in Neutron Stars

    Directory of Open Access Journals (Sweden)

    Kolomeitsev E.E.

    2010-10-01

    Full Text Available The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities. The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong

  10. Theory of wind accretion

    OpenAIRE

    Shakura N.I.; Postnov K.A.; Kochetkova A.Yu.; Hjalmarsdotter L.

    2013-01-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about $4\\...

  11. Vertical Structure of Magnetized Accretion Disks around Young Stars

    CERN Document Server

    Lizano, S; Boehler, Y; D'Alessio, P

    2015-01-01

    We model the vertical structure of magnetized accretion disks subject to viscous and resistive heating, and irradiation by the central star. We apply our formalism to the radial structure of magnetized accretion disks threaded by a poloidal magnetic field dragged during the process of star formation developed by Shu and coworkers. We consider disks around low mass protostars, T Tauri, and FU Orionis stars. We consider two levels of disk magnetization, $\\lambda_{sys} = 4$ (strongly magnetized disks), and $\\lambda_{sys} = 12$ (weakly magnetized disks). The rotation rates of strongly magnetized disks have large deviations from Keplerian rotation. In these models, resistive heating dominates the thermal structure for the FU Ori disk. The T Tauri disk is very thin and cold because it is strongly compressed by magnetic pressure; it may be too thin compared with observations. Instead, in the weakly magnetized disks, rotation velocities are close to Keplerian, and resistive heating is always less than 7\\% of the visc...

  12. Accretion of dark matter by stars.

    Science.gov (United States)

    Brito, Richard; Cardoso, Vitor; Okawa, Hirotada

    2015-09-11

    Searches for dark matter imprints are one of the most active areas of current research. We focus here on light fields with mass m_{B}, such as axions and axionlike candidates. Using perturbative techniques and full-blown nonlinear numerical relativity methods, we show the following. (i) Dark matter can pile up in the center of stars, leading to configurations and geometries oscillating with a frequency that is a multiple of f=2.5×10^{14}(m_{B}c^{2}/eV)  Hz. These configurations are stable throughout most of the parameter space, and arise out of credible mechanisms for dark-matter capture. Stars with bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories. We also show that (ii) collapse of the host star to a black hole is avoided by efficient gravitational cooling mechanisms.

  13. MRI-driven Accretion onto Magnetized stars: Axisymmetric MHD Simulations

    CERN Document Server

    Romanova, Marina M; Koldoba, Alexander V; Lovelace, Richard V E

    2011-01-01

    We present the first results of a global axisymmetric simulation of accretion onto rotating magnetized stars from a turbulent, MRI-driven disk. The angular momentum is transported outward by the magnetic stress of the turbulent flow with a rate corresponding to a Shakura-Sunyaev viscosity parameter alpha\\approx 0.01-0.04. The result of the disk-magnetosphere interaction depends on the orientation of the poloidal field in the disk relative to that of the star at the disk-magnetosphere boundary. If fields have the same polarity, then the magnetic flux is accumulated at the boundary and blocks the accretion which leads to the accumulation of matter at the boundary. Subsequently, this matter accretes to the star in outburst before accumulating again. Hence, the cycling, `bursty' accretion is observed. If the disc and stellar fields have opposite polarity, then the field reconnection enhances the penetration of the disk matter towards the deeper field lines of the magnetosphere. However, the magnetic stress at the...

  14. Neutron stars as cosmic hadron physics laboratories

    Science.gov (United States)

    Pines, D.

    1985-01-01

    Extensive observations of Her-1 with the Exosat satellite have led to a new understanding of both the dynamics of neutron-star superfluids and the free precession of neutron stars. Detailed microscopic calculations on neutron matter and the properties of the pinned crustal superfluid are provided to serve as a basis for comparing theory with observation on neutron stars. Topics discussed include the Hadron matter equation of state, neutron star structure, Hadron superfluids, the vortex creep theory, Vela pulsar glitches, astrophysical constraints on neutron matter energy gaps, the 35 day periodicity of Her-1, and the neutron matter equation of state. It is concluded that since the post-glitch fits and the identification of the 35th periodicity in Her X-1 as stellar wobble require a rigid neutron matter equation of state, the astrophysical evidence for such an equation seems strong, as well as that for an intermediate Delta(rho) curve.

  15. Fallback disks, magnetars and other neutron stars

    OpenAIRE

    Alpar, M. Ali; Çalışkan, Şirin; Caliskan, Sirin; Ertan, Ünal; Ertan, Unal

    2012-01-01

    The presence of matter with angular momentum, in the form of a fallback disk around a young isolated neutron star will determine its evolution. This leads to an understanding of many properties of different classes of young neutron stars, in particular a natural explanation for the period clustering of AXPs, SGRs and XDINs. The spindown or spinup properties of a neutron star are determined by the dipole component of the magnetic field. The natural possibility that magnetars and other neutr...

  16. White Dwarfs, Neutron Stars and Black Holes

    Science.gov (United States)

    Szekeres, P.

    1977-01-01

    The three possible fates of burned-out stars: white dwarfs, neutron stars and black holes, are described in elementary terms. Characteristics of these celestial bodies, as provided by Einstein's work, are described. (CP)

  17. Discovery of an Accretion-Fed Corona in an Accreting Young Star

    Science.gov (United States)

    Wolk, Scott J.; Brickhouse, N.; Cranmer, S.; Dupree, A.; Luna, G. J. M.

    2010-01-01

    A deep (489 ks) Chandra High Energy Transmission Grating spectrum of the classical T Tauri star TW Hydrae shows a new type of coronal structure that is produced by the accretion process. In the standard model for a stellar dipole, the magnetic field truncates the disk and channels the accreting material onto the star. The He-like diagnostic lines of Ne IX provide excellent agreement with the shock conditions predicted by this model, with an electron temperature of 2.5 MK and electron density of 3 times 1012 cm-3 (see also Kastner et al. 2002). However, the standard model completely fails to predict the post-shock conditions, significantly overpredicting both the density and absorption observed at O VII. Instead the observations require a second "post-shock" component with 30 times more mass and 1000 times larger volume than found at the shock itself. We note that in the standard model, the shocked plasma is conveniently located near both closed (coronal) and open (stellar wind) magnetic structures, as the magnetic field connecting the star and disk also separates the open and closed field regions on the stellar surface. The shocked plasma thus can provide the energy to heat not only the post-shock plasma, but also adjacent regions (i.e. an "accretion-fed corona") and drive stellar material into surrounding coronal structures. These observations provide new clues to the puzzling soft X-ray excess found in accreting systems, which depends on both the presence of accretion and the level of coronal activity (Guedel and Telleschi 2007). This work is partially supported by CXO grant G07-8018X.

  18. Dynamics of Rotating, Magnetized Neutron Stars

    OpenAIRE

    Liebling, Steven L.

    2010-01-01

    Using a fully general relativistic implementation of ideal magnetohydrodynamics with no assumed symmetries in three spatial dimensions, the dynamics of magnetized, rigidly rotating neutron stars are studied. Beginning with fully consistent initial data constructed with Magstar, part of the Lorene project, we study the dynamics and stability of rotating, magnetized polytropic stars as models of neutron stars. Evolutions suggest that some of these rotating, magnetized stars may be minimally uns...

  19. Magnetic fields in Neutron Stars

    CERN Document Server

    Viganò, Daniele; Miralles, Juan A; Rea, Nanda

    2015-01-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  20. The Dark Side of Neutron Stars

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos

    2013-01-01

    We review severe constraints on asymmetric bosonic dark matter based on observations of old neutron stars. Under certain conditions, dark matter particles in the form of asymmetric bosonic WIMPs can be eectively trapped onto nearby neutron stars, where they can rapidly thermalize and concentrate...... in the core of the star. If some conditions are met, the WIMP population can collapse gravitationally and form a black hole that can eventually destroy the star. Based on the existence of old nearby neutron stars, we can exclude certain classes of dark matter candidates....

  1. The Dark Side of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Chris Kouvaris

    2013-01-01

    Full Text Available We review severe constraints on asymmetric bosonic dark matter based on observations of old neutron stars. Under certain conditions, dark matter particles in the form of asymmetric bosonic WIMPs can be effectively trapped onto nearby neutron stars, where they can rapidly thermalize and concentrate in the core of the star. If some conditions are met, the WIMP population can collapse gravitationally and form a black hole that can eventually destroy the star. Based on the existence of old nearby neutron stars, we can exclude certain classes of dark matter candidates.

  2. Outflows from neutron star merger remnant disks: nucleosynthesis and kilonovae

    Science.gov (United States)

    Fernandez, Rodrigo; Lippuner, Jonas; Roberts, Luke; Tchekhovskoy, Alexander; Foucart, Francois; Metzger, Brian; Kasen, Daniel; Quataert, Eliot

    2016-03-01

    The accretion disk formed in a neutron star merger can drive powerful winds on timescales of 100ms to seconds after coalescence. The wind material is more strongly irradiated by neutrinos than the dynamical ejecta, and hence has a less neutron-rich composition, with implications for r-process element synthesis and the radioactively-powered kilonova transient. This talk will present preliminary results from projects aimed at quantifying (1) the nucleosynthesis yield from disks around hypermassive neutron stars, (2) the effect of MHD turbulence on mass ejection when a black hole sits at the center, and (3) the interaction between disk wind and dynamical ejecta when the relative masses of these components vary.

  3. Forming an O Star via Disk Accretion?

    OpenAIRE

    Qiu, Keping; Zhang, Qizhou; Beuther, Henrik; Fallscheer, Cassandra

    2012-01-01

    We present a study of outflow, infall, and rotation in a ~10^5 Lsun (solar luminosity) star-forming region, IRAS 18360-0537, with Submillimeter Array (SMA) and IRAM 30m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of ~80 Msun (solar mass) and harbors two condensations, MM1 and MM2. The CO (2--1) and SiO (5--4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320+/-50...

  4. The magnetic field evolution of ULX NuSTAR J095551+6940.8 in M82 - a legacy of accreting magnetar

    Science.gov (United States)

    Pan, Y. Y.; Song, L. M.; Zhang, C. M.; Tong, H.

    2016-09-01

    Ultraluminous X-ray sources are usually believed to be black holes with mass about 102-3 M⊙. However, the recent discovery of NuSTAR J095551+6940.8 in M82 by Bachetti et al. shows that it holds the spin period P = 1.37 s and period derivative dot{P}≈ -2× 10^{-10} s s^{-1}, which provides a strong evidence that some ultraluminous X-ray sources could be neutron stars. We obtain that the source may be an evolved magnetar according to our simulation by employing the model of accretion induced the polar magnetic field decay and standard spin-up torque of an accreting neutron star. The results show that NuSTAR J095551+6940.8 is still in the spin-up process, and the polar magnetic field decays to about 4.5 × 1012 G after accreting ˜10-2.5 M⊙, while the strong magnetic field exists in the out-polar region, which could be responsible for the observed low field magnetar. The ultra luminosity of the source can be explained by the beaming effect and two kinds of accretion-radial random accretion and disc accretion. Since the birth rate of magnetars is about ten per cent of the normal neutron stars, we guess that several ultraluminous X-ray sources should share the similar properties to that of NuSTAR J095551+6940.8.

  5. NuSTAR Discovery of a Cyclotron Line in the Accreting X-Ray Pulsar IGR J16393-4643

    Science.gov (United States)

    Bodaghee, Arash; Tomsick, John A.; Fornasini, Francesca M.; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Zhang, William W.

    2016-06-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by the Nuclear Spectroscope Telescope Array in the 3–79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of {29.3}-1.3+1.1 keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5 ± 0.1) × 1012 G. The known pulsation period is now observed at 904.0 ± 0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of \\dot{P}=-2× {10}-8 s s‑1 (‑0.6 s per year, or a frequency derivative of \\dot{ν }=3× {10}-14 Hz s‑1). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly in corotation with the neutron star whose magnetospheric radius is around 2 × 108 cm.

  6. Neutron-Phonon Interaction in Neutron Star Crusts

    OpenAIRE

    Sedrakian, Armen

    1998-01-01

    The phonon spectrum of Coulomb lattice in neutron star crusts above the neutron drip density is affected by the interaction with the ambient neutron Fermi-liquid. For the values of the neutron-phonon coupling constant in the range $0.1 \\le \\lambda \\le 1$ an appreciable renormalization of the phonon spectrum occurs which can lead to a lattice instability manifested in an exponential growth of the density fluctuations. The BCS phonon exchange mechanism of superconductivity leads to neutron pair...

  7. Low-frequency quasi-periodic oscillations in black hole and neutron star LMXBs

    Science.gov (United States)

    Ingram, Adam

    2016-07-01

    Low-frequency quasi-periodic oscillations (QPOs) are routinely seen in the X-ray flux of accreting black holes and neutron stars. Since the QPO frequency correlates with the low frequency power spectral break in the same manner for both object classes, it is reasonable to believe that these oscillations have the same physical origin in neutron stars as they do in black holes. However, recent successes in modelling black hole low frequency QPOs as Lense-Thirring precession contrast sharply with failures of the same model in neutron stars. This could be attributable to the significant extra complexity, both in the physics and in the observed power spectra, of accreting neutron stars when compared with black holes. Alternatively, the QPO mechanism really is the same for the two object classes, but in that case, why does the Lense-Thirring model work so well for black holes? I will review the current state of this field.

  8. Life Extinctions due to Neutron Star Mergers

    CERN Document Server

    Dar, Arnon; Shaviv, N J; Dar, Arnon; Laor, Ari; Shaviv, Nir J.

    1996-01-01

    In a recent paper, Shaviv and Dar have shown that highly relativistic ejecta of high Z material from merger or accretion induced collapse of neutron stars can boost and beam star-light in dense stellar regions into cosmological gamma ray bursts (GRBs) whose predicted properties reproduce remarkably well the observed properties of GRBs. Generally, only a small fraction of the relativistic kinetic energy of the ejecta is converted into gamma rays and most of it is injected into the interstellar medium as a very powerful cosmic ray burst (CRB). Here we show that such CRBs can extinct life on Earth-like planets if they are closer than $\\sim 1 ~kpc$ from the merger/explosion. Such CRBs produce lethal fluxes of atmospheric muons at ground, underground and underwater. They also destroy the ozone layer, radioactivate the atmosphere and the surface of the planet and induce large climatic changes. They are enormously more violent than the GRBs alone or supernova explosions. In Milky-Way like galaxies they destroy life ...

  9. Neutron Star Properties with Hyperons

    OpenAIRE

    Whittenbury, D. L.; Carroll, J D; Thomas, A. W.; Tsushima, K; Stone, J. R.

    2012-01-01

    In the light of the recent discovery of a neutron star with a mass accurately determined to be almost two solar masses, it has been suggested that hyperons cannot play a role in the equation of state of dense matter in $\\beta$-equilibrium. We re-examine this issue in the most recent development of the quark-meson coupling model. Within a relativistic Hartree-Fock approach and including the full tensor structure at the vector-meson-baryon vertices, we find that not only must hyperons appear in...

  10. Hydromagnetic Instabilities in Neutron Stars

    CERN Document Server

    Lasky, Paul D; Kokkotas, Kostas D; Glampedakis, Kostas

    2011-01-01

    We model the non-linear ideal magnetohydrodynamics of poloidal magnetic fields in neutron stars in general relativity assuming a polytropic equation of state. We identify familiar hydromagnetic modes, in particular the 'sausage/varicose' mode and 'kink' instability inherent to poloidal magnetic fields. The evolution is dominated by the kink instability, which causes a cataclysmic reconfiguration of the magnetic field. The system subsequently evolves to new, non-axisymmetric, quasi-equilibrium end-states. The existence of this branch of stable quasi-equilibria may have consequences for magnetar physics, including flare generation mechanisms and interpretations of quasi-periodic oscillations.

  11. Fossil magnetic field of accretion disks of young stars

    OpenAIRE

    Dudorov, A. E.; Khaibrakhmanov, S. A.

    2014-01-01

    We elaborate the model of accretion disks of young stars with the fossil large-scale magnetic field in the frame of Shakura and Sunyaev approximation. Equations of the MHD model include Shakura and Sunyaev equations, induction equation and equations of ionization balance. Magnetic field is determined taking into account ohmic diffusion, magnetic ambipolar diffusion and buoyancy. Ionization fraction is calculated considering ionization by cosmic rays and X-rays, thermal ionization, radiative r...

  12. The Milky Way - Pulsars and Isolated Neutron Stars

    OpenAIRE

    Becker, W.; Pavlov, G. G.

    2002-01-01

    CONTENTS The Milky Way -- Pulsars and Isolated Neutron Stars / Introduction: Historical Overview / Physics and Astrophysics of Isolated Neutron Stars / Rotation-powered Pulsars: The Magnetic Braking Model / High-energy Emission Models / Magnetospheric Emission Models / Thermal Evolution of Neutron Stars / Photospheric Emission from Cooling Neutron Stars / The Current Picture of High-Energy Emission Properties of Isolated Neutron Stars / Young Neutron Stars in Supernova Remnants / Crab-like Pu...

  13. GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes

    Science.gov (United States)

    Meliani, Z.; Grandclément, P.; Casse, F.; Vincent, F. H.; Straub, O.; Dauvergne, F.

    2016-08-01

    In the close vicinity of a compact object strong gravity imprints its signature onto matter. Systems that contain at least one compact object are observed to exhibit extreme physical properties and typically emit highly energetic radiation. The nature of the compact objects that produce the strongest gravitational fields is to date not settled. General relativistic numerical simulations of fluid dynamics around black holes, neutron stars, and other compact objects such as boson stars (BSs) may give invaluable insights into this fundamental question. In order to study the behavior of fluid in the strong gravity regime of an arbitrary compact object we develop a new general relativistic hydrodynamics code. To this end we extend the existing versatile adaptive mesh refinement code MPI-AMRVAC into a general relativistic hydrodynamics framework and adapt it for the use of numerically given spacetime metrics. In the present article we study accretion flows in the vicinity of various types of BSs whose numerical metrics are calculated by the KADATH spectral solver library. We design specific tests to check the reliability of any code intending to study BSs and compare the solutions with those obtained in the context of Schwarzschild black holes. We perform the first ever general relativistic hydrodynamical simulations of gas accretion by a BS. The behavior of matter at small distances from the center of a BS differs notably from the black hole case. In particular we demonstrate that in the context of Bondi spherical accretion the mass accretion rate onto non-rotating BSs remains constant whereas it increases for Schwarzschild black holes. We also address the scenario of non-spherical accretion onto BSs and show that this may trigger mass ejection from the interior of the BS. This striking feature opens the door to forthcoming investigations regarding accretion-ejection flows around such types of compact objects.

  14. Constraints on the mass and radius of neutron stars from X-ray observations

    OpenAIRE

    Li, Zhaosheng

    2015-01-01

    This article gives a very brief introduction about measuring the mass and radius of neutron star from X-ray observations. The masses and radii of neutron stars can be determined from photospheric radius expansion bursts in low-mass X-ray binaries, X-ray pulse profile modeling in accreting X-ray pulsars, gravitational redshift measurement in low-mass X-ray binaries and thermal X-ray spectral fitting in quiescent low-mass X-ray binaries.

  15. On the conversion of neutron stars into quark stars

    CERN Document Server

    Pagliara, Giuseppe

    2013-01-01

    The possible existence of two families of compact stars, neutron stars and quark stars, naturally leads to a scenario in which a conversion process between the two stellar objects occurs with a consequent release of energy of the order of $10^{53}$ erg. We discuss recent hydrodynamical simulations of the burning process and neutrino diffusion simulations of cooling of a newly formed strange star. We also briefly discuss this scenario in connection with recent measurements of masses and radii of compact stars.

  16. Neutron Star Interior Composition Explorer (NICE)

    Science.gov (United States)

    Gendreau, Keith C.; Arzoumanian, Zaven

    2008-01-01

    This viewgraph presentation contains an overview of the mission of the Neutron Star Interior Composition Explorer (NICE), a proposed International Space Station (ISS) payload dedicated ot the study of neutron stars. There are also reviews of the Science Objectives of the payload,the science measurements, the design and the expected performance for the instruments for NICE,

  17. Forming an O Star via Disk Accretion?

    CERN Document Server

    Qiu, Keping; Beuther, Henrik; Fallscheer, Cassandra

    2012-01-01

    We present a study of outflow, infall, and rotation in a ~10^5 Lsun (solar luminosity) star-forming region, IRAS 18360-0537, with Submillimeter Array (SMA) and IRAM 30m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of ~80 Msun (solar mass) and harbors two condensations, MM1 and MM2. The CO (2--1) and SiO (5--4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320+/-50 K and a mass of ~13 Msun. The outflow has a gas mass of 54 Msun and a dynamical timescale of 8,000 yr. The kinematics of the HMC is probed by high-excitation CH3OH and CH3CN lines, which are detected at sub-arcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P-Cygni profile, and the estimated mass infall rate, 1.5x10^{-3} Msun/yr, is well comparable to ...

  18. Cooling of Neutron Stars and 3P_2 neutron gap

    OpenAIRE

    Grigorian, H.; Voskresensky, D.N.(National Research Nuclear University (MEPhI), Moscow, 115409, Russia)

    2005-01-01

    We study the dependence of the cooling of isolated neutron stars on the magnitude of the $3P_2$ neutron gap. It is demonstrated that our ``Nuclear medium cooling scenario'' is in favor of a suppressed value of the $3P_2$ neutron gap.

  19. Electromagnetic extraction of energy from black hole-neutron star binaries

    CERN Document Server

    McWilliams, Sean T

    2011-01-01

    The coalescence of black hole-neutron star binaries is expected to be a principal source of gravitational waves for the next generation of detectors, Advanced LIGO and Advanced Virgo. Ideally, these and other gravitational wave sources would have a distinct electromagnetic counterpart, as significantly more information could be gained through two separate channels. In addition, since these detectors will probe distances with non-negligible redshift, a coincident observation of an electromagnetic counterpart to a gravitational wave signal would facilitate a novel measurement of dark energy [1]. For black hole masses not much larger than the neutron star mass, the tidal disruption and subsequent accretion of the neutron star by the black hole provides one avenue for generating an electromagnetic counterpart [2]. However, in this work, we demonstrate that, for all black hole-neutron star binaries observable by Advanced LIGO/Virgo, the interaction of the black hole with the magnetic field of the neutron star will...

  20. The Masses and Spins of Neutron Stars and Stellar-Mass Black Holes

    CERN Document Server

    Miller, M Coleman

    2014-01-01

    Stellar-mass black holes and neutron stars represent extremes in gravity, density, and magnetic fields. They therefore serve as key objects in the study of multiple frontiers of physics. In addition, their origin (mainly in core-collapse supernovae) and evolution (via accretion or, for neutron stars, magnetic spindown and reconfiguration) touch upon multiple open issues in astrophysics. In this review, we discuss current mass and spin measurements and their reliability for neutron stars and stellar-mass black holes, as well as the overall importance of spins and masses for compact object astrophysics. Current masses are obtained primarily through electromagnetic observations of binaries, although future microlensing observations promise to enhance our understanding substantially. The spins of neutron stars are straightforward to measure for pulsars, but the birth spins of neutron stars are more difficult to determine. In contrast, even the current spins of stellar-mass black holes are challenging to measure. ...

  1. Urca cooling pairs in the neutron star ocean and their effect on superbursts

    CERN Document Server

    Deibel, Alex; Schatz, Hendrik; Brown, Edward F; Cumming, Andrew

    2016-01-01

    An accretion outburst onto a neutron star deposits hydrogen-rich and/or helium-rich material into the neutron star's envelope. Thermonuclear burning of accreted material robustly produces Urca pairs --- pairs of nuclei that undergo cycles of electron-capture and beta-decay. The strong T^5 dependence of the Urca cooling neutrino luminosity means that Urca pairs in the neutron star interior potentially remove heat from accretion-driven nuclear reactions. In this study, we identify Urca pairs in the neutron star's ocean --- a plasma of ions and electrons overlaying the neutron star crust --- and demonstrate that Urca cooling occurs at all depths in the ocean. We find that Urca pairs in the ocean and crust lower the ocean's steady state temperature during an accretion outburst and unstable carbon ignition, which is thought to trigger superbursts, occurs deeper than it would otherwise. Cooling superburst light curves, however, are only marginally impacted by cooling from Urca pairs because the superburst peak lumi...

  2. Internal Heating of Old Neutron Stars: Contrasting Different Mechanisms

    CERN Document Server

    Gonzalez, Denis

    2010-01-01

    Context: The standard cooling models of neutron stars predict temperatures $T10^{7}$ yr. However, the likely thermal emission detected from the millisecond pulsar J0437-4715, of spin-down age $t_s \\sim 7\\times10^9$ yr, implies a temperature $T\\sim 10^5$ K. Thus, a heating mechanism needs to be added to the cooling models in order to obtain agreement between theory and observation. Aims: Several internal heating mechanisms could be operating in neutron stars, such as magnetic field decay, dark matter accretion, crust cracking, superfluid vortex creep, and non-equilibrium reactions ("rotochemical heating"). We study these mechanisms in order to establish which could be the dominant source of thermal emission from old pulsars. Methods: We show by simple estimates that magnetic field decay, dark matter accretion, and crust cracking mechanism are unlikely to have a significant effect on old neutron stars. The thermal evolution for the other mechanisms is computed using the code of Fern\\'andez and Reisenegger. Give...

  3. Neutron Star Crust and Molecular Dynamics Simulation

    CERN Document Server

    Horowitz, C J; Schneider, A; Berry, D K

    2011-01-01

    In this book chapter we review plasma crystals in the laboratory, in the interior of white dwarf stars, and in the crust of neutron stars. We describe a molecular dynamics formalism and show results for many neutron star crust properties including phase separation upon freezing, diffusion, breaking strain, shear viscosity and dynamics response of nuclear pasta. We end with a summary and discuss open questions and challenges for the future.

  4. Constraining the Birth Events of Neutron Stars

    CERN Document Server

    Kaspi, V M

    2002-01-01

    The prescient remark by Baade and Zwicky that supernovae beget neutron stars did little to prepare us for the remarkable variety of observational manifestations such objects display. Indeed, during the first thirty years of the empirical study of neutron stars, only a handful were found to be associated with the remnants of exploded stars. But recent X-ray and radio observations have gone a long way toward justifying the theoretical link between supernovae and neutron stars, and have revealed the wide range of properties with which newborn compact remnants are endowed. We review here our current state of knowledge regarding neutron star-supernova remnant associations, pointing out the pitfalls and the promise which such links hold. We discuss work on the ranges of neutron star velocities, initial spin periods, and magnetic field strengths, as well as on the prevalence of pulsar wind nebulae. The slots in neutron star demography held by AXPs, SGRs, radio-quiet neutron stars, and other denizens of the zoo are c...

  5. NuSTAR discovery of a cyclotron line in the accreting X-ray pulsar IGR J16393-4643

    CERN Document Server

    Bodaghee, Arash; Fornasini, Francesca A; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E; Christensen, Finn E; Craig, William W; Hailey, Charles J; Harrison, Fiona A; Zhang, William W

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by NuSTAR in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of 29.3(+1.1/-1.3) keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5+/-0.1)e12 G. The known pulsation period is now observed at 904.0+/-0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of P' = -2e-8 s/s (-0.6 s per year, or a frequency derivative of nu' = 3e-14 Hz/s ). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly i...

  6. Neutron Star Mass-Radius Constraints using Evolutionary Optimization

    CERN Document Server

    Stevens, A L; Leahy, D A; Morsink, S M

    2016-01-01

    The equation of state of cold supra-nuclear-density matter, such as in neutron stars, is an open question in astrophysics. A promising method for constraining the neutron star equation of state is modelling pulse profiles of thermonuclear X-ray burst oscillations from hotspots on accreting neutron stars. The pulse profiles, constructed using spherical and oblate neutron star models, are comparable to what would be observed by a next-generation X-ray timing instrument like ASTROSAT, NICER, or LOFT. In this paper we showcase the use of an evolutionary optimization algorithm to fit pulse profiles to determine the best-fitting masses and radii. By fitting synthetic data, we assess how well the optimization algorithm can recover the input parameters. Multiple Poisson realizations of the synthetic pulse profiles were fitted with the Ferret Genetic Algorithm to analyze both statistical and systematic uncertainty, and to explore how the goodness-of-fit depends on the input parameters. The best-determined parameter is...

  7. Magnetospheric accretion on the T Tauri star BP Tauri

    CERN Document Server

    Donati, J F; Gregory, S G; Petit, P; Paletou, F; Bouvier, J; Dougados, C; Ménard, F; Cameron, A C; Harries, T J; Hussain, G A J; Unruh, Y; Morin, J; Marsden, S C; Manset, N; Aurière, M; Catala, C; Alecian, E

    2008-01-01

    From observations collected with the ESPaDOnS and NARVAL spectropolarimeters, we report the detection of Zeeman signatures on the classical T Tauri star BP Tau. Circular polarisation signatures in photospheric lines and in narrow emission lines tracing magnetospheric accretion are monitored throughout most of the rotation cycle of BP Tau at two different epochs in 2006. We observe that rotational modulation dominates the temporal variations of both unpolarised and circularly polarised spectral proxies tracing the photosphere and the footpoints of accretion funnels. From the complete data sets at each epoch, we reconstruct the large-scale magnetic topology and the location of accretion spots at the surface of BP Tau using tomographic imaging. We find that the field of BP Tau involves a 1.2 kG dipole and 1.6 kG octupole, both slightly tilted with respect to the rotation axis. Accretion spots coincide with the two main magnetic poles at high latitudes and overlap with dark photospheric spots; they cover about 2%...

  8. Nucleosynthesis in the Ejecta of Neutron Star Mergers

    CERN Document Server

    Martin, Dirk; Arcones, Almudena; Korobkin, Oleg; Thielemann, Friedrich-Karl

    2015-01-01

    Heavy elements like gold, platinum or uranium are produced in the r-process, which needs neutron-rich and explosive environments. Neutron star mergers are a promising candidate for an r-process site. They exhibit three different channels for matter ejection fulfilling these conditions: dynamic ejecta due to tidal torques, neutrino-driven winds and evaporating matter from the accretion disk. We present a first study of the integrated nucleosynthesis for a neutrino-driven wind from a neutron star merger with a hyper-massive neutron star. Trajectories from a recent hydrodynamical simulation are divided into four different angle regions and post-processed with a reaction network. We find that the electron fraction varies around $Y_e \\approx 0.1 - 0.4$, but its distribution differs for every angle of ejection. Hence, the wind ejecta do not undergo a robust r-process, but rather possess distinct nucleosynthesis yields depending on the angle range. Compared to the dynamic ejecta, a smaller amount of neutron-rich mat...

  9. A lower limit on the heat capacity of the neutron star core

    CERN Document Server

    Cumming, Andrew; Fattoyev, Farrukh J; Horowitz, C J; Page, Dany; Reddy, Sanjay

    2016-01-01

    We show that observations of the core temperature of transiently-accreting neutron stars combined with observations of an accretion outburst give a lower limit to the neutron star core heat capacity. For the neutron stars in the low mass X-ray binaries KS 1731-260, MXB 1659-29, and XTE J1701-462, we show that the lower limit is a factor of a few below the core heat capacity expected if neutrons and protons in the core are paired, so that electrons provide the dominant contribution to the heat capacity. This limit rules out a core dominated by a quark color-flavor-locked (CFL) phase, which would have a much lower heat capacity. Future observations of or limits on cooling during quiescence will further constrain the core heat capacity.

  10. Doppler Probe of Accretion onto a T Tauri star

    CERN Document Server

    Petrov, Peter P; Herczeg, Gregory J; Stempels, Henricus C; Walter, Frederick M

    2014-01-01

    The YY Ori stars are T Tauri stars with prominent time-variable redshifted absorption components that flank certain emission lines. One of the brightest in this class is S CrA, a visual double star. We have obtained a series of high-resolution spectra of the two components during four nights with the UVES spectrograph at the Very Large Telescope. We followed the spectral changes occurring in S CrA to derive the physical structure of the accreting gas. We found that both stars are very similar with regard to surface temperature, radius, and mass. Variable redshifted absorption components are particularly prominent in the SE component. During one night, this star developed a spectrum unique among the T Tauri stars: extremely strong and broad redshifted absorption components appeared in many lines of neutral and ionized metals, in addition to those of hydrogen and helium. The absorption depths of cooler, low ionization lines peak at low velocities - while more highly ionized lines have peak absorption depths at ...

  11. A G2-QCD neutron star

    CERN Document Server

    Hajizadeh, Ouraman

    2016-01-01

    The determination of the properties of neutron stars from the underlying theory, QCD, is still an unsolved problem. This is mainly due to the difficulty to obtain reliable results for the equation of state for cold, dense QCD. As an alternative route to obtain qualitative insights, we determine the structure of a neutron star for a modified version of QCD: By replacing the gauge group SU(3) with the exceptional Lie group G2, it is possible to perform lattice simulations at finite density, while still retaining neutrons. Here, results of these lattice simulations are used to determine the mass-radius relation of a neutron star for this theory. The results show that phase changes express themselves in this relation. Also, the radius of the most massive neutron stars is found to vary very little, which would make radius determinations much simpler if this would also be true in QCD.

  12. Fragmentation of Neutron Star Matter

    CERN Document Server

    Alcain, P N

    2016-01-01

    Background: Neutron stars are astronomical systems with nucleons submitted to extreme conditions. Due to the long range coulomb repulsion between protons, the system has structural inhomogeneities. These structural inhomogeneities arise also in expanding systems, where the fragment distribution is highly dependent on the thermodynamic conditions (temperature, proton fraction, ...) and the expansion velocity. Purpose: We aim to find the different regimes of fragment distribution, and the existence of infinite clusters. Method: We study the dynamics of the nucleons with a semiclassical molecular dynamics model. Starting with an equilibrium configuration, we expand the system homogeneously until we arrive to an asymptotic configuration (i. e. very low final densities). We study the fragment distribution throughout this expansion. Results: We found the typical regimes of the asymptotic fragment distribution of an expansion: u-shaped, power law and exponential. Another key feature in our calculations is that, sinc...

  13. Anisotropic pressure and hyperons in neutron stars

    CERN Document Server

    Sulaksono, A

    2014-01-01

    We study the effects of anisotropic pressure on properties of the neutron stars with hyperons inside its core within the framework of extended relativistic mean field. It is found that the main effects of anisotropic pressure on neutron star matter is to increase the stiffness of the equation of state, which compensates for the softening of the EOS due to the hyperons. The maximum mass and redshift predictions of anisotropic neutron star with hyperonic core are quite compatible with the result of recent observational constraints if we use the parameter of anisotropic pressure model $h \\le 0.8$[1] and $\\Lambda \\le -1.15$ [2]. The radius of the corresponding neutron star at $M$=1.4 $M_\\odot$ is more than 13 km, while the effect of anisotropic pressure on the minimum mass of neutron star is insignificant. Furthermore, due to the anisotropic pressure in the neutron star, the maximum mass limit of higher than 2.1 $M_\\odot$ cannot rule out the presence of hyperons in the neutron star core.

  14. Evolutions of Neutron Stars and their Magnetic Fields

    CERN Document Server

    Bisnovatyi-Kogan, G S

    2016-01-01

    Estimations of magnetic fields of neutron stars, observed as radio and X-ray pulsars, are discussed. It is shown, that theoretical and observational values for different types of radiopulsars are in good correspondence. Radiopulsars in close binaries and millisecond pulsars, which have passed the stage of disk accretion (recycled radiopulsars), have magnetic fields 2-4 orders of magnitude smaller than ordinary single pulsars. Most probably, the magnetic field of the neutron star was screened by the infalling material. Several screening models are considered. Formation of single recycled pulsars loosing its companion is discussed. Magnetic fields of some X-ray pulsars are estimated from the cyclotron line energy. In the case of Her X-1 this estimation exceeds considerably the value of its magnetic field obtained from long term observational data related to the beam structure evolution. Another interpretation of the cyclotron feature, based on the relativistic dipole radiation mechanism, could remove this discr...

  15. The Quiescent Neutron Star and Hierarchical Triple, 4U2129+47

    Science.gov (United States)

    Nowak, Michael; Chakrabarty, Deepto; Wilms, Joern; Kühnel, Matthias

    2016-04-01

    4U 2129+47 is a quiescent, eclipsing neutron star that 35 years ago showed typical "Accretion Disk Corona" (ADC) behavior akin to the prototype of the class, X1822-371. Now faded, 4U 2129+47 provides tests of neutron star quiescent emission. It has shown low temperature thermal emission (the neutron star surface), a power law tail (of unknown origin, although possibly due to a pulsar wind interacting with an incoming accretion stream; Campana et al. 1998), and sinusoidally modulated absorption (the disk) as well as periodic X-ray eclipses. Subsequent XMM-Newton and Chandra observations, taken 2007 through Fall 2015, indicate that the hard tail and sinusoidal modulation disappeared, as if the accretion stream and disk have vanished. With the intiial loss of the hard tail, the soft X-ray flux also dropped, but since has remained steady, showing no signs of further neutron star cooling in the subsequent 8 years. We compare this behavior to recent NuSTAR observations of the quiescent neutron star Cen X-4, where the hard tail seems to persist over a wider range of quiescent flux, and correlate with the soft X-ray. It also has been speculated that 4U 2129+47 is part of a hierarchical triple system, with the third body in a much longer orbit. We use the Chandra and XMM-Newton eclipse ephemeris residuals to describe this third body orbit.

  16. Roche Accretion of stars close to massive black holes

    CERN Document Server

    Lixin,; Blandford, Roger D

    2011-01-01

    In this paper we consider Roche accretion in an Extreme Mass-Ratio Inspiral (EMRI) binary system formed by a star orbiting a massive black hole. The ultimate goal is to detect the mass and spin of the black hole and provide a test of general relativity in the strong-field regime from the resultant quasi-periodic signals. Before accretion starts, the stellar orbit is presumed to be circular and equatorial, and shrinks due to gravitational radiation. New fitting formulae are presented for the inspiral time and the radiation-reaction torque in the relativistic regime. If the inspiralling star fills its Roche lobe outside the Innermost Stable Circular Orbit (ISCO) of the hole, gas will flow through the inner Lagrange point (L1) to the hole. We give new relativistic interpolation formulae for the volume enclosed by the Roche lobe. If this mass-transfer happens on a time scale faster than the thermal time scale but slower than the dynamical time scale, the star will evolve adiabatically, and, in most cases, will re...

  17. Neutron Star Science with the NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-16

    The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, helped scientists obtain for the first time a sensitive high-­energy X-­ray map of the sky with extraordinary resolution. This pioneering telescope has aided in the understanding of how stars explode and neutron stars are born. LLNL is a founding member of the NuSTAR project, with key personnel on its optics and science team. We used NuSTAR to observe and analyze the observations of different neutron star classes identified in the last decade that are still poorly understood. These studies not only help to comprehend newly discovered astrophysical phenomena and emission processes for members of the neutron star family, but also expand the utility of such observations for addressing broader questions in astrophysics and other physics disciplines. For example, neutron stars provide an excellent laboratory to study exotic and extreme phenomena, such as the equation of state of the densest matter known, the behavior of matter in extreme magnetic fields, and the effects of general relativity. At the same time, knowing their accurate populations has profound implications for understanding the life cycle of massive stars, star collapse, and overall galactic evolution.

  18. Can Neutron stars constrain Dark Matter?

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos; Tinyakov, Peter

    2010-01-01

    We argue that observations of old neutron stars can impose constraints on dark matter candidates even with very small elastic or inelastic cross section, and self-annihilation cross section. We find that old neutron stars close to the galactic center or in globular clusters can maintain a surface...... temperature that could in principle be detected. Due to their compactness, neutron stars can acrete WIMPs efficiently even if the WIMP-to-nucleon cross section obeys the current limits from direct dark matter searches, and therefore they could constrain a wide range of dark matter candidates....

  19. Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars

    CERN Document Server

    Agathos, Michalis; Del Pozzo, Walter; Li, Tjonnie G F; Tompitak, Marco; Veitch, John; Vitale, Salvatore; Broeck, Chris Van Den

    2015-01-01

    Recently exploratory studies were performed on the possibility of constraining the neutron star equation of state (EOS) using signals from coalescing binary neutron stars, or neutron star-black hole systems, as they will be seen in upcoming advanced gravitational wave detectors such as Advanced LIGO and Advanced Virgo. In particular, it was estimated to what extent the combined information from multiple detections would enable one to distinguish between different equations of state through hypothesis ranking or parameter estimation. Under the assumption of zero neutron star spins both in signals and in template waveforms and considering tidal effects to 1PN order, it was found that O(20) sources would suffice to distinguish between a hard, moderate, and soft equation of state. Here we revisit these results, this time including neutron star tidal effects to the highest order currently known, termination of gravitational waveforms at the contact frequency, neutron star spins, and the resulting quadrupole-monopo...

  20. The Burst Mode of Accretion in Primordial Star Formation

    CERN Document Server

    DeSouza, A L; Basu, S

    2012-01-01

    We present simulation results for the formation and long-term evolution of a primordial protostellar disk harbored by a first star. Using a 2+1D nonaxisymmetric thin disk numerical simulation, together with a barotropic relation for the gas, we are able to probe ~20 kyr of the disk's evolution. During this time period we observe fragmentation leading to loosely bound gaseous clumps within the disk. These are then torqued inward and accreted onto the growing protostar, giving rise to a burst phenomenon. The luminous feedback produced by this mechanism may have important consequences for the subsequent growth of the protostar.

  1. Neutron-star matter within the energy-density functional theory and neutron-star structure

    Energy Technology Data Exchange (ETDEWEB)

    Fantina, A. F.; Chamel, N.; Goriely, S. [Institut d' Astronomie et d' Astrophysique, CP226, Université Libre de Bruxelles (ULB), 1050 Brussels (Belgium); Pearson, J. M. [Dépt. de Physique, Université de Montréal, Montréal (Québec), H3C 3J7 (Canada)

    2015-02-24

    In this lecture, we will present some nucleonic equations of state of neutron-star matter calculated within the nuclear energy-density functional theory using generalized Skyrme functionals developed by the Brussels-Montreal collaboration. These equations of state provide a consistent description of all regions of a neutron star. The global structure of neutron stars predicted by these equations of state will be discussed in connection with recent astrophysical observations.

  2. Gravitational waves from neutron-star mergers

    Science.gov (United States)

    Read, Jocelyn; Cullen, Torrey; Flynn, Eric; Lockett-Ruiz, Veronica; Park, Conner; Vong, Susan

    2016-03-01

    The inspiral and merger of binary neutron stars is expected to provide many signals for Advanced LIGO at design sensitivity. The waveform models currently used to search for and parameterize these signals ignore effects near the merger: as the stars coalesce, the gravitational waves depend additionally on the properties of matter in the core of the stars. In this talk, I will discuss potential systematic error from neglecting these features and present phenomenological waveform models currently being developed to capture the dynamics of merging neutron stars.

  3. Circumstellar Disks of the Most Vigorously Accreting Young Stars

    CERN Document Server

    Liu, Hauyu Baobab; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M; Karr, Jennifer; Kusakabe, Nobuhiko; Tsuribe, Toru

    2016-01-01

    Young stellar objects (YSOs) may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. We report our high angular resolution, coronagraphic near-infrared polarization imaging observations using the High Contrast Instrument for the Subaru Next Generation Adaptive Optics (HiCIAO) of the Subaru 8.2 m Telescope, towards four YSOs which are undergoing luminous accretion outbursts. The obtained infrared images have verified the presence of several hundred AUs scale arms and arcs surrounding these YSOs. In addition, our hydrodynamics simulations and radiative transfer models further demonstrate that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation p...

  4. Star-disc interaction in galactic nuclei: orbits and rates of accreted stars

    CERN Document Server

    Kennedy, Gareth F; Shukirgaliyev, Bekdaulet; Panamarev, Taras; Berczik, Peter; Just, Andreas; Spurzem, Rainer

    2016-01-01

    We examine the effect of an accretion disc on the orbits of stars in the central star cluster surrounding a central massive black hole by performing a suite of 39 high-accuracy direct N-body simulations using state-of-the art software and accelerator hardware, with particle numbers up to 128k. The primary focus is on the accretion rate of stars by the black hole (equivalent to their tidal disruption rate for black holes in the small to medium mass range) and the eccentricity distribution of these stars. Our simulations vary not only the particle number, but disc model (two models examined), spatial resolution at the centre (characterised by the numerical accretion radius) and softening length. The large parameter range and physically realistic modelling allow us for the first time to confidently extrapolate these results to real galactic centres. While in a real galactic centre both particle number and accretion radius differ by a few orders of magnitude from our models, which are constrained by numerical cap...

  5. QPO observations related to neutron star equations of state

    Science.gov (United States)

    Stuchlik, Zdenek; Urbanec, Martin; Török, Gabriel; Bakala, Pavel; Cermak, Petr

    We apply a genetic algorithm method for selection of neutron star models relating them to the resonant models of the twin peak quasiperiodic oscillations observed in the X-ray neutron star binary systems. It was suggested that pairs of kilo-hertz peaks in the X-ray Fourier power density spectra of some neutron stars reflect a non-linear resonance between two modes of accretion disk oscillations. We investigate this concept for a specific neutron star source. Each neutron star model is characterized by the equation of state (EOS), rotation frequency Ω and central energy density ρc . These determine the spacetime structure governing geodesic motion and position dependent radial and vertical epicyclic oscillations related to the stable circular geodesics. Particular kinds of resonances (KR) between the oscillations with epicyclic frequencies, or the frequencies derived from them, can take place at special positions assigned ambiguously to the spacetime structure. The pairs of resonant eigenfrequencies relevant to those positions are therefore fully given by KR,ρc , Ω, EOS and can be compared to the observationally determined pairs of eigenfrequencies in order to eliminate the unsatisfactory sets (KR,ρc , Ω, EOS). For the elimination we use the advanced genetic algorithm. Genetic algorithm comes out from the method of natural selection when subjects with the best adaptation to assigned conditions have most chances to survive. The chosen genetic algorithm with sexual reproduction contains one chromosome with restricted lifetime, uniform crossing and genes of type 3/3/5. For encryption of physical description (KR,ρ, Ω, EOS) into chromosome we used Gray code. As a fitness function we use correspondence between the observed and calculated pairs of eigenfrequencies.

  6. Neutron star equation of state and QPO observations

    Science.gov (United States)

    Urbanec, Martin; Stuchlík, Zdeněk; Török, Gabriel; Bakala, Pavel; Čermák, Petr

    2007-12-01

    Assuming a resonant origin of the twin peak quasiperiodic oscillations observed in the X-ray neutron star binary systems, we apply a genetic algorithm method for selection of neutron star models. It was suggested that pairs of kilohertz peaks in the X-ray Fourier power density spectra of some neutron stars reflect a non-linear resonance between two modes of accretion disk oscillations. We investigate this concept for a specific neutron star source. Each neutron star model is characterized by the equation of state (EOS), rotation frequency Ω and central energy density rho_{c}. These determine the spacetime structure governing geodesic motion and position dependent radial and vertical epicyclic oscillations related to the stable circular geodesics. Particular kinds of resonances (KR) between the oscillations with epicyclic frequencies, or the frequencies derived from them, can take place at special positions assigned ambiguously to the spacetime structure. The pairs of resonant eigenfrequencies relevant to those positions are therefore fully given by KR, rho_{c}, Ω, EOS and can be compared to the observationally determined pairs of eigenfrequencies in order to eliminate the unsatisfactory sets (KR, rho_{c}, Ω, EOS). For the elimination we use the advanced genetic algorithm. Genetic algorithm comes out from the method of natural selection when subjects with the best adaptation to assigned conditions have most chances to survive. The chosen genetic algorithm with sexual reproduction contains one chromosome with restricted lifetime, uniform crossing and genes of type 3/3/5. For encryption of physical description (KR, rho_{c}, Ω, EOS) into the chromosome we use the Gray code. As a fitness function we use correspondence between the observed and calculated pairs of eigenfrequencies.

  7. 2D Cooling of Magnetized Neutron Stars

    CERN Document Server

    Aguilera, Deborah N; Miralles, Juan A

    2007-01-01

    Context: Many thermally emitting isolated neutron stars have magnetic fields larger than 10^{13}G. A realistic cooling model should be reconsidered including the presence of high magnetic fields. Aims: We investigate the effects of anisotropic temperature distribution and Joule heating on the cooling of magnetized neutron stars. Methods: The 2D heat transfer equation with anisotropic thermal conductivity tensor and including all relevant neutrino emission processes is solved for realistic models of the neutron star interior and crust. Results: The presence of the magnetic field affects significantly the thermal surface distribution and the cooling history during both, the early neutrino cooling era and the late photon cooling era. Conclusions: There is a huge effect of the Joule heating on the thermal evolution of strongly magnetized neutron stars. Magnetic fields and Joule heating play a key role in maintaining magnetars warm for a long time. Moreover, this effect is also important for intermediate field neu...

  8. The Neutron Star Interior Composition Explorer

    Science.gov (United States)

    Gendreau, Keith C.

    2008-01-01

    The Neutron star Interior Composition Explorer (NICE) will be a Mission of Opportunity dedicated to the study of neutron stars, the only places in the universe where all four fundamental forces of nature are simultaneously in play. NICE will explore the exotic states of matter within neutron stars, revealing their interior and surface compositions through rotation resolved X-ray spectroscopy. Absolute time-referenced data will allow NICE to probe the extreme physical environments associated with neutron stars, leveraging observations across the electromagnetic spectrum to answer decades-old questions about one of the most powerful cosmic accelerators known. Finally, NICE will definitively measure stabilities of pulsars as clocks, with implications for navigation, a pulsar-based timescale, and gravitational-wave detection. NICE will fly on the International Space Station, while GLAST is on orbit and post-RXTE, and will allow for the discovery of new high-energy pulsars and provide continuity in X-ray timing astrophysics.

  9. Transport coefficients in superfluid neutron stars

    CERN Document Server

    Tolos, Laura; Sarkar, Sreemoyee; Tarrus, Jaume

    2014-01-01

    We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.

  10. Black Hole - Neutron Star Binary Mergers

    Data.gov (United States)

    National Aeronautics and Space Administration — Gravitational radiation waveforms for black hole-neutron star coalescence calculations. The physical input is Newtonian physics, an ideal gas equation of state with...

  11. Transport coefficients in superfluid neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Tolos, Laura [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Frankfurt Institute for Advances Studies. Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Manuel, Cristina [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Sarkar, Sreemoyee [Tata Institute of Fundamental Research, Homi Bhaba Road, Mumbai-400005 (India); Tarrus, Jaume [Physik Department, Technische Universität München, D-85748 Garching (Germany)

    2016-01-22

    We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.

  12. Quark Matter Droplet Formation in Neutron Stars

    OpenAIRE

    Heiselberg, H.

    1995-01-01

    The formation rate of quark matter droplets in neutron stars is calculated from a combination of bubble formation rates in cold degenerate and high temperature matter. Nuclear matter calculations of the viscosity and thermal conductivity are applied. Results show that droplets form only in the core of neutron stars shortly after supernova collapse, where pressures and temperatures are high, and for sufficiently small interface tension between nuclear and quark matter. Coulomb energies hinder ...

  13. Population Synthesis of isolated Neutron Stars

    Science.gov (United States)

    Gullón Juanes, Miguel

    2015-12-01

    Neutron Stars present a wide variety from the observational point of view. The advent of new and powerful detectors and instruments has opened a new era where the classical picture of neutrons stars seen as radio-pulsars has been modified with new classes such as magnetars, X-ray Isolated Neutron Stars (XINSs) or Central Compact Objects (CCOs) in Supernova Remnants . In addition to the more than 2500 sources detected in the radio band, more than two hundred have also been detected as X-ray and gamma-ray sources. This number is expected to increase in the near future. Despite this apparent diversity, some studies demand a theory able to explain the different classes in terms of the same physical scenario (Kaspi, 2010), in which the evolution of the magnetic field appears to play an important role (Viganò et al., 2013). The Population Synthesis of Neutron Stars, which is the central subject of this thesis, is an interesting approach to understand the problem, as both intrinsic properties and observational biases are taken into account. These technique is based on Monte Carlo methods, applied to simulate the whole population of neutron stars. The main objective of the thesis has been to perform a multi-wavelength study of the different populations of Neutron Stars focusing in the effects of magneto-thermal evolution. This report consists of a global summary of the objectives, methods and main results of the thesis. It is structured as follows. The first chapter gives an introduction to Neutron Stars. Chapter two is a description of the method of Population Synthesis of Neutron Stars. In chapter three a global discussion of the main results is presented. Chapter four closes the report with the conclusions. An appendix is also included which constitutes a description of a method based on the pulsar current analysis.

  14. Neutron star cooling: effects of envelope physics

    International Nuclear Information System (INIS)

    Neutron star cooling calculations are reported which employ improved physics in the calculation of the temperature drop through the atmosphere. The atmosphere microphysics is discussed briefly. The predicted neutron star surface temperatures, in the interesting interval 200 less than or equal to t (yr) less than or equal to 105, do not differ appreciably from the earlier results of Van Riper and Lamb (1981) for a non-magnetic star; for a magnetic star, the surface temperature is lower than in the previous work. Comparison with observational limits show that an exotic cooling mechanism, such as neutrino emission from a pion condensate or in the presence of percolating quarks, is not required unless the existence of a neutron star in the Tycho or SN1006 SNRs is established

  15. Sources of radiation from neutron stars

    CERN Document Server

    Schutz, B F

    1998-01-01

    I give a brief introduction to the problem of detecting gravitational radiation from neutron stars. After a review of the mechanisms by which such stars may produce radiation, I consider the different search strategies appropriate to the different kinds of sources: isolated known pulsars, neutron stars in binaries, and unseen neutron stars. The problem of an all-sky survey for unseen stars is the most taxing one that we face in analysing data from interferometers. I describe the kinds of hierarchical methods that are now being investigated to reach the maximal sensitivity, and I suggest a replacement for standard Fourier-transform search methods that requires fewer floating-point operations for Fourier-based searches over large parameter spaces, and in addition is highly parallelizable, working just as well on a loosely coupled network of workstations as on a tightly coupled parallel computer.

  16. Outflow and Accretion in Massive Star Forming Regions

    CERN Document Server

    Klaassen, P D

    2007-01-01

    In order to distinguish between the various components of massive star forming regions (i.e. infalling, outflowing and rotating gas structures) within our own Galaxy, we require high angular resolution observations which are sensitive to structures on all size scales. To this end, we present observations of the molecular and ionized gas towards massive star forming regions at 230 GHz from the SMA (with zero spacing from the JCMT) and at 22 and 23 GHz from the VLA at arcsecond or better resolution. These observations (of sources such as NGC7538, W51e2 and K3-50A) form an integral part of a multi-resolution study of the molecular and ionized gas dynamics of massive star forming regions (i.e. Klaassen & Wilson 2007). Through comparison of these observations with 3D radiative transfer models, we hope to be able to distinguish between various modes of massive star formation, such as ionized or halted accretion (i.e Keto 2003 or Klaassen et al. 2006 respectively).

  17. "Propeller" Regime of Disk Accretion to Rapidly Rotating Stars

    CERN Document Server

    Ustyugova, G V; Lovelace, R V E; Romanova, M M

    2006-01-01

    We present results of axisymmetic magnetohydrodynamic simulations of the interaction of a rapidly-rotating, magnetized star with an accretion disk. The disk is considered to have a finite viscosity and magnetic diffusivity. The main parameters of the system are the star's angular velocity and magnetic moment, and the disk's viscosity, diffusivity. We focus on the "propeller" regime where the inner radius of the disk is larger than the corotation radius. Two types of magnetohydrodynamic flows have been found as a result of simulations: "weak" and "strong" propellers. The strong propeller is characterized by a powerful disk wind and a collimated magnetically dominated outflow or jet from the star. The weak propeller have only weak outflows. We investigated the time-averaged characteristics of the interaction between the main elements of the system, the star, the disk, the wind from the disk, and the jet. Rates of exchange of mass and angular momentum between the elements of the system are derived as a function ...

  18. Formation and pre-MS evolution of massive stars with growing accretion

    OpenAIRE

    Maeder, A; Behrend, R.

    2001-01-01

    We briefly describe the three existing scenarios for forming massive stars and emphasize that the arguments often used to reject the accretion scenario for massive stars are misleading. It is usually not accounted for the fact that the turbulent pressure associated to large turbulent velocities in clouds necessarily imply relatively high accretion rates for massive stars. We show the basic difference between the formation of low and high mass stars based on the values of the free fall time an...

  19. From nuclear structure to neutron stars

    International Nuclear Information System (INIS)

    Recent progress in quantum Monte-Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. As a demonstration, we show that the agreement between theoretical calculations of the charge form factor of 12C and the experimental data is excellent. Applying similar methods to isospin-asymmetric systems allows one to describe neutrons confined in an external potential and homogeneous neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy. (authors)

  20. From nuclear structure to neutron stars

    CERN Document Server

    Gandolfi, Stefano

    2013-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. As a demonstration, we show that the agreement between theoretical calculations of the charge form factor of 12C and the experimental data is excellent. Applying similar methods to isospin-asymmetric systems allows one to describe neutrons confined in an external potential and homogeneous neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  1. Microscopic Magnetic Dipole Radiation in Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    Hao Tong; Qiu-He Peng; Hua Bai

    2008-01-01

    There is a 3P2 neutron superfluid region in NS (neutron star) interior. For a rotating NS the 3P2 superfluid region is like a system of rotating magnetic dipoles. It will give out electromagnetic radiation, which may provide a new heating mechanism of NSs. This mechanism plus some cooling agent may give a sound explanation to NS glitches.

  2. Axion star collisions with Neutron stars and Fast Radio Bursts

    CERN Document Server

    Raby, Stuart

    2016-01-01

    Axions may make a significant contribution to the dark matter of the universe. It has been suggested that these dark matter axions may condense into localized clumps, called "axion stars." In this paper we argue that collisions of dilute axion stars with neutron stars may be the origin of most of the observed fast radio bursts. This idea is a variation of an idea originally proposed by Iwazaki. However, instead of the surface effect of Iwazaki, we propose a perhaps stronger volume effect caused by the induced time dependent electric dipole moment of neutrons.

  3. MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion

    Directory of Open Access Journals (Sweden)

    Lii Patrick

    2014-01-01

    Full Text Available Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and inhibits matter accretion onto the rapidly rotating star. Instead, the matter accreting through the disc accumulates at the disc-magnetosphere interface where it picks up angular momentum and is ejected from the system as a wide-angled outflow which gradually collimates at larger distances from the star. If the ejection rate is lower than the accretion rate, the matter will accumulate at the boundary faster than it can be ejected; in this case, accretion onto the star proceeds through an episodic accretion instability in which the episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion of matter onto the star. In addition to the matter dominated wind component, the propeller outflow also exhibits a well-collimated, magnetically-dominated Poynting jet which transports energy and angular momentum away from the star. The propeller mechanism may explain some of the weakly-collimated jets and winds observed around some T Tauri stars as well as the episodic variability present in their light curves. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.

  4. Pairing and the Cooling of Neutron Stars

    CERN Document Server

    Page, Dany

    2012-01-01

    In this review, I present a brief summary of the impact of nucleon pairing at supra-nuclear densities on the cooling of neutron stars. I also describe how the recent observation of the cooling of the neutron star in the supernova remnant Cassiopeia A may provide us with the first direct evidence for the occurrence of such pairing. It also implies a size of the neutron 3P-F2 energy gap of the order of 0.1 MeV.

  5. Keplerian frequency of uniformly rotating neutron stars and quark stars

    CERN Document Server

    Haensel, P; Bejger, M; Lattimer, J M

    2009-01-01

    We calculate Keplerian (mass shedding) configurations of rigidly rotating neutron stars and quark stars with crusts. We check the validity of empirical formula for Keplerian frequency, f_K, proposed by Lattimer & Prakash, f_K(M)=C (M/M_sun)^1/2 (R/10km)^-3/2, where M is the (gravitational) mass of Keplerian configuration, R is the (circumferential) radius of the non-rotating configuration of the same gravitational mass, and C = 1.04 kHz. Numerical calculations are performed using precise 2-D codes based on the multi-domain spectral methods. We use a representative set of equations of state (EOSs) of neutron stars and quark stars. We show that the empirical formula for f_K(M) holds within a few percent for neutron stars with realistic EOSs, provided 0.5 M_sun < M < 0.9 M_max,stat, where M_max,stat is the maximum allowable mass of non-rotating neutron stars for an EOS, and C=C_NS=1.08 kHz. Similar precision is obtained for quark stars with 0.5 M_sun < M < 0.9 M_max,stat. For maximal crust masses...

  6. Do electron-capture supernovae make neutron stars? First multidimensional hydrodynamic simulations of the oxygen deflagration

    CERN Document Server

    Jones, Samuel; Pakmor, Ruediger; Seitenzahl, Ivo R; Ohlmann, Sebastian T; Edelmann, Philipp V F

    2016-01-01

    In the classical picture, electron-capture supernovae and the accretion-induced collapse of oxygen-neon white dwarfs undergo an oxygen deflagration phase before gravitational collapse produces a neutron star. Such core collapse events are postulated to explain several astronomical phenomena. In this work, the oxygen deflagration phase is simulated for the first time using multidimensional hydrodynamics. By simulating the oxygen deflagration with multidimensional hydrodynamics and a level-set based flame approach, new insights can be gained into the explosive deaths of 8--10 solar-mass stars and oxygen-neon white dwarfs accreting material from a binary companion star. The main aim is to determine whether these events are thermonuclear or core-collapse supernova explosions, and hence whether neutron stars are formed by such phenomena. The oxygen deflagration is simulated in oxygen-neon cores with three different central ignition densities. The intermediate density case is perhaps the most realistic based on rec...

  7. Magnetic field structure in accretion columns on HMXB and effects on CRSF

    OpenAIRE

    Mukherjee Dipanjan; Bhattacharya Dipankar; Mignone Andrea

    2013-01-01

    In accreting neutron star binaries, matter is channelled by the magnetic fields from the accretion disc to the poles of neutron stars forming an accretion mound. We model such mounds by numerically solving the Grad-Shafranov equation for axisymmetric static MHD equilibria. From our solutions we infer local distortion of field lines due to the weight of accreted matter. Variation in mass loading at the accretion disc will alter the shape of the accretion mound which will also affect the local ...

  8. Constraining decaying dark matter with neutron stars

    CERN Document Server

    Perez-Garcia, M Angeles

    2015-01-01

    We propose that the existing population of neutron stars in the galaxy can help constrain the nature of decaying dark matter. The amount of decaying dark matter, accumulated in the central regions in neutron stars and the energy deposition rate from decays, may set a limit on the neutron star survival rate against transitions to more compact stars and, correspondingly, on the dark matter particle decay time, $\\tau_{\\chi}$. We find that for lifetimes ${\\tau_{\\chi}}\\lesssim 6.3\\times 10^{15}$ s, we can exclude particle masses $(m_{\\chi}/ \\rm TeV) \\gtrsim 50$ or $(m_{\\chi}/ \\rm TeV) \\gtrsim 8 \\times 10^2$ in the bosonic and fermionic cases, respectively. In addition, we also compare our findings with the present status of allowed phase space regions using kinematical variables for decaying dark matter, obtaining complementary results.

  9. Cooling of Hyperonic Neutron Stars with Antikaons

    Institute of Scientific and Technical Information of China (English)

    DING Wen-Bo; YU Zi; LIU Yu-Hui

    2011-01-01

    We discuss the impact of hyperons on the neutrino emitting and the gross cooling features of neutron stars with K(-) and ( ˉ)k0 condensations.The results show that hyperons change the density ranges of the direct Urca process with nucleons and the Urca processes of (K-) and (ˉ)k0 condensations,as well as the values of neutrino emissivity.Moreover,interactions between hyperons and antikaons make the neutrino luminosity complicated.It is found that various hyperons play different roles in neutron stars.For massive stars,∑ hyperons make the cooling slower.However,Λ can hardly change the cooling history but it reduces the mass of neutron stars.

  10. Determining neutron star masses with weak microlensing

    CERN Document Server

    Tian, Lanlan

    2012-01-01

    The masses of stars including stellar remnants are almost exclusively known from binary systems. In this work, we study gravitational microlensing of faint background galaxies by isolated neutron stars (pulsars). We show that the resulting surface brightness distortions can be used to determine the masses of neutron star. Due to different evolutionary histories, isolated neutron stars may have different masses from those in binary systems, and thus provide unique insight into their equation of states under extreme physical conditions. We search for existing pulsar catalogs and find one promising pair of a nearby pulsar and a background galaxy. This method will become more practical for the next generation optical and radio surveys and telescopes.

  11. Binary Neutron Stars with Arbitrary Spins in Numerical Relativity

    CERN Document Server

    Tacik, Nick; Pfeiffer, Harald P; Haas, Roland; Ossokine, Serguei; Kaplan, Jeff; Muhlberger, Curran; Duez, Matt D; Kidder, Lawrence E; Scheel, Mark A; Szilágyi, Béla

    2015-01-01

    We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasi-local angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of $\\sim 2\\times 10^{-4}$. Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin- and orbit-precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to $\\sim 0.1\\%$. The neutron stars show quasi-normal mode oscillations at an amplitude which increases with the rotation rate of the stars.

  12. Detecting supersymmetric Q-balls with neutron stars

    OpenAIRE

    Madsen, Jes

    1998-01-01

    Supersymmetric Q-balls trapped in neutron stars or white dwarfs may cause the stars to explode. Trapping of Q-balls in neutron stars is shown to be less likely, but trapping in neutron star progenitors more likely than hitherto assumed, making neutron stars very sensitive Q-ball "detectors". White dwarfs only trap potentially dangerous Q-balls in a narrow parameter range.

  13. Hidden Markov model tracking of continuous gravitational waves from a neutron star with wandering spin

    OpenAIRE

    Suvorova, S.; Sun, L; Melatos, A.; Moran, W.; Evans, R J

    2016-01-01

    Gravitational wave searches for continuous-wave signals from neutron stars are especially challenging when the star's spin frequency is unknown a priori from electromagnetic observations and wanders stochastically under the action of internal (e.g. superfluid or magnetospheric) or external (e.g. accretion) torques. It is shown that frequency tracking by hidden Markov model (HMM) methods can be combined with existing maximum likelihood coherent matched filters like the F-statistic to surmount ...

  14. Dark matter seeding and the kinematics and rotation of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Garcia, M. Angeles, E-mail: mperezga@usal.es [Departamento de Fisica Fundamental and IUFFyM, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Silk, Joseph, E-mail: j.silk1@physics.ox.ac.uk [Institut d' Astrophysique, UPMC, 98 bis Boulevard Arago, Paris 75014 (France); Department of Physics and Astronomy, Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Beecroft Institute for Particle Astrophysics and Cosmology, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

    2012-05-01

    Self-annihilation of dark matter accreted from the galactic halo in the inner regions of neutron stars may significantly affect their kinematical properties, namely velocity kicks and rotation patterns. We find that if a stable long-lived single or multiple strangelet off-center seed forms leading to an asymmetric ejection of matter and radiation, there is a significant modification in linear and angular momentum observables of the star.

  15. Damping of differential rotation in neutron stars

    CERN Document Server

    Sedrakian, Ara G

    1998-01-01

    We derive the transport relaxation times for quasiparticle-vortex scattering processes via nuclear force, relevant for the damping of differential rotation of superfluids in the quantum liquid core of a neutron star. The proton scattering off the neutron vortices provides the dominant resistive force on the vortex lattice at all relevant temperatures in the phase where neutrons only are in the paired state. If protons are superconducting, a small fraction of hyperons and resonances in the normal state would be the dominant source of friction on neutron and proton vortex lattices at the core temperatures $T\\ge 10^{7}$ K.

  16. He-Accreting WDs: AM CVn stars with WD Donors

    CERN Document Server

    Piersanti, Luciano; Tornambe', Amedeo

    2015-01-01

    We study the physical and evolutionary properties of the "WD family" of AM CVn stars by computing realistic models of IDD systems. We evaluate self-consistently both the mass transfer rate from the donor, as determined by GW emission and interaction with the binary companion, and the thermal response of the accretor to mass deposition. We find that, after the onset of mass transfer, all the considered systems undergo a strong non-dynamical He-flash. However, due to the compactness of these systems, the expanding accretors fill their Roche lobe very soon, thus preventing the efficient heating of the external layers of the accreted CO WDs. Moreover, due to the loss of matter from the systems, the orbital separations enlarge and mass transfer comes to a halt. The further evolution depends on the value of \\mdot\\, after the donors fill again their lobe. On one hand, if the accretion rate, as determined by the actual value of (M_don,M_acc), is high enough, the accretors experience several He-flashes of decreasing s...

  17. Neutron stars and the cosmological constant problem

    International Nuclear Information System (INIS)

    The gravitational aether theory is a modification of general relativity that decouples vacuum energy from gravity, and thus can potentially address the cosmological constant problem. The classical theory is distinguishable from general relativity only in the presence of relativistic pressure (or vorticity). Since the interior of neutron stars has high pressure and as their mass and radius can be measured observationally, they are the perfect laboratory for testing the validity of the aether theory. In this paper, we solve the equations of stellar structure for the gravitational aether theory and find the predicted mass-radius relation of nonrotating neutron stars using two different realistic proposals for the equation of state of nuclear matter. We find that the maximum neutron-star mass predicted by the aether theory is 12%-16% less than the maximum mass predicted by general relativity assuming these two equations of state. We also show that the effect of aether is similar to modifying the equation of state in general relativity. The effective pressure of the neutron star given by the aether theory at a fiducial density differs from the values given by the two nuclear equations of state to an extent that can be constrained using future gravitational wave observations of neutron stars in compact systems. This is a promising way to test the aether theory if further progress is made in constraining the equation of state of nuclear matter in densities above the nuclear saturation density.

  18. Fallback Disks, Magnetars and Other Neutron Stars

    CERN Document Server

    Alpar, M Ali; Ertan, U

    2012-01-01

    The presence of matter with angular momentum, in the form of a fallback disk around a young isolated neutron star will determine its evolution. This leads to an understanding of many properties of different classes of young neutron stars, in particular a natural explanation for the period clustering of AXPs, SGRs and XDINs. The spindown or spinup properties of a neutron star are determined by the dipole component of the magnetic field. The natural possibility that magnetars and other neutron stars may have different strengths of the dipole and higher multipole components of the magnetic field is now actually required by observations on the spindown rates of some magnetars. This talk gives a broad overview and some applications of the fallback disk model to particular neutron stars. Salient points are: (i) A fallback disk has already been observed around the AXP 4U 0142+61 some years ago. (ii) The low observed spindown rate of the SGR 0418+5729 provides direct evidence that the dipole component of the field is...

  19. Accretion Rates for T Tauri Stars Using Nearly Simultaneous Ultraviolet and Optical Spectra

    CERN Document Server

    Ingleby, Laura; Herczeg, Gregory; Blaty, Alex; Walter, Frederick; Ardila, David; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; Gregory, Scott G; Hillenbrand, Lynne; Brown, Alexander

    2013-01-01

    We analyze the accretion properties of 21 low mass T Tauri stars using a dataset of contemporaneous near ultraviolet (NUV) through optical observations obtained with the Hubble Space Telescope Imaging Spectrograph (STIS) and the ground based Small and Medium Aperture Research Telescope System (SMARTS), a unique dataset because of the nearly simultaneous broad wavelength coverage. Our dataset includes accreting T Tauri stars (CTTS) in Taurus, Chamaeleon I, $\\eta$ Chamaeleon and the TW Hydra Association. For each source we calculate the accretion rate by fitting the NUV and optical excesses above the photosphere, produced in the accretion shock, introducing multiple accretion components characterized by a range in energy flux (or density) for the first time. This treatment is motivated by models of the magnetospheric geometry and accretion footprints, which predict that high density, low filling factor accretion spots co-exist with low density, high filling factor spots. By fitting the UV and optical spectra wi...

  20. Approximate Universal Relations for Neutron Stars and Quark Stars

    CERN Document Server

    Yagi, Kent

    2016-01-01

    Neutron stars and quark stars are ideal laboratories to study fundamental physics at supra nuclear densities and strong gravitational fields. Astrophysical observables, however, depend strongly on the star's internal structure, which is currently unknown due to uncertainties in the equation of state. Universal relations, however, exist among certain stellar observables that do not depend sensitively on the star's internal structure. One such set of relations is between the star's moment of inertia ($I$), its tidal Love number (Love) and its quadrupole moment ($Q$), the so-called I-Love-Q relations. Similar relations hold among the star's multipole moments, which resemble the well-known black hole no-hair theorems. Universal relations break degeneracies among astrophysical observables, leading to a variety of applications: (i) X-ray measurements of the nuclear matter equation of state, (ii) gravitational wave measurements of the intrinsic spin of inspiraling compact objects, and (iii) gravitational and astroph...

  1. Physical Conditions of Accreting Gas in T Tauri Star Systems

    CERN Document Server

    Bary, Jeffrey S; Skrutskie, Michael F; Wilson, John C; Peterson, Dawn E; Nelson, Matthew J

    2008-01-01

    We present results from a low resolution (R~300) near-infrared spectroscopic variability survey of actively accreting T Tauri stars (TTS) in the Taurus-Auriga star forming region. Paschen and Brackett series H I recombination lines were detected in 73 spectra of 15 classical T Tauri systems. The values of the Pan/PaB, Brn/BrG, and BrG/Pan H I line ratios for all observations exhibit a scatter of < 20% about the weighted mean, not only from source to source, but also for epoch-to-epoch variations in the same source. A representative or `global' value was determined for each ratio in both the Paschen and Brackett series as well as the BrG/Pan line ratios. A comparison of observed line ratio values was made to those predicted by the temperature and electron density dependent models of Case B hydrogen recombination line theory. The measured line ratios are statistically well-fit by a tightly constrained range of temperatures (T < 2000 K) and electron densities 1e9 < n_e < 1e10 cm^-3. A comparison of t...

  2. The Neutron Star Interior Composition Explorer (NICER)

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Gendreau, K.; Arzoumanian, Z.

    2014-01-01

    The Neutron Star Interior Composition Explorer (NICER) is an approved NASA Explorer Mission of Opportunity dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear-physics environments embodied by neutron stars. Scheduled to be launched in 2016 as an International Space Station payload, NICER will explore the exotic states of matter, using rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft (0.2-12 keV) X-ray band. Grazing-incidence "concentrator" optics coupled with silicon drift detectors, actively pointed for a full hemisphere of sky coverage, will provide photon-counting spectroscopy and timing registered to GPS time and position, with high throughput and relatively low background. The NICER project plans to implement a Guest Observer Program, which includes competitively selected user targets after the first year of flight operations. I will describe NICER and discuss ideas for potential Be/X-ray binary science.

  3. Charged Ising Model of Neutron Star Matter

    CERN Document Server

    Hasnaoui, K H O

    2012-01-01

    Background: The inner crust of a neutron star is believed to consist of Coulomb-frustrated complex structures known as "nuclear pasta" that display interesting and unique low-energy dynamics. Purpose: To elucidate the structure and composition of the neutron-star crust as a function of temperature, density, and proton fraction. Methods: A new lattice-gas model, the "Charged-Ising Model" (CIM), is introduced to simulate the behavior of neutron-star matter. Preliminary Monte Carlo simulations on 30^3 lattices are performed for a variety of temperatures, densities, and proton fractions. Results: Results are obtained for the heat capacity, pair-correlation function, and static structure factor for a variety of conditions appropriate to the inner stellar crust. Conclusions: Although relatively simple, the CIM captures the essence of Coulomb frustration that is required to simulate the subtle dynamics of the inner stellar crust. Moreover, the computationally demanding long-range Coulomb interactions have been pre-c...

  4. Exploring fundamental physics with neutron stars

    CERN Document Server

    Pizzochero, Pierre M

    2016-01-01

    In this lecture, we give a first introduction to neutron stars, based on fundamental physical principles. After outlining their outstanding macroscopic properties, as obtained from observations, we infer the extreme conditions of matter in their interiors. We then describe two crucial physical phenomena which characterize compact stars, namely the gravitational stability of strongly degenerate matter and the neutronization of nuclear matter with increasing density, and explain how the formation and properties of neutron stars are a direct consequence of the extreme compression of matter under strong gravity. Finally, we describe how multi-wavelength observations of different external macroscopic features (e.g. maximum mass, surface temperature, pulsar glitches) can give invaluable information about the exotic internal microscopic scenario: super-dense, isospin-asymmetric, superfluid, bulk hadronic matter (probably deconfined in the most central regions) which can be found nowhere else in the Universe. Indeed,...

  5. The Magnetic Field Evolution of ULX NuSTAR J095551+6940.8 in M82--A Legacy of Accreting Magnetar

    CERN Document Server

    Pan, Y Y; Zhang, C M; Tong, H

    2015-01-01

    Ultra luminous X-ray sources (ULXs) are usually believed to be black holes with mass about 10^{2--3}M_{sun}. However, the recent discovery of ULX NuSTAR J095551+6940.8 in M82 with the spin period P=1.37s and period derivation P_{dot}=-2*10^{-10} ss^{-1} provides a strong evidence that some ULXs are accreting neutron stars (NSs). To investigate such a particular accreting neutron star, we ascribe it as an evolved magnetar in the accretion binary system. By means of the model of accretion induced the NS magnetic evolution and standard spinup torque, we calculate the magnetic field decay and spin-up of M82 X-2, and show that its magnetic field is now 4.5*10^{12} G, which is evolved from a magnetar in a high mass Xray binary system (HMXB) with the initial values of magnetic field B~10^{14.5} G and spin period P~100 s by accreting ~10^{-3}M_{sun}, while the mass accretion rate for spin-up is set as 5.0*10^{18} gs^{-1}. The evolutionary track of magnetic field and spin period of M82 X-2 is simulated and plotted in ...

  6. The lowest-mass stellar black holes: catastrophic death of neutron stars in gamma-ray bursts

    OpenAIRE

    Belczynski, K.; O'Shaughnessy, R; Kalogera, V.; Rasio, F.; Taam, R.; Bulik, T.

    2007-01-01

    Mergers of double neutron stars are considered the most likely progenitors for short gamma-ray bursts. Indeed such a merger can produce a black hole with a transient accreting torus of nuclear matter (Lee & Ramirez-Ruiz 2007, Oechslin & Janka 2006), and the conversion of a fraction of the torus mass-energy to radiation can power a gamma-ray burst (Nakar 2006). Using available binary pulsar observations supported by our extensive evolutionary calculations of double neutron star formation, we d...

  7. Towards a metallurgy of neutron star crusts

    CERN Document Server

    Kobyakov, D

    2013-01-01

    In the standard picture of the crust of a neutron star, matter there is simple: a body-centered-cubic (bcc) lattice of nuclei immersed in an essentially uniform electron gas. We show that at densities above that for neutron drip ($\\sim4\\times10^11$) g cm$^{-3}$ or roughly one thousandth of nuclear matter density, the interstitial neutrons give rise to an attractive interaction between nuclei that renders the lattice unstable. We argue that the likely equilibrium structure is similar to that in displacive ferroelectric materials such as BaTiO$_3$. As a consequence, properties of matter in the inner crust are expected to be much richer than previously appreciated and we mention consequences for observable neutron star properties.

  8. Towards a metallurgy of neutron star crusts.

    Science.gov (United States)

    Kobyakov, D; Pethick, C J

    2014-03-21

    In the standard picture of the crust of a neutron star, matter there is simple: a body-centered-cubic lattice of nuclei immersed in an essentially uniform electron gas. We show that, at densities above that for neutron drip (∼ 4 × 1 0(11)  g cm(-3) or roughly one-thousandth of nuclear matter density), the interstitial neutrons give rise to an attractive interaction between nuclei that renders the lattice unstable. We argue that the likely equilibrium structure is similar to that in displacive ferroelectric materials such as BaTiO3. As a consequence, the properties of matter in the inner crust are expected to be much richer than previously appreciated, and we mention possible consequences for observable neutron star properties.

  9. Symmetry energy: nuclear masses and neutron stars

    CERN Document Server

    Pearson, J M; Fantina, A F; Goriely, S

    2013-01-01

    We describe the main features of our most recent Hartree-Fock-Bogoliubov nuclear mass models, based on 16-parameter generalized Skyrme forces. They have been fitted to the data of the 2012 Atomic Mass Evaluation, and favour a value of 30 MeV for the symmetry coefficient J, the corresponding root-mean square deviation being 0.549 MeV. We find that this conclusion is compatible with measurements of neutron-skin thickness. By constraining the underlying interactions to fit various equations of state of neutron matter calculated {\\it ab initio} our models are well adapted to a realistic and unified treatment of all regions of neutron stars. We use our models to calculate the composition, the equation of state, the mass-radius relation and the maximum mass. Comparison with observations of neutron stars again favours a value of J = 30 MeV.

  10. Dense hadronic matter in neutron stars

    CERN Document Server

    Pagliara, Giuseppe; Lavagno, Andrea; Pigato, Daniele

    2014-01-01

    The existence of stars with masses up to $2 M_{\\odot}$ and the hints of the existence of stars with radii smaller than $\\sim 11$ km seem to require, at the same time, a stiff and a soft hadronic equation of state at large densities. We argue that these two apparently contradicting constraints are actually an indication of the existence of two families of compact stars: hadronic stars which could be very compact and quark stars which could be very massive. In this respect, a crucial role is played, in the hadronic equation of state, by the delta isobars whose early appearance shifts to large densities the formation of hyperons. We also discuss how recent experimental information on the symmetry energy of nuclear matter at saturation indicate, indirectly, an early appearance of delta isobars in neutron star matter.

  11. Holographic Quark Matter and Neutron Stars.

    Science.gov (United States)

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi

    2016-07-15

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars. PMID:27472110

  12. Holographic Quark Matter and Neutron Stars.

    Science.gov (United States)

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi

    2016-07-15

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars.

  13. Light curves from rapidly rotating neutron stars

    OpenAIRE

    Numata, Kazutoshi; Lee, Umin

    2010-01-01

    We calculate light curves produced by a hot spot of a rapidly rotating neutron star, assuming that the spot is perturbed by a core $r$-mode, which is destabilized by emitting gravitational waves. To calculate light curves, we take account of relativistic effects such as the Doppler boost due to the rapid rotation and light bending assuming the Schwarzschild metric around the neutron star. We assume that the core $r$-modes penetrate to the surface fluid ocean to have sufficiently large amplitu...

  14. Massive neutron stars and their implications

    Indian Academy of Sciences (India)

    T K Jha; Keshab C Panda

    2014-05-01

    Recent observations of high mass pulsar PSRJ1614-2230 has raised serious debate over the possible role of exotics in the dense core of neutron stars. The precise measurement of mass of the pulsar may play a very important role in limiting equation of state (EoS) of dense matter and its composition. Indirectly, it may also shape our understanding of the nucleon–hyperon or hyperon–hyperon interactions which is not well known. Within the framework of an effective chiral model, we compute models of neutron stars and analyse the hyperon composition in them. Further related implications are also discussed.

  15. The Propeller Regime of Disk Accretion to a Rapidly Rotating Magnetized Star

    CERN Document Server

    Romanova, M M; Koldoba, A V; Lovelace, R V E; Romanova, Marina M; Ustyugova, Galina V; Koldoba, Alexander V; Lovelace, Richard V E

    2004-01-01

    The propeller regime of disk accretion to a rapidly rotating magnetized star is investigated here for the first time by axisymmetric 2.5D magnetohydrodynamic simulations. An expanded, closed magnetosphere forms in which the magnetic field is predominantly toroidal. A smaller fraction of the star's poloidal magnetic flux inflates vertically, forming a magnetically dominated tower. Matter accumulates in the equatorial region outside magnetosphere and accretes to the star quasi-periodically through elongated funnel streams which cause the magnetic field to reconnect. The star spins-down owing to the interaction of the closed magnetosphere with the disk. For the considered conditions, the spin-down torque varies with the angular velocity of the star omega* as omega*^1.3 for fixed mass accretion rate. The propeller stage may be important in the evolution of X-ray pulsars, cataclysmic variables and young stars. In particular, it may explain the present slow rotation of the classical T Tauri stars.

  16. Multiwavelength Phenomenology of Isolated Neutron Stars

    OpenAIRE

    Goldoni, P.; Musso, C.; Caraveo, P. A.; Bignami, G. F.

    1995-01-01

    After reviewing the multifrequency behaviour of the Isolated Neutron Stars detected so far, we analyze for each object the efficiency of conversion of the star's rotational energy loss into optical, X and gamma radiation. Although the number of pulsars detected at different wavelengths is rather limited, a pattern is seen to emerge from our analysis pointing towards the period derivative as the leading parameter to describe the multifrequency emission of INS. One object in particular, PSR 150...

  17. Gravitational field energy contribution to the neutron star mass

    OpenAIRE

    Dyrda, M.; Kinasiewicz, B.; Kutschera, M.; Szmaglinski, A.

    2006-01-01

    Neutron stars are discussed as laboratories of physics of strong gravitational fields. The mass of a neutron star is split into matter energy and gravitational field energy contributions. The energy of the gravitational field of neutron stars is calculated with three different approaches which give the same result. It is found that up to one half of the gravitational mass of maximum mass neutron stars is comprised by the gravitational field energy. Results are shown for a number of realistic ...

  18. Demonstrating the likely neutron star nature of five M31 globular cluster sources with Swift-NuSTAR spectroscopy

    CERN Document Server

    Maccarone, Thomas J; Hornschemeier, Ann; Lehmer, Bret D; Antoniou, Vallia; Ptak, Andrew; Wik, Daniel R; Zezas, Andreas; Boyd, Padi; Kennea, Jamie; Page, Kim; Eracleous, Mike; Williams, Benjamin F; Boggs, Steven E; Christensen, Finn E; Craig, William W; Hailey, Charles J; Harrison, Fiona; Stern, Dan; Zhang, William W

    2016-01-01

    We present the results of a joint Swift-NuSTAR spectroscopy campaign on M31. We focus on the five brightest globular cluster X-ray sources in our fields. Two of these had previously been argued to be black hole candidates on the basis of apparent hard-state spectra at luminosities above those for which neutron stars are in hard states. We show that these two sources are likely to be Z-sources (i.e. low magnetic field neutron stars accreting near their Eddington limits), or perhaps bright atoll sources (low magnetic field neutron stars which are just a bit fainter than this level) on the basis of simultaneous Swift and NuSTAR spectra which cover a broader range of energies. These new observations reveal spectral curvature above 6-8 keV that would be hard to detect without the broader energy coverage the NuSTAR data provide relative to Chandra and XMM-Newton. We show that the other three sources are also likely to be bright neutron star X-ray binaries, rather than black hole X-ray binaries. We discuss why it sh...

  19. Neutron stars - A cosmic hadron physics laboratory

    Science.gov (United States)

    Pines, David

    1989-01-01

    A progress report is given on neutron stars as a cosmic hadron physics laboratory. Particular attention is paid to the crustal neutron superfluid, and to the information concerning its properties which may be deduced from observations of pulsar glitches and postglitch behavior. Current observational evidence concerning the softness or stiffness of the high density neutron matter equation of state is reviewed briefly, and the (revolutionary) implications of a confirmation of the existence of a 0.5 ms pulsar at the core of (Supernova) SN1987A are discussed.

  20. Neutron stars: A cosmic hadron physics laboratory

    Science.gov (United States)

    Pines, David

    1989-01-01

    A progress report is given on neutron stars as a cosmic hadron physics laboratory. Particular attention is paid to the crustal neutron superfluid, and to the information concerning its properties which may be deduced from observations of pulsar glitches and postglitch behavior. Current observational evidence concerning the softness or stiffness of the high density neutron matter equation of state is reviewed briefly, and the (revolutionary) implications of a confirmation of the existence of a 0.5 ms pulsar at the core of (Supernova) SN1987A are discussed.

  1. Black-hole–neutron-star mergers at realistic mass ratios: Equation of state and spin orientation effects

    OpenAIRE

    Foucart, Francois; Deaton, M. Brett; Duez, Matthew D.; Kidder, Lawrence E.; MacDonald, Ilana; Ott, Christian D.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela; Teukolsky, Saul A.

    2013-01-01

    Black-hole–neutron-star mergers resulting in the disruption of the neutron star and the formation of an accretion disk and/or the ejection of unbound material are prime candidates for the joint detection of gravitational-wave and electromagnetic signals when the next generation of gravitational-wave detectors comes online. However, the disruption of the neutron star and the properties of the postmerger remnant are very sensitive to the parameters of the binary (mass ratio, black-hole spin, ne...

  2. Electrical conductivity of warm neutron star crust in magnetic fields

    CERN Document Server

    Harutyunyan, Arus

    2016-01-01

    We study the electrical conductivity of finite-temperature crust of a warm compact star which may be formed in the aftermath of a supernova explosion or a binary neutron star merger as well as when a cold neutron star is heated by accretion of material from a companion. We focus on the temperature-density regime where plasma is in the liquid state and, therefore, the conductivity is dominated by the electron scattering off correlated nuclei. The dynamical screening of this interaction is implemented in terms of polarization tensor computed in the hard-thermal-loop effective field theory of QED plasma. The correlations of the background ionic component are accounted for via a structure factor derived from Monte-Carlo simulations of one-component-plasma. With this input we solve the Boltzmann kinetic equation in relaxation time approximation taking into account the anisotropy of transport due to the magnetic field. The electrical conductivity tensor is studied numerically as a function of temperature and densit...

  3. How neutron stars constrain the nuclear equation of state

    CERN Document Server

    Thomas, Hell; Weise, Wolfram

    2013-01-01

    Recent neutron star observations set new constraints for the equation of state of baryonic matter. A chiral effective field theory approach is used for the description of neutron-dominated nuclear matter present in the outer core of neutron stars. Possible hybrid stars with quark matter in the inner core are discussed using a three-flavor Nambu--Jona-Lasinio model.

  4. Generalized equation of state for cold superfluid neutron stars

    OpenAIRE

    Chamel, N.; Pearson, J M; Goriely, S

    2010-01-01

    Mature neutron stars are expected to contain various kinds of superfluids in their interiors. Modeling such stars requires the knowledge of the mutual entrainment couplings between the different condensates. We present a unified equation of state describing the different regions of a neutron star with superfluid neutrons and superconducting protons in its core.

  5. A strongly heated neutron star in the transient z source MAXI J0556-332

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Jeroen; Remillard, Ronald A. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue 37-582D, Cambridge, MA 02139 (United States); Fridriksson, Joel K.; Wijnands, Rudy [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Cackett, Edward M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock St., Detroit, MI 48201 (United States); Degenaar, Nathalie [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Linares, Manuel [Instituto de Astrofísica de Canarias, c/ Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Lin, Dacheng, E-mail: jeroen@space.mit.edu [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)

    2014-11-10

    We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color-color and hardness-intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ∼16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46 ± 15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45 ± 3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 M {sub ☉}. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ∼500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power law (kT{sub eff}{sup ∞} = 184-308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (∼200 days) is similar to other sources. Fits without a power law yield higher temperatures (kT{sub eff}{sup ∞} = 190-336 eV) and a shorter e-folding time (∼160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556-332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.

  6. A strongly heated neutron star in the transient z source MAXI J0556-332

    International Nuclear Information System (INIS)

    We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color-color and hardness-intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ∼16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46 ± 15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45 ± 3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 M ☉. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ∼500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power law (kTeff∞ = 184-308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (∼200 days) is similar to other sources. Fits without a power law yield higher temperatures (kTeff∞ = 190-336 eV) and a shorter e-folding time (∼160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556-332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.

  7. A Strongly Heated Neutron Star in the Transient Z Source MAXI J0556-332

    Science.gov (United States)

    Homan, Jeroen; Fridriksson, Joel K.; Wijnands, Rudy; Cackett, Edward M.; Degenaar, Nathalie; Linares, Manuel; Lin, Dacheng; Remillard, Ronald A.

    2014-11-01

    We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color-color and hardness-intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ~16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46 ± 15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45 ± 3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 M ⊙. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ~500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power law (kT_eff∞ = 184-308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (~200 days) is similar to other sources. Fits without a power law yield higher temperatures (kT_eff∞ = 190-336 eV) and a shorter e-folding time (~160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556-332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.

  8. Boson stars, neutron stars and black holes in five dimensions

    CERN Document Server

    Brihaye, Y

    2016-01-01

    Different types of gravitating compact objects occuring in d=5 space-time are considered: boson stars, hairy black holes and perfect fluid solutions. All these solutions of the Einstein equations coupled to matter have well established counterparts in d=4; in particular neutron stars can be modell{\\S}ed more or less realistically by a perfect fluid. A special emphasis is set on the possibility -and/or the necessity- for these solutions to have an intrinsic angular momentum or spin. The influence of a cosmological constant on their pattern is also studied. Several physical properties are presented from which common features to boson and neutron stars clearly emerge. We finally point out qualitative differences of the gravitational interaction supporting these classical lumps between four and five dimensions.

  9. MN Lup: X-RAYS FROM A WEAKLY ACCRETING T TAURI STAR

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, H. M.; Wolk, S. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Wolter, U.; Robrade, J., E-mail: hguenther@cfa.harvard.edu [Universitaet Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2013-07-01

    Young T Tauri stars (TTS) are surrounded by an accretion disk, which over time disperses due to photoevaporation, accretion, and possibly planet formation. The accretion shock on the central star produces an UV/optical veiling continuum, line emission, and X-ray signatures. As the accretion rate decreases, the impact on the central star must change. In this article we study MN Lup, a young star where no indications of a disk are seen in IR observations. We present XMM-Newton and VLT/UVES observations, some of them taken simultaneously. The X-ray data show that MN Lup is an active star with L{sub X} /L{sub bol} close to the saturation limit. However, we find high densities (n{sub e} > 3 Multiplication-Sign 10{sup 10} cm{sup -3}) in the X-ray grating spectrum. This can be well fitted using an accretion shock model with an accretion rate of 2 Multiplication-Sign 10{sup -11} M{sub Sun} yr{sup -1}. Despite the simple H{alpha} line profile which has a broad component, but no absorption signatures as typically seen on accreting TTS, we find rotational modulation in Ca II K and in photospheric absorption lines. These line profile modulations do not clearly indicate the presence of a localized hot accretion spot on the star. In the H{alpha} line we see a prominence in absorption about 2R{sub *} above the stellar surface-the first of its kind on a TTS. MN Lup is also the only TTS where accretion is seen, but no dust disk is detected that could fuel it. We suggest that MN Lup presents a unique and short-lived state in the disk evolution. It may have lost its dust disk only recently and is now accreting the remaining gas at a very low rate.

  10. Color Superconducting Quark Matter in Neutron Stars

    OpenAIRE

    Heiselberg, H.

    1999-01-01

    Color superconductivity in quark matter is studied for electrically charge neutral neutron star matter in $\\beta$-equilibrium. Both bulk quark matter and mixed phases of quark and nuclear matter are treated. The electron chemical potential and strange quark mass affect the various quark chemical potentials and therefore also the color superconductivity due to dicolor pairing or color-flavor locking.

  11. Neutron stars and their magnetic fields

    CERN Document Server

    Reisenegger, Andreas

    2008-01-01

    Neutron stars have the strongest magnetic fields known anywhere in the Universe. In this review, I intend to give a pedagogical discussion of some of the related physics. Neutron stars exist because of Pauli's exclusion principle, in two senses: 1) It makes it difficult to squeeze particles too close together, in this way allowing a mechanical equilibrium state in the presence of extremely strong gravity. 2) The occupation of low-energy proton and electron states makes it impossible for low-energy neutrons to beta decay. A corollary of the second statement is that charged particles are necessarily present inside a neutron star, allowing currents to flow. Since these particles are degenerate, they collide very little, and therefore make it possible for the star to support strong, organized magnetic fields over long times. These show themselves in pulsars and are the most likely energy source for the high X-ray and gamma-ray luminosity ``magnetars''. I briefly discuss the possible origin of this field and some ...

  12. Emission processes in quiescent neutron star transients

    OpenAIRE

    Campana, Sergio

    2003-01-01

    We review the observational properties of transient systems made by a neutron star primary and a late dwarf companion (known also as Soft X-ray Transients) during their quiescent state. We focus on the several emission mechanisms proposed and try to compare them with observations. Finally, we review new tools to improve our comprehension of the physics of the emission processes.

  13. Neutron Star Interiors and Topology Change

    Directory of Open Access Journals (Sweden)

    Peter K. F. Kuhfittig

    2013-01-01

    Full Text Available Quark matter is believed to exist in the center of neutron stars. A combined model consisting of quark matter and ordinary matter is used to show that the extreme conditions existing in the center could result in a topology change, that is, in the formation of wormholes.

  14. Can SGRs/AXPs originate from neutron star binaries?

    CERN Document Server

    Wang, J

    2013-01-01

    Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are two groups of enigmatic objects, which have been extensively investigated in past few decades. Based on the ample information about their timing behaviors, spectra, and variability properties, it was proposed that SGRs/AXPs are isolated neutron stars (NSs) with extremely strong magnetic fields, the so-called magnetars. Nonetheless, some alternative models are probably equally convincing such as those proposing that they are accreting NSs with a fall-back disk or rotation-powered magnetized and massive white dwarfs. The nature and nurture of SGRs/AXPs remain controversial. In this paper, we propose that SGRs/AXPs can originate from normal NSs in binary systems. SGRs are a class of objects containing a neutron-drip core and denser crust with a stiffer equation of state, which is formed from re-explosion of normal NSs in binary systems. It is the accretion onto the denser crust that contributes to the observed hard emissions. AXPs are a group of ...

  15. X-Ray Reflection of Thermonuclear Bursts from Neutron Stars: Constraining Flames with RXTE and an Outlook on NICER

    Science.gov (United States)

    Keek, Laurens

    2016-04-01

    Thermonuclear X-ray bursts observed from accreting neutron stars are employed to study, e.g., the nuclear physics of rare isotopes and the dense matter equation of state. Recent observations indicate that bursts strongly affect their accretion environment, and reprocessed burst emission may reflect off the inner accretion disk. The spectra of the short (10-100s) bursts are, however, of insufficient quality to accurately separate the neutron star signal from accretion disk emission and burst reflection. Only for two rare "superbursts" with durations of several hours did RXTE/PCA spectra show burst reflection signatures. We discuss the case of 4U 1636-536, where the reflection signal traced the evolution of the ionization state of the inner disk. Our simulations show that a large reflection fraction may indicate that the disk puffs up due to burst irradiation. After separating the direct burst emission from reflection, we show that the rise of the superburst light curve is shaped by a stalling carbon flame. In the near future, the Neutron Star Interior Composition ExploreR (NICER) will have a band-pass that extends below 2 keV, where reflection dominates the burst spectrum, and which was not probed by RXTE. Therefore, NICER will be able to detect reflection features during the frequent short bursts. NICER will open a new field of studying the interaction of bursts and the accretion environment, which will inform us of which bursts are optimally suited for neutron star mass-radius measurements.

  16. Phase Transitions in Dense Baryonic Matter and Cooling of Rotating Neutron Stars

    International Nuclear Information System (INIS)

    New astrophysical instruments such as skA (square kilometer Array) and IXO (formerly Constellation X) promise the discovery of tens of thousands of new isolated rotating neutron stars (pulsars), neutron stars in low-mass X-ray binaries (LMXBs), anomalous X-ray pulsars (AXPs), and soft gamma repeaters (SGRs). Many of these neutron stars will experience dramatic density changes over their active lifetimes, driven by either stellar spin-up or spin-down, which may trigger phase transitions in their dense baryonic cores. More than that, accretion of matter onto neutron stars in LMXBs is believed to cause pycno-nuclear fusion reactions in the inner crusts of neutron stars. The associated reaction rates may be drastically altered if strange quark matter would be absolutely stable. This paper outlines the investigative steps that need to be performed in order to explore the thermal response of neutron stars to rotationally-driven phase transitions in their cores as well as to nuclear burning scenarios in their crusts. Such research complements the exploration of the phase diagram of dense baryonic matter through particle collider experiments, as performed at RHIC in the USA and as planned at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt (Germany). (authors)

  17. Angular momentum transport in accretion disk boundary layers around weakly magnetized stars

    DEFF Research Database (Denmark)

    Pessah, M.E.; Chan, C.-K.

    2013-01-01

    , in the boundary layer where the accretion disk meets the surface of a weakly magnetized star. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI...

  18. Induced Pairing Interaction in Neutron Star Matter

    Science.gov (United States)

    Lombardo, U.; Schulze, H.-J.; Zuo, W.

    2013-01-01

    The three superfluid phases supposed to occur in neutron stars are reviewed in the framework of the generalized BCS theory with the induced interaction. The structure of neutron stars characterized by beta-stable asymmetric nuclear matter in equilibrium with the gravitational force discloses new aspects of the pairing mechanism. Some of them are discussed in this report, in particular the formation in dense matter of Cooper pairs in the presence of three-body forces and the interplay between repulsive and attractive polarization effects on isospin T = 1 Cooper pairs embedded into the neutron and proton environment. Quantitative estimates of the energy gaps are reported and their sensitivity to the medium effects, i.e., interaction and polarization, is explored.

  19. General relativistic neutron stars with twisted magnetosphere

    CERN Document Server

    Pili, A G; Del Zanna, L

    2014-01-01

    Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars are extreme manifestations of the most magnetized neutron stars: magnetars. The phenomenology of their emission and spectral properties strongly support the idea that the magnetospheres of these astrophysical objects are tightly twisted in the vicinity of the star. Previous studies on equilibrium configurations have so far focused on either the internal or the external magnetic field configuration, without considering a real coupling between the two fields. Here we investigate numerical equilibrium models of magnetized neutron stars endowed with a confined twisted magnetosphere, solving the general relativistic Grad-Shafranov equation both in the interior and in the exterior of the compact object. A comprehensive study of the parameters space is provided to investigate the effects of different current distributions on the overall magnetic field structure.

  20. Strong neutrino cooling by cycles of electron capture and β- decay in neutron star crusts.

    Science.gov (United States)

    Schatz, H; Gupta, S; Möller, P; Beard, M; Brown, E F; Deibel, A T; Gasques, L R; Hix, W R; Keek, L; Lau, R; Steiner, A W; Wiescher, M

    2014-01-01

    The temperature in the crust of an accreting neutron star, which comprises its outermost kilometre, is set by heating from nuclear reactions at large densities, neutrino cooling and heat transport from the interior. The heated crust has been thought to affect observable phenomena at shallower depths, such as thermonuclear bursts in the accreted envelope. Here we report that cycles of electron capture and its inverse, β(-) decay, involving neutron-rich nuclei at a typical depth of about 150 metres, cool the outer neutron star crust by emitting neutrinos while also thermally decoupling the surface layers from the deeper crust. This 'Urca' mechanism has been studied in the context of white dwarfs and type Ia supernovae, but hitherto was not considered in neutron stars, because previous models computed the crust reactions using a zero-temperature approximation and assumed that only a single nuclear species was present at any given depth. The thermal decoupling means that X-ray bursts and other surface phenomena are largely independent of the strength of deep crustal heating. The unexpectedly short recurrence times, of the order of years, observed for very energetic thermonuclear superbursts are therefore not an indicator of a hot crust, but may point instead to an unknown local heating mechanism near the neutron star surface. PMID:24291788

  1. MN Lup: X-rays from a weakly accreting T Tauri star

    CERN Document Server

    Guenther, H M; Robrade, J; Wolk, S J

    2013-01-01

    Young T Tauri stars (TTS) are surrounded by an accretion disk, which over time disperses due to photoevaporation, accretion, and possibly planet formation. The accretion shock on the central star produces an UV/optical veiling continuum, line emission, and X-ray signatures. As the accretion rate decreases, the impact on the central star must change. In this article we study MN Lup, a young star where no indications of a disk are seen in IR observations. We present XMM-Newton and VLT/UVES observations, some of them taken simultaneously. The X-ray data show that MN Lup is an active star with L_X/L_bol close to the saturation limit. However, we find high densities (n_e > 3e10 /cm^3) in the X-ray grating spectrum. This can be well fitted using an accretion shock model with an accretion rate of 2e-11 M_sun/yr. Despite the simple Halpha line profile which has a broad component, but no absorption signatures as typically seen on accreting TTS, we find rotational modulation in Ca II K and in photospheric absorption li...

  2. Lense-Thirring precession around neutron stars with known spin

    Science.gov (United States)

    Van Doesburgh, Marieke; van der Klis, Michiel

    2016-07-01

    Quasi periodic oscillations (QPOs) between 300 and 1200 Hz in the X-ray emission from low mass X-ray binaries have been linked to Keplerian orbital motion at the inner edge of accretion disks. Lense-Thirring precession is precession of the line of nodes of inclined orbits with respect to the equatorial plane of a rotating object due to the general relativistic effect of frame dragging. The Lense-Thirring model of Stella and Vietri (1998) explains QPOs observed in neutron star low mass X-ray binaries at frequencies of a few tens of Hz by the nodal precession of the orbits at the inner disk edge at a precession frequency, ν_{LT} , identical to the Lense-Thirring precession of a test particle orbit. A quadratic relation between ν_{LT} and the Keplerian orbital frequency, and a linear dependence on spin frequency are predicted. In early work (van Straaten et al., 2003) this quadratic relation was confirmed to remarkable precision in three objects of uncertain spin. Since the initial work, many neutron star spin frequencies have been measured in X-ray sources that show QPOs at both low and high frequency. Using archival data from the Rossi X-ray Timing Explorer, we compare the Lense-Thirring prediction to the properties of quasi periodic oscillations measured in a sample of 14 low mass X-ray binaries of which the neutron star spin frequencies can be inferred from their bursting behaviour. We find that in the range predicted for the precession frequency, we can distinguish two different oscillations that often occur simultaneously. In previous works, these two oscillations have often been confused. For both frequencies, we find correlations with inferred Keplerian frequency characterized by power laws with indices that differ significantly from the prediction of 2.0 and therefore inconsistent with the Lense-Thirring model. Also, the specific moment of inertia of the neutron star required by the observed frequencies exceeds values predicted for realistic equations of

  3. Oscillations of dissipative superfluid neutron stars

    International Nuclear Information System (INIS)

    We investigate the oscillations of slowly rotating superfluid stars, taking into account the vortex-mediated mutual friction force that is expected to be the main damping mechanism in mature neutron star cores. Working to linear order in the rotation of the star, we consider both the fundamental f-modes and the inertial r-modes. In the case of the (polar) f-modes, we work out an analytic approximation of the mode which allows us to write down a closed expression for the mutual friction damping time scale. The analytic result is in good agreement with previous numerical results obtained using an energy integral argument. We extend previous work by considering the full range of permissible values for the vortex drag, e.g. the friction between each individual vortex and the electron fluid. This leads to the first ever results for the f-mode in the strong drag regime. Our estimates provide useful insight into the dependence on, and relevance of, various equation of state parameters. In the case of the (axial) r-modes, we confirm the existence of two classes of modes. However, we demonstrate that only one of these sets remains purely axial in more realistic neutron star models. Our analysis lays the foundation for companion studies of the mutual friction damping of the r-modes at second order in the slow-rotation approximation, the first time evolutions for superfluid neutron star perturbations and also the first detailed attempt at studying the dynamics of superfluid neutron stars with both a relative rotation between the components and mutual friction.

  4. Colloquium: Measuring the neutron star equation of state using x-ray timing

    Science.gov (United States)

    Watts, Anna L.; Andersson, Nils; Chakrabarty, Deepto; Feroci, Marco; Hebeler, Kai; Israel, Gianluca; Lamb, Frederick K.; Miller, M. Coleman; Morsink, Sharon; Özel, Feryal; Patruno, Alessandro; Poutanen, Juri; Psaltis, Dimitrios; Schwenk, Achim; Steiner, Andrew W.; Stella, Luigi; Tolos, Laura; van der Klis, Michiel

    2016-04-01

    One of the primary science goals of the next generation of hard x-ray timing instruments is to determine the equation of state of matter at supranuclear densities inside neutron stars by measuring the radius of neutron stars with different masses to accuracies of a few percent. Three main techniques can be used to achieve this goal. The first involves waveform modeling. The flux observed from a hotspot on the neutron star surface offset from the rotational pole will be modulated by the star's rotation, and this periodic modulation at the spin frequency is called a pulsation. As the photons propagate through the curved spacetime of the star, information about mass and radius is encoded into the shape of the waveform (pulse profile) via special and general-relativistic effects. Using pulsations from known sources (which have hotspots that develop either during thermonuclear bursts or due to channeled accretion) it is possible to obtain tight constraints on mass and radius. The second technique involves characterizing the spin distribution of accreting neutron stars. A large collecting area enables highly sensitive searches for weak or intermittent pulsations (which yield spin) from the many accreting neutron stars whose spin rates are not yet known. The most rapidly rotating stars provide a clean constraint, since the limiting spin rate where the equatorial surface velocity is comparable to the local orbital velocity, at which mass shedding occurs, is a function of mass and radius. However, the overall spin distribution also provides a guide to the torque mechanisms in operation and the moment of inertia, both of which can depend sensitively on dense matter physics. The third technique is to search for quasiperiodic oscillations in x-ray flux associated with global seismic vibrations of magnetars (the most highly magnetized neutron stars), triggered by magnetic explosions. The vibrational frequencies depend on stellar parameters including the dense matter equation of

  5. Binary Neutron Star Mergers: A Jet Engine for Short Gamma-Ray Bursts

    Science.gov (United States)

    Ruiz, Milton; Lang, Ryan N.; Paschalidis, Vasileios; Shapiro, Stuart L.

    2016-06-01

    We perform magnetohydrodynamic simulations in full general relativity (GRMHD) of quasi-circular, equal-mass, binary neutron stars that undergo merger. The initial stars are irrotational, n = 1 polytropes and are magnetized. We explore two types of magnetic-field geometries: one where each star is endowed with a dipole magnetic field extending from the interior into the exterior, as in a pulsar, and the other where the dipole field is initially confined to the interior. In both cases the adopted magnetic fields are initially dynamically unimportant. The merger outcome is a hypermassive neutron star that undergoes delayed collapse to a black hole (spin parameter a/M BH ∼ 0.74) immersed in a magnetized accretion disk. About 4000M ∼ 60(M NS/1.625 M ⊙) ms following merger, the region above the black hole poles becomes strongly magnetized, and a collimated, mildly relativistic outflow—an incipient jet—is launched. The lifetime of the accretion disk, which likely equals the lifetime of the jet, is Δ t ∼ 0.1 (M NS/1.625 M ⊙) s. In contrast to black hole–neutron star mergers, we find that incipient jets are launched even when the initial magnetic field is confined to the interior of the stars.

  6. Neutron star crustal plate tectonics. I. Magnetic dipole evolution in millisecond pulsars and low-mass X-ray binaries

    International Nuclear Information System (INIS)

    Crust lattices in spinning-up or spinning-down neutron stars have growing shear stresses caused by neutron superfluid vortex lines pinned to lattice nuclei. For the most rapidly spinning stars, this stress will break and move the crust before vortex unpinning occurs. In spinning-down neutron stars, crustal plates will move an equatorial subduction zone in which the plates are forced into the stellar core below the crust. The opposite plate motion occurs in spinning-up stars. Magnetic fields which pass through the crust or have sources in it move with the crust. Spun-up neutron stars in accreting low-mass X-ray binaries LMXBs should then have almost axially symmetric magnetic fields. Spun-down ones with very weak magnetic fields should have external magnetic fields which enter and leave the neutron star surface only near its equator. The lowest field millisecond radiopulsars seem to be orthogonal rotators implying that they have not previously been spun-up in LMXBs but are neutron stars initially formed with periods near 0.001 s that subsequently spin down to their present periods. Accretion-induced white dwarf collapse is then the most plausible genesis for them. 29 refs

  7. Chemical Abundances in the Secondary Star of the Neutron Star Binary Centaurus X-4

    CERN Document Server

    Hern'andez, J I G; Israelian, G; Casares, J; Maeda, K; Bonifacio, P; Molaro, P; Hern\\'andez, Jonay I. Gonz\\'alez; Rebolo, Rafael; Israelian, Garik; Casares, Jorge; Maeda, Keiichi; Bonifacio, Piercarlo; Molaro, Paolo

    2005-01-01

    Using a high resolution spectrum of the secondary star in the neutron star binary {Cen X-4}, we have derived the stellar parameters and veiling caused by the accretion disk in a consistent way. We have used a $\\chi^{2}$ minimization procedure to explore a grid of 1 500 000 LTE synthetic spectra computed for a plausible range of both stellar and veiling parameters. Adopting the best model parameters found, we have determined atmospheric abundances of Fe, Ca, Ti, Ni and Al. These element abundances are super solar ($\\mathrm{[Fe/H]}=0.23 \\pm 0.10$), but only the abundance of Ti and Ni appear to be moderately enhanced ($\\ge1\\sigma$) as compared with the average values of stars of similar iron content. These element abundances can be explained if the secondary star captured a significant amount of matter ejected from a spherically symmetric supernova explosion of a 4 {$M_\\odot$} He core progenitor and assuming solar abundances as primordial abundances in the secondary star. The kinematic properties of the system i...

  8. 3PF2 neutron superfluidity in neutron stars and three-body force effect

    Institute of Scientific and Technical Information of China (English)

    Cui Chang-Xi; Zuo Wei; H.J.Schulze

    2008-01-01

    We investigate the 3PF2 neutron superfluidity in β-stable neutron star matter and neutron stars by using the BCS theory and the Brueckner-Hartrce-Fock approach.We adopt the Argonne V18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction.We have concentrated on studying the threebody force effect on the 3PF2 neutron pairing gap.It is found that the three-body force effect is to enhance remarkably the 3PF2 neutron superfluidity in neutron star matter and neutron stars.

  9. Breaking stress of neutron star crust

    International Nuclear Information System (INIS)

    Complete text of publication follows. The breaking stress (the maximum of the stress-strain curve) of neutron star crust is important for neutron star physics including pulsar glitches, emission of gravitational waves from static mountains, and flares from star quakes. We perform many molecular dynamic simulations of the breaking stress at different coupling parameters (inverse temperatures), strain rates and composition of matter. We describe our results with the Zhurkov model of strength. We apply this model to estimate the breaking stress for timescales ∼1 s - 1 year, which are most important for applications, but much longer than can be directly simulated. At these timescales the breaking stress depends strongly on the temperature. For coupling parameter Γ<200 matter breaks at very small stress, if it is applied for a few years. This viscoelastic creep can limit the lifetime of mountains on neutron stars. We also suggest an alternative model of timescale-independent breaking stress, which can be used to estimate an upper limit on the breaking stress. This work was partially supported by the Russian Foundation for Basic Research (grant 11-02-00253-a), by the State Program 'Leading Scientific Schools of Russian Federation' (grant NSh 3769.2010.2), by the President grant for young Russian scientists (MK-5857.2010.2), by United States DOE grant (DE-FG02-87ER40365) and by Shared University Research grants from IBM, Inc. to Indiana University.

  10. High Mass X-ray Binaries: Progenitors of double neutron star systems

    CERN Document Server

    Chaty, Sylvain

    2015-01-01

    In this review I briefly describe the nature of the three kinds of High-Mass X-ray Binaries (HMXBs), accreting through: (i) Be circumstellar disc, (ii) supergiant stellar wind, and (iii) Roche lobe filling supergiants. A previously unknown population of HMXBs hosting supergiant stars has been revealed in the last years, with multi-wavelength campaigns including high energy (INTEGRAL, Swift, XMM, Chandra) and optical/infrared (mainly ESO) observations. This population is divided between obscured supergiant HMXBs, and supergiant fast X-ray transients (SFXTs), characterized by short and intense X-ray flares. I discuss the characteristics of these types of supergiant HMXBs, propose a scenario describing the properties of these high-energy sources, and finally show how the observations can constrain the accretion models (e.g. clumpy winds, magneto-centrifugal barrier, transitory accretion disc, etc). Because they are the likely progenitors of Luminous Blue Variables (LBVs), and also of double neutron star systems,...

  11. Constraining neutron star tidal Love numbers with gravitational wave detectors

    OpenAIRE

    Flanagan, Eanna E.; Hinderer, Tanja

    2007-01-01

    Ground-based gravitational wave detectors may be able to constrain the nuclear equation of state using the early, low frequency portion of the signal of detected neutron star - neutron star inspirals. In this early adiabatic regime, the influence of a neutron star's internal structure on the phase of the waveform depends only on a single parameter lambda of the star related to its tidal Love number, namely the ratio of the induced quadrupole moment to the perturbing tidal gravitational field....

  12. The role of accretion disks in the formation of massive stars

    CERN Document Server

    Kuiper, Rolf; Beuther, Henrik; Henning, Thomas

    2010-01-01

    We present radiation hydrodynamics simulations of the collapse of massive pre-stellar cores. We treat frequency dependent radiative feedback from stellar evolution and accretion luminosity at a numerical resolution down to 1.27 AU. In the 2D approximation of axially symmetric simulations, it is possible for the first time to simulate the whole accretion phase of several 10^5 yr for the forming massive star and to perform a comprehensive scan of the parameter space. Our simulation series show evidently the necessity to incorporate the dust sublimation front to preserve the high shielding property of massive accretion disks. Our disk accretion models show a persistent high anisotropy of the corresponding thermal radiation field, yielding to the growth of the highest-mass stars ever formed in multi-dimensional radiation hydrodynamics simulations. Non-axially symmetric effects are not necessary to sustain accretion. The radiation pressure launches a stable bipolar outflow, which grows in angle with time as presum...

  13. The Structure of the Accretion Flow on pre-main-sequence stars

    Science.gov (United States)

    Calvet, Nuria

    1999-07-01

    We propose to test an essential prediction of the magnetospheric accretion model for T Tauri stars. STIS echelle spectra will be used to search for the relatively narrow high-temperature emission lines that must result from the magnetospheric accretion shock, but are not expected in the previous, alternative boundary layer model. By combining the results from high temperature {10^5 K} lines, accessible only with HST, with optical lines and optical-UV continuum emission, we will develop physically self-consistent models of accretion shock structure. The geometrically distribution of the emitting gas as derived from our results will test theories of mass-loading of magnetic field lines at the magnetosphere-disk interface. Analysis of the UV emission lines will also provide improved calibrations between ultraviolet continuum emission and accretion luminosities, and thus improve estimates of mass accretion rates for T Tauri stars.

  14. Magnetically elevated accretion disks in active galactic nuclei: broad emission line regions and associated star formation

    CERN Document Server

    Begelman, Mitchell C

    2016-01-01

    We propose that the accretion disks fueling active galactic nuclei are supported vertically against gravity by a strong toroidal ($\\phi-$direction) magnetic field that develops naturally as the result of an accretion disk dynamo. The magnetic pressure elevates most of the gas carrying the accretion flow at $R$ to large heights $z > 0.1 R$ and low densities, while leaving a thin dense layer containing most of the mass --- but contributing very little accretion --- around the equator. We show that such a disk model leads naturally to the formation of a broad emission line region through thermal instability. Extrapolating to larger radii, we demonstrate that local gravitational instability and associated star formation are strongly suppressed compared to standard disk models for AGN, although star formation in the equatorial zone is predicted for sufficiently high mass supply rates. This new class of accretion disk models thus appears capable of resolving two longstanding puzzles in the theory of AGN fueling: th...

  15. Dissipative processes in superfluid neutron stars

    CERN Document Server

    Mannarelli, Massimo; Manuel, Cristina

    2010-01-01

    We present some results about a novel damping mechanism of r-mode oscillations in neutron stars due to processes that change the number of protons, neutrons and electrons. Deviations from equilibrium of the number densities of the various species lead to the appearance in the Euler equations of the system of a dissipative mechanism, the so-called rocket effect. The evolution of the r-mode oscillations of a rotating neutron star are influenced by the rocket effect and we present estimates of the corresponding damping timescales. In the description of the system we employ a two-fluid model, with one fluid consisting of all the charged components locked together by the electromagnetic interaction, while the second fluid consists of superfluid neutrons. Both components can oscillate however the rocket effect can only efficiently damp the countermoving r-mode oscillations, with the two fluids oscillating out of phase. In our analysis we include the mutual friction dissipative process between the neutron superfluid...

  16. Neutron stars in Horndeski gravity

    Science.gov (United States)

    Maselli, Andrea; Silva, Hector O.; Minamitsuji, Masato; Berti, Emanuele

    2016-06-01

    Horndeski's theory of gravity is the most general scalar-tensor theory with a single scalar whose equations of motion contain at most second-order derivatives. A subsector of Horndeski's theory known as "Fab Four" gravity allows for dynamical self-tuning of the quantum vacuum energy, and therefore it has received particular attention in cosmology as a possible alternative to the Λ CDM model. Here we study compact stars in Fab Four gravity, which includes as special cases general relativity ("George"), Einstein-dilaton-Gauss-Bonnet gravity ("Ringo"), theories with a nonminimal coupling with the Einstein tensor ("John"), and theories involving the double-dual of the Riemann tensor ("Paul"). We generalize and extend previous results in theories of the John class and were not able to find realistic compact stars in theories involving the Paul class.

  17. Self-Trapping of Diskoseismic Corrugation Modes in Neutron Star Spacetimes

    CERN Document Server

    Tsang, David

    2015-01-01

    We examine the effects of higher-order multipole contributions of rotating neutron star (NS) spacetimes on the propagation of corrugation (c-)modes within a thin accretion disk. We find that the Lense-Thirring precession frequency, which determines the propagation region of the low-frequency fundamental corrugation modes, can experience a turnover allowing for c-modes to become self-trapped for sufficiently high dimensionless spin $j$ and quadrupole rotational deformability $\\alpha$. If such self-trapping c-modes can be detected, e.g. through phase-resolved spectroscopy of the iron line for a high-spin low-mass accreting neutron star, this could potentially constrain the spin-induced NS quadrupole and the NS equation of state.

  18. SELF-TRAPPING OF DISKOSEISMIC CORRUGATION MODES IN NEUTRON STAR SPACETIMES

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, David [Center for Theory and Computation, Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Pappas, George [Department of Physics and Astronomy, The University of Mississippi, University, MS 38677 (United States)

    2016-02-10

    We examine the effects of higher-order multipole contributions of rotating neutron star (NS) spacetimes on the propagation of corrugation (c-)modes within a thin accretion disk. We find that the Lense–Thirring precession frequency, which determines the propagation region of the low-frequency fundamental corrugation modes, can experience a turnover allowing for c-modes to become self-trapped for sufficiently high dimensionless spin j and quadrupole rotational deformability α. If such self-trapping c-modes can be detected, e.g., through phase-resolved spectroscopy of the iron line for a high-spin low-mass accreting neutron star, this could potentially constrain the spin-induced NS quadrupole and the NS equation of state.

  19. CSI 2264: Accretion process in classical T Tauri stars in the young cluster NGC 2264

    CERN Document Server

    Sousa, Alana; Bouvier, Jérôme; Stauffer, John; Venuti, Laura; Hillenbrand, Lynne; Cody, Ann Marie; Teixeira, Paula; Guimarães, Marcelo; McGinnis, Pauline; Rebull, Luisa; Flaccomio, Ettore; Fürész, Gabor; Micela, Giuseppina; Gameiro, Jorge

    2016-01-01

    Our goal is to relate the photometric and spectroscopic variability of classical T Tauri stars, of the star-forming cluster NGC 2264, to the physical processes acting in the stellar and circumstellar environment, within a few stellar radii from the star. NGC 2264 was the target of a multiwavelength observational campaign with CoRoT, MOST, Spitzer, and Chandra satellites and observations from the ground. We classified the CoRoT light curves of accreting systems according to their morphology and compared our classification to several accretion diagnostics and disk parameters. The morphology of the CoRoT light curve reflects the evolution of the accretion process and of the inner disk region. Accretion burst stars present high mass-accretion rates and optically thick inner disks. AA Tau-like systems, whose light curves are dominated by circumstellar dust obscuration, show intermediate mass-accretion rates and are located in the transition of thick to anemic disks. Classical T Tauri stars with spot-like light cur...

  20. Symmetry energy, neutron skin, and neutron star radius from chiral effective field theory interactions

    OpenAIRE

    Hebeler, K.; Schwenk, A.

    2014-01-01

    We discuss neutron matter calculations based on chiral effective field theory interactions and their predictions for the symmetry energy, the neutron skin of 208 Pb, and for the radius of neutron stars.

  1. Phase transitions in neutron matter and dynamics of neutron stars

    International Nuclear Information System (INIS)

    The neutron star dynamics during the formation of the superdense core is considered, and the instability conditions with respect to this formation are described. Within the framework of a simple model the equation of motion of the superdense core radius is investigated, its solutions in a simple model are found analytically for some limiting cases, and the results of numerical solution of the equation of motion are presented. The possible ways for the envelope to be blown off are considered

  2. Role of magnetic interactions in neutron stars

    Directory of Open Access Journals (Sweden)

    Adhya Souvik Priyam

    2015-01-01

    Full Text Available In this work, we present a calculation of the non-Fermi liquid correction to the specific heat of magnetized degenerate quark matter present at the core of the neutron star. The role of non-Fermi liquid corrections to the neutrino emissivity has been calculated beyond leading order. We extend our result to the evaluation of the pulsar kick velocity and cooling of the star due to such anomalous corrections and present a comparison with the simple Fermi liquid case.

  3. Accretion to Magnetized Stars through the Rayleigh-Taylor Instability: Global Three-Dimensional Simulations

    CERN Document Server

    Kulkarni, Akshay K

    2008-01-01

    We present results of 3D simulations of MHD instabilities at the accretion disk-magnetosphere boundary. The instability is Rayleigh-Taylor, and develops for a fairly broad range of accretion rates and stellar rotation rates and magnetic fields. It manifests itself in the form of tall, thin tongues of plasma that penetrate the magnetosphere in the equatorial plane. The shape and number of the tongues changes with time on the inner-disk dynamical timescale. In contrast with funnel flows, which deposit matter mainly in the polar region, the tongues deposit matter much closer to the stellar equator. The instability appears for relatively small misalignment angles, $\\Theta\\lesssim30^\\circ$, between the star's rotation and magnetic axes, and is associated with higher accretion rates. The hot spots and light curves during accretion through instability are generally much more chaotic than during stable accretion. The unstable state of accretion has possible implications for quasi-periodic oscillations and intermitten...

  4. Rayleigh-Taylor-Unstable Accretion and Variability of Magnetized Stars: Global Three-Dimensional Simulations

    CERN Document Server

    Kulkarni, Akshay K

    2008-01-01

    We present results of 3D simulations of MHD instabilities at the accretion disk-magnetosphere boundary. The instability is Rayleigh-Taylor, and develops for a fairly broad range of accretion rates and stellar rotation rates and magnetic fields. It produces tall, thin tongues of plasma that penetrate the magnetosphere in the equatorial plane. The shape and number of the tongues changes with time on the inner-disk dynamical timescale. In contrast with funnel flows, which deposit matter mainly in the polar region, the tongues deposit matter much closer to the stellar equator. The instability appears for relatively small misalignment angles, $\\Theta\\lesssim30^\\circ$, between the star's rotation and magnetic axes, and is associated with higher accretion rates. The hot spots and light curves during accretion through instability are generally much more chaotic than during stable accretion. The unstable state of accretion has possible implications for quasi-periodic oscillations and intermittent pulsations from accre...

  5. Superfluid Neutrons in the Core of the Neutron Star in Cassiopeia A

    CERN Document Server

    Page, Dany; Lattimer, James M; Steiner, Andrew W

    2011-01-01

    The supernova remnant Cassiopeia A contains the youngest known neutron star which is also the first one for which real time cooling has ever been observed. In order to explain the rapid cooling of this neutron star, we first present the fundamental properties of neutron stars that control their thermal evolution with emphasis on the neutrino emission processes and neutron/proton superfluidity/superconductivity. Equipped with these results, we present a scenario in which the observed cooling of the neutron star in Cassiopeia A is interpreted as being due to the recent onset of neutron superfluidity in the core of the star. The manner in which the earlier occurrence of proton superconductivity determines the observed rapidity of this neutron star's cooling is highlighted. This is the first direct evidence that superfluidity and superconductivity occur at supranuclear densities within neutron stars.

  6. Formation of Massive Primordial Stars: Intermittent UV Feedback with Episodic Mass Accretion

    Science.gov (United States)

    Hosokawa, Takashi; Hirano, Shingo; Kuiper, Rolf; Yorke, Harold W.; Omukai, Kazuyuki; Yoshida, Naoki

    2016-06-01

    We present coupled stellar evolution (SE) and 3D radiation-hydrodynamic (RHD) simulations of the evolution of primordial protostars, their immediate environment, and the dynamic accretion history under the influence of stellar ionizing and dissociating UV feedback. Our coupled SE RHD calculations result in a wide diversity of final stellar masses covering 10 {M}ȯ ≲ M * ≲ 103 {M}ȯ . The formation of very massive (≳250 {M}ȯ ) stars is possible under weak UV feedback, whereas ordinary massive (a few ×10 {M}ȯ ) stars form when UV feedback can efficiently halt the accretion. This may explain the peculiar abundance pattern of a Galactic metal-poor star recently reported by Aoki et al., possibly the observational signature of very massive precursor primordial stars. Weak UV feedback occurs in cases of variable accretion, in particular when repeated short accretion bursts temporarily exceed 0.01 {M}ȯ {{{yr}}}-1, causing the protostar to inflate. In the bloated state, the protostar has low surface temperature and UV feedback is suppressed until the star eventually contracts, on a thermal adjustment timescale, to create an H ii region. If the delay time between successive accretion bursts is sufficiently short, the protostar remains bloated for extended periods, initiating at most only short periods of UV feedback. Disk fragmentation does not necessarily reduce the final stellar mass. Quite the contrary, we find that disk fragmentation enhances episodic accretion as many fragments migrate inward and are accreted onto the star, thus allowing continued stellar mass growth under conditions of intermittent UV feedback. This trend becomes more prominent as we improve the resolution of our simulations. We argue that simulations with significantly higher resolution than reported previously are needed to derive accurate gas mass accretion rates onto primordial protostars.

  7. Formation of Massive Primordial Stars: Intermittent UV Feedback with Episodic Mass Accretion

    Science.gov (United States)

    Hosokawa, Takashi; Hirano, Shingo; Kuiper, Rolf; Yorke, Harold W.; Omukai, Kazuyuki; Yoshida, Naoki

    2016-06-01

    We present coupled stellar evolution (SE) and 3D radiation-hydrodynamic (RHD) simulations of the evolution of primordial protostars, their immediate environment, and the dynamic accretion history under the influence of stellar ionizing and dissociating UV feedback. Our coupled SE RHD calculations result in a wide diversity of final stellar masses covering 10 {M}⊙ ≲ M * ≲ 103 {M}⊙ . The formation of very massive (≳250 {M}⊙ ) stars is possible under weak UV feedback, whereas ordinary massive (a few ×10 {M}⊙ ) stars form when UV feedback can efficiently halt the accretion. This may explain the peculiar abundance pattern of a Galactic metal-poor star recently reported by Aoki et al., possibly the observational signature of very massive precursor primordial stars. Weak UV feedback occurs in cases of variable accretion, in particular when repeated short accretion bursts temporarily exceed 0.01 {M}⊙ {{{yr}}}-1, causing the protostar to inflate. In the bloated state, the protostar has low surface temperature and UV feedback is suppressed until the star eventually contracts, on a thermal adjustment timescale, to create an H ii region. If the delay time between successive accretion bursts is sufficiently short, the protostar remains bloated for extended periods, initiating at most only short periods of UV feedback. Disk fragmentation does not necessarily reduce the final stellar mass. Quite the contrary, we find that disk fragmentation enhances episodic accretion as many fragments migrate inward and are accreted onto the star, thus allowing continued stellar mass growth under conditions of intermittent UV feedback. This trend becomes more prominent as we improve the resolution of our simulations. We argue that simulations with significantly higher resolution than reported previously are needed to derive accurate gas mass accretion rates onto primordial protostars.

  8. A dynamical description of neutron star crusts

    CERN Document Server

    de la Mota, V; Eudes, Ph

    2012-01-01

    Neutron Stars are natural laboratories where fundamental properties of matter under extreme conditions can be explored. Modern nuclear physics input as well as many-body theories are valuable tools which may allow us to improve our understanding of the physics of those compact objects. In this work the occurrence of exotic structures in the outermost layers of neutron stars is investigated within the framework of a microscopic model. In this approach the nucleonic dynamics is described by a time-dependent mean field approach at around zero temperature. Starting from an initial crystalline lattice of nuclei at subnuclear densities the system evolves toward a manifold of self-organized structures with different shapes and similar energies. These structures are studied in terms of a phase diagram in density and the corresponding sensitivity to the isospin-dependent part of the equation of state and to the isotopic composition is investigated.

  9. Diffusive heat blanketing envelopes of neutron stars

    CERN Document Server

    Beznogov, M V; Yakovlev, D G

    2016-01-01

    We construct new models of outer heat blanketing envelopes of neutron stars composed of binary ion mixtures (H - He, He - C, C - Fe) in and out of diffusive equilibrium. To this aim, we generalize our previous work on diffusion of ions in isothermal gaseous or Coulomb liquid plasmas to handle non-isothermal systems. We calculate the relations between the effective surface temperature Ts and the temperature Tb at the bottom of heat blanketing envelopes (at a density rhob= 1e8 -- 1e10 g/cc) for diffusively equilibrated and non-equilibrated distributions of ion species at different masses DeltaM of lighter ions in the envelope. Our principal result is that the Ts - Tb relations are fairly insensitive to detailed distribution of ion fractions over the envelope (diffusively equilibrated or not) and depend almost solely on DeltaM. The obtained relations are approximated by analytic expressions which are convenient for modeling the evolution of neutron stars.

  10. Nuclear pasta in supernovae and neutron stars

    CERN Document Server

    Watanabe, Gentaro

    2011-01-01

    In supernova cores and neutron star crusts, nuclei with exotic shapes such as rod-like and slab-like nuclei are expected to exist. These nuclei are collectively called nuclear "pasta". For the past decades, existence of the pasta phases in the equilibrium state has been studied using various methods. Recently, the formation process of the pasta phases, which has been a long-standing problem, has been unveiled using molecular dynamics simulations. In this review, we first provide the astrophysical background of supernovae and neutron stars and overview the history of the study of the pasta phases. We then focus on the recent study on the formation process of the pasta phases. Finally, we discuss future important issues related to the pasta phases: their astrophysical evidence and consequences.

  11. Cosmic ray acceleration by binary neutron stars

    Science.gov (United States)

    Kundt, W.

    Young binary neutron stars, the elder brothers of pulsars, are proposed as the boosters of the ionic component of cosmic rays. Their rotational energy can be converted into beams of cosmic rays if there is enough coupling between the corotating magnetosphere and the impinging plasma, in a manner similar to the sparking of a grindstone. Power-law spectra in energy are obtained from a power-law dependence of the accelerating fields. The upper cutoff energy should not greatly exceed 10 to the 20th eV. The observed ionic cosmic-ray spectrum would result from a superposition of the injection by no more than about one million young binary neutron stars.

  12. Fast fossil rotation of neutron star cores

    CERN Document Server

    Melatos, A

    2012-01-01

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) time-scale, which can exceed ~ 10^3 yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g. by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  13. The Fascinating World of Neutron Stars

    Science.gov (United States)

    Piekarewicz, J.

    2009-07-01

    Understanding the equation of state (EOS) of cold nuclear matter, namely, the relation between pressure and energy density, is a central goal of nuclear physics that cuts across a variety of disciplines. Indeed, the limits of nuclear existence, the collision of heavy ions, the structure of neutron stars, and the dynamics of core-collapse supernova, all depend critically on the equation of state of hadronic matter. In this contribution I will concentrate on the EOS of cold baryonic matter with special emphasis on its impact on the structure and dynamics of neutron stars. In particular, I will discuss the many fascinating phases that one encounters in the journey from the low-density crust to the high-density core.

  14. Neutron Stars in Supernova Remnants and Beyond

    OpenAIRE

    Gvaramadze, V. V.

    2002-01-01

    We discuss a concept of off-centred cavity supernova explosion as applied to neutron star/supernova remnant associations and show how this concept could be used to preclude the anti-humane decapitating the Duck (G5.4-1.2 + G5.27-0.9) and dismembering the Swan (Cygnus Loop), as well as to search for a stellar remnant associated with the supernova remnant RCW86.

  15. Pion condensation and neutron star dynamics

    International Nuclear Information System (INIS)

    The question of formation of pion condensate via a phase transition in nuclear matter, especially in the core of neutron stars is reviewed. The possible mechanisms and the theoretical restrictions of pion condensation are summarized. The effects of ultradense equation of state and density jumps on the possible condensation phase transition are investigated. The possibilities of observation of condensation process are described. (D.Gy.)

  16. Topological characterization of neutron star crusts

    CERN Document Server

    Dorso, C O; López, J A

    2012-01-01

    Neutron star crusts are studied using a classical molecular dynamics model developed for heavy ion reactions. After the model is shown to produce a plethora of the so-called "pasta" shapes, a series of techniques borrowed from nuclear physics, condensed matter physics and topology are used to craft a method that can be used to characterize the shape of the pasta structures in an unequivocal way.

  17. From neutron stars to quark stars in mimetic gravity

    Science.gov (United States)

    Astashenok, Artyom V.; Odintsov, Sergei D.

    2016-09-01

    Realistic models of neutron and quark stars in the framework of mimetic gravity with a Lagrange multiplier constraint are presented. We discuss the effect of a mimetic scalar aiming to describe dark matter on the mass-radius relation and the moment of inertia for slowly rotating relativistic stars. The mass-radius relation and moment of inertia depend on the value of the mimetic scalar in the center of the star. This fact leads to the ambiguity in the mass-radius relation for a given equation of state. Such ambiguity allows us to explain some observational facts better than in standard general relativity. The case of mimetic potential V (ϕ )˜A eC ϕ2 is considered in detail. The relative deviation of the maximal moment of inertia is approximately twice as large as the relative deviation of the maximal stellar mass. We also briefly discuss the mimetic f (R ) gravity. In the case of f (R )=R +a R2 mimetic gravity, it is expected that the increase of maximal mass and maximal moment of inertia due to the mimetic scalar becomes much stronger with bigger parameter a . The influence of the scalar field in mimetic gravity can lead to the possible existence of extreme neutron stars with large masses.

  18. Binary pulsars as probes of neutron star birth

    NARCIS (Netherlands)

    R.A.M.J. Wijers; J. van Paradijs; E.P.J. van den Heuvel

    1992-01-01

    We discuss two issues in the physics of neutron stars and their progenitors. The first is whether a neutron star receives a velocity kick when it is formed in the supernova-explosion of a massive star, and if it does, what is the characteristic magnitude, v(0), thereof? The second concerns the fate

  19. Magneto--thermal evolution of neutron stars

    CERN Document Server

    Pons, J A; Geppert, U

    2008-01-01

    We study the mutual influence of thermal and magnetic evolution in a neutron star's crust in axial symmetry. Taking into account realistic microphysical inputs, we find the heat released by Joule effect consistent with the circulation of currents in the crust, and we incorporate its effects in 2D cooling calculations. We solve the induction equation numerically using a hybrid method (spectral in angles, but a finite--differences scheme in the radial direction), coupled to the thermal diffusion equation. We present the first long term 2D simulations of the coupled magneto-thermal evolution of neutron stars. This substantially improves previous works in which a very crude approximation in at least one of the parts (thermal or magnetic diffusion) has been adopted. Our results show that the feedback between Joule heating and magnetic diffusion is strong, resulting in a faster dissipation of the stronger fields during the first million years of a NS's life. As a consequence, all neutron stars born with fields larg...

  20. Magnetars: neutron stars with huge magnetic storms

    CERN Document Server

    Rea, Nanda

    2012-01-01

    Among the many different classes of stellar objects, neutron stars provide a unique environment where we can test (at the same time) our understanding of matter with extreme density, temperature, and magnetic field. In particular, the properties of matter under the influence of magnetic fields and the role of electromagnetism in physical processes are key areas of research in physics. However, despite decades of research, our limited knowledge on the physics of strong magnetic fields is clear: we only need to note that the strongest steady magnetic field achieved in terrestrial labs is some millions of Gauss, only thousands of times stronger than a common refrigerator magnet. In this general context, I will review here the state of the art of our research on the most magnetic objects in the Universe, a small sample of neutron stars called magnetars. The study of the large high-energy emission, and the flares from these strongly magnetized (~10^{15} Gauss) neutron stars is providing crucial information about t...

  1. Flux Expulsion Field Evolution in Neutron Stars

    CERN Document Server

    Jahan-Miri, M

    1999-01-01

    Models for the evolution of magnetic fields of neutron stars are constructed, assuming the field is embedded in the proton superconducting core of the star. The rate of expulsion of the magnetic flux out of the core, or equivalently the velocity of outward motion of flux-carrying proton-vortices is determined from a solution of the Magnus equation of motion for these vortices. A force due to the pinning interaction between the proton-vortices and the neutron-superfluid vortices is also taken into account in addition to the other more conventional forces acting on the proton-vortices. Alternative models for the field evolution are considered based on the different possibilities discussed for the effective values of the various forces. The coupled spin and magnetic evolution of single pulsars as well as those processed in low-mass binary systems are computed, for each of the models. The predicted lifetimes of active pulsars, field strengths of the very old neutron stars, and distribution of the magnetic fields ...

  2. Neutron stars interiors: Theory and reality

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.R. [University of Oxford, Department of Physics, Oxford (United Kingdom); University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States)

    2016-03-15

    There are many fascinating processes in the universe which we observe in more detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in a core-collapse supernova explosion, one of the most violent events in the universe. As a result, the densest objects in the universe, neutron stars and/or black holes, are created. The physical basis of these events should be understood in line with observation. Unfortunately, available data do not provide adequate constraints for many theoretical models of dense matter. One of the most open areas of research is the composition of matter in the cores of neutron stars. Unambiguous fingerprints for the appearance and evolution of particular components, such as strange baryons and mesons, with increasing density, have not been identified. In particular, the hadron-quark phase transition remains a subject of intensive research. In this contribution we briefly survey the most promising observational and theoretical directions leading to progress in understanding high density matter in neutron stars. A possible way forward in modeling high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model makes connection between hadronic structure and the underlying quark make-up. It offers a natural explanation for the saturation of nuclear force and treats high-density matter, containing the full baryon octet, in terms of four uniquely defined parameters adjusted to properties of symmetric nuclear matter at saturation. (orig.)

  3. Neutron stars interiors: Theory and reality

    Science.gov (United States)

    Stone, J. R.

    2016-03-01

    There are many fascinating processes in the universe which we observe in more detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in a core-collapse supernova explosion, one of the most violent events in the universe. As a result, the densest objects in the universe, neutron stars and/or black holes, are created. The physical basis of these events should be understood in line with observation. Unfortunately, available data do not provide adequate constraints for many theoretical models of dense matter. One of the most open areas of research is the composition of matter in the cores of neutron stars. Unambiguous fingerprints for the appearance and evolution of particular components, such as strange baryons and mesons, with increasing density, have not been identified. In particular, the hadron-quark phase transition remains a subject of intensive research. In this contribution we briefly survey the most promising observational and theoretical directions leading to progress in understanding high density matter in neutron stars. A possible way forward in modeling high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model makes connection between hadronic structure and the underlying quark make-up. It offers a natural explanation for the saturation of nuclear force and treats high-density matter, containing the full baryon octet, in terms of four uniquely defined parameters adjusted to properties of symmetric nuclear matter at saturation.

  4. Further X-ray observations of EXO 0748-676 in quiescence: evidence for a cooling neutron star crust

    NARCIS (Netherlands)

    N. Degenaar; M.T. Wolff; P.S. Ray; K.S. Wood; J. Homan; W.H.G. Lewin; P.G. Jonker; E.M. Cackett; J.M. Miller; E.F. Brown; R. Wijnands

    2011-01-01

    In late 2008, the quasi-persistent neutron star X-ray transient and eclipsing binary EXO 0748−676 started a transition from outburst to quiescence, after it actively accreted for more than 24 yr. In a previous work, we discussed Chandra and Swift observations obtained during the first 5 months of th

  5. Chandra and Swift observations of the quasi-persistent neutron star transient EXO 0748−676 back to quiescence

    NARCIS (Netherlands)

    N. Degenaar; R. Wijnands; M.T. Wolff; P.S. Ray; K.S. Wood; J. Homan; W.H.G. Lewin; P.G. Jonker; E.M. Cackett; J.M. Miller; E.F. Brown

    2009-01-01

    The quasi-persistent neutron star X-ray transient and eclipsing binary EXO 0748-676 recently started the transition to quiescence following an accretion outburst that lasted more than 24 years. We report on two Chandra and 12 Swift observations performed within five months after the end of the outbu

  6. Magnetically elevated accretion disks in active galactic nuclei: broad emission line regions and associated star formation

    Science.gov (United States)

    Begelman, Mitchell C.; Silk, Joseph

    2016-10-01

    We propose that the accretion disks fueling active galactic nuclei are supported vertically against gravity by a strong toroidal (φ -direction) magnetic field that develops naturally as the result of an accretion disk dynamo. The magnetic pressure elevates most of the gas carrying the accretion flow at R to large heights z ˜ 0.1 R and low densities, while leaving a thin dense layer containing most of the mass - but contributing very little accretion - around the equator. We show that such a disk model leads naturally to the formation of a broad emission line region through thermal instability. Extrapolating to larger radii, we demonstrate that local gravitational instability and associated star formation are strongly suppressed compared to standard disk models for AGN, although star formation in the equatorial zone is predicted for sufficiently high mass supply rates. This new class of accretion disk models thus appears capable of resolving two longstanding puzzles in the theory of AGN fueling: the formation of broad emission line regions and the suppression of fragmentation thought to inhibit accretion at the required rates. We show that the disk of stars that formed in the Galactic Center a few million years ago could have resulted from an episode of magnetically elevated accretion at ˜0.1 of the Eddington limit.

  7. Light curves from rapidly rotating neutron stars

    CERN Document Server

    Numata, Kazutoshi

    2010-01-01

    We calculate light curves produced by a hot spot of a rapidly rotating neutron star, assuming that the spot is perturbed by a core $r$-mode, which is destabilized by emitting gravitational waves. To calculate light curves, we take account of relativistic effects such as the Doppler boost due to the rapid rotation and light bending assuming the Schwarzschild metric around the neutron star. We assume that the core $r$-modes penetrate to the surface fluid ocean to have sufficiently large amplitudes to disturb the spot. For a $l'=m$ core $r$-mode, the oscillation frequency $\\omega\\approx2m\\Omega/[l'(l'+1)]$ defined in the co-rotating frame of the star will be detected by a distant observer, where $l'$ and $m$ are respectively the spherical harmonic degree and the azimuthal wave number of the mode, and $\\Omega$ is the spin frequency of the star. In a linear theory of oscillation, using a parameter $A$ we parametrize the mode amplitudes such that ${\\rm max}\\left(|\\xi_\\theta|,|\\xi_\\phi|\\right)/R=A$ at the surface, w...

  8. On the existence of accretion-driven bursts in massive star formation

    CERN Document Server

    Meyer, D M -A; Kuiper, R; Kley, W

    2016-01-01

    Accretion-driven luminosity outbursts are a vivid manifestation of variable mass accretion onto protostars. They are known as the so-called FU Orionis phenomenon in the context of low-mass protostars. More recently, this process has been found in models of primordial star formation. Using numerical radiation hydrodynamics simulations, we stress that present-day forming massive stars also experience variable accretion and show that this process is accompanied by luminous outbursts induced by the episodic accretion of gaseous clumps falling from the circumstellar disk onto the protostar. Consequently, the process of accretion-induced luminous flares is also conceivable in the high-mass regime of star formation and we propose to regard this phenomenon as a general mechanism that can affect protostars regardless of their mass and/or the chemical properties of the parent environment in which they form. In addition to the commonness of accretion-driven outbursts in the star formation machinery, we conjecture that l...

  9. Evolution of Close Neutron Star Binaries

    CERN Document Server

    Ogawaguchi, W

    1996-01-01

    We have calculated evolution of neutron star binaries towards the coalescence driven by gravitational radiation. The hydrodynamical effects as well as the general relativistic effects are important in the final phase. All corrections up to post$^{2.5}$-Newtonian order and the tidal effect are included in the orbital motion. The star is approximated by a simple Newtonian stellar model called affine star model. Stellar spins and angular momentum are assumed to be aligned. We have showed how the internal stellar structure affects the stellar deformation, variations of the spins, and the orbital motion of the binary just before the contact. The gravitational wave forms from the last a few revolutions significantly depend on the stellar structure.

  10. The multipolar magnetic fields of accreting pre-main-sequence stars: B at the inner disk, B along the accretion flow, and B at the accretion shock

    CERN Document Server

    Gregory, Scott G; Hussain, Gaitee A J

    2016-01-01

    Zeeman-Doppler imaging studies have revealed the complexity of the large-scale magnetic fields of accreting pre-main-sequence stars. All have multipolar magnetic fields with the octupole component being the dominant field mode for many of the stars studied thusfar. Young accreting stars with fully convective interiors often feature simple axisymmetric magnetic fields with dipole components of order a kilo-Gauss (at least those of mass $\\gtrsim0.5\\,{\\rm M}_\\odot$), while those with substantially radiative interiors host more complex non-axisymmetric magnetic fields with dipole components of order a few 0.1 kilo-Gauss. Here, via several simple examples, we demonstrate that i). in most cases, the dipole component alone can be used to estimate the disk truncation radius (but little else); ii) due the presence of higher order magnetic field components, the field strength in the accretion spots is far in excess of that expected if a pure dipole magnetic field is assumed. (Fields of $\\sim$6$\\,{\\rm kG}$ have been mea...

  11. A strongly-heated neutron star in the transient Z source MAXI J0556-332

    CERN Document Server

    Homan, Jeroen; Wijnands, Rudy; Cackett, Edward M; Degenaar, Nathalie; Linares, Manuel; Lin, Dacheng; Remillard, Ronald A

    2014-01-01

    We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color-color and hardness-intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ~16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46+/-15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45+/-3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 Msun. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ~500 days of quiescence, except for two observations that were likely affected by enhanced low-level accret...

  12. The masses and spins of neutron stars and stellar-mass black holes

    International Nuclear Information System (INIS)

    Stellar-mass black holes and neutron stars represent extremes in gravity, density, and magnetic fields. They therefore serve as key objects in the study of multiple frontiers of physics. In addition, their origin (mainly in core-collapse supernovae) and evolution (via accretion or, for neutron stars, magnetic spindown and reconfiguration) touch upon multiple open issues in astrophysics. In this review, we discuss current mass and spin measurements and their reliability for neutron stars and stellar-mass black holes, as well as the overall importance of spins and masses for compact object astrophysics. Current masses are obtained primarily through electromagnetic observations of binaries, although future microlensing observations promise to enhance our understanding substantially. The spins of neutron stars are straightforward to measure for pulsars, but the birth spins of neutron stars are more difficult to determine. In contrast, even the current spins of stellar-mass black holes are challenging to measure. As we discuss, major inroads have been made in black hole spin estimates via analysis of iron lines and continuum emission, with reasonable agreement when both types of estimate are possible for individual objects, and future X-ray polarization measurements may provide additional independent information. We conclude by exploring the exciting prospects for mass and spin measurements from future gravitational wave detections, which are expected to revolutionize our understanding of strong gravity and compact objects

  13. X-ray Diagnostics of Grain Depletion in Matter Accreting onto T Tauri Stars

    CERN Document Server

    Hartmann, J J D P T L

    2005-01-01

    Recent analysis of high resolution Chandra X-ray spectra has shown that the Ne/O abundance ratio is remarkably constant in stellar coronae. Based on this result, we point out the utility of the Ne/O ratio as a discriminant for accretion-related X-rays from T Tauri stars, and for probing the measure of grain-depletion of the accreting material in the inner disk. We apply the Ne/O diagnostic to the classical T Tauri stars BP Tau and TW Hya--the two stars found to date whose X-ray emission appears to originate, at least in part, from accretion activity. We show that TW Hya appears to be accreting material which is significantly depleted in O relative to Ne. In constrast, BP Tau has an Ne/O abundance ratio consistent with that observed for post-T Tauri stars. We interpret this result in terms of the different ages and evolutionary states of the circumstellar disks of these stars. In the young BP Tau disk (age 0.6 Myr) dust is still present near the disk corotation radius and can be ionized and accreted, re-releas...

  14. Measuring the neutron star equation of state using X-ray timing

    CERN Document Server

    Watts, Anna L; Chakrabarty, Deepto; Feroci, Marco; Hebeler, Kai; Israel, Gianluca; Lamb, Frederick K; Miller, M Coleman; Morsink, Sharon; Özel, Feryal; Patruno, Alessandro; Poutanen, Juri; Psaltis, Dimitrios; Schwenk, Achim; Steiner, Andrew W; Stella, Luigi; Tolos, Laura; van der Klis, Michiel

    2016-01-01

    One of the primary science goals of the next generation of hard X-ray timing instruments is to determine the equation of state of the matter at supranuclear densities inside neutron stars, by measuring the radius of neutron stars with different masses to accuracies of a few percent. Three main techniques can be used to achieve this goal. The first involves waveform modelling. The flux we observe from a hotspot on the neutron star surface offset from the rotational pole will be modulated by the star's rotation, giving rise to a pulsation. Information about mass and radius is encoded into the pulse profile via relativistic effects, and tight constraints on mass and radius can be obtained. The second technique involves characterising the spin distribution of accreting neutron stars. The most rapidly rotating stars provide a very clean constraint, since the mass-shedding limit is a function of mass and radius. However the overall spin distribution also provides a guide to the torque mechanisms in operation and th...

  15. Structure of Rotating Neutron Stars in Uniform Strong Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WEN De-Hua; CHEN Wei; LIU Liang-Gang

    2007-01-01

    Properties and deformations of the rotating neutron stars in uniform strong magnetic field are calculated.The magnetic field will soften the equation of state of the neutron star matters and make an obvious effect on the structure of the rotating neutron star.If the magnetic field is superstrong (B = 1017 T),the mass,radius,and the deformation will become smaller effectively.

  16. Effects of △-Isobars on Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    Jorge L.S. Lino; CHEN Yan-Jun; GUO Hua

    2008-01-01

    We have investigated the possibility of the presence of the deltas in neutron star matter and their effects on neutron stars. △-meson couplings of the theoretical predictions are only restricted in a region where the deltas can be present and even a first-order phase transition may take place, making the EOS softer and the maximum mass of neutron stars smaller. The presence of the deltas leads to the rapid decrease of neutrino mean free paths.

  17. The Effects of δ Meson on the Neutron Star Cooling

    Institute of Scientific and Technical Information of China (English)

    许妍; 刘广洲; 吴姚睿; 朱明枫; 喻孜; 王红岩; 赵恩广

    2012-01-01

    In the framework of the relativistic mean field theory, the isovector scalar interaction is considered by exchanging δ meson to study the influence of δ meson on the cooling properties of neutron star matter. The calculation results show that with the inclusion of δ meson, the neutrino emissivity of the direct Urca processes increases, and thus enhances the cooling of neutron star matter. When strong proton superfluidity is considered, the theoretical cooling curves agree with the observed thermal radiation for isolated neutron stars.

  18. X-ray emission from classical T Tauri stars: Accretion shocks and coronae?

    CERN Document Server

    Guenther, H M; Robrade, J; Liefke, C

    2007-01-01

    Classical T Tauri stars (CTTS) are surrounded by actively accreting disks. According to current models material falls along the magnetic field lines from the disk with more or less free-fall velocity onto the star, where the plasma heats up and generates X-rays. We want to quantitatively explain the observed high energy emission and measure the infall parameters from the data. Absolute flux measurements allow to calculate the filling factor and the mass accretion rate.We use a numerical model of the hot accretion spot and solve the conservation equations. A comparison to data from XMM-Newton and Chandra shows that our model reproduces the main features very well. It yields for TW Hya a filling factor of 0.3% and a mass accretion rate 2e-10 M_sun/yr.

  19. Neutron stars as probes of extreme energy density matter

    Indian Academy of Sciences (India)

    Madappa Prakash

    2015-05-01

    Neutron stars have long been regarded as extraterrestrial laboratories from which we can learn about extreme energy density matter at low temperatures. In this article, some of the recent advances made in astrophysical observations and related theory are highlighted. Although the focus is on the much needed information on masses and radii of several individual neutron stars, the need for additional knowledge about the many facets of neutron stars is stressed. The extent to which quark matter can be present in neutron stars is summarized with emphasis on the requirement of non-perturbative treatments. Some longstanding and new questions, answers to which will advance our current status of knowledge, are posed.

  20. Neutron star properties and the equation of state for its core

    CERN Document Server

    Zdunik, J L; Haensel, P

    2016-01-01

    Few unified equations of state for neutron star matter where core and crust are described using the same nuclear model are available. However the use of non-unified equations of state with a simplified matching between the crust and the core has been shown to introduce uncertainties in the radius determination which can be larger than the expected precision of the next generation of X-ray satellites. We aim at eliminating the dependence of the radius and mass of neutron staron the detailed model for the crust and on the crust-core matching procedure. We solve the approximate equations of the hydrostatic equilibrium for the crust of neutron stars obtaining a precise formula for the radius which depends only on the core mass and radius, and on the baryon chemical potential at the core-crust interface and on the crust surface. For a fully accreted crust one needs additionally the value of the total deep crustal heating per one accreted nucleon. For typical neutron star masses the approximate approach allows to d...

  1. Gravitational waves from rapidly rotating neutron stars

    CERN Document Server

    Haskell, Brynmor; D`Angelo, Caroline; Degenaar, Nathalie; Glampedakis, Kostas; Ho, Wynn C G; Lasky, Paul D; Melatos, Andrew; Oppenoorth, Manuel; Patruno, Alessandro; Priymak, Maxim

    2014-01-01

    Rapidly rotating neutron stars in Low Mass X-ray Binaries have been proposed as an interesting source of gravitational waves. In this chapter we present estimates of the gravitational wave emission for various scenarios, given the (electromagnetically) observed characteristics of these systems. First of all we focus on the r-mode instability and show that a 'minimal' neutron star model (which does not incorporate exotica in the core, dynamically important magnetic fields or superfluid degrees of freedom), is not consistent with observations. We then present estimates of both thermally induced and magnetically sustained mountains in the crust. In general magnetic mountains are likely to be detectable only if the buried magnetic field of the star is of the order of $B\\approx 10^{12}$ G. In the thermal mountain case we find that gravitational wave emission from persistent systems may be detected by ground based interferometers. Finally we re-asses the idea that gravitational wave emission may be balancing the ac...

  2. Supermassive star formation via episodic accretion: protostellar disc instability and radiative feedback efficiency

    Science.gov (United States)

    Sakurai, Y.; Vorobyov, E. I.; Hosokawa, T.; Yoshida, N.; Omukai, K.; Yorke, H. W.

    2016-06-01

    The formation of supermassive stars (SMSs) is a potential pathway to seed supermassive black holes in the early universe. A critical issue for forming SMSs is stellar UV feedback, which may limit the stellar mass growth via accretion. In this paper, we study the evolution of an accreting SMS and its UV emissivity with realistic variable accretion from a circumstellar disc. First we conduct a 2D hydrodynamical simulation to follow the protostellar accretion until the stellar mass exceeds 104 M⊙. The disc fragments by gravitational instability, creating many clumps that migrate inward to fall on to the star. The resulting accretion history is highly time-dependent: short episodic accretion bursts are followed by longer quiescent phases. We show that the disc for the direct collapse model is more unstable and generates greater variability than normal Pop III cases. Next, we conduct a stellar evolution calculation using the obtained accretion history. Our results show that, regardless of the variable accretion, the stellar radius monotonically increases with almost constant effective temperature at Teff ≃ 5000 K as the stellar mass increases. The resulting UV feedback is too weak to hinder accretion due to the low flux of stellar UV photons. The insensitivity of stellar evolution to variable accretion is attributed to the fact that time-scales of variability, ≲103 yr, are too short to affect the stellar structure. We argue that this evolution will continue until the SMS collapses to produce a black hole by the general relativistic instability after the mass reaches ≳105 M⊙.

  3. X-ray studies of neutron stars and their magnetic fields

    Science.gov (United States)

    MAKISHIMA, Kazuo

    2016-01-01

    Utilizing results obtained over the past quarter century mainly with Japanese X-ray astronomy satellites, a review is given to some aspects of neutron stars (NSs), with a particular emphasis on the magnetic fields (MFs) of mass-accreting NSs and magnetars. Measurements of electron cyclotron resonance features in binary X-ray pulsars, using the Ginga and Suzaku observatories, clarified that their surface MFs are concentrated in a narrow range of (1–7) × 108 T. Extensive studies of magnetars with Suzaku reinforced their nature as neutron stars with truly strong MFs, and revealed several important clues to their formation, evolution, and physical states. Taking all these results into account, a discussion is made on the origin and evolution of these strong MFs. One possible scenario is that the MF of NSs is a manifestation of some fundamental physics, e.g., neutron spin alignment or chirality violation, and the MF makes transitions from strong to weak states. PMID:27169348

  4. Variable X-Ray and UV emission from AGB stars: Accretion activity associated with binarity

    Science.gov (United States)

    Sahai, Raghvendra; Sanz-Forcada, Jorge; Sánchez Contreras, Carmen

    2016-07-01

    Almost all of our current understanding of the late evolutionary stages of (1 — 8) Mʘ stars is based on single-star models. However, binarity can drastically affect late stellar evolution, producing dramatic changes in the history and geometry of mass loss that occurs in stars as they evolve off the AGB to become planetary nebulae (PNe). A variety of binary models have been proposed, which can lead to the generation of accretion disks and magnetic fields, which in turn produce the highly collimated jets that have been proposed as the primary agents for the formation of bipolar and multipolar PNe. However, observational evidence of binarity in AGB stars is sorely lacking simply these stars are very luminous and variable, invalidating standard techniques for binary detection. Using an innovative technique of searching for UV emission from AGB stars with GALEX, we have identified a class of AGB stars with far- ultraviolet excesses (fuvAGB stars), that are likely candidates for active accretion associated with a binary companion. We have carried out a pilot survey for X-ray emission from fuvAGB stars. The X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long times-scales, and simultaneous UV observations show similar variations in the UV fluxes. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a main-sequence companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  5. Comparison between accretion-related properties of Herbig Ae/Be and T Tauri stars

    CERN Document Server

    Mendigutía, I

    2013-01-01

    This paper summarizes several results concerning the comparison between accretion-related properties of cool (T Tauri; T < 7000 K, M < 1 Msun and hot (Herbig Ae/Be; 7000 < T(K) < 13000; 1 < M(Msun) < 6) pre-main sequence (PMS) stars. This comparison gives insight into the analogies/differences in the physics of the star-disk interaction and in the physical mechanisms driving disk dissipation. Several optical and near-IR line luminosities used for low-mass objects are also valid to estimate typical accretion rates for intermediate-mass stars under similar empirical expressions. In contrast, the Halpha width at 10% of peak intensity is used as an accretion tracer for T Tauris, but is not reliable to estimate accretion rates for Herbig Ae/Bes. This can be explained as a consequence of the different stellar rotation rates that characterize both types of stars. In addition, there are similar trends when the accretion rate is related to the near-IR colours and disk masses, suggesting that viscous ...

  6. Time-of-flight mass measurements for nuclear processes in neutron star crusts

    Energy Technology Data Exchange (ETDEWEB)

    Estrade, Alfredo [National Superconducting Cyclotron Laboratory (NSCL); Matos, M. [Louisiana State University; Schatz, Hendrik [Michigan State University, East Lansing; Amthor, A. M. [National Superconducting Cyclotron Laboratory (NSCL); Bazin, D. [National Superconducting Cyclotron Laboratory (NSCL); Beard, Mary [University of Notre Dame, IN; Becerril, A. [National Superconducting Cyclotron Laboratory (NSCL); Brown, Edward [Michigan State University, East Lansing; Elliot, T [National Superconducting Cyclotron Laboratory (NSCL); Gade, A. [National Superconducting Cyclotron Laboratory (NSCL); Galaviz, D. [National Superconducting Cyclotron Laboratory (NSCL); George, S. [National Superconducting Cyclotron Laboratory (NSCL); Gupta, Sanjib [Indian Institute of Technology, Kanpur; Hix, William Raphael [ORNL; Lau, Rita [National Superconducting Cyclotron Laboratory (NSCL); Moeller, Peter [Los Alamos National Laboratory (LANL); Pereira, J. [National Superconducting Cyclotron Laboratory (NSCL); Portillo, M. [National Superconducting Cyclotron Laboratory (NSCL); Rogers, A. M. [National Superconducting Cyclotron Laboratory (NSCL); Shapira, Dan [ORNL; Smith, E. [Ohio State University; Stolz, A. [Michigan State University, East Lansing; Wallace, M. [Los Alamos National Laboratory (LANL); Wiescher, Michael [University of Notre Dame, IN

    2011-01-01

    The location of electron capture heat sources in the crust of accreting neutron stars depends on the masses of extremely neutron-rich nuclei. We present first results from a new implementation of the time-of-flight technique to measure nuclear masses of rare isotopes at the National Supercon- ducting Cyclotron Laboratory. The masses of 16 neutron-rich nuclei in the Sc Ni element range were determined simultaneously, improving the accuracy compared to previous data in 12 cases. The masses of 61V, 63Cr, 66Mn, and 74Ni were measured for the first time with mass excesses of 30.510(890) MeV, 35.280(650) MeV, 36.900(790) MeV, and 49.210(990) MeV, respectively. With the measurement of the 66Mn mass, the location of the two dominant heat sources in the outer crust of accreting neutron stars, which exhibit so called superbursts, is now experimentally constrained. We find that the location of the 66Fe 66Mn electron capture transition occurs sig- nificantly closer to the surface than previously assumed because our new experimental Q-value is 2.1 MeV smaller than predicted by the FRDM mass model. The results also provide new insights into the structure of neutron-rich nuclei around N = 40.

  7. Rotating proto-neutron stars under strong magnetic fields

    CERN Document Server

    Franzon, B; Schramm, S

    2016-01-01

    In this work, we study the effects of magnetic fields and rotation on the structure and composition of proto-neutron stars (PNSs). A hadronic chiral SU(3) model is applied to cold neutron stars (NS) and proto-neutron stars with trapped neutrinos and at fixed entropy per baryon. We obtain general relativistic solutions for neutron and proto-neutron stars endowed with a poloidal magnetic field by solving Einstein-Maxwell field equations in a self-consistent way. As the neutrino chemical potential decreases in value over time, this alters the chemical equilibrium and the composition inside the star, leading to a change in the structure and in the particle population of these objects. We find that the magnetic field deforms the star and significantly alters the number of trapped neutrinos in the stellar interior, together with strangeness content and temperature in each evolution stage.

  8. Relativistic superfluid models for rotating neutron stars

    CERN Document Server

    Carter, B

    2001-01-01

    This article starts by providing an introductory overview of the theoretical mechanics of rotating neutron stars as developped to account for the frequency variations, and particularly the discontinuous glitches, observed in pulsars. The theory suggests, and the observations seem to confirm, that an essential role is played by the interaction between the solid crust and inner layers whose superfluid nature allows them to rotate independently. However many significant details remain to be clarified, even in much studied cases such as the Crab and Vela. The second part of this article is more technical, concentrating on just one of the many physical aspects that needs further development, namely the provision of a satisfactorily relativistic (local but not microscopic) treatment of the effects of the neutron superfluidity that is involved.

  9. Can SGRs/AXPs Originate from Neutron Star Binaries?

    Directory of Open Access Journals (Sweden)

    Joan Jing Wang

    2014-01-01

    Full Text Available Soft gamma repeaters (SGRs and anomalous X-ray pulsars (AXPs are two groups of enigmatic objects, which have been extensively investigated in past few decades. Based on the ample information about their timing behaviors, spectra, and variability properties, it was proposed that SGRs/AXPs are isolated neutron stars (NSs with extremely strong magnetic fields, the so-called magnetars. Nonetheless, some alternative models are probably equally convincing such as those proposing that they are accreting NSs with a fall-back disk or rotation-powered magnetized and massive white dwarfs. The nature and nurture of SGRs/AXPs remain controversial. In this paper, we propose that SGRs/AXPs can, alternatively, originate from normal NSs in binary systems, which resorts to the reexplosion of normal NS induced by instant contraction of the massive star envelope in a Thorne-Żytkow object (TZO. The spin-period clustering is due to either the brake of a slowly rotating envelope or the frictional drag during the common-envelope phase.

  10. Quantum spindown of highly magnetized neutron stars

    CERN Document Server

    Lamine, Brahim; Dupays, Arnaud

    2013-01-01

    Pulsars are highly magnetized and rapidly rotating neutron stars. The magnetic field can reach the critical magnetic field from which quantum effects of the vacuum becomes relevant, giving rise to magnetooptic properties of vacuum characterized as an effective non linear medium. One spectacular consequence of this prediction is a macroscopic friction that leads to an additional contribution in the spindown of pulsars. In this paper, we highlight some observational consequences and in particular derive new constraints on the parameters of the Crab pulsar and J0540-6919.

  11. Quark matter droplets in neutron stars

    Science.gov (United States)

    Heiselberg, H.; Pethick, C. J.; Staubo, E. F.

    1993-01-01

    We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.

  12. Holographic quark matter and neutron stars

    CERN Document Server

    Hoyos, Carlos; Jokela, Niko; Vuorinen, Aleksi

    2016-01-01

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding Equation of State (EoS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first order phase transition at densities between two and seven times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EoSs, we find maximal stellar masses in the excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EoSs.

  13. Spin paramagnetic deformation of a neutron star

    OpenAIRE

    Suvorov, A.G.; Mastrano, A.; Melatos, A.

    2015-01-01

    Quantum mechanical corrections to the hydromagnetic force balance equation, derived from the microscopic Schr\\"{o}dinger-Pauli theory of quantum plasmas, modify the equilibrium structure and hence the mass quadrupole moment of a neutron star. It is shown here that the dominant effect --- spin paramagnetism --- is most significant in a magnetar, where one typically has $\\mu_{B}|\\boldsymbol{B}|\\gtrsim k_B T_e$, where $\\mu_{B}$ is the Bohr magneton, $\\boldsymbol{B}$ is the magnetic field, and $T...

  14. Relativistic calculations of coalescing binary neutron stars

    Indian Academy of Sciences (India)

    Joshua Faber; Phillippe Grandclément; Frederic Rasio

    2004-10-01

    We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and quasi-circular orbits of equilibrium solutions. By adding a radiation reaction treatment, we compute the full evolution of a coalescing binary neutron star system. We find that the amount of mass ejected from the system, much less than a per cent, is greatly reduced by the inclusion of relativistic gravitation. The gravity wave energy spectrum shows a clear divergence away from the Newtonian point-mass form, consistent with the form derived from relativistic quasi-equilibrium fluid sequences.

  15. Coalescence of Magnetized Binary Neutron Star Systems

    Science.gov (United States)

    Motl, Patrick M.; Anderson, Matthew; Lehner, Luis; Liebling, Steven L.; Neilsen, David; Palenzuela, Carlos; Ponce, Marcelo

    2015-01-01

    We present simulations of the merger of binary neutron star systems calculated with full general relativity and incorporating the global magnetic field structure for the stars evolved with resistive magnetohydrodynamics. Our simulation tools have recently been improved to incorporate the effects of neutrino cooling and have been generalized to allow for tabular equations of state to describe the degenerate matter. Of particular interest are possible electromagnetic counterparts to the gravitational radiation that emerges from these systems. We focus on magnetospheric interactions that ultimately tap into the gravitational potential energy of the binary to power a Poynting flux and deposition of energy through Joule heating and magnetic reconnection. We gratefully acknowledge the support of NASA through the Astrophysics Theory Program grant NNX13AH01G.

  16. A CORRELATION BETWEEN STAR FORMATION RATE AND AVERAGE BLACK HOLE ACCRETION IN STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    We present a measurement of the average supermassive black hole accretion rate (BHAR) as a function of the star formation rate (SFR) for galaxies in the redshift range 0.25 2 Boötes multi-wavelength survey field. The SFR is estimated using 250 μm observations from the Herschel Space Observatory, for which the contribution from the active galactic nucleus (AGN) is minimal. In this sample, 121 AGNs are directly identified using X-ray or mid-IR selection criteria. We combined these detected AGNs and an X-ray stacking analysis for undetected sources to study the average BHAR for all of the star-forming galaxies in our sample. We find an almost linear relation between the average BHAR (in M☉ yr–1) and the SFR (in M☉ yr–1) for galaxies across a wide SFR range 0.85 < log SFR < 2.56: log BHAR = (– 3.72 ± 0.52) + (1.05 ± 0.33)log SFR. This global correlation between SFR and average BHAR is consistent with a simple picture in which SFR and AGN activity are tightly linked over galaxy evolution timescales

  17. Jets in black-hole and neutron-star X-ray binaries

    Science.gov (United States)

    Kylafis, Nikolaos

    2016-07-01

    Jets have been observed from both neutron-star and black-hole X-ray binaries. There are many similarities between the two and a few differences. I will offer a physical explanation of the formation and destruction of jets from compact objects and I will discuss the similarities and differences in the two types. The basic concept in the physical explanation is the Cosmic Battery, the mechanism that creates the required magnetic field for the jet ejection. The Cosmic Battery operates efficiently in accretion flows consisting of an inner hot flow and an outer thin accretion disk, independently of the nature of the compact object. It is therefore natural to always expect a jet in the right part of a spectral hardness - luminosity diagram and to never expect a jet in the left part. As a consequence, most of the phenomenology of an outburst can be explained with only one parameter, the mass accretion rate.

  18. An IUE Atlas of Pre-Main-Sequence Stars. II. Far-Ultraviolet Accretion Diagnostics in T Tauri Stars

    Science.gov (United States)

    Johns-Krull, Christopher M.; Valenti, Jeff A.; Linsky, Jeffrey L.

    2000-08-01

    We use our ultraviolet (UV) atlas of pre-main-sequence stars constructed from all useful, short-wavelength, low-resolution spectra in the International Ultraviolet Explorer (IUE) satellite Final Archive to analyze the short-wavelength UV properties of 49 T Tauri stars (TTSs). We compare the line and continuum fluxes in these TTSs with each other and with previously published parameters of these systems, including rotation rate, infrared excess, and mass accretion rate. The short-wavelength continuum in the classical TTSs (CTTSs) appears to originate in a ~10,000 K optically thick plasma, while in the naked TTSs (NTTSs-stars without dusty disks) the continuum appears to originate in the stellar atmosphere. We show that all of the TTSs in our sample lie in the regime of ``saturated'' magnetic activity due to their small Rossby numbers. However, while some of the TTSs show emission line surface fluxes consistent with this saturation level, many CTTSs show significantly stronger emission than predicted by saturation. In these stars, the emission line luminosity in the high ionization lines present in the spectrum between 1200 and 2000 Å correlates well with the mass accretion rate. Therefore, we conclude that the bulk of the short-wavelength emission seen in CTTSs results from accretion related processes and not from dynamo-driven magnetic activity. Using CTTSs with known mass accretion rates, we calibrate the relationship between M and LC IV to derive the mass accretion rate for some CTTSs which for various reasons have never had their mass accretion rates measured. Finally, several of the CTTSs show strong emission from molecular hydrogen. While emission from H2 cannot form in gas at a temperature of ~105 K, the strength of the molecular hydrogen emission is nevertheless well correlated with all the other emissions displayed in the IUE short-wavelength bandpass. This suggests that the H2 emission is in fact fluorescent emission pumped by the emission (likely Ly

  19. The evidence for clumpy accretion in the Herbig Ae star HR 5999

    Science.gov (United States)

    Perez, M. R.; Grady, C. A.; The, P. S.

    1994-01-01

    Analysis of IUE high- and low-dispersion spectra of the young Herbig Ae star HR 5999 (HD 144668) covering 1978-1992 has revealed dramatic changes in the Mg II h and k (2795.5, 2802.7 A) emission profiles, changes in the column density and distribution in radial velocity of accreting gas, and flux in the Ly(alpha), O I and C IV emission lines, which are correlated with the UV excess luminosity. We also observe variability in the spectral type inferred from the UV spectral energy distribution, ranging from A5 IV-III in high state to A7 III in the low state. The trend of earlier inferred spectral type with decreasing wavelength and with increasing UV continuum flux has previously been noted as a signature of accretion disks in lower mass pre-main sequence stars (PMS) and in systems undergoing FU Orionis-type outbursts. Our data represent the first detection of similar phenomena in an intermediate mass (M equal to or greater than 2 solar mass) PMS star. Recent IUE spectra show gas accreting toward the star with velocities as high as +300 km/s, much as is seen toward beta Pic, and suggest that we also view this system through the debris disk. The absence of UV lines with the rotational broadening expected given the optical data (A7 IV, upsilon sin i = 180 plus or minus 20 km/s) for this system also suggests that most of the UV light originates in the disk, even in the low continuum state. The dramatic variability in the column density of accreting gas, consistent with clumpy accretion, such as has been observed toward beta Pic, is a hallmark of accretion onto young stars, and is not restricted to the clearing phase, since detectable amounts of accretion are present for stars, and is not restricted to the clearing phase, since detectable amounts of accretion are present for stars with 0.5 less than t(sub age) less than 2.8 Myr. The implications for models of beta Pic and similar systems are briefly discussed.

  20. Spin-up/spin-down of neutron star in Be-X-ray binary system GX 304-1

    Science.gov (United States)

    Postnov, K. A.; Mironov, A. I.; Lutovinov, A. A.; Shakura, N. I.; Kochetkova, A. Yu.; Tsygankov, S. S.

    2015-01-01

    We analyse spin-up/spin-down of the neutron star in Be-X-ray binary system GX 304-1 observed by Swift/X-ray telescope (XRT) and Fermi/gamma-ray burst monitor (GBM) instruments in the period of the source activity from 2010 April to 2013 January and discuss possible mechanisms of angular momentum transfer to/from the neutron star. We argue that the neutron star spin-down at quiescent states of the source with an X-ray luminosity of Lx ˜ 1034 erg s-1 between a series of Type I outbursts and spin-up during the outbursts can be explained by quasi-spherical settling accretion on to the neutron star. The outbursts occur near the neutron star periastron passages, where the density is enhanced due to the presence of an equatorial Be-disc tilted to the orbital plane. We also propose an explanation to the counterintuitive smaller spin-up rate observed at higher luminosity in a double-peak Type I outburst due to lower value of the specific angular momentum of matter captured from the quasi-spherical wind from the Be-star by the neutron star moving in an elliptical orbit with eccentricity e ≳ 0.5.

  1. Isolated neutron stars and studies of their interiors

    CERN Document Server

    Popov, S B

    2011-01-01

    In these lectures presented at Baikal summer school on physics of elementary particles and astrophysics 2011, I present a wide view of neutron star astrophysics with special attention paid to young isolated compact objects and studies of the properties of neutron star interiors using astronomical methods.

  2. Neutrino trapping effects on {beta}-stable neutron star matter

    Energy Technology Data Exchange (ETDEWEB)

    Vidana, I.; Bombaci, I.; Polls, A.; Ramos, A

    2003-05-19

    We investigate in the framework of the Brueckner-Hartree-Fock approximation, the influence of neutrino trapping on the composition, equation of state, and structure of neutron stars immediately after birth. We explore also the consequences of neutrino trapping on the early evolution of a neutron star and on the final remnant left by the supernova explosion.

  3. Relativistic Processes and the Internal Structure of Neutron Stars

    International Nuclear Information System (INIS)

    Models for the internal composition of Dense Compact Stars are reviewed as well as macroscopic properties derived by observations of relativistic processes. Modeling of pure neutron matter Neutron Stars is presented and crust properties are studied by means of a two fluid model.

  4. Magnetic Fields in neutron stars : A theoretical perspective

    NARCIS (Netherlands)

    Reisenegger, A.; Prieto, J.; Benguria, R.; Lai, D.; Araya, P.

    2005-01-01

    Abstract: We present our view of the main physical ingredients determining the evolution of neutron star magnetic fields. This includes the basic properties of neutron star matter, possible scenarios for the origin of the magnetic field, constraints and mechanisms for its evolution, and a discussion

  5. The Thermodynamic Functions in Curved Space of Neutron Star

    Science.gov (United States)

    Hussein, N. A.; Eisa, D. A.; Sayed, E. G.

    2016-04-01

    The aim of this article is to calculate the thermodynamic functions of a neutron star in curved space. We obtained equation of state (EOS) and the excess free energy for a neutron star in curved space up to order n4, where n is the density of particles.

  6. Frontiers the Physics of Dense Matter for Neutron Stars

    Science.gov (United States)

    Steiner, Andrew W.

    2016-04-01

    Neutron stars are an excellent laboratory for nuclear physics. They probe the nucleon-nucleon interaction, the structure of nuclei, and the nature of dense QCD in ways which complement current experimental efforts. This article very briefly summarizes some of the current frontiers in neutron stars and dense matter with an emphasis on how our understanding might be improved in the near future.

  7. Relativistic Processes and the Internal Structure of Neutron Stars

    CERN Document Server

    Alvarez-Castillo, D E

    2011-01-01

    Models for the internal composition of Dense Compact Stars are reviewed as well as macroscopic properties derived by observations of relativistic processes. Modeling of pure neutron matter Neutron Stars is presented and crust properties are studied by means of a two fluid model.

  8. Further X-ray observations of EXO 0748-676 in quiescence: evidence for a cooling neutron star crust

    Science.gov (United States)

    Degenaar, N.; Wolff, M. T.; Ray, P. S.; Wood, K. S.; Homan, J.; Lewin, W. H. G.; Jonker, P. G.; Cackett, E. M.; Miller, J. M.; Brown, E. F.; Wijnands, R.

    2011-04-01

    In late 2008, the quasi-persistent neutron star X-ray transient and eclipsing binary EXO 0748-676 started a transition from outburst to quiescence, after it actively accreted for more than 24 yr. In a previous work, we discussed Chandra and Swift observations obtained during the first 5 months of this transition. Here, we report on further X-ray observations of EXO 0748-676, extending the quiescent monitoring to 1.6 yr. Chandra and XMM-Newton data reveal quiescent X-ray spectra composed of a soft, thermal component that is well fitted by a neutron star atmosphere model. An additional hard power-law tail is detected that changes non-monotonically over time, contributing between 4 and 20 per cent to the total unabsorbed 0.5-10 keV flux. The combined set of Chandra, XMM-Newton and Swift data reveals that the thermal bolometric luminosity fades from ˜ 1 × 1034 to 6 × 1033 (D/7.4 kpc)2 erg s -1, whereas the inferred neutron star effective temperature decreases from ˜124 to 109 eV. We interpret the observed decay as cooling of the neutron star crust and show that the fractional quiescent temperature change of EXO 0748-676 is markedly smaller than observed for three other neutron star X-ray binaries that underwent prolonged accretion outbursts.

  9. How Loud Are Neutron Star Mergers?

    CERN Document Server

    Bernuzzi, Sebastiano; Ott, Christian D; Roberts, Luke F; Moesta, Philipp; Galeazzi, Filippo

    2015-01-01

    We investigate neutron star merger dynamics using fully general relativistic simulations of equal and unequal-mass binaries sampling the galactic population, and including neutrino cooling and three different temperature-dependent microphysical equations of state. We focus on the emission of energy and angular momentum in gravitational waves in the postmerger phase. Our results reveal that the emitted gravitational-wave energy in the early evolution of the formed hypermassive neutron star (HMNS) is about twice as large as the energy emitted over the entire inspiral history of the binary. The total radiated energy per binary mass is comparable or larger than that of nonspinning black hole mergers. About $0.8-2.5\\%$ of the binary mass-energy is emitted at kHz frequencies in the early HMNS evolution due to the strong nonaxisymmetric deformation of the HMNS. Our results also show that the dimensionless spin of black holes resulting from subsequent HMNS collapse are limited to $\\lesssim0.7-0.8$. This may significa...

  10. Shear modulus of neutron star crust

    Science.gov (United States)

    Baiko, D. A.

    2011-09-01

    The shear modulus of solid neutron star crust is calculated by the thermodynamic perturbation theory, taking into account ion motion. At a given density, the crust is modelled as a body-centred cubic Coulomb crystal of fully ionized atomic nuclei of one type with a uniform charge-compensating electron background. Classic and quantum regimes of ion motion are considered. The calculations in the classic temperature range agree well with previous Monte Carlo simulations. At these temperatures, the shear modulus is given by the sum of a positive contribution due to the static lattice and a negative ∝ T contribution due to the ion motion. The quantum calculations are performed for the first time. The main result is that at low temperatures the contribution to the shear modulus due to the ion motion saturates at a constant value, associated with zero-point ion vibrations. Such behaviour is qualitatively similar to the zero-point ion motion contribution to the crystal energy. The quantum effects may be important for lighter elements at higher densities, where the ion plasma temperature is not entirely negligible compared to the typical Coulomb ion interaction energy. The results of numerical calculations are approximated by convenient fitting formulae. They should be used for precise neutron star oscillation modelling, a rapidly developing branch of stellar seismology.

  11. The S2 star as a probe of the accretion disk of Sgr A*

    CERN Document Server

    Giannios, Dimitrios

    2013-01-01

    How accretion proceeds around the massive black hole in the Galactic center and other highly sub-Eddington accretors remains poorly understood. The orbit of the S2 star in the Galactic center passes through the accretion disk of the massive black hole and any observational signature from such interaction may be used as an accretion probe. Because of its early stellar type, S2 is expected to possess a fairly powerful wind. We show here that the ram pressure of the accretion disk shocks the stellar wind fairly close to the star. The shocked fluid reaches a temperature of ~ 1 keV and cools efficiently through optically thin, thermal bremsstrahlung emission. The radiation from the shocked wind peaks around the epoch of the pericenter passage of the star at a luminosity potentially comparable to the quiescent emission detected from Sgr A*. Detection of shocked wind radiation can constrain the density of the accretion disk at a distance of several thousands of gravitational radii from the black hole.

  12. NUV Excess in Slowly Accreting T Tauri Stars: Limits Imposed by Chromospheric Emission

    CERN Document Server

    Ingleby, Laura; Bergin, Edwin; Herczeg, Gregory; Brown, Alexander; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; France, Kevin; Gregory, Scott G; Hillenbrand, Lynne; Roueff, Evelyne; Valenti, Jeff; Walter, Frederick; Johns-Krull, Christopher; Brown, Joanna; Linsky, Jeffrey; McClure, Melissa; Ardila, David; Abgrall, Herve; Bethell, Thomas; Hussain, Gaitee; Yang, Hao

    2011-01-01

    Young stars surrounded by disks with very low mass accretion rates are likely in the final stages of inner disk evolution and therefore particularly interesting to study. We present ultraviolet (UV) observations of the ~5-9 Myr old stars RECX-1 and RECX-11, obtained with the Cosmic Origins Spectrograph (COS) and Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST), as well as optical and near infrared spectroscopic observations. The two stars have similar levels of near UV emission, although spectroscopic evidence indicates that RECX-11 is accreting and RECX-1 is not. The line profiles of Halpha and He I 10830 in RECX-11 show both broad and narrow redshifted absorption components that vary with time, revealing the complexity of the accretion flows. We show that accretion indicators commonly used to measure mass accretion rates, e.g. U band excess luminosity or the Ca II triplet line luminosity are unreliable for low accretors, at least in the middle K spectral range. Using RECX-1 as...

  13. Symbiotic Stars as Laboratories for the Study of Accretion and Jets: A Call for Optical Monitoring

    OpenAIRE

    Sokoloski, J.L.

    2004-01-01

    Symbiotic binary stars typically consist of a white dwarf (WD) that accretes material from the wind of a companion red giant. Orbital periods for these binaries are on the order of years, and their relatively small optical outbursts tend to occur every few years to decades. In some symbiotics, material that is transferred from the red giant to the WD forms a disk around the WD. Thus, symbiotic stars are a bit like overgrown cataclysmic variables (CVs), but with less violent eruptions. Symbiot...

  14. Do hyperons exist in the interior of neutron stars?

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Debarati [Universite Paris Diderot, LUTH, Observatoire de Paris, CNRS, Meudon (France); Laboratoire de Physique Corpusculaire, ENSICAEN, Caen Cedex (France); Vidana, Isaac [University of Coimbra, CFisUC, Department of Physics, Coimbra (Portugal)

    2016-02-15

    In this work we review the role of hyperons on the properties of neutron and proto-neutron stars. In particular, we revise the so-called ''hyperon puzzle'', go over some of the solutions proposed to tackle it, and discuss the implications that the recent measurements of unusually high neutron star masses have on our present knowledge of hypernuclear physics. We re-examine also the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability. (orig.)

  15. From neutron stars to quark stars in mimetic gravity

    CERN Document Server

    Astashenok, A V

    2015-01-01

    Realistic models of neutron and quark stars in the framework of mimetic gravity with Lagrange multiplier constraint are presented. We discuss the effect of mimetic scalar aiming to describe dark matter on mass-radius relation and the moment of inertia for slowly rotating relativistic stars. The mass-radius relation and moment of inertia depend on the value of mimetic scalar in the center of star. This fact leads to the ambiguity in the mass-radius relation for a given equation of state. {Such ambiguity allows to explain some observational facts better than in standard General Relativity}. The case of two mimetic potentials namely $V(\\phi)\\sim A\\phi^{-2}$ and $V(\\phi)\\sim Ae^{B\\phi^{2}}$ is considered in detail. The relative deviation of maximal moment of inertia is approximately twice larger than the relative deviation of maximal stellar mass. We also briefly discuss the mimetic $f(R)$ gravity. In the case of $f(R)=R+aR^2$ mimetic gravity it is expected that increase of maximal mass and maximal moment of iner...

  16. The EOS of neutron matter, and the effect of Lambda hyperons to neutron star structure

    Energy Technology Data Exchange (ETDEWEB)

    Gandolfi, Stefano [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-13

    The following topics are addressed: the model and the method; equation of state of neutron matter, role of three-neutron force; symmetry energy; Λ-hypernuclei; Λ-neutron matter; and neutron star structure. In summary, quantum Monte Carlo methods are useful to study nuclear systems in a coherent framework; the three-neutron force is the bridge between Esym and neutron star structure; and neutron star observations are becoming competitive with experiments. Λ-nucleon data are very limited, but ΛNN is very important. The role of Λ in neutron stars is far from understood; more ΛN data are needed. The author's conclusion: We cannot conclude anything with present models.

  17. A gravitational wave afterglow in binary neutron star mergers

    CERN Document Server

    Doneva, Daniela D; Pnigouras, Pantelis

    2015-01-01

    We study in detail the f-mode secular instability for rapidly rotating neutron stars, putting emphasis on supermassive models which do not have a stable nonrotating counterpart. Such neutron stars are thought to be the generic outcome of the merger of two standard mass neutron stars. In addition we take into account the effects of strong magnetic field and r-mode instability, that can drain a substantial amount of angular momentum. We find that the gravitational wave signal emitted by supramassive neutron stars can reach above the Advance LIGO sensitivity at distance of about 20Mpc and the detectability is substantially enhanced for the Einstein Telescope. The event rate will be of the same order as the merging rates, while the analysis of the signal will carry information for the equation of state of the post-merging neutron stars and the strength of the magnetic fields.

  18. Kaon Condensates, Nuclear Symmetry Energy and Cooling of Neutron Stars

    CERN Document Server

    Kubis, S

    2003-01-01

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists.

  19. Differential Rotation in Neutron Stars: Magnetic Braking and Viscous Damping

    OpenAIRE

    Shapiro, Stuart L.

    2000-01-01

    Diffferentially rotating stars can support significantly more mass in equilibrium than nonrotating or uniformly rotating stars, according to general relativity. The remnant of a binary neutron star merger may give rise to such a ``hypermassive'' object. While such a star may be dynamically stable against gravitational collapse and bar formation, the radial stabilization due to differential rotation is likely to be temporary. Magnetic braking and viscosity combine to drive the star to uniform ...

  20. The Ps - e relation of double neutron stars

    Science.gov (United States)

    Dewi, J. D. M.; Podsiadlowski, Ph.; Pols, O. R.

    2007-08-01

    The seven Galactic double neutron stars (DNS)s exhibit a relation between the pulsar spin period and the orbital eccentricity. We show that this relation can only be produced if the second neutron star received a kick that is substantially smaller (with a velocity dispersion of less than 50 km s-1) than the standard kick received by a single radio pulsar. This demonstrates that the kick mechanism depends on the evolutionary history of the NS progenitor and that the orbital parameters of DNSs are completely determined by the evolution in the preceding helium star - neutron star phase.

  1. SUPERNOVAE, NEUTRON STARS, AND TWO KINDS OF NEUTRINO

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, H.Y.

    1962-08-15

    The role of neutrinos in the core of a star that has undergone a supernova explosion is discussed. The existence of neutron stars, the Schwarzchild singularity in general relativity, and the meaning of conservation of baryons in the neighborhood of a Schwarzchild singularity are also considered. The problem of detection of neutron stars is discussed. It is concluded that neutron stars are the most plausible alternative for the remnant of the core of a supernova. The neutrino emission processes are divided into two groups: the neutrino associated with the meson (mu) and the production of electron neutrinos. (C.E.S.)

  2. Nucleation of quark matter in neutron stars cores

    CERN Document Server

    Harko, T; Tang, P S

    2004-01-01

    We consider the general conditions of quark droplets formation in high density neutron matter. The growth of the quark bubble (assumed to contain a sufficiently large number of particles) can be described by means of a Fokker-Planck equation. The dynamics of the nucleation essentially depends on the physical properties of the medium it takes place. The conditions for quark bubble formation are analyzed within the frameworks of both dissipative and non-dissipative (with zero bulk and shear viscosity coefficients) approaches. The conversion time of the neutron star to a quark star is obtained as a function of the equation of state of the neutron matter and of the microscopic parameters of the quark nuclei. As an application of the obtained formalism we analyze the first order phase transition from neutron matter to quark matter in rapidly rotating neutron stars cores, triggered by the gravitational energy released during the spinning down of the neutron star. The endothermic conversion process, via gravitationa...

  3. Relativistic density functional theory for finite nuclei and neutron stars

    CERN Document Server

    Piekarewicz, J

    2015-01-01

    The main goal of the present contribution is a pedagogical introduction to the fascinating world of neutron stars by relying on relativistic density functional theory. Density functional theory provides a powerful--and perhaps unique--framework for the calculation of both the properties of finite nuclei and neutron stars. Given the enormous densities that may be reached in the core of neutron stars, it is essential that such theoretical framework incorporates from the outset the basic principles of Lorentz covariance and special relativity. After a brief historical perspective, we present the necessary details required to compute the equation of state of dense, neutron-rich matter. As the equation of state is all that is needed to compute the structure of neutron stars, we discuss how nuclear physics--particularly certain kind of laboratory experiments--can provide significant constrains on the behavior of neutron-rich matter.

  4. CONTINUED NEUTRON STAR CRUST COOLING OF THE 11 Hz X-RAY PULSAR IN TERZAN 5: A CHALLENGE TO HEATING AND COOLING MODELS?

    International Nuclear Information System (INIS)

    The transient neutron star low-mass X-ray binary and 11 Hz X-ray pulsar IGR J17480-2446 in the globular cluster Terzan 5 exhibited an 11 week accretion outburst in 2010. Chandra observations performed within five months after the end of the outburst revealed evidence that the crust of the neutron star became substantially heated during the accretion episode and was subsequently cooling in quiescence. This provides the rare opportunity to probe the structure and composition of the crust. Here, we report on new Chandra observations of Terzan 5 that extend the monitoring to ≅2.2 yr into quiescence. We find that the thermal flux and neutron star temperature have continued to decrease, but remain significantly above the values that were measured before the 2010 accretion phase. This suggests that the crust has not thermally relaxed yet, and may continue to cool. Such behavior is difficult to explain within our current understanding of heating and cooling of transiently accreting neutron stars. Alternatively, the quiescent emission may have settled at a higher observed equilibrium level (for the same interior temperature), in which case the neutron star crust may have fully cooled

  5. The Ionization of Accretion Flows in High Mass Star Formation: W51e2

    CERN Document Server

    Keto, Eric

    2008-01-01

    Previous observations show that the hypercompact HII region W51e2 is surrounded by a massive molecular accretion flow centered on the HII region. New observations of the H53alpha radio recombination line made with the VLA at 0.45 arc second angular resolution show a velocity gradient in the ionized gas within the HII region of > 500 kms-1 pc-1 comparable to the velocity gradient seen in the molecular accretion flow. New CO line observations made with the SMA at arc second angular resolution detect a molecular bipolar outflow immediately around the W51e2 HII region and extending along the axis of rotation of the molecular flow. These observations are consistent with an evolutionary phase for high mass star formation in which a newly formed massive star first begins to ionize its surroundings including its own accretion flow.

  6. Superburst Models for Neutron Stars with Hydrogen and Helium-Rich Atmospheres

    CERN Document Server

    Keek, L; Zand, J J M in 't

    2012-01-01

    Superbursts are rare day-long Type I X-ray bursts due to carbon flashes on accreting neutron stars in low-mass X-ray binaries. They heat the neutron star envelope such that the burning of accreted hydrogen and helium becomes stable, and the common shorter X-ray bursts are quenched. Short bursts reappear only after the envelope cools down. We study multi-zone one-dimensional models of the neutron star envelope, in which we follow carbon burning during the superburst, and we include hydrogen and helium burning in the atmosphere above. We investigate both the case of a solar composition and a helium-rich atmosphere. This allows us to study for the first time a wide variety of thermonuclear burning behavior as well as the transitions between the different regimes in a self-consistent manner. For solar composition, burst quenching ends much sooner than previously expected. This is because of the complex interplay between the 3-alpha, hot CNO, and CNO breakout reactions. Stable burning of hydrogen and helium transi...

  7. Effects of Magnetic Field Topology in Black Hole-Neutron Star Mergers: Long-Term Simulations

    CERN Document Server

    Wan, Mew-Bing

    2016-01-01

    We report long-term simulations of black hole-neutron star binary mergers where the neutron star possesses an asymmetric magnetic field dipole. Focusing on the scenario where the neutron star is tidally disrupted by the black hole, we track the evolution of the binary up to $\\approx 100$ms after merger. We uncover more than one episode of thermally driven winds being launched along a funnel wall in all these cases beginning from $\\approx 25$ms after merger. The emission rate of the second wind episode is found to increase with the degree of asymmetry. A large-scale poloidal magnetic field configuration is formed along the funnel wall accompanied by the generation of a large Poynting flux. The magnetic field in the accretion disk around the black hole remnant is amplified by the non-axisymmetric magneto-rotational instability. However, the asymmetry in the magnetic field leads to increased turbulence which causes the poloidal magnetic field in the accretion disk to grow largely in a non-linear manner.

  8. Limits on thermal variations in a dozen quiescent neutron stars over a decade

    CERN Document Server

    Bahramian, Arash; Degenaar, Nathalie; Chomiuk, Laura; Wijnands, Rudy; Strader, Jay; Ho, Wynn C G; Pooley, David

    2015-01-01

    In quiescent low-mass X-ray binaries (qLMXBs) containing neutron stars, the origin of the thermal X-ray component may be either release of heat from the core of the neutron star, or continuing low-level accretion. In general, heat from the core should be stable on timescales $<10^4$ years, while continuing accretion may produce variations on a range of timescales. While some quiescent neutron stars (e.g. Cen X-4, Aql X-1) have shown variations in their thermal components on a range of timescales, several others, particularly those in globular clusters with no detectable nonthermal hard X-rays (fit with a powerlaw), have shown no measurable variations. Here, we constrain the spectral variations of 12 low mass X-ray binaries in 3 globular clusters over $\\sim10$ years. We find no evidence of variations in 10 cases, with limits on temperature variations below 11% for the 7 qLMXBs without powerlaw components, and limits on variations below 20% for 3 other qLMXBs that do show non-thermal emission. However, in 2 ...

  9. NuSTAR discovers a cyclotron line and reveals the spinning up of the accreting X-ray pulsar IGR J16393-4643

    Science.gov (United States)

    Bodaghee, Arash; Tomsick, John; Fornasini, Francesca; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E.; Christensen, Finn; Craig, William W.; Hailey, Charles James; Harrison, Fiona; Zhang, William

    2016-04-01

    After several misclassifications, IGR J16393-4643 is now known to be a high-mass X-ray binary consisting of a heavily-absorbed pulsar that is likely paired with a massive and distant B star. It was observed for 50-ks by NuSTAR in the 3--79 keV energy band, complemented by a contemporaneous 2-ks observation with Swift-XRT. These observations enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of 29.3(+1.1/-1.3) keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5±0.1)×1012 G. The known pulsation period is now observed at 904.0±0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of dP/dt = -2×10-8 s s-1 (-0.6 s per year, or a frequency derivative of dν/dt = 3×10-14 Hz s-1). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly in corotation with the neutron star whose magnetospheric radius is around 2×108 cm.

  10. The accretion dynamics of EX Lupi in quiescence:The star, the spot, and the accretion column

    CERN Document Server

    Sicilia-Aguilar, A; Roccatagliata, V; Cameron, A C; Kospal, A; Henning, Th; Abraham, P; Sipos, N

    2015-01-01

    EX Lupi is a young star, prototype of EXor variables. Its spectrum is very rich in emission lines, including many metallic lines. It has been also proposed to have a close companion. We use the metallic emission lines to study the accretion structures and to test the companion hypothesis. We analyse 54 spectra taken in 5 years of quiescence time. We study the line profile variability and the radial velocity of the metallic emission lines. We use the velocity signatures of different species with various excitation conditions and their time dependency to track the dynamics associated to accretion. We observe periodic velocity variations in the line components consistent with rotational modulation. The modulation is stronger for lines with higher excitation potentials. We propose that the narrow line components are produced in the post-shock region, while the broad components originate in the more extended, pre-shock material. All the emission lines suffer velocity modulation due to the rotation of the star. The...

  11. 1S0 Proton and Neutron Superfluidity in beta-stable Neutron Star Matter

    OpenAIRE

    W. Zuo; Li, Z.H.; Lu, G. C.; Li, J.Q.; Scheid, W.; Lombardo, U.; Schulze, H. -J.; Shen, C.W.

    2004-01-01

    We investigate the effect of a microscopic three-body force on the proton and neutron superfluidity in the $^1S_0$ channel in $\\beta$-stable neutron star matter. It is found that the three-body force has only a small effect on the neutron $^1S_0$ pairing gap, but it suppresses strongly the proton $^1S_0$ superfluidity in $\\beta$-stable neutron star matter.

  12. NuSTAR and XMM-Newton observations of 1E1743.1-2843: indications of a neutron star LMXB nature of the compact object

    CERN Document Server

    Lotti, Simone; Mori, Kaya; Baganoff, Frederick K; Boggs, Steven E; Christensen, Finn E; Craig, William W; Hailey, Charles J; Harrison, Fiona A; Hong, Jaesub; Krivonos, Roman A; Rahoui, Farid; Stern, Daniel; Tomsick, John A; Zhang, Shuo; Zhang, William W

    2016-01-01

    We report on the results of NuSTAR and XMM-Newton observations of the persistent X-ray source \\object{1E1743.1-2843}, located in the Galactic Center region. The source was observed between September and October 2012 by NuSTAR and XMM-Newton, providing almost simultaneous observations in the hard and soft X-ray bands. The high X-ray luminosity points to the presence of an accreting compact object. We analyze the possibilities of this accreting compact object being either a neutron star (NS) or a black hole, and conclude that the joint XMM-Newton and NuSTAR spectrum from 0.3 to 40 $\\mathrm{keV}$ fits to a black body spectrum with $kT\\sim1.8~\\mathrm{keV}$ emitted from a hot spot or an equatorial strip on a neutron star surface. This spectrum is thermally Comptonized by electrons with $kT_{e}\\sim4.6~\\mathrm{keV}$. Accepting this neutron star hypothesis, we probe the Low Mass (LMXB) or High Mass (HMXB) X-ray Binary nature of the source. While the lack of Type-I bursts can be explained in the LMXB scenario, the abs...

  13. Time-of-flight mass measurements for nuclear processes in neutron star crusts

    CERN Document Server

    Estrade, A; Schatz, H; Amthor, A M; Bazin, D; Beard, M; Becerril, A; Brown, E F; Cyburt, R; Elliot, T; Gade, A; Galaviz, D; George, S; Gupta, S S; Hix, W R; Lau, R; Lorusso, G; Moller, P; Pereira, J; Portillo, M; Rogers, A M; Shapira, D; Smith, E; Stolz, A; Wallace, M; Wiescher, M

    2011-01-01

    The location of electron capture heat sources in the crust of accreting neutron stars depends on the masses of extremely neutron-rich nuclei. We present first results from a new implementation of the time-of-flight technique to measure nuclear masses of rare isotopes at the National Superconducting Cyclotron Laboratory. The masses of 16 neutron-rich nuclei in the scandium -- nickel range were determined simultaneously, improving the accuracy compared to previous data in 12 cases. The masses of $^{61}${V}, $^{63}${Cr}, $^{66}${Mn}, and $^{74}${Ni} were measured for the first time with mass excesses of $-30.510(890)$ MeV, $-35.280(650)$ MeV, $-36.900(790)$ MeV, and $-49.210(990)$ MeV, respectively. With the measurement of the $^{66}$Mn mass, the locations of the two dominant electron capture heat sources in the outer crust of accreting neutron stars that exhibit superbursts are now experimentally constrained. We find that the location of the $^{66}$Fe$\\rightarrow^{66}$Mn electron capture transition occurs signi...

  14. Circumstellar disks of the most vigorously accreting young stars.

    Science.gov (United States)

    Liu, Hauyu Baobab; Takami, Michihiro; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M; Karr, Jennifer L; Kusakabe, Nobuhiko; Tsuribe, Toru

    2016-02-01

    Stars may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. Our high-resolution near-infrared imaging has verified the presence of the key associated features, large-scale arms and arcs surrounding four young stellar objects undergoing luminous outbursts. Our hydrodynamics simulations and radiative transfer models show that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation phase. The effect of those tempestuous episodes of disk evolution on star and planet formation remains to be understood. PMID:26989772

  15. Circumstellar disks of the most vigorously accreting young stars.

    Science.gov (United States)

    Liu, Hauyu Baobab; Takami, Michihiro; Kudo, Tomoyuki; Hashimoto, Jun; Dong, Ruobing; Vorobyov, Eduard I; Pyo, Tae-Soo; Fukagawa, Misato; Tamura, Motohide; Henning, Thomas; Dunham, Michael M; Karr, Jennifer L; Kusakabe, Nobuhiko; Tsuribe, Toru

    2016-02-01

    Stars may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. Our high-resolution near-infrared imaging has verified the presence of the key associated features, large-scale arms and arcs surrounding four young stellar objects undergoing luminous outbursts. Our hydrodynamics simulations and radiative transfer models show that these observed structures can indeed be explained by strong gravitational instabilities occurring at the beginning of the disk formation phase. The effect of those tempestuous episodes of disk evolution on star and planet formation remains to be understood.

  16. Joule Heating in Neutron Stars under Strong Gravitation

    OpenAIRE

    Sengupta, Sujan

    2000-01-01

    Considering Joule heating caused by the dissipation of the magnetic field in the neutron star crust to be an efficient mechanism in maintaining a relatively high surface temperature in very old neutron stars, the role of general relativity is investigated. It is found that, although the effect of space-time curvature produced by the intense gravitational field of the star slows down the decay rate of the magnetic field, modification of the initial magnetic field configuration and the initial ...

  17. Visual Distortions Near a Neutron Star and Black Hole

    OpenAIRE

    Nemiroff, Robert J.

    1993-01-01

    The visual distortion effects visible to an observer traveling around and descending to the surface of an extremely compact star are described. Specifically, trips to a ``normal" neutron star, a black hole, and an ultracompact neutron star with extremely high surface gravity, are described. Concepts such as multiple imaging, red- and blue-shifting, conservation of surface brightness, the photon sphere, and the existence of multiple Einstein rings are discussed in terms of what the viewer woul...

  18. Simulating binary neutron stars: dynamics and gravitational waves

    OpenAIRE

    Anderson, Matthew; Hirschmann, Eric W.; Lehner, Luis; Liebling, Steven L.; Motl, Patrick M.; Neilsen, David; Palenzuela, Carlos; Tohline, Joel E.

    2007-01-01

    We model two mergers of orbiting binary neutron stars, the first forming a black hole and the second a differentially rotating neutron star. We extract gravitational waveforms in the wave zone. Comparisons to a post-Newtonian analysis allow us to compute the orbital kinematics, including trajectories and orbital eccentricities. We verify our code by evolving single stars and extracting radial perturbative modes, which compare very well to results from perturbation theory. The Einstein equatio...

  19. Relativistic Simulations of Eccentric Binary Neutron Star Mergers: One-arm Spiral Instability and Effects of Neutron Star Spin

    CERN Document Server

    East, William E; Pretorius, Frans; Shapiro, Stuart L

    2016-01-01

    We perform general-relativistic hydrodynamical simulations of dynamical capture binary neutron star mergers, emphasizing the role played by the neutron star spin. Dynamical capture mergers may take place in globular clusters, as well as other dense stellar systems, where most neutron stars have large spins. We find significant variability in the merger outcome as a function of initial neutron star spin. For cases where the spin is aligned with the orbital angular momentum, the additional centrifugal support in the remnant hypermassive neutron star can prevent the prompt collapse to a black hole, while for antialigned cases the decreased total angular momentum can facilitate the collapse to a black hole. We show that even moderate spins can significantly increase the amount of ejected material, including the amount unbound with velocities greater than half the speed of light, leading to brighter electromagnetic signatures associated with kilonovae and interaction of the ejecta with the interstellar medium. Fur...

  20. Binary neutron star mergers: a jet engine for short gamma-ray burst

    CERN Document Server

    Ruiz, Milton; Paschalidis, Vasileios; Shapiro, Stuart L

    2016-01-01

    We perform magnetohydrodynamic simulations in full general relativity (GRMHD) of quasicircular, equal-mass, binary neutron stars that undergo merger. The initial stars are irrotational, $n=1$ polytropes and are magnetized. We explore two types of magnetic-field geometries: one where each star is endowed with a dipolar magnetic field extending from the interior into the exterior, as in a pulsar, and the other where the dipolar field is initially confined to the interior. In both cases the adopted magnetic fields are dynamically unimportant initially. The merger outcome is a hypermassive neutron star that undergoes delayed collapse to a black hole (spin parameter $a/M_{\\rm BH} \\sim 0.74$) immersed in a magnetized accretion disk. About $4000M \\sim 60(M_{\\rm NS}/1.625M_\\odot)$ ms following merger, the region above the black hole poles becomes strongly magnetized, and a collimated, mildly relativistic outflow --- an incipient jet --- is launched. The lifetime of the accretion disk, which likely equals the lifetime...