WorldWideScience

Sample records for acceptor cinnamic aldehyde

  1. Deodorants: An experimental provocation study with cinnamic aldehyde

    DEFF Research Database (Denmark)

    Bruze, M.; Johansen, J. D.; Andersen, K. E.

    2003-01-01

    BACKGROUND: Axillary dermatitis is common and overrepresented in individuals with contact allergy to fragrances. Many individuals suspect their deodorants to be the incriminating products. OBJECTIVE: Our aim was to investigate the significance of cinnamic aldehyde in deodorants for the development...... of axillary dermatitis when used by individuals with and without contact allergy to cinnamic aldehyde. METHODS: Patch tests with deodorants and ethanol solutions with cinnamic aldehyde, and repeated open application tests with roll-on deodorants without and with cinnamic aldehyde at different concentrations......, were performed in 37 patients with dermatitis, 20 without and 17 with contact allergy to cinnamic aldehyde. RESULTS: A repeated open application test with positive findings was noted only in patients hypersensitive to cinnamic aldehyde (P deodorants containing...

  2. Threshold responses in cinnamic-aldehyde-sensitive subjects

    DEFF Research Database (Denmark)

    Johansen, J D; Andersen, K E; Rastogi, Suresh Chandra

    1996-01-01

    Cinnamic aldehyde is an important fragrance material and contact allergen. The present study was performed to provide quantitative data on the eliciting capacity of cinnamic aldehyde, to be considered in assessment of clinical relevance and health hazard. The skin response to serial dilution patch...

  3. Threshold responses in cinnamic-aldehyde-sensitive subjects: results and methodological aspects

    DEFF Research Database (Denmark)

    Johansen, J D; Andersen, Klaus Ejner; Rastogi, S C

    1996-01-01

    Cinnamic aldehyde is an important fragrance material and contact allergen. The present study was performed to provide quantitative data on the eliciting capacity of cinnamic aldehyde, to be considered in assessment of clinical relevance and health hazard. The skin response to serial dilution patch...

  4. Influences of cinnamic aldehydes on H⁺ extrusion activity and ultrastructure of Candida.

    Science.gov (United States)

    Shreaz, Sheikh; Bhatia, Rimple; Khan, Neelofar; Muralidhar, Sumathi; Manzoor, Nikhat; Khan, Luqman Ahmad

    2013-02-01

    The antifungal effects of cinnamaldehyde, 4-hydroxy-3-methoxycinnamaldehyde (coniferyl aldehyde) and 3,5-dimethoxy-4-hydroxycinnamaldehyde (sinapaldehyde) were investigated against 65 strains of Candida (six standard, 39 fluconazole-sensitive and 20 fluconazole-resistant). MICs of cinnamaldehyde, coniferyl aldehyde and sinapaldehyde ranged from 100 to 500 µg ml(-1), 100 to 300 µg ml(-1) and 100 to 200 µg ml(-1), respectively. All tested isolates showed a marked sensitivity towards these aldehydes in spot and time-kill assays. Sinapaldehyde was found to be the most effective, followed by coniferyl aldehyde and cinnamaldehyde. At their respective MIC(90) values, the three compounds caused mean inhibition levels of glucose-stimulated H(+)-efflux of 36, 34 and 41 % (cinnamaldehyde), 41, 42 and 47 % (coniferyl aldehyde) and 43, 45 and 51 % (sinapaldehyde) for standard-sensitive, clinical-sensitive and clinical-resistant isolates, respectively. Inhibition levels of H(+)-efflux caused by plasma membrane ATPase inhibitors N,N'-dicyclohexylcarbodiimide (100 µM) and diethylstilbestrol (10 µM) were 34, 45 and 44 %, and 57, 39 and 35 %, for standard-sensitive, clinical-sensitive and clinical-resistant isolates, respectively. Intracellular pH (pHi) was found to decrease by 0.34, 0.42 and 0.50 units following incubation with three tested aldehydes from the control pHi of 6.70. Scanning electron microscopy and transmission electron microscopy analysis was performed on a representative strain, C. albicans 10261, showing alterations in morphology, cell wall, plasma membrane damage and lysis. Haemolytic activity of the three compounds varied from 10 to 15 % at their highest MIC compared to an activity level of 20 % shown by fluconazole at 30 µg ml(-1). In conclusion, this study shows significant activity of cinnamic aldehydes against Candida, including azole-resistant strains, suggesting that these molecules can be developed as antifungals.

  5. A Novel Approach in Cinnamic Acid Synthesis: Direct Synthesis of Cinnamic Acids from Aromatic Aldehydes and Aliphatic Carboxylic Acids in the Presence of Boron Tribromide

    Directory of Open Access Journals (Sweden)

    M. Onciu

    2005-02-01

    Full Text Available Cinnamic acids have been prepared in moderate to high yields by a new direct synthesis using aromatic aldehydes and aliphatic carboxylic acids, in the presence of boron tribromide as reagent, 4-dimethylaminopyridine (4-DMAP and pyridine (Py as bases and N-methyl-2-pyrolidinone (NMP as solvent, at reflux (180-190°C for 8-12 hours.

  6. Inactivation of CYP2A6 by the Dietary Phenylpropanoid trans-Cinnamic Aldehyde (Cinnamaldehyde) and Estimation of Interactions with Nicotine and Letrozole

    OpenAIRE

    Chan, Jeannine; Oshiro, Tyler; Thomas, Sarah; Higa, Allyson; Black, Stephen; Todorovic, Aleksandar; Elbarbry, Fawzy; Harrelson, John P.

    2016-01-01

    Human exposure to trans-cinnamic aldehyde [t-CA; cinnamaldehyde; cinnamal; (E)-3-phenylprop-2-enal] is common through diet and through the use of cinnamon powder for diabetes and to provide flavor and scent in commercial products. We evaluated the likelihood of t-CA to influence metabolism by inhibition of P450 enzymes. IC50 values from recombinant enzymes indicated that an interaction is most probable for CYP2A6 (IC50 = 6.1 ?M). t-CA was 10.5-fold more selective for human CYP2A6 than for CYP...

  7. Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression.

    Science.gov (United States)

    Bae, Woom-Yee; Choi, Jae-Sun; Kim, Ja-Eun; Jeong, Joo-Won

    2015-11-01

    During tumor progression, hypoxia-inducible factor 1 (HIF-1) plays a critical role in tumor angiogenesis and tumor growth by regulating the transcription of several genes in response to a hypoxic environment and changes in growth factors. This study was designed to investigate the effects of cinnamic aldehyde (CA) on tumor growth and angiogenesis and the mechanisms underlying CA's anti-angiogenic activities. We found that CA administration inhibits tumor growth and blocks tumor angiogenesis in BALB/c mice. In addition, CA treatment decreased HIF-1α protein expression and vascular endothelial growth factor (VEGF) expression in mouse tumors and Renca cells exposed to hypoxia in vitro. Interestingly, CA treatment did not affect the stability of von Hippel-Lindau protein (pVHL)-associated HIF-1α and CA attenuated the activation of mammalian target of rapamycin (mTOR) pathway. Collectively, these findings strongly indicate that the anti-angiogenic activity of CA is, at least in part, regulated by the mTOR pathway-mediated suppression of HIF-1α protein expression and these findings suggest that CA may be a potential drug for human cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Natural Cinnamic Acids, Synthetic Derivatives and Hybrids with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Juan David Guzman

    2014-11-01

    Full Text Available Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  9. Multifunctional Cinnamic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Aikaterini Peperidou

    2017-07-01

    Full Text Available Our research to discover potential new multitarget agents led to the synthesis of 10 novel derivatives of cinnamic acids and propranolol, atenolol, 1-adamantanol, naphth-1-ol, and (benzylamino ethan-1-ol. The synthesized molecules were evaluated as trypsin, lipoxygenase and lipid peroxidation inhibitors and for their cytotoxicity. Compound 2b derived from phenoxyphenyl cinnamic acid and propranolol showed the highest lipoxygenase (LOX inhibition (IC50 = 6 μΜ and antiproteolytic activity (IC50 = 0.425 μΜ. The conjugate 1a of simple cinnamic acid with propranolol showed the higher antiproteolytic activity (IC50 = 0.315 μΜ and good LOX inhibitory activity (IC50 = 66 μΜ. Compounds 3a and 3b, derived from methoxylated caffeic acid present a promising combination of in vitro inhibitory and antioxidative activities. The S isomer of 2b also presented an interesting multitarget biological profile in vitro. Molecular docking studies point to the fact that the theoretical results for LOX-inhibitor binding are identical to those from preliminary in vitro study.

  10. Part I. Synthesis and characterization of donor-pi-acceptor compounds with pentadienyl-bridged indoline and tetrahydroquinoline donors and aldehyde and thiobarbituric acid acceptors Part II. Longitudinal study comparing online versus face-to-face course delivery in introductory chemistry

    Science.gov (United States)

    Greco, Patrick F.

    Part I. The design and development of organic second-order nonlinear optical (NLO) materials have attracted much interest due to their applications in optoelectronic devices and modern communications technology. Donor-pi-acceptor compounds, D-(CH=CH)n-A, often exhibit hyperpolarizability that results in laser frequency doubling (second harmonic generation) and spectroscopic solvatochromism. To study the effect of donor amine geometry upon properties associated with second-order NLO behavior in simple donor-pi-acceptor compounds, equilibrium geometries and hyperpolarizabilities (beta) for donor-acceptor polyenes with amine donors were calculated at several levels of computational theory. Two new molecules with donors that only differ by one methylene group were chosen for comparison. Thus, 5-(N-methylindolin-5-yl)-2, 4-pentadienal (1a) and 5-(N-methyl-2, 3, 4-trihydroquinolin-6-yl)-2, 4-pentadienal (2a) were synthesized in two steps from starting materials described in the literature. These aldehydes were converted into stronger acceptors in one step to give diethylthiobarbituric acid derivatives 1c and 2c, as well as tricyanofuran derivatives 1d and 2d. Positive UV solvatochromism was observed in all three derivatives. NMR solvatochromism was most pronounced in 1c, and 2c vs. 1a and 2a as measured by changes in chemical shifts. Additionally, coupling constants showed more conjugation in 1c and 2c, where 1a and 2a showed less conjugation. Finally, differential scanning calorimetry and thermal gravimetric analysis were used to compare decomposition and melting temperatures of these compounds to determine their stability. Aldehydes, 1a and 2a had distinct melting points, while the 1c, 2c, 1d, and 2d derivatives decomposed at temperatures above 150 °C. Part II. This longitudinal study focused on an introductory chemistry course taught using two different modes of delivery: online and face-to-face (FtF). The sections of the course using the different delivery modes

  11. DNA Photolithography with Cinnamate Crosslinkers

    Science.gov (United States)

    Feng, Lang (Inventor); Chaikin, Paul Michael (Inventor)

    2016-01-01

    The present invention relates generally to cinnamate crosslinkers. Specifically, the present invention relates to gels, biochips, and functionalized surfaces useful as probes, in assays, in gels, and for drug delivery, and methods of making the same using a newly-discovered crosslinking configuration.

  12. Cinnamic Acid Derivatives as Antidiabetics Agents

    Directory of Open Access Journals (Sweden)

    Teni Ernawati

    2017-04-01

    Full Text Available Diabetes mellitus is a metabolic disorder of carbohydrate metabolism. Treatment of type II diabetes is usually done by prescribing diet and exercise for the patient however it can also be treated with antidiabetic drugs. The purpose of this paper is to illustrate some cinnamic acid derivative compounds which are either isolated from natural materials or the results of the chemical synthesis. In addition, their biological activities as an agent of α-glucosidase inhibitors have also been evaluated. Chemically, cinnamic acid has three main functional groups:  first is the substitution on the phenyl group, second is the additive reaction into the α-β unsaturated, and third is the chemical reaction with carboxylic acid functional groups. Chemical aspects of cinnamic acid derivative compounds have received much attention in the research and development of drugs, especially modifications within three functional groups are very influential. In the last 10 years, a lot of research and development of cinnamic acid derivatives as inhibitors of the α-glucosidase enzyme has been done. One example of the research done in this field is the modification of para position in the structure of cinnamic acid and addition of alkyl groups in the carboxylic group which would increase the activity of the α-glucosidase enzyme therefore the level of inhibition is 100 times higher than that of cinnamic acid compound itself. The novelty of this review article is to focus on the antidiabetic activity of cinnamic acid derivatives.

  13. A green Hunsdiecker reaction of cinnamic acids

    Energy Technology Data Exchange (ETDEWEB)

    Sodre, Leonardo R.; Esteves, Pierre M.; Mattos, Marcio C. S. de, E-mail: pesteves@iq.ufrj.br, E-mail: mmattos@iq.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Quimica. Departamento de Quimica

    2013-02-15

    Tribromo- and trichloroisocyanuric acids react with cinnamic acids in NaOH/H{sub 2}O/Et{sub 2}O at room temperature to produce (E)-2-halostyrenes regioselectively in 25-95% yield. Mechanism studies using Hammett correlations and DFT (density functional theory) calculations have shown that this reaction has as rate determining step the electrophilic addition of chlorine atom to the double bond. (author)

  14. Naturally Occurring Cinnamic Acid Sugar Ester Derivatives

    Directory of Open Access Journals (Sweden)

    Yuxin Tian

    2016-10-01

    Full Text Available Cinnamic acid sugar ester derivatives (CASEDs are a class of natural product with one or several phenylacrylic moieties linked with the non-anomeric carbon of a glycosyl skeleton part through ester bonds. Their notable anti-depressant and brains protective activities have made them a topic of great interest over the past several decades. In particular the compound 3′,6-disinapoylsucrose, the index component of Yuanzhi (a well-known Traditional Chinese Medicine or TCM, presents antidepressant effects at a molecular level, and has become a hotspot of research on new lead drug compounds. Several other similar cinnamic acid sugar ester derivatives are reported in traditional medicine as compounds to calm the nerves and display anti-depression and neuroprotective activity. Interestingly, more than one third of CASEDs are distributed in the family Polygalaceae. This overview discusses the isolation of cinnamic acid sugar ester derivatives from plants, together with a systematic discussion of their distribution, chemical structures and properties and pharmacological activities, with the hope of providing references for natural product researchers and draw attention to these interesting compounds.

  15. Structural modification of trans-cinnamic acid using Colletotrichum acutatum

    OpenAIRE

    Velasco B., Rodrigo; Gil G., Jesús H.; García P., Carlos M.; Durango R., Diego L.

    2012-01-01

    The biotransformation of trans-cinnamic acid by whole cells of the Colombian native phytopathogenic fungus Colletotrichum acutatum was studied. Initially, fungitoxicity of this compound against C. acutatum was evaluated; trans-cinnamic acid exhibited a moderate to weak toxicity against the microorganism and apparently a detoxification mechanism was present. Then, in order to study such mechanism and explore the capacity of this fungus to biotransform trans-cinnamic acid into value-added produ...

  16. Associative Memory Acceptors.

    Science.gov (United States)

    Card, Roger

    The properties of an associative memory are examined in this paper from the viewpoint of automata theory. A device called an associative memory acceptor is studied under real-time operation. The family "L" of languages accepted by real-time associative memory acceptors is shown to properly contain the family of languages accepted by one-tape,…

  17. Accumulation of cinnamic acid and vanillin in eggplant root ...

    African Journals Online (AJOL)

    The contents of cinnamic acid and vanillin in eggplant root exudates and soil were determined by HPLC. The results showed that cinnamic acid and vanillin might remain in soil after the root of eggplant is released. With the extending growth stage and planting year of eggplant, the contents in root exudates, rhizosphere and ...

  18. Multitarget Molecular Hybrids of Cinnamic Acids

    Directory of Open Access Journals (Sweden)

    Aikaterini Peperidou

    2014-12-01

    Full Text Available In an attempt to synthesize potential new multitarget agents, 11 novel hybrids incorporating cinnamic acids and paracetamol, 4-/7-hydroxycoumarin, benzocaine, p-aminophenol and m-aminophenol were synthesized. Three hybrids—2e, 2a, 2g—and 3b were found to be multifunctional agents. The hybrid 2e derived from the phenoxyphenyl cinnamic acid and m-acetamidophenol showed the highest lipoxygenase (LOX inhibition and analgesic activity (IC50 = 0.34 μΜ and 98.1%, whereas the hybrid 3b of bromobenzyloxycinnamic acid and hymechromone exhibited simultaneously good LOX inhibitory activity (IC50 = 50 μΜ and the highest anti-proteolytic activity (IC50= 5 μΜ. The hybrid 2a of phenyloxyphenyl acid with paracetamol showed a high analgesic activity (91% and appears to be a promising agent for treating peripheral nerve injuries. Hybrid 2g which has an ester and an amide bond presents an interesting combination of anti-LOX and anti-proteolytic activity. The esters were found very potent and especially those derived from paracetamol and m-acetamidophenol. The amides follow. Based on 2D-structure–activity relationships it was observed that both steric and electronic parameters play major roles in the activity of these compounds. Molecular docking studies point to the fact that allosteric interactions might govern the LOX-inhibitor binding.

  19. Photocure Reactions of Photoreactive Prepolymers with Cinnamate Groups

    International Nuclear Information System (INIS)

    Kim, Whan Gun

    2011-01-01

    The photoreactive prepolymers with multifunctional cinnamate and bisphenol A type cinnamate groups that could perform photodimerization without photoinitiators were synthesized by the reaction of t-cinnamic acids (CAs) and epoxy resins. Their photocure reaction rates and the extent of reaction conversion were measured with Fourier transform infrared spectroscopy, and these increased with the intensity of UV irradiation. The experimental data of these reaction rates showed the characteristics of nth-order kinetics reaction, and all kinetic constants of each photoreactive polymer with this equation were summarized. Although the GTR-1800-HCA and KWG1-EP-HCA with hydroxyl group substituted cinnamate showed lower reaction conversion rates and rate constant than GTR-1800-CA and KWG1-EP-CA with an unsubstituted cinnamate group, GTR-1800-MCAand KWG1-EP-MCA with methoxy group substituted cinnamate showed similar and higher reaction conversion rates than the former, respectively. These results were explained in terms of segmental mobility for photopolymerization by molecular interactions

  20. First general methods toward aldehyde enolphosphates.

    Science.gov (United States)

    Barthes, Nicolas; Grison, Claude

    2012-02-01

    We herein report two innovative methods toward aldehyde enolphosphates and the first saccharidic aldehyde enolphosphates. Aldehyde enolphosphate function is worthwhile to be considered as a good phosphoenolpyruvate analogue. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Thermal, Catalytic Conversion of Alkanes to Linear Aldehydes and Linear Amines.

    Science.gov (United States)

    Tang, Xinxin; Jia, Xiangqing; Huang, Zheng

    2018-03-21

    Alkanes, the main constituents of petroleum, are attractive feedstocks for producing value-added chemicals. Linear aldehydes and amines are two of the most important building blocks in the chemical industry. To date, there have been no effective methods for directly converting n-alkanes to linear aldehydes and linear amines. Here, we report a molecular dual-catalyst system for production of linear aldehydes via regioselective carbonylation of n-alkanes. The system is comprised of a pincer iridium catalyst for transfer-dehydrogenation of the alkane using t-butylethylene or ethylene as a hydrogen acceptor working sequentially with a rhodium catalyst for olefin isomerization-hydroformylation with syngas. The system exhibits high regioselectivity for linear aldehydes and gives high catalytic turnover numbers when using ethylene as the acceptor. In addition, the direct conversion of light alkanes, n-pentane and n-hexane, to siloxy-terminated alkyl aldehydes through a sequence of Ir/Fe-catalyzed alkane silylation and Ir/Rh-catalyzed alkane carbonylation, is described. Finally, the Ir/Rh dual-catalyst strategy has been successfully applied to regioselective alkane aminomethylation to form linear alkyl amines.

  2. Cinnamic acid derivatives in cosmetics - current use and future prospects.

    Science.gov (United States)

    Gunia-Krzyżak, Agnieszka; Słoczyńska, Karolina; Popiół, Justyna; Koczurkiewicz, Paulina; Marona, Henryk; Pękala, Elżbieta

    2018-06-05

    Cinnamic acid derivatives are widely used in cosmetics and possess various functions. This group of compounds includes both naturally occurring as well as synthetic substances. On the basis of the Cosmetic Ingredient Database (CosIng) and available literature, this review summarizes their functions in cosmetics, including their physicochemical and biological properties as well as reported adverse effects. A perfuming function is typical of many derivatives of cinnamaldehyde, cinnamyl alcohol, dihydrocinnamyl alcohol, and cinnamic acid itself; these substances are commonly used in cosmetics all over the world. Some of them show allergic and photoallergic potential, resulting in restrictions in maximum concentrations and/or a requirement to indicate the presence of some substances in the list of ingredients when their concentrations exceed certain fixed values in a cosmetic product. Another important function of cinnamic acid derivatives in cosmetics is UV protection. Ester derivatives such as ethylhexyl methoxycinnamate (octinoxate), isoamyl p-methoxycinnamte (amiloxiate), octocrylene, and cinoxate are used in cosmetics all over the world as UV filters. However, their maximum concentrations in cosmetic products are restricted due to their adverse effects, which include contact and a photocontact allergies, phototoxic contact dermatitis, contact dermatitis, estrogenic modulation, and generation of reactive oxygen species. Other rarely utilized functions of cinnamic acid derivatives are as an antioxidant, in skin conditioning, hair conditioning, as a tonic, and in antimicrobial activities. Moreover, some currently investigated natural and synthetic derivatives of cinnamic acid have shown skin lightening and anti-aging properties. Some of them may become new cosmetic ingredients in the future. In particular, 4-hydroxycinnamic acid, which is currently indexed as a skin-conditioning cosmetics ingredient, has been widely tested in vitro and in vivo as a new drug candidate

  3. Alcohol, Aldehydes, Adducts and Airways

    Directory of Open Access Journals (Sweden)

    Muna Sapkota

    2015-11-01

    Full Text Available Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA adduct and hybrid malondialdehyde-acetaldehyde (MAA protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease.

  4. Cyclodextrin Aldehydes are Oxidase Mimics

    DEFF Research Database (Denmark)

    Fenger, Thomas Hauch; Bjerre, Jeannette; Bols, Mikael

    2009-01-01

    Cyclodextrins containing 6-aldehyde groups were found to catalyse oxidation of aminophenols in the presence of hydrogen peroxide. The catalysis followed Michaelis-Menten kinetics and is related to the catalysis previously observed with cyclodextrin ketones. A range of different cyclodextrin aldeh...

  5. Acceptors in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    McCluskey, Matthew D., E-mail: mattmcc@wsu.edu; Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Walter, Eric D. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Norton, M. Grant; Harrison, Kale W. [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 (United States); Ha, Su [Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164-6515 (United States)

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  6. Lipase-Catalyzed Production of 6-O-cinnamoyl-sorbitol from D-sorbitol and Cinnamic Acid Esters.

    Science.gov (United States)

    Kim, Jung-Ho; Bhatia, Shashi Kant; Yoo, Dongwon; Seo, Hyung Min; Yi, Da-Hye; Kim, Hyun Joong; Lee, Ju Hee; Choi, Kwon-Young; Kim, Kwang Jin; Lee, Yoo Kyung; Yang, Yung-Hun

    2015-05-01

    To overcome the poor properties of solubility and stability of cinnamic acid, cinnamate derivatives with sugar alcohols were produced using the immobilized Candida antarctica lipase with vinyl cinnamate and D-sorbitol as substrate at 45 °C. Immobilized C. antarctica lipase was found to synthesize 6-O-cinnamoyl-sorbitol and confirmed by HPLC and (1)H-NMR and had a preference for vinyl cinnamate over other esters such as allyl-, ethyl-, and isobutyl cinnamate as co-substrate with D-sorbitol. Contrary to D-sorbitol, vinyl cinnamate, and cinnamic acid, the final product 6-O-cinnamoyl-sorbitol was found to have radical scavenging activity. This would be the first report on the biosynthesis of 6-O-cinnamoyl-sorbitol with immobilized enzyme from C. antarctica.

  7. RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua.

    Science.gov (United States)

    Kumar, Ritesh; Vashisth, Divya; Misra, Amita; Akhtar, Md Qussen; Jalil, Syed Uzma; Shanker, Karuna; Gupta, Madan Mohan; Rout, Prashant Kumar; Gupta, Anil Kumar; Shasany, Ajit Kumar

    2016-05-25

    Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption that the elevated internal CA due to knock down may increase the artemisinin yield. Accumulation of trans-cinnamic acid in the plant due to AaC4H knockdown was accompanied with the reduction of p-coumaric acid, total phenolics, anthocyanin, cinnamate-4-hydroxylase (C4H) and phenylalanine ammonia lyase (PAL) activities but increase in salicylic acid (SA) and artemisinin. Interestingly, feeding trans-cinnamic acid to the RNAi line increased the level of artemisinin along with benzoic (BA) and SA with no effect on the downstream metabolites p-coumaric acid, coniferylaldehyde and sinapaldehyde, whereas p-coumaric acid feeding increased the content of downstream coniferylaldehyde and sinapaldehyde with no effect on BA, SA, trans-cinnamic acid or artemisinin. SA is reported earlier to be inducing the artemisinin yield. This report demonstrates the link between the phenylpropanoid/lignin pathway with artemisinin pathway through SA, triggered by accumulation of trans-cinnamic acid because of the blockage at C4H.

  8. DNA Photo Lithography with Cinnamate-based Photo-Bio-Nano-Glue

    Science.gov (United States)

    Feng, Lang; Li, Minfeng; Romulus, Joy; Sha, Ruojie; Royer, John; Wu, Kun-Ta; Xu, Qin; Seeman, Nadrian; Weck, Marcus; Chaikin, Paul

    2013-03-01

    We present a technique to make patterned functional surfaces, using a cinnamate photo cross-linker and photolithography. We have designed and modified a complementary set of single DNA strands to incorporate a pair of opposing cinnamate molecules. On exposure to 360nm UV, the cinnamate makes a highly specific covalent bond permanently linking only the complementary strands containing the cinnamates. We have studied this specific and efficient crosslinking with cinnamate-containing DNA in solution and on particles. UV addressability allows us to pattern surfaces functionally. The entire surface is coated with a DNA sequence A incorporating cinnamate. DNA strands A'B with one end containing a complementary cinnamated sequence A' attached to another sequence B, are then hybridized to the surface. UV photolithography is used to bind the A'B strand in a specific pattern. The system is heated and the unbound DNA is washed away. The pattern is then observed by thermo-reversibly hybridizing either fluorescently dyed B' strands complementary to B, or colloids coated with B' strands. Our techniques can be used to reversibly and/or permanently bind, via DNA linkers, an assortment of molecules, proteins and nanostructures. Potential applications range from advanced self-assembly, such as templated self-replication schemes recently reported, to designed physical and chemical patterns, to high-resolution multi-functional DNA surfaces for genetic detection or DNA computing.

  9. Process for producing furan from furfural aldehyde

    Science.gov (United States)

    Diebold, James P.; Evans, Robert J.

    1988-01-01

    A process of producing furan and derivatives thereof is disclosed. The process includes generating furfural aldehyde vapors and then passing those vapors over a zeolite catalyst at a temperature and for a residence time effective to decarbonylate the furfural aldehydes to form furans and derivatives thereof. The resultant furan vapors and derivatives are then separated. In a preferred form, the furfural aldehyde vapors are generated during the process of converting biomass materials to liquid and gaseous fuels.

  10. Process for producing furan from furfural aldehyde

    Science.gov (United States)

    Diebold, J.P.; Evans, R.J.

    1987-04-06

    A process of producing furan and derivatives thereof as disclosed. The process includes generating furfural aldehyde vapors and then passing those vapors over a zeolite catalyst at a temperature and for a residence time effective to decarbonylate the furfural aldehydes to form furans and derivatives thereof. The resultant furan vapors and derivatives are then separated. In a preferred form, the furfural aldehyde vapors are generated during the process of converting biomass materials to liquid and gaseous fuels.

  11. Regulation and Functional Expression of Cinnamate 4-Hydroxylase from Parsley

    Science.gov (United States)

    Koopmann, Edda; Logemann, Elke; Hahlbrock, Klaus

    1999-01-01

    A previously isolated parsley (Petroselinum crispum) cDNA with high sequence similarity to cinnamate 4-hydroxylase (C4H) cDNAs from several plant sources was expressed in yeast (Saccharomyces cerevisiae) containing a plant NADPH:cytochrome P450 oxidoreductase and verified as encoding a functional C4H (CYP73A10). Low genomic complexity and the occurrence of a single type of cDNA suggest the existence of only one C4H gene in parsley. The encoded mRNA and protein, in contrast to those of a functionally related NADPH:cytochrome P450 oxidoreductase, were strictly coregulated with phenylalanine ammonia-lyase mRNA and protein, respectively, as demonstrated by coinduction under various conditions and colocalization in situ in cross-sections from several different parsley tissues. These results support the hypothesis that the genes encoding the core reactions of phenylpropanoid metabolism form a tight regulatory unit. PMID:9880345

  12. Myoglobin-Catalyzed Olefination of Aldehydes.

    Science.gov (United States)

    Tyagi, Vikas; Fasan, Rudi

    2016-02-12

    The olefination of aldehydes constitutes a most valuable and widely adopted strategy for constructing carbon-carbon double bonds in organic chemistry. While various synthetic methods have been made available for this purpose, no biocatalysts are known to mediate this transformation. Reported herein is that engineered myoglobin variants can catalyze the olefination of aldehydes in the presence of α-diazoesters with high catalytic efficiency (up to 4,900 turnovers) and excellent E diastereoselectivity (92-99.9 % de). This transformation could be applied to the olefination of a variety of substituted benzaldehydes and heteroaromatic aldehydes, also in combination with different alkyl α-diazoacetate reagents. This work provides a first example of biocatalytic aldehyde olefination and extends the spectrum of synthetically valuable chemical transformations accessible using metalloprotein-based catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili; Wickens, Zachary K.; Dong, Guangbin; Grubbs, Robert H.

    2012-01-01

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  14. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili

    2012-07-06

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  15. Enhanced lignin monomer production caused by cinnamic Acid and its hydroxylated derivatives inhibits soybean root growth.

    Directory of Open Access Journals (Sweden)

    Rogério Barbosa Lima

    Full Text Available Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H, guaiacyl (G and syringyl (S monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway in a growth chamber for 24 h. In general, the results showed that 1 cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2 cinnamic and p-coumaric acids increased p-hydroxyphenyl (H monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G content, and sinapic acid increased sinapyl (S content; 3 when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H, cinnamic acid reduced H, G and S contents; and 4 when applied in conjunction with 3,4-(methylenedioxycinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL, p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.

  16. COMPARISON OF ACCEPTOR PROPERTIES FOR INTERACTION ...

    African Journals Online (AJOL)

    Preferred Customer

    determined by UV-Vis titration method for the adducts. Surprisingly, the ... Interaction of. TCNE and DDQ as π-acceptors with hydrocarbon donors such as cycloalkanes, alkenes, ... obtained from a Shimadzu GC-MS model QP5050 instrument.

  17. Study of the biogenesis of flavones and cinnamic acids by using molecules labelled with carbon 14

    International Nuclear Information System (INIS)

    Chabannes, Bernard

    1970-01-01

    This research thesis reports the study of flavones, flavonoid compounds and cinnamic acids which are very common as natural pigments in plant species. The author first reports the study of the synthesis of shikimic acid labelled with carbon 14 (biological methods of preparation, synthesis), and then the synthesis of prunin labelled with carbon 14. The next part reports the study of the transformation of prunin labelled with carbon 14 into cosmosiine in flowers with white cosmos. The author finally compares the introduction of cinnamic acid and of shikimic acid (both labelled with carbon 14) into the sinapic acid of red cabbage leaves

  18. RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua

    OpenAIRE

    Kumar, Ritesh; Vashisth, Divya; Misra, Amita; Akhtar, Md Qussen; Jalil, Syed Uzma; Shanker, Karuna; Gupta, Madan Mohan; Rout, Prashant Kumar; Gupta, Anil Kumar; Shasany, Ajit Kumar

    2016-01-01

    Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption that the elevated internal CA due to knock down may increase the artemisinin yield. Accumulation of t...

  19. Colorimetric Recognition of Aldehydes and Ketones.

    Science.gov (United States)

    Li, Zheng; Fang, Ming; LaGasse, Maria K; Askim, Jon R; Suslick, Kenneth S

    2017-08-07

    A colorimetric sensor array has been designed for the identification of and discrimination among aldehydes and ketones in vapor phase. Due to rapid chemical reactions between the solid-state sensor elements and gaseous analytes, distinct color difference patterns were produced and digitally imaged for chemometric analysis. The sensor array was developed from classical spot tests using aniline and phenylhydrazine dyes that enable molecular recognition of a wide variety of aliphatic or aromatic aldehydes and ketones, as demonstrated by hierarchical cluster, principal component, and support vector machine analyses. The aldehyde/ketone-specific sensors were further employed for differentiation among and identification of ten liquor samples (whiskies, brandy, vodka) and ethanol controls, showing its potential applications in the beverage industry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis and ring openings of cinnamate-derived N-unfunctionalised aziridines

    Directory of Open Access Journals (Sweden)

    Alan Armstrong

    2012-10-01

    Full Text Available tert-Butyl cinnamates are aziridinated with high trans-selectivity by an N–N ylide generated in situ from N-methylmorpholine and O-diphenylphosphinyl hydroxylamine. The resulting N-unfunctionalised aziridines are shown to be versatile synthetic building blocks that undergo highly selective ring-opening reactions with a wide range of nucleophiles.

  1. Cross-sensitization patterns in guinea pigs between cinnamaldehyde, cinnamyl alcohol and cinnamic acid

    DEFF Research Database (Denmark)

    Weibel, H; Hansen, J; Andersen, Klaus Ejner

    1989-01-01

    Guinea pig maximization tests (GPMT) were performed with cinnamon substances. There was a certain degree of cross-reactivity between cinnamaldehyde, cinnamyl alcohol and cinnamic acid as animals sensitized to cinnamaldehyde reacted to the challenge with the three substances. Animals sensitized to...

  2. Synthesis and Characterization of C-Cinnamal Calix [4] Resorsinarena from Cinnamon Oil Waste West Sumatra

    Science.gov (United States)

    Etika, S. B.; Nasra, E.; Rilaztika, I.

    2018-04-01

    Synthesis and characterization of compound C-Cinnamal Calix [4] Resorsinarena (CCCR) of cinnamon oil waste have been done. This study was aimed to synthesis and characterize C-Cinnamal Calix [4] Resorsinarena from cinnamaldehyde violated cinnamon oil waste. C-Cinnamal Calix [4] Resorsinarena was synthesized by electrophilic substitution reaction of cinnamaldehyde isolated by the acid and resorcinol at 77oC temperature for 2 hour. The data analysis spectrum UV-VIS and FT-IR showed that the compound isolated cinnamaldehyde same as pure cinnamaldehyde compound. The characterization of C-Cinnamal Calix [4] Resorsinarena in the form of reddish-colored solids with melting point 3580C by using UV-VIS showed the presence of double bond, FT-IR showed the absorption at the wave number 3323,94 cm-1 indicating the ‑OH group, the wave number 1610,94 cm-1 showed the vibration C=C, the strong region absorption of 1500,86 cm-1 indicating the presence of an aromatic ring, the at 1442,88 cm-1 wave number indicating the presence of CH3.

  3. 40 CFR 721.5762 - Aromatic aldehyde phenolic resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic aldehyde phenolic resin... Specific Chemical Substances § 721.5762 Aromatic aldehyde phenolic resin (generic). (a) Chemical substance... aromatic aldehyde phenolic resin (PMN P-01-573) is subject to reporting under this section for the...

  4. Syntheses of donor-acceptor-functionalized dihydroazulenes

    DEFF Research Database (Denmark)

    Broman, Søren Lindbæk; Jevric, Martyn; Bond, Andrew

    2014-01-01

    The dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch has been of interest for use in molecular electronics and advanced materials. The switching between the two isomers has previously been found to depend strongly on the presence of donor and acceptor groups. The fine-tuning of opt......The dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch has been of interest for use in molecular electronics and advanced materials. The switching between the two isomers has previously been found to depend strongly on the presence of donor and acceptor groups. The fine...

  5. Photoinduced intramolecular charge transfer (ICT) reaction in trans-methyl p-(dimethylamino) cinnamate: A combined fluorescence measurement and quantum chemical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Amrita [Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009 (India); Kar, Samiran [Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Guchhait, Nikhil [Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009 (India)], E-mail: nikhilg@postmark.net

    2006-01-05

    The photophysical behaviour of trans-methyl p-(dimethylamino) cinnamate (t-MDMAC) donor-acceptor system has been investigated by steady-state absorption and emission spectroscopy and quantum chemical calculations. The molecule t-MDMAC shows an emission from the locally excited state in non-polar solvents. In addition to weak local emission, a strong solvent dependent red shifted fluorescence in polar aprotic solvents is attributed to highly polar intramolecular charge transfer state. However, the formation of hydrogen-bonded clusters with polar protic solvents has been suggested from a linear correlation between the observed red shifted fluorescence band maxima with hydrogen bonding parameters ({alpha}). Calculations by ab initio and density functional theory show that the lone pair electron at nitrogen center is out of plane of the benzene ring in the global minimum ground state structure. In the gas phase, a potential energy surface along the twist coordinate at the donor (-NMe{sub 2}) and acceptor (-CH = CHCOOMe) sites shows stabilization of S{sub 1} state and destabilization S{sub 2} and S{sub 0} states. A similar potential energy calculation along the twist coordinate in acetonitrile solvent using non-equilibrium polarized continuum model also shows more stabilization of S{sub 1} state relative to other states and supports solvent dependent red shifted emission properties. In all types of calculations it is found that the nitrogen lone pair is delocalized over the benzene ring in the global minimum ground state and is localized on the nitrogen centre at the 90 deg. twisted configuration. The S{sub 1} energy state stabilization along the twist coordinate at the donor site and localized nitrogen lone pair at the perpendicular configuration support well the observed dual fluorescence in terms of proposed twisted intramolecular charge transfer (TICT) model.

  6. Sterilisation: characteristics of vasectomy acceptors in Delhi.

    Science.gov (United States)

    Sarkar, N N

    1993-01-01

    The place of vasectomy within the sterilisation programme in Delhi over the period 1983-88 is reviewed and data on vasectomy acceptance and characteristics of acceptors are analysed. Findings suggest a need to improve the strategy for the promotion of vasectomy within the metropolis.

  7. Electron Donor Acceptor Interactions. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Ana L. [Arizona State Univ., Tempe, AZ (United States)

    2002-08-16

    The Gordon Research Conference (GRC) on Electron Donor Acceptor Interactions was held at Salve Regina University, Newport, Rhode Island, 8/11-16/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  8. Luminescent properties of Europium(III) nitrate with 1,10-phenantroline and cinnamic acid in light - Transforming polymer materials

    Science.gov (United States)

    Kalinovskaya, I. V.; Zadorozhnaya, A. N.

    2018-04-01

    Influence of cinnamic acid on the luminescent properties of the europium(III) nitrate with 1,10-phenantroline in a polymer materials was studied. It was shown that combined use of these rare earth complexes leads to intense luminescence in the 400-700 nm region. Samples containing polymer europium nitrate with 1,10-phenantroline and cinnamic acid at a molar ratio of 1:2,0 had the maximum luminescence intensity and photostability.

  9. The formation of space network in structure of polyallyl cinnamates under UV- and γ-irradiation

    International Nuclear Information System (INIS)

    Yagudeev, T.

    2003-01-01

    Influence of UV- and γ-irradiation on polyallyl cinnamates (PAC) structure are investigated. UV-irradiation of polymers samples carried out by lamp PRK-2 at 25-30 deg. C.; 60 Co was used for γ-irradiation: mean value of dose power - 50 μR/s; average energy of γ-quantum E γ =1.25 MeV. It was shown that under various kinds of irradiation polyallyl cinnamates forms space networks and samples of PAC kept itself physico-mechanical properties (light transparent - 90 %), or increase its (microhardness reach 150 %). It can be concluded that such polymers may find application for creation of elements of laser optics

  10. Identification of aldehyde oxidase 1 and aldehyde oxidase homologue 1 as dioxin-inducible genes

    International Nuclear Information System (INIS)

    Rivera, Steven P.; Choi, Hyun Ho; Chapman, Brett; Whitekus, Michael J.; Terao, Mineko; Garattini, Enrico; Hankinson, Oliver

    2005-01-01

    Aldehyde oxidases are a family of highly related molybdo-flavoenzymes acting upon a variety of compounds of industrial and medical importance. We have identified aldehyde oxidase 1 (AOX1) as a 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) inducible gene in the mouse hepatoma cell line Hepa-1. AOX1 mRNA levels were not increased by dioxin in mutant derivatives of the Hepa-1 cell line lacking either functional aryl hydrocarbon receptor (AHR) or aryl hydrocarbon receptor nuclear translocator (ARNT) proteins, thus demonstrating that transcriptional induction of AOX1 in response to dioxin occurs through the AHR pathway. Dioxin induction of AOX1 mRNA was also observed in mouse liver. In addition, levels of AOX1 protein as well as those of aldehyde oxidase homologue 1 (AOH1), a recently identified homolog of AOX1, were elevated in mouse liver in response to dioxin. Employing an aldehyde oxidase specific substrate, AOX1/AOH1 activity was shown to be induced by dioxin in mouse liver. This activity was inhibited by a known inhibitor of aldehyde oxidases, and eliminated by including tungstate in the mouse diet, which is known to lead to inactivation of molybdoflavoenzymes, thus confirming that the enzymatic activity was attributable to AOX1/AOH1. Our observations thus identify two additional xenobiotic metabolizing enzymes induced by dioxin

  11. Non-fullerene electron acceptors for organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik; Ren, Guoqiang

    2017-11-07

    Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.

  12. How polyamine synthesis inhibitors and cinnamic acid affect tropane alkaloid production.

    Science.gov (United States)

    Marconi, Patricia L; Alvarez, María A; Pitta-Alvarez, Sandra I

    2007-01-01

    Hairy roots of Brugmansia candida produce the tropane alkaloids scopolamine and hyoscyamine. In an attempt to divert the carbon flux from competing pathways and thus enhance productivity, the polyamine biosynthesis inhibitors cyclohexylamine (CHA) and methylglyoxal-bis-guanylhydrazone (MGBG) and the phenylalanine-ammonia-lyase inhibitor cinnamic acid were used. CHA decreased the specific productivity of both alkaloids but increased significantly the release of scopolamine (approx 500%) when it was added in the mid-exponential phase. However, when CHA was added for only 48 h during the exponential phase, the specific productivity of both alkaloids increased (approx 200%), favoring scopolamine. Treatment with MGBG was detrimental to growth but promoted release into the medium of both alkaloids. However, when it was added for 48 h during the exponential phase, MGBG increased the specific productivity (approx 200%) and release (250- 1800%) of both alkaloids. Cinnamic acid alone also favored release but not specific productivity. When a combination of CHA or MGBG with cinnamic acid was used, the results obtained were approximately the same as with each polyamine biosynthesis inhibitor alone, although to a lesser extent. Regarding root morphology, CHA inhibited growth of primary roots and ramification. However, it had a positive effect on elongation of lateral roots.

  13. Comparison of acceptor properties for interaction of TCNE and DDQ ...

    African Journals Online (AJOL)

    ... with tetracyanoethylene and 2,3-dichloro-5,6-dicyanobezoquinone as acceptors result in charge-transfer adducts of composition 2:1 of acceptor to donor, [(acceptor)2(donor)]. Formation constants, K, as well as the thermodynamic parameters, ΔH°, ΔS°, and ΔG° were determined by UV-Vis titration method for the adducts.

  14. Cellular fatty acids and aldehydes of oral Eubacterium.

    Science.gov (United States)

    Itoh, U; Sato, M; Tsuchiya, H; Namikawa, I

    1995-02-01

    The cellular fatty acids and aldehydes of oral Eubacterium species were determined by gas chromatography-mass spectrometry. E. brachy and E. lentum contained mainly branched-chain fatty acids, whereas the others contained straight-chain acids. E. brachy, E. lentum, E. yurii ssp. yurii, E. yurii spp. margaretiae, E. limosum, E. plauti and E. aerofaciens also contained aldehydes with even carbon numbers. In addition to species-specific components, the compositional ratios of fatty acids and aldehydes characterized each individual species. The 10 species tested were divided into 5 groups by the principal component analysis. Cellular fatty acids and aldehydes would be chemical markers for interspecies differentiation of oral Eubacterium.

  15. Conjugated donor-acceptor-acceptor (D-A-A) molecule for organic nonvolatile resistor memory.

    Science.gov (United States)

    Dong, Lei; Li, Guangwu; Yu, An-Dih; Bo, Zhishan; Liu, Cheng-Liang; Chen, Wen-Chang

    2014-12-01

    A new donor-acceptor-acceptor (D-A-A) type of conjugated molecule, N-(4-(N',N'-diphenyl)phenylamine)-4-(4'-(2,2-dicyanovinyl)phenyl) naphthalene-1,8-dicarboxylic monoimide (TPA-NI-DCN), consisting of triphenylamine (TPA) donors and naphthalimide (NI)/dicyanovinylene (DCN) acceptors was synthesized and characterized. In conjunction with previously reported D-A based materials, the additional DCN moiety attached as end group in the D-A-A configuration can result in a stable charge transfer (CT) and charge-separated state to maintain the ON state current. The vacuum-deposited TPA-NI-DCN device fabricated as an active memory layer was demonstrated to exhibit write-once-read-many (WORM) switching characteristics of organic nonvolatile memory due to the strong polarity of the TPA-NI-DCN moiety. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Kojyl cinnamate ester derivatives promote adiponectin production during adipogenesis in human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Rho, Ho Sik; Hong, Soo Hyun; Park, Jongho; Jung, Hyo-Il; Park, Young-Ho; Lee, John Hwan; Shin, Song Seok; Noh, Minsoo

    2014-05-01

    The subcutaneous fat tissue mass gradually decreases with age, and its regulation is a strategy to develop anti-aging compounds to ameliorate the photo-aging of human skin. The adipogenesis of human adipose tissue-mesenchymal stem cells (hAT-MSCs) can be used as a model to discover novel anti-aging compounds. Cinnamomum cassia methanol extracts were identified as adipogenesis-promoting agents by natural product library screening. Cinnamates, the major chemical components of Cinnamomum cassia extracts, promoted adipogenesis in hAT-MSCs. We synthesized kojyl cinnamate ester derivatives to improve the pharmacological activity of cinnamates. Structure-activity studies of kojyl cinnamate derivatives showed that both the α,β-unsaturated carbonyl ester group and the kojic acid moiety play core roles in promoting adiponectin production during adipogenesis in hAT-MSCs. We conclude that kojyl cinnamate ester derivatives provide novel pharmacophores that can regulate adipogenesis in hAT-MSCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Essential Oil Composition and Antimicrobial Activity of Methyl cinnamate-Linalool Chemovariant of Ocimum basilicum L. from India

    Directory of Open Access Journals (Sweden)

    Rajendra Chandra Padalia

    2017-03-01

    Full Text Available The essential oils obtained from hydrodistillation of Ocimum basilicum L. harvested at four different growth stages during spring-summer and rain-autumn cropping seasons , were characterized using GC and GC-MS. The e ssential oil yield was found to vary from 0.28–0.32% and 0.40–0.52% during spring-summer and rain-autumn cropping season, respectively with its maximal at full bloom stage. Altogether , forty constituents, comprising 94.9–98.3% were identified represented by ( E -methyl cinnamate (36.6 – 66.4%, linalool (11.2 – 43.8%, and (Z -methyl cinnamate (5.4-7.6% as main constituents. Results showed that growth stages strongly influenced the chemical composition of the essential oil in two cropping seasons, particularly concerning to the content of ( E -methyl cinnamate and linalool. Seed setting stage was optimized for harvesting ( E -methyl cinnamate rich oil (66.4% in rain-winter cropping season. The antimicrobial potential of the essential oil was tested againist eight pathogenic bacteria and three fungal strains. Antimicrobial assay showed that the essential oil possessed good antibacterial activity against Streptococcus mutans, Staphylococcus epidermidis, Escherichia coli , and antifungal activity against Candida kefyr and Candida albicans. Ocimum basilicum , essential oil, ( E - methyl cinnamate, linalool, antibacterial activity, antifungal activity

  18. Peptide aldehyde inhibitors of bacterial peptide deformylases.

    Science.gov (United States)

    Durand, D J; Gordon Green, B; O'Connell, J F; Grant, S K

    1999-07-15

    Bacterial peptide deformylases (PDF, EC 3.5.1.27) are metalloenzymes that cleave the N-formyl groups from N-blocked methionine polypeptides. Peptide aldehydes containing a methional or norleucinal inhibited recombinant peptide deformylase from gram-negative Escherichia coli and gram-positive Bacillus subtilis. The most potent inhibitor was calpeptin, N-CBZ-Leu-norleucinal, which was a competitive inhibitor of the zinc-containing metalloenzymes, E. coli and B. subtilis PDF with Ki values of 26.0 and 55.6 microM, respectively. Cobalt-substituted E. coli and B. subtilis deformylases were also inhibited by these aldehydes with Ki values for calpeptin of 9.5 and 12.4 microM, respectively. Distinct spectral changes were observed upon binding of calpeptin to the Co(II)-deformylases, consistent with the noncovalent binding of the inhibitor rather than the formation of a covalent complex. In contrast, the chelator 1,10-phenanthroline caused the time-dependent inhibition of B. subtilis Co(II)-PDF activity with the loss of the active site metal. The fact that calpeptin was nearly equipotent against deformylases from both gram-negative and gram-positive bacterial sources lends further support to the idea that a single deformylase inhibitor might have broad-spectrum antibacterial activity. Copyright 1999 Academic Press.

  19. Benchmark studies of UV-vis spectra simulation for cinnamates with UV filter profile.

    Science.gov (United States)

    Garcia, Ricardo D'A; Maltarollo, Vinícius G; Honório, Káthia M; Trossini, Gustavo H G

    2015-06-01

    Skin cancer is a serious public health problem worldwide, being incident over all five continents and affecting an increasing number of people. As sunscreens are considered an important preventive measure, studies to develop better and safer sunscreens are crucial. Cinnamates are UVB filters with good efficiency and cost-benefit, therefore, their study could lead to the development of new UV filters. A benchmark to define the most suitable density functional theory (DFT) functional to predict UV-vis spectra for ethylhexyl methoxycinnamate was performed. Time-dependent DFT (TD-DFT) calculations were then carried out [B3LYP/6-311 + G(d,p) and B3P86/6-311 + G(d,p) in methanol environment] for seven cinammete derivatives implemented in the Gaussian 03 package. All DFT/TD-DFT simulations were performed after a conformational search with the Monte-Carlo method and MMFF94 force field. B3LYP and B3P86 functionals were better at reproducing closely the experimental spectra of ethylhexyl methoxycinnamate. Calculations of seven cinnamates showed a λmax of around 310 nm, corroborating literature reports. It was observed that the energy for the main electronic transition was around 3.95 eV and could be explained by electron delocalization on the aromatic ring and ester group, which is important to UV absorption. The methodology employed proved to be suitable for determination of the UV spectra of cinnamates and could be used as a tool for the development of novel UV filters.

  20. Production of cinnamic and p-hydroxycinnamic acids in engineered microbes

    Directory of Open Access Journals (Sweden)

    Alejandra eVargas-Tah

    2015-08-01

    Full Text Available The aromatic compounds cinnamic and p-hydroxycinnamic acids are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and p-hydroxycinnamic acids by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of L-phenylalanine and L-tyrosine to cinnamic acid and p-hydroxycinnamic acid, respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the L-phenylalanine or L-tyrosine biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement.

  1. The oxidation of the aldehyde groups in dialdehyde starch

    NARCIS (Netherlands)

    Haaksman, I.K.; Besemer, A.C.; Jetten, J.M.; Timmermans, J.W.; Slaghek, T.M.

    2006-01-01

    This paper describes the difference in relative reactivity of the aldehyde groups present in dialdehyde starch towards different oxidising agents. The oxidation of dialdehyde starch with peracetic acid and sodium bromide leads to only partial oxidation to give mono-aldehyde-carboxy starch, while

  2. 27 CFR 24.183 - Use of distillates containing aldehydes.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Use of distillates... distillates containing aldehydes. Distillates containing aldehydes may be received on wine premises for use in the fermentation of wine and then returned to the distilled spirits plant from which distillates were...

  3. Reduction of Aldehydes and Ketones by Sodium Dithionite

    NARCIS (Netherlands)

    Vries, Johannes G. de; Kellogg, Richard M.

    1980-01-01

    Conditions have been developed for the effective reduction of aldehydes and ketones by sodium dithionite, Na2S2O4. Complete reduction of simple aldehydes and ketones can be achieved with excess Na2S2O4 in H2O/dioxane mixtures at reflux temperature. Some aliphatic ketones, for example, pentanone and

  4. Highly solvatochromic emission of electron donor-acceptor compounds containing propanedioato boron electron acceptors

    NARCIS (Netherlands)

    Brouwer, A.M.; Bakker, N.A.C.; Wiering, P.G.; Verhoeven, J.W.

    1991-01-01

    Light-induced electron transfer occurs in bifunctional compounds consisting of 1,3-diphenylpropanedioato boron oxalate or fluoride electron acceptors and simple aromatic electron-donor groups, linked by a methylene bridge; fluorescence from the highly polar charge-transfer excited state is

  5. A study of acceptors and non-acceptors of family planning methods among three tribal communities.

    Science.gov (United States)

    Mutharayappa, R

    1995-03-01

    Primary data were collected from 399 currently married women of the Marati, Malekudiya, and Koraga tribes in the Dakshina Kannada district of Karnataka State in this study of the implementation of family planning programs in tribal areas. The Marati, Malekudiya, and Koraga tribes are three different endogamous tribal populations living in similar ecological conditions. Higher levels of literacy and a high rate of acceptance of family planning methods, however, have been observed among these tribes compared to the rest of the tribal population in the state. 46.4% of currently married women aged 15-49 years in the tribes were acceptors of family planning methods, having a mean 3.7 children. The majority of acceptors opted for tubectomy and vasectomy. The adoption of spacing methods is less common among tribal people. Most acceptors received their operations through government health facilities. They were motivated mainly by female health workers and received both cash and other incentives to accept family planning. The main reason for non-acceptance of family planning among non-acceptors was the desire to conceive and bear more children. The data indicate that most of the tribal households are nuclear families with household size more or less similar to that of the general population. They have a higher literacy rate than the rest of the tribal population in the state, with literacy levels between males and females and between the three tribes being quite different; the school enrollment ratio is relatively higher for both boys and girls.

  6. Phytotoxic Effects of Cinnamic Acid on Cabbage (Brassica oleracea var. capitata

    Directory of Open Access Journals (Sweden)

    Singh, N. B.

    2013-04-01

    Full Text Available The present study deals with the effects of exogenous application of cinnamic acid (CA on growth and metabolism in growing seedlings of Brassica oleracea var. capitata (cabbage in hydroponic culture. CA was added at 0.5, 1.0 and 1.5 mM concentrations. CA has shown inhibitory effects on shoot and root length, fresh and dry weight of seedlings. CA significantly decreased the photosynthetic pigments, nitrate reductase activity and protein content. Graded concentrations of CA increased lipid peroxidation and sugar content. The increasing concentrations of CA significantly increased the antioxidative enzyme activities viz. superoxide dismutase, catalase, peroxidase against the oxidative stress caused by CA.

  7. DNA-damaging activity of a cinnamate derivative and further compounds from Cinnamomum australe (Lauraceae)

    International Nuclear Information System (INIS)

    Carbonezi, Carlos Alberto; Lopes, Marcia Nasser; Silva, Dulce Helena Siqueira; Araujo, Angela Regina; Bolzani, Vanderlan da Silva; Young, Maria Claudia Marx; Silva, Marcelo Rogerio da

    2004-01-01

    The bioactive compound trans-3'-methylsulphonylallyl trans-cinnamate (1) along with the inactive iryelliptin (2) and (7R,8S,1'S)-Δ 8' -3',5'-dimethoxy-1',4'-dihydro-4'-oxo-7.0.2',8.1'-neolignan (3) were isolated from the leaves of Cinnamomum australe. The structures of these compounds were assigned by analysis of 1D and 2D NMR data and comparison with data registered in the literature for these compounds. The DNA-damaging activity of 1 is being described for the first time. (author)

  8. Z-sinapinic acid: the change of the stereochemistry of cinnamic acids as rational synthesis of a new matrix for carbohydrate MALDI-MS analysis.

    Science.gov (United States)

    Salum, María L; Itovich, Lucia M; Erra-Balsells, Rosa

    2013-11-01

    Successful application of matrix-assisted laser desorption/ionization (MALDI) MS started with the introduction of efficient matrices such as cinnamic acid derivatives (i.e. 3,5-dimethoxy-4-hydroxycinnamic acid, SA; α-cyano-4-hydroxycinnamic acid). Since the empirical founding of these matrices, other commercial available cinnamic acids with different nature and location of substituents at benzene ring were attempted. Rational design and synthesis of new cinnamic acids have been recently described too. Because the presence of a rigid double bond in its molecule structure, cinnamic acids can exist as two different geometric isomers, the E-form and Z-form. Commercial available cinnamic acids currently used as matrices are the geometric isomers trans or E (E-cinnamic and trans-cinnamic acids). As a new rational design of MALDI matrices, Z-cinnamic acids were synthesized, and their properties as matrices were studied. Their performance was compared with that of the corresponding E-isomer and classical crystalline matrices (3,5-dihydroxybenzoic acid; norharmane) in the analysis of neutral/sulfated carbohydrates. Herein, we demonstrate the outstanding performance for Z-SA. Sulfated oligosaccharides were detected in negative ion mode, and the dissociation of sulfate groups was almost suppressed. Additionally, to better understand the quite different performance of each geometric isomer as matrix, the physical and morphological properties as well as the photochemical stability in solid state were studied. The influence of the E/Z photoisomerization of the matrix during MALDI was evaluated. Finally, molecular modeling (density functional theory study) of the optimized geometry and stereochemistry of E-cinnamic and Z-cinnamic acids revealed some factors governing the analyte-matrix interaction. Copyright © 2013 John Wiley & Sons, Ltd.

  9. On the effect of nuclear bridge modes on donor-acceptor electronic coupling in donor-bridge-acceptor molecules

    International Nuclear Information System (INIS)

    Davis, Daly; Toroker, Maytal Caspary; Speiser, Shammai; Peskin, Uri

    2009-01-01

    We report a theoretical study of intra-molecular electronic coupling in a symmetric DBA (donor-bridge-acceptor) complex, in which a donor electronic site is coupled to an acceptor site by way of intervening orbitals of a molecular bridge unit. In the off-resonant (deep tunneling) regime of electronic transport, the lowest unoccupied molecular orbitals (MO's) of the DBA system are split into distinguishable donor/acceptor and bridge orbitals. The effect of geometrical changes at the bridge on the donor/acceptor electronic energy manifold is studied for local stretching and bending modes. It is demonstrated that the energy splitting in the manifold of donor/acceptor unoccupied MOs changes in response to such changes, as assumed in simple McConnell-type models. Limitations of the simple models are revealed where the electronic charging of the bridge orbitals correlates with increasing donor/acceptor orbital energy splitting only for stretching but not for bending bridge modes.

  10. Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits.

    Science.gov (United States)

    Song, Yeong Hun; Kim, Dae Wook; Curtis-Long, Marcus John; Yuk, Heung Joo; Wang, Yan; Zhuang, Ningning; Lee, Kon Ho; Jeon, Kwon Seok; Park, Ki Hun

    2014-01-01

    Tribulus terrestris fruits are well known for their usage in pharmaceutical preparations and food supplements. The methanol extract of T. terrestris fruits showed potent inhibition against the papain-like protease (PLpro), an essential proteolylic enzyme for protection to pathogenic virus and bacteria. Subsequent bioactivity-guided fractionation of this extract led to six cinnamic amides (1-6) and ferulic acid (7). Compound 6 emerged as new compound possessing the very rare carbinolamide motif. These compounds (1-7) were evaluated for severe acute respiratory syndrome coronavirus (SARS-CoV) PLpro inhibitory activity to identify their potencies and kinetic behavior. Compounds (1-6) displayed significant inhibitory activity with IC50 values in the range 15.8-70.1 µM. The new cinnamic amide 6 was found to be most potent inhibitor with an IC50 of 15.8 µM. In kinetic studies, all inhibitors exhibited mixed type inhibition. Furthermore, the most active PLpro inhibitors (1-6) were proven to be present in the native fruits in high quantities by HPLC chromatogram and liquid chromatography with diode array detection and electrospray ionization mass spectrometry (LC-DAD-ESI/MS).

  11. Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition.

    Science.gov (United States)

    Song, Yeong Hun; Kim, Dae Wook; Curtis-Long, Marcus J; Park, Chanin; Son, Minky; Kim, Jeong Yoon; Yuk, Heung Joo; Lee, Keun Woo; Park, Ki Hun

    2016-05-23

    The α-glucosidase inhibitory potential of Tribulus terrestris extracts has been reported but as yet the active ingredients are unknown. This study attempted to isolate the responsible metabolites and elucidate their inhibition mechanism of α-glucosidase. By fractionating T. terristris extracts, three cinnamic acid amide derivatives (1-3) were ascertained to be active components against α-glucosidase. The lead structure, N-trans-coumaroyltyramine 1, showed significant inhibition of α-glucosidase (IC50 = 0.42 μM). Moreover, all active compounds displayed uncompetitive inhibition mechanisms that have rarely been reported for α-glucosidase inhibitors. This kinetic behavior was fully demonstrated by showing a decrease of both Km and Vmax, and Kik/Kiv ratio ranging between 1.029 and 1.053. We progressed to study how chemical modifications to the lead structure 1 may impact inhibition. An α, β-unsaturation carbonyl group and hydroxyl group in A-ring of cinnamic acid amide emerged to be critical functionalities for α-glucosidase inhibition. The molecular modeling study revealed that the inhibitory activities are tightly related to π-π interaction as well as hydrogen bond interaction between enzyme and inhibitors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Physics of positronium acceptor complex formation reactions

    International Nuclear Information System (INIS)

    Gangopadhyay, Debarshi; Ganguly, Bichitra Nandi; Mukherjee, Tapas; Dutta-Roy, Binayak

    2002-01-01

    Positronium (P s ) reaction rates (κ) with weak Acceptors (Ac) leading to the formation of Ps-Ac complexes show several interesting features: non-monotonic temperature dependence of κ(departing from the usual Arrhenius behaviour), considerable variability of κ with respect to different solvents, and anomalies in response to external pressure at ambient temperature. The object of this work is to explain all these phenomena using a remarkably simple bubble model (the widely used model for the pick-off component of ortho-positronium decay in liquids), which has been revisited several times in the context and as a result smooth diffuse boundary of the bubble was suggested that yields reasonable agreement of the experimental data. The contractile force on the bubble relies much on the surface tension of the liquid, through our calculation the notion of critical surface tension emerges and enables us to explain the experimental observations satisfactorily. (author)

  13. Quantum computing with acceptor spins in silicon.

    Science.gov (United States)

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-17

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  14. Modeling charge transfer at organic donor-acceptor semiconductor interfaces

    NARCIS (Netherlands)

    Cakir, Deniz; Bokdam, Menno; de Jong, Machiel Pieter; Fahlman, M.; Brocks, G.

    2012-01-01

    We develop an integer charge transfer model for the potential steps observed at interfaces between donor and acceptor molecular semiconductors. The potential step can be expressed as the difference between the Fermi energy pinning levels of electrons on the acceptor material and holes on the donor

  15. Impact of Thermal Annealing on Organic Photovoltaic Cells Using Regioisomeric Donor-Acceptor-Acceptor Molecules.

    Science.gov (United States)

    Zhang, Tao; Han, Han; Zou, Yunlong; Lee, Ying-Chi; Oshima, Hiroya; Wong, Ken-Tsung; Holmes, Russell J

    2017-08-02

    We report a promising set of donor-acceptor-acceptor (D-A-A) electron-donor materials based on coplanar thieno[3,2-b]/[2,3-b]indole, benzo[c][1,2,5]thiadiazole, and dicyanovinylene, which are found to show broadband absorption with high extinction coefficients. The role of the regioisomeric electron-donating thienoindole moiety on the physical and structural properties is examined. Bulk heterojunction (BHJ) organic photovoltaic cells (OPVs) based on the thieno[2,3-b]indole-based electron donor NTU-2, using C 70 as an electron acceptor, show a champion power conversion efficiency of 5.2% under AM 1.5G solar simulated illumination. This efficiency is limited by a low fill factor (FF), as has previously been the case in D-A-A systems. In order to identify the origin of the limited FF, further insight into donor layer charge-transport behavior is realized by examining planar heterojunction OPVs, with emphasis on the evolution of film morphology with thermal annealing. Compared to as-deposited OPVs that exhibit insufficient donor crystallinity, crystalline OPVs based on annealed thin films show an increase in the short-circuit current density, FF, and power conversion efficiency. These results suggest that that the crystallization of D-A-A molecules might not be realized spontaneously at room temperature and that further processing is needed to realize efficient charge transport in these materials.

  16. Alkyl Radicals as Hydrogen Bond Acceptors: Computational Evidence

    DEFF Research Database (Denmark)

    Hammerum, Steen

    2009-01-01

    Spectroscopic, energetic and structural information obtained by DFT and G3-type computational studies demonstrates that charged proton donors can form moderately strong hydrogen bonds to simple alkyl radicals. The presence of these bonds stabilizes the adducts and modifies their structure......, and gives rise to pronounced shifts of IR stretching frequencies and to increased absorption intensities. The hydrogen bond acceptor properties of alkyl radicals equal those of many conventional acceptors, e.g., the bond length changes and IR red-shifts suggest that tert-butyl radicals are slightly better...... acceptors than formaldehyde molecules, while propyl radicals are as good as H2O. The hydrogen bond strength appears to depend on the proton affinity of the proton donor and on the ionization energy of the acceptor alkyl radical, not on the donor-acceptor proton affinity difference, reflecting...

  17. Creatininium cinnamate

    Directory of Open Access Journals (Sweden)

    A. Jahubar Ali

    2011-06-01

    Full Text Available The crystal structure of the title compound (systematic name: 2-amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-3-ium 3-phenylprop-2-enoate, C4H8N3O+·C9H7O2−, is stabilized by N—H...O hydrogen bonding. Cations are linked to anions to form ion pairs with an R22(8 ring motif. These ion pairs are connected through a C22(6 chain motif extending along the c axis of the unit cell. This crystal packing is characterized by hydrophobic layers at x ∼ 1/2 packed between hydrophilic layers at x ∼ 0.

  18. A new method for the chemoselective reduction of aldehydes and ...

    Indian Academy of Sciences (India)

    Department of Chemistry, Akdeniz University, 07058, Antalya, Turkey e-mail: ... Kinetics of reduction of aldehydes and ketones to corresponding alcohols were also examined and .... hol and unreducted ketone remain in organic phase. The.

  19. The Reduction of Nitriles to Aldehydes: Applications of Raney Nickel ...

    African Journals Online (AJOL)

    NJD

    The selective reduction of a nitrile to an aldehyde, especially when the substrate ..... prelude to reductive amination chemistry was thwarted by a rapid aldol ... and allowed the direct incorporation of the α-methylbenzylamine chiral auxiliary.

  20. Silver-catalyzed synthesis of amides from amines and aldehydes

    Science.gov (United States)

    Madix, Robert J; Zhou, Ling; Xu, Bingjun; Friend, Cynthia M; Freyschlag, Cassandra G

    2014-11-18

    The invention provides a method for producing amides via the reaction of aldehydes and amines with oxygen adsorbed on a metallic silver or silver alloy catalyst. An exemplary reaction is shown in Scheme 1: (I), (II), (III). ##STR00001##

  1. Barbiturate End-Capped Non-Fullerene Acceptors for Organic Solar Cells: Tuning Acceptor Energetics to Suppress Geminate Recombination Losses

    KAUST Repository

    Tan, Ching-Hong

    2018-01-10

    We report the synthesis of two barbiturate end-capped non-fullerene acceptors and demonstrate their efficient function in high voltage output organic solar cells. The acceptor with the lower LUMO level is shown to exhibit suppressed geminate recombination losses, resulting in enhanced photocurrent generation and higher overall device efficiency.

  2. Barbiturate End-Capped Non-Fullerene Acceptors for Organic Solar Cells: Tuning Acceptor Energetics to Suppress Geminate Recombination Losses

    KAUST Repository

    Tan, Ching-Hong; Gorman, Jeffrey; Wadsworth, Andrew; Holliday, Sarah; Subramaniyan, Selvam; Jenekhe, Samson A.; Baran, Derya; McCulloch, Iain; Durrant, James

    2018-01-01

    We report the synthesis of two barbiturate end-capped non-fullerene acceptors and demonstrate their efficient function in high voltage output organic solar cells. The acceptor with the lower LUMO level is shown to exhibit suppressed geminate recombination losses, resulting in enhanced photocurrent generation and higher overall device efficiency.

  3. Human liver aldehyde dehydrogenase: coenzyme binding

    International Nuclear Information System (INIS)

    Kosley, L.L.; Pietruszko, R.

    1987-01-01

    The binding of [U- 14 C] NAD to mitochondrial (E2) and cytoplasmin(E1) aldehyde dehydrogenase was measured by gel filtration and sedimentation techniques. The binding data for NAD and (E1) yielded linear Scatchard plots giving a dissociation constant of 25 (+/- 8) uM and the stoichiometry of 2 mol of NAD bound per mol of E1. The binding data for NAD and (E2) gave nonlinear Scatchard plots. The binding of NADH to E2 was measured via fluorescence enhancement; this could not be done with E1 because there was no signal. The dissociation constant for E2 by this technique was 0.7 (+/- 0.4) uM and stoichiometry of 1.0 was obtained. The binding of [U- 14 C] NADH to (E1) and (E2) was also measured by the sedimentation technique. The binding data for (E1) and NADH gave linear Scatchard plots giving a dissociation constant of 13 (+/- 6) uM and the stoichiometry of 2.0. The binding data for NADH to (E2) gave nonlinear Scatchard plots. With (E1), the dissociation constants for both NAD and NADH are similar to those determined kinetically, but the stoichiometry is only half of that found by stopped flow technique. With (E2) the dissociation constant by fluorometric procedure was 2 orders of magnitude less than that from catalytic reaction

  4. Isolation of Cinnamic Acid Derivatives from the Bulbs of Allium tripedale

    Directory of Open Access Journals (Sweden)

    Zahra Chehri

    2018-01-01

    Full Text Available Background: Allium genus with 750 species is the most diverse genus in the Amaryllidaceae family. Historically, Allium species have been used as medicinal plants, especially for prevention and treatment of cardiovascular diseases and considered as valuable sources of phytonutrients. Phytochemical investigation of Allium tripedale, locally called “Anashq,” which is an edible plant of the “Zagros” region (west of Iran was conducted in the present study. Materials and Methods: Air-dried bulbs of the plant were extracted in a four-step extraction method with increasing polarity using hexane, chloroform, chloroform–methanol (9:1, and methanol. Chloroform-methanol (9:1 extract was fractionated by medium-pressure liquid chromatography on a RP-18 column using a linear gradient solvent system of H2O to MeOH. Phenolic-rich fractions were subjected to the final isolation and purification of the constituents by reversed-phase high-performance liquid chromatography method. Structure elucidation of the compounds was performed through comprehensive methods including 1D-and 2D-NMR and mass spectroscopy. Results: Two cinnamic acid derivatives were isolated from the bulbs of A. tripedale; using spectroscopic methods, their chemical structures were determined as 6,7-dimethoxy N-trans-caffeoyltyramine (1 and N-trans-feruloyltyramine (2. Conclusion: Cinnamic acid derivatives are pharmacologically active phenolic compounds, which have been isolated from different Allium species. Isolation of these compounds from A. tripedale is reported for the first time in this study and could be used as a chemical basis for explanation of the plant biological and pharmacological activities.

  5. Characteristics of ovulation method acceptors: a cross-cultural assessment.

    Science.gov (United States)

    Klaus, H; Labbok, M; Barker, D

    1988-01-01

    Five programs of instruction in the ovulation method (OM) in diverse geographic and cultural settings are described, and characteristics of approximately 200 consecutive OM acceptors in each program are examined. Major findings include: the religious background and family size of acceptors are variable, as is the level of previous contraceptive use. Acceptors are drawn from a wide range of socioeconomic and religious backgrounds; however, family planning intention was similarly distributed in all five countries. In sum, the ovulation method is accepted by persons from a variety of backgrounds within and between cultural setting.

  6. Five Fatty Aldehyde Dehydrogenase Enzymes from Marinobacter and Acinetobacter spp. and Structural Insights into the Aldehyde Binding Pocket

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, Jonathan H.; Mulliner, Kalene M.; Shi, Ke; Plunkett, Mary H.; Nixon, Peter; Serratore, Nicholas A.; Douglas, Christopher J.; Aihara, Hideki; Barney, Brett M.; Parales, Rebecca E.

    2017-04-07

    ABSTRACT

    Enzymes involved in lipid biosynthesis and metabolism play an important role in energy conversion and storage and in the function of structural components such as cell membranes. The fatty aldehyde dehydrogenase (FAldDH) plays a central function in the metabolism of lipid intermediates, oxidizing fatty aldehydes to the corresponding fatty acid and competing with pathways that would further reduce the fatty aldehydes to fatty alcohols or require the fatty aldehydes to produce alkanes. In this report, the genes for four putative FAldDH enzymes fromMarinobacter aquaeoleiVT8 and an additional enzyme fromAcinetobacter baylyiwere heterologously expressed inEscherichia coliand shown to display FAldDH activity. Five enzymes (Maqu_0438, Maqu_3316, Maqu_3410, Maqu_3572, and the enzyme reported under RefSeq accession no.WP_004927398) were found to act on aldehydes ranging from acetaldehyde to hexadecanal and also acted on the unsaturated long-chain palmitoleyl and oleyl aldehydes. A comparison of the specificities of these enzymes with various aldehydes is presented. Crystallization trials yielded diffraction-quality crystals of one particular FAldDH (Maqu_3316) fromM. aquaeoleiVT8. Crystals were independently treated with both the NAD+cofactor and the aldehyde substrate decanal, revealing specific details of the likely substrate binding pocket for this class of enzymes. A likely model for how catalysis by the enzyme is accomplished is also provided.

    IMPORTANCEThis study provides a comparison of multiple enzymes with the ability

  7. profile of intrauterine contraceptive device acceptors at the university

    African Journals Online (AJOL)

    ANNALS

    Conclusion: The acceptors of intrauterine contraceptive devices in our center were ... Conclusion: Les accepteurs de la contraception de substances médicamentenses dans notre centre .... sterilization due to cultural reasons is very low,13 the.

  8. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers

    OpenAIRE

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N. V.; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-01-01

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affiniti...

  9. A copper-relates shallow acceptor in quenched germanium

    International Nuclear Information System (INIS)

    Kamiura, Yoichi; Hashimoto, Fumio; Sugiyama, Hazime; Yoneyama, Shin-ichiro

    1982-01-01

    The temperature variation of hole density was measured in the range 5-200 K after successive annealings at 320sup(o)C. It was found that a shallow acceptor at Esub(v) + 9 meV disappears on annealing, being replaced by a just equal additional density of substitutional copper. This provides experimental proof that the shallow acceptor is a defect complex containing at least one copper atom. (author)

  10. Fluorescent and Colorimetric Molecular Recognition Probe for Hydrogen Bond Acceptors

    OpenAIRE

    Pike, Sarah Jane; Hunter, Christopher Alexander

    2018-01-01

    The association constants for formation of 1 : 1 complexes between a H-bond donor, 1-naphthol, and a diverse range of charged and neutral H-bond acceptors have been measured using UV/vis absorption and fluorescence emission titrations. The performance of 1-naphthol as a dual colorimetric and fluorescent molecular recognition probe for determining the H-bond acceptor (HBA) parameters of charged and neutral solutes has been investigated in three solvents. The data were employed to establish sel...

  11. Toxic Effects of Ethyl Cinnamate on the Photosynthesis and Physiological Characteristics of Chlorella vulgaris Based on Chlorophyll Fluorescence and Flow Cytometry Analysis

    Science.gov (United States)

    Jiao, Yang; Ouyang, Hui-Ling; Jiang, Yu-Jiao; Kong, Xiang-Zhen; He, Wei; Liu, Wen-Xiu; Yang, Bin; Xu, Fu-Liu

    2015-01-01

    The toxic effects of ethyl cinnamate on the photosynthetic and physiological characteristics of Chlorella vulgaris were studied based on chlorophyll fluorescence and flow cytometry analysis. Parameters, including biomass, F v/F m (maximal photochemical efficiency of PSII), ФPSII (actual photochemical efficiency of PSII in the light), FDA, and PI staining fluorescence, were measured. The results showed the following: (1) The inhibition on biomass increased as the exposure concentration increased. 1 mg/L ethyl cinnamate was sufficient to reduce the total biomass of C. vulgaris. The 48-h and 72-h EC50 values were 2.07 mg/L (1.94–2.20) and 1.89 mg/L (1.82–1.97). (2) After 24 h of exposure to 2–4 mg/L ethyl cinnamate, the photosynthesis of C. vulgaris almost ceased, manifesting in ФPSII being close to zero. After 72 h of exposure to 4 mg/L ethyl cinnamate, the F v/F m of C. vulgaris dropped to zero. (3) Ethyl cinnamate also affected the cellular physiology of C. vulgaris, but these effects resulted in the inhibition of cell yield rather than cell death. Exposure to ethyl cinnamate resulted in decreased esterase activities in C. vulgaris, increased average cell size, and altered intensities of chlorophyll a fluorescence. Overall, esterase activity was the most sensitive variable. PMID:26101784

  12. Contribution of ozone to airborne aldehyde formation in Paris homes.

    Science.gov (United States)

    Rancière, Fanny; Dassonville, Claire; Roda, Célina; Laurent, Anne-Marie; Le Moullec, Yvon; Momas, Isabelle

    2011-09-15

    Indoor aldehydes may result from ozone-initiated chemistry, mainly documented by experimental studies. As part of an environmental investigation included in the PARIS birth cohort, the aim of this study was to examine ozone contribution to airborne aldehyde formation in Paris homes. Formaldehyde, acetaldehyde and hexaldehyde levels, as well as styrene, nitrogen dioxide and nicotine concentrations, comfort parameters and carbon dioxide levels, were measured twice during the first year of life of the babies. Ambient ozone concentrations were collected from the closest background station of the regional air monitoring network. Traffic-related nitrogen oxide concentrations in front of the dwellings were estimated by an air pollution dispersion model. Home characteristics and families' way of life were described by questionnaires. Stepwise multiple linear regression models were used to link aldehyde levels with ambient ozone concentrations and a few aldehyde precursors involved in oxidation reactions, adjusting for other indoor aldehyde sources, comfort parameters and traffic-related nitrogen oxides. A 4 and 11% increase in formaldehyde and hexaldehyde levels was pointed out when 8-hour ozone concentrations increased by 20 μg/m(3). The influence of potential precursors such as indoor styrene level and frequent use of air fresheners, containing unsaturated volatile organic compounds as terpenes, was also found. Thus, our results suggest that ambient ozone can significantly impact indoor air quality, especially with regard to formaldehyde and hexaldehyde levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Development of Polymer Acceptors for Organic Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Yujeong Kim

    2014-02-01

    Full Text Available This review provides a current status report of the various n-type polymer acceptors for use as active materials in organic photovoltaic cells (OPVs. The polymer acceptors are divided into four categories. The first section of this review focuses on rylene diimide-based polymers, including perylene diimide, naphthalene diimide, and dithienocoronene diimide-based polymers. The high electron mobility and good stability of rylene diimides make them suitable for use as polymer acceptors in OPVs. The second section deals with fluorene and benzothiadiazole-based polymers such as poly(9,9’-dioctylfluorene-co-benzothiadiazole, and the ensuing section focuses on the cyano-substituted polymer acceptors. Cyano-poly(phenylenevinylene and poly(3-cyano-4-hexylthiophene have been used as acceptors in OPVs and exhibit high electron affinity arising from the electron-withdrawing cyano groups in the vinylene group of poly(phenylenevinylene or the thiophene ring of polythiophene. Lastly, a number of other electron-deficient groups such as thiazole, diketopyrrolopyrrole, and oxadiazole have also been introduced onto polymer backbones to induce n-type characteristics in the polymer. Since the first report on all-polymer solar cells in 1995, the best power conversion efficiency obtained with these devices to date has been 3.45%. The overall trend in the development of n-type polymer acceptors is presented in this review.

  14. Fluorescent and colorimetric molecular recognition probe for hydrogen bond acceptors.

    Science.gov (United States)

    Pike, Sarah J; Hunter, Christopher A

    2017-11-22

    The association constants for formation of 1 : 1 complexes between a H-bond donor, 1-naphthol, and a diverse range of charged and neutral H-bond acceptors have been measured using UV/vis absorption and fluorescence emission titrations. The performance of 1-naphthol as a dual colorimetric and fluorescent molecular recognition probe for determining the H-bond acceptor (HBA) parameters of charged and neutral solutes has been investigated in three solvents. The data were employed to establish self-consistent H-bond acceptor parameters (β) for benzoate, azide, chloride, thiocyanate anions, a series of phosphine oxides, phosphate ester, sulfoxide and a tertiary amide. The results demonstrate both the transferability of H-bond parameters between different solvents and the utility of the naphthol-based dual molecular recognition probe to exploit orthogonal spectroscopic techniques to determine the HBA properties of neutral and charged solutes. The benzoate anion is the strongest HBA studied with a β parameter of 15.4, and the neutral tertiary amide is the weakest H-bond acceptor investigated with a β parameter of 8.5. The H-bond acceptor strength of the azide anion is higher than that of chloride (12.8 and 12.2 respectively), and the thiocyanate anion has a β value of 10.8 and thus is a significantly weaker H-bond acceptor than both the azide and chloride anions.

  15. Synthesis of Poly(cinnam-4'-yl methyl methacrylate) derivatives and their thermal stability as photoalignment layer

    International Nuclear Information System (INIS)

    Lee, Jong Woo; Kim, Hak Won; Kim, Hong Doo

    2001-01-01

    Photocyclizable poly(cinnam-4'-yl methyl methacrylate) derivatives bearing methoxy benzene (PMCMMA), anthracene (PACMMA), and coumarin (PCCMMMA) have been synthesized via Heck type reaction. Three different types of polymers are photoreactable using linearly polarized UV light and applicable as liquid crystal alignment layer. Anthracene and coumarin containing polymers (PACMMA, PCCMMA) have better thermal stability than PMCMMA. This observation may be attributed to the glass transition temperature elevation due to the bulky size and another photocrosslinking site provided by anthracene or coumarin group

  16. Graphene/dodecanol floating solidification microextraction for the preconcentration of trace levels of cinnamic acid derivatives in traditional Chinese medicines.

    Science.gov (United States)

    Hu, Shuang; Yang, Xiao; Xue, Jiao; Chen, Xuan; Bai, Xiao-Hong; Yu, Zhi-Hui

    2017-07-01

    A novel graphene/dodecanol floating solidification microextraction followed by HPLC with diode-array detection has been developed to extract trace levels of four cinnamic acid derivatives in traditional Chinese medicines. Several parameters affecting the performance were investigated and optimized. Also, possible microextraction mechanism was analyzed and discussed. Under the optimum conditions (amount of graphene in dodecanol: 0.25 mg/mL; volume of extraction phase: 70 μL; pH of sample phase: 3; extraction time: 30   min; stirring rate: 1000 rpm; salt amount: 26.5% NaCl; volume of sample phase: 10 mL, and without dispersant addition), the enrichment factors of four cinnamic acid derivatives ranged from 26 to 112, the linear ranges were 1.0 × 10 -2 -10.0 μg/mL for caffeic acid, 1.3 × 10 -3 -1.9 μg/mL for p-hydroxycinnamic acid, 2.8 × 10 -3 -4.1 μg/mL for ferulic acid, and 2.7 × 10 -3 -4.1 μg/mL for cinnamic acid, with r 2 ≥ 0.9993. The detection limits were found to be in the range of 0.1-1.0 ng/mL, and satisfactory recoveries (92.5-111.2%) and precisions (RSDs 1.1-9.5%) were also achieved. The results showed that the approach is simple, effective and sensitive for the preconcentration and determination of trace levels of cinnamic acid derivatives in Chinese medicines. The proposed method was compared with conventional dodecanol floating solidification microextraction and other extraction methods. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cocrystals of 6-methyl-2-thiouracil: presence of the acceptor-donor-acceptor/donor-acceptor-donor synthon.

    Science.gov (United States)

    Hützler, Wilhelm Maximilian; Egert, Ernst

    2015-03-01

    The results of seven cocrystallization experiments of the antithyroid drug 6-methyl-2-thiouracil (MTU), C(5)H(6)N(2)OS, with 2,4-diaminopyrimidine, 2,4,6-triaminopyrimidine and 6-amino-3H-isocytosine (viz. 2,6-diamino-3H-pyrimidin-4-one) are reported. MTU features an ADA (A = acceptor and D = donor) hydrogen-bonding site, while the three coformers show complementary DAD hydrogen-bonding sites and therefore should be capable of forming an ADA/DAD N-H...O/N-H...N/N-H...S synthon with MTU. The experiments yielded one cocrystal and six cocrystal solvates, namely 6-methyl-2-thiouracil-2,4-diaminopyrimidine-1-methylpyrrolidin-2-one (1/1/2), C(5)H(6)N(2)OS·C(4)H(6)N(4)·2C(5)H(9)NO, (I), 6-methyl-2-thiouracil-2,4-diaminopyrimidine (1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4), (II), 6-methyl-2-thiouracil-2,4-diaminopyrimidine-N,N-dimethylacetamide (2/1/2), 2C(5)H(6)N(2)OS·C(4)H(6)N(4)·2C(4)H(9)NO, (III), 6-methyl-2-thiouracil-2,4-diaminopyrimidine-N,N-dimethylformamide (2/1/2), C(5)H(6)N(2)OS·0.5C(4)H(6)N(4)·C(3)H(7)NO, (IV), 2,4,6-triaminopyrimidinium 6-methyl-2-thiouracilate-6-methyl-2-thiouracil-N,N-dimethylformamide (1/1/2), C(4)H(8)N(5)(+)·C(5)H(5)N(2)OS(-)·C(5)H(6)N(2)OS·2C(3)H(7)NO, (V), 6-methyl-2-thiouracil-6-amino-3H-isocytosine-N,N-dimethylformamide (1/1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4)O·C(3)H(7)NO, (VI), and 6-methyl-2-thiouracil-6-amino-3H-isocytosine-dimethyl sulfoxide (1/1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4)O·C(2)H(6)OS, (VII). Whereas in cocrystal (I) an R(2)(2)(8) interaction similar to the Watson-Crick adenine/uracil base pair is formed and a two-dimensional hydrogen-bonding network is observed, the cocrystals (II)-(VII) contain the triply hydrogen-bonded ADA/DAD N-H...O/N-H...N/N-H...S synthon and show a one-dimensional hydrogen-bonding network. Although 2,4-diaminopyrimidine possesses only one DAD hydrogen-bonding site, it is, due to orientational disorder, triply connected to two MTU molecules in (III) and (IV).

  18. SYNTHESIS OF 3,4-DIMETHOXY ISOAMYL CINNAMIC AS THE SUNSCREEN COMPOUND FROM CLOVE OIL AND FUSEL OIL

    Directory of Open Access Journals (Sweden)

    Tutik Dwi Wahyuningsih

    2010-06-01

    Full Text Available Synthesis of sunscreen compound 3,4-dimethoxy isoamyl cinnamic from clove oil and fusel oil has been done. The majoring component of clove oil that is eugenol has been isolated, followed with several chemical processes i.e. isomerization into isoeugenol, oxidation of the product to change into vanillin, then modification vanillin into veratraldehyde. From the fusel oil, we isolate isoamyl alcohol and modified by acetylation into isoamyl acetic. The final product could be produce by Claissen's condensation of isoamyl acetic and veratraldehyde to give 3,4-dimethoxy isoamyl cinnamic. All of the processes are followed with structure characterization using GC, IR, GC-MS and 1H-NMR spectroscopy. The result shown that compound has 46.98% purity and potent as the UV-B sunscreen's type (lmax = 313 nm. In-vitro sunscreen's activity of the compound was tested by UV-Vis spectrophotometry and resulting a maximum Sun Protection Factor value (SPFin-vitro at low concentration, 10.25 mg/mL.   Keywords: UV absorber, sunscreen, clove oil, cinnamic esther.

  19. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent

    Directory of Open Access Journals (Sweden)

    Der Jiun Ooi

    2016-06-01

    Full Text Available Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF isolated from M. latifolia rhizome methanolic extract (RME contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders.

  20. Two novel alkaline earth coordination polymers constructed from cinnamic acid and 1,10-phenanthroline: synthesis and structural and thermal properties.

    Science.gov (United States)

    Bendjellal, Nassima; Trifa, Chahrazed; Bouacida, Sofiane; Boudaren, Chaouki; Boudraa, Mhamed; Merazig, Hocine

    2018-02-01

    In coordination chemistry and crystal engineering, many factors influence the construction of coordination polymers and the final frameworks depend greatly on the organic ligands used. The diverse coordination modes of N-donor ligands have been employed to assemble metal-organic frameworks. Carboxylic acid ligands can deprotonate completely or partially when bonding to metal ions and can also act as donors or acceptors of hydrogen bonds; they are thus good candidates for the construction of supramolecular architectures. We synthesized under reflux or hydrothermal conditions two new alkaline earth(II) complexes, namely poly[(1,10-phenanthroline-κ 2 N,N')bis(μ-3-phenylprop-2-enoato-κ 3 O,O':O)calcium(II)], [Ca(C 10 H 7 O 2 ) 2 (C 10 H 8 N 2 )] n , (1), and poly[(1,10-phenanthroline-κ 2 N,N')(μ 3 -3-phenylprop-2-enoato-κ 4 O:O,O':O')(μ-3-phenylprop-2-enoato-κ 3 O,O':O)barium(II)], [Ba(C 10 H 7 O 2 ) 2 (C 10 H 8 N 2 )] n , (2), and characterized them by FT-IR and UV-Vis spectroscopies, thermogravimetric analysis (TGA) and single-crystal X-ray diffraction analysis, as well as by powder X-ray diffraction (PXRD) analysis. Complex (1) features a chain topology of type 2,4 C4, where the Ca atoms are connected by O and N atoms, forming a distorted bicapped trigonal prismatic geometry. Complex (2) displays chains of topology type 2,3,5 C4, where the Ba atom is nine-coordinated by seven O atoms of bridging/chelating carboxylate groups from two cinnamate ligands and by two N atoms from one phenanthroline ligand, forming a distorted tricapped prismatic arrangement. Weak C-H...O hydrogen bonds and π-π stacking interactions between phenanthroline ligands are responsible to the formation of a supramolecular three-dimensional network. The thermal decompositions of (1) and (2) in the temperature range 297-1173 K revealed that they both decompose in three steps and transform to the corresponding metal oxide.

  1. Near infrared organic light-emitting diodes based on acceptor-donor-acceptor (ADA) using novel conjugated isatin Schiff bases

    International Nuclear Information System (INIS)

    Taghi Sharbati, Mohammad; Soltani Rad, Mohammad Navid; Behrouz, Somayeh; Gharavi, Alireza; Emami, Farzin

    2011-01-01

    Fabrications of a single layer organic light emitting diodes (OLEDs) based on two conjugated acceptor-donor-acceptor (ADA) isatin Schiff bases are described. The electroluminescent spectra of these materials range from 630 to 700 nm and their band gaps were measured between 1.97 and 1.77 eV. The measured maximum external quantum efficiencies (EQE) for fabricated OLEDs are 0.0515% and 0.054% for two acceptor-donor-acceptor chromophores. The Commission International De L'Eclairage (CIE) (1931) coordinates of these two compounds were attained and found to be (0.4077, 0.4128) and (0.4411, 0.4126) for two used acceptor-donor-acceptor chromophores. The measured I-V curves demonstrated the apparent diode behavior of two ADA chromophores. The turn-on voltages in these OLEDs are directly dependent on the thickness. These results have demonstrated that ADA isatin Schiff bases could be considered as promising electroluminescence-emitting materials for fabrication of OLEDs.

  2. Silver-Catalyzed Aldehyde Olefination Using Siloxy Alkynes.

    Science.gov (United States)

    Sun, Jianwei; Keller, Valerie A; Meyer, S Todd; Kozmin, Sergey A

    2010-03-20

    We describe the development of a silver-catalyzed carbonyl olefination employing electron rich siloxy alkynes. This process constitutes an efficient synthesis of trisubstituted unsaturated esters, and represents an alternative to the widely utilized Horner-Wadsworth-Emmons reaction. Excellent diastereoselectivities are observed for a range of aldehydes using either 1-siloxy-1-propyne or 1-siloxy-1-hexyne. This mild catalytic process also enables chemoselective olefination of aldehydes in the presence of either ester or ketone functionality. Furthermore, since no by-products are generated, this catalytic process is perfectly suited for development of sequential reactions that can be carried out in a single flask.

  3. Applicability of the theory of thermodynamic similarity to predict the enthalpies of vaporization of aliphatic aldehydes

    Science.gov (United States)

    Esina, Z. N.; Korchuganova, M. R.

    2015-06-01

    The theory of thermodynamic similarity is used to predict the enthalpies of vaporization of aliphatic aldehydes. The predicted data allow us to calculate the phase diagrams of liquid-vapor equilibrium in a binary water-aliphatic aldehyde system.

  4. Cinnamic Acid Is Partially Involved in Propolis Immunomodulatory Action on Human Monocytes

    Directory of Open Access Journals (Sweden)

    Bruno José Conti

    2013-01-01

    Full Text Available Propolis is a beehive product used in traditional medicine due to its biological properties. It shows a complex chemical composition including phenolics, such as cinnamic acid (Ci. The mechanisms of action of propolis have been the subject of research recently; however, the involvement of Ci on propolis activity was not investigated on immune cells. Ci effects were evaluated on human monocytes, assessing the expression of Toll-like receptors (TLRs, HLA-DR, and CD80. Cytokine production (TNF-α and IL-10 and the fungicidal activity of monocytes were evaluated as well. Data showed that Ci downregulated TLR-2, HLA-DR, and CD80 and upregulated TLR-4 expression by human monocytes. High concentrations of Ci inhibited both TNF-α and IL-10 production, whereas the same concentrations induced a higher fungicidal activity against Candida albicans. TNF-α and IL-10 production was decreased by blocking TLR-4, while the fungicidal activity of monocytes was not affected by blocking TLRs. These results suggest that Ci modulated antigen receptors, cytokine production, and the fungicidal activity of human monocytes depending on concentration, and TLR-4 may be involved in its mechanism of action. Ci seemed to be partially involved in propolis activities.

  5. Thermodynamic Solubility Profile of Carbamazepine-Cinnamic Acid Cocrystal at Different pH.

    Science.gov (United States)

    Keramatnia, Fatemeh; Shayanfar, Ali; Jouyban, Abolghasem

    2015-08-01

    Pharmaceutical cocrystal formation is a direct way to dramatically influence physicochemical properties of drug substances, especially their solubility and dissolution rate. Because of their instability in the solution, thermodynamic solubility of cocrystals could not be determined in the common way like other compounds; therefore, the thermodynamic solubility is calculated through concentration of their components in the eutectic point. The objective of this study is to investigate the effect of an ionizable coformer in cocrystal with a nonionizable drug at different pH. Carbamazepine (CBZ), a nonionizable drug with cinnamic acid (CIN), which is an acidic coformer, was selected to prepare CBZ-CIN cocrystal and its thermodynamic solubility was studied in pH range 2-7. Instead of HPLC that is a costly and time-consuming method, a chemometric-based approach, net analyte signal standard addition method, was selected for simultaneous determination of CBZ and CIN in solution. The result showed that, as pH increases, CIN ionization leads to change in CBZ-CIN cocrystal solubility and stability in solution. In addition, the results of this study indicated that there is no significant difference between intrinsic solubility of CBZ and cocrystal despite the higher ideal solubility of cocrystal. This verifies that ideal solubility is not good parameter to predict cocrystal solubility. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Synthesis and bioevaluation of new tacrine-cinnamic acid hybrids as cholinesterase inhibitors against Alzheimer's disease.

    Science.gov (United States)

    Chen, Yao; Zhu, Jie; Mo, Jun; Yang, Hongyu; Jiang, Xueyang; Lin, Hongzhi; Gu, Kai; Pei, Yuqiong; Wu, Liang; Tan, Renxiang; Hou, Jing; Chen, Jingyi; Lv, Yang; Bian, Yaoyao; Sun, Haopeng

    2018-12-01

    Small molecule cholinesterases inhibitor (ChEI) provides an effective therapeutic strategy to treat Alzheimer's disease (AD). Currently, the discovery of new ChEI with multi-target effect is still of great importance. Herein, we report the synthesis, structure-activity relationship study and biological evaluation of a series of tacrine-cinnamic acid hybrids as new ChEIs. All target compounds are evaluated for their in vitro cholinesterase inhibitory activities. The representatives which show potent activity on cholinesterase, are evaluated for the amyloid β-protein self-aggregation inhibition and in vivo assays. The optimal compound 19, 27, and 30 (human AChE IC 50  = 10.2 ± 1.2, 16.5 ± 1.7, and 15.3 ± 1.8 nM, respectively) show good performance in ameliorating the scopolamine-induced cognition impairment and preliminary safety in hepatotoxicity evaluation. These compounds deserve further evaluation for the development of new therapeutic agents against AD.

  7. Melatonin Has the Potential to Alleviate Cinnamic Acid Stress in Cucumber Seedlings

    Directory of Open Access Journals (Sweden)

    Juanqi Li

    2017-07-01

    Full Text Available Cinnamic acid (CA, which is a well-known major autotoxin secreted by the roots in cucumber continuous cropping, has been proven to exhibit inhibitory regulation of plant morphogenesis and development. Melatonin (MT has been recently demonstrated to play important roles in alleviating plant abiotic stresses. To investigate whether MT supplementation could improve cucumber seedling growth under CA stress, we treated cucumber seeds and seedlings with/without MT under CA- or non-stress conditions, and then tested their effects on cucumber seedling growth, morphology, nutrient element content, and plant hormone. Overall, 10 μM MT best rescued cucumber seedling growth under 0.4 mM CA stress. MT was found to alleviate CA-stressed seedling growth by increasing the growth rates of cotyledons and leaves and by stimulating lateral root growth. Additionally, MT increased the allocation of newly gained dry weight in roots and improved the tolerance of cucumber seedlings to CA stress by altering the nutrient elements and hormone contents of the whole plant. These results strongly suggest that the application of MT can effectively improve cucumber seedling tolerance to CA stress through the perception and integration of morphology, nutrient element content and plant hormone signaling crosstalk.

  8. Clicked Cinnamic/Caffeic Esters and Amides as Radical Scavengers and 5-Lipoxygenase Inhibitors

    Directory of Open Access Journals (Sweden)

    Jérémie A. Doiron

    2014-01-01

    Full Text Available 5-Lipoxygenase (5-LO is the key enzyme responsible for the conversion of arachidonic acid to leukotrienes, a class of lipid mediators implicated in inflammatory disorders. In this paper, we describe the design, synthesis, and preliminary activity studies of novel clicked caffeic esters and amides as radical scavengers and 5-LO inhibitors. From known 5-LO inhibitor 3 as a lead, cinnamic esters 8a–h and amides 9a–h as well as caffeic esters 15a–h and amides 16a–h were synthesized by Cu(I-catalyzed [1,3]-dipolar cycloaddition with the appropriate azide precursors and terminal alkynes. All caffeic analogs are proved to be good radical scavengers (IC50: 10–20 μM. Esters 15g and 15f possessed excellent 5-LO inhibition activity in HEK293 cells and were equipotent with the known 5-LO inhibitor CAPE and more potent than Zileuton. Several synthesized esters possess activities rivaling Zileuton in stimulated human polymorphonuclear leukocytes.

  9. INTERACTION OF ALDEHYDES DERIVED FROM LIPID PEROXIDATION AND MEMBRANE PROTEINS.

    Directory of Open Access Journals (Sweden)

    Stefania ePizzimenti

    2013-09-01

    Full Text Available A great variety of compounds are formed during lipid peroxidation of polyunsaturated fatty acids of membrane phospholipids. Among them, bioactive aldehydes, such as 4-hydroxyalkenals, malondialdehyde (MDA and acrolein, have received particular attention since they have been considered as toxic messengers that can propagate and amplify oxidative injury. In the 4-hydroxyalkenal class, 4-hydroxy-2-nonenal (HNE is the most intensively studied aldehyde, in relation not only to its toxic function, but also to its physiological role. Indeed, HNE can be found at low concentrations in human tissues and plasma and participates in the control of biological processes, such as signal transduction, cell proliferation and differentiation. Moreover, at low doses, HNE exerts an anti-cancer effect, by inhibiting cell proliferation, angiogenesis, cell adhesion and by inducing differentiation and/or apoptosis in various tumor cell lines. It is very likely that a substantial fraction of the effects observed in cellular responses, induced by HNE and related aldehydes, be mediated by their interaction with proteins, resulting in the formation of covalent adducts or in the modulation of their expression and/or activity. In this review we focus on membrane proteins affected by lipid peroxidation-derived aldehydes, under physiological and pathological conditions.

  10. Changes in nonpolar aldehydes in bean cotyledons during ageing

    Czech Academy of Sciences Publication Activity Database

    Wilhelmová, Naděžda; Domingues, P.; Srbová, M.; Fuksová, H.; Wilhelm, J.

    2006-01-01

    Roč. 50, č. 4 (2006), s. 559-564 ISSN 0006-3134 R&D Projects: GA ČR GA522/03/0312 Institutional research plan: CEZ:AV0Z50380511 Keywords : Ageing * aldehydes * lipid peroxidation * lipofuscin-like pigments (LFP) Subject RIV: CE - Biochemistry Impact factor: 1.198, year: 2006

  11. Direct, enantioselective α-alkylation of aldehydes using simple olefins.

    Science.gov (United States)

    Capacci, Andrew G; Malinowski, Justin T; McAlpine, Neil J; Kuhne, Jerome; MacMillan, David W C

    2017-11-01

    Although the α-alkylation of ketones has already been established, the analogous reaction using aldehyde substrates has proven surprisingly elusive. Despite the structural similarities between the two classes of compounds, the sensitivity and unique reactivity of the aldehyde functionality has typically required activated substrates or specialized additives. Here, we show that the synergistic merger of three catalytic processes-photoredox, enamine and hydrogen-atom transfer (HAT) catalysis-enables an enantioselective α-aldehyde alkylation reaction that employs simple olefins as coupling partners. Chiral imidazolidinones or prolinols, in combination with a thiophenol, iridium photoredox catalyst and visible light, have been successfully used in a triple catalytic process that is temporally sequenced to deliver a new hydrogen and electron-borrowing mechanism. This multicatalytic process enables both intra- and intermolecular aldehyde α-methylene coupling with olefins to construct both cyclic and acyclic products, respectively. With respect to atom and step-economy ideals, this stereoselective process allows the production of high-value molecules from feedstock chemicals in one step while consuming only photons.

  12. Copepod reproduction is unaffected by diatom aldehydes or lipid composition

    DEFF Research Database (Denmark)

    Dutz, Jörg; Koski, Marja; Jonasdottir, Sigrun

    2008-01-01

    We investigated whether reduced reproductive success of copepods fed with diatoms was related to nutritional imbalances with regard to essential lipids or to the production of inhibitory aldehydes. In 10-d laboratory experiments, feeding, egg production, egg hatching success, and fecal pellet...

  13. Aldehydic acids in frying oils: formation, toxicological significance and analysis

    Directory of Open Access Journals (Sweden)

    Kamal-Eldin, Afaf

    1996-10-01

    Full Text Available Aldehydic acids are generated in oxidized lipids as a result of decomposition of hydroperoxides by (β-scission reactions. Aldehydes are known to interact with proteins and DNA and to impair enzymatic functions. Aldehydic esters from oxidized lipids were reabsorbed to a significant extent in rats. This paper reviews the mechanism of formation of esterified aldehydic acids in frying oils and their physiological/toxicological effects. The paper also gives an overview of relevant basic analytical techniques that needs to be improved to establish reliable quantitative method (s.

    Ácidos aldehídicos son producidos en lípidos oxidados como resultado de la descomposición de hidroperóxidos por reacciones de (β-escición. Es conocido que los aldehídos interaccionan con las proteínas y el ADN y debilitan las funciones enzimáticas. Los esteres aldehídicos de lípidos oxidados fueron reabsorbidos en una cantidad significativa en ratas. Este artículo revisa los mecanismos de formación de ácidos aldehídicos esterificados en aceites de fritura y sus efectos fisiológicos/toxicológicos. El artículo también ofrece una visión de conjunto de las técnicas analíticas básicas que necesitan ser mejoradas para establecer métodos cuantitativos fiables.

  14. Aldehyde Dehydrogenase 1 and Raf Kinase Inhibitor Protein ...

    African Journals Online (AJOL)

    Aldehyde Dehydrogenase 1 and Raf Kinase Inhibitor Protein Expression Defines the Proliferative Nature of Cervical Cancer Stem Cells. ... of cervical cancer stem cells and also to validate them in initial and advanced stages of cervical cancer. Keywords: Cervical cancer, ALDH1, BALB/c-nu/nu, HeLa cells, RKIP, Sox2 ...

  15. OXYGEN 18 EXCHANGE REACTIONS OF ALDEHYDES AND KETONES

    Energy Technology Data Exchange (ETDEWEB)

    Byrn, Marianne; Calvin, Melvin

    1965-12-01

    Using infra-red spectroscopy, the equilibrium exchange times have been determined for a series of ketones, aromatic aldehydes, and {beta}-ketoesters reacting with oxygen 18 enriched water. These exchange times have been evaluated in terms of steric and electronic considerations, and applied to a discussion of the exchange times of chlorophylls a and b and chlorophyll derivatives.

  16. Monitoring of fatty aldehyde dehydrogenase by formation of pyrenedecanoic acid from pyrenedecanal

    NARCIS (Netherlands)

    Keller, Markus A.; Watschinger, Katrin; Golderer, Georg; Maglione, Manuel; Sarg, Bettina; Lindner, Herbert H.; Werner-Felmayer, Gabriele; Terrinoni, Alessandro; Wanders, Ronald J. A.; Werner, Ernst R.

    2010-01-01

    Fatty aldehyde dehydrogenase (EC 1.2.1.48) converts long-chain fatty aldehydes to the corresponding acids. Deficiency in this enzyme causes the Sjogren Larsson Syndrome, a rare inherited disorder characterized by ichthyosis, spasticity, and mental retardation. Using a fluorescent aldehyde,

  17. Unsaturated aldehydes as alkene equivalents in the Diels-Alder reaction

    DEFF Research Database (Denmark)

    Taarning, Esben; Madsen, Robert

    2008-01-01

    A one-pot procedure is described for using alpha,beta-unsaturated aldehydes as olefin equivalents in the Diels-Alder reaction. The method combines the normal electron demand cycloaddition with aldehyde dienophiles and the rhodium-catalyzed decarbonylation of aldehydes to afford cyclohexenes...

  18. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers.

    Science.gov (United States)

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N V; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-12-31

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affinities of the donor and the acceptor, the triplet-triplet state can have a stronger oscillator strength than the charge-transfer exciton. We discuss the possibility of intramolecular singlet fission from the triplet-triplet state, and how such fission can be detected experimentally.

  19. An overview of molecular acceptors for organic solar cells

    Directory of Open Access Journals (Sweden)

    Hudhomme Piétrick

    2013-07-01

    Full Text Available Organic solar cells (OSCs have gained serious attention during the last decade and are now considered as one of the future photovoltaic technologies for low-cost power production. The first dream of attaining 10% of power coefficient efficiency has now become a reality thanks to the development of new materials and an impressive work achieved to understand, control and optimize structure and morphology of the device. But most of the effort devoted to the development of new materials concerned the optimization of the donor material, with less attention for acceptors which to date remain dominated by fullerenes and their derivatives. This short review presents the progress in the use of non-fullerene small molecules and fullerene-based acceptors with the aim of evaluating the challenge for the next generation of acceptors in organic photovoltaics.

  20. Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan; Owczarczyk, Zbyslaw; Olson, Dana C.; Kopidakis, Nikos; Boltalina, Olga V.; Strauss, Steven H.; Braunecker, Wade A.

    2016-11-21

    This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blend using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.

  1. Acceptors in cadmium telluride. Identification and electronic structure

    International Nuclear Information System (INIS)

    Molva, E.

    1983-11-01

    It is shown that electronic properties of CdTe are determined by impurities more than by intrinsic defects like vacancies or interstitials in Cd or Te contrary to classical theories. These results are based on annealing, diffusion, implantation and electron irradiation at 4 K. Centers appearing in treated samples are accurately identified by photoluminescence, cathodoluminescence infra-red absorption, electrical measurements and magneto-optic properties. Acceptors identified are Li, Na, Cu, Ag and Au impurities in Cd and N, P and As in Te. Energy levels of all acceptors and fine structure of excitons are determined [fr

  2. Preparation of goreisan suppository and pharmacokinetics of trans-cinnamic acid after administration to rabbits.

    Science.gov (United States)

    Katagiri, Yukiko; Miyazaki, Yasunori; Uchino, Tomonobu; Kagawa, Yoshiyuki

    2014-01-01

    Goreisan suppository is prepared as a hospital preparation, and successfully used for the treatment of diarrhea and vomiting in young children with common cold. While clinical efficacy of the suppository has been reported, few studies have been carried out to clarify the preparation procedure and pharmacokinetics of the suppository. In this study, trans-cinnamic acid (CA) was used as a representative substance of goreisan constituents, and assayed by HPLC-UV. We investigated the properties of goreisan suppositories prepared using various sizes of pulverized goreisan extract granules, in vitro dissolution profiles using the reciprocating dialysis tube method, and pharmacokinetics in rabbits compared with those for goreisan enema. Mass and content uniformity tests on the suppositories of three size fractions, 0-75, 75-150, and 150-300 µm, showed good acceptance for all kinds of suppository. Storage stability at 4°C was maintained until 4 months. In vitro dissolution of CA from the suppository was proportional to time until 45 min, and slower than that from the enema. Finally, 80% of CA had dissolved at 60 min. Pharmacokinetic study in rabbits revealed that the area under the plasma concentration-time curve from 0 to 120 min (AUC0-120 min) of the suppository was twice that of the enema. Moreover, from a study in rabbits using CA injection and CA suppository, we revealed that CA was rapidly and well absorbed from the rectum, showing 84% absolute bioavailability. Thus, we illustrated the defined preparation procedure of the suppository and the superiority of the suppository over the enema. This study will support evidence that the suppository is fast-acting and efficacious in clinical use.

  3. An overview of electron acceptors in microbial fuel cells

    DEFF Research Database (Denmark)

    Ucar, Deniz; Zhang, Yifeng; Angelidaki, Irini

    2017-01-01

    Microbial fuel cells (MFC) have recently received increasing attention due to their promising potential in sustainable wastewater treatment and contaminant removal. In general, contaminants can be removed either as an electron donor via microbial catalyzed oxidization at the anode or removed at t...... acceptors (e.g., nitrate, iron, copper, perchlorate) and mediators....

  4. Acceptors in II-IV Semiconductors - Incorporation and Complex Formation

    CERN Multimedia

    2002-01-01

    A strong effort is currently devoted to the investigation of defects and the electrical activation of dopant atoms in II-VI semiconductors. In particular, the knowledge about the behaviour of acceptors, prerequisite for the fabrication of p-type semiconductors, is rather limited. The perturbed $\\,{\\gamma\\gamma}$ -angular correlation technique (PAC) and the photoluminescence spectroscopy (PL) using the radioactive isotopes $^{77}\\!$Br and $^{111}\\!$Ag will be applied for investigating the behaviour of acceptor dopant atoms and their interactions with defects in II-VI semiconductors. The main topic will be the identification of the technical conditions for the incorporation of electrically active acceptors in the II-VI semiconductors ~ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe with particular emphasis on the compounds~ CdTe, ZnSe, and ZnTe. The investigations will be supplemented by first exploratory PL experiments with the group V acceptors $^{71}\\!$As and $^{121}\\!$Sb. With help of the probe $^{111}\\!$Ag, the pos...

  5. Direct Comparison of the Enzymatic Characteristics and Superoxide Production of the Four Aldehyde Oxidase Enzymes Present in Mouse.

    Science.gov (United States)

    Kücükgöze, Gökhan; Terao, Mineko; Garattini, Enrico; Leimkühler, Silke

    2017-08-01

    Aldehyde oxidases (AOXs) are molybdoflavoenzymes with an important role in the metabolism and detoxification of heterocyclic compounds and aliphatic as well as aromatic aldehydes. The enzymes use oxygen as the terminal electron acceptor and produce reduced oxygen species during turnover. Four different enzymes, mAOX1, mAOX3, mAOX4, and mAOX2, which are the products of distinct genes, are present in the mouse. A direct and simultaneous comparison of the enzymatic properties and characteristics of the four enzymes has never been performed. In this report, the four catalytically active mAOX enzymes were purified after heterologous expression in Escherichia coli The kinetic parameters of the four mouse AOX enzymes were determined and compared with the use of six predicted substrates of physiologic and toxicological interest, i.e., retinaldehyde, N 1 -methylnicotinamide, pyridoxal, vanillin, 4-(dimethylamino)cinnamaldehyde ( p- DMAC), and salicylaldehyde. While retinaldehyde, vanillin, p- DMAC, and salycilaldehyde are efficient substrates for the four mouse AOX enzymes, N 1 -methylnicotinamide is not a substrate of mAOX1 or mAOX4, and pyridoxal is not metabolized by any of the purified enzymes. Overall, mAOX1, mAOX2, mAOX3, and mAOX4 are characterized by significantly different K M and k cat values for the active substrates. The four mouse AOXs are also characterized by quantitative differences in their ability to produce superoxide radicals. With respect to this last point, mAOX2 is the enzyme generating the largest rate of superoxide radicals of around 40% in relation to moles of substrate converted, and mAOX1, the homolog to the human enzyme, produces a rate of approximately 30% of superoxide radicals with the same substrate. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Donor-π-bridge-acceptor type polymeric materials with pendant electron-withdrawing groups for electrochromic applications

    International Nuclear Information System (INIS)

    Du, Qing; Wei, Youxiu; Zheng, Jianming; Xu, Chunye

    2014-01-01

    Highlights: • Donor-π-bridge-acceptor copolymers with different electrophilic groups were synthesized. • Electrochromic devices composed of PBDTTPAs layers, as the working electrode, and vanadium pentoxide, as the counter electrode, were fabricated and evaluated. • The PBDTTPA-CHO film and device show multicolor electrochromic behavior which exhibited vivid yellow, green, and gray with better electrochromic performance than PBDTTPA-COOH. - Abstract: A novel donor-π-bridge-acceptor copolymer, PBDTTPA-CHO, containing 4-(Bis(4-bromophenyl)-amino)benzaldehyde (TPA-CHO) and 4,8-bis-(2-ethyl- hexyloxy)-oxybenzo-[1,2-b:3,4-b’]dithiophene (BDT), was successfully synthesized using Stille coupling polymerization, and the pendant aldehyde group was modified with cyanoacetic acid to synthesize another polymer, PBDTTPA-COOH. Each of these new polymers are soluble in organic solvents and can be cast onto rigid or flexible substrates. The polymers with different electrophilic groups exhibit different electrochromic behaviors, including different colors, driving voltages and transmittances. The polymer film of PBDTTPA-CHO manifests reversible electrochemical oxidation and reduction accompanied by multicolor changes from its yellow neutral state to a highly absorbent green semi-oxidized state and a gray fully oxidized state, its transmittance change at 601 nm is 43%. PBDTTPA-COOH switches between orange and light green. We fabricated and evaluated electrochromic devices using a PBDTTPA layer as the working electrode and vanadium pentoxide as the counter electrode. With the contribution of counter electrodes, devices of both polymers show similar color changes but higher transmittance than their films

  7. Methyltrioxorhenium as catalyst of a novel aldehyde olefination

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, W.A. (Technische Univ. Muenchen, Garching (Germany). Anorganisch-Chemisches Inst.); Wang Mei (Academia Sinica, Dalian Inst. of Chemical Physics (China))

    1991-12-01

    From aldehydes or cyclic ketones, diazoalkanes, and teritiary phosphanes, olefins may be prepared with MTO as catalyst. In particular, diazoacetates and -malonates (R{sup 2}, R{sup 3} = H, CO{sub 2}Et, or 2 x CO{sub 2}Me) can be transformed into olefins with aliphatic and aromatic aldehydes (R{sup 1} = iPr, trans-PhCH=CH, Ph, 4-NO{sub 2}C{sub 6}H{sub 4}, etc.). Readily accessible starting materials, easy handling, mild reaction conditions, and good yields characterize the new synthesis method. (R' = Ph, 3-C{sub 6}H{sub 4}SO{sub 3}Na, nBu.) (orig.).

  8. Synthesis and X-ray crystal structure of the first tetrathiafulvalene-based acceptor-donor-acceptor sandwich

    DEFF Research Database (Denmark)

    Simonsen, Klaus B.; Thorup, Niels; Cava, Michael P.

    1998-01-01

    The synthesis and characterization of a bis-macrocyclic A-D-A sandwich produced in a simple one-pot reaction is reported. Only one acceptor unit participates in charge-transfer interactions with the TTF unit in the solid state....

  9. Maternal Aldehyde Elimination during Pregnancy Preserves the Fetal Genome

    Science.gov (United States)

    Oberbeck, Nina; Langevin, Frédéric; King, Gareth; de Wind, Niels; Crossan, Gerry P.; Patel, Ketan J.

    2014-01-01

    Summary Maternal metabolism provides essential nutrients to enable embryonic development. However, both mother and embryo produce reactive metabolites that can damage DNA. Here we discover how the embryo is protected from these genotoxins. Pregnant mice lacking Aldh2, a key enzyme that detoxifies reactive aldehydes, cannot support the development of embryos lacking the Fanconi anemia DNA repair pathway gene Fanca. Remarkably, transferring Aldh2−/−Fanca−/− embryos into wild-type mothers suppresses developmental defects and rescues embryonic lethality. These rescued neonates have severely depleted hematopoietic stem and progenitor cells, indicating that despite intact maternal aldehyde catabolism, fetal Aldh2 is essential for hematopoiesis. Hence, maternal and fetal aldehyde detoxification protects the developing embryo from DNA damage. Failure of this genome preservation mechanism might explain why birth defects and bone marrow failure occur in Fanconi anemia, and may have implications for fetal well-being in the many women in Southeast Asia that are genetically deficient in ALDH2. PMID:25155611

  10. Maternal aldehyde elimination during pregnancy preserves the fetal genome.

    Science.gov (United States)

    Oberbeck, Nina; Langevin, Frédéric; King, Gareth; de Wind, Niels; Crossan, Gerry P; Patel, Ketan J

    2014-09-18

    Maternal metabolism provides essential nutrients to enable embryonic development. However, both mother and embryo produce reactive metabolites that can damage DNA. Here we discover how the embryo is protected from these genotoxins. Pregnant mice lacking Aldh2, a key enzyme that detoxifies reactive aldehydes, cannot support the development of embryos lacking the Fanconi anemia DNA repair pathway gene Fanca. Remarkably, transferring Aldh2(-/-)Fanca(-/-) embryos into wild-type mothers suppresses developmental defects and rescues embryonic lethality. These rescued neonates have severely depleted hematopoietic stem and progenitor cells, indicating that despite intact maternal aldehyde catabolism, fetal Aldh2 is essential for hematopoiesis. Hence, maternal and fetal aldehyde detoxification protects the developing embryo from DNA damage. Failure of this genome preservation mechanism might explain why birth defects and bone marrow failure occur in Fanconi anemia, and may have implications for fetal well-being in the many women in Southeast Asia that are genetically deficient in ALDH2. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Bond of donor-acceptor interaction in metal-ligand system with energies of Fermi electrons

    International Nuclear Information System (INIS)

    Vlasov, Yu.V.; Khentov, V.Ya.; Velikanova, L.N.; Semchenko, V.V.

    1993-01-01

    Role of quantum nature of metal (W, Mo and others) in donor-acceptor interaction of metal salicylalaniline - aprotic solvent was discussed. The dependence of dissolution rate and activation energy of donor-acceptor interaction on electron energy was established

  12. A density functional theory study on the molecular mechanism of the cycloaddition between (E)-methyl cinnamate and cyclopentadiene

    International Nuclear Information System (INIS)

    Alves, C.N.; Camilo, F.F.; Gruber, J.; Silva, A.B.F. da

    2004-01-01

    The molecular mechanism of the Diels-Alder reaction between (E)-methyl cinnamate and cyclopentadiene has been characterized by means of density functional theory method at the B3LYP/6-31G* theory level. Stationary points for two reactive channels, endo-cis and exo-cis, on potential energy surfaces, have been characterized. Three Lewis acids, boron trifluoride (BF 3 ), aluminum trichloride (AlCl 3 ) and catechol boron bromide (CBB), have been used as catalysts taking into account the formation of a complex between the boron or aluminum atom and the carbonyl oxygen of (E)-methyl cinnamate. The molecular mechanism of the uncatalyzed reaction corresponds to a concerted process. In the presence of BF 3 and AlCl 3 , enhancement of both the asynchronicity and charge transfer between diene and the dienophile, with small decreased energy barriers, were obtained. With CBB, the molecular mechanism changes and the reaction takes place along a stepwise mechanism. The inclusion of the CBB catalyst drastically decreases the energy barrier associated with the carbon-carbon bond formation of the first step relative to the concerted process. The results obtained in this work are compared with experimental data and AM1 semiempirical calculation

  13. Positronium Inhibition and Quenching by Organic Electron Acceptors and Charge Transfer Complexes

    DEFF Research Database (Denmark)

    Jansen, P.; Eldrup, Morten Mostgaard; Jensen, Bror Skytte

    1975-01-01

    Positron lifetime measurements were performed on a series of organic electron acceptors and charge-transfer complexes in solution. The acceptors cause both positronium (Ps) inhibition (with maybe one exception) and quenching, but when an acceptor takes part in a charge-transfer complex...... in terms of the spur reaction model of Ps formation. Correlation was also made to gas phase reaction between electron acceptors and free electron, as well as to pulse radiolysis data....

  14. In vitro assessment of human airway toxicity from major aldehydes in automotive emissions

    Energy Technology Data Exchange (ETDEWEB)

    Grafstroem, R.C. [Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine

    1997-09-01

    Automotive exhausts can significantly contribute to the levels of reactive aldehydes, including formaldehyde, acetaldehyde and acrolein, in urban air. The use of alcohols as an alternative fuel for gasoline or diesel may further increase these emissions. Since it is unclear if aldehyde inhalation may induce pathological states, including cancer, in human airways, the toxic properties of the above-mentioned aldehydes were studied in cultured target cell types. Each aldehyde modified vital cellular functions in a dose-dependent manner, and invariably inhibited growth and induced abnormal terminal differentiation. Decreases of cellular thiols and increases of intracellular Ca{sup 2+} were observed, and moreover, variable types and amounts of short-lived or persistent genetic damage were induced. The concentrations required for specified levels of a particular type of injury varied up to 10000-fold among the aldehydes. Overall, distinctive patterns of cytopathological activity were observed, which differed both qualitatively and quantitatively among the aldehydes. Finally, aldehydes inhibited DNA repair processes and increased cytotoxicity and mutagenesis in synergy with other known toxicants, indicating that aldehydes may also enhance damage by other constituents in automotive exhausts. In summary, the aldehydes, notably {sup m}u{sup M}-mM formaldehyde, caused pathological effects and induced mechanisms that relate to acute toxicity and cancer development in airway epithelial cells. Since `no-effect` levels may not exist for carcinogenic agents, the overall results support a need for elimination of aldehydes in automotive exhausts. 41 refs

  15. Structural and Kinetic Properties of the Aldehyde Dehydrogenase NahF, a Broad Substrate Specificity Enzyme for Aldehyde Oxidation.

    Science.gov (United States)

    Coitinho, Juliana B; Pereira, Mozart S; Costa, Débora M A; Guimarães, Samuel L; Araújo, Simara S; Hengge, Alvan C; Brandão, Tiago A S; Nagem, Ronaldo A P

    2016-09-27

    The salicylaldehyde dehydrogenase (NahF) catalyzes the oxidation of salicylaldehyde to salicylate using NAD(+) as a cofactor, the last reaction of the upper degradation pathway of naphthalene in Pseudomonas putida G7. The naphthalene is an abundant and toxic compound in oil and has been used as a model for bioremediation studies. The steady-state kinetic parameters for oxidation of aliphatic or aromatic aldehydes catalyzed by 6xHis-NahF are presented. The 6xHis-NahF catalyzes the oxidation of aromatic aldehydes with large kcat/Km values close to 10(6) M(-1) s(-1). The active site of NahF is highly hydrophobic, and the enzyme shows higher specificity for less polar substrates than for polar substrates, e.g., acetaldehyde. The enzyme shows α/β folding with three well-defined domains: the oligomerization domain, which is responsible for the interlacement between the two monomers; the Rossmann-like fold domain, essential for nucleotide binding; and the catalytic domain. A salicylaldehyde molecule was observed in a deep pocket in the crystal structure of NahF where the catalytic C284 and E250 are present. Moreover, the residues G150, R157, W96, F99, F274, F279, and Y446 were thought to be important for catalysis and specificity for aromatic aldehydes. Understanding the molecular features responsible for NahF activity allows for comparisons with other aldehyde dehydrogenases and, together with structural information, provides the information needed for future mutational studies aimed to enhance its stability and specificity and further its use in biotechnological processes.

  16. 2012 Gordon Research Conference, Electron donor-acceptor interactions, August 5-10 2012

    Energy Technology Data Exchange (ETDEWEB)

    McCusker, James [Michigan State Univ., East Lansing, MI (United States)

    2012-08-10

    The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.

  17. Effect of anneal and quench on the nature of the dominant acceptors in ZnTe

    International Nuclear Information System (INIS)

    Bensahel, D.; Magnea, N.; Pautrat, J.L.; Pfister, J.C.; Revoil, L.

    1978-01-01

    Anneal and quench studies on high purity ZnTe have shown the dominant role of impurities and their solubilities as functions of stoichiometrical conditions. The role of 'b' acceptor, related to lithium, 'g' acceptor, related to silver, and 'a' acceptor of unknown nature is reported

  18. Lipase-catalyzed biodiesel synthesis with different acyl acceptors

    Directory of Open Access Journals (Sweden)

    Ognjanović Nevena D.

    2008-01-01

    Full Text Available Biodiesel is an alternative fuel for diesel engine that is environmentally acceptable. Conventionally, biodiesel is produced by transesterification of triglycerides and short alcohols in the presence of an acid or an alkaline catalyst. There are several problems associated with this kind of production that can be resolved by using lipase as the biocatalyst. The aim of the present work was to investigate novel acyl acceptors for biodiesel production. 2-Propanol and n-butanol have a less negative effect on lipase stability, and they also improve low temperature properties of the fuel. However, excess alcohol leads to inactivation of the enzyme, and glycerol, a major byproduct, can block the immobilized enzyme, resulting in low enzymatic activity. This problem was solved by using methyl acetate as acyl acceptor. Triacetylglycerol is produced instead of glycerol, and it has no negative effect on the activity of the lipase.

  19. Interface effects on acceptor qubits in silicon and germanium

    International Nuclear Information System (INIS)

    Abadillo-Uriel, J C; Calderón, M J

    2016-01-01

    Dopant-based quantum computing implementations often require the dopants to be situated close to an interface to facilitate qubit manipulation with local gates. Interfaces not only modify the energies of the bound states but also affect their symmetry. Making use of the successful effective mass theory we study the energy spectra of acceptors in Si or Ge taking into account the quantum confinement, the dielectric mismatch and the central cell effects. The presence of an interface puts constraints to the allowed symmetries and leads to the splitting of the ground state in two Kramers doublets (Mol et al 2015 Appl. Phys. Lett. 106 203110). Inversion symmetry breaking also implies parity mixing which affects the allowed optical transitions. Consequences for acceptor qubits are discussed. (paper)

  20. Positively charged phosphorus as a hydrogen bond acceptor

    DEFF Research Database (Denmark)

    Hansen, Anne Schou; Du, Lin; Kjærgaard, Henrik Grum

    2014-01-01

    Phosphorus (P) is an element that is essential to the life of all organisms, and the atmospheric detection of phosphine suggests the existence of a volatile biogeochemical P cycle. Here, we investigate the ability of P to participate in the formation of OH···P hydrogen bonds. Three bimolecular......-stretching frequency red shifts and quantum chemical calculations, we find that P is an acceptor atom similar in strength to O and S and that all three P, O, and S atoms are weaker acceptors than N. The quantum chemical calculations show that both H and P in the OH···P hydrogen bond have partial positive charges......, as expected from their electronegativities. However, the electrostatic potentials show a negative potential area on the electron density surface around P that facilitates formation of hydrogen bonds....

  1. Triplet Tellurophene-Based Acceptors for Organic Solar Cells.

    Science.gov (United States)

    Yang, Lei; Gu, Wenxing; Lv, Lei; Chen, Yusheng; Yang, Yufei; Ye, Pan; Wu, Jianfei; Hong, Ling; Peng, Aidong; Huang, Hui

    2018-01-22

    Triplet materials have been employed to achieve high-performing organic solar cells (OSCs) by extending the exciton lifetime and diffusion distances, while the triplet non-fullerene acceptor materials have never been reported for bulk heterojunction OSCs. Herein, for the first time, three triplet molecular acceptors based on tellurophene with different degrees of ring fusing were designed and synthesized for OSCs. Significantly, these molecules have long exciton lifetime and diffusion lengths, leading to efficient power conversion efficiency (7.52 %), which is the highest value for tellurophene-based OSCs. The influence of the extent of ring fusing on molecular geometry and OSCs performance was investigated to show the power conversion efficiencies (PCEs) continuously increased along with increasing the extent of ring fusing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Polymer solar cells with novel fullerene-based acceptor

    International Nuclear Information System (INIS)

    Riedel, I.; Martin, N.; Giacalone, F.; Segura, J.L.; Chirvase, D.; Parisi, J.; Dyakonov, V.

    2004-01-01

    Alternative acceptor materials are possible candidates to improve the optical absorption and/or the open circuit voltage of polymer-fullerene solar cells. We studied a novel fullerene-type acceptor, DPM-12, for application in polymer-fullerene bulk heterojunction photovoltaic devices. Though DPM-12 has the identical redox potentials as methanofullerene PCBM, surprisingly high open circuit voltages in the range V OC =0.95 V were measured for OC 1 C 10 -PPV:DPM-12-based samples. The potential for photovoltaic application was studied by means of photovoltaic characterization of solar cells including current-voltage measurements and external quantum yield spectroscopy. Further studies were carried out by profiling the solar cell parameters vs. temperature and white light intensity

  3. Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Liu, Huan

    2011-07-15

    Lead sulfide colloidal quantum dot (CQD) solar cells with a solar power conversion efficiency of 5.6% are reported. The result is achieved through careful optimization of the titanium dioxide electrode that serves as the electron acceptor. Metal-ion-doped sol-gel-derived titanium dioxide electrodes produce a tunable-bandedge, well-passivated materials platform for CQD solar cell optimization. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Selection of electron acceptors and strategies for in situ bioremediation

    International Nuclear Information System (INIS)

    Norris, R.D.

    1995-01-01

    The most critical aspect of designing in situ bioremediation systems is, typically, the selection and method of delivery of the electron acceptor. Nitrate, sulfate, and several forms of oxygen can be introduced, depending on the contaminants and the site conditions. Oxygen can be added as air, pure oxygen, hydrogen peroxide, or an oxygen release compound. Simplistic cost calculations can illustrate the advantages of some methods over others, providing technical requirements can be met

  5. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  6. Donor-Acceptor Block Copolymers: Synthesis and Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nakabayashi

    2014-04-01

    Full Text Available Fullerene derivatives have been widely used for conventional acceptor materials in organic photovoltaics (OPVs because of their high electron mobility. However, there are also considerable drawbacks for use in OPVs, such as negligible light absorption in the visible-near-IR regions, less compatibility with donor polymeric materials and high cost for synthesis and purification. Therefore, the investigation of non-fullerene acceptor materials that can potentially replace fullerene derivatives in OPVs is increasingly necessary, which gives rise to the possibility of fabricating all-polymer (polymer/polymer solar cells that can deliver higher performance and that are potentially cheaper than fullerene-based OPVs. Recently, considerable attention has been paid to donor-acceptor (D-A block copolymers, because of their promising applications as fullerene alternative materials in all-polymer solar cells. However, the synthesis of D-A block copolymers is still a challenge, and therefore, the establishment of an efficient synthetic method is now essential. This review highlights the recent advances in D-A block copolymers synthesis and their applications in all-polymer solar cells.

  7. Methods for the synthesis of donor-acceptor cyclopropanes

    Science.gov (United States)

    Tomilov, Yu V.; Menchikov, L. G.; Novikov, R. A.; Ivanova, O. A.; Trushkov, I. V.

    2018-03-01

    The interest in cyclopropane derivatives is caused by the facts that, first, the three-carbon ring is present in quite a few natural and biologically active compounds and, second, compounds with this ring are convenient building blocks for the synthesis of diverse molecules (acyclic, alicyclic and heterocyclic). The carbon–carbon bonds in cyclopropane are kinetically rather inert; hence, they need to be activated to be involved in reactions. An efficient way of activation is to introduce vicinal electron-donating and electron-withdrawing substituents into the ring; these substrates are usually referred to as donor-acceptor cyclopropanes. This review gives a systematic account of the key methods for the synthesis of donor-acceptor cyclopropanes. The most important among them are reactions of nucleophilic alkenes with diazo compounds and iodonium ylides and approaches based on reactions of electrophilic alkenes with sulfur ylides (the Corey–Chaykovsky reaction). Among other methods used for this purpose, noteworthy are cycloalkylation of CH-acids, addition of α-halocarbonyl compounds to alkenes, cyclization via 1,3-elimination, reactions of alkenes with halocarbenes followed by reduction, the Simmons–Smith reaction and some other. The scope of applicability and prospects of various methods for the synthesis of donor-acceptor cyclopropanes are discussed. The bibliography includes 530 references.

  8. Virtual screening of electron acceptor materials for organic photovoltaic applications

    International Nuclear Information System (INIS)

    D Halls, Mathew; Giesen, David J; Goldberg, Alexander; Djurovich, Peter J; Sommer, Jonathan; McAnally, Eric; Thompson, Mark E

    2013-01-01

    Virtual screening involves the generation of structure libraries, automated analysis to predict properties related to application performance and subsequent screening to identify lead systems and estimate critical structure–property limits across a targeted chemical design space. This approach holds great promise for informing experimental discovery and development efforts for next-generation materials, such as organic semiconductors. In this work, the virtual screening approach is illustrated for nitrogen-substituted pentacene molecules to identify systems for development as electron acceptor materials for use in organic photovoltaic (OPV) devices. A structure library of tetra-azapentacenes (TAPs) was generated by substituting four nitrogens for CH at 12 sites on the pentacene molecular framework. Molecular properties (e.g. E LUMO , E g and μ) were computed for each candidate structure using hybrid DFT at the B3LYP/6-311G** level of theory. The resulting TAPs library was then analyzed with respect to intrinsic properties associated with OPV acceptor performance. Marcus reorganization energies for charge transport for the most favorable TAP candidates were then calculated to further determine suitability as OPV electron acceptors. The synthesis, characterization and OPV device testing of TAP materials is underway, guided by these results. (paper)

  9. Non-fullerene acceptors for organic solar cells

    Science.gov (United States)

    Yan, Cenqi; Barlow, Stephen; Wang, Zhaohui; Yan, He; Jen, Alex K.-Y.; Marder, Seth R.; Zhan, Xiaowei

    2018-03-01

    Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs). In contrast to the widely used fullerene acceptors (FAs), the optical properties and electronic energy levels of NFAs can be readily tuned. NFA-based OSCs can also achieve greater thermal stability and photochemical stability, as well as longer device lifetimes, than their FA-based counterparts. Historically, the performance of NFA OSCs has lagged behind that of fullerene devices. However, recent developments have led to a rapid increase in power conversion efficiencies for NFA OSCs, with values now exceeding 13%, demonstrating the viability of using NFAs to replace FAs in next-generation high-performance OSCs. This Review discusses the important work that has led to this remarkable progress, focusing on the two most promising NFA classes to date: rylene diimide-based materials and materials based on fused aromatic cores with strong electron-accepting end groups. The key structure-property relationships, donor-acceptor matching criteria and aspects of device physics are discussed. Finally, we consider the remaining challenges and promising future directions for the NFA OSCs field.

  10. A paper-based resonance energy transfer nucleic acid hybridization assay using upconversion nanoparticles as donors and quantum dots as acceptors.

    Science.gov (United States)

    Doughan, Samer; Uddayasankar, Uvaraj; Krull, Ulrich J

    2015-06-09

    Monodisperse aqueous upconverting nanoparticles (UCNPs) were covalently immobilized on aldehyde modified cellulose paper via reduction amination to develop a luminescence resonance energy transfer (LRET)-based nucleic acid hybridization assay. This first account of covalent immobilization of UCNPs on paper for a bioassay reports an optically responsive method that is sensitive, reproducible and robust. The immobilized UCNPs were decorated with oligonucleotide probes to capture HPRT1 housekeeping gene fragments, which in turn brought reporter conjugated quantum dots (QDs) in close proximity to the UCNPs for LRET. This sandwich assay could detect unlabeled oligonucleotide target, and had a limit of detection of 13 fmol and a dynamic range spanning nearly 3 orders of magnitude. The use of QDs, which are excellent LRET acceptors, demonstrated improved sensitivity, limit of detection, dynamic range and selectivity compared to similar assays that have used molecular fluorophores as acceptors. The selectivity of the assay was attributed to the decoration of the QDs with polyethylene glycol to eliminate non-specific adsorption. The kinetics of hybridization were determined to be diffusion limited and full signal development occurred within 3 min. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Cinnamic acid 4-hydroxylase of sorghum [Sorghum biocolor (L.) Moench] gene SbC4H1 restricts lignin synthesis in Arabidopsis

    Science.gov (United States)

    Cinnamic acid 4-hydroxylase (C4H) is the first hydroxylase enzyme of the phenylpropanoid pathway, and its content and activity affects the lignin synthesis. In this study, we isolated a C4H gene SbC4H1 from the suppression subtractive hybridization library of brown midrib (bmr) mutants of Sorghum b...

  12. Detoxification of aldehydes by histidine-containing dipeptides: from chemistry to clinical implications

    OpenAIRE

    Xie, Zhengzhi; Baba, Shahid P.; Sweeney, Brooke R.; Barski, Oleg A.

    2013-01-01

    Aldehydes are generated by oxidized lipids and carbohydrates at increased levels under conditions of metabolic imbalance and oxidative stress during atherosclerosis, myocardial and cerebral ischemia, diabetes, neurodegenerative diseases and trauma. In most tissues, aldehydes are detoxified by oxidoreductases that catalyze the oxidation or the reduction of aldehydes or enzymatic and nonenzymatic conjugation with low molecular weight thiols and amines, such as glutathione and histidine dipeptid...

  13. Application of heterocyclic aldehydes as components in Ugi–Smiles couplings

    Directory of Open Access Journals (Sweden)

    Katelynn M. Mason

    2016-09-01

    Full Text Available Efficient one-pot Ugi–Smiles couplings are reported for the use of furyl-substituted aldehyde components. In the presence of these heterocyclic aldehydes, reactions tolerated variations in amine components and led to either isolated N-arylamide Ugi–Smiles adducts or N-arylepoxyisoindolines, products of tandem Ugi–Smiles Diels–Alder cyclizations, in moderate yields. A thienyl-substituted aldehyde was also a competent component for Ugi–Smiles adduct formation.

  14. Research advances in the catalysts for the selective oxidation of ethane to aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; ZHAO Zhen; XU Chunming

    2005-01-01

    Selective oxidation of ethane to aldehydes is one of the most difficult processes in the catalysis researches of low alkanes. The development of selective oxidation of ethane to aldehydes (formaldehyde, acetaldehyde and acrolein) is discussed. The latest progress of the catalysts, including bulk or supported metal oxide catalysts, highly dispersed and isolated active sites catalysts, and the photo-catalytic ethane oxidation catalysts, partial oxidation of ethane in the gas phase, and the proposed reaction pathways from ethane to aldehydes are involved.

  15. Ni-Catalyzed Dehydrogenative Cross-Coupling: Direct Transformation of Aldehydes to Esters and Amides

    Science.gov (United States)

    Whittaker, Aaron M.; Dong, Vy M.

    2015-01-01

    By exploring a new mode of Ni-catalyzed cross-coupling, we have developed a protocol to transform both aromatic and aliphatic aldehydes into either esters or amides directly. The success of this oxidative coupling depends on the appropriate choice of catalyst and organic oxidant, including the use of either α,α,α-trifluoroacetophenone or excess aldehyde. We present mechanistic data that supports a catalytic cycle involving oxidative addition into the aldehyde C–H bond. PMID:25424967

  16. On the nature of the olefination reaction involving ditungsten hexaalkoxides and aldehydes or ketones

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, M.H.; Huffman, J.C.; Lucas, E.A.; Sousa, A.; Streib, W.E. [Indiana Univ., Bloomington, IN (United States)

    1992-03-25

    Reductive coupling of aldehydes and ketones to olefins under the action of ditungsten hexaalkoxides was investigated. In these reactions, reductive cleavage of the aldehyde or ketone carbonyl is followed by formation of the olefinic C-C bond and breaking of the carbonyl C-O bond of the second aldehyde or ketone. Observations concerning the initial C-O bond cleavage and subsequent C-C bond formation are presented. 10 refs., 4 figs.

  17. Ultrafast Photoinduced Electron Transfer in Bimolecular Donor-Acceptor Systems

    KAUST Repository

    Alsulami, Qana A.

    2016-11-30

    The efficiency of photoconversion systems, such as organic photovoltaic (OPV) cells, is largely controlled by a series of fundamental photophysical processes occurring at the interface before carrier collection. A profound understanding of ultrafast interfacial charge transfer (CT), charge separation (CS), and charge recombination (CR) is the key determinant to improving the overall performances of photovoltaic devices. The discussion in this dissertation primarily focuses on the relevant parameters that are involved in photon absorption, exciton separation, carrier transport, carrier recombination and carrier collection in organic photovoltaic devices. A combination of steady-state and femtosecond broadband transient spectroscopies was used to investigate the photoinduced charge carrier dynamics in various donor-acceptor systems. Furthermore, this study was extended to investigate some important factors that influence charge transfer in donor-acceptor systems, such as the morphology, energy band alignment, electronic properties and chemical structure. Interestingly, clear correlations among the steady-state measurements, time-resolved spectroscopy results, grain alignment of the electron transporting layer (ETL), carrier mobility, and device performance are found. In this thesis, we explored the significant impacts of ultrafast charge separation and charge recombination at donor/acceptor (D/A) interfaces on the performance of a conjugated polymer PTB7-Th device with three fullerene acceptors: PC71BM, PC61BM and IC60BA. Time-resolved laser spectroscopy and high-resolution electron microscopy can illustrate the basis for fabricating solar cell devices with improved performances. In addition, we studied the effects of the incorporation of heavy metals into π-conjugated chromophores on electron transfer by monitoring the triplet state lifetime of the oligomer using transient absorption spectroscopy, as understanding the mechanisms controlling intersystem crossing and

  18. Charge Carrier Dynamics at Silver Nanocluster-Molecular Acceptor Interfaces

    KAUST Repository

    Almansaf, Abdulkhaleq

    2017-07-01

    A fundamental understanding of interfacial charge transfer at donor-acceptor interfaces is very crucial as it is considered among the most important dynamical processes for optimizing performance in many light harvesting systems, including photovoltaics and photo-catalysis. In general, the photo-generated singlet excitons in photoactive materials exhibit very short lifetimes because of their dipole-allowed spin radiative decay and short diffusion lengths. In contrast, the radiative decay of triplet excitons is dipole forbidden; therefore, their lifetimes are considerably longer. The discussion in this thesis primarily focuses on the relevant parameters that are involved in charge separation (CS), charge transfer (CT), intersystem crossing (ISC) rate, triplet state lifetime, and carrier recombination (CR) at silver nanocluster (NCs) molecular-acceptors interfaces. A combination of steady-state and femto- and nanosecond broadband transient absorption spectroscopies were used to investigate the charge carrier dynamics in various donor-acceptor systems. Additionally, this thesis was prolonged to investigate some important factors that influence the charge carrier dynamics in Ag29 silver NCs donor-acceptor systems, such as the metal doping and chemical structure of the nanocluster and molecular acceptors. Interestingly, clear correlations between the steady-state measurements and timeresolved spectroscopy results are found. In the first study, we have investigated the interfacial charge transfer dynamics in positively charged meso units of 5, 10, 15, 20-tetra (1- methyl-4-pyridino)-porphyrin tetra (p-toluene sulfonate) (TMPyP) and neutral charged 5, 10, 15, 20-tetra (4-pyridyl)-porphyrin (TPyP), with negatively charged undoped and gold (Au)- doped silver Ag29 NCs. Moreover, this study showed the impact of Au doping on the charge carrier dynamics of the system. In the second study, we have investigated the interfacial charge transfer dynamics in [Pt2 Ag23 Cl7 (PPh3

  19. Aziridino Alcohols as Catalysts for the Enantioselective Addition of Diethylzinc to Aldehydes

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Kornø, Hanne Tøfting; Guijarro, David

    1998-01-01

    The chiral aziridino alcohols 1 -3 have been prepared either from amino acids (1a from serine; 1b - 1i and 3 from threonine; 2a - 2e from allo-threonine) or via asymmetric synthesis (1j, 1k, 1l and 2f from methyl cinnamate). These easily available ligands act as catalysts for the enantioselective...

  20. [Pollution Characteristics of Aldehydes and Ketones Compounds in the Exhaust of Beijing Typical Restaurants].

    Science.gov (United States)

    Cheng, Jing-chen; Cui, Tong; He, Wan-qing; Nie, Lei; Wang, Jun-ling; Pan, Tao

    2015-08-01

    Aldehydes and ketones compounds, as one of the components in the exhaust of restaurants, are a class of volatile organic compounds (VOCs) with strong chemical reactivity. However, there is no systematic study on aldehydes and ketones compounds in the exhaust of restaurants. To further clarify the food source emission levels of aldehydes and ketones compounds and controlling measures, to access city group catering VOCs emissions control decision-making basis, this study selected 8 Beijing restaurants with different types. The aldehydes and ketones compounds were sampled using DNPH-silica tube, and then ultra performance liquid chromatography was used for quantitative measurement. The aldehydes and ketones concentrations of reference volume condition from 8 restaurants in descending order were Roasted Duck restaurant, Chinese Style Barbecue, Home Dishes, Western Fast-food, School Canteen, Chinese Style Fast-food, Sichuan Cuisine, Huaiyang Cuisine. The results showed that the range of aldehydes and ketones compounds (C1-C9) concentrations of reference volume condition in the exhaust of restaurants was 115.47-1035.99 microg x m(-3). The composition of aldehydes and ketones compounds in the exhaust of sampled restaurants was obviously different. The percentages of C1-C3 were above 40% in the exhaust from Chinese style restaurants. Fast food might emit more C4-C9 aldehydes and ketones compounds. From the current situation of existing aldehydes and ketones compounds control, the removal efficiency of high voltage electrostatic purifiers widely used in Beijing is limited.

  1. The effect of intramolecular donor–acceptor moieties with donor–π-bridge–acceptor structure on the solar photovoltaic performance

    Directory of Open Access Journals (Sweden)

    T. L. Wang

    2015-10-01

    Full Text Available A series of intramolecular donor–acceptor polymers containing different contents of (E-1-(2-ethylhexyl-6,9-dioctyl-2-(2-(thiophen-3-ylvinyl-1H-phenanthro[9,10-d]imidazole (thiophene-DOPI moiety and 4,4-diethylhexylcyclopenta[ 2,1-b:3,4-b']dithiophene (CPDT unit was synthesized via Grignard metathesis (GRIM polymerization. The synthesized random copolymers and homopolymer of thiophene-DOPI contain the donor–π-bridge–acceptor conjugated structure to tune the absorption spectra and energy levels of the resultant polymers. UV-vis spectra of the three polymer films exhibit panchromatic absorptions ranging from 300 to 1100 nm and low band gaps from 1.38 to 1.51 eV. It is found that more thiophene-DOPI moieties result in the decrease of band gap and lower the highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO values of polymers. Photovoltaic performance results indicate that if the content of the intramolecular donor–acceptor moiety is high enough, the copolymer structure may be better than homopolymer due to more light-harvesting afforded by both monomer units.

  2. The role of deep acceptor centers in the oxidation of acceptor-doped wide-band-gap perovskites ABO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Putilov, L.P., E-mail: lev.putilov@gmail.com; Tsidilkovski, V.I.

    2017-03-15

    The impact of deep acceptor centers on defect thermodynamics and oxidation of wide-band-gap acceptor-doped perovskites without mixed-valence cations is studied. These deep centers are formed by the acceptor-bound small hole polarons whose stabilization energy can be high enough (significantly higher than the hole-acceptor Coulomb interaction energy). It is shown that the oxidation enthalpy ΔH{sub ox} of oxide is determined by the energy ε{sub A} of acceptor-bound states along with the formation energy E{sub V} of oxygen vacancies. The oxidation reaction is demonstrated to be either endothermic or exothermic, and the regions of ε{sub A} and E{sub V} values corresponding to the positive or negative ΔH{sub ox} are determined. The contribution of acceptor-bound holes to the defect thermodynamics strongly depends on the acceptor states depth ε{sub A}: it becomes negligible at ε{sub A} less than a certain value (at which the acceptor levels are still deep). With increasing ε{sub A}, the concentration of acceptor-bound small hole polarons can reach the values comparable to the dopant content. The results are illustrated with the acceptor-doped BaZrO{sub 3} as an example. It is shown that the experimental data on the bulk hole conductivity of barium zirconate can be described both in the band transport model and in the model of hopping small polarons localized on oxygen ions away from the acceptor centers. Depending on the ε{sub A} magnitude, the oxidation reaction can be either endothermic or exothermic for both mobility mechanisms.

  3. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    International Nuclear Information System (INIS)

    Phillips, T.K.; Clarke, S.M.; Bhinde, T.; Castro, M.A.; Millan, C.; Medina, S.

    2011-01-01

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C 7 , C 9 and C 11 ) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C 11 homologue is determined to have a plane group of either p2, pgb or pgg, and for the C 7 homologue the p2 plane group is preferred.

  4. Untersuchungen zum atmosphärenchemischen Abbau langkettiger Aldehyde

    OpenAIRE

    Plagens, Heike

    2001-01-01

    In dieser Arbeit wurden die bimolekularen Geschwindigkeitskonstanten für die Reaktionen von Hexanal, Heptanal, Oktanal und Nonanal mit OH and Cl Radikalen bei (298 ± 2) K und (1000 ± 20) mbar experimentell bestimmt. Ebenso wurde die Chlorgeschwindigkeitskonstante für Butanal gemessen. Die Werte sind (in Einheiten von cm3 Molekül-1 s-1) in Tabelle 1 zusammengefaßt. Tabelle 1: Aldehyde kOH kCl Butanal - (2,21 ± 0,16) · 10-10 Hexan...

  5. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus.

    Science.gov (United States)

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further studies are needed for introducing aldehyde dehydrogenase as a prognostic

  6. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus*

    Science.gov (United States)

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Background Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. Objective This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Method Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. Results The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. Limitations of the study This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. Conclusions The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further

  7. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins.

    Directory of Open Access Journals (Sweden)

    Stefano Varrella

    Full Text Available Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure.

  8. Radon and aldehyde concentrations in the indoor environment. Final report

    International Nuclear Information System (INIS)

    Moschandreas, D.J.; Rector, H.E.

    1981-04-01

    Findings regarding indoor air contaminants in the energy-efficient residence (EER) in Mt. Airy, Maryland are reported. The objectives of the study were to collect and analyze relevant air quality samples (specifically radon and aldehydes), characterize the indoor air quality with respect to radon and aldehydes, and develop relationships between air infiltration rates and contaminant levels. One-fifth of the measured formaldehyde concentrations were in the range that may cause health concerns. Although indoor temperature and relative humidity affect indoor HCHO concentration, the elevated formaldehyde concentrations were measured under very low air infiltration rates. The data show that ventilation of the indoor air space is somewhat effective in reducing high HCHO concentrations. The operation of the heat exchanger led to an increase of the air infiltration rate which in turn resulted in substantial reduction of formaldehyde concentrations. A considerable number of the collected samples of indoor air displayed radon concentrations at levels higher than 1.0 to 4.0 nCim -3 (assuming an equilibrium factor of 0.5, these radon levels would correspond to working levels above the health guidelines suggested by the US EPA for homes in Florida built on land reclaimed from phosphate mining). As in the case of indoor formaldehyde concentrations, elevated indoor concentrations are substantially reduced when the infiltration rate is increased. The data base shows that the use of the air to air heat exchanger leads to reduction of indoor radon concentration by increasing the residential ventilation rate

  9. Volatile aldehydes are promising broad-spectrum postharvest insecticides.

    Science.gov (United States)

    Hammond, D G; Rangel, S; Kubo, I

    2000-09-01

    A variety of naturally occurring aldehydes common in plants have been evaluated for their insecticidal activity and for phytotoxicity to postharvest fruits, vegetables, and grains. Twenty-nine compounds were initially screened for their activity against aphids on fava bean leaf disks. Application under reduced pressure (partial vacuum) for the first quarter of fumigation increased insecticidal activity severalfold. The 11 best aldehydes were assayed against aphids placed under the third leaf of whole heads of iceberg lettuce using the same two-tier reduced-pressure regime, which caused no additional detriment to the commodity over fumigation at atmospheric pressure. Phytotoxicity to naked and wrapped iceburg lettuce, green and red table grapes, lemon, grapefruit, orange, broccoli, avocado, cabbage, pinto bean, and rice at doses that killed 100% of aphids was recorded for three promising fumigants: propanal, (E)-2-pentenal, and 2-methyl-(E)-2-butenal. These three compounds have excellent potential as affordable postharvest insect control agents, killing 100% of the aphids with little or no detectable harm to a majority of the commodities tested. Preliminary assays indicate that similar doses are also effective against mealybugs, thrips, and whitefly.

  10. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.

    Science.gov (United States)

    Zhang, Jing; Xu, Wei; Sheng, Peng; Zhao, Guangyao; Zhu, Daoben

    2017-07-18

    Organic donor-acceptor (DA) complexes have attracted wide attention in recent decades, resulting in the rapid development of organic binary system electronics. The design and synthesis of organic DA complexes with a variety of component structures have mainly focused on metallicity (or even superconductivity), emission, or ferroelectricity studies. Further efforts have been made in high-performance electronic investigations. The chemical versatility of organic semiconductors provides DA complexes with a great number of possibilities for semiconducting applications. Organic DA complexes extend the semiconductor family and promote charge separation and transport in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). In OFETs, the organic complex serves as an active layer across extraordinary charge pathways, ensuring the efficient transport of induced charges. Although an increasing number of organic semiconductors have been reported to exhibit good p- or n-type properties (mobilities higher than 1 or even 10 cm 2 V -1 s -1 ), critical scientific challenges remain in utilizing the advantages of existing semiconductor materials for more and wider applications while maintaining less complicated synthetic or device fabrication processes. DA complex materials have revealed new insight: their unique molecular packing and structure-property relationships. The combination of donors and acceptors could offer practical advantages compared with their unimolecular materials. First, growing crystals of DA complexes with densely packed structures will reduce impurities and traps from the self-assembly process. Second, complexes based on the original structural components could form superior mixture stacking, which can facilitate charge transport depending on the driving force in the coassembly process. Third, the effective use of organic semiconductors can lead to tunable band structures, allowing the operation mode (p- or n-type) of the transistor to be

  11. Electrolytic formation of technetium complexes with π-acceptor ligands

    International Nuclear Information System (INIS)

    Cerda, F.; Kremer, C.; Gambino, D.; Kremer, E.

    1994-01-01

    Electrolytic reduction of pertechnetate was performed in aqueous solution containing π-acceptor ligands. Cyanide and 1,10-phenanthroline were the selected ligands. In both cases, electrolyses produced a cathodic TcO 2 deposit and soluble Tc complexes. When cyanide was the ligand, the complexes formed were [Tc(CN) 6 ] 5- and [TcO 2 (CN) 4 ] 3- . When working with the amine, [Tc(phen) 3 ] 2+ and another positively charged species were found after reaction. Results are compared with previous studies with amines, and the usefulness of the electrolytic route to obtain Tc complexes is evaluated. (author) 11 refs.; 2 figs.; 1 tab

  12. Acceptors in ZnO nanocrystals: A reinterpretation

    Science.gov (United States)

    Gehlhoff, W.; Hoffmann, A.

    2012-12-01

    In a recent article, Teklemichael et al. reported on the identification of an uncompensated acceptor in ZnO nanocrystals using infrared spectroscopy and electron paramagnetic resonance (EPR) in the dark and under illumination. Most of their conclusions, interpretations, and suggestions turned out to be erroneous. The observed EPR signals were interpreted to originate from axial and nonaxial VZn-H defects. We show that the given interpretation of the EPR results is based on misinterpretations of EPR spectra arising from defects in nanocrystals. The explanation of the infrared absorption lines is in conflict with recent results of valence band ordering and valence band splitting.

  13. Studying fatty aldehyde metabolism in living cells with pyrene-labeled compounds

    NARCIS (Netherlands)

    Keller, Markus A.; Watschinger, Katrin; Lange, Karsten; Golderer, Georg; Werner-Felmayer, Gabriele; Hermetter, Albin; Wanders, Ronald J. A.; Werner, Ernst R.

    2012-01-01

    The lack of fatty aldehyde dehydrogenase function in Sjogren Larsson Syndrome (SLS) patient cells not only impairs the conversion of fatty aldehydes into their corresponding fatty acid but also has an effect on connected pathways. Alteration of the lipid profile in these cells is thought to be

  14. Effect of whey protein on the In Vivo Release of Aldehydes.

    NARCIS (Netherlands)

    Weel, K.G.C.; Boelrijk, A.E.M.; Burger, J.J.; Claassen, N.E.; Gruppen, H.; Voragen, A.G.J.

    2003-01-01

    Retention of aldehydes by whey proteins in solutions buffered at a range of pH values was studied under static and dynamic headspace conditions and in vivo in exhaled air. Static headspace measurements showed a clear increase in retention in the presence of whey proteins for aldehydes with longer

  15. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7

    Czech Academy of Sciences Publication Activity Database

    Končitíková, R.; Vigouroux, A.; Kopečná, M.; Andree, T.; Bartoš, Jan; Šebela, M.; Moréra, S.; Kopečný, D.

    2015-01-01

    Roč. 468, Part: 1 (2015), s. 109-123 ISSN 0264-6021 R&D Projects: GA ČR GA15-22322S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : aldehyde dehydrogenase 2 (ALDH2) * aldehyde dehydrogenase 7 (ALDH7) * benzaldehyde Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.562, year: 2015

  16. Direct chemoselective synthesis of glyconanoparticles from unprotected reducing glycans and glycopeptide aldehydes

    DEFF Research Database (Denmark)

    Thygesen, Mikkel Boas; Sørensen, Kasper Kildegaard; Cló, Emiliano

    2009-01-01

    Chemoselective oxime coupling was used for facile conjugation of unprotected, reducing glycans and glycopeptide aldehydes with core-shell gold nanoparticles carrying reactive aminooxy groups on the organic shell.......Chemoselective oxime coupling was used for facile conjugation of unprotected, reducing glycans and glycopeptide aldehydes with core-shell gold nanoparticles carrying reactive aminooxy groups on the organic shell....

  17. Effects of cooking method, cooking oil, and food type on aldehyde emissions in cooking oil fumes.

    Science.gov (United States)

    Peng, Chiung-Yu; Lan, Cheng-Hang; Lin, Pei-Chen; Kuo, Yi-Chun

    2017-02-15

    Cooking oil fumes (COFs) contain a mixture of chemicals. Of all chemicals, aldehydes draw a great attention since several of them are considered carcinogenic and formation of long-chain aldehydes is related to fatty acids in cooking oils. The objectives of this research were to compare aldehyde compositions and concentrations in COFs produced by different cooking oils, cooking methods, and food types and to suggest better cooking practices. This study compared aldehydes in COFs produced using four cooking oils (palm oil, rapeseed oil, sunflower oil, and soybean oil), three cooking methods (stir frying, pan frying, and deep frying), and two foods (potato and pork loin) in a typical kitchen. Results showed the highest total aldehyde emissions in cooking methods were produced by deep frying, followed by pan frying then by stir frying. Sunflower oil had the highest emissions of total aldehydes, regardless of cooking method and food type whereas rapeseed oil and palm oil had relatively lower emissions. This study suggests that using gentle cooking methods (e.g., stir frying) and using oils low in unsaturated fatty acids (e.g., palm oil or rapeseed oil) can reduce the production of aldehydes in COFs, especially long-chain aldehydes such as hexanal and t,t-2,4-DDE. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Perylene-Diimide Based Donor-Acceptor-Donor Type Small-Molecule Acceptors for Solution-Processable Organic Solar Cells

    Science.gov (United States)

    Ganesamoorthy, Ramasamy; Vijayaraghavan, Rajagopalan; Sakthivel, Pachagounder

    2017-12-01

    Development of nonfullerene acceptors plays an important role in the commercial availability of plastic solar cells. We report herein synthesis of bay-substituted donor-acceptor-donor (D-A-D)-type perylene diimide (PDI)-based small molecules (SM-1 to SM-4) by Suzuki coupling method and their use as acceptors in bulk heterojunction organic solar cells (BHJ-OSCs) with poly(3-hexylthiophene) (P3HT) polymer donor. We varied the number of electron-rich thiophene units and the solubilizing side chains and also evaluated the optical and electrochemical properties of the small molecules. The synthesized small molecules were confirmed by Fourier-transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and high-resolution mass spectroscopy (HR-MS). The small molecules showed extensive and strong absorption in the ultraviolet-visible (UV-Vis) region up to 750 nm, with bandgap (E_{{g}}^{{opt}} ) reduced below use as electron-accepting materials. The small molecules showed good thermal stability up to 300°C. BHJ-OSCs with SM-1 and P3HT polymer donor showed maximum power conversion efficiency (PCE) of 0.19% with V oc of 0.30 V, J sc of 1.72 mA cm-2, and fill factor (FF) of 37%. The PCE decreased with the number of thiophene units. The PCE of SM-2 was lower than that of SM-1. This difference in PCE can be explained by the higher aggregation tendency of the bithiophene compared with the thiophene unit. Introduction of the solubilizing group in the bay position increased the aggregation property, leading to much lower PCE than for the small molecules without solubilizing group.

  19. Progress in ZnO Acceptor Doping: What Is the Best Strategy?

    Directory of Open Access Journals (Sweden)

    Judith G. Reynolds

    2014-01-01

    Full Text Available This paper reviews the recent progress in acceptor doping of ZnO that has been achieved with a focus toward the optimum strategy. There are three main approaches for generating p-type ZnO: substitutional group IA elements on a zinc site, codoping of donors and acceptors, and substitution of group VA elements on an oxygen site. The relevant issues are whether there is sufficient incorporation of the appropriate dopant impurity species, does it reside on the appropriate lattice site, and lastly whether the acceptor ionization energy is sufficiently small to enable significant p-type conduction at room temperature. The potential of nitrogen doping and formation of the appropriate acceptor complexes is highlighted although theoretical calculations predict that nitrogen on an oxygen site is a deep acceptor. We show that an understanding of the growth and annealing steps to achieve the relevant acceptor defect complexes is crucial to meet requirements.

  20. Phosphorus acceptor doped ZnO nanowires prepared by pulsed-laser deposition

    International Nuclear Information System (INIS)

    Cao, B Q; Lorenz, M; Rahm, A; Wenckstern, H von; Czekalla, C; Lenzner, J; Benndorf, G; Grundmann, M

    2007-01-01

    Phosphorus-doped ZnO (ZnO:P) nanowires were successfully prepared by a novel high-pressure pulsed-laser deposition process using phosphorus pentoxide as the dopant source. Detailed cathodoluminescence studies of single ZnO:P nanowires revealed characteristic phosphorus acceptor-related peaks: neutral acceptor-bound exciton emission (A 0 , X, 3.356 eV), free-to-neutral-acceptor emission (e, A 0 , 3.314 eV), and donor-to-acceptor pair emission (DAP, ∼3.24 and ∼3.04 eV). This means that stable acceptor levels with a binding energy of about 122 meV have been induced in the nanowires by phosphorus doping. Moreover, the induced acceptors are distributed homogeneously along the doped nanowires

  1. Influence of acceptor on charge mobility in stacked π-conjugated polymers

    Science.gov (United States)

    Sun, Shih-Jye; Menšík, Miroslav; Toman, Petr; Gagliardi, Alessio; Král, Karel

    2018-02-01

    We present a quantum molecular model to calculate mobility of π-stacked P3HT polymer layers with electron acceptor dopants coupled next to side groups in random position with respect to the linear chain. The hole density, the acceptor LUMO energy and the hybridization transfer integral between the acceptor and polymer were found to be very critical factors to the final hole mobility. For a dopant LUMO energy close and high above the top of the polymer valence band we have found a significant mobility increase with the hole concentration and with the dopant LUMO energy approaching the top of the polymer valence band. Higher mobility was achieved for small values of hybridization transfer integral between polymer and the acceptor, corresponding to the case of weakly bound acceptor. Strong couplings between the polymer and the acceptor with Coulomb repulsion interactions induced from the electron localizations was found to suppress the hole mobility.

  2. Some experiments on the primary electron acceptor in reaction centres from Rhodopseudomanas sphaeroides

    Energy Technology Data Exchange (ETDEWEB)

    Wraight, C A; Cogdell, R J; Clayton, R K

    1975-01-01

    The bacterial reaction center absorbance change at 450 nm (A-450), assigned to an anionic semiquinone, has been suggested as a candidate for the reduced form of the primary electron acceptor in bacterial photosynthesis. In reaction centers of Rhodopseudomonas sphaeroides we have found kinetic discrepancies between the decay of A-450 and the recovery of photochemical competence. In addition, no proton uptake is measurable on the first turnover, although subsequent ones elicit one proton bound per electron. These results are taken to indicate that the acceptor reaction after a long dark period may be different for the first turnover than for subsequent ones. It is suggested that A-450 is still a likely candidate for the acceptor function but that in reaction centers, additional quinone may act as an adventitious primary acceptor when the ''true'' primary acceptor is reduced. Alternatively, the primary acceptor may act in a ''ping-pong'' fashion with respect to subsequent photoelectrons.

  3. Deactivation of group III acceptors in silicon during keV electron irradiation

    International Nuclear Information System (INIS)

    Sah, C.; Sun, J.Y.; Tzou, J.J.; Pan, S.C.

    1983-01-01

    Experimental results on p-Si metal-oxide-semiconductor capacitors (MOSC's) are presented which demonstrate the electrical deactivation of the acceptor dopant impurity during 8-keV electron irradiation not only in boron but also aluminum and indium-doped silicon. The deactivation rates of the acceptors during the 8-keV electron irradiation are nearly independent of the acceptor impurity type. The final density of the remaining active acceptor approaches nonzero values N/sub infinity/, with N/sub infinity/(B) Al--H>In-H. These deactivation results are consistent with our hydrogen bond model. The thermal annealing or regeneration rate of the deactivated acceptors in the MOSC's irradiated by 8-keV electron is much smaller than that in the MOSC's that have undergone avalanche electron injection, indicating that the keV electron irradiation gives rise to stronger hydrogen-acceptor bond

  4. Absorption from Neutral Acceptors in GaAs and GaP

    DEFF Research Database (Denmark)

    Christensen, Ove

    1973-01-01

    We present a new calculation of the absorption due to transitions of holes between neutral acceptors and the various valence-band sublevels in GaAs and GaP. The acceptor wave function was approximated by a previously suggested expression for ground-state wave functions appropriate to complicated...... band extrema. Numerical calculations of the absorption from intervalence-band transitions of free holes and neutral acceptors have been performed. Good agreement with experimental results is obtained....

  5. Electron impact ionization of cycloalkanes, aldehydes, and ketones

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Dhanoj; Antony, Bobby, E-mail: bka.ism@gmail.com [Department of Applied Physics, Indian School of Mines, Dhanbad, JH 826 004 (India)

    2014-08-07

    The theoretical calculations of electron impact total ionization cross section for cycloalkane, aldehyde, and ketone group molecules are undertaken from ionization threshold to 2 keV. The present calculations are based on the spherical complex optical potential formalism and complex scattering potential ionization contribution method. The results of most of the targets studied compare fairly well with the recent measurements, wherever available and the cross sections for many targets are predicted for the first time. The correlation between the peak of ionization cross sections with number of target electrons and target parameters is also reported. It was found that the cross sections at their maximum depend linearly with the number of target electrons and with other target parameters, confirming the consistency of the values reported here.

  6. The Arabidopsis aldehyde oxidase 3 (AA03) gene product catalyzes the final step in abscisic acid biosynthesis in leaves

    NARCIS (Netherlands)

    Seo, M.; Peeters, A.J.M.; Koiwai, H.; Oritani, T.; Marion-Poll, A.; Zeevaart, J.A.D.; Koornneef, M.; Kamiya, Y.; Koshiba, T.

    2000-01-01

    Abscisic acid (ABA) is a plant hormone involved in seed development and germination and in responses to various environmental stresses. The last step of ABA biosynthesis involves oxidation of abscisic aldehyde, and aldehyde oxidase (EC 1.2.3.1) is thought to catalyze this reaction. An aldehyde

  7. Kinetic Studies on the Oxidation of Some para and meta-Substituted Cinnamic Acids by Pyridinium Bromochromate in the Presence of Oxalic Acid (A Co-oxidation Study

    Directory of Open Access Journals (Sweden)

    G. Vanangamudi

    2009-01-01

    Full Text Available The kinetics of oxidation of cinnamic acids by pyridinium bromochromate (PBC in the presence of oxalic acid has been studied in acetic acid-water (60:40% medium. The reaction shows unit order dependence each with respect to oxidant as well as oxalic acid [OX], the order with respect to [H+] and [CA] are fractional. The reaction is acid catalyzed and a low dielectric constant favours the reaction. Increase the ionic strength has no effect on the reaction rate. In the case of substituted cinnamic acids the order with respect to substrate vary depending upon the nature of the substituent present in the ring. In general, the electron withdrawing substituents retard the rate while the electron releasing substituents enhance the rate of reaction. From the kinetic data obtained the activation parameters have been computed and a suitable mechanism has been proposed.

  8. Synthesis of Amide and Ester Derivatives of Cinnamic Acid and Its Analogs: Evaluation of Their Free Radical Scavenging and Monoamine Oxidase and Cholinesterase Inhibitory Activities.

    Science.gov (United States)

    Takao, Koichi; Toda, Kazuhiro; Saito, Takayuki; Sugita, Yoshiaki

    2017-01-01

    A series of cinnamic acid derivatives, amides (1-12) and esters (13-22), were synthesized, and structure-activity relationships for antioxidant activity, and monoamine oxidases (MAO) A and B, acetylcholinesterase, and butyrylcholinesterase (BChE) inhibitory activities were analyzed. Among the synthesized compounds, compounds 1-10, 12-18, and rosmarinic acid (23), which contained catechol, o-methoxyphenol or 5-hydroxyindole moieties, showed potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. Compounds 9-11, 15, 17-22 showed potent and selective MAO-B inhibitory activity. Compound 20 was the most potent inhibitor of MAO-B. Compounds 18 and 21 showed moderate BChE inhibitory activity. In addition, compound 18 showed potent antioxidant activity and MAO-B inhibitory activity. In a comparison of the cinnamic acid amides and esters, the amides exhibited more potent DPPH free radical scavenging activity, while the esters showed stronger inhibitory activities against MAO-B and BChE. These results suggested that cinnamic acid derivatives such as compound 18, p-coumaric acid 3,4-dihydroxyphenethyl ester, and compound 20, p-coumaric acid phenethyl ester, may serve as lead compounds for the development of novel MAO-B inhibitors and candidate lead compounds for the prevention or treatment of Alzheimer's disease.

  9. Modeling Alkyl p-Methoxy Cinnamate (APMC) as UV absorber based on electronic transition using semiempirical quantum mechanics ZINDO/s calculation

    Science.gov (United States)

    Salmahaminati; Azis, Muhlas Abdul; Purwiandono, Gani; Arsyik Kurniawan, Muhammad; Rubiyanto, Dwiarso; Darmawan, Arif

    2017-11-01

    In this research, modeling several alkyl p-methoxy cinnamate (APMC) based on electronic transition by using semiempirical mechanical quantum ZINDO/s calculation is performed. Alkyl cinnamates of C1 (methyl) up to C7 (heptyl) homolog with 1-5 example structures of each homolog are used as materials. Quantum chemistry-package software Hyperchem 8.0 is used to simulate the drawing of the structure, geometry optimization by a semiempirical Austin Model 1 algorithm and single point calculation employing a semiempirical ZINDO/s technique. ZINDO/s calculations use a defined criteria that singly excited -Configuration Interaction (CI) where a gap of HOMO-LUMO energy transition and maximum degeneracy level are 7 and 2, respectively. Moreover, analysis of the theoretical spectra is focused on the UV-B (290-320 nm) and UV-C (200-290 nm) area. The results show that modeling of the compound can be used to predict the type of UV protection activity depends on the electronic transition in the UV area. Modification of the alkyl homolog relatively does not change the value of wavelength absorption to indicate the UV protection activity. Alkyl cinnamate compounds are predicted as UV-B and UV-C sunscreen.

  10. Different specificities of two aldehyde dehydrogenases from Saccharomyces cerevisiae var. boulardii.

    Science.gov (United States)

    Datta, Suprama; Annapure, Uday S; Timson, David J

    2017-04-30

    Aldehyde dehydrogenases play crucial roles in the detoxification of exogenous and endogenous aldehydes by catalysing their oxidation to carboxylic acid counterparts. The present study reports characterization of two such isoenzymes from the yeast Saccharomyces cerevisiae var. boulardii (NCYC 3264), one mitochondrial (Ald4p) and one cytosolic (Ald6p). Both Ald4p and Ald6p were oligomeric in solution and demonstrated positive kinetic cooperativity towards aldehyde substrates. Wild-type Ald6p showed activity only with aliphatic aldehydes. Ald4p, on the contrary, showed activity with benzaldehyde along with a limited range of aliphatic aldehydes. Inspection of modelled structure of Ald6p revealed that a bulky amino acid residue (Met 177 , compared with the equivalent residue Leu 196 in Ald4p) might cause steric hindrance of cyclic substrates. Therefore, we hypothesized that specificities of the two isoenzymes towards aldehyde substrates were partly driven by steric hindrance in the active site. A variant of wild-type Ald6p with the Met 177 residue replaced by a valine was also characterized to address to the hypothesis. It showed an increased specificity range and a gain of activity towards cyclohexanecarboxaldehyde. It also demonstrated an increased thermal stability when compared with both the wild-types. These data suggest that steric bulk in the active site of yeast aldehyde dehydrogenases is partially responsible for controlling specificity. © 2017 The Author(s).

  11. Recent advances in photoinduced donor/acceptor copolymerization

    International Nuclear Information System (INIS)

    Joensson, S.; Viswanathan, K.; Hoyle, C.E.; Clark, S.C.; Miller, C.; Morel, F.; Decker, C.

    1999-01-01

    Photoinitiated free radical polymerization of donor (D)/acceptor (A) type monomers has gained considerable interest due to the possibility to efficiently photopolymerize non-acrylate based systems. Furthermore, this photoinduced alternating copolymerization can be accomplished without the presence of a conventional free radical generating photoinitiator. In the past, we have shown that the structural influences in the direct photolysis of N-Alkyl and N-Arylmaleimides as well as their corresponding ground state charge transfer complexes (CTC) with suitable donors have carefully been investigated. For certain combinations of A and D type monomers, a direct photolysis of the ground state complex or the excitation of the acceptor, followed by the formation of an exciplex, has been shown to initiate the copolymerization. Herein, we show that the main route of initiation is based on inter or intra molecular H-abstraction from an excited state maleimide, whereby no exciplex formation takes place. H-abstraction will predominantly take place in systems where easily abstractable hydrogens are present. Our laser flash photolysis investigation, ESR (A. Hiroshi, I. Takasi, T. Nosi, Macromol. Chem. 190 (1989) 2821) and phosphorescence emissions (K.S. Chen, T. Foster, J.K.S. Wan, J. Phys. Chem. 84 (1980) 2473; C.J. Seliskar, S.P. McGlynn, J. Chem. Phys. 55 (1971) 4337) studies show that triplet excited states of N-alkyl substituted maleimides (RMI), which are well known strong precursors for direct H-abstractions from aliphatic ethers and secondary alcohols, are formed upon excitation. Rates of copolymerization and degrees of conversion for copolymerization of maleimide/vinyl ether pairs in air and nitrogen have been measured as a function of hydrogen abstractability of the excited triplet state MI as well as the influence of concentration and hydrogen donating effect of the hydrogen donor

  12. Electrodes as Terminal Electron Acceptors in Anaerobic Ammonium Oxidation

    Science.gov (United States)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2017-12-01

    Anaerobic ammonium (NH4+) oxidation under iron (Fe) reducing conditions is a microbial- mediated process known as Feammox. This is a novel pathway in the nitrogen cycle, and a key process for alleviating NH4+ accumulation in anoxic soils, wetlands, and wastewater. Acidimicrobiaceae-bacterium A6, phylum Actinobacteria, are one type of autotrophic bacteria linked to this process. The Feammox-bacteria obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, iron oxides are the TEAs. However, in this study we show that electrodes in Microbial Electrolysis Cells (MECs) or electrodes set in the field can be used as TEAs by Feammox-bacteria. The potential difference between electrodes is the driving force for electron transfer, making the reaction energetically feasible. Our results show that MECs containing Feammox cultures can remove NH4+ up to 3.5 mg/L in less than 4 hours, compared to an average of 9 mg/L in 2 weeks when cultured under traditional conditions. Concomitantly, MECs produce an average current of 30.5 A/m3 whilst dead bacteria produced low (Actinobacteria when compared to bulk soil. Electrodes as TEAs enhance electrogenic bacteria recovery and culturing. The use of MECs for the productions of Feammox-bacteria eliminates the dependence of Fe, a finite electron acceptor, therefore, allowing for continuous NH4+ removal. Finally, Fe-free Feammox-bacteria can be applied to reduce other metals of environmental concern; therefore, opening the range of possible application of Feammox-bacteria.

  13. Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Brochen, Stéphane; Brault, Julien; Chenot, Sébastien; Dussaigne, Amélie; Leroux, Mathieu; Damilano, Benjamin

    2013-01-01

    Hall effect and capacitance-voltage C(V) measurements were performed on p-type GaN:Mg layers grown on GaN templates by molecular beam epitaxy with a high range of Mg-doping concentrations. The free hole density and the effective dopant concentration N A −N D as a function of magnesium incorporation measured by secondary ion mass spectroscopy clearly reveal both a magnesium doping efficiency up to 90% and a strong dependence of the acceptor ionization energy Ea with the acceptor concentration N A . These experimental observations highlight an isolated acceptor binding energy of 245±25 meV compatible, at high acceptor concentration, with the achievement of p-type GaN:Mg layers with a hole concentration at room temperature close to 10 19 cm −3

  14. Preparation of 3,5-disubstituted pyrazoles and isoxazoles from terminal alkynes, aldehydes, hydrazines, and hydroxylamine.

    Science.gov (United States)

    Harigae, Ryo; Moriyama, Katsuhiko; Togo, Hideo

    2014-03-07

    The reaction of terminal alkynes with n-BuLi, and then with aldehydes, followed by the treatment with molecular iodine, and subsequently hydrazines or hydroxylamine provided the corresponding 3,5-disubstituted pyrazoles or isoxazoles in good yields with high regioselectivity, through the formations of propargyl secondary alkoxides and α-alkynyl ketones. The present reactions are one-pot preparation of 3,5-disubstituted pyrazoles from terminal alkynes, aldehydes, molecular iodine, and hydrazines, and 3,5-disubstituted isoxazoles from terminal alkynes, aldehydes, molecular iodine, and hydroxylamine.

  15. Mechanism of catalytic action of oxide systems in reactions of aldehyde oxidation to carboxylic acids

    International Nuclear Information System (INIS)

    Andrushkevich, T.V.

    1997-01-01

    Mechanism of selective action of oxide catalysts (on the base of V 2 O 4 , MoO 3 ) of aldehyde oxidation to acids is considered, reaction acrolein oxidation to acrylic acid is taken as an example. Multistage mechanism of the process is established; it involves consequent transformation of coordination-bonded aldehyde into carbonyl-bonded aldehyde and symmetric carboxylate. Principles of active surface construction are formulated, they take into account the activity of stabilization center of concrete intermediate compound and bond energy of oxygen with surface. (author)

  16. An Efficient Synthesis of 2-Substituted Benzimidazoles via Photocatalytic Condensation of o-Phenylenediamines and Aldehydes.

    Science.gov (United States)

    Kovvuri, Jeshma; Nagaraju, Burri; Kamal, Ahmed; Srivastava, Ajay K

    2016-10-10

    A photocatalytic method has been developed for the efficient synthesis of functionalized benzimidazoles. This protocol involves photocatalytic condensation of o-phenylenediamines with various aldehydes using the Rose Bengal as photocatalyst. The method was found to be general and was successfully employed for accessing pharmaceutically important benzimidazoles by the condensation of aromatic, heteroaromatic and aliphatic aldehydes with o-phenylenediamines, in good-to-excellent yields. Notably, the method was found to be effective for the condensation of less reactive heterocyclic aldehydes with o-phenylenediamines.

  17. An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor

    KAUST Repository

    Cha, Hyojung; Wu, Jiaying; Wadsworth, Andrew; Nagitta, Jade; Limbu, Saurav; Pont, Sebastian; Li, Zhe; Searle, Justin; Wyatt, Mark F.; Baran, Derya; Kim, Ji-Seon; McCulloch, Iain; Durrant, James R.

    2017-01-01

    polymer blended with either the nonfullerene acceptor EH-IDTBR or the fullerene derivative, [6,6]-phenyl C71 butyric acid methyl ester (PC71 BM) as electron acceptors is reported. Inverted PffBT4T-2OD:EH-IDTBR blend solar cell fabricated without any

  18. Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers

    NARCIS (Netherlands)

    Mullekom, van H.A.M.; Vekemans, J.A.J.M.; Havinga, E.E.; Meijer, E.W.

    2001-01-01

    This paper reviews the tools to manipulate and minimize the band gap of conjugated (co)polymers. The effects of minimization of the bond length alternation and of the incorporation of donor-K-acceptor units are discussed in particular. A systematic study of a series of alternating donor-acceptor

  19. Conformational dynamics of semiflexibly bridged electron donor-acceptor systems comprising long aliphatic tails

    NARCIS (Netherlands)

    Bleisteiner, B.; Marian, T.; Schneider, S.; Brouwer, A.M.; Verhoeven, J.W.

    2001-01-01

    In continuation of our previous work on the conformational dynamics (harpooning mechanism) of semiflexibly bridged electron donor-acceptor systems we have studied a derivative with two long aliphatic chains tethered to the donor and acceptor moieties, respectively. The fitting of the time- and

  20. New donor-acceptor-donor molecules based on quinoline acceptor unit with Schiff base bridge: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kotowicz, Sonia [Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice (Poland); Siwy, Mariola [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland); Filapek, Michal; Malecki, Jan G. [Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice (Poland); Smolarek, Karolina; Grzelak, Justyna; Mackowski, Sebastian [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100 Torun (Poland); Slodek, Aneta, E-mail: aneta.slodek@us.edu.pl [Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice (Poland); Schab-Balcerzak, Ewa, E-mail: ewa.schab-balcerzak@us.edu.pl [Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice (Poland); Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland)

    2017-03-15

    Three solution-processable small organic molecules bearing quinoline as electron-accepting moiety were synthesized via condensation reaction of novel 6-amino-2-(2,2’-bithiophen-5-yl)-4-phenylquinoline with 2,2’-bithiophene-5-carboxaldehyde, 9-ethyl-9H-carbazole-3-carbaldehyde and 9-phenanthrenecarboxaldehyde. The presence of alternating electron-donating and accepting units results in a donor-acceptor-donor architecture of these molecular systems. Thermal, photophysical, and electrochemical properties of these small molecules were examined and the experimental results were supported by the density functional theory calculations. The obtained molecular systems exhibited high thermal stability with decomposition temperatures (5% weight loss) exceeding 330 °C in nitrogen atmosphere. It was found, based on DSC measurements, that investigated Schiff bases form amorphous material with glass transition temperatures between 88 and 190 °C. They also showed a UV–vis absorption in the range of 250–500 nm both in solution and in solid state as film and blend with PMMA and PVK. Photoluminescence measurements revealed moderately strong blue-light emission of the imines in solution as well as in PMMA blend with quantum yields in the range of 2–26%. In the case of imines dispersed in PVK matrix the emission of green light was mainly observed. In addition, when mixed with plasmonically active silver nanowires, the compounds exhibit relatively strong electroluminescence signal, associated with plasmonics enhancement, as evidenced by high-resolution photoluminescence imaging. The energy band gap estimated based on cyclic voltammetry was between 2.38 and 2.61 eV. - Highlights: • New Schiff bases possess donor-acceptor-imine-bridge-donor architecture were synthesized and examined. • Thorough characterization of optical and electrochemical properties of novel Schiff bases has been carried out. • Optical and electrochemical measurements were compared with DFT

  1. Effective synthesis of magnetic porous molecularly imprinted polymers for efficient and selective extraction of cinnamic acid from apple juices.

    Science.gov (United States)

    Shi, Shuyun; Fan, Dengxin; Xiang, Haiyan; Li, Huan

    2017-12-15

    An effective strategy was proposed to prepare novel magnetic porous molecularly imprinted polymers (MPMIPs) for highly selective extraction of cinnamic acid (CMA) from complex matrices. Characterization and various parameters affecting adsorption and desorption behaviors were investigated. Results revealed adsorption behavior between CMA and MPMIPs followed Freundlich equation adsorption isotherm with a maximum adsorption capacity at 4.35mg/g and pseudo-second-order reaction kinetics with equilibrium time at 60min. Subsequently, MPMIPs were successfully used to selectively extract CMA from apple juice with a relatively satisfactory recovery (92.7-101.4%). Coupling with high-performance liquid chromatography and ultraviolet detection (HPLC-UV), the limit of detection (LOD) for CMA was 0.006µg/mL, and the linear range (0.02-10μg/mL) was wide with correlation coefficient at 0.9995. Finally, the contents of CMA in two kinds of apple juices were determined as 0.132 and 0.120μg/mL. Results indicated the superiority of MPMIPs in the selective extraction field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Synthesis and characterization of Zn-Ti layered double hydroxide intercalated with cinnamic acid for cosmetic application

    Science.gov (United States)

    Li, Yong; Tang, Liping; Ma, Xinxu; Wang, Xinrui; Zhou, Wei; Bai, Dongsheng

    2017-08-01

    The use of sunscreen is recently growing and their efficacy and safety must be taken into account since they are applied on the skin frequently. In this work, an organic ultraviolet (UV) ray absorbent, cinnamic acid (CA) was intercalated into Zn-Ti layered double hydroxide (LDH) by anion-exchange reaction. ZnTi-CA-LDH, a new type of host-guest UV-blocking material has been synthesized. Detailed structural and surface morphology of ZnTi-CA-LDH were characterized by XRD, FT-IR, SEM and TEM. ZnTi-CA-LDH exhibits a superior UV blocking ability compared to pure CA and ZnTi-CO3-LDH. The thermal stability of the intercalated ZnTi-CA-LDH was investigated by TG-DTA, which showed that the thermostability of CA was markedly enhanced after intercalation into ZnTi-CO3-LDH. The EPR data showed greatly decreased photocatalytic activity compared to common inorganic UV blocking agents TiO2 and ZnO. Furthermore, the sample was formulated in a sunscreen cream to study the matrix protective effect towards UV rays.

  3. Gold nanoparticles tethered cinnamic acid: preparation, characterization, and cytotoxic effects on MCF-7 breast cancer cell lines

    Science.gov (United States)

    Subramanian, Karthika; Ponnuchamy, Kumar

    2018-04-01

    The main objective of the study is to tether citrate-stabilized gold nanoparticles (CS©GNPs) with cinnamic acid (CA) and evaluating them against MCF-7 breast cancer cells. To achieve CA CS©GNPs, CS©GNPs prepared were blended with CA under controlled experimental conditions followed by high-throughput characterization. The result from the study demonstrates that positively charged hydrogen moiety present in O-H group of CA provides an opportunity for binding of CS©GNPs via hydrogen bonding evidenced by color change (ruby to light purple) and spectroscopic analysis (UV-visible and FT-IR spectroscopy). The size and shape of CA CS©GNPs were not the same as CS©GNPs substantiated by transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements. At the end, cytotoxic and morphological assessment against MCF-7 breast cancer cells shows effective suppression of tumor cells and thereby promoting them as promising nanoscale drug delivery system in near future.

  4. Aldehyde-sequestering drugs: tools for studying protein damage by lipid peroxidation products.

    Science.gov (United States)

    Burcham, Philip C; Kaminskas, Lisa M; Fontaine, Frank R; Petersen, Dennis R; Pyke, Simon M

    2002-12-27

    Elevated levels of reactive alpha,beta-unsaturated aldehydes (e.g. malondialdehyde, 4-hydroxynonenal and acrolein) in the affected tissues of various degenerative conditions suggest these substances are active propagators of the disease process. One experimental approach to attenuating damage by these intermediates employs 'aldehyde-sequestering drugs' as sacrificial nucleophiles, thereby sparing cell macromolecules and perhaps slowing disease progression. Drugs with demonstrated trapping activity toward lipid-derived aldehydes include various amine compounds such as aminoguanidine, carnosine and pyridoxamine. We have focused on identifying scavengers of acrolein, perhaps the most toxic aldehyde formed during lipid peroxidation cascades. Various phthalazine compounds (hydralazine and dihydralazine) were found to trap acrolein readily, forming hydrazone derivatives in a rapid Schiff-type reaction. These compounds strongly protect against acrolein-mediated toxicity in isolated hepatocytes.

  5. Oxidative Esterification of Aldehydes with Urea Hydrogen Peroxide Catalyzed by Aluminum Chloride Hexahydrate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sin-Ae; Kim, Yoon Mi; Lee, Jong Chan [Chung-Ang University, Seoul (Korea, Republic of)

    2016-08-15

    We have developed a new, environmentally benign and highly efficient oxidative preparation of methyl esters by the reaction of various aldehydes with UHP in methanol catalyzed by readily accessible aluminum(III) chloride hexahydrate. This new greener and cost effective direct esterification method can serve as a useful alternative to existing protocols. Esters are some of the most important functional groups in organic chemistry and have been found in the sub-structure of a variety of natural products, industrial chemicals, and pharmaceuticals. Numerous methods have been reported for the preparation of various esters. In particular, this method gives low yields for both aldehydes containing electron donating substituents in aromatic rings and heterocyclic aldehydes. Therefore, development of a more general, efficient, and greener protocol for the esterification of aldehydes with readily available catalyst is still desirable.

  6. Microwave Assisted Solvent Free Synthesis of Azomethines from Aryl Aldehydes on Melamin Formaldehyde as Solid Support

    Directory of Open Access Journals (Sweden)

    Ramin Rezaei

    2011-01-01

    Full Text Available Various aryl aldehydes underwent prompt one pot conversion into the corresponding azomethines in high yields by reacting with hydroxylamine hydrochloride supported on melamine formaldehyde under microwave irradiation.

  7. Role of Lipid Peroxidation-Derived α, β-Unsaturated Aldehydes in Vascular Dysfunction

    Directory of Open Access Journals (Sweden)

    Seung Eun Lee

    2013-01-01

    Full Text Available Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction.

  8. ARA-aldehyde and ABA-trans-diol in apple fruits

    International Nuclear Information System (INIS)

    Rock, C.D.; Zeevaart, J.A.D.

    1989-01-01

    We have isolated ABA-aldehyde and ABA-t-diol from postharvest apple fruits, cv. Granny Smith and confirmed their structure by GC-MS. These putative ABA biosynthetic precursors incorporate 18 O to a similar degree as ABA during 48 hours under 18 O 2 atmospheres. The presence of significant amounts of ABA-aldehyde can explain the unique 18 O labeling pattern of ABA in this tissue, where a majority of ABA molecules containing 18 O is labeled in the 1'-hydroxyl group and not in the side chain carboxyl group, the primary site of incorporation for stressed leaves. Exchange of the carbonyl oxygen of ABA-aldehyde with water would decrease 18 O enrichment in the side chain. Results of 18 O 2 experiments and feeding studies using hexadeutero-ABA-aldehyde will be presented and the biosynthetic relationship of these compounds discussed

  9. A HIGHLY STEREOSELECTIVE, NOVEL COUPLING REACTION BETWEEN ALKYNES WITH ALDEHYDES. (R828129)

    Science.gov (United States)

    In the presence of indium triflate or gallium chloride, a novel coupling between internal alkynes and aldehydes occurred to give unsaturated ketones and [4+1] annulation products. Graphical Abstrac...

  10. ENVIRONMENTAL TECHNOLOGY PROTOCOL VERIFICATION REPORT, EMISSIONS OF VOCS AND ALDEHYDES FROM COMMERCIAL FURNITURE (WITH APPENDICES)

    Science.gov (United States)

    As part of a U.S. Environmental Protection Agency Environmental Technology Verification program, the Research Triangle Institute (RTI) developed a test protocol for measuring volatile organic compounds and aldehydes in a large chamber. RTI convened stakeholders for the commercial...

  11. Kinetics, mechanism and thermodynamics of bisulfite-aldehyde adduct formation

    Energy Technology Data Exchange (ETDEWEB)

    Olson, T.M.; Boyce, S.D.; Hoffmann, M.R.

    1986-04-01

    The kinetics and mechanism of bisulfite addition to benzaldehyde were studied at low pH in order to assess the importance of this reaction in stabilizing S(IV) in fog-, cloud-, and rainwater. Previously, the authors established that appreciable concentrations of the formaldehyde-bisulfite adduct (HMSA) are often present in fogwater. Measured HMSA concentrations in fogwater often do not fully account for observed excess S(IV) concentrations, however, so that other S(IV)-aldehyde adducts may be present. Reaction rates were determined by monitoring the disappearance of benzaldehyde by U.V. spectrophotometry under pseudo-first order conditions, (S(IV))/sub T/ >>(phi-CHO)/sub T/, in the pH range 0 - 4.4 at 25/sup 0/C. The equilibrium constant was determined by dissolving the sodium salt of the addition compound in a solution adjusted to pH 3.9, and measuring the absorbance of the equilibrated solution at 250 nm. A literature value of the extinction coefficient for benzaldehyde was used to calculate the concentration of free benzaldehyde. All solutions were prepared under an N/sub 2/ atmosphere using deoxygenated, deionized water and ionic strength was maintained at 1.0 M with sodium chloride.

  12. Characterization of Aldehyde Crosslinked Kenaf Regenerated Cellulose Film

    Directory of Open Access Journals (Sweden)

    Hatika Kaco

    2015-08-01

    Full Text Available Regenerated cellulose film with better mechanical properties was successfully produced by introducing aldehyde crosslinker during the regeneration process. The cellulose source material was derived from kenaf core powder and dissolved in LiOH/urea solvent at −13 °C to form a cellulose solution. The cellulose solution was cast and coagulated in a crosslinker bath at different percentages of glutaraldehyde (GA and glyoxal (GX to form a regenerated cellulose film. According to Fourier transform infrared spectroscopy (FTIR spectra, the hydroxyl group of the cellulose was reduced, reducing the percentage of swelling as the percentage of crosslinker was increased. X-ray diffraction (XRD patterns showed that the crystallinity index of the crosslinked film was decreased. The pore size of the films decreased as the percentage of crosslinker was increased, resulting in decreased film transparency. The pore volume and percentage of swelling in water of the films also increased with decreases in the pore size as the percentage of crosslinker was increased. The tensile strengths of the GA- and GX-crosslinked films increased by 20 and 15% with the addition of 20% of each crosslinker, respectively.

  13. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  14. Detoxification of aldehydes by histidine-containing dipeptides: from chemistry to clinical implications

    Science.gov (United States)

    Xie, Zhengzhi; Baba, Shahid P.; Sweeney, Brooke R.; Barski, Oleg A.

    2015-01-01

    Aldehydes are generated by oxidized lipids and carbohydrates at increased levels under conditions of metabolic imbalance and oxidative stress during atherosclerosis, myocardial and cerebral ischemia, diabetes, neurodegenerative diseases and trauma. In most tissues, aldehydes are detoxified by oxidoreductases that catalyze the oxidation or the reduction of aldehydes or enzymatic and nonenzymatic conjugation with low molecular weight thiols and amines, such as glutathione and histidine dipeptides. Histidine dipeptides are present in micromolar to millimolar range in the tissues of vertebrates, where they are involved in a variety of physiological functions such as pH buffering, metal chelation, oxidant and aldehyde scavenging. Histidine dipeptides such as carnosine form Michael adducts with lipid-derived unsaturated aldehydes, and react with carbohydrate-derived oxo- and hydroxy- aldehydes forming products of unknown structure. Although these peptides react with electrophilic molecules at lower rate than glutathione, they can protect glutathione from modification by oxidant and they may be important for aldehyde quenching in glutathione-depleted cells or extracellular space where glutathione is scarce. Consistent with in vitro findings, treatment with carnosine has been shown to diminish ischemic injury, improve glucose control, ameliorate the development of complications in animal models of diabetes and obesity, promote wound healing and decrease atherosclerosis. The protective effects of carnosine have been linked to its anti-oxidant properties, it ability to promote glycolysis, detoxify reactive aldehydes and enhance histamine levels. Thus, treatment with carnosine and related histidine dipeptides may be a promising strategy for the prevention and treatment of diseases associated with high carbonyl load. PMID:23313711

  15. Copper(II)/amine synergistically catalyzed enantioselective alkylation of cyclic N-acyl hemiaminals with aldehydes.

    Science.gov (United States)

    Sun, Shutao; Mao, Ying; Lou, Hongxiang; Liu, Lei

    2015-07-07

    The first catalytic asymmetric alkylation of N-acyl quinoliniums with aldehydes has been described. A copper/amine synergistic catalytic system has been developed, allowing the addition of functionalized aldehydes to a wide range of electronically varied N-acyl quinoliniums in good yields with excellent enantiocontrol. The synergistic catalytic system was also effective for N-acyl dihydroisoquinoliniums and β-caboliniums, demonstrating the general applicability of the protocol in the enantioselective alkylation of diverse cyclic N-acyl hemiaminals.

  16. Effect of phenolic aldehydes and flavonoids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii

    OpenAIRE

    Figueiredo, Ana Rita; Campos, Francisco; Freitas, Víctor de; Hogg, Tim; Couto, José António

    2008-01-01

    The aim of this work was to investigate the effect of wine phenolic aldehydes, flavonoids and tannins on growth and viability of strains of Oenococcus oeni and Lactobacillus hilgardii. Cultures were grown in ethanol-containing MRS/TJ medium supplemented with different concentrations of phenolic aldehydes or flavonoids and monitored spectrophotometrically. The effect of tannins was evaluated by monitoring the progressive inactivation of cells in ethanol-containing phosphate buffer supplemented...

  17. An Improved Protocol for the Aldehyde Olefination Reaction Using (bmim ( as Reaction Medium

    Directory of Open Access Journals (Sweden)

    Vivek Srivastava

    2013-01-01

    Full Text Available [Ru(CODCl2]/CuCl2·2H2O/LiCl catalytic system works efficiently in ionic liquid media for aldehyde olefination reaction. It offers good yield and selectivity with the added advantage of 5 times recyclability for [Ru(CODCl2] /CuCl2·2H2O/LiCl catalytic system. We also successfully reduced the reaction time from 12 hours to 9 hours for the aldehyde olefination reaction.

  18. The use of tomato aminoaldehyde dehydrogenase 1 for the detection of aldehydes in fruit distillates.

    Science.gov (United States)

    Frömmel, Jan; Tarkowski, Petr; Kopečný, David; Šebela, Marek

    2016-09-25

    Plant NAD(+)-dependent aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the family 10 of aldehyde dehydrogenases. They participate in the metabolism of polyamines or osmoprotectants. The enzymes are characterized by their broad substrate specificity covering ω-aminoaldehydes, aliphatic and aromatic aldehydes as well as nitrogen-containing heterocyclic aldehydes. The isoenzyme 1 from tomato (Solanum lycopersicum; SlAMADH1) oxidizes aliphatic aldehydes very efficiently and converts also furfural, its derivatives or benzaldehyde, which are present at low concentrations in alcoholic distillates such as fruit brandy. In this work, SlAMADH1 was examined as a bioanalytical tool for their detection. These aldehydes arise from fermentation processes or thermal degradation of sugars and their presence is related to health complications after consumption including nausea, emesis, sweating, decrease in blood pressure, hangover headache, among others. Sixteen samples of slivovitz (plum brandy) from local producers in Moravia, Czech Republic, were analyzed for their aldehyde content using a spectrophotometric activity assay with SlAMADH1. In all cases, there were oxidative responses observed when monitoring NADH production in the enzymatic reaction. Aldehydes in the distillate samples were also subjected to a standard determination using reversed-phase HPLC with spectrophotometric and tandem mass spectrometric detection after a derivatization with 2,4-dinitrophenylhydrazine. Results obtained by both methods were found to correlate well for a majority of the analyzed samples. The possible applicability of SlAMADH1 for the evaluation of aldehyde content in food and beverages has now been demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The Intramolecular Diels–Alder Reaction of Tryptamine-Derived Zincke Aldehydes Is a Stepwise Process

    OpenAIRE

    Pham, Hung V.; Martin, David B. C.; Vanderwal, Christopher D.; Houk, K. N.

    2012-01-01

    Computational studies show that the base-mediated intramolecular Diels–Alder of tryptamine-derived Zincke aldehydes, used as a key step in the synthesis of the Strychnos alkaloids norfluorocurarine and strychnine, proceeds via a stepwise pathway. The experimentally determined importance of a potassium counterion in the base is explained by its ability to preorganize the Zincke aldehyde diene in an s-cis conformation suitable to bicyclization. Computation also supports the thermodynamic import...

  20. Reactions of the radical cations of aliphatic aldehydes in freon matrices

    International Nuclear Information System (INIS)

    Belevskij, V.N.; Belopushkin, S.I.; Feldman, V.I.

    1985-01-01

    ESR spectra of γ-irradiated solutions of acetic and propionic aldehydes in freon-11 and freon-113 affected by aldehyde concentration, temperature, and the action of light were studied. It is shown that the radical cations are converted into neutral radicals, and the cations CHsub(3)CHsub(2)CHOsup(+). are converted to RCO and CHsub(3)CHCHO due to ion-molecular reactions of proton transfer of hydrogen atom transfer. (author)

  1. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Zaldivar, J.; Ingram, L.O. [Univ. of Florida, Gainesville (United States). Dept. of Microbiology and Cell Science; Martinez, A. [Univ. of Florida, Gainesville (United States). Dept. of Microbiology and Cell Science]|[Univ. Nacional Autonoma de Mexico (Mexico). Inst. de Biotecnologia

    1999-10-05

    Bioethanol production from lignocellulosic raw-materials requires the hydrolysis of carbohydrate polymers into a fermentable syrup. During the hydrolysis of hemicellulose with dilute acid, a variety of toxic compounds are produced such as soluble aromatic aldehydes from lignin and furfural from pentose destruction. In this study, the authors have investigated the toxicity of representative aldehydes (furfural, 5-hydroxymethlyfurfural, 4-hydroxybenzaldehyde, syringaldehyde, and vanillin) as inhibitors of growth and ethanol production by ethanologenic derivatives of Escherichia coli B (strains K011 and LY01). Aromatic aldyhydes were at least twice as toxic as furfural of 5-hydroxymethylfurfural on a weight basis. The toxicities of all aldehydes (and ethanol) except furfural were additive when tested in binary combinations. In all cases, combinations with furfural were unexpectedly toxic. Although the potency of these aldehydes was directly related to hydrophobicity indicating a hydrophobic site of action, none caused sufficient membrane damage to allow the leakage of intracellular magnesium even when present at sixfold the concentrations required for growth inhibition. Of the aldehydes tested, only furfural strongly inhibited ethanol production in vitro. A comparison with published results for other microorganisms indicates that LY01 is equivalent or more resistant than other biocatalysts to the aldehydes examined in this study.

  2. Indoor aldehydes: measurement of contamination levels and identification of their determinants in Paris dwellings

    International Nuclear Information System (INIS)

    Clarisse, B.; Laurent, A.M.; Seta, N.; Le Moullec, Y.; El Hasnaoui, A.; Momas, I.

    2003-01-01

    The recent increased prevalence of childhood asthma and atopy has brought into question the impact of outdoor pollutants and indoor air quality. The contributory role of aldehydes to this problem and the fact that they are mainly derived from the domestic environment make them of particular interest. This study therefore measures six different aldehyde levels in Paris dwellings from potentially different sources and identifies their indoor determinants. The study was carried out in the three principal rooms of 61 flats with no previous history of complaint for olfactory nuisance or specific symptoms, two-thirds of the flats having been recently refurbished. Aldehydes were sampled in these rooms using passive samplers, and a questionnaire on potential aldehyde sources was filled out at the same time. A multiple linear regression model was used to investigate indoor aldehyde determinants. Our study revealed that propionaldehyde and benzaldehyde were of minor importance compared to formaldehyde, acetaldehyde, pentanal, and hexanal. We found that levels of these last four compounds depended on the age of wall or floor coverings (renovations less than 1 year old), smoking, and ambient parameters (carbon dioxide levels, temperature). These results could help in the assessment of indoor aldehyde emissions

  3. Analysis of nonlinear optical properties in donor–acceptor materials

    Energy Technology Data Exchange (ETDEWEB)

    Day, Paul N. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); General Dynamics Information Technology, Inc., Dayton, Ohio 45431 (United States); Pachter, Ruth [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); Nguyen, Kiet A. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); UES, Inc., Dayton, Ohio 45432 (United States)

    2014-05-14

    Time-dependent density functional theory has been used to calculate nonlinear optical (NLO) properties, including the first and second hyperpolarizabilities as well as the two-photon absorption cross-section, for the donor-acceptor molecules p-nitroaniline and dimethylamino nitrostilbene, and for respective materials attached to a gold dimer. The CAMB3LYP, B3LYP, PBE0, and PBE exchange-correlation functionals all had fair but variable performance when compared to higher-level theory and to experiment. The CAMB3LYP functional had the best performance on these compounds of the functionals tested. However, our comprehensive analysis has shown that quantitative prediction of hyperpolarizabilities is still a challenge, hampered by inadequate functionals, basis sets, and solvation models, requiring further experimental characterization. Attachment of the Au{sub 2}S group to molecules already known for their relatively large NLO properties was found to further enhance the response. While our calculations show a modest enhancement for the first hyperpolarizability, the enhancement of the second hyperpolarizability is predicted to be more than an order of magnitude.

  4. Potassium acceptor doping of ZnO crystals

    Directory of Open Access Journals (Sweden)

    Narendra S. Parmar

    2015-05-01

    Full Text Available ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 1016 cm−3. IR measurements show a local vibrational mode (LVM at 3226 cm−1, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm−1. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  5. Potassium acceptor doping of ZnO crystals

    Science.gov (United States)

    Parmar, Narendra S.; Corolewski, Caleb D.; McCluskey, Matthew D.; Lynn, K. G.

    2015-05-01

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ˜1 × 1016 cm-3. IR measurements show a local vibrational mode (LVM) at 3226 cm-1, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O-H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm-1. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  6. Potassium acceptor doping of ZnO crystals

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Narendra S., E-mail: nparmar@wsu.edu; Lynn, K. G. [Center for Materials Research, Washington State University, Pullman, Washington 99164-2711 (United States); Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Corolewski, Caleb D.; McCluskey, Matthew D. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States)

    2015-05-15

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 10{sup 16} cm{sup −3}. IR measurements show a local vibrational mode (LVM) at 3226 cm{sup −1}, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm{sup −1}. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  7. Impact of Nonfullerene Acceptor Core Structure on the Photophysics and Efficiency of Polymer Solar Cells

    KAUST Repository

    Alamoudi, Maha

    2018-03-02

    Small-molecule “nonfullerene” acceptors are promising alternatives to fullerene (PC61/71BM) derivatives often used in bulk heterojunction (BHJ) organic solar cells; yet, the efficiency-limiting processes and their dependence on the acceptor structure are not clearly understood. Here, we investigate the impact of the acceptor core structure (cyclopenta-[2,1-b:3,4-b′]dithiophene (CDT) versus indacenodithiophene (IDTT)) of malononitrile (BM)-terminated acceptors, namely CDTBM and IDTTBM, on the photophysical characteristics of BHJ solar cells. Using PCE10 as donor polymer, the IDTT-based acceptor achieves power conversion efficiencies (8.4%) that are higher than those of the CDT-based acceptor (5.6%) because of a concurrent increase in short-circuit current and open-circuit voltage. Using (ultra)fast transient spectroscopy we demonstrate that reduced geminate recombination in PCE10:IDTTBM blends is the reason for the difference in short-circuit currents. External quantum efficiency measurements indicate that the higher energy of interfacial charge-transfer states observed for the IDTT-based acceptor blends is the origin of the higher open-circuit voltage.

  8. Synthesis and optoelectronic characterization of some triphenylamine-based compounds containing strong acceptor substituents

    Energy Technology Data Exchange (ETDEWEB)

    Grigoras, Mircea, E-mail: grim@icmpp.ro; Ivan, Teofilia; Vacareanu, Loredana; Catargiu, Ana Maria; Tigoianu, Radu

    2014-09-15

    Three novel triphenylamine-based compounds containing strong electron acceptor groups have been synthesized and their comparative photophysical properties are presented. These compounds were obtained by a two-step method: (i) triphenylamine compounds with one, two and three phenylacetylene arms were synthesized by Sonogashira reaction between iodine-substituted triphenylamines and phenylacetylene, followed by (ii) post-modification of these electron-rich alkynes by addition of the strong electron acceptor, tetracyanoethylene. Characterization of all oligomers was made by FTIR, {sup 1}H-NMR, UV–vis and fluorescence spectroscopy. A batochromic shifting of the UV and photoluminescence maxima was observed with the increase of the acceptor group number. The electrochemical behavior was studied by cyclic voltammetry. The cyclic voltammograms have evidenced that triphenylamine-phenylacetylene compounds undergo only oxidation processes while compounds modified with tetracyanoethylene show both oxidation and reduction peaks associated with donor and acceptor groups, respectively. The donor–acceptor compounds coordinate metal ions (i.e., Hg{sup 2+} and Sn{sup 2+}) by cyano groups resulting in the decreasing of charge transfer band intensity, and they can be used as chemosensors. - Highlights: • Three triphenylamine-based ethynylene compounds were prepared by Sonogashira reaction. • Post-modification of ethynylene linkages by tetracyanethylene cycloaddition and retroconversion led to donor–acceptor compounds. • Photophysical properties of donor–acceptor oligomers were studied in different solvents.

  9. Impact of Nonfullerene Acceptor Core Structure on the Photophysics and Efficiency of Polymer Solar Cells

    KAUST Repository

    Alamoudi, Maha; Khan, Jafar Iqbal; Firdaus, Yuliar; Wang, Kai; Andrienko, Denis; Beaujuge, Pierre; Laquai, Fré dé ric

    2018-01-01

    Small-molecule “nonfullerene” acceptors are promising alternatives to fullerene (PC61/71BM) derivatives often used in bulk heterojunction (BHJ) organic solar cells; yet, the efficiency-limiting processes and their dependence on the acceptor structure are not clearly understood. Here, we investigate the impact of the acceptor core structure (cyclopenta-[2,1-b:3,4-b′]dithiophene (CDT) versus indacenodithiophene (IDTT)) of malononitrile (BM)-terminated acceptors, namely CDTBM and IDTTBM, on the photophysical characteristics of BHJ solar cells. Using PCE10 as donor polymer, the IDTT-based acceptor achieves power conversion efficiencies (8.4%) that are higher than those of the CDT-based acceptor (5.6%) because of a concurrent increase in short-circuit current and open-circuit voltage. Using (ultra)fast transient spectroscopy we demonstrate that reduced geminate recombination in PCE10:IDTTBM blends is the reason for the difference in short-circuit currents. External quantum efficiency measurements indicate that the higher energy of interfacial charge-transfer states observed for the IDTT-based acceptor blends is the origin of the higher open-circuit voltage.

  10. Shallow acceptors in strained Ge/Ge1-xSix heterostructures with quantum wells

    International Nuclear Information System (INIS)

    Aleshkin, V.Ya.; Andreev, B.A.; Gavrilenko, V.I.; Erofeeva, I.V.; Kozlov, D.V.; Kuznetsov, O.A.

    2000-01-01

    Dependence of acceptor localized state energies in quantum wells (strained layers of Ge in heterostructures Ge/Ge 1-x Si x ) on the width of quantum well and position in it was studied theoretically. Spectrum of impurity absorption in the far infrared range was calculated. Comparison of the results calculated and observed photoconductivity spectra permits estimating acceptor distribution over quantum well and suggesting conclusion that acceptors can be largely concentrated near heteroboundaries. Absorption spectrum was calculated bearing in mind resonance impurity states, which permits explaining the observed specific features in the photoconductivity spectrum short-wave range by transition to resonance energy levels, bound to upper subzones of dimensional quantization [ru

  11. A Nonfullerene Small Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar Cells.

    Science.gov (United States)

    Lee, Jaewon; Singh, Ranbir; Sin, Dong Hun; Kim, Heung Gyu; Song, Kyu Chan; Cho, Kilwon

    2016-01-06

    A new 3D nonfullerene small-molecule acceptor is reported. The 3D interlocking geometry of the small-molecule acceptor enables uniform molecular conformation and strong intermolecular connectivity, facilitating favorable nanoscale phase separation and electron charge transfer. By employing both a novel polymer donor and a nonfullerene small-molecule acceptor in the solution-processed organic solar cells, a high-power conversion efficiency of close to 6% is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters.

    Science.gov (United States)

    Vione, D; Calza, P; Galli, F; Fabbri, D; Santoro, V; Medana, C

    2015-12-15

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with OH radicals would be negligible and that with (3)CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO2, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO2 yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Microenvironmental characteristics important for personal exposures to aldehydes in Sacramento, CA, and Milwaukee, WI

    Science.gov (United States)

    Raymer, J. H.; Akland, G.; Johnson, T. R.; Long, T.; Michael, L.; Cauble, L.; McCombs, M.

    Oxygenated additives in gasoline are designed to decrease the ozone-forming hydrocarbons and total air toxics, yet they can increase the emissions of aldehydes and thus increase human exposure to these toxic compounds. This paper describes a study conducted to characterize targeted aldehydes in microenvironments in Sacramento, CA, and Milwaukee, WI, and to improve our understanding of the impact of the urban environment on human exposure to air toxics. Data were obtained from microenvironmental concentration measurements, integrated, 24-h personal measurements, indoor and outdoor pollutant monitors at the participants' residences, from ambient pollutant monitors at fixed-site locations in each city, and from real-time diaries and questionnaires completed by the technicians and participants. As part of this study, a model to predict personal exposures based on individual time/activity data was developed for comparison to measured concentrations. Predicted concentrations were generally within 25% of the measured concentrations. The microenvironments that people encounter daily provide for widely varying exposures to aldehydes. The activities that occur in those microenvironments can modulate the aldehyde concentrations dramatically, especially for environments such as "indoor at home." By considering personal activity, location (microenvironment), duration in the microenvironment, and a knowledge of the general concentrations of aldehydes in the various microenvironments, a simple model can do a reasonably good job of predicting the time-averaged personal exposures to aldehydes, even in the absence of monitoring data. Although concentrations of aldehydes measured indoors at the participants' homes tracked well with personal exposure, there were instances where personal exposures and indoor concentrations differed significantly. Key to the ability to predict exposure based on time/activity data is the quality and completeness of the microenvironmental

  14. Quantitative analysis of aldehydes in canned vegetables using static headspace-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Serrano, María; Gallego, Mercedes; Silva, Manuel

    2017-11-17

    Volatile aldehydes appear in canned vegetables as constituents and some of them can also be present as disinfection by-products (DBPs) because of the contact between vegetables and treated water. This paper describes two static headspace-gas chromatography-mass spectrometry (SHS-GC-MS) methods to determine 15 aldehydes in both the solid and the liquid phases of canned vegetables. The treatment for both phases of samples was carried out simultaneously into an SHS unit, including the leaching of the aldehydes (from the vegetable), their derivatization and volatilization of the oximes formed. Detection limits were obtained within the range of 15-400μg/kg and 3-40μg/L for aldehydes in the solid and the liquid phases of the food, respectively. The relative standard deviation was lower than 7% -for the whole array of the target analytes-, the trueness evaluated by recovery experiments provided %recoveries between 89 and 99% and short- and long-term stability studies indicated there was no significant variation in relative peak areas of all aldehydes in both phases of canned vegetables after their storing at 4°C for two weeks. The study of the origin of the 15 aldehydes detected between both phases of canned vegetables showed that: i) the presence of 13 aldehydes -at average concentrations of 2.2-39μg/kg and 0.25-71μg/L for the solid and the liquid phases, respectively- is because they are natural constituents of vegetables; and ii) the presence of glyoxal and methylglyoxal -which are mainly found in the liquid phase (average values, 1.4-4.1μg/L)- is ascribed to the use of treated water, thereby being DBPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Identification and characterization of an antennae-specific aldehyde oxidase from the navel orangeworm.

    Directory of Open Access Journals (Sweden)

    Young-Moo Choo

    Full Text Available Antennae-specific odorant-degrading enzymes (ODEs are postulated to inactivate odorant molecules after they convey their signal. Different classes of insect ODEs are specific to esters, alcohols, and aldehydes--the major functional groups of female-produced, hydrophobic sex pheromones from moth species. Esterases that rapidly inactive acetate and other esters have been well-studied, but less is known about aldehyde oxidases (AOXs. Here we report cloning of an aldehyde oxidase, AtraAOX2, from the antennae of the navel orangeworm (NOW, Amyelois transitella, and the first activity characterization of a recombinant insect AOX. AtraAOX2 gene spans 3,813 bp and encodes a protein with 1,270 amino acid residues. AtraAOX2 cDNA was expressed in baculovirus-infected insect Sf21 cells as a ≈280 kDa homodimer with 140 kDa subunits. Recombinant AtraAOX2 degraded Z11Z13-16Ald and plant volatile aldehydes as substrates. However, as expected for aldehyde oxidases, recombinant AtraAOX2 did not show specificity for Z11Z13-16Ald, the main constituent of the sex pheromone, but showed high activity for plant volatile aldehydes. Our data suggest AtraAOX2 might be involved in degradation of a diversity of aldehydes including sex pheromones, plant-derived semiochemicals, and chemical cues for oviposition sites. Additionally, AtraAOX2 could protect the insect's olfactory system from xenobiotics, including pesticides that might reach the sensillar lymph surrounding the olfactory receptor neurons.

  16. Assessment and predictor determination of indoor aldehyde levels in Paris newborn babies' homes.

    Science.gov (United States)

    Dassonville, C; Demattei, C; Laurent, A-M; Le Moullec, Y; Seta, N; Momas, I

    2009-08-01

    Exposure to indoor chemical air pollutants expected to be potentially involved in allergic respiratory diseases in infants is poorly documented. A specific environmental investigation included in a birth cohort study was carried out to first assess indoor airborne aldehyde levels, using passive devices and their variability within 1 year (1, 6, 9 and 12 months) in the bedroom of 196 Paris infants, and second, to identify predictors for aldehyde concentrations using interviewer administered questionnaires about housing factors. Comfort parameters and carbon dioxide levels were measured simultaneously. Aldehydes were detected in almost all dwellings and geometric mean levels (geometric standard deviation) at the first visit were respectively for formaldehyde, acetaldehyde, hexanal, and pentanal 19.4 (1.7) microg/m(3), 8.9 (1.8) microg/m(3), 25.3 (3.1) microg/m(3), 3.7 (2.3) microg/m(3), consistent with earlier published results. Generalized Estimating Equation multivariate analyses showed that, apart from comfort parameters, aeration and season, the main indoor aldehyde sources were either continuous (building materials and coverings especially when they were new) or discontinuous (smoking, use of air fresheners and cleaning products, DIY etc...). Finally, the data collected by questionnaires should be sufficient to enable us to classify each infant in our cohort study according to his/her degree of exposure to the main aldehydes. This analysis contributed to document indoor aldehyde levels in Parisian homes and to identify factors determining these levels. In the major part of newborn babies' homes, indoor formaldehyde levels were above the guideline value of 10 microg/m(3) proposed by the French Agency for Environmental and Occupational Health Safety for long-term exposure. Given this result, it is essential to study the health impact of exposure to aldehydes especially formaldehyde on the incidence of respiratory and allergic symptoms, particularly during the

  17. Influence of Ubiquitous Electron Acceptors on In Situ Anaerobic Biotransformation of RDX in Groundwater

    National Research Council Canada - National Science Library

    Wani, Altaf

    2003-01-01

    A series of column studies, with aquifer material from the former Nebraska Ordnance Plant, were performed to explore the phenomenon of electron competition from ubiquitous inorganic electron acceptors (nitrate and sulfate...

  18. A survey of acceptor dopants for β-Ga2O3

    Science.gov (United States)

    Lyons, John L.

    2018-05-01

    With a wide band gap, high critical breakdown voltage and commercially available substrates, Ga2O3 is a promising material for next-generation power electronics. Like most wide-band-gap semiconductors, obtaining better control over its electrical conductivity is critically important, but has proven difficult to achieve. Although efficient p-type doping in Ga2O3 is not expected, since theory and experiment indicate the self-trapping of holes, the full development of this material will require a better understanding of acceptor dopants. Here the properties of group 2, group 5 and group 12 acceptor impurities in β-Ga2O3 are explored using hybrid density functional calculations. All impurities are found to exhibit acceptor transition levels above 1.3 eV. After examining formation energies as a function of chemical potential, Mg (followed closely by Be) is determined to be the most stable acceptor species.

  19. Nanographenes as electron-deficient cores of donor-acceptor systems.

    Science.gov (United States)

    Liu, Yu-Min; Hou, Hao; Zhou, Yan-Zhen; Zhao, Xin-Jing; Tang, Chun; Tan, Yuan-Zhi; Müllen, Klaus

    2018-05-15

    Conjugation of nanographenes (NGs) with electro-active molecules can establish donor-acceptor π-systems in which the former generally serve as the electron-donating moieties due to their electronic-rich nature. In contrast, here we report a series of reversed donor-acceptor structures are obtained by C-N coupling of electron-deficient perchlorinated NGs with electron-rich anilines. Selective amination at the vertexes of the NGs is unambiguously shown through X-ray crystallography. By varying the donating ability of the anilino groups, the optical and assembly properties of donor-acceptor NGs can be finely modulated. The electron-deficient concave core of the resulting conjugates can host electron-rich guest molecules by intermolecular donor-acceptor interactions and gives rise to charge-transfer supramolecular architectures.

  20. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    KAUST Repository

    Nielsen, Christian B.; Holliday, Sarah; Chen, Hung-Yang; Cryer, Samuel J.; McCulloch, Iain

    2015-01-01

    The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted

  1. On the Molecular Origin of Charge Separation at the Donor-Acceptor Interface

    KAUST Repository

    Sini, Gjergji; Schubert, Marcel; Risko, Chad; Roland, Steffen; Lee, Olivia P.; Chen, Zhihua; Richter, Thomas V.; Dolfen, Daniel; Coropceanu, Veaceslav; Ludwigs, Sabine; Scherf, Ullrich; Facchetti, Antonio; Frechet, Jean; Neher, Dieter

    2018-01-01

    and theoretical approach is used to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor–acceptor (D–A) interface. Model systems comprised of polythiophene

  2. Spatial structure of single and interacting Mn acceptors in GaAs

    Science.gov (United States)

    Koenraad, Paul

    2005-03-01

    Ferromagnetic semiconductors such as Ga1-xMnxAs are receiving a lot of attention at the moment because of their application in spintronic devices. However, despite intense study of deep acceptors in III-V semiconductors such as MnGa, little information has been obtained on their electronic properties at the atomic scale. Yet the spatial shape of the Mn acceptor state will influence the hole-mediated Mn-Mn coupling and thus all of the magnetic properties of ferromagnetic semiconductors such as Ga1-xMnxAs. This study presents an experimental and theoretical description of the spatial symmetry of the Mn acceptor wave-function in GaAs. We present measurements of the spatial mapping of the anisotropic wavefunction of a hole localized at a Mn acceptor. To achieve this, we have used the STM tip not only to image the Mn acceptor but also to manipulate its charge state A^0/A^- at room temperature. Within an envelope function effective mass model (EFM) the anisotropy in the acceptor wave-function can be traced to the influence of the cubic symmetry of the GaAs crystal which selects specific d-states that mix into the ground state due to the spin-orbit interaction in the valence band. Comparison with calculations based on a tight-binding model (TBM) for the Mn acceptor structure supports this conclusion. Using the same experimental and theoretical approach we furthermore explored the interaction between Mn acceptors directly by analyzing close Mn-Mn pairs, which were separated by less than 2 nm. We will discuss some implications of these results for Mn delta-doped layers grown on differently oriented growth surfaces.

  3. Flavoring Compounds Dominate Toxic Aldehyde Production during E-Cigarette Vaping.

    Science.gov (United States)

    Khlystov, Andrey; Samburova, Vera

    2016-12-06

    The growing popularity of electronic cigarettes (e-cigarettes) raises concerns about the possibility of adverse health effects to primary users and people exposed to e-cigarette vapors. E-Cigarettes offer a very wide variety of flavors, which is one of the main factors that attract new, especially young, users. How flavoring compounds in e-cigarette liquids affect the chemical composition and toxicity of e-cigarette vapors is practically unknown. Although e-cigarettes are marketed as safer alternatives to traditional cigarettes, several studies have demonstrated formation of toxic aldehydes in e-cigarette vapors during vaping. So far, aldehyde formation has been attributed to thermal decomposition of the main components of e-cigarette e-liquids (propylene glycol and glycerol), while the role of flavoring compounds has been ignored. In this study, we have measured several toxic aldehydes produced by three popular brands of e-cigarettes with flavored and unflavored e-liquids. We show that, within the tested e-cigarette brands, thermal decomposition of flavoring compounds dominates formation of aldehydes during vaping, producing levels that exceed occupational safety standards. Production of aldehydes was found to be exponentially dependent on concentration of flavoring compounds. These findings stress the need for a further, thorough investigation of the effect of flavoring compounds on the toxicity of e-cigarettes.

  4. Nitrite promotes protein carbonylation and Strecker aldehyde formation in experimental fermented sausages: are both events connected?

    Science.gov (United States)

    Villaverde, A; Ventanas, J; Estévez, M

    2014-12-01

    The role played by curing agents (nitrite, ascorbate) on protein oxidation and Strecker aldehyde formation is studied. To fulfill this objective, increasing concentrations of nitrite (0, 75 and 150ppm) and ascorbate (0, 250 and 500ppm) were added to sausages subjected to a 54day drying process. The concurrence of intense proteolysis, protein carbonylation and formation of Strecker aldehydes during processing of sausages suggests that α-aminoadipic semialdehyde (AAS) and γ-glutamic semialdehyde (GGS) may be implicated in the formation of Strecker aldehydes. The fact that nitrite (150ppm, ingoing amount) significantly promoted the formation of protein carbonyls at early stages of processing and the subsequent formation of Strecker aldehydes provides strength to this hypothesis. Ascorbate (125 and 250ppm) controlled the overall extent of protein carbonylation in sausages without declining the formation of Strecker aldehydes. These results may contribute to understanding the chemistry fundamentals of the positive influence of nitrite on the flavor and overall acceptability of cured muscle foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Toxicity of polyunsaturated aldehydes of diatoms to Indo-Pacific bioindicator organism Echinometra mathaei.

    Science.gov (United States)

    Sartori, Davide; Gaion, Andrea

    2016-01-01

    Although it is well known suitability of early developmental stages of sea urchin as recommended model for pollutant toxicity testing, little is known about the sensitivity of Indo-Pacific species Echinometra mathaei to polyunsaturated aldehydes. In this study, the effect of three short chain aldehydes, 2,4-decadienal (DD), 2,4-octadienal (OD) and 2,4-heptadienal (HD), normally found in many diatoms, such as Skeletonema costatum, Skeletonema marinoi and Thalassiosira rotula, was evaluated on larval development of E. mathaei embryos. Aldehydes affected larval development in a dose-dependent manner, in particular HD>OD>DD; the results of this study highlighted the higher sensitivity of this species toward aldehydes compared with data registered for other sea urchin species. In comparison with studies reported in the literature, contrasting results were observed during our tests; therefore, an increasing toxic effect was registered with decreasing the chain length of aldehydes. This work could provide new insights in the development of new toxicological assays toward most sensitive species.

  6. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis.

    Science.gov (United States)

    Stiti, Naim; Missihoun, Tagnon D; Kotchoni, Simeon O; Kirch, Hans-Hubert; Bartels, Dorothea

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected ArabidopsisALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.

  7. Spectroscopic studies of charge transfer complexes of some amino aromatic donors with some acceptors

    International Nuclear Information System (INIS)

    Al-Ani, S.S.

    1989-01-01

    Charge transfer (C.T.) complexes are the products of the weak reversible interactions between electron donors and electron acceptors. Sixteen novel C.T. complexes were studied and discussed. These complexes were formed from aromatic electron donors with various electron acceptors in absolute ethyl alcohol at 20 0 C. Electronic absorption spectra of these complexes and their donors and acceptors were taken. New charge transfer absorption bands appeared for these complexes in the UV-VIS region. The donors used are tetramethyl diamino benzophenone, P-amino-N:N-dimethyl aniline, tetramethyl-diamino-diphenylmethane, P-amino-azobenzene and benzidine, while the acceptors are iodine, bromine, picric acid, 2,4-dinitrophenol, trifluoroacetic acid and trichloroacetic acid. The results showed a disappearance of some donors and acceptors absorption bands. The energy of C.T. bands were calculated from which the ionization potentials of donors were obtained. The results showed that energies of C.T. Bands for complexes of a given donor with a series of acceptors are very similar. Some C.T. complexes showed low value of energy and high values of electrical conductivity. These are ionic complexes rather than molecular ones. 4 tabs.; 2 figs.; 99 refs

  8. Alternansucrase acceptor reactions with D-tagatose and L-glucose.

    Science.gov (United States)

    Côté, Gregory L; Dunlap, Christopher A; Appell, Michael; Momany, Frank A

    2005-02-07

    Alternansucrase (EC 2.4.1.140) is a d-glucansucrase that synthesizes an alternating alpha-(1-->3), (1-->6)-linked d-glucan from sucrose. It also synthesizes oligosaccharides via d-glucopyranosyl transfer to various acceptor sugars. Two of the more efficient monosaccharide acceptors are D-tagatose and L-glucose. In the presence of d-tagatose, alternansucrase produced the disaccharide alpha-d-glucopyranosyl-(1-->1)-beta-D-tagatopyranose via glucosyl transfer. This disaccharide is analogous to trehalulose. We were unable to isolate a disaccharide product from L-glucose, but the trisaccharide alpha-D-glucopyranosyl-(1-->6)-alpha-d-glucopyranosyl-(1-->4)-l-glucose was isolated and identified. This is analogous to panose, one of the structural units of pullulan, in which the reducing-end D-glucose residue has been replaced by its L-enantiomer. The putative L-glucose disaccharide product, produced by glucoamylase hydrolysis of the trisaccharide, was found to be an acceptor for alternansucrase. The disaccharide, alpha-D-glucopyranosyl-(1-->4)-L-glucose, was a better acceptor than maltose, previously the best known acceptor for alternansucrase. A structure comparison of alpha-D-glucopyranosyl-(1-->4)-L-glucose and maltose was performed through computer modeling to identify common features, which may be important in acceptor affinity by alternansucrase.

  9. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT).

    Science.gov (United States)

    Slouka, Christoph; Kainz, Theresa; Navickas, Edvinas; Walch, Gregor; Hutter, Herbert; Reichmann, Klaus; Fleig, Jürgen

    2016-11-22

    The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La 3+ donor-doped, Fe 3+ acceptor-doped and La 3+ /Fe 3+ -co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.

  10. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT

    Directory of Open Access Journals (Sweden)

    Christoph Slouka

    2016-11-01

    Full Text Available The different properties of acceptor-doped (hard and donor-doped (soft lead zirconate titanate (PZT ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La3+ donor-doped, Fe3+ acceptor-doped and La3+/Fe3+-co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.

  11. Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals

    Science.gov (United States)

    Kananen, B. E.; Halliburton, L. E.; Scherrer, E. M.; Stevens, K. T.; Foundos, G. K.; Chang, K. B.; Giles, N. C.

    2017-08-01

    Electron paramagnetic resonance (EPR) is used to directly observe and characterize neutral Mg acceptors ( M gGa0 ) in a β-Ga2O3 crystal. These acceptors, best considered as small polarons, are produced when the Mg-doped crystal is irradiated at or near 77 K with x rays. During the irradiation, neutral acceptors are formed when holes are trapped at singly ionized Mg acceptors ( M gGa- ). Unintentionally present Fe3+ (3d5) and Cr3+ (3d3) transition-metal ions serve as the corresponding electron traps. The hole is localized in a nonbonding p orbital on a threefold-coordinated oxygen ion adjacent to an Mg ion at a sixfold-coordinated Ga site. These M gGa0 acceptors (S = 1/2) have a slightly anisotropic g matrix (principal values are 2.0038, 2.0153, and 2.0371). There is also partially resolved 69Ga and 71Ga hyperfine structure resulting from unequal interactions with the two Ga ions adjacent to the hole. With the magnetic field along the a direction, hyperfine parameters are 2.61 and 1.18 mT for the 69Ga nuclei at the two inequivalent neighboring Ga sites. The M gGa0 acceptors thermally convert back to their nonparamagnetic M gGa- charge state when the temperature of the crystal is raised above approximately 250 K.

  12. Optimisation of trans-cinnamic acid and hydrocinnamyl alcohol production with recombinant Saccharomyces cerevisiae and identification of cinnamyl methyl ketone as a by-product.

    Science.gov (United States)

    Gottardi, Manuela; Grün, Peter; Bode, Helge B; Hoffmann, Thomas; Schwab, Wilfried; Oreb, Mislav; Boles, Eckhard

    2017-12-01

    Trans-cinnamic acid (tCA) and hydrocinnamyl alcohol (HcinOH) are valuable aromatic compounds with applications in the flavour, fragrance and cosmetic industry. They can be produced with recombinant yeasts from sugars via phenylalanine after expression of a phenylalanine ammonia lyase (PAL) and an aryl carboxylic acid reductase. Here, we show that in Saccharomyces cerevisiae a PAL enzyme from the bacterium Photorhabdus luminescens was superior to a previously used plant PAL enzyme for the production of tCA. Moreover, after expression of a UDP-glucose:cinnamate glucosyltransferase (FaGT2) from Fragaria x ananassa, tCA could be converted to cinnamoyl-D-glucose which is expected to be less toxic to the yeast cells. Production of tCA and HcinOH from glucose could be increased by eliminating feedback-regulated steps of aromatic amino acid biosynthesis and diminishing the decarboxylation step of the competing Ehrlich pathway. Finally, an unknown by-product resulting from further metabolisation of a carboligation product of cinnamaldehyde (cinALD) with activated acetaldehyde, mediated by pyruvate decarboxylases, could be identified as cinnamyl methyl ketone providing a new route for the biosynthesis of precursors, such as (2S,3R) 5-phenylpent-4-ene-2,3-diol, necessary for the chemical synthesis of specific biologically active drugs such as daunomycin. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Quantitative Structure–Property Relationship (QSPR Models for a Local Quantum Descriptor: Investigation of the 4- and 3-Substituted-Cinnamic Acid Esterification

    Directory of Open Access Journals (Sweden)

    Cláudio E. Rodrigues-Santos

    2015-09-01

    Full Text Available In this work, the theoretical description of the 4- and 3-substituted-cinnamic acid esterification with different electron donating and electron withdrawing groups was performed at the B3LYP and M06-2X levels, as a two-step process: the O-protonation and the nucleophile attack by ethanol. In parallel, an experimental work devoted to the synthesis and characterization of the substituted-cinnamate esters has also been performed. In order to quantify the substituents effects, quantitative structure–property relationship (QSPR models based on the atomic charges, Fukui functions and the Frontier Effective-for-Reaction Molecular Orbitals (FERMO energies were investigated. In fact, the Fukui functions, ƒ+C and ƒ−O, indicated poor correlations for each individual step, and in contrast with the general literature, the O-protonation step is affected both by the FERMO energies and the O-charges of the carbonyl group. Since the process was shown to not be totally described by either charge- or frontier-orbitals, it is proposed to be frontier-charge-miscere controlled. Moreover, the observed trend for the experimental reaction yields suggests that the electron withdrawing groups favor the reaction and the same was observed for Step 2, which can thus be pointed out as the determining step.

  14. Design, synthesis and evaluation of novel cinnamic acid derivatives bearing N-benzyl pyridinium moiety as multifunctional cholinesterase inhibitors for Alzheimer's disease.

    Science.gov (United States)

    Lan, Jin-Shuai; Hou, Jian-Wei; Liu, Yun; Ding, Yue; Zhang, Yong; Li, Ling; Zhang, Tong

    2017-12-01

    A novel family of cinnamic acid derivatives has been developed to be multifunctional cholinesterase inhibitors against AD by fusing N-benzyl pyridinium moiety and different substituted cinnamic acids. In vitro studies showed that most compounds were endowed with a noteworthy ability to inhibit cholinesterase, self-induced Aβ (1-42) aggregation, and to chelate metal ions. Especially, compound 5l showed potent cholinesterase inhibitory activity (IC 50 , 12.1 nM for eeAChE, 8.6 nM for hAChE, 2.6 μM for eqBuChE and 4.4 μM for hBuChE) and the highest selectivity toward AChE over BuChE. It also showed good inhibition of Aβ (1-42) aggregation (64.7% at 20 μM) and good neuroprotection on PC12 cells against amyloid-induced cell toxicity. Finally, compound 5l could penetrate the BBB, as forecasted by the PAMPA-BBB assay and proved in OF1 mice by ex vivo experiments. Overall, compound 5l seems to be a promising lead compound for the treatment of Alzheimer's diseases.

  15. Effects of light and copper ions on volatile aldehydes of milk and milk fractions

    Energy Technology Data Exchange (ETDEWEB)

    Jeno, W.; Bassette, R.; Crang, R.E.

    1988-09-01

    Raw, laboratory-pasteurized and plant-pasteurized homogenized milks were exposed to copper ions (5 ppm), to sunlight or fluorescent light and the effects determined on the composition of volatile aldehydes. The greatest change due to copper treatment was an increase in n-hexanal; acetaldehyde showed the least response in each of the sources of milk. The responses were similar from all three sources of milk with laboratory-pasteurized milk samples showing the greatest responses for each aldehyde analyzed. Similar milk samples exposed to sunlight also showed an increase in volatile aldehydes from all milk sources but with the greatest response being acetaldehyde and n-pentanal components. The milk fraction most susceptible to changes in the presence of light was neutralized whey, whereas resuspended cream was most susceptible to copper exposure. Overall, dialyzed whey appeared to be influenced more than other milk fractions by both light and copper ions.

  16. Oxidative desulfurization of diesel with TBHP/isobutyl aldehyde/air oxidation system

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wei; Wang, Chengyong; Lin, Peng; Lu, Xiaoping [Institute of Sonochemical Engineering, Nanjing University of Technology, Nanjing 210009, Jiangsu (China)

    2011-01-15

    Oxidative desulfurization of hydrogenation diesel (40 mL) was studied using air as oxidant, tert-butyl hydroperoxide (TBHP) as radical initiator at ambient pressure and moderate temperature in the presence of isobutyl aldehyde. TBHP could accelerate the production of carbonyl radical and its peroxidation. When the molar fraction of TBHP was 5 mmol, the conversion of DBT could reach 96.1% in the present of 20 mmol isobutyl aldehyde and air, which was more than that of 85.5% without initiator. The air was an effective oxidant and acetonitrile was an optimal solvent in this process. The sulfur content of the hydrogenation diesel could be reduced from 403 to 13 ppm (96.8% removed) under the synergistic effect of air, TBHP and isobutyl aldehyde. (author)

  17. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters

    International Nuclear Information System (INIS)

    Vione, D.; Calza, P.; Galli, F.; Fabbri, D.; Santoro, V.; Medana, C.

    2015-01-01

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with ·OH radicals would be negligible and that with "3CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO_2, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO_2 yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. - Highlights: • Study of the photolytic and photocatalytic transformation

  18. Bioproduction of L-Aspartic Acid and Cinnamic Acid by L-Aspartate Ammonia Lyase from Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Patel, Arti T; Akhani, Rekha C; Patel, Manisha J; Dedania, Samir R; Patel, Darshan H

    2017-06-01

    Aspartase (L-aspartate ammonia lyase, EC 4.3.1.1) catalyses the reversible amination and deamination of L-aspartic acid to fumaric acid which can be used to produce important biochemical. In this study, we have explored the characteristics of aspartase from Pseudomonas aeruginosa PAO1 (PA-AspA). To overproduce PA-AspA, the 1425-bp gene was introduced in Escherichia coli BL21 and purified. A 51.0-kDa protein was observed as a homogenous purified protein on SDS-PAGE. The enzyme was optimally active at pH 8.0 and 35 °C. PA-AspA has retained 56% activity after 7 days of incubation at 35 °C, which displays the hyperthermostablility characteristics of the enzyme. PA-AspA is activated in the presence of metal ions and Mg2+ is found to be most effective. Among the substrates tested for specificity of PA-AspA, L-phenylalanine (38.35 ± 2.68) showed the highest specific activity followed by L-aspartic acid (31.21 ± 3.31) and fumarate (5.42 ± 2.94). K m values for L-phenylalanine, L-aspartic acid and fumarate were 1.71 mM, 0.346 μM and 2 M, respectively. The catalytic efficiency (k cat /K m ) for L-aspartic acid (14.18 s -1  mM -1 ) was higher than that for L-phenylalanine (4.65 s -1  mM -1 ). For bioconversion, from an initial concentration of 1000 mM of fumarate and 30 mM of L-phenylalanine, PA-AspA was found to convert 395.31 μM L-aspartic acid and 3.47 mM cinnamic acid, respectively.

  19. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Vione, D. [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Calza, P., E-mail: paola.calza@unito.it [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Galli, F.; Fabbri, D. [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Santoro, V.; Medana, C. [Department of Molecular Biotechnology and Health Sciences, University of Torino, via P. Giuria 5, 10125 Torino (Italy)

    2015-12-15

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with ·OH radicals would be negligible and that with {sup 3}CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO{sub 2}, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO{sub 2} yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. - Highlights: • Study of the photolytic and photocatalytic

  20. Conduction electrons in acceptor-doped GaAs/GaAlAs heterostructures: a review

    International Nuclear Information System (INIS)

    Zawadzki, Wlodek; Raymond, Andre; Kubisa, Maciej

    2016-01-01

    We review magneto-optical and magneto-transport effects in GaAs/GaAlAs heterostructures doped in GaAlAs barriers with donors, providing two-dimensional (2D) electron gas (2DEG) in GaAs quantum wells (QWS), and additionally doped with smaller amounts of acceptors (mostly Be atoms) in the vicinity of 2DEG. One may also deal with residual acceptors (mostly C atoms). The behavior of such systems in the presence of a magnetic field differs appreciably from those doped in the vicinity of 2DEG with donors. Three subjects related to the acceptor-doped heterostructures are considered. First is the problem of bound states of conduction electrons confined to the vicinity of negatively charged acceptors by the joint effect of a QW and an external magnetic field parallel to the growth direction. A variational theory of such states is presented, demonstrating that an electron turning around a repulsive center has discrete energies above the corresponding Landau levels. Experimental evidence for the discrete electron energies comes from the work on interband photo-magneto-luminescence, intraband cyclotron resonance and quantum magneto-transport (the Quantum Hall and Shubnikov–de Haas effects). An electron rain-down effect at weak electric fields and a boil-off effect at strong electric fields are introduced. It is demonstrated, both theoretically and experimentally, that a negatively charged acceptor can localize more than one electron. The second subject describes experiment and theory of asymmetric quantized Hall and Shubnikov–de Haas plateaus in acceptor-doped GaAs/GaAlAs heterostructures. It is shown that the main features of the plateau asymmetry can be attributed to asymmetric density of Landau states in the presence of acceptors. However, at high magnetic fields, the rain-down effect is also at work. The third subject deals with the so-called disorder modes (DMs) in the cyclotron resonance of conduction electrons. The DMs originate from random distributions of

  1. Organic acids and aldehydes in rainwater in a northwest region of Spain

    Energy Technology Data Exchange (ETDEWEB)

    Pena, R.M.; Garcia, S.; Herrero, C. [Universidad de Santiago de Compostela, Lugo (Spain). Departamento de Quimica Analitica, Nutricion y Bromatologia

    2002-11-01

    During a 1 year period, measurements of carboxylic acids and aldehydes were carried out in rainwater samples collected at nine different sites in NW Spain surrounding a thermal power plant in order to determine concentration levels and sources. In addition, certain major ions (Cl{sup -}, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, Na{sup +}, NH{sub 4}{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}) were also determined. Aldehyde and carboxylic acid concentration patterns and their effects on rainwater composition concerning temporal, seasonal and spatial variations were evaluated. Among carboxylic acids, formic and acetic were predominant (VWA 7.0 and 8.3 {mu}M), while formaldehyde and acroleine were the dominant aldehydes (VWA 0.42 and 1.25 {mu}M). Carboxylic acids were estimated to account for 27.5% of the total free acidity (TFA), whereas sulphuric and nitric acid accounted for 46.2% and 26.2%, respectively. Oxalic acid was demonstrated to be an important contributing compound to the acidification in rainwater representing 7.1% of the TFA. The concentration of aldehydes and carboxylic acids, which originated mainly from biogenic emissions in the area studied, was strongly dependent on the season of the year (growing and non-growing). The ratios of formic to acetic acids are considerably different in the two seasons suggesting that there exist distinct sources in both growing and non-growing seasons. Principal component analysis was applied in order to elucidate the sources of aldehydes and organic acids in rainwater. The prevalence of natural vegetative origins for both of these compounds versus anthropogenic emissions was demonstrated and the importance of the oxidation of aldehydes as a relevant source of organic acids was also established. (author)

  2. Formation and Accumulation of Acetaldehyde and Strecker Aldehydes during Red Wine Oxidation

    Directory of Open Access Journals (Sweden)

    Mónica Bueno

    2018-02-01

    Full Text Available The main aim of the present work is to study the accumulation of acetaldehyde and Strecker aldehydes (isobutyraldehyde, 2-methylbutanal, isovaleraldehyde, methional, phenylacetaldehyde during the oxidation of red wines, and to relate the patterns of accumulation to the wine chemical composition. For that, eight different wines, extensively chemically characterized, were subjected at 25°C to three different controlled O2 exposure conditions: low (10 mg L−1 and medium or high (the stoichiometrically required amount to oxidize all wine total SO2 plus 18 or 32 mg L−1, respectively. Levels of volatile aldehydes and carbonyls were then determined and processed by different statistical techniques. Results showed that young wines (<2 years-old bottled wines hardly accumulate any acetaldehyde regardless of the O2 consumed. In contrast, aged wines (>3 years-old bottled wines accumulated acetaldehyde while their content in SO2 was not null, and the aged wine containing lowest polyphenols accumulated it throughout the whole process. Models suggest that the ability of a wine to accumulate acetaldehyde is positively related to its content in combined SO2, in epigallocatechin and to the mean degree of polymerization, and negatively to its content in Aldehyde Reactive Polyphenols (ARPs which, attending to our models, are anthocyanins and small tannins. The accumulation of Strecker aldehydes is directly proportional to the wine content in the amino acid precursor, being the proportionality factor much higher for aged wines, except for phenylacetaldehyde, for which the opposite pattern was observed. Models suggest that non-aromatic Strecker aldehydes share with acetaldehyde a strong affinity toward ARPs and that the specific pattern of phenylacetaldehyde is likely due to a much reduced reactivity toward ARPs, to the possibility that diacetyl induces Strecker degradation of phenyl alanine and to the potential higher reactivity of this amino acid to some

  3. Formation and accumulation of acetaldehyde and Strecker aldehydes during red wine oxidation

    Science.gov (United States)

    Bueno, Mónica; Marrufo-Curtido, Almudena; Carrascón, Vanesa; Fernández-Zurbano, Purificación; Escudero, Ana; Ferreira, Vicente

    2018-02-01

    The main aim of the present work is to study the accumulation of acetaldehyde and Strecker aldehydes (isobutyraldehyde, 2-methylbutanal, isovaleraldehyde, methional, phenylacetaldehyde) during the oxidation of red wines, and to relate the patterns of accumulation to the wine chemical composition. For that, eight different wines, extensively chemically characterized, were subjected at 25°C to three different controlled O2 exposure conditions: low (10 mg L-1) and medium or high (the stoichiometrically required amount to oxidize all wine total SO2 plus 18 or 32 mg L-1, respectively). Levels of volatile aldehydes and carbonyls were then determined and processed by different statistical techniques. Results showed that young wines (wines) hardly accumulate any acetaldehyde regardless of the O2 consumed. In contrast, aged wines (>3 years-old bottled wines) accumulated acetaldehyde while their content in SO2 was not null, and the aged wine containing lowest polyphenols accumulated it throughout the whole process. Models suggest that the ability of a wine to accumulate acetaldehyde is positively related to its content in combined SO2, in epigallocatechin and to the mean degree of polymerization, and negatively to its content in Aldehyde Reactive Polyphenols (ARPs) which, attending to our models, are anthocyanins and small tannins. The accumulation of Strecker aldehydes is directly proportional to the wine content in the amino acid precursor, being the proportionality factor much higher for aged wines, except for phenylacetaldehyde, for which the opposite pattern was observed. Models suggest that non-aromatic Strecker aldehydes share with acetaldehyde a strong affinity towards ARPs and that the specific pattern of phenylacetaldehyde is likely due to a much reduced reactivity towards ARPs, to the possibility that diacetyl induces Strecker degradation of phenyl alanine and to the potential higher reactivity of this amino acid to some quinones derived from catechin. All this

  4. Ubiquitin-aldehyde: a general inhibitor of ubiquitin-recycling processes

    International Nuclear Information System (INIS)

    Hershko, A.; Rose, I.A.

    1987-01-01

    The generation and characterization of ubiquitin (Ub)-aldehyde, a potent inhibitor of Ub-C-terminal hydrolase, has previously been reported. The authors examine the action of this compound on the Ub-mediated proteolytic pathway using the system derived from rabbit reticulocytes. Addition of Ub-aldehyde was found to strongly inhibit breakdown of added 125 I-labeled lysozyme, but inhibition was overcome by increasing concentrations of Ub. The following evidence shows the effect of Ub-aldehyde on protein breakdown to be indirectly caused by its interference with the recycling of Ub, leading to exhaustion of the supply of free Ub: (i) Ub-aldehyde markedly increased the accumulation of Ub-protein conjugates coincident with a much decreased rate of conjugate breakdown; (ii) release of Ub from isolated Ub-protein conjugates in the absence of ATP (and therefore not coupled to protein degradation) is markedly inhibited by Ub-aldehyde. On the other hand, the ATP-dependent degradation of the protein moiety of Ub conjugates, which is an integral part of the proteolytic process, is not inhibited by this agent; (iii) direct measurement of levels of free Ub showed a rapid disappearance caused by the inhibitor. The Ub is found to be distributed in derivatives of a wide range of molecular weight classes. It thus seems that Ub-aldehyde, previously demonstrated to inhibit the hydrolysis of Ub conjugates of small molecules, also inhibits the activity of a series of enzymes that regenerate free Ub from adducts with proteins and intermediates in protein breakdown

  5. Nephelauxetic and hypersensitive nature of neodymium(III) complexes with α-pyridyl-thiosemicarbazide and its furfural-2-aldehyde and thiophene-2-aldehyde derivatives

    International Nuclear Information System (INIS)

    Jain, C.L.; Mundley, P.N.; Khandelwal, B.E.

    1986-01-01

    A new series of octahedral Nd(III) complexes with recently synthesised α-pyridylthiosemicarbazide (C 6 H 8 N 4 S or 'PT'), N-(α-pyridyl)furfural-2-aldehyde-thiosemicarbazone (C 11 H 10 N 4 SO or 'PFT') and N-(α-pyridyl)thiophene-2-aldehyde-thiosemicarbazone (C 11 H 10 N 4 S 2 or 'PTT'), have been isolated and characterised on the basis of their elemental analysis, magnetic and reflectance and ir spectral data revealing 'PT' as bidentate (pyridinic-N and thioketo-S) and 'PFT' and 'PTT' as tetradentate with pyridinic-N, thioketo-S, imine-N and furfuryl-O/thiophenyl-S as donor sites. Isolation and characterisation of Nd(III) complexes with 'PT', 'PFT' and 'PTT' and their nephelauxetic and hypersensitive nature are studied in order to evaluate the stereochemistry of the ligands around Nd(III) ion. (author). 12 refs., 2 tables

  6. Silica-Supported Catalyst for Enantioselective Arylation of Aldehydes under Batch and Continuous-Flow Conditions.

    Science.gov (United States)

    Watanabe, Satoshi; Nakaya, Naoyuki; Akai, Junichiro; Kanaori, Kenji; Harada, Toshiro

    2018-05-04

    A silica-supported 3-aryl H 8 -BINOL-derived titanium catalyst exhibited high performance in the enantioselective arylation of aromatic aldehydes using Grignard and organolithium reagents not only under batch conditions but also under continuous-flow conditions. Even with a simple pipet reactor packed with the heterogeneous catalyst, the enantioselective production of chiral diarylmethanols could be achieved through a continuous introduction of aldehydes and mixed titanium reagents generated from the organometallic precursors. The pipet reactor could be used repeatedly in different reactions without appreciable deterioration of the activity.

  7. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust

    Science.gov (United States)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than

  8. Heat-stable, FE-dependent alcohol dehydrogenase for aldehyde detoxification

    Science.gov (United States)

    Elkins, James G.; Clarkson, Sonya

    2018-04-24

    The present invention relates to microorganisms and polypeptides for detoxifying aldehydes associated with industrial fermentations. In particular, a heat-stable, NADPH- and iron-dependent alcohol dehydrogenase was cloned from Thermoanaerobacter pseudethanolicus 39E and displayed activity against a number of aldehydes including inhibitory compounds that are produced during the dilute-acid pretreatment process of lignocellulosic biomass before fermentation to biofuels. Methods to use the microorganisms and polypeptides of the invention for improved conversion of bio mass to biofuel are provided as well as use of the enzyme in metabolic engineering strategies for producing longer-chain alcohols from sugars using thermophilic, fermentative microorganisms.

  9. Identification of glutathione adducts of α-chlorofatty aldehydes produced in activated neutrophils

    OpenAIRE

    Duerr, Mark A.; Aurora, Rajeev; Ford, David A.

    2015-01-01

    α-Chlorofatty aldehydes (α-ClFALDs) are produced by hypochlorous acid targeting plasmalogens during neutrophil activation. This study investigated the reaction of the α-chlorinated carbon of α-ClFALD with the nucleophile, GSH. Utilizing ESI/MS/MS, the reaction product of GSH and the 16-carbon α-ClFALD, 2-chlorohexadecanal (2-ClHDA), was characterized. The resulting conjugate of 2-ClHDA and GSH (HDA-GSH) has an intact free aldehyde, and the chlorine at the α-carbon is ejected. Stable isotope-l...

  10. Semi-catalytic reduction of secondary amides to imines and aldehydes.

    Science.gov (United States)

    Lee, Sun-Hwa; Nikonov, Georgii I

    2014-06-21

    Secondary amides can be reduced by silane HSiMe2Ph into imines and aldehydes by a two-stage process involving prior conversion of amides into iminoyl chlorides followed by catalytic reduction mediated by the ruthenium complex [Cp(i-Pr3P)Ru(NCCH3)2]PF6 (1). Alkyl and aryl amides bearing halogen, ketone, and ester groups were converted with moderate to good yields under mild reaction conditions to the corresponding imines and aldehydes. This procedure does not work for substrates bearing the nitro-group and fails for heteroaromatic amides. In the case of cyano substituted amides, the cyano group is reduced to imine.

  11. Donor assists acceptor binding and catalysis of human α1,6-fucosyltransferase.

    Science.gov (United States)

    Kötzler, Miriam P; Blank, Simon; Bantleon, Frank I; Wienke, Martin; Spillner, Edzard; Meyer, Bernd

    2013-08-16

    α1,6-Core-fucosyltransferase (FUT8) is a vital enzyme in mammalian physiological and pathophysiological processes such as tumorigenesis and progress of, among others, non-small cell lung cancer and colon carcinoma. It was also shown that therapeutic antibodies have a dramatically higher efficacy if the α1,6-fucosyl residue is absent. However, specific and potent inhibitors for FUT8 and related enzymes are lacking. Hence, it is crucial to elucidate the structural basis of acceptor binding and the catalytic mechanism. We present here the first structural model of FUT8 in complex with its acceptor and donor molecules. An unusually large acceptor, i.e., a hexasaccharide from the core of N-glycans, is required as minimal structure. Acceptor substrate binding of FUT8 is being dissected experimentally by STD NMR and SPR and theoretically by molecular dynamics simulations. The acceptor binding site forms an unusually large and shallow binding site. Binding of the acceptor to the enzyme is much faster and stronger if the donor is present. This is due to strong hydrogen bonding between O6 of the proximal N-acetylglucosamine and an oxygen atom of the β-phosphate of GDP-fucose. Therefore, we propose an ordered Bi Bi mechanism for FUT8 where the donor molecule binds first. No specific amino acid is present that could act as base during catalysis. Our results indicate a donor-assisted mechanism, where an oxygen of the β-phosphate deprotonates the acceptor. Knowledge of the mechanism of FUT8 is now being used for rational design of targeted inhibitors to address metastasis and prognosis of carcinomas.

  12. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation

    Directory of Open Access Journals (Sweden)

    Lovley Derek R

    2010-11-01

    Full Text Available Abstract Background Geobacter sulfurreducens is capable of coupling the complete oxidation of organic compounds to iron reduction. The metabolic response of G. sulfurreducens towards variations in electron donors (acetate, hydrogen and acceptors (Fe(III, fumarate was investigated via 13C-based metabolic flux analysis. We examined the 13C-labeling patterns of proteinogenic amino acids obtained from G. sulfurreducens cultured with 13C-acetate. Results Using 13C-based metabolic flux analysis, we observed that donor and acceptor variations gave rise to differences in gluconeogenetic initiation, tricarboxylic acid cycle activity, and amino acid biosynthesis pathways. Culturing G. sulfurreducens cells with Fe(III as the electron acceptor and acetate as the electron donor resulted in pyruvate as the primary carbon source for gluconeogenesis. When fumarate was provided as the electron acceptor and acetate as the electron donor, the flux analysis suggested that fumarate served as both an electron acceptor and, in conjunction with acetate, a carbon source. Growth on fumarate and acetate resulted in the initiation of gluconeogenesis by phosphoenolpyruvate carboxykinase and a slightly elevated flux through the oxidative tricarboxylic acid cycle as compared to growth with Fe(III as the electron acceptor. In addition, the direction of net flux between acetyl-CoA and pyruvate was reversed during growth on fumarate relative to Fe(III, while growth in the presence of Fe(III and acetate which provided hydrogen as an electron donor, resulted in decreased flux through the tricarboxylic acid cycle. Conclusions We gained detailed insight into the metabolism of G. sulfurreducens cells under various electron donor/acceptor conditions using 13C-based metabolic flux analysis. Our results can be used for the development of G. sulfurreducens as a chassis for a variety of applications including bioremediation and renewable biofuel production.

  13. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.; Morandi, Bill; Grubbs, Robert H.

    2013-01-01

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  14. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.

    2013-09-13

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  15. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural

    Science.gov (United States)

    An effective means of relieving the toxicity of furan aldehydes, furfural (FFA) and 5-hydroxymethylfurfural (HMF), on fermenting organisms is essential for achieving efficient fermentation of lignocellulosic biomass to ethanol and other products. Ari1p, an aldehyde reductase from Saccharomyces cerev...

  16. Aldehyde Selective Wacker Oxidations of Phthalimide Protected Allylic Amines : A New Catalytic Route to beta(3)-Amino Acids

    NARCIS (Netherlands)

    Weiner, Barbara; Baeza Garcia, Alejandro; Jerphagnon, Thomas; Feringa, Ben L.

    2009-01-01

    A new method for the synthesis of B-3-amino acids is presented. Phthalimide protected allylic amines are oxidized under Wacker conditions selectively to aldehydes using PdCl2 and CuCl or Pd(MeCN)(2)Cl(NO2) and CuCl2 as complementary catalyst systems. The aldehydes are produced in excellent yields

  17. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum

    OpenAIRE

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-01-01

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from thes...

  18. Urban and rural ambient air aldehyde levels in Schenectady, New York and on Whiteface Mountain, New York

    Energy Technology Data Exchange (ETDEWEB)

    Schulam, P; Newbold, R; Hull, L A

    1985-01-01

    The air in the city of Schenectady, NY was sampled daily and analyzed for the presence of low molecular weight aldehydes during the months of June-August 1983. The diurnal variation of the aldehyde concentrations was also determined over a two day period during August. The dominant aldehyde was formaldehyde and its concentration varied from about 1-31 ppb. There was also observed a significant daily variation that appeared to correlate with traffic conditions. The technique was also used to monitor the aldehyde levels on the summit of Whiteface Mountain in Wilmington, NY at the SUNYA Atmospheric Sciences Research Center. The monitoring was done on a daily basis during the week of 14-20 August and, during that week, every 3 h for a 3-day period. The two dominant aldehydes were formaldehyde and acetaldehyde and they varied in concentration from about 0.8-2.6 and 0.2-0.8 ppb, respectively.

  19. Modelling of the partial oxidation of {alpha}, {beta}-unsaturated aldehydes on Mo-V-oxides based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, H.; Petzoldt, J.C.; Stein, B.; Weimer, C.; Gaube, J.W. [Technische Univ. Darmstadt (Germany). Inst. fuer Chemische Technologie

    1998-12-31

    A kinetic model based on the Mars-van Krevelen mechanism that allows to describe the microkinetics of the heterogeneously catalysed partial oxidation of {alpha}, {beta}-unsaturated aldehydes is presented. This conversion is represented by a network, composed of the oxidation of the {alpha}, {beta}-unsaturated aldehyde towards the {alpha}, {beta}-unsaturated carboxylic acid and the consecutive oxidation of the acid as well as the parallel reaction of the aldehyde to products of deeper oxidation. The reaction steps of aldehyde respectively acid oxidation and catalyst reoxidation have been investigated separately in transient experiments. The combination of steady state and transient experiments has led to an improved understanding of the interaction of the catalyst with the aldehyde and the carboxylic acids as well as to a support of the kinetic model assumptions. (orig.)

  20. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    KAUST Repository

    Nielsen, Christian B.

    2015-10-27

    The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted to optimize the absorbing, energetic, and transport properties of the donor material, fullerenes remain as the exclusive electron acceptor in all high performance devices. Very recently, some new non-fullerene acceptors have been demonstrated to outperform fullerenes in comparative devices. This Account describes this progress, discussing molecular design considerations and the structure–property relationships that are emerging. The motivation to replace fullerene acceptors stems from their synthetic inflexibility, leading to constraints in manipulating frontier energy levels, as well as poor absorption in the solar spectrum range, and an inherent tendency to undergo postfabrication crystallization, resulting in device instability. New acceptors have to address these limitations, providing tunable absorption with high extinction coefficients, thus contributing to device photocurrent. The ability to vary and optimize the lowest unoccupied molecular orbital (LUMO) energy level for a specific donor polymer is also an important requirement, ensuring minimal energy loss on electron transfer and as high an internal voltage as possible. Initially perylene diimide acceptors were evaluated as promising acceptor materials. These electron deficient aromatic molecules can exhibit good electron transport, facilitated by close packed herringbone crystal motifs, and their energy levels can be synthetically tuned. The principal drawback of this class of materials, their tendency to crystallize on too large a length scale for an optimal heterojunction nanostructure, has been shown to be overcome through introduction of conformation twisting through steric effects. This has been primarily achieved by coupling two units together, forming dimers

  1. A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics

    KAUST Repository

    Holliday, Sarah

    2015-01-21

    A novel small molecule, FBR, bearing 3-ethylrhodanine flanking groups was synthesized as a nonfullerene electron acceptor for solution-processed bulk heterojunction organic photovoltaics (OPV). A straightforward synthesis route was employed, offering the potential for large scale preparation of this material. Inverted OPV devices employing poly(3-hexylthiophene) (P3HT) as the donor polymer and FBR as the acceptor gave power conversion efficiencies (PCE) up to 4.1%. Transient and steady state optical spectroscopies indicated efficient, ultrafast charge generation and efficient photocurrent generation from both donor and acceptor. Ultrafast transient absorption spectroscopy was used to investigate polaron generation efficiency as well as recombination dynamics. It was determined that the P3HT:FBR blend is highly intermixed, leading to increased charge generation relative to comparative devices with P3HT:PC60BM, but also faster recombination due to a nonideal morphology in which, in contrast to P3HT:PC60BM devices, the acceptor does not aggregate enough to create appropriate percolation pathways that prevent fast nongeminate recombination. Despite this nonoptimal morphology the P3HT:FBR devices exhibit better performance than P3HT:PC60BM devices, used as control, demonstrating that this acceptor shows great promise for further optimization.

  2. Acceptors related to group I elements in ZnO ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kushnirenko, V.I. [V. Lashkarev Institute of Semiconductor Physics, NAS of Ukraine, Pr. Nauky 45, Kiev 03028 (Ukraine); Markevich, I.V., E-mail: ivmarkevich@ukr.net [V. Lashkarev Institute of Semiconductor Physics, NAS of Ukraine, Pr. Nauky 45, Kiev 03028 (Ukraine); Zashivailo, T.V. [National Technical University of Ukraine ' KPI' , Pr. Pobedy 37, Kiev 03056 (Ukraine)

    2012-08-15

    ZnO ceramics doped with Li, Na or K were sintered in air for 4 h at 1000 Degree-Sign C. Electrical conductivity as well as photoluminescence (PL), PL excitation and photoconductivity spectra were measured and compared with those in undoped samples. The influence of both fast and slow cooling of the samples from 1000 Degree-Sign C on measured characteristics was investigated. The yellow-orange PL bands associated with the deep acceptors Li{sub Zn}, Na{sub Zn} and K{sub Zn} were observed and the corresponding PL excitation spectra were determined. These acceptors were found to form some complexes with other lattice defects. - Highlights: Black-Right-Pointing-Pointer Centers related to Li, Na and K impurities in zinc oxide were investigated. Black-Right-Pointing-Pointer It was shown that Li{sub Zn}, Na{sub Zn} and K{sub Zn} centers were deep acceptors responsible for yellow-orange PL bands. Black-Right-Pointing-Pointer These acceptors were found to form some complexes with other lattice defects. Black-Right-Pointing-Pointer The formation of shallow acceptors due to doping ZnO ceramics with Li, Na and K was not found.

  3. Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects

    Directory of Open Access Journals (Sweden)

    Valery E. Tarabanko

    2017-11-01

    Full Text Available This review discusses principal patterns that govern the processes of lignins’ catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde. It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10–15% inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali in the process—over 10 mol per mol of obtained vanillin—is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed.

  4. Critical role of aldehydes in cigarette smoke-induced acute airway inflammation

    NARCIS (Netherlands)

    van der Toorn, Marco; Slebos, Dirk-Jan; de Bruin, Harold G.; Gras, Renee; Rezayat, Delaram; Jorge, Lucie; Sandra, Koen; van Oosterhout, Antoon J. M.

    2013-01-01

    Background: Cigarette smoking (CS) is the most important risk factor for COPD, which is associated with neutrophilic airway inflammation. We hypothesize, that highly reactive aldehydes are critical for CS-induced neutrophilic airway inflammation. Methods: BALB/c mice were exposed to CS, water

  5. Ambient concentrations of aldehydes in relation to Beijing Olympic air pollution control measures

    Science.gov (United States)

    Gong, J. C.; Zhu, T.; Hu, M.; Zhang, L. W.; Cheng, H.; Zhang, L.; Tong, J.; Zhang, J.

    2010-08-01

    Aldehydes are ubiquitous constituents of the atmosphere. Their concentrations are elevated in polluted urban atmospheres. The present study was carried out to characterize three aldehydes of most health concern (formaldehyde, acetaldehyde, and acrolein) in a central Beijing site in the summer and early fall of 2008 (from June to October). Measurements were made before, during, and after the Beijing Olympics to examine whether the air pollution control measures implemented to improve Beijing's air quality during the Olympics had any impact on concentrations of the three aldehydes. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.34 ± 15.12 μg/m3, 27.09 ± 15.74 μg/m3 and 2.32 ± 0.95 μg/m3, respectively, for the entire period of measurements, all being the highest among the levels measured in cities around the world in photochemical smog seasons. Among the three measured aldehydes, only acetaldehyde had a substantially reduced mean concentration during the Olympic air pollution control period compared to the pre-Olympic period. Formaldehyde and acrolein followed the changing pattern of temperature and were each significantly correlated with ozone (a secondary product of photochemical reactions). In contrast, acetaldehyde was significantly correlated with several pollutants emitted mainly from local emission sources (e.g., NO2, CO, and PM2.5). These findings suggest that local direct emissions had a larger impact on acetaldehyde than formaldehyde and acrolein.

  6. Aldehyde-functionalized porous nanocellulose for effective removal of heavy metal ions from aqueous solutions

    Science.gov (United States)

    C. Yao; F. Wang; Z. Cai; X. Wang

    2016-01-01

    Nanoscale sorption is a promising strategy for catalyst and purification system design. In this paper, cellulose nanofibrils (CNFs) were densely attached with aldehyde functional groups on the surface via a mild periodate oxidation process, and then applied as mesoporous sorbents to remove Cu(II) and Pb(II) from aqueous solutions. In the studied concentration range (0....

  7. Analysis of aldehydes in human exhaled breath condensates by in-tube SPME-HPLC.

    Science.gov (United States)

    Wang, ShuLing; Hu, Sheng; Xu, Hui

    2015-11-05

    In this paper, polypyrrole/graphene (PPy/G) composite coating was prepared by a facile electrochemical polymerization strategy on the inner surface of a stainless steel (SS) tube. Based on the coating tube, a novel online in-tube solid-phase microextraction -high performance liquid chromatography (IT-SPME-HPLC) was developed and applied for the extraction of aldehydes in the human exhaled breath condensates (EBC). The hybrid PPy/G nanocomposite exhibits remarkable chemical and mechanical stability, high selectivity, and satisfactory extraction performance toward aldehyde compounds. Moreover, the proposed online IT-SPME-HPLC method possesses numerous superiorities, such as time and cost saving, process simplicity, high precision and sensitivity. Some parameters related to extraction efficiency were optimized systematically. Under the optimal conditions, the recoveries of the aldehyde compounds at three spiked concentration levels varied in the range of 85%-117%. Good linearity was obtained with excellent correlation coefficients (R(2)) being larger than 0.994. The relative standard deviations (n = 5) of the method ranged from 1.8% to 11.3% and the limits of detection were between 2.3 and 3.3 nmol L(-1). The successful application of the proposed method in human EBC indicated that it is a promising approach for the determination of trace aldehyde metabolites in complex EBC samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A Highly Efficient Solvent-Free Acetalization of Aldehydes to 1,1 ...

    African Journals Online (AJOL)

    1,1-Diacetates are prepared in excellent yields from aldehydes and acetic anhydride under solvent-free conditions at room temperature in short reaction times using catalytic amount of sulfonic acid functionalized silica (SiO2-Pr-SO3H) which could be easily handled and removed from the mixture of reaction. Keywords: 1 ...

  9. Efficient Method for Aromatic-Aldehyde Oxidation by Cleavage of Their Hydrazones Catalysed by Trimethylsilanolate

    Czech Academy of Sciences Publication Activity Database

    Bürglová, K.; Okorochenkov, S.; Buděšínský, Miloš; Hlaváč, J.

    2017-01-01

    Roč. 2017, č. 2 (2017), s. 389-396 ISSN 1434-193X R&D Projects: GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 Keywords : aldehydes * oxidation * hydrazones * solid-phase synthesis * reaction mechanisms Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 2.834, year: 2016

  10. Vapor pressures and enthalpies of vaporization of a series of the linear aliphatic aldehydes

    Czech Academy of Sciences Publication Activity Database

    Verevkin, S. P.; Krasnykh, E. L.; Vasiltsova, T. V.; Koutek, Bohumír; Doubský, Jan; Heintz, A.

    2003-01-01

    Roč. 206, - (2003), s. 331-339 ISSN 0378-3812 Institutional research plan: CEZ:AV0Z4055905 Keywords : aldehydes * vapor pressure * enthalpy of vaporization Subject RIV: CC - Organic Chemistry Impact factor: 1.165, year: 2003

  11. Substituent effect of phenolic aldehyde inhibition on alcoholic fermentation by Saccharomyces cerevisiae

    Science.gov (United States)

    Rui Xie; Maobing Tu; Thomas Elder

    2016-01-01

    Phenolic compounds significantly inhibit microbial fermentation of biomass hydrolysates. To understand thequantitative structure-inhibition relationship of phenolic aldehydes on alcoholic fermentation, the effect of 11 differentsubstituted benzaldehydes on the final ethanol yield was examined. The results showed that the degree of phenolic...

  12. Characterisation of recombinant human fatty aldehyde dehydrogenase: implications for Sjögren-Larsson syndrome

    NARCIS (Netherlands)

    Lloyd, Matthew D.; Boardman, Kieren D. E.; Smith, Andrew; van den Brink, Daan M.; Wanders, Ronald J. A.; Threadgill, Michael D.

    2007-01-01

    Fatty aldehyde dehydrogenase (FALDH) is an NAD+-dependent oxidoreductase involved in the metabolism of fatty alcohols. Enzyme activity has been implicated in the pathology of diabetes and cancer. Mutations in the human gene inactivate the enzyme and cause accumulation of fatty alcohols in

  13. Partial Reduction of Esters to Aldehydes Using a Novel Modified Red-Al Reducing Agent

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Won Kyu; Kang, Daehoon; An, Duk Keun [Kangwon National Univ., Chunchon (Korea, Republic of)

    2014-07-15

    We have developed a convenient alternative method for the synthesis of aldehydes from both aromatic and aliphatic esters in very good to excellent yields in the absence of any additives using a modified Red-Al that was easily prepared by reacting commercially available Red-Al with cis-2,6-dimethyl morpholine. The advantages of the present methodology are as follows: simple preparation procedure of the reducing agent, improved product yields, convenient reaction temperature, and short reaction times. Therefore, the new reagent has great potential to be a useful alternative partial reducing agent for the synthesis of aldehydes from esters in organic synthesis. Aldehydes are valuable building blocks and reactive intermediates in organic synthesis. The general and classical syntheses of aldehydes from esters involve reduction-oxidation and partial reduction using efficient partial reducing agents. Obviously, one-step partial reduction methods are more useful than two-step reduction-oxidation methods owing to their simplicity, and generality in organic synthesis.

  14. Study on physico-chemical properties of dialdehyde yam starch with different aldehyde group contents

    International Nuclear Information System (INIS)

    Zhang, Liming; Liu, Peng; Wang, Yugao; Gao, Wenyuan

    2011-01-01

    Dialdehyde yam starches (DASs) are prepared and characterized. Compared with native starch, viscosity average molecular weight of DASs decreases, and the extent of degradation depends on content of the aldehyde groups. Fourier transform infrared (FT-IR) spectra confirm that the characteristic peak for C=O group at 1732 cm -1 is enhanced with the increasing of content of the aldehyde groups. Scanning electron microscopy (SEM) micrographs show that the surface of starch granules becomes wrinkled. X-ray diffraction (XRD) patterns clearly indicate that their crystallinity decreases with the increasing content of the aldehyde groups before they become amorphous at higher oxidation states. The experimental results of thermogravimetric analysis (TGA) show that DASs have poor stability as compared to native starch. With the increase in content of the aldehyde groups, the thermal stability of DAS declines gradually. According to the results of differential scanning calorimetry (DSC), gelatinization temperature (T o and T p ) of DASs are increased, whereas the gelatinization enthalpy decreased.

  15. Determination of Aldehyde Dehydrogenase (ALDH Isozymes in Human Cancer Samples - Comparison of Kinetic and Immunochemical Assays

    Directory of Open Access Journals (Sweden)

    Dorota Borecka

    2002-12-01

    Full Text Available A fluorimetric assay of aldehyde dehydrogenase isozymes, based on naphthaldehyde oxidation, is compared with Western Blotting analysis on several clinical samples obtained from surgery. The comparison reveals qualitatively good correlation of ALDH1A1 isozyme detection with two methods and somewhat worse on ALDH3A1 assay.

  16. Effect of phenolic aldehydes and flavonoids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii.

    Science.gov (United States)

    Figueiredo, Ana Rita; Campos, Francisco; de Freitas, Víctor; Hogg, Tim; Couto, José António

    2008-02-01

    The aim of this work was to investigate the effect of wine phenolic aldehydes, flavonoids and tannins on growth and viability of strains of Oenococcus oeni and Lactobacillus hilgardii. Cultures were grown in ethanol-containing MRS/TJ medium supplemented with different concentrations of phenolic aldehydes or flavonoids and monitored spectrophotometrically. The effect of tannins was evaluated by monitoring the progressive inactivation of cells in ethanol-containing phosphate buffer supplemented with grape seed extracts with different molecular weight tannins. Of the phenolic aldehydes tested, sinapaldehyde, coniferaldehyde, p-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde and 3,4,5-trihydroxybenzaldehyde significantly inhibited the growth of O. oeni VF, while vanillin and syringaldehyde had no effect at the concentrations tested. Lact. hilgardii 5 was only inhibited by sinapaldehyde and coniferaldehyde. Among the flavonoids, quercetin and kaempferol exerted an inhibitory effect especially on O. oeni VF. Myricetin and the flavan-3-ols studied (catechin and epicatechin) did not affect considerably the growth of both strains. Condensed tannins (particularly tetramers and pentamers) were found to strongly affect cell viability, especially in the case of O. oeni VF. In general, this strain was found to be more sensitive than Lact. hilgardii 5 to the phenolic compounds studied. This work contributes to the knowledge of the effect of different phenolic compounds on the activity of wine lactic acid bacteria, which, especially in the case of aldehydes and of different molecular weight fractions of tannins, is very scarce.

  17. The molecular cloning of dihydroartemisinic aldehyde reductase and its implication in artemisinin biosynthesis in Artemisia annua

    NARCIS (Netherlands)

    Ryden, A.M.; Ruyter-Spira, C.P.; Quax, W.J.; Hiroyuki, O.; Toshiya, M.; Kayser, O.; Bouwmeester, H.J.

    2010-01-01

    A key point in the biosynthesis of the antimalarial drug artemisinin is the formation of dihydroartemisinic aldehyde which represents the key difference between chemotype specific pathways. This key intermediate is the substrate for several competing enzymes, some of which increase the metabolic

  18. Chronic oral exposure to the aldehyde pollutant acrolein induces dilated cardiomyopathy

    Science.gov (United States)

    Ismahil, Mohamed Ameen; Hamid, Tariq; Haberzettl, Petra; Gu, Yan; Chandrasekar, Bysani; Srivastava, Sanjay; Bhatnagar, Aruni

    2011-01-01

    Environmental triggers of dilated cardiomyopathy are poorly understood. Acute exposure to acrolein, a ubiquitous aldehyde pollutant, impairs cardiac function and cardioprotective responses in mice. Here, we tested the hypothesis that chronic oral exposure to acrolein induces inflammation and cardiomyopathy. C57BL/6 mice were gavage-fed acrolein (1 mg/kg) or water (vehicle) daily for 48 days. The dose was chosen based on estimates of human daily unsaturated aldehyde consumption. Compared with vehicle-fed mice, acrolein-fed mice exhibited significant (P acrolein adduct formation indicative of physical translocation of ingested acrolein to the heart. Acrolein also induced myocyte hypertrophy (∼2.2-fold increased myocyte area, P acrolein-exposed hearts, along with upregulated gene expression of proinflammatory cytokines tumor necrosis factor-α and interleukin-1β. Long-term oral exposure to acrolein, at an amount within the range of human unsaturated aldehyde intake, induces a phenotype of dilated cardiomyopathy in the mouse. Human exposure to acrolein may have analogous effects and raise consideration of an environmental, aldehyde-mediated basis for heart failure. PMID:21908791

  19. Supported Rh-phosphine complex catalysts for continuous gas-phase decarbonylation of aldehydes

    DEFF Research Database (Denmark)

    Malcho, Phillip; Garcia-Suarez, Eduardo J.; Mentzel, Uffe Vie

    2014-01-01

    Heterogeneous silica supported rhodium-phosphine complex catalysts are employed for the first time in the catalytic decarbonylation of aldehydes in continuous gas-phase. The reaction protocol is exemplified for the decarbonylation of p-tolualdehyde to toluene and further extended to other aromatic...

  20. A General and Convenient Method for the Rhodium-Catalyzed Decarbonylation of Aldehydes

    DEFF Research Database (Denmark)

    Kreis, Michael; Palmelund, Anders; Bunch, Lennart

    2006-01-01

    A practical protocol for the decarbonylation of a wide range of aldehydes has been developed by using commercially available RhCl3x3H2O and dppp in a diglyme solution. This method gives rise to decarbonylated products in good to high yield and is particularly useful because of its experimental si...

  1. Palladium-Catalyzed Anti-Markovnikov Oxidation of Allylic Amides to Protected beta-Amino Aldehydes

    NARCIS (Netherlands)

    Dong, Jiajia; Harvey, Emma C.; Fananas-Mastral, Martin; Browne, Wesley R.; Feringa, Bernard

    2014-01-01

    A general method for the preparation of N-protected beta-amino aldehydes from allylic amines or linear allylic alcohols is described. Here the Pd(II)-catalyzed oxidation of N-protected allylic amines with benzoquinone is achieved in tBuOH under ambient conditions with excellent selectivity toward

  2. Reduction of Aldehydes and Ketones to Corresponding Alcohols Using Diammonium Hydrogen Phosphite and Commercial Zinc Dust

    Directory of Open Access Journals (Sweden)

    K. Anil Kumar

    2011-01-01

    Full Text Available A mild and an efficient system has been developed for the reduction of aromatic aldehydes and ketones to their corresponding alcohols in good yield using inexpensive commercial zinc dust as catalyst and diammonium hydrogen phosphite as a hydrogen donor.

  3. Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects

    Science.gov (United States)

    Tarabanko, Valery E.; Tarabanko, Nikolay

    2017-01-01

    This review discusses principal patterns that govern the processes of lignins’ catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde) and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde). It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10–15%) inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali) in the process—over 10 mol per mol of obtained vanillin—is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed. PMID:29140301

  4. Electroluminescence from charge transfer states in Donor/Acceptor solar cells

    DEFF Research Database (Denmark)

    Sherafatipour, Golenaz; Madsen, Morten

    Charge photocurrent generation is a key process in solar energy conversion systems. Effective dissociation of the photo-generated electron-hole pairs (excitons) has a strong influence on the efficiency of the organic solar cells. Charge dissociation takes place at the donor/acceptor interface via...... which the maximum open-circuit voltage can be estimated, and further can be used in the modeling and optimization of the OPV devices. [1] C. Deibe, T. Strobe, and V. Dyakonov, “Role of the charge transfer state in organic donor-acceptor solar cells,” Adv. Mater., vol. 22, pp. 4097–4111, 2010. [2] K...... charge transfer (CT) excitons, which is Coulombically bound interfacial electron- hole pairs residing at the donor/acceptor heterojunctions. The CT state represents an intermediate state between the exciton dissociation and recombination back to the ground state. Since the recombination of photo...

  5. The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells

    KAUST Repository

    Gasparini, Nicola

    2018-01-29

    Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class of materials as compared to fullerene-based solar cells. In this contribution, the authors review the current understanding of the relevant photophysical processes in highly efficient nonfullerene acceptor (NFA) small molecules. Charge generation, recombination, and charge transport is discussed in comparison to fullerene-based composites. Finally, the authors review the superior light and thermal stability of nonfullerene small molecule acceptor based solar cells, and highlight the importance of NFA-based composites that enable devices without early performance loss, thus resembling so-called burn-in free devices.

  6. The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells

    KAUST Repository

    Gasparini, Nicola; Wadsworth, Andrew; Moser, Maximilian; Baran, Derya; McCulloch, Iain; Brabec, Christoph J.

    2018-01-01

    Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class of materials as compared to fullerene-based solar cells. In this contribution, the authors review the current understanding of the relevant photophysical processes in highly efficient nonfullerene acceptor (NFA) small molecules. Charge generation, recombination, and charge transport is discussed in comparison to fullerene-based composites. Finally, the authors review the superior light and thermal stability of nonfullerene small molecule acceptor based solar cells, and highlight the importance of NFA-based composites that enable devices without early performance loss, thus resembling so-called burn-in free devices.

  7. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    Directory of Open Access Journals (Sweden)

    Kenny F. Chou

    2015-06-01

    Full Text Available Förster (or fluorescence resonance energy transfer amongst semiconductor quantum dots (QDs is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting.

  8. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    Science.gov (United States)

    Chou, Kenny F.; Dennis, Allison M.

    2015-01-01

    Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting. PMID:26057041

  9. Shallow acceptors in Ge/GeSi heterostructures with quantum wells in magnetic field

    International Nuclear Information System (INIS)

    Aleshkin, V.Ya.; Antonov, A.V.; Veksler, D.B.; Gavrilenko, V.I.; Erofeeva, I.V.; Ikonnikov, A.V.; Kozlov, D.V.; Spirin, K.E.; Kuznetsov, O.A.

    2005-01-01

    One investigated both theoretically and experimentally into shallow acceptors in Ge/GeSi heterostructures with quantum wells (QW) in a magnetic field. It is shown that alongside with lines of cyclotron resonance in magnetoabsorption spectra one observes transitions from the ground state of acceptor to the excited ones associated with the Landau levels from the first and the second subbands of dimensional quantization, and resonance caused by ionization of A + -centres. To describe impurity transitions in Ge/GeSi heterostructures with QW in a magnetic field and to interpret the experiment results in detail one uses numerical method of calculation based on expansion of wave function of acceptor in terms of basis of wave functions of holes in QW in the absence of magnetic field [ru

  10. Occupational exposure of aldehydes resulting from the storage of wood pellets.

    Science.gov (United States)

    Rahman, Mohammad Arifur; Rossner, Alan; Hopke, Philip K

    2017-06-01

    An exposure assessment was conducted to investigate the potential for harmful concentrations of airborne short chain aldehydes emitted from recently stored wood pellets. Wood pellets can emit a number of airborne aldehydes include acetaldehyde, formaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, and hexanal. Exposure limits have been set for these compounds since they can result in significant irritation of the upper respiratory system at elevated concentrations. Formaldehyde is a recognized human carcinogen and acetaldehyde is an animal carcinogen. Thus, air sampling was performed in a wood pellet warehouse at a pellet mill, two residential homes with bulk wood pellet storage bins, and in controlled laboratory experiments to evaluate the risk to occupants. Using NIOSH method 2539, sampling was conducted in five locations in the warehouse from April-June 2016 when it contained varying quantities of bagged pellets as well as two homes with ten ton bulk storage bins. The aldehyde concentrations were found to increase with the amount of stored pellets. Airborne concentrations of formaldehyde were as high as 0.45 ppm in the warehouse exceeding the NIOSH REL-C, and ACGIH TLV-C occupational exposure limits (OELs). The concentrations of aldehydes measured in the residential bins were also elevated indicating emissions may raise indoor air quality concerns for occupants. While individual exposures are of concern the combined irritant effect of all the aldehydes is a further raise the concerns for building occupants. To minimize exposure and the risk of adverse health effects to a building's occupants in storage areas with large quantities of pellets, adequate ventilation must be designed into storage areas.

  11. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    P. O. Wennberg

    2010-08-01

    Full Text Available Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene, the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA via methacrolein (a C4-unsaturated aldehyde under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232 is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(OOONO2 formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios (3–8, the SOA yields from isoprene high-NOx photooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  12. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    Science.gov (United States)

    Chan, A. W. H.; Chan, M. N.; Surratt, J. D.; Chhabra, P. S.; Loza, C. L.; Crounse, J. D.; Yee, L. D.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H.

    2010-08-01

    Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA) via methacrolein (a C4-unsaturated aldehyde) under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN) as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232) is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(O)OONO2) formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios (3-8), the SOA yields from isoprene high-NOx photooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  13. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7.

    Science.gov (United States)

    Končitíková, Radka; Vigouroux, Armelle; Kopečná, Martina; Andree, Tomáš; Bartoš, Jan; Šebela, Marek; Moréra, Solange; Kopečný, David

    2015-05-15

    Aldehyde dehydrogenases (ALDHs) are responsible for oxidation of biogenic aldehyde intermediates as well as for cell detoxification of aldehydes generated during lipid peroxidation. So far, 13 ALDH families have been described in plants. In the present study, we provide a detailed biochemical characterization of plant ALDH2 and ALDH7 families by analysing maize and pea ALDH7 (ZmALDH7 and PsALDH7) and four maize cytosolic ALDH(cALDH)2 isoforms RF2C, RF2D, RF2E and RF2F [the first maize ALDH2 was discovered as a fertility restorer (RF2A)]. We report the crystal structures of ZmALDH7, RF2C and RF2F at high resolution. The ZmALDH7 structure shows that the three conserved residues Glu(120), Arg(300) and Thr(302) in the ALDH7 family are located in the substrate-binding site and are specific to this family. Our kinetic analysis demonstrates that α-aminoadipic semialdehyde, a lysine catabolism intermediate, is the preferred substrate for plant ALDH7. In contrast, aromatic aldehydes including benzaldehyde, anisaldehyde, cinnamaldehyde, coniferaldehyde and sinapaldehyde are the best substrates for cALDH2. In line with these results, the crystal structures of RF2C and RF2F reveal that their substrate-binding sites are similar and are formed by an aromatic cluster mainly composed of phenylalanine residues and several nonpolar residues. Gene expression studies indicate that the RF2C gene, which is strongly expressed in all organs, appears essential, suggesting that the crucial role of the enzyme would certainly be linked to the cell wall formation using aldehydes from phenylpropanoid pathway as substrates. Finally, plant ALDH7 may significantly contribute to osmoprotection because it oxidizes several aminoaldehydes leading to products known as osmolytes.

  14. Do flavouring compounds contribute to aldehyde emissions in e-cigarettes?

    Science.gov (United States)

    Farsalinos, Konstantinos E; Voudris, Vassilis

    2018-05-01

    A recent study identified up to 10,000-fold higher aldehyde emissions from flavoured compared to unflavoured e-cigarette liquids. We set to replicate this study and also test similar flavourings with a new-generation e-cigarette device. Three liquids with the highest levels of aldehyde emissions in the previous study were tested (in standard and sweetened versions) using the same e-cigarette device and puffing patterns. Additionally, similar flavourings from a different manufacturer were tested using a new-generation e-cigarette device. Unflavoured samples were also tested. Low levels of formaldehyde (8.3-62 μg/g), acetaldehyde (12.1-26.0 μg/g) and acrolein (5.4-19.4 μg/g) were detected, lower by up to 589-fold compared to the previous report. Unflavoured liquid emitted 16.1 μg/g formaldehyde, 5.6 μg/g acetaldehyde and 2.4 μg/g acrolein, significantly lower compared to 2 liquids for formaldehyde and 1 for acrolein. Emissions from the new-generation device were even lower. Aldehyde emissions from all flavoured liquids were 79-99.8% lower than smoking and lower than commonly measured indoor levels and occupational and indoor safety limits. The e-cigarettes tested herein emit very low levels of aldehydes. Some flavourings may contribute to aldehyde emissions, but the absolute levels were minimal. Validated methods should be used when analysing e-cigarette emissions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kaspera, Ruediger; Sahele, Tariku; Lakatos, Kyle [Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610 (United States); Totah, Rheem A., E-mail: rtotah@u.washington.edu [Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610 (United States)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k{sub cat} {approx} 25 min{sup -1}). Black-Right-Pointing-Pointer Reduction is a direct hydride transfer from R-NADP{sup 2}H to the carbonyl moiety. Black-Right-Pointing-Pointer P450 domain variants enhance reduction through potential allosteric/redox interactions. Black-Right-Pointing-Pointer Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k{sub cat} of {approx}25 min{sup -1} was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP{sup 2}H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP{sup 2}H but not D{sub 2}O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.

  16. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    International Nuclear Information System (INIS)

    Kaspera, Rüdiger; Sahele, Tariku; Lakatos, Kyle; Totah, Rheem A.

    2012-01-01

    Highlights: ► Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k cat ∼ 25 min −1 ). ► Reduction is a direct hydride transfer from R-NADP 2 H to the carbonyl moiety. ► P450 domain variants enhance reduction through potential allosteric/redox interactions. ► Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k cat of ∼25 min −1 was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP 2 H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP 2 H but not D 2 O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.

  17. Differences in gene expression of human xylosyltransferases and determination of acceptor specificities for various proteoglycans

    Energy Technology Data Exchange (ETDEWEB)

    Roch, Christina; Kuhn, Joachim; Kleesiek, Knut [Institut fuer Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitaetsklinik der Ruhr-Universitaet Bochum, 32545 Bad Oeynhausen (Germany); Goetting, Christian, E-mail: cgoetting@hdz-nrw.de [Institut fuer Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitaetsklinik der Ruhr-Universitaet Bochum, 32545 Bad Oeynhausen (Germany)

    2010-01-01

    The xylosyltransferase (XT) isoforms XT-I and XT-II initiate the posttranslational glycosaminoglycan (GAG) synthesis. Here, we determined the relative expression of both isoforms in 33 human cell lines. The majority of tested cell lines showed dominant XYLT2 gene expression, while only in 23132/87, JAR, NCI-H510A and THP-1 was the XT-I mRNA expression higher. Nearly equal expression levels were detected in six cell lines. Additionally, to shed light on putative differences in acceptor specificities the acceptor properties of potential acceptor sequences were determined. Peptides were expressed as glutathione-S-transferase fusion proteins containing putative or known GAG attachment sites of in vivo proteoglycans. Kinetic analysis showed that K{sub m} and V{sub max} values for XT-I mediated xylosylation were slightly higher than those for XT-II, and that XT-I showed a lesser stringency concerning the acceptor sequence. Mutagenesis of the bikunin peptide sequence in the G-S-G attachment site and flanking regions generated potential acceptor molecules. Here, mutations on the N-terminal side and the attachment site were found to be more susceptible to a loss of acceptor function than mutations in the C-terminus. Altogether the known consensus sequence a-a-a-a-G-S-G-a-a/G-a ('a' representing Asp or Glu) for XT-I mediated xylosylation could be approved and additionally extended to apply to XT-II as well.

  18. The effect of molecular geometry on the photovoltaic property of diketopyrrolopyrrole based non-fullerene acceptors

    DEFF Research Database (Denmark)

    Zhang, Fei; Brandt, Rasmus Guldbæk; Gu, Zhuowei

    2015-01-01

    The non-fullerene acceptors with different geometric structures have great impact on light absorption, exciton dissociation, and charge transportation in the active layer of organic solar cells (OSCs). In this paper, we designed and synthesized two diketopyrrolopyrrole based non-fullerene acceptors......) while compared to Ph(DPP)2. Therefore, the resulting P3HT:PhDMe(DPP)2 based OSCs shows a better power conversion efficiency (PCE) of 0.65%, higher than that from P3HT:Ph(DPP)2 based OSCs (0.48%), which can be ascribed to more efficient exciton dissociation and electron transportation in the active layer...

  19. Mechanism of electron transfer from e-sub(aq) to acceptors in micelles

    International Nuclear Information System (INIS)

    Graetzel, M.; Henglein, A.; Janata, E.

    1975-01-01

    Pulse radiolysis experiments were carried out to investigate reactions A + e - sub(aq) → A - of hydrated electrons with acceptors A incorporated in the lipoidic part of micellar 10 -3 M sodium-lauryl-sulfate (SLS) and cetyl-trimethyl-ammonium-bromide (CTAB). The acceptors were 9-nitro-anthracene and pyrene, the latter in both the singlet and triplet state (the triplet was produced by UV-light irradiation shortly before the high energy electron pulse was applied). The triplet state of pyrene reacts in CTAB-micelles with a rate constant smaller by at least a factor of two than the singlet ground state. (orig./HK) [de

  20. Magnetic field effect on the Coulomb interaction of acceptors in semimagnetic quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Kalpana, P.; Merwyn, A.; Nithiananthi, P.; Jayakumar, K., E-mail: kjkumar-gri@rediffmail.com [Nanostructure Lab, Department of Physics, Gandhigram Rural University, Gandhigram-624302 (India); Reuben, Jasper D. [Department of Physics, School of Engineering, Saveetha University, Thandalam, Chennai- 600104 (India)

    2015-06-24

    The Coulomb interaction of holes in a Semimagnetic Cd{sub 1-x}Mn{sub x}Te / CdTe Spherical and Cubical Quantum Dot (SMQD) in a magnetic field is studied using variational approach in the effective mass approximation. Since these holes in QD show a pronounced collective behavior, while distinct single particle phenomena is suppressed, their interaction in confined potential becomes very significant. It has been observed that acceptor-acceptor interaction is more in cubical QD than in spherical QD which can be controlled by the magnetic field. The results are presented and discussed.

  1. Magnetic field effect on the Coulomb interaction of acceptors in semimagnetic quantum dot

    Science.gov (United States)

    Kalpana, P.; Merwyn, A.; Reuben, Jasper D.; Nithiananthi, P.; Jayakumar, K.

    2015-06-01

    The Coulomb interaction of holes in a Semimagnetic Cd1-xMnxTe / CdTe Spherical and Cubical Quantum Dot (SMQD) in a magnetic field is studied using variational approach in the effective mass approximation. Since these holes in QD show a pronounced collective behavior, while distinct single particle phenomena is suppressed, their interaction in confined potential becomes very significant. It has been observed that acceptor-acceptor interaction is more in cubical QD than in spherical QD which can be controlled by the magnetic field. The results are presented and discussed.

  2. Interaction of point intrinsic defects in n-type indium phosphide with acceptor clusters

    International Nuclear Information System (INIS)

    Vitovskij, N.A.; Lagunova, T.S.; Rakhimov, O.

    1984-01-01

    The rates of implanting defects of donor- and acceptor type stable at room temperature in n-InP during gamma irradiation are found to vary versus the compensating impurity type. Zinc atoms interact with defects most actively. Irradiation also brings about the growth of acceptor clusters, this growth being most markedly expressed in InP . The presence of an additional mechanism of charge-carriers scattering associated with the existence of clusters of compensating centres is verified, the temperature dependence of the effectiveness of this mechanism μ approximately Tsup(-1.2) is found

  3. Design, synthesis and photovoltaic properties of a series of new acceptor-pended conjugated polymers

    Institute of Scientific and Technical Information of China (English)

    Zhihong; Wu; Yongxiang; Zhu; Wei; Li; Yunping; Huang; Junwu; Chen; Chunhui; Duan; Fei; Huang; Yong; Cao

    2016-01-01

    A series of novel acceptor-pended conjugated polymers featuring a newly developed carbazole-derived unit are designed and synthesized. The relationships between chemical structure and optoelectronic properties of the polymers are systematically investigated.The control of UV-Vis absorption spectra and energy levels in resulting polymers are achieved by introducing suitable pended acceptor units. The photovoltaic properties of the resulting polymers are evaluated by blending the polymers with(6,6)-phenyl-C71-butyric acid methyl ester. The resulting solar cells exhibit moderate performances with high open-circuit voltage. Charge transport properties and morphology were investigated to understand the performance of corresponding solar cells.

  4. Dominant intrinsic acceptors in GaN and ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, K; Hautakangas, S; Tuomisto, F [Laboratory of Physics, Helsinki University of Technology, PO Box 1100, FI-02015 TKK (Finland)

    2006-09-01

    Positron annihilation measurements reveal negatively charged Ga vacancies in n-type GaN and Zn vacancies in n-type ZnO. Positron trapping at other negative defects is not observed, indicating that cation vacancies are the dominant acceptors in these materials. The vacancy concentrations are the same as the total acceptor densities determined in Hall experiments, confirming the dominant role of the vacancy defects. The Ga vacancy in GaN is found as the main compensating centre over the range of four orders of magnitude of intentional oxygen doping.

  5. Dominant intrinsic acceptors in GaN and ZnO

    International Nuclear Information System (INIS)

    Saarinen, K; Hautakangas, S; Tuomisto, F

    2006-01-01

    Positron annihilation measurements reveal negatively charged Ga vacancies in n-type GaN and Zn vacancies in n-type ZnO. Positron trapping at other negative defects is not observed, indicating that cation vacancies are the dominant acceptors in these materials. The vacancy concentrations are the same as the total acceptor densities determined in Hall experiments, confirming the dominant role of the vacancy defects. The Ga vacancy in GaN is found as the main compensating centre over the range of four orders of magnitude of intentional oxygen doping

  6. Studies on the syntheses, structural characterization, antimicrobial-, and DPPH radical scavenging activity of the cocrystals caffeine:cinnamic acid and caffeine:eosin dihydrate

    Science.gov (United States)

    Suresh Kumar, G. S.; Seethalakshmi, P. G.; Bhuvanesh, N.; Kumaresan, S.

    2013-10-01

    Two organic cocrystals namely, caffeine:cinnamic acid [(caf)(ca)] (1) and caffeine:eosin dihydrate [(caf)(eos)]·2H2O (2) were synthesized and studied by FT-IR, TGA/DTA, and single crystal XRD. The crystal system of cocrystal 1 is triclinic with space group P-1 and Z = 2 and that of cocrystal 2 is monoclinic with space group P21/C and Z = 4. An imidazole-carboxylic acid synthon is observed in the cocrystal 1. The intermolecular hydrogen bond, O-H⋯N and π-π interactions play a major role in stabilizing 1 whereas the intermolecular hydrogen bonds, O-H⋯O, O-H⋯N, and intramolecular hydrogen bond, O-H⋯Br; along with π-π interactions together play a vital role in stabilizing the structure of 2. The antimicrobial- and DPPH radical scavenging activities of both the cocrystals were studied.

  7. Nonradiative Decay Route of Cinnamate Derivatives Studied by Frequency and Time Domain Laser Spectroscopy in the Gas Phase, Matrix Isolation FTIR Spectroscopy and Quantum Chemical Calculations

    Science.gov (United States)

    Ebata, Takayuki

    2017-06-01

    The nonraddiative dececy route involving trans → cis photo-isomerization from the S_1 (ππ*) state has been investigated for several trans-cinnamate derivatives, which are known as sunscreen reagents. We examined two types of substitution effects. One is structural isomer such as ortho-, meta-, and para-hydroxy-methylcinnmate (o-, m-, p-HMC). The S_1 lifetime of p-HMC is less than 8 ps at zero-point level, and it undergoes rapid S_1 → ^1nπ* → T_1 decay via multiple conical intersections. Finally, the trans → cis isomerization proceeds in the T_1 state. On the other hand, both o- and m-HMC show very slow decay. Their S_1 lifetimes are in the order of 100 ps even at the excess energy of 2000-3000 \\wn. The other is the effect of the complexity of ester group in para-subsitituted species, such as para-methoxy-methyl, -ethyl and -2ethylhexyl cinnamate (p-MMC, p-MEC, p-M2EHC). p-MMC and p-MEC show sharp S_0 → S_1 (ππ*) vibronic bands, while p-M2EHC shows only broad structureless feature even under the jet-cooled condition. In addition, we found that the S_0 → ^1nπ* absorption appears at 1000 \\wn below the S_0 → S_1 (ππ*) transition in p-MEC and p-M2EHC, but not in p-MMC. Thus, the complexity of the ester group is very important for the appearance of the ^1nπ* state.

  8. Gastroprotective Effect of Ginger Rhizome (Zingiber officinale Extract: Role of Gallic Acid and Cinnamic Acid in H+, K+-ATPase/H. pylori Inhibition and Anti-Oxidative Mechanism

    Directory of Open Access Journals (Sweden)

    Siddaraju M. Nanjundaiah

    2011-01-01

    Full Text Available Zinger officinale has been used as a traditional source against gastric disturbances from time immemorial. The ulcer-preventive properties of aqueous extract of ginger rhizome (GRAE belonging to the family Zingiberaceae is reported in the present study. GRAE at 200 mg kg−1 b.w. protected up to 86% and 77% for the swim stress-/ethanol stress-induced ulcers with an ulcer index (UI of 50 ± 4.0/46 ± 4.0, respectively, similar to that of lansoprazole (80% at 30 mg kg−1 b.w. Increased H+, K+-ATPase activity and thiobarbituric acid reactive substances (TBARS were observed in ulcer-induced rats, while GRAE fed rats showed normalized levels and GRAE also normalized depleted/amplified anti-oxidant enzymes in swim stress and ethanol stress-induced animals. Gastric mucin damage was recovered up to 77% and 74% in swim stress and ethanol stress, respectively after GRAE treatment. GRAE also inhibited the growth of H. pylori with MIC of 300 ± 38 μg and also possessed reducing power, free radical scavenging ability with an IC50 of 6.8 ± 0.4 μg mL−1 gallic acid equivalent (GAE. DNA protection up to 90% at 0.4 μg was also observed. Toxicity studies indicated no lethal effects in rats fed up to 5 g kg−1 b.w. Compositional analysis favored by determination of the efficacy of individual phenolic acids towards their potential ulcer-preventive ability revealed that between cinnamic (50% and gallic (46% phenolic acids, cinnamic acid appear to contribute to better H+, K+-ATPase and Helicobacter pylori inhibitory activity, while gallic acid contributes significantly to anti-oxidant activity.

  9. Reactions of OH-radicals with hydroxylated and methoxylated benzoic acids and cinnamic acids. Radiation-induced chemical changes in mushrooms

    International Nuclear Information System (INIS)

    Gaisberger, B.

    2001-05-01

    In the first part of this work the radiation induced chemical changes of methoxylated and hydroxylated benzoic acids and cinnamic acids were investigated. Methoxylated compounds were also used as model components for acid derivatives with no free-OH groups. The latter are essentials parts of vegetable foodstuff. A comparison of the radiolytic behaviour of single substituted methoxy- and hydroxybenzoic acids was given at first, data of literature was included. The priority of the investigation was the hydroxylation process induced by OH-radicals. The OH-adduct distribution is generally the same for the hydroxy- as well as for the methoxybenzoic acid isomers. This could be proved by oxidation of these OH-adducts with K 3 Fe(CN) 6 . In the presence of air 68-77 % of the hydroxybenzoic acids are converted into hydroxylation products, whereas with the methoxylated acids this reaction leads only to about 10%. An explanation gives the different decay pathways of the intermediate peroxylradical. The multiple methoxy- and hydroxybenzoic acids show three different reaction possibilities: hydroxylation, replacement of -OCH 3 by -OH and -in case of the cinnamic acids-oxidative decomposition of the rest of the propenic acid under formation of the corresponding benzaldehydes. All these reactions can be expected when irradiating foodstuff, containing these acid compounds. The characteristic formation of these components and their linear dose/concentration relationship make these substrates very promising for the use as markers for irradiation treatment of foodstuff. The second part of this work deals with the gamma-radiation induced chemical changes in mushrooms. The irradiated and non-irradiated samples were freeze-dried and purified from matrix components chromatographically on polyamid columns. In case of the phenolic compounds for 4-hydroxybenzoic acid and three unknown components linear dose/concentration relationships could be obtained. Two of these unknown compounds seem

  10. Mechanism and Dynamics of Charge Transfer in Donor-Bridge-Acceptor Systems

    NARCIS (Netherlands)

    Gorczak-Vos, N.

    2016-01-01

    Photoinduced charge transfer in organic materials is a fundamental process in various biological and technological areas. Donor-bridge-acceptor (DBA) molecules are used as model systems in numerous theoretical and experimental work to systematically study and unravel the underlying mechanisms of

  11. Ex-situ activation of magnesium acceptors in InGaN/LED-structures

    Energy Technology Data Exchange (ETDEWEB)

    Kusch, Gunnar; Frentrup, Martin; Stellmach, Joachim; Kolbe, Tim; Wernicke, Tim; Pristovsek, Markus; Kneissl, Michael [Technische Universitaet Berlin, Institut fuer Festkoerperphysik, Hardenbergstr. 36, 10623 Berlin (Germany)

    2011-07-01

    One of the main problems limiting the output power of group-III-nitride compound light emitting diodes (LEDs) and laser diodes (LD) is the p-doping of nitrides with magnesium (Mg). During metal-organic vapor phase epitaxy (MOVPE) growth of (Al)GaN:Mg magnesium acceptors are passivated by hydrogen (H). By thermal annealing under nitrogen atmosphere the Mg-H bond can be cracked, thus activating the Mg acceptor. We have investigated ex-situ Mg-activation of the p-GaN layer and p-AlGaN electron blocking layer (EBL) in LEDs grown by MOVPE. Especially the activation of the AlGaN EBL is crucial. Simulations show, that a high doping level is required for effective electron blocking and a high injection efficiency. Additionally the acceptor activation energy is expected to increase with increasing Al-content, reducing the free hole concentration in the EBL. Electroluminescence spectroscopy (EL) was performed to determine the influence of the activation on the external quantum efficiency of the LED structure. Furthermore we used CV measurements to determine the Mg-acceptor concentration.

  12. Quantitative measurements of magnetic polaron binding on acceptors in CdMnTe alloys

    Science.gov (United States)

    Nhung, Tran Hong; Planel, R.

    1983-03-01

    The acceptor binding energy is measured as a function of Temperature and composition in Cd1-x Mnx Te alloys, by time resolved spectroscopy. The Bound magnetic polaron effect is measured and compared with a theory accouting for magnetic saturation and fluctuations.

  13. Discriminating a deep defect from shallow acceptors in supercell calculations: gallium antisite in GaAs

    Science.gov (United States)

    Schultz, Peter

    To make reliable first principles predictions of defect energies in semiconductors, it is crucial to discriminate between effective-mass-like defects--for which existing supercell methods fail--and deep defects--for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a framework of level occupation patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematic analysis determines that the gallium antisite is inconsistent with a shallow state, and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, predicting that the Ga antisite is a deep double acceptor and has two donor states, one of which might be accidentally shallow. -- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  14. Limited Cash Flow on Slot Machines: Effects of Prohibition of Note Acceptors on Adolescent Gambling Behaviour

    Science.gov (United States)

    Hansen, Marianne; Rossow, Ingeborg

    2010-01-01

    This study addresses the impact of prohibition of note acceptors on gambling behaviour and gambling problems among Norwegian adolescents. Data comprised school surveys at three time points; 2004 and 2005 (before intervention) and 2006 (after intervention). Net samples comprised 20.000 students aged 13-19 years at each data collection. Identical…

  15. In vitro fermentation of alternansucrase raffinose acceptor products by human gut bacteria

    Science.gov (United States)

    In this work, in vitro fermentation of alternansucrase raffinose acceptor products, previously fractionated according to their degree of polymerization (DP; from DP4 to DP10) was carried out using pH-controlled small scale batch cultures at 37ºC under anaerobic conditions with human faeces. Bifidog...

  16. On the Molecular Origin of Charge Separation at the Donor-Acceptor Interface

    KAUST Repository

    Sini, Gjergji

    2018-01-22

    Fullerene-based acceptors have dominated organic solar cells for almost two decades. It is only within the last few years that alternative acceptors rival their dominance, introducing much more flexibility in the optoelectronic properties of these material blends. However, a fundamental physical understanding of the processes that drive charge separation at organic heterojunctions is still missing, but urgently needed to direct further material improvements. Here a combined experimental and theoretical approach is used to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor–acceptor (D–A) interface. Model systems comprised of polythiophene-based donor and rylene diimide-based acceptor polymers are used and a detailed density functional theory (DFT) investigation is performed. The results point to the roles that geometric deformations and direct-contact intermolecular polarization play in establishing a driving force (energy gradient) for the optoelectronic processes taking place at the interface. A substantial impact for this driving force is found to stem from polymer deformations at the interface, a finding that can clearly lead to new design approaches in the development of the next generation of conjugated polymers and small molecules.

  17. Activated Carbon as an Electron Acceptor and Redox Mediator during the Anaerobic Biotransformation of Azo Dyes

    NARCIS (Netherlands)

    Zee, van der F.P.; Bisschops, I.A.E.; Lettinga, G.; Field, J.A.

    2003-01-01

    The role of AC as redox mediator in accelerating the reductive transformation of pollutants as well as a terminal electron acceptor in the biological oxidation of an organic substrate is described. This study explores the use of AC as an immobilized redox mediator for the reduction of a recalcitrant

  18. A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics

    KAUST Repository

    Holliday, Sarah; Ashraf, Raja Shahid; Nielsen, Christian Bergenstof; Kirkus, Mindaugas; Rö hr, Jason A.; Tan, Chinghong; Collado-Fregoso, Elisa; Knall, Astrid Caroline; Durrant, James R.; Nelson, Jenny K.; McCulloch, Iain

    2015-01-01

    3HT:PC60BM devices, the acceptor does not aggregate enough to create appropriate percolation pathways that prevent fast nongeminate recombination. Despite this nonoptimal morphology the P3HT:FBR devices exhibit better performance than P3HT:PC60BM

  19. Tailored Band Gaps in Sulfur- and Nitrogen-Containing Porous Donor-Acceptor Polymers

    Czech Academy of Sciences Publication Activity Database

    Schwarz, D.; Kochergin, Y. S.; Acharjya, A.; Ichangi, Arun; Opanasenko, Maksym; Čejka, Jiří; Lappan, U.; Arki, P.; He, J.; Schmidt, J.; Nachtigall, P.; Thomas, A.; Tarábek, Ján; Bojdys, Michael J.

    2017-01-01

    Roč. 23, č. 53 (2017), s. 13023-13027 ISSN 0947-6539 Institutional support: RVO:61388963 ; RVO:61388955 Keywords : conjugated microporous polymers * donor-acceptor dyads * photocatalysis * sulfur * triazine Subject RIV: CC - Organic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Organic chemistry; Physical chemistry (UFCH-W) Impact factor: 5.317, year: 2016

  20. Photoluminescence quenching through resonant energy transfer in blends of conjugated polymer with low-molecular acceptor

    International Nuclear Information System (INIS)

    Zapunidi, S. A.; Paraschuk, D. Yu.

    2008-01-01

    A model is proposed for photoluminescence quenching due to resonant energy transfer in a blend of a conjugated polymer and a low-molecular energy acceptor. An analytical dependence of the normalized photoluminescence intensity on the acceptor concentration is derived for the case of a homogeneous blend. This dependence can be described by two fitting parameters related to the Foerster radii for energy transfer between conjugated segments of the polymer and between the conjugated polymer segment and the energy acceptor. Asymptotic approximations are obtained for the model dependence that make it possible to estimate the contribution from the spatial migration of excitons to the photoluminescence quenching. The proposed model is used to analyze experimental data on the photoluminescence quenching in a blend of the soluble derivative of poly(p-phenylene vinylene) and trinitrofluorenone [13]. The Foerster radius for resonant energy transfer between the characteristic conjugated segment of poly(p-phenylene vinylene) and the energy acceptor is determined to be r F = 2.6 ± 0.3 nm

  1. 2004 Electron Donor Acceptor Interactions Gordon Conference - August 8-13, 2004

    Energy Technology Data Exchange (ETDEWEB)

    GUILFORD JONES; S ST

    2005-09-14

    The 2004 Gordon Conference on Donor/Acceptor Interactions will take place at Salve Regina University in Newport, Rhode Island on August 8-13, 2004. The conference will be devoted to the consequences of charge interaction and charge motion in molecular and materials systems.

  2. Donor-acceptor properties of a single-molecule altered by on-surface complex formation

    Czech Academy of Sciences Publication Activity Database

    Meier, T.; Pawlak, R.; Kawai, S.; Geng, Y.; Liu, X.; Decurtins, S.; Hapala, Prokop; Baratoff, A.; Liu, S.X.; Jelínek, Pavel; Meyer, E.; Glatzel, T.

    2017-01-01

    Roč. 11, č. 8 (2017), s. 8413-8420 ISSN 1936-0851 R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : nc AFM * DFT * acceptor donor Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 13.942, year: 2016

  3. Optimum energy levels and offsets for organic donor/acceptor binary photovoltaic materials and solar cells

    International Nuclear Information System (INIS)

    Sun, S.-S.

    2005-01-01

    Optimum frontier orbital energy levels and offsets of an organic donor/acceptor binary type photovoltaic material have been analyzed using classic Marcus electron transfer theory in order to achieve the most efficient photo induced charge separation. This study reveals that, an exciton quenching parameter (EQP) yields one optimum donor/acceptor frontier orbital energy offset that equals the sum of the exciton binding energy and the charge separation reorganization energy, where the photo generated excitons are converted into charges most efficiently. A recombination quenching parameter (RQP) yields a second optimum donor/acceptor energy offset where the ratio of charge separation rate constant over charge recombination rate constant becomes largest. It is desirable that the maximum RQP is coincidence or close to the maximum EQP. A third energy offset is also identified where charge recombination becomes most severe. It is desirable that the most severe charge recombination offset is far away from maximum EQP offset. These findings are very critical for evaluating and fine tuning frontier orbital energy levels of a donor/acceptor pair in order to realize high efficiency organic photovoltaic materials

  4. Electron Transfer in Donor-Bridge-Acceptor Systems and Derived Materials

    NARCIS (Netherlands)

    Oosterbaan, W.D.

    2002-01-01

    Some aspects of photoinduced electron transfer (ET) in (electron donor)-bridge-(electron acceptor) compounds (D-B-A) and derived materials are investigated. Aim I is to determine how and to which extent non-conjugated double bonds in an otherwise saturated hydrocarbon bridge affect the rate of

  5. Synthesis of OMS Materials and Investigation of Their Acceptor-Donor Characteristics.

    Science.gov (United States)

    Grajek, H; Paciura-Zadrożna, J; Choma, J; Michalski, E; Witkiewicz, Z

    2012-10-01

    Three ordered mesoporous siliceous (OMS) materials known as MCM41s-unmodified MCM-41C16 ("C16"), and two MCM41s with different surface functionalities: MCM-41C16-SH ("C16-SH") and MCM-41C16-NH 2 ("C16-NH 2 ")-were synthesized and studied by inverse gas chromatography in order to determine their acceptor-donor properties. The specific retention volumes of nonpolar and polar probes that were chromatographed on these ordered mesoporous silica adsorbents were evaluated under infinite dilution conditions. Two methods were employed to calculate the standard free energy of adsorption, Δ G ads , of each chromatographed probe on the basis its specific retention volume. These Δ G ads values were then employed to estimate the van der Waals contribution and the specific contribution of the free surface energy for each MCM41. DN values (donor numbers, based on the Gutmann scale) and AN* values (acceptor numbers, based on the Riddle-Fowkes scale) were employed to determine the values of parameters that characterize the ability of the MCM41s to act as electron acceptors (parameter: K A ) and donors (parameter: K D ). Considering the different compositions of the probes, each of which has different acceptor-donor properties, a new chromatographic test to supplement the Grob test is suggested.

  6. Highly efficient exciplex organic light-emitting diodes incorporating a heptazine derivative as an electron acceptor.

    Science.gov (United States)

    Li, Jie; Nomura, Hiroko; Miyazaki, Hiroshi; Adachi, Chihaya

    2014-06-11

    Highly efficient exciplex systems incorporating a heptazine derivative () as an electron acceptor and 1,3-di(9H-carbazol-9-yl)benzene () as an electron donor are developed. An organic light-emitting diode containing 8 wt% : as an emitting layer exhibits a maximum external quantum efficiency of 11.3%.

  7. Adsorption of Organic Electron Acceptors on Graphene-like Molecules: Quantum Chemical and Molecular Mechanical Study

    Czech Academy of Sciences Publication Activity Database

    Haldar, Susanta; Kolář, Michal; Sedlák, Robert; Hobza, Pavel

    2012-01-01

    Roč. 116, č. 48 (2012), s. 25328-25336 ISSN 1932-7447 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : graphene * organic electron acceptors * interaction energies * base-pairs * hydrophobic association Subject RIV: CF - Physical ; The oretical Chemistry Impact factor: 4.814, year: 2012

  8. Novel indole-based inhibitors of IMPDH: introduction of hydrogen bond acceptors at indole C-3.

    Science.gov (United States)

    Watterson, Scott H; Dhar, T G Murali; Ballentine, Shelley K; Shen, Zhongqi; Barrish, Joel C; Cheney, Daniel; Fleener, Catherine A; Rouleau, Katherine A; Townsend, Robert; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2003-04-07

    The development of a series of novel indole-based inhibitors of 5'-inosine monophosphate dehydrogenase (IMPDH) is described. Various hydrogen bond acceptors at C-3 of the indole were explored. The synthesis and the structure-activity relationships (SARs) derived from in vitro studies are outlined.

  9. Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor-Acceptor Molecule

    Science.gov (United States)

    Pappenfus, Ted M.; Schliep, Karl B.; Dissanayake, Anudaththa; Ludden, Trevor; Nieto-Ortega, Belen; Lopez Navarrete, Juan T.; Ruiz Delgado, M. Carmen; Casado, Juan

    2012-01-01

    A series of experiments for undergraduate courses (e.g., organic, physical) have been developed in the area of small molecule organic materials. These experiments focus on understanding the electronic and redox properties of a donor-acceptor molecule that is prepared in a convenient one-step microscale reaction. The resulting intensely colored…

  10. Nano-scale control of energy transfer in the system 'donor-acceptor'

    International Nuclear Information System (INIS)

    Malyukin, Yu.V.; Yefimova, S.L.; Lebedenko, A.N.; Sorokin, A.V.; Borovoy, I.A.

    2005-01-01

    Fluorescence resonance energy transfer (FRET) in a cascade scheme between three amphiphilic dyes 3,3'-dioctadecyloxacarbocyanine perchlorate (DiOC 18 (3), donor), 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiIC 18 (3), acceptor/donor) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate (DiIC 18 (5), acceptor) has been investigated at low dye concentration (10 -5 mol/l) in water-micellar solutions due to a forced assembling of dyes in nanoscale volume. The experimental data have revealed that sodium dodecyl sulfate (SDS) micelles solubilize dye molecules such that their hydrophilic heads are in contact with water, while hydrophobic tails are embedded into the hydrocarbon core of the micelle. FRET efficiency has been found to depend on the concentration of dyes in micelles and the most effective when each SDS micelle contains 1 donor (DiOC 18 (3)), 2 acceptor/donor (DiIC 18 (3)) and 4 acceptor (DiIC 18 (5)) molecules

  11. Organic charge transfer phase formation in thin films of the BEDT-TTF/TCNQ donor-acceptor system

    DEFF Research Database (Denmark)

    Solovyeva, Vita; Keller, K.; Huth, M.

    2009-01-01

    We have performed charge transfer phase formation studies on the donor/acceptor system bis-(ethylendithio)tetrathiafulvalene (BEDT-TTF)/tetracyanoquinodimethane,(TCNQ) by means of physical vapor deposition. We prepared donor/acceptor bilayer structures on glass and Si(100)/SiO substrates held...

  12. Study of microbial perchlorate reduction: Considering of multiple pH, electron acceptors and donors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xing [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Gao, Baoyu, E-mail: bygao@sdu.edu.cn [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Jin, Bo [School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005,Australia (Australia); Zhen, Hu [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Xiaoyi [CSIRO Land and Water, Gate 5, Waite Road, Urrbrae, SA 5064 (Australia); Dai, Ming [School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005,Australia (Australia)

    2015-03-21

    Graphical abstract: Schemes of perchlorate reduction in ClO{sub 4}{sup −}/ClO{sub 3}{sup −}–NO{sub 3}{sup −} e{sup −}acceptor systems. - Highlights: • We created a multiple electron acceptor/donor system for ClO{sub 4}{sup −} reduction. • Nitrate reduction was inhibited when using perchlorate-grown Azospira sp. KJ. • Reduction proceeded as an order of ClO{sub 3}{sup −}, ClO{sub 4}{sup −}and NO{sub 3}{sup −}. • Oxidation of acetate was inhibited by succinate in acetate–succinate series. - Abstract: Bioremediation of perchlorate-cotaminated water by a heterotrophic perchlorate reducing bacterium creates a multiple electron acceptor-donor system. We experimentally determined the perchlorate reduction by Azospira sp. KJ at multiple pH, electron acceptors and donors systems; this was the aim of this study. Perchlorate reduction was drastically inhibited at the pH 6.0, and the maximum reduction of perchlorate by Azospira sp. KJ was observed at pH value of 8.0. Perchlorate reduction was retarded in ClO{sub 4}{sup −}–ClO{sub 3}{sup −}, ClO{sub 4}{sup −}–ClO{sub 3}{sup −}–NO{sub 3}{sup −},and ClO{sub 4}{sup −}–NO{sub 3}{sup −} acceptor systems, while being completely inhibited by the additional O{sub 2} in the ClO{sub 4}{sup −}–O{sub 2} acceptor system. The reduction proceeded as an order of ClO{sub 3}{sup −}, ClO{sub 4}{sup −}, and NO{sub 3}{sup −} in the ClO{sub 4}{sup −}–ClO{sub 3}{sup −}–NO{sub 3}{sup −} system. K{sub S,}v{sub max}, and q{sub max} obtained at different e{sup −} acceptor and donor conditions are calculated as 140.5–190.6 mg/L, 8.7–13.2 mg-perchlorate/L-h, and 0.094–0.16 mg-perchlorate/mg-DW-h, respectively.

  13. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    Science.gov (United States)

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy

  14. Effect of deviation from stoichiometry on the nature of shallow acceptor states in CdTe crystals

    International Nuclear Information System (INIS)

    Agrinskaya, N.V.; Shashkova, V.V.

    1988-01-01

    Photoconductivity and photoluminescence spectra in the region of donor-acceptor recombination of pure CdTe crystals, grown under conditions of different deviations from stoichiometry are investigated. It is shown that the predominant type of minor acceptors in n-type crystals (with Cd excess) differs from acceptors in p-type crystals (with Te excess). Residual acceptors replacing Te(P, As) prevail in n-type crystals and acceptors replacing Cd(Li, Na) prevail in p-type crystals. As a result of p-type crystal annealing a change of the type of prevailing aceptors accurs in Cd pairs (bands linked with P, As prevail) which testifies to the residual impurity reconstruction in Cd and Te sublattices

  15. Interplay of alternative conjugated pathways and steric interactions on the electronic and optical properties of donor-acceptor conjugated polymers

    KAUST Repository

    Lima, Igo T.; Risko, Chad; Aziz, Saadullah Gary; Da Silva Filho, Demé trio A Da Silva; Bredas, Jean-Luc

    2014-01-01

    Donor-acceptor π-conjugated copolymers are of interest for a wide range of electronic applications, including field-effect transistors and solar cells. Here, we present a density functional theory (DFT) study of the impact of varying the conjugation pathway on the geometric, electronic, and optical properties of donor-acceptor systems. We consider both linear ("in series"), traditional conjugation among the donor-acceptor moieties versus structures where the acceptor units are appended orthogonally to the linear, donor-only conjugated backbone. Long-range-corrected hybrid functionals are used in the investigation with the values of the tuned long-range separation parameters providing an estimate of the extent of conjugation as a function of the oligomer architecture. Considerable differences in the electronic and optical properties are determined as a function of the nature of the conjugation pathway, features that should be taken into account in the design of donor-acceptor copolymers.

  16. Modulation of Donor-Acceptor Distance in a Series of Carbazole Push-Pull Dyes; A Spectroscopic and Computational Study

    Directory of Open Access Journals (Sweden)

    Joshua J. Sutton

    2018-02-01

    Full Text Available A series of eight carbazole-cyanoacrylate based donor-acceptor dyes were studied. Within the series the influence of modifying the thiophene bridge, linking donor and acceptor and a change in the nature of the acceptor, from acid to ester, was explored. In this joint experimental and computational study we have used electronic absorbance and emission spectroscopies, Raman spectroscopy and computational modeling (density functional theory. From these studies it was found that extending the bridge length allowed the lowest energy transition to be systematically red shifted by 0.12 eV, allowing for limited tuning of the absorption of dyes using this structural motif. Using the aforementioned techniques we demonstrate that this transition is charge transfer in nature. Furthermore, the extent of charge transfer between donor and acceptor decreases with increasing bridge length and the bridge plays a smaller role in electronically mixing with the acceptor as it is extended.

  17. Copper(I)/TEMPO Catalyzed Aerobic Oxidation of Primary Alcohols to Aldehydes with Ambient Air

    Science.gov (United States)

    Hoover, Jessica M.; Steves, Janelle E.; Stahl, Shannon S.

    2012-01-01

    This protocol describes a practical laboratory-scale method for aerobic oxidation of primary alcohols to aldehydes, using a chemoselective CuI/TEMPO catalyst system. The catalyst is prepared in situ from commercially available reagents, and the reactions are performed in a common organic solvent (acetonitrile) with ambient air as the oxidant. Three different reaction conditions and three procedures for the isolation and purification of the aldehyde product are presented. The oxidations of eight different alcohols, described here, include representative examples of each reaction condition and purification method. Reaction times vary from 20 min to 24 h, depending on the alcohol, while the purification methods each take about 2 h. The total time necessary for the complete protocol ranges from 3 – 26 h. PMID:22635108

  18. Aerobic oxidation of aldehydes under ambient conditions using supported gold nanoparticle catalysts

    DEFF Research Database (Denmark)

    Marsden, Charlotte Clare; Taarning, Esben; Hansen, David

    2008-01-01

    A new, green protocol for producing simple esters by selectively oxidizing an aldehyde dissolved in a primary alcohol has been established, utilising air as the oxidant and supported gold nanoparticles as catalyst. The oxidative esterifications proceed with excellent selectivities at ambient cond...... conditions; the reactions can be performed in an open flask and at room temperature. Benzaldehyde is even oxidised at a reasonable rate below -70 degrees C. Acrolein is oxidised to methyl acrylate in high yield using the same protocol.......A new, green protocol for producing simple esters by selectively oxidizing an aldehyde dissolved in a primary alcohol has been established, utilising air as the oxidant and supported gold nanoparticles as catalyst. The oxidative esterifications proceed with excellent selectivities at ambient...

  19. Size-Selective Oxidation of Aldehydes with Zeolite Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Højholt, Karen Thrane; Laursen, Anders Bo; Kegnæs, Søren

    2011-01-01

    Here, we report a synthesis and catalytic study of hybrid materials comprised of 1–3 nm sinter-stable Au nanoparticles in MFI-type zeolites. An optional post-treatment in aqua regia effectively remove Au from the external surfaces. The size-selective aerobic aldehyde oxidation verifies that the a......Here, we report a synthesis and catalytic study of hybrid materials comprised of 1–3 nm sinter-stable Au nanoparticles in MFI-type zeolites. An optional post-treatment in aqua regia effectively remove Au from the external surfaces. The size-selective aerobic aldehyde oxidation verifies...... that the active Au is accessible only through the zeolite micropores....

  20. An Efficient Amide-Aldehyde-Alkene Condensation: Synthesis for the N-Allyl Amides.

    Science.gov (United States)

    Quan, Zheng-Jun; Wang, Xi-Cun

    2016-02-01

    The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well-recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid-catalyzed N-allylation of electron-poor N-heterocyclic amides and sulfonamide via an amide-aldehyde-alkene condensation reaction. The substrate scope with respect to N-heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N-methyl-1-naphthamide or methyl (naphthalene-1-ylmethyl)carbamate, with paraformaldehyde and styrene in a one-pot manner. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Melamine Trisulfonic Acid as a New, Efficient and Reusable Catalyst for the Chemoselective Oxathioacetalyzation of Aldehydes

    International Nuclear Information System (INIS)

    Shirini, F.; Albadi, J.

    2010-01-01

    We developed an efficient and high yielding method for the chemoselective oxathioacetalyzation of aldehydes. Relatively short reaction times, high efficiency, heterogeneous reaction conditions, availability and recyclability of the reagent and easy work-up are among the other advantages of this method, which make this procedure a useful and attractive addition to the available methods. We are exploring further applications of MTSA for the other types of functional group transformations in our laboratory. 1,3-Oxathiolanes are synthetically important protecting groups for aldehydes due to their considerable stability under a variety of reaction conditions, ease of formation and removal, equality to acyl carbanions in C-C bond forming reactions, and use in enantioselective synthesis of tertiary α-hydroxy acids and glycols

  2. Green Tea Polyphenols Decrease Strecker Aldehydes and Bind to Proteins in Lactose-Hydrolyzed UHT Milk.

    Science.gov (United States)

    Jansson, Therese; Rauh, Valentin; Danielsen, Bente P; Poojary, Mahesha M; Waehrens, Sandra S; Bredie, Wender L P; Sørensen, John; Petersen, Mikael A; Ray, Colin A; Lund, Marianne N

    2017-12-06

    The effect of epigallocatechin gallate enriched green tea extract (GTE) on flavor, Maillard reactions and protein modifications in lactose-hydrolyzed (LH) ultrahigh temperature (UHT) processed milk was examined during storage at 40 °C for up to 42 days. Addition of GTE inhibited the formation of Strecker aldehydes by up to 95% compared to control milk, and the effect was similar when GTE was added either before or after UHT treatment. Release of free amino acids, caused by proteolysis, during storage was also decreased in GTE-added milk either before or after UHT treatment compared to control milk. Binding of polyphenols to milk proteins was observed in both fresh and stored milk samples. The inhibition of Strecker aldehyde formation by GTE may be explained by two different mechanisms; inhibition of proteolysis during storage by GTE or binding of amino acids and proteins to the GTE polyphenols.

  3. Titanocene(III)-Catalyzed Three-Component Reaction of Secondary Amides, Aldehydes, and Electrophilic Alkenes.

    Science.gov (United States)

    Zheng, Xiao; He, Jiang; Li, Heng-Hui; Wang, Ao; Dai, Xi-Jie; Wang, Ai-E; Huang, Pei-Qiang

    2015-11-09

    An umpolung Mannich-type reaction of secondary amides, aliphatic aldehydes, and electrophilic alkenes has been disclosed. This reaction features the one-pot formation of C-N and C-C bonds by a titanocene-catalyzed radical coupling of the condensation products, from secondary amides and aldehydes, with electrophilic alkenes. N-substituted γ-amido-acid derivatives and γ-amido ketones can be efficiently prepared by the current method. Extension to the reaction between ketoamides and electrophilic alkenes allows rapid assembly of piperidine skeletons with α-amino quaternary carbon centers. Its synthetic utility has been demonstrated by a facile construction of the tricyclic core of marine alkaloids such as cylindricine C and polycitorol A. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Green Approach for Allylations of Aldehydes and Ketones: Combining Allylborate, Mechanochemistry and Lanthanide Catalyst

    Directory of Open Access Journals (Sweden)

    Viviane P. de Souza

    2016-11-01

    Full Text Available Secondary and tertiary alcohols synthesized via allylation of aldehydes and ketones are important compounds in bioactive natural products and industry, including pharmaceuticals. Development of a mechanochemical method using potassium allyltrifluoroborate salt and water, to successfully perform the allylation of aromatic and aliphatic carbonyl compounds is reported for the first time. By controlling the grinding parameters, the methodology can be selective, namely, very efficient for aldehydes and ineffective for ketones, but by employing lanthanide catalysts, the reactions with ketones can become practically quantitative. The catalyzed reactions can also be performed under mild aqueous stirring conditions. Considering the allylation agent and its by-products, aqueous media, energy efficiency and use of catalyst, the methodology meets most of the green chemistry principles.

  5. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    International Nuclear Information System (INIS)

    Li, Yan; Chang, Jie; Ouyang, Yong; Zheng, Xianwei

    2014-01-01

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H 2 O 2 ) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS 4 )) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS 4 ). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS 4 )/H 2 O 2 was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS 4 )/H 2 O 2 system

  6. Flavour release of aldehydes and diacetyl in oil/water systems

    DEFF Research Database (Denmark)

    Haahr, Anne-Mette; Bredie, W. L. P.; Stahnke, Louise Heller

    2000-01-01

    from the pure oil. The release over time for diacetyl and (E,E)-2,4-hexadienal showed a linear relationship in all systems. The other compounds followed an exponential relationship between the time and the fraction released in the aqueous systems. It was demonstrated that the release of the volatile...... compounds was dependent on the chain length, the degree of unsaturation as well as the characteristics of the model system. (C) 2000 Elsevier Science Ltd. All rights reserved.......The concentration- and time-dependent release of three C-6-aldehydes, six C-9-aldehydes and diacetyl was studied in model systems. The systems were water, rapeseed oil and oil-in-water emulsions. Dynamic headspace sampling was used to collect the volatile compounds. In the concentration...

  7. Olfactory sensitivity for sperm-attractant aromatic aldehydes: a comparative study in human subjects and spider monkeys.

    Science.gov (United States)

    Kjeldmand, Luna; Salazar, Laura Teresa Hernandez; Laska, Matthias

    2011-01-01

    Using a three-alternative forced-choice ascending staircase procedure, we determined olfactory detection thresholds in 20 human subjects for seven aromatic aldehydes and compared them to those of four spider monkeys tested in parallel using an operant conditioning paradigm. With all seven odorants, both species detected concentrations lyral, and 3-phenylpropanal. No significant correlation between presence/absence of an oxygen-containing moiety attached to the benzene ring or presence/absence of an additional alkyl group next to the functional aldehyde group, and olfactory sensitivity was found in any of the species. However, the presence of a tertiary butyl group in para position (relative to the functional aldehyde group) combined with a lack of an additional alkyl group next to the functional aldehyde group may be responsible for the finding that both species were most sensitive to bourgeonal.

  8. Continuous-flow enantioselective α-aminoxylation of aldehydes catalyzed by a polystyrene-immobilized hydroxyproline

    Directory of Open Access Journals (Sweden)

    Xacobe C. Cambeiro

    2011-10-01

    Full Text Available The application of polystyrene-immobilized proline-based catalysts in packed-bed reactors for the continuous-flow, direct, enantioselective α-aminoxylation of aldehydes is described. The system allows the easy preparation of a series of β-aminoxy alcohols (after a reductive workup with excellent optical purity and with an effective catalyst loading of ca. 2.5% (four-fold reduction compared to the batch process working at residence times of ca. 5 min.

  9. Interaction of α,β-unsaturated aldehydes with dienes in the presence of boron trifluoride etherate

    International Nuclear Information System (INIS)

    Gramenitskaya, V.N.; Golovkina, L.S.; Orach, V.S.

    1975-01-01

    The products of the acrolein reaction with divinyl, isoprene and chloroprene catalized by BF 3 xEt 2 O are corresponding 3-cyclohexenaldehydes trimerized under the catalyst influence. Mixtures of substituted 3-cyclohexealdehydes and Δ 3 -dihydropirines were produced as results of the reaction of croton aldehyde with 1,1,3-trimethilbutadiene at high temperature as well as at 20 deg C in presence of catalyst

  10. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function.

    Science.gov (United States)

    Garaycoechea, Juan I; Crossan, Gerry P; Langevin, Frederic; Daly, Maria; Arends, Mark J; Patel, Ketan J

    2012-09-27

    Haematopoietic stem cells (HSCs) regenerate blood cells throughout the lifespan of an organism. With age, the functional quality of HSCs declines, partly owing to the accumulation of damaged DNA. However, the factors that damage DNA and the protective mechanisms that operate in these cells are poorly understood. We have recently shown that the Fanconi anaemia DNA-repair pathway counteracts the genotoxic effects of reactive aldehydes. Mice with combined inactivation of aldehyde catabolism (through Aldh2 knockout) and the Fanconi anaemia DNA-repair pathway (Fancd2 knockout) display developmental defects, a predisposition to leukaemia, and are susceptible to the toxic effects of ethanol-an exogenous source of acetaldehyde. Here we report that aged Aldh2(-/-) Fancd2(-/-) mutant mice that do not develop leukaemia spontaneously develop aplastic anaemia, with the concomitant accumulation of damaged DNA within the haematopoietic stem and progenitor cell (HSPC) pool. Unexpectedly, we find that only HSPCs, and not more mature blood precursors, require Aldh2 for protection against acetaldehyde toxicity. Additionally, the aldehyde-oxidizing activity of HSPCs, as measured by Aldefluor stain, is due to Aldh2 and correlates with this protection. Finally, there is more than a 600-fold reduction in the HSC pool of mice deficient in both Fanconi anaemia pathway-mediated DNA repair and acetaldehyde detoxification. Therefore, the emergence of bone marrow failure in Fanconi anaemia is probably due to aldehyde-mediated genotoxicity restricted to the HSPC pool. These findings identify a new link between endogenous reactive metabolites and DNA damage in HSCs, and define the protective mechanisms that counteract this threat.

  11. Organocatalytic asymmetric michael addition of aldehydes to beta-nitroacroleine dimethyl acetal.

    Science.gov (United States)

    Reyes, Efraim; Vicario, Jose L; Badía, Dolores; Carrillo, Luisa

    2006-12-21

    [Structure: see text] The organocatalytic asymmetric Michael addition of aldehydes to beta-nitroacroleine dimethyl acetal has been studied in detail. The reaction took place with excellent yields and high stereoselectivities when a chiral beta-amino alcohol such as L-prolinol was employed as the catalyst, leaving a formation of highly functionalized enantioenriched compounds containing two differentiated formyl groups together with a nitro moiety.

  12. Phenolic Acids, Phenolic Aldehydes and Furanic Derivatives in Oak Chips: American vs. French Oaks

    OpenAIRE

    Cabrita, M.J.; Barrocas Dias, C.; Costa Freitas, A.M.

    2011-01-01

    Phenolic acids (gallic, vanillic, syringic and ellagic acids), phenolic aldehydes (vanillin, syringaldehyde, coniferaldehyde and sinapaldehyde) and furanic derivatives (furfural, 5-methylfurfural and 5-hydroxymethylfurfural) were quantified in commercial American and French oak chips. Chips with different sizes and toast degrees were used. Compounds were extracted directly from the wood samples in order to determine possible differences among woods as well as toast degree. Likewise, the compo...

  13. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes

    Science.gov (United States)

    Teder, Tarvi; Lõhelaid, Helike; Boeglin, William E.; Calcutt, Wade M.; Brash, Alan R.; Samel, Nigulas

    2015-01-01

    In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using 18O-labeled substrate and incubations in H218O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom. PMID:26100625

  14. Enantioselective Addition of Allyltin Reagents to Amino Aldehydes Catalyzed with Bis(oxazolinylphenylrhodium(III Aqua Complexes

    Directory of Open Access Journals (Sweden)

    Hisao Nishiyama

    2011-06-01

    Full Text Available Bis(oxazolinylphenylrhodium(III aqua complexes, (PheboxRhX2(H2O [X = Cl, Br], were found to be efficient Lewis acid catalysts for the enantioselective addition of allyl- and methallyltributyltin reagents to amino aldehydes. The reactions proceed smoothly in the presence of 5–10 mol % of (PheboxRhX2(H2O complex at ambient temperature to give the corresponding amino alcohols with modest to good enantioselectivity (up to 94% ee.

  15. Mild and Efficient One Pot Synthesis of Imidazolinesand Benzimidazoles from Aldehydes

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2007-01-01

    Full Text Available A series of some imidazolines and benzimidazoles were synthesizedfrom various aldehydes and 1,2-diamines in the presence of ceric(IVammonium nitrate (CAN. The title compounds were prepared via one stepsynthesis method. The simplicity of the reaction conditions with shorterreaction time and with out use of column chromatography to get the pureproducts in high yields makes this method more attractive for organic chemists.

  16. Aldehyde dehydrogenase polymorphism in North American, South American, and Mexican Indian populations.

    Science.gov (United States)

    Goedde, H W; Agarwal, D P; Harada, S; Rothhammer, F; Whittaker, J O; Lisker, R

    1986-01-01

    While about 40% of the South American Indian populations (Atacameños, Mapuche, Shuara) were found to be deficient in aldehyde dehydrogenase isozyme I (ALDH2 or E2), preliminary investigations showed very low incidence of isozyme deficiency among North American natives (Sioux, Navajo) and Mexican Indians (mestizo). Possible implications of such trait differences on cross-cultural behavioral response to alcohol drinking are discussed. PMID:3953578

  17. A unified approach for the synthesis of symmetrical and unsymmetrical dibenzyl ethers from aryl aldehydes through reductive etherification

    Directory of Open Access Journals (Sweden)

    J. Sembian Ruso

    2016-05-01

    Full Text Available In this paper, we describe a simple and convenient conversion of aryl aldehydes to symmetrical dibenzyl ethers through reductive etherification. Similarly, unsymmetrical dibenzyl ether was obtained from aryl aldehyde and TES-protected benzyl alcohol. Triethyl silane with catalytic amount of InCl3 was found to be an efficient condition for the reductive etherification. Moreover, it exhibits remarkable functional group compatibility with yield ranging from good to excellent.

  18. Direct Aldehyde C-H Arylation and Alkylation via the Combination of Nickel, Hydrogen Atom Transfer, and Photoredox Catalysis.

    Science.gov (United States)

    Zhang, Xiaheng; MacMillan, David W C

    2017-08-23

    A mechanism that enables direct aldehyde C-H functionalization has been achieved via the synergistic merger of photoredox, nickel, and hydrogen atom transfer catalysis. This mild, operationally simple protocol transforms a wide variety of commercially available aldehydes, along with aryl or alkyl bromides, into the corresponding ketones in excellent yield. This C-H abstraction coupling technology has been successfully applied to the expedient synthesis of the medicinal agent haloperidol.

  19. Enantioselective Direct α-Amination of Aldehydes via a Photoredox Mechanism: A Strategy for Asymmetric Amine Fragment Coupling

    OpenAIRE

    Cecere, Giuseppe; Koenig, Christian M.; Alleva, Jennifer L.; MacMillan, David W. C.

    2013-01-01

    The direct, asymmetric α-amination of aldehydes has been accomplished via a combination of photoredox and organocatalysis. Photon-generated, nitrogen-centered radicals undergo enantioselective α-addition to catalytically formed chiral enamines to directly produce stable α-amino aldehyde adducts bearing synthetically useful amine substitution patterns. Incorporation of a photolabile group on the amine precursor obviates the need to employ a photoredox catalyst in this transformation. Important...

  20. Aldehyde dehydrogenase 2 in aplastic anemia, Fanconi anemia and hematopoietic stem cells.

    Science.gov (United States)

    Van Wassenhove, Lauren D; Mochly-Rosen, Daria; Weinberg, Kenneth I

    2016-09-01

    Maintenance of the hematopoietic stem cell (HSC) compartment depends on the ability to metabolize exogenously and endogenously generated toxins, and to repair cellular damage caused by such toxins. Reactive aldehydes have been demonstrated to cause specific genotoxic injury, namely DNA interstrand cross-links. Aldehyde dehydrogenase 2 (ALDH2) is a member of a 19 isoenzyme ALDH family with different substrate specificities, subcellular localization, and patterns of expression. ALDH2 is localized in mitochondria and is essential for the metabolism of acetaldehyde, thereby placing it directly downstream of ethanol metabolism. Deficiency in ALDH2 expression and function are caused by a single nucleotide substitution and resulting amino acid change, called ALDH2*2. This genetic polymorphism affects 35-45% of East Asians (about ~560 million people), and causes the well-known Asian flushing syndrome, which results in disulfiram-like reactions after ethanol consumption. Recently, the ALDH2*2 genotype has been found to be associated with marrow failure, with both an increased risk of sporadic aplastic anemia and more rapid progression of Fanconi anemia. This review discusses the unexpected interrelationship between aldehydes, ALDH2 and hematopoietic stem cell biology, and in particular its relationship to Fanconi anemia. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Effects of sh-reagents on rat hepatic aldehyde dehydrogenase activity

    Energy Technology Data Exchange (ETDEWEB)

    Konoplitskaya, K.L.; Kuz' mina, G.I.; Grigor' yeva, M.V.; Poznyakova, T.N.

    The liver serves as the primary organ for the oxidation of ingested ethanol via a pathway involving alcohol- and aldehyde dehydrogenase. In view of the problem of alcoholism, three enzymes are of particular interest in understanding the biochemical mechanism that may be involved in alcohol addiction and in the formulation of therapeutic approaches. While alcohol dehydrogenase has been studied in considerable detail, current attention is centered on aldehyde dehydrogenase. A comparative analysis of the effects of a series of SH-active reagents - tetraethylthiuram disulfide (TETD), 5,5-dithiobisnitrobenzoic acid (DTNB), p-chloromercurybenzoate (PCMB), and N-ethylmaleimide (NEM) - were tested for their effects on the activity of aldehyde dehydrogenase of the hepatic mitochondrial (isozymes I and II) and microsomal (isozyme II) fractions of outbred albino rats. DTNB was found to be inhibited by 100 and 50% mitochondrial isozymes I and II, respectively, and by 20%, the microsomal enzyme under the conditions employed. DTNB and NEM inhibited by 30 and 50% isozymes I and II of the mitochondria, but had no effect on the microsomal isozyme. 24 references, 3 figures.

  2. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus.

    Directory of Open Access Journals (Sweden)

    Giovanna Romano

    Full Text Available Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms.

  3. Identification and characterization of aldehyde oxidases (AOXs) in the cotton bollworm

    Science.gov (United States)

    Xu, Wei; Liao, Yalin

    2017-12-01

    Aldehyde oxidases (AOXs) are a family of metabolic enzymes that oxidize aldehydes into carboxylic acids; therefore, they play critical roles in detoxification and degradation of chemicals. By using transcriptomic and genomic approaches, we successfully identified six putative AOX genes (HarmAOX1-6) from cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). In silico expression profile, reverse transcription (RT)-PCR, and quantitative PCR (qPCR) analyses showed that HarmAOX1 is highly expressed in adult antennae, tarsi, and larval mouthparts, so they may play an important role in degrading plant-derived compounds. HarmAOX2 is highly and specifically expressed in adult antennae, suggesting a candidate pheromone-degrading enzyme (PDE) to inactivate the sex pheromone components (Z)-11-hexadecenal and (Z)-9-hexadecenal. RNA sequencing data further demonstrated that a number of host plants they feed on could significantly upregulate the expression levels of HarmAOX1 in larvae. This study improves our understanding of insect aldehyde oxidases and insect-plant interactions.

  4. Origin of low-molecular mass aldehydes as disinfection by-products in beverages.

    Science.gov (United States)

    Serrano, María; Gallego, Mercedes; Silva, Manuel

    2017-09-01

    A novel, simple and automatic method based on static headspace-gas chromatography-mass spectrometry has been developed to determine 10 low-molecular mass aldehydes that can be found in beverages, coming from the treated water used in their production. These aldehydes are the most frequently found in treated water as water disinfection by-products, so they can be used as indicators of the addition of treated water to beverages. The study covered a large number of fruit juices and soft drinks. The presence of the whole array of analytes is related to the contact with treated water during beverage production, mainly by the addition of treated water as ingredient. In particular, propionaldehyde, valeraldehyde and benzaldehyde can be used as indicators of the addition of treated water in these kinds of beverages. Among the ten aldehydes, only formaldehyde and acetaldehyde are naturally present in all kinds of fruit, and their concentrations are related to stage of the ripening of the fruit.

  5. A catalytic reactor for the organocatalyzed enantioselective continuous flow alkylation of aldehydes.

    Science.gov (United States)

    Porta, Riccardo; Benaglia, Maurizio; Puglisi, Alessandra; Mandoli, Alessandro; Gualandi, Andrea; Cozzi, Pier Giorgio

    2014-12-01

    The use of immobilized metal-free catalysts offers the unique possibility to develop sustainable processes in flow mode. The challenging intermolecular organocatalyzed enantioselective alkylation of aldehydes was performed for the first time under continuous flow conditions. By using a packed-bed reactor filled with readily available supported enantiopure imidazolidinone, different aldehydes were treated with three distinct cationic electrophiles. In the organocatalyzed α-alkylation of aldehydes with 1,3-benzodithiolylium tetrafluoroborate, excellent enantioselectivities, in some cases even better than those obtained in the flask process (up to 95% ee at 25 °C), and high productivity (more than 3800 h(-1) ) were obtained, which thus shows that a catalytic reactor may continuously produce enantiomerically enriched compounds. Treatment of the alkylated products with Raney-nickel furnished enantiomerically enriched α-methyl derivatives, key intermediates for active pharmaceutical ingredients and natural products. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Plant volatile aldehydes as natural insecticides against stored-product beetles.

    Science.gov (United States)

    Hubert, Jan; Münzbergová, Zuzana; Santino, Angelo

    2008-01-01

    Infestation by stored-product pests causes serious losses in food and feed commodities. Among possible strategies against these pests, which aim to reduce the use of synthetic insecticides, including fumigants, natural insecticides produced by plants represent one of the most promising approaches for their ecochemical control. Three six-carbon and nine-carbon aldehydes, natural plant volatiles produced by the plant lipoxygenase pathway, were tested for their insecticidal activity against five species of stored-product beetles in feeding, fumigation and combined bioassays. The compounds (2E,6Z)-nonadienal, (2E)-nonenal and (2E)-hexenal were incorporated into feeding discs in feeding bioassays or evaporated from filter paper in closed glass chambers in fumigation tests. Beetle sensitivity to aldehydes differed according to the different treatments. The highest activity was obtained by (2E)-hexenal in fumigation tests, with the LC(50) ranging from 4 to 26 mg L(-1), while (2E, 6Z)-nonadienal was the most effective in feeding tests, giving LD(50)s ranging from 0.44 to 2.76 mg g(-1) when applied to feeding discs. Fumigation tests in the presence of wheat grains confirmed that (2E)-hexenal was the most effective compound, with a calculated LC(99) ranging from 33 to 166 mg L(-1). The results of both feeding and fumigation tests indicated that natural plant aldehydes are potential candidates to control stored-product beetles.

  7. Cardiac-specific overexpression of aldehyde dehydrogenase 2 exacerbates cardiac remodeling in response to pressure overload

    Directory of Open Access Journals (Sweden)

    Sujith Dassanayaka

    2018-07-01

    Full Text Available Pathological cardiac remodeling during heart failure is associated with higher levels of lipid peroxidation products and lower abundance of several aldehyde detoxification enzymes, including aldehyde dehydrogenase 2 (ALDH2. An emerging idea that could explain these findings concerns the role of electrophilic species in redox signaling, which may be important for adaptive responses to stress or injury. The purpose of this study was to determine whether genetically increasing ALDH2 activity affects pressure overload-induced cardiac dysfunction. Mice subjected to transverse aortic constriction (TAC for 12 weeks developed myocardial hypertrophy and cardiac dysfunction, which were associated with diminished ALDH2 expression and activity. Cardiac-specific expression of the human ALDH2 gene in mice augmented myocardial ALDH2 activity but did not improve cardiac function in response to pressure overload. After 12 weeks of TAC, ALDH2 transgenic mice had larger hearts than their wild-type littermates and lower capillary density. These findings show that overexpression of ALDH2 augments the hypertrophic response to pressure overload and imply that downregulation of ALDH2 may be an adaptive response to certain forms of cardiac pathology. Keywords: Heart failure, Hypertrophy, Oxidative stress, Aldehydes, Cardiac remodeling, Hormesis

  8. Reductive detoxification of acrolein as a potential role for aldehyde reductase (AKR1A) in mammals.

    Science.gov (United States)

    Kurahashi, Toshihiro; Kwon, Myoungsu; Homma, Takujiro; Saito, Yuka; Lee, Jaeyong; Takahashi, Motoko; Yamada, Ken-Ichi; Miyata, Satoshi; Fujii, Junichi

    2014-09-12

    Aldehyde reductase (AKR1A), a member of the aldo-keto reductase superfamily, suppresses diabetic complications via a reduction in metabolic intermediates; it also plays a role in ascorbic acid biosynthesis in mice. Because primates cannot synthesize ascorbic acid, a principle role of AKR1A appears to be the reductive detoxification of aldehydes. In this study, we isolated and immortalized mouse embryonic fibroblasts (MEFs) from wild-type (WT) and human Akr1a-transgenic (Tg) mice and used them to investigate the potential roles of AKR1A under culture conditions. Tg MEFs showed higher methylglyoxal- and acrolein-reducing activities than WT MEFs and also were more resistant to cytotoxicity. Enzymatic analyses of purified rat AKR1A showed that the efficiency of the acrolein reduction was about 20% that of glyceraldehyde. Ascorbic acid levels were quite low in the MEFs, and while the administration of ascorbic acid to the cells increased the intracellular levels of ascorbic acid, it had no affect on the resistance to acrolein. Endoplasmic reticulum stress and protein carbonylation induced by acrolein treatment were less evident in Tg MEFs than in WT MEFs. These data collectively indicate that one of the principle roles of AKR1A in primates is the reductive detoxification of aldehydes, notably acrolein, and protection from its detrimental effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Efficient and Highly Selective Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Bucky Nanodiamond.

    Science.gov (United States)

    Lin, Yangming; Wu, Kuang-Hsu Tim; Yu, Linhui; Heumann, Saskia; Su, Dang Sheng

    2017-09-11

    Selective oxidation of alcohols to aldehydes is widely applicable to the synthesis of various green chemicals. The poor chemoselectivity for complicated primary aldehydes over state-of-the-art metal-free or metal-based catalysts represents a major obstacle for industrial application. Bucky nanodiamond is a potential green catalyst that exhibits excellent chemoselectivity and cycling stability for the selective oxidation of primary alcohols in diverse structures (22 examples, including aromatic, substituted aromatic, unsaturated, heterocyclic, and linear chain alcohols) to their corresponding aldehydes. The results are comparable to reported transition-metal catalysts including conventional Pt/C and Ru/C catalysts for certain substrates under solvent-free conditions. The possible activation process of the oxidant and substrates by the surface oxygen groups and defect species are revealed with model catalysts, ex situ electrochemical measurements, and ex situ attenuated total reflectance. The zigzag edges of sp 2 carbon planes are shown to play a key role in these reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Contribution to the study of carbohydrate radiolysis: study of the formation of malonic aldehyde during gamma irradiation of glucose

    International Nuclear Information System (INIS)

    Enrico, Gerard.

    1974-01-01

    It was shown that malonic aldehyde can be formed directly by radiation of dry glucose or through the radicals of water when the latter is present. The direct effect leads to a malonic aldehyde production proportional to the dose and independent of dose rate, temperature over a wide range, presence of oxygen and crystalline state of the glucose, but strongly dependent on the water content and anomeric form of the glucose. Isotopic labelling showed that both ends of the glucose molecule participate in the malonic aldehyde formation. Extrapolation to linear polymers (maltose, maltotriose) reveals the independence of the radiolysis yield with regard to the α 1-4 bond and suggests that it tends towards that of glucose in amylose. The indirect effect is linked with the action of the OH radicals of water and appears when glucose is irradiated in a sufficiently hydrated state or in solution. In the latter case the malonic aldehyde concentration is largely independent of the glucose concentration and is not proportional to the dose. Oxygen has little effect but a strong activation is observed at high pH. The use of 14 C showed that the aldehyde end of glucose is responsible for most of the malonic aldehyde. Polymerisation of the glucose by α 1-4 binding reduces the radiolytic yield. The indirect effect would thus be negligible in amylose [fr

  11. Exposure to mutagenic aldehydes and particulate matter during panfrying of beefsteak with margarine, rapeseed oil, olive oil or soybean oil.

    Science.gov (United States)

    Sjaastad, Ann Kristin; Svendsen, Kristin

    2008-11-01

    The aim of the study was to see if a cook could be exposed to mutagenic aldehydes in fumes from frying of beefsteak using margarine, rapeseed oil, soybean oil or virgin olive oil as frying fat. In addition, levels of particle exposure were measured to make the results comparable to other studies. The levels of higher aldehydes and total particles were measured in the breathing zone of the cook during the panfrying of beefsteak with the four different frying fats. In addition, the number of particles in the size intervals 0.3-0.5, 0.5-0.7 and 0.7-1.0 microm in the kitchen was registered. Measured levels of mutagenic aldehydes were between non-detectable and 25.33 microg m(-3) air. The exposure level of total aerosol was between 1.0 and 11.6 mg m(-3). Higher aldehydes were detected in all samples from this study, and mutagenic aldehydes were detected in most of the samples. Frying with margarine gave statistically significantly higher levels of mutagenic aldehydes and particles in all three size fractions than frying with the three different kinds of oil.

  12. Antisense and sense expression of cDNA coding for CYP73A15, a class II cinnamate 4-hydroxylase, leads to a delayed and reduced production of lignin in tobacco

    Science.gov (United States)

    Blee, K.; Choi, J. W.; O'Connell, A. P.; Jupe, S. C.; Schuch, W.; Lewis, N. G.; Bolwell, G. P.

    2001-01-01

    A number of plant species contain the class II of genes encoding the cytochrome P450, CYP73, the cognate protein of which cinnamic acid 4-hydroxylase, is the second enzyme of the phenylpropanoid pathway. In order to begin to determine possible functionality, tobacco has been transformed with a truncated French bean class II cinnamate hydroxylase (CYP73A15) in the sense and antisense orientations. Signals for C4H protein could be detected in vascular tissue from wild-type plants using heterologous probes. The transformed plants showed a normal phenotype, even though detectable C4H protein was much reduced in tissue prints. Young propagated transformants displayed a range of reduced C4H activities, as well as either reduced or no phloroglucinol-stainable lignin. However, all mature tobacco plants showed the accumulation of lignin, even though its deposition was apparently delayed. This was not due to induction of tyrosine ammonia-lyase activity, which was not detected, but instead it is presumed due to sufficient C4H residual activity. Analysis of the lignin content of the plants showed reductions of up to 30% with a slightly reduced syringyl to guaiacyl ratio as compared to wild type. This reduction level was favourable in comparison with some other targets in the lignification pathway that have been manipulated including that of class I cinnamate 4-hydroxylase. It is proposed that the class II cinnamate 4-hydroxylase might also function in lignification in a number of species including French bean and tobacco, based on these data.

  13. Radiation-Induced Polymerization of Aldehydes and Ketones; Polymerisation radiochimique des aldehydes et des cetones; Radiatsionnaya polimerizatsiya al'degidov i ketonov; Polimerizacion radioinducida de aldehidos y cetonas

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K.; Yamaoka, H.; Fujiwara, K.; Sakamoto, M.; Mori, S.; Natori, T.; Yoshida, H.; Okamura, S. [Japanese Association for Radiation Research on Polymers, Neyagawa Osaka (Japan); Kyoto University, Kyoto (Japan)

    1963-11-15

    Several kinds of aldehydes and ketones are polymerized by irradiation. Formaldehyde can be polymerized into high molecular weight polyoxymethylene by radiation-induced polymerization in the liquid phase at low temperatures. The polymerization mechanism is considered to be a cationic chain reaction both in the case of bulk and of solution in methylenechloride and toluene, but to be anionic in ethylether. Acetaldehyde and propionaldehyde are recognized as being hardly polymerized in the pure liquid phase, but easily polymerized in the presence of {gamma}-alumina. In the solid state polymerization, crystalline polymers are obtained as the stable- for- heat-treatment form under suitableconditions. Glyoxal can be polymerized into a three-dimensional network polymer. With formaldehyde it can be copolymerized into some cross-linked polyoxymethylene. Acetones such as chloroor bromoacetone and methylethylketone or diacetyl can be polymerized in the solid state into polymers which are unstable. Ketene can be polymerized into a polyester-type polymer with liquid phase polymerization; polyketone is obtained additionally when polymerization is carried out in the solid state. The copolymer with formaldehyde is slightly more stable. Dimethylketene can be easily polymerized both in the liquid and solid states into polyacetal. All these polymerizations are special examples of radiation-induced reactions and the reaction kinetics are interesting. Some details of this are discussed here. (author) [French] Plusieurs sortes d'aldehydes et de cetones se polymerisent sous l'effet des rayons gamma. L'aldehyde formique peut se transformer en polyoxymethylene de poids moleculaire eleve par polymerisation radiochimique en phase liquide a basses temperatures. On pense que la polymerisation est une reaction cationique en chaine lorsqu'il s'agit de masses ou de solutions dans du chlorure de methylene et du toluene, mais une reaction anionique en chaule dans une solution d'ether ethylique. L'aldehyde

  14. Distinct roles of jasmonates and aldehydes in plant-defense responses.

    Directory of Open Access Journals (Sweden)

    E Wassim Chehab

    Full Text Available BACKGROUND: Many inducible plant-defense responses are activated by jasmonates (JAs, C(6-aldehydes, and their corresponding derivatives, produced by the two main competing branches of the oxylipin pathway, the allene oxide synthase (AOS and hydroperoxide lyase (HPL branches, respectively. In addition to competition for substrates, these branch-pathway-derived metabolites have substantial overlap in regulation of gene expression. Past experiments to define the role of C(6-aldehydes in plant defense responses were biased towards the exogenous application of the synthetic metabolites or the use of genetic manipulation of HPL expression levels in plant genotypes with intact ability to produce the competing AOS-derived metabolites. To uncouple the roles of the C(6-aldehydes and jasmonates in mediating direct and indirect plant-defense responses, we generated Arabidopsis genotypes lacking either one or both of these metabolites. These genotypes were subsequently challenged with a phloem-feeding insect (aphids: Myzus persicae, an insect herbivore (leafminers: Liriomyza trifolii, and two different necrotrophic fungal pathogens (Botrytis cinerea and Alternaria brassicicola. We also characterized the volatiles emitted by these plants upon aphid infestation or mechanical wounding and identified hexenyl acetate as the predominant compound in these volatile blends. Subsequently, we examined the signaling role of this compound in attracting the parasitoid wasp (Aphidius colemani, a natural enemy of aphids. PRINCIPAL FINDINGS: This study conclusively establishes that jasmonates and C(6-aldehydes play distinct roles in plant defense responses. The jasmonates are indispensable metabolites in mediating the activation of direct plant-defense responses, whereas the C(6-aldehyes are not. On the other hand, hexenyl acetate, an acetylated C(6-aldehyde, is the predominant wound-inducible volatile signal that mediates indirect defense responses by directing tritrophic

  15. Study of the Contributions of Donor and Acceptor Photoexcitations to Open Circuit Voltage in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Douglas Yeboah

    2017-10-01

    Full Text Available One of the key parameters in determining the power conversion efficiency (PCE of bulk heterojunction (BHJ organic solar cells (OSCs is the open circuit voltage . The processes of exciting the donor and acceptor materials individually in a BHJ OSC are investigated and are found to produce two different expressions for . Using the contributions of electron and hole quasi-Fermi levels and charge carrier concentrations, the two different expressions are derived as functions of the energetics of the donor and acceptor materials and the photo-generated charge carrier concentrations, and calculated for a set of donor-acceptor blends. The simultaneous excitation of both the donor and acceptor materials is also considered and the corresponding , which is different from the above two, is derived. The calculated from the photoexcitation of the donor is found to be somewhat comparable with that obtained from the photoexcitation of the acceptor in most combinations of the donor and acceptor materials considered here. It is also found that the calculated from the simultaneous excitations of donor and acceptor in BHJ OSCs is also comparable with the other two . All three thus derived produce similar results and agree reasonably well with the measured values. All three depend linearly on the concentration of the photoexcited charge carriers and hence incident light intensity, which agrees with experimental results. The outcomes of this study are expected to help in finding materials that may produce higher and hence enhanced PCE in BHJ OSCs.

  16. Atomic scale images of acceptors in III-V semiconductors. Band bending, tunneling paths and wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Loth, S.

    2007-10-26

    This thesis reports measurements of single dopant atoms in III-V semiconductors with low temperature Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS). It investigates the anisotropic spatial distribution of acceptor induced tunneling processes at the {l_brace}110{r_brace} cleavage planes. Two different tunneling processes are identified: conventional imaging of the squared acceptor wave function and resonant tunneling at the charged acceptor. A thorough analysis of the tip induced space charge layers identifies characteristic bias windows for each tunnel process. The symmetry of the host crystal's band structure determines the spatial distribution of the tunneling paths for both processes. Symmetry reducing effects at the surface are responsible for a pronounced asymmetry of the acceptor contrasts along the principal [001] axis. Uniaxial strain fields due to surface relaxation and spin orbit interaction of the tip induced electric field are discussed on the basis of band structure calculations. High-resolution STS studies of acceptor atoms in an operating p-i-n diode confirm that an electric field indeed changes the acceptor contrasts. In conclusion, the anisotropic contrasts of acceptors are created by the host crystal's band structure and concomitant symmetry reduction effects at the surface. (orig.)

  17. Click and chemically triggered declick reactions through reversible amine and thiol coupling via a conjugate acceptor

    Science.gov (United States)

    Diehl, Katharine L.; Kolesnichenko, Igor V.; Robotham, Scott A.; Bachman, J. Logan; Zhong, Ye; Brodbelt, Jennifer S.; Anslyn, Eric V.

    2016-10-01

    The coupling and decoupling of molecular units is a fundamental undertaking of organic chemistry. Herein we report the use of a very simple conjugate acceptor, derived from Meldrum's acid, for the sequential ‘clicking’ together of an amine and a thiol in aqueous conditions at neutral pH. Subsequently, this linkage can be ‘declicked’ by a chemical trigger to release the original amine and thiol undisturbed. The reactivity differs from that of other crosslinking agents because the selectivity for sequential functionalization derives from an altering of the electrophilicity of the conjugate acceptor on the addition of the amine. We describe the use of the procedure to modify proteins, create multicomponent libraries and synthesize oligomers, all of which can be declicked to their starting components in a controlled fashion when desired. Owing to the mild reaction conditions and ease of use in a variety of applications, the method is predicted to have wide utility.

  18. Substrate dependence of energy level alignment at the donor-acceptor interface in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Zhou, Y.C.; Liu, Z.T.; Tang, J.X.; Lee, C.S.; Lee, S.T.

    2009-01-01

    The interface energy level alignment between copper phthalocyanine (CuPC) and fullerene (C60), the widely studied donor-acceptor pair in organic photovoltaics (OPVs), on indium-tin oxide (ITO) and Mg substrate was investigated. The CuPC/C60 interface formed on ITO shows a nearly common vacuum level, but a dipole and band bending exist, resulting in a 0.8 eV band offset at the same interface on Mg. This observation indicates that the energy difference between the highest occupied molecular orbital of CuPC and the lowest unoccupied molecular orbital of C60, which dictates the open circuit voltage of the CuPC/C60 OPV, can be tuned by the work function of the substrate. Furthermore, the substrate effect on the energy alignment at the donor/acceptor interface can satisfactorily explain that a device with an anode of a smaller work function can provide a higher open circuit voltage.

  19. Giant first hyperpolarizabilities of donor-acceptor substituted graphyne: An ab initio study.

    Science.gov (United States)

    Chakraborti, Himadri

    2016-01-15

    Graphyne (Gy), a theoretically proposed material, has been utilized, for the first time, in a phenomenal donor-Gy-acceptor (D-Gy-A) structure to plan a superior nonlinear optical material. Owing to the extraordinary character of graphyne, this conjugate framework shows strikingly extensive static first hyperpolarizability (β(tot)) up to 128×10(-30) esu which is an enormous improvement than that of the bare graphyne. The donor-acceptor separation plays a key role in the change of β(tot) value. The π-conjugation of graphyne backbone has spread throughout some of the D-A attached molecules and leads to a low band gap state. Finally, two level model clarifies that the molecule having low transition energy should have high first hyperpolarizability. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Positron annihilation in liquids and in solutions containing electron acceptors and charge-transfer complexes

    International Nuclear Information System (INIS)

    Jansen, P.

    1976-05-01

    Positron lifetime measurements and angular correlation measurements were performed in several organic liquids. The results strongly indicate that positronium is contained in a 'bubble' in the liquids. The radius of the bubble can be estimated by using broadness of the narrow component in the angular correlation distribution, and by using the surface tension of the liquids. Both methods give bubble radii from 4-7 A in the solvents investigated. The bubble influences the reaction mechanism between Ps and weak electron acceptors in such a way that the presence of the bubble decreases the reactivity of Ps. Positron lifetime measurements were also performed on a series of mixtures of organic liquids and on electron acceptors and charge-transfer complexes in solution. The results were is agreement with the spur model of Ps formation. (Auth.)

  1. Structural, theoretical and experimental models of photosynthetic antennas, donors and acceptors

    International Nuclear Information System (INIS)

    Barkigia, K.M.; Chantranupong, L.; Fajer, J.; Kehres, L.A.; Smith, K.M.

    1989-01-01

    Theoretical calculations, based on recent x-ray studies of bacterial reaction centers, suggest that the light-absorption properties of the special pair phototraps in bacteria are controlled by the interplanar spacing between the bacteriochlorophyll subunits that constitute the special pairs. The calculations offer attractively simple explanations for the range of absorption spectra exhibited by photosynthetic bacteria. The wide range of (bacterio)chlorophyll skeletal conformations revealed by x-ray diffraction studies raise the intriguing possibility that different conformations, imposed by protein constraints, can modulate the light-absorption and redox properties of the chromophores in vivo. Electron-nuclear double resonance data obtained for the primary acceptors in green plants suggest specific substituent orientations and hydrogen bonding that may help optimize the orientations of the acceptors relative to the donors

  2. Intramolecular Charge-Transfer Interaction of Donor-Acceptor-Donor Arrays Based on Anthracene Bisimide.

    Science.gov (United States)

    Iwanaga, Tetsuo; Ogawa, Marina; Yamauchi, Tomokazu; Toyota, Shinji

    2016-05-20

    We designed anthracene bisimide (ABI) derivatives having two triphenylamine (TPA) groups as donor units at the 9,10-positions to form a novel π-conjugated donor-acceptor system. These compounds and their analogues with ethynylene linkers were synthesized by Suzuki-Miyaura and Sonogashira coupling reactions, respectively. In UV-vis spectra, the linker-free derivatives showed broad absorption bands arising from intramolecular charge-transfer interactions. Introducing ethynylene linkers resulted in a considerable red shift of the absorption bands. In fluorescence spectra, the ethynylene derivatives showed intense emission bands at 600-650 nm. Their photophysical and electrochemical properties were compared with those of the corresponding mono TPA derivatives on the basis of theoretical calculations and cyclic voltammetry to evaluate the intramolecular electronic interactions between the donor and acceptor units.

  3. Comparative evaluation of the acceptor properties of quinone derivatized polypyridinic ligands

    International Nuclear Information System (INIS)

    Norambuena, Ester; Olea-Azar, Claudio; Delgadillo, Alvaro; Barrera, Mauricio; Loeb, Barbara

    2009-01-01

    The reduction properties of four acceptor polipyridyl ligands modified with quinones were studied by different experimental methods, as cyclic voltammetry and ESR spectroscopy, and by theoretical calculations. ESR spectra for the reduced ligands show different patterns among them, suggesting that the quinone moiety plays an important role in the delocalization of the received electron. The hyperfine coupling constants calculated for the magnetic nucleus were in good agreement with experimental data. The results were additionally interpreted with the help of two theoretical predictors: the electrophilicity index and the Fukui function obtained through the spin density. The results suggest that 12,17-dihydronaphtho-[2,3-h]dipyrido[3,2-a:2',3'-c]-phenazine-12,17-dione, Aqphen, shows the most promising behavior to be employed as an acceptor ligand in complexes with potential application in NLO devices.

  4. Comparative evaluation of the acceptor properties of quinone derivatized polypyridinic ligands

    Energy Technology Data Exchange (ETDEWEB)

    Norambuena, Ester [Departamento de Quimica, Facultad de Ciencias Basicas, Universidad Metropolitana de Ciencias de la Educacion, Santiago (Chile); Olea-Azar, Claudio [Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago (Chile); Delgadillo, Alvaro [Departamento de Quimica, Facultad de Ciencias, Universidad de La Serena, Casilla 599, La Serena (Chile); Barrera, Mauricio [Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago (Chile); Loeb, Barbara, E-mail: bloeb@puc.cl [Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago (Chile)

    2009-05-18

    The reduction properties of four acceptor polipyridyl ligands modified with quinones were studied by different experimental methods, as cyclic voltammetry and ESR spectroscopy, and by theoretical calculations. ESR spectra for the reduced ligands show different patterns among them, suggesting that the quinone moiety plays an important role in the delocalization of the received electron. The hyperfine coupling constants calculated for the magnetic nucleus were in good agreement with experimental data. The results were additionally interpreted with the help of two theoretical predictors: the electrophilicity index and the Fukui function obtained through the spin density. The results suggest that 12,17-dihydronaphtho-[2,3-h]dipyrido[3,2-a:2',3'-c]-phenazine-12,17-dione, Aqphen, shows the most promising behavior to be employed as an acceptor ligand in complexes with potential application in NLO devices.

  5. Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors

    KAUST Repository

    Alam, Shahidul

    2018-04-13

    Lately, non-fullerene acceptors (NFAs) have received increasing attention for use in polymer-based bulk-heterojunction (BHJ) organic solar cells (OSCs), as improved photovoltaic performance compared to classical polymer–fullerene blends could be demonstrated. In this study, polymer solar cells based on a statistically substituted anthracene-containing poly(p-phenylene ethynylene)-alt-poly(p-phenylene vinylene)s (PPE–PPVs) copolymer (AnE-PVstat) as donor in combination with a number of different electron accepting materials were investigated. Strong photoluminescence quenching of the polymer donor indicates intimate intermixing of both materials. However, the photovoltaic performances were found to be poor compared to blends that use fullerene as acceptor. Time-delayed collection field (TDCF) measurements demonstrate: charge generation is field-independent, but bimolecular recombination processes limit the fill factor and thus the efficiency of devices.

  6. Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors

    KAUST Repository

    Alam, Shahidul; Meitzner, Rico; Nwadiaru, Ogechi V.; Friebe, Christian; Cann, Jonathan; Ahner, Johannes; Ulbricht, Christoph; Kan, Zhipeng; Hö ppener, Stephanie; Hager, Martin D.; Egbe, Daniel A. M.; Welch, Gregory C.; Laquai, Fré dé ric; Schubert, Ulrich S.; Hoppe, Harald

    2018-01-01

    Lately, non-fullerene acceptors (NFAs) have received increasing attention for use in polymer-based bulk-heterojunction (BHJ) organic solar cells (OSCs), as improved photovoltaic performance compared to classical polymer–fullerene blends could be demonstrated. In this study, polymer solar cells based on a statistically substituted anthracene-containing poly(p-phenylene ethynylene)-alt-poly(p-phenylene vinylene)s (PPE–PPVs) copolymer (AnE-PVstat) as donor in combination with a number of different electron accepting materials were investigated. Strong photoluminescence quenching of the polymer donor indicates intimate intermixing of both materials. However, the photovoltaic performances were found to be poor compared to blends that use fullerene as acceptor. Time-delayed collection field (TDCF) measurements demonstrate: charge generation is field-independent, but bimolecular recombination processes limit the fill factor and thus the efficiency of devices.

  7. Deep and shallow acceptor levels in solid solutions Pb0.98Sm0.02S

    International Nuclear Information System (INIS)

    Hasanov, H.A.; Rahimov, R.Sh.

    2010-01-01

    It is well known that the metal vacancies the energy levels of which take place between permitted energies of valency band, are the main acceptor centers in the led salts and solid solutions on their base. The aim of the given paper is founding of character of acceptor levels in single crystals Pb 0 .98Sm 0 .02S with low concentrations of charge carrier. The deep and shallow acceptor levels are found at investigation of Hall effect in Pb 0 .98Sm 0 .02S solid solution with character of low concentrations of charge carriers in crystals

  8. Acceptor number-dependent ultrafast photo-physical properties of push-pull chromophores using time-resolved methods

    Science.gov (United States)

    Chi, Xiao-Chun; Wang, Ying-Hui; Gao, Yu; Sui, Ning; Zhang, Li-Quan; Wang, Wen-Yan; Lu, Ran; Ji, Wen-Yu; Yang, Yan-Qiang; Zhang, Han-Zhuang

    2018-04-01

    Three push-pull chromophores comprising a triphenylamine (TPA) as electron-donating moiety and functionalized β-diketones as electron acceptor units are studied by various spectroscopic techniques. The time-correlated single-photon counting data shows that increasing the number of electron acceptor units accelerates photoluminescence relaxation rate of compounds. Transient spectra data shows that intramolecular charge transfer (ICT) takes place from TPA units to β-diketones units after photo-excitation. Increasing the number of electron acceptor units would prolong the generation process of ICT state, and accelerate the excited molecule reorganization process and the relaxation process of ICT state.

  9. On the acceptor-related photoluminescence spectra of GaAs quantum-wire microcrystals: A model calculation

    International Nuclear Information System (INIS)

    Oliveira, L.E.; Porras Montenegro, N.; Latge, A.

    1992-07-01

    The acceptor-related photoluminescence spectrum of a GaAs quantum-wire microcrystal is theoretically investigated via a model calculation within the effective-mass approximation, with the acceptor envelope wave functions and binding energies calculated through a variational procedure. Typical theoretical photoluminescence spectra show two peaks associated to transitions from the n = 1 conduction subband electron gas to acceptors at the on-center and on-edge positions in the wire in good agreement with the recent experimental results by Hirum et al. (Appl. Phys. Lett. 59, 431 (1991)). (author). 14 refs, 3 figs

  10. Molecular designing of novel ternary copolymers of donor-acceptor polymers using genetic algorithm

    International Nuclear Information System (INIS)

    Arora, Vinita; Bakhshi, A.K.

    2010-01-01

    Graphical abstract: Alternate arrangement of donor acceptor moieties in the carbon backbone chain of an organic conjugated polymer is capable of inducing charge transfer and affects the electronic properties of the copolymer. Genetic algorithm along with simple NFC (negative factor counting) and IIM (inverse iteration method) has been used to optimize the properties of novel ternary copolymers based on polypyrrole PPy, polythiophene PTh and polyfuran PFu (as donor moieties) and containing >C=O and >C=CF 2 bridging units as acceptor moieties. - Abstract: An efficient designing route to novel ternary copolymers consisting of polypyrrole (PPy), polythiophene (PTh) and polyfuran (PFu) is developed with the help of genetic algorithm. Using the band structure results obtained from ab initio crystal orbital (CO) calculations, the electronic structures and conduction properties of real ternary copolymers based on donor acceptor type polymers are investigated. The electron rich heterocyclic rings in the backbone chain of the copolymer are joined together by electron withdrawing groups Y, carbonyl group (>C=O) and difluoromethylene group (>C=CF 2 ) in an attempt to design the conducting polymer with lowest band gap. A comparative study of various electronic properties is presented. The effects of substitution on the behaviour and properties of the copolymers as well as on the density of states (DOS) are discussed. Band gap decreases as a result of substitution on the polymer backbone chain due to decrease in ionization potential and increase in electron affinity values. This is expected to enhance the intrinsic conductivity of the resulting copolymer. Use of alternate donor acceptor moieties within the repeat units should maximize the extended π conjugation.

  11. Phenyl vs Alkyl Polythiophene: A Solar Cell Comparison Using a Vinazene Derivative as Acceptor

    KAUST Repository

    Woo, Claire H.; Holcombe, Thomas W.; Unruh, David A.; Sellinger, Alan; Fréchet, Jean M. J.

    2010-01-01

    The solar cell performance of poly[3-(4-n-octyl)-phenylthiophene] (POPT) and poly(3hexylthiophene) (P3HT) are compared in devices using 4,7-bis(2-(l-(2-ethylhexyl)-4,5-dicyanoimidazol-2-yl)vinyi)benzo[c][l,2,5] -thiadiazole (EV-BT) as the electron acceptor. Despite their reduced light absorption, POPT:EV-BT devices generate higher photocurrents in both bilayer and bulk heterojunction (BHJ) architectures than analogous P3HT:EV-BT devices. Optimized POPT:EV-BT BHJ devices achieve 1.4% average efficiency, whereas the analogous P3HT devices only reach 1.1%. Morphology does not account for the large difference in performance as AFM studies of the active layer suggest, comparable levels of phase separation in the two systems. Reverse bias analysis demonstrates that P3HT devices have a higher maximum potential than POPT devices, but P3HT devices appear to be more severely limited by recombination losses under standard operating conditions. A possible explanation for the superior performance in POPT devices is that the pendant phenyl ring in POPT can twist out-of-plane and increase the separation distance with the acceptor molecule. A larger donor/acceptor separation distance can destabilize the geminate pair and lead to more efficient charge separation in POPT:EV-BT devices. Our results emphasize the importance of donor/acceptor pair interactions and its effect on charge separation, processes in polymer solar cells. © 2010 American Chemical Society.

  12. Self-consistent electronic structure of a model stage-1 graphite acceptor intercalate

    International Nuclear Information System (INIS)

    Campagnoli, G.; Tosatti, E.

    1981-04-01

    A simple but self-consistent LCAO scheme is used to study the π-electronic structure of an idealized stage-1 ordered graphite acceptor intercalate, modeled approximately on C 8 AsF 5 . The resulting non-uniform charge population within the carbon plane, band structure, optical and energy loss properties are discussed and compared with available spectroscopic evidence. The calculated total energy is used to estimate migration energy barriers, and the intercalate vibration mode frequency. (author)

  13. The Influence of Solvent Additive on Polymer Solar Cells Employing Fullerene and Non-Fullerene Acceptors

    KAUST Repository

    Song, Xin

    2017-11-27

    Small-molecule-based non-fullerene acceptors (NFAs) are emerging as a new field in organic photovoltaics, due to their structural versatility, the tunability of their energy levels, and their ease of synthesis. High-efficiency polymer donors have been tested with these non-fullerene acceptors in order to further boost the efficiency of organic solar cells. Most of the polymer:fullerene systems are optimized with solvent additives for high efficiency, while little attention has been paid to NFA-based solar cells so far. In this report, the effect of the most common additive, 1,8-diiodooctane (DIO), on PTB7-Th:PC71BM solar cells is investigated and it is compared with non-fullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno-[1,2-b:5,6b′]di-thiophene (ITIC) devices. It is interesting that the high boiling solvent additive does have a negative impact on the power conversion efficiency when PTB7-Th is blended with ITIC acceptor. The solar cell devices are studied in terms of their optical, photophysical, and morphological properties and find out that PTB7-Th:ITIC devices with DIO results in coarser domains, reduced absorption strength, and slightly lower mobility, while DIO improves the absorption strength of the PTB7-Th:PC71BM blend film and increase the aggregation of PC71BM in the blend, resulting in higher fill factor and Jsc.

  14. The Influence of Solvent Additive on Polymer Solar Cells Employing Fullerene and Non-Fullerene Acceptors

    KAUST Repository

    Song, Xin; Gasparini, Nicola; Baran, Derya

    2017-01-01

    Small-molecule-based non-fullerene acceptors (NFAs) are emerging as a new field in organic photovoltaics, due to their structural versatility, the tunability of their energy levels, and their ease of synthesis. High-efficiency polymer donors have been tested with these non-fullerene acceptors in order to further boost the efficiency of organic solar cells. Most of the polymer:fullerene systems are optimized with solvent additives for high efficiency, while little attention has been paid to NFA-based solar cells so far. In this report, the effect of the most common additive, 1,8-diiodooctane (DIO), on PTB7-Th:PC71BM solar cells is investigated and it is compared with non-fullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno-[1,2-b:5,6b′]di-thiophene (ITIC) devices. It is interesting that the high boiling solvent additive does have a negative impact on the power conversion efficiency when PTB7-Th is blended with ITIC acceptor. The solar cell devices are studied in terms of their optical, photophysical, and morphological properties and find out that PTB7-Th:ITIC devices with DIO results in coarser domains, reduced absorption strength, and slightly lower mobility, while DIO improves the absorption strength of the PTB7-Th:PC71BM blend film and increase the aggregation of PC71BM in the blend, resulting in higher fill factor and Jsc.

  15. Molecular designing of novel ternary copolymers of donor-acceptor polymers using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Vinita [Department of Chemistry, University of Delhi, Delhi 110 007 (India); Bakhshi, A.K., E-mail: akbakhshi2000@yahoo.com [Department of Chemistry, University of Delhi, Delhi 110 007 (India)

    2010-08-03

    Graphical abstract: Alternate arrangement of donor acceptor moieties in the carbon backbone chain of an organic conjugated polymer is capable of inducing charge transfer and affects the electronic properties of the copolymer. Genetic algorithm along with simple NFC (negative factor counting) and IIM (inverse iteration method) has been used to optimize the properties of novel ternary copolymers based on polypyrrole PPy, polythiophene PTh and polyfuran PFu (as donor moieties) and containing >C=O and >C=CF{sub 2} bridging units as acceptor moieties. - Abstract: An efficient designing route to novel ternary copolymers consisting of polypyrrole (PPy), polythiophene (PTh) and polyfuran (PFu) is developed with the help of genetic algorithm. Using the band structure results obtained from ab initio crystal orbital (CO) calculations, the electronic structures and conduction properties of real ternary copolymers based on donor acceptor type polymers are investigated. The electron rich heterocyclic rings in the backbone chain of the copolymer are joined together by electron withdrawing groups Y, carbonyl group (>C=O) and difluoromethylene group (>C=CF{sub 2}) in an attempt to design the conducting polymer with lowest band gap. A comparative study of various electronic properties is presented. The effects of substitution on the behaviour and properties of the copolymers as well as on the density of states (DOS) are discussed. Band gap decreases as a result of substitution on the polymer backbone chain due to decrease in ionization potential and increase in electron affinity values. This is expected to enhance the intrinsic conductivity of the resulting copolymer. Use of alternate donor acceptor moieties within the repeat units should maximize the extended {pi} conjugation.

  16. Phenyl vs Alkyl Polythiophene: A Solar Cell Comparison Using a Vinazene Derivative as Acceptor

    KAUST Repository

    Woo, Claire H.

    2010-03-09

    The solar cell performance of poly[3-(4-n-octyl)-phenylthiophene] (POPT) and poly(3hexylthiophene) (P3HT) are compared in devices using 4,7-bis(2-(l-(2-ethylhexyl)-4,5-dicyanoimidazol-2-yl)vinyi)benzo[c][l,2,5] -thiadiazole (EV-BT) as the electron acceptor. Despite their reduced light absorption, POPT:EV-BT devices generate higher photocurrents in both bilayer and bulk heterojunction (BHJ) architectures than analogous P3HT:EV-BT devices. Optimized POPT:EV-BT BHJ devices achieve 1.4% average efficiency, whereas the analogous P3HT devices only reach 1.1%. Morphology does not account for the large difference in performance as AFM studies of the active layer suggest, comparable levels of phase separation in the two systems. Reverse bias analysis demonstrates that P3HT devices have a higher maximum potential than POPT devices, but P3HT devices appear to be more severely limited by recombination losses under standard operating conditions. A possible explanation for the superior performance in POPT devices is that the pendant phenyl ring in POPT can twist out-of-plane and increase the separation distance with the acceptor molecule. A larger donor/acceptor separation distance can destabilize the geminate pair and lead to more efficient charge separation in POPT:EV-BT devices. Our results emphasize the importance of donor/acceptor pair interactions and its effect on charge separation, processes in polymer solar cells. © 2010 American Chemical Society.

  17. Polymer solar cells based on poly(3-hexylthiophene) and fullerene: Pyrene acceptor systems

    Energy Technology Data Exchange (ETDEWEB)

    Cominetti, Alessandra; Pellegrino, Andrea; Longo, Luca [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Po, Riccardo, E-mail: riccardo.po@eni.com [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Tacca, Alessandra; Carbonera, Chiara; Salvalaggio, Mario [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Baldrighi, Michele; Meille, Stefano Valdo [Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, via Mancinelli 7, IT-20131 Milano (Italy)

    2015-06-01

    The replacement of widely used fullerene derivatives, e.g. [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), with unfunctionalized C60 and C70 is an effective approach to reduce the costs of organic photovoltaics. However, solubility issues of these compounds have always represented an obstacle to their use. In this study, bulk-heterojunction solar cells made of poly(3-hexylthiophene) donor polymer, C60 or C70 acceptors and a pyrene derivative (1-pyrenebutiric acid butyl ester) are reported. Butyl 1-pyrenebutirate limits the aggregation of fullerenes and improves the active layer morphology, plausibly due to the formation of pyrene-fullerene complexes which, in the case of pyrene-C70, were also obtained in a crystalline form. Maximum power conversion efficiencies of 1.54% and 2.50% have been obtained using, respectively, C60 or C70 as acceptor. Quantum mechanical modeling provides additional insight into the formation of plausible supermolecular structures via π-π interactions and on the redox behaviour of pyrene-fullerene systems. - Highlights: • Pyrene derivatives favour the dispersion of unfunctionalized fullerenes. • Polymer solar cells with pyrene: C60 adduct as acceptor have efficiencies of 1.54%. • When C60 is substituted with C70 the efficiency is increased to 2.50%. • DFT calculations support the plausibility of the formation of pyrene: fullerene adducts. • The use of unfunctionalized fullerenes may decrease the costs of polymer solar cells.

  18. Amine donor and acceptor influence on the thermodynamics of ω-transaminase reactions

    DEFF Research Database (Denmark)

    Gundersen, Maria T.; Abu, Rohana; Schürmann, Martin

    2015-01-01

    In recent years biocatalytic transamination using ω-transaminase has become established as one of the most interesting routes to synthesize chiral amines with a high enantiomeric purity, especially in the pharmaceutical sector where the demand for such compounds is high. Nevertheless, one limitat...... of such reactions because it may be used to help select suitable donor/acceptor combinations. The results presented here give guidance, with respect to thermodynamics, in order to further extend the application of biocatalytic transamination....... limitation for successful implementation and scale-up is that the thermodynamics of such conversions are frequently found unfavourable. Herein we report experimental measurements of apparent equilibrium constants for several industrially relevant transamination reactions in a systematic manner to better...... understand the effect of amine acceptor and donor choice. For example, we have found that ortho-substitution of acetophenone like molecules, had a significant impact on the thermodynamic equilibrium. Likewise, the effect of cyclic amine acceptors was evaluated and compared to similar non-cyclic structures...

  19. Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene Acceptors.

    Science.gov (United States)

    Huo, Yong; Yan, Cenqi; Kan, Bin; Liu, Xiao-Fei; Chen, Li-Chuan; Hu, Chen-Xia; Lau, Tsz-Ki; Lu, Xinhui; Sun, Chun-Lin; Shao, Xiangfeng; Chen, Yongsheng; Zhan, Xiaowei; Zhang, Hao-Li

    2018-03-21

    Much effort has been devoted to the development of new donor materials for small-molecule organic solar cells due to their inherent advantages of well-defined molecular weight, easy purification, and good reproducibility in photovoltaic performance. Herein, we report two small-molecule donors that are compatible with both fullerene and nonfullerene acceptors. Both molecules consist of an (E)-1,2-di(thiophen-2-yl)ethane-substituted (TVT-substituted) benzo[1,2-b:4,5-b']dithiophene (BDT) as the central unit, and two rhodanine units as the terminal electron-withdrawing groups. The central units are modified with either alkyl side chains (DRBDT-TVT) or alkylthio side chains (DRBDT-STVT). Both molecules exhibit a medium bandgap with complementary absorption and proper energy level offset with typical acceptors like PC 71 BM and IDIC. The optimized devices show a decent power conversion efficiency (PCE) of 6.87% for small-molecule organic solar cells and 6.63% for nonfullerene all small-molecule organic solar cells. Our results reveal that rationally designed medium-bandgap small-molecule donors can be applied in high-performance small-molecule organic solar cells with different types of acceptors.

  20. Surface protection during plasma hydrogenation for acceptor passivation in InP

    International Nuclear Information System (INIS)

    Lopata, J.; Dautremont-Smith, W.C.; Pearton, S.J.; Lee, J.W.; Ha, N.T.; Luftman, H.S.

    1990-01-01

    Various dielectric and metallic films were examined as H-permeable surface protection layers on InP during H 2 or D 2 plasma exposure for passivation of acceptors in the InP. Plasma deposited SiN x , SiO 2 , and a-Si(H) films ranging in thickness from 85 to 225 angstrom were used to protect p-InP during d 2 plasma exposure at 250 degrees C. Optimum protective layer thicknesses were determined by a trade-off between the effectiveness of the layer to prevent P loss from the wafer surface and the ability to diffuse atomic H or D at a rate greater than or equal to that in the underlying InP. SIMS and capacitance-voltage depth profiling were used to determine the extent of D in-diffusion and acceptor passivation respectively. Sputter deposited W and e-beam evaporated Ti films ∼100 Angstrom thick were also evaluated. The W coated sample yielded similar results to those with dielectric films in that acceptors in p-InP were passivated to a similar depth for the same plasma exposure. The 100 Angstrom Ti film, however, did not allow the D to diffuse into the InP substrate. It is surmised that the Ti film trapped the D, thus preventing diffusion into the substrate

  1. Partial purification of xylosyltransferase (XylT) from rat liver and characterization of endogenous acceptors

    International Nuclear Information System (INIS)

    Klinger, M.; Roden, L.

    1986-01-01

    The biosynthesis of the carbohydrate-protein linkage region of most proteoglycan species is initiated by transfer of xylose from UDP-xylose to serine hydroxyl groups in the core protein. The XylT catalyzing this reaction has been previously purified from embryonic chick cartilage and from a rat chondrosarcoma but not from a normal mammalian tissue. In this study, XylT was extracted from rat liver by homogenization in buffer containing 1 M KCl and was partially purified by chromatography on heparin-Sepharose, AH-Sepharose, and on Sepharose-linked tryptic fragments of silk fibroin. The eluate from the latter contained more than 40% of the applied activity and less than 5% of the protein. Gel chromatography of XylT eluted from heparin-Sepharose indicated a mol. wt. of 95,000 to 100,000. Incorporation of ( 3 H)xylose into endogenous acceptors in the crude extract amounted to more than 50% of the total observed with added substrate (silk fibroin). Of the total endogenous acceptor activity in the crude extract, 98% was not adsorbed to heparin-Sepharose and yielded a labeled product which was stable to treatment with 0.5 M NaOH at 20 0 C for 16 h; this material may have been glycogen. In contrast, most of the radioactivity incorporated into the endogenous acceptor in the heparin-Sepharose eluate was alkali-labile, as would be expected for the xylosylated core protein of a proteoglycan

  2. Vacancy clustering and acceptor activation in nitrogen-implanted ZnO

    Science.gov (United States)

    Børseth, Thomas Moe; Tuomisto, Filip; Christensen, Jens S.; Monakhov, Edouard V.; Svensson, Bengt G.; Kuznetsov, Andrej Yu.

    2008-01-01

    The role of vacancy clustering and acceptor activation on resistivity evolution in N ion-implanted n -type hydrothermally grown bulk ZnO has been investigated by positron annihilation spectroscopy, resistivity measurements, and chemical profiling. Room temperature 220keV N implantation using doses in the low 1015cm-2 range induces small and big vacancy clusters containing at least 2 and 3-4 Zn vacancies, respectively. The small clusters are present already in as-implanted samples and remain stable up to 1000°C with no significant effect on the resistivity evolution. In contrast, formation of the big clusters at 600°C is associated with a significant increase in the free electron concentration attributed to gettering of amphoteric Li impurities by these clusters. Further annealing at 800°C results in a dramatic decrease in the free electron concentration correlated with activation of 1016-1017cm-3 acceptors likely to be N and/or Li related. The samples remain n type, however, and further annealing at 1000°C results in passivation of the acceptor states while the big clusters dissociate.

  3. Electron Acceptors Based on α-Substituted Perylene Diimide (PDI) for Organic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Donglin [Department; Wu, Qinghe [Department; Cai, Zhengxu [Department; Zheng, Tianyue [Department; Chen, Wei [Materials; Institute; Lu, Jessica [Department; Yu, Luping [Department

    2016-02-02

    Perylene diimide (PDI) derivatives functionalized at the ortho-position (αPPID, αPBDT) were synthesized and used as electron acceptors in non-fullerene organic photovoltaic cells. Because of the good planarity and strong π-stacking of ortho-functionalized PDI, the αPPID and αPBDT exhibit a strong tendency to form aggregates, which endow the materials with high electron mobility. The inverted OPVs employing αPDI-based compounds as the acceptors and PBT7-Th as the donor give the highest power conversion efficiency (PCE) values: 4.92% for αPBDT-based devices and 3.61% for αPPID-based devices, which are, respectively, 39% and 4% higher than that of their β-substituted counterparts βPBDT and βPPID. Charge separation studies show more efficient exciton dissociation at interfaces between αPDI-based compounds and PTB7-Th. The results suggest that α-substituted PDI derivatives are more promising electron acceptors for organic photovoltaic (OPV) components than β-isomers.

  4. tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry

    Science.gov (United States)

    Carter, Charles W.; Wolfenden, Richard

    2016-01-01

    abstract The universal genetic code is a translation table by which nucleic acid sequences can be interpreted as polypeptides with a wide range of biological functions. That information is used by aminoacyl-tRNA synthetases to translate the code. Moreover, amino acid properties dictate protein folding. We recently reported that digital correlation techniques could identify patterns in tRNA identity elements that govern recognition by synthetases. Our analysis, and the functionality of truncated synthetases that cannot recognize the tRNA anticodon, support the conclusion that the tRNA acceptor stem houses an independent code for the same 20 amino acids that likely functioned earlier in the emergence of genetics. The acceptor-stem code, related to amino acid size, is distinct from a code in the anticodon that is related to amino acid polarity. Details of the acceptor-stem code suggest that it was useful in preserving key properties of stereochemically-encoded peptides that had developed the capacity to interact catalytically with RNA. The quantitative embedding of the chemical properties of amino acids into tRNA bases has implications for the origins of molecular biology. PMID:26595350

  5. Toxicity of algal-derived aldehydes to two invertebrate species: Do heavy metal pollutants have a synergistic effect?

    International Nuclear Information System (INIS)

    Taylor, Rebecca L.; Caldwell, Gary S.; Bentley, Matthew G.

    2005-01-01

    The recent discovery of the production of anti-proliferative aldehydes in a variety of microalgal species has lead to considerable investigation into the effects of these toxins on aquatic invertebrates. Studies have, however, rarely considered the impact pollutants may have on grazer responses to algal toxins. In this study, the acute toxicities of five aldehydes to the rotifer Brachionus plicatilis and nauplii of the brine shrimp Artemia salina are examined using immersion assays. In addition, the effect of a representative of these aldehydes in the presence of sub-lethal levels of heavy metals was examined. B. plicatilis generally showed greater sensitivity to the aldehydes than A. salina. The polyunsaturated 2-trans,4-trans-decadienal was the most toxic to both species having 24 h LD 50 values of 7 and 20 μM for B. plicatilis and A. salina, respectively. The remaining aldehydes had different orders of toxicity for the two species with a stronger relationship observed between mortality and aldehyde carbon-chain length for A. salina whereas B. plicatilis mortality showed a stronger dependence on the presence of carbon-carbon double bonds in the aldehydes. The presence of 1 μM of copper sulphate in solutions of decadienal resulted in the reduction of the 24 h LD 50 of decadienal by approximately a third for both species. 1 μM of copper chloride in solutions of decadienal reduced the 24 h LD 50 of decadienal to A. salina nauplii by approximately 11% and 1 μM zinc sulphate caused a reduction of only 3%. Pre-exposure of the organisms to 1 μM copper sulphate had no significant impact on their subsequent mortality in decadienal. The ecological implications and the possible mechanisms for the action of copper sulphate on the response of organisms to decadienal are discussed

  6. Toxicity of algal-derived aldehydes to two invertebrate species: Do heavy metal pollutants have a synergistic effect?

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Rebecca L. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom)]. E-mail: r.l.taylor@ncl.ac.uk; Caldwell, Gary S. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom); Bentley, Matthew G. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2005-08-15

    The recent discovery of the production of anti-proliferative aldehydes in a variety of microalgal species has lead to considerable investigation into the effects of these toxins on aquatic invertebrates. Studies have, however, rarely considered the impact pollutants may have on grazer responses to algal toxins. In this study, the acute toxicities of five aldehydes to the rotifer Brachionus plicatilis and nauplii of the brine shrimp Artemia salina are examined using immersion assays. In addition, the effect of a representative of these aldehydes in the presence of sub-lethal levels of heavy metals was examined. B. plicatilis generally showed greater sensitivity to the aldehydes than A. salina. The polyunsaturated 2-trans,4-trans-decadienal was the most toxic to both species having 24 h LD{sub 50} values of 7 and 20 {mu}M for B. plicatilis and A. salina, respectively. The remaining aldehydes had different orders of toxicity for the two species with a stronger relationship observed between mortality and aldehyde carbon-chain length for A. salina whereas B. plicatilis mortality showed a stronger dependence on the presence of carbon-carbon double bonds in the aldehydes. The presence of 1 {mu}M of copper sulphate in solutions of decadienal resulted in the reduction of the 24 h LD{sub 50} of decadienal by approximately a third for both species. 1 {mu}M of copper chloride in solutions of decadienal reduced the 24 h LD{sub 50} of decadienal to A. salina nauplii by approximately 11% and 1 {mu}M zinc sulphate caused a reduction of only 3%. Pre-exposure of the organisms to 1 {mu}M copper sulphate had no significant impact on their subsequent mortality in decadienal. The ecological implications and the possible mechanisms for the action of copper sulphate on the response of organisms to decadienal are discussed.

  7. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae.

    Science.gov (United States)

    Moon, Jaewoong; Liu, Z Lewis

    2015-04-01

    The aldehyde reductase gene ARI1 is a recently characterized member of an intermediate subfamily within the short-chain dehydrogenase/reductase (SDR) superfamily that clarified mechanisms of in situ detoxification of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde by Saccharomyces cerevisiae. Uncharacterized open reading frames (ORFs) are common among tolerant candidate genes identified for lignocellulose-to-advanced biofuels conversion. This study presents partially purified proteins of two ORFs, YDR541C and YGL039W, and direct enzyme assay evidence against aldehyde-inhibitory compounds commonly encountered during lignocellulosic biomass fermentation processes. Each of the partially purified proteins encoded by these ORFs showed a molecular mass of approximately 38 kDa, similar to Ari1p, a protein encoded by aldehyde reductase gene. Both proteins demonstrated strong aldehyde reduction activities toward 14 aldehyde substrates, with high levels of reduction activity for Ydr541cp toward both aromatic and aliphatic aldehydes. While Ydr541cp was observed to have a significantly higher specific enzyme activity at 20 U/mg using co-factor NADPH, Ygl039wp displayed a NADH preference at 25 U/mg in reduction of butylaldehyde. Amino acid sequence analysis identified a characteristic catalytic triad, Ser, Tyr and Lys; a conserved catalytic motif of Tyr-X-X-X-Lys; and a cofactor-binding sequence motif, Gly-X-X-Gly-X-X-Ala, near the N-terminus that are shared by Ydr541cp, Ygl039wp, Yol151wp/GRE2 and Ari1p. Findings of aldehyde reductase genes contribute to the yeast gene annotation and aids development of the next-generation biocatalyst for advanced biofuels production. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Simulation study on the effects of chemical structure and molecular size on the acceptor strength in poly(3-hexylthiophene)-based copolymer with alternating donor and acceptor for photovoltaic applications

    Science.gov (United States)

    Rassamesard, Areefen; Pengpan, Teparksorn

    2017-02-01

    This research assessed the effects of various chemical structures and molecular sizes on the simulated geometric parameters, electron structures, and spectroscopic properties of single-chain complex alternating donor-acceptor (D-A) monomers and copolymers that are intended for use as photoactive layer in a polymer solar cell by using Kohn-Sham density functional theory with B3LYP exchange-correlation functional. The 3-hexylthiophene (3HT) was selected for electron donor, while eight chemicals, namely thiazole (Z), thiadiazole (D), thienopyrazine (TP), thienothiadiazole (TD), benzothiadiazole (BT), thiadiazolothieno-pyrazine (TPD), oxadiazole (OXD) and 5-diphenyl-1,2,4-triazole (TAZ), were employed as electron acceptor functional groups. The torsional angle, bridge bond length, intramolecular charge transfer, energy levels, and molecular orbitals were analyzed. The simulation results reveal that the geometry and electron structure of donor-acceptor monomer and copolymer are significantly impacted by heterocyclic rings, heteroatoms, fused rings, degree of steric hindrance and coplanarity of the acceptor molecular structure. Planar conformation was obtained from the D copolymer, and a pseudo-planar structure with the TD copolymer. The TAZ acceptor exhibited strong steric hindrance due to its bulky structure and non-planarity of its structure. An analysis of the electron structures indicated that the degree of intramolecular electron-withdrawing capability had the rank order TAZ  gaps of TD as well as TPD copolymer indicate that these two copolymers can be used in transparent conducting materials. The copolymer based on BT acceptor exhibited good intramolecular charge transfer and absorbed at 656 nm wavelength which is close to the maximum flux of solar spectrum. Hence, the BT acceptor functional group provides a compromise in the characteristics of a donor-acceptor copolymer, useful in a polymeric candidate material for the photoactive layer in a polymer solar

  9. Developmental role of phenylalanine-ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) genes during adventitious rooting of Juglans regia L. microshoots.

    Science.gov (United States)

    Cheniany, Monireh; Ganjeali, Ali

    2016-12-01

    Phenylalanine-ammonia-lyase and cinnamate-4-hydroxylase play important role in the phenylpropanoid pathway, which produces many biologically important secondary metabolites participating in normal plant development. Flavonol quercetin is the main representant of these compounds that has been identified in numerous Juglans spp. In this survey, the developmental expression patterns of PAL and C4H genes during in vitro rooting of two walnut cultivars 'Sunland' and 'Howard' was examined by RT-PCR. To understand the potential role in rooting, the changing pattern of endogenous content of quercetin was also analyzed by HPLC. The 'Sunland' with better capacity to root had more quercetin content during the "inductive phase" of rooting than 'Howard'. In each cultivar, the level of PAL transcripts showed the same behavior with the changing patterns of quercetin during root formation of microshoots. The positive correlation between the changes of quercetin and PAL-mRNA indicated that PAL gene may have an immediate effect on flavonoid pathway metabolites including quercetin. Although the behavioral change of C4H expression was similar in both cultivars during root formation (with significantly more level for 'Howard'), it was not coincide with the changes of quercerin concentrations. Our results showed that C4H function is important for the normal development, but its transcriptional regulation does not correlate with quercetin as an efficient phenolic compound for walnut rhizogenesis.

  10. Localization of xanthine oxidoreductase activity using the tissue protectant polyvinyl alcohol and final electron acceptor Tetranitro BT

    NARCIS (Netherlands)

    Kooij, A.; Frederiks, W. M.; Gossrau, R.; van Noorden, C. J.

    1991-01-01

    We have detected xanthine oxidoreductase activity in unfixed cryostat sections of rat and chicken liver, rat duodenum, and bovine mammary gland using the tissue protectant polyvinyl alcohol, the electron carrier 1-methoxyphenazine methosulfate, the final electron acceptor Tetranitro BT, and

  11. Bane of Hydrogen-Bond Formation on the Photoinduced Charge-Transfer Process in Donor–Acceptor Systems

    KAUST Repository

    Alsam, Amani Abdu; Adhikari, Aniruddha; Parida, Manas R.; Aly, Shawkat Mohammede; Bakr, Osman; Mohammed, Omar F.

    2017-01-01

    Controlling the ultrafast dynamical process of photoinduced charge transfer at donor acceptor interfaces remains a major challenge for physical chemistry and solar cell communities. The process is complicated by the involvement of other complex

  12. Radical cations in radiation chemistry of aldehydes. ESR study and quantum chemical analysis

    International Nuclear Information System (INIS)

    Belevskii, V.N.; Tyurin, D.A.; Chuvilkin, N.D.

    1998-01-01

    Quantum-chemical (MNDO-UHF) calculations of electronic, spin and energy characteristics of radical cations (RC) of ethanal, propanal, butanal, and pentanal and their distonic isomers were performed. The calculations both with 'frozen' (vertical ionization) and completely optimize geometry (adiabatic approximation) were made. It was been shown that the most positive charge and spin population are localized at O atoms and adjacent C atom as well as at aldehyde protons. The C-H bonds corresponding to those protons as well as neighboring C-O and C-C bonds are considerable weaker (longer) in radical cations as compared to their neutral precursors. That is why such reaction centers are apt to deprotonation with the formation of acyl radical as well as to α- and β-splitting (scission) which are well-known from aldehydes mass-spectra. Our calculations shown that distonic RC (products of intramolecular H-atom transfer) are more stable as compare to their classical isomers: e.g. the difference in energy ΔE = -0.95 eV, -1.2 eV, and -1.5 eV for tree distonic isomers of butanal RC as compare to classical isomer, ΔE -1.2 eV for distonic RC of ethanal. The results of calculations are effectively correlated with ESR data obtained in freonic solutions, X- and gamma-irradiated at 77 K and in liquid aldehydes, X-irradiated by using 2,4,6-tri-tert-burylnitrosobenzene (BNB) and t-BuNO (NtB) as a spin traps. (author)

  13. Heterologous Expression of Aldehyde Dehydrogenase in Lactococcus lactis for Acetaldehyde Detoxification at Low pH.

    Science.gov (United States)

    Lyu, Yunbin; LaPointe, Gisèle; Zhong, Lei; Lu, Jing; Zhang, Chong; Lu, Zhaoxin

    2018-02-01

    Aldehyde dehydrogenase (E.C. 1.2.1.x) can catalyze detoxification of acetaldehydes. A novel acetaldehyde dehydrogenase (istALDH) from the non-Saccharomyces yeast Issatchenkia terricola strain XJ-2 has been previously characterized. In this work, Lactococcus lactis with the NIsin Controlled Expression (NICE) System was applied to express the aldehyde dehydrogenase gene (istALDH) in order to catalyze oxidation of acetaldehyde at low pH. A recombinant L. lactis NZ3900 was obtained and applied for the detoxification of acetaldehyde as whole-cell biocatalysts. The activity of IstALDH in L. lactis NZ3900 (pNZ8148-istALDH) reached 36.4 U mL -1 when the recombinant cells were induced with 50 ng mL -1 nisin at 20 °C for 2 h. The IstALDH activity of recombinant L. lactis cells showed higher stability at 37 °C and pH 4.0 compared with the crude enzyme. L. lactis NZ3900 (pNZ8148-istALDH) could convert acetaldehyde at pH 2.0 while the crude enzyme could not. Moreover, the resting cells of L. lactis NZ3900 (pNZ8148-istALDH) showed a 2.5-fold higher activity and better stability in catalyzing oxidation of acetaldehyde at pH 2.0 compared with that of Escherichia coli expressing the IstALDH. Taken together, the L. lactis cells expressing recombinant IstALDH are potential whole-cell biocatalysts that can be applied in the detoxification of aldehydes.

  14. Template Dimerization Promotes an Acceptor Invasion-Induced Transfer Mechanism during Human Immunodeficiency Virus Type 1 Minus-Strand Synthesis

    OpenAIRE

    Balakrishnan, Mini; Roques, Bernard P.; Fay, Philip J.; Bambara, Robert A.

    2003-01-01

    The biochemical mechanism of template switching by human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and the role of template dimerization were examined. Homologous donor-acceptor template pairs derived from the HIV-1 untranslated leader region and containing the wild-type and mutant dimerization initiation sequences (DIS) were used to examine the efficiency and distribution of transfers. Inhibiting donor-acceptor interaction was sufficient to reduce transfers in DIS-containin...

  15. Enantiopure vs. Racemic Naphthalimide End-Capped Helicenic Non-Fullerene Electron Acceptors: Impact on Organic Photovoltaics Performance

    OpenAIRE

    Josse , Pierre; Favereau , Ludovic; Shen , Chengshuo; Dabos-Seignon , Sylvie; Blanchard , Philippe; Cabanetos , Clement; Crassous , Jeanne

    2017-01-01

    International audience; Impact of the enantiopurity on organic photovoltaics (OPV) performance was investigated through the synthesis of racemic and enantiomerically pure naphthalimide end-capped helicenes and their application as non-fullerene molecular electron acceptors in OPV devices. A very strong increase of the device performance was observed by simply switching from the racemic to the enantiopure forms of these π-helical non-fullerene acceptors with power conversion efficiencies jumpi...

  16. Revisiting the Reaction Between Diaminomaleonitrile and Aromatic Aldehydes: a Green Chemistry Approach

    Directory of Open Access Journals (Sweden)

    Francisco León

    2006-11-01

    Full Text Available The reaction between diaminomaleonitrile (DAMN and aldehydes and the resulting monoimines are well known. Since the standard reaction conditions involve the use of toxic solvents (typically methanol, we have sought to apply green chemistry principles to this reaction by either using water as the solvent without any catalysts or employing “solvent-free” conditions. The monoimines derived from DAMN are of interest as precursors for obtaining different heterocyclic systems and linear polymers. The methodologies used have significant advantages with regards to cost and environmental considerations.

  17. Structure of products of the condensation of α,β-unsaturated aldehydes with dimedone

    International Nuclear Information System (INIS)

    Yurchenko, O.I.; Pushkareva, K.S.; Zheldubovskaya, G.A.; Komarov, N.V.; Berkova, G.A.

    1987-01-01

    α,β-Acetylenic aldehydes and cinnamaldehyde in reaction with dimedone give the corresponding unsaturated bis(dimedonyl)methanes. In the case of acrolein and crotonaldehyde intramolecular cyclization occurs with the participation of hydroxyl of the dimedone fragment and the double bond with the formation of pyran systems. The PMR spectra were determined on Tesla BS-487C (80 MHz) and Tesla BS-467C (60 MHz) spectrometers in chloroform-d, pyridine-d 5 , and trifluoroacetic acid solutions. Internal standards HMDS and methylene chloride

  18. Rationalization of an unusual solvent-induced inversion of enantiomeric excess in organocatalytic selenylation of aldehydes.

    Science.gov (United States)

    Burés, Jordi; Dingwall, Paul; Armstrong, Alan; Blackmond, Donna G

    2014-08-11

    An unusual solvent-induced inversion of the sense of enantioselectivity observed in the α-selenylation of aldehydes catalyzed by a diphenylprolinol silyl ether catalyst is correlated to the presence of intermediates formed subsequent to the highly selective C-Se bond-forming step in the catalytic cycle. This work provides support for a mechanistic concept for enamine catalysis and includes a general role for "downstream intermediates" in selectivity outcomes in organocatalysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles

    International Nuclear Information System (INIS)

    Negron-Mendoza, A.; Draganic, Z.D.; Navarro-Gonzalez, R.; Graganic, I.G.

    1983-01-01

    A systematic search for aldehydes, ketones, and carboxylic acids was carried out in aqueous solutions of HCN, NH 4 CN, CH 3 CN, and C 2 H 4 CN, that had received multikilogray doses of 60 Co γ radiation. About 30 radiolytic products were identified, among them a large variety of dicarboxylic and tricarboxylic acids. Some of them might be of significant interest in molecular evolution studies of prebiotic processes. They originate in the free-radical-initiated chemical reactions where the additional oligomerization processes are particularly important. Most of the radiolytic products appear in both cyanides and nitriles and point to the importance of reactions involving the carbon-nitrogen triple bond

  20. Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kang, Min-Kyoung; Zhou, Yongjin J.; Buijs, Nicolaas A.

    2017-01-01

    Background: Low catalytic activities of pathway enzymes are often a limitation when using microbial based chemical production. Recent studies indicated that the enzyme activity of aldehyde decarbonylase (AD) is a critical bottleneck for alkane biosynthesis in Saccharomyces cerevisiae. We therefore...... detected in other AD expressed yeast strains. Dynamic expression of SeADO and CwADO under GAL promoters increased alkane production to 0.20 mg/L/OD600 and no fatty alcohols, with even number chain lengths from C8 to C14, were detected in the cells. Conclusions: We demonstrated in vivo enzyme activities...

  1. Reactions of CH-acids with α,β-unsaturated aldehydes in ionic liquids

    DEFF Research Database (Denmark)

    Kryshtal, G. V.; Zhdankina, G. M.; Astakhova, Irina Kira

    2004-01-01

    Metal carbonate-catalyzed reactions of CH-acids (diethyl malonate, ethyl acetoacetate, ethyl cyanoacetate, and ethyl 2-acetyl- and 2-ethoxycarbonyl-5,9- dimethyldeca-4,8-dienoates) with α,β-unsaturated aldehydes (acrolein, crotonaldehyde, citral) were studied in an ionic liquid, 1-butyl-3......- methylimidazolium hexafluorophosphate [bmim][PF 6], and in a 1-butyl-3-methylimidazolium bromide ([bmim][Br]) - benzene system. The reactions with acrolein and crotonaldehyde afforded Michael addition products, those with citral resulted in Knoevenagel addition products. Sonication increased the yields...

  2. "Juice Monsters": Sub-Ohm Vaping and Toxic Volatile Aldehyde Emissions.

    Science.gov (United States)

    Talih, Soha; Salman, Rola; Karaoghlanian, Nareg; El-Hellani, Ahmad; Saliba, Najat; Eissenberg, Thomas; Shihadeh, Alan

    2017-10-16

    An emerging category of electronic cigarettes (ECIGs) is sub-Ohm devices (SODs) that operate at ten or more times the power of conventional ECIGs. Because carcinogenic volatile aldehyde (VA) emissions increase sharply with power, SODs may expose users to greater VAs. In this study, we compared VA emissions from several SODs and found that across device, VAs and power were uncorrelated unless power was normalized by coil surface area. VA emissions and liquid consumed were correlated highly. Analyzed in light of EU regulations limiting ECIG liquid nicotine concentration, these findings suggest potential regulatory levers and pitfalls for protecting public health.

  3. Accessing 2-substituted piperidine iminosugars by organometallic addition/intramolecular reductive amination: aldehyde vs. nitrone route.

    Science.gov (United States)

    Mirabella, S; Fibbi, G; Matassini, C; Faggi, C; Goti, A; Cardona, F

    2017-11-07

    A dual synthetic strategy to afford 2-substituted trihydroxypiperidines is disclosed. The procedure involved Grignard addition either to a carbohydrate-derived aldehyde or to a nitrone derived thereof, and took advantage of an efficient ring-closure reductive amination strategy in the final cyclization step. An opposite diastereofacial preference was demonstrated in the nucleophilic attack to the two electrophiles, which would finally produce the same piperidine diastereoisomer as the major product. However, use of a suitable Lewis acid in the Grignard addition to the nitrone allowed reversing the selectivity, giving access to 2-substituted piperidines with the opposite configuration at C-2.

  4. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    Science.gov (United States)

    Smith, R.E.; Dolbeare, F.A.

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings

  5. HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY FOR DETERMINATION OF AROMATIC ALDEHYDES IN WINE DISTILLATES

    Directory of Open Access Journals (Sweden)

    Elena Nezalzova

    2011-06-01

    Full Text Available Quality control of alcoholic beverages, coming into the market, is a defining element in preventing the production and supplying of defective products. One of the main criteria for quality control of wine distillates is to estimate their age, and more precisely the period of maturation as the dominant factor in determining the quality of cognacs and, consequently, their market price. On the opinion of majority scientists, one of the main factors, which determines the age of wine distillates, is the content of aromatic aldehydes, mostly vanillin, and their ratio.

  6. Long-Lived Charge Separation at Heterojunctions between Semiconducting Single-Walled Carbon Nanotubes and Perylene Diimide Electron Acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Suk [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Arias, Dylan H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Blackburn, Jeffrey L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sisto, Thomas J. [Columbia University; Peurifoy, Samuel [Columbia University; Zhang, Boyuan [Columbia University; Nuckolls, Colin [Columbia University

    2018-04-13

    Nonfullerene electron acceptors have facilitated a recent surge in the efficiencies of organic solar cells, although fundamental studies of the nature of exciton dissociation at interfaces with nonfullerene electron acceptors are still relatively sparse. Semiconducting single-walled carbon nanotubes (s-SWCNTs), unique one-dimensional electron donors with molecule-like absorption and highly mobile charges, provide a model system for studying interfacial exciton dissociation. Here, we investigate excited-state photodynamics at the heterojunction between (6,5) s-SWCNTs and two perylene diimide (PDI)-based electron acceptors. Each of the PDI-based acceptors, hPDI2-pyr-hPDI2 and Trip-hPDI2, is deposited onto (6,5) s-SWCNT films to form a heterojunction bilayer. Transient absorption measurements demonstrate that photoinduced hole/electron transfer occurs at the photoexcited bilayer interfaces, producing long-lived separated charges with lifetimes exceeding 1.0 us. Both exciton dissociation and charge recombination occur more slowly for the hPDI2-pyr-hPDI2 bilayer than for the Trip-hPDI2 bilayer. To explain such differences, we discuss the potential roles of the thermodynamic charge transfer driving force available at each interface and the different molecular structure and intermolecular interactions of PDI-based acceptors. Detailed photophysical analysis of these model systems can develop the fundamental understanding of exciton dissociation between organic electron donors and nonfullerene acceptors, which has not been systematically studied.

  7. Acceptor thickness effect of exciplex and electroplex emission at heterojunction interface in organic light-emitting diodes

    Science.gov (United States)

    Zhang, Wei; Yu, Junsheng; Yuan, Kai; Jiang, Yadong; Zhang, Qing; Cao, Kangli

    2010-10-01

    Organic light-emitting diodes (OLEDs) consisted of a novel fluorene derivative of 5,6-bis(9,9-dihexyl-9H-fluoren-2-yl)- 2,3-diisocyano-2,3-dihydropyrazine (BDHFLCNPy) and a hole transporting material of N,N'-Di-[(1-naphthalenyl)- N,N'-diphenyl](1,1'-biphenyl)-4,4'-diamine (NPB) were fabricated, and electroluminescence (EL) spectrum of devices were investigated. It was found that light emission around 650 nm observed in devices came from exciplex generated at heterojunction interface by NPB molecules worked as electron donor and BDHFLCNPy molecules worked as electron acceptor. Moreover, a shoulder peak around 500 nm ascribed to BDHFLCNPy exciton was observed. To systemically study the effect of heterojunction structure in exciplex formation, OLEDs with different thickness of acceptor were fabricated. The results illustrated that a shoulder peak around 600 nm occurred in EL when acceptor thickness increases, and BDHFLCNPy exciton emitting strength is relatively altered. The emission band around 600 nm is due to electroplex. The L-V-J properties of OLEDs show that device with the thinnest acceptor layer has the highest luminance and current density. On the contrary, OLEDs with thicker acceptor layer have higher luminance efficiency. The different recombination mechanism of exciton, exciplex and electroplex in heterojunction were studied. Furthermore, the acceptor thickness effect of exciplex and electroplex generating mechanism and energy transferring mechanism between them was also discussed.

  8. S-Nitrosomycothiol Reductase and Mycothiol Are Required for Survival Under Aldehyde Stress and Biofilm Formation in Mycobacterium smegmatis

    Science.gov (United States)

    Vargas, Derek; Hageman, Samantha; Gulati, Megha; Nobile, Clarissa J.; Rawat, Mamta

    2017-01-01

    We show that Mycobacterium smegmatis mutants disrupted in mscR, coding for a dual function S-nitrosomycothiol reductase and formaldehyde dehydrogenase, and mshC, coding for a mycothiol ligase and lacking mycothiol (MSH), are more susceptible to S-nitrosoglutathione (GSNO) and aldehydes than wild type. MSH is a cofactor for MscR, and both mshC and mscR are induced by GSNO and aldehydes. We also show that a mutant disrupted in egtA, coding for a γ-glutamyl cysteine synthetase and lacking in ergothioneine, is sensitive to nitrosative stress but not to aldehydes. In addition, we find that MSH and S-nitrosomycothiol reductase are required for normal biofilm formation in M. smegmatis, suggesting potential new therapeutic pathways to target to inhibit or disrupt biofilm formation. PMID:27321674

  9. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production

    Directory of Open Access Journals (Sweden)

    Sales F.G.

    2004-01-01

    Full Text Available In the present work a process of catalytic wet air oxidation of lignin obtained from sugar-cane bagasse is developed with the objective of producing vanillin, syringaldehyde and p-hydroxybenzaldehyde in a continuous regime. Palladium supported on g-alumina was used as the catalyst. The reactions in the lignin degradation and aldehyde production were described by a kinetic model as a system of complex parallel and series reactions, in which pseudo-first-order steps are found. For the purpose of producing aromatic aldehydes in continuous regime, a three-phase fluidized reactor was built, and it was operated using atmospheric air as the oxidizer. The best yield in aromatic aldehydes was of 12%. The experimental results were compatible with those values obtained by the pseudo-heterogeneous axial dispersion model (PHADM applied to the liquid phase.

  10. Enhanced detection of aldehydes in Extra-Virgin Olive Oil by means of band selective NMR spectroscopy

    Science.gov (United States)

    Dugo, Giacomo; Rotondo, Archimede; Mallamace, Domenico; Cicero, Nicola; Salvo, Andrea; Rotondo, Enrico; Corsaro, Carmelo

    2015-02-01

    High resolution Nuclear Magnetic Resonance (NMR) spectroscopy is a very powerful tool for comprehensive food analyses and especially for Extra-Virgin Olive Oils (EVOOs). We use the NMR technique to study the spectral region of aldehydes (8-10 ppm) for EVOOs coming from the south part of Italy. We perform novel experiments by using mono and bidimensional band selective spin-echo pulse sequences and identify four structural classes of aldehydes in EVOOs. For the first time such species are identified in EVOOs without any chemical treatment; only dilution with CDCl3 is employed. This would allow the discrimination of different EVOOs for the aldehydes content increasing the potentiality of the NMR technique in the screening of metabolites for geographical characterization of EVOOs.

  11. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus.

    Directory of Open Access Journals (Sweden)

    Vincenzo Marrone

    Full Text Available Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30 were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants.

  12. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo{sub 2}C) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ke [Catalysis Center for Energy Innovation, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 (United States); Yu, Weiting [Chemical Engineering, Columbia University, New York, NY 10027 (United States); Chen, Jingguang G., E-mail: jgchen@columbia.edu [Chemical Engineering, Columbia University, New York, NY 10027 (United States)

    2014-12-30

    Highlights: • Mo{sub 2}C surface can deoxygenate propanal and 1-propanol to produce propene through a similar intermediate (propoxide or η{sup 2}(C,O)-propanal). • Mo{sub 2}C surface can deoxygenate furfural and furfuryl alcohol to make 2-methylfuran through a 2-methylfuran-like intermediate. • The presence of furan ring modifies the selectivity between deoxygenation and hydrogenation/dehydrogenation pathways. - Abstract: The selective deoxygenation of aldehydes and alcohols without cleaving the C-C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo{sub 2}C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η{sup 2}(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo{sub 2}C, as well as the effect of the furan ring on the selective deoxygenation of the C=O and C-OH bonds.

  13. Curcumin loaded gum arabic aldehyde-gelatin nanogels for breast cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sarika, P.R., E-mail: sarikapaithal@gmail.com; Nirmala, Rachel James, E-mail: nirmala@iist.ac.in

    2016-08-01

    Curcumin, a widely studied hydrophobic polyphenol with anticancer potential is loaded in gum arabic aldehyde-gelatin (GA Ald-Gel) nanogels to improve its bioavailability and therapeutic efficacy towards cancer cells. Physicochemical properties of the curcumin loaded GA Ald-Gel nanogels are investigated by different techniques including dynamic light scattering (DLS), NMR spectroscopy and scanning electron microscopy (SEM). These nanogels exhibit hydrodynamic diameter of 452 ± 8 nm with a zeta potential of − 27 mV. The nanogels possess an encapsulation efficiency of 65 ± 3%. Potential of the nanogels for controlled release of curcumin is illustrated by in vitro drug release studies. Hemocompatibility and cytocompatibility of the drug loaded nanogels are evaluated. In vitro cytotoxicity of the bare and curcumin loaded nanogels are analyzed by MTT assay towards MCF-7 cells. The results manifest that curcumin loaded nanogels induce toxicity in MCF-7 cells. Confocal laser scanning microscopy (CLSM) studies indicate in vitro cellular uptake of the nanogels in MCF-7 cells. All these results prove the suitability of the curcumin loaded GA Ald-Gel nanogels for cancer therapy. - Highlights: • Curcumin loaded gum arabic aldehyde-gelatin nanogels were prepared. • Nanogels maintained negative zeta potential after curcumin loading. • Curcumin release is higher at acidic pH compared to neutral pH. • Curcumin loaded GA Ald-Gel nanogels shows toxicity towards MCF-7 cells. • Green fluorescence in MCF-7 cells confirmed the intracellular uptake.

  14. Curcumin loaded gum arabic aldehyde-gelatin nanogels for breast cancer therapy

    International Nuclear Information System (INIS)

    Sarika, P.R.; Nirmala, Rachel James

    2016-01-01

    Curcumin, a widely studied hydrophobic polyphenol with anticancer potential is loaded in gum arabic aldehyde-gelatin (GA Ald-Gel) nanogels to improve its bioavailability and therapeutic efficacy towards cancer cells. Physicochemical properties of the curcumin loaded GA Ald-Gel nanogels are investigated by different techniques including dynamic light scattering (DLS), NMR spectroscopy and scanning electron microscopy (SEM). These nanogels exhibit hydrodynamic diameter of 452 ± 8 nm with a zeta potential of − 27 mV. The nanogels possess an encapsulation efficiency of 65 ± 3%. Potential of the nanogels for controlled release of curcumin is illustrated by in vitro drug release studies. Hemocompatibility and cytocompatibility of the drug loaded nanogels are evaluated. In vitro cytotoxicity of the bare and curcumin loaded nanogels are analyzed by MTT assay towards MCF-7 cells. The results manifest that curcumin loaded nanogels induce toxicity in MCF-7 cells. Confocal laser scanning microscopy (CLSM) studies indicate in vitro cellular uptake of the nanogels in MCF-7 cells. All these results prove the suitability of the curcumin loaded GA Ald-Gel nanogels for cancer therapy. - Highlights: • Curcumin loaded gum arabic aldehyde-gelatin nanogels were prepared. • Nanogels maintained negative zeta potential after curcumin loading. • Curcumin release is higher at acidic pH compared to neutral pH. • Curcumin loaded GA Ald-Gel nanogels shows toxicity towards MCF-7 cells. • Green fluorescence in MCF-7 cells confirmed the intracellular uptake.

  15. Quantification of Dissolved and Particulate Polyunsaturated Aldehydes in the Adriatic Sea

    Directory of Open Access Journals (Sweden)

    Raffaella Casotti

    2011-03-01

    Full Text Available Polyunsaturated aldehydes (PUA are supposed to play critical roles in chemically-mediated plankton interactions. Laboratory studies suggest that they act as mediators of chemical defense and chemical communication. PUA are oxylipins containing an α,β,γ,δ-unsaturated aldehyde structure element and are mainly found in diatoms. We present here a detailed surface mapping of PUA during a spring bloom of the diatom Skeletonema marinoi in the Adriatic Sea. We monitored dissolved PUA, as well as particulate PUA, which are produced by phytoplankton after cell disintegration. Our survey revealed a patchy distribution of PUA and shows that at most stations S. marinoi is the major contributor to the overall PUA. Our data also suggest that lysis of a diatom bloom can contribute significantly to the dissolved PUA concentrations and that other producers, which are smaller in cell size compared to diatoms, have to be taken into account as well if the total PUA content of marine samples is considered. The analyses of samples collected in deeper water suggests that diatom contribution to PUA decreases with depth, while smaller-sized unidentified organisms take place as dominant contributors to the PUA concentrations.

  16. Corneal aldehyde dehydrogenase and glutathione S-transferase activity after excimer laser keratectomy in guinea pigs.

    Science.gov (United States)

    Bilgihan, K; Bilgihan, A; Hasanreisoğlu, B; Turkozkan, N

    1998-03-01

    The free radical balance of the eye may be changed by excimer laser keratectomy. Previous studies have demonstrated that excimer laser keratectomy increases the corneal temperature, decreases the superoxide dismutase activity of the aqueous, and induces lipid peroxidation in the superficial corneal stroma. Aldehyde dehydrogenase (ALDH) and glutathione S-transferase (GST) are known to play an important role in corneal metabolism, particularly in detoxification of aldehydes, which are generated from free radical reactions. In three groups of guinea pigs mechanical corneal de-epithelialisation was performed in group I, superficial corneal photoablation in group II, and deep corneal photoablation in group III, and the corneal ALDH and GST activities measured after 48 hours. The mean ALDH and GST activities of group I and II showed no differences compared with the controls (p > 0.05). The corneal ALDH activities were found to be significantly decreased (p < 0.05) and GST activities increased (p < 0.05) in group III. These results suggest that excimer laser treatment of high myopia may change the ALDH and GST activities, metabolism, and free radical balance of the cornea.

  17. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Chang, Jie; Ouyang, Yong; Zheng, Xianwei [South China Univ. of Technology, Guangzhou (China)

    2014-06-15

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H{sub 2}O{sub 2}) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS{sub 4})) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS{sub 4}). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS{sub 4})/H{sub 2}O{sub 2} was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS{sub 4})/H{sub 2}O{sub 2} system.

  18. NMR analysis of aldehydes in Sicilian extra-virgin olive oils by DPFGSE techniques

    Directory of Open Access Journals (Sweden)

    Enrico Rotondo

    2011-03-01

    Full Text Available The DPFGSE NMR sequences open new perspectives in the volatile compounds analysis of food matrices. Many fresh extra-virgin Sicilian olive oils, analyzed by this technique, show two main resonances in the aldehydic spectral region (9–10 ppm, at 9.18 and 9.58 ppm. The former was never reported so far, the latter was sometime highlighted as a minor aldehydic component signal of spectra showing stronger resonances at 9.45 and 9.70 ppm. Thermal treatment at 220°C of extra virgin olive oil samples lead to the complete transformation of the resonances at 9.18 and 9.58 ppm into those at 9.45 and 9.70 ppm in 50 minutes. Analogous transformation takes place place in CDCl3 at rt in several weeks. These results suggest the transformation of relatively unstable compounds into thermodynamically more stable products whose resonances are commonly reported in the literature. Even though these chemical changes involve minimal amount of product, they are of crucial importance to define: i organoleptic extra virgin olive oil properties; ii fraudulent chemical or thermal treatment detection; iii extra virgin oil ageing.

  19. Aldehyde-functionalized chitosan-montmorillonite films as dynamically-assembled, switchable-chemical release bioplastics.

    Science.gov (United States)

    Chabbi, Jamal; Jennah, Oumayma; Katir, Nadia; Lahcini, Mohamed; Bousmina, Mosto; El Kadib, Abdelkrim

    2018-03-01

    Temporal release of synergistic and/or complementary chemicals (e.g.: drugs) is recognized as extremely challenging because of their frequently intertwined kinetic delivery and presently, straightforward concepts enabling to circumvent this bottleneck are missing in the open literature. In this framework, we report herein on aldehyde-functionalized, transparent and flexible chitosan-montmorillonite hybrid films that act as a new generation of eco-friendly, controlled-chemical release bioplastics. These dynamically-assembled nanomaterials are designed by a ternary assembly from biowaste derived chitin biopolymer, aromatic aldehydes and layered clay nanoparticles. On the basis of their geometrical and conformational properties, the oxygenated groups on the grafted aromatics interact preferentially with either the base Schiff belonging to the carbohydrate (via intramolecular CNHO-Ar known as "imine clip") or with the hydroxyl groups belonging to the clay surface (via intermolecular Si-OHO-Ar). The exfoliated clay nanoparticles within the carbohydrate polymer enables either accelerating or slowing down of the imine (CN) hydrolysis depending on the interaction of the conjugated aromatics. This provides the driving force for fine tuning host-guest interactions at the molecular level and constitutes an entry toward subtle discrimination of different chemicals (e.g. complementary fertilizers, synergistic drugs) during their sequential release. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) surfaces

    International Nuclear Information System (INIS)

    Xiong, Ke; Yu, Weiting; Chen, Jingguang G.

    2014-01-01

    Highlights: • Mo 2 C surface can deoxygenate propanal and 1-propanol to produce propene through a similar intermediate (propoxide or η 2 (C,O)-propanal). • Mo 2 C surface can deoxygenate furfural and furfuryl alcohol to make 2-methylfuran through a 2-methylfuran-like intermediate. • The presence of furan ring modifies the selectivity between deoxygenation and hydrogenation/dehydrogenation pathways. - Abstract: The selective deoxygenation of aldehydes and alcohols without cleaving the C-C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo 2 C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η 2 (C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo 2 C, as well as the effect of the furan ring on the selective deoxygenation of the C=O and C-OH bonds

  1. The use of aldehyde indicators to determine glutaraldehyde and alkaline glutaraldehyde contamination in chemical protective gloves.

    Science.gov (United States)

    Vo, Evanly; Zhuang, Zhenzhen

    2009-07-01

    The aim of this study was to assess the use of aldehyde indicator pads for detection of glutaraldehyde and alkaline glutaraldehyde permeation through chemical protective gloves under simulated in-use conditions. The quantitative analysis of glutaraldehyde permeation through a glove material was determined for Metricide, Wavicide, and 50% glutaraldehyde following a solvent-desorption process and gas chromatographic analysis. All glutaraldehyde solutions exhibited >99% adsorption (including both the glutaraldehyde oligomers of the reaction product and the excess glutaraldehyde) on the pads over the spiking range 0.05-5.0 microL. Breakthrough times for protective gloves were determined using the Thermo-Hand test method, and found to range from 76 to 150, from 170 to 230, and from 232 to 300 min for Metricide, Wavicide, and 50% glutaraldehyde, respectively. Glutaraldehyde recovery was calculated and ranged from 61 to 80% for all glutaraldehyde solutions. The mass of glutaraldehyde in these solutions at the time of breakthrough detection ranged from 17 to 18, from 18 to 19, and from 19 to 20 microg/cm(2) for Wavicide, 50% glutaraldehyde solution, and Metricide, respectively. Aldehyde indicator pads and the Thermo-Hand test method together should find utility in detecting, collecting, and quantitatively analyzing glutaraldehyde permeation samples through chemical protective gloves under simulated in-use conditions.

  2. Exposure to polycyclic aromatic hydrocarbons (PAHs), mutagenic aldehydes and particulate matter during pan frying of beefsteak.

    Science.gov (United States)

    Sjaastad, Ann Kristin; Jørgensen, Rikke Bramming; Svendsen, Kristin

    2010-04-01

    Cooking with gas or electric stoves produces fumes, especially during frying, that contain a range of harmful and potentially mutagenic compounds as well as high levels of fine and ultrafine particles. The aim of this study was to see if polycyclic aromatic hydrocarbons (PAHs) and higher mutagenic aldehydes which were collected in the breathing zone of the cook, could be detected in fumes from the frying of beefsteak. The frying was performed in a model kitchen in conditions similar to those in a Western European restaurant kitchen. The levels of PAHs (16 EPA standard) and higher aldehydes (trans,trans-2,4-decadienal, 2,4-decadienal, trans-trans-2,4-nonadienal, trans-2-decenal, cis-2-decenal, trans-2-undecenal, 2-undecenal) were measured during frying on an electric or gas stove with margarine or soya bean oil as the frying fat. The number concentration of particles electric stove causes increased occupational exposure to some of the components in cooking fumes which may cause adverse health effects.

  3. Self-Standing Nanocellulose Janus-Type Films with Aldehyde and Carboxyl Functionalities.

    Science.gov (United States)

    Nypelö, Tiina; Amer, Hassan; Konnerth, Johannes; Potthast, Antje; Rosenau, Thomas

    2018-03-12

    Nanocellulose-based self-standing films are becoming a substrate for flexible electronics, diagnostics, and sensors. Strength and surface chemistry are vital variables for these film-based endeavors, the former is one of the assets of nanocellulose. To contribute to the latter, nanocellulose films are tuned with a side-specific functionalization, having an aldehyde and a carboxyl side. The functionalities were obtained combining premodification of the film components by periodate oxidation with ozone post-treatment. Periodate oxidation of cellulose nanocrystals results in film components that interact through intra- and intermolecular hemiacetals and lead to films with an elastic modulus of 11 GPa. The ozone treatment of one film side induces conversion of the aldehyde into carboxyl functionalities. The ozone treatment on individual crystals was largely destructive. Remarkably, such degradation is not observed for the self-standing film, and the film strength at break is preserved. Preserving a physically intact film despite ozone treatment is a credit to using the dry film structure held together by interparticle covalent linkages. Additionally, gas-phase post-treatment avoids disintegration that could result from immersion into solvents. The crystalline cellulose "Janus" film is suggested as an interfacial component in biomaterial engineering, separation technology, or in layered composite materials for tunable affinity between the layers.

  4. NADP-Dependent Aldehyde Dehydrogenase from Archaeon Pyrobaculum sp.1860: Structural and Functional Features

    Directory of Open Access Journals (Sweden)

    Ekaterina Yu. Bezsudnova

    2016-01-01

    Full Text Available We present the functional and structural characterization of the first archaeal thermostable NADP-dependent aldehyde dehydrogenase AlDHPyr1147. In vitro, AlDHPyr1147 catalyzes the irreversible oxidation of short aliphatic aldehydes at 60–85°С, and the affinity of AlDHPyr1147 to the NADP+ at 60°С is comparable to that for mesophilic analogues at 25°С. We determined the structures of the apo form of AlDHPyr1147 (3.04 Å resolution, three binary complexes with the coenzyme (1.90, 2.06, and 2.19 Å, and the ternary complex with the coenzyme and isobutyraldehyde as a substrate (2.66 Å. The nicotinamide moiety of the coenzyme is disordered in two binary complexes, while it is ordered in the ternary complex, as well as in the binary complex obtained after additional soaking with the substrate. AlDHPyr1147 structures demonstrate the strengthening of the dimeric contact (as compared with the analogues and the concerted conformational flexibility of catalytic Cys287 and Glu253, as well as Leu254 and the nicotinamide moiety of the coenzyme. A comparison of the active sites of AlDHPyr1147 and dehydrogenases characterized earlier suggests that proton relay systems, which were previously proposed for dehydrogenases of this family, are blocked in AlDHPyr1147, and the proton release in the latter can occur through the substrate channel.

  5. Kinetics of the reactions of bromine atoms with a series of aliphatic aldehydes at 298 K

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, I.; Imrik, K.; Dobe, S.; Berces, T. [Magyar Tudomanyos Akademia, Budapest (Hungary). Koezponti Kemiai Kutato Intezete

    1998-01-01

    The kinetics of the reactions of Br({sup 2}P{sub 3/2}) with selected aldehydes, i.e. ethanal (1), propanal (2), 2-methyl-propanal (3), 2.2-dimethyl-propanal (4) and trichloroacetaldehyde (5) were studied at 298{+-}2 K. Rate constants for overall reactions were measured using the fast flow technique with resonance fluorescence detection of Br. Complementary determinations were carried out by the laser flash photolysis method. The following rate constants were obtained in the kinetic measurements ({+-}2{sigma}): k{sub 1}=(2.1{+-}0.2) x 10{sup 12}, k{sub 2}=(4.3{+-}0.4) x 10{sup 12}, k{sub 3}=(6.3{+-}1.4) x 10{sup 12}, k{sub 4}=(8.5{+-}0.8) x 10{sup 12}, k{sub 5}{<=}1 x 10{sup 9}, all in cm{sup 3}mol{sup -1}s{sup -1} units. The probable mechanism for the reactions of bromine atoms with aliphatic aldehydes has been discussed. (orig.)

  6. Antisickling activity evaluation of 4 aromatic aldehydes using proton magnetic relaxation

    International Nuclear Information System (INIS)

    Falcon Dieguez, J.E.; Grisel del Toro Garcia; Yamirka Alonso Geli; Lores Guevara, M.A.

    2006-12-01

    The formation of a Shiff base aduct hemoglobin-aromatic aldehyde, has been reported as inhibitor of the hemoglobin S polymerization. Using the Proton Magnetic Resonance methodology, the polymerization kinetics can be studied and the delay time can be determined. Our studies in vitro show the inhibitor effect of the isovanillin, o-vanillin, m-hydroxybenzaldehyde and the p-hydroxybenzaldehyde, using molar ratio (hemoglobin S/compound) 1:1, 1:4 and 1:8. The td increment (expressed in percents) obtained for each one of the molar ratio was the following: isovanillin: 34±6% (1:1), 68±16% (1:4), ovanillin: 26±10% (1:1), 63±20% (1:4), m-hydroxybelzaldehyde: 16±4% (1:1), 44±12% (1:4) and the phydroxybenzaldehyde: 10±3% (1:1), 32±8% (1:4). In the case of 1:8, the characteristic kinetics curve was not obtained. At the used concentrations, hemolytic activity was not found on the red blood cell. These results confirm the antisickling activity of these aromatic aldehydes, for a technique different to that reported in literature that also allows the quantification of concentration effect. The same ones will facilitate the study of the therapeutic usefulness of these compounds in the sickle cell anemia treatment. (author)

  7. Identification and characterisation of Aedes aegypti aldehyde dehydrogenases involved in pyrethroid metabolism.

    Directory of Open Access Journals (Sweden)

    Nongkran Lumjuan

    Full Text Available Pyrethroid insecticides, especially permethrin and deltamethrin, have been used extensively worldwide for mosquito control. However, insecticide resistance can spread through a population very rapidly under strong selection pressure from insecticide use. The upregulation of aldehyde dehydrogenase (ALDH has been reported upon pyrethroid treatment. In Aedes aegypti, the increase in ALDH activity against the hydrolytic product of pyrethroid has been observed in DDT/permethrin-resistant strains. The objective of this study was to identify the role of individual ALDHs involved in pyrethroid metabolism.Three ALDHs were identified; two of these, ALDH9948 and ALDH14080, were upregulated in terms of both mRNA and protein levels in a DDT/pyrethroid-resistant strain of Ae. aegypti. Recombinant ALDH9948 and ALDH14080 exhibited oxidase activities to catalyse the oxidation of a permethrin intermediate, phenoxybenzyl aldehyde (PBald, to phenoxybenzoic acid (PBacid.ALDHs have been identified in association with permethrin resistance in Ae. aegypti. Characterisation of recombinant ALDHs confirmed the role of this protein in pyrethroid metabolism. Understanding the biochemical and molecular mechanisms of pyrethroid resistance provides information for improving vector control strategies.

  8. Donor–acceptor graphene-based hybrid materials facilitating photo-induced electron-transfer reactions

    Directory of Open Access Journals (Sweden)

    Anastasios Stergiou

    2014-09-01

    Full Text Available Graphene research and in particular the topic of chemical functionalization of graphene has exploded in the last decade. The main aim is to increase the solubility and thereby enhance the processability of the material, which is otherwise insoluble and inapplicable for technological applications when stacked in the form of graphite. To this end, initially, graphite was oxidized under harsh conditions to yield exfoliated graphene oxide sheets that are soluble in aqueous media and amenable to chemical modifications due to the presence of carboxylic acid groups at the edges of the lattice. However, it was obvious that the high-defect framework of graphene oxide cannot be readily utilized in applications that are governed by charge-transfer processes, for example, in solar cells. Alternatively, exfoliated graphene has been applied toward the realization of some donor–acceptor hybrid materials with photo- and/or electro-active components. The main body of research regarding obtaining donor–acceptor hybrid materials based on graphene to facilitate charge-transfer phenomena, which is reviewed here, concerns the incorporation of porphyrins and phthalocyanines onto graphene sheets. Through illustrative schemes, the preparation and most importantly the photophysical properties of such graphene-based ensembles will be described. Important parameters, such as the generation of the charge-separated state upon photoexcitation of the organic electron donor, the lifetimes of the charge-separation and charge-recombination as well as the incident-photon-to-current efficiency value for some donor–acceptor graphene-based hybrids, will be discussed.

  9. Making highly conductive ZnO: creating donors and destroying acceptors

    Science.gov (United States)

    Look, D. C.; Leedy, K. D.

    2012-02-01

    We obtain room-temperature resistivities as low as ρ =1.4 x 10-4 Ω-cm in transparent Ga-doped ZnO grown on Al2O3 by pulsed laser deposition (PLD) at 200 °C in 10 mTorr of pure Ar and then annealed in a Zn enfivironment. Donor ND and acceptor NA concentrations are calculated from a recently developed scattering theory that is valid for any degenerate semiconductor material and requires only two input parameters, mobility μ and carrier concentration n measured at any temperature in the range 5 - 300 K. By comparison with SIMS and positron annihilation measurements, it has been shown that the donors in these samples are mostly GaZn, as expected, but that the acceptors are point defects, Zn vacancies VZn. PLD growth in Ar at 200 °C produces a high concentration of donors [GaZn] = 1.4 x 1021 cm-3, but VZn acceptors are produced at the same time, due to self-compensation. Fortunately, a large fraction of the VZn can be eliminated by annealing in a Zn environment. The theory gives ND and NA, and thus [GaZn] and [VZn], at each step of the growth and annealing process. For convenience, the theory is presented graphically, as plots of μ vs n at various values of compensation ratio K = NA/ND. From the value of K corresponding to the experimental values of μ and n, it is possible to calculate ND = n/(1 - K) and NA = nK/(1 - K).

  10. Merocyanines: polyene-polymethine transition in donor-acceptor-substituted stilbenes and polyenes

    International Nuclear Information System (INIS)

    Rettig, Wolfgang; Dekhtyar, Marina

    2003-01-01

    Three series of donor-acceptor-substituted conjugated compounds, namely, stilbenes, the open-chain polyenes of equivalent length, and the species of intermediate structure (polyenes terminated with only one phenyl ring) have been studied by the AM1 and HMO methods to elucidate and compare the structural prerequisites of the ideal polymethinic state ('cyanine limit'). The transition from polyenic to polymethinic properties has been traced in terms of bond-length (bond-order) alternation using the variation of terminal donor and acceptor substituents. Stilbenes manifest themselves as notably 'retarded' polyenes since a larger electronic asymmetry is necessary for them to reach the same degree of polymethinic character. The ground and the excited state have been shown to differ much more strongly for stilbenes than for polyenes with respect to the position of the bond equalization point on the scale of donor-acceptor difference. For the compounds containing one phenyl ring, the features revealed are intermediate between stilbenes and polyenes. The large S 0 -S 1 discrepancy in terms of bond alternation is a general property of aromatic ring-terminated chains (stilbenes) and is related to the influence of the aromatic character which can be quantified in this way. In this context, the most relevant definition for the cyanine limit (based on the bond invariance upon excitation) was selected from the existing definitions. The major trends revealed in the polyenic/polymethinic behaviour of the molecules can be interpreted on a topological basis within HMO or even simpler models with some additional influence due to the interelectronic repulsion which is taken into account in the AM1 treatment

  11. Use of γ-hexachlorocyclohexane as a terminal electron acceptor by an anaerobic enrichment culture

    International Nuclear Information System (INIS)

    Elango, Vijai; Kurtz, Harry D.; Anderson, Christina; Freedman, David L.

    2011-01-01

    Highlights: ► Use of γ-hexachlorocyclohexane as a terminal electron acceptor was demonstrated. ► H 2 served as the electron donor for an enrichment culture that dechlorinated γ-HCH. ► H 2 consumption for acetogenesis and methanogenesis stopped in HEPES media. ► Addition of vancomycin significantly slowed the rate of γ-HCH dechlorination. ► Previously identified chlororespiring microbes were not detected in the enrichment. - Abstract: The use of γ-hexachlorocyclohexane (HCH) as a terminal electron acceptor via organohalide respiration was demonstrated for the first time with an enrichment culture grown in a sulfate-free HEPES-buffered anaerobic mineral salts medium. The enrichment culture was initially developed with soil and groundwater from an industrial site contaminated with HCH isomers, chlorinated benzenes, and chlorinated ethenes. When hydrogen served as the electron donor, 79–90% of the electron equivalents from hydrogen were used by the enrichment culture for reductive dechlorination of the γ-HCH, which was provided at a saturation concentration of approximately 10 mg/L. Benzene and chlorobenzene were the only volatile transformation products detected, accounting for 25% and 75% of the γ-HCH consumed (on a molar basis), respectively. The enrichment culture remained active with only hydrogen as the electron donor and γ-HCH as the electron acceptor through several transfers to fresh mineral salts medium for more than one year. Addition of vancomycin to the culture significantly slowed the rate of γ-HCH dechlorination, suggesting that a Gram-positive organism is responsible for the reduction of γ-HCH. Analysis of the γ-HCH dechlorinating enrichment culture did not detect any known chlororespiring genera, including Dehalobacter. In bicarbonate-buffered medium, reductive dechlorination of γ-HCH was accompanied by significant levels of acetogenesis as well as methanogenesis.

  12. Mechanistic investigation of the gold-catalyzed aerobic oxidation of aldehydes: added insight from Hammett studies and isotopic labelling experiments

    DEFF Research Database (Denmark)

    Fristrup, Peter; Johansen, Louise Bahn; Christensen, Claus Hviid

    2008-01-01

    The gold-catalyzed aerobic oxidation of aldehydes proceeds through development of a partial negative charge and has a significant kinetic isotope effect (k(H)/k(D) = 2.8-2.9), which illustrates that activation of the C-H bond takes place in the rate-determining step.......The gold-catalyzed aerobic oxidation of aldehydes proceeds through development of a partial negative charge and has a significant kinetic isotope effect (k(H)/k(D) = 2.8-2.9), which illustrates that activation of the C-H bond takes place in the rate-determining step....

  13. Visible-light-promoted and one-pot synthesis of phenanthridines and quinolines from aldehydes and O-acyl hydroxylamine.

    Science.gov (United States)

    An, Xiao-De; Yu, Shouyun

    2015-06-05

    A one-pot synthesis of phenanthridines and quinolines from commercially available or easily prepared aldehydes has been reported. O-(4-Cyanobenzoyl)hydroxylamine was utilized as the nitrogen source to generate O-acyl oximes in situ with aldehydes catalyzed by Brønsted acid. O-Acyl oximes were then subjected to visible light photoredox catalyzed cyclization via iminyl radicals to furnish aza-arenes. A variety of phenanthridines and quinolines have been prepared assisted by Brønsted acid and photocatalyst under visible light at room temperature with satisfactory yields.

  14. Dual Enantioselective Control using D-phenylglycine-L-proline-derived Catalysts for the Enantioselective Addition of Diethylzinc to Aldehyde

    International Nuclear Information System (INIS)

    Kang, Seock Yong; Park, Yong Sun

    2016-01-01

    Dipeptide-derived catalysts are of great interest in various asymmetric transformations because of their short and simple preparation and easy modification of their modular structure by using different α-amino acids. We recently reported the first example of dipeptide-catalyzed enantioselective addition of dialkylzinc to aldehydes. We have developed a novel D-Phg-L-Pro dipeptide-derived catalyst for the addition of diethylzinc to aromatic aldehydes. We also disclosed an effective chiral switching by simply modifying nonchiral part of D-Phg-L-Pro dipeptide.

  15. Threshold photoelectron spectroscopy and photoionization total ion yield spectroscopy of simple organic acids, aldehydes, ketones and amines

    International Nuclear Information System (INIS)

    Yencha, Andrew J; Malins, Andrew E R; Siggel-King, Michele R F; Eypper, Marie; King, George C

    2009-01-01

    We have initiated a research program to investigate the ionization behavior of some simple organic molecules containing the carboxyl group (R 2 C=O), where R could be H, OH, NH 2 , or CH 3 or other aliphatic or aromatic carbon groups, using threshold photoelectron spectroscopy and photoionization total ion yield spectroscopy. We report here on the simplest organic acid, formic acid, and two simple aldehydes: acetaldehyde and the simplest unsaturated aldehyde, 2-propenal (acrolein). The objective of this study was to characterize the valence cationic states of these molecules with vibrational structural resolution.

  16. Donor-π-Acceptor Polymer with Alternating Triarylborane and Triphenylamine Moieties.

    Science.gov (United States)

    Li, Haiyan; Jäkle, Frieder

    2010-05-12

    A luminescent main chain donor-π-acceptor-type polymer (4) was prepared via organometallic polycondensation reaction followed by post modification. With both electron-rich amine and electron-deficient borane moieties embedded in the main chain, 4 exhibits an interesting ambipolar character: it can be reduced and oxidized electrochemically at moderate potentials and shows a strong solvatochromic effect in the emission spectra. Complexation studies show that 4 selectively binds to fluoride and cyanide; quantitative titration with cyanide reveals a two-step binding process. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Oligothiophene-S,S-dioxides as a class of electron-acceptor materials for organic photovoltaics

    International Nuclear Information System (INIS)

    Camaioni, N.; Ridolfi, G.; Fattori, V.; Favaretto, L.; Barbarella, G.

    2004-01-01

    Oligothiophene-S,S-dioxides are proposed as electron acceptors materials in organic blended photovoltaic devices. Photoinduced charge transfer is demonstrated in blends between a regioregular poly(3-hexylthiophene) and the oligomers, via photoluminescence spectroscopy. The enhanced photovoltaic performance exhibited by the blended cells, with respect to that of pristine devices in which the polymer is the active layer, represents further evidence for exciton dissociation. An increase of the power conversion efficiency up to sixty-fold is achieved by blending the polymer with the oligothiophene-S,S-dioxides

  18. A Selenophene-Based Low-Bandgap Donor-Acceptor Polymer Leading to Fast Ambipolar Logic

    KAUST Repository

    Kronemeijer, Auke J.

    2012-02-20

    Fast ambipolar CMOS-like logic is demonstrated using a new selenophene-based donor-acceptor polymer semiconductor. The polymer exhibits saturation hole and electron mobilities of 0.46 cm 2/Vs and 0.84 cm 2/Vs. Inverters are fabricated with high gains while three-stage ring oscillators show stable oscillation with an unprecedented maximum frequency of 182 kHz at a relatively low supply voltage of 50 V. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Polythiophenes and fullerene derivatives based donor-acceptor system: topography by atomic force microscopy

    International Nuclear Information System (INIS)

    Marcakova, M. L.; Repovsky, D.; Cik, G.; Velic, D.

    2017-01-01

    The goal of this work is to examine the surface of a polythiophene/fullerene film in order to understand the structure. In this work polythiophene is used as electron donor and fullerene-derivative is used as electron acceptor. Atomic force microscopy (AFM), is an ideal method to study surfaces and nanostructures. Surfaces of fullerene C60 , fullerene-derivates PCBM, polythiophene P12 and a mixture of P12 and PCBM are characterized. In all samples, the average roughness, the arithmetical value of divergence from the high of the surface, is determined concluding that P12 and PCBM mix together well and form a film with specific topography. (authors)

  20. Research of acceptor impurity thermal activation in GaN: Mg epitaxial layers

    Directory of Open Access Journals (Sweden)

    Aleksandr V. Mazalov

    2016-06-01

    The effect of thermal annealing of GaN:Mg layers on acceptor impurity activation has been investigated. Hole concentration increased and mobility decreased with an increase in thermal annealing temperature. The sample annealed at 1000 °C demonstrated the lowest value of resistivity. Rapid thermal annealing (annealing with high heating speed considerably improved the efficiency of Mg activation in the GaN layers. The optimum time of annealing at 1000 °C has been determined. The hole concentration increased by up to 4 times compared to specimens after conventional annealing.

  1. Donor and Acceptor Polymers for Bulk Hetero Junction Solar Cell and Photodetector Applications

    KAUST Repository

    Cruciani, Federico

    2018-04-01

    Bulk heterojunction (BHJ) devices represent a very versatile family of organic cells for both the fields of solar energy conversion and photodetection. Organic photovoltaics (OPV) are an attractive alternative to their silicon-based counterparts because of their potential for low-cost roll-to-roll printing, and their intended application in light-weight mechanically conformable devices and in window-type semi-transparent PV modules. Of all proposed OPV candidates, polymer donor with different absorption range are especially promising when used in conjunction with complementary absorbing acceptor materials, like fullerene derivatives (PCBM), conjugated molecules or polymers, achieving nowadays power conversion efficiencies (PCEs) in the range of 10-13% and being a step closer to practical applications. Among the photodetectors (PD), low band gap polymer blended with PCBM decked out the attention, given their extraordinary range of detection from UV to IR and high detectivity values reached so far, compared to the inorganic devices. Since the research has been focused on the enhancement of those numbers for an effective commercialization of organic cells, the topic of the following thesis has been centered on the synthesis of different polymer structures with diverse absorption ranges, used as donor or acceptor, with emphasis on performance in various BHJ devices either for solar cells and photodetectors. In the first part, two new wide band gap polymers, used as donor material in BHJ devices blended with fullerene and small molecule acceptors, are presented. The PBDT_2FT and PBDTT_2FT have shown nice efficiencies from 7% to 9.8%. The device results are implemented with a morphology study and a specific application in a semi-transparent tandem device, reaching a record PCE of 5.4% for average level of transparency of 48%. In another section two new low band gap polymers (Eopt~ 1.26 eV) named DTP_2FBT and (Eopt~ 1.1 eV) named BDTT_BTQ are presented. While the DTP

  2. The Relative Hydrogen Bonding Strength of Oxygen and Nitrogen Atoms as a Proton Acceptor

    International Nuclear Information System (INIS)

    Hyun, Jong Cheol; Lee, Ho Jin; Kim, Nak Kyoon; Choi, Young Sang; Park, Jeung Hee; Yoon, Chang Ju

    1999-01-01

    The thermodynamic parameters for the formation of the hydrogen bonding were widely used to understand the protein- ligand interaction. We have been interested in the hydrogen bonding strength of various proton acceptors toward the amide in a nonpolar solvent, This work is in the line of our interest. In drug design, the functional group is often replaced in order to enhance or reduce the binding affinity, which is usually determined by hydrogen bonding strength. Therefore, to understand this biochemical process the knowledge of relative hydrogen bonding strength is of importance.

  3. Influence of electron acceptor on lyoluminescence of irradiated lithium and sodium fluoride

    International Nuclear Information System (INIS)

    Ehrts, D.P.; Dzelme, Yu.R.; Malin'sh, A.A.; Gasyavichus, I.G.; Tiliks, Yu.E.

    1989-01-01

    The influence of nitrate ions and the dissolution rate upon the stationary and non-stationary lyoluminescence has been studied for gamma-irradiated at 45 deg C and dose 10 4 Gy/h lithium and sodium fluorides when dissolving in a concentrated sulfuric acid under variuos disslution conditions. The lyoluminescence of both types is shown to depend on the acceptor concentration in the solvent and the dependence change is determined by reactions between chemically active defects at various depths of the crystal's surface layer affected by the solvent and the dissolution rate. The former reactions depend on the radiation defects' distibution in the crystal volume

  4. Synthesis and spectroscopic characterization of a fluorescent pyrrole derivative containing electron acceptor and donor groups

    Science.gov (United States)

    Almeida, A. K. A.; Monteiro, M. P.; Dias, J. M. M.; Omena, L.; da Silva, A. J. C.; Tonholo, J.; Mortimer, R. J.; Navarro, M.; Jacinto, C.; Ribeiro, A. S.; de Oliveira, I. N.

    2014-07-01

    The synthesis and fluorescence characterization of a new pyrrole derivative (PyPDG) containing the electron donor-acceptor dansyl substituent is reported. The effects of temperature and solvent polarity on the steady-state fluorescence of this compound are investigated. Our results show that PyPDG exhibits desirable fluorescent properties which makes it a promising candidate to be used as the photoactive material in optical thermometry and thermography applications. Further, the electrochemical and emission properties of polymeric films obtained from the oxidation polymerization of PyPDG are also analyzed.

  5. A Selenophene-Based Low-Bandgap Donor-Acceptor Polymer Leading to Fast Ambipolar Logic

    KAUST Repository

    Kronemeijer, Auke J.; Gili, Enrico; Shahid, Munazza; Rivnay, Jonathan; Salleo, Alberto; Heeney, Martin; Sirringhaus, Henning

    2012-01-01

    Fast ambipolar CMOS-like logic is demonstrated using a new selenophene-based donor-acceptor polymer semiconductor. The polymer exhibits saturation hole and electron mobilities of 0.46 cm 2/Vs and 0.84 cm 2/Vs. Inverters are fabricated with high gains while three-stage ring oscillators show stable oscillation with an unprecedented maximum frequency of 182 kHz at a relatively low supply voltage of 50 V. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A review on chemistry of a powerful organic electron acceptor 7, 7, 8, 8, tetracynoquinodimethane (TCNQ)

    Science.gov (United States)

    Singh, Yadunath

    2018-05-01

    Organic semiconductors have so far found extensive practical applications similar to inorganic semiconductors. Interest in these compounds has been stimulated by the synthesis of several powerful electron acceptors, such as tetracynoethylene (TCNE), 7, 7, 8, 8, tetracynoquinodimethane (TCNQ) and cyno-p-benzoquinone. In this connection TCNQ is of particular interest, due to presence of four powerful electron accepting groups in its molecule. Nucleophillic addition reactions, which are rarely encountered among unsaturated compounds, as well as addition reactions proceeding via a one electron transfer stage are characteristic of this substance.

  7. Synthesis of Donor-Acceptor Conjugated Polymers by "CLICK" Polymerization for OPV applications

    DEFF Research Database (Denmark)

    Brandt, Rasmus Guldbæk; Yu, Donghong

    The intent of this study was to utilize the Copper(I)-catalyzed Azide Alkyne Cycloaddition (CuAAC) as a polymerization technique (“Click” Polymerization) for synthesizing novel π-conjugated low band gap polymers for organic photovoltaic applications (OPV). The chosen approach was to synthesize...... an alternating electron donating (donor, D) and electron withdrawing (acceptor, A) co-polymer. The chosen monomers were well known units, and the novelty lies in using the monomer units with the click methodology. An insoluble alternating copolymer consisting of 2,7-diazido-9,9-dioctyl-9Hflourene and 1...

  8. Donor-acceptor-pair emission characterization in N-B doped fluorescent SiC

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Kamiyama, Satoshi

    2011-01-01

    In the present work, we investigated donor-acceptor-pair emission in N-B doped fluorescent 6H-SiC, by means of photoluminescence, Raman spectroscopy, and angle-resolved photoluminescence. The photoluminescence results were interpreted by using a band diagram with Fermi-Dirac statistics. It is shown...... intensity in a large emission angle range was achieved from angle-resolved photoluminescence. The results indicate N-B doped fluorescent SiC as a good wavelength converter in white LEDs applications....

  9. High-Performance All-Polymer Solar Cells Achieved by Fused Perylenediimide-Based Conjugated Polymer Acceptors.

    Science.gov (United States)

    Yin, Yuli; Yang, Jing; Guo, Fengyun; Zhou, Erjun; Zhao, Liancheng; Zhang, Yong

    2018-05-09

    We report three n-type polymeric electron acceptors (PFPDI-TT, PFPDI-T, and PFPDI-Se) based on the fused perylene diimide (FPDI) and thieno[3,2- b]thiophene, thiophene, or selenophene units for all-polymer solar cells (all-PSCs). These FPDI-based polymer acceptors exhibit strong absorption between 350 and 650 nm with wide optical bandgap of 1.86-1.91 eV, showing good absorption compensation with the narrow bandgap polymer donor. The lowest unoccupied molecular orbital (LUMO) energy levels were located at around -4.11 eV, which are comparable with those of the fullerene derivatives and other small molecular electron acceptors. The conventional all-PSCs based on the three polymer acceptors and PTB7-Th as polymer donor gave remarkable power conversion efficiencies (PCEs) of >6%, and the PFPDI-Se-based all-PSC achieved the highest PCE of 6.58% with a short-circuit current density ( J sc ) of 13.96 mA/cm 2 , an open-circuit voltage ( V oc ) of 0.76 V, and a fill factor (FF) of 62.0%. More interestingly, our results indicate that the photovoltaic performances of the FPDI-based polymer acceptors are mainly determined by the FPDI unit with a small effect from the comonomers, which is quite different from the others reported rylenediimide-based polymer acceptors. This intriguing phenomenon is speculated as the huge geometry configuration of the FPDI unit, which minimizes the effect of the comonomer. These results highlight a promising future for the application of the FPDI-based polymer acceptors in the highly efficient all-PSCs.

  10. Cinnamic acid-inhibited ribulose-1,5-bisphosphate carboxylase activity is mediated through decreased spermine and changes in the ratio of polyamines in cowpea.

    Science.gov (United States)

    Huang, Xingxue; Bie, Zhilong

    2010-01-01

    This study investigated the effects of cinnamic acid (CA) on ribulose-1,5-bisphosphate carboxylase (RuBPC) activity and the endogenous polyamine levels of cowpea leaves. The results show that 0.1 mM CA treatment decreased photosynthetic rate (P(n)) and RuBPC activity, but it did not affect the maximal photochemical efficiency of PSII (F(v)/F(m)), the actual photochemical efficiency of PSII (PhiPSII), intercellular CO(2) concentration (C(i)), and relative chlorophyll content. These suggest that the decrease in P(n) is at least partially attributed to a lowered RuBPC activity. In addition, 0.1 mM CA treatment increased the putrescine (Put) level, but decreased spermidine (Spd) and spermine (Spm) levels, thereby reducing the (Spd+Spm)/Put (PAs) ratio in the leaves. The exogenous application of 1 mM Spd markedly reversed these CA-induced effects for polyamine and partially restored the PAs ratio and RuBPC activity in leaves. Methylglyoxal-bis (guanylhydrazone) (MGBG), which is an inhibitor of S-adenosylmethionine decarboxylase (SAMDC), results in the inability of activated cells to synthesize Spd and exacerbates the negative effects induced by CA. The exogenous application of 1 mM D-arginine (D-Arg), which is an inhibitor of Put biosynthesis, decreased the levels of Put, but increased the PAs ratio and RuBPC activity in leaves. These results suggest that 0.1 mM CA inhibits RuBPC activity by decreasing the levels of endogenous free and perchloric acid soluble (PS) conjugated Spm, as well as the PAs ratio.

  11. Physiologically based in silico modelling to examine DNA adduct formation by different food-borne a,ß-unsaturated aldehydes at realistic low dietary exposure levels

    NARCIS (Netherlands)

    Kiwamoto, R.

    2015-01-01

    Abstract (R.Kiwamoto ISBN 978-94-6257-284-3)

    Various α,β-unsaturated aldehydes are present in fruits, vegetables, spices, or processed products containing these items as natural constituents or as added food flavouring agents. Because of the α,β-unsaturated aldehyde moiety the β carbon in

  12. Chemoselective Preparation of 1,1-Diacetates from Aldehydes, Mediated by a Keggin Heteropolyacid Under Solvent Free Conditions at Room Temperature

    Directory of Open Access Journals (Sweden)

    G. Romanelli

    2007-01-01

    Full Text Available A simple, general and efficient method has been developed for the conversion of aldehydes to 1,1-diacetates using acetic anhydride, a catalytic amount of non commercial Keggin heteropolyacid (H6 PalMo11O40 (1% mol in solvent free conditions at room temperature. Aromatic and aliphatic, simple and conjugated aldehydes were protected with excellent yields.

  13. Acceptor Type Vacancy Complexes In As-Grown ZnO

    International Nuclear Information System (INIS)

    Zubiaga, A.; Tuomisto, F.; Zuniga-Perez, J.

    2010-01-01

    One of the many technological areas that ZnO is interesting for is the construction of opto-electronic devices working in the blue-UV range as its large band gap (∼3.4 eV at 10 K) makes them suitable for that purpose. As-grown ZnO shows generally n-type conductivity partially due to the large concentration of unintentional shallow donors, like H, but impurities can also form complexes with acceptor type defects (Zn vacancy) leading to the creation of compensating defects. Recently, Li Zn and Na Zn acceptors have been measured and H could form similar type of defects. Doppler Broadening Positron Annihilation spectroscopy experimental results on the observation of Zn related vacancy complexes in ZnO thin films, as-grown, O implanted and Al doped will be presented. Results show that as-grown ZnO film show small Zn vacancy related complexed that could be related to presence of H as a unintentional doping element.

  14. Free Carrier Generation in Fullerene Acceptors and Its Effect on Polymer Photovoltaics

    KAUST Repository

    Burkhard, George F.

    2012-12-20

    Early research on C60 led to the discovery that the absorption of photons with energy greater than 2.35 eV by bulk C60 produces free charge carriers at room temperature. We find that not only is this also true for many of the soluble fullerene derivatives commonly used in organic photovoltaics, but also that the presence of these free carriers has significant implications for the modeling, characterization, and performance of devices made with these materials. We demonstrate that the discrepancy between absorption and quantum efficiency spectra in P3HT:PCBM is due to recombination of such free carriers in large PCBM domains before they can be separated at a donor/acceptor interface. Since most theories assume that all free charges result from the separation of excitons at a donor/acceptor interface, the presence of free carrier generation in fullerenes can have a significant impact on the interpretation of data generated by numerous field-dependent techniques. © 2012 American Chemical Society.

  15. Site preference of Mg acceptors and improvement of p-type doping efficiency in nitride alloys.

    Science.gov (United States)

    Park, Ji-Sang; Chang, K J

    2013-06-19

    We perform first-principles density functional calculations to investigate the effect of Al and In on the formation energy and acceptor level of Mg in group-III nitride alloys. Our calculations reveal a tendency for the Mg dopants to prefer to occupy the lattice sites surrounded with Al atoms, whereas hole carriers are generated in In- or Ga-rich sites. The separation of the Mg dopants and hole carriers is energetically more favourable than a random distribution of dopants, being attributed to the local bonding effect of weak In and strong Al potentials in alloys. As a consequence, the Mg acceptor level, which represents the activation energy of Mg, tends to decrease with increasing numbers of Al next-nearest neighbours, whereas it increases as the number of In next-nearest neighbours increases. Based on the results, we suggest that the incorporation of higher Al and lower In compositions will improve the p-type doping efficiency in quaternary alloys, in comparison with GaN or AlGaN ternary alloys with similar band gaps.

  16. A method to quantify FRET stoichiometry with phasor plot analysis and acceptor lifetime ingrowth.

    Science.gov (United States)

    Chen, WeiYue; Avezov, Edward; Schlachter, Simon C; Gielen, Fabrice; Laine, Romain F; Harding, Heather P; Hollfelder, Florian; Ron, David; Kaminski, Clemens F

    2015-03-10

    FRET is widely used for the study of protein-protein interactions in biological samples. However, it is difficult to quantify both the FRET efficiency (E) and the affinity (Kd) of the molecular interaction from intermolecular FRET signals in samples of unknown stoichiometry. Here, we present a method for the simultaneous quantification of the complete set of interaction parameters, including fractions of bound donors and acceptors, local protein concentrations, and dissociation constants, in each image pixel. The method makes use of fluorescence lifetime information from both donor and acceptor molecules and takes advantage of the linear properties of the phasor plot approach. We demonstrate the capability of our method in vitro in a microfluidic device and also in cells, via the determination of the binding affinity between tagged versions of glutathione and glutathione S-transferase, and via the determination of competitor concentration. The potential of the method is explored with simulations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Optical spacing effect in organic photovoltaic cells incorporating a dilute acceptor layer

    Energy Technology Data Exchange (ETDEWEB)

    Menke, S. Matthew; Lindsay, Christopher D.; Holmes, Russell J. [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-06-16

    The addition of spacing layers in organic photovoltaic cells (OPVs) can enhance light absorption by optimizing the spatial distribution of the incident optical field in the multilayer structure. We explore the optical spacing effect in OPVs achieved using a diluted electron acceptor layer of C{sub 60}. While optical spacing is often realized by optimizing buffer layer thickness, we find that optical spacing via dilution leads to cells with similar or enhanced photocurrent. This is observed despite a smaller quantity of absorbing molecules, suggesting a more efficient use of absorbed photons. In fact, dilution is found to concentrate optical absorption near the electron donor-acceptor interface, resulting in a marked increase in the exciton diffusion efficiency. Contrasting the use of changes in thickness to engineer optical absorption, the use of dilution does not significantly alter the overall thickness of the OPV. Optical spacing via dilution is shown to be a viable alternative to more traditional optical spacing techniques and may be especially useful in the continued optimization of next-generation, tandem OPVs where it is important to minimize competition for optical absorption between individual sub-cells.

  18. General theory of excitation energy transfer in donor-mediator-acceptor systems.

    Science.gov (United States)

    Kimura, Akihiro

    2009-04-21

    General theory of the excitation energy transfer (EET) in the case of donor-mediator-acceptor system was constructed by using generalized master equation (GME). In this theory, we consider the direct and indirect transitions in the EET consistently. Hence, our theory includes the quantum mechanical interference between the direct and indirect transitions automatically. Memory functions in the GME were expressed by the overlap integrals among the time-dependent emission spectrum of the donor, the absorption spectrum of the mediator, the time-dependent emission spectrum of the mediator, and the absorption spectrum of the acceptor. In the Markov limit of the memory functions, we obtained the rate of EET which consists of three terms due to the direct transition, the indirect transition, and the interference between them. We found that the interference works effectively in the limit of slow thermalization at the intermediate state. The formula of EET rate in this limit was expressed by the convolution of the EET interaction and optical spectra. The interference effect strongly depends on the width of the absorption spectrum of mediator molecule and the energy gap between the donor and the mediator molecules.

  19. Free Carrier Generation in Fullerene Acceptors and Its Effect on Polymer Photovoltaics

    KAUST Repository

    Burkhard, George F.; Hoke, Eric T.; Beiley, Zach M.; McGehee, Michael D.

    2012-01-01

    Early research on C60 led to the discovery that the absorption of photons with energy greater than 2.35 eV by bulk C60 produces free charge carriers at room temperature. We find that not only is this also true for many of the soluble fullerene derivatives commonly used in organic photovoltaics, but also that the presence of these free carriers has significant implications for the modeling, characterization, and performance of devices made with these materials. We demonstrate that the discrepancy between absorption and quantum efficiency spectra in P3HT:PCBM is due to recombination of such free carriers in large PCBM domains before they can be separated at a donor/acceptor interface. Since most theories assume that all free charges result from the separation of excitons at a donor/acceptor interface, the presence of free carrier generation in fullerenes can have a significant impact on the interpretation of data generated by numerous field-dependent techniques. © 2012 American Chemical Society.

  20. Acceptor Type Vacancy Complexes In As-Grown ZnO

    Science.gov (United States)

    Zubiaga, A.; Tuomisto, F.; Zuñiga-Pérez, J.

    2010-11-01

    One of the many technological areas that ZnO is interesting for is the construction of opto-electronic devices working in the blue-UV range as its large band gap (˜3.4 eV at 10 K) makes them suitable for that purpose. As-grown ZnO shows generally n-type conductivity partially due to the large concentration of unintentional shallow donors, like H, but impurities can also form complexes with acceptor type defects (Zn vacancy) leading to the creation of compensating defects. Recently, LiZn and NaZn acceptors have been measured and H could form similar type of defects. Doppler Broadening Positron Annihilation spectroscopy experimental results on the observation of Zn related vacancy complexes in ZnO thin films, as-grown, O implanted and Al doped will be presented. Results show that as-grown ZnO film show small Zn vacancy related complexed that could be related to presence of H as a unintentional doping element.